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The editors dedicate this volume to two 
giants in contemporary timbre research and 
practice: the late David L. Wessel (left),
whose work on timbre by means of sound 
analysis and synthesis inspired some of the 
first computer music software that 
emphasizes real-time musical control of 
timbre, and the late Roger A. Kendall (right),
whose explorations of perception, language, 
and meaning in musical timbre continue to 
resonate.
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The purpose of the Acoustical Society of America (www.acousticalsociety.org) is to 
generate, disseminate, and promote the knowledge of acoustics. The Acoustical 
Society of America (ASA) is recognized as the world’s premier international scien-
tific society in acoustics, and counts among its more than 7000 members, profes-
sionals in the fields of bioacoustics, engineering, architecture, speech, music, 
oceanography, signal processing, sound and vibration, and noise control.

Since its first meeting in 1929, the ASA has enjoyed a healthy growth in mem-
bership and in stature. The present membership of approximately 7000 includes 
leaders in acoustics in the United States of America and around the world. The ASA 
has attracted members from various fields related to sound including engineering, 
physics, oceanography, life sciences, noise and noise control, architectural acous-
tics; psychological and physiological acoustics; applied acoustics; music and musi-
cal instruments; speech communication; ultrasonics, radiation, and scattering; 
mechanical vibrations and shock; underwater sound; aeroacoustics; macrosonics; 
acoustical signal processing; bioacoustics; and many more topics.

To assure adequate attention to these separate fields and to new ones that may 
develop, the Society establishes technical committees and technical groups charged 
with keeping abreast of developments and needs of the membership in their special-
ized fields. This diversity and the opportunity it provides for interchange of knowl-
edge and points of view has become one of the strengths of the Society.

The ASA’s publishing program has historically included The Journal of the 
Acoustical Society of America, JASA-Express Letters, Proceedings of Meetings on 
Acoustics, the magazine Acoustics Today, and various books authored by its mem-
bers across the many topical areas of acoustics. In addition, ASA members are 
involved in the development of acoustical standards concerned with terminology, 
measurement procedures, and criteria for determining the effects of noise and 
vibration.

Acoustical Society of America
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Series Preface

 Springer Handbook of Auditory Research

The following preface is the one that we published in volume 1 of the Springer 
Handbook of Auditory Research back in 1992. As anyone reading the original pref-
ace, or the many users of the series, will note, we have far exceeded our original 
expectation of eight volumes. Indeed, with books published to date and those in the 
pipeline, we are now set for over 80 volumes in SHAR, and we are still open to new 
and exciting ideas for additional books.

We are very proud that there seems to be consensus, at least among our friends 
and colleagues, that SHAR has become an important and influential part of the audi-
tory literature. While we have worked hard to develop and maintain the quality and 
value of SHAR, the real value of the books is very much because of the numerous 
authors who have given their time to write outstanding chapters and our many coed-
itors who have provided the intellectual leadership to the individual volumes. We 
have worked with a remarkable and wonderful group of people, many of whom 
have become great personal friends of both of us. We also continue to work with a 
spectacular group of editors at Springer. Indeed, several of our past editors have 
moved on in the publishing world to become senior executives. To our delight, this 
includes the current president of Springer US, Dr. William Curtis.

But the truth is that the series would and could not be possible without the support 
of our families, and we want to take this opportunity to dedicate all of the SHAR 
books, past and future, to them. Our wives, Catherine Fay and Helen Popper, and our 
children, Michelle Popper Levit, Melissa Popper Levinsohn, Christian Fay, and 
Amanda Fay Sierra, have been immensely patient as we developed and worked on 
this series. We thank them and state, without doubt, that this series could not have 
happened without them. We also dedicate the future of SHAR to our next generation 
of (potential) auditory researchers—our grandchildren—Ethan and Sophie Levinsohn, 
Emma Levit, and Nathaniel, Evan, and Stella Fay, and Sebatian Sierra-Fay.
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Preface 1992

The Springer Handbook of Auditory Research presents a series of comprehensive 
and synthetic reviews of the fundamental topics in modern auditory research. The 
volumes are aimed at all individuals with interests in hearing research including 
advanced graduate students, postdoctoral researchers, and clinical investigators. 
The volumes are intended to introduce new investigators to important aspects of 
hearing science and to help established investigators to better understand the funda-
mental theories and data in fields of hearing that they may not normally follow 
closely.

Each volume presents a particular topic comprehensively, and each serves as a 
synthetic overview and guide to the literature. As such, the chapters present neither 
exhaustive data reviews nor original research that has not yet appeared in peer- 
reviewed journals. The volumes focus on topics that have developed a solid data and 
conceptual foundation rather than on those for which a literature is only beginning 
to develop. New research areas will be covered on a timely basis in the series as they 
begin to mature.

Each volume in the series consists of a few substantial chapters on a particular 
topic. In some cases, the topics will be ones of traditional interest for which there is 
a substantial body of data and theory, such as auditory neuroanatomy (Vol. 1) and 
neurophysiology (Vol. 2). Other volumes in the series deal with topics that have 
begun to mature more recently, such as development, plasticity, and computational 
models of neural processing. In many cases, the series editors are joined by a 
 co-editor having special expertise in the topic of the volume.

Richard R. Fay, Chicago, IL, USA
Arthur N. Popper, College Park, MD, USA

SHAR logo by Mark B. Weinberg, Potomac, Maryland, used with permission
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Volume Preface

Timbre is a foundational aspect of hearing. Roughly defined, timbre is thought of as 
any property other than pitch, duration, and loudness that allows two sounds to be 
distinguished. The remarkable ability of humans to recognize sound sources and 
events (e.g., glass breaking, a friend’s voice, a tone from a piano) stems primarily 
from a capacity to perceive and process differences in the timbre of sounds. Timbre 
raises many important issues in psychology and the cognitive sciences, musical 
acoustics, speech processing, medical engineering, and artificial intelligence. 
Bringing together leading experts from around the world, this volume provides a 
joint forum for novel insights and the first comprehensive modern account of 
research topics and methods on the perception, cognition, and acoustic modeling of 
timbre.

This volume is the first dedicated to a comprehensive and authoritative presenta-
tion of the state of the art in research on timbre. Chapter 1, by the senior editors of 
this volume, gives an overview of the field, including a discussion of the various 
definitions of what timbre is. The chapter also gives a comprehensive overview of 
the book.

Following this, the next five chapters address the principal processes underlying 
timbre perception and cognition. In Chap. 2, Stephen McAdams discusses dimen-
sional models of timbre based on multidimensional scaling (MDS) of timbre dis-
similarity ratings and psychophysical explanations in terms of acoustical correlates 
of perceptual dimensions. Then, in Chap. 3, Trevor R. Agus, Clara Suied, and Daniel 
Pressnitzer describe the many important and intriguing empirical findings in the last 
10 years on the categorization and recognition of sounds. In Chap. 4, Kai Siedenburg 
and Daniel Müllensiefen discuss research on long- and short-term memory for tim-
bre. Chapter 5 by Charalampos Saitis and Stefan Weinzierl considers verbal descrip-
tions of timbre and the rich semantic associations found in them. Following this, in 
Chap. 6, Vinoo Alluri and Sudarsana Reddy Kadiri review recent findings regarding 
the neural basis of timbre information processing from studies that used both animal 
models and human brain imaging.

The second part of this volume addresses specific scenarios of timbre perception. 
Chapter 7, by Samuel Robert Mathias and Katharina von Kriegstein, outlines 
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 important topics in voice processing and voice identification. Then, in Chap. 8, 
Stephen McAdams describes the various ways in which timbre shapes the percep-
tual experience of music. Following this, Jeremy Marozeau and Wiebke Lamping 
outline timbre perception in patients with severe or profound hearing loss who have 
received a cochlear implant (CI) in Chap. 9. Chapter 10 by Guillaume Lemaitre and 
Patrick Susini then focuses on the role of timbre in the evaluation of product sounds 
as related to the question of how sounds contribute to the aesthetic, functional, and 
emotional aspect of a product.

The third part of this volume is focused on the acoustic modeling of timbre. 
Chapter 11 by Marcelo Caetano, Charalampos Saitis, and Kai Siedenburg describes 
computational approaches to the acoustic description of sounds that have developed 
in the fields of psychoacoustics and music information retrieval to date. Then, in 
Chap. 12, Mounya Elhilali summarizes recent advances in the study and application 
of spectrotemporal modulation representations in speech and music. In the final 
chapter, Sølvi Ystad, Mitsuko Aramaki, and Richard Kronland-Martinet (Chap. 13) 
introduce an analysis-synthesis framework that derives intuitive control parameters 
of electronic sound synthesis directly from the statistics of input sounds.

Many of the chapters in this volume build on material in earlier volumes in the 
Springer Handbook of Auditory Research. Most notably, this first comprehensive 
treatment on the various aspects of timbre perception may serve as a natural com-
plement to the Springer Handbook of Auditory Research volumes on the basic audi-
tory parameters found in Pitch: Neural Coding and Perception (Volume 24, edited 
by Plack, Oxenham, Popper, and Fay, 2005) and Loudness (Volume 34, edited by 
Florentine, Popper, and Fay, 2011).

Kai Siedenburg, Oldenburg, Germany
Charalampos Saitis, Berlin, Germany 

Stephen McAdams, Montréal, QC, Canada
Arthur N. Popper, College Park, MD, USA

Richard R. Fay, Chicago, IL, USA

Volume Preface
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Chapter 1
The Present, Past, and Future of Timbre 
Research

Kai Siedenburg, Charalampos Saitis, and Stephen McAdams

Abstract Timbre is a foundational aspect of hearing. The remarkable ability of 
humans to recognize sound sources and events (e.g., glass breaking, a friend’s voice, 
a tone from a piano) stems primarily from a capacity to perceive and process differ-
ences in the timbre of sounds. Roughly defined, timbre is thought of as any property 
other than pitch, duration, and loudness that allows two sounds to be distinguished. 
Current research unfolds along three main fronts: (1) principal perceptual and cog-
nitive processes; (2) the role of timbre in human voice perception, perception 
through cochlear implants, music perception, sound quality, and sound design; and 
(3) computational acoustic modeling. Along these three scientific fronts, significant 
breakthroughs have been achieved during the decade prior to the production of this 
volume. Bringing together leading experts from around the world, this volume pro-
vides a joint forum for novel insights and the first comprehensive modern account 
of research topics and methods on the perception, cognition, and acoustic modeling 
of timbre. This chapter provides background information and a roadmap for the 
volume.

Keywords Acoustics · Auditory perception · History of auditory research · Music 
perception · Voice perception

K. Siedenburg (*) 
Department of Medical Physics and Acoustics, Carl von Ossietzky Universität Oldenburg, 
Oldenburg, Germany
e-mail: kai.siedenburg@uni-oldenburg.de 

C. Saitis 
Audio Communication Group, Technische Universität Berlin, Berlin, Germany
e-mail: charalampos.saitis@campus.tu-berlin.de 

S. McAdams 
Schulich School of Music, McGill University, Montreal, QC, Canada
e-mail: stephen.mcadams@mcgill.ca

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14832-4_1&domain=pdf
mailto:kai.siedenburg@uni-oldenburg.de
mailto:charalampos.saitis@campus.tu-berlin.de
mailto:stephen.mcadams@mcgill.ca


2

1.1  Timbre As a Research Field

The study of timbre has recently become the subject of a remarkable momentum. 
Much of this interest in timbre seems to emerge from several distinct research per-
spectives. First, psychophysical research into timbre has built novel pathways to 
investigating elementary questions regarding timbre’s perceptual status. To what 
extent does timbre interact with pitch and loudness, and what role does it play in 
sound source recognition?

Second, cognitive neuroscience has increasingly addressed the psychophysical 
and neural bases of voice perception. What are the neural mechanisms and networks 
underlying the perception of arguably the most important auditory stimulus for 
humans?

Third, the field of music information retrieval has demonstrated new approaches 
to automatic musical-instrument recognition and genre classification from a bio- 
cognitive viewpoint. What are efficient computational representations of timbre that 
best mimic physiology and cognition?

Fourth, the research community is witnessing a strong musicological and music- 
theoretical interest in timbre. What are the conceptions and experiential dimensions 
of timbre that are shared between different periods and musical styles? What role 
does timbre play in nonclassical contexts, such as electroacoustic or popular music?

By probing those and related questions, numerous important and inspiring 
studies on timbre have been published in the decade prior to the writing of this 
overview. Moreover, no less than four independent workshops on timbre were 
organized between 2014 and 2018, reflecting the demand for direct discussions 
and exchange. The first small workshop in 2014 occurred at Telecom ParisTech 
(https://musictimbre.wp.imt.fr) with a focus on music information retrieval 
applications. This was followed by a meeting at Harvard University in 2015, the 
focus of which was on musicological issues. The Berlin Interdisciplinary 
Workshop on Timbre in 2017 at the Federal Institute for Music Research 
(Staatliches Institut für Musikforschung, http://www.timbre2017.tu-berlin.de) 
first brought together researchers from the diverse fields of science and humani-
ties, specifically musicology, music cognition, cognitive neuroscience, and music 
information retrieval. This workshop gave rise to the idea of the present volume 
and most of its authors were part of the Berlin lineup. The scope was further 
expanded with perspectives from fields such as music composition, ethnomusi-
cology, and sound recording at the conference “Timbre 2018: Timbre Is a Many-
Splendored Thing” at McGill University in Montreal (https://www.mcgill.ca/
timbre2018/), which received more than 130 paper submissions and was the larg-
est conference on the topic so far. Reflecting aspects of this development, the 
upcoming The Oxford Handbook of Timbre, edited by Emily Dolan and Alexander 
Rehding (https://bit.ly/2PXgbQA) features historical, music-theoretical, and 
musicological perspectives on timbre.

This volume channels the momentum with regard to questions on perceptual and 
cognitive processing and acoustic modeling of timbre. As a result, it constitutes the 

K. Siedenburg et al.
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first comprehensive treatment on the various aspects of timbre perception and will 
serve as a natural complement to the Springer Handbook of Auditory Research vol-
umes on the basic auditory parameters of pitch (Plack et  al. 2005) and loudness 
(Florentine et al. 2011).

1.1.1  Inter-Disciplinary Perspectives

Technically, timbre is a basic auditory attribute and should be of interest to all audi-
tory scientists who are working on psychoacoustics, sound source perception, 
speech communication, soundscapes, or music. Given individual research traditions 
and foci, it is nonetheless unavoidable that the notion of timbre is encountered more 
frequently in some domains than in others, and individual research interests natu-
rally bring about individualized perspectives.

Timbre permeates music listening, and polyphonic music often features aestheti-
cally rich and intriguing treasures of timbre. In fact, the notion of timbre has a long- 
standing tradition in music perception research. In the nineteenth century, 
Helmholtz’s (1877) seminal work outlined a theory of timbre that was dedicated to 
explaining the perception of musical-instrument sounds. Helmholtz used a simpli-
fying short-hand definition that has become something akin to the textbook defini-
tion (with all its pitfalls, see Sect. 1.1.2): “By the quality of a tone [timbre, 
Klangfarbe] we mean that peculiarity which distinguishes the musical tone of a 
violin from that of a flute or that of a clarinet or that of the human voice, when all 
these instruments produce the same note at the same pitch” (Helmholtz 1877, p. 10). 
Perhaps for these reasons, much research framed under the headline of timbre has a 
particular eye on music perception (even though timbre has long been the neglected 
ugly duckling of music theory and musicology).

In speech, timbre plays a dual role. First, different speakers can be differentiated 
via timbre cues. Moreover, the sequences of phonemes that constitute speech 
beyond speaker information are based on timbral contrasts. Vowels differ by spec-
tral envelope shape; consonants differ by spectrotemporal morphology. In other 
words, most of the meaning conveyed by speech is indeed transmitted via timbral 
contrast (although pitch also plays an essential role in tone languages). From this 
perspective, speech is a highly sophisticated system of timbral sequencing. Perhaps 
because this perspective is too general to be useful beyond speaker identity, one 
rarely observes connections being drawn in the literature between the vast field of 
speech research and basic psychoacoustic studies framed as timbre research 
(although see Patel 2008).

At the same time, timbre research, perhaps more than many other aspects of 
audition, relies on the integration of methods across fields. Helmholtz constitutes a 
prime example: he applied Fourier theory to the perception of acoustic signals and 
thereby integrated the state of the art in physics and auditory physiology. As will be 
further outlined in Sect. 1.2, progress in understanding timbre has not only been 
driven by smart and simple experiments, but also by advances in statistics (e.g., 

1 Present, Past, and Future of Timbre Research
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multidimensional scaling), signal processing (e.g., nonstationary signal analysis 
techniques such as the Short-Time Fourier Transform), or neurophysiology (e.g., 
brain imaging).

The chapters of this volume take inherently interdisciplinary perspectives but 
also reflect individual conceptual and methodological approaches toward timbre. 
Many examples stem from musical scenarios, but there are also dedicated discus-
sions of general sound source recognition, voice perception and speaker identifica-
tion, perception of industrial product sound quality, and timbre perception by 
cochlear implant users. Regardless of the specific application, the perceptual and 
cognitive processes addressed are of general significance.

1.1.2  Defining a Complex Auditory Parameter

A commonality at the heart of timbre research could be the willingness to focus on 
the direct and concrete sensory experience of sound while not considering the latter 
primarily as a medium to an otherwise abstract message in the form of strings of 
symbols, whether constituted via musical notation or linguistic categories. In the 
words of the musicologist Emily Dolan (2013):

[Timbre] is the concept to which we must turn to describe the immediacies of how 
sounds strike our ears, how they affect us. It is the word we need when we want 
to discuss sound in terms of its particularities and peculiarities. To put it another 
way, to talk about timbre is to value sound as sound, and not as a sonic manifesta-
tion of abstract principles (Dolan 2013, p. 87).

Ironically, there may be another idea about timbre that auditory researchers agree 
on: that the concept is hard to define (cf., Krumhansl 1989; Siedenburg and 
McAdams 2017a). Perhaps for a lack of a better alternative, the American National 
Standards Institute (ANSI) definition is frequently revisited. For the sake of com-
pleteness (and tradition!):

Timbre. That attribute of auditory sensation which enables a listener to judge that 
two nonidentical sounds, similarly presented and having the same loudness and 
pitch, are dissimilar [sic]. NOTE-Timbre depends primarily upon the frequency 
spectrum, although it also depends upon the sound pressure and the temporal 
characteristics of the sound (ANSI 1960/1994, p. 35).

Bregman (1990) severely criticized this definition, yet without providing any con-
structive alternative:

This is, of course, no definition at all. […] The problem with timbre is that it is the 
name for an ill-defined wastebasket category. […] I think the definition … should 
be this: ‘We do not know how to define timbre, but it is not loudness and it is not 
pitch.’ […] What we need is a better vocabulary concerning timbre (Bregman 
1990, pp. 92–93).
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Comments such as these left many researchers in doubt as to whether the term is 
useful at all. In order to clear up some of the confusion around the notion of timbre, 
Siedenburg and McAdams (2017a) proposed four conceptual distinctions for the 
term. Here, these distinctions and potential implications are briefly outlined.

• Timbre is a perceptual attribute. It should be kept in mind that timbre is a percep-
tual attribute, as are pitch and loudness. Thus, it is only of limited use to speak of 
timbral properties of, say, an audio signal or musical orchestration without refer-
ring to the auditory sensation. In short, timbre lives not in the audio signal or in 
a musical score but in the mind of the listener.

• Timbre is both a quality and a contributor to source identity. This dual nature is 
often mentioned, but only rarely are the consequences of these subtleties consid-
ered. Regarding the qualitative stance, two sounds can be declared qualitatively 
dissimilar without bearing semantic associations or without their source/cause 
mechanisms being identified. On the other hand, timbre is defined as a collection 
of auditory sensory features that contributes to the inference (or specification) of 
sound sources and events. Importantly, timbral differences do not always corre-
spond to differences in sound sources: Indeed, a single sound-producing object 
can give rise to a universe of timbres.

• Timbre functions on different scales of detail. There are differences in the granu-
larity of timbral information: whereas the timbral differences between a bassoon 
played with different articulations may be subtle (or think of differences between 
a Stradivarius violin and a competitor model), the timbral differences between a 
bassoon and a piano are huge. Each of these separate timbral granularities or 
scales of detail encompasse interesting research questions.

• Timbre is a property of fused auditory events. Studies have begun to explore the 
acoustic correlates of what has been called “polyphonic timbre” (Alluri and 
Toiviainen 2010), defined as the global sound of a piece of music. In music infor-
mation retrieval, it is common practice to run audio analyses on musical mixtures 
(also because automatic source separation is such a difficult computational prob-
lem). However, auditory scene-analysis principles should not be forgotten in this 
context. In fact, timbre may be viewed as a perceptual property of perceptually 
fused auditory events; if two or more auditory events do not fuse, they simply do 
not contribute to the same timbre. The simultaneously produced sounds from a 
bass drum, a handclap, and a synthesizer pad usually do not fuse into a single 
auditory image; as such, each of these sounds possesses an individual timbre in 
the mind of a listener. It is the emergent property of the combination of the indi-
vidual timbres that evokes hip-hop, but there is no unitary “hip-hop timbre.”

Whereas the first and last distinctions sharpen the notion of timbre, the second 
and third distinctions essentially acknowledge timbre as an umbrella term. The 
skeptical reader may insist that umbrella terms are too broad to be part of a refined 
scientific vocabulary. One might counter that there are other psychological concepts 
that are exceptionally broad and that have proven useful for structuring and stimu-
lating research activity. Examples include basic terms such as attention, memory, or 
emotion (each of these notions can have hugely different connotations across 
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 subfields of psychology and neuroscience). Timbral taxonomies will need to be 
refined, depending on the subject matter. Importantly, researchers need to precisely 
specify which aspect or component of timbre they wish to address. The upshot of 
sharpened conceptual scalpels could be the development of refined experiments and 
more specific theories.

1.2  Milestones in Timbre Research

1.2.1  Fourier and Helmholtz

In 1863, Hermann von Helmholtz published the first edition of “On the Sensations 
of Tone as a Physiological Basis for the Theory of Music” (see Helmholtz 1877 for 
the English translation of the 4th German edition). The work was soon acknowl-
edged as one of the most influential contributions to hearing science of the nine-
teenth century. Helmholtz’s most important conceptual tool was Fourier’s theorem. 
Providing a centerpiece of nineteenth century mathematics, Fourier conjectured that 
any periodic function can be represented as an infinite series of trigonometric func-
tions. Ohm and Helmholtz applied the theorem to the description of sound and 
thereby demonstrated its usefulness for acoustic problems (Muzzulini 2006).

In practice, Fourier’s theorem has led to the reduction of the infinite complexity 
of vibrational movements inherent in sounds to a finite number of parameters: the 
amplitudes and phases of a finite set of trigonometric functions, that is, a tone’s 
partial components. This perspective also initiated the scientific study of timbre (for 
a comprehensive history of timbre research see Muzzulini 2006). Through experi-
ments in sound synthesis and physiology, Helmholtz concluded that Fourier’s theo-
rem closely described physical and physiological reality. He used tuned resonators 
to filter out and amplify partial tones from a compound sound and concluded that 
the partial tones were physical entities that could be manipulated and experienced; 
they were not just mathematical fiction. With regard to physiology, he observed that 
“there must be different parts of the ear which are set in vibration by tones of differ-
ent pitch [i.e., frequency] and which receive the sensation of these tones” (Helmholtz 
1877, p. 143–144), thus providing the influential idea of the ear as a frequency ana-
lyzer (cf., Lyon 2017). Fourier analysis hence provided a common framework for 
the physics and physiology underlying auditory perception.

Regarding timbre, Helmholtz stated: “The quality of the musical portion of a 
compound tone depends solely on the number and relative strength of its partial 
simple tones, and in no respect on their difference of phase” (Helmholtz 1877, 
p. 126). This exclusively spectral perspective of timbre, locating the parameter in 
the relative amplitude of partial tones and nothing else, has dominated the field for 
a long time. But it is interesting to note how narrowly defined his object of study 
was, the “musical portion” of a tone: “… a musical tone strikes the ear as a perfectly 
undisturbed, uniform sound which remains unaltered as long as it exists, and it 
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 presents no alternation of various kinds of constituents” (Helmholtz 1877, p. 7–8). 
By assuming completely stationary sounds, his notion of tone color was indeed a 
strong simplification of what is understood as timbre today. Most obviously, attack 
and decay transients are not considered by this approach. Helmholtz was quite 
aware of this fact: “When we speak in what follows of a musical quality of tone, we 
shall disregard these peculiarities of beginning and ending, and confine our atten-
tion to the peculiarities of the musical tone which continues uniformly” (Helmholtz 
1877, p. 67). This means that Helmholtz’s approach to timbre had its limitations 
(cf., Kursell 2013).

1.2.2  Timbre Spaces

Modern studies of timbre have started from direct dissimilarity ratings of pairs of 
sounds, a method that circumvents assumptions about acoustically important attri-
butes and also does not rely on verbal descriptors. Multidimensional scaling (MDS) 
(Shepard 1962) has been a pivotal tool for this pursuit. Use of MDS generates a 
spatial configuration of points whose pairwise distances approximate the original 
perceptual dissimilarity data. In order to rule out potential confounds from other 
attributes, tones are usually equalized in pitch, loudness, and duration (and pre-
sented over headphones or a speaker, thereby removing any differences in spatial 
position) before entering a dissimilarity rating design. The central assumption of 
MDS studies is that shared psychophysical dimensions exist according to which the 
test sounds can be ordered. The goal of MDS studies is to reveal the dimensions that 
constitute the coordinate system of the timbre space.

The MDS approach has been an invaluable tool for modern timbre research. 
Although much of this work has traditionally revolved around musical-instrument 
sounds, MDS has also been applied in the scenarios of voice quality (Kreiman et al. 
1992), industry product sounds and sound design (Susini et al. 2011), and timbre 
perception with cochlear implants (Marozeau and McKay 2016). The first applica-
tion of MDS to timbre was provided by Plomp (1970) and Wessel (1973). In his 
dissertation, Grey (1975) used emulations of orchestral tones generated by means of 
additive synthesis with line-segment-approximated amplitude and frequency trajec-
tories of partials extracted from analyses of musical-instrument tones. He observed 
a three-dimensional MDS solution. Its physical correlates were qualitatively inter-
preted in terms of the spectral energy distribution for the first dimension of the 
space. The second dimension was related to the attack synchronicity of partials, but 
sounds ordered along this dimension also had correspondingly different amounts of 
spectral fluctuation (variation over time). The third dimension was attributed to 
spectral balance during the attack of tones.

Using a set of sounds created by frequency-modulation synthesis, Krumhansl 
(1989) was the first to present a timbre space using EXSCAL (Winsberg and Carroll, 
1989), an algorithm that includes so-called “specificities” that provide additional 
distance values to account for perceptual features that are unique to individual 
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items. McAdams et al. (1995) synthesized many of the previously mentioned pos-
sibilities of MDS, including specificities with the addition of latent classes of sub-
jects with different weights on the common dimensions and specificities using the 
CLASCAL algorithm (Winsberg and De Soete 1993) as well as rigorous quantifica-
tion of physical correlates of the resulting MDS dimensions. Several audio descrip-
tors were considered as candidates for a psychophysical interpretation of the MDS 
dimensions: log rise time (logarithm of the duration from the moment at which the 
start of the tone exceeds a certain threshold to the maximum amplitude), spectral 
centroid (amplitude-weighted mean frequency or center of mass of the spectrum), 
spectral flux (average of correlations between adjacent short-time amplitude spec-
tra), and spectral irregularity (log of the standard deviation of component ampli-
tudes of a tone’s spectral envelope derived from a running average across the 
spectrum of the amplitudes of three adjacent harmonics).

Today, a number of MDS studies have confirmed that the spectral centroid and 
the attack time constitute major acoustic correlates of the MDS spaces from timbre 
dissimilarity ratings of orchestral musical-instrument sounds. The attack time 
appears to be particularly salient for stimulus sets that contain sustained and impul-
sively excited sounds, and additional dimensions appear to depend on the specific 
stimulus set. In this sense, these studies complemented the Helmholtzian approach 
by demonstrating that the temporal amplitude envelope is a salient timbral feature. 
At the same time, the low dimensionality of most of the obtained timbre spaces—
usually studies observe around two to three dimensions—cast doubts with regards 
to their completeness. It is easy to imagine timbral variation that is not captured by 
these few dimensions, although these low-dimensional results may also reflect limi-
tations in listeners’ abilities to make ratings on more than a small number of percep-
tual factors simultaneously. The idea that musical-instrument timbre is indeed more 
complex is taken up by high-dimensional modulation representations (see Sect. 
1.2.5).

1.2.3  Verbal Attributes

The plethora of words used to communicate timbral impressions of sounds further 
suggests a rich perceptual and conceptual dimensionality of timbre. Consider for 
example the following descriptions by Helmholtz:

Simple Tones [single-frequency or flute-like sounds] … have a very soft, pleasant 
sound, free from all roughness, but wanting in power, and dull at low frequen-
cies. … Musical Tones [piano- or vowel-like sounds] … are rich and splendid, 
while they are at the same time perfectly sweet and soft if the higher upper par-
tials are absent. … If only the unevenly numbered partials are present, the quality 
of tone is hollow, and, when a large number of such upper partials are present, 
nasal. When the prime tone [fundamental] predominates, the quality of tone is 
rich; but when the prime tone is not sufficiently superior in strength to the upper 
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partials, the quality of tone is poor. … When partial tones higher than the sixth or 
seventh are very distinct, the quality of tone is cutting and rough (Helmholtz 
1877, pp. 118–119).

Soft, rough, wanting in power, dull, rich, sweet, hollow, nasal, poor, and cutting 
are just a few examples of the diverse and subtle lexicon of timbral attributes shared 
by instrumentalists, composers, sound engineers and designers, scientists, and other 
expert listeners, but also by naïve listeners who do not work with or study acoustics. 
These metaphorical descriptions are not crucial for perceptualizing timbre—one 
can compare, recognize, or memorize and imagine timbres without having to tag 
them verbally—but are central to conceptualizing timbre by allowing listeners to 
communicate subtle acoustic variations in terms of other, more commonly shared 
experiences, some of which are more sensory in nature, whereas others are more 
abstract and conceptual (Wallmark 2014). In other words, the way timbre is talked 
about can disclose significant information about the way it is perceived.

The advent of the semantic differential (SD) method (Osgood 1952) provided a 
powerful tool for empirical studies and models of the relation between the two. 
Semantic differentials are verbally anchored scales, typically constructed either by 
two opposing descriptive adjectives such as “bright-dull” or by an adjective and its 
negation as in “bright-not bright.” A set of sounds is judged against a relatively large 
number of such scales, which are then reduced to a small set of factors (dimensions 
explaining the most variance across all scales) and factor loadings (amount of vari-
ance in each scale explained by a factor). Similar to MDS studies, sound stimuli are 
usually equalized in pitch, loudness, and duration before entering a semantic rating 
design. Solomon (1958) first applied the SD approach to timbre, setting the stage for 
a rich tradition of research in timbre semantics from musical instruments to indus-
trial product sounds (Carron et al. 2017).

Von Bismarck (1974) used synthetic spectra that mimicked vowels and instru-
ments and empirically derived verbal scales (in German) suitable for describing 
such timbres (as opposed to a priori selection by the experimenter) and settled for a 
four-dimensional semantic space for timbre. The first dimension was defined by the 
differential scale dull-sharp, explained almost half of the total variance in the data, 
and correlated well with the spectral centroid. In an English experiment taking up 
some of Bismarck’s verbal scales but using dyads played from different wind instru-
ments, Kendall and Carterette (1993) found that dull-sharp ratings were less stable, 
likely because sharp in English refers more often to pitch than to timbre. Convergent 
evidence from all subsequent studies in English (and in several other languages) 
corroborate the notion that a salient semantic dimension of timbre related to spectral 
energy distribution and concentration of energy in higher frequency bands is cap-
tured by the pair of polar adjectives dull-bright. Lichte (1941) had previously dem-
onstrated empirically a correlation between dull-bright and the (constant) difference 
in amplitude between successive harmonic complexes (in principle this corresponds 
to a transposition of the spectral centroid).

The other dimensions found by von Bismarck were compact-scattered, ful-
lempty, and colorfulcolorless, relating to notions of density, volume, and richness, 
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respectively. Today most SD studies will yield a single dimension of fullness (or 
mass) that encompasses all such timbral impressions as well as a third common 
dimension of roughness (or texture) (Zacharakis et al. 2014). The three dimensions 
of brightness, roughness, and fullness correspond strongly, but not one-to-one, with 
three salient psychophysical dimensions along which listeners are known to per-
ceive timbre similarity: duration of attack transient, midpoint of spectral energy 
distribution, and spectral variation or irregularity (Zacharakis et al. 2015). They also 
have been shown, in some cases, to be relatively stable across different languages 
(Zacharakis et al. 2014) and cultures (Alluri and Toiviainen 2012), although more 
systematic explorations would be necessary to establish a cross-cultural and 
language- invariant semantic framework for timbre.

1.2.4  Recognition of Sound Sources and Events

Although researchers have long been aware of timbre’s role as a critical cue for 
sound recognition (McAdams 1993), the empirical exploration of this issue has 
really gained momentum only in the last 10 years. The importance of sound source 
categories and mechanics in the perception of musical-instrument timbre was first 
demonstrated by Giordano and McAdams (2010). In their meta-analysis of several 
timbre dissimilarity rating studies, same-family or same-excitation tones turned out 
to be rated similarly and tended to occupy similar regions of MDS spaces. These 
results indicated that significant associations between the perception of musical tim-
bre and the mechanics of the sound source emerge even when not explicitly 
demanded by the task (also see Siedenburg et al. 2016b). Moreover, whereas work-
ing memory capacity for abstract and unfamiliar timbres is arguably rather low 
(Golubock and Janata 2013), general familiarity with timbres and the availability of 
corresponding sound source categories has been shown to improve timbre recogni-
tion from working memory (Siedenburg and McAdams 2017b).

An aspect that stands out across recognition studies is that the recognition of 
human voices is particularly fast and robust compared to other stimuli such as 
musical- instrument sounds. This may be intuitive from an evolutionary and ontoge-
netic point of view because the voice is a sound source with which all humans 
should be particularly familiar. Specifically, Agus et al. (2012) observed faster clas-
sifications of vocal sounds compared to sounds from percussion or string instru-
ments. Suied et al. (2014) further observed that voices were more robustly recognized 
compared to other instrumental sounds even for very short snippets (below 10 ms 
duration). Extending this line of research toward recognition of musical melodies, 
Weiss and colleagues (see Weiss et al. 2017 and references therein) accumulated 
evidence for better recognition of vocal melodies compared to melodies played by 
nonvocal musical instruments.

How quickly can the sensory templates underlying sound-to-category mapping 
be acquired? Using fully abstract sounds, namely snippets of white noise, Agus 
et al. (2010) demonstrated that sensory representations are learned rapidly and are 
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retained in fine-grained detail. Specifically, their experiment used short noise bursts, 
some of which re-occurred during the test unbeknownst to participants. Accuracy in 
the detection of repetitions embedded in noises itself increased rapidly for many of 
the repeated samples, and this type of implicit auditory learning turned out to be 
persistent over several weeks, which highlights the remarkable learning and recog-
nition capabilities of the auditory system.

1.2.5  High-Dimensional Acoustic and Neuromimetic 
Representations

In speech processing and perception modeling, high-dimensional representations of 
audio signals have been common for some time (Dau et al. 1997; Chi et al. 1999). 
In this context, a debate revolves around the question of how “high-dimensional” 
the signal representations need to be in order to be able to parsimoniously account 
for the experimental data. The model developed by Dau et al. (1997) is based on a 
temporal-modulation filter bank but does not explicitly include information about 
spectral or spectrotemporal modulations. Directly inspired by physiological mea-
surements of spectrotemporal receptive fields, Elhilali, Shamma, and colleagues 
(2003) have used a more complete set of spectrotemporal modulations in order to 
predict speech intelligibility. At the same time, for a task such as automatic speaker 
identification, it remains common practice to use fairly small sets of Mel-frequency 
cepstral coefficients (MFCC), which only represent spectral profile information of 
slices of the audio signal and hence no modulation information at all (Hansen and 
Hasan 2015).

In the field of music information retrieval, numerous studies have investigated 
robust timbre-related audio descriptors for tasks such as classification of orchestral 
instruments or music genres. In this context, researchers most often apply very large 
sets of hand-crafted audio descriptors (e.g., Siedenburg et al. 2016a). From a psy-
chological viewpoint, this practice raises the question of the extent to which differ-
ent acoustic descriptors are statistically independent of one another and whether 
they represent perceptually relevant information. Peeters et al. (2011) assessed the 
information redundancy across commonly used audio descriptors via correlational 
analysis followed by hierarchical clustering. This approach indicated ten classes of 
relatively independent acoustic descriptors. Applying receptive field models of 
auditory information processing to musical-instrument sounds, Patil et al. (2012) 
showed that robust, automatic instrument classification is possible on the basis of 
spectrotemporal modulation information, and Thoret et  al. (2017) indicated that 
similar features are sufficient for characterizing the acoustic correlates of musical 
instrument identification.

A particularly useful trait of the representations used by Thoret and colleagues is 
that they are invertible, that is, they also can be used to generate sounds. This allows 
one to evaluate the importance of specific aspects of the underlying representations, 
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which corresponds to the classic analysis-by-synthesis approach (Risset and Wessel 
1999) (for applications to controlling the expressivity of musical performances, see 
Barthet et  al. 2010). In the realm of sound texture perception, McDermott and 
Simoncelli (2011) presented an analysis-resynthesis scheme for texture exemplars 
such as rain, crashing waves, and wind, and had participants identify resynthesized 
signals. They found that by matching the statistics of individual frequency channels 
of the underlying auditory model, the approach failed to produce realistic resynthe-
sized textures. By combining frequency channel statistics with correlations between 
channels, however, natural-sounding textures could be generated.

Audio-based models have thus started to become very useful tools to formulate 
hypotheses about the perceptual principles underlying timbre perception. The great 
diversity of approaches and representations across applications and signal classes 
that can be observed in the above examples may yet call for a revised understanding 
of the role of representations. Instead of seeking audio representations that act as 
repositories of everything that might be known about auditory information process-
ing, audio-based models and representations can also be used pragmatically in order 
to support specific arguments about timbre perception (such as the importance of 
including cross-channel information). Useful insights are certain in the future from 
audio-based models and representations, which potentially may also be advanced 
by work with large-scale neural network models and analyses.

1.2.6  Neural Correlates of Timbre Processing

The emergence of functional magnetic resonance imaging (fMRI) has brought sig-
nificant advances to the understanding of the physiological underpinnings of timbre 
perception by making it possible to nonintrusively measure correlates of brain activ-
ity in human listeners. Two general approaches to understanding the brain basis of 
timbre processing have been employed using different kinds of models. Encoding 
models are used to predict brain activity at the voxel level from stimulus properties. 
Decoding models attempt to predict stimulus properties from measurements of 
brain activity. Low-level representations of timbral properties examine the coding 
of spectral and temporal stimulus properties at different levels of auditory process-
ing from the cochlea to auditory cortex and beyond. Spectral properties are repre-
sented by the distribution of activity across the tonotopic map at various levels 
(Town and Bizley 2013). Some temporal properties are presumably extracted by 
amplitude modulation filter banks, which are present as early as the inferior collicu-
lus (Langner 2009), with evidence of a topography for rates of amplitude fluctua-
tions in auditory cortex (Baumann et al. 2015).

Mid-level representations formed in secondary cortical areas capture descriptive 
summaries of sounds (such as roughness and brightness) that correspond to perceiv-
able dimensions of timbre, and these properties then contribute to higher-level rep-
resentations of sound sources. Early fMRI studies have demonstrated a distinct 
dorsal pathway for the processing of complex auditory patterns related to timbre 
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(Rauschecker 1998). That pathway provides information for the subsequent acquisi-
tion of knowledge of the environment and recognition of sound sources. Also using 
fMRI, Belin et al. (2000) found bilateral voice-selective areas in the superior tem-
poral sulcus, part of the secondary auditory cortex. These areas, subsequently 
dubbed temporal voice areas, respond selectively to human vocal sounds but not to 
other sounds generated by humans or control sounds with matching amplitude 
envelopes.

Exploring facets of multimodal processing, von Kriegstein et al. (2005) reported 
robust interactions between auditory and visual areas during voice recognition. The 
authors found that brain regions involved in recognizing the voices of familiar 
speakers overlapped with the fusiform face area, a prominent face-sensitive region 
in the inferior temporal cortex. Several follow-up studies (see Mathias and von 
Kriegstein 2014) provided evidence of direct and early interactions between por-
tions of the temporal voice areas and the fusiform face area, suggesting that these 
regions communicate with one another to resolve a speaker’s identity.

Further evidence from fMRI studies suggests that processing related to the cat-
egorization of musical-instrument sounds, but not speech or animal vocalizations, 
occurs in the right superior temporal regions (Leaver and Rauschecker 2010). These 
authors also report other differences in localization of the processing of different 
classes of sounds: human speech and musical instruments versus animal vocaliza-
tions in anterior superior temporal cortex (STC) with preferential encoding of 
musical- instrument timbre in the right anterior superior temporal plane and selec-
tive processing of acoustic-phonetic content of speech in left STC.

Generally, this field is still very young. Methodological advances in the compu-
tational modeling of auditory perception (Kell et al. 2018) or the analysis of fMRI 
data (Diedrichsen and Kriegeskorte 2017) may well lead to a deeper understanding 
of the basis of timbre perception in the brain.

1.3  Structure and Content of Volume

1.3.1  Roadmap of Chapters

This volume is the first dedicated to a comprehensive and authoritative presentation 
of the state of the art in research on timbre. The first part addresses the principal 
processes underlying timbre perception and cognition and comprises five chapters. 
Chapter 2 by Stephen McAdams discusses dimensional models of timbre based on 
multidimensional scaling (MDS) of timbre dissimilarity ratings and psychophysical 
explanations in terms of acoustic correlates of perceptual dimensions. It covers 
research on the covariance of timbre, pitch, and loudness, and McAdams discusses 
the ways in which this covariance affects the recognition and identification of sound 
sources. Chapter 2 further discusses the utility of considering high-dimensional 
acoustic representations, such as modulation spectra, as an acoustic basis for timbre 
modeling.
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Chapter 3 by Trevor Agus, Clara Suied, and Daniel Pressnitzer describes the 
many important and intriguing empirical findings on the categorization and recogni-
tion of sounds in the last 10 years or so. This chapter reviews these studies and 
specifically examines the minimal amount of acoustic and temporal information 
required to recognize sounds such as repeated noise bursts, isolated instrument 
sounds, or polyphonic musical textures. The chapter thus addresses the core ques-
tion regarding the timbre cues utilized by humans for the recognition of various 
classes of sounds.

Chapter 4 by Kai Siedenburg and Daniel Müllensiefen discusses research on 
long- and short-term memory for timbre. A guiding question is whether timbre is 
stored independently from other mental tokens (e.g., pitch as in musical melodies or 
words as in verbal utterances) and whether it is governed by the same principles as 
those observed in these neighboring domains. Finding answers to these questions 
will involve decomposing memory for timbre into cognitive processes, such as per-
ceptual similarity, chunking, and semantic encoding, as well as accounting for the 
factor of auditory expertise.

Chapter 5 by Charalampos Saitis and Stefan Weinzierl considers verbal descrip-
tions of timbre and the rich semantic associations found in them. The authors look 
at how different communities of listeners verbally negotiate timbral qualities of 
sounds, the underlying conceptualizations of timbre, and the few salient semantic 
substrates. A critical question addressed is the relationship between the semantic 
and perceptual dimensions of timbre. To this end, acoustic correlates of verbal attri-
butes and comparisons between semantic (language-based) and perceptual 
(dissimilarity- based) spaces of timbre are examined.

Chapter 6 by Vinoo Alluri and Sudarsana Reddy Kadiri reviews recent findings 
regarding the neural basis of timbre information processing from studies using both 
animal models and human brain imaging. This chapter addresses the specific neural 
correlates of spectral and temporal shape discrimination, findings regarding the cor-
tical representation of spectrotemporal information, and more general models for 
the processing of sound source identity in cortex. Chapter 6 also examines the neu-
ral underpinnings of the perception of collections of timbres that characterize cer-
tain musical ensembles and composers.

The second part of this volume addresses specific scenarios of timbre perception. 
Chapter 7 by Samuel Mathias and Katharina von Kriegstein outlines important top-
ics in voice processing and voice identification. Humans effortlessly extract a wealth 
of information from speech sounds, including semantic and emotional properties 
and details related to speaker identity. The chapter reviews the basic principles of 
human vocal production, behavioral studies on the processing and recognition of 
familiar and unfamiliar voices, as well as neural mechanisms and models of speaker 
recognition. The chapter further introduces phonagnosia, the deficit of not being 
able to recognize familiar people by their voices, and discusses its relation to autism 
spectrum disorder.

Chapter 8 by Stephen McAdams describes the various ways in which timbre 
shapes the perceptual experience of music. This chapter reviews the processes that 
may serve as the basis of this phenomenon with a particular focus on the principles 
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of auditory scene analysis. Specific perceptual processes addressed include timbre’s 
dependence on concurrent grouping (including timbral blend), the processing of 
sequential timbral relations, its role in sequential and segmental grouping, and the 
contribution of these grouping processes to musical structuring. The discussion 
draws from psychophysical studies and selected musical examples from the Western 
orchestral repertoire.

In Chap. 9, Jeremy Marozeau and Wiebke Lamping review timbre perception in 
patients with severe or profound hearing loss that have received a cochlear implant 
(CI). Although the perception of speech in quiet works relatively well for CI patients, 
music perception and voice identification still pose great problems. The chapter 
discusses CI research on timbre dissimilarity perception, musical instrument identi-
fication, and auditory stream segregation, issues in individual voice and gender rec-
ognition, and potential improvements for CI coding strategies.

Chapter 10 by Guillaume Lemaitre and Patrick Susini focuses on the role of 
timbre in the evaluation of product sounds, which is related to the question of how 
sounds contribute to the aesthetic, functional, and emotional aspects of a product. 
Research in this domain has utilized multidimensional scaling in conjunction with 
acoustic descriptor-based approaches and regression modeling in order to develop 
models of sound quality that can be applicable in sound design. Example cases of 
products are diverse: car horns, wind turbines, or consumer electronic devices such 
as printers. Implications for approaches to sonic interaction design are also 
discussed.

The third and final part of this volume is focused on the acoustic modeling of 
timbre. Chapter 11 by Marcelo Caetano, Charalampos Saitis, and Kai Siedenburg 
describes computational approaches to the acoustic description of sounds that have 
developed in the fields of psychoacoustics and music information retrieval to date. 
Having such tools at hand is essential for a better understanding of the psychologi-
cal processes underlying the perception and cognition of timbre. Many scalar or 
time-varying descriptors are based on the Short-Time Fourier Transform from 
which summary measures are computed. Others are inspired by signal transforma-
tions that mimic physiological processes of audition.

Chapter 12 by Mounya Elhilali outlines recent advances in the study and applica-
tion of spectrotemporal modulation representations in speech and music. This work 
has developed a neuro-computational framework based on spectrotemporal recep-
tive fields recorded from neurons in the mammalian primary auditory cortex as well 
as from simulated cortical neurons. The chapter discusses the utility of applying this 
framework to the automatic classification of musical-instrument sounds and to 
robust detection of speech in noise.

Chapter 13 by Sølvi Ystad, Mitsuko Aramaki, and Richard Kronland-Martinet 
introduces an analysis-synthesis framework that derives intuitive control parameters 
of electronic sound synthesis directly from the statistics of input sounds. The frame-
work is based on the distinction between action and object properties that are related 
to the mode of sound source excitation and resonance properties, respectively. The 
chapter reviews recent applications of this framework to the synthesis of impact 
sounds, textures, and musical-instrument sounds.

1 Present, Past, and Future of Timbre Research



16

1.3.2  Future Perspectives

Although the thirteen chapters of this volume certainly lay out a wealth of informa-
tion on timbre, research usually raises more questions than answers. In closing, a 
few words on promising directions for future work are in order. The following dis-
cussion is based on a query to the authors of this volume regarding the most impor-
tant research topics of the next 10 years. The responses received have been condensed 
into roughly four main themes. Not surprisingly, these themes concern the founda-
tions of timbre rather than some potential exotic extensions of the field:

(1) The chain of signal transformations from vibrations of physical bodies to 
brain signals is only poorly understood. Is sound source recognition based on the 
extraction (or pickup) of invariants (structural or transformational in Gibsonian 
terms) or on the learning of the covariation of various sensory properties (including 
those associated with timbre) across the many ways the object can be made to 
vibrate? More generally, how do the physics of the vocal tract or a musical instru-
ment give rise to perceptually salient timbre features, how are these features pro-
cessed in the brain, and how can knowledge about these principles lead to improved 
automatic sound source separation and recognition algorithms?

(2) Our understanding of timbre perception in everyday and musical contexts is 
still vague. Is it possible to establish a model of context-specific configurations of 
perceptual features that substantiates the current state of knowledge about timbre 
perception? Regarding the context of polyphonic music, is timbre a unitary percept 
or an emergent property of a multiplicity of percepts (drawing from pitch, the latter 
could be dubbed Klangfarbenharmonie)?

(3) How do the varieties of interindividual differences shape timbre perception? 
What may be good test batteries to compare the timbre perceptions of different 
individuals? The example of phonagnosia provides a fascinating window into this 
topic; however, even basic questions regarding differences between musicians and 
nonmusicians in basic timbre tasks have been explored only at a superficial level. 
Hearing impairment, our common fate, and its impact on timbre perception is yet 
another important interindividual factor that requires further exploration.

(4) Finally, what role does timbre, and particularly timbre-based expression, play 
in the communication of emotion and the evocation of emotion in the listener in 
speech and music? Closely related to this question is the need to specify the role of 
affective mediation in timbre semantics. Do verbal descriptions, such as bright ver-
sus dull, reflect perceptual or affective evaluation of sound qualities?

If the following chapters succeed in motivating future work on questions such as 
these, the goal of this volume would be fulfilled.
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Chapter 2
The Perceptual Representation of Timbre

Stephen McAdams

Abstract Timbre is a complex auditory attribute that is extracted from a fused 
auditory event. Its perceptual representation has been explored as a multidimen-
sional attribute whose different dimensions can be related to abstract spectral, tem-
poral, and spectrotemporal properties of the audio signal, although previous 
knowledge of the sound source itself also plays a role. Perceptual dimensions can 
also be related to acoustic properties that directly carry information about the 
mechanical processes of a sound source, including its geometry (size, shape), its 
material composition, and the way it is set into vibration. Another conception of 
timbre is as a spectromorphology encompassing time-varying frequency and ampli-
tude behaviors, as well as spectral and temporal modulations. In all musical sound 
sources, timbre covaries with fundamental frequency (pitch) and playing effort 
(loudness, dynamic level) and displays strong interactions with these parameters.

Keywords Acoustic damping · Acoustic scale · Audio descriptors · Auditory event 
· Multidimensional scaling · Musical dynamics · Musical instrument · Pitch · 
Playing effort · Psychomechanics · Sound source geometry · Sounding object

2.1  Introduction

Timbre may be considered as a complex auditory attribute, or as a set of attributes, 
of a perceptually fused sound event in addition to those of pitch, loudness, per-
ceived duration, and spatial position. It can be derived from an event produced by a 
single sound source or from the perceptual blending of several sound sources. 
Timbre is a perceptual property, not a physical one. It depends very strongly on the 
acoustic properties of sound events, which in turn depend on the mechanical nature 
of vibrating objects and the transformation of the waves created as they propagate 
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through reverberant spaces. The perceptual representation of timbre in the auditory 
system has been studied extensively. Such a representation is thought to underlie 
the recognition and identification of sound sources, such as human speech and 
musical instruments, or environmental events, such as rustling leaves, pounding 
surf, or a cooing dove.

Timbre encompasses a number of properties of sound events, such as auditory 
brightness (the mellowness of the horn versus the brightness of the muted trumpet), 
roughness (a growly jazz tenor saxophone), attack quality (sharp attack of a violin 
pizzicato versus the slow attack of a clarinet), hollowness (a clarinet sound), and 
inharmonicity (tubular bells). These properties also include traits that signal charac-
teristics of the sounding body—its large or small size, geometry, and materials 
(wood versus metal)—and the way it was set into vibration (struck, blown, rubbed, 
rolled, and so on).

Essential questions that arise in studying timbre include the following:

• What perceptual representations of timbre are suggested by different behavioral 
and modeling approaches?

• To what extent are the modeled representations dependent on stimulus context?
• How does timbre interact or covary with pitch and loudness in acoustic sound 

sources?
• What differences are there between the role of timbre as a cue for the identity of 

a sounding object (including the action that sets it into vibration) and timbre’s 
role as a perceptual quality that can be compared across separate events?

Certain aspects of timbre were studied as early as the late nineteenth century by 
Helmholtz (1885). He demonstrated that the “quality of sound,” as Zahm (1892) 
(Caetano, Saitis, and Siedenburg, Chap. 11) refers to it, or Klangfarbe in the origi-
nal German (literally “sound color”), is due to the number and relative intensity of 
the partials of a complex sound (i.e., its spectral envelope). For example, a voice 
singing a constant middle C while varying the vowel being sung can vary the shape 
of the sound spectrum independently of the perceived pitch and loudness. The sev-
enteenth century concept of a sound being formed of different partial tones 
(Mersenne’s law of the harmonics of a vibrating string) was instrumental in leading 
Helmholtz to this conception of timbre. Zahm (1892) claimed that Gaspard Monge 
(late eighteenth to early nineteenth century French mathematician) asserted that the 
quality of the sounds emitted by vibrating strings was due to the order and number 
of vibrations.

Exploration of the complex nature of timbre awaited the development of meth-
odological tools, such as multidimensional scaling of dissimilarity ratings, devel-
oped in the 1950s and 1960s and first applied to timbre by Plomp (1970). However, 
real advances in the understanding of the perceptual representation of timbre 
required subsequent developments in musical sound analysis and synthesis. Wessel 
(1973) was probably one of the first to apply these developments to timbre and to 
demonstrate that the origins of timbre reside not only in spectral properties but in 
temporal properties as well. This approach led to the conception of timbre as a set 
of perceptual dimensions represented in a timbre space. However, some new con-
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cepts, partially derived from auditory neuroscience, are challenging this view by 
taking a more unitary approach in which timbre, rather than being a collection of 
individual properties, emerges from a complex higher-dimensional representation 
taken as a whole.

This chapter examines several aspects of the perceptual representation of tim-
bre. Discrimination studies, multidimensional conceptions of timbre, the acoustic 
correlates of those dimensions, and complex spectromorphological conceptions 
of timbre are presented. The contributions of timbre to the perception of the 
geometry and materials of sound sources, and the actions that set them into vibra-
tion, are emphasized. The chapter also considers the interactions of timbre with 
other auditory attributes, such as pitch and loudness, and playing effort of a musi-
cal instrument.

2.2  Timbre Discrimination

Discrimination performance is measured for sounds that have been modified in 
some way to determine which modifications create significant perceptual effects. 
There are few studies of the discrimination of specific timbre-related acoustic 
parameters. A study of the discrimination of linear rise and decay times in 1 kHz 
sine tones and noise bursts found that the just noticeable difference was about 
25% of the duration of the rise or decay time, but discrimination was a bit better 
at times above 80 ms and much worse at times below 20 ms (van Heuven and van 
den Broecke 1979). Discrimination of decay times in noise bursts was best at 
moderate values, whereas rise times of sine tones were best discriminated at very 
short times when energy splatter probably provided a cue.

Experiments on discrimination of musical-instrument tones have often progres-
sively simplified the sounds. One kind of simplification involves performing a fine- 
grained acoustic analysis of instrument tones and then resynthesizing them with 
modifications. Grey and Moorer (1977) presented listeners with different versions 
of string, woodwind, and brass tones: the original recorded tones and resynthesized 
versions of each one with various kinds of modifications (Fig. 2.1). These experi-
ments showed that simplifying the pattern of variation of the amplitudes and fre-
quencies of individual components in a complex sound affected discrimination for 
some instruments but not for others. When the attack transients (low-level noisy 
components at the very onset of the signal; see Fig. 2.1b) were removed, the tones 
were easily discriminated from the originals. Applying the same amplitude varia-
tion to all of the components (thus replacing the individual variations normally 
present) grossly distorted the time-varying spectral envelope of the tone and was 
easily discriminated. Complete removal of frequency change during the tone was 
also easily discriminated, although applying a common frequency variation to all 
components had only a weak effect on discriminability. These findings demon-
strate a fine-grained perceptual sensitivity to the spectrotemporal microstructure of 
sound events.

2 Perceptual Representation of Timbre
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Similar results were obtained with more fine-grained modifications by McAdams 
et al. (1999). Spectral analyses of sounds from several instruments were used to 
produce time-varying harmonic amplitude and frequency representations that were 
then simplified in several ways and resynthesized. Listeners had to discriminate a 
reference sound resynthesized with the full data from a sound transformed with 
from one to four simplifications, which affected the amplitude and frequency behav-
ior of the harmonics and the overall spectral envelope (the general shape of the 
amplitudes of the partials over frequency). Discrimination between the original ref-
erence sound and the various simplified sounds was very good when the spectral 
envelope was smoothed out and when the component amplitudes were made to vary 
together rather than independently. However, discrimination was moderate to poor 
when the frequency behavior of the partials was modified or the amplitude enve-
lopes of the individual partials were smoothed. Discrimination of combinations of 
simplifications was equivalent to that of the most discriminable simplification. 
Analysis of the spectral data for changes in harmonic amplitude, changes in har-
monic frequency, and changes in the “center of gravity” of the frequency spectrum 
(the amplitude-weighted mean frequency, more simply referred to as the spectral 
centroid) resulting from the simplifications revealed that these measures correlated 
well with discrimination results, indicating yet again that listeners have access to a 
relatively fine-grained sensory representation of musical-instrument sounds.

One difficulty in generalizing these results to everyday situations is that perception 
of isolated tones may differ from that of tones in musical sequences. To test the effect 
of sequences on timbre discrimination, Grey (1978) used the same kind of simplified 
tones from Grey and Moorer (1977) for three instruments (bassoon, trumpet, and 

Fig. 2.1 Analysis of the time-varying amplitudes and frequencies of the partials of a bass clarinet 
tone (a) and their simplification by line segment functions (b). In this three-dimensional represen-
tation, time goes from left to right, relative amplitude from bottom to top, and frequency from back 
to front. Each curve shows the frequency and amplitude trajectory of a partial in the tone. Note the 
low-level inharmonic partials at the beginning of the sound, which are called attack transients. 
Attack transients are present in many sustained sounds and indicate the chaotic behavior of the 
sound coming from the instrument before it settles into a periodic vibration (Reproduced from 
figures 2 and 3  in Grey and Moorer 1977; used with permission of The Acoustical Society of 
America)
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clarinet). He created notes at other pitches by transposing the instrument spectrum to 
higher or lower frequencies. Listeners were asked to discriminate between the origi-
nal stimulus and the simplifications of a given instrument for either isolated tones or 
for the same tones placed in musical patterns that differed in rhythmic variety, tem-
poral density, and number of simultaneous melodic lines. An increasingly complex 
musical context (isolated tones versus sequences) did not affect discrimination 
between original and modified versions of the bassoon but hindered such discrimina-
tion for the clarinet and trumpet. Small spectral differences were slightly enhanced in 
single-voice contexts compared with isolated tones and multi-voiced contexts, 
although discrimination remained high. Articulation differences, on the other hand, 
were increasingly disregarded as the complexity and density of the context increased. 
These results suggest that in cases where demands on perceptual organization and the 
storing and processing of sequential patterns are increased, fine-grained temporal dif-
ferences are not preserved as well as spectral differences.

One possible confounding factor in Grey’s (1978) study is that the different 
pitches were created by transposing a single tone’s spectrum and then concatenating 
and superimposing these tones to create the musical patterns. This removes any 
normal variation of spectral envelope with pitch as well as any articulation features 
that would be involved with passing from one note to another in a melody. Kendall 
(1986) controlled for these problems in an instrument recognition experiment in 
which the recorded melodic sequences were modified by cutting parts of the tones 
and splicing them together. Listeners had to decide which of the instruments (clari-
net, trumpet, or violin) playing an unedited melody matched the one playing the 
melody composed of modified sounds. Modifications of the normal tones included 
cutting attacks and decays (thereby leaving only the sustain portion) and presenting 
transients only (with either a silent gap in the sustain portion or an artificially stabi-
lized sustain portion). The results suggest that transients in isolated notes provide 
information for instrument recognition when alone or coupled with a natural sustain 
portion but are of little value when coupled with a static sustain part. They are also 
of less value in continuous musical phrases in which the information present in the 
sustain portion (most probably related to the spectral envelope) is more important.

From these studies on the effects of musical context on discrimination, it can be 
concluded that the primacy of attack and legato transients found in all of the studies 
on isolated tones is greatly reduced in whole phrases (particularly slurred ones). The 
spectral envelope information present in the longer segments of the sustain portion 
of musical sounds is thus of greater importance in contexts where temporal demands 
on processing are increased.

2.3  Multidimensional Conceptions of Timbre

Dissimilarity ratings can be used to discover the salient dimensions that underlie the 
perception of a set of sounds. All possible pairs from the set are presented to a lis-
tener who rates how dissimilar they are on a given scale (say 1–9, where 1 means 
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identical or very similar and 9 means very dissimilar on a continuous scale). In 
multidimensional scaling (MDS), the ratings are treated as psychological proximi-
ties between the judged items, and a computer program maps the dissimilarity rat-
ings onto a spatial configuration in a given number of dimensions. The resulting 
geometrical structure is interpreted as reflecting the perceptual qualities listeners 
used to compare the sounds. In order to give a psychoacoustic meaning to the spatial 
representation, the dimensions of the space are correlated with acoustic properties 
of the tones. It is presumed that the dimensions on which listeners do focus are 
determined firstly by the set of sounds used in the experiment, that is, their represen-
tations may be coded with respect to the stimulus context provided within an experi-
mental session, and secondly by knowledge or previous experience that listeners 
have with the classes of sounds used. In sum, this approach aims to give us an idea 
of the auditory representations that listeners use in comparing sounds.

One methodological advantage of the MDS approach is that listeners don’t have 
to focus on a specific property to be rated, which has to be communicated to them 
with words that in turn are often ambiguous with respect to their meaning (but see 
Saitis and Weinzierl, Chap. 5). They simply rate how dissimilar all pairs of a set of 
sounds are (for reviews see Hajda et al. 1997; McAdams 2013).

2.3.1  Multidimensional Scaling Models

MDS routines compute a model of the dissimilarities in terms of Euclidean dis-
tances among all pairs of sounds in a stimulus set. The result is a space with a small 
number of shared perceptual dimensions. Various techniques are used to decide on 
the dimensionality of the model, some more qualitative, like stress values, and some 
more statistically based, like the Bayesian Information Criterion and Monte Carlo 
testing (for more detail see McAdams et al. 1995).

The basic MDS algorithm originally developed by Kruskal (1964) is expressed 
in terms of continuous dimensions that are shared among stimuli. The underlying 
assumption is that all listeners use the same perceptual dimensions to compare 
them. The model distances are fit to the empirically derived proximity data (usually 
dissimilarity ratings or confusion ratings among sounds). More complex algorithms 
like EXSCAL also include specificities (properties that are unique to a sound and 
increase its distance from all the other sounds beyond the shared dimensions), 
whereas others include different perceptual weights accorded to the dimensions and 
specificities by individual listeners (INDSCAL) or by latent classes of listeners 
(CLASCAL). The equation defining distance in the more general CLASCAL model 
(McAdams et al. 1995) is:

 
∂ = ∑ −( ) + +( )

=

ijc
D

d

cd id jd c i jw x x v s s
1 2

 
(2.1)

S. McAdams 



29

where ∂ijc is the distance between sounds i and j for latent class c; xid is the coordi-
nate of sound i on dimension d; D is the total number of dimensions; wcd is the 
weight on dimension d for class c; si is the specificity on sound i; and vc is the weight 
on the whole set of specificities for class c. The basic MDS algorithm doesn’t model 
weights or specificities and only has one class of listeners. EXSCAL has specifici-
ties, but no weights. INDSCAL has no specificities but has weights on each dimen-
sion for each listener.

One of the difficulties of the paired-comparison approach is that the number of 
dissimilarity ratings that each listener has to make increases quadratically with the 
number of sounds to be compared. To get around this limitation, Elliott et al. (2013) 
used the SMACOF algorithm to perform multiway constrained MDS in which mul-
tiple similarity ratings from different listeners are used for each pair of stimuli. In 
this paradigm a given listener only has to rate a subset of a large set of stimulus 
pairs.

2.3.2  Timbre Spaces

The result of an analysis applied to dissimilarity ratings of musical sounds of similar 
pitch, duration, and loudness is a timbre space, which characterizes the perceptual 
dimensions shared by a set of sounds. One underlying assumption is that the percep-
tual dimensions are orthogonal and should be characterizable by independent physi-
cal properties.

The most cited timbre space is from the seminal study by Grey (1977), using 
sustained musical-instrument sounds (blown and bowed) that had been analyzed 
and then resynthesized in simplified form (as in Fig.  2.1b). Using INDSCAL, 
he  found a space with three dimensions (Fig.  2.2a). The first dimension corre-
sponded qualitatively with the spectral energy distribution: brighter or more nasal 
sounds were at one extreme and mellower sounds were at the other. The second 
dimension was related to the degree of spectral fluctuation during the sound and the 
onset synchrony of harmonics (what has subsequently come to be called spectral 
flux or spectral variation). The position of sounds along the third dimension seemed 
to depend on the strength of attack transients, which characterizes the attack quality. 
Grey and Gordon (1978) validated the interpretation of the spectral dimension by 
exchanging the spectral envelopes of four pairs of sounds among the sixteen origi-
nal ones that differed primarily in terms of this dimension (sounds connected by 
lines in Fig.  2.2). For example, the spectral envelope of the trumpet sound was 
applied to the muted trombone and vice versa. When they ran the study on this 
modified set, the pairs with switched spectral envelopes also switched positions 
along this dimension, confirming the interpretation (Fig. 2.2b).

It is important to note that although some features related to spectral distribution 
and temporal envelope seem ubiquitous (at least in musical sounds), the actual 
dimensions found depend on the type of acoustic variation that is present in the set 
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of sounds being tested. The first timbre dissimilarity study to include percussion 
sounds was conducted by Lakatos (2000). He presented different sound sets to lis-
teners: one with harmonic wind and string sounds (sustained and impulsive), one 
with percussion sounds (some pitched, like vibraphone or temple block, and some 
unpitched, like snare drum and cymbal), and a third one with ten sounds from each 
of those sets. A reanalysis of these data by McAdams (2015) found two dimensions 
for the wind/string set that qualitatively included spectral envelope and temporal 
envelope; those for the percussion set included temporal envelope and either spec-
tral density or pitch clarity/noisiness of the sound. The combined set had all three: 
spectral distribution, temporal envelope, and spectral density.

One might wonder how much the relations among sounds, as determined by the 
dissimilarity ratings, depend on the global stimulus context. For example, if one 
were to change some of the sounds in a stimulus set or add new sounds that are quite 
different, would the relations among the original sounds be distorted, perhaps due 
to making the listener focus on different sound properties? In the reanalysis of 
Lakatos’ (2000) dissimilarity data, McAdams (2015) compared the perceptual 
structure of the ten sounds from the wind/string and percussion sets that were 
included in the combined space with their structure in the original sets. With the 
exception of one percussion instrument, the relations among the ten sounds of each 
set maintained their dissimilarity relations in the presence of the very different new 
sounds from the other set. This result is important in demonstrating a relative robust-
ness of timbre relations across different orchestration contexts. How would this 
apply in a musical setting? If, for instance, part of a piece uses the differences 
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violoncello playing sul ponticello (Modified from figures 2 and 3 in Grey and Gordon 1978; used 
with permission of The Acoustical Society of America)
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between string and woodwind instruments, listeners will tune in to the resulting 
timbral relations. If the composer then adds brass and percussion at a different point, 
these perceptual relations among string and woodwind sounds won’t necessarily be 
perturbed by the new orchestral context.

The apparent assumption that extremely complex sounds like musical- instrument 
tones differ in terms of only a few common perceptual dimensions is questioned by 
many musicians. Each instrument may also produce unique characteristics that are 
not easily coded along a continuous dimension, such as the sudden pinched offset of 
a harpsichord, the odd-harmonic structure of the clarinet spectrum, or the amplitude 
modulation of a flutter-tongued flute or trumpet. Krumhansl (1989) used a set of 
sounds created by digital sound synthesis that imitated some musical instruments or 
that were conceived as hybrids of instruments, so the guitarnet was a chimera with 
the “head” of a guitar and the “tail” of a clarinet. An MDS analysis with EXSCAL 
produced a three-dimensional space with specificities. The analysis of specificities 
showed that a significant amount of variability in the similarity judgements, which 
could not be attributed to the common dimensions, could be accounted for by pos-
tulating unique features for some of the instruments, such as the simulated harp, 
harpsichord, clarinet, and vibraphone. This technique seems promising for identify-
ing sounds that have special perceptual features, but it remains tricky to tie them to 
specific acoustic properties given that they are unique for each instrument.

Algorithms such as INDSCAL and CLASCAL allow for differences among indi-
vidual listeners or latent classes of listeners, respectively. These differences are 
modeled as weighting factors on the different dimensions for both algorithms and 
on the set of specificities for CLASCAL. Latent classes are formed of listeners hav-
ing a similar weight structure in their data. For example, one group of listeners 
might pay more attention to spectral properties than to temporal aspects, whereas 
another group might have the inverse pattern. McAdams et al. (1995) found five 
classes in a set of 84 listeners. Most of the listeners were in two classes that had 
fairly equal weights across dimensions and specificities. They merely differed in 
that one class used more of the rating scale than the other. For the other three classes, 
some dimensions were prominent (high weights) and others were perceptually 
attenuated (low weights). However, an attempt to link the classes to biographical 
data, including the amount of musical experience or training, was not conclusive. 
McAdams et al. (1995) found that similar proportions of nonmusicians, music stu-
dents, and professional musicians fell into the different latent classes. One explana-
tion may be that because timbre perception is so closely allied with the ability to 
recognize sound sources in everyday life, everybody is an expert to some degree, 
although different people are sensitive to different features.

Along the same lines of thought, the previously mentioned robustness of timbre 
spaces to changes in stimulus context may be due to the fact that timbre perception 
is strongly related to the recognition and categorization of sound sources (also see 
Agus, Suied, and Pressnitzer, Chap. 3). To test this idea, Giordano and McAdams 
(2010) conducted a meta-analysis of previously published data concerning identifi-
cation rates and dissimilarity ratings of musical-instrument tones. The aim was 
to ascertain the extent to which large differences in the mechanisms for sound 
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production (different instrument families, for example) were recovered in the  
perceptual data. In the identification studies, listeners frequently confused tones 
generated by musical instruments with a similar physical structure (e.g., clarinets 
and saxophones are often confused, both being single-reed instruments), but they 
seldom confused tones generated by very different physical systems (e.g., one rarely 
mistakes a trumpet, a lip-valve instrument, for a bassoon, a double-reed instrument, 
and never for a vibraphone, a struck metal bar). Consistent with this hypothesis, the 
vast majority of previously published timbre spaces revealed that tones generated 
with similar resonating structures (e.g., string instruments versus wind instruments) 
or with similar excitation mechanisms (e.g., impulsive excitation as in violin pizzi-
cati versus sustained excitation as in a flute tone) occupied the same region in the 
space. To push this idea even farther, Siedenburg et al. (2016) presented recorded 
musical- instrument sounds previously determined to be highly familiar to listeners 
and digitally transformed versions of these sounds rated as highly unfamiliar. The 
dissimilarity ratings demonstrated that similarity between the source/cause mecha-
nisms can affect perceived similarity, thereby confirming the meta-analysis results 
of Giordano and McAdams (2010).

As mentioned in Sect. 2.1, timbre emerges from the perceptual fusion of acoustic 
components into a single auditory event. This includes the perceptual fusion of 
sounds produced by separate instruments into a single blended event, a technique 
often used by instrumental composers to create new timbres (see McAdams, Chap. 
8 for more on timbral blend). One question that arises concerns the extent to which 
the timbral properties of a blended event can be determined by the constituent 
events. Kendall and Carterette (1991) recorded dyads of different wind instruments 
that performed together. The dyads were presented to listeners who rated the dis-
similarities between them. They found that the relations among dyads could be 
modeled as a quasi-linear combination of the positions of the individual instruments 
in timbre space. That is, if one determines the vector between two instruments (e.g., 
flute and saxophone) in a timbre space, the position of the flute/saxophone dyad 
would be at the point of bisection of that vector. This result suggests that in the case 
of dyads, there may not be much partial masking of the sound of one instrument by 
that of the other. However, one might imagine that this would begin to break down 
for blends of three or more instruments as the combined frequency spectrum densi-
fies and auditory masking increases.

One last issue with the notion of timbre space is the degree to which the dimen-
sions, which are modeled as orthogonal, are actually perceptually independent. 
Caclin et al. (2007) created synthesized harmonic sounds that varied independently 
in spectral centroid (see Sect. 2.4.1), attack time, and the ratio of the amplitudes of 
even and odd harmonics (related to the hollow quality of the clarinet). To explore 
the interaction of these dimensions, they employed a task in which dimensions were 
paired, and two values along each dimension were chosen so that the relative change 
along the two dimensions is equivalent, for instance, slow and fast attack versus 
bright and dull spectral envelope. Listeners were asked to focus on changes along 
only one of the dimensions and to ignore changes along the other. They had to cat-
egorize the sounds as quickly as possible along the criterial dimension. In one test, 
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there was no change on the irrelevant dimension (called the baseline), and in others 
the sounds varied randomly, congruently (sharper attack and brighter timbre), or 
incongruently (sharper attack and mellower timbre) along the dimension to be cat-
egorized. If there is a cost in terms of speed and accuracy of categorization (i.e., it 
slows the listener down to have to ignore a change in attack when judging brightness 
and they make more errors), then the dimensions are considered to interact. This 
was the case for all three pairs of dimensions. So although these same three dimen-
sions have fairly separate neural representations in auditory sensory memory (Caclin 
et al. 2006), the perceptual interaction supports a model with separate processing 
channels for those dimensions but with crosstalk between the channels.

2.3.3  Acoustic Correlates of Timbre Space Dimensions

Once a timbre space is obtained, the next stage in the psychophysical analysis is to 
determine the physical properties that determine the nature of the different dimen-
sions. The primary approach is to define parameters derived from the audio signal 
that are strongly correlated with the position along a given perceptual dimension for 
a specific sound set. Grey and Gordon (1978) proposed the spectral centroid as a 
scalar correlate of the position of sounds along their spectral-envelope-related 
dimension. McAdams et al. (1995) were perhaps the first to try computing acoustic 
descriptors correlated with each perceptual dimension in a timbre space. For their 
three-dimensional space representing 18 synthetic sounds created with frequency- 
modulation synthesis, they found strong correlations between the position along the 
first dimension and attack time (Fig. 2.3) and between the position along the second 
dimension and the spectral centroid (Fig.  2.4). There was a weaker correlation 
between the position along the third dimension and the degree of variation of the 
spectral envelope over the duration of the tones (Fig. 2.5).

Subsequently, two major toolboxes with a plethora of quantitative descriptors 
were developed: the MIR Toolbox of Lartillot and Toiviainen (2007) and the Timbre 
Toolbox of Peeters et al. (2011) (although some of the timbre-related descriptors in 
both toolboxes have been criticized by Kazazis et al. 2017 and Nymoen et al. 2017). 
Some of the descriptors are derived from spectral properties, such as the first four 
moments of the frequency spectrum (centroid, spread, skew, kurtosis), measures of 
spectral slope, or the jaggedness of the spectral envelope. Other descriptors are 
derived from the temporal envelope, such as attack time and decay time. Still others 
capture time-varying spectral properties, such as spectral flux, a scalar value that 
represents the variability of the spectrum over time. Chapter 11 (Caetano, Saitis, 
and Siedenburg) provides more details on audio descriptors for timbre.

In many attempts to model timbre, authors have often chosen descriptors that 
seem most relevant to them, such as the spectral centroid (related to timbral bright-
ness or nasality), attack time of the energy envelope, spectral variation or flux, and 
spectral deviation (jaggedness of the spectral fine structure). These vary from study 
to study making it difficult to compare results across them. Furthermore, many 
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groups of descriptors capture similar spectral, temporal, or spectrotemporal proper-
ties and may not be independent of one another. To address this issue, Peeters et al. 
(2011) computed several measures on a set of over 6000 musical-instrument sounds 
with different pitches, dynamic markings (pp is very soft, ff is very loud), and play-
ing techniques. These measures included the central tendency (median) and vari-
ability over time (interquartile range) of the time-varying acoustic descriptors in the 
Timbre Toolbox, as well as global scalar descriptors derived from the temporal 
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Fig. 2.6 Structure of similarities among audio descriptors. (a) The results of a hierarchical cluster 
analysis of the correlations among the audio descriptors listed along the y axis. Scalar values 
derived from the temporal energy envelope cluster in the middle. Statistical measures of time-
varying descriptors include the median (med) as a measure of central tendency and the interquartile 
range (iqr) as a measure of variability. Different colors are used to highlight different clusters of 
descriptors. (b) A three-dimensional MDS (multidimensional scaling) of the between-descriptor 
correlations. Descriptors that are similar will be close in the space. The same color scheme is used 
in both panels to demonstrate the similarity of groups of descriptors. (Reproduced from figure 4 in 
Peeters et al. 2011, refer to that paper for more detail on the audio descriptors; used with permis-
sion of The Acoustical Society of America)

energy envelope. They found that many of the descriptors covaried quite strongly 
within even such a varied set of sounds. Using a hierarchical cluster analysis of cor-
relations between descriptors over the whole sound set, they concluded that there 
were only about ten classes of independent descriptors (Fig. 2.6). This can make the 
choice among similar descriptors seem rather arbitrary in some cases, and just put-
ting all available descriptors into a regression or other kind of model may seriously 
overfit the data.

No studies of timbre similarity have employed an approach in which the 
time- varying spectral properties are used as a time series, which may be inti-
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mately tied to both the mechanical nature of the sounding object and the way it 
is set into vibration. The domain of multi-objective time-series matching in 
which several time- varying properties are used collectively to measure similar-
ity among sounds or for audio classification may show a way forward (Esling 
and Agon 2013).

The chaotic proliferation of audio descriptors in timbre research and in music 
information retrieval has seldom asked the question of whether these descrip-
tors (or combinations of them) actually correspond to perceptual dimensions. 
Are they ordered on ordinal, interval, or ratio scales? To what extent are they 
perceptually independent? One confirmatory MDS study makes a small step in 
this direction. Caclin et al. (2005) analyzed dissimilarity ratings on purely syn-
thetic sounds in which the exact nature of the stimulus dimensions could be 
controlled. These authors confirmed that perceptual dimensions related to the 
spectral centroid, log attack time, and spectral deviation (jaggedness of the 
spectral envelope) are orthogonal and demonstrated that they can at least be 
considered as interval scales. However, they did not confirm spectral flux, which 
seems to collapse in the presence of an equivalent perceptual variation in the 
spectral centroid and attack time. Another question concerns whether perceptual 
dimensions might actually arise from linear or nonlinear combinations of 
descriptors that are learned implicitly from long-term experience of their covari-
ation in environmental, musical, and speech sounds. Stilp et al. (2010) demon-
strated that a passive exposure to highly correlated acoustic properties leads to 
implicit learning of the correlation and results in a collapse of the two unitary 
dimensions (temporal envelope and spectral shape in their case) into a single 
perceptual dimension.

A number of studies have focused on the perceptual dimension correlated with 
the spectral centroid (often referred to as timbral brightness; see Saitis and Weinzierl, 
Chap. 5). Schubert and Wolfe (2006) compared two models of brightness: the spec-
tral centroid (in units of Hz) and the centroid divided by the fundamental frequency 
(in units of harmonic rank). Listeners compared digital samples of two instruments 
(less bright piccolo, brighter trumpet) played at different pitches (E2, E4, A#4, E5; 
where C4 is middle C with a fundamental frequency of 261.6 Hz.) and dynamics 
(forte, piano). They were asked to rate the brightness, pitch, and loudness  differences. 
Brightness ratings scaled better with the raw spectral centroid than with the funda-
mental-adjusted (and pitch-independent)  centroid. It should be noted that timbre 
covaries strongly with both fundamental frequency and playing effort in acoustical 
instruments (see Sect. 2.6). Furthermore, a brightness model scaled for fundamental 
frequency would only be applicable to harmonic sounds.

From the same research group, another study examined ratio scaling of timbral 
brightness by adjusting the spectral slope of a synthesized sound to make it twice as 
bright as a reference sound (Almeida et al. 2017). They found that the ratio of spec-
tral centroids to double the brightness was about 2.0 on average for a reference 
centroid of 500 Hz and decreased to about 1.5 for a reference centroid of 1380 Hz. 
This result suggests that timbral brightness is indeed a perceptual dimension that 
forms a ratio scale.
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Finally, Siedenburg (2018) confirmed that shifts in spectral maxima are per-
ceived as changes in brightness. His study also presents a timbral analogy to 
Shepard’s (1964) pitch-circularity illusion in which the heights of local spectral 
peaks conform to a global spectral shape with one broad peak. Due to the global 
envelope’s shape, sudden jumps of a certain size are often perceived as ambigu-
ous in terms of the direction of change. A similar phenomenon occurs with test-
ing pitch perception when using Shepard tones: changes of half an octave are 
perceived as increasing in pitch by some listeners and decreasing in pitch by 
others (Chambers et al. 2017). This ambiguity can be resolved by presenting a 
context prior to the shift from either the lower or higher half octave around the 
test stimuli. Judgements of shift direction were generally in the region of the 
prior context, demonstrating a context sensitivity of timbral shift similar to that 
found for pitch.

2.4  Spectromorphological Conceptions of Timbre

An alternative approach to the conception of timbre as a set of orthogonal percep-
tual dimensions is to consider it as a complex spectrotemporal representation taken 
as a whole. Different conceptions of this kind will be considered briefly here as they 
relate to the notion of perceptual representation (for more detail, refer to Elhilali, 
Chap. 12).

2.4.1  The Auditory Image Model

The peripheral auditory processing model by Patterson et al. (1995) computes an 
auditory image from an input signal. It comprises stages of: (1) outer and middle 
ear filtering; (2) spectral analysis with dynamic, compressive, gammachirp filter-
ing to reflect biomechanical processing of the basilar membrane; (3) neural 
encoding of filtered waves to create a neural activity pattern (NAP) that repre-
sents the distribution of activity in the auditory nerve; and (4) strobed temporal 
integration to compute the time intervals between peaks in the NAP and the 
creation of time-interval histograms in each filter that form the simulated audi-
tory image (SAI) (Fig.  2.7). In Patterson’s (2000) conception, pitch would be 
represented by the repeating forms (see the peaks in the time-interval histograms 
in Fig. 2.7) and timbre would be represented by the shape of the form (see fre-
quency-channel histograms in Fig.  2.7). This representation doesn’t seem to 
have been exploited much in timbre research to date, but it potentially captures 
the representation of acoustic scale discussed in Sect. 2.5.1 (van Dinther and 
Patterson 2006).
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2.4.2  Multiresolution Spectrotemporal Models

A new class of modulation representations describes sound signals according to 
their frequency and amplitude variation over time (as in a spectrogram or cochleo-
gram) but also includes a higher-dimensional topography of spectral and temporal 
modulations, termed scale and rate, respectively. These representations include 
the modulation power spectrum (MPS) (Elliott et al. 2013) or simulations of corti-
cal spectrotemporal receptive fields (STRF) (Shamma 2001). The MPS is obtained 
by computing the amplitude spectrum of the two-dimensional Fourier transform 
of a time-frequency representation of the sound pressure waveform. The STRF is 
meant to model the response patterns of primary auditory cortical neurons that are 
selectively sensitive to particular temporal and spectral modulations. The rate 
dimension represents temporal modulations derived from the cochlear filter enve-
lopes, and the scale dimension represents modulations present in the spectral 
shape derived from the spectral envelope (for more detail, see Elhilali, Chap. 12). 
It has been proposed that models of timbre might be derived from these 
representations.

Elliott et  al. (2013) note that spectral and temporal descriptors are often 
treated separately in attempts to characterize timbre, but the MPS might be able 
to characterize sounds physically by integrating these diverse features. They 
conducted a timbre dissimilarity study on a larger corpus of sustained orchestral 
instrument sounds than had been attempted before (42 compared to the 12–21 
used previously) and decided on a five-dimensional space, claiming that the five-
dimensional solution is “necessary and sufficient to describe the perceptual tim-
bre space of sustained orchestral tones” (Elliott et  al. 2013, p.  389). Several 

Fig. 2.7 Simulated auditory images of sustained parts of tones produced by a baritone voice (a) 
and a French horn (b) at the same fundamental frequency. Each line in the auditory image shows 
the simulated activity in a given frequency channel (auditory filters) over time. The lower diagrams 
in (a) and (b) represent the global time interval histogram across frequency channels, and the dia-
grams to the right in (a) and (b) represent the global level in each frequency channel (Reproduced 
from figure 5 in van Dinther and Patterson 2006; used with permission of The Acoustical Society 
of America)
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notes of caution are warranted, however, with regard to the necessity and suffi-
ciency of this five-dimensional space. First, a three-dimensional solution 
explained 91.5% of the squared distance between instruments, so the two higher 
dimensions were making small contributions. Second, these sounds were all at a 
single midrange pitch (making it in a very high pitch register of some low instru-
ments and a very low register of some high instruments) and presumably at a 
given dynamic marking, so things might change at different pitches and dynamic 
markings. Lastly, it is highly likely that, based on Lakatos’ (2000) results, differ-
ent dimensions would have to be added if percussion instruments were added to 
the set or if impulsive sounds were produced on these same instruments, such as 
string pizzicati.

Elliott et al. (2013) computed the MPS for each of their 42 sounds and for more 
traditional audio descriptors such as statistical moments of the spectrum and the 
temporal envelope, attack time, and spectral and temporal entropy. Many features, 
such as the harmonicity of the signals and spectral shape, show up as specific scale 
characteristics in the MPS. Temporal features, such as vibrato (frequency modula-
tion), tremolo (amplitude modulation), and the shape of the temporal envelope, 
show up as rate characteristics. Twenty principal components (PC) derived from 
the MPSs were selected for regression analysis onto the five dimensions of the 
timbre space. Significant regressions of the PCs were obtained for all dimensions 
but the third. Subsequent regressions of traditional audio descriptors (see Sect. 
2.3.3; Caetano, Saitis, and Siedenburg, Chap. 11) on the five perceptual dimensions 
were significant for all dimensions except the fifth. Elliott et al. (2013) concluded 
that the MPS and audio descriptor analyses are complementary, but certain proper-
ties of the timbre spaces are clearer with the MPS representations. It is notable, 
however, that the explanatory power of the two approaches is roughly equivalent. 
This leaves open the question of whether timbre indeed emerges from a high-
dimensional spectrotemporal form or whether it is a limited set of orthogonal per-
ceptual dimensions.

Patil et al. (2012) used a combination of STRF modeling and machine learning 
to model timbre dissimilarity data. They presented listeners with pairs of eleven 
musical-instrument sounds at each of three pitches. They combined the data across 
pitches and across listeners for the modeling analysis. With a machine-learning 
algorithm, they derived a confusion matrix among instruments based on instrument 
distances in the STRF representation. This matrix was then compared to the dissimi-
larity data. The STRF model achieved a very strong correlation with the human data. 
However, the predictions of timbre dissimilarity ratings relied heavily on dimen-
sionality-reduction techniques driven by the machine-learning algorithm. For exam-
ple, a 3840-dimensional representation with 64 frequency filters, 10 rate filters, and 
6 scale filters was projected into a 420-dimensional space, essentially yielding a 
result that is difficult to interpret from a psychological standpoint. It remains to be 
determined to what extent this approach can be generalized to other timbre spaces 
(although for applications to instrument recognition, see Agus, Suied, and 
Pressnitzer, Chap. 3).
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2.5  Sound Source Perception

A growing literature documents the ability of untrained listeners to recognize a 
variety of mechanical properties of sound sources. The development of a theory of 
sound source perception thus concerns what relevant acoustic information is created 
by setting sounding objects into vibration and what principles govern the mapping 
from acoustic information to perceptual response. The perceptual process requires 
at least two decisions: Which acoustic properties are to be taken into account, and 
how acoustic information should be weighted perceptually for a given use of that 
information (e.g., comparing qualities, identifying materials, or size of the object)? 
These decision-making processes are acquired and refined as a result of one’s inter-
actions with the environment.

According to the information processing approach to psychology, the link 
between the perceptual qualities of a sound source, its abstract representation in 
memory, its identity, and the various meanings or associations it has with other 
objects in the listener’s environment are hypothesized to result from a multistage 
process (McAdams 1993). This process progressively analyzes and transforms the 
sensory information initially encoded in the auditory nerve. Perception arises from 
the extraction of relevant features of the sound in the auditory brain, and recognition 
is accomplished by matching this processed sensory information with some repre-
sentation stored in a lexicon of sound forms in long-term memory.

Another approach is that of ecological psychology (Gaver 1993). Ecological 
theory hypothesizes that the physical nature of the sounding object, the means by 
which it has been set into vibration, and the function it serves for the listener are 
perceived directly, without any intermediate processing. In this view, perception 
does not consist of an analysis of the elements composing the sound event followed 
by their subsequent reconstitution into a mental image that is compared with a rep-
resentation in memory. Ecological psychologists hypothesize that the perceptual 
system is tuned to those aspects of the environment that are of biological signifi-
cance to the organism or that have acquired behavioral significance through experi-
ence. However, the claim that the recognition of the function of an object in the 
environment is perceived directly without processing seems to evacuate the whole 
question of how organisms with auditory systems stimulated by sound vibrations 
come to be aware of the significance of a sound source or how such sources acquire 
significance for these listeners. Ecological acoustics places more emphasis on the 
mechanical structure of sound-producing objects and the acoustic events they pro-
duce, which are relevant to a perceiving (and exploring) organism (Carello et al. 
2005).

A middle ground between these two approaches is what might be termed psy-
chomechanics (McAdams et al. 2004). The aim is to establish quantitative relations 
between the mechanical properties of sound sources and their perceptual properties, 
recognizing that listeners most often attend to vibrating objects rather than the 
sound properties themselves (although the latter clearly play a strong role in music 
listening) (Gaver 1993). The link between mechanics and acoustics is deterministic, 
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and so there is a very tight relation between mechanics, acoustics, and auditory 
perception.

Timbral properties, together with those related to pitch, loudness, and duration, 
contribute to the perception and identity of sound sources and the actions that set 
them into vibration. In this chapter, the focus is on perception of the properties that 
are determined by the geometry and materials of sound sources and the manner in 
which they are made to vibrate. Agus, Suied, and Pressnitzer (Chap. 3) provide 
more detail on timbre categorization and recognition.

2.5.1  Sound Source Geometry

There are many geometric properties of sound sources to which listeners are sensi-
tive, including shape and size. Repp (1987) demonstrated that under certain condi-
tions listeners can judge hand configuration from the sound of two hands clapping 
together. This ability is based on the spectral distribution of the hand clap: more 
cupped hands produce lower resonances than less cupped hands or fingers on the 
palm.

Listeners are also sensitive to differences in the width and thickness of rectangu-
lar metal and wood bars of constant length (Lakatos et al. 1997). The relevant infor-
mation used to decide which visual depiction of two bars of differing geometry 
corresponds to that of two sounds presented in sequence was related to the different 
modes of vibration of the bars; but audiovisual matching performance is better for 
more homogeneous (isotropic) materials, such as steel, than with anisotropic mate-
rials, such as grainy soft woods. This latter finding can be explained by the more 
reliable modal information provided by isotropic materials.

Cabe and Pittenger (2000) studied listeners’ perceptions of the filling of cylindri-
cal vessels using changes in geometry to estimate by sound when a vessel would be 
full (presumably related to the resonant frequency of the tube above the water level). 
Listeners had to distinguish different events generated by pouring water into an 
open tube. Categorization accuracy of whether the sound indicated filling, empty-
ing, or a constant level ranged from 65% to 87%, depending on the type of event. 
When listeners were asked to fill the vessel up to the brim using only auditory infor-
mation, filling levels were close to the maximum possible level, suggesting they 
could hear when the vessel was full. If blind and blindfolded subjects were asked to 
fill to the brim vessels of different sizes and with different water flow velocities, 
again overall performance was accurate, and no significant differences between 
blind and blindfolded participants were found.

Kunkler-Peck and Turvey (2000) investigated shape recognition from impact 
sounds generated by striking steel plates of constant area and variable height/width 
with a steel pendulum. Listeners had to estimate the dimensions of the plates. Their 
performance indicated a definite impression of the height and width of plates. 
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Judgements of the dimensions of plates were modulated by the type of material 
(steel, Plexiglas, wood) but maintained the height/width ratio, that is, the relative 
shape. Performance in both of these tasks was predicted by the frequencies of the 
vibration modes of the plates. Additional experiments addressed shape recognition 
directly. For stimuli generated by striking triangular, circular, or rectangular steel 
plates of constant area, shape was correctly classified above chance level. With 
stimuli produced by striking the same shapes of plates made of steel, wood, and 
Plexiglas, the material was almost perfectly classified, and shape was correctly clas-
sified above chance level, demonstrating that material recognition is more robust 
than shape recognition.

Another important aspect of geometry is the size of a sound source. There are 
acoustic properties that communicate size information in natural sounds involving 
forced-vibration systems such as human and animal vocalizations and wind and 
bowed-string musical instruments. As animals grow, their vocal tracts increase in 
length. In the case of humans, for example, this increase is accompanied by pre-
dictable decreases in the formant frequencies of speech and sung sounds (see 
Mathias and von Kriegstein, Chap. 7). Smith et al. (2005) used a vocoder-based 
technique (STRAIGHT) (Kawahara et  al. 1999) to manipulate acoustic scale in 
vowel sounds, even well beyond the range of sizes normally encountered in 
humans. Acoustic scale, in their conception, has two components: the scale of the 
excitation source (pulse rate decreases as source size increases) and the scale of the 
resonant filter (resonant frequency decreases with size). They showed that listeners 
not only reliably discriminate changes in acoustic scale associated with changes in 
vocal tract length but can still recognize the vowels in the extreme low and high 
ranges of the acoustic scale. This finding suggests an auditory ability to normalize 
glottal pulse rate (related to pitch) and resonance scale (related to timbre). Van 
Dinther and Patterson (2006) found a similar relation between acoustic scale and 
size perception for musical sounds. Listeners can reliably discriminate acoustic 
scale for musical sounds, although not as well as they can discriminate acoustic 
scale for vocal sounds. In addition, they can still identify instruments whose sounds 
have been transformed digitally in acoustic scale beyond the range of normal 
instruments.

Along the same lines, Plazak and McAdams (2017) found that listeners are sen-
sitive to change in size of a given instrument (created with a version of the 
STRAIGHT algorithm), but that this depends on the instrument (better for oboe and 
voice with formant structures—resonance peaks in the spectral envelope—than for 
French horn, cello, and alto saxophone with more low-pass spectral shapes). It is 
worth mentioning that the notion of “size” has been employed as a concept in an 
orchestration treatise by Koechlin (1954), as volume in French or extensity in 
English, and has been linked to spectral shape in both ordinal and ratio scaling 
experiments (Chiasson et al. 2017). It would be interesting to test this hypothesis in 
timbre space studies, including similar instruments of various sizes, created either 
mechanically or with digital means such as the STRAIGHT algorithm.
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2.5.2  Sound Source Materials

Sound can convey information about the materials composing an object that are 
often not directly available to the visual system. Several experiments have explored 
listeners’ perceptions of material properties of struck objects (plates and bars). 
Mechanical factors that determine material properties include but are not limited to: 
(1) modal frequencies that depend on wave velocity (related to the elasticity and 
mass density of the material), although these frequencies can also vary with geom-
etry; and (2) the way that damping (energy loss due to internal friction) varies with 
the modal frequencies.

In one of the first studies to address perception of mechanical properties, Freed 
(1990) measured the attack-related timbral dimension of mallet hardness. Stimuli 
were generated by striking four metal cooking pots of various diameters with six 
mallets of variable hardness. Hardness ratings corresponded to relative mallet hard-
ness and were found to be independent of the pan size, thus revealing the subjects’ 
ability to judge the material properties of the mallet independently of those of the 
sounding object. Hardness increases with the global spectral level and the spectral 
centroid (both averaged over the first 325 ms of the signal) and decreases with the 
slope of the change in spectral level over time and the temporal centroid of the time- 
varying spectral centroid (the centroid-weighted average time). Harder mallets are 
more intense, have higher spectral centroids, sharper decreasing spectral level 
slopes, and earlier temporal centroids.

Sound sources are perceived by integrating information from multiple acoustic 
features. Thus, part of the task of understanding the integration of information 
becomes that of unraveling the principles that govern the assignment of perceptual 
weights to sound properties. Two factors have a potential influence on this process: 
(1) the accuracy of the acoustic information within the environment in which the 
perceptual criteria develop and (2) the ability of a perceptual system to exploit the 
acoustic information. Information accuracy is the extent to which levels of a source 
property are reliably diversified by levels of a sound property within the learning 
environment. For example, if the task is to rate the hardness of an object, informa-
tion accuracy can be given by the absolute value of the correlation between values 
of the physical hardness and values of a specific acoustic feature. Based on previous 
hypotheses concerning the perceptual weight of accurate information, one might 
expect that a listener would weight acoustic information in proportion to its accu-
racy. For example, if frequency specifies the size of an object twice as accurately as 
sound level, perceptual estimation of size would weight frequency twice as heavily 
as level.

Another factor potentially influencing the structure of perceptual criteria is the 
ability to exploit the information carried by different acoustic features. This factor 
can be determined from a listener’s ability to discriminate a source property and to 
benefit from training in such a task. One might expect that, independently of the 
task at hand, a listener would weight more heavily the acoustic information that is 
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more easily exploited. The factors that influence the integration of acoustic informa-
tion are largely unknown.

Giordano et al. (2010) investigated the extent to which the perceptual weight-
ing of acoustic information is modulated by its accuracy and exploitability. They 
measured how the perceptual weighting of different features varies with the accu-
racy of information and with a listener’s ability to exploit that information. 
Participants judged the hardness of a hammer and a sounding object whose inter-
action generates an impact sound. In the first experiment in which trained listen-
ers were asked to discriminate hammer or object hardness, listeners focused on 
the most accurate information, although they had greater difficulty when discrimi-
nating hammer hardness. The authors inferred a limited exploitability for the most 
accurate hammer- hardness information. In a subsequent hardness rating experi-
ment, listeners focused on the most accurate information only when estimating 
object hardness. In an additional hardness rating experiment, sounds were synthe-
sized by independently manipulating source properties that covaried in the previ-
ous two experiments: object hardness and impact properties, such as contact time 
of the hammer with the object and the extent to which the hammer is compressed 
during the impact at a given striking force (the force stiffness coefficient). Object 
hardness perception relied on the most accurate acoustic information, whereas 
impact properties more strongly influenced the perception of hammer hardness. 
Overall, perceptual weight increased with the accuracy of acoustic information, 
although information that was not easily exploited was perceptually secondary, 
even if accurate.

Klatzky et al. (2000) investigated material similarity perception using synthe-
sized stimuli composed of a series of exponentially damped sinusoids with variable 
frequency and frequency-dependent decay of the constituent partials that were 
designed to mimic impacted plates of different materials. The frequency-dependent 
decay is related to damping and depends exclusively on material, being relatively 
independent of geometry. Listeners rated the perceived difference in the materials of 
two sounds. An MDS analysis revealed dimensions corresponding to the two syn-
thesis parameters. The results did not differ significantly between experiments in 
which the sounds were either equalized in overall energy or were not equalized, 
leading to the conclusion that intensity is not relevant in the judgment of material 
difference.

In further experiments by Klatzky and colleagues, listeners rated the difference 
in the perceived length of the objects and categorized the material of the objects 
using four response alternatives: rubber, wood, glass, and steel. Results indicated 
that ratings of material difference and length difference were significantly influ-
enced by both damping and frequency, even though the contribution of the decay 
parameter to ratings of length difference was smaller than to ratings of material 
difference. An effect of both of these variables was found in the categorization task. 
Lower decay factors led to more steel and glass identifications compared to those 
for rubber and wood, whereas glass and wood were chosen for higher frequencies 
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than were steel and rubber. Therefore, both factors are necessary to specify these 
material categories.

Material and geometric properties of synthesized impacted bars with a tube 
resonator (as with a xylophone or marimba) were varied by McAdams et  al. 
(2004). They inferred the perceptual structure of a set of sounds from an MDS 
analysis of dissimilarity ratings and quantified the psychomechanical relations 
between sound source properties and perceptual structure. Constant cross-sec-
tion bars that varied in mass density and the viscoelastic damping coefficient 
were synthesized with a physical model in one experiment. A two-dimensional 
perceptual space resulted, and the dimensions were correlated with the mechani-
cal parameters after applying a power-law transformation. Variable cross-section 
bars (as in a xylophone bar) varying in length and viscoelastic damping coeffi-
cient were synthesized in another experiment with two sets of lengths creating 
high- and low-pitched bars. With the low-pitched bars, there was a coupling 
between the bar and the resonator that modified the decay characteristics. 
Perceptual dimensions again corresponded to the mechanical parameters. A set 
of potential temporal, spectral, and spectrotemporal descriptors of the auditory 
representation were derived from the signal. The dimensions related to both 
mass density and bar length were correlated with the frequency of the lowest 
partial and were related to pitch perception. The descriptor most likely to repre-
sent the viscoelastic damping coefficient across all three stimulus sets was a 
linear combination of a decay constant derived from the temporal envelope and 
the spectral center of gravity derived from a cochlear filterbank representation of 
the signal.

McAdams et al. (2010) synthesized stimuli with a computer model of impacted 
plates in which the material properties could be varied. They manipulated viscoelas-
tic and thermoelastic damping and wave velocity. The range of damping properties 
represented an interpolated continuum between materials with predominant visco-
elastic and thermoelastic damping (glass and aluminum, respectively). The percep-
tual structure of the sounds was inferred from an MDS analysis of dissimilarity 
ratings and from their categorization as glass or aluminum. Dissimilarity ratings 
revealed dimensions that were closely related to mechanical properties: a wave- 
velocity- related dimension associated with pitch and a damping-related dimension 
associated with timbre and duration (Fig. 2.8). When asked to categorize sounds 
according to material, however, listeners ignored the cues related to wave velocity 
and focused on cues related to damping (Fig. 2.9). In both dissimilarity rating and 
identification experiments, the results were independent of the material of the mallet 
striking the plate (rubber or wood). Listeners thus appear to select acoustic informa-
tion that is reliable for a given perceptual task. Because the frequency changes 
responsible for detecting changes in wave velocity can also be due to changes in 
geometry, they are not as reliable for material identification as are damping cues. 
These results attest to the perceptual salience of energy loss phenomena in sound 
source behavior.
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2.5.3  Actions on Vibrating Objects

Although most perceptual studies of mechanical properties of sounding objects 
have focused primarily on material and geometric properties of the objects them-
selves, some research has addressed the actions by which the objects are set into 
vibration, such as scraping, rolling, hitting, and bouncing (for more on simulation 
of these  phenomena, see Ystad, Aramaki, and Kronland-Martinet, Chap. 13). In 
everyday life, we are more likely to listen to the properties of sources that generate 
sound than to the properties of the sound itself. So the question becomes: To what 
properties of actions that excite sounding objects are listeners sensitive and which 
sound properties carry the relevant information for those actions?

Stoelinga et al. (2003) measured the sounds of metal balls rolling over fiberboard 
plates. A spectrographic analysis of the resulting sounds revealed time-varying rip-
ples in the frequency spectrum that were more closely spaced when the ball was in 
the middle of the plate than when it was closer to the edge. The ripple spacing was 
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coordinate along Dimension 1 is plotted as a function of the factor that controlled the interpolation 
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also tighter for lower frequencies than for higher frequencies. This pattern arises 
from the interference between the sound directly generated at the point of contact 
between the ball and plate and first-order reflections of the sound at the edge of the 
plate. The authors hypothesized that this effect is a crucial cue in the synthesis of 
realistic rolling sounds.

Addressing this issue from a perceptual perspective, Houben et al. (2004) con-
ducted three experiments on the auditory perception of the size and speed of wooden 
balls rolling over a wooden plate. They recorded balls of various sizes rolling at 
different speeds. One experiment showed that when pairs of sounds are presented, 
listeners are able to choose the one corresponding to the larger ball. A second exper-
iment demonstrated that listeners can discriminate between the sounds of balls roll-
ing at different speeds, although some listeners had a tendency to reverse the labeling 
of the speed. The interaction between size and speed was tested in a final experi-
ment in which the authors found that if both the size and the speed of a rolling ball 
are varied, listeners generally are able to identify the larger ball, but the judgment of 
speed is influenced by the size. They subsequently analyzed the spectral and tempo-
ral properties of the recorded sounds to determine the cues available to listeners to 
make their judgements. In line with the observed interaction effect, the results sug-
gested a conflict in available cues when varying both size and speed. The authors 
were able to rule out auditory roughness as a cue because the acoustic differences 
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that would affect roughness perception were smaller than the just noticeable 
 difference for roughness predicted by Zwicker and Fastl (1990). So it is unlikely 
that this auditory attribute is responsible for the interaction. However, the spectral 
shape of the rolling sounds is affected by both speed and size of the rolling balls 
with greater emphasis of higher frequencies for smaller diameters and faster speeds. 
The spectral differences were apparently greater than the discrimination threshold, 
making this a likely candidate for the interaction.

Lemaitre and Heller (2012) addressed the issue of the relative importance of 
actions that generate sounds and the properties of the sounding objects. They con-
ducted a study that compared the performance of listeners who were asked to iden-
tify either the actions or the materials used to generate sound stimuli. Stimuli were 
recorded from a set of cylinders with two sizes and four materials (wood, plastic, 
glass, metal). Each object was subjected to four different actions (scraping, rolling, 
hitting, bouncing). The authors reported that listeners were faster and more accurate 
at identifying the actions than the materials, even if they were presented with a sub-
set of sounds for which both actions and materials were identified at similarly high 
levels. They concluded that the auditory system is well suited to extract information 
about sound-generating actions.

In a subsequent study, Lemaitre and Heller (2013) examined whether the audi-
tory organization of categories of sounds produced by actions includes a privileged 
or basic level of description. They employed sound events consisting of materials 
(solids, liquids, gases) undergoing simple actions (friction, deformation, impacts for 
solids; splashing, dripping or pouring liquids; whooshing, blowing, puffing or 
exploding gases). Performance was measured either by correct identification of a 
sound as belonging to a category or by the extent to which it created lexical priming. 
The categorization experiment measured the accuracy and reaction time to brief 
excerpts of the sounds. The lexical priming experiment measured reaction time ben-
efits and costs caused by the presentation of these sounds immediately prior to a 
lexical decision (whether a string of letters formed a word or not). The level of 
description of a sound was varied in terms of how specifically it described the physi-
cal properties of the action producing the sound (related or unrelated sounds and 
words). Listeners were better at identification and showed stronger priming effects 
when a label described the specific interaction causing the sound (e.g., gushing or 
tapping) in comparison either to more general descriptions (e.g. pour, liquid, where 
gushing is a specific way of pouring liquid; or impact, solid, where tapping is a way 
of impacting a solid) or to more detailed descriptions that employed adverbs regard-
ing the manner of the action (e.g., gushing forcefully or tapping once). These results 
suggest a quite robust and complex encoding of sound-producing actions at both 
perceptual and semantic levels.

The application of the psychomechanical approach has focused on fairly simple 
sounding objects and actions, in many cases specifically targeting sound events that 
can be synthesized with physical models such as impacted bars and plates. Future 
work of this nature on more complex systems, such as musical instruments, will 
require more refined models of these complex sound sources, particularly with 
regard to changes in timbral properties that covary with other parameters such as 
fundamental frequency and playing effort.
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2.6  Interaction with Other Auditory Attributes

Most studies of musical timbre have constrained pitch and loudness to single values 
for all of the instrument sounds with the aim of focusing listeners’ attention on tim-
bre alone, which is the legacy of the negative definition of timbre as what’s left over 
when these parameters are equalized. This raises an important question, however: 
Do the timbral relations revealed for a single pitch and/or a single dynamic level 
(related to playing effort) hold at different pitches and dynamic levels? And more 
importantly, if one intended to extend this work to real musical contexts, would the 
relations hold for timbres being compared across pitches and dynamic levels, par-
ticularly given the fact that timbre covaries with both pitch and dynamics in musical 
instruments? A subsidiary issue would be to determine what spectral, temporal, and 
spectrotemporal properties of the sounds covary with these other musical parame-
ters. The multiple interactions of timbre, pitch, and loudness have been demon-
strated with a speeded classification paradigm by Melara and Marks (1990). They 
found that having random or correlated variation in a second dimension affected 
speed and accuracy of classification along a primary, criterial dimension for pairs of 
these auditory parameters.

2.6.1  Timbre and Pitch

Some timbre dissimilarity studies have included sounds from different instru-
ments at several pitches. Marozeau et al. (2003) demonstrated that timbre spaces 
for recorded musical-instrument tones are similar at three different pitches (B3, 
C#4, Bb4, where C4 is middle C). Listeners were also able to ignore pitch differ-
ences within an octave when they were asked to compare only the timbres of the 
tones: B3 to Bb4 is a major 7th, one semitone short of an octave. However, when 
the pitch variation is greater than an octave, interactions between the two attributes 
occur. Marozeau and de Cheveigné (2007) varied the spectral centroid of a set of 
synthesized sounds while also varying the fundamental frequency over a range of 
eighteen semitones (an octave and a half). Pitch appears in the MDS space as a 
dimension orthogonal to the timbre dimension, which indicates that listeners were 
not able to ignore the pitch change but treated it more or less orthogonally to tim-
bre. Paradoxically, however, pitch differences were found to systematically affect 
the timbre dimension related to the spectral centroid with slight shifts toward lower 
perceptual values along this dimension for higher pitches (Fig. 2.10). This result 
perhaps suggests that listeners, who were instructed to ignore pitch and focus on 
timbre, had a tendency to compensate for the change in brightness induced by the 
higher pitches in their dissimilarity ratings or that this dimension is related to the 
richness of the spectrum with sounds at higher pitches having more sparse spectra. 
Handel and Erickson (2001) had also found that nonmusician listeners had diffi-
culty extrapolating the timbre of a sound source across large differences in pitch in a 

S. McAdams 



51

recognition task, although Steele and Williams (2006) found that musician listeners 
could extrapolate timbre with intervals of more than two octaves. Therefore, there 
are limits to timbral invariance across pitch, but they depend on musical training.

Inversely, timbre can also affect pitch perception. Vurma et al. (2011) reported 
that timbre differences on two successive tones can affect judgements of whether 
two pitches are in tune. When the second tone in a pair with identical fundamental 
frequencies had a brighter timbre than the first, it was judged as sharp (higher pitch) 
and for the inverse case, it was judged as flat (lower pitch). This result confirmed an 
effect reported by Russo and Thompson (2005) in which ratings of interval size by 
nonmusicians for tones of different pitches were greater when the timbral bright-
ness changed in the same direction and were diminished when brightness change 
was incongruent.

Finally, some studies have demonstrated mutual interference of pitch and timbre. 
Krumhansl and Iverson (1992) found that uncorrelated variation along pitch or tim-
bre symmetrically affected speeded classification of the other parameter. Allen and 
Oxenham (2014) obtained similar results when measuring difference limens in 
stimuli that had concurrent random variations along the unattended dimension. 
These authors found symmetric mutual interference of pitch and timbre in the dis-

Fig. 2.10 Multidimensional scaling (MDS) solution in two dimensions rotated to maximize cor-
relation between Dimension 1 and the spectral centroid. Note that the musical notes at different 
fundamental frequencies (different symbols) are not strongly affected by spectral centroid: the 
curves are flat. Note also that they are clearly separated from each other along MDS dimension 2, 
indicating a relative independence of pitch and brightness. The different spectral centroid values at 
each fundamental frequency behave very regularly and are fairly evenly spaced (along MDS 
dimension 1), but there is an increasing shift to lower perceptual values as the fundamental fre-
quency increases. Frequencies of Notes: B3, 247  Hz; Bb4, 349  Hz; F4, 466  Hz; F5, 698  Hz 
(Reproduced from figure 3  in Marozeau and de Cheveigné 2007; used with permission of The 
Acoustical Society of America)
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crimination task when making sure that changes in timbre and pitch were of similar 
perceptual magnitude. Their results suggest a close relation between timbral bright-
ness and pitch height (for more on the semantics of brightness, see Saitis and 
Weinzierl, Chap. 5). This link would be consistent with underlying neural represen-
tations for pitch and timbre that share common attributes such as the organization of 
tonotopy and periodicity in the brain. Such a shared neural representation might 
underlie the perception of register (in which octave a particular pitch class is being 
played) (Robinson 1993; Patterson et al. 2010).

2.6.2  Timbre and Playing Effort (Dynamics)

Changes in dynamics can also produce changes in timbre for a given instrument. 
Sounds produced with greater playing effort (e.g., fortissimo versus pianissimo) 
have greater energy at all the frequencies present in the softer sound, but the spec-
trum also spreads toward higher frequencies as more vibration modes of the physi-
cal system are excited. This mechanical process creates changes in several 
descriptors of spectral shape, including a higher spectral centroid, greater spectral 
spread, and a lower spectral slope. There do not appear to be studies that have exam-
ined the effect of change in dynamic level on timbre perception, but some work has 
studied the role of timbre in the perception of dynamic level independently of the 
physical level of the signal.

Fabiani and Friberg (2011) varied pitch, sound level, and instrumental timbre 
(clarinet, flute, piano, trumpet, violin) and studied the effect of these parameters on 
the perception of the dynamics of isolated instrumental tones. Listeners were asked 
to indicate the perceived dynamics of each stimulus on a scale from pianissimo (pp) 
to fortissimo (ff). The timbral effects produced at different dynamics, as well as the 
physical level, had equally large effects for all five instruments, whereas pitch was 
relevant mostly for clarinet, flute, and piano. Higher pitches received higher dynamic 
ratings for these three instruments. Thus, estimates of the dynamics of musical tones 
are based both on loudness and timbre and, to a lesser degree, on pitch as well.

2.7  Summary and Conclusions

Timbre is clearly a complex phenomenon that is multidimensional, including many 
different aspects such as brightness, attack quality, hollowness, and even aspects of 
the size, shape, and material composition of sound sources. Studies of timbre dis-
crimination reveal listeners’ heightened sensitivity to subtle spectral and temporal 
properties of musical-instrument sounds. However, in musical contexts, the sensitivity 
to temporal envelope details seems to be diminished. One approach to timbre’s inher-
ent multidimensionality is to use MDS of dissimilarity ratings to model perceptual 
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relations in terms of shared dimensions, specific features and weights on the dimen-
sions, and features for different individuals or groups of individuals.

Common dimensions have been associated with various audio descriptors 
through correlation analyses, with more or less success depending on the sound 
set used. Audio descriptors, such as the spectral centroid, attack and/or decay 
time, and deviation from a smooth spectral envelope, seem ubiquitous for many 
classes of musical-instrument sounds and have been validated by confirmatory 
studies. However, some caution is warranted in the audio descriptor realm: the 
plethora of descriptors in the literature do not all vary independently even across a 
very large database of musical sounds at various pitches and dynamic levels, and 
there may be only about ten independent classes of such descriptors (for musical 
instrument sounds at least). Furthermore, at this point only scalar values of such 
descriptors have been employed, and new research needs to examine the time-
varying properties of natural sounds, which carry much information concern-
ing the state of sounding objects. In some cases, common dimensions have also 
been associated with the mechanical properties of sound sources, such as damping 
rate for material properties, relations among modal frequencies of solids or reso-
nance frequencies of air columns for geometric properties, and temporal and tex-
tural properties of the actions that set objects into vibration. Indeed, in some cases 
it appears that listeners are more sensitive to what is happening to objects in the 
environment (actions) than to the nature of the objects themselves.

In examining the extent to which modeled representations depend on stimulus 
context, it seems that timbre dissimilarity ratings, in particular, are fairly robust to 
the range of sounds present. This result may suggest that there are aspects of timbre 
perception that are absolute and tied to recognition and categorization of sound 
sources through interactions of perception with long-term memory accumulated 
through experiences with those sources. However, timbre relations can be affected 
by changes along other dimensions such as pitch and loudness. These interactions 
may be partly due to the sharing of underlying neural representations and partly due 
to the fact that all of these auditory attributes covary significantly in the sound 
sources encountered in everyday life and in music listening.

Another class of models presumes that timbre is a complex, but unitary, multidi-
mensional structure that can be modeled with techniques such as auditory images, 
modulation power spectra, or spectrotemporal receptive fields. This work is still in 
its infancy, and it is not yet clear what new understanding will be brought to the 
realm of timbre by their use or whether alternative models will provide more 
explanatory power than the more traditional multidimensional approach.
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Chapter 3
Timbre Recognition and Sound Source 
Identification

Trevor R. Agus, Clara Suied, and Daniel Pressnitzer

Abstract The ability to recognize many sounds in everyday soundscapes is a use-
ful and impressive feature of auditory perception in which timbre likely plays a key 
role. This chapter discusses what is known of timbre in the context of sound source 
recognition. It first surveys the methodologies that have been used to characterize a 
listener’s ability to recognize sounds and then examines the types of acoustic cues 
that could underlie the behavioral findings. In some studies, listeners were directly 
asked to recognize familiar sounds or versions of them that were truncated, filtered, 
or distorted by other resynthesis methods that preserved some cues but not others. 
In other studies, listeners were exposed to novel sounds, and the build-up of cues 
over time or the learning of new cues was tracked. The evidence currently available 
raises an interesting debate that can be articulated around two qualitatively different 
hypotheses: Are sounds recognized through distinctive features unique to each 
sound category (but of which there would need to be many to cover all recognized 
categories) or rather, are sounds recognized through a relatively small number of 
perceptual dimensions in which different sounds have their own recognizable 
position?
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3.1  Introduction

In everyday life, there is a constant barrage of auditory events from a wide range of 
different sources even in the most serene of environments. Reaction to those sounds 
could vary from disinterest to excitement to fear depending on what the sounds are 
thought to be. Passing cars, passing trains, human voices, babies’ cries, buzzing 
flies, fighting crows, footsteps, noisy fridges, and tapping on a computer keyboard 
are just a few sounds that were audible as this sentence was typed. It is widely 
believed that timbre plays a key role in the recognition of these sounds (even though 
pitch and loudness would certainly provide useful additional constraints in many 
cases). The identification of such a vast array of sounds takes place with such appar-
ent ease that this key aspect of auditory perception could easily be taken for granted. 
This chapter describes experiments that attempted to better characterize and under-
stand the recognition and identification of timbres.

Timbre is multidimensional in the sense that timbre perception is not expected to 
be described in terms of a single value with all sounds lined up in order from one 
extreme to the other. Timbre may not even be a single monolithic perceptual attri-
bute. There are many different behavioral uses of timbre (Siedenburg and McAdams 
2017). The aspects of timbre appreciated in music (see McAdams, Chap. 8) may not 
be the same as those upon which timbral differences are judged (see McAdams, 
Chap. 2), which may in turn be a different timbre from that which signals that a dog 
has barked. This chapter specifically concerns timbral perception as it relates to the 
recognition of sounds.

It may seem unnecessarily complex to single out a type of behavioral task to 
understand a perceptual feature. Even for a classic and respectable perceptual attri-
bute such as pitch, it is quite likely that the task asked of the listener will change the 
pitch cues being used (McPherson and McDermott 2018). Therefore, adopting an 
operational definition of timbre, for the sake of this chapter at least, may ultimately 
prove useful. Here, timbre is defined as that attribute of sound perception that allows 
recognition of a sound, when pitch, loudness, duration, and spatial position are not 
informative. This review is also focused on particular everyday sounds, such as 
musical instruments, environmental sounds, auditory textures, and the human voice. 
Studies focused on speech have been omitted in order to avoid linguistic, semantic, 
and social complications (but for a review of talker recognition, see Mathias and 
Kriegstein, Chap. 7).

Many of the experiments reviewed here involve identification, in the sense that 
listeners are expected to be able to report what the sound is verbally, whether it is a 
trumpet or a bouncing ping-pong ball. The word recognition implies a more general 
activation of auditory memory, manifesting either through a sense of familiarity or 
an appropriate behavioral response (McAdams 1993; Yonelinas 2002), such as 
walking to the front door after hearing a door bell (see also Siedenburg and 
Müllensiefen, Chap. 4). Pre-lexical recognition, similar to implicit memory, seems 
more representative of interaction with sounds in everyday life, as sounds rarely 
need to be named outside of laboratory tasks. However, to the extent that the  listeners 
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would know the names for the sounds (e.g., for experienced musicians and familiar 
instruments), identification and recognition can be treated as equivalent. 
Nevertheless, identification results may diverge from recognition when an experi-
ment is particularly demanding on the precision with which sounds must be labelled. 
Distinguishing trumpets, cornets, and trombones is more challenging a task than 
one in which they could all be labelled “brass” (see also Sect. 3.1).

A holy grail of research in timbre recognition would be to understand what 
acoustic cues allow listeners to infer the sound source and to determine which 
acoustic cues are necessary and sufficient for a listener to correctly identify the 
source. Such a final answer is not yet available. More often, there is evidence point-
ing toward general categories of cues such as those found in the spectral or temporal 
domains or in the start or the middle of a sound. Moreover, a pervasive thread is that 
the cues that are used appear to be affected by learning and the task at hand, suggest-
ing that the links between acoustics and perception may be hard to establish 
unequivocally, not just because of experimental challenges but also because timbre 
perception for recognition may be a moving target—a possibility that is entertained 
in the later parts of this chapter.

Given the wide range of cues that have been investigated for a wide range of 
sounds, this short tour through the relevant literature is structured according to 
methodology, highlighting what each method has revealed about timbre recognition 
so far (Fig. 3.1; Sect. 3.3). Important findings are discussed along with the limita-
tions in the interpretation of these results with the aim of building a picture of the 
cues that listeners seem to use or seem able to use when recognizing sounds. As 
many of these techniques have been developed or significantly extended within the 
last decade, the promise of these methods is as exciting as their early results.

The most direct approaches involve explicitly naming a range of sound sources 
(verbal labeling; Sect. 3.1) or describing properties of the sound-source (psychome-
chanics; Sect. 3.2). To focus the searchlight on more specific features, several 

Fig. 3.1 Experimental types reviewed in this paper, all of which can contribute to knowledge of 
timbre perception
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 studies have probed the recognition of sounds that have been reduced (truncation 
and filtering; Sect. 3.3) or otherwise reconstituted with deliberate information loss 
(resynthesis and sketching; Sect. 3.4). Other methods promise to indicate the cues 
used for recognizing specific sounds or categories of sound with fewer explicit 
hypotheses (reverse correlation and bubbles; Sect. 3.5). To circumvent, to some 
extent, the effect on recognition performance of the unavoidable interindividual dif-
ferences with auditory experience, other methods observe how previously unheard 
artificial sounds are recognized to map how recognition evolves over the course of 
a sound (time course of recognition; Sect. 3.4) or over a period of learning (learning 
sounds; Sect. 3.5). Neural imaging provides an alternative viewpoint on recognition 
(Sect. 3.6.1) and machine learning is discussed as a method of exploring the avail-
ability of cues that human listeners could use (Sect. 3.6.2). First, consider the theo-
retical question that organizes the experimental findings in the subsequent section: 
Are sounds recognized through broad dimensions, unique characteristics of particu-
lar sounds, or a mixture of both (see also Pressnitzer et al. 2015; Siedenburg and 
McAdams 2017)?

3.2  Continuous Dimensions Versus Unique Features

Timbre as a percept is certainly multidimensional in that sounds cannot be ordered 
in terms of a single, continuous “timbre line.” Alternative representations could 
obviously include multiple dimensions (planes, open-ended cubes, or higher- 
dimensional spaces). However, more categorical representations are also to be con-
sidered (the presence or absence of a feature, with a very large number of features 
being considered). A mixture of the two is also possible.

Uncovering a small number of components that can account for as much timbre 
perception as possible has been a long-term project of timbre research (see 
McAdams, Chap. 2). This has been explored generally in terms of how similar pairs 
of sounds are rated to be. Based on these similarity data, there are statistical meth-
ods that can position each sound in a timbre space (Elliott et al. 2013) in which simi-
lar sounds are close together and dissimilar sounds are far apart. The dimensions 
uncovered in these studies are then sometimes assumed to underlie other aspects of 
timbre perception, such as identification of sounds (e.g., Ogg et al. 2017). But this 
may or may not be the case, since different tasks may use different cues even if both 
tasks are discussed under the umbrella of timbre.

Admittedly, musical instruments that are most likely to be confused are those 
that are also rated as similar (Grey 1977), and the same is found for environmental 
sounds (Gygi et al. 2007). Nonetheless, extrapolating this result to dissimilar sounds 
would make a strong claim that the perceptual features on which dissimilarity is 
judged may be the same features that are used to recognize individual instruments 
in isolation. For instance, speech understanding and speaker identification both 
operate on the same acoustic signal but likely on different cues (Formisano et al. 
2008). To further illustrate this through an example in the visual domain, color is a 
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highly salient visual cue, yet a banana remains recognizable in black and white 
(Fig. 3.2). In fact, when color is removed from photographs, the identifiability of 
everyday objects is neither impaired nor even slowed (Delorme et al. 2000).

Another possibility would be that timbre identification is mediated by a larger 
number of cues (Fig. 3.3), some of which are diagnostic of specific sound categories. 
For example, the specific differences in the envelopes of the harmonics of the sound 
of a cornet indicate its “brassiness” (Beauchamp 1975). There could be a large num-
ber of features, each found only in a small number of sounds or even a single recog-
nizable sound. This is what distinguishes our use of features versus dimensions. 
Dimensions are common to all sounds, and there are a small number of them, 
whereas features may be unique to a class or even a single sound, and there are many 
of them (Pressnitzer et al. 2015). A mixture of the two ideas is possible. Indeed, 

Fig. 3.2 Although bananas are stereotypically yellow, they are easily recognizable without color- 
based cues. Although color is optional for rapid visual recognition (Delorme et al. 2000), colors still 
contribute to the similarity or dissimilarity of two images. Analogously, there could be a disjunction 
between cues that contribute to timbral dissimilarity and those that contribute to recognition

Fig. 3.3 Schematic illustration of two extreme accounts of how two sounds (A and B) are recog-
nized: (1) All sounds are positioned in a low-dimensional space (dimension 1 and dimension 2) and 
recognized on the basis of their position in it (left panel); (2) in all sounds, a small subset of all the 
possible features is detected (represented by symbols, letters), including some esoteric features by 
which they can be recognized (right panel). (Modified from figure 2 of Pressnitzer et al. 2015)
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inclusion of “specificities” for some instruments has been observed to improve fit to 
multidimensional models of the similarity data itself (McAdams et al. 1995).

On the neural level, accounts of the response of the auditory cortex typically 
involve larger features sets, such as the spectrotemporal fields observed in the audi-
tory cortex and generalized for computational models (see Sect. 3.6.2) (Patil et al. 
2012). Even these represent a broad set of features whose form is yet limited. These 
stimulus sets provide a dense representation in the sense that individual sounds may 
trigger a large proportion of the feature detectors albeit to different degrees. 
Hromádka and Zador (2009) provokingly argue that cortical activity is more sparse 
with large numbers of neurons in the auditory cortex remaining quiet for long peri-
ods of activity interrupted only occasionally by bursts of activity that are precisely 
timed to the appropriate stimuli. In theory, such sparse codes bring computational 
and efficiency benefits (Hromádka and Zador 2009). Whereas it is one role of psy-
choacousticians to find general patterns in the auditory processes they study, the 
potential complexity and variety of cues that could be used for auditory recognition 
should also be kept in mind.

3.3  Experimental Methods for Observing Timbre 
Recognition

3.3.1  Direct Verbal Labeling

Psychoacoustic methods often boil down to the presentation of a sound followed by 
a simple question to the participant. For the recognition or identification of a sound, 
the most obvious question to ask is “what is the sound?” and see how the answers 
vary with the stimuli. The sets of stimuli selected have ranged from musical instru-
ments to environmental sounds. Although Western musical instruments have little 
relevance to most people’s everyday sound-recognition needs, except presumably 
for Western musicians, single notes played by instruments have become somewhat 
of a staple for timbre research. This is likely because they form an easily recordable, 
closed set of named sounds that can be controlled in terms of their nontimbral audi-
tory properties (e.g., pitch, loudness, and duration).

Berger (1964) asked thirty musicians from a wind band to pair the sounds of ten 
different wind instruments with their ten names. Some instruments were recognized 
more reliably than others—29 of the 30 listeners correctly identified the oboe, 
whereas only 13 correctly identified the flute. This surprisingly poor result for such 
a well-known instrument could stem partly from the note selected (F4, 349 Hz, at 
the lower end of treble clef), which is unusually low in the flute’s range. A flute 
sound may be less recognizable at its lower extreme or low notes may be considered 
less stereotypical of flutes. This specific example serves to illustrate some of the 
pitfalls of the direct-labeling method.
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Berger represented all the listeners’ responses as a confusion matrix, counting 
each of the possible responses for each of the possible instruments. He noted that 
there were some understandable confusions: The trumpet was confused with the 
cornet, alto and tenor saxophones were confused with the clarinet, and lower-brass 
instruments were mutually confused. The challenge of interpreting errors between 
similar instruments is discussed further in Sect. 3.2. Not all confused instruments 
were physically similar, however. There was a sizeable number of responses confus-
ing the trumpet with the saxophone in addition to confusions between trumpet and 
cornet.

The closed response set of Berger seems perhaps not truly representative of day- 
to- day timbre identification in which there may be less context and certainly not an 
explicit closed list of possible labels. However, in practice, for a musician hearing 
an instrumental sound, it is likely that even open responses, not explicitly con-
strained by a pre-defined list, would nonetheless come from a relatively closed list 
of familiar instruments.

In other similar studies with broadly similar stimuli, results were highly variable 
in terms of accuracy, ranging from 33% (Wedin and Goude 1972) to 84% (Grey 
1977). In the latter study, listeners benefited from multiple presentations of each 
instrument throughout the experiment, but even without this practice, Grey’s listen-
ers achieved 60% accuracy. There is no doubt that direct verbal labelling is highly 
valuable as a direct quantitative measurement of timbre recognition, but the abso-
lute values of these studies may be difficult to fully interpret because of the large 
effects that procedural details seem to have on the results: the choice of the stimulus 
set, the response set, and listeners’ past experiences. Thus, the direct labeling 
approach has often been complemented by manipulations of the experimental 
sounds (see Sect. 3.4).

Berger (1964) observed that if confusions within groups of inarguably similar 
instruments were marked as correct, (e.g., for lower-brass instruments), the 59% 
accuracy they had observed increased to 89%. In a sense, Berger’s reanalysis runs a 
thought experiment as to what might have happened if only one instrument from 
each confusable group had been included in the set of stimuli. This illustrates again 
what a major difference seemingly minor choices about stimuli can have on the 
overall results. An alternative approach could be to accept more general answers 
about categories, such as whether the instrument is a brass or string instrument.

Where listeners are asked to categorize according to broad categories, such as 
musical instruments, human voice, or environmental sounds, they could adopt a 
range of strategies. At one extreme, they could identify the individual sound as 
before and then decide to which category it belongs. For example, they could iden-
tify a trumpet and then categorize it as a brass instrument. At another extreme, they 
may be able to categorize the sound correctly without even recognizing the instru-
ment. For example, relatively few people would be able to identify the sounds of the 
dulcimer, bombarde, and erhu correctly, but most would recognize all three as musi-
cal instruments. Thus, when categorizing sounds into broad categories, listeners 
may use cues that uniquely identify the instruments or cues that are more broadly 
indicative of the category. Without attempting to summarize the vast literature on 
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categorical perception, the sounds themselves may be more or less prototypical of a 
category (Rosch and Mervis 1975).

Arguably, all verbal identifications fall somewhere on a spectrum between a 
unique identifier and a broad category. Even discrete categories of instrument, such 
as “oboe”, can be represented by a variety of sounds generated by different oboes 
and oboists. In Grey’s (1977) study, listeners successfully distinguished two record-
ings of oboes, albeit with many confusions.

A sound could also be described in terms of its perceptual properties, such as 
bright, buzzing, and harsh. This could identify the sound in the sense of allowing us 
to distinguish it verbally from others. However, these semantic labels seem distinct 
from recognition and identification, as defined in Sect. 3.1, in that they can be used 
to describe sounds that a listener has not heard before, does not recognize, and could 
not identify. Semantic labels are discussed in more detail by Saitis and Weinzierl 
(Chap. 5).

There may be borderline cases where semantic descriptions also identify a sound. 
For example, if a sound is described as brassy, that perception may well use some of 
the same cues as would allow us to identify a sound as that of a brass instrument. In 
particular, if a listener is able to describe a sound as “glass being struck by wood but 
not breaking”, then this amounts to identifying the sound without having a specific 
name for it.

3.3.2  Psychomechanics

The study of a listener’s ability to describe the physical properties of the sound 
source is a field in itself. Psychomechanics studies the relationship between the 
physical properties of an object (its size, material, and shape) and the perception of 
its physical properties based on sounds that it makes.

At first glance, psychomechanics seems to add a step beyond psychoacoustics, 
which only aims to find relations between the emanated sounds and perceptions of 
them. However, Lakatos et al. (1997) note that a single sound source could emanate 
from a wide variety of sounds, so in order to recognize a sound source, it would be 
efficient to focus on invariant cues, cutting through the complexity of the acoustic 
medium. This is one motivation for studying psychomechanics. The wide range of 
psychomechanical results are reviewed by McAdams (Chap. 2), all of which are 
relevant for sound source recognition and identification insofar as it is sufficient to 
identify the sound’s properties.

The suitability of the psychomechanical approach may depend on the category of 
sound under question. All but the simplest acoustic couplings can be highly nonlin-
ear and hard to predict (Lakatos et al. 1997). For instance, although most people are 
proficient users of the human voice, few have any particular insight about the acous-
tic mechanisms involved in vocal production. Nevertheless, in some situations, such 
as an object being dropped, it may be more useful to identify summary information 
about the physics of the incident (size, material, broken, or bouncing) than to be 
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able to categorize and label the sound. The relative ease with which these impact 
sounds can be modeled and manipulated may make them give up their perceptual 
secrets more readily, and they have proven to be a fruitful sound category for psy-
chomechanics (for a review, see Giordano and McAdams 2010).

3.3.3  Truncations and Filtering

One way of pinpointing the acoustic information that is useful for recognition is to 
remove parts of the sound and see if it can still be identified. This can be imple-
mented by truncating parts of the sound in the time domain—omitting the start, 
middle, or end of the sounds—or by the equivalent procedure in the frequency 
domain, which is filtering.

The information conveyed at different stages of a sound have received consider-
able discussion. In most musical instruments, an unstable start (the onset) builds up 
into a relatively stable pattern (the steady state) that can be sustained or die away. 
For bowed string instruments, the irregular scratch of bow on string is the onset that 
quickly gives way to a more regular periodic pattern in the steady state. For the 
timpani, some of the modes of vibration in the onset die away within tens of milli-
seconds, leaving more durable modes of vibration to dominate the steady state 
(Benade 1990). The analysis of a periodic sound’s partials through a Fourier analy-
sis initially emphasizes the steady-state center of periodic sounds (e.g., the “tones” 
of Helmholtz 1877; for a review see Risset and Wessel 1999); whereas the ever- 
changing onsets of realistic sounds defy such clean analysis (see Backhaus 1932 for 
a valiant effort).

Although the onset of sound is often credited with particular importance in the 
recognizability of sound (e.g., Iverson and Krumhansl 1993), the pattern of results 
is much more complex. Generally, the accuracy of identification declines somewhat 
when onsets are removed (Saldanha and Corso 1964; Suied et al. 2014) but not cata-
strophically. Some instruments are affected more than others. Saldanha and Corso’s 
(1964) double bass and English horn were confused if their attack transients were 
removed, and the middle portion of Berger’s (1964) alto saxophone was often iden-
tified as a trumpet. For Elliott (1975), string instruments were mostly identified as 
the oboe without their onset, but most instruments were more likely to be identified 
correctly than as a different specific instrument. Wedin and Goude (1972) general-
ized that the instruments that survived removal of the onset were those that were 
recorded with vibrato. Onsets presented in isolation seem to be relatively identifi-
able, although not as much as the intact sounds (Clark et al. 1963). These combined 
results point in the direction of fluctuations as being important for identification, 
less so the steady state (where a steady state is achieved). This could be because the 
steady state provides rather limited and unreliable information about specific fre-
quencies, whereas sharp transients or fluctuations convey information about wider 
ranges of the spectrum.
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Another question tackled through truncations is how long a sound must be to be 
recognized. This provides an upper bound for the duration of the acoustic cues on 
which the recognition is based. Seminal studies using this technique were reported 
by Gray (1942) for speech vowel sounds and by Robinson and Patterson (1995) for 
musical-instrument sounds. Surprisingly, results showed identification above 
chance for durations that were even shorter than that of a single repetition of the 
periodic waveform. Bigand et al. (2011) asked listeners to categorize a more diverse 
set of sounds, such as spoken voices, instrumental music, or environmental sounds 
(including water bubbling, a cigarette lighter, and a foghorn). The voices and instru-
ments were categorized above chance within 20–30 ms, whereas the environmental 
sounds required 50 ms. These durations are similar to the categorizations (at 25 ms) 
observed by Ogg et  al. (2017) using the same categories with a different set of 
stimuli. Suied et al. (2014) used a more focused sound set, all periodic, in which 
pitch cues were counterbalanced across the set and could not be used for recogni-
tion. With fewer differences between the sounds in the categories, above-chance 
categorization of sung vowels or musical instruments was observed, counterintui-
tively, at much shorter durations, as little as 2–4 ms. Such short truncations only 
leave a snapshot of the spectrum available and a rather blurred indication of it at that 
(see left panel of Fig. 3.4) (Occelli et al. 2016). The best recognized categories also 
seem to depend on properties of the stimulus sets, either the voice (Bigand et al. 
2011; Suied et al. 2014) or the more spectrally stable instrument (Ogg et al. 2017). 
Thus, different cues may be available at different durations, and whether these cues 
allow correct categorization could depend on the context in which the sounds are 
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Fig. 3.4 Distinguishing sounds. Left panel: Fourier transforms of a recording of the vowel sound 
/a/, sung at pitch D4 (294 Hz), truncated with raised-cosine windows. For a 32 ms sound snippet 
(thin black line), the harmonic structure of the sound is visible in the form of regular peaks and 
their heights outline a detailed spectral shape. As the snippet gets shorter (8 ms, thick gray line; 
2 ms, thick black line), frequency resolution is lost and only broader spectral features are available. 
In spite of the vast differences among all of these sounds, listeners made “above chance” decisions 
when asked to categorize them. Right panel: The ability of listeners to distinguish short snippets 
of voice (red), percussion (blue), and string instruments (green) from seven other musical instru-
ments is plotted by gate duration (ms) and d-prime (a statistic related to the perceptual distinctive-
ness of the two conditions). The gray lines indicate the rates of improvement that would be 
expected if listeners were only taking advantage of repeated opportunities to hear cues that were 
available at shorter durations. The steeper slopes in the behavioral data indicate that additional cues 
have become available. (Both panels modified from Suied et al. 2014; used with permission from 
AIP Publishing)
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presented. In summary, listeners are able to make use of rough spectral cues that are 
available within milliseconds, but to distinguish between a wider set of sounds more 
robustly, a wider range of cues available by 25–50 ms may be required. The build-
 up of cues over time is discussed further in Sect. 3.4.

In the spectral domain, Gygi et al. (2004) explored the identification of filtered 
versions of seventy everyday environmental sounds obtained from a sound effects 
library, including everything from airplanes, baby cries, and the opening of a beer 
can, to waves, windshield wipers, and zippers. Listeners were trained with feedback 
to the point of 95% accuracy at identifying the sounds before being asked to identify 
the sounds without feedback. Some sounds were more affected by filtering than oth-
ers. Perhaps predictably, thunder became difficult to recognize when high-pass fil-
tered with a cut-off of 300  Hz. Sirens and laughter were highly recognizable 
however destructively they were filtered. Nonetheless, the authors were interested in 
the frequency regions that were globally the most useful. Approximately 80% accu-
racy was obtained across all sounds and listeners when sounds were band-passed to 
a 1200–2400 Hz frequency region. However, the sounds were also highly identifi-
able when high-passed well above this region (over 70% accuracy with a cut-off at 
8000  Hz) or low-passed well below (over 50% identification with a cut-off of 
300 Hz). This shows that the identifiability of a wide range of environmental noises 
is surprisingly robust to spectral distortions. It also shows that cues for identifiabil-
ity should be found across a wide frequency range.

Truncations and filtering are inherently destructive forms of manipulating the 
stimuli. Only a decrease in identifiability would be expected with either technique; 
the relative importance of different times or frequency regions can only be inferred 
from the extent to which their removal affects performance. Also, removing an 
acoustic cue is not simply omitting it but rather replacing it with an alternative cue. 
For instance, cutting the onset amounts to introducing a sharp onset. Such alterna-
tive cues may themselves affect a listener’s responses. To manipulate the presence 
or absence of cues more generally, resynthesis has been used as a complementary 
tool.

3.3.4  Resynthesis and Sketching

Resynthesis refers to the process of synthesizing a new sound based on the mea-
sured acoustic features of a pre-existing sound. If one can control the presence of a 
cue in a sound with reasonable independence from other cues, then testing the role 
of that cue for auditory identification becomes considerably easier. Sketching, a 
notion introduced more recently, refers to a subcategory of resynthesis tools that 
aim to use a relatively small number of features.

Cues that have been manipulated include the spectral centroid (Wun et al. 2014), 
the timing of repeated sounds (Warren and Verbrugge 1984), and the envelopes of 
individual harmonics (Grey and Moorer 1977). Many studies use resynthesis to test 
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the extent to which a sound is similar to the original (e.g., Grey and Moorer 1977; 
McAdams et al. 1999).

Vocoders are a form of resynthesis of particular interest because they preserve 
and destroy cues in ways that are analogous to cochlear implants (Shannon et al. 
1995; see Marozeau and Lamping, Chap. 9). Noise vocoders generally preserve 
the rough shape of the spectrum of a sound and reproduce changes in the spectrum 
over time, so many of the broad spectrotemporal cues remain. However, vocoders 
resynthesize a sound from bandpass-filtered noise by simply changing the level of 
each noise band. Thus, details of the spectrum that are finer than the vocoder’s 
bands are lost and replaced by those of noise. Any harmonics are replaced by 
bands of noise, so nearly all pitchiness is lost. A similar principle applies to sine 
wave vocoders, simply replacing noise bands by fixed-frequency pure tone 
carriers.

Gygi et al. (2004) also tested whether a range of environmental sounds could be 
recognized from versions preserved by a noise vocoder. As expected, sounds with 
strong pitched components were among those least well identified, including the 
flute, car horns, and an electric saw. More surprising is that some of the sounds 
could be identified correctly after processing with a six-channel noise vocoder. 
Specifically, 36% of sounds could be identified by naïve listeners who had never 
heard the original sounds. The most readily identifiable sounds included a baby cry, 
bird song, a clock, and a bouncing ping-pong ball (each 98% accuracy), some of 
which also have considerable harmonic content, but all of which have distinctive 
rhythmic patterns. This emphasizes that not all sounds are identified on the basis of 
the same acoustic cues. Different sounds afford different cues through which listen-
ers might recognize the sound source.

A powerful resynthesis technique has been developed by McDermott et  al. 
(2011), specifically geared toward auditory textures. Textures refer to relatively 
steady sounds of indeterminant length, such as water running or fire crackling. 
McDermott et al. (2011) extracted a large number of parameters (over a thousand) 
inspired from a model of human auditory processing with parameters relating to 
the intensity within frequency bands, the distribution of intensities over time, the 
rate of modulations within each frequency band, and correlations between those 
(Fig. 3.5). A noise stimulus was then progressively altered in an optimization pro-
cess until it reached similar statistics to a target texture sound. The reconstructed 
sounds were recognized with a high level of accuracy (89%, compared to 96% for 
the original sounds). Each parameter seemed to play a role in improving identifi-
ability of the sounds; notably, the addition of correlations across frequency bands 
in the resynthesis model vastly improved recognition from 62% to 84%, relative 
to within- frequency- band statistics alone. This shows that cross-frequency corre-
lations, in conjunction with more classic auditory statistics, play a role in pre-
serving the acoustic cues that are important for recognition. The precise nature 
of these cues is unknown, but they point toward a recombination of information 
from across frequency bands that is otherwise little mentioned and little observed 
physiologically.
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An opposite extreme of resynthesis is to test how few parameters suffice to 
preserve recognition. This has been termed auditory sketching (Suied et  al. 
2013b) as a parallel to visual sketches. Visual sketches can be easily recognized 
despite extreme simplifications of the original image. The potency of visual 
sketches is thought to be related to their use of cues adapted to the human visual 
system, such as lines (Cavanagh 2005). The discovery of the equivalent basic 
cues for audition, if they exist, would be an important step in understanding tim-
bre recognition.

Isnard et al. (2016) generated audio sketches of instruments, birds, vehicles, and 
voices based on the times and frequencies of peaks of energy,1 and asked listeners 
to categorize them in order to explore the importance of the representation of sound 
from which the sketches were generated. There were two types of sketch. One is 
acoustic, based on Fourier analysis, and the other is an auditory sketch based on a 

1 Examples of acoustic and auditory sketches are available from https://hal.archives-ouvertes.fr/
hal-01250175 (Isnard et al. 2016)
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Fig. 3.5 Schematic of the analysis model of McDermott and Simoncelli’s (2011) resynthesis 
method. Sounds pass through a bank of bandpass filters after which envelopes are extracted and 
compressed. These signals are in turn passed through the bandpass filters of the modulation filter-
bank. Statistics are analyzed at various stages, including marginal statistics (represented by M, 
which can include the mean, standard deviation, skew, and kurtosis that are not shown) and cor-
relations between various channels (C, C1, and C2). (From McDermott and Simoncelli 2011; used 
with permission from Elsevier)
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model of the human cochlea (Chi et al. 2005). Only relatively stable sound textures 
(vehicle engine noises) were better categorized from the acoustic sketches than 
from the auditory sketches. In fact, the rate at which listeners categorized acoustic 
sketches of the voice correctly was below chance, suggesting that listeners were 
actively miscategorizing them. Both bird song and voices were better categorized 
based on the auditory sketches than acoustic ones. Even with as few as ten features 
selected, listeners could categorize the sounds of vehicles, birds, and musical instru-
ments above chance, averaged across both types of sketch. More broadly, the tech-
nique of sketching could be used in the future to test which combinations of basic 
acoustic cues are sufficient to allow recognition, or even which acoustic parameters 
allow the most efficient representations of sounds for recognition tasks.

3.3.5  Reverse Correlation and Auditory Bubbles

When synthesizing or manipulating sounds, there is always a choice as to which 
features are worth changing and which are worth preserving. Ultimately, the experi-
mentalist decides which distinctions are worth making and testing. The techniques 
of reverse correlation and its offspring, auditory bubbles, promise to avoid these 
hypothesis-driven methods and allow listeners’ responses to speak for themselves. 
In reverse correlation, a listener’s responses to a wide range of stimuli are correlated 
with parameters of those stimuli. Such analyses have been used by Ogg et al. (2017), 
who observed that listeners’ categorizations as speech, instrumental music, or envi-
ronmental sounds were correlated with the measured spectral centroid, spectral flat-
ness, and noisiness of the snippets presented. A risk with post hoc analyses is that 
the responses may correlate with several factors that covary in the stimulus set. 
Indeed, it is possible that some correlated features might have had no causative role 
in the participants’ responses. Whereas this is often a risk worth taking for an indi-
cation of the cues that listeners relied on, stimulus sets for reverse-correlation exper-
iments are designed to avoid confounding correlations.

The stimulus set designed by Brimijoin et al. (2013) consisted of 0.5 s noises 
whose spectra varied randomly from trial to trial. Listeners were asked to respond 
as soon as they heard a specified vowel sound. On average, the stimuli that triggered 
listeners’ responses tended to have more power in some parts of the spectrum than 
others, resembling the spectral shape of each of the vowels in whispered speech. 
Moreover, the stimuli immediately before the one that triggered the response tended 
to have the opposite pattern with less power where the vowel would normally have 
peaks. This shows that listeners were not just responding to the absolute spectrum 
of the latest noise stimulus but also to its contrast with the preceding noise. This 
highlights yet another little-mentioned possibility, that there is sensitivity not just to 
the spectrum of a sound but to its changes compared to an acoustic context (cf. 
Sidwell and Summerfield 1985).

The method of auditory bubbles (Venezia et al. 2016) combines the techniques of 
auditory sketching with reverse correlation. The original bubbles method, as used in 
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visual studies, consisted of circular regions of an image shown while the rest of the 
image was blacked out (Gosselin and Schyns 2001). A typical finding has been that 
the parts of the facial images that best correlated with participants’ responses 
depended on whether they were trying to judge the gender or the expressiveness of 
the faces presented. The technique was developed as a more efficient alternative to 
reverse correlation, which typically requires several thousand trials to provide 
meaningful results.

In terms of timbre recognition, a bubble methodology has been implemented by 
Thoret et al. (2016) for instrumental arpeggios and applied to individual sustained 
instrumental sounds (Thoret et al. 2017). Listeners were asked to identify instru-
ments based on resynthesized versions generated from a relatively narrow range of 
their spectral and temporal modulations, effectively blurring and sharpening the 
spectrogram to emphasize certain rates of change in both the spectral and temporal 
directions. Based on the pattern of identifications by listeners, some regions contrib-
uted to a larger proportion of correct responses than others.

Focusing on sustained instruments (Thoret et al. 2017), identification overall was 
most reliable based on lower rates (less than 30 Hz in the temporal domain and over 
18 cycles/Hz in the spectral domain), but the most useful regions varied by instru-
ment. For example, the cello was best recognized on the basis of its slower modula-
tions (less than 18 Hz) and broader spectral details (less than 20 cycles/Hz) while 
the saxophone was recognized on the basis of faster modulations (10–30 Hz) and its 
broader spectral features (less than 15 cycles/Hz). A similar analysis focused on 
situations where instruments were misidentified. The patterns of confusions were 
consistent with preserving parts of the modulation spectrum that were normally 
used to recognize the wrong instrument of the pair: emphasizing the faster modula-
tion rates of the cello (18–30 Hz) made it more likely to be misidentified as a saxo-
phone and emphasizing lower modulation rates of the saxophone (less than 12 Hz) 
led to misidentifications as a cello. The bubbles method, as implemented in those 
studies, suggests that identification and misidentification is mediated by spectral 
and temporal shapes at specific scales that can be described in terms of spectral and 
temporal modulations. Only a single bubble was used, so extending the technique to 
multiple bubbles may lead to further insights about how information from different 
regions is combined.

Reverse correlation and its bubbles-based variant provide tools through which 
any feature space, however large, can be explored, in theory. Therefore, they add a 
powerful weapon to the psychophysicist’s toolbox, which is otherwise better kitted 
out to compare a small number of carefully controlled conditions.

3.3.6  Interim Summary

Returning to the quest of finding the cues that mediate recognition of everyday 
sounds, the methods discussed so far have not led to the Holy Grail but they have 
motivated a journey. The truncation and filtering studies (Sect. 3.3) show that the 
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onset has particular importance for some musical instruments but not all. Likewise, 
in the spectral domain the key cues for environmental sounds are found in different 
frequency ranges for different environmental sounds. Thus, it will be difficult to 
uncover the cues of recognition with a one-size-fits-all strategy, and it may be nec-
essary to study what gives individual sounds their properties.

A key lesson from the resynthesis and sketching methods (Sect. 3.4) is that lis-
teners can sometimes recognize sounds that are highly distorted, preserving only 
the rough shape of a sound (in vocoding) or major landmarks in a sound (in sketch-
ing). This could come about from the versatility of listeners, suggesting that familiar 
sounds can be recognized from a wide variety of cues as necessary. While making 
timbre recognition a more challenging topic for the experimenter, this trait could be 
particularly useful in less ideal listening conditions when masking or reverberation 
might render some cues useless while leaving others available.

Reverse correlation and auditory bubbles (Sect. 3.5) pointed toward features that 
can be clearly seen in a spectrogram as power that varies in time and frequency. 
While this supports a traditional view of auditory perception in terms of its empha-
sis on the power spectrum, this could simply reflect the feature spaces that were 
explored through these methods. If listeners are able to use a wide range of cues 
opportunistically, then it should be expected that listeners use the types of cues that 
are made available to them within a given experimental setup.

3.4  Observing the Time Course of Recognition

Recognition does not happen in an instant. The information available in a sound 
builds up over time and it takes the listener additional time to process that sound and 
respond. Observing the build-up and processing of this information gives some 
insight into the mental processes and acoustic cues involved in recognition.

For example, in the truncation experiment of Suied et al. (2014) that measured 
the categorization of the human singing voice, string instruments, and tuned percus-
sion (see Sect. 3.2.3), it was noted that although categorization above chance levels 
was possible at 4–8 ms, performance continued to improve as the duration of the 
stimulus increased (see right panel of Fig. 3.4). An increase in performance could 
be due to hearing additional features but would also be expected merely from the 
additional opportunities of hearing the same short cues multiple times during the 
stimulus. This could be envisioned as making regular guesses each time a cue was 
or was not heard with the final answer representing the majority opinion. The major-
ity opinion would be expected to be more reliable than each individual guess. This 
intuition has been formalized mathematically using signal-detection-theory models 
(Viemeister and Wakefield 1991), predicting that sensitivity would double each time 
the signal duration quadrupled (or more generally, that d' would increase in propor-
tion to T , where T represents the duration of the stimulus and d' is a common 
measure of sensitivity). The gray lines on the right panel of Fig. 3.4 show the trajec-
tories of improvement over duration predicted by this model. In practice, listeners’ 
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performances improved with duration that exceeded this amount over the range 
4–32 ms, depending on the target category. This indicates that additional cues for 
recognition become available across this time scale, which is consistent with the 
results from categorization tasks using more diverse stimuli (Bigand et al. 2011; 
Ogg et al. 2017). These could take the form of more detailed representations of the 
spectra or cues that involve changes over time.

In situations where such short stimuli can be recognized, there is the opportunity 
to see the rate at which listeners can categorize sounds. Suied et al. (2013a) asked 
listeners to pick out snippets of human voice (16 ms or 32 ms long) from a rapid 
sequence of equally short snippets of musical instruments in the same octave range 
of pitches. Performance generally decreased with increasing presentation rates, but 
listeners performed above chance up to 30 sounds per second (at which rates only 
the 16  ms stimuli could be presented). Effects of streaming or nonsimultaneous 
masking might come into play at such rates. However, performance did not deterio-
rate when pitch was fixed across snippets, as would be expected if either streaming 
or nonsimultaneous masking was the limiting factor. Rather, a limit of timbre per-
ception seems to be reached when processing a different sound snippet every 30 ms.

Whereas that duration puts an upper limit on the distinct sounds that can be pro-
cessed within a second, it almost certainly takes longer to recognize an individual 
sound from the time the sound is presented to the point that it is recognized. An 
upper limit can be put on this amount behaviorally by asking listeners to react as 
quickly as possible when they recognize a sound, bearing in mind that this includes 
the time taken to respond. When asked to simply let go of a button as quickly as 
possible following any sound, listeners took roughly 300 ms to respond (Agus et al. 
2012). Asking them to respond only to the human voice while ignoring a range of 
instruments added another 150  ms. This was faster than an equivalent task with 
string instrument targets (105  ms slower) or even tuned percussion instruments 
(55 ms slower than the voice). The question of whether the human voice is pro-
cessed advantageously over other timbres irrespective of the stimulus set is a com-
plex one (see Siedenburg and Müllensiefen, Chap. 4), but when such a behavioral 
advantage is seen, there is an opportunity to investigate the acoustic basis of the 
advantage.

Agus et al. (2012) also presented resynthesized auditory chimeras that combined 
aspects of voice, string, and percussion instruments. These were generated by 
imposing the long-term average spectrum of one sound on another sound in such a 
way as to preserve details in its temporal spectrum, including temporal fine struc-
ture and relative spectral fluctuations (see Fig. 3.6; audio demos available at http://
audition.ens.fr/chimeras). If the voice’s spectrum, for instance, was the key to the 
faster responses, then listeners should be able to respond as fast to the chimeras that 
preserved the voice spectra as for the original voice itself. This is not what was 
observed. In fact, selective responses to the auditory chimeras were roughly as slow 
as those for the original instrumental targets whether or not the chimeras preserved 
either the temporal structure or the spectrum of the voice. This indicates that the 
faster responses do not stem from either the spectrum or the temporal structure of 
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the voice alone but from joint spectrotemporal cues, such as a time-varying spec-
trum or a combination of separable spectral and temporal cues.

In combination, these studies suggest that simple cues, such as the spectrum, are 
used when the task demands it, but additional useful cues build up over time when 
they are available. In a naturalistic sound, the combination of cues that trigger rec-
ognition may not fit neatly into either the spectral or the temporal category.

3.5  Learning Sounds

Up to this point, this chapter has treated the recognition of sounds as a relatively 
stable phenomenon, meaning that it is possible to probe established relations 
between the sound and the labels associated with it. Presumably, these associations 
were originally learned, perhaps early in development. If one can observe the learn-
ing of new sounds in the laboratory, auditory recognition may be probed from new 
angles because: (1) the types of features that are most easily learned may indicate 
the types of features that have been learned for more familiar sounds; and (2) the 
stimuli that listeners learn can be designed to have better acoustic controls than 
occur in natural stimuli.

The rapid learning of a complex novel stimulus was observed by Agus et  al. 
(2010), specifically, learning of an arbitrary snippet of white noise. Listeners dem-
onstrated their learning of the noise indirectly through improved performance in a 
difficult task. The task involved white noises that were either reference noises that 
they heard regularly within a block of trials or fresh noises that they had never heard 

Fig. 3.6 Some of the natural stimuli (top-left and bottom-right panels) and auditory chimeras (top- 
right and bottom-left panels, voice /i/) used by Agus et al. (2012). Each panel shows how power 
varies over time and frequency (colored plots) as well as the envelope (top of panel) and the long- 
term average spectrum (right of panel). Each chimera preserves the long-term average spectrum of 
one of the natural stimuli and the temporal structure of the other. (From Agus et al. 2017; reprinted 
under the Creative Commons CC-BY license)
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before. Specifically, they were asked to detect when a one-second noise was formed 
from two identical half-second noises. Rapid and robust learning of the noises 
occurred within a few presentations, leading to near-perfect repetition detection for 
roughly a third of the reference noises (with no learning observed in the remaining 
two-thirds). The learning seemed to be idiosyncratic in that a noise that was easily 
learned by one listener was not particularly easy to learn for other listeners. 
Follow-up tests showed that learning transferred to frequency-shifted stimuli up to 
a third of an octave (but not as much as half an octave) and also transferred to 
reversed stimuli.

These results suggest that the learned features were relatively local in frequency and 
did not extend over long periods of time. A variant of the experiment also confirmed that 
learned features for noise were confined to relatively short periods of time (Andrillon 
et al. 2015). Finally, learning with rapid and robust characteristics similar to that of 
white noise was observed with a similar experimental procedure that used random tone 
clouds as stimuli (Kumar et al. 2014). However, Kang et al. (2017) showed that listeners 
could also learn sounds deliberately stripped of the rich spectrotemporal variations of 
noise, but this learning did not extend to reversed click trains, highlighting that longer 
temporal patterns were learned. So, it seems that several types of cues—spectral, spec-
trotemporal, or purely temporal—can be efficiently learned by the auditory system.

In a different paradigm that used textures instead of white noise, McDermott 
et al. (2013) investigated the listener’s ability to distinguish different snippets of the 
same or different auditory textures. Short snippets were easier to distinguish from 
one another than longer ones when the snippets were all drawn from the same tex-
ture. The opposite was observed when distinguishing snippets from different tex-
tures. This was interpreted as an indication that, beyond a certain point, listeners 
retained only summary statistical information about the cues that were present in 
the sound, and such summary statistics were the cues used to recognize textures. For 
different sound sources, the statistical differences would build up over time and lead 
to improved performance, whereas for snippets of the same auditory texture, the 
summary statistics would increasingly converge and lead to poorer performance.

These two sets of results seem to point toward two distinct learning mechanisms 
for recognizing a sound source: local features or summary statistics. The boundary 
between the two mechanisms is blurred when the features are extended over time or 
when the statistical interpretation is applied over a sufficiently short period of time.

Overall, these results suggest impressively fast and robust learning mechanisms 
for timbre cues that can adapt to the characteristics of the sounds to be learned. 
Where a sound is spectrally rich, such as a noise, listeners may learn local spectral 
cues. When sounds contain only temporal information, listeners may learn more 
temporally extended cues. For the many sounds with more complex acoustic struc-
tures, such as the human voice or auditory textures, listeners may learn spectrotem-
poral cues on several time scales. Moreover, the cues may well be idiosyncratic to 
each listener, depending on past experience. Altogether, the experiments show that 
the human auditory system is equipped to learn the wide range of sound sources it 
will encounter throughout a lifetime.
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3.6  Neuroscientific Approaches

3.6.1  Neural Correlates of Sound Recognition

The neural representation of timbre in general is the topic of Alluri and Kadiri 
(Chap. 6), so this section focuses on the studies that specifically extend understand-
ing of timbre recognition and the cues and processes underlying it.

Acoustic confounds between stimuli in different conditions are treated carefully 
in brain-imaging studies because if low-level acoustic differences broadly affect the 
pattern of excitation at the cochlea, these differences would likely be reflected in all 
subsequent parts of the auditory system. Thus, irrelevant low-level cues could mas-
querade as features that distinguish between categories. Different studies have 
addressed the risk of confounds with different strategies: making comparisons with 
diverse conditions that are unlikely to suffer from the same acoustic confounds 
(Belin et al. 2000), factoring out the acoustic differences that are present (Leaver 
and Rauschecker 2010), or selecting and processing stimuli to minimize the acous-
tic differences (Lewis et al. 2004; Agus et al. 2017). With these controls comes the 
dual risk that a low-level confound is overlooked or that important cues for timbre 
categorization are deliberately omitted from the design. Rather than preselecting 
categories, Norman-Haignere et al. (2015) presented a wide range of natural sounds 
and inferred distinct components that seemed to be underlying their diverse 
responses.

Broadly, these different techniques report differences driven by various acoustic 
features at the level of the auditory cortex, including frequency content, pitch, and 
temporal modulations; whereas higher-level categorizations of the sounds, such as 
human vocal sounds, may emerge in the nearby regions of the superior temporal 
gyrus and the superior temporal sulcus along with selectivity to the patterns in 
speech and music that are built on variations in pitch, loudness, and timbre. Notably, 
patients who develop difficulty in recognizing sounds are often found to have 
lesions around these temporal regions as well as in the hippocampus (Tomasino 
et al. 2015), which is often associated with memory, suggesting that sound source 
selectivity may result from extensive exposure to familiar sounds.

A powerful method of obtaining acoustically controlled conditions for brain 
imaging is to use the same sounds for different conditions, changing only the 
task. Hjortkjær et al. (2018) presented listeners with the sounds of wood, glass, 
or metal being either struck, rattled, or dropped. In one session, listeners were 
asked to report the material. In another session, listeners were asked to report the 
action. As might be expected, sounds that were acoustically similar led to neural 
responses that were also similar, at least in Heschyl’s gyrus and the nearby pla-
num temporale. Specifically, similarity in spectra correlated with similarity of 
responses in Heschyl’s gyrus, which contains the primary auditory cortex. Of 
particular interest here, this correlation was stronger when listeners performed 
the material-identification task. The implications are two-fold in that the task 
affects a listener’s representation of the sound (cf. Fritz et al. 2003), and the pat-
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terns of neural activity that are correlated with the sound source’s material are 
also correlated with the spectrum, in line with a previous study (Hjortkjær and 
McAdams 2016). Similar patterns were observed for temporal modulations in 
both Heschyl’s gyrus and the planum temporale with stronger correlations 
observed during the action-identification task. Thus, the neural representation of 
sound can be affected by the task the listeners are performing, yet this apparent 
complication allows insights as to the acoustic cues that underlie these different 
representations.

Brain imaging studies draw attention to the possibility that different types of 
sound may excite different regions of the brain to different extents. This opens up 
the possibility that specialized cues could come into play for important categories of 
sound. It also becomes apparent that different cues may be emphasized to different 
degrees. The cue variability with task initially seems to undermine the quest to find 
which cues subserve recognition, but there remain questions about how flexible this 
task-related variability is. Does it involve different sets of cues or is it merely a mat-
ter of emphasis? Which cues can the task accentuate or de-emphasize? Similarly, if 
cues come into play for specific categories of stimuli, this pushes the question back 
a step to ask which cues trigger the involvement of the specialist processing.

3.6.2  Machine-Learning Approaches

Machine-learning approaches can be used to explore what information is available 
in a given representation of sound or to explore which representations provide 
enough information to perform a given identification or categorization task. Some 
computational descriptions of the acoustics relate more directly to human auditory 
perception than others (see Siedenburg et al. 2016 for a review), so the focus here is 
on biologically inspired machine-learning studies (but also see Caetano, Saitis, and 
Siedenburg, Chap. 11).

Coath and Denham (2005) generated sets of feature detectors that responded to 
different patterns of onsets and offsets within each frequency channel of a cochlear 
model and trained an artificial network to categorize a small number of different 
sounds. They showed that a network trained on a small number of speech fragments 
(short sections of a single talker saying eleven words) was able to generalize, albeit 
with a limited degree of accuracy, to classify the same words spoken by a large 
number of talkers with different amounts of stationary noise added and even time- 
compressed versions of the stimuli. Whereas this characterized the feasibility of 
classifying sounds already experienced in some form, they emphasized the impor-
tance of developing feature sets that could also categorize novel sounds with which 
the system was not trained, a skill that is surely necessary for everyday listening. 
They also tested whether training with eleven environmental sounds could be gen-
eralized by the network to distinguish speech sounds. Coath and Denham (2005) 
found that the ability to distinguish the speech sounds remained but in a slightly 
reduced state. This suggests that a neural network (artificial or otherwise) could 
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develop its own feature space suited to the sound environment to which it is exposed, 
but the feature space would also capture some useful information about novel 
sounds.

Patil et al. (2012) trained a “classifier” to distinguish eleven musical instruments 
based on training with over a thousand real cortical responses recorded from ferrets. 
The cortical responses were characterized by their spectrotemporal receptive fields 
(STRFs), which captured typical responses that reflected the frequency content and 
the rapidity and direction of the change of the frequency content that had triggered 
the neural activity (for a detailed introduction to STRFs, see Elhilali, Chap. 12). 
Based on this representation, the eleven instruments were categorized with 87% 
accuracy, using a large number of recordings of these instruments playing different 
tones in different manners. This study shows that cortical responses, as character-
ized by their SRTFs, include features that allow reasonably reliable classification of 
these musical sounds.

The recorded SRTFs used by Patil et al. (2012) may not have been representative 
of a typical population of cortical neurons, as they included experimental noise and 
potential selection biases, so idealized versions of the SRTFs (Chi et al. 2005) were 
also tested. The machine-learning classifications increased to 99% accuracy with 
the idealized versions, showing that the richer representations preserved diagnostic 
features better. Such performance was not observed for simpler machine-learning 
models that were based on the long-term average spectra (79% accuracy). Patil et al. 
(2012) also applied the same architecture to a different task: reproducing judge-
ments of timbre similarity collected with human listeners. They found that the same 
feature set, but a different metric, was able to reproduce similarity judgements. 
Thus, an account of robust recognition probably involves relatively complex feature 
sets, for machines or humans alike, and the way the feature set is used could depend 
on the task.

Newton and Smith (2012) explored categorization of instruments based on their 
onsets alone using a model cochlea and model neural responses. Their automatic 
classifier could distinguish five musical-instrument sounds (brass; reed instruments; 
and bowed, plucked, or struck strings) with a similar degree of accuracy as more 
established methods that were based on spectral analyses of the whole tone (at least 
when the classifier was tested using the same set of sounds it had been trained on). 
When the classifier was applied to a new set of recordings, without additional train-
ing, the performance of the whole-tone spectral classifier deteriorated while the 
onset-based model maintained its level of performance. These comparisons show 
that there is robust information available in the onsets of instrumental sounds that 
could be used in combination with the later steady-state portions of the sound.

Deep-learning networks can now be used to explore auditory object recognition 
without making explicit assumptions about the underlying cues (Luo et al. 2017). If 
combined with a model of the auditory periphery, these provide some promise of 
uncovering the optimal cues available for various situations, especially if responses 
of subsequent stages of processing are well predicted by suitably trained artificial 
networks (see Kell et al. 2018 for tasks more complex than timbre recognition).
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3.7  Summary

The study of timbre recognition appears to be undergoing a renaissance in terms of 
the flourishing of new techniques being applied to it. As the range of methods has 
increased, so have the types of cues reported to play a role in recognition. Spectral 
cues have been extended to contrasts in spectrum (Brimijoin et al. 2013), spectral 
fluctuations have been subdivided into rich sets of spectrotemporal modulations and 
their linear interactions (Chi et al. 2005), and the spectral evolution at the onsets of 
sounds has been extended into ongoing correlations across frequency bands and 
their modulations (McDermott and Simoncelli 2011). The principle of parsimony in 
science should bias us toward finding an account of timbre recognition in terms of 
the smallest feature set possible, but there is the distinct possibility that cues under-
lying recognition may be irreducibly complex (Agus et al. 2012). In addition, the 
cues may vary according to task (Hjortkjær et  al. 2018) and sound category as 
defined by learning and experience (Belin et al. 2000). Such complexities perhaps 
encourage aiming for more focused challenges, such as understanding the cues used 
to recognize more constrained types of sound sources.

Many of the experiments discussed in this chapter describe efforts to understand 
cues that are generally useful (e.g., Gygi et al. 2004), and there are fewer experi-
ments that focus on tightly restricted sound categories (e.g., impact sounds) 
(Giordano and McAdams 2006). The broad brushstroke approach provides general 
information as to the most important frequency range to preserve when bandwidth 
is limited, but when designing auditory enhancements (e.g., for hearing aids) it 
could eventually be more useful to appreciate the microscopic details of the features 
that ought to be preserved for effortless recognition of individual sounds. Although 
this line of research seems more targeted, and therefore limited, it seems just as 
important for a clearer picture of how each of many individual cues is important for 
timbre recognition.

A limitation of most of the current timbre recognition literature is that it primar-
ily focuses on cleanly recorded sounds presented in isolation (for an exception, see 
Gygi and Shafiro 2011), unlike the masking-rich environments that are more typical 
of everyday life. Different background sounds could render different cues useless, 
perhaps providing a function for the flexibility of the auditory system in terms of its 
ability to recognize sounds from a wide range of cues.

The ability to fall back on secondary cues provides a particular challenge for 
experimentalists. If one specific cue is preserved in an experimental setting, and 
listeners are able to perform the recognition task successfully, this does not mean 
that the same cue would be used if a rich set of cues was available, as would be 
expected in more naturalistic settings. More generally, if a search is targeted at a 
specific acoustic representation (e.g., the spectrogram or modulation spectrum) then 
usable features are likely to be found there whether or not these are the cues that the 
listener would normally use. Where there is doubt as to whether primary or second-
ary cues are being used, listeners could be slowed by a limited set of cues (see Sect. 
3.4) (Delorme et al. 2000; Agus et al. 2012).

3 Timbre Recognition and Source Identification



82

Nearly all of the methods discussed in this chapter, including traditional psycho-
physical methods, reaction-time data, animal physiology, and brain-imaging tech-
niques, build on an ability to manipulate sounds, whether in terms of distorting them 
or synthesizing them with properties that are relevant to the theoretical question at 
hand. Each new technique, manipulation, or form of synthesis has led to break-
throughs in the understanding of timbre: magnetic tape in the 1960s; digital synthe-
sis techniques in the 1970s (for an account of pioneering attempts in an 
analysis-synthesis exploration of timbre recognition, see Risset and Wessel 1999); 
vocoders in the 1990s; and more recently, optimization-based synthesis strategies 
that are built on cochlear models (e.g., McDermott and Simoncelli 2011). The surgi-
cal manipulation of sounds that is now available can be directed by strong theories 
to provide the next wave of insights into timbre recognition.
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Chapter 4
Memory for Timbre

Kai Siedenburg and Daniel Müllensiefen

Abstract Memory is a cognitive faculty that is of fundamental importance for 
human communication in speech and music. How humans retain and reproduce 
sequences of words and pitches has been studied extensively in the cognitive litera-
ture. However, the ability to retain timbre information in memory remains less well 
understood. Recent years have nonetheless witnessed an upsurge of interest in the 
study of timbre-related memory processes in experimental psychology and music 
cognition. This chapter provides the first systematic review of these developments. 
Following an outline of basic memory concepts, three questions are addressed. 
First, what are the memory processes that govern the ways in which the timbres of 
sound sequences are recognized? Predominantly focusing on data from short-term 
recognition experiments, this review addresses aspects of capacity and similarity, 
sequential structures, and maintenance processes. Second, is there interference of 
timbre with other attributes in auditory memory? In other words, how specific are 
memory systems for timbre and to what degree are they separate from memory 
systems for pitch and verbal information. Third, do vocal sounds and the sounds 
from familiar sources possess a special status in auditory memory and, if so, what 
could be the underlying mechanisms? The chapter concludes by proposing five 
basic principles of memory for timbre and a discussion of promising avenues for 
future research.
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4.1  Introduction

Memory, the capability to explicitly or implicitly remember past experiences, is one 
of the most extraordinary and mysterious abilities of the mind. Memory defines 
human perception, cognition, and identity. Speech and music, both fundamental to 
human nature and culture, are based on short- and long-term memory for acoustic 
patterns. Memories exist for many, but not all, experienced events: Think about 
which clothes you wore on an important day of your life versus which ones you wore 
last Wednesday (unless Wednesday was important). Not all aspects of perceptual 
experience are memorized equally well: Think about whether the first notes from a 
song you like go up or down versus the exact pitch height of the melody’s first note.

While assessing memory for pitch patterns, tone sequences, and melodies has a 
long tradition in auditory psychology (e.g., Deutsch 1970; Müllensiefen and Halpern 
2014), there are considerably fewer publications on memory for timbre. Hence, 
does memory for timbre exist at all? Are humans able to remember timbre informa-
tion, such as the quality of an unfamiliar voice or the sonority of a particular sound 
sequence from a music track, over short and long time spans? Or is timbre an attri-
bute of auditory experience that is reserved for being experienced in the moment? 
Only 10 years ago, research did not have proper empirical ground to answer these 
questions. In fact, it is important to note that timbre has not been considered critical 
for memory and cognition for a long time.

One reason for the lack of research on memory for timbre is the fact that speech 
and music have most commonly been considered within an information processing 
framework (e.g., Simon 1978), whereby the communicative message is conceptual-
ized as sequences of phonemic or pitch categories that are independent from the 
properties of the carrier medium, which includes the sounds’ vocal or instrumental 
timbre. Influential models of human memory (Atkinson and Shiffrin 1968) pre-
sumed that aspects of sensory information could be transformed into cognitive 
information and short-term or long-term memory using symbolic recoding. Any 
sensory information that could not be recoded was assumed to be lost from the sen-
sory (echoic) memory store (Darwin et al. 1972). A second reason for the lack of 
research on timbre memory might be rooted in the fact that classic music-theoretical 
approaches—traditionally a driving force behind much music cognition research 
(Meyer 1956; Lerdahl and Jackendoff 1983)—focus on pitch and duration and their 
derived musical parameters harmony and rhythm but do not cover timbre as a pri-
mary musical parameter. Thirdly, the relative scarcity of empirical evidence for 
complex cognitive processes related to timbre, such as effects of auditory context or 
musical experience, may have had additional impact. Overall, this situation may 
have created the false impression that timbre is an auditory surface feature that is 
not essential to the cognitive architecture of human audition. Fortunately, this situ-
ation is beginning to change and many researchers in experimental psychology and 
music cognition have started to address timbre-related questions.

As summarized in this chapter, the effects of auditory context and long-term 
auditory experience with timbre have been demonstrated (both at a behavioral and 

K. Siedenburg and D. Müllensiefen



89

neural level), the role of voice timbre in speech perception has become subject to 
experimental scrutiny, and the effects of vocal timbre on verbal memory have been 
known for a longer time. Clearly, timbre is becoming a rich and exciting topic for 
auditory cognition research, and memory obviously plays an important role in this 
development. Note that of the forty-five or so empirical studies on memory for tim-
bre, more than thirty-five have been published between 2008 and 2018. This chapter 
provides the first systematic review of this emerging field and thereby highlights the 
fact that memory for timbre is a highly relevant concept in auditory cognition.

Section 4.2 describes general concepts from memory research, in particular, with 
regards to auditory memory systems for short-term and long-term storage, the gran-
ularity of auditory memory, and models of short-term memory. Regarding memory 
for timbre, four research themes stand out and provide a structure for subsequent 
sections. The first research theme comprises many studies that scrutinize the struc-
ture of short-term memory for timbre and have started to propose cognitive mecha-
nisms that might be implicated. In Sect. 4.3, the presumed capacity limits of 
short-term memory for timbre will be discussed with a particular focus on the role 
of perceptual similarity and chunking.

The second theme concerns the active maintenance and imagery of timbre, which 
is addressed in Sect. 4.4. The tenet of this section is that memory for timbre involves 
elements of attentional control, which recreate facets of auditory experience.

The third theme focuses on the growing body of work that is demonstrating inter-
ference from auditory attributes on primary memory contents. For instance, vari-
ability in a task-irrelevant attribute, such as timbre, strongly impairs performance in 
a melodic memory task wherein the primary content (i.e., melodic structure) is con-
ceptually independent of timbre. These findings are described in Sect. 4.5, which 
discusses the status of memory representations for timbre: Are they stored sepa-
rately from other auditory attributes such as pitch or verbal information?

The fourth theme, discussed in Sect. 4.6, focuses on the role of sound source 
familiarity in memory for timbre and effects of voice superiority. Several studies 
have reported processing advantages for vocal timbre over timbres from nonvocal 
musical instruments. This finding resonates with the assumption that human listen-
ers are specialists in voice timbre processing. To synthesize our discussion, five 
principles of memory for timbre are proposed that address some of the underlying 
cognitive processes. For a more general discussion of auditory memory, please see 
Demany and Semal (2007). A treatment of sound (source) recognition is included in 
Chap. 3 (Agus, Suied, and Pressnitzer) of this volume.

4.2  Auditory Memory Concepts

Memory is an overwhelmingly broad notion that plays a central role in almost every 
aspect of human cognition. At its core is the retention over time of experience- 
dependent internal representations and the capacity to reactivate such representa-
tions (Dudai 2007). Representations of sensory information and cognitive states 
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thus are starting points for the formation of memories. But it is the temporal trajec-
tory of these representations that defines memory and makes it such a rich and 
complex research topic.

4.2.1  Stores and Processes

An elementary conceptual distinction regarding the structure of human memory 
concerns the differences between the short-term and long-term memory systems. 
William James (1890/2004) already thought of primary (conscious, short-lived) and 
secondary (unconscious, long-lived) memory as independent entities. A more fine- 
grained distinction became the core of the classic multistore or modal model, most 
prominently elaborated by Atkinson and Shiffrin (1968). It posits three types of 
stores, namely a sensory register, a short-term memory (STM) store, and a long- 
term memory (LTM) store. According to Atkinson and Shiffrin (1968), sensory 
information is subject to modality-specific, pre-attentive storage of fast decay 
(within 2 s) unless there is a subject-controlled scan via selective attention, which 
recodes and transfers portions of the register to the short-term store. This store is 
thought to retain a categorical, modality-independent code where traces decay 
within time spans of less than 30 s. Their life spans can be lengthened by active 
rehearsal, which lends them more time to be transferred to the long-term store.

To refine this classic picture, Cowan (1984, 2015) proposed a taxonomy for non-
verbal auditory memory that emphasized similarities with visual memory. In vision, 
one can find a seemingly clear structural divide between an automatic sensory storage 
of almost unlimited capacity and fast decay (< 200 ms)—iconic memory—and a more 
long-lived, attention-dependent, short-term memory system of constrained capacity. 
Cowan’s short auditory store is hypothesized to be experienced as sensation or sen-
sory afterimage (i.e., is distinct from the sensory type of memory required to integrate 
and bind perceptual features, such as loudness or amplitude modulations, over tenths 
of seconds). The short auditory store contains not-yet-analyzed, pre-categorical con-
tent that decays within 200–300 ms. The long auditory store is experienced as (short-
term) memory, contains partially analyzed or categorized content, and is supposed to 
decay within 2–20 s. Due to the structural similarity of the long store and categorical 
STM (Atkinson and Shiffrin 1968) with regard to decay rates and capacity, Cowan 
considered the long auditory store to be a special case of STM. Contrary to the classic 
multistore models that assume that STM  operates on verbal items, Cowan’s proposal 
implies that STM may also operate on sensory representations.

Although Cowan’s distinction between a short and automatic versus a long and 
consciously controlled form of auditory memory may have intuitive appeal due to 
its analogy to vision, recent data suggest that it is hard to find clear-cut boundaries. 
Several studies have highlighted difficulties in estimating the exact duration of the 
shorter type of auditory memory. More specifically, testing the discrimination of 
frequency shifts within nonharmonic tone complexes, Demany et  al. (2008) 
observed a gradual decay in performance for increasing retention times, which is 
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not comparable to the steep decline that is characteristic of iconic memory in vision. 
Importantly, there was no clear evidence for differential memory capacity (i.e., a 
short store of high capacity and a long store of low capacity) within the 2 s range of 
retention times tested. Demany et al. (2010) explicitly compared visual and auditory 
change detection. Whereas visual memory fidelity appeared to decay quickly and 
substantially within 200 ms, confirming the classical view on iconic memory, there 
was no such sign for auditory memory, which persisted throughout retention times 
of 500 ms at much lower decay rates. This finding indicates that auditory change 
detection may operate on much longer time scales than visual iconic memory. As a 
theoretical explanation, Demany et al. suggest frequency shift detectors as a cogni-
tive mechanism that tracks spectral changes of stimuli. These detectors were shown 
to gradually lose their tuning specificity when inter-stimulus intervals increase 
(Demany et al. 2009). But the observed differences in tuning specificity were grad-
ual rather than showing clear-cut boundaries.

Rejecting the idea of clear separations between hypothetical memory stores reso-
nates with the proceduralist approach to memory (Crowder 1993; Jonides et al.  
2008). Instead of conceptualizing memory as a separate cognitive system, imple-
mented by a multitude of interacting modules (e.g., sensory, STM, and LTM), the 
unitary or proceduralist approach understands memory as an emergent property of 
the ways in which mental processes operate on perceptual representations or cogni-
tive states. As noted by Craik and Lockhart (1972), “It is perfectly possible to draw 
a box around early analyses and call it sensory memory and a box around intermedi-
ate analyses called short-term memory, but that procedure both oversimplifies mat-
ters and evades the more significant issues” (p. 675). A classical illustration of the 
idea of memory being a byproduct of perceptual processing is given by the levels of 
processing effect (Craik and Lockhart 1972): If experimental participants’ attention 
in an encoding phase is drawn toward “deep” semantic features of words (as in a 
semantic categorization task), recall is better than if participants judge “shallow” 
perceptual features of the stimuli (as in phonemic categorization). Contemporary 
neuroimaging studies support unitary views of memory in the sense that, in general, 
the same neural ensembles are found to be responsible for perceptual processing 
and memory storage (D’Esposito and Postle 2015).

Note that even if one does not believe in the existence of dedicated short-term 
and long-term memory systems, the notions of STM and LTM may be used as ref-
erents to memory function over short or long time intervals. This agnostic usage 
acknowledges that there may be different time scales of memory persistence but 
does not presuppose any particular stores or cognitive mechanisms.

4.2.2  Granularity of Auditory Memory

Another line of research has raised the question of how fine-grained auditory mem-
ory representations can be. In other words, what is the smallest detail of a sound that 
can be remembered? Using noise waveforms that are completely identical 
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according to macroscopic auditory features, such as spectral and temporal envelope, 
Kaernbach (2004) showed that repetitions of noise segments could be well detected 
up to at least 10 s of segment length; single, seamless repetitions of noise wave-
forms were detected with above-chance accuracy up to 2 s. Agus et al. (2010) even 
demonstrated that there is a form of long-term persistence for features of noise 
waveforms (also see Agus, Suied, and Pressnitzer, Chap. 3). When requiring listen-
ers to detect repetitions of noise segments, recurring noise stimuli featured far supe-
rior hit rates compared to novel noise waveforms. Notably, subjects were not aware 
that segments reoccurred and must have implicitly picked up idiosyncratic features 
of the presented noise tokens. This demonstrates that there is implicit, nondeclara-
tive long-term auditory memory even for small sensory details. This memory pro-
cess appears to be fully automatic: Andrillon et al. (2017) even demonstrated that 
noise snippets were memorized during rapid-eye-movement sleep.

What is the relation between this detailed form of memory and the formation of 
general auditory categories? McDermott et al. (2013) had listeners discriminate dif-
ferent classes of resynthesized environmental textures (e.g., rain versus waves) and 
exemplars of textures (e.g., one type of rain versus another). Texture category dis-
crimination performance gradually increased with excerpt length (40–2500 ms) but, 
curiously, the discrimination of exemplars within categories gradually worsened. 
This was interpreted as an indication that summary statistics underlie the represen-
tation of sound textures: Representations of two exemplars from the same category 
converge with increasing excerpt length because averaging over increased lengths 
removes idiosyncratic sound features. In sum, this implies that humans can possess 
fine-grained memories of auditory events (Agus et al. 2010), but the recognition of 
sound (texture) categories likely relies on robust summary statistics that are less 
affected by idiosyncratic details (McDermott et al. 2013).

4.2.3  Capacity Limits in Short-Term Memory

A common assumption in studies of human short-term memory is its limited 
capacity. The famous conjecture by Miller (1956) states that people can retain 
7±2 independent chunks of information in immediate memory. This idea has 
been of enormous impact in cognitive (and popular) science. Miller’s core idea 
was that the informational bottleneck of short-term memory does not strictly 
depend on the number of items, but that there is a general limit on the number of 
independent chunks of information in short-term memory. The concept of item 
and chunk are distinct because sequences of items may be recoded into fewer 
chunks. More technically, a chunk can be defined as a “collection of concepts 
that have strong associations to one another and much weaker associations to 
other chunks concurrently in use” (Cowan 2001, p. 89). For example, sequences 
of letters, such as IRSCIAFBI, are far easier to memorize when remembered as 
chunks IRS CIA FBI (familiar US federal agencies) than as raw item-by-item 
successions (Cowan 2008).
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Presenting a contemporary revision of Miller’s original hypothesis, Cowan 
(2001) reviewed empirical evidence across a wide range of domains such as ver-
bal, visual, and auditory memory. Specifically, Cowan argued that the capacity 
limit of short-term memory (STM) is only about 4±1 chunks if the involvement of 
other factors, such as long-term memory (LTM) and active rehearsal, is limited. 
The above example illustrates this proposal because long-term memory enables 
participants to form chunks such as IRS, CIA, and FBI.  The role of active 
rehearsal, classically considered as vocal or subvocal (i.e., silent) repetition of the 
stimuli in verbal memory research (Baddeley 2012), would be to actively main-
tain the memory trace.

Despite its considerable influence, Cowan’s 4±1 proposal has received harsh 
criticism from the very beginning (see the peer commentaries in Cowan 2001). An 
alternative framework that has gained momentum in visual memory research 
replaces the idea of magical numbers in STM (7±2 or 4±1) by resource-based mod-
els (Ma et al. 2014). These models of short-term memory assume limited resources 
in terms of the representational space or medium shared by items but not a limit to 
the exact number of items that can be maintained. Stimulus representations are con-
sidered to be corrupted by noise. The level of the noise increases with more items to 
be held in memory because items interfere with each other in their representational 
space. In other words, resource models assume that short-term memory is funda-
mentally limited in the quality, rather than the quantity, of information. These 
assumptions imply an increased probability of memory lapses in situations when 
items are perceptually similar.

Transferring the concept of capacity limits or a capacity-similarity tradeoff to 
timbre entails the question of what constitutes the basic unit to be memorized, that 
is, the item. In the study of verbal memory, individual words naturally qualify as 
items because language is composed of strings of words. However, there are many 
other domains for which the situation is not as clear. As Ma et al. (2014) noted with 
regards to vision, “An ‘item’ is often relatively easy to define in laboratory experi-
ments, but this is not necessarily the case in real scenes. In an image of a bike, for 
example, is the entire bike the item, or are its wheels or its spokes items?” Similar 
complications may be in place for auditory memory beyond speech. In the context 
of polyphonic music, there can be plenty of timbral contrast that arises in short 
time spans from the sounds of various instruments. But it is not intuitively clear 
what constitutes the unit of the item in this case: individual tones, fused auditory 
events, or segments of auditory streams? In analogy to the existing verbal memory 
research, many studies of STM for musical timbre (see Sect. 4.3) use sequences of 
individual tones that differ by timbre, for instance, with sounds from diff erent 
orchestral instruments changing on a note-by-note basis. Although this operation-
alization may be seen as a plausible perceptual model for an orchestration tech-
nique, such as Klangfarbenmelodie (i.e., timbre melodies; Siedenburg and 
McAdams 2018; McAdams, Chap. 8) or percussion music (Siedenburg et  al. 
2016), it does not seem to be an appropriate model for many other types of music, 
for which this type of strong timbral contrast on a note-to-note basis represents a 
rare exception.

4 Memory for Timbre



94

4.3  Factors in Short-Term Recognition

4.3.1  Memory Capacity and Similarity

Similarity effects are a hallmark of verbal and visual STM (Baddeley 2012; Ma 
et al. 2014). Despite being perceptually discriminable, similar items are more fre-
quently confused in memory compared to dissimilar ones. With regards to memory 
for timbre, however, research is only beginning to account for effects of perceptual 
similarity relations.

Starr and Pitt (1997) used an interpolated tone paradigm (cf., Deutsch 1970) that 
required participants to match a standard and a comparison stimulus, separated by a 
5 s interval with intervening distractor tones. Their first experiment demonstrated an 
effect of timbre similarity: The more similar in brightness the interfering tones were 
to the target tone, the more detrimental was their effect on retention in memory. 
Visscher et al. (2007) tested auditory short-term recognition in an item recognition 
experiment using auditory ripple stimuli (i.e., amplitude-modulated sinusoid com-
plexes). They observed that two independent factors caused decreases in false alarm 
rates on a trial-by-trial basis: (a) increases of the mean dissimilarity of the probe 
sound to the sequence and (b) increases of the perceptual homogeneity of the sounds 
in the sequence, that is, the average similarity between the sounds in the sequence.

In one of the first studies, Golubock and Janata (2013) set out to measure capac-
ity limits of short-term memory for timbre. They used an item recognition task with 
synthetic sounds differing by timbre (constituting the items). They synthesized 
sounds that varied along the dimensions of spectral centroid, attack time, and spec-
tral flux, the discriminability of which was ensured via separate just-noticeable- 
difference measurements. Sequences of 2–6 tones that differed in timbre were 
presented, but the tones were of constant pitch and loudness. Each sequence was 
followed by a silent retention interval of 1–6 s, and then a single probe tone was 
presented for which participants had to judge whether it was part of the sequence or 
not. The authors observed memory capacities at around K = 1.5 items, estimated 
according to the formula

K = (hit rate + correct rejection rate − 1)*N, 

where N denotes the number of items in the test sequence. Capacities significantly 
decreased with increasing sizes of the retention intervals, with K = 1.7 for 1 s and 
K = 1.3 for 6 s.

The large difference between the capacity estimate of an average of 1.5 timbre 
items from Golubock and Janata (2013) and the supposedly universal estimate of 
3–5 items according to Cowan (2001) seems striking. Why should memory for tim-
bre be so much worse? Notably, the sounds in Golubock and Janata’s first experi-
ment only varied along three timbral dimensions.

A second experiment used a more heterogeneous set of sounds from a commer-
cial keyboard synthesizer and measured a significantly greater capacity of around 
1.7 items. Figure 4.1 displays hit and correct rejection rates averaged across reten-
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tion intervals from the memory experiments in their study. Hit rates are higher in 
experiment 2 compared to experiment 1, but the false alarm rates of experiment 2 
also exceed those of experiment 1. However, no trial-by-trial analyses of these data 
were conducted, and it remains unclear whether the increase in capacity in the sec-
ond experiment was primarily caused by a global increase in the timbral homogene-
ity of sounds or by greater probe list dissimilarities.

Using an item recognition task, Siedenburg and McAdams (2017) observed sig-
nificant correlations between participants’ response choices (i.e., whether they rec-
ognized a probe sound as match or nonmatch) and the mean perceptual dissimilarity 
from the probe to the tones in the sequence. However, no significant correlation 
between timbral homogeneity and response choices was observed.

Siedenburg and McAdams (2018) further evaluated the role of similarity in a 
serial recognition task. They had participants indicate whether the order of the tim-
bres of two subsequently presented sound sequences was identical or not. In the 
non-identical case, two sounds were swapped. A correlation analysis showed that 
the timbral dissimilarity of swapped items (TDS) was a good predictor of response 
choice in serial recognition and predicted around 90% of the variance of response 
choices throughout four experiments. This study also tested for the role of sequence 
homogeneity but did not find a consistent effect: Homogeneity and response choice 
were significantly correlated in only one out of four experiments. Moreover, 
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Fig. 4.1 Accuracy (percentage of correct responses) as a function of the sequence length in the 
two-item recognition experiments. Experiment 1 used abstract synthetic sounds; experiment 2 
used sounds selected from a commercial sound sampler. Hits correspond to correct identification 
of match trials, correct rejections (CR) to correct identification of nonmatch trials. (Adapted from 
Table 1  in Golubock and Janata 2013; used with permission from the American Psychological 
Association)
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 stepwise regression analysis failed to include homogeneity as a predictor of 
response choices in any experiment, indicating that a parsimonious account 
would not consider homogeneity as a crucial factor for timbre recognition. 
Figure  4.2 provides a schematic visualization of the described relation between 
response choice and both the probesequence dissimilarity in item recognition and 
the timbral dissimilarity of the swap in serial recognition.

Taken together, the strong effects of similarity (Siedenburg and McAdams 2018) 
and the wide range of estimates for timbre STM capacity (that differ clearly from 
STM capacity estimates for other auditory material; Golubock and Janata 2013) 
indicate that fixed-slot models of STM capacity may not be suitable as a model of 
STM for timbre. On the contrary, resource-based approaches that assume limited 
representational resources, and thus take into account similarity relations from the 
very beginning, appear to be better suited for the data from timbre experiments, 
although no formal model evaluation has been conducted yet. This is in line with the 
observed trade-off between the number of items that can be maintained in short- 
term memory and their timbral similarity.

4.3.2  Sequential Chunking

As already mentioned in Sect. 4.2.3, many memory studies try to avoid sequences 
with an explicit sequential structure. In order to measure memory proper, the ratio-
nale is that sequences should not explicitly allow for chunking made possible through 
grouping or repetition (Cowan 2001). At the same time, it is likely that affordances 
for sequential processing are important ecological factors in memory for timbre.
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Fig. 4.2 Schematic depiction of the relationship between response choice (probability of “match” 
responses) and timbre dissimilarity. For item recognition tasks, the hypothetical dissimilarity mea-
sure corresponds to the sums of dissimilarities (Σ) of the probe item to all the items in the sequence 
(indicated by connecting lines). The blue line indicates a match and, hence, zero dissimilarity. For 
serial recognition tasks, the dissimilarity measure could be derived from the sum of the item-wise 
dissimilarities, resulting in the dissimilarity of the two items that were swapped (here: items C and 
B). Dissimilarity is normalized between 0 and 1
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Siedenburg et al. (2016) considered the case of timbral sequencing as part of the 
tabla drumming tradition from North India. The tabla is a pair of hand drums with 
an extremely rich timbral repertoire and is considered the most important percus-
sion instrument in North Indian classical music (Saxena 2008). Tabla music exhibits 
intricate serial patterns with hierarchical dependencies, for instance, through the 
nested repetition of groups of sounds. The centuries old tradition of tabla is taught 
as part of an oral tradition. Compositions are learned via the memorization of 
sequences of bols, that is, solfège-like vocalizations associated with drum strokes. 
In tabla solo performances, the verbal recitation of the composition oftentimes pre-
cedes the actual drumming. Furthermore, North Indian classical music is unfamiliar 
to most (but not all) western listeners and hence is well-suited for exploration of the 
effects of long-term memory on sound sequence recognition.

The experiment compared the recognition of tabla sequences between a group of 
tabla students and a group of western musicians unfamiliar with tabla music. As 
depicted in Fig. 4.3, four distinct sequencing conditions were used in the experi-
ment: (1) idiomatic tabla sequences, (2) reversed sequences, (3) sequences of ran-
dom order, and (4) sequences of random order and randomly drawn items without 
replacement. In the serial order recognition experiment, participants indicated 
whether the sounds in two consecutively played sequences were presented in the 
same order.

Dh      Dh Te             Dh Tin       N

idiomatic (Idio) reversed (Rev)

N        Ka       Ki       T      Ke      Ri        Re
random items (RI)

Dh Tin      Dh T

e       Dh

e       Dh

e       Dh e       N        Dh
random order (RO)

swap

Fig. 4.3 Examples of the four sequencing conditions: an idiomatic sequence of bols (Dha, Te, Tin, 
Na) and the corresponding reversed, random order, and random items (adding Ke, Ri, Re) condi-
tions (drawn without replacement). Note that in the idiomatic, reversed, and random order condi-
tion, there are items that occur multiple times in the sequence. (From Siedenburg et al. 2016; used 
with permission of the American Psychological Association)
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The results showed a very strong effect of sequential structure: Idiomatic 
sequences of tabla strokes and their reversed versions were recognized best, fol-
lowed by their counterparts with randomly shuffled order, followed by fully random 
sequences without repetitions of items. The latter effect indicated a facilitation of 
chunking due to the repetition of items. Because serial-order recognition was tested, 
it could be concluded that the advantage of redundancy primarily goes back to 
chunking and not a reduced load in terms of item identity. The advantage of reversed 
sequences over randomly shuffled ones was suspected to be related to the hierarchi-
cal structure inherent in the idiomatic sequences or their reversed versions. The 
reversed versions not only contained item repetitions, but repeating subsequences 
of items, such that sequences could be encoded hierarchically. Notably, effects of 
familiarity with idiomatic sequences (comparing tabla students versus naıve con-
trols) only occurred for the vocal sounds but not for the drum sounds. This result 
indicates that vocal sounds are particularly well suited for chunking via long-term 
associations. Participants who are familiar with tabla can simply represent idiom-
atic sequences of bols (tabla words) via one item and hence have a significant mne-
monic advantage over naıve participants. However, memory for instrumental sounds 
did not follow the same pattern, which may indicate that familiarity-based chunking 
is particularly effective for vocal sounds for which humans have a natural profi-
ciency for combining basic building blocks in endless ways (e.g., Hagoort and 
Indefrey 2014).

An example of long-term recognition of timbre sequences was provided by 
Tillmann and McAdams (2004) who adopted the sequence-learning paradigm made 
famous by Saffran et  al. (1999). Their results indicated that memory for timbre 
sequences is strongly affected by grouping cues provided by perceptual dissimilar-
ity relations between subsequent tone pairs in the sequences (for more information, 
see McAdams, Chap. 8).

From a general perspective, these results indicate that auditory sequences can be 
stored much more efficiently if chunked in appropriate ways. Chunking could make 
memory for sequences more robust by structuring the memory trace along a hierar-
chy of time scales that is provided by grouping cues (if this sounds abstract, think 
about how to memorize, ABCXYZABCQ). This perspective allows us to explain 
effects in both short-term (Siedenburg et  al. 2016) and long-term recognition 
(Tillmann and McAdams 2004).

4.4  Active Maintenance and Imagery of Timbre

In this section, it is argued that memory for timbre is not a fully automatic process 
that is solely based on persistence of passive information. Timbre representations 
can be consciously refreshed in working memory and recreated from long-term 
memory.
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4.4.1  Maintenance in Working Memory

The key property that distinguishes the concept of working memory (WM) from 
that of short-term memory is the role of active manipulation and maintenance of the 
memory contents (although both terms are often used interchangeably). In contrast 
to the presumably passive and automatic process of auditory short-term memory, 
WM is usually defined as an active form of memory that, as a whole, underpins a 
range of important cognitive faculties such as problem solving and action control. 
The active nature of verbal WM becomes apparent when thinking of how phone 
numbers, street names, or vocabulary words in foreign language classes are com-
monly memorized. People tend to vocalize, openly or covertly, in order to retain 
verbal information in mind. This observation was captured by Baddeley’s influen-
tial multicomponent model of working memory, which described verbal WM as 
governed by a phonological storage buffer and a rehearsal mechanism, overall giv-
ing rise to the phonological loop (Baddeley 2012). The memory trace in the buffer 
would decay gradually but could be refreshed by (sub)vocal rehearsal in order to be 
kept in the loop. In other words, the original auditory event undergoes a form of 
recoding into a sensorimotor code that allows conscious rehearsal.

Because of their success in explaining verbal working memory, the concept of 
the phonological loop has also influenced nonverbal auditory memory research and 
research into melodic memory in particular (Berz 1995; Schulze and Koelsch 2012). 
More specific to our concerns is the question of whether nonverbal auditory work-
ing memory and STM for timbre are subject to similar active maintenance pro-
cesses. In other words, in which sense is short-term memory for timbre working?

Nees et al. (2017) tested whether melodic short-term recognition is supported by 
active rehearsal or by attention-based processes. Using a sequence matching task, 
participants listened to two melodies separated by an 8  s retention interval and 
judged the melodies as identical or non-identical. As is common in verbal WM 
research, a dual task paradigm was used. The basic assumption is that if a secondary 
task severely impairs the accuracy in the target task, the latter can be assumed to 
rely on similar cognitive processes and resources. Nees et al. (2017) used four sec-
ondary task conditions. An articulatory suppression (AS) condition required partici-
pants to read out loud solved math problems that were presented visually (e.g., 
2 + 3 = 5). In an attentional refreshing suppression (ARS) condition, participants 
silently read math problems presented on a screen and needed to type the correct 
response on a computer keyboard. A third condition combined both articulatory and 
attentional refreshing suppression by having participants read aloud the math prob-
lem and provide the response orally (AS+ARS). A silent condition without suppres-
sion served as a baseline. Notably, the authors found that performance did not differ 
between the control and the ARS condition, but both the AS and AS+ARS condi-
tions yielded a marked decline of sensitivity. These results indicate that melodic 
short-term memory is supported by subvocal rehearsal and not by attentional 
refreshing, suggesting strong structural similarities to verbal memory. As described 
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in the following, the clarity of these findings for melody recognition by Nees et al. 
(2017) differs from the situation that we find for timbre.

Three distinct mechanisms for the maintenance of timbre in WM appear to be 
possible a priori. First, timbre recognition could be a passive process, which would 
imply that maintenance in fact does not play a strong role. The retention of timbre 
would instead primarily rely on the persistence of the sensory memory trace. 
Second, participants could attach labels to timbres (e.g., piano-violin-weird voice) 
and subsequently rehearse the verbal labels. This would constitute a verbal surro-
gate of memory for timbre. Third, listeners could allocate attention to the auditory 
memory trace and mentally replay timbre representations in their minds, a process 
that has been called attentional refreshing (Camos et al. 2009).

Several studies have gathered data that have implications for deciding on the plau-
sibility of the mechanisms. McKeown et al. (2011) had three participants discriminate 
small changes in the spectral distribution of tones and showed that sensitivity was 
above chance even for extended retention intervals of 5–30 s. This effect was robust to 
an articulatory suppression task in which participants were required to read aloud dur-
ing the retention time. These results were interpreted as evidence for a type of sensory 
persistence that is neither based on verbal labeling nor due to attentional refreshing. 
Schulze and Tillmann (2013) compared the serial recognition of timbres, pitches, and 
words in various experimental variants, using sampled acoustical-instrument tones 
and spoken pseudowords. They found that the retention of timbre, contrary to that of 
pitches and words, did not suffer from concurrent articulatory suppression, speaking 
against the involvement of labeling. In line with McKeown et al. (2011), they con-
cluded that STM for timbre is structured differently than working memory for words 
or pitches and is unlikely to be facilitated by verbal labeling and (sub)vocal rehearsal. 
Nonetheless, their results did not rule out the possibility of attentional refreshing.

On the other hand, there are studies that have underlined the necessity of attentional 
refreshing for maintaining timbre information in memory. Soemer and Saito (2015) 
observed that short-term item recognition of timbre was only inconsistently disrupted 
by articulatory suppression but was more strongly impaired by a concurrent auditory 
imagery task. The authors interpreted these results as evidence that memory for timbre 
can be an active, re-enacting process that relies on the support of attentional resources. 
Siedenburg and McAdams (2017) more directly compared the effect of articulatory 
suppression with a suppression condition that captured listeners’ visual attention. They 
used an item recognition task with familiar and unfamiliar sounds that were controlled 
for their timbral similarity relations. Three different suppression tasks filled the 6 s 
retention interval between the sound sequence and the probe sound. Participants either 
waited in silence, counted out loud (articulatory suppression), or detected identical 
exemplars in sequences of black and white grids (visual suppression). Results showed 
a clear advantage for familiar sounds that persisted throughout all experimental condi-
tions. Surprisingly, there was no difference between articulatory and visual suppres-
sion, neither for familiar nor for unfamiliar sounds. However, both types of suppression 
affected timbre memory negatively compared to the silence condition.

Considering these empirical results from Siedenburg and McAdams (2017), mul-
tiple reasons speak for attentional refreshing as an important maintenance strategy 
for timbre. Firstly, verbal labeling was unlikely to act as a dominant maintenance 

K. Siedenburg and D. Müllensiefen



101

strategy for timbre: Performance on unfamiliar sounds that were difficult to label was 
impaired under both articulatory and visual suppression. It seems much more plau-
sible that the detrimental effect of articulatory suppression was due to interference 
with the auditory trace. Secondly, the plausibility of passive sensory storage without 
any active maintenance was ruled out by the detrimental effect of visual suppression, 
which should not interfere if auditory and visual WM are fully separated. Finally, it 
could be assumed that attentional refreshing was moderately disrupted by both types 
of suppression because the visual distractor task reduced attentional resources that 
refreshing relies on, and articulatory suppression interfered with the auditory trace 
that is subject to refreshing (beyond rather minor attentional requirements). Overall, 
these reasons indicated that attentional refreshing was the most likely candidate for 
active maintenance of timbre in the experiments by Siedenburg and McAdams 
(2017). The results by McKeown et al. (2011), to the contrary, indicated that neither 
verbal labeling and rehearsal nor attentional refreshing was necessary for successful 
timbre recognition. Taken together, this finding suggests that attentional refreshing is 
likely a sufficient, but not a necessary, condition of WM for timbre.

4.4.2  Mental Imagery of Timbre

Beyond the realm of maintaining information in short-term memory, research has also 
provided evidence for the feasibility of a closely related mental faculty: imagery for 
timbre. Whereas attentional refreshing was understood as a sort of attention- driven 
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“replay function” of an initial sensory trace, imagery supposedly activates sensory 
representations without prior stimulation. This means that imagery solely makes use 
of long-term memory contents and constitutes a form of memory recollection in the 
perceptual domain. Studying the similarity of timbre imagery and perception, Halpern 
et  al. (2004) had musicians rate perceived dissimilarity of subsequently presented 
pairs of timbres while recording brain activity with functional magnetic resonance 
imaging. The same procedure (including the dissimilarity ratings) was repeated in a 
condition in which the auditory stimuli were to be actively imagined. Figure  4.4 
depicts the significant correlation between the behavioral dissimilarity data in the 
perception and imagery conditions. When compared to a visual imagery control con-
dition, both auditory perception and imagery conditions featured activity in the pri-
mary and secondary auditory cortices with a right-sided asymmetry. Results such as 
these speak for the accuracy of auditory imagery for timbre: Sensory representations 
activated by imagery can resemble those activated by sensory stimulation.

These empirical findings have a bearing on the conceptualization of the active 
facets of timbre cognition. Working memory for timbre seems to be characterized as 
relying on concrete sensory refreshing or re-enactment and differs from the motor- 
based articulation processes found for pitch and verbal memory. Auditory imagery 
based on LTM representations of timbre appears to accurately resemble actual sen-
sory stimulation. Both processes, refreshing and imagery, are related to the notion of 
active perceptual simulation, which is defined as a re-creation of facets of perceptual 
experience. Theories of perceptual symbol systems advocate that cognition is 
grounded in perceptual simulation (Barsalou 1999). This view stands in direct con-
trast to classic theories of cognition, which presume that perceptual processing leads 
to a transduction of sensory states into configurations of amodal symbols (Atkinson 
and Shiffrin 1968). Perceptual symbol systems assume that sensory schemata are 
abstracted from sensory states via perceptual learning, and cognition consists of simu-
lating these schematic representations in concrete sensory form. That framework 
would be able to account for this phenomenon: When listeners actively maintain tim-
bre in WM, they “hear” the original sound. Similarly, when a conductor reads a score, 
they will not perceive the music through the abstract application of a set of music-
theoretical rules but through the mental restaging of the notated musical scene  
(cf., Zatorre and Halpern 2005).

4.5  Interference Effects in Memory for Timbre

An important part of the characterization of auditory memory concerns the question 
of whether timbre is encoded and stored independently from other auditory attri-
butes. In this section, three specific scenarios will be described that address aspects 
of interference in short-term memory for timbre, effects of musical timbre on long- 
term melodic memory, and effects of voice timbre on verbal memory.
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4.5.1  Interference in Short-Term Memory

Short-term storage of timbre is closely related to the perceptual encoding stage. In 
basic perceptual experiments that have tested the independence of pitch and timbre, 
results indicate that pitch and timbral brightness information are integral attributes 
(Melara and Marks 1990; Allen and Oxenham 2014; and for a more detailed discus-
sion, see McAdams, Chap. 2). There is evidence to suggest that interactions between 
pitch and timbre extend to memory.

Siedenburg and McAdams (2018) studied the short-term recognition of timbre 
by using a serial matching task wherein participants judged whether the timbres of 
two subsequent (standard and comparison) sequences of tones were of the same 
order. When the tone sequences comprised concurrent variation in pitch, the perfor-
mance of nonmusicians was impaired more strongly than was the performance of 
musicians. When pitch patterns differed across standard and comparison sequences, 
however, musicians showed impaired performances as well. This means that musi-
cians may require higher degrees of complexity of pitch patterns in order to exhibit 
impaired timbre recognition. More generally speaking, these results indicate that 
pitch and timbre are not encoded independently in short-term memory—these fea-
tures are part of an integrated memory trace.

The topic of pitch-timbre interference implies an answer to the question of 
whether the defining units of working memory are constituted by integrated audi-
tory events (called sound objects) or by individual features. Joseph et  al. (2015) 
investigated the recognition of narrowband noise segments. Two features of these 
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sounds were manipulated in the experiment: the spectral passband (i.e., yielding 
differences in the spectral centroid) and the amplitude modulation (AM) rate 
imposed on the waveform. Listeners were presented with a sequence of three sounds 
(each of 1 s duration with 1 s inter-stimulus intervals). They were instructed to judge 
whether there was a match between the third probe sound and the first or second 
sound presented. In two feature conditions, a match was defined as having one iden-
tical feature: passband or AM rate. In the object condition, a match was defined as 
both features being identical. As depicted in Fig. 4.5, accuracy in the object condi-
tion exceeded that in the feature condition by far (although accuracy for the spectral 
feature alone was better compared to the AM feature alone). This means that even if 
the task required participants only to memorize individual component features, 
there was a significant extraction cost when features had to be encoded and recol-
lected individually.

Whether concerning the interference of pitch and timbre (Siedenburg and 
McAdams 2018) or spectral and temporal features of noise realizations (Joseph 
et al. 2015), the empirical evidence indicates that the content of short-term storage 
appears to be integrated auditory events (or “objects” as termed by Joseph et al. 
2015) rather than individual features. The same position will be corroborated in the 
following review of effects of timbre on memory for melodies.

4.5.2  Timbre and Long-Term Melodic Memory

This section summarizes studies that have investigated the effects of timbre on 
melodic memory at time spans in the range of at least several minutes, which gener-
ally would be considered as LTM rather than STM processes. Although timbre does 
not affect a melody’s pitch and rhythm structure, many studies have highlighted the 
role of timbre as a salient auditory feature for memorizing melodies. In experiments 
by Radvansky et al. (1995), participants identified which of two test melodies, a 
target and a distractor, was heard in the experiment’s exposure phase. The accuracy 
of recognition judgements by both musicians and nonmusicians was higher when 
the timbre of the test melody equaled the timbre of the exposure melody, that is, a 
change in instrumentation clearly impaired melody recognition. This result was rep-
licated with a sample of 6-month-old infants (Trainor et al. 2004).

Using richer musical stimuli, Poulin-Charronnat et al. (2004) studied recognition 
memory for tonal music (Liszt) and atonal contemporary music (Reynolds). A change 
of instrumentation from piano to orchestra or vice versa impaired recognition of tonal 
excerpts in both musicians and nonmusicians compared to conditions in which the 
instrumentation was held constant. For contemporary music, recognition perfor-
mance by musicians was strongly impaired for instrumentation changes, whereas 
there was no effect for nonmusicians who performed poorly regardless of instrumen-
tation. Halpern and Müllensiefen (2008) observed that the detrimental effect of tim-
bre change is unaffected by whether the participant’s attention at the exposure stage 
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was directed toward timbral features (through an instrument categorization task) or to 
the melodic structure (through a judgement of melody familiarity).

Most recently, Schellenberg and Habashi (2015) explored the temporal dynamics 
of musical memory by testing melody recognition with delays between the expo-
sure and the test that spanned 10 min, 1 day, and 1 week. Surprisingly, recognition 
accuracies were similar for all three retention intervals, and there even seemed to be 
a trend for consolidation as reflected by a small but significant increase in accuracy 
for a delay of 1 week compared to 10 min. Pitch transpositions of six semitones or 
a tempo shift of sixty-four beats per minute impaired recognition after 10 min and 
1 day but not after 1 week. Notably, a change of instrument from piano to saxophone 
impaired melody recognition as strongly as the aforementioned changes in pitch or 
tempo but, unlike these parameters, the effect of timbre change did not reduce over 
time. This means that in contrast to key or tempo shifts, timbre information was not 
abstracted over time but stayed integral to the identity of the melody.

Schutz et al. (2017) considered melodic memory and object-to-melody associa-
tion with a specific focus on the role of the amplitude envelopes of tones, which are 
closely related to the ways in which a sounding object is set into vibration. The 
excitations of a resonator by an impact usually generate rapid increases and expo-
nentially decaying amplitude envelopes, whereas continuous excitations generate 
amplitude envelopes that tend to be rather flat. Schutz et al. (2017) let participants 
listen to melodies consisting of four pure tones with a flat or an exponentially decay-
ing envelope. Each melody was presented three times and listeners were asked to 
associate the melody with a household object (e.g., digital clock, keys, calculator, 
etc.) that was physically presented by the experimenter during the presentation of 
the melodies. After a delay of more than 6 min, participants were presented with a 
recognition and recollection task; if melodies were identified as old, listeners also 
were asked to recall the associated object. Although their results only exhibited 
insignificant trends toward better melody recognition for percussive envelopes, 
melody- to-object association was significantly better for tones with percussively 
decaying envelopes. In two additional experiments, the authors observed that melo-
dies of tones with reverse-ramped (i.e., increasing) envelopes were poorly associ-
ated with objects (performance was even worse than with flat envelopes). The 
results indicated that associative memory was better for decaying envelopes com-
pared to flat or reversed envelopes, potentially due to their higher ecological famil-
iarity. Although it may not be clear a priori why this stimulus manipulation only had 
an effect on associative memory but not on recognition memory, differences between 
associative and recognition memory are frequently observed in the literature 
(Kahana 2012).

Taken together, these studies strongly suggest that memory for melodies does not 
solely draw from an abstract lexicon of melodies represented by pitch interval infor-
mation. Instead, melody recognition appears to rely on a rich auditory representa-
tion that integrates various features including timbre. Similar results have been 
found for verbal memory as described in the next section.
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4.5.3  Timbre and Verbal Memory

The classic study on the role of voice timbre in spoken word recognition was con-
ducted by Goldinger (1996) (for a discussion of more recent studies, see Goh 2005). 
Goldinger (1996) let participants listen to sequences of words recorded by 2, 6, or 
10 different speakers. After three different delay periods, participants were required 
to distinguish old from new words in a recognition task. The results indicated that 
listeners better recognized words spoken by the voices of the exposure phase: the 
same-voice advantage was 7.5% after 5 min, 4.1% after 1 day, and an unreliable 
1.6% after 1 week. Beyond the coarse same/different distinction, however, there 
was also a more fine-grained correlation of voice similarity with the percentage of 
correct rejections. In a second experiment, the delay interval was held constant at 
5 min, but there were three different encoding conditions. Using a speeded classifi-
cation task, participants either categorized voice gender, the initial phoneme from a 
list of alternatives, or the word’s syntactic category (e.g., verb versus adjective). 
From a levels-of-processing perspective (Craik and Lockhart 1972), these tasks 
enforce shallow (gender), intermediate (phoneme), or deep (syntax) encoding of the 
words, respectively. The word recognition scores were as expected in that hit rates 
increased with the depth of encoding (i.e., gender < phoneme < syntax). The strength 
of the voice effect was reversed across encoding conditions. Whereas old voices had 
an advantage of around 12% for the gender condition, this advantage shrank to 
around 5% in the syntax condition. Because the effects were robust to a variety of 
encoding conditions, Goldinger (1996) concluded that the results “support an epi-
sodic view of the lexicon, in which words are recognized against a background of 
countless, detailed traces. Speech is not a noisy vehicle of linguistic content; the 
medium may be an integral dimension of later representation” (p. 1180). These find-
ings suggest that the long-standing idea of the mental lexicon (Oldfield 1966), sup-
posedly based on an amodal representation of words, is not enough to account for 
human recognition of spoken words.

Van Berkum et al. (2008) specifically investigated the time course of the integra-
tion of speaker and message information. In their experiment, participants passively 
listened to sentences while electroencephalography (EEG) signals were recorded. 
In two anomalous conditions, sentences could either feature semantic anomalies 
(e.g., Dutch trains are sour and blue; target word in italic) or speaker inconsistencies 
(e.g., I have a large tattoo on my back, spoken with an upper-class accent). They 
found that semantic anomalies elicited a standard N400 response for deviant trials, 
that is, an inflection of the EEG signal with a negative peak around 400 ms after the 
target word. Interestingly, the same time course was observed for the speaker incon-
sistency condition, where a similar N400 response was observed (albeit of much 
smaller magnitude). The clear onset of the deviant EEG response at around 200–
300 ms after the acoustic onset of the deviant word indicated the rapid extraction 
and processing of timbre-specific information. These results suggest that voice- 
specific information is integrated into linguistic processing around the same point in 
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time when language interpretation mechanisms construct meaning based on the 
lexical content of the words.

In sum, the studies presented in this section have shown strong associations 
between individual features in auditory memory. Because of their shared underlying 
tonotopic dimension, pitch and timbral brightness may be particularly intertwined. 
However, some of the evidence suggests that even amplitude envelope features 
affect aspects of melodic memory (Schutz et al. 2017). If features are to be accessed, 
recollected, or recognized individually, an extraction cost can be assumed (Joseph 
et al. 2015). This cost may be reduced by enhanced auditory attention and listening 
experience to some extent, but it is unlikely to ever vanish completely (Allen and 
Oxenham 2014; Siedenburg and McAdams 2018). The notion of integrated memory 
representations appears to contradict the seemingly abstract nature of auditory cog-
nition (e.g., Obleser and Eisner 2009; Patel 2008). Sensory information related to 
timbre is not simply “left behind” in the process of information transduction from 
sensory to more symbolic forms of representations. On the contrary, timbre stays 
integral to both word and melody recognition over long retention spans—the 
medium and the message are intertwined.

4.6  Familiarity and Voice Superiority

The last theme in this review of memory for timbre concerns the roles of long-term 
familiarity with sound sources. A sound source of particular relevance and familiar-
ity for humans is the voice. For that reason, the role of the voice in timbre process-
ing has been studied with particular scrutiny (for an overview, see Mathias and 
Kriegstein, Chap. 7). This section discusses studies that have investigated the role of 
long-term familiarity with musical-instrument sounds in timbre processing (Sect. 
4.6.1) and the special status of voice timbre in melodic memory (Sect. 4.6.2).

4.6.1  Familiarity in Short-Term Recognition

A factor that significantly increases the complexity of STM research and modeling 
relates to the presumption that STM is not completely distinct from LTM as sug-
gested by procedural memory approaches. In fact, there is further evidence to 
assume a strong link between the two systems (e.g., Jonides et al. 2008). The experi-
mental cornerstone regarding this link in verbal memory research is the lexicality 
effect: short-term memory for the identity of words or syllables (i.e., verbal items) 
is generally better for words than for pseudowords or nonsense syllables (Thorn 
et al. 2008). Pseudowords are defined as meaningless strings of letters that respect a 
language’s phonotactic constraints but are not part of the dictionary (e.g., bech, 
chaf, tog, wesh, etc.).
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Similar enhancements of STM performance have also been demonstrated for 
related linguistic variables, including word frequency and imaginability (Thorn 
et al. 2008). The analogous question for timbre, and of particular concern for the 
current purpose, is whether STM is facilitated by long-term familiarity with sounds 
produced by well-known musical instruments. If this were the case, it would consti-
tute a timbral analogy to the verbal lexicality effect. More importantly, it would 
suggest that STM for timbre cannot be properly placed in a one-size-fits-all princi-
ple of sensory persistence—one would need to consider existing auditory categories 
as well.

To study the role of familiarity in STM for timbre, Siedenburg and McAdams 
(2017) compared the recognition of recorded tones from familiar acoustical instru-
ments with that of unfamiliar synthesized tones that do not readily evoke sound- 
source categories. Steps were taken in order to manipulate familiarity while 
controlling for dissimilarity relations within the stimulus set. First, the spectrotem-
poral signal envelopes and temporal fine structures of recorded sounds were mis-
matched to generate novel and unfamiliar sounds. Second, familiarity ratings by 
musicians were collected for the transformed sounds, ensuring that the transformed 
sounds used in the main experiment were rated as significantly less familiar com-
pared to the original recordings. Third, the main experiment used an item recogni-
tion task with sequences of three sounds. The mean timbral dissimilarity between the 
sounds in the sequence and those in the probe was equalized across recordings and 
transformations, using previously obtained pairwise dissimilarity ratings. Two 
experiments revealed greater recognition accuracy for timbres of familiar recorded 
sounds compared to unfamiliar transformations, as well as better performance at 
shorter delays (2 s versus 6 s), but no interaction between the factors of delay and 
stimulus material. These results point toward a generally more robust form of encod-
ing of timbral properties coming from familiar acoustical instruments. The superior 
memory performance for familiar instruments proved to be independent of effects of 
perceptual similarity.

Prior knowledge of instrument categories for familiar acoustical-instrument 
sounds helps to associate sounds with auditory knowledge categories or schemas. In 
other words, familiar instrument sounds activate not only auditory sensory 
 representations but, possibly to some extent, also activate semantic, visual, and even 
sensorimotor networks. These sounds are not necessarily rehearsed in STM, but 
could act as representational anchors for the associated auditory sensory traces. 
Saitis and Weinzierl (Chap. 5) further describe the nuanced cross-modal associa-
tions that timbre can elicit.

The special role of sound source familiarity has gained support from neurophysi-
ological studies on timbre processing. Pantev et  al. (2001) observed that profes-
sional trumpet players and violinists exhibited stronger event-related potentials to 
sounds from their own instrument at around 100 ms after sound onset (the N1 com-
ponent), indexing stronger pre-attentive processes related to stimulus detection. In 
addition, there is evidence that learning not only affects cortical activity but can 
even modulate low-level processing in the brainstem. Strait et al. (2012) demon-
strated that recordings of electrical brainstem activity taken from pianists more 
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closely correlated with the amplitude envelopes of the original piano sounds when 
compared to recordings taken from musicians who did not play the piano as their 
primary instrument. However, brainstem activity did not differ between pianists and 
other musicians for sounds from the tuba and the bassoon. This result indicates that 
there may be instrument-specific neural adaptations that affect the perceptual pro-
cessing of certain classes of instrumental sounds. Apparently, musical training can 
affect the fine-tuning of subcortical structures to more efficiently process sounds 
that are of particular relevance to the listener. These findings refute the idea that 
timbre could be a less important auditory surface feature. On the contrary, elemen-
tary aspects of auditory processing appear to be shaped by experience with sound 
source categories.

Unfortunately, none of the studies discussed here have been able to completely 
control low-level factors and the individual experience of the participants. Therefore, 
the exact origins of the effects may remain contentious. Future experiments that famil-
iarize listeners with certain classes of novel timbres in the lab may help to more pre-
cisely characterize the underlying mechanisms of familiarity in timbre processing.

4.6.2  Voice Superiority

A sound source that all humans should be particularly familiar with, from both an 
evolutionary and ontogenetic point of view, is the human voice. Recent studies have 
suggested that sounds of vocal origin are faster and more robustly categorized com-
pared to instrumental musical sounds. Many of these studies are also discussed in 
greater depth by Agus, Suied, and Pressnitzer (Chap. 3); hence, they will only be 
summarized here to set the stage for the consideration of additional memory effects.

Employing a go/no-go task, Agus et  al. (2012) asked listeners to indicate as 
quickly as possible whether sounds were part of a target category (voice, percus-
sion, or strings). Results showed faster reaction times for voices. Importantly, the 
effect did not arise for auditory chimeras that retained either spectral or temporal 
envelope shapes of vocal sounds. Suied et al. (2014) further observed that voices 
were more robustly recognized compared to other instrumental sounds even for 
very short snippets (durations from 2 ms to 128 ms). The exact acoustic features 
responsible for this advantage must be of spectrotemporal nature because neither 
solely spectral nor solely temporal cues sufficed to yield a processing advantage. 
Furthermore, Agus et al. (2017) only observed an increase of activity in areas of the 
human temporal lobe that have documented sensitivity to vocal stimuli (see Mathias 
and Kriegstein, Chap. 7) for nonchimaeric stimuli. This means that there are brain 
areas that selectively react to the full set of spectrotemporal cues of voices but not 
to isolated spectral or temporal cues.

Across several recent studies, Weiss and colleagues (see Weiss et al. 2017, and 
references therein) accumulated evidence for a memory advantage of vocal melo-
dies compared to melodies played by nonvocal musical instruments (specifically 
piano, banjo, and marimba). In all of these studies, the basic experimental approach 
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was to have participants listen to a set of melodies presented with a vocal or instru-
mental timbre. After a 5–10 min break, participants heard the exposure melodies 
intermixed with a set of new melodies and rated their confidence in having heard a 
melody previously on a seven-point scale. Analyses of the recognition ratings for 
old and new melodies revealed that adults more confidently and correctly recog-
nized vocal compared to instrumental melodies (Weiss et al. 2012). The effect gen-
eralized to musicians with and without absolute pitch, and even pianists recognized 
more vocal melodies correctly with higher confidence in their correct ratings than 
for piano melodies (Weiss et al. 2015). This finding suggests that sensorimotor rep-
resentations and perceptual familiarity with certain classes of sounds are an unlikely 
locus of the observed effect. Otherwise, pianists should have shown a reduced voice 
advantage due to their ability to recruit motor representations for piano melodies 
and to their high familiarity with piano sounds.

It was further shown that the presentation of vocal melodies, as well as previ-
ously encountered melodies, was accompanied by an increase in pupil dilation 
(Weiss et al., 2016). Increases in pupil dilation are generally interpreted as an indi-
cator of heightened engagement and potentially a greater recruitment of attentional 
resources (Kang et  al. 2014). The results by Weiss et  al. (2016) are depicted in 
Fig. 4.6. Note that the difference in pupil dilation between piano and vocal melodies 
is most pronounced around 3 s after the onset of melodies. To the contrary, the dif-
ference between old and new melodies appears to accumulate across the full length 
of the melodies, indexing the distinct time courses of melody recognition and vocal 
superiority.

Although the memory advantage for melodies with a vocal timbre has turned out 
to be stable across several studies, there remain several open questions to explore 
within this paradigm (e.g., the role of signal amplitude normalizations, see Bigand 
et  al. 2011). Most importantly, the psychophysical origin of any of the reported 
vocal superiority effects (Agus et al. 2012; Weiss et al. 2012) is not clear. Could 
vocal superiority be a result of the involvement of motor processes (Liberman and 
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Mattingly 1985)? Is there a particular spectrotemporal feature in the acoustics of 
voices that boosts the processing of these sounds? Or is it the case that all auditory 
stimuli that indicate a vocal sound source happen to be preferentially processed 
once a voice has been implicitly recognized? Differentiating these hypotheses 
would require disentangling top-down and bottom-up effects. As discussed in 
greater depth by Mathias and Kriegstein (Chap. 7), there are voice-selective areas in 
the auditory cortex that only react to vocal input sounds, even if low-level cues, such 
as temporal or spectral envelopes, are matched with other sounds (Agus et al. 2017). 
But what exactly is the representational content of these voice-selective areas? 
Is this cortical selectivity the origin or the result of vocal superiority? Future 
research may be able to shed light on these intriguing questions.

4.7  Summary and Future Perspectives

This chapter provides a review of important research threads in memory for timbre. 
These threads concern the role of perceptual similarity relations and chunking in 
short-term memory for timbre, active imagery of timbre, the role of interference of 
auditory attributes in memory, and questions regarding the privileged processing of 
familiar and vocal timbres. Only 10 years ago these topics had not been covered to 
any serious degree within auditory cognition research. Since then, many studies 
have been published that provide valuable insights into the processing of timbre in 
memory, but they also open up new perspectives for future research. Today, we 
think we have sufficient empirical grounds to formulate a few principles of how 
memory for timbre works. In the following, five such principles will be outlined, 
followed by a brief discussion of what we consider to be relevant questions for 
future research.

4.7.1  Principles of Memory for Timbre

In contrast to other sets of memory principles that have been proposed to hold for 
all types memory (Surprenant and Neath 2009), the current principles are specifi-
cally derived from empirical studies on timbre and they serve two purposes. First, 
these principles will act as concise summaries of the empirical data collected up to 
date. Second, they will be considered as intermediate explanations of empirical 
effects. From this perspective, a principle should be more abstract than an effect. At 
the same time, a principle can be less specific than a model because it does not need 
to provide a comprehensive list of components and their functional interrelations for 
the overall system. In this sense, the following principles highlight what we cur-
rently understand about memory for timbre but also expose how incomplete the 
current state of knowledge is. Figure 4.7 provides a schematic of how these pro-
cesses could function for the example of an item recognition task.
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4.7.1.1  Integration: Timbre Information as Integrated Representations 
in Memory

Several experiments have shown that the perceptual discrimination of pitch and 
timbre (and more specifically, timbral brightness) is subject to symmetric interfer-
ence effects (e.g., Allen and Oxenham 2014). As reviewed in Sect. 4.5.1, recent 
experiments on short-term recognition found detrimental effects of concurrent vari-
ations of irrelevant features (Joseph et al. 2015; Siedenburg and McAdams 2018) 
and hence suggested that integrated representations (or events/auditory objects) are 
stored in STM. The elaborations in Sect. 4.5.2 have illustrated that experiments on 
long-term melodic memory corroborated these findings. Whenever there is a shift of 
timbre, it is harder to discriminate new from old melodies (Schellenberg and 
Habashi 2015). The analogous effect even constitutes a classic effect in verbal 
memory: Spoken words are harder to recognize whenever they stem from a different 
speaker in the test phase (Goldinger 1996), and the time courses of semantic and 
speaker information processing are very similar (Van Berkum et al. 2008).
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Fig. 4.7 Schematic of the five proposed principles of memory for timbre. The example shows how 
the five principles might relate to each other in a timbre memory recognition task. The auditory 
spectrogram indicates that the timbres of a sequence of sounds are represented in terms of their 
spectrotemporal properties. The structure of the memory trace is shaped by the process of integra-
tion (Principle I) as concurrently varying features, such as pitch, are integrated with the timbre 
memory trace. Sequential grouping (Principle II) provides additional temporal structure to the 
memory trace (in this example by separating the last sound from the first two). Timbre familiarity 
(Principle III) provides representational anchor points and cross-modal associations, for instance, 
by readily yielding semantic labels for certain sounds (here, the clarinet). Attention-based refresh-
ing, a form of perceptual simulation (Principle IV), may be a maintenance strategy specifically 
suited for timbre. Here, perceptual simulation is graphically represented by a circle, denoting the 
cyclical process of refreshing the memory trace by means of attention. Finally, the matching 
(Principle V) stage takes the collection of features of a probe sound and compares them to stored 
memory traces. If the similarity measure exceeds the listener’s internal threshold, the probe is 
considered a match
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4.7.1.2  Grouping: Memory for Timbre Sequences is Affected 
by Grouping Cues

The item-to-item structure of auditory sequences strongly affects their mnemonic 
affordances. As reviewed in Sect. 4.3.2, hierarchically structured sequences are 
easier to chunk and encode compared to random sequences (Siedenburg et al. 2016). 
Furthermore, acoustic cues such as strong acoustic dissimilarity between statisti-
cally distinct groups of sounds may enhance the separated encoding of such groups 
(Tillmann and McAdams 2004). Whether based on chunking or acoustic dissimilar-
ity, grouping cues powerfully enrich memory traces by structuring them along a 
hierarchy of time scales.

4.7.1.3  Familiarity: Better Memory Performance and Processing 
Accuracy

As discussed in Sect. 4.6, familiar sounds from well-known musical instruments are 
easier to recognize compared to unfamiliar transformed sounds (Siedenburg and 
McAdams 2017). Familiar musical-instrument sounds not only activate auditory 
sensory representations but to some extent also elicit semantic, visual, and even 
sensorimotor representations, which may act as anchors for the associated auditory 
sensory traces. Human voices may be considered as sound sources that are particu-
larly familiar both ontogenetically and evolutionarily, and corresponding vocal 
advantage effects have been demonstrated (Agus et al. 2012; Weiss et al. 2012).

4.7.1.4  Perceptual Simulation: Active Memory Rehearsal and Timbre 
Imagery

As described in Sect. 4.4, short-term recognition of timbre can be impaired by 
attention- demanding tasks such as visual change detection (Siedenburg and 
McAdams 2017) or auditory imagery (Soemer and Saito 2015). Furthermore, pre-
cise timbre representations can be obtained through auditory imagery (Halpern 
et al. 2004), that is, through a simulation of sensory schemata from long-term mem-
ory. This means that timbre is part of an active form of auditory cognition that oper-
ates at the level of sensory representations.

4.7.1.5  Matching: Timbre Recognition via Similarity-Based Matching

The similarity effects observed by Siedenburg and McAdams (2018), as discussed 
in Sect. 4.3.1, suggest that a similarity-based matching mechanism could be at the 
basis of timbre recognition. This mechanism could be conceived as an ongoing 
computation of similarity of the current auditory input with past representations that 
are stored in memory. For item recognition tasks, the matching process could effec-
tively be modeled as a similarity computation (Kahana 2012), indicating a match if 
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the summed perceptual similarities of the probe item to the items in the memory 
sequence exceeds a certain threshold. Serial recognition tasks could be based on a 
matching process that computes item-wise dissimilarities between two sequences 
and hence corresponds to the dissimilarity of the swap criterion (Siedenburg and 
McAdams 2018).

4.7.2  Future Perspectives

We wish to close by discussing four potentially productive avenues for future 
research. Obtaining a more substantiated understanding of these questions appears 
to be of central importance for the topic of memory for timbre itself and might even 
have important implications for practical applications, such as music composition 
and production, sonification for human-computer interactions, and speech commu-
nication technology.

A first apparent gap in the literature concerns our knowledge about the basic 
memory persistence of different timbre features. For example, is a set of sounds 
varying along temporal features (e.g., the attack time) as easily retained in memory 
as sounds varying along spectral timbre features (e.g., brightness)? So far, most 
research has either considered minute details of spectral composition (e.g., 
McKeown and Wellsted 2009) or has not touched at all on the question of individual 
perceptual features, even if global similarity relations were considered (Golubock 
and Janata 2013; Siedenburg and McAdams 2017). An exception might be the 
experiments by Schutz et al. (2017), which indicated that flat amplitude envelopes 
are less well-suited for soundobject associations compared to percussive (i.e., expo-
nentially decaying) envelopes.

Closely related to this question, and even more specific than the last point, is the 
need to specify the origin of vocal superiority effects. Two studies have already 
addressed this aspect in detail (Agus et al. 2012; Suied et al. 2014) but were not able 
to identify acoustic features that are specific to the vocal superiority effect. It is also 
not clear whether the recognition advantage observed by Weiss et al. (2012) has an 
acoustic or a cognitive origin. In other words, we still do not know what the basic 
acoustic or cognitive ingredients are that make memory for voices special.

Second, despite a plethora of memory models in other domains (e.g., Kahana 
2012), there is no formal model of memory for timbre that predicts listeners’ 
responses in memory tasks on the basis of the presented audio signals. The exis-
tence of such a model would mean a significant contribution, because it would help 
to make explicit the set of underlying assumptions of this research field. Perhaps the 
greatest hurdle for constructing a timbre memory model is the difficulty of agreeing 
on a signal-based representation for approximating the timbre features that are most 
relevant perceptually. Nonetheless, significant progress has been achieved over 
recent years regarding the latter (see McAdams, Chap. 2; Caetano, Saitis, and 
Siedenburg, Chap. 11; and Elhilali, Chap. 12).
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Third, interindividual differences in memory for timbre and the role of formal 
musical training, as well as informal music learning, in memory for timbre have not 
been fully addressed yet. Whereas in timbre dissimilarity perception, musical train-
ing does not appear to affect perceptual space (McAdams et al. 1995), recognition 
memory for timbre may be more accurate in musicians compared to nonmusicians 
(Siedenburg and McAdams 2017). However, no rigorous attempt has been under-
taken so far to control other individual differences that might act as confounding 
factors (e.g., verbal working memory, general cognitive ability). In addition, it is 
unclear whether the differences due to musical training observed for musicians ver-
sus nonmusicians also extend to varying levels of musical training found in the 
general population. It is unclear (a) how large individual differences in memory for 
timbre are, and (b) to what other cognitive abilities are these potential differences 
related. Insights regarding the latter questions might give an indication of the origin 
of individual differences in timbre memory. The development of a standardized test 
of timbre memory would represent a significant step forward in this respect. Such a 
test could build on existing experimental paradigms (Golubock and Janata 2013) for 
which factors that contribute to task difficulty have been studied already.

Finally, Agus et al. (2010) demonstrated a rapid and detailed form of implicit 
auditory memory for noise clips, and similar processes might be at play for the tim-
bres of unfamiliar sound sources. Nonetheless, no study has yet addressed the time 
course of familiarization (i.e., learning trajectory) with sound sources. Lately, 
Siedenburg (2018) showed that the perception of brightness can be affected strongly 
by context effects. This implies that listeners not only memorize timbral associa-
tions within sequences of sounds, but the percept of a sound itself can be altered by 
the timbral properties of the auditory context. Hence, there exists an implicit form 
of memory for auditory properties, including timbre, that subconsciously affects 
present perceptual processing and that is in urgent need of further scientific 
exploration.
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Chapter 5
The Semantics of Timbre

Charalampos Saitis and Stefan Weinzierl

Abstract Because humans lack a sensory vocabulary for auditory experiences, 
timbral qualities of sounds are often conceptualized and communicated through 
readily available sensory attributes from different modalities (e.g., bright, warm, 
sweet) but also through the use of onomatopoeic attributes (e.g., ringing, buzzing, 
shrill) or nonsensory attributes relating to abstract constructs (e.g., rich, complex, 
harsh). The analysis of the linguistic description of timbre, or timbre semantics, can 
be considered as one way to study its perceptual representation empirically. In the 
most commonly adopted approach, timbre is considered as a set of verbally defined 
perceptual attributes that represent the dimensions of a semantic timbre space. 
Previous studies have identified three salient semantic dimensions for timbre along 
with related acoustic properties. Comparisons with similarity-based multidimen-
sional models confirm the strong link between perceiving timbre and talking about 
it. Still, the cognitive and neural mechanisms of timbre semantics remain largely 
unknown and underexplored, especially when one looks beyond the case of acoustic 
musical instruments.

Keywords Auditory roughness · Auditory semantics · Cognitive linguistics · 
Conceptual metaphor · Crossmodal correspondence · Describing sound · 
Magnitude estimation · Musical meaning · Qualia · Semantic differential · Sound 
color · Sound mass · Sound quality · Timbral brightness · Verbal attribute

5.1  Introduction

After consultations with his teacher and with the great violinist and collector Efrem 
Zimbalist … Yehudi [Menuhin] played on all three [Stradivari violins] and opted for the 
“Khevenhüller.” (As a test piece he played “The Prayer” from Handel’s Dettingen Te 
Deum.). It was to be his principal instrument for over 20 years. He described it as “ample 
and round, varnished in a deep, glowing red, its grand proportions … matched by a sound 
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at once powerful, mellow and sweet.” Antonio Stradivarius had made the instrument in 
1733, his 90th year, when despite his advancing years he was still at the peak of his powers 
(Burton 2016, p. 86).

What is a mellow and sweet sound? Imagine yourself listening to a recording of the 
famous violinist Yehudi Menuhin (1916–1999) performing on his Khevenhüller 
Strad. How would you describe the sound of the violin or the sound of Menuhin? 
What about the sound quality of the recording? Musicians, composers, sound art-
ists, listeners, acousticians, musical instrument makers, audio engineers, scholars of 
sound and music, even sonar technicians, all share a subtle vocabulary of verbal 
attributes when they need to describe timbral qualities of sounds. These verbaliza-
tions are not crucial for processing timbre—listeners can compare (McAdams, 
Chap. 2), recognize (Agus, Suied, and Pressnitzer, Chap. 3), or memorize and imag-
ine (Siedenburg and Müllensiefen, Chap. 4) timbral qualities without having to 
name them (Wallmark 2014). However, the way we talk about sensory experiences 
can disclose significant information about the way we perceive them (Dubois 2000; 
Thiering 2015). Menuhin’s mellow and sweet sound is a particular concept, an 
abstract yet structured idea anchored to and allowing one to make sense of a particu-
lar perceptual representation (Wallmark 2014). As such, a relation must exist 
between the physical properties of a sound that give rise to timbre and its semantic 
description.

Results of multidimensional scaling of pairwise sound dissimilarity ratings 
(McAdams, Chap. 2) usually show that timbre may be adequately explained on the 
basis of just two or three dimensions; a number many times smaller than the pleth-
ora of words and phrases used to communicate timbral impressions. On the one 
hand, this might be due to specific perceptual features of individual sounds (referred 
to as specificities) that are not mapped onto the shared dimensions of the prevailing 
timbre space. For example, the suppression of even harmonics in clarinet tones, 
which typically elicits an impression of hollowness, was not accounted for by clas-
sic geometric timbre models alone (e.g., McAdams et al. 1995). On the other hand, 
individual verbalizations can be thought of as representing microconcepts—basic 
elements of semantic knowledge activated by a stimulus object that are not fully 
meaningful on their own but instead yield meaning when assembled into broader 
semantic categories (Saitis et  al. 2017). Among the diverse timbre vocabulary, 
therefore, many seemingly unassociated words may share the same meaning and 
refer to the same perceptual dimension.

Accordingly, the main goals of the research ideas and tools discussed in this 
chapter are twofold: to identify the few salient semantic substrates of linguistic 
descriptions of timbral impressions that can yield consistent and differentiating 
responses to different timbres along with their acoustic correlates and to quantify 
the relationship between perceptual (similarity-based) and semantic (language- 
based) representations for timbre. Important questions include the following:

• How similar are semantic timbre spaces between different categories of sound 
objects, for example, between instrument families and between instruments, 
voices, and nonmusical sounds?
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• Do timbre verbalizations rely explicitly on acoustic cues or are they subject to 
source-cause categorical influences?

• Are timbre verbalizations a product of cultural dependencies or is timbre seman-
tics cross-cultural?

• What are the neurobiological mechanisms underlying timbral semantic 
processing?

• In what ways does timbre contribute to larger-scale musical meaning?
• What is the relation between emotion and the semantics of timbre?

Subsequent sections attempt to address these questions. Section 5.2 examines 
how different communities of listeners verbally negotiate sound qualities and the 
underlying conceptualizations of timbre. In general, verbal attributes of timbre are 
predominantly metaphorical in nature, and empirical findings across different types 
of sounds and analytical approaches converge to a few salient semantic substrates, 
which are not very different from early theorizations for a low-dimensional seman-
tic space of timbre by Stumpf (1890) and Lichte (1941). These findings are described 
in Sect. 5.3 and examined further in Sect. 5.4 through psychophysical investigations 
and interlanguage comparisons.

As with most aspects of timbre, much work on timbre semantics has investi-
gated acoustic musical instruments by means of recorded samples or synthetic 
emulations. However, talking about instrumental timbre always implicates the 
acoustic environment in which the instrument is heard. In what ways do the seman-
tics of spaces interact with the semantics of timbre? A preliminary discussion on 
this important but understudied question is given in Sect. 5.5. Finally in Sect. 5.6, 
overarching ideas are summarized and new directions for future research are 
proposed.

Two considerations are necessary before proceeding. First, sound source identi-
fication (e.g., this is not a violin) is in itself a type of timbre semantics. The consis-
tent use of onomatopoeia in verbal descriptions of musical and environmental 
timbres (see Sect. 5.2.1) is one example of identification acting as semantics. In 
practice, however, timbre semantics is typically defined as qualia (this chapter) and 
sound source perception is studied separately (see McAdams, Chap. 2; Agus, 
Suied, and Pressnitzer, Chap. 3). Second, in studying timbre semantics as qualia, a 
distinction will be made between timbre as sound quality of complex spectra (this 
chapter) and sound quality as an evaluation of functionality and pleasantness in 
audio reproduction and industrial sound design contexts (see Lemaitre and Susini, 
Chap. 9).

5.2  Musical Meaning and the Discourse of Timbre

Listening to a sound (speech, music, environmental events, etc.) involves not only 
detection-perception of the acoustic signal, but also the interpretation of auditory 
information (e.g., pitch or the lack thereof, timbre, duration, dynamics). According 

5 Semantics of Timbre



122

to Reybrouck (2013), musical semantics, the processing of meaning emerging from 
musical auditory information, relies on evolutionarily older mechanisms of mean-
ingfully reacting to nonmusical sound, and

“… listeners can be conceived as adaptive devices, which can build up new semiotic link-
ages with the sounding world. These linkages can be considered as by-products of both 
biological and cultural evolution and can be helpful in providing coordinative frameworks 
for achieving diversity of thought, cultural invention, social interaction and optimal coregu-
lation of affect” (pp. 602–603; emphasis added).

Combining previous theoretical accounts of musical semantics with empirical neu-
robiological evidence, Koelsch (2011) concluded that there are three fundamentally 
different classes of musical meaning: extramusical, intramusical, and musicogenic. 
Extramusical meaning arises from the interpretation of musical sound cues through 
iconic, indexical, and symbolic sign qualities. Iconic qualities resemble qualities of 
objects and abstract concepts. Indexical meaning emerges from emotion and inten-
tion recognition. Symbolic meaning emerges from social and cultural associations. 
For example, a musical excerpt may sound buzzing, warm, complex, happy, ethnic, 
patriotic, and so on. Intramusical meaning emerges from the interpretation of struc-
tural references between musical units without extramusical associations, such as 
chord functions during the course of a cadence. Finally, musicogenic refers to 
meaning that stems from the interpretation of physical, emotional, and self-related 
responses evoked by musical cues, as opposed to interpreting musical cues per se. 
A musical performance can thus prompt one to dance, shed tears, or remember a 
past experience. Within the framework posited by Koelsch (2011), verbal attributes 
of timbral qualities can generally be thought of as falling into the class of iconic 
signs (Zacharakis et al. 2014).

5.2.1  Speaking about Sounds: Discourse Strategies

Wake and Asahi (1998) used musical, vocal, and environmental stimuli, and pairs of 
naïve listeners to study how they describe different types of sounds. Unlike sound 
experts (i.e., musicians, composers, sound artists, recording engineers, sound and 
music scholars) the naïve listeners lack a specialized auditory vocabulary. One per-
son in each pair listened to a sound and subsequently described it to their interlocu-
tor, who then had to imagine the described sound and, after listening to the actual 
stimulus, assess the similarity between the two. The verbalizations used to convey 
the different sounds were mainly of three types. The first type describes the percep-
tion of the sound itself using onomatopoeias (i.e., words or vocables considered by 
convention to phonetically mimic or suggest the sound to which they refer; e.g., 
chirin-chirin for the sound of a wind bell) or acoustic terminology (e.g., high 
pitched). The second type describes the recognition of the sounding situation using 
references to the object that made the sound (e.g., a bird) or the action that produced 
it (e.g., twittering) or other contextual information (e.g., in the morning). The third 
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type describes the sound impression using metaphors and similes (e.g., clear, cool). 
Wake and Asahi (1998) proposed a model of auditory information processing, 
according to which recognition and impression are processed either independently 
(perception then recognition or impression) or sequentially (perception then recog-
nition then impression).

In his empirical ethnographic research on the management of talk about sound 
between music professionals in the United States, Porcello (2004) identified five 
strategies that are common to the discourse of timbre among producers and engi-
neers: (1) spoken/sung vocal imitations of timbral characteristics; (2) lexical ono-
matopoeic metaphors; (3) pure metaphor (i.e., non-onomatopoeic, generally 
referencing other sensory modalities or abstract concepts); (4) association (citing 
styles of music, musicians, producers, etc.); (5) evaluation (judgements of aesthetic 
and emotional value). Thus, a snare drum might sound like /dz:::/ and a muted trom-
bone like wha-wha, a wolf tone on the cello (a persistent beating interaction between 
string vibrations and sympathetic body resonances) is usually howling and rough or 
harsh, and a violin tone might sound baroque or like Menuhin or beautiful. In com-
parison to the taxonomy of Wake and Asahi (1998), Porcello (2004) distinguishes 
between lexical onomatopoeias and vocal mimicry of nonvocal timbres, including 
in the latter category nonlexical onomatopoeias, and also considers three types of 
sound impression descriptions: pure metaphor, association, and evaluation.

Porcello (2004) further advances a distinction between vocal imitations and ono-
matopoeias on the one hand (which he calls “sonic iconicity”) and the pure iconicity 
of metaphors originating in nonauditory sensory experiences or abstract concepts 
on the other hand. These, he observes, are usually “codified, especially among 
musicians and sound engineers,” (Porcello 2004, p. 747). Following their investiga-
tion of the relation between verbal description and gestural control of piano timbre, 
Bernays and Traube (2009, p. 207) similarly concluded that “high level performers 
… have developed over the years of practice … an acute perceptive sensibility to 
slight sonic variations. This … results in an extensive vocabulary developed to 
describe the nuances a performer can detect.” Furthermore, as noted by Traube 
(2004), this vocabulary is traditionally communicated from teacher to student in 
both the musician and sound engineer communities.

Lemaitre and colleagues (2010) analyzed free sortings of environmental sounds 
made by expert and nonexpert listeners along with scores of source-cause identifica-
tion confidence and source-cause verbalizations. For the latter, participants were 
asked to provide nonmetaphorical nouns and verbs to describe the object and action 
that produced each sound. Participants were also asked to describe what sound 
properties they considered in grouping different sounds together. They showed that 
naïve listeners categorized environmental sounds primarily on the basis of source- 
cause properties. When these could not be identified, nonexpert listeners turned to 
the timbral properties of the sound, which they described using metaphors or vocal 
imitations. In contrast, musicians and other expert listeners relied more on timbral 
characteristics, verbalizing them using metaphors almost exclusively. This finding 
may offer support to the auditory information processing model proposed by Wake 
and Asahi (1998), who assert that timbral impression is processed independently of 
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or following source recognition. It could also help to explain why Porcello’s tax-
onomy of timbre verbalizations, which is derived from the discourse of sound 
experts, does not include descriptions of the physical cause of a sound, such as those 
grouped under “sounding situation” by Wake and Asahi (whose taxonomy is based 
on verbalizations by nonexpert listeners).

Wallmark (2018) conducted a corpus linguistic analysis of verbal descriptions of 
instrumental timbre across eleven orchestration treatises. The collected verbaliza-
tions were categorized according to: (1) affect (emotion and aesthetics); (2) matter 
(physical weight, size, shape); (3) crossmodal correspondence (borrowed from 
other senses); (4) mimesis (sonic resemblance); (5) action (physical action, move-
ment); (6) acoustics (auditory terminology); and (7) onomatopoeia (phonetic resem-
blance). This scheme is very similar to the one suggested by Porcello (2004), whose 
notion of “pure” metaphor could be seen as encompassing categories (2) to (6). 
Whereas onomatopoeic words were prevalent among music producers and engi-
neers in Porcello’s study, they accounted for a mere 2% of Wallmark’s orchestration 
corpus, driven primarily by a small number of mostly percussion instruments. In 
fact, certain instruments and instrument families were found to have a systematic 
effect on verbal description category. For example, the trombone was described 
more frequently with affect and mimesis than other brass instruments, while the 
violin, viola, and cello all shared similar descriptive profiles (cf., Saitis et al. 2017). 
By means of principal components analysis, the seven categories were further 
reduced to three latent dimensions of musical timbre conceptualization: material 
(loaded positively onto onomatopoeia and matter), sensory (crossmodal and acous-
tics), and activity (action and mimesis).

Notwithstanding the diverse metaphorical timbre lexicon in orchestration books, 
taxonomies of musical instruments and the kinds of sounds they produce are usually 
based on the nature of the sound-producing material and mechanism. Koechlin 
(1954–1959; cited in Chiasson et al. 2017, p. 113–114) proposed instead to organize 
instrument sounds for orchestration purposes on the basis of volume and intensity. 
Volume is described as an impression of how much space an instrument sound occu-
pies in the auditory scene (“extensity” is used by Chiasson et al. 2017; see also Rich 
1916). Based on an inverse relationship between volume and intensity, Koechlin 
(cited in Chiasson et al. 2017) further proposed a third attribute of density versus 
transparency: a musical sound is dense when it is loud but with a small volume, and 
it is transparent when it has a large volume but low intensity. There is evidence that 
in the later Middle Ages it was typical to think of musical instruments in terms of 
volume of sound (Bowles 1954). In orchestras, and for other musical events, instru-
ments with a big, loud sound (haut in French) would be grouped together against 
those with a small, soft sound (bas).

Schaeffer (1966) offered a typo-morphology of “sonorous objects” (i.e., sounds 
experienced by attending to their intrinsic acoustic properties and not to their physi-
cal cause) based on sustainment (facture in French) and mass. Sustainment refers to 
the overall envelope of the sound and mass is described as “the quality through 
which sound installs itself … in the pitch field” (Schaeffer 1966, p. 412), which 
appears similar to Koechlin’s notion of volume. Interestingly, Koechlin and 
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Schaeffer were both French, shared a composition background, and published their 
typologies within 10 years of each other. Mass extends the concept of pitch in pure 
tones (i.e., single frequencies) and tonal sounds (i.e., nonnoisy) to include sounds 
with fluctuating or indeterminate pitch (e.g., cymbals, white noise). Each mass has 
a particular timbre associated with it—a set of “secondary” qualities that are either 
nonexistent (pure tones) or exist at varying degrees from being dissociated (musical 
notes) to indistinguishable (white noise) from mass. Given the definition of sono-
rous objects, Schaeffer’s timbre is free from any source-cause associations and is 
thus situated clearly in the realm of quality as opposed to identity (Siedenburg, 
Saitis, and McAdams, Chap. 1).

In tonal sounds, Schaeffer argues, mass can be low or high (in terms of location 
in the pitch field) and thick or thin (in terms of extensity in the pitch field); timbre 
can be dark or light (location), ample or narrow (extensity), and rich or poor (in 
relation to the intensity of the mass). The latter appears closely related to Koechlin’s 
notion of density as they both describe a mass or volume, respectively, in relation to 
its intensity. In Smalley’s (1997) Theory of Spectromorphology, which has its ori-
gins in Schaeffer’s ideas, pitch field is replaced by “spectral space”. The latter is 
described in terms of emptiness versus plenitude (whether sound occupies the whole 
space or smaller regions) and of diffuseness versus concentration (whether sound is 
spread throughout the space or concentrated in smaller regions). Like Koechlin and 
Schaeffer, Smalley also relies on extra-auditory concepts to serve as discourse for 
an organization of auditory material that focuses on intrinsic features of the sound 
independently of its source.

5.2.2  Metaphors We Listen With

Wallmark (2014) argues that the metaphorical description of timbre is not simply a 
matter of linguistic convention, and what Porcello singles out as “pure metaphor” is 
central to the process of conceptualizing timbre by allowing the listener to commu-
nicate subtle acoustic variations in terms of other more commonly shared sensory 
experiences (nonauditory or auditory-onomatopoeic) and abstract concepts. De 
Ceuster (2016) points out that timbre has been described with metaphors based on 
experiences since the presumed birth of the term in the mid-eighteenth century 
(Dolan 2013). Jean-Jacques Rousseau’s “Tymbre” entry in Diderot and D’Alembert’s 
Encyclopedié reads:

A sound’s tymbre describes its harshness or softness, its dullness or brightness. Soft 
sounds, like those of a flute, ordinarily have little harshness; bright sounds are 
often harsh, like those of the vielle [medieval ancestor to the modern violin] or 
the oboe. There are even instruments, such as the harpsichord, which are both 
dull and harsh at the same time; this is the worst tymbre. The beautiful tymbre is 
that which combines softness with brightness of sound; the violin is an example 
(cited and translated in Dolan 2013, p. 56).
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Building on accounts of ecological and embodied cognition, Wallmark (2014) 
proposes an embodied theory of timbre whereby metaphorical descriptions are 
indexes of conceptual representations grounded in perception and action. They can 
be grouped into three categories based on the conceptual metaphors (Lakoff and 
Johnson 2003): (1) instruments are voices (e.g., nasal, howling, open); (2) sound is 
material (e.g., bell-like, metallic, hollow, velvety); and (3) noise is friction (e.g., 
harsh, rough) (cf., Wallmark 2018). The sound is material metaphor can be broken 
down into four subtypes: (2a) naming the source directly (e.g., a bell-like sound); 
(2b) referencing the physical qualities of the source (e.g., a metallic sounding cym-
bal); (2c) blending physical and connotative elements of source and sound (e.g., a 
hollow bassoon); and (2d) referencing physical qualities of unrelated objects (e.g., 
velvety strings).

Why are instruments voices? Consider phonemes. They can be categorized based 
on distinctive features associated with the physiology of voice production and artic-
ulation that are generally inherent in all languages (Jakobson and Halle 1971). 
Phonemes can be nasal (coupling between the oral and nasal cavities) or oral (no 
coupling); compact (spectral dominance of a single central formant when the mouth 
is wide open) versus diffuse; strident (airstream forced to strike the teeth, high- 
intensity fricative noise) versus mellow; tense or lax (greater versus lesser deforma-
tion of the vocal tract); grave (larger and less compartmented mouth cavity volume, 
concentration of energy in the lower register) versus acute; flat (smaller lip opening 
but larger between-lip area, weakening of upper frequencies) or nonflat; and sharp 
(dilated pharyngeal pass, strengthening of upper frequencies) versus nonsharp. In 
singing, a low versus high laryngeal position produces a covered versus open vocal 
timbre or simply a low versus high pitch (Miller 1986). In medicine, hoarse is used 
to describe the presence of high frequency noise components accompanied by 
decreased harmonics in the voice due to laryngeal diseases (Isshiki et  al. 1969). 
Attributes such as howling, throaty, hissing, and breathy eventually refer to the asso-
ciated vocal source or as Sundberg (2013, p. 88) puts it: “The perception of voice 
seems to be influenced by familiarity with one’s own voice production.” This obser-
vation echoes the motor theory of speech perception, which considers that the latter 
is based on articulatory motor representations (Liberman and Mattingly 1985) and 
which Wallmark (2014) extends to a motor theory of all timbre perception in prepa-
ration for the instruments are voices metaphor.

Albersheim (1939) drew analogies between vowels and colors to propose a geo-
metrical model of acoustic color (Akustischer Farbenkörper in German) in the form 
of a cylinder. Its height and radius represented variation in color brightness and 
saturation, respectively. Changes in color hue were mapped onto a helical line along 
the surface of the cylinder. Slawson (1985) developed a theory of sound color, 
which he defined as the static spectral envelope of a sound, as opposed to its tempo-
rally varied spectrum, based on the distinctive phoneme features of openness, acute-
ness, and laxness, and their relation to the pitch-invariant formant structure of 
vowels. The term “openness” was chosen as a perceptually more intuitive depiction 
of compactness. More open vowels have a higher first formant, while acuteness 
increases with increasing frequency of the second resonance. Lax vowels have a 
lower total energy that is less spread out over the spectrum. A fourth dimension was 
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termed smallness: the lower the first and second formants are, the smaller the vowel. 
Schumann (1929), Reuter (1997), and Lembke and McAdams (2015), among 
 others, have discussed the vowel-like pitch-invariant formant structure of many (but 
not all) musical instruments and its role in timbre perception.

In other words, timbre can be experienced with reference to the human and non-
human voice—a conceptualization already evident in Helmholtz’s (1877) choice to 
synthesize vowel-like sounds for his Klangfarbe experiments and in Schilling’s 
definition of the German term as “denoting mostly the accidental properties of a 
voice” (Schilling 1840, p. 647; cited in Kursell 2013). Timbre can also be experi-
enced as a material object that can be seen, touched, and even tasted. Furthermore, 
noise-like timbres (e.g., excessive high-frequency content, inharmonicity, flat spec-
trum) can be understood in terms of frictional material interaction. Very similar 
metaphorical conceptualizations can be found in verbalizations of other perceptual 
aspects of sound, such as pitch and loudness (Eitan and Rothschild 2011; Saitis 
et al. 2017). In general, conceptual metaphors of timbre and auditory semantics may 
originate in more universal neural processes and structures beyond auditory cogni-
tion (cf., Gallese and Lakoff 2005; Walsh 2013).

5.3  Semantic Spaces of Timbre

Scientific interest in timbre semantics started as early as the experimental explora-
tion of timbre itself (Helmholtz 1877; Stumpf 1890). Stumpf (1890) proposed that 
the various verbal attributes of timbre can be summarized on the basis of semantic 
proximities by three pairs of opposites: dark–bright (dunkel–hell in German), soft–
rough (weich–rauch), and full–empty (voll–leer). Hereafter, these symbols will be 
used: ‘–’to indicate antonyms and ‘/’ to indicate synonyms. Discussing a set of 
psychoacoustic experiments, Lichte (1941) concluded that brightness, roughness, 
and fullness, as defined by Helmholtz, form independent attributes of sound in addi-
tion to pitch and loudness. More systematic efforts to understand the complex mul-
tivariate character of timbre semantics were made possible by methodological tools 
such as factor analysis of ratings on verbal scales that were developed in the 1950s 
and were first applied to timbre by Solomon (1958) (Sect. 5.3.1). Studies using 
multidimensional scaling of adjective dissimilarities and psycholinguistic analyses 
of verbalization tasks have provided additional insight regarding particular aspects 
that contribute to the semantic description of timbre (Sect. 5.3.2).

5.3.1  Semantic Scales: Methodology and Main Results

Osgood (1952) developed a quantitative method for measuring meaning based on 
the use of multiple verbal scales. Each scale was defined by pairs of antonymic 
descriptive adjectives, such as dark–bright and smooth–rough, which he termed 
semantic differentials. The method postulates a semantic space within which the 
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operational meaning of a given concept can be specified. This “space” is physically 
thought of as a Euclidean spatial configuration of unknown dimensionality; each 
semantic differential represents an experiential continuum, a straight line function 
that passes through the origin of this space. Many different continua are psychologi-
cally equivalent and, hence, may be represented by a single latent dimension. The 
minimum number of such (orthogonal) dimensions can be recovered by means of 
factor analysis and used to define the semantic space of the concept. Ratings on 
semantic scales also can be analyzed with principal component analysis or, when 
appropriately reorganized (e.g., dissimilarity distances, cross-correlations), cluster-
ing or multidimensional scaling techniques. The reliability and validity of the 
semantic differential model depend on a number of methodological considerations 
(Susini et al. 2012; Saitis et al. 2015). For example, it is important to use verbal 
scales that are psychologically relevant and commonly interpreted across all raters. 
And even then, the derived factors are not always easy to interpret with respect to 
the scales and/or raters.

Solomon (1958) had sonar technicians rate recordings of passive sonar sounds 
on bipolar scales comprising perceptual attributes (e.g., smooth–rough) that are 
typically used by experienced sonar operators but also a large number of aesthetic–
evaluative adjectives (e.g., beautiful–ugly). A seven-factor solution was obtained, 
which accounted for only 42% of the total variance in the collected ratings. The first 
and most salient factor (15%) indicated a “magnitude” dimension, explained by 
such scales as heavy–light and large–small. The third factor (6%) was identified by 
such words as clear, definite, and obvious, and labeled as “clarity.” The remaining 
factors were essentially aesthetic–evaluative, probably because many such differen-
tials were used in the design of the study. Generally speaking, such scales are likely 
to be of little help when one tries to access perceptual representations through lan-
guage, as affective reactions tend to be less stable across individuals than sensory 
descriptions.

Jost (1967; cited in Webster et al. 1970, p. 481–483) carried out a semantic dif-
ferential study of four clarinet notes played at six different loudness levels and 
found two salient factors of density and volume. However, these appeared to cor-
relate with stimuli variations in pitch and loudness, respectively. Von Bismarck 
(1974a) sought to address three important issues with applying semantic differen-
tials to the study of timbre semantics: selecting verbal attributes that are perceptu-
ally relevant, normalizing sound stimuli for pitch and loudness, and psychophysically 
explaining the extracted factors. Sound stimuli comprised synthetic steady-state 
signals of two types: vowel-like and instrument-like harmonic complexes, and 
consonant- like noises. These had spectral envelopes varying systematically along 
three parameters: frequency location of overall energy concentration, slope of the 
envelope, and frequency location of energy concentrations within the spectrum. All 
sounds were normalized in loudness by means of perceptual adjustment to a given 
reference. The harmonic complexes were further equalized in fundamental fre-
quency at 200 Hz. Sixty-nine differential scales were initially rated for suitability to 
describe timbre on a scale from “very unsuitable” to “highly suitable”. From thirty- 
five scales with the highest mean suitability ratings, seven scales deemed 

C. Saitis and S. Weinzierl



129

 synonymous were further discarded. The scales soft–loud and low–high were 
included to test the effectiveness of loudness and pitch normalization, respectively.

Factor analysis of ratings by a group of musicians and another group of nonmusi-
cians yielded similar, although not identical, four-factor solutions that explained 
more than 80% of the variance in the data. The four factors were defined by the 
differentials dull–sharp, compact–scattered, full–empty, and colorful–colorless. 
Although participants were instructed to ignore pitch and loudness as much as pos-
sible, ratings on the soft–loud and low–high scales were highly correlated with 
those on dull–sharp and dark–bright, respectively. This illustrates how the same 
word can have different connotations in different contexts. Even when sounds were 
equalized in loudness and pitch, listeners still used related attributes to describe 
other impressions. In agreement with the view that verbal attributes of timbre are 
“codified” among musically trained listeners (see Sect. 5.2.1), ratings from nonmu-
sicians were more scattered than those of musicians. Prompted by the finding that 
the dull–sharp factor explained almost half of the total variance in the data, von 
Bismarck (1974b) confirmed in subsequent psychoacoustic experiments that a dull–
sharp scale had desirable measurement properties (e.g., doubling, halving) and con-
cluded that sharpness may represent an attribute of sounds distinguishable from 
pitch and loudness.

Von Bismarck’s is arguably the first comprehensive investigation of timbre 
semantics, markedly improving upon the earlier studies, but certain aspects have 
been questioned. For example, aesthetic-evaluative and affective scales were still 
used. In addition, the preliminary assessment of whether or not a scale was suitable 
for describing timbre was carried out in an undefined context, without presentation 
of the timbres to be described, while further discarding of scales was based on an 
arbitrary judgement of word synonymy. Perhaps more importantly, a semantic issue 
with the semantic differentials is the assumption of bipolarity that underlies the 
model (Heise 1969; Susini et al. 2012). Are soft–loud and dark–bright always true 
semantic contrasts? Is sharp the true semantic opposite of dull when talking about 
timbre?

One way to address potential biases associated with prescribing antonymic rela-
tionships between adjectives is to use adjective checklists. These were used exten-
sively in musical affect research up until the late 1950s (for a review, see Radocy 
and Boyle 2012) but have largely been replaced by semantic scales. Similarly to von 
Bismarck (1974a), Pratt and Doak (1976) attempted to first find verbal scales suit-
able for describing timbre. An initial list of 19 “commonly used” adjectives was 
reduced to seven items by means of a checklist task. By (arbitrarily) discarding 
synonyms and “not very useful” words, the list was further reduced to the attributes 
brilliant, rich, and warm; dull, pure, and cold, respectively, were (arbitrarily) chosen 
as opposites to form semantic differentials. From ratings of different synthesized 
harmonic spectra on the three scales, it was found that the former were most consis-
tently discriminated by the brilliant–dull scale.

In a separate study (Abeles 1979), each of twenty-four recorded isolated clarinet 
notes was presented three times, each time with five adjectives randomly selected 
from a list of forty words. Three independent groups of clarinetists, nonclarinetist 
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musicians, and nonmusicians were asked to check as many adjectives as they 
thought best described the timbre of each note. Factor analysis of the combined data 
across the three listener groups (no individual group analyses were reported) yielded 
a three-factor solution of shape (round/centered–pinched/thin), density (clear/bril-
liant–fuzzy/airy), and depth (resonant/rich/projecting; no negatively loaded adjec-
tives were reported). Edwards (1978) and Pratt and Bowsher (1978) found a very 
similar set of semantic dimensions for the trombone (see Sect. 5.3.2), which is also 
a wind instrument.

Kendall and Carterette (1993a, b) attempted a systematic use of verbal scales 
bounded by an attribute (e.g., bright) and its negation (e.g., not bright), which was 
termed the verbal attribute magnitude estimation (VAME) method because the task 
for the rater is to assess how much of a single attribute is possessed by a stimulus. 
Unipolar scales offer a way of dealing with polysemy and nonexact antonymy 
within the semantic differential framework. Accordingly, antonymic or synonymic 
relationships can be assessed a posteriori through negative or positive correlations 
between ratings on different unipolar scales.

A first pair of experiments (Kendall and Carterette 1993a) sought to explore the 
extent to which von Bismarck’s (1974a) semantic space, which had resulted from 
synthetic vowel-like sounds, is relevant in describing the timbre of natural (recorded) 
instrument sounds. The stimuli comprised dyads of wind instrument notes produced 
in unison, and they were rated by nonmusicians on eight VAME scales that loaded 
high on the first (hard, sharp, loud, complex), second (compact, pure), and fourth 
(dim, heavy) von Bismarck factors. Analyses converged to a two-dimensional solu-
tion accounting for almost 98% of the variance; however, it mapped weakly onto a 
two-dimensional similarity space of the same dyads, prompting the authors to con-
clude that von Bismarck’s scales were less relevant in rating natural versus synthetic 
timbres. In subsequent experiments (Kendall and Carterette 1993b), the same stim-
uli were rated by musicians on twenty-one VAME scales induced from adjectives 
describing instrumental timbre in an orchestration book. Similar analyses resulted 
in a two-dimensional semantic space of nasal–rich and brilliant–reedy adjectives, 
which explained 96% of the data variance and corresponded more strongly with 
similarity ratings.

The work of Kendall and Carterette constitutes the first systematic effort to 
combine semantic ratings with similarity judgements to directly examine the rela-
tionship between the perception of timbre and its verbal communication. In this 
context, these results illustrate that the validity of a semantic space as a perceptual 
construct depends on a number of issues such as the type of sounds tested, the type 
of verbal scales used, and the musical background of raters. Especially when con-
sidering differences in how musically experienced versus naïve listeners conceptu-
alize timbral qualities (see Sect. 5.2.1), it is plausible that the better results obtained 
in the second set of experiments (Kendall and Carterette 1993b) were not only a 
result of selecting more relevant semantic scales but also of recruiting musically 
trained listeners. Von Bismarck (1974a) and Abeles (1979) both found that in rat-
ing the same sounds on the same semantic scales musicians were generally more 
consistent than nonmusicians.
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The nasal–rich dimension of Kendall and Carterette (1993b) summarizes descrip-
tions of nasal/edgy/brittle/weak/light versus rich/round/strong/full. It thus appears 
to correspond to the shape factor found by Abeles (1979) for clarinet sounds. Abele’s 
density factor seems to be closer to Kendall and Carterette‘s brilliant–reedy dimen-
sion, which relates to impressions of brilliant/crisp/pure versus reedy/fused/warm/
complex. In some agreement with these two studies, Nykänen et al. (2009) found 
four semantic dimensions for a set of saxophone notes, namely, warm/soft, back 
vowel-like sounding, sharp/rough, and front vowel-like sounding. Considering that 
back versus front vowels tend to be perceived as dark/round versus bright/thin 
(Jakobson and Halle 1971), two broader dimensions alluding to shape (warm/soft–
sharp/rough) and density (dark/round–bright/thin) may be hypothesized. It there-
fore appears that most wind instrument timbres can be positioned within a common 
semantic space. How does this space adapt when sounds from other instrument 
families are included? Kendall et al. (1999) found that adding a violin note did not 
affect the semantic space; however, its mapping onto the corresponding perceptual 
space was less robust.

Using fifteen VAME scales, Disley et  al. (2006) obtained a four-dimensional 
semantic space for twelve orchestral instrument notes of same pitch: bright/thin/
harsh/clear–dull/warm/gentle/rich, pure/percussive/ringing–nasal, metallic–
wooden, and evolving. Ratings remained fairly consistent across multiple repeti-
tions. Several listeners noted that they used metallic and wooden to describe the 
recognized material of the instrument rather than a timbral quality, which would 
explain the loading of these scales on a separate component (one could expect 
metallic to correlate with bright/harsh and wooden with warm/rich). Similarly, the 
presence of a fourth dimension solely defined by evolving is likely due to reported 
listener difficulties in understanding what it meant, although the moderate loading 
of rich on the same component might indicate a spectral flux type of dimension (see 
Sect. 5.4.1).

Using a more diverse set of stimuli (twenty-three isolated notes from acoustic, 
electromechanical, and electronic instruments, with different pitches), twice as 
many VAME scales, and analyses that accounted for nonlinear relationships between 
the semantic variables, Zacharakis et al. (2014) arrived at a three-dimensional space 
summarized as luminance (brilliant/sharp–deep), texture (soft/rounded/warm–
rough/harsh), and mass (dense/rich/full/thick–light). This space was largely similar 
across two independent groups of native English and Greek-speaking listeners 
(musically experienced). Two different groups of English and Greek listeners pro-
vided dissimilarity ratings of the same set of sounds and the respective three- 
dimensional spaces derived from multidimensional scaling (MDS) were also found 
to be highly similar. Comparisons between the semantic and perceptual spaces illus-
trated strong correlations of luminance and texture, on the one hand, and texture 
with two of the three MDS dimensions on the other, independent of native language. 
Texture appeared to contribute to all three MDS dimensions. Results for mass were 
less conclusive. Moderately similar results have been obtained for an even larger set 
of musical sounds (forty-two sustained orchestral instrument notes of the same 
pitch) using bipolar scales and different methods of analysis (Elliott et al. 2013). A 
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strong, but not one-to-one, correspondence between semantic and perceptual dimen-
sions of timbre had previously been shown by Samoylenko et al. (1996) and Faure 
(2000), who collected free verbalizations during dissimilarity ratings.

5.3.2  Further Findings from Verbalization and Verbal 
Dissimilarity Tasks

Verbalization tasks, where participants are asked to describe timbral impressions in 
their own words, offer an alternative means of exploring the semantics of timbre. 
They can be used as a standalone method (Traube 2004; Saitis et al. 2017), or to 
complement a preceding task (e.g., describe timbral differences during pairwise 
sound comparisons: Samoylenko et al. 1996; Faure 2000), or to help design further 
experiments (e.g., extract relevant adjectives for anchoring semantic scales: Rioux 
and Västfjäll 2001; Grill 2012). Verbalization can be free, in the sense that very 
general open-ended questions are asked and no restriction is imposed on the format 
of the response, or constrained, where questions are more structured and responses 
must conform to a certain format. A qualitative method of deriving semantic prox-
imities from verbalization data relies on theoretical assumptions about cognitive 
categories and their relation to natural language (Dubois 2000). From what is being 
said and how it is being said, relevant inferences can be derived about how people 
conceptualize sensory experiences (semantic level) and can be further correlated 
with physical parameters (perceptual level).

Traube (2004) asked classical guitar players to freely describe the timbre of their 
instrument in relation to how it is produced. The ten most commonly used adjectives 
were dry, nasal, thin, metallic, bright, round, warm, thick, velvety, dark. By combin-
ing linguistic analysis and acoustic measurements, a strong correspondence was 
found between the plucking position along the string, the frequency location of the 
generated comb filter formants, and the use of adjectives describing vowel-like tim-
bre for similarly located vocal tract formants, which echoes the instruments are 
voices metaphor (Sect. 5.2.2). As an example, adding the nasal and oral cavities 
(nasal voice) causes a broadening of all vocal tract formant bandwidths and a flat-
tening of spectral peaks in the range 300–2500 Hz (Jakobson and Halle 1971; Mores 
2011). Traube found that guitars sound more nasal/bright/dry when plucked closer 
to the bridge because of analogous spectral effects. Conversely, plucking between 
the sound hole and the fingerboard produces spectra similar to nonnasal vowels and 
is perceived as more velvety/dark/round.

Rioux and Västfjäll (2001) and Saitis et al. (2017) have provided further evidence 
that, while perceived variations in how an instrument sounds rely on variations in 
style and the expertise of different musicians (Saitis et al. 2012), the broader seman-
tic categories emerging from verbal descriptions remain common across diverse 
musical profiles, thus reflecting a shared perception of acoustic information pat-
terns. Importantly, the verbal data revealed that vibrations from the violin body and 
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the bowed string (via the bow) are used as extra-auditory cues that not only help to 
better control the played sound but also contribute to its perceived qualities. For 
example, recent research on the evaluation of piano and violin quality has revealed 
that an increase in the vibrations felt at the fingertips of pianists and the left hand of 
violinists can lead to an increase in perceived sound loudness and richness (Saitis 
et al. 2018). Also, impressions like bright and rich mostly refer to the sustained part 
of a note, while words like soft tend to describe qualities of transients (cf., Brent 
2010; Bell 2015).

An example of constrained verbalization is the repertory grid technique. 
Listeners form bipolar constructs (i.e., antonymic pairs of adjectives) by articulating 
the difference between two sounds taken from a larger pool that is relevant to the 
aims of the task at hand (referred to as elements). Alternatively, three sounds are 
presented and listeners are first invited to select the least similar one and subse-
quently to verbally explain their grouping. Finally, listeners are asked to rate all 
elements on each new construct. The resulting grid of constructs and elements, 
essentially semantic differential ratings, can then be evaluated with factor analyti-
cal, clustering, or multidimensional scaling techniques. Using this method, Grill 
(2012) found an expanded semantic space for electroacoustic “textures”, which 
combined dimensions pertinent mostly to such sounds (ordered–chaotic or coher-
ent–erratic, homogeneous–heterogeneous or uniform–differentiated) with dimen-
sions commonly found for voices and instruments (high–low or bright–dull, 
smooth–coarse or soft–raspy, tonal–noisy).

A semantic space can also be derived quantitatively through MDS of pairwise 
distances in a list of adjectives. Moravec and Štěpánek (2003) initially asked con-
ductors, composers, engineers, teachers, and musicians (three groups of bowed- 
string, wind, and keyboard performers) to provide words they typically use to 
describe the timbre of any musical instrument. The four most frequently mentioned 
words across all respondents (sharp, gloomy, soft, clear) were also among the four 
most frequently used in each of the three musician groups. Still, some within-group 
preferences were observed. Bowed-string players used sweet and warm more fre-
quently than both keyboard and wind performers. Similarly, narrow was much more 
popular with wind musicians. The thirty most frequently reported adjectives were 
subjected to dissimilarity ratings (Moravec and Štěpánek 2005) and MDS identified 
three dimensions closely matching luminance, texture, and mass (Zacharakis et al. 
2014), namely, gloomy/dark–clear/bright, harsh/rough–delicate, and full/wide–nar-
row, respectively.

Edwards (1978) collected a corpus of free verbalizations of trombone sound 
quality through interviews and a postal survey of over 300 trombone performers. A 
subset of the verbal data was arranged in terms of semantic similarity by the author 
himself on the basis of proximities identified in the corpus. This kind of dissimilar-
ity matrix was subsequently subjected to MDS. With respect to timbre, two dimen-
sions of small–wide and dull/round–clear/square emerged. A different subset of the 
verbalizations indicated a third timbral aspect referring to “amount” and “carrying” 
or “penetrating” properties of sound. These seem to generally agree with the find-
ings of Abeles (1979), Kendall and Carterette (1993b), and Nykänen et al. (2009). 
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In another trombone study, Pratt and Bowsher (1978) selected the scales compact–
scattered, dull–bright, and not penetrating–penetrating to correspond to Edwards’ 
three dimensions. It was found that the second and third scales were good discrimi-
nators of trombone timbres but compact–scattered was not. Indeed, the latter may 
not indicate size, which is the label Edwards gave to his first dimension, but may 
indicate density (see Sect. 5.2.1).

Fritz et al. (2012) had violinists arrange sixty-one adjectives for violin timbre on 
a two-dimensional grid (excel), so that words with similar meanings lay close 
together and those with different meanings lay far apart. The collected grids were 
converted into dissimilarity matrices using a custom distance metric between two 
cells (see p. 793 in Fritz et al. 2012) and MDS yielded three dimensions: warm/rich/
mellow versus metallic/cold/harsh (richness; texture), bright/responsive/lively ver-
sus muted/dull/dead (resonance; projection), and even/soft/light versus brash/rough/
raspy (texture; clarity). The parenthetical terms potentially correspond to semantic 
categories from the cognitive model proposed by Saitis et al. (2017). In both studies, 
violinists used words like lively, responsive, ringing, and even bright to describe the 
“amount of sound” perceived “under the ear” (resonance) and in relation to spatial 
attributes (projection). Differences between the labels of the found semantic dimen-
sions for trombone (wind) and violin (bowed string) timbre seem to generally agree 
with those observed by Moravec and Štěpánek (2003).

In the piano study of Bernays and Traube (2011), fourteen adjectives extracted 
from spontaneous verbalizations yielded a four-dimensional MDS space. Based on 
the first two dimensions (78% of the total variance explained) and additional hierar-
chical clustering, five adjectives were proposed to best represent a semantic space 
for piano timbre: bright, dry, dark, round, and velvety. Lavoie (2013) performed 
MDS on dissimilarities between adjectives describing classical guitar timbre. In 
agreement with Traube (2004), a dimension of velvety/dark–bright/dry was 
obtained, related to whether the string is plucked between the sound hole and the 
fingerboard versus closer to the bridge (like nasal); a dimension of round/bright–
dull/thin was associated with sound resonance and projection. It is worth noting the 
highly similar labels of the reported semantic spaces across the two instruments. To 
a certain extent, this may reflect shared conceptualization structures between musi-
cians whose primary instrument produces impulsive string sounds. On the other 
hand, given that all three studies were conducted with musicians from the Montreal 
region, it may be that these results mirror a verbal tradition specific to that geo-
graphic location, possibly due to a strong influence by one or more particular teach-
ers in the area (cf., Saitis et al. 2017).

5.4  Semantic Spaces of Timbre Revisited

Despite important methodological differences, the findings described in the previ-
ous section show remarkable similarities when certain classes of timbres (e.g., indi-
vidual instrument families) and mixed sets across distinct classes (e.g., various 
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orchestral instruments) are rated on verbal scales, but similarities are also evident 
when verbal descriptions are collected in the absence of sound examples (e.g., ver-
balization tasks, adjective dissimilarity ratings). The most salient dimensions can be 
interpreted broadly in terms of brightness/sharpness (or luminance), roughness/
harshness (or texture), and fullness/richness (or mass). The boundaries between 
these dimensions are sometimes blurred, while different types of timbres or sce-
narios of timbre perception evoke semantic dimensions that are specific to each case 
(e.g., nasality, resonance/projection, tonalness–noisiness, compact–scattered). 
Generally, no striking differences between expert and naïve listeners are observed in 
terms of semantic dimensions, although the former tend to be more consistent in 
their perceptions than the latter. In this section, the identified semantic dimensions 
of timbre are examined further through looking at their acoustic correlates (Sect. 
5.4.1) and comparisons between different languages and cultures (Sect. 5.4.2).

5.4.1  Acoustic Correlates

Impressions of brightness in timbre perception are typically found correlated with 
the spectral centroid, a scalar descriptor defined as the amplitude-weighted mean 
frequency of the spectrum (Siedenburg, Saitis, and McAdams, Chap. 1; Caetano, 
Saitis, and Siedenburg, Chap. 11), which indicates the midpoint of the spectral 
energy distribution (cf., Lichte 1941). In other words, frequency shifts in spectral 
envelope maxima are systematically perceived as changes in brightness. The spec-
tral centroid is typically found correlated with one of the dimensions (usually of 
three) that describe timbre dissimilarity spaces. A higher proportion of high- 
frequency energy also characterizes brightness in timbral mixtures arising from 
multitrack recorded music, although the absence of high pitch in such stimuli ren-
dered them as less bright (Alluri and Toiviainen 2010). This is because frequency 
shifts in pitch, too, are systematically perceived as changes in brightness (Cousineau 
et  al. 2014; Walker 2016). The sharpness factor in von Bismark’s (1974a) study 
(dull–sharp, soft–hard, dark–bright) was also strongly related to the frequency posi-
tion of the overall energy concentration of the spectrum, with sharper/harder/
brighter sounds having more energy in higher frequency bands. Similarly, Bloothooft 
and Plomp (1988) observed that verbal attributes of stationary sung vowels related 
to sharpness (including sharp–dull, shrill–deep, metallic–velvety, angular–round, 
and cold–warm) referred primarily to differences in spectral slope between the vow-
els. Acute (i.e., sharp) phonemes are also characterized by a concentration of energy 
in the higher frequencies of the spectrum (Jakobson and Halle 1971; Slawson 1985).

A model for estimating sharpness, originally proposed by von Bismarck (1974b), 
calculates the midpoint of the weighted specific loudness values in critical bands 
(Fastl and Zwicker 2007). Critical bands correspond to equal distances along the 
basilar membrane and represent the frequency bands into which the acoustic signal 
is divided by the cochlea. Grill (2012) found a strong correlation between bright–
dull electroacoustic textural sounds and the sharpness model, which is consistent 
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with the origin of the latter in psychoacoustic experiments with wideband noise 
spectra. However, Almeida et al. (2017) showed that the sharpness model insuffi-
ciently predicted brightness scaling data for tonal sounds. Marozeau and de 
Cheveigné (2007) proposed a spectral centroid formula based on the same concept 
of weighted partial loudness in critical bands, which better modeled the brightness 
dimension of dissimilarity ratings and was less sensitive to pitch variation compared 
to the classic spectral centroid descriptor.

Yet another verbal attribute that has been associated with spectral energy distri-
bution is nasality. Etymologically, nasality describes the kind of vocal sound that 
results from coupling the oral and nasal cavities (Sects. 5.2.2 and 5.3.2). However, 
it is sometimes used to describe the reinforcement of energy in higher frequencies 
at the expense of lower partials (Garnier et al. 2007; Mores 2011). In violin acous-
tics, nasality is generally associated with a strong frequency response in the vicinity 
of 1.5 kHz (Fritz et al. 2012). Kendall and Carterette (1993b) found that nasal ver-
sus rich wind instrument sounds had more energy versus less energy, respectively, 
in the upper harmonics, with rich timbres combining a low spectral centroid with 
increased variations of the spectrum over time. Sounds with a high versus a low 
spectral centroid and spectral variation were perceived as reedy versus brilliant, 
respectively. Adding a violin note in a set of wind instrument timbres confirmed a 
strong link between nasality and the spectral centroid, but rich and brilliant were 
correlated only with spectral variation and only to some modest degree (Kendall 
et al. 1999). Helmholtz (1877) had originally associated the nasality percept specifi-
cally with increased energy in odd numbered upper harmonics, but this hypothesis 
remains unexplored.

Are timbral brightness and sharpness the same percept? Both of them relate to 
spectral distribution of energy, and most of the related studies seem to suggest at 
least partial similarities, but there is still no definite answer to this question. Štěpánek 
(2006) suggested that a sharp timbre is one that is both bright and rough. However, 
semantic studies of percussive timbre reveal two independent dimensions of bright-
ness and sharpness/hardness (Brent 2010; Bell 2015). Brighter percussive timbres 
appear associated with higher spectral centroid values during attack time, while 
sharp/hard relates to attack time itself (i.e., sharper/harder percussive sounds feature 
shorter attacks). Attack time refers to the time needed by spectral components to 
stabilize into nearly periodic oscillations, and it is known to perceptually distinguish 
impulsive from sustained sounds (McAdams, Chap. 2). Furthermore, concerning 
brightness, there seems to exist a certain amount of interdependency with fullness. 
Sounds that are described as thick, dense, or rich are also described as deep or less 
bright and brilliant, while nasality combines high-frequency energy with low spec-
tral spread and variability. The acoustic analyses of Marozeau and de Cheveigné 
(2007) and Zacharakis et al. (2015) suggest that brightness may not only relate to 
spectral energy distribution but also to spectral detail.

To further complicate things, a number of studies based on verbalizations that 
were collected either directly from musicians or through books and magazines of 
music revealed a semantic dimension of timbre associated with a resonant and ring-
ing but also bright and brilliant sound that can project (Sect. 5.3.2). This suggests an 
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aspect of timbre that is primarily relevant to playing an instrument and is associated 
with assessing how well its sound is transmitted across the performance space. It 
also suggests an interaction between perceived sound strength and timbral bright-
ness. Based on sound power measurements and audio content analysis of single 
notes recorded at pianissimo and fortissimo across a large set of standard orchestral 
instruments (including some of their baroque and classical precursors), Weinzierl 
et al. (2018b) were able to show that the intended dynamic strength of an instrument 
can be identified as reliably by sound power as by combining several dimensions of 
timbral information. Indeed, the most important timbral cue in this context was 
found to be spectral skewness (Caetano, Saitis, and Siedenburg, Chap. 11) with a 
left-skewed spectral shape (i.e., a shift of the peak energy distribution toward higher 
frequencies) indicating high dynamic strength.

Helmholtz (1877) claimed that the sensation of roughness arises from the 
increasingly dissonant (unpleasant) sounding intervals formed between higher adja-
cent partials above the sixth harmonic. Empirical data from Lichte (1941) and later 
Schneider (1997) support this view, which has also lent itself to theories of musical 
tension (McAdams, Chap. 8). However, Stumpf (1898) disagreed with Helmholtz 
and provided examples of dissonant chords that were judged as not rough, high-
lighting a difference between musical dissonance and sensory dissonance. More 
recent evidence also suggests that roughness (expressing sensory dissonance) and 
musical dissonance may constitute distinct percepts (McDermott et  al. 2010; 
Bowling et al. 2018). Physiologically, impressions of roughness and/or sensory dis-
sonance can be linked to the inability of the cochlea to resolve frequency pair inputs 
whose interval is smaller than the critical band, causing a periodic “tickling” of the 
basilar membrane (Helmholtz 1877; Vassilakis and Kendall 2010).

Further psychophysical experiments have linked roughness to envelope fluctua-
tions within a critical band produced by amplitude-modulation frequencies in the 
region of about 15–300 Hz (Fastl and Zwicker 2007; Vassilakis and Kendall 2010). 
For a given amplitude spectrum and a given modulation depth, modulations with an 
abrupt rise and a slow decay have been shown to produce more roughness than 
modulations with a slow rise and an abrupt decay (Pressnitzer and McAdams 1999). 
For electroacoustic sounds, the effect of sudden changes in loudness over broad 
frequency ranges is described as coarse and raspy (Grill 2012). Existing psycho-
acoustic models estimate roughness using excitation envelopes (Daniel and Weber 
1997) or excitation-level differences (Fastl and Zwicker 2007) produced by ampli-
tude modulation in critical bands. Nykänen et al. (2009) found that both models of 
sharpness (von Bismarck 1974b) and roughness (Daniel and Weber 1997) contrib-
uted to predictions of roughness of saxophone sound, but sharpness was a much 
more important contributor. However, and as noted already, these models were 
originally designed based on experiments with wideband noise spectra and thus 
may not be applicable for more natural and tonal sounds like those made by a saxo-
phone (or any musical instrument for that matter).

Sounds perceived as rough are also described as harsh—ratings on the latter are 
typically found correlated with ratings on the former. However, acoustic analyses 
tend to associate harshness mainly with too much high-frequency energy (i.e., 
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unpleasant). This is also evident in psycholinguistic studies of violin timbre (Fritz 
et al. 2012; Saitis et al. 2013) and voice quality (Garnier et al. 2007). Such descrip-
tions include strident, shrill, piercing, harsh, and even nasal. Note that an implicit 
connection of roughness to energy in higher frequencies is also claimed by 
Helmholtz’s hypothesis. Zacharakis et  al. (2014, 2015) found that sounds with 
stronger high partials were described as rough or harsh and the opposite as rounded 
or soft and, to a lesser extent, as bright or sharp. They went on to suggest that spec-
tral energy distribution is manifested primarily in descriptions of texture and not of 
brightness, which also relied on spectral detail. Rozé et al. (2017) showed that inap-
propriate bowing and posture coordination in cello performances resulted in energy 
transfer toward higher frequency harmonics, a decrease in attack time, and an 
increase in amplitude fluctuation of individual harmonics; this kind of timbre was 
perceived as harsh and shrill. Under optimal playing conditions, cello sounds were 
described as round.

A concept related to sensory dissonance, but distinct from roughness, is that of 
noisiness versus tonalness. The latter signifies the perception of strong stationary 
and near-periodic spectral components. As such, it has a close relation to pitch pat-
terns. In this case, the timbre tends to be described as pure, clear or clean, and even 
bright. When random transients dominate the spectrum, the timbre tends to be 
described as noisy or blurry and messy. A dimension of tonal–noisy has been found 
for different types of timbres, including electroacoustic sounds (Sect. 5.3). However, 
specifically in bowed-string instruments, audible noise can still be present even 
when a clear and steady tonal component is established (Štěpánek 2006; Saitis et al. 
2017). One source of such noise, sometimes described as rustle, is the self- excitation 
of subfundamental harmonics, particularly in the upper register (Štěpánek and 
Otcěnásek 1999). Another source is the differential slipping of bow hairs in contact 
with the string (McIntyre et al. 1981). In fact, adding such audible noise to synthesis 
models for instrumental sounds is known to enhance their perceived naturalness 
(Serra 1997).

Helmholtz (1877) and Lichte (1941) found that the predominance of odd har-
monics in a spectrum (such as clarinet notes) elicits an impression of hollowness or 
thinness compared to sounds with more balanced spectral envelopes (such as bowed 
strings) that are perceived as full. Despite explicitly synthesizing odd and even har-
monic spectra to test the thin–full hypothesis, von Bismarck (1974a) did not report 
any relation between those stimuli and his fullness factor. Hollowness has also been 
found connected to the amount of phantom partials (nonlinearly generated frequen-
cies due to string tension modulation) in piano sounds (Bensa et al. 2005). A small 
number of phantom partials produces a hollow timbre; gradually increasing the 
presence of such partials gives a rounder timbre, but sounds with a very large num-
ber of phantom partials (i.e., more such partials in the upper register) can appear 
metallic and aggressive.

The mass dimension of Zacharakis et al. (2014) exhibited three strong correla-
tions in the English listeners’ group (results for the Greek group were less conclu-
sive). Thickness and density increased with inharmonicity and with fluctuation of 
the spectral centroid over time and decreased with fundamental frequency. Similar 
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to the first correlation, Bensa et al. (2005) observed that synthetic piano sounds with 
the least high-frequency inharmonic partials were perceived as poor, whereas 
increasing their number resulted in richer timbres. The second correlation appears 
to be in agreement with the connection between richness and high spectral variation 
reported for wind instruments by Kendall and Carterette (1993b) and for sustained 
instruments by Elliott et al. (2013) and may relate, at least partially, to multiple- 
source sounds with higher spectral flux values below 200 Hz that are perceived as 
fuller (Alluri and Toiviainen 2010).

The correlation between thickness/density and fundamental frequency found by 
Zacharakis et al. (2014) emerged largely due to the presentation of stimuli with dif-
ferent pitches. This acoustic interpretation of thickness/density alludes to an attri-
bute of pure tones described by Stumpf (1890) as volume (Tongröße in German), 
which aligns inversely with pitch in that lower/higher pitches are larger/smaller. 
Together, the three attributes of volume, pitch, and loudness determine what Stumpf 
termed tone color (Tonfarbe). Rich (1916) provided empirical evidence that volume 
(he used the word extensity) can be distinct from pitch in pure tones. Terrace and 
Stevens (1962) showed that volume can also be perceived in more complex tonal 
stimuli, specifically, quarter-octave bands of pitched noise, and that it increases with 
loudness but decreases with pitch. Stevens (1934) observed that pure and complex 
tones further possess an attribute of density, which changes with loudness and pitch 
in a manner similar to perceptions of brightness: the brighter the tone, the louder 
and the less dense it is (Boring and Stevens 1936; cf., Zacharakis et  al. 2014). 
Empirical observations of volume and density perceptions for pure tones have cast 
doubt on Schaeffer’s (1966) claim that these have no timbre (Sect. 5.2.1).

Further experiments by Stevens et  al. (1965) provided empirical support to 
Koechlin’s claim that density is proportional to loudness and inversely proportional 
to volume (Sect. 5.2.1). An inverse relation between spectral centroid and volume 
was observed, which has been confirmed by Chiasson et al. (2017). They found that 
high energy concentrated in low frequencies tends to increase perceived volume, 
whereas low energy more spread out in higher frequencies tends to decrease it. 
Similarly, Saitis et al. (2015) showed that violin notes characterized as rich tended 
to have a low spectral centroid or stronger second, third, and fourth harmonics, or a 
predominant fundamental. Given that in harmonic sounds the fundamental is the 
lowest frequency, these findings generally agree with Helmholtz’s (1877) claim that 
the stronger versus weaker the fundamental is relative to the upper partials, the 
richer versus poorer the sound is perceived.

5.4.2  Influence of Language and Culture

In the interlanguage study of Zacharakis et al. (2014, 2015), the overall configura-
tional and dimensional similarity between semantic and perceptual spaces in both 
the English and Greek groups illustrates that the way timbre is conceptualized and 
communicated can indeed capture some aspects of the perceptual structure within 
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a set of timbres, and that native language has very little effect on the perceptual 
and semantic processing involved, at least for the two languages tested. There also 
seems to be some agreement regarding the number and labeling of dimensions 
with studies in German (von Bismarck 1974a; Štěpánek 2006), Czech (Moravec 
and Štěpánek 2005; Štěpánek 2006), Swedish (Nykänen et al. 2009), and French 
(Faure 2000; Lavoie 2013). Chiasson et al. (2017) found no effect of native lan-
guage (French versus English) on perceptions of timbral volume. All these studies 
were conducted with groups of Western listeners and with sounds from Western 
musical instruments. Further evidence of whether language (but also culture) influ-
ences timbre semantics comes from research involving non-Western listeners and 
non- Western timbres.

Giragama et  al. (2003) asked native speakers of English, Japanese, Bengali 
(Bangladesh), and Sinhala (Sri Lanka) to provide dissimilarity and semantic ratings 
of six electroacoustic sounds (one processed guitar, six effects). Multidimensional 
analyses yielded a two-dimensional MDS space shared across the four groups and 
two semantic factors (sharp/clear and diffuse/weak) whose order and scores varied 
moderately between languages and related differently to the MDS space. For 
Bengali and Sinhala, both Indo-Aryan languages, the similarity between the respec-
tive semantic spaces was much stronger, and they correlated better with the MDS 
space than for any other language pair, including between the Indo-European 
English and Indo-Aryan relatives. Furthermore, the sharp/clear and diffuse/weak 
factors closely matched the semantic space of electroacoustic textures found by 
Grill (2012), whose study was conducted with native German speakers.

Alluri and Toiviainen (2010) found a three-dimensional semantic timbre space of 
activity (strong–weak, soft–hard), brightness (dark–bright, colorless–colorful), and 
fullness (empty–full) for Indian pop music excerpts rated by Western listeners who 
had low familiarity with the genre. Here timbre refers to timbral mixtures arising 
from multiple-source sounds. Both the number and nature of these dimensions are 
in good agreement with Zacharakis et  al. (2014). Furthermore, similar semantic 
spaces were obtained across two groups of Indian and Western listeners and two sets 
of Indian and Western pop music excerpts (Alluri and Toiviainen 2012). Acoustic 
analyses also gave comparable results between the two cultural groups and between 
the two studies. Intrinsic dimensionality estimation revealed a higher number of 
semantic dimensions for music from one’s own culture compared to a culture that 
one is less familiar with, suggesting an effect of enculturation. Furthermore, 
Iwamiya and Zhan (1997) found common dimensions of sharpness (sharp–dull, 
bright–dark, distinct–vague, soft–hard), cleanness (clear–muddy, fine–rough), and 
spaciousness (rich–poor, extended–narrow) for music excerpts rated separately by 
Japanese and Chinese native speakers (type of music used was not reported). These 
dimensions appear to modestly match those found by Alluri and Toiviainen (2010) 
and by Zacharakis et al. (2014).

Taken as a whole, these (limited) results suggest that conceptualization and com-
munication of timbral nuances is largely language independent, but some culture- 
driven linguistic divergence can occur. As an example, Zacharakis et  al. (2014) 
found that, whereas sharp loaded highest on the luminance factor in English, its 
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Greek equivalent οξύς (oxýs) loaded higher on the texture dimension of the respec-
tive semantic space. Greek listeners also associated παχύς (pakhús), the Greek 
equivalent of thick, with luminance rather than mass. Furthermore, a well-known 
discrepancy exists between German and English concerning the words Schärfe and 
sharpness, respectively (see Kendall and Carterette 1993a, p. 456). Whereas Schärfe 
refers to timbre, its English counterpart pertains to pitch. On the one hand, such dif-
ferences between languages may not imply different mental (nonlinguistic) repre-
sentations of timbre but rather reflect the complex nature of meaning.

On the other hand, there exists evidence that language and culture can play a 
causal role in shaping nonlinguistic representations of sensory percepts, for exam-
ple, auditory pitch (Dolscheid et al. 2013). This raises a crucial question concerning 
the use of verbal attributes by timbre experts such as instrument musicians: To what 
extent does experience with language influence mental representations of timbre? 
Based on their findings, Zacharakis et al. (2015) hypothesized that “there may exist 
a substantial latent influence of timbre semantics on pairwise dissimilarity judge-
ments” (p.  408). This seems to be supported from comparisons between general 
dissimilarity, brightness dissimilarity, and brightness scaling data by Saitis and 
Siedenburg (in preparation), but more research is needed to better understand the 
relationship between linguistic and nonlinguistic representations of timbre. 
Nevertheless, semantic attributes, such as brightness, roughness, and fullness, appear 
generally unable to capture the salient perceptual dimension of timbre responsible 
for discriminating between sustained and impulsive sounds (Zacharakis et al. 2015).

5.5  Timbre Semantics and Room Acoustics: Ambiguity 
in Figure-Ground Separation

Imagine yourself listening to recordings of the famous violinist Yehudi Menuhin 
(1916–1999) performing on his Khevenhüller Strad in different concert halls. Does 
your impression of the sound of the violin or the sound of Menuhin change from 
one recording or hall to another? The answer would be almost certainly yes. The 
perceived timbre of a sound is not only a result of the physical characteristics of its 
source: It is always influenced by the properties of the acoustic environment that 
connects the sound source and the listener. Putting it differently, in evaluating the 
timbre of a sound, listeners invariably evaluate timbral characteristics of the pre-
sentation space too. The influence of the latter on the spectral shape of a sound, as 
illustrated by the room acoustic transfer function (Weinzierl and Vorländer 2015), 
is manifested in a characteristic amplification or attenuation of certain frequencies, 
superimposed by an increasing attenuation of the spectral envelope toward higher 
frequencies due to air absorption. The extent of these effects can vary substantially 
from one space to another, depending on the geometry and materials of the room.

When listeners try to perceptually separate the properties of the sound source 
from the properties of the room, they face a situation that has been described as 
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figure-ground organization in Gestalt psychology. Although its origins lie in visual 
scene analysis, organizing a perceptual stream into foreground (figure) and back-
ground (ground) elements has been shown to apply also in the auditory realm 
(Bregman 1990). Listeners can group foreground sounds across the spectral or tem-
poral array and separate them from a background of concurrent sounds. When tim-
bre acts as a contributor to sound source identity (Siedenburg, Saitis, and McAdams, 
Chap. 1), figure-ground segregation is generally unambiguous. A violin note will 
always be recognized as such, categorically as well as relative to concurrent notes 
from other instruments, regardless of the performance venue—excluding deliberate 
attempts to blend instrumental timbres (Lembke and McAdams 2015). However, 
figure-ground separation becomes more complicated when one looks beyond sound 
source recognition.

During language socialization of musicians or music listeners, where timbre func-
tions as qualia (Siedenburg, Saitis, and McAdams, Chap. 1), there is not a single 
moment when a musical instrument is heard without a room acoustic contribution 
(except under anechoic room conditions). Even if the specific characteristics of the 
respective performance spaces are different, it can be assumed that common proper-
ties of any room acoustic environment (e.g., high-frequency spectral attenuation and 
prolongation by reverberation) will, to a certain degree, become part of the mental 
representation of an instrument’s sound. It can be shown, for instance, that the early 
part of a room’s reverberation tail tends to merge with the direct sound perceptually, 
increasing the perceived loudness of the sound rather than being attributed to the 
response of the room (Haas 1972). In addition, many musical instruments have their 
own decay phase, and with decay times of up to 3 s for violins on the open string 
(Meyer 2009), it becomes difficult to predict the extent to which listeners can success-
fully segregate the source and room streams when communicating timbral qualities.

The role of timbre in the characterization of room acoustic qualities has tradi-
tionally received little attention. In the current standard on room acoustic measure-
ments of musical performance venues, there is not a single parameter dedicated to 
the timbral properties of the hall (ISO 3382-1:2009). However, recent studies have 
highlighted timbre as a central aspect of room acoustic qualities (Lokki et al. 2016), 
with brilliance, brightness, boominess, roughness, comb-filter-like coloration, 
warmth, and metallic tone color considered as the most important timbral attributes 
of a specific performance venue (Weinzierl et al. 2018a, b). The ways in which the 
semantics of spaces interact with the semantics of timbre and the extent to which 
figure-ground separation is reflected in the language of space and source are objects 
for future research.

5.6  Summary

Timbre is one of the most fundamental aspects of acoustic communication and yet 
it remains one of the most poorly understood. Despite being an intuitive concept, 
timbre covers a very complex set of auditory attributes that are not accounted for by 
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frequency, intensity, duration, spatial location, and the acoustic environment 
(Siedenburg, Saitis, and McAdams, Chap. 1), and the description of timbre lacks a 
specific sensory vocabulary. Instead, sound qualities are conceptualized and com-
municated primarily through readily available sensory attributes from different 
modalities (e.g., bright, warm, sweet) but also through onomatopoeic attributes 
(e.g., ringing, buzzing, shrill) or through nonsensory attributes relating to abstract 
constructs (e.g., rich, complex, harsh). These metaphorical descriptions embody 
conceptual representations, allowing listeners to talk about subtle acoustic varia-
tions through other, more commonly shared corporeal experiences (Wallmark 
2014): with reference to the human and nonhuman voice (instruments are voices), 
as a tangible object (sound is material), and in terms of friction (noise is friction). 
Semantic ratings and factor analysis techniques provide a powerful tool to empiri-
cally study the relation between timbre perception (psychophysical dimensions), its 
linguistic descriptions (conceptual-metaphorical dimensions), and their meaning 
(semantic dimensions).

Common semantic dimensions have been summarized as brightness/sharpness 
(or luminance), roughness/harshness (or texture), and fullness/richness (or mass) 
and correspond strongly, but not one-to-one, with the three psychophysical dimen-
sions along which listeners are known to perceive timbre similarity. In some cases, 
the dimensions are relatively stable across different languages and cultures, although 
more systematic explorations would be necessary to establish a cross-cultural and 
language-invariant semantic framework for timbre. A recent study with cochlear 
implant listeners indicated a dimension of brightness and one of roughness in rela-
tion to variations in electrode position and/or pulse rate (Marozeau and Lamping, 
Chap. 10). Furthermore, notions of timbral extensity and density have been central 
to spectromorphological models of listening and sound organization (Sect. 5.2.1) 
and to theories of sound mass music (Douglas et al. 2017). More generally, timbre 
is implicated in size recognition across a range of natural (e.g., speech, animals; see 
Mathias and von Kriegstein, Chap. 7) and possibly even abstract sound sources 
(Chiasson et al. 2017).

Long-term familiarity with and knowledge about sound source categories influ-
ence the perception of timbre as manifested in dissimilarity ratings (McAdams, 
Chap. 2). An interesting question that has not been fully addressed yet is whether 
source categories further exert an effect on the semantic description of timbre, given 
the strong link between linguistic and perceptual representations. In this direction, 
Saitis and Siedenburg (in preparation) compared ratings of dissimilarity based on 
brightness with ratings of general dissimilarity and found that the former relied 
primarily on (continuously varying) acoustic properties. Could the mass dimension 
be more prone to categorical effects due to its connection with source size 
 recognition? Closely related to this question is the need to specify the role of affec-
tive mediation in timbre semantics. For example, bright timbres tend to be associ-
ated with happiness, dull with sadness, sharp with anger, and soft with both fear and 
tenderness (Juslin and Laukka 2004). McAdams (Chap. 8) discusses the effect of 
timbral brightness on emotional valence in orchestration contexts.
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Nonauditory sensory attributes of timbre exemplify a particular aspect of seman-
tic processing in human cognition: People systematically make many crossmodal 
mappings between sensory experiences presented in different modalities (Simner 
et al. 2010) or within the same modality (Melara and Marks 1990). The notion of 
sound color, timbre’s alter ego, is exemplified in terms such as the German 
Klangfarbe (Klang + Farbe = sound + color) and the Greek ηχόχρωμα [ichóchroma] 
(ήχος [íchos] + χρώμα [chróma] = sound + color) and is itself a crossmodal blend. 
In viewing timbre semantics through the lens of crossmodal correspondences, ques-
tions about the perceptual and neural basis of the former can thus be reconsidered. 
What timbral properties of sound evoke the analogous impression as touching a 
smooth surface or viewing a rounded form? Are perceptual attributes of different 
sensory experiences (e.g., a smooth surface and a rounded form) mapped to similar 
or distinct timbres? Are crossmodal attributes (e.g., smooth, rounded) a result of 
supramodal representations (Walsh 2013) or of direct communication between 
modalities (Wallmark 2014)? Addressing these questions requires a comprehensive 
examination of auditory-nonauditory correspondences, including the collection of 
behavioral and neuroimaging data from appropriate tasks that extend beyond the 
semantic differential paradigm.
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Chapter 6
Neural Correlates of Timbre Processing

Vinoo Alluri and Sudarsana Reddy Kadiri

Abstract The brain is the most complex biological system that exists. Timbre, in 
its very nature, is a multidimensional concept with several levels of abstraction thus 
rendering the investigation of its processing in the brain extremely challenging. 
Timbre processing can be discussed in relation to levels of abstraction. Low- to mid- 
level representations can be associated with the neural representation of acoustic 
structure while high-level abstractions correspond to the neural representation of 
sound source properties. Furthermore, neural correlates of timbre can be broadly 
classified based on three stimulus categories, that is, those pertaining to music, 
speech, and environmental sounds. This chapter summarizes studies that have 
attempted to uncover neural correlates of varying levels of timbre abstractions. 
Finally, developments in methodological approaches are described, including the 
shift from univariate to multivariate statistical models, the employment of more 
naturalistic stimuli, and brain measurement paradigms from hitherto controlled 
auditory paradigms.

Keywords Acoustic feature decomposition · Dual-processing pathways · 
Hierarchical levels of abstraction · Multivoxel pattern analysis · Neuroimaging · 
Secondary auditory cortex

6.1  Introduction

Operationally, timbre can be defined as the attribute that discriminates sounds (such 
as speech, music, and environmental sounds) of equal pitch, loudness, and duration. 
In contrast to the latter facets of sound that rely on reasonably clearly defined 

V. Alluri (*) · S. R. Kadiri 
International Institute of Information Technology, Gachibowli, Hyderabad, India
e-mail: vinoo.alluri@iiit.ac.in; sudarsanareddy.kadiri@research.iiit.ac.in

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14832-4_6&domain=pdf
mailto:vinoo.alluri@iiit.ac.in
mailto:sudarsanareddy.kadiri@research.iiit.ac.in


152

physical dimensions (e.g., pitch represented by periodicity and loudness represented 
by root-mean-squared energy), timbre is multidimensional, and to date there is a 
lack of consensus on the acoustic features that capture it exhaustively. Functionally, 
timbre is a key determinant of sound identity as it is the principal facet driving pho-
netic identity (such as vowels and consonants) in speech, musical instrument recog-
nition (such as piano and violin), and identification of environmental sounds (such 
as car horns and closing doors). This distinction helps characterize timbre at varying 
levels of abstraction in the brain, which in turn stimulates hypotheses about how 
timbre is represented in the auditory system.

6.1.1  Levels of Abstraction

At low and middle levels of abstraction, the neural correlates of timbre have been 
associated with the representation of acoustic structure. On the other hand, the neu-
ral representation of sound source properties or sound sources (e.g., violin versus 
piano or human voices versus tool sounds) relates to high levels of abstraction. 
These high-level representations are characterized by perceptual constancy. For 
instance, a plucked sound of a violin string and a bowed sound of the same instru-
ment are still perceptually categorized into one category, that is, a violin sound, 
despite the variance in articulation that results in varying timbral properties, which 
is also referred to as its “macrotimbre” (Sandell 1998). Similarly, a baby’s laughter 
and cry would still be categorized as human sounds albeit with varying emotional 
content. A higher-level or meta-level abstraction of timbre can be described in terms 
of timbral environments (Ferrer 2011), wherein an amalgamation of low-level to 
high-level representations of timbre can give rise to the ability to identify and cate-
gorize prototypical mixtures of sources. For example, humans are able to identify 
the overall emerging sound of a classical ensemble versus a big-band orchestra ver-
sus a hip-hop group; humans also categorize predominant environmental sounds 
emerging from a house by the sea versus those in the city versus those surrounding 
a busy restaurant kitchen.

An interesting analogy is drawn by Bregman (1990) to explain the phenomenon 
of emergence of a higher-order form from lower-order constituent elements. The 
author uses a knife as an example, wherein the molecules that constitute a knife are 
not sharp, however sharpness can be considered as an emergent property of a knife. 
Gjerdingen and Perrott (2008) describe global sound or overall timbre as an 
agglomerate “of spectral and rapid time-domain variability in an acoustic signal,” 
which is put together by the listener in a Gestalt-like manner that thereby enables 
listeners to identify, classify, and categorize, for example, the genre of the heard 
piece of music.
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6.1.2  Hierarchical Processing

A question arises concerning the direction of hierarchical processing in the auditory 
brain, that is, if properties of sound are perceived in a bottom-up or top-down fash-
ion. One could surmise that sounds that are novel and unnatural would be processed 
in a bottom-up fashion as a mental representation would not yet exist. On the other 
hand, sounds that are either familiar or more relevant (e.g., human voices versus 
synthesized timbres) would engender top-down processing by selective attention or 
weighted attention on the most relevant acoustic features. This dichotomy does not 
imply that a listener employs one of the two approaches for sensory perception but 
that perceptual mechanisms develop during the lifespan based on learning, familiar-
ity, and conditioning of the mind, or by interaction with the environment. As such, 
the direction of hierarchical processing is chosen subconsciously based on the con-
text and state of the listener. This view is analogous to the Giordano et al. (2010) 
description of young perceivers (or children) and adults wherein young perceivers 
try to avoid perceptual errors (thereby employing a bottom-up approach) by focus-
ing on sensory content, whereas adults automatically employ a top-down approach 
to make the most educated guess even in the absence of accurate information (anal-
ogous to Helmholtz’s theory of unconscious inference).

These distinctions can be discussed in terms of hierarchical feature-processing 
models of the auditory brain (Leaver and Rauschecker 2010). The ideology behind 
this putative hierarchy stems from research on the visual system, wherein informa-
tion is broken down into its basic elements and is subsequently integrated into a 
complex representation of the image in the brain (Wessinger et al. 2001). Similarly, 
in the auditory modality, low-levels and mid-levels of abstraction capture acoustic 
structure and perceivable dimensions, respectively, which in turn contribute to 
higher levels of abstraction that enable the listener to make complex timbral 
 judgements (qualifying, classifying, or categorizing the sound source). One of the 
earliest functional magnetic resonance imaging (fMRI) studies that investigated 
neural pathways responsible for processing complex sounds demonstrated the pres-
ence of two distinct pathways (Rauschecker 1998) (see Fig. 6.1). Both pathways 
stem from the core auditory areas (i.e., the primary auditory cortex A1 and rostral 
area) but fork out ventrally and dorsally only to converge later in the prefrontal 
cortex. This hierarchically organized object-processing pathway is associated with 
the anteroventral auditory pathway, which is key in processing auditory objects 
(what is the sound?) in contrast to the dorsal auditory pathway that is responsible for 
processing spatial aspects (where is the sound?) (Rauschecker and Scott 2009; 
Bizley and Cohen 2013).

Specifically, the ventral pathway branches out from A1 to the lateral belt of the 
superior temporal cortex while the dorsal pathway connects to the posterior parietal 
areas. The dorsal stream is purported to process spatial information related to 
sounds. The ventral stream plays a significant role in processing auditory patterns of 
complex sounds and, hence, is key in processing timbre. Furthermore, evidence 
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suggests that processing of levels of abstraction from low to high varies as a func-
tion of distance from the primary auditory cortex in the anterolateral direction (see 
Sect. 6.2.1 for more details).

6.1.3  Types of Stimuli

Historically, several neuropsychological studies on timbre perception (summarized 
in Sect. 6.2) have relied on the observation of neural encoding of carefully synthe-
sized sounds and changes in them in order to unravel low-level processing of timbre 
in the brain. This reductionist approach allows one to pinpoint neural responses to 
systematic manipulations of particular aspects of the sound. However, this approach 
renders the relevance of the results questionable since the vast majority of the human 
species almost never hears these synthetic sounds or natural sounds in isolation, 
thereby decreasing the behavioral relevance of the neural findings. Santoro et al. 
(2014) argue that our brains have evolved to efficiently encode sounds in natural 
settings. Hence, setting an appropriate, feasible auditory context is crucial in under-
standing how the brain processes any stimulus. On the other hand, studies that have 
investigated categorical encoding of timbre (e.g., representation of vocal sounds 
versus musical instruments) with real-world sounds give us more information on 

Fig. 6.1 Dual auditory processing scheme of the human brain. Anteroventral (green) and pos-
terodorsal (red) streams originating from the auditory belt. AC, auditory cortex; CS, central sulcus; 
IFC, inferior frontal cortex; IPL, inferior parietal lobule; PMC, premotor cortex; STS, superior 
temporal sulcus. Numbers correspond to Brodmann areas. (Reproduced from Rauschecker and 
Scott 2009; used with permission of the publisher, Nature Neuroscience)
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how the auditory system has evolved to efficiently process the sounds that are of 
most importance to a species.

Neuroscientific research on timbre can be broadly classified into three catego-
ries: neural correlates of timbre in the context of music, speech, and environmental 
sounds. Low levels of abstraction of timbre in the context of speech have been asso-
ciated with phonetic identity while high levels of abstraction have been representa-
tive of speaker identity (Town and Bizley 2013). In music, timbre studies have 
focused on either low-level to mid-level features associated with the perceived 
 similarity in acoustic structure within (or across) instrument categories or on high-
level abstraction in terms of perceptual constancy or invariance as described above. 
Environmental sounds can be characterized as an amalgamation of units of sounds 
that do not particularly change over time and are relatively static, leading to mid- 
level representations that reflect more complex acoustic regularities (Mlynarski and 
McDermott 2018).

6.1.4  Measurement Modalities and Modeling Approaches 
of Brain Activity

The majority of neuroscientific studies have employed fMRI as a means to observe 
brain activity (note that all abbreviations appear in Table 6.1). Responses measured 
using fMRI serve as an indirect measure of brain activity and as a result offer a 
window into slow-moving changes in the brain (around 3  s) and fMRI helps to 
address where in the brain changes occur due to stimulus changes.

Table 6.1 Abbreviations DMN Default mode network
EEG Electroencephalography
fMRI Functional magnetic resonance imaging
HG Heschl’s gyrus
IC Inferior colliculus
MEG Magnetoencephalography
MMN Mismatch negativity
MTG Middle temporal gyrus
MVPA Multivariate pattern analysis
PET Positron emission tomography
PT Planum temporale
pMFG Posterior middle frontal gyrus
pMTG Posterior middle temporal gyrus
SOC Superior olivary complex
STC Superior temporal cortex
STG Superior temporal gyrus
STRF Spectrotemporal receptive field
STS Superior temporal sulcus
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Positron emission tomography (PET) serves as another means of localizing brain 
responses with greater spatial resolution than temporal resolution, but it is uncom-
mon in human studies due to the need to inject radioactive tracers into participants 
to track metabolic activity. On the other hand, electroencephalography (EEG) is a 
direct measure of electrical brain activity represented by changes in scalp voltage. 
However, this method suffers from poor spatial resolution as the activity is picked 
up only from the scalp and is unable to capture neuronal activations of deep brain 
structures. Hence, EEG offers a window into understanding when the brain responds 
to changes. Magnetoencephalography (MEG) is the magnetic counterpart of EEG 
with greater potential for neuronal source localization.

While the majority of neuroimaging studies have employed univariate methods, 
recently there has been an increase in multivariate statistical approaches, namely, 
multivariate pattern analysis (MVPA). This method allows identification of distrib-
uted patterns that are representative of stimulus-evoked activations (Kriegeskorte 
et al. 2006; Stelzer et al. 2013) and the term is synonymous with multivoxel pattern 
analysis. This approach lies more in the domain-integrative approach of brain func-
tioning, which aims to identify interactions between regions that allow integrated 
functioning (rather than the traditional segregation-based approach, which aims to 
identify local regions that are specialized for a particular task). MVPA has been 
further advocated as more sensitive than typical univariate analyses (Davis et al. 
2014; Allen et al. 2017).

Univariate models are representative of a restricted kind of encoding model, that 
is, models that enable prediction of brain activity using stimulus properties typically 
at a voxel-level. Decoding approaches, on the other hand, allow prediction of stimu-
lus features or properties based on brain activity (see Fig. 6.2) and are fast gaining 
popularity. MVPA is typically used in decoding approaches. Finally, the combina-
tion of encoding and decoding approaches permits capitalization of their relative 

Fig. 6.2 Schematic 
depiction of the distinction 
between encoding and 
decoding in brain imaging. 
The figure is for 
representational purposes 
only; colors indicate 
general activity and do not 
correlate with only 
encoding or only decoding 
activities. (Reproduced 
from Varoquaux and 
Thirion 2014; used with 
permission of the 
publisher, GigaScience)
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strengths by providing a sanity check of the results, which boosts the robustness of 
the results and hence the conclusions drawn from them.

The following sections are organized to address neural processing of timbre in 
light of the aforementioned levels of abstraction and methods. Section 6.2 describes 
neural correlates of timbre related to lower levels of abstraction. The subsequent 
Sections 6.3 and 6.4 deal with high-level neural representations of timbre ranging 
from sound source identification to encoding global sound qualities.

6.2  Representation of Acoustic Structure

Transduction of raw auditory signals is a dynamic and rapid process, starting in the 
cochlea and leading to more compact and abstract representations as it moves along 
the primary auditory pathway (Mlynarski and McDermott 2017). Low-level repre-
sentations of auditory signals have been typically characterized by using a variety 
of feature-decomposition models. These models are developed based on identifying 
optimal temporal and spectral resolutions that best fit the observed brain responses 
and are further validated with new, independent brain data (Santoro et al. 2014).

A group of decompositions has traditionally dominated computational models of 
the auditory system and comprises the spectrotemporal receptive field (STRF) 
(Miller et al. 2002) and modulation spectrum or related representations (Santoro 
et  al. 2014) (see Elhilali, Chap.  12). These features can be termed low level to 
emphasize their relevance to the characterization of early processing in the cortical 
auditory stream and to distinguish them from source-related high-level features that 
are assumed to be object representations. However, such low-level STRF represen-
tations have been found to best capture neuronal encoding in the brain stem, but 
they fail to completely capture encoding in the auditory cortex as neurons there are 
found to be sensitive simultaneously to multiple stimulus features, thereby giving 
rise to mid-level representations that respond to combinations of low-level features. 
Hence, mid-level representations are akin to compact summaries by means of an 
efficient recoding of low-level features. This process can be construed as an inter-
mediate stage between peripheral processing and perceptual decision-making stages 
(McDermott and Simoncelli 2011). For example, McDermott et al. (2013) describe 
sound texture as mid-level representation, which is based on time-averaged sum-
mary statistics of the auditory signal.

6.2.1  Low-Level Timbral Representations

Low-level features can be thought of as those that are perceived in a bottom-up 
fashion without a need for domain-specific knowledge or context. The cochlea per-
forms frequency decomposition of the sound by applying varying shapes of filters 
based on frequency: that is, narrowband frequency filters for low frequencies and 
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wideband frequency filters for higher frequencies. The information is then relayed 
by the auditory nerve fibers via the superior olivary complex (SOC) to brainstem 
structures, the inferior colliculi (IC). Representation of acoustic structure in terms 
of coarse spectral decompositions already starts in the IC before reaching the pri-
mary auditory cortices via the thalamus (Rodriguez et  al. 2010; Ress and 
Chandrasekaran 2013). Particularly, the IC was found to have finer encoding of low 
and high frequencies than intermediate ones. On the other hand, the primary audi-
tory cortex has a more distributed and pronounced encoding of frequency from high 
to low to high running along the posterior-anterior axis in a V-shaped pattern sur-
rounding Heschl’s gyrus (Formisano et al. 2003; Humphries et al. 2010). Frequency 
encoding along the primary auditory pathway can be understood as spectral repre-
sentations of incoming sound at various resolutions that result in low-level to mid-
level representations. The distribution of neuronal activity across this tonotopic map 
later gives rise to various timbral properties related to spectral shape.

Animal models have revealed widespread neural sensitivity to sound properties 
across the auditory cortex (Town and Bizley 2013). Apart from the well-established 
principle of tonotopic representation (the topographical representation of fre-
quency), temporal information of the sounds is extracted by amplitude modulation 
filter banks that are already present in the inferior colliculus, as found in rodent, cat, 
and primate midbrains (Langer 2009; Baumann et  al. 2011). Specifically, there 
exists evidence for an orthogonal representation of amplitude modulation rate and 
frequency. In primates, the topographic organization of amplitude modulation rate 
is at right angles to the already established frequency gradient (Baumann et  al. 
2015). Particularly, regions posterior to the medial Heschl’s gyrus were associated 
with a preference for fast temporal rates, whereas regions anterolateral to the medial 
Heschl’s gyrus showed a preference for low temporal rates. Overall, the patterns 
that emerged were found to be arranged in concentric isorate bands that are mirror 
symmetric across both hemispheres. These observations are consistent with those in 
the human auditory cortex with preference for the higher rates in the posteromedial 
cortex surrounded by anterior and lateral areas demonstrating a preference for lower 
temporal rates. The distribution of neuronal activity across this amplitude modula-
tion rate map might later give rise to timbral properties based on temporal stimulus 
features.

Lesion studies have typically demonstrated the importance of the right temporal 
lobe in timbre processing. However, lesion studies also report deficits in timbre 
processing due to left hemispheric lesions and show that the nonprimary auditory 
cortex plays a significant role (Samson et al. 2002; Samson 2003). There is evidence 
supporting the view that the auditory cortex decomposes the incoming sound signal 
in parallel at multiple temporal and spectral resolutions (Samson et al. 2011; Santoro 
et  al. 2014) with a left-hemispheric bias for finer temporal resolution and right- 
hemispheric bias for finer spectral resolution (Zatorre and Belin 2001). The anterior 
auditory regions, in particular, have been found repeatedly to contribute to the finer 
encoding of spectral content, which comprises key timbre features that are then 
integrated at a later stage for higher-order sound-source representations.
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Despite Leaver and Rauschecker’s (2010) corroboration of the notion of a hier-
archically organized pathway for the processing of complex sounds along the 
anteroventral auditory cortex, they also reported that the posterior auditory cortex 
(i.e., closer to auditory core cortex) is associated with processing low-level acoustic 
features that are not specific to any category of sounds, thereby placing it lower on 
the hierarchical auditory processing pathway.

Research on the neural correlates of timbre in music has revolved around instru-
ment categorization or reactions to controlled alterations of instrument-like sounds. 
Since the former relates to source identification, the latter will be discussed in this 
section. Overall, passive listening to synthesized timbres that differ in carefully 
manipulated acoustic features has been associated with bilateral activations in audi-
tory areas (Menon et al. 2002; Caclin et al. 2008). Electrophysiological studies that 
employed the mismatch negativity (MMN) paradigm to investigate the neural cor-
relates of perception of timbre have hinted at a high correlations between the ampli-
tude of brain responses and the magnitude of changes in certain timbral features. A 
discernable change in a sequence of sounds elicits an MMN and often reflects preat-
tentive, automatic processes. These changes correspond to alterations in features, 
such as brightness (Toiviainen et al. 1998), that are represented by the spectral cen-
ter of mass in monophonic sounds and by the attenuation of even harmonics (Caclin 
et al. 2006; Caclin et al. 2008) of carefully synthesized sounds.

The spectral centroid or spectral center of mass is a summary feature of the spec-
trum (Siedenburg, Saitis, and McAdams, Chap. 1) that has frequently been equated 
to perceptual brightness (see McAdams, Chap. 2; Saitis and Weinzierl, Chap. 5). It 
has often been referred to as a low-level feature despite it being based on a summary 
statistic, which could be termed a mid-level representation of acoustic structure. 
This example also highlights that it is hard to draw a clear distinction between low- 
level and mid-level features. In fact, timbre features, such as the spectral centroid 
and the attack time, may represent mid-level perceptual attributes, such as bright-
ness and percussiveness, which in turn aid in categorizing and recognizing the 
sound source (albeit typically only in the context of isolated musical-instrument 
sounds or synthesized sounds).

Caclin et al. (2006, 2008) employed the Garner interference approach that helps 
assess the separability of stimulus dimensions. In other words, it allows one to 
assess if processing changes in one auditory dimension (e.g., spectral center of 
gravity) are affected by change in an unattended auditory dimension (e.g., attack 
time). They found that three major dimensions of timbre, namely, attack time, spec-
tral centroid, and spectrum fine structure, are distinctly processed at very initial 
stages but interact at a later stage (delay of the order of 250 ms).

Along similar lines, Allen et al. (2017) attempted to identify brain regions spe-
cific to the processing of variations in either pitch (fundamental frequency) or tim-
bre (spectral centroid). In contrast to previous studies that supported modular 
processing of these variations, they observed a large degree of spatial overlap, espe-
cially in Heschl’s gyrus (HG), thereby corroborating the presence of shared neuro-
nal substrates in encoding pitch and timbre. However, MVPA, which is more 
sensitive than univariate approaches, revealed distinct combinations of neuronal 
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populations within these overlapping regions that are associated with either pitch or 
timbre processing. In other words, pitch and timbre as perceptual constructs are not 
independent of each other. This has been reflected in previous psychoacoustic stud-
ies that report variations in the pitch of harmonic complex tones affecting the per-
ception of timbre and vice-versa (Allen and Oxenham 2014).

In addition, studies that have investigated the perceptual and acoustic correlates 
of timbre of global sound found that pitch content is a crucial component in judge-
ments concerning the perceived brightness of short (1 s) musical excerpts (Alluri 
and Toiviainen 2010). This result suggested that pitch processing appears to be 
embedded in timbre processing, which as a result would recruit primary auditory 
areas in both the anterior and posterior directions due to the aforementioned 
V-shaped frequency encoding that surrounds HG. In addition, the presence of high 
notes in the stimuli may render them perceptually brighter. In contrast, some stimuli 
that contained rapidly repeating percussive sounds lacking a prominent pitch in the 
higher registers were rated as less perceptually bright despite an increase in the 
energy contained in the higher end of the spectrum due to those sounds (Alluri and 
Toiviainen 2010).

6.2.2  Mid-Level Timbral Representations

Paralleling developments in the understanding of the cortical processing of visual 
objects, McDermott and Simoncelli (2011) proposed that an intermediate level of 
representation in the auditory system relies on statistics of incoming low-level 
decompositions. This intermediate level of representation transforms acoustic struc-
ture into knowledge of the environment—the sound source. Sound textures are dis-
tinguished by the collective temporal homogeneity of acoustic events. For example, 
naturally occurring environmental sounds, such as rainstorms and galloping horses, 
can be characterized by similitude in their acoustic properties over time, thereby 
allowing us to categorize and identify the acoustic event and respective sources. 
Sound texture categorization may be better characterized by long-term statistical 
properties rather than fine spectrotemporal modulations as observed in isolated 
sounds (Theunissen and Elie 2014). The middle superior temporal sulcus (STS) is 
purported to play an intermediary role by integrating spectral shape and acting as an 
anatomical and computational link relaying information from primary auditory cor-
tex (processing basic source attributes such as pitch height) to anterior and inferior 
temporal lobe regions that are involved in source recognition (Warren et al. 2005). 
The STS relays information processed in the primary auditory cortex to the lateral 
superior temporal plane areas and to inferior and anterior temporal regions for the 
purpose of categorization (Belin et al. 2000; Warren et al. 2005).

Neuroimaging studies (fMRI and PET) have helped to localize regions of the 
brain that deal with timbre processing of isolated sounds that were synthesized by 
systematically controlling low-level to mid-level features. Menon et  al. (2002) 
investigated brain responses to melodies with controlled, synthesized timbres vary-
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ing in their fundamental acoustic dimensions, namely, attack time, spectral centroid, 
and spectral flux, which were derived from previous psychophysical timbre experi-
ments (McAdams et al. 1995). Timbre processing was associated with activations in 
the mid-sections of the superior temporal gyrus (STG), STS, and adjoining insular 
cortex with greater activation for the spectrally more complex sounds. They further 
demonstrated the asymmetry in hemispheric activations with more posterior left 
hemispheric activation versus more anterior activations in the right hemispheric 
temporal lobes. On the other hand, selectively attending to timbre (melody played 
by two synthesized oboe sounds—one possessing more harmonics than the other) 
while pitch and rhythmic content varied simultaneously was associated with 
 activations in the right superior and middle frontal gyri (Platel et al. 1997). Platel 
et al. (1997) hypothesize that this likely reflects a directing of attention to one source 
or the other rather than to the actual encoding of timbre, since these regions are part 
of the attention-processing network (Petersen and Posner 2012).

In sum, a majority of studies suggest the ventral pathway as the main pathway 
that encodes timbre at various processing stages. Low-level timbre processing 
already begins in the primary auditory pathway by means of spectral decomposi-
tions followed by distributed representation in the auditory cortices. Stemming from 
the primary auditory cortex, mid-level representations are formed in the secondary 
areas such as STS and anterior portions of the STG with a right-hemispheric bias. 
Mid-level representations can be considered analogous to descriptive summaries 
(such as brightness, roughness) that constitute perceivable dimensions of auditory 
sensation and subsequently contribute to high-level representations of sound 
sources.

6.3  Representation of Sound Sources

Listeners effortlessly differentiate between sources such as human voices and tool 
sounds. These categorical distinctions constitute one of the most general attributes 
of a sound source and have been the object of neuroimaging research for almost two 
decades. The brain’s ability to modularize the incoming auditory stream into per-
ceptual units or “auditory objects” based on timbral properties is fundamental in 
parsing and decoding this stream. Interpreting information as a result of integrating 
these perceptual units provides information about where, from whom or what it 
came (source identity), in addition to its content (from phonemes to words to emo-
tional connotations). For example, categorical distinctions can be related to instru-
ment recognition in music, or vocal tract length (short versus long), phoneme, 
gender, and emotions in speech, and material, hollowness, size, and shape of vibrat-
ing objects in environmental sounds.

As Bizley and Cohen (2013) rightly point out, there is no absolute definition of 
what these auditory objects are. However, the general accepted notions relate to 
perceptual constructs of sound that can be associated with a specific source (e.g., a 
honk associated with a car). The formation of these objects in the brain is also the 
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result of attentional processes with weighting that leads the listener to focus on 
certain aspects in order to efficiently encode them. This process is akin to Goldstone’s 
(1998) description of categorical perception as a result of attentional weighting. For 
instance, Bizley and Cohen (2013) give an example of how, while listening to an 
orchestra, we can selectively either attend to or ignore sections of it (such as the first 
or second violin sections). This process might result in the recruiting of attention 
networks in addition to timbre-processing regions. For example, Deike et al. (2004) 
observed (via fMRI) greater involvement of the left auditory cortex than the right in 
processing sequences with alternating timbres (complex sounds with an organ-like 
spectral envelope alternating with a trumpet-like spectral envelope) compared to the 
condition wherein the same sound was presented repeatedly. The authors interpreted 
this as evidence for a selective involvement of posterior regions of the left primary 
auditory cortex for auditory stream segregation based on timbre cues (spectral dif-
ferences in this case). Since existing evidence points to a left-hemispheric bias for 
processing temporal sequences, this result is not surprising considering that the task 
at hand required focus on the temporal sequence for target sound detection.

6.3.1  Categorization of Musical Instruments

A majority of lesion studies provide support for right-lateralized bias mostly in the 
anterior regions in the categorical processing of musical instruments (Samson 
2003). In line with the putative finer spectral information processing capabilities 
found in the right temporal lobe, EEG studies have reported larger recorded electri-
cal activity over the right than the left hemisphere (Crummer et al. 1994; Auzou 
et  al. 1995). Evidence from fMRI studies indicates that right superior temporal 
regions are active in the processing of musical instruments versus other categories 
(such as speech, animal vocalizations) (Leaver and Rauschecker 2010). In a MEG 
study, musical training was a modulatory factor in processing timbre changes and 
led to enhanced cortical representations for the timbre of a listener’s own musical 
instrument (Pantev et al. 2001). Crummer et al. (1994) concluded from their EEG 
study that listeners with musical experience and training were better able to dis-
criminate timbre changes, which was demonstrated by quicker reaction times as 
represented by shorter latency in the EEG responses.

Leaver and Rauschecker (2010) observed encoding of relevant sounds (human 
speech and musical instruments) versus nonrelevant sounds (songbird or animal 
vocalizations) in the anterior superior temporal cortex (STC). Furthermore, in line 
with previous studies, the right anterior superior temporal plane was found to pref-
erentially encode musical instrument timbre. Additionally, the left STC was found 
to selectively process acoustic-phonetic content of human speech; the anterior 
regions were proposed to encode whole words in line with previous findings related 
to a left-hemispheric bias in speech processing. No regions were found to be selec-
tively responsive to nonrelevant sounds, thereby supporting the notion that the 
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human auditory cortices have indeed evolved to efficiently encode relevant stimuli 
with dedicated neuronal populations.

Along similar lines, Staeren et al. (2009) used acoustically matched stimuli (such 
as guitars, cats, and singers) to explore category representation in the auditory cor-
tex. As sounds across acoustic categories were matched in pitch, timbre was the key 
perceptual determinant of sound category. It was found that spatial patterns of acti-
vation differentiated the three acoustic categories in higher auditory areas, including 
antero-lateral Heschl’s gyrus (HG), the planum temporale (PT), and the posterior 
STG and/or STS.

6.3.2  Categorization of Human Speech

There exists converging evidence of right-hemispheric auditory region dominance 
in the processing of holistic aspects of sound from vowel classes in speech (Obleser 
et al. 2006) to speaker identification (Formisano et al. 2008). Specifically, the ante-
rior STG has been found to play a key role in global processing of sound properties. 
A widely distributed network of regions, including the anterior HG, PT, STS, and 
STG, participate in the identification of phonetic content (e.g., what is being said) 
or categorizing speaker properties. More details concerning timbre in speech can be 
found in Mathias and von Kriegstein (Chap. 7).

From the aforementioned view of hierarchical processing of auditory informa-
tion, there is consensus that the ventral auditory pathway is key in processing 
auditory objects due to its involvement in processing the nonspatial aspects of the 
sound (what is the sound?) versus spatial aspects (where is the sound?), which 
are processed in the dorsal auditory pathway (Bizley and Cohen 2013). There is 
evidence, however, of the encoding of spatial information in the ventral pathway 
and of auditory objects in the dorsal pathway (Bizley et al. 2009; Rauschecker 
2012), thereby suggesting an interplay of spatial and nonspatial information dur-
ing the process of creating consistent perceptual representations. Moving along 
the pathway can be thought of as moving along an anterior gradient representing 
levels of abstraction starting from low levels in A1 to high levels of categorical 
representations in STG and projecting onto the prefrontal cortex or, alternatively, 
projecting in both anterior and posterior directions (Giordano et  al. 2013; 
Giordano et al. 2014).

In an fMRI study, Kumar et al. (2007) examined the flow of information using 
dynamic causal modeling and noted that timbre information originates in Heschl’s 
gyrus and flows in a serial fashion to the planum temporale and then to STG. The 
stimuli used included either harmonic or noise-like synthesized sounds with various 
superimposed spectral envelopes. They concluded that spectral envelope encoding 
was already performed by the time information reaches the planum temporale from 
HG. However, this result has to be tested in the context of natural sounds.
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6.3.3  Categorization of Living, Nonliving, and Human-Action 
Sounds

Giordano et al. (2013) demonstrated the encoding of auditory objects ranging from 
living sounds (e.g., clapping hands) to nonliving sounds (e.g., crumpling paper 
bag), human-action sounds (e.g., hammering nail), vocal animal and human sounds, 
and nonvocal sounds using MVPA in an fMRI study (Giordano et al. 2013). While 
low-level features were encoded in wide areas of the auditory cortex, abstract cate-
gories of living sounds and human sounds were represented in the posterior areas, 
including the planum temporale. This result suggests that the direction of informa-
tion abstraction extends both in anterior and posterior directions starting from A1. 
Another fMRI study on musical imagery, which dealt with similarity judgements of 
either played or imagined sounds, found a slight right-hemispheric predominance in 
addition to posterior temporal areas, thereby lending further support to these bidi-
rectional processing pathways (Halpern et al. 2004).

In a subsequent study, Giordano et  al. (2014) found the left posterior middle 
frontal gyrus (pMFG) to be key in processing sound source identity in both passive 
and active listening conditions unaffected by the sound category (environmental 
sounds, music-instrument tones, human vocalizations). This unexpected finding 
was explained in light of the role of pMFG in general executive-control function 
operations and short-term working memory processes. The presentation of isolated 
sounds belonging to various categories for the purpose of determining source- 
identity information would indeed engage such regions and would rely on low-level 
sound structures due to the absence of contextual information.

A novel hypothesis-free study on identifying selective neuronal responses to 
natural sounds, including music, speech, and environmental sounds revealed neuro-
nal selectivity throughout the auditory cortex (Norman-Haignere et al. 2015). The 
authors employed an elegant data-driven approach to identify distinct neuronal 
populations in the auditory cortex that were responsible for encoding a variety of 
naturally occurring sounds. As a result, in addition to reinforcing the previously 
suggested V-shaped tonotopic gradient in the Heschl’s gyrus (Humphries et  al. 
2010), they observed that the anterior regions of the auditory cortex were music- 
selective, and selective speech encoding was associated with lateral regions.

In light of the dual-stream hypothesis, several studies on human sound identifica-
tion demonstrate similarities in regions that process human actions versus nonliving 
sources. While the former categories recruit an action-sound network with regions 
belonging to the dorsal stream, the processing of sounds from the latter categories 
relies on the ventral pathway (Lemaitre et al. 2017). Lemaitre and colleagues also 
suggest that environmental sound processing is coupled with the process of identifi-
cation of underlying processes. Environmental sounds can further be divided into 
living (e.g., animal sounds) versus nonliving sounds (e.g., tool sounds). Animal 
vocalizations activate the middle regions of bilateral STG more than nonliving 
sounds, whereas the left posterior middle temporal gyrus (MTG) and frontoparietal 
regions were more active in the reverse condition (Lewis 2005). Interestingly, several 
studies have reported selective encoding of tool sounds in posterior MTG (Beauchamp 
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et al. 2004; Lewis et al. 2006). Doehrmann et al. (2008) reported that the position of 
the posterior middle temporal gyrus (pMTG) in the hierarchical processing pathway 
might indeed be higher than that of the STG. They further contend that the pMTG 
selectively processed tool sounds in addition to left-hemispheric regions while the 
anterior STG selectively adapted to animal sounds. These results lend further support 
to the evolutionary adaptation of human auditory cortex for living sounds.

A PET study revealed that passive listening to scrambled environmental sounds 
(e.g., sewing sounds, cat sounds) versus their unscrambled counterparts elicited 
activations in right anterior STG/STS and inferior frontal gyrus (Engelien et  al. 
2006). The scrambled sounds were considered meaningless and unnatural, which 
would therefore elicit bottom-up processing. On the other hand, the unscrambled 
sounds elicited greater responses in anterior left-hemispheric auditory regions.

Overall, the level of abstraction in auditory processing increases as a function of 
distance from primary auditory cortices (Lemaitre et al. 2017). The anterior STG 
appears to be vital in the representation of relevant sound sources. Furthermore, in 
certain instances, source identity processing involves frontal cortical regions in 
addition to secondary auditory regions. The recruitment of frontal regions is attrib-
uted to working memory and attentional networks due to the nature of experimental 
settings (such as category discrimination tasks).

So far we have summarized several neuroimaging studies that have carefully 
attempted to disentangle the neural correlates of timbre at various levels of abstrac-
tion. The experimental paradigms typically utilized in neuroimaging studies rely on 
highly reduced auditory stimuli and controlled experimental designs. Such para-
digms fail to emulate real-world situations wherein the auditory system is constantly 
bombarded with continuous streams of sensory information; hence, these paradigms 
reveal only an incomplete picture of the neural mechanisms involved in the process-
ing of realistic stimuli. In the visual modality, recent evidence suggests that the brain 
processes visual stimuli presented in a more ecological setting differently than when 
presented in conventional controlled settings (Hasson et al. 2004). Assuming that this 
finding is generalizable across sensory modalities, one could expect that the majority 
of studies in the auditory modality, in which acoustic features of sounds were artifi-
cially manipulated or were presented in isolation, may have revealed an incomplete 
picture of neural correlates of timbre. Hence, setting an appropriate and more natu-
ralistic auditory context is crucial for understanding how the brain processes timbre. 
The studies mentioned thus far serve as stepping stones for designing further studies 
with higher ecological validity. It is important to note that real-world stimuli are 
complex, and disentangling neural correlates of timbre can be extremely challenging 
despite the considerably high ecological validity of the results obtained from them.

6.4  Neural Correlates of Global Sound

Context is crucial in uncovering the workings of the brain. In real life, we generally 
encounter combinations of sounds that result in complex emerging timbral sound-
scapes, for instance, that of a bustling market place or a busy highway. Furthermore, 
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in the context of music, the co-occurrence of several instrument timbres results in 
an overall set of timbral relations, such as that of a jazz ensemble, a rock concert, or 
a symphony. This approach to timbre perception as a conglomerate of individual 
timbres has been largely neglected except in the context of mid-level representa-
tions, that is, sound textures that deal with naturally occurring environmental 
sounds. These sounds are considered to possess homogeneous properties that can be 
represented by summary statistics over time. However, in real-world settings, our 
brains are exposed to complex, temporally varying auditory scenes that require lon-
ger duration acoustic signals that are more ecologically valid. This section summa-
rizes work performed in the naturalistic paradigm, especially in the context of 
music, and ends with a consideration of the challenges encountered and possible 
future research directions.

The global sound or the overall timbral mixture has been described as “poly-
phonic timbre” (Aucouturier 2006; Alluri and Toiviainen 2010). The term “poly-
phonic” should not be confused with the music theory term of polyphony (versus 
homophony or monophony); polyphonic describes the overall emerging sound that 
results in a mental construct (such as the set of timbres of a jazz ensemble). Global 
sound can be considered analogous to harmony in the context of pitch; in other 
words, pitch is to harmony as timbre is to global sound.

6.4.1  Naturalistic Auditory Paradigm: Encoding and Decoding 
Approaches

Alluri et al. (2012) were among the first researchers to look at timbre-feature pro-
cessing in a naturalistic auditory paradigm in the context of music. Participants were 
asked to lie down in a scanner and listen to an 8-min Argentinian tango. Principal 
components were extracted from a set of low-level to mid-level audio descriptors 
related to timbre. Perceptual validation of the components obtained in this way 
resulted in higher levels of abstraction of timbre that represented holistic properties, 
such as fullness (spectral flux of the lower end of the spectrum) and activity (spectral 
flux of the middle to high end of the spectrum). Owing to the nature of fMRI signals 
(capturing slow-moving changes and not instantaneous ones), in the naturalistic 
paradigm these timbral components indeed would be representative of more global 
properties that lie on the higher end of abstraction. As a result, audio descriptor 
components that represented spectral flux in subbands of the spectrum (Alluri and 
Toiviainen 2010) possessed the highest positive correlations with activations in 
large areas of the temporal lobe (HG, MTG, and STG) in addition to the right rolan-
dic operculum. Interhemispheric specialization in the auditory cortices was 
observed, specifically in the caudolateral and anterolateral parts of the STG; overall, 
the right temporal lobe displayed larger areas with significant correlations.

In addition, the results demonstrated negative correlations for the first time 
between timbre-related audio descriptors and activity in the default-mode network 
(DMN) areas of the cerebrum. The DMN is a neural circuit that constantly monitors 
the sensory environment and displays high activity during lack of focused attention 
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on external events (McAvoy et al. 2008; Fox et al. 2009). As low values in descriptor 
components were mostly associated with sections in the stimulus with sparse tex-
ture played by the piano (thereby resulting in lower levels of auditory-cognitive 
load), the activation of the DMN during these moments is in line with previous 
results (Pallesen et al. 2009; Uddin et al. 2009). Interestingly, the DMN activity also 
was deactivated while processing the timbre of real-world materials such as plastic 
and metal (Lemaitre et  al. 2017). On the other hand, high values in the timbral 
descriptors were associated with dense textures (high levels of auditory cognitive 
load), thereby causing a proportional reduction in activations in the DMN.

A subsequent follow-up study in the naturalistic paradigm with a different set of 
participants and stimuli revealed that the activations in the anterior STG could be 
best predicted by acoustic properties of the stimuli, which mostly comprised audio 
descriptors representing spectrotemporal modulations (Alluri et al. 2013). This find-
ing lends further support to the conclusions of Giordano et al. (2013) that the right 
anterior STG is sensitive to spectral flux. In addition, activations in an important hub 
of the DMN (precuneus) could be predicted to a significant degree, thereby corrobo-
rating the notion of directed attention. Furthermore, a replication study of the origi-
nal Alluri et al. (2012) study revealed high reliability in terms of the brain regions 
that were associated with processing timbral components (Burunat et al. 2016).

In a related decoding study, Toiviainen et al. (2014) reported the highest predic-
tion accuracy for timbre-related audio descriptors from brain responses in compari-
son to rhythmical and tonal audio descriptors. The regions in the brain that contributed 
to the predictions encompassed STG, HG, rolandic operculum, and MTG with larger 
areas in the right hemisphere, thereby corroborating the results of the first study on 
the naturalistic paradigm (Alluri et al. 2012). Hoefle et al. (2018) applied an encod-
ing-decoding approach to fMRI data collected in the naturalistic paradigm to under-
stand complex auditory representations and to identify brain regions that contribute 
to the identification of musical pieces. Interestingly, the HG encoded low-level 
descriptors (associated with sound energy levels and smoothness of spectral energy 
distribution), whereas mid-level descriptors (associated with brightness) possessed 
representations in secondary auditory regions, including both anterior and posterior 
STG and the planum temporale and planum polare. This finding lends support to the 
possibility of interplay between the ventral and dorsal auditory pathways during 
timbre perception, as summarized by Bizley and Cohen (2013).

6.4.2  Decoding Global Sound Using Multivariate Pattern 
Analysis

Global sound is a significant perceptual component of music, especially in studies 
that involve tasks such as genre identification, categorization, or emotional affect 
attribution. Features representing global sound are vital in the design of computa-
tional systems that perform genre-based, style-based, and mood-based categoriza-
tions of music (Liu et al. 2003; Barbedo and Lopes 2007).
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Several high-resolution (7 Tesla) fMRI studies have investigated musical genre 
representation in the brain. Casey et al. (2011) demonstrated via an MVPA approach 
that musical genre discrimination (among 6-s excerpts of ambient, rock and roll, 
heavy metal, classical, and country music) is attributed to a distributed population 
code in bilateral STS. Audio descriptors based on cepstral coefficients (see Caetano, 
Saitis, and Siedenburg, Chap. 11) were the best predictors of the voxel patterns of 
the STS. A subsequent decoding study by the same research group using the same 
dataset revealed that multivoxel patterns in the temporal cortex provided high genre 
classification accuracy in addition to stimulus identification at above-chance levels 
(Casey, 2017), thereby lending further support to a hierarchical model of timbre 
encoding.

6.5  Summary

To conclude, the several stages of timbre processing are best described by a hierar-
chical approach from low-level decompositions to mid-level summary statistics to 
high-level categorical representations in the brain. While the primary auditory cor-
tex A1 is associated with low-level representations, the secondary regions, includ-
ing STG and STS, serve as mid-level representations of auditory sensations. There 
exist dual pathways that represent the “where” and “what” of the sound on hand. 
Since timbre is associated with what is being heard, most studies have supported the 
key role of the ventral stream for processing various levels of timbre abstraction, 
which vary as a function of distance from A1 in the anterior direction. However, 
recent evidence suggests that information abstraction extends both in anterior and 
posterior directions starting from A1, and further research is needed. The auditory 
cortex has evolved to yield larger neural responses to relevant and natural stimuli; 
therefore, care is required in the interpretation of timbre processing of synthesized 
and unnatural sounds. Studies on high-level timbre representations in the context of 
music and speech report overwhelming evidence of secondary auditory regions with 
some reporting a right hemispheric bias (at least for music).

Intuitively, one could assume that a multidimensional attribute such as timbre 
would be represented in the brain not by independent isolated modules but over 
distributed neuronal populations that are tuned to process temporal, spectral, and 
combined spectrotemporal information (Santoro et al. 2014). Advances in machine- 
learning techniques, especially artificial neural networks, have given rise to the sub-
field of deep learning, which is based on algorithms and approaches inspired by the 
structure and functioning of the brain. One such deep neural network is an autoen-
coder, which learns to produce the same output as a given input through the creation 
of several levels of abstraction by forcing the input (e.g., the sound stimulus) to go 
through several layers with reduced neurons to arrive at a bottleneck. This approach 
is akin to mapping the spectrograms onto concise abstract representations. 
Comparing the patterns arising at each abstraction layer with specific regions in the 
brain, using MVPA or representation similarity analysis, would aid in zeroing in on 
the brain regions associated with various levels of abstraction of timbre.
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The increasing popularity of multimodal fusion approaches (e.g., MEG+EEG, 
fMRI+EEG) appear to be attractive options to address timbre encoding from low to 
high levels of abstraction in the brain with fine-grained temporal and spectral reso-
lution. Finally, with the increasing popularity of naturalistic listening situations and 
paradigms in neuroimaging, it is time to move on from controlled settings and uni-
variate methods and address timbre processing in more realistic and holistic 
contexts.
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Chapter 7
Voice Processing and Voice-Identity 
Recognition

Samuel Robert Mathias and Katharina von Kriegstein

Abstract The human voice is the most important sound source in our environment, 
not only because it produces speech, but also because it conveys information about 
the speaker. In many situations, listeners understand the speech message and 
recognize the speaker with minimal effort. Psychophysical studies have investigated 
which voice qualities (such as vocal timbre) distinguish speakers and allow listeners 
to recognize speakers. Glottal and vocal tract characteristics strongly influence 
perceived similarity between speakers and serve as cues for voice-identity 
recognition. However, the importance of a particular voice quality for voice-identity 
recognition depends on the speaker and the stimulus. Voice-identity recognition 
relies on a network of brain regions comprising a core system of auditory regions 
within the temporal lobe (including regions dedicated to processing glottal and 
vocal tract characteristics and regions that play more abstract roles) and an extended 
system of nonauditory regions representing information associated with specific 
voice identities (e.g., faces and names). This brain network is supported by early, 
direct connections between the core voice system and an analogous core face 
system. Precisely how all these brain regions work together to accomplish voice- 
identity recognition remains an open question; answering it will require rigorous 
testing of hypotheses derived from theoretical accounts of voice processing.
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Abbreviations

a anterior
BOLD blood-oxygen-level-dependent
d distance measure
FFA fusiform face area
fMRI functional magnetic resonance imaging
FRU facial recognition units
GPR glottal-pulse rate
HG Hechl’s gyrus
HNR harmonics-to-noise ratio
IFG inferior frontal gyrus
IPL inferior parietal lobe
JND just noticeable difference
M middle
MEG magnetoencephalography
P posterior
PIN person-identity nodes
PT planum temporale
STG superior temporal gyrus
STS superior temporal sulcus
Th perceptual threshold
TVA temporal voice areas
VLPFC ventrolateral prefrontal cortex
VRU voice recognition units
VTL vocal-tract length

7.1  Introduction

The human voice is arguably the most important sound source in our environment. 
In addition to producing speech, it conveys a wealth of information about the 
speaker, including their sex, approximate age and body size, place of origin, and 
current emotional state. Unsurprisingly, the human brain is highly specialized in 
voice processing. This specialization allows normal-hearing listeners to understand 
the speech message, determine many characteristics of the speaker, and recognize a 
personally familiar or famous speaker, all at the same time. In fact, humans have 
routinely outperformed computer algorithms at both speech and voice-identity 
recognition, particularly under suboptimal listening conditions (Kitaoka et al. 2014; 
Hautamäki et al. 2015; but also see Kell et al. 2018).

This chapter discusses the known and unknown aspects of human voice process-
ing and voice-identity recognition. Section 7.2 considers psychophysical studies on 
the acoustic and perceptual differences between voices and how listeners recognize 
who is speaking. Section 7.3 involves a discussion of brain regions exhibiting voice 

S. R. Mathias and K. von Kriegstein



177

sensitivity (or selectivity), regions involved in processing familiar and unfamiliar 
voices, regions involved in voice-identity recognition specifically, and disorders of 
voice processing. Section 7.4 discusses theoretical models of voice- identity recog-
nition and evaluates whether such models are consistent with current evidence.

The chapter has a strong emphasis on voice processing and voice-identity rec-
ognition involving speech rather than other kinds of vocal sounds (e.g., coughs, 
cries, laughter). While nonspeech vocal sounds obviously carry important informa-
tion, including information about voice identity, speech is the most common class 
of vocal sound, and voices are most easily recognized from speech. This focus on 
speech also emphasizes the important point that speech-message and voice-identity 
recognition are not independent. Not only do they rarely occur in isolation, but lis-
teners routinely use voice-identity information to improve speech recognition and 
vice versa (Wester 2012; Kreitewolf et al. 2017); this point is sometimes overlooked 
by theoretical accounts of voice processing.

7.2  Psychophysics of Voice Processing

7.2.1  Differences Between Voices

There are enormous acoustic differences between speech sounds produced by dif-
ferent speakers, even when the linguistic content of those sounds is identical. The 
classic study by Peterson and Barney (1952) illustrates some of these differences. 
The authors measured the fundamental frequencies (f0) and the frequencies and 
amplitudes of the first three vowel formants (f1–3) from recordings of many speakers, 
including men, women, and children, mostly from the Middle Atlantic region of the 
USA, reading monosyllabic words of the kind /hVd/ (e.g., heed, hid, head). They 
found that the same vowel produced by two different speakers could be nothing 
alike acoustically. For instance, one speaker’s “hid” could be more similar to another 
speaker’s “head” (in terms of the absolute frequencies of its formants) than to 
examples from its own linguistic category (Fig. 7.1). Despite these large acoustic 
differences, listeners were able to correctly recognize approximately 95% of the 
words, highlighting an intriguing conceptual problem: How do listeners effortlessly 
overcome such large acoustic differences to discern so much information from 
speech?

Most previous research has approached this conceptual problem from the per-
spective of speech perception, attempting to understand how listeners anticipate and 
correct for speaker-related acoustic differences when recognizing the linguistic con-
tent of speech. This process is called speaker normalization (Johnson 2005; von 
Kriegstein et  al. 2010). However, the fact that listeners often discriminate and 
recognize different speakers just as easily as they understand speech implies that the 
opposite kind of normalization (speech normalization) occurs as well. Put another 
way, listeners must be able to perceive voice features that are constant across speech 
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sounds produced by the same speaker yet different across sounds produced by 
different speakers.

The set of features that makes a particular speaker’s voice unique is called their 
voice quality (Kreiman et al. 2005). It could also be called vocal timbre. The former 
term is used more commonly than the latter term, probably because the former 
implies that voices may be ordered (from pathological to modal quality). This 
ordering can be useful in the assessment and treatment of articulation difficulties 
(see Sect. 7.2.2.2 for a brief discussion of voice-quality schemes that are used to 
assess such pathologies) (also see Saitis and Weinzierl, Chap. 5). Furthermore, 
voice quality is the more general term since it can include vocal pitch (Sect. 7.2.2.1).

Over the years, there have been many attempts to define and measure voice qual-
ity with mixed results. Glottal-pulse rate (GPR) and vocal tract length (VTL) have 
emerged as two obvious dimensions of voice quality. The GPR of the voice deter-
mines its perceived pitch, while the acoustic effect of VTL is an important aspect of 
vocal timbre. Both GPR and VTL have clear anatomical antecedents (Fig. 7.2), are 
acoustically and perceptually distinct from one another, and listeners routinely use 
them to determine certain characteristics of the speaker (e.g., sex and relative size) 
(Lavner et al. 2000). However, there has been little success in identifying other reli-
able dimensions of voice quality beyond GPR and VTL.

Fig. 7.1 Variations in spoken vowels. Left panel: f1 and f2 measurements from ten vowels spoken 
by a set of Middle-Atlantic American speakers from a study by Peterson and Barney (1952). These 
famous data highlight the extreme acoustic variability between recordings of the same vowel 
spoken by different speakers. Right panel: solid lines are three-sigma ellipses from three of the 
vowels recorded by Peterson and Barney; dashed lines are three-sigma ellipses from the same three 
vowels recorded from speakers (mostly from southern Michigan) in a later study by Hillenbrand 
et al. (1995). The striking differences between the two data sets were likely caused by differences 
in the speaking styles of the two groups, highlighting the importance of largely nonanatomical 
factors to the perception of voice quality. (Data from Peterson and Barney 1952; right panel from 
Hillenbrand et al. 1995; used with permission)
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Fig. 7.2 Sagittal section through a human head and neck with the vocal folds highlighted in green 
oval and the vocal tract highlighted in blue, the anatomical antecedents of glottal-pulse rate and 
vocal tract length, respectively. (Adapted from Gray 1918, Mathias and von Kriegstein 2014)
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7.2.2  Glottal-Pulse Rate

Many vocal sounds are voiced, meaning that they are produced by vibration of the 
vocal folds. The periodic waveform created by this vibration is called the glottal 
pulse. The rate of glottal vibration, or GPR, determines the speaker’s f0. Speakers 
routinely modulate their GPR to distinguish between statements and questions in 
nontonal languages or to convey meaning in tonal languages. However, a speaker’s 
long-term average GPR is relatively stable. The GPR is perceived as pitch (for a 
review of the psychophysics of pitch perception, see Plack and Oxenham 2005) and 
is by far the most consistent predictor of perceived similarity between speakers. In 
a representative study, Baumann and Belin (2010) presented listeners with pairs of 
French vowels and instructed them to rate how likely they thought it was that the 
same person spoke both vowels. The vowels could be the same or different and 
could be produced by the same or different speakers (speakers within a pair were 
always of the same sex). The speakers were all unfamiliar to the listeners (see Sects. 
7.2.2.1 and 7.2.2.2). Using multidimensional scaling, the authors found that the 
primary dimension along which listeners based their speaker similarity judgements 
closely corresponded to the mean f0 of the vowels (i.e., GPR). This basic finding has 
been a consistent feature of studies of this kind, regardless of the type of speech 
sounds used (isolated vowels, whole words, or sentences) and whether the speakers 
were men, women, or a mixture of both.

The GPR is an obvious cue for determining a speaker’s sex. Typical f0 values are 
120 Hz for men and 210 Hz for women, amounting to an average difference of 
around 10 semitones or a minor seventh. By way of comparison, most listeners can 
easily discriminate f0 differences between synthesized vowels that are smaller than 
half a semitone (Smith et al. 2005). This difference is because, on average, men 
have longer and thicker vocal folds that vibrate more slowly than those in women 
(Titze 1989). While GPR is the strongest cue for speaker sex, experiments using 
synthesized speech have shown that GPR alone is not enough to guarantee robust 
perception of a speaker as either male or female. For example, Hillenbrand and 
Clark (2009) instructed listeners to judge the sex of speakers from sentences that 
were processed using a vocoder to shift either the f0, the first two formants, or both 
f0 and the formants into the range of speakers of the opposite sex. Shifting f0 alone 
caused males to be perceived as females about 34% of the time and the opposite 
about 19% of the time. Shifting both f0 and the formats caused perceived sex to shift 
more often but still not every time (about 82%), suggesting that there were residual 
perceptual cues to the sex of the speaker.

Glottal-pulse rate is somewhat predictive of other speaker characteristics. For 
example, there is a relationship between age, sex, and GPR, but it is not 
straightforward. While adults have slower GPRs than children due to the enlargement 
and thickening of the vocal folds during development, the rate of change is more 
dramatic during puberty in males than in females (Fouquet et al. 2016). Moreover, 
in older adulthood, GPR increases in men yet decreases in women (Hollien and 
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Shipp 1972; Stoicheff 1981). Environmental factors, such as smoking, also influence 
GPR (Gilbert and Weismer 1974). Perhaps surprisingly, GPR is not a good indicator 
of speaker size: after controlling for age and sex, GPR and speaker height/weight 
are essentially uncorrelated (Künzel 1989).

7.2.2.1  Vocal Tract Length

The supralaryngeal vocal tract and lips act as a filter on the glottal pulse, amplifying 
and attenuating certain frequencies to create formants. Speakers modify the shape 
of their vocal tract to produce different speech sounds, but their overall VTL is 
stable. Acoustically, the spectral envelope and formants of speech produced by a 
speaker with a long VTL are shifted downward in frequency relative to a speaker 
with a short VTL (Fig. 7.3), and VTL correlates very strongly with speaker height 
and/or weight (r > 0.9; Fitch and Giedd 1999). Several studies have shown that VTL 
is the primary perceptual cue for speaker size. For example, Smith and Patterson 
(2005) presented listeners with sustained vowels, all spoken by the same speaker. 
The vowels were vocoded to create versions that sounded as if they were spoken by 
speakers with different GPR and VTL combinations. Listeners judged the height of 
the speakers using a seven-point scale. When GPR/VTL values remained within the 
biologically plausible range, VTL was the dominant influence on a listener’s height 
judgements. Other similar studies have shown that listeners are highly sensitive to 
VTL modifications (Smith et al. 2005).

Vocal tract length also influences the perceived similarity of voices. Previous 
multidimensional-scaling studies (Murray and Singh 1980; Baumann and Belin 
2010) found that listeners’ similarity judgements of unfamiliar speakers’ voices 
were influenced by the speaker’s mean formant frequencies, which are determined 
partly by VTL, although this influence was generally weaker than that of 
GPR. Unfortunately, it is not possible to determine the size of the effect of VTL per 
se on the listeners’ similarity judgements from these studies because none of them 
measured their speakers’ VTLs or used vocoded stimuli. However, in another 
relevant study, Gaudrain et al. (2009) presented listeners with pairs of three-vowel 
sequences, and asked them to judge whether “[it was] possible that both sequences 
were uttered by the same speaker?” The same male speaker spoke all the vowels, 
which were vocoded so that his GPR and/or VTL differed between sequences. 
Listeners reported hearing different speakers when there was a between-sequence 
VTL difference of around 25%, or 2.6 times their just-noticeable difference (JND) 
for VTL. Listeners reported hearing different speakers when there was a between- 
sequence GPR difference of around 45%, or 11.1 times their JND for GPR. Therefore, 
according to this study, perceptually smaller differences in VTL are required to 
elicit the perception of a different talker than those of GPR, suggesting that VTL is 
more important than GPR to the perceived similarity of voices, at least when 
listening to isolated vowels.
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Fig. 7.3 Each row shows a cartoon spectral profile (left) and actual spectrogram (right) of an 
elongated /i/ vowel spoken by the same speaker but vocoded to have very different glottal-pulse 
rates (GPRs) and vocal tract length (VTL) values. The middle vowel has a faster GPR than the top 
vowel, and the bottom vowel has a longer VTL than the top vowel. In the left panels, one can see 
how GPR controls the f0 and harmonics (green vertical lines), while VTL controls the formants 
(blue curves). In the right panels, the formants are clearly visible as dark spectral regions. (Adapted 
from Mathias and von Kriegstein 2014)
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7.2.2.2  Schemes of Voice Quality

It is commonplace to describe a speaker’s voice using various descriptive terms 
such as breathy, creaky, hoarse, and a variety of other adjectives (see Saitis and 
Weinzierl, Chap. 5). There have been many attempts to codify such terms, probably 
the most successful of which was Laver’s (1980) scheme of vocal-profile analysis. 
Based on an extensive review of the pre-1980’s literature, Laver described a number 
of articulatory settings or deviations from a typical voice. Each setting had an 
anatomical antecedent. For instance, breathiness was defined by low tension in the 
vocal chords. Other glottal settings included whisperiness, creakiness, harshness, 
and falsetto. Settings related to the vocal tract included lip configuration, laryngeal 
position, jaw position, and tongue position. Wherever possible, Laver provided 
examples of the acoustic and perceptual consequences of various settings, although 
these examples were not exhaustive.

Voice-quality schemes, such as the one proposed by Laver (1980), have several 
limitations. For instance, it is difficult to make the descriptions of settings precise 
enough to allow them to be measured acoustically. Instead, different settings are 
usually measured using the subjective ratings of phoneticians, which can have poor 
inter-rater reliability (Kreiman and Gerratt 1998). If listeners cannot agree on a 
speaker’s settings, their utility for characterizing voice quality is questionable. 
Another limitation of voice-quality schemes is that they largely ignore factors 
unrelated to anatomy, including language, accent, dialect, and idiolect (personal 
speaking style). Such differences, though perhaps difficult to define and measure, 
are likely to be important for recognizing familiar voices when listening to complex 
stimuli such as whole sentences (see Sect. 7.2.2.2). Even isolated vowels are 
influenced greatly by speaking style as demonstrated by replications of Peterson 
and Barney’s (1952) study using speakers from different regions within the USA 
(Fig. 7.1).

7.2.3  Voice-Identity Recognition

All of the behavioral studies discussed in Sect. 7.2.1 involved discrimination, 
requiring listeners to compare, judge, or rate voices in terms of their perceptual 
features, usually without prior exposure to the speakers or stimuli. By contrast, 
recognition requires listeners to identify speakers they heard previously. It does not 
necessarily follow that the acoustic or perceptual cues relevant for discrimination 
are the same as those relevant for recognition. Indeed, McAdams (Chap. 2) and 
Agus, Suied, and Pressnitzer (Chap. 3) discuss evidence of different acoustic and 
perceptual cues supporting nonvocal timbre discrimination versus recognition. 
Moreover, discrimination and recognition may rely on different kinds of perceptual 
and cognitive processes, and the neural correlates of voice discrimination and 
recognition might at least partly dissociate (see Sect. 7.3).
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7.2.3.1  Unfamiliar Speakers

Many studies have investigated the circumstances that influence the reliability of 
ear-witness testimony or how well listeners can pick out a target speaker from an 
auditory line-up (for a review, see Yarmey 2007). These studies can be thought of as 
investigating the recognition of unfamiliar speakers, since listeners had limited 
exposure to them prior to testing. As might be expected, recognition rates improve 
monotonically with the duration of the stimuli and decline as a function of the 
retention interval. Listeners are best at recognition when the target speaker and the 
others in the line-up all have accents similar to their own (Stevenage et al. 2012) and 
when all of the speech is in their native language (Wester 2012). There has been 
some debate about whether recognition rates are influenced by the sex of the listener 
and/or speaker. A meta-analysis of several ear-witness experiments suggests that 
female listeners are significantly better at recognizing female than male speakers, 
but no similar advantage exists when male listeners hear male speakers (Wilding 
and Cook 2000).

One consistent finding from such studies is that recognition of an unfamiliar 
speaker is often very fragile. In many of these studies, listeners barely performed 
above chance levels. Unfamiliar-speaker recognition is also easily disrupted if the 
speaker deliberately disguises his or her voice between the initial and test stimuli. 
For example, even a relatively minor change in speaking style, such as switching 
from a normal to an angry tone, is enough to disrupt recognition (Saslove and 
Yarmey 1980).

7.2.3.2  Familiar Speakers

Familiar speakers are often personal acquaintances or famous speakers. Following 
Maguinness et al. (2018), we define familiar voices as those of speakers to whom 
the listener has had considerable prolonged exposure, either via social interactions 
(personally familiar speakers, Lavner et al. 2000; von Kriegstein and Giraud 2004) 
or the media (famous speakers, Van Lancker et al. 1985). Listeners typically know 
other information about a familiar speaker in addition to his/her voice, including 
his/her face, name, and biographical details (e.g., where and when they last saw, 
heard, or met the speaker). It is also possible to induce familiarity with a previously 
unfamiliar speaker to the point that listeners can reliably identify them from 
previously unheard speech recordings via training (Sheffert et al. 2002). However, 
laboratory-based training typically involves less exposure to speakers’ voices and 
does not provide the rich supra-modal associations of speaker familiarization under 
natural conditions; thus, in most studies, laboratory-based familiarization is likely 
only a simulacrum of real world familiarization. We therefore call voices that have 
been familiarized by laboratory-based training recently familiarized voices (e.g., 
Sect. 7.3.2.1) (also see Maguinness et al. 2018).

Glottal and vocal tract characteristics appear to play a significant but modest role 
in familiar-speaker recognition. In perhaps the most extensive study of its kind, 
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Lavner et al. (2000) instructed thirty listeners to identify twenty male speakers from 
modified recordings of /a/ vowels. At the time of assessment, all listeners and 
speakers lived in the same kibbutz, or commune, and had been living there for at 
least 5  years; therefore, they were highly familiar with one another’s voices. 
Acoustic modifications included shifting the frequencies of individual formants or 
combinations of formants to those of another speaker, shifting the whole spectral 
envelope (approximately corresponding to VTL), changing the f0 (i.e., GPR), 
changing the shape of the glottal waveform, and creating voices with the glottal 
characteristics of one speaker and the vocal tract characteristics of another. Shifting 
the formant frequencies (particularly the higher formants that remain relatively 
more stable than lower formants across speech produced by a single speaker) and 
shifting the whole spectral envelope had the largest effects on voice-identity 
recognition. Shifting the f0 also had a strong effect, yet changing the shape of the 
glottal waveform had little impact on recognition. Whether these findings can be 
generalized to whole words or sentences is currently unclear.

In contrast to unfamiliar-speaker recognition, familiar-speaker recognition is 
often robust to extreme acoustic manipulation, especially when listening to stimuli 
with longer durations, such as whole sentences. For example, Remez et al. (1997) 
found that listeners could recognize some of their colleagues above chance levels 
from sine-wave speech (intelligible synthetic stimuli composed of three time- varying 
sinusoids that trace the frequency contours of the formants from a real sentence). 
Sine-wave speech contains very few, if any, traditional voice-quality cues—GPR and 
other glottal characteristics are lost completely, although VTL may be partially 
inferred—but retain some information regarding speaking style. In another study, 
Van Lancker et al. (1985) found that listeners could sometimes recognize famous 
speakers from time-reversed speech, which had the same long- term spectrotemporal 
properties as natural speech but little information about speaking style. In these two 
studies, the ability to recognize familiar speakers was reduced, but not eliminated, by 
manipulations that disrupted either spectrotemporal cues or cues related to speaking 
style. Taken together, these results suggest that listeners can use different types of 
cues for familiar-speaker recognition depending on the stimuli.

The relative importance of a particular cue for familiar-speaker recognition is 
speaker-dependent. For example, Lavner et  al. (2000) found that some speakers 
were difficult to recognize from speech in which their vocal-tract characteristics 
were modified, but the same manipulations hardly affected the recognition of other 
speakers. In a follow-up study, the authors used multiple linear regressions to predict 
listeners’ recognition scores from acoustic measurements. They found that 
regression weights for different predictors varied considerably across speakers 
(Lavner et al. 2001). Whether such cue variability exists when listeners recognize or 
discriminate unfamiliar speakers (Sect. 7.2.2.1) remains to be shown.

Taken together, these results suggest that listeners are able to draw from any 
number of potential cues for familiar-speaker recognition, and the relative 
importance of any given cue depends on the type of stimuli and the speaker. In other 
words, the set of cues for familiar-speaker recognition is probably neither ordered 
nor closed.
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7.3  Neurobiology of Voice Processing

7.3.1  Voice Sensitivity and Selectivity

Understanding voice processing in the neurotypical human brain took a consider-
able leap forward at the turn of this century. Using functional magnetic resonance 
imagining (fMRI), Belin et al. (2000) contrasted the blood-oxygen-level-dependent 
(BOLD) response during passive listening to vocal and nonvocal sounds. Vocal 
sounds included speech and voiced nonspeech (singing, babble, cries, etc.) and 
nonvocal sounds included environmental sounds, animal vocalizations, and sounds 
from manmade objects. The authors found that regions located primarily along the 
upper bank of the superior temporal sulcus (STS) responded more strongly when 
listeners heard the vocal sounds. In other words, these regions exhibited voice 
sensitivity. Voice sensitivity was bilateral but appeared to be (slightly) stronger in 
the right hemisphere. There were also separate voice-sensitive maxima in the 
posterior, middle, and anterior portions of the sulcus.

The basic observation of voice sensitivity in the superior portions of the temporal 
lobe has been replicated many times. Recently, Pernet et al. (2015) analyzed fMRI 
data from 218 listeners who all completed the same voice-area localizer scan (a 
brief fMRI experiment used to define specific regions of interest within an 
individual’s brain prior to the main experiment). The design of this localizer was 
very similar to the main experiment by Belin et al. (2000), which involved passive 
listening to voice and nonvoice sounds. Virtually all listeners exhibited voice 
sensitivity bilaterally in the superior temporal sulcus or gyrus (STS/STG). A group- 
level cluster analysis confirmed the findings of distinct posterior, middle, and 
anterior voice-sensitive peaks by Belin et al. (2000) (Fig. 7.4). Since the precise 
locations of these maxima tend to vary considerably across listeners—sometimes 
localized to the STS, the STG, or even to upper portions of the middle temporal 
gyrus—it is convenient to call them the temporal voice areas (TVAs) (e.g., von 
Kriegstein and Giraud 2006). Pernet and colleagues also detected voice sensitivity 
in regions outside the temporal lobes (extra-temporal voice areas), including parts 
of the inferior frontal gyrus (IFG), several brainstem structures, and portions of the 
thalamus and amygdala. The authors speculated that the extra-temporal areas were 
responsible for processing the linguistic or emotional content of the voice sounds. 
They might also be involved in voice-identity recognition (Zäske et al. 2017).

Recent advances in nonhuman fMRI have allowed researchers to identify brain 
regions that exhibit sensitivity to conspecific vocalizations in other species. In these 
studies, the comparison of responses to vocal versus nonvocal sounds showed 
evidence for evolutionary counterparts to human voice-sensitive regions in the 
monkey supratemporal plane (Petkov et al. 2008; Perrodin et al. 2011) and in the 
temporal lobe of dogs (Andics et al. 2014).

There is an important distinction between voice sensitivity and voice selectivity. 
Voice sensitivity is often used to describe brain regions that respond more strongly 
to vocal sounds than other stimuli. Brain regions can be voice sensitive for any 

S. R. Mathias and K. von Kriegstein



187

number of reasons; for example, the region might be sensitive to acoustic or percep-
tual features more common in vocal than nonvocal sounds. By contrast, voice selec-
tivity is often used to describe brain regions that respond more strongly to voices per 
se rather than the acoustic features of voices. Whether TVAs are voice selective in 
this strict sense or merely voice sensitive is a difficult question to answer. Consider 
the finding that TVAs in the human brain respond more strongly to human than 
animal vocalizations (Fecteau et al. 2004). On the one hand, this finding could be 
used to argue in favor of voice selectivity because human and animal vocalizations 
are acoustically similar in some respects, such as overall complexity and usually 
having clear and dynamic pitches. On the other hand, human and animal vocalizations 
obviously have other salient perceptual differences.

In another relevant study, Agus et  al. (2017) presented listeners with natural 
voices and auditory chimeras (also see Agus, Suied, and Pressnitzer, Chap. 3). 
Chimeras are composites of two natural sounds, in this case one vocal and one non-
vocal. The authors found that one region in the right temporal lobe responded more 
strongly to sequences of veridical vocal sounds than chimeras, even though both 
sequences contained many of the same acoustic features. Does this result mean that 
only right-lateralized (not left-lateralized) TVAs are voice selective? What about 
distinct TVAs within the same hemisphere (cf., Pernet et al. 2015)?

A particular brain region might be voice sensitive/selective because it performs a 
specific voice-related task, such as understanding the speech message, perceiving 

Fig. 7.4 Analysis of fMRI data from 218 listeners projected onto a default average brain. This 
analysis revealed three distinct voice-sensitive peaks along the superior temporal sulcus/gyrus in 
each hemisphere. These are commonly referred to as the temporal voice areas. a, anterior; m, 
middle; p, posterior; TVA, temporal voice area. (Taken from Pernet et  al. 2015; used with 
permission)

7 Voice Processing



188

emotion, or recognizing voice identity. It is usually very difficult or impossible to 
disentangle these possibilities from fMRI studies involving passive listening to 
vocal and nonvocal stimuli. For example, Pernet et al. (2015) attempted to discern 
the functions of voice-sensitive regions by subcategorizing vocal sounds (neutral 
and nonintelligible, emotional and nonintelligible, and intelligible) and comparing 
responses across subcategories within each region. Almost every region responded 
most strongly to the intelligible sounds. However, in another study, Belin et  al. 
(2002) contrasted nonspeech vocal sounds to spectrally scrambled versions of the 
same stimuli and found that only the right anterior TVA responded more strongly to 
the vocal sounds. As discussed in detail later (Sect. 7.3.2), subsequent studies 
combining stimulus and task manipulations have shed considerable light on the 
specific functionality of the TVAs.

Another important point is that a particular brain region may play an important 
role in voice processing without being voice sensitive/selective. For example, 
perception of GPR is important for linguistic processing and perceiving the sex 
of the speaker (Sect 7.2.2.1), but whether the brain has a region that is dedicated 
to processing vocal pitch per se is unclear. von Kriegstein et al. (2010) found that 
anterolateral Hechl’s gyrus (HG) bilaterally responded more strongly to sequences 
of speech sounds from speakers with different GPRs than to sequences from 
speakers who all had the same GPR but different VTLs (see also Kreitewolf et al. 
2014). These regions are commonly implicated in studies of nonvocal pitch pro-
cessing (see Griffiths and Hall 2012), suggesting that such regions process pitch 
information regardless of its source. On the other hand, behavioral studies sug-
gest that people with autism spectrum disorder are impaired in processing vocal 
pitch, but not pitch from other sources, implicating a specialized processing 
mechanism for vocal pitch (Jiang et al. 2015; Schelinski et al. 2017). More data 
are needed to determine whether there are specific vocal pitch-processing regions 
in the brain. Moreover, a brain region might be voice sensitive/selective only 
under specific circumstances. For example, several studies have found that the 
fusiform face area (FFA), a visual region specialized for face processing, responds 
more strongly when listeners try to recognize the identity of speakers whose 
faces they know than speakers whose faces are unknown (Sect. 7.3.3). This means 
that the FFA could be considered a voice-sensitive region, but only for a specific 
context (speaker recognition) and for specific stimuli (voices of speakers whose 
face is known).

7.3.2  Core Voice System

In their widely cited review of face processing, Haxby et al. (2000) proposed a 
distinction between a core face system, comprising brain regions directly involved 
in the visual analysis of faces, and an extended face system, comprising brain 
regions from nonvisual areas recruited to extract meaning from faces or to associ-
ate faces with stored information. Researchers have applied this idea to voice 
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perception as well (Roswandowitz et al. 2017). Specifically, the core voice system 
comprises regions involved in the auditory analysis of voices, whereas the extended 
voice system comprises nonauditory regions. Here, we restrict our discussion to 
the brain regions most widely considered to belong to the core voice system, 
namely the posterior, anterior, and middle portions of the STS/STG, as well as the 
inferior frontal gyrus (IFG), some portion of which potentially belongs to the core 
voice system.

7.3.2.1  Posterior Superior Temporal Sulcus/Gyrus

The results of two fMRI studies suggest that the posterior STS/STG (pSTS/STG) 
plays a role in the analysis of VTL. In both of these studies, pSTS/STG bilaterally 
responded more strongly when listeners heard sequences of syllables synthesized to 
have varying VTL than when they heard sequences of syllables synthesized to have 
the same VTL (von Kriegstein et al. 2007, 2010). Note, however, that a third study 
with a similar design found more anterior STS/STG responses (von Kriegstein et al. 
2006). In the von Kriegstein et al. (2007) study, listeners also heard sequences of a 
musical instrument and bullfrog vocalizations synthesized to have varying or the 
same spectral envelope (i.e., vocal tract length in bullfrogs and the equivalent in the 
musical instrument). The authors found that pSTS/STG bilaterally responded more 
strongly to spectral envelope variation only when listening to syllables, suggesting 
that it responded to human VTL variation specifically.

The pSTS/STG may play a role in the recognition of unfamiliar or recently 
familiarized speakers (Sect. 7.2.2.2). In a study by von Kriegstein and Giraud 
(2004), listeners completed two different tasks while listening to sequences of 
sentences spoken by different speakers. In one task (the speaker task), listeners 
heard a target sentence at the beginning of the sequence and judged whether 
sentences within the sequence were spoken by the target speaker. In another task 
(the speech task), listeners judged whether sentences within the sequence had the 
same linguistic content as the target sentence, regardless of the speaker. Within 
sequences, the sentences were either spoken by speakers who were all familiar 
(work colleagues) or by speakers who were all unfamiliar. The right pSTS/STG 
responded more strongly when listeners performed the speaker task than the speech 
task while listening to unfamiliar speakers; this response difference was stronger for 
the unfamiliar than for the familiar speakers (i.e., there was a task-by-familiarity 
interaction). It should be noted that this study was performed in the early days of 
fMRI research and some of its design features might be considered suboptimal by 
today’s standards (e.g., the sample size was relatively small, and the data were 
analyzed using a fixed-effects model; see Talavage et al. 2012); eventually, these 
results must be replicated.

Zäske et al. (2017) provided supporting evidence for a role of the pSTS/STG in 
unfamiliar or recently familiarized speaker recognition. During an initial training 
phase, listeners became familiar with a set of speakers of German sentences (which 
were not intelligible, since none of the listeners spoke German). During MRI 
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scanning, listeners heard the same or new sentences that were spoken by the same 
or new speakers. Listeners reported whether the speaker of each sentence was old or 
new, regardless of the sentence. The authors found stronger responses in several 
areas, including the right pSTS/STG, on trials when the listener correctly responded 
“new” than on trials when the listener correctly responded “old,” regardless of 
whether the sentence was new or old (i.e., a main effect of unfamiliarity). A possible 
limitation of this study is that listeners performed poorly on the task and were 
strongly biased toward responding “old” whenever they heard an old sentence, 
regardless of whether the speaker was new or old.

The precise computational role of the pSTS/STG during voice-identity recogni-
tion is not entirely clear. The results of the studies discussed above suggest that this 
region analyzes VTL, or serves a particularly important role for the recognition of 
unfamiliar speaker’s voices, or both. A current working hypothesis is that the pSTS/
STG serves as a hub for establishing reference patterns for specific voice identities 
later committed to long-term memory (see Sect. 7.3.4.3) (Maguinness et al. 2018). 
This could explain why pSTS/STG particularly responds when attempting to recog-
nize unfamiliar or recently familiarized voices because these are precisely the cir-
cumstances when reference patterns are required. Presumably, reference patterns 
are already established for highly familiar speakers.

According to Pernet et al. (2015), the posterior peak is the strongest and most 
consistent TVA elicited during passive listening to vocal sounds of unfamiliar 
speakers. However, it is not known whether the posterior TVA is the same as, 
incorporates, or is separate from the pSTS/STG region or regions implicated in the 
aforementioned studies, especially because the peak of the posterior TVA is highly 
variable across listeners.

7.3.2.2  Anterior Superior Temporal Sulcus/Gyrus

Studies suggest that the anterior STS/STG (aSTS/STG) plays a role in the represen-
tation of unique voice identities. In a study by von Kriegstein et al. (2003), listeners 
heard sequences of sentences and performed in alternating blocks a speaker task and 
a speech task (similar design as in von Kriegstein and Giraud 2004). The authors 
found that the right aSTS/STG responded more strongly during the speaker task 
than the speech task. This result must have been task related because listeners heard 
exactly the same stimuli during both tasks. The finding that the right aSTS/STG 
plays a role in voice-identity recognition was corroborated by a meta-analysis of 
relevant fMRI studies (Blank et al. 2014). Moreover, in a magnetoencephalography 
(MEG) study, Schall et al. (2014) found a positive correlation between behavioral 
performance and aSTS/G activity during a voice-identity recognition task. This 
region also appears to adapt to the presentation of different speech sounds from 
the same speaker (Belin and Zatorre 2003). Finally, in a study by Formisano et al. 
(2008), listeners repeatedly heard three vowels spoken by three speakers. When 
the authors applied multivariate pattern analysis to the fMRI data, the greatest 
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concentration of informative voxels for classifying voice identity was found in the 
right aSTS/STG.

If the aSTS/STG represents unique voice identities, one might predict stronger 
aSTS/STG responses to familiar speakers than unfamiliar speakers. However, this 
does not appear to be the case; instead, familiar speakers elicit stronger responses 
within the extended voice system (e.g., von Kriegstein and Giraud 2004; von 
Kriegstein et al. 2005).

7.3.2.3  Middle Superior Temporal Sulcus/Gyrus

The role of the middle STS/STG (mSTS/STG) in voice processing and voice- 
identity recognition is unclear at present. A recent review article (Maguinness et al. 
2018) proposed that the mSTS/STG plays a facilitative role by connecting the pSTS/
STG, which performs the perceptual analysis required to perceive voice identity, 
with the aSTS/STG, which represents unique voice identities. Support for this 
hypothesis comes from the fMRI study by von Kriegstein and Giraud (2004), who 
examined functional connectivity (psychophysiological interactions) of brain 
regions during voice processing. The authors observed stronger connectivity 
between the right pSTS/STG and mSTS/STG and between the right aSTS/STG and 
mSTS/STG while listeners performed the speaker task than the speech task. 
Furthermore, using probabilistic tractography on diffusion-weighted imaging data, 
Blank et al. (2011) showed that all three TVAs are structurally connected with one 
another. One mysterious feature of the mSTS/STG is that it appears to be sensitive 
to voices (e.g., Belin et al. 2000; Pernet et al. 2015), yet it does not always appear to 
respond more strongly to voices during a speaker task than a speech task (e.g., 
Kriegstein and Giraud 2004).

7.3.2.4  Inferior Frontal Gyrus

Bilateral IFG was one of the extra-temporal regions implicated in voice-identity 
recognition in the meta-analysis by Blank et  al. (2014). The authors performed 
separate meta-analyses of fMRI studies of voice identity, face identity, and name 
recognition, and they identified bilateral IFG clusters for both voice-identity and 
face-identity recognition. While these clusters were very close together, a 
conjunction analysis suggested that they were not the same, implying that the IFG 
is not involved in supra-modal person recognition. In their large-scale study, Pernet 
et al. (2015) also found voice sensitive maxima within left and right IFG whose 
locations seemed to be similar to those reported by Blank et al. (2014).

Whether the IFG should be considered part of the core or extended voice system 
is debatable. On the one hand, the meta-analysis by Blank et al. (2014) suggested 
that this region plays a critical role in auditory-only voice-identity recognition. 
However, the IFG also subsumes numerous other related processes: for example, 
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the IFG famously includes Broca’s area and is therefore critical for speech 
comprehension and production (see Hickok et al. 2011). The IFG is also part of the 
cortical pathway for discriminating vocal emotions (see Frühholz et al. 2016). In 
primates, ventrolateral prefrontal cortex (VLPFC), an area considered homologous 
with human IFG, responds to complex sounds, including species-specific 
vocalizations (Romanski and Goldman-Rakic 2002). However, single neurons in 
the VLPFC also respond to faces (O’Scalaidhe et al. 1997) and appear to integrate 
voice and face information (Sugihara et al. 2006).

7.3.3  Interactions Between Brain Regions

The following discussion of interactions between brain regions during voice pro-
cessing is restricted to interactions between the core voice system and the FFA. The 
FFA is the most intensively studied face-sensitive region within the core face system 
that appears to serve a variety of functions related to face processing and whose 
precise role is a topic of ongoing research (for a review, see Kanwisher and Yovel 
2006). The present chapter focuses on interactions of voice processing with this 
region specifically because they appear to be the most robust. Blank et al. (2014) 
provide a discussion of interactions that incorporate other regions.

Under normal circumstances, we are presented with voices and faces concur-
rently. Thus, if we are familiar with a speaker’s voice, it is very likely that we are 
also familiar with his/her face. Over several studies, von Kriegstein and colleagues 
demonstrated that recognizing the voices of familiar speakers involves the FFA 
when both kinds of personal information are known. First, von Kriegstein et  al. 
(2005) contrasted performance on speaker and speech tasks using stimuli from 
personally familiar speakers (whose faces were known to the listeners) and 
unfamiliar speakers (same data as in von Kriegstein and Giraud 2004). Listeners 
additionally completed a separate MRI scan to localize the FFA. The authors found 
that the bilateral fusiform gyrus responded specifically to recognizing the voices of 
familiar speakers. Importantly, this region overlapped with the FFA (defined using 
the separate face-area localizer scan), suggesting that familiar-speaker recognition 
indeed recruited the FFA.

A series of follow-up studies revealed a number of interesting features of the 
FFA during voice-identity processing: (1) the FFA was involved in auditory-only 
voice-identity recognition after only 2  min of audio-visual experience with the 
speaker; (2) the FFA selectively responded during speaker recognition and not, for 
example, during a speech task; (3) FFA responses were behaviorally relevant for 
voice-identity recognition—strength of FFA responses correlated positively with a 
measure of recognition performance (the face benefit) in neurotypical listeners and 
was reduced in individuals with face-identity recognition deficits; and (4) the FFA 
exhibited functional connectivity with the temporal voice-sensitive regions during 
voice-identity recognition, suggesting that these regions communicate with one 
another to resolve a speaker’s identity (see von Kriegstein 2011; Mathias and von 
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Kriegstein 2014). Regarding point (4), functional connectivity between voice and 
face regions does not necessarily mean that those regions communicate directly; 
instead, it could reflect co-modulation by a later supra-modal region. Two studies 
provided evidence against this explanation. First, using probabilistic tractography, 
Blank et al. (2011) found direct white matter connections between the TVAs and the 
FFA (localized using fMRI). Connections were stronger between the middle/
anterior TVAs and the FFA than between the posterior TVA and the FFA. Second, 
using MEG, Schall et al. (2013) found that the FFA activity during voice-identity 
recognition begins at an early stage of sensory processing, approximately 110 ms 
after sound onset. Those findings suggested that the functional correlations observed 
between the TVAs and FFA during speaker recognition are the result of direct 
communication rather than indirect co-modulation via a third region.

In summary, there is clear evidence of direct and early interactions between the 
TVAs and the FFA. These direct interactions serve to exchange physical and identity 
information about voices and faces (Blank et al. 2014). An open question is what 
specific computations are subserved by these cross-modal interactions. One 
hypothesis is that the brain simulates a talking face while we hear someone speaking 
and that this simulation process fills in the missing information normally available 
during audio-visual communication. Such simulation may help to better recognize 
both voice identity and the speech message (see von Kriegstein et al. 2008).

7.3.4  Deficits in Voice Processing

Our understanding of the neurobiology of voice-identity recognition has been 
improved by accounts of individuals with voice-processing disorders, particularly 
phonagnosia. Phonagnosia (from the Greek phone, “voice,” and agnosis, “without 
knowledge”) refers to a difficulty in recognizing voice identities. Van Lancker and 
Canter (1982) introduced the term to describe the auditory equivalent of prosopag-
nosia, a selective difficulty in recognizing faces (cf. Bodamer 1947). Phonagnosia 
may manifest following brain damage (acquired phonagnosia) or in the absence 
of brain damage, in which case it is presumably present at birth (congenital or 
developmental phonagnosia) (Garrido et  al. 2009; Roswandowitz et  al. 2014). It 
is also useful to draw a distinction between two potential forms of phonagnosia: 
a deficit in discriminating the features of voices, which leads to problems recog-
nizing speakers (apperceptive phonagnosia) and a deficit in identifying familiar 
voices without discrimination problems (associative phonagnosia) (Hailstone et al. 
2011; Roswandowitz et al. 2014). Readers interested in a complete account of the 
literature on phonagnosia are encouraged to consult the meta-analysis by Blank 
et al. (2014) and a recent article by Roswandowitz et al. (2018b), which provides 
an exhaustive, chronologically organized review of phonagnosia studies. Here, we 
focus our discussion on how the findings from such studies compare to those of 
functional neuroimaging studies involving healthy individuals.
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7.3.4.1  Laterality

Early studies of acquired phonagnosia were concerned with answering the basic 
question of whether the left or right hemisphere of the brain is more important for 
voice processing. Although based on small numbers of cases (e.g., Van Lancker and 
Canter 1982), they invariably noted that, on average, patients with right-lateralized 
lesions performed worse than patients with left-lateralized lesions (or the control 
subjects) on tests of voice discrimination or recognition. Van Lancker et al. (1989) 
drew a more precise conclusion regarding the role of laterality in phonagnosia. They 
found that, on average, patients with unilateral brain lesions (either left or right) 
performed worse than controls on a test of unfamiliar-voice discrimination, in 
which they heard pairs of sentences and judged whether they were spoken by the 
same or different speakers. Importantly, on average, only the group with right- 
lateralized lesions performed worse than controls on a test of famous-voice 
recognition, in which they matched sentences spoken by famous people to their 
facial photographs and written names. In other words, lesions to either hemisphere 
caused apperceptive phonagnosia, whereas only right-hemisphere lesions caused 
associative phonagnosia.

The discussion of voice processing in the healthy human brain (Sects. 7.3.1–
7.3.3) deliberately evaded the question of laterality. While several of the studies 
considered in those sections noted stronger or more consistent voice-related 
responses in the right hemisphere (e.g., Belin et  al. 2000; von Kriegstein et  al. 
2003), they usually did not perform formal tests of lateralization. One study that did 
perform such tests found no related effects (Pernet et al. 2015). Note that the study 
by Pernet and colleagues involved passive listening to all kinds of vocal sounds 
(including speech) and, therefore, their results are not contradictory to Van Lancker 
et al. (1989), who had hypothesized that right-hemisphere lesions cause associative 
phonagnosia. The critical test is whether voice-identity recognition is right- 
lateralized in the healthy human brain. The results of a recent voxel-based lesion- 
behavior mapping study (Roswandowitz et al. 2018a), which is described in more 
detail later, were indeed consistent with this hypothesis. Specifically, patients with 
right-hemispheric lesions performed worse on a test of voice-identity recognition 
with recently familiarized voices, on average, than patients with left- hemispheric 
lesions.

7.3.4.2  Parietal Lobe Lesions

The role of the parietal lobe is a possible source of disagreement between func-
tional neuroimaging studies involving healthy listeners and studies of acquired 
phonagnosia. No regions within the parietal lobe appear to be voice sensitive 
(Pernet et al. 2015), yet almost all reported cases of acquired phonagnosia have had 
parietal- lobe lesions (reviewed by Roswandowitz et  al. 2018b). In an attempt to 
resolve this discrepancy, Roswandowitz et  al. (2018a) performed voxel-based 
lesion behavior mapping on a cohort of fifty-eight patients with focal unilateral 
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brain lesions using a battery of tests. The battery included a test on familiar voice-
identity recognition and two tests involved recently familiarized voices. In one of 
these tests, listeners heard sentences spoken by unfamiliar speakers presented con-
currently with a written name, and the participants later matched these names to 
novel sentences from the same speakers (the voice-name test). The other test had 
the same design, but listeners matched speakers with faces (the voice-face test). The 
main result was that there was a relationship between lesions in the right temporal 
lobe and the right inferior parietal lobe and poor performance on all three tests of 
voice-identity recognition. Interestingly, lesions in the inferior parietal lobe (IPL) 
led to poor performance on the voice-face test but not the voice-name test. This 
striking partial dissociation suggested that the IPL plays a specific role in associat-
ing voices and faces.

Roswandowitz et al.’s (2018a) findings concerning the IPL were consistent with 
previous case studies of phonagnosia because the tests of famous-voice recognition 
employed in those studies involved matching voices to photographs of famous 
people (e.g., Van Lancker and Canter 1982; Van Lancker et al. 1989). Moreover, 
many previous functional neuroimaging studies of voice processing in healthy lis-
teners did not involve faces (e.g., von Kriegstein et al. 2003; Pernet et al. 2015); so, 
from that perspective, it is not surprising that they did not implicate the IPL. In fact, 
two fMRI studies that did involve person-related voice and face information both 
found IPL responses. First, a study by von Kriegstein and Giraud (2006) found 
stronger responses to voice-identity recognition in the IPL after voice-face learning 
than voice-name learning. Note, however, that the functional connectivity between 
parietal regions and voice and face areas was stronger before, not after, learning 
voice-face associations. Second, Hölig et al. (2017) presented listeners with silent 
videos of faces speaking nonwords, followed by auditory-only presentations of the 
same words, and they found stronger responses of the IPL when the face and 
speaker were different than when they were the same person. Precisely what com-
putational role the IPL plays in associating voices and faces is unclear at present, 
particularly in light of the evidence that voice and face regions are directly con-
nected (Sect. 7.3.3).

7.3.4.3  Temporal Lobe Lesions

In the study by Roswandowitz et al. (2018a), temporal lobe lesions were associated 
with poor performance in all three voice-identity recognition tests (including famous 
and recently familiarized voices). This finding is consistent with the many 
neuroimaging studies implicating the TVAs during voice processing and voice- 
identity recognition (Sects. 7.3.1–7.3.3). In addition, the lesion-behavior associations 
in the posterior temporal lobe were stronger for the tests using recently familiarized 
voices than for the one using famous voices (Roswandowitz et  al. 2018a). This 
result is also consistent with the finding that the pSTS/STG is particularly involved 
in processing relatively unfamiliar voices (Sect. 7.3.2.1).
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One finding from Roswandowitz et al. (2018a) that is difficult to reconcile with 
previous neuroimaging studies is that lesions in the anterior temporal lobe were not 
associated with poor performance on the voice-identity recognition tests. Functional 
neuroimaging studies suggested that the pSTS/STG is involved in the auditory 
analysis of voices (Sect. 7.3.2.1), whereas the aSTS/STG plays a role in representing 
voice identity (Sect. 7.3.2.2). Therefore, one might expect strong relationships 
between voice-identity recognition and lesions in both of these regions.

Other studies have reported that lesions in the anterior temporal lobe are associ-
ated with deficits in supra-modal person recognition (e.g., Hailstone et al. 2011). 
Recently, however, Luzzi et  al. (2018) reported a single case of seemingly pure 
associative phonagnosia for an individual who had a lesion in his anterior temporal 
lobe (also including lenticular and caudate nuclei). This patient found it difficult to 
identify singers from recordings he knew well. He also performed poorly on tests of 
familiar-voice recognition (personal acquaintances) and famous-voice recognition, 
yet performed normally on auditory, visual (including face-identity recognition), 
and several other control tasks. He was also unimpaired on unfamiliar voice dis-
crimination (i.e., judging whether two auditory speech stimuli were spoken by the 
same or a different person). This last result is interesting because a similar dissocia-
tion between unfamiliar voice discrimination and familiar voice-identity recogni-
tion was reported in previous case studies (e.g., Van Lancker et al. 1989; discussed 
in detail by Maguinness et al. 2018). It is currently unclear whether this potential 
partial dissociation between unfamiliar-voice and familiar-voice processing and 
recognition is related to the different task demands or the different levels of famil-
iarity with the voices (also see Maguinness et al. 2018).

7.3.4.4  Congenital Phonagnosia

To date, there have been five reported cases of voice-identity recognition deficits in 
the absence of brain damage. First, Garrido et al. (2009) found that KH, a 60 year- 
old female, performed worse than controls on tasks involving recognizing famous 
voices, learning and recognizing unfamiliar voices, and unfamiliar-voice discrimi-
nation, but she performed normally on tasks involving environmental-sound rec-
ognition, vocal affect perception, music perception, face recognition, as well as 
basic auditory and neuropsychological measures. Her phonagnosia was presumably 
apperceptive since impairments included both recognition and discrimination. KH 
had some difficulties with speech-in-noise perception, which the authors attributed 
to fatigue, but this also could have been because knowledge of voice features might 
help speech-in-noise comprehension (von Kriegstein et al. 2010).

Roswandowitz et al. (2014) reported two more cases of congenital phonagnosia: 
(1) AS, a 32 year-old female, and (2) SP, a 32 year-old male, both of whom performed 
worse than controls on tests of unfamiliar-voice learning and famous-voice 
recognition, but normally on auditory and visual control tasks. AS performed poorly 
on a voice-discrimination test, suggesting that she had apperceptive phonagnosia; 
SP performed normally on this task, suggesting that he had associative phonagnosia.

S. R. Mathias and K. von Kriegstein



197

Xu et al. (2015) reported AN, a 20 year-old female who performed poorly on a 
test of famous-voice discrimination. This individual performed normally on a voice- 
discrimination test, suggesting that she had associative phonagnosia. Finally, Xu 
and colleagues came across SR, a 40 year-old male, but testing of this individual 
was not extensive. Whether SR was phonagnosic and what type of phonagnosia he 
had remain to be clarified.

The neural correlates of voice processing in AN were assessed via two fMRI 
experiments (Xu et al. 2015). First, the authors measured AN’s brain activity during 
a voice-area localizer scan (cf., Belin et al. 2000), which revealed normal recruitment 
of the TVAs compared to controls. In the second experiment, AN and the controls 
were instructed to imagine a series of famous voices and nonvoice sounds. In AN, 
the contrast between voice and nonvoice imagery revealed reduced responses in the 
ventromedial prefrontal cortex, left precuneus, and left cuneus relative to controls. 
Whether dysfunction of these areas was to blame for AN’s phonagnosia was unclear 
particularly because voice imagery and voice recognition are very different 
processes, and voice-imagery is likely a much more difficult task for AN than 
neurotypical controls (for further discussion, see Roswandowitz et al. 2017).

Roswandowitz et al. (2017) performed two fMRI experiments on AS and SP: 
a voice-area localizer scan (similar to Belin et al. 2000) and a scan contrasting a 
speaker task and a speech task performed using the same stimuli (same design as 
von Kriegstein et al. 2003). In both experiments, AS showed reduced responses 
in the core voice system, including the HG, PT, and the pTVA, compared to con-
trols. This pattern was consistent with her symptoms: she experienced appercep-
tive phonagnosia, suggesting that she was impaired in the auditory analysis of 
voices. By contrast, SP, who experienced associated phonagnosia, exhibited typi-
cal responses of these areas but decreased connectivity between core and extended 
voice regions.

7.4  Models of Voice Processing and Voice-Identity 
Recognition

Contemporary models of voice processing come in two “flavors”. First, functional 
or “box-and-arrow” models attempt to delineate the processes that logically must be 
applied to vocal sounds in order to gain meaningful information from them, typically 
the speech message, the emotional state of the speaker, and the speaker’s identity 
(Sect. 7.4.1). While such models are obviously considerable simplifications of the 
real processes involved, they have nevertheless proved to be extremely useful for 
understanding voice processing because their components can be individually 
evaluated and mapped to specific brain regions using neuroscientific evidence. 
Models of the second “flavor” are concerned with voice-identity recognition 
specifically and attempt to explain how the brain encodes individual voice identities 
at an abstract level (Sect. 7.4.2). Currently, all models of the second flavor share the 
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basic idea that voice identities are encoded in terms of their deviations from a 
prototype or average voice. The findings of several psychophysical studies are 
consistent with the notion of prototype-based encoding, and preliminary 
neuroscientific evidence points to where in the brain the prototypes might be stored 
and used for voice-identity recognition. A recently proposed model attempts to 
combine insights from both functional and prototype models (Sect. 7.4.3).

7.4.1  Functional Models

Historically, psychologists and neuroscientists have been more interested in faces 
than voices; consequently, functional models of voice processing have drawn 
heavily from prior models of face perception. Arguably, the most influential 
functional model of face processing was proposed by Bruce and Young (1986). 
According to this model, after basic visual analysis, facial representations are sent 
to modules that perform the analysis of facial speech, emotion expression, and face 
identity. The face-identity module is further broken down into face-recognition 
units (FRUs) that code specific facial identities that are familiar to the viewer and 
supra-modal person-identity nodes (PINs) that receive input from the FRUs. Finally, 
these three modules (speech, emotion, and identity) feed into a loosely defined, 
higher-order cognitive system for semantic processing.

Bruce and Young’s (1986) model was later expanded by Ellis et al. (1997) to 
incorporate voices. The model of Ellis and colleagues assumed a functional system 
for voice processing exactly mirroring that for faces—including voice-recognition 
units (VRUs)—which merges with the face-processing system at the level of the 
PINs. The core tenets of the model have appeared in various forms in numerous 
reviews and empirical studies of voice perception (Neuner and Schweinberger 
2000; Belin et al. 2011). Figure 7.5 illustrates two such models.

Much of the neuroscientific evidence presented in Sect. 7.3 is broadly consistent 
with functional models of voice processing. For instance, the distinction between 
the core and extended systems, originally proposed for faces (Haxby et al. 2000) but 
more recently extended to voices (e.g., Roswandowitz et al. 2017), fits neatly within 
some models (bottom panel of Fig. 7.5) (Roswandowitz et al. 2018b), with basic 
auditory and auditory module-specific analyses performed by the core voice system 
and semantic processing performed by the extended voice system. However, some 
specific findings are difficult to reconcile with the models. For example, the models 
predict that auditory voice-identity analysis, presumably performed by the pSTS/
STG, occurs before voice-identity recognition, presumably performed by the aSTS/
STG. However, in a MEG study by Schall et al. (2015), peaks in activity within the 
pSTS/STG and aSTS/STG occurred at roughly the same time when listeners identi-
fied speakers to whom they had been familiarized prior to scanning. Simultaneous 
pSTS/STG and aSTS/STG activity, assuming that their functions have been 
described correctly, raises the possibility that there is some degree of parallel pro-
cessing within these regions when listeners hear moderately familiar speakers. In 
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Fig. 7.5 Models of voice processing. Top panel: a schematic of the functional model of voice 
processing from Belin et al. (2011). Bottom panel: a schematic of another functional model with 
explicit interactions between auditory modules and a semantic-processing component. (Adapted 
from Maguinness et al. 2018)
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addition, according to functional models of voice processing, there should be no 
divergence in unfamiliar-voice and familiar-voice processing until at least the level 
of the VRUs; however, neuroimaging and lesion reports suggest that there is already 
a dissociation between familiar-voice and unfamiliar- voice processing at the level 
of the proposed auditory analysis in pSTG/STS.

A further open question regarding functional models of voice processing is how 
best to characterize the interactions between the speech, emotion, and identity 
modules. Some models ignore such interactions completely (Belin et al. 2011) (top 
panel of Fig.  7.5). However, numerous psychophysical studies have shown that 
speech perception in noise is improved by familiarity with the speakers (Kreitewolf 
et  al. 2017) and voice-identity recognition is much easier from speech in one’s 
native language (Wester 2012), which should not be the case if speech and voice- 
identity information are processed completely independently. Other versions of the 
model do acknowledge these interactions (Roswandowitz et al. 2018b); however, to 
date, it is not clear exactly how and when these interactions occur.

Another gray area concerns the location and precise function of the PINs. So far 
there is only weak neuroscientific evidence for the existence of a dedicated module 
in the human brain that corresponds to the PINs (see Blank et al. 2014). Moreover, 
the fact that connections between the core voice system and the FFA are early 
(Schall et  al. 2013) and direct (Blank et  al. 2011) suggests that they are not 
necessarily comodulated by a third, supra-modal person-identity region. Taken to 
the extreme, these findings could be used to argue that PINs are simply not needed 
and that, instead, representations of supra-modal person-specific identities are fully 
encoded by modality-specific identity regions and the connections between them. 
This view is perhaps too extreme. Patients with frontotemporal dementia with right- 
hemispheric dominance often have impairment in supra-modal person-identity 
recognition (e.g., Gainotti et al. 2003), consistent with the hypothesis that their PINs 
have been eliminated. Then again, this finding could be explained by damage to 
distinct voice-processing and face-processing regions that are relatively close within 
the anterior temporal lobe. However, there is also fMRI evidence for the existence 
of PINs in the anterior temporal lobe of neurotypical brains (von Kriegstein and 
Giraud 2006).

7.4.2  Prototype Models

Prototype models have a very long history in psychology (Bartlett 1932) and have 
been used to explain encoding, categorization, and recognition of many kinds of 
stimuli. According to these models, the identity of a stimulus is encoded in terms of 
its deviations from an internal representation of a prototypical stimulus. In the 
context of voice-identity recognition, the prototype is an approximation of a typical 
voice built up by taking the average of our experiences with many different speakers. 
Figure 7.6 illustrates a prototype model of voice-identity recognition formulated by 
Lavner et al. (2001).
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Findings from several behavioral studies are broadly consistent with general 
principles of prototype-based encoding of voice identity. For example, ear-witness 
reliability is subject to a typicality effect, such that speakers with unusual or dis-
tinctive voices are easier to remember than those with typical voices (Mullennix 
et  al. 2011). Distinctive voices should be easier to remember than typical ones 
according to the prototype model because they have fewer “near neighbors” to 
compete with. Moreover, famous-speaker recognition appears to be subject to a 
caricature effect. López et al. (2013) instructed professional impersonators to imi-
tate the voices of famous Spanish speakers based on their memory of the speakers 
and then again after listening to recordings of the speakers. Naïve listeners were 
better at recognizing the famous speakers from the first set of impersonations than 
the second set, whereas the second set was judged to be more similar to the original 
recordings than the first set. The prototype model predicts better recognition from 
the first set of impersonations because those impersonations emphasized the devia-
tions from the prototype (i.e., were caricatures), which are more important for rec-
ognition than acoustic accuracy. Finally, perceptual aftereffects following 
adaptation to voices are also consistent with the prototype model (Latinus and 
Belin 2011).

To date, just one study has examined the neurobiology of prototype-based encod-
ing of voice identity (Latinus et al. 2013). In this study, the authors recorded brain 
responses with fMRI while listeners heard recordings of many speakers (32 male 
and 32 female) speaking either the word “had” (in one experiment) or “hello” (in 
another experiment). From each recording within an experiment, they measured 
mean f0 (i.e., GPR), mean distance between f1 and f2 (somewhat related to VTL), and 
harmonics-to-noise ratio (HNR). They also synthesized average male and female 
voices, and for each veridical recording, calculated the Euclidean distance in terms 
of the three acoustic features from their sex-specific (and word-specific) average. 

Fig. 7.6 Schematic of the prototype model by Lavner et  al. (2001). According to this model, 
voice-identity features extracted from the stimulus are compared with those of a stored prototype. 
Features that deviate sufficiently from the prototype are selected and compared to stored reference 
patterns, one for each voice identity. Subtraction of the selected voice features from the closest 
reference pattern yields a distance measure, d. If d is smaller than some perceptual threshold, Th, 
the voice is deemed to belong to the identity corresponding to the reference pattern. If d exceeds 
the threshold, it is used to create a new reference pattern belonging to a new identity. (Adapted 
from Maguinness et al. 2018)

7 Voice Processing



202

The results suggested that the TVAs are sensitive to deviations from a prototypical 
voice (see also the discussion in Maguinness et al. 2018). However, this interpretation 
is complicated by the fact that correlations were strong when the authors assumed 
separate male and female averages, yet the correlations were weak when they 
assumed a single, androgynous average. The authors also constructed different 
prototypes for their two experiments. Thus, it appeared that listeners generated 
separate male and female prototypes and separate prototypes for different words.

A limitation of prototype models is that, to date, no alternatives have been pro-
posed or tested, which makes it difficult to properly evaluate them. In other areas of 
cognitive psychology, prototype models are frequently contrasted with exemplar 
models (Nosofsky 1986). The subtle yet important distinction between prototype 
and exemplar models is that under the former, a stimulus is encoded relative to an 
internally constructed prototype, whereas under the latter, a stimulus is encoded 
relative to representations of previously encountered stimuli from the set. Prototype 
and exemplar models frequently yield similar predictions, but they could be 
differentiated in the future.

7.4.3  A New Model

Recently, a new model has been proposed that attempts to combine prior functional 
and prototype models and to incorporate the finding of a partial dissociation between 
unfamiliar-voicw and familiar-voice processing (Fig. 7.7) (Maguinness et al. 2018). 
Unlike some previous functional models (Sect. 7.4.1), this model focuses on voice- 
identity and face-identity recognition, although it could be extended to include 
speech and emotion processing in the visual and auditory modality in the future.

The new model assumes a first step of basic auditory analysis (identity-feature 
analysis). This step is obligatory and similar to the feature-extraction step from the 
prototype model of Lavner et  al. (2001) (Sect. 7.4.2). It is different from (most) 
functional models (Sect. 7.4.1) because it assumes a certain level of specialization 
for voice-identity features; in previous functional models the earliest processing 
step is usually not considered to differ for voice-identity, speech, and vocal-emotion 
analyses.

Following identity-feature analysis, extracted vocal features are compared to 
those of a prototype (or several prototypes) in order to select deviant features. In the 
next step, deviant features are compared to stored reference patterns. Subtraction of 
the deviant voice features from the closest reference pattern yields a distance 
measure, d. If d < Th (some perceptual threshold), the voice is deemed to belong to 
the identity corresponding to the closest reference pattern, and voice processing 
continues within the anterior STG/STS of the core-voice system and the extended 
voice system. If d > Th, a voice enters the perceptual voice-identity processing loop 
(light grey arrows in Fig. 7.7), which serves to establish new reference patterns. 
Reference-pattern establishment requires some information to be sent back for 
reanalysis of voice-identity features. Importantly, this loop is engaged while 
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listeners are becoming familiar with a speaker’s voice. The loop may be engaged 
more strongly if listeners are trying to learn new speakers or trying to recognize 
recently familiarized speakers. Moreover, the loop may not be engaged for highly 
familiar speakers for whom strong reference patterns have already been established.

This proposal is consistent with the finding that part of the core voice system 
(specifically, the pSTS/STG) responds more strongly to unfamiliar speakers than 
familiar speakers during speaker recognition. It is also a potential explanation for 
why unfamiliar-voice and familiar-voice processing might at least partly dissociate: 
Lesions to particular regions involved in the loop will lead to stronger impairments 
in unfamiliar or recently familiarized voice-identity recognition than familiar voice-
identity recognition. Consistent with prior functional models (Sect. 7.4.2), the new 
model assumes that voice-identity and face-identity recognition involve equivalent, 
parallel processes that are localized to different voice-sensitive and face-sensitive 
brain regions, respectively.

An important feature of the new model is that it acknowledges the existence of 
connections (direct or indirect, functional or structural) between the voice- 
processing and face-processing pathways at various stages. Given the assumed 

Fig. 7.7 The new model of voice-identity and face-identity recognition. The colored boxes repre-
sent the various processing steps in recognizing voices and faces, with grey lines representing the 
flow of information. Functions are matched to their assumed functions, although at the moment 
this matching should be considered tentative. a, anterior; aTL-FA, anterior temporal lobe/face area; 
d, difference between voice and reference pattern; FFA, fusiform face area; HG, Heschl’s gyrus; m, 
middle; OFA, occipital face area; p, posterior; PT, planum temporale; STS/G, superior temporal 
sulcus/gyrus; Th, threshold. (Adapted from Maguinness et al. 2018)
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functions of brain regions at these stages, the model allows us to speculate about 
what the connections between them might accomplish. For example, according to 
the model, the direct functional connections between the mSTS/STG and the FFA 
(reported by Blank et al. 2011) suggest that information from one modality might 
influence the selection of deviant features when recognizing an individual from 
stimuli presented to the other modality (also see Blank et al. 2014).

7.5  Summary

The human voice is the most important sound source in our environment, not only 
because it produces speech, but also because it conveys a wealth of information 
about the speaker. In many situations, listeners are able to simultaneously understand 
the speech message and identify the speaker with minimal effort. Psychophysical 
studies have investigated what acoustic and perceptual features (i.e., voice qualities) 
distinguish voices from different speakers and which of these features listeners use 
to recognize who is speaking. Glottal and vocal tract characteristics strongly 
influence perceived similarity between speakers and may serve as cues for voice- 
identity recognition. However, the importance of a particular feature strongly 
depends on the speaker and the stimulus.

Voice-identity recognition relies on a network of brain regions comprising a core 
voice system of several auditory regions within the temporal lobe, including regions 
dedicated to processing glottal and vocal tract characteristics and regions that play 
more abstract roles, and an extended voice system of non-auditory regions involved 
in the retrieval of information associated with specific voice identities (e.g., faces 
and names). Surprisingly, this network is supported by early, direct connections 
between regions within the core voice system and an analogous core face system, 
which serve to optimize voice-identity recognition.

Despite considerable recent advances in our understanding of human voice pro-
cessing and voice-identity recognition, many questions remain unanswered. For 
example, when and where does the processing of unfamiliar and familiar speakers’ 
voices diverge in the brain? Several functional neuroimaging studies have 
investigated differences in responses to speech from unfamiliar and familiar 
speakers, but we are far from a complete understanding of this issue. A related 
question is when and where voice discrimination and recognition dissociate. 
Unfortunately, both factors are usually intertwined: tests of voice discrimination 
tend to use speech from unfamiliar speakers; tests of recognition tend to use speech 
from familiar speakers. A potential way forward is to study more individuals with 
brain lesions and/or individuals with specific voice-processing deficits (e.g., 
phonagnosia) and use more sophisticated tasks and stimuli in comprehensive 
behavioral test batteries.

Future studies could work to improve theoretical models of voice processing. 
Prototype models of voice-identity encoding, in particular, are currently quite 
vague. Where are prototypes stored in the brain and which regions are responsible 
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for generating them? How many prototypes are there? Could voice-identity encod-
ing be more accurately described as exemplar based?

To date, the fine-mapping of brain regions to their functions during voice pro-
cessing remains tentative. We still do not know why, for example, the aSTS/STG is 
not particularly sensitive to familiar-voice identities, whether the IFG should be 
considered part of both the core voice and core face systems, or whether the IPL is 
truly important for matching faces to voices, as suggested by lesion studies. Answers 
to these questions are likely to come from combinations of psychophysical and 
various neuroimaging techniques in neurotypical participants as well as those with 
voice-identity recognition deficits.
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Chapter 8
Timbre as a Structuring Force in Music
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Abstract The study of timbre by music researchers is seriously underdevel-
oped in both the humanities and human sciences. As applied to instrumental 
music, theories to explain instrumental combinations and timbral shaping 
through instrumentation and orchestration are rare. Analyses of orchestration 
treatises and musical scores reveal an implicit understanding of auditory group-
ing principles by which many orchestral techniques and their perceptual effects 
function. This chapter, with a primary focus on classical Western orchestral and 
electroacoustic music, discusses connections between orchestration practice 
and perceptual principles based on research in auditory scene analysis and tim-
bre perception. The chapter explores: (1) listeners’ abilities to perceive relations 
among timbres; (2) how concurrent grouping cues result in blended or heteroge-
neous combinations of instruments; (3) how sequential groupings into segre-
gated melodic streams and stratified foreground and background layers are 
influenced by timbral similarities and differences; and (4) how segmental group-
ing cues based on changes in instrument timbre and instrumental textures create 
musical units, formal boundaries, and expressive shaping of timbre melodies 
and larger-scale orchestral gestures.
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8.1  Introduction

Timbre perception is at the heart of orchestration practice, that is, the choice, combina-
tion, and juxtaposition of instruments to create a specific musical effect. Examples 
include picking a particular instrument for the emotional tone it can convey, such as 
the melancholy English horn in the third act of Wagner’s opera “Tristan und Isolde”, 
or bouncing musical patterns between contrasting instrument families as in the second 
movement of Beethoven’s ninth Symphony (where a repeating call and response pat-
tern alternates between woodwinds plus brass and strings plus brass). For practicing 
composers and conductors, the potential of timbre to structure musical forms and to 
sculpt music’s emotional impact is evident; however, until relatively recently (see 
Thoret et al. 2018), these roles of timbre have been addressed only rarely in music 
research in both the humanities (music theory, musicology, ethnomusicology) and the 
behavioral sciences (experimental psychology). Most researchers and theorists focus 
on the musical parameters of pitch and duration that give rise to melody and harmony 
on the one hand and rhythm and meter on the other (obviously in concert with other 
so-called “secondary” parameters such as loudness or musical dynamics and timbre).

An examination of writings on orchestration practice from the middle of the 
nineteenth century to present times (e.g., Berlioz and Strauss 1948; Adler 2002) 
reveals that the communication of knowledge about orchestration is primarily based 
on a multitude of examples of various techniques. From these, students must memo-
rize all the cases or somehow implicitly derive theory by studying scores and listen-
ing carefully to recordings over a span of many years. They also learn by practicing 
orchestration techniques, with the added difficulty of not always being able to hear 
the musical result of what they might write on the page of a score because they 
rarely have access to an orchestra.

An alternative approach would be to start with the assumption that orchestration 
conventions have some implicit basis in auditory grouping principles, given that 
composers are most likely grounding what they do in their own auditory experience 
(Goodchild and McAdams 2018). As detailed in Sect. 8.3, auditory grouping 
includes the perceptual fusion of concurrent acoustic information into auditory 
events, the perceptual connection through time of similar events into auditory 
streams (melodic lines) or foreground and background layers, and the segmentation 
of streams or layers into “chunks” that can be processed in short-term memory. 
Timbre arises from perceptual fusion as a property of an event. It can then influence 
the way successive events form auditory streams because listeners tend to connect 
events coming from the same sound source and because, generally speaking, a given 
source varies relatively little in timbre compared to the differences between distinct 
sources. Timbral contrasts can provoke segmentation in which successions of events 
with similar timbres form units separated from preceding or succeeding material 
with different timbres. From this perspective, the role of timbre as a structuring 
force in music can be addressed through the following set of questions:

• Can relations among timbres in sequences be perceived, stored in memory, and 
subsequently recognized as intervals or contours analogous to the perception of 
pitch and duration relations?

S. McAdams
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• What is the relation between auditory fusion and the perception of timbre?
• In what way do auditory-scene-analysis principles and acoustic properties con-

tribute to determining whether separate sound events will blend together?
• How do timbral continuity and discontinuity contribute to the formation of 

auditory streams and the formation of foreground and background orchestral 
layers?

• How do timbral changes and the learning of timbral patterns affect perceptual 
segmentation of sequences, and what role do these play in music?

• How do gradual and sudden timbral changes contribute to larger-scale musical 
form?

8.2  Perception of Timbral Relations

One of the properties of musical pitch that endows it with its psychological capacity 
to serve as a vehicle for musical patterns and forms is that relations among pitches 
(contours or intervals) can be perceived as musical qualities per se. Musical patterns 
can be constructed with these qualities, and operations on those patterns that main-
tain the structural relations, such as transposition, also maintain a strong degree of 
perceptual similarity between the original and transformed materials. For example, 
someone can hum the tune to Happy Birthday starting on any pitch and, if the inter-
vals are correct, the melody is still recognized. In order to extend these form-bearing 
possibilities of pitch into the realm of timbre, it would be necessary to determine the 
kinds of structuring of timbral relations that can be perceived by listeners and that 
still provide a certain richness to be reasoned with by composers. For the psycholo-
gist, several interesting questions arise concerning a listener’s ability to perceive 
and remember timbral relations in tone sequences and to build up hierarchical men-
tal representations based on those relations (McAdams 1989).

Timbre space provides a model for relations among timbres. A timbre space is 
derived from dissimilarity ratings on all pairs of a set of sounds (usually equalized 
for pitch, duration, and loudness) to which a multidimensional scaling algorithm is 
applied to model the dissimilarities as distances in a Euclidean space (for more 
detail, see McAdams, Chap. 2). Sounds with similar timbres are close in the space 
and different ones are farther apart. The dimensions are presumed to be perceptual. 
A timbre interval can be considered as a vector connecting two timbres in such a 
space, and transposing that interval maintains the same amount of change along 
each perceptual dimension of timbre. One might ask whether listeners can perceive 
timbral intervals and recognize transpositions of those intervals to other points in 
the timbre space as one can perceive pitch intervals and their transpositions in pitch 
space. Consider the timbral trajectory shown in Fig. 8.1 through the McAdams et al. 
(1995) timbre space starting with the guitarnet (a synthetic hybrid of guitar and 
clarinet) and ending with the English horn imitation. How would one construct a 
timbre sequence starting from the bowed string so that it would be perceived as a 
transposition of this Klangfarbenmelodie (the German term for tone color melody 
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introduced by Schoenberg [1978])? If timbre interval perception can be demon-
strated, the door would be opened for the application of some of the operations 
commonly used on pitch sequences to timbre sequences (Slawson 1985). The per-
ceptual interest of this possibility is that it would extend the use of the timbre space 
as a perceptual model beyond the dissimilarity paradigm used to construct it in the 
first place.

Ehresman and Wessel (1978) first conceived of the notion of a timbre interval as 
the vector between two points in a timbre space. They tested the timbre-vector 
hypothesis by asking listeners to compare two timbre intervals (A-B versus C-D): 
A, B, and C were fixed and there were various Ds presented. Listeners ranked the 
Ds according to how well they fulfilled the analogy: timbre A is to timbre B as tim-
bre C is to timbre D (notated A:B :: C:D; see CD1 vector in Fig. 8.2). The ideal CD 
vector would be a simple translation of the AB vector in the space with A, B, C, and 
D forming a parallelogram (shown with dashed lines in Fig. 8.2). Ehresman and 
Wessel found that the closer timbre D was to the ideal point defined by the parallelo-
gram model, the higher the ranking.

McAdams and Cunibile (1992) subsequently tested the vector model using the 
three-dimensional space from Krumhansl (1989) and varying the orientation and 
length of the vector compared to the ideal values. In Krumhansl’s timbre-space 
model, each sound had a position in the three shared dimensions, but they also had 
a factor specific to each sound that increased its distance from the other sounds, 
called its “specificity” (see McAdams, Chap. 2). The specificities were ignored in 
McAdams and Cunibile’s calculations. They selected different kinds of Ds (see 
Fig. 8.2): D1 was near the ideal spot; D2 was about the same distance from C, but 
was at least 90° in the wrong direction; D3 was in about the right direction from 

Fig. 8.1 A trajectory 
(heavy black line) of a 
short timbre melody 
through timbre space of 
synthesized sounds 
intended to mimic 
acoustical instruments or 
hybrids (in italics). How 
would one transpose the 
timbre melody that starts 
on guitarnet to a melody 
starting on string (circled)?
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C, but its length was at least 1.8 times greater than that of the ideal vector; and D4 
was both too far and in the wrong direction. Listeners compared pairs of A:B :: C:D 
analogies constructed in this way and had to choose for which one C:D seemed 
most similar to A:B (e.g., compare A:B :: C:D1 with A:B :: C:D4). Five sets of 
timbres at different places in Krumhansl’s timbre space were chosen for each com-
parison to test for the generality of the results. In general, timbres close to the ideal 
point predicted by the vector model were preferred as better fulfilling the A:B :: C:D 
analogy than were timbres that were at some distance from that point. Both non-
musicians and composers of electroacoustic music found the task rather difficult. 
This shouldn’t be too surprising given that even professional composers have had 
almost no experience with music that systematically uses timbre intervals to build 
musical structures. Support for the model was stronger for electroacoustic compos-
ers than for nonmusicians, however, suggesting some effect of musical training and 
experience.

Fig. 8.2 Two-dimensional representation of the different sequence types used by McAdams and 
Cunibile (1992). The hashed areas represent the constraint space for the end points of CD vectors, 
which are labeled D1, D2, D3 or D4, accordingly. The ideal point would be at the tip of the arrow-
head for the CD vector that forms a parallelogram with AB (connected by dashed lines). For the 
three-dimensional case, the area would be a small sphere for D1, a shell for D2, part of a cone for 
D3, and a solid with a hemispherical hollow for D4. (Adapted from figure 2  in McAdams and 
Cunibile 1992; used with permission of The Royal Society)
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When one examines in detail the five different versions of each comparison type, 
it is clear that not all timbre comparisons go in the direction of the model predic-
tions. One confounding factor is that the specificities on the sounds in this set were 
ignored in computing the vectors and selecting the analogies. These specificities 
would of course distort the vectors that were used to choose the timbres because 
they are like an additional dimension for each timbre. As such, certain timbre inter-
vals corresponded well to what was predicted because the specificities were absent 
or low in value, whereas others were seriously distorted and thus perceived as less 
similar to other intervals due to moderate or high specificity values.

The relative lack of generalizability of timbre interval perception across different 
timbres may be due to a number of factors that were not controlled in McAdams and 
Cunibile’s study. First, there may be a relative instability of judgement strategies 
given that most listeners have never encountered a listening situation in which per-
ceiving abstract timbral relations was appropriate. Second, there may be effects of 
the relative magnitude of a given vector and the distance between to-be-compared 
vectors: it may be difficult to compare with precision very large vectors or small 
vectors that are very far apart in the space. What this line of reasoning suggests is 
that the use of timbre intervals as an integral part of a musical discourse runs the risk 
of being very difficult to achieve with very complex and idiosyncratic sound sources, 
such as acoustic or electronic musical instruments, because they will, in all proba-
bility, have specificities of some kind or another.

It may be difficult to use timbre intervals as an element of musical discourse in a 
general way in instrumental music given that the timbre spaces of acoustical instru-
ments also tend to be unevenly distributed (see Fig. 8.1), unlike the regular spacing 
of pitches in equal temperament. If timbre intervals are to be used, in the long run 
they will most likely need to be limited to synthesized sounds or blended sounds 
created through the combination of several instruments. Whether or not specific 
intervals are precisely perceived and memorized, work in progress shows that per-
ception of the direction of change along the various dimensions is fairly robust, 
which would allow for the perception of similar contours (patterns of relative change 
along the different dimensions) in trajectories through timbre space. Indeed, 
McDermott et al. (2008) have shown that timbral brightness contours (patterns of 
ups and downs) can be recognized irrespective of the exact amount of change and 
also can be compared to contours in pitch and loudness.

It should be noted, nonetheless, that in a context in which pitch is a structuring 
factor, timbre may have difficulty imposing itself as a dominant parameter in terms 
of relational perception, primarily due to a sort of dominance hierarchy favoring 
duration and pitch relations (rhythm and melody) when several parameters are in 
play. Research on the conditions under which a given musical parameter plays a 
significant role in the perceptual structuring of music when varied in the presence of 
other parameters is limited and rarely goes beyond the royal couple of pitch and 
duration. A first attempt in this direction, which only used nonmusical sequences, 
was conducted by Krumhansl and Iverson (1992). They found that the classification 
of pitches (high versus low) or timbres (bright versus dull) was symmetrically 
affected by uncorrelated variation in the other parameter: reaction times for pitch 
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were slower when having to ignore random changes in timbre compared to when 
timbre was held constant and vice versa. This result suggests that it is difficult to 
ignore either parameter (pitch or timbre) when both are changing and indicates a 
tight relation between timbral brightness (change in the spectral centroid) and pitch 
height. This link would be coherent with underlying neural representations that 
share common attributes such as a tonotopic organization of spectral distribution 
(for more on pitch-timbre interactions, see McAdams, Chap. 2).

In two other experiments, Krumhansl and Iverson (1992) asked listeners to focus 
their attention on either the pitch or timbre of a single target event in a short sequence 
and to decide whether the same event in a second sequence was identical or different 
with regard to the parameter being tested. In addition, the other notes around the 
target event could vary either in terms of the attended parameter, the unattended 
parameter, or both. Globally, timbres were recognized better than pitches. A change 
in pitch context did not affect recognition of the target timbre and, similarly, a 
change in timbre context left pitch recognition unaffected. A change in pitch context 
strongly affected recognition of the pitch of the target event, however, indicating 
that listeners code relations between pitches (i.e., relative pitch) in memory rather 
than the absolute pitch value. To the contrary, the effect of variation in timbre con-
text only weakly affected target timbre recognition and only when there was no 
variation in pitch context. This result suggests that although pitch is coded in rela-
tive terms, timbre is more likely to be coded absolutely as a sound source category, 
and relations among timbres are only coded when pitch does not vary. Krumhansl 
and Iverson (1992) concluded that relational structures among timbres would be 
difficult to perceive in the case in which other musical parameters vary indepen-
dently. Siedenburg and McAdams (2018) presented converging evidence regarding 
the interference of concurrent pitch variation in a timbre-sequence recognition task 
(also see Siedenburg and Müllensiefen, Chap. 4). It remains to be seen, however, 
what the interplay of pitch-based and timbre-based structuring forces would be in 
instrumental and electroacoustic music that is based more on sound colors and tex-
tures and less on melody and harmony.

8.3  Timbre and Auditory Grouping

Figure 8.3 summarizes the grouping processes involved in auditory scene analysis, 
as well as the resulting perceptual attributes related to orchestral effects produced in 
music. Concurrent grouping determines how components of sounds are grouped 
together into musical events, a process referred to in psychology as auditory fusion. 
This grouping process precedes, and thus conditions, the extraction of the percep-
tual attributes of these events, such as timbre, pitch, loudness, duration, and spatial 
position. The result of combining sounds concurrently in orchestration is timbral 
blend when events fuse together or timbral heterogeneity when they remain separate 
(see Sect. 8.3.1). Sequential grouping connects these events into single or multiple 
auditory streams on the basis of which perception of melodic contours and rhythmic 
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patterns is determined (McAdams and Bregman 1979). The orchestral effect is the 
integration or segregation of events into streams, textures, and foreground and back-
ground layers (see Sect. 8.3.2). And finally, segmental grouping affects how events 
within streams are chunked into musical units, such as motifs, phrases, themes, and 
sections.

Timbral similarity contributes to the unification of segments of music that are set 
off from adjacent segments when timbral contrast is introduced. Continuous change 
in timbre is used in progressive orchestration to create timbral modulations or 
larger-scale orchestral gestures (see Sect. 8.4). It becomes apparent here that audi-
tory grouping processes are implicated in many aspects of orchestration practice, 
including the blending of instrument timbres, the segregation of melodies and layers 
based on timbral differences, and the segmentation of contrasting orchestral materi-
als that results in the creation of perceptual boundaries in musical structures.

8.3.1  Timbre and Perceptual Fusion

As indicated in Fig. 8.3, timbre emerges from the perceptual fusion of acoustic 
components into a single auditory event, including the blending of sounds pro-
duced by separate instruments in which the illusion of a “virtual” sound source 
is created. The creation of new timbres through blending thus depends on the 
perceptual fusion of the constituent sound events. Concurrent grouping is affected 
by sensory cues, such as whether the acoustic components begin synchronously 
(onset synchrony), whether they are related by a common period (harmonicity), 
and whether there is coherent frequency and amplitude behavior (McAdams 
1984). The coherent behavior cues are related to the Gestalt principle of common 
fate: Sounds that change in a similar manner are likely to have originated from 
the same source (Bregman 1990).

Fig. 8.3 Auditory grouping processes (concurrent, sequential, segmental) that give rise to percep-
tual attributes and orchestral effects
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Lack of synchrony, harmonicity, and parallel change in pitch and musical 
dynamics (piano, forte) is likely to signal the presence of two or more sound 
sources and to provide the information needed to organize and group their respec-
tive frequency components separately (McAdams 1984). This means that instru-
ment combinations are more likely to be perceived as blended if they adhere to 
these principles. This approach can be found in orchestration manuals that sug-
gest strict doubling of a melodic line, most often at the unison or octave intervals 
at which maximum coincidence of the frequency components would occur. A 
classic example of the combined use of these cues is Ravel’s piece Boléro, in 
which he constructs virtual sound sources with complex timbres by stacking 
instruments in a harmonic series (fundamental pitch, octave, twelfth, double 
octave, etc.) and having them play in synchrony and in perfect parallelism in 
terms of both pitch and dynamics (https://www.youtube.com/watch?v=dZDiaRZ
y0Ak&frags=pl%2Cwn, instrument combinations start at 4:35 with a trumpet-
flute combination or at 7:03 with French horn on the fundamental pitch and 
celesta and piccolos on pitches corresponding to harmonics 2–5).

The degree of fusion also depends on spectrotemporal relations among the con-
current sounds. Some instrument pairs can still be distinguished in dyads with iden-
tical pitches and synchronous onsets because their spectra do not overlap 
significantly. Sandell (1995) has demonstrated that sounds blend better when they 
have similar attack envelopes and spectral centroids, as well as a lower composite 
spectral centroid. He submitted listeners’ blend ratings (taken as a measure of prox-
imity) to multidimensional scaling and obtained a “blend space” whose dimensions 
were correlated with attack time and the spectral centroid, suggesting that the more 
these parameters were similar for the two combined sounds, the greater their blend. 
Kendall and Carterette (1993) found a similar trend concerning the role of spectro-
temporal similarity in blend for wind instrument combinations. Tardieu and 
McAdams (2012) reported that greater blending is achieved with lower spectral 
centroids and slower attacks for combinations of pitched impulsive and sustained 
sounds (e.g., a vibraphone and bowed cello). However, the timbre resulting from the 
blend is determined primarily by the attack of the impulsive sound and the spectral 
envelope of the sustained sound, which create a chimeric sound with the head of one 
and the tail of the other, respectively.

In addition to global descriptors, such as a spectral centroid, research has also 
been conducted on the role of local descriptors of formant structure (prominent 
spectral maxima that are invariant with respect to pitch change) on wind and brass 
instrument blends (Reuter 2003). Lembke and McAdams (2015) extended this 
approach, characterizing wind-instrument spectra in terms of pitch-generalized 
spectral envelope descriptions. Some instruments exhibit a formant-like structure 
with prominent spectral peaks. They conducted two experiments employing blend- 
production and blend-rating tasks and studied the perceptual relevance of these for-
mants to the blending of dyads composed of a recorded instrument sound and a 
parametrically varied synthesized sound. Relationships between formant center fre-
quencies influenced blend critically, as did the degree of formant prominence.
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These relations of spectral overlap and perceptual fusion seem to hold not only 
for the blending of sounds of pitched instruments, as mentioned above, but also for 
vocal sounds (Goodwin 1980) and even noise and pitched sounds as in the case of 
Burundian Inanga chuchoté (whispered Inanga) (https://www.youtube.com/watch?
v=94TGtf7PdyE&frags=pl%2Cwn). The Inanga is an African zither that is tradi-
tionally accompanied by whispered voice (Fales and McAdams 1994). The latter 
case is fascinating because the language of that culture is tonal, and the musical 
instrument helps to communicate the pitch contours that disambiguate the reduced 
phonetic information provided by the whispered voice. These results taken together 
demonstrate the importance of spectral overlap in the perception of blend.

Sandell (1995) has proposed three possible perceptual results of instrument combi-
nations. The first is timbral heterogeneity: individual sounds are segregated and identi-
fiable. The second is timbral augmentation: subservient sounds are blended into a more 
dominant, identifiable sound whose timbre is then reinforced or highlighted by them. 
The third is timbral emergence: all sounds are blended and unidentifiable. An inverse 
relation between the degree of blend and the identifiability of the constituent sounds 
has been documented by Kendall and Carterette (1993). Future work is needed to 
develop models that can predict: (1) the degree of blend from the underlying perceptual 
representation, (2) the timbral qualia that emerge from blended sounds, and (3) which 
timbres are likely to be dominant or remain identifiable in a blend.

Additional factors that also seem to play a role in blend, but which have not 
been studied systematically, are event duration and spectral density. Punctuated 
sonorities with many instruments playing across a range of pitches for short dura-
tions, as in the opening chord of Ludwig van Beethoven’s Third Symphony, the 
‘Eroica’ (https://www.youtube.com/watch?v=nbGV-MVfgec&frags=pl%2Cwn), 
do not provide enough time to “hear into” the sonority and analyze out the different 
constituent sounds. In addition, sound masses with many closely spaced pitches 
are similarly difficult to analyze due to auditory limits in spectral resolution, as one 
finds in sound mass orchestral pieces such as György Ligeti’s Atmosphères (https://
www.youtube.com/watch?v=9XfefKJRoSA&frags=pl%2Cwn), made popular 
through the Stanley Kubrick film 2001: A Space Odyssey.

8.3.2  Timbre and Sequence Perception

The connection of successive sound events into a coherent perceptual message 
through time is referred to as auditory stream integration, and the separation of 
events into distinct messages is called auditory stream segregation (Bregman and 
Campbell 1971). Musicians would call these streams musical lines, parts, or voices. 
An auditory stream is a mental representation of continuous sound activity consid-
ered by the perceptual system to be emanating from a single sound source (Bregman 
1990). Sequential grouping processes organize successive events into a single 
stream or multiple streams based on specific cues, which are closely related to 
Gestalt principles of proximity (closeness in time) and similarity in auditory 
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properties, such as pitch, timbre, loudness, and spatial position (McAdams and 
Bregman 1979). One of the main hypotheses behind the theory of auditory scene 
analysis is that the auditory system operates according to a heuristic that a sequence 
of events produced by a single sound source will be similar in terms of spectral 
content (affected by pitch register, instrument, and playing effort), intensity (affected 
by pitch register and playing effort), and spatial position. Continuities in these cues 
would thus promote the integration of the events into a stream, and discontinuities 
would signal the presence of other sound sources, leading to the segregation of the 
events into different streams within which events are similar. So sequences of 
sounds from different instruments can be segregated on the basis of timbre (imagine 
a duo of violin and piano) as can sounds from a single instrument that have very 
different timbral characteristics, as one might find, for example, in Nel cor più non 
mi sento (I do not feel my heart anymore) for solo violin by Niccolò Paganini, in 
which bowed and plucked sounds form separate streams in counterpoint with each 
other (https://www.youtube.com/watch?v=OpxwHm_a_Po&frags=pl%2Cwn start-
ing at 1:12). It is important to note that timbre covaries with pitch, playing effort, 
and articulation in musical instruments and so cannot be considered independently; 
therefore, changing the pitch or the musical dynamic also changes the timbre.

Once timbre has been formed following concurrent grouping, it plays an impor-
tant role in determining whether successive sounds are integrated into an auditory 
stream on the basis of similarities in spectrotemporal properties or segregated into 
separate streams based on timbral differences that potentially signal the presence of 
multiple sound sources (McAdams and Bregman 1979; Gregory 1994). This pro-
cess reflects the fact that individual sources do not generally tend to change their 
acoustic properties suddenly and repeatedly from one event to the next (for reviews, 
see McAdams and Bregman 1979; Chap. 2 in Bregman 1990). As the difference 
between timbres gets larger, the resulting stream segregation gets stronger. Because 
melody and rhythm are perceptual properties of sequences that are computed within 
auditory streams (Fig. 8.3), timbre can strongly affect the perception of these musi-
cal patterns. A clear demonstration of this principle is depicted in Fig. 8.4.

Fig. 8.4 Schematic diagram of the two versions of a melody created by David Wessel (1979) with 
one instrument (top) or two alternating instruments (bottom). In the upper melody, a single rising 
triplet pattern is perceived at a particular tempo. In the lower melody, if the timbral difference 
between the sounds of the two instruments (indicated by open and filled circles) is sufficient, two 
interleaved patterns of descending triplets at half the tempo of the original sequence are heard, as 
indicted by the dashed and solid lines
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These early demonstrations of auditory streaming on the basis of timbre suggest 
a link between the timbre-space representation and the tendency for auditory stream-
ing on the basis of the spectral differences that are created. Hartmann and Johnson 
(1991) argued that aspects of timbre derived from the spectral distribution are pri-
marily responsible for auditory streaming, and temporal aspects (such as attack 
time) have little effect. However, several subsequent studies have indicated an 
important role for both spectral and temporal attributes of timbre in auditory stream 
segregation (Cusack and Roberts 2000; for a review, see Moore and Gockel 2002). 
In one study, Iverson (1995) used sequences alternating between two recorded 
instrument tones with the same pitch and loudness and asked listeners to rate the 
degree of segregation. The segregation ratings were treated as a measure of dissimi-
larity, and multidimensional scaling was performed to determine a segregation 
space from which acoustic properties that contributed to stream segregation could 
be determined. He compared the segregation space with a timbre space derived 
from the same sounds (Iverson and Krumhansl 1993) and showed that both static 
acoustic cues (such as the spectral centroid) and dynamic acoustic cues (such as 
attack time and spectral flux) were all implicated in segregation.

Iverson’s findings were refined in an experiment by Singh and Bregman (1997). 
They varied the amplitude envelope and the spectral content independently and 
measured the relative contributions of these parameters to auditory stream segrega-
tion. A change from two to four harmonics (which would change both the centroid 
and the spread of the spectrum) produced a greater effect on segregation than did a 
change from a 5 ms attack and 95 ms decay to a 95 ms attack and 5 ms decay. 
Combining the two gave no greater segregation than was obtained with the spectral 
change, which suggests a stronger contribution of the spectral property to segrega-
tion. However, it should be noted that differences in the attacks of sounds produced 
by musical instruments involve many more acoustic properties than just a change in 
the amplitude envelope because they include noisy attack transients and rapid 
changes in spectral distribution during the attack.

In a slightly more musical task, Bey and McAdams (2003) used a melody dis-
crimination paradigm. They first presented listeners with a target melody inter-
leaved with another melody that served as a distractor such that if the two were not 
segregated the target melody would be camouflaged by the distractor. This mixed 
sequence was followed by a test melody that was either identical to the target or 
differed by two notes that changed the contour. Listeners were asked to decide 
whether the test melody was present in the previous mixture. Note that with the 
presentation of the test melody after the mixture, the listener must first organize the 
mixture into streams and then compare the melody carried by the target timbre with 
the ensuing test melody with the same timbre. The timbre difference between target 
and distractor melodies was varied within the timbre space of McAdams et  al. 
(1995). In line with the results of Iverson (1995), melody discrimination increased 
monotonically with the distance between the target and the distractor timbres, which 
varied along the dimensions of attack time, spectral centroid, and spectral flux. Here 
again, the temporal and spectrotemporal properties seem to play a significant role in 
stream organization in addition to purely spectral properties.
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Timbral difference is also an important cue for following a voice (or musical 
part) that crosses other voices in pitch or for hearing out a given voice in a poly-
phonic texture with several independent parts (McAdams and Bregman 1979). 
Tougas and Bregman (1985) interleaved notes of ascending and descending scales, 
which are normally perceived as V-shaped and inverted V-shaped melodies that 
bounce at the crossover point (Fig. 8.5a) when the timbres of the scales are the same 
(same spectral content in terms of number of harmonics in their case). This percept 
has been interpreted as a demonstration of the role of the Gestalt principle of pitch 
proximity. However, when the spectral structures, and thus timbres, are different, 
this bouncing percept is replaced by the complete ascending and descending scales 
(Fig. 8.5b). So listeners form auditory streams with sounds of similar timbres and 
segregate different timbres into distinct auditory streams. Similar results are found 
with continuous glides of simultaneous vocal sounds composed of diphthongs: 
When the timbres of the vowels were the same at the moment of crossing, a bounc-
ing perception was heard, and when they were different, crossing was perceived 
(McAdams and Bregman 1979; Culling and Darwin 1993). Timbre can thus play an 
important role in voice leading in polyphonic music. Voice leading is the connection 
of successive notes in a musical line, and timbre’s role in this process has been 
largely ignored by music theorists; one exception is Huron (2016), who discusses 
timbral differentiation in Chap. 8 of his book.

If a composer seeks to create Klangfarbenmelodien (the German term for sound 
color melodies) that change in instrumental timbre from note to note, timbre-based 

Fig. 8.5 Bouncing and crossing percepts of interleaved ascending and descending melodies 
depend on timbral differences. (a) When the timbre of ascending and descending melodies is the 
same, a bouncing percept is heard with V-shaped and inverted V-shaped melodies. (b) When the 
timbres are different enough (represented by color), the crossing melodies are heard
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streaming may prevent the listener from integrating the separate sound sources into 
a single melody if the changes are too drastic. The timbre sequences would not actu-
ally have the perceptual status of a melody (understood as an integrated stream 
within which relations among perceptual properties of successive events can be 
perceived) but would instead be perceptually fragmented, resulting more in a sort of 
Klangfarbenzersplitterung (sound color fragmentation)! Humans have a predisposi-
tion to identify a sound source and follow it through time on the basis of relative 
similarity in pitch, timbre, loudness, and spatial position (Bregman 1990; Siedenburg 
and Müllensiefen, Chap. 4). Cases in which such timbral compositions work suc-
cessfully have used smaller changes in timbre from instrument to instrument (e.g., 
Anton Webern’s orchestration of Bach’s Ricercar from The Muscial Offering, 
https://www.youtube.com/watch?v=2cLALT09Y0M&frags=pl%2Cwn) or over-
lapping of instruments to create a line that cross-fades from one instrument to the 
next (e.g., Tristan Murail’s Mémoire/Érosion, https://www.youtube.com/watch?v=d
TZDCTzUcbA&frags=pl%2Cwn). However, if pointillistic fragmentation is the 
composer’s desired aim, significant timbre change is indeed effective in inducing 
perceptual discontinuity.

Goodchild and McAdams (2018) propose two other groupings that are discussed 
in orchestration treatises but have not yet been studied empirically. They are differ-
ent from stream segregation in degree and complexity more than in kind. One is 
textural integration, which occurs when two or more instruments that feature con-
trasting rhythmic figures and pitch materials coalesce into a single textural layer. 
This is perceived as being more than a single instrument but less than two or more 
clearly segregated melodic lines. One might consider it as occupying a middle place 
between integration and segregation. The emergent property is a musical surface 
texture. The other one is stratification, in which two or more different layers of 
orchestral material are formed perceptually and are separated into strata of greater 
and lesser prominence or as foreground and background layers, with one or more 
instruments in each layer. Integrated textures often occupy an orchestral layer in a 
middleground or background position, providing a textural atmosphere. An excel-
lent example from Bedřich Smetana’s The Moldau (measures 187–212) is the inter-
twining melodies of two flutes and two clarinets in a middleground texture behind 
the high violin melody alternating with harp arpeggios in the foregrond and horns 
and other strings in the background (https://www.youtube.com/watch?v=gTKsHwq
aIr4&frags=pl%2Cwn starting at 5:35). The beautifully rendered middleground tex-
ture in this passage represents the shimmering of moonlight on the Moldau River. A 
reasonable hypothesis is that similarity of timbre, pitch register, rhythmic pattern-
ing, and articulation within layers allow for their grouping together, and differences 
in these parameters between layers allow for their perceptual separation.

Huron (2016) raises an interesting issue concerning orchestration practice and 
the effectiveness of timbral differentiation on the segregation of contrapuntal parts. 
He notes that contrary to what one might expect, composers often adopt more tim-
brally homogeneous instrument groupings in polyphonic works, such as the 
 extensive repertoire for string quartets, brass ensembles, vocal groups, and solo 
keyboards. His hypothesis is that such selections of instrumentation by composers 
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may be related to their goal of maintaining balance among the parts because hetero-
geneous ensembles may present perceptual difficulties due to the differences among 
the instruments in terms of their acoustic power and their relative salience. Huron 
(2016) therefore proposes that timbral differentiation is often reserved as a device 
used to distinguish foreground from background layers. Finally, the elusive notion 
of timbral salience, the properties that capture one’s attention and lead to the dis-
tinction between foreground and background prominence, needs to be explored 
empirically in musical settings, although there is some research into environmental 
settings (Huang and Elhilali 2017).

8.4  Timbre and the Perception of Musical Form

8.4.1  Timbral Contrasts and Segmentation

Having examined how timbre derives from concurrent grouping and plays a role in 
sequential grouping, let us now consider how timbral discontinuities promote seg-
mental grouping, a process by which listeners segment musical streams into units 
such as motifs, phrases, themes, and sections (Fig. 8.3). People organize and make 
sense of continuous streams of acoustic information partly by segmenting them into 
events, that is, meaningful units. Event segmentation is most likely an ongoing com-
ponent of everyday perception that composers use. Changes in musical features are 
a common cue for segmentation, and listeners will indicate segment boundaries in 
listening experiments if strong enough changes in pitch register, dynamics, instru-
mentation, and duration occur. The more each feature changes and the more features 
that change simultaneously, the stronger is the sense of boundary (Hartmann et al. 
2016). Furthermore, events are segmented simultaneously at multiple timescales 
and are grouped in hierarchical fashion with groups over smaller timespans being 
nested within groups occupying larger timespans. This nesting makes segmentation 
a crucial component in the formation of a hierarchical mental representation of 
musical form.

An “event” is some segment of time occupied by sensory information that is 
conceived by a listener as being bounded by a beginning and an end. For example, 
notes are events that are grouped into higher-level events of rhythms and melodies, 
which are in turn grouped into phrases and sections. The parsing of continuously 
incoming sensory information into events is closely related to the process of updat-
ing working memory (the part of short-term memory concerned with immediate 
conscious perceptual and linguistic processing) and depends on contents stored in 
long-term memory. Kurby and Zacks (2008) proposed that event segmentation may 
arise as a side effect of an adaptive mechanism that integrates information over the 
recent past to improve predictions about what may arrive in the near future. When 
perceptual features change, it becomes more difficult to predict what will follow, 
and errors in prediction increase momentarily. At such points, listeners need to 
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update their memory representations of what is actually going on. Kurby and Zacks 
(2008) hypothesized that two processes give rise to the subjective experience that a 
new event has begun: (1) the detection of a momentary increase in prediction errors 
created by the violation of expectations generated by a model of the current event, 
and (2) the updating of the event model in working memory that results from the 
expectation violation. One important feature of this approach is the notion that 
events can be organized at a range of temporal grains, from fine grained (e.g., notes) 
to coarse grained (e.g., phrases or sections).

Event segmentation may be accomplished contextually on the basis of the inter-
nal continuity relations in the music. Generally speaking, a segment is characterized 
by relative internal continuity as concerns the degree and rate of change of the per-
ceptual properties of the musical materials being heard and by a relative discontinu-
ity at its terminal points (for an application of these principles to music analysis, see 
Oliver 1967). So change creates prediction errors based on presumed continuity, 
and the errors in turn cause segmentation. According to the Gestalt principle of 
similarity, sounds that resemble one another are grouped together and are seg-
mented into chunks that are bounded by acoustic dissimilarities. Gradual changes 
over a given time period would create a sense of continuity, whereas discontinuities 
promote segmentation into musical units. So musical segments are formed on the 
basis of similarities in register, texture, and instrumentation (i.e., timbre), and 
changes in one or more of these musical features signal boundaries at various levels 
of the musical hierarchy, depending on the cumulative degree of change among 
them (Deliège 1989).

In their generative theory of tonal music, Lerdahl and Jackendoff (1983) pro-
posed a series of grouping preference rules that reflect how listeners perceptually 
structure musical sequences. Two Gestalt principals of temporal proximity and 
qualitative similarity underlie the rules, most of the latter resulting from a change or 
discontinuity in one or more auditory attributes, including pitch register, musical 
dynamics, articulation (staccato, tenuto, legato, mostly related to the duration of 
gaps between successive notes), note duration, and timbre. Deliège (1987) experi-
mentally tested the extent to which listeners segmented musical phrases in accor-
dance with these grouping rules. She found that timbral discontinuities (changes in 
instrument timbre) were among the changes that both musician and nonmusician 
listeners detect most often in short phrases.

Specific evaluation of the role that timbre plays in the segmental structuring of 
music is limited in music-theoretical and perceptual scholarship. Goodchild and 
McAdams (2018) propose several types of contrasts that are often found in the 
orchestral repertoire: (1) antiphonal alternation of instrumental groups in call-and- 
response phrase structure (antiphonal is from the Greek antiphonos, which means 
“responsive, sounding in answer”); (2) timbral echoing in which a repeated musical 
phrase or idea appears with different orchestrations, with one seeming more distant 
than the other due to the change in timbre and dynamics; (3) timbral shifts in which 
musical materials are reiterated with varying orchestrations, passed around the 
orchestra, and often accompanied by the elaboration or fragmentation of musical 
motifs; and (4) larger-scale sectional contrasts with major changes in instrumental 
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forces, passing from a full orchestra to a solo violin, for example. The perceptual 
strengths of these different contrasts depend on the timbral changes used. 
Furthermore, the timbral differences may play a role in which musical materials are 
perceived as a call versus a response in call-response patterns, or as an original pat-
tern versus an echoed version of that pattern. Listeners also segment large-scale 
sections of contemporary works on the basis of marked contrasts in instrumentation 
and texture (Deliège 1989). Therefore, timbral discontinuities promote the creation 
of perceptual boundaries, whereas continuities promote the grouping of events into 
coherent units at various levels of the structural hierarchy. This means that timbral 
changes can affect both local and global levels of formal organization in music. 
However, timbral changes interact with changes in other musical parameters in 
terms of the strength of perceived boundaries. An excellent example of a timbral 
shift in which a melodic pattern is passed from one instrument to another can be 
found in Beethoven’s Egmont Overture, with a sequence from clarinet to flute to 
oboe and back to clarinet with some fragmentation of the motive in the last two 
iterations (Fig. 8.6) (https://www.youtube.com/watch?v=2HhbZmgvaKs&frags=pl
%2Cwn starting at 4:35). This pattern is repeated three more times, creating a tim-
bral arch each time, which is set off by a two-note punctuation by most of the 
orchestra each time.

More research in this area would be useful to explore various timbral connec-
tions and their perception by listeners. One potential avenue for investigation is the 
use of timbre to create echo effects in which a repeated pattern sounds farther away 
on its second occurrence. Rimsky-Korsakov (1964) mentions the notion of echo 
phrases in which the imitation entails both a decrease in level and an effect of dis-
tance, ensuring, however, that the original and echoing instrument or instrument 
combination possess “some sort of affinity” (p.  110). He cites the example of a 
muted trumpet as being well suited to echo material in the oboes, and flutes may 
echo clarinets and oboes. Aside from these suggestions, one might ask: what tech-
niques have composers used to create timbral echoes and how do they relate to 
perceptual principles? There are several cues to distance perception, including 
sound level, direct-to-reverberant energy ratio, and spectral filtering. More distant 
sounds are less intense, have a lower ratio of direct-to-reverberant sound energy, and 
have less energy in the higher frequencies due to absorption in the air and by sur-

Fig. 8.6 A repeating timbral shift pattern shown by the blue boxes from clarinet to flute to oboe 
back to clarinet in Beethoven’s Egmont Overture, measures 117–132. All instruments are notated 
at sounding pitch. The two-note staccato chord at the end of each pattern is also played by other 
instruments in the orchestra that are not shown in this detail of the score
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faces in rooms (Zahorik et al. 2005). The cues that could be simulated with orches-
tration would be dynamics and spectral properties related to timbre (although some 
composers use off-stage instruments as well to get the full effect of distance).

Another process by which sequences are segmented into smaller-scale units 
involves detecting repeating timbral patterns and learning the transition probabili-
ties between timbres over sufficient periods of time. Bigand et al. (1998) presented 
listeners with artificial grammars of musical sounds for which rules of succession of 
the sounds were created. After being exposed to sequences constructed with the 
grammar, listeners heard new sequences and had to decide if the sequence con-
formed to the learned grammar without having to say why. Indeed, by implicit 
learning of structures (language and music), any listener can know if a sequence 
corresponds to the structure in question without knowing why: quite simply, it 
doesn’t “sound” right. The average correct response rate of Bigand and colleague’s 
listeners was above chance, indicating the listeners’ ability to learn a timbral 
grammar.

Tillmann and McAdams (2004) explored this idea further in the direction of 
segmentation per se based on work by Saffran et al. (1996), who sought to under-
stand how implicit statistical learning of transition probabilities between syllables 
in language might lead to segmentation into words by infants. The idea is that syl-
lables within words follow each other more often than do syllables in different 
words, and building up a statistical distribution of such transitions would help seg-
ment speech streams into units that correspond to words in a given language. The 
same research group demonstrated a similar ability in infants with pitched tone 
sequences, suggesting the ability applies more generally than just to speech (Saffran 
et al. 1999).

Tillman and McAdams applied this principal to timbre sequences using the 
sounds from McAdams et  al. (1995) with constant pitch, loudness, and roughly 
equivalent duration. A lexicon of grammatical timbre triplets was created and pre-
sented sequentially in random order in an isochronous sequence for about 33 min. 
The probability of transition from the last sound of one triplet to the first sound of 
the next triplet was designed to be much lower than was the transition probability 
between the first and second sounds and the second and third sounds. The listeners 
were then tested on their recognition of triplets from the timbral grammar with the 
expectation that they would implicitly learn the transition probabilities among tim-
bres. A control group was tested on a similar task without exposure to the timbral 
grammar. To examine the role of auditory segmentation on the basis of timbre dis-
continuity in the learning of timbre sequence regularities, the timbral distance rela-
tions among sounds were organized in three different conditions in which the 
distances between successive timbres of the triplets—as determined from the 
McAdams et al. (1995) timbre space—were coherent, incoherent, or neutral with 
respect to the grammatical triplets.

There were significant differences among the sequence types: the coherent type 
(S1) had the highest choice of grammatical triplets, followed by the neutral type 
(S3), and then the incoherent type (S2) in both learning and control groups (Fig. 8.7). 
So the acoustic similarities strongly affected the choices made by listeners: they 
preferred triplets with smaller distances between them. However, there was no 
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Fig. 8.7 Percentage of correct identification of timbre triplets as belonging to the timbral grammar 
as a function of listener group (implicit learning through hearing grammatical timbre triplets for 
33 min versus control) and sequence type (S). The sequence types concern the alignment of acous-
tic grouping cues on the basis of timbral discontinuity and the implicitly learned grouping on the 
basis of transition probabilities (S1: coherent; S2: incoherent; S3: neutral). Coherent sequences 
were better recognized than neutral sequences, which were better than incoherent sequences. 
However, the amount of implicit learning was the same for all three groups. (Adapted from figure 
1  in Tillmann and McAdams 2004; used with permission of The American Psychological 
Association, Inc.)

 interaction between sequence type and listener group (the curves in Fig.  8.7 are 
parallel). An increase of about 14% in correct choice rate occurred for the learning 
group compared to the control group in all three sequence types, suggesting that 
learning of transition probabilities is not affected by segmentation on the basis of 
acoustic similarity. To summarize, even between dissimilar sounds and despite con-
flicting perceptual groupings, the cognitive system seems to become sensitive to 
statistical associative relationships among timbres. In everyday life, this capacity 
might be rather useful given that associations and statistical regularities (also con-
cerning the temporal ordering of sounds) have to be learned between complex envi-
ronmental sounds that can differ acoustically.

8.4.2  Timbre and Large-Scale Musical Form

Larger-scale units in music, such as formal functions (e.g., exposition, recapitula-
tion) and types (e.g., sonata, rondo, theme, and variations), have been theorized in 
Classical music. Although rare, there has been some discussion of how these units 

8 Structuring Force in Music



230

can be articulated through orchestration in the music theory and musicology litera-
ture, but there is no perceptual research as yet. In classical sonata form, musical 
material is presented in an exposition section, then elaborated in a development 
section, and is returned to in a recapitulation section. Cannon (2016) studied con-
trasts in dynamics and orchestration (primarily instrument density) as key factors 
that determine whether the onset of a recapitulation serves as a resolution, climax, 
or arrival, on the one hand, or as a new beginning or relaunch, on the other. 
Examining several hundred sonata-form movements from nineteenth-century sym-
phonies, he classified the alterations of the main theme on its return in the recapitu-
lation into four broad types: (1) similar, (2) intensified by increased dynamic 
markings and instrumental forces, (3) attenuated with decreased dynamic markings 
and instrumental forces, and (4) contradictory with dynamics and instrumentation 
going in opposite directions. Cannon noted that Beethoven, for example, often 
intensified the theme in the recapitulation with full orchestra playing the theme at 
louder dynamic markings (as in the first movement of his First Symphony), a ten-
dency observed in the majority of intensifications in Cannon’s corpus. Brahms, 
however, often obscured the transition from development to recapitulation using 
lower dynamic markings. Haydn was known to use changes in orchestration in the 
symphonies composed during his stays in London at the end of the eighteenth cen-
tury to give new color to a theme in the recapitulation (Wolf 1966). The distinction 
between a recapitulation being an arrival at a culminating climax point versus being 
a relaunch or new beginning was captured by both parameters. An arrival was often 
characterized by a buildup of instrumental forces and crescendo in dynamics that 
peaked at the onset of the recapitulation, whereas a relaunch was often character-
ized by a strong contrast in dynamics and instrumental texture between the end of 
the development and the beginning of the recapitulation. Thus, timbral factors con-
tribute to this large-scale formal feature.

Dolan (2013) examined Haydn’s structural and dramatic use of orchestration, 
including the process of developing variations of thematic materials. She empha-
sized the essential role played by orchestration in Haydn’s articulation of musical 
form (see Chap. 2 in Dolan 2013). For example, themes that initially appear in one 
orchestration will return with a different one in order to nuance or transform the 
musical material subtly, at times keeping all other musical parameters constant, 
such as harmony, melody, and rhythm. Dolan describes how Haydn used opposing 
sonorities or textures to lend structure and dramatic impact by introducing interrup-
tions of sections in strings or winds with full orchestral tuttis (all instruments play-
ing together). A particularly instructive example is the second (Allegretto) movement 
of his “Military” Symphony, no. 100 (https://www.youtube.com/watch?v=6Rmwap
sXnrg&frags=pl%2Cwn). Figure  8.8 displays the evolution of instrumental 
 involvement over the whole movement with time progressing from left to right, as 
indicated by the measures in the musical score on the x axis. Instrument families are 
shown with different hues (green for strings, blues and purples for woodwinds, 
orange and red for brass, and brown and black for percussion). He initially alter-
nates sections between strings and flute, on the one hand, and single-reed and dou-
ble-reed woodwinds, on the other, both occasionally punctuated with French horn 
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and bassoon. Then in measure 56, a full orchestral tutti bursts in, given particular 
sonic power by trumpets, timpani and percussion, and the alternation between lesser 
and greater instrumental forces continues, which outlines the formal structure. The 
perceptual force of these alternations and interruptions could be tested with online 
segmentation techniques and perceptual characterization of the constituent 
sections.

Another aspect of large-scale orchestral shaping is what Goodchild et al. (2019) 
have  called “orchestral gestures,” such as the sudden contrast between the full 
orchestra and a soloist or a large-scale, swelling orchestral crescendo, which con-
tribute to peak emotional experiences in orchestral music (Guhn et al. 2007). Some 
orchestration treatises mention large-scale gestures on the order of a few minutes. 
However, a clear taxonomy of techniques and a conceptual framework related to 
their musical function was lacking until Goodchild (2016) developed a typology of 
orchestral gestures in which the time course (gradual or sudden) and direction of 
change (additive or reductive) in instrumentation are the primary factors. She delin-
eated four types: gradual addition, gradual reduction, sudden addition, and sudden 
reduction (schematized in Fig. 8.9). These gestures are characterized by changes 
over time in the number and type of instruments involved, as well as in onset density 
by instrument family, tempo, loudness, and spectral centroid. A visualization of one 
of the sudden reduction excerpts from the first movement of Bruckner’s Eighth 
Symphony is shown in Fig. 8.10.

Goodchild et al.’s (2019) hypothesis was that extended patterns of textural and 
timbral evolution create orchestral gestures that possess a certain cohesiveness as 
cognitive units and have a goal-directed sense of motion. Such gestures often give 
rise to strong emotional experiences due to a confluence of change along many 
timbral dimensions, particularly timbral brightness as captured by the spectral cen-
troid, but also changes in loudness, tempo, and registral extent (see upper panels in 
Fig. 8.10). Listeners’ continuous ratings of emotional intensity were recorded while 
listening to excerpts from the ninteenth and twentieth century orchestral repertoire. 

Fig. 8.9 The four types of 
orchestral gestures 
proposed by Goodchild 
et al. (2019). The gestures 
are categorized in terms of 
gradual or sudden change 
and the addition or 
reduction of instruments 
over time (From figure 1 in 
Goodchild et al. 2019; 
used with permission of 
Sage Publishing)

S. McAdams



233

Fig. 8.10 Visualization of Bruckner’s Eighth Symphony, first movement, measures 221–270. In 
the upper panels, spectral centroid (Hz), loudness (sones), tempo (in beats per minute), pitch range 
(ambitus), and onset density within instrument families are shown. The bottom panel graphs the 
instrumental texture, overlaid with the emotional intensity ratings for musician (solid line) and 
nonmusician (dotted line) listeners. In the bottom two panels, the colors represent the number of 
instruments of a given family that are involved. The vertical dotted line indicates the moment of 
sudden change in instrumental texture. (From figure A.11 in Goodchild 2016; used with permis-
sion of the author)
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The data revealed different response profiles for each gestural type. For the gradual 
addition type, the emotional intensity ratings climbed steadily following the increas-
ing growth of instrumental texture (number of instrumental parts) and loudness. For 
the sudden addition gestures, there was a slight tendency for musicians, but not 
nonmusicians, to anticipate the moment of sudden change with heightened emo-
tional responses. Additional knowledge acquired through explicit musical training 
or greater experience with orchestral music may have led the musicians to develop 
anticipatory schemas for such changes. The responses to the gradual and sudden 
reductive excerpts featured a plateau of lingering high emotional intensity, despite 
the decrease of most musical features, including loudness, the spectral centroid 
(timbral brightness), instrumental texture, and onset density (number of attacks per 
beat). This response pattern is evident in Fig. 8.10 wherein the sudden reduction in 
instrumental forces at measure 250 is accompanied by a decrease in spectral 
 centroid, loudness, and onset density along with a slight increase in tempo, and yet 
the average emotional intensity rating only makes a slight dip at that point.

Using re-orchestration and digital orchestral rendering as tools for testing 
hypotheses concerning the role of timbral brightness in emotional valence, 
Goodchild (2016) also showed with psychophysiological measures that the bright-
ness of the orchestration (measured as spectral centroid) leading up to an expressive 
event dramatically shaped the resulting experience. Future research in this area 
could explore instances in which orchestral shaping (such as an abrupt change in 
texture or timbre) does or does not coordinate with other musical processes (such as 
phrase structure) to explain the interaction between formal structure based on 
melodic and harmonic elements and structure based on orchestration. The music- 
theoretical meanings and the resulting perceptual effects have yet to be explored, 
but this kind of work demonstrates the fertile ground that is possible in timbre cog-
nition research through an interdisciplinary approach uniting music analysis and 
experimental psychology.

8.4.3  Timbre and Musical Tension

Larger-scale changes in timbre can also contribute to the expression of other higher- 
level structural functions in music, such as the ebb and flow of musical tension and 
relaxation, a type of process in music that many music theorists consider to be one 
of the primary bases for the perception of larger-scale form in music. When instru-
ments composing a vertical sonority are strongly blended, timbral roughness and 
brightness become major components of musical tension. Nevertheless, they depend 
to a great degree on how the incoming acoustic information has been parsed into 
events and streams by auditory grouping processes. One might suppose that orches-
tration, in addition to pitch and rhythmic patterns, can play a major role in the struc-
turing of musical tension and relaxation patterns that are an important component of 
a listener’s aesthetic response to musical form. A feeling of tension accompanies a 
moment at which the music must continue, and a sense of relaxation signals the 
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completion of the musical phrase or unit. In such cases, the structuring and sculpt-
ing of timbral changes and relations among complex auditory events provide myr-
iad possibilities that composers have been exploring for decades in contemporary 
orchestral music but also in electroacoustic music (see Risset 2004). Musicologists 
have begun to address these issues, particularly as concerns timbre’s potential role 
in what one might characterize as “musical syntax” (Roy 2003; Nattiez 2007), but 
psychologists have yet to tackle this area.

Experimental work on the role of harmony in the perception of musical tension 
and relaxation suggests that an important component of perceived tension is an 
attribute of timbre that is referred to as roughness (Bigand et al. 1996). The impres-
sion of timbral roughness seems to be based on the sensation of rapid fluctuations in 
the amplitude envelope that are correlated across peripheral auditory channels 
(Daniel and Weber 1997; Saitis and Weinzierl, Chap. 5). It can be generated by 
proximal frequency components that beat with one another. Dissonant intervals that 
generate an impression of roughness, like major sevenths (eleven semitones) and 
minor seconds (one semitone), tend to have more such beating than do consonant 
intervals such as octaves (twelve semitones) and fifths (seven semitones). As such, 
a fairly direct relation between sensory dissonance and timbral roughness has been 
demonstrated (cf. Plomp 1976; reviewed by Parncutt 1989).

To explore how timbre, through orchestration, might contribute to musical ten-
sion, Paraskeva and McAdams (1997) measured the effect of a change in orchestra-
tion on the inflection of tension and relaxation by comparing piano and orchestral 
versions of two pieces. Listeners were asked to make ratings based on the perceived 
degree of completion of the music at several points at which the music was stopped. 
What resulted was a completion profile (Fig. 8.11), which was used to infer musical 
tension by equating completion with release and lack of completion with tension. 
They tested two pieces: an excerpt from the six-voice fugue in the Ricercar from the 
Musical Offering by J. S. Bach (a tonal piece) and the first movement of the Six 
Pieces for Orchestra, op. 6 by Webern (a nontonal piece, https://www.youtube.com/
watch?v=NUCp4QvZxE8&frags=pl%2Cwn). Each piece was played both in an 
orchestral version (Webern’s orchestration of the Musical Offering was used for the 
Bach piece; see link in Sect. 8.3.2) and in a direct transcription for piano of the 
original orchestral version of the Webern movement. Both versions were realized 
with a digital sampler to ensure that the performance nuances (timing, phrasing, 
etc.) were similar between the two. There were only very small differences between 
the completion profiles for musicians and nonmusicians, indicating that musical 
training didn’t affect the completion ratings. Both tonal and atonal pieces produced 
significant fluctuations in musical tension, which is interesting given that some the-
orists feel that atonal music is devoid of this particular dimension of musical experi-
ence because it does not follow the standard tonal schemas (Lerdahl 1992). The 
important result here is that there were significant differences between the piano and 
orchestral versions, indicating an effect of timbre change on perceived musical ten-
sion. Notably, when the two versions were significantly different at a given stopping 
point (asterisks in Fig. 8.11), the orchestral version was always more relaxed than 
the piano version.
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Fig. 8.11 Profiles of average completion ratings for piano and orchestral versions of tonal and 
nontonal pieces. The music was played to a certain point and stopped, at which point listeners 
made the completion rating. The next trial played the music from the beginning to the next stop-
ping point. Grey areas highlight the differences between versions. Asterisks indicate significant 
differences between versions at a given stopping point. Error bars represent one standard error of 
the mean. (Adapted from Paraskeva and McAdams 1997; used with permission of the authors)

The hypothesis advanced by Paraskeva and McAdams (1997) for this effect was 
that the higher relaxation of the orchestral version might have been due to processes 
involved in auditory stream formation and to the dependence of perceived auditory 
roughness on the results of such processes. Wright and Bregman (1987), for exam-
ple, illustrate several ways in which concurrent and sequential grouping processes 
interact and affect the perception of dissonance and tension in polyphonic music. 
Timbre, or any other auditory attribute of a unified sound event, is computed after 
auditory organization processes have grouped the bits of acoustic information 
together (Fig. 8.3). It may be that the same is true of sensory dissonance or auditory 
roughness, if we consider it to be a property of a concurrently grouped sound event. 
Piano sounds, being percussive in nature, have a rather sharp attack compared to 
most sounds from bowed and blown instruments. If several notes occur at the same 
time in the score and are played with a piano sound, they will be quite synchronous 
(particularly on a digital sampler). Because they all start at the same time and have 
similar amplitude envelopes and similar spectral distributions, they will have a 
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greater tendency to be fused together. The computed roughness may then result 
from the interactions of all the frequency components of all the notes grouped 
together, although the effect of concurrent grouping on roughness perception does 
not seem to have been explicitly tested.

The situation is likely to be quite different for the orchestral version. For one, the 
same timing was used for piano and orchestra versions in the digital sampler. In the 
orchestral version, instruments with both slower and faster attacks were used. In 
other words, there is a greater range of attack times across wind and string instru-
ments, depending on articulation, than would be the case with piano tones. Therefore, 
greater asynchrony could occur between the instruments in terms of perceived 
attack time, and the attack time difference is likely to reduce the perceptual fusion 
(Tardieu and McAdams 2012). Furthermore, the timbres of these instruments are 
often quite different. If several musical lines with different timbres arrive at the 
same moment on different pitches of a chord, the simultaneity may not be perceived 
as such because the listener may continue to track individual instruments sequen-
tially in separate auditory streams on the basis of both the timbral similarity of notes 
from the same instrument and relative pitch proximity—what music theorists call 
voice leading (see Sect. 8.3.2).

Bregman and Pinker (1978) have demonstrated the interplay of concurrent fusion 
and sequential stream formation and conceived a sort of competition between the 
two auditory organization processes. Therefore, the attack asynchrony and the 
decomposition of simultaneities into separate auditory streams whose events are 
timbrally similar would work together to reduce the degree of perceptual fusion. A 
reduction in fusion would lead to greater segregation, and any roughness in the 
orchestral version would be computed on each individually grouped auditory event 
rather than on the whole harmonic complex. These individual roughnesses in the 
orchestral version would be much less than those of the piano version, which get 
grouped together more strongly. So once again, the perceptual effects of orchestra-
tion can have a very tight interaction with the processes of auditory scene analysis.

8.5  Reflections on Timbre and Musical Structure

Listeners are able to implicitly learn grammars built on rules for the probability of 
transition between timbres  without explicit training. However, as Tillmann and 
McAdams (2004) demonstrated, listeners prefer certain relations among timbres 
that form coherent musical patterns and that distinguish among patterns. This result 
opens a vast field of possibilities for the construction of a veritable musical syntax 
based at least partially on timbre. For the syntactical use of timbre to have meaning 
in music, listeners must be able to learn rules of transition between timbres, as they 
do with durations and pitches. This learning has to be achieved implicitly by simply 
listening to the music without explicit training. Although the necessity of learning 
musical relations is obvious if one hopes to comprehend the resulting musical 
 structures, the only explicit and experimentally controlled demonstrations of this 
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capacity for timbre have been by Bigand et al. (1998) and Tillmann and McAdams 
(2004) (mentioned in Sect. 8.4.1). These findings raise the possibility of employing 
timbre as a primary parameter and structuring force in music.

Nattiez (2007) has critiqued Meyer’s (1989) distinction between primary and 
secondary musical parameters and has questioned Meyer’s relegation of timbre to 
secondary status. In Meyer’s conception, primary parameters, such as pitch and 
duration, are able to carry syntax. (Meyer probably really meant inter-onset inter-
vals, which define rhythm, rather than note duration, because duration per se is 
probably a secondary parameter related to articulation—staccato and legato.) 
According to this proposal, syntactic relations are based on implications for what 
follows next (expectations) and the realization (or not) of those implications, which 
is not possible with secondary parameters because they are not organized in discrete 
units or in clearly recognizable categories. Snyder (2000) proposes that we hear 
secondary parameters (including timbre) simply in terms of their relative amounts 
(on more of an ordinal scale), making them more useful for musical expression and 
nuance than for building grammatical structures.

Contrary to this position, Nattiez (2007) claims that timbre can be used to create 
syntactic relations that depend on expectations that lead to a perception of closure. 
He based his claim on his own analyses of Western and non-Western musical tradi-
tions, as well as Roy’s (2003) analyses of electroacoustic music. Nattiez (2007) 
concluded that the main limit of Meyer’s stance concerning timbre was that he con-
fined his analyses to works composed in terms of pitch and rhythm (what current 
scholars of contemporary classical music call “pitch-based music”). In most cases 
in these styles of music, timbre is indeed only allowed to play a secondary func-
tional role. Nattiez argued that timbre can be used to create syntactic relations that: 
(1) depend on expectations, leading to a perception of closure; or (2) are quite sim-
ply learned by a community of listeners as serving a given musical function within 
a system of hierarchical relations. He presented convincing cases supporting this 
hypothesis in analyses of the timbral structures in music as diverse as orchestral 
pieces by Debussy, Japanese drumming, and the throat singing tradition of Inuit 
women in northern Québec.

This debate recalls the distinction by composer and re-orchestrator John Rea 
between prima facie and normative orchestration (personal communication, October 
26, 2011). Normative orchestration refers to situations in which the musical materi-
als and structure are conceived in terms of pitch, harmony, duration, rhythm, and the 
formal structures based on them. Orchestration consists of highlighting, reinforcing, 
or cosmetically coloring these structures, although many orchestration decisions 
may be related to various programmatic topics (rapid string tremolos for storms, 
horn calls for the hunt or forest scenes, triumphant brass and percussion for military 
references) or emotional states (deep, dark melancholy of low cellos, bassoons and 
bass clarinets versus joyous country dance celebration with higher register wood-
winds). Prima facie orchestration, to the contrary, concerns composition in which 
aspects of timbre are conceived at the outset as an integral part of the musical 
 materials and forms. Examples from the electroacoustic music of Robert 
Normandeau, such as the piece Tangram (https://www.youtube.com/watch?v=KVB
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RdbjQJbM&frags=pl%2Cwn), orchestral music such as Polymorphia by Krzysztof 
Penderecki (https://www.youtube.com/watch?v=9mYFKJBgxbM&frags=pl%2
Cwn), or music that mixes acoustical instruments and computer-generated sounds 
such as Archipelago by Roger Reynolds are excellent examples to understand these 
possibilities. But even in the orchestral music of Haydn, Mozart, and Beethoven in 
the high Classical period, timbre plays a structuring role at the level of sectional 
segmentation induced by changes in instrumentation. These segmentations distin-
guish individual voices or orchestral layers that are composed of similar timbres and 
structure orchestral variations in symphonic forms (Dolan 2013).

In addition to contributing to the organization of auditory streams and orchestral 
layers, to contrasting materials that evoke segmentation at various levels of musical 
structure and to form large-scale orchestral gestures, timbre can also play a role in 
the ebb and flow of musical tension and relaxation and can thus contribute to the 
inherent expression of musical form as experienced by listeners. When instruments 
fuse into a musical sonority, the resulting auditory roughness, as an aspect of tim-
bre, constitutes a major component of musical tension. However, perceived rough-
ness strongly depends on the way the auditory grouping processes have parsed the 
acoustic information into events and streams (Wright and Bregman 1987) and also 
depends on the musical texture (homophony, polyphony, or heterophony) (Huron 
2016). As a factor structuring tension and relaxation, timbre has been used effec-
tively by electroacoustic composers such as Francis Dhomont. Roy’s (2003) analy-
ses of his music demonstrated that he employs timbre to build expectancies and 
deceptions in a musical context that is not “contaminated” by strong pitch struc-
tures. Roy’s work implies that in a context in which pitch is a structuring factor, 
timbre may have trouble imposing itself as a dominant parameter as mentioned 
above. The interaction of musical parameters in the sculpting of the experience of 
musical form could be a vast and rich field if both perceptual experimentation and 
music analysis work together in an interdisciplinary setting to get at the essence of 
how orchestration—in the broadest sense of the choice, combination, and juxtaposi-
tion of sounds—actually works in the music of many styles and cultures.

A last point to consider for future experimental and musicological research on 
timbre concerns the crucial roles of performers and sound engineers in the final 
result of a sought-after timbre effect. Many parameters that affect both the timbre 
produced directly by an instrument (temporal and spectral properties of sound 
events) and the fusion of the sound of an instrument with those of other instruments 
(onset synchrony, pitch tuning, adjustment of timbre, and relative levels of instru-
ments) are under the control of performers. In the end, all of these factors condition 
the timbre that emerges and how timbres connect sequentially and create segmental 
contrasts. Lembke et al. (2017), for example, showed that performers’ success in 
achieving blend depends on both the possibilities of timbral modulation of the instru-
ment itself (bassoon and French horn in their case, with the horn providing more 
room for timbral modulation) and what the role of each instrumentalist is in the 
musical scenario (leader or follower). Generally, followers who are trying to blend 
into the sound of a leader tend to darken the timbre of their instrument.
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Beyond these effects, one might consider the role of sound recording and mixing, 
which intervene before the final result on analog or digital media. Along these lines, 
the composer John Rea described an experience he had in 1995 with a project of re-
orchestrating Alban Berg’s opera Wozzeck for an ensemble of twenty-one musicians 
in the place of the full orchestra specified by Berg (personal communication, October 
26, 2011). He listened to five commercial recordings of Wozzeck precisely because, 
on the one hand, he wanted to hear how sounds fused and to see if the score presented 
this information in a particular way; on the other hand, he had to choose an ensemble 
of instruments to orchestrate the harmonies in order to best “re-present” the original 
score. He arrived at the following devastating conclusion: “The commercial record-
ings contribute to the dissimulation (the ‘lie’ if you will) that Art requires in order to 
carry on a discourse.” There was indeed fusion, but it differed in each case, in each 
recording. It was clear that each conductor, but also each sound engineer or producer, 
had decided what was appropriate as a blend, as fusion, and as the projection of these 
qualities. Some performances of the passages in question were often in paradoxical 
contradiction with other performances/recordings of the same passages. To make 
interpretive Art always implies a confluence of several (at times conflictual?) sources 
of imagination and comprehension of the artistic goal.

Psychoacoustics and cognitive psychology can potentially reveal a large number 
of possibilities for the use of timbre in music. Composers may take profit from these 
scientific endeavors in the composition of their works. Music theorists and musi-
cologists may explore, through analyses of orchestration in scores and recordings of 
notated music and in sound materials from electroacoustic works or field recordings 
of unnotated music, the ways in which composers and performers use timbre as a 
structuring force in music.
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Chapter 9
Timbre, Sound Quality, and Sound Design

Guillaume Lemaitre and Patrick Susini

Abstract Sound quality evaluation applies the results of timbre research to the 
assessment of the sound quality of manufactured products (domestic appliances, 
transportation, etc.). This chapter first provides an overview of one methodology. A 
number of acoustic descriptors reflecting perceived timbre dimensions are estab-
lished and used to predict users’ preference judgements. Whereas such a methodol-
ogy has proven very effective, it also has some limitations. In fact, most studies only 
consider the pleasantness of the sounds and often overlook other potential roles of 
sounds in products and interfaces. In the second part, the chapter introduces sound 
design. Whereas sound quality evaluation merely proposes a diagnostic of the tim-
bre of existing products, sound design aims to create or modify the timbre of prod-
uct sounds to meet specific intentions. These intentions consider the pleasantness, 
but also several other aspects of product sounds: functionality, identity, and ecology. 
All these aspects are interdependent and often closely related to the temporal and 
timbral characteristics of the sound. The chapter continues with a discussion of the 
roles and practices of sound designers and introduces a set of tools that foster com-
munication about timbre between the different participants of a sound design pro-
cess. In particular, the focus is on the necessity for these participants to share a 
common timbre vocabulary, and the potential impact of education about sounds is 
considered. Finally, an important functional aspect of product sound is discussed: 
how to design the timbre of sounds to support user interactions with the product.
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9.1  Introduction

Picture yourself driving your car. The engine purrs quietly. Then you need to over-
take a slower car in front of you. The turn signal emits a satisfying mechanical tick 
and, at your command, the engine roars energetically; the rising engine sound (its 
timbre, level, pitch) matches the sporty performance that you expect of your car. As 
you enter a denser traffic area, passing by other vehicles creates an alternating 
whoosh that is quite unpleasant.

Similar to cars, most manufactured products make sounds. Some of these sounds 
are useful, some are annoying, some are funny, some are intrusive, and some are 
intriguing. Some may enhance the perceived quality of a product (the tick of a lux-
ury watch), whereas some others are so inappropriate that they are deleterious to the 
overall impression of the product (the irritating hiss of a poorly fitted vacuum 
cleaner hose). It is therefore important for product makers to evaluate how users 
perceive the sounds made by the products, in other words, their sound quality. 
Furthermore, it is extremely useful for product designers to be able to connect the 
perceived quality of a product sound to measurable quantities.

Predicting the perceived sound quality of a product from quantities measured on 
the sound (such as timbre features) is the purpose of sound quality evaluation that is 
discussed in Sect. 9.2. The outcome of the methodology is an algorithm that takes a 
sound signal at the input and produces a numerical indicator of quality at the output. 
This methodology has proven very useful for a number of industrial products (cars 
and transportation in particular). It also has a number of limitations and, in particu-
lar, considers only one aspect of the perception of product sounds: whether they are 
pleasant or unpleasant.

Product sounds are not only pleasant or unpleasant, however. They serve many 
other purposes: they contribute to the brand image and the coherence of a product, 
elicit emotional reactions in users, and even have functional aspects in terms of 
information. As such, product designers not only want to diagnose the quality of a 
product sound, they also want to design its timbral and temporal characteristics to 
address different interdependent aspects, such as pleasure, identity, and functional-
ity, as well as taking into account the environment in which it will be heard. As an 
example, most people in France associate the jingle played before any vocal 
announcement in French railway stations with the French national railway company 
(SNCF). The timbral features and temporal properties of the jingle have been spe-
cifically designed to attract the attention of users and to communicate the values of 
the company. In addition, this sound has been designed to be enjoyable in the com-
plex sonic environment of railway stations. Therefore, Sects. 9.3.1 and 9.3.2 of this 
chapter discuss the process of sound design for the creation of a new sound and how 
the design process considers different aspects, such as functionality, pleasantness, 
identity, and ecology, and their relation to timbre. Then the problem of a common 
vocabulary to communicate about timbral characteristics during a project design 
process that involves different participants is discussed in Sects. 9.3.3 and 9.3.4. In 
particular, a lexicon based on previous studies, using semantic descriptions of 
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 timbre as described by Saitis and Weinzierl (Chap. 5), is proposed to help partici-
pants learn to perceive and to communicate about timbre features and temporal 
properties. Finally, Sect. 9.3.5 focuses on sonic interaction design: using sounds 
produced by users’ interactions with the product to guide or facilitate that 
interaction.

Coming back to the initial car example, most drivers of manual cars change gear 
based on how the loudness, pitch, and timbre of the engine sound changes as they 
step on the accelerator. This is an example of a sonic interaction, resulting from the 
physical behavior of the product. These sounds could in theory also be designed and 
engineered by electronic means, as this is already the case in many modern vehicles, 
to warn pedestrians of otherwise silent electric cars or to promote economic driving.

9.2  Sound Quality Evaluation: A Critical Overview

This section describes a methodology that is common to many sound quality studies 
reported in the literature. Such studies have a practical goal: provide the developer 
of a product with a tool to measure how users will appraise the sounds of the prod-
uct or prototype. More specifically, this section focuses on studies that seek to 
develop a model that can estimate the perceived quality of a product sound (e.g., the 
sounds of different vacuum cleaners) from the sound signals alone (i.e., without 
conducting listening tests). In such studies, the quality is defined by a single numeri-
cal value, corresponding to the average judgement of a set of typical users listening 
to and evaluating the sounds. A general overview of this methodology is first pro-
vided in Sect. 9.2.1, followed by a more detailed description of its different parts (an 
even more detailed account is provided by Susini et al. 2011). The method is illus-
trated in Sect 9.2.3 by one practical example: the sound quality of air-conditioning 
units. The limitations of such a methodology are discussed in Sect. 9.2.3.

9.2.1  The Classical Methodology of Sound Quality Evaluation: 
Objectivation

Most sound quality studies available in the literature follow the methodology repre-
sented in Fig. 9.1. Starting from a set of recordings of a given product or family of 
products (e.g., a car engine, a camera, a vacuum cleaner, etc.), the methodology has 
three main parts. One part (detailed in Sect. 9.2.1.1) involves characterizations of 
the timbre of the product sounds as a set of sound descriptors, that is, numerical 
quantities calculated from the sound signal (sound descriptors are sometimes called 
sound features or metrics). For another part of the sound quality study, the researcher 
collects judgements about the “quality” of each of these sounds using listening tests, 
as described in Sect. 9.2.1.2. Finally, Sect. 9.2.1.3 details the mathematical models 
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that connect the quality judgements with the sound descriptors. Thus, the final out-
come of such a procedure is an algorithm that takes the sound signal as an input and 
produces a quantitative indicator (a numerical value) at the output, estimating the 
quality of the sounds. Such an indicator is extremely valuable in an industrial con-
text since it allows the engineers and designers to quickly evaluate how users will 
appraise the sounds of the product without actually collecting judgements from 
them with time-consuming listening tests each time a new sound is created. In this 
context, the whole procedure is sometimes called objectivation: it estimates subjec-
tive judgements (i.e., resulting from listeners’ evaluations) with an objective indica-
tor (i.e., computed from the sound signal). This methodology is rather general, and 
there are several variations to each part. In the next section, details are provided for 
each of the parts.

9.2.1.1  Characterizing the Timbre of Product Sounds

The goal of this section is to characterize each sound as a vector of numerical values 
that represent the listener’s (i.e., the product user’s) perception: the sound descrip-
tors. Usually, only a handful of descriptors are considered. As such, sound descrip-
tors can be considered as a low-dimensional representation of the sounds (of much 
lower dimensionality than the number of sound signals themselves), but they still 
convey the information that is important to the users in order to assess the quality of 
the product sounds.

Sound quality studies generally consider descriptors that are representative of a 
listener’s perception: loudness, pitch (for sounds having pitch), duration, and  timbre. 
As described by McAdams (Chap. 2), timbre is here considered as a multidimen-

Fig. 9.1 A common methodology found in many sound quality studies consists of connecting (A) 
timbre descriptors with (B) quality judgements through (C) a regression model (Original figure)
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sional quality and characterized as a set of dimensions, each related to a sound 
descriptor. Product sound quality studies, therefore, use methods similar to those 
used to characterize the timbre of musical instruments. One such method, semantic 
differentials, consists of collecting a common vocabulary used by listeners to create 
scales. Another method, dissimilarity judgements, does not use words at all and 
relies instead on judgements of perceptual distances between sounds. Finally, many 
studies simply do not conduct any listening tests and rely on common timbre 
descriptors computed by software packages.

In the semantic differentials approach, the experimenters create scales, usually 
labeled by two opposed adjectives (e.g., clear/hazy, bright/dull): the semantic dif-
ferentials (for more details, see Saitis and Weinzierl, Chap. 5). Test participants rate 
each sound along the set of scales and statistical techniques are used to cluster the 
scales into main (and often independent) factors. These main factors are interpreted 
and connected to the acoustic properties of the sounds, usually by listening to the 
sounds and picking out the best-correlated metrics.

The advantage of this method is that it allows the experimenters to generate a set 
of semantic descriptors of their product sounds: each main factor corresponds to a 
dimension of timbre that is actually perceived by the listeners and can be described 
by labels with a meaning shared by the listeners. In the context of sound quality 
evaluation, this method was used by Jeon et  al. (2007), who studied refrigerator 
sounds with semantic differentials and identified four main factors: “booming” (and 
clustering pairs of adjectives such as booming/dry, trembling/flat, irregular/regular, 
etc.), “metallic” (metallic/deep, sharp/dull, etc.), and “discomforting” (unpleasant/
pleasant, discomfort/comfort, etc.). The method, however, restricts the study pre-
cisely to what listeners can describe with words, and it is quite possible that some 
percepts, though perceived by listeners, may not be easily described with words. As 
such, the outcomes of the method strongly depend on the adjectives selected at the 
input in terms of relevance for describing a specific set of sounds but also in terms 
of the meaning of the words. This issue will be discussed in Sect. 9.3.

Instead of using a set of semantic scales, another method based on dissimilarity 
ratings and multidimensional scaling analysis (MDS) directly uses the ANSI defini-
tion of timbre: “the way in which musical sounds differ once they have been equated 
for pitch, loudness and duration” (American Standard Association 1960; Krumhansl 
1989). This method was initially applied to characterize the timbre of musical 
instruments (Grey 1977; McAdams et al. 1995) and then of product sounds (Susini 
et al. 1999). In the first step of the method, listeners scale the dissimilarity between 
each pair of sounds from the set of product sounds under study (see Fig. 9.2).

In a second step, an MDS algorithm creates a geometrical space in which the 
geometrical distance between two sounds represents the perceived dissimilarity 
between them. The dimensions of the space are interpreted as continuous dimen-
sions of the timbre shared by the sounds under study. As for the semantic differen-
tial method, correlations between the dimensions and the sounds’ features allows 
for the selection of acoustic descriptors that characterize each semantic dimension 
(for more detail on these two approaches, see McAdams, Chap. 2; Saitis and 
Weinzierl, Chap. 5).
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The multidimensional scaling framework has the great advantage that it does not 
impose any predefined rating criteria on the listener. The task is thus simple and 
completely exploratory: as no dimension is postulated a priori, the outcome of the 
method (the dimensions and their descriptors) may be completely unexpected by 
the experimenters. This method was used by Lemaitre et al. (2007), who studied the 
timbre of car horn sounds and highlighted roughness, sharpness, and a third dimen-
sion specific to this set of sounds (spectral deviation), which could not have been 
specified without this exploratory method.

An alternative to these methods is to not conduct any listening test and simply 
rely instead on software packages that implement acoustic and psychoacoustic 
descriptors that have been found in previous timbre studies (McAdams, Chap. 2; 
Saitis and Weinzierl, Chap. 5). Ircam and McGill University’s “Timbre Toolbox” 
(Peeters et al. 2011) and Lartillot and Toiviainen’s (2007) “MIR Toolbox” are popu-
lar sets of Matlab functions designed for Music Information Retrieval that imple-
ment many variations of these descriptors (and see Caetano, Saitis, and Siedenburg, 
Chap. 11). Among commercial packages, Head Acoustics’ ArtemiS (https://www.
head-acoustics.de, last retrieved on July 4, 2017), Genesis’s LEA (http://genesis-
acoustics.com, last retrieved on July 4, 2017), and Brüel and Kjær’s PULSE have 
been widely used in industrial contexts. These software routines are incorporated 
into larger program suites that also do data acquisition, analysis, and reporting and 
are part of the basic toolkits for many industries.

Fig. 9.2 Dissimilarity ratings and multidimensional scaling (MDS) analysis. Listeners rate the 
dissimilarity between the two sounds of each possible pair from a set of product sounds. An MDS 
model is then fit to the data and yields a perceptual space in which the geometrical distance 
between two sounds corresponds to the perceived dissimilarity between them. The dimensions of 
the perceptual space are then interpreted by correlating them with acoustic descriptors. The diam-
eter of the circles corresponds to the position along the depth dimension, with larger circles closer 
to the viewer (Original figure)
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These packages include at their core a few descriptors whose calculation was 
formalized by Zwicker and Fastl (1990): sharpness, roughness, and fluctuation 
strength. Sharpness corresponds to a percept whereby sounds can be ordered on a 
scale ranging from dull to sharp or bright. It is correlated with the spectral balance 
of energy: sounds with more energy in low frequencies are perceived as dull whereas 
sounds with more energy in high frequencies are perceived as bright or sharp. 
Fluctuation strength and roughness both correspond to the perception of amplitude 
modulations in the signal, each corresponding to a different range of modulation 
frequencies. When modulations are slow (around 4 Hz), the sounds are perceived as 
fluctuating (wobbling): this is the percept of fluctuation strength. Faster modula-
tions (around 70 Hz) are perceived as rough (harsh): this is the percept of roughness. 
In addition to Zwicker and Fastl’s descriptors, tonalness (also called pitch strength 
or pitch salience) also plays an important role. Tonalness refers to the magnitude of 
the sensation of pitch in a sound (from a weak to a strong sensation of pitch) (see 
Hansen et al. 2011). Usually, it is estimated as the ratio of manually identified tonal 
components over noisy components (tone-to-noise ratio, prominence ratio) (Terhardt 
et al. 1982), but the perceived tonalness of sounds with multiple tonal components 
is still under study (also see Saitis and Weinzierl, Chap. 5).

9.2.1.2  Measuring Quality

The other important part of any sound quality study consists of collecting “quality” 
judgements about the product sounds. The term quality is used here in a very broad 
sense, as it may actually correspond to several slightly different ideas: pleasantness, 
unpleasantness, annoyance, merit, preference, and others. In any case, quality 
judgements are always obtained through a listening test and are averaged over par-
ticipants into a single numerical value for each sound. Eventually, the outcome of 
the whole sound quality study will be an algorithm that estimates these judgements 
with the aim of replacing listening tests. There are two main classes of methods: 
sound-wise scaling procedures and paired comparisons.

In the case of sound-wise scaling, listeners rate each sound on a scale or a set of 
scales. In its simpler form, subjects rate each sound on a single scale: The annoy-
ance of washing machine noises (Jeong et al. 2015) and the amenity (i.e., pleasant-
ness in this context) of refrigerator noises (Sato et al. 2007) are examples of such 
scales. Producing absolute judgements of quality can sometimes be difficult for 
listeners without a context or a reference. Therefore, one variation of the method 
uses reference sounds to anchor the judgements. For example, Lemaitre et  al. 
(2015a) have adapted the MUSHRA procedure (MUltiple Stimuli with Hidden 
Reference and Anchor, International Telecom Union 2001–2003) for collecting 
quality judgements of unpleasantness for wind buffeting noises. This procedure 
allowed the listeners to compare different sounds and then rate each sound on a 
scale ranging from “the least unpleasant” to “the most unpleasant.” For each subset 
of sounds, the least and the most unpleasant sounds were systematically included to 
anchor the listeners’ judgements.
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Another difficulty of the method is to choose the label of the scale. “Quality,” 
“amenity,” “annoyance,” “unpleasantness,” and “noisiness” have been used, but 
they are also sometimes difficult to interpret for the listeners. Therefore, sets of 
semantic differentials (and dimensionality reduction techniques) are also used at 
times, just as occurs for characterizing the timbres of the sounds (see Sect. 9.2.1.1). 
In fact, most studies use only one listening test with semantic differential scales cor-
responding to both timbre dimensions and quality judgements. In one such exam-
ple, the participants of a study by Hoffmann et al. (2016) rated a set of road tire 
noises using the following: pleasant, sharp, loud, rough, stressful, activating, and 
the pitch.

Another class of methods uses paired comparisons. The advantage is that listen-
ers find it much easier to produce a comparison than an absolute judgement. In this 
case, listeners hear all possible combinations of two sounds in the set and make 
comparison judgements, which can be binary or on a scale. For example, they may 
have to select which one of the two environmental sounds is the most unpleasant 
(Ellermeier et al. 2004) or rate two diesel engine sounds, A and B, on a scale ranging 
from “I prefer A a lot” to “I prefer B a lot” (Parizet et al. 2004). The judgements for 
each pair of sounds are then transformed into quality scores for each sound. The 
simplest method consists of averaging the preference judgements for one sound 
across all the other sounds to which it has been compared. More complex methods 
rely on statistical models connecting individual quality scores to the probability of 
choosing sound A over B, and statistical methods are used to fit the parameters of 
the model. In the Bradley-Terry-Luce model (BTL), the probability of preferring 
sound A over B is proportional to the ratio of the quality of sound A over the sum of 
the quality of sounds A and B (Bradley and Terry 1952; Ellermeier et al. 2004).

Other models are derived from Thurstone’s case V model, whereby the prefer-
ence probability is proportional to the cumulative normal distribution of the differ-
ence of the two quality scores (Thurstone 1927; Susini et al. 2004). One limitation 
of both approaches is that quality judgements are averaged across listeners and thus 
ignore potential individual differences in preference; indeed, two listeners can per-
ceive the same difference between two sounds because they are different in rough-
ness, but their preferences according to roughness can be opposed. An alternative 
that avoids this potential pitfall is discussed in Sect. 9.2.3. Another limitation, from 
a practical point of view, is that the number of pairs grows rapidly with the number 
of sounds. Thus, this method is limited to a rather small number of sounds and 
requires lengthy listening tests (see Sect. 9.2.3) unless the stimulus pairs are parti-
tioned across subjects (Elliott et al. 2013).

9.2.1.3  Connecting Timbre with Quality

The final step of the method is to connect quality judgements with sound descrip-
tors. Such a connection is made through a model that takes the sound descriptors as 
input vectors and produces estimates of quality judgements at the output. The most 
commonly used model is the multivariate linear model, whereby the quality 
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judgement of a given sound is estimated from a linear combination of a set of 
descriptors. The coefficients of the model (i.e., the contribution of each descriptor to 
the quality of the sounds) are determined by fitting the model to the data (sound 
descriptors and quality judgements).

One of the difficulties of this approach is to select the descriptors that enter the 
model. When the timbre of the product sound has been characterized with a listen-
ing test (see Sect. 9.2.1.1), the most straightforward solution is to use the results of 
this initial phase as inputs to the model. When the initial timbre characterization is 
missing, hundreds or thousands of descriptors are often available to investigators 
from various software packages. Since the quality judgements result from listening 
tests, the set usually consists of 10–100 examples (it is very difficult for listeners to 
provide more judgements in a test). Using all available descriptors in the model is 
simply not possible because it would overfit the data; therefore, experimenters have 
to select a subset of them. One simple method requires the investigators to listen 
carefully to the sounds, consider the listeners’ comments, and manually pick out the 
descriptors that are the most likely candidates. More systematic methods (e.g., step-
wise regression, Monte Carlo) test different versions of the model to select the best 
subset of descriptors (Lemaitre et al. 2015a).

Linear models rely on the assumption that the contribution of each descriptor to 
the quality of the product sound is linear and therefore monotonic. This assumption 
is reasonable for loudness, as users usually prefer quieter over louder product 
sounds. But this is not necessarily the case for every descriptor. For example, Pietila 
and Lim (2015) found that listeners disliked the sounds of golf clubs hitting a ball 
that were too low or too high in pitch. In such cases, nonlinear models are required. 
One solution is to use polynomial regression or create nonlinear transformations of 
the descriptors within a linear regression model. These methods, however, require 
specifying the exact form of the nonlinearity.

All of these methods usually consider quality judgements averaged across listen-
ers. However, different listeners may have different preferences, as illustrated by the 
example below.

9.2.2  Example: The Sound Quality of Air-Conditioning Units

Air conditioning units in homes, offices, and vehicles are sources of noises that can 
sometimes be extremely tiresome and unpleasant. Aerodynamic turbulences are 
created by air being blown out of a duct through a vent, and sometimes a grid, 
resulting in wideband noises and hisses. As a consequence, many studies have 
sought to quantify which timbral characteristics of these sounds are unpleasant and 
thus focus the efforts of engineers on reducing these unpleasant characteristics.

A study on the sound quality of indoor air-conditioning units illustrates the dif-
ferent steps of the methodology outlined in Sect. 9.2.1 (Susini et al. 2004). In a first 
step, the study characterized the timbre with dissimilarity ratings and MDS. This 
analysis yielded three dimensions and showed that the first dimension corresponded 

9 Timbre, Sound Quality, and Sound Design



254

to the relative balance of the harmonic (motor) and noise (ventilator) components 
(harmonic-to-noise ratio). The second dimension corresponded to the spectral cen-
troid of the sounds (a descriptor similar in spirit to sharpness; see Siedenburg, Saitis, 
and McAdams, Chap. 1), and the third dimension corresponded to the loudness of 
the sounds. The experimenters then collected paired preference judgements: listen-
ers indicated which sound they preferred in each pair of sounds. The preference 
probabilities were transformed into quality values for each sound with a model 
based on Thurstone’s case V (for details, see de Soete and Winsberg 1993). Finally, 
the study used a statistical model to relate the quality of the sounds to a nonlinear 
utility function of each sound descriptor (de Soete and Winsberg 1993).

Interestingly, the analysis found different utility functions for two latent groups 
of listeners (latent here means that the groups were not predetermined but resulted 
from the analysis itself). Figure  9.3 represents these utility functions for three 
descriptors (harmonic-to-noise ratio, spectral centroid, and loudness) for the two 
groups of listeners.

Unsurprisingly, the results showed that the quality of the air-conditioning unit is 
related to loudness with the same decreasing monotonic function for the two groups 
of listeners: listeners unanimously preferred quieter sounds. More unexpectedly, the 
relationship between quality and the harmonic-to-noise ratio is completely different 
for the two groups of listeners. Whereas listeners in the first group (solid line) pre-
ferred sounds with a strong harmonic component, listeners in the second group 
(dashed line) preferred sounds with a strong noisy component. The situation is 
somewhat similar for the spectral centroid: listeners in one group preferring sounds 
with a lower spectral centroid and listeners in the other group providing a rather flat 
response. Overall, listeners in the second group focused mainly on loudness to 
judge their preferences. These results clearly show that, whereas listeners perceive 
differences of timbre more or less equivalently, each individual may prefer different 
timbral characteristics. Thus, as discussed by McAdams (Chap. 2), it is very impor-
tant to consider individual differences and to consider nonlinear relationships 
between sound quality and timbre dimensions.

Fig. 9.3 Utility functions for the sounds of air conditioning units, three descriptors, and two latent 
groups of listeners (solid line, dashed line). The utility functions represent how preference judge-
ments change with the sound descriptors. (Adapted from Susini et al. 2004; used with permission 
from Elsevier)
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9.2.3  Limitations and Issues of Classical Methodology

Over the years, the classical methodology of sound quality evaluation has been 
applied to a variety of industrial products and has resulted in a number of quality 
indicators that have been used successfully by industrial practitioners. This method-
ology has two main advantages. First, it characterizes the timbre of the products 
under consideration. As such, it provides the product makers with a good under-
standing of the sounds of their products and, in particular, the features of the sounds 
that may be deleterious to the overall quality of the products. Second, the nature of 
the results of such studies (a piece of software takes sound signals as an input and 
calculates a single numerical estimation of quality at the output) makes them very 
easy to integrate into a measurement chain. In fact, the results of most published 
sound quality studies are remarkably consistent. So one may wonder if a universal 
estimator of sound quality could be designed that is valid for any product sound. 
This impression may be the result of the limitations of the methodology. The next 
sections discuss these limitations.

9.2.3.1  Does Sound Quality Evaluation Still Require Experimental 
Characterization?

Many sound quality studies have been published over the years and some results are 
remarkably consistent. As a matter of fact, almost all studies have found that listen-
ers prefer quieter over louder sounds. Another common result is that quality judge-
ments are negatively correlated with roughness (rougher sounds are evaluated as 
more unpleasant than smoother ones), tone-to-noise ratio and related metrics 
(sounds with prominent tonal components tend to be judged as unpleasant hisses), 
and fluctuation strength (sounds with too much fluctuation are judged as unpleas-
ant). Convex (i.e., u-shaped) functions that relate quality and sharpness or the spec-
tral gravity center also have been found. Listeners tend to find sounds with prominent 
high frequencies (shrilling) or low frequencies (rumbling) unpleasant. Of course, 
specific products may deviate from general tends: typically, rough engine sounds 
may be appropriate for sport cars or motorcycles, and some listeners in the air- 
conditioning study reported in Sect. 9.2.3 preferred sounds with greater high- 
frequency energy.

Overall, these tendencies appear to be quite strong. The logical consequence 
should be that one could design a universal descriptor of sound quality, valid for any 
kind of sound, once and for all. In fact, Zwicker and Fastl (1990) proposed such a 
universal indicator: sensory pleasantness. They mathematically defined this indica-
tor of sensory pleasantness as a combination of loudness, sharpness, roughness, and 
tonality.

There are, however, a number of issues with such an indicator. First, and as illus-
trated by previous examples, preference may vary from one individual to another. 
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Second, Zwicker and Fastl’s indicator uses monotonic and separable functions to 
relate sensory pleasantness to different timbre descriptors, whereas previous exam-
ples have hinted that these relationships may be nonmonotonic and nonlinear in 
some cases. These are, however, technical difficulties that could be solved in prin-
ciple. Such a universal indicator would make experimental characterization of tim-
bre and sound quality unnecessary and thus would be a great help for product 
developers. But the limitations of such potential universal indicators are more con-
ceptual and result from the concepts behind the methodology themselves. The 
promise of a universal indicator of sound quality based on simple timbre descriptors 
may in fact result from an overly restrictive perspective on sound quality and tim-
bre. The following sections take another walk through the three parts of the method-
ology to discuss these concepts.

9.2.3.2  Timbre and Descriptors

Most of the discussions about the timbre of musical instruments carried out in this 
book (see McAdams, Chap. 2) also apply to product sound quality studies. In par-
ticular, one important limitation of the experimental methods used to characterize 
the timbre of product sounds is that the set of sounds under study must be homoge-
neous: sounds should be perceived as produced by the same source and should 
continuously and densely span a common acoustic space (Susini et al. 2011). When 
different sounds are perceived as produced by completely different sources (e.g., 
cats, motorcycles, and sea waves) or possess too many idiosyncratic features, listen-
ers may become unable to provide continuous ratings of dissimilarity (in an MDS 
procedure), and the concept of continuous timbre dimensions is no longer relevant. 
In fact, sound categorization and source identification are strong cognitive processes 
that are not always compatible with an MDS procedure (although see McAdams, 
Chap. 2). To address this issue in a product sound quality study, sounds are carefully 
selected, and listeners are required to focus on the timbral features irrespective of 
the sound sources. It is also not uncommon to add synthesized sounds by homoge-
neously varying a few synthesis parameters or to select sounds that are closely dis-
tributed in terms of timbre characteristics.

This creates two potential issues. First, there is a risk that the sound selection 
may not be representative of the variability of sounds emitted by the products (eco-
logical validity). This issue can be handled by preliminary studies seeking to explore 
the variability of product sounds and select samples representative of this variability 
(Susini et al. 2004; Parizet et al. 2008).

The second issue is circularity. Because of the established tradition of sound 
quality indicators and timbre descriptors, there is a tendency to select sounds that 
are homogeneously sampled across “classical” descriptors (e.g., sharpness, rough-
ness, tonality, etc.). Unsurprisingly, the results of experimental characterization 
often yield the same timbre dimensions and descriptors used to select the sounds. In 
addition, the experimental characterization of timbre requires a limited number of 
sounds (typically about twenty sounds), and a dense and homogeneous sound selec-
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tion can only span a few dimensions. This may explain why many experimental 
studies of product sound timbre systematically yield more or less the same three to 
five timbre dimensions.

One deleterious consequence is that this leads to the false belief that the timbre 
of any sound set can be characterized by the same three to five descriptors, conve-
niently implemented in software packages. However, this book beautifully illus-
trates a number of other phenomena contributing to the timbre of sounds. First, the 
timbre of a product is closely related to its identity, which cannot be easily ascribed 
to the combination of a few descriptors. In particular, a given product generates a 
large variety of different sounds created by a number of different physical sources. 
As discussed by McAdams (Chap. 2), the identity of a musical instrument, or for 
that matter of an industrial product, is precisely characterized by the variability of 
the sound events produced by the product or products under different modes of 
operation. Agus, Suied, and Pressnitzer (Chap 3) also show that the identity of a 
sound source cannot be completely specified by a few systematic common dimen-
sions and descriptors. In particular, idiosyncratic features of sounds play an impor-
tant role in sound recognition and, by definition, are not generalizable to other 
sounds.

The temporal evolution of product sounds is also very important for their identity 
(McAdams, Chap. 2; Caetano, Saitis, and Siedenburg, Chap. 11); yet classical 
descriptors usually do not take time into account. More generally, whether timbre 
perception can be reduced to a few common continuous and simple dimensions is 
an extremely important and still open question in timbre research (see the discus-
sions in Aucouturier and Bigand 2012; Siedenburg et al. 2016), and the different 
chapters of this book offer different perspectives on this question. Alluri and Kadiri 
(Chap. 6) show that different auditory dimensions (pitch, loudness, spectral cen-
troid, harmonicity) are specifically encoded in different cortical areas. Agus, Suied, 
and Pressnitzer (Chap. 3) discuss very sparse spectrotemporal representations, 
whereas Elhilali (Chap. 12) introduces very rich and redundant representations of 
sounds based on modulation encoding in the brain. Therefore, characterizing the 
timbre of product sounds should definitely not be considered as a problem that can 
be solved with standard methods dating from the early 1990s. Product sound quality 
as an engineering practice requires standards, but these standards should evolve 
with timbre research. The methods whereby sound descriptors are actually discov-
ered blindly by deep-learning algorithms (without using the experimenters’ intu-
itions or pre-existing knowledge) are very promising.

9.2.3.3  Connecting Quality with Timbre Descriptors

The techniques used to connect quality judgements with timbre descriptors also 
have a number of limitations. First, the most used method is multivariate linear 
regression, which, by definition, assumes a linear relationship between quality 
judgements and timbre descriptors. However, many examples reported above show 
that such an assumption is not true in general. Linear regression with nonlinear 
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transformation of descriptors, polynomial or spline regressions, can handle nonlin-
earity, but the experimenters have to define the exact shape of this nonlinearity (e.g., 
order of the polynomials, nodes, and order of the spline functions, etc.).

Machine-learning methods can address such issues because they can learn non-
linear functions empirically, directly from the data, without the need for the experi-
menter to specify the nature of the nonlinearities. Pietila and Lim (2015) used a 
nested artificial neural network to connect preference judgements of golf club 
sounds to three descriptors (pitch, loudness, and timbre). The results showed com-
plex nonlinear functions connecting preference judgements to each descriptor, 
which could not have been found by regression-based techniques without a priori 
assumptions about these functions. Another advantage of this technique is that it 
directly connects preference judgements to sound descriptors without the specifica-
tion of an intermediate model connecting preference to quality (e.g., BTL, 
Thurstone’s case V model).

Another issue with the connection of quality judgements to timbre descriptors is 
the selection of descriptors that enter the model. In most reported cases, experiment-
ers manually select the descriptors on the basis of their own listening experience. 
Even when the timbre has been experimentally characterized with listening tests, 
there is no guarantee that listeners will use the same sound features to assess both 
preference and the dissimilarity between these sounds. In theory, listeners may con-
sider that one aspect of the sounds that does not contribute much to their dissimilar-
ity (e.g., a tiny buzz) is in fact deleterious to the quality of the sounds. Here again, 
machine-learning techniques can address such issues. Caetano, Saitis, and 
Siedenburg (Chap. 11) review deep-learning techniques that can learn sound fea-
tures from the sounds themselves. For example, Dai et al. (2003) used a three-layer 
neural network to estimate annoyance judgements of brake squealing noises. Instead 
of using loudness, pitch, and timbre descriptors, the input to their neural network 
was a vector containing the amplitude of the spectral peaks between 2 and 18 kHz 
(80 values). The neural network thus estimated the annoyance judgements directly 
from the spectrum.

More generally, using machine-learning techniques has a huge potential for 
sound quality evaluation (for a review, see Pietila and Lim 2012). It should be noted, 
however, that the classical sound quality methodology (derived from psychoacous-
tics) and machine learning techniques have different philosophies as regards the 
generalizability of the results. On the one hand, psychoacoustics is based on infer-
ential statistics: The quality judgements collected during a listening test are assumed 
to be randomly sampled for a population distribution, and the result of the procedure 
is the probability that the quality estimation corresponds to the average judgements 
in the population. On the other hand, the machine learning approach is empirical. 
Some empirical data (i.e., quality judgements) are used to train the model, and other 
empirical data are used to estimate the prediction power of the model. The upside of 
this approach is that it is assumption-free, and the generalizability of the model is 
tested on real data. The downside is that, as a consequence, it requires a large quan-
tity of empirical data to be reliable. This is a very important issue in practice, since 
human listeners can only provide a few quality judgements in a reasonable amount 
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of time. An additional downside is that the resulting network structure is difficult to 
interpret in behavioral and/or neuropsychological terms.

9.2.3.4  Quality Evaluation

Finally, probably the biggest issue with the classical methodology is that the notion 
of quality itself is extremely limited. Despite variations in the practicalities, the dif-
ferent methods all consist of letting listeners simply rate the quality of sounds, con-
sidered as a single notion, or indicate which of two sounds they prefer.

There are several issues with this approach. First, sounds are usually played out 
of context. Listeners are seated in a laboratory setting, listen to sounds over head-
phones or loudspeakers, and indicate their ratings on some kind of interface. This is 
not a particularly ecological setting. In reality, product sounds are made by a visible 
and tangible product, manipulated by a user aiming to do something with it, in a 
given situation, and in a given multisensory environment. Users have expectations 
about the sounds of a product, especially in relation to their previous knowledge and 
the other sensory aspects of the product. Playing sounds to listeners in a laboratory 
setting eliminates most of these aspects, which do have an important contribution to 
the perceptual quality of a product. As a matter of fact, many studies report that a 
large proportion of variance in annoyance judgements of community noise (e.g., 
transportation noise) is related to nonacoustic factors such as personal or socio- 
economic factors (Paté et al. 2017). Therefore, it should be stressed that the meth-
odology for sound quality studies deals only with the acoustic determinants of 
sound quality.

Even with this qualification, a second important aspect should be considered. 
The “quality” of a product sound is not something that can be ordered along a single 
dimension. Typically, listeners dislike louder sounds when required to judge sounds 
heard in a laboratory setting. But take the example of a vacuum cleaner: a com-
pletely silent vacuum cleaner would be unusable because people use the sucking 
noise to monitor how the vacuum cleaner is operating. Furthermore, the loudness of 
the vacuum cleaner is often associated with power. It is difficult for users (and buy-
ers) to consider that a very quiet vacuum cleaner may still be powerful and deserve 
a high price tag. So, pleasantness, usability, and power perception may actually be 
examples of factors that contribute to the quality of a product and are somewhat 
independent.

Finally, this approach advocates for the idea that product sound quality should be 
addressed by considering what the sounds are used for in a given product. The legal 
function of car horns, for example, is to warn road users of a potential danger; 
accordingly, designers must create new sounds that are still recognized as car horns 
(Lemaitre et al. 2007). Carmakers provide electrical vehicles with exterior sounds. 
Such sounds must be heard in the acoustic situation of normal traffic. Accordingly, 
studying the quality of such sounds must consider the detectability of sounds in 
such an environment (Parizet et al. 2014). More generally, Sect. 9.3 discusses sound 
design, which considers sounds in terms of different aspects that go beyond the 
unique notion of quality but are still related to timbre.
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9.3  From Sound Quality to Sound Design

As discussed in Sect. 9.2, most studies consider only listener’s overall preference 
and do not consider other roles that sounds could serve. In fact, many products are 
strongly associated with their sounds: the sound of the Harley Davidson motorcycle 
is a classic example. In 2013, the Italian composer Andrea Cera designed the sound 
of ZOE—the electric car produced by the French carmaker Renault—to inform 
pedestrians of its movement on the street; its timbre is now emblematic of the car’s 
identity and is nicely integrated into the urban sound environment. For products or 
devices, there are also several examples that reveal how sounds can improve useful 
information: monitoring in intensive care units or indicating performance for physi-
cal rehabilitation or sports activities. Thus, extending the sound quality approach, 
the sound design approach embraces the fine articulation of functionality, pleasant-
ness, identity, and ecology of product sounds and their environment. Furthermore, 
sound design not only considers the diagnostic of existing product sounds; it is a 
process to design, engineer, or modify the dynamic and interactive timbral charac-
teristics of product sounds to meet specific intentions or requirements defined dur-
ing the development of products.

9.3.1  Sound Design: Make the World Sound Better

40 years ago, in The Tuning of the World (1977), R. Murray Schafer wrote about a 
new soundscape in which natural sounds are increasingly replaced by artificial 
sounds (p. 91), and “warned music educators that they would now have to be as 
concerned about the prevention of sounds as about their creation” (p. 98). Today 
sounds are widely used in a variety of products, ranging from desktop computers to 
mobile phone applications and from safety warnings (e.g., for hospitals, aircraft) to 
electric cars. These new artificial sounds are functional sounds added into our envi-
ronment for specific purposes—not as decorations and not as pieces of art. The aim 
is to produce a sound to communicate efficient information to a user. Acoustic fea-
tures such as rhythm, pitch, and loudness make an alarm audible and urgent (Stanton 
and Edworthy 1999). Using sounds to warn of a danger, to confirm actions, or to 
guide someone toward a specific direction is one kind of functional sound feedback, 
but sounds can also be designed to improve users’ performances in terms of learning 
and control of a device (see Sect. 9.3.5 for a discussion on sonic interactions).

Fine-tuning acoustic features to provide efficient information using a sound, 
such as an alarm, could be done by an engineer based on ergonomic inputs (Stanton 
and Edworthy 1999) or psychoacoustic tests. In this way, the alarm sound is created 
based on functional recommendations. In the specific case of electric vehicles, 
which may be dangerous for pedestrians in urban areas because they are too quiet, 
the addition of sounds quickly appeared necessary to allow pedestrians to not only 
detect the presence of the vehicle but also its position, distance, and speed. Engineers 
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can apply those functional recommendations in terms of intensity and fundamental 
frequency for the sound but, in addition, a sound designer would also shape the 
timbre to achieve a “harmonious solution.”

From an ecological perspective, a harmonious solution is obtained if the creation 
of the functional sound feedback is conceived in terms of its integration into the 
environment in which it will be heard as if it had always been part of it, thereby 
producing a feeling of pleasure or satisfaction by the intrinsic characteristics of the 
sound. From an industrial perspective, a harmonious solution is obtained by taking 
into account the brand values in order to make audible the identity of the brand (or 
the car) through functional sound feedback. The sound designer considers the global 
coherence of a new functional sound and evaluates the timbre characteristics in rela-
tion to a user’s pleasure, brand identity, and the environment of use.

9.3.2  Timbre Is a Key Element for Sound Design

Susini et al. (2014) have proposed a general definition of sound design: A sound 
design approach is implemented to create new sounds in order to make intentions 
audible in a given context of use. The sounds created are referred to as intentional 
sounds. There are different types of intentions: the first intention is to efficiently 
reach a goal through the sound (functionality), and the second intention is to pro-
duce a harmonious solution in the environment (ecology) that combines satisfaction 
of the user (pleasantness) and coherence with the product (identity). Successful 
sound design should be the articulation of the different intentions in order to pro-
duce new interactions through sound. Thus, a designed sound must simultaneously 
satisfy different aspects; the consequence is that its timbre is shaped by multiple 
nonindependent recommendations. Indeed, the formal aspect of a sound is already 
largely shaped by acoustic features that are related to functional recommendations; 
an alarm sound has strong spectrotemporal characteristics corresponding to its 
warning function, and these characteristics tend to limit the possibility to shape the 
sound in coherence with the environment. This is the tricky part of the process 
undertaken by the sound designer. Functional constraints, usually related to tempo-
ral variations in intensity or pitch, must be combined with other aspects such as 
pleasantness, identity, and ecology, which are more related to timbre.

Most sound quality studies seek to improve the quality of everyday existing 
sounds resulting from natural physical/mechanical/electrical phenomena called 
nonintentional sounds: the sound of a door lock, a car engine, an electric razor, etc. 
Usually, this work is done by professionals in acoustics, psychoacoustics, electron-
ics, or mechanics. In the best-case scenario, recommendations are based on a per-
ceptual analysis of the timbre differences and similarities between a set of sounds 
collected from several devices covering the full range of a product, such as the 
example of the air-conditioning units presented in Sect. 9.2.

But what happens when the product does not exist yet, or when the device was 
silent but to which it has become necessary to add sounds? Typically, an electric car 
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is quieter than a car with an internal combustion engine. However, it is widely 
accepted that it is necessary to add intentional sounds to alert pedestrians and also 
to inform the driver about the car’s state of functioning (e.g., its speed). New sounds 
must be imagined and created that satisfy functional constraints (e.g., detectability) 
as well as constraints in terms of pleasantness, identity, and ecology. The fruitful 
approach providing relations between users’ preferences and timbre attributes based 
on an analysis of a collection of existing sounds (i.e., the sound quality methodol-
ogy) is not useful in this case. Fortunately, practice in sound design is led by a 
strong creative process based on different sources of inspiration; in addition to their 
technical skills, sound designers are characterized by creative abilities to make 
sound sketches composed of different timbres, which can make all the difference in 
producing a successful articulation between functionality, pleasantness, and identity 
of a new product sound with respect to the sound environment. As has been done for 
science fiction movies, sound designers have to imagine and create new intentional 
sounds for our everyday environments.

Research on sound perception and cognition can be very informative for design-
ing sounds. Indeed, the choice of one sound rather than another can be done arbi-
trarily by a sound designer; however, that does not mean that any choice would do 
equally well. The best choice must be an intelligent fit to human perception. Imagine 
a case in which one has to make a choice: is it advisable to use abstract sounds1 
(artificial tones such as beeps) rather than ecologically produced sounds (everyday 
sounds related to a source or an action)? Compared to abstract sounds, ecological 
sounds are often identifiable and thus more rapidly used in line with their function: 
the sound of a door lock may be used as a depiction for a “closing file” action on a 
computer because it will be quickly and easily understandable by users. However, it 
has been shown that abstract sounds work just as well after users have been exposed 
to them for a while and have learned to associate the sound with the function (see 
Agus, Suied, and Pressnitzer, Chap. 3). This finding encourages designers to pro-
pose new sounds and then to drop the old clichés (e.g., the use of a reflex camera 
sound for a digital camera). Such knowledge is very helpful in making a decisive 
choice in a sound design process.

In sound design, knowledge of timbre perception is especially important. The 
timbre study of air-conditioning units presented in Sect. 9.2.3 is a useful example 
about the relevant timbre dimensions that can be used to shape a product sound with 
respect to a listener’s preferences. Knowledge of the relation between sound identi-
fication and timbre for different physical characteristics of everyday sounds is also 
fundamental in sound design in order to manipulate sound descriptors to achieve 
specific target sounds, for example, in terms of material (e.g., a digital sound that 
evokes wood or metal) or form (e.g., a sound that has the same resonance as a large 
plate).

Finally, knowledge of timbre dimensions with respect to the values of a brand is 
also very useful for the sound designer working on the sound identity of the brand. 

1 The difference between artificial and everyday sounds is defined in Sect. 9.3.5.1 (cf. earcons 
versus auditory icons).
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For example, during co-design sessions (involving marketing professionals, sound 
designers, ergonomists, etc.), three of the main brand values of the French railway 
company (SNCF)—benevolent, simple, and efficient—were associated with several 
words related to timbre features (e.g., dull, round, warm, and dynamic). Those tim-
bre features were then used as recommendations by the sound designers to propose 
sounds for different railway station equipment (e.g., departure boards or ticket dis-
pensers). Verbal descriptions of timbre are fundamental in initiating the creative 
work of the sound designer in relation to the brand identity. This last example raises 
several questions related to the verbal description of timbre features in a sound 
design process. How do different participants involved in the sound design process 
communicate about timbre? Is it possible to share a common language? Are there 
enough specific words to describe timbre and translate them directly in terms of 
recommendations?

9.3.3  Communication About Sounds and Timbre: Different 
Strategies

Saitis and Weinzierl (Chap. 5) describe different methods or tasks to investigate 
verbal descriptions of sounds. In the free verbalization task, participants usually 
produce verbal descriptions related to their expertise and to their ability to recognize 
sounds. As Chion (1994) has argued, “we hear as we speak.”

For everyday sounds, the most common strategy is to describe the source of the 
sounds (“this is the sound of a hairdryer,” “it is a vacuum cleaner,” “this is a trum-
pet”) or the action that produced them (“someone is hitting a glass,” “this is the 
sound of a string being pinched,” “she is pushing a switch”). This is the causal 
strategy, which is the most intuitive way to speak about sounds for nonexperts. 
Descriptions are sometimes solely related to a specific meaning in a specific context 
or location: alarm sounds in intensive care units have a specific meaning only for the 
staff. This is the contextual strategy: Verbal descriptions are not specific to a sound’s 
features but are more context-dependent. Finally, it seems that descriptions are sel-
dom based on the sound itself in terms of acoustic characteristics and timbre 
 features. This is the reduced listening strategy: Descriptions are directly related to 
the features of a sound independently of the meaning, the process that produced the 
sound, or its location.

For abstract sounds—artificial tones or beeps that differ in fundamental fre-
quency, harmonic series, amplitude envelope shapes, rhythms and modulations—or 
sounds whose source is not easily identifiable, several strategies have been high-
lighted. Participants use vocal imitations (i.e., they vocally reproduce spectromor-
phological characteristics), onomatopoeic sounds (bleep, buzz, pop), illustrative 
analogies (like a fog horn, siren), and verbal descriptions of timbre (soft, high, short, 
tonal, dull, strident, warm). The type of strategy is mostly related to a listener’s 
expertise in the field of sound. Indeed, sound experts will be more inclined to pro-
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vide verbal descriptions related to the sound itself, such as acoustic characteristics 
and timbre features, than illustrative analogies. Schaeffer (1966) was perhaps the 
first to focus on descriptions related to a sound per se; based on a phenomenological 
approach, he provided several sound examples that illustrated different typo- 
morphological concepts such as mass, grain, and melodic profile. Although original 
and very detailed, Schaeffer’s description remains quite complex and very few peo-
ple use it today in its fullest form. However, the original idea of a lexicon illustrated 
with sound examples is still inspiring and challenging as a way to describe timbre 
(see Sect. 9.3.4).

In the sound design process, especially when it involves participants with diverse 
levels of expertise (from clients to sound designers), this diversity of strategies can 
be a serious obstacle for communication. Sound designers usually need information 
in terms of acoustic characteristics related to timbre features or temporal properties, 
but initial intentions are often expressed by the client with terms related to a context 
or a meaning, a function or an image (cf. contextual strategy). For example, the 
intention for an alarm sound in the context of a hospital could be described as “alert-
ing but kind” rather than sound features such as long, smooth, continuous, high- 
pitched, loud enough, which are directly informative for the sound designers. 
Unfortunately, there is no common practice for talking about acoustic characteris-
tics and timbre features, and sound designers often complain about the lack of tools 
to communicate about sounds in a sound design process.

Recently, in order to overcome this lack of a common language, an academic 
review of a large number of works dealing with verbal descriptions of timbre was 
performed for different kinds of sounds, from abstract to everyday sounds. Then, a 
lexicon of thiry-five relevant timbre descriptors (e.g., dry, bright, rough, warm, 
round, nasal, complex, strident) was proposed as an extension of Schaeffer’s (1966) 
fundamental concept (Carron et al. 2017).

9.3.4  Learning to Talk About Timbre in a Sound Design 
Process

A standardized lexicon of specific terms to describe relevant sound features is a very 
promising tool for the field of sound design from a practical point of view, for 
example, to assist in the training of the different participants involved in a sound 
design project to perceive and use relevant timbre features for the design process. 
The lexicon also would be useful to teach pupils in a sound design or post- production 
course who are learning to listen to timbre features and could then describe those 
features with a common vocabulary. In the lexicon proposed by Carron et al. (2017), 
each term is presented on a computer interface, defined and illustrated by musical, 
vocal, environmental, abstract, and effect sounds, in order to provide a large diver-
sity of examples. This tool has been tested and approved in different case studies in 
which industrial partners were involved (Carron et al. 2015). From a training per-
spective, a set of audio tests also has been developed to evaluate participants’ 
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understanding of the lexicon; it is a complementary and indispensable element of 
applying the lexicon. The tests assess whether using the lexicon may improve listen-
ers’ perception of a specific feature as well as their ability to describe sounds with 
only the terms of the lexicon.

One set of tests is called “from word to sound”; participants are asked to choose 
from among five sounds the most typical sound related to a specific term. Another 
set of tests is called “from sound to words”; participants have to choose three words 
among the list of terms provided to describe the prominent auditory dimensions of 
a specific sound (e.g., a continuous and warm sound with a slow attack). Results of 
the tests are compared with previous results of twenty well-trained participants.

During a training session, individual and collective explorations of the lexicon 
are alternated with the different tests. After each test, terms are discussed collec-
tively to ensure a common understanding, and eventually there is a refinement of the 
sound examples provided for the lexicon. This global training ensures that partici-
pants involved in the same project have a rich and varied vocabulary that is adapted 
to describe a large number of timbre features and temporal properties appropriate 
for an important variety of sounds. This procedure is an alternative to sensory evalu-
ation often used to reveal a list of words specific to the timbre of a set of sounds in 
relation to consumer preferences. The sensory evaluation requires several steps of 
discussion, training, and testing with a panel of experts, a process which is often 
very long (several weeks) and specific to a set of sounds.

9.3.5  Sounds to Support User Interaction

As discussed before, designing sounds has the potential to address the different 
roles of sounds in products, interfaces, places, or brands. The following sections 
focus on fostering user interaction. In fact, sounds are particularly well-suited to 
guide and facilitate interactions between users and a product. Because sounds are 
dynamic stimuli, they can react instantly and continuously to users’ actions and 
gestures and thus provide users with real-time feedback of their actions. Furthermore, 
the tight bond between audition and motor actions makes it possible to use sounds 
to continuously guide and facilitate gestural interactions.

The idea of using sounds to support user interactions is relatively new in the field 
of sound design and has been labeled as sonic interaction design (Serafin et  al. 
2011). Sonic interaction design also introduces new research questions. One new 
research area is determining which timbre features best support interaction. 
Intuitively, ecologically produced sounds (e.g., the sound of rubbing a finger against 
a rough surface) seem the best candidates to support an interaction (e.g., interacting 
with a touch screen), because most people would know how timbre features change 
with changing interaction parameters (e.g., a faster rubbing gesture producing 
higher frequencies). In the next subsections, evidence is presented that, in fact, this 
first intuition may be too simplistic and that further work is needed to fully under-
stand how gestures and timbre become associated in memory.
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9.3.5.1  Sonic Interaction Design: A Rationale

Designing sonic interactions consists of using and creating sounds to design, help, 
or augment how users interact with a product or a machine. As such, sonic interac-
tion design fits under the larger umbrella of interaction design: designing the ways 
users may interact with systems and computer interfaces in particular (Crampton- 
Smith 2007).

There is a rich history of sounds in human-computer interfaces. Computer inter-
faces emit a variety of different sound signals, each aiming to communicate a differ-
ent message (e.g., computer starting up, different types of errors). One key question 
for designers, therefore, is how to convey a specific message with nonspeech 
sounds? One common strategy consists of using artificial tones (beeps or sequences 
of beeps forming a melody) and relying on an arbitrary code mapping the sounds’ 
features (pitch, loudness, duration, timbre) to the message. The messages conveyed 
by artificial beeps are called “earcons” (Brewster 2009). The main disadvantage is 
that users must learn the mapping between sound features and meaning, in other 
words, the code connecting the different melodies to their meaning. William Gaver, 
an influential perception researcher and interaction designer, proposed another 
strategy that does not rely on an arbitrary mapping but is instead based on the spon-
taneous identification of sound sources that are called “auditory icons”. The most 
famous auditory icon created by Gaver is probably the sound of a crumpled sheet of 
paper thrown into a garbage can, used as feedback to indicate file deletion, which 
was developed for Apple computers. In this example, the meaning of the sound 
results from the spontaneous identification of the sound source and a metaphor: 
deleting an electronic document being equivalent to physically crumpling and dis-
carding a sheet of paper (Gaver 1986, 1989).

Similar to this example, many computer sounds rely on a desktop metaphor; 
however, ubiquity and mobility have drastically changed how users interact with 
mobile phones, tablets, and connected watches. Screen-and-keyboard interactions 
are simply not possible in many tiny devices, and vocal and gestural interactions 
thus have become more and more important and sophisticated (think of the different 
gestures used on mobile touch screens).

The use of sounds, however, has evolved more slowly, and most electronic 
devices still use simple and discreet beeps. There is, nonetheless, a great potential 
for sounds to guide, foster, facilitate, or augment gestural interactions. Sounds are 
dynamic stimuli. As such, they can very easily be made to react continuously and in 
real time to dynamic data, such as movement data, through some sort of model or 
mapping (i.e., data sonification). This idea is illustrated by Tajadura-Jiménez et al. 
(2014), who showed that changing the timbre of the sounds made by fingers rubbing 
the surface of an object changed the velocity and the pressure of the fingers, as well 
as the tactile perception of the surface.

In fact, audition and motor actions are tightly bound, and continuous sounds cre-
ated by gestures may influence the gestures themselves. Lemaitre et al. (2009) have 
shown in particular that a continuous sonic feedback, reacting in real time to the 
users’ gestures, can help them learn a fine gesture more rapidly than does visual 
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feedback. Lemaitre et  al. (2015b) also have shown that playing the sound of an 
action (e.g., tapping, scraping) can facilitate (when the action is congruent with the 
sound) or hinder (when incongruent) the subsequent execution of another action.

This idea of a continuous coupling of action and sound is exactly what happens 
when a person learns how to play a musical instrument. To produce a good tone, a 
violinist bows a string, and (particularly during training) adjusts bowing action con-
tinuously by listening to the sound that is produced. This sonic feedback guides the 
player’s control, modifying bow speed, pressure, angle, and so forth. In fact, users 
also use continuous sounds when interacting with other products: most people use 
the change of pitch in the sound of their car engine while accelerating to decide 
when to manually change gears. The study conducted by Jérémy Danna and col-
leagues illustrates another such designed sonic interaction (Danna et  al. 2013, 
2015). They investigated the real-time continuous sonification of handwriting ges-
tures to facilitate graphomotor learning. They devised a system whereby the move-
ments of a pen on a sheet of paper changed the timbre of the resulting sound. When 
the pen movements were too fast, the timbre became squeaky and unpleasant. Jerky 
movements also resulted in unpleasant crackly sounds. Overall, the results showed 
that this designed sonic interaction improved the kinematics of the handwriting 
movements. There was, however, a lack of a long-term effect, thus raising the ques-
tion of the persistence of the timbre-gesture associations in memory.

9.3.5.2  New Research Questions

The key issue of sonic interaction design is to design the timbre of sounds that can 
effectively support an interaction with a physical object or an interface (see also 
Ystad, Aramaki, and Kronland-Martinet, Chap. 13). “Supporting” an interaction 
may in fact correspond to several aspects. It may, for example, contribute to the 
aesthetics of the product, in other words, make it appealing or intriguing. Such ideas 
are, in fact, very close to the concepts of sound quality and sound design previously 
discussed. But more interestingly, supporting the interaction can also mean that the 
sounds produced by the users’ gestures effectively help or guide the interaction. As 
such, evaluating the effectiveness of the sound design cannot be conducted only 
with the method of sound quality evaluation described in Sect. 9.2, but evaluation 
should mainly rely on measuring users’ performances at performing a task (e.g., 
accuracy, speed at achieving a goal, etc.). As suggested by the above example of 
handwriting, another very important aspect of evaluating such designs is to assess 
the long-term benefits and, for example, whether gesture facilitation persists after 
the sonic feedback has been removed.

Because sonic interactions deal specifically with continuous sounds, static tim-
bre descriptors, such as those previously discussed, are no longer relevant. Instead, 
the dynamic aspects of timbre become crucial. Coming back to the example of 
changing gears while driving a car, it is the change of timbre during acceleration 
that makes a car driver change the gear.

9 Timbre, Sound Quality, and Sound Design
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Sonic interaction design also poses specific challenges to the relationship 
between sound design and timbre dimensions. Whereas sound quality evaluation 
consists of mapping a user’s judgements to timbre features or dimensions, design-
ing sonic interactions consists of designing sounds that can effectively guide an 
action. A first intuition is that ecological sounds (i.e., sounds produced by real- 
world phenomena or connected to gestures via models of physical phenomena) 
should work best (Rath and Schleicher 2008; Lemaitre et  al. 2009). However, 
empirical results have not confirmed this intuition so far. In particular, Lemaitre 
et al. (2015b) have shown that playing the sound of an action can prime that action. 
When participants had to respond to a vocal cue by physically tapping or scraping 
on a response interface (ecological sound-gesture mapping), playing, tapping, or 
scraping sounds before the cue could facilitate or hinder the gesture. But the same 
priming effect also occurred when the tapping or scraping gestures produced simple 
tones at different frequencies (arbitrary sound-gesture mapping). No advantage was 
observed for ecological mappings when compared to arbitrary mappings.

These results (as well as those of Danna et al. 2015) suggest that the pitch, loud-
ness, and timbre of sounds and motor programs can be coupled in memory, and that 
this association can be so strong and bidirectional that simply playing a sound that 
has been produced by a gesture can influence the later execution of that gesture, no 
matter whether the coupling has existed for a long time (such as in an ecological 
association) or has just been created (such as in an arbitrary sound-gesture map-
ping). The question thus becomes that of how are sounds memorized together with 
other sensory stimuli or motor programs? Similarly, the question of whether the 
benefits of a sonically augmented device can persist for a long time is in fact the 
question of the persistence in memory of sensory-motor couplings. Memory for 
timbre is thus a very timely and crucial research question (see Siedenbug and 
Müllensiefen, Chap. 4).

9.4  Summary

Most manufactured products, objects, and electronic devices that make up our envi-
ronment produce sounds at some point. Some of these sounds are useful, some are 
annoying, some are funny, some are intrusive, and some are intriguing. Such sounds 
may thus enhance the perceived quality of a product, whereas others may be so 
inappropriate that they are deleterious to the overall impression of a brand. It is 
therefore utterly important to be able to assess how product sounds are perceived 
and to design them with intentions. These are the purposes of sound quality evalua-
tion and sound design, two areas of applied research and professional activity that 
rely heavily on research on timbre perception and cognition.

The first part of this chapter described and discussed a general methodology used 
to evaluate sound quality of products. This methodology has three main elements: 
describing the timbre of the product sounds (using experimental methods or soft-
ware packages), collecting listeners’ quality or preference judgements, and con-
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necting timbre features with preference judgements through various sorts of 
regression techniques. This method has been used extensively in a variety of applied 
studies and has proved to be a valuable tool for engineers, as it eventually produces 
an algorithm taking a sound signal at the input and producing a single indicator of 
quality at the output. Such quality indicators are powerful, simple to use, and do not 
require costly user testing.

There are, however, a number of limitations to this set of methods. First of all, 
they are based on a definition of timbre that may be oversimplified: it considers only 
homogeneous sets of sounds, a limited number of timbre dimensions, and it does 
not consider the sound source identities, sound idiosyncrasies, or individual differ-
ences among listeners. Furthermore, this methodology relies on a very narrow con-
ception of the quality of a set of sounds. Most methods only consider listeners’ 
preferences or one-dimensional ratings of quality of the sounds without taking into 
account the context of use.

The second part of this chapter discussed the sound design approach. In contrast 
to sound quality evaluation, sound design embraces a wider range of aspects of inten-
tional sounds: functionality, pleasantness (listeners’ satisfaction), identity (coherence 
between sound and product), and ecology (integration with the context of use).

Because of its wider scope, sound design faces a number of methodological 
issues. One such issue is that sound designers have to interact with many different 
practitioners in a company, with varying levels of sound expertise, and communica-
tion clearly is an issue. These issues are also research challenges. Chief among them 
is the question of how to standardize verbal descriptions of sounds. This chapter 
thus discussed the results of research that has studied how people talk about sounds. 
Most people describe the sources of the sounds, the actions that produce the sounds, 
the context and the location, or they produce vocal imitations, but rarely do respon-
dents talk about timbre! The chapter then described a tool that has been designed to 
teach and train stakeholders of sound design projects to understand, share, and use 
technical descriptions of timbre (such as dry, bright, rough, warm, round, nasal, 
complex, strident), but also to describe the temporal characteristics (such as con-
stant/fluctuating, ascending/descending, discontinuous, etc.) and the general quali-
ties (such as soft/loud, low/high, short/long, etc.).

Finally, the chapter focused on one particular aspect of sound functionality: 
sonic interaction. In fact, recent research has shown a tight bond between audition 
and motor behaviors. Sonic interaction design seeks to exploit this close connection 
by designing sounds to help, guide, foster, or augment how users interact with a 
product or a machine. This approach is very promising, especially for motor reha-
bilitation applications, but the field of sonic interaction faces important research 
challenges. In particular, the dynamic aspects of timbre, timbre memory, and the 
nature of the interactions of sound representations with other sensory or motor 
modalities are important areas that contemporary research on timbre and other 
chapters of this book explore.
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Chapter 10
Timbre Perception with Cochlear Implants

Jeremy Marozeau and Wiebke Lamping

Abstract The perception of timbre is fairly well understood for normal-hearing 
listeners; however, it is still unclear how hearing impairment affects this percept. 
This chapter addresses how people with severe hearing loss who have been fitted 
with a cochlear implant perceive timbre. A cochlear implant is a medical device that 
allows a deaf person to perceive sounds by stimulating their auditory nerve directly. 
Unlike a pair of glasses that perfectly restores sight, cochlear implants dramatically 
alter the audio signal. This chapter starts with a brief overview of the design and 
functioning of a cochlear implant, which is then followed by a discussion of how 
cochlear implant listeners perceive and identify musical instruments. Thereafter, 
insights on how cochlear implant listeners perceive the sound quality induced by 
simple electrical pulse trains will be provided. Finally, the chapter proposes some 
potential avenues to improve the sound quality experienced through a cochlear 
implant.

Keywords Deafness · Hearing impaired · Hearing loss · Instrument recognition · 
Multidimensional scaling · Music perception · Sound quality

10.1  Introduction

In The Matrix series of movies (released between 1999 and 2003), the protagonists 
had a plug on the back of their heads that allowed the direct stimulation of different 
parts of their brains that included the auditory cortex. With this implant, protago-
nists were able to hear, see, feel, and taste with such precision that they could not 
easily distinguish reality from the simulated world. Although those science fiction 
movies depict a futuristic world, similar technologies have been developed since the 
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1970s to enable hearing in some humans who suffer from hearing impairment. This 
device, the cochlear implant (CI), is a neural prosthesis that can be prescribed for 
people with severe to profound hearing loss when they are not able to gain much 
from a traditional hearing aid. The CI can restore the sensation of hearing by electri-
cally stimulating the auditory nerve directly, bypassing the malfunctioning receptor 
cells. However, unlike the brain implant from “Matrix,” the ability of a CI to restore 
an auditory sensation is limited and can vary substantially across recipients. This 
chapter will give some insight on how people wearing a CI might perceive timbre.

Assessing sound quality through a CI is not an easy task as we are lacking the 
vocabulary to describe sounds. For most people, it is challenging to describe the 
sound of a car in terms of basic auditory elements: “The sound of a car passing 
sounds like … a car passing”. Furthermore, even if someone knows a lot about tim-
bre semantics (Saitis and Weinzierl, Chap. 5), how can we make sure that their 
“warm” or “bright” sound through a CI relates to a similar sensation in acoustic 
hearing?

As described by Siedenburg, Saitis, and McAdams (Chap. 1) and in greater detail 
by McAdams (Chap. 2), many tools have been developed to study the relationship 
between acoustic properties, such as the frequency or the temporal envelope, and 
the perceptual dimensions of timbre. If some of those tools are to be adapted for CI 
listeners, it is essential to adapt them to the CI-specific sound processor. For exam-
ple, a sizeable acoustic variation can result in an insignificant physical change in the 
pattern of the electrical stimulation. Therefore, the relationship between acoustic 
properties and the dimensions of the timbre (such as between the spectral centroid 
and the brightness) needs to be redefined with the physical parameters that charac-
terize the electrical stimulation. Additionally, it is essential to bear in mind that 
some of the perceptual dimensions experienced by normal-hearing listeners cannot 
be translated directly into the perceptual dimensions experienced by CI users.

This chapter first introduces the reader to the technology of the cochlear implant 
(Sect.10.2). The general limitations of the perception of music through a CI is then 
discussed (Sect. 10.3) before special attention is dedicated to the identification of 
instruments (Sect. 10.4). In order to understand how CI users perceive the timbre of 
musical instruments, studies using the technique of multidimensional scaling are 
reviewed in Sect. 10.5. Subsequently, Sect. 10.6 focusses on discussing the percep-
tion of the most simple stimulus for a CI: the pulse train. Finally, Sect. 10.7 pro-
poses some potential directions on how to improve the perception of timbre in a CI.

10.2  What Is a Cochlear Implant?

A healthy human cochlea contains, on average, 3500 inner hair cells located along 
the basilar membrane that will provide input to 30,000 auditory neurons that carry 
auditory information to the brain. Unfortunately, damage to those inner hair cells, 
for example by exposure to loud sounds, is irreversible. This damage, commonly 
known as a sensorineural hearing loss, will prevent the acoustic wave from 
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triggering action potentials on the auditory nerve. When the portion of remaining 
healthy inner hair cells is high, a hearing aid can partially restore hearing by ampli-
fying the sound. However, for more severe damage, even the most powerfull hear-
ing aid will not be able to provide sufficient gain to restore speech intelligibility. 
A person suffering such profound loss (corresponding to hearing thresholds ele-
vated by at least 80 dB) will be considered a candidate for a CI as this device can 
directly stimulate the auditory nerve and replace the function of the damaged inner 
hair cells. The specific criteria for the eligibility for a CI vary across countries, and 
candidacy is often determined on a case-to-case basis, for which multiple factors, 
like the auditory profile but also development, cognition, or psychosocial function-
ing, are of importance (Niparko 2004).

A CI replaces the different roles of the outer, middle, and most of the inner ear. It 
is composed of one external part and one internal part. First, the sound processor, 
just like a typical hearing aid, is hooked behind the ear (Fig. 10.1, #1). It contains 
one or more microphones, batteries, and an electronic circuit that converts the 
acoustic signal into a digital signal, according to a programmable software algo-
rithm called a strategy. This signal is transmitted via a wireless radio-frequency link 
antenna (Fig.  10.1, #2) across the skin to the implant’s receiver (Fig.  10.1, #3), 
which is aligned to the receiver by a pair of magnets. The radio frequency signal is 
then decoded into a series of electric pulses. The internal part of the implant includes 
a linear array of up to twenty-two electrodes inserted about halfway into the spiral- 
shaped cochlea. These electrodes directly stimulate the auditory nerve, thus replac-
ing the function of the hair cells that are lost or damaged in sensorineural deafness.

There are many parameters, such as electrode location, the number of active 
electrodes, stimulation rate, phase duration, current amplitude, or polarity, that may 
influence how an electrical stimulus is being perceived. For the sake of brevity, only 
some basic parameters that affect loudness and pitch and how a CI transmits sounds 

Fig. 10.1 Schematic of a cochlear implant. A sound processor (1) captures sounds via a micro-
phone and converts them into an electrical signal. This signal is then transmitted through the skin 
by a transmitter (2) to the internal component composed of a receiver (3) and an electrode array 
(4). (Drawing by S. Blatrix for R. Pujol, www.cochlea.eu; used with permission of R. Pujol)
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to the recipient will be covered. For a more detailed review of psychophysical stud-
ies in electric hearing, the reader is referred to McKay (2004) or Zeng et al. (2008).

When an electrode is activated, it delivers a series of biphasic symmetric pulses, 
generally with phase durations of 25–100 μs and a 0–20 μs interphase gap. The 
loudness of such a pulse train depends on the overall electric charge but also on 
other factors, for example, the distance of the electrode to the neurons, the survival 
of neurons close to the electrode, the rate of stimulation or activation of the other 
electrodes (McKay et al. 2003; McKay 2004; Bierer 2010).

A change in pitch can be elicited by changing the place of the active electrode. If 
the electrode is located close to the cochlear apex, the sensation induced is often 
described as low-pitched by the patient, and if it is closer to the base of the cochlea, 
it is described as high-pitched, following the tonotopic organization of the auditory 
nerve (place pitch). Similarly, an increase in pitch can also be achieved by increas-
ing the pulse rate (rate pitch) in pulses per second (pps) on a single electrode (e.g., 
Zeng 2002).

The strategy embedded in the sound processor determines which combinations 
of electrodes stimulate the auditory nerve. This is based on an analysis of the acous-
tic signal received by the microphone. Fig. 10.2 shows a simplified block diagram 
of how the CI transforms a sound into patterns of electric stimulation. The most 
commonly used strategy, named the advanced combination encoder (ACE), divides 
the incoming sound signal into as many frequency bands as there are electrodes, 

Fig. 10.2 Simplified block diagram of a cochlear implant sound-coding strategy. First the sound 
is decomposed though a band pass filter. Then the output of each band is processed through an 
envelope extraction composed of an envelope detection block and a low pass filter. For each time 
frame and each band, the energy is evaluated and compared. Only a subgroup (n electrodes selected 
out of the m band) of the bands with the maximum energy will be selected, typically 8 out of 22. 
A nonlinear compressive function will be applied on the energy in the selected band in order to 
convert it to a current value in mA. Finally, on the electrodes assigned to the selected bands, a 
series of electrical impulses will be produced and modulated at a fixed rate with the envelope out-
put of the associate band
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selects a subnumber of the bands with the highest amplitude, typically 8–12, and 
then stimulates the associated electrodes in an interleaved manner at a current level 
related to the energy within the band (McDermott et  al. 1992). On each of the 
selected electrodes, the electrical pulse train will be produced at a fixed rate, which 
is typically between 500 and 5000 pps and is modulated with the envelope output of 
the associated band.

One might wonder why the CI is limited to only a maximum of twenty-two elec-
trodes. To begin with, the cochlea is a tiny structure and to be able to insert that 
many electrodes and their wires is already a great technological achievement. 
Furthermore, because of the distance between the electrodes and the auditory neu-
rons, the structure of bony wall that separates the electrode from the nerve, and the 
high conductivity of the fluid inside the cochlea, the current generated cannot be 
restricted to the vicinity of the target neurons. That means that each electrode will 
stimulate a broad range of sensory neurons, and some electrodes may not be dis-
criminable for the listener, that is, two or more electrodes elicit the same or a similar 
place-pitch sensation. The resulting frequency resolution may be good enough for 
CI users to perceive sentences in a quiet environment but will prevent a clear per-
ception of more complex sound environments (Blamey et al. 2013). Further, rate- 
pitch cues are not being incorporated in most of the contemporary processing 
strategies. Almost all manufacturers, apart from one, exclusively deliver the signal 
envelope on a fixed-rate carrier. First, rate pitch is limited as it has been shown to 
reach a plateau, meaning that the pitch saturates after a specific rate or upper limit, 
which varies across individuals but is roughly around 300 pps (Tong et al. 1983, see 
also Sect 10.6.2). Second, it is difficult to determine a proper place-rate match 
(Oxenham et  al. 2004) that will indicate which rate should be chosen for which 
electrode. Here, shallow and variable insertion depths of the electrode array and the 
broad spread of excitation along the cochlea are restricting the possibility for match-
ing temporal and spectral information thoroughly. For this reason, temporal fine- 
structure cues, which have been shown to play an important role in pitch and speech 
perception (Moore 2008), are often not transmitted.

There is considerable variability in the reactions among patients whose CIs are 
activated for the first time. Some people will regain speech perception right away 
while others might feel great discomfort and eventually reject the device. For most 
patients, the brain needs time to adapt to this new type of sensory input, and patients 
will have to be exposed to the CI for a few months before they can fully benefit from 
their new device. During this time, timbre and pitch perception will change signifi-
cantly. Anecdotally, one CI user described that other people’s voices sounded very 
high pitched, like Alvin the chipmunk (the animated movie character) at activation, 
and after a few months the perception had deepened to sound like Darth Vader (the 
Star Wars movie character). Nevertheless, a significant portion of CI users can 
understand speech correctly in quiet listening situations soon after they get the 
device. Unfortunately, many users still struggle with more challenging listening 
environments, such as speech in noise, or they may have difficulties with music 
appreciation (Zeng et al. 2008).
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10.3  The Perception of Music with a Cochlear Implant

Many CI users are now able to understand words and sentences in quiet listening 
environments without any other aid, such as lip-reading (Blamey et  al. 2013). 
Although understanding speech is most important for the majority of recipients, 
many CI users have expressed their wish to have their perception of music fully 
restored. A survey of the musical habits of over hundred CI listeners found that 
music was generally less enjoyable post-implantation (Looi and She 2010). 
However, this survey also showed the large variability toward the amount of time 
spent listening to music and the overall enjoyment of music. Some CI listeners 
reported that they never listened to music and received no enjoyment at all, while 
others reported listening to music very often and found great joy in that activity. 
This latter group can be surprising given the limitations of most CI listeners in the 
perception of fundamental musical features.

Several studies have shown that the majority of CI users have difficulties with 
perceiving pitch accurately. Using different tasks, such as pitch discrimination, mel-
ody recognition, or pitch change detection, CI users perform, on average, signifi-
cantly worse than normal-hearing listeners (e.g., Laneau et al. 2006; Kang et al. 
2009). In most western music, the semitone is the smallest standard pitch difference 
between two notes (about 6% difference in fundamental frequency, F0). However, 
CI users need an average difference of at least 25% in F0 between notes, more than 
a minor third, to start to accurately assess the direction of pitch change (Looi et al. 
2004). Given that the most common musical intervals between two notes are below 
a third (Huron 2001), it is clear how challenging it can be for CI listeners to follow 
a melody. Fortunately, CI listeners can partly rely on rhythm cues to correctly iden-
tify well-known melodies (Kong et  al. 2004). This ability allows CI listeners to 
dance in time to the beat of the music (Phillips-Silver et al. 2015) or correctly iden-
tify the intended emotion of a piece of music (Vannson et al. 2015).

Along with the difficulties in pitch discrimination, several studies have reported 
some challenges in the perception of the timbre of complex sounds (McDermott 
2011). One might argue that the perception of timbre is only secondary to the enjoy-
ment of music. Is it really essential to be able to recognize a trumpet from a trom-
bone to appreciate the ninth symphony of Dvorak? Even if the sound quality of a 
piece of music can be greatly reduced by a cheap sound reproduction system, it is 
still possible to enjoy the music to a certain extent! While this might be true, timbre 
is not only necessary to convey subtle musical information, but it is also of para-
mount importance to segregate different melodic lines. If a listener cannot hear the 
timbral differences between the instruments of an orchestra, they will lose the abil-
ity to segregate the instruments, and a beautiful and sophisticated symphony may 
then turn into a giant sonic mess.
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10.4  Instrument Identification

To test musical instrument identification by CI listeners, Gfeller et al. (2002a) asked 
fifty-one participants to identify sounds from eight different musical instruments. 
They compared the scores of CI listeners with scores from twenty normal-hearing 
listeners. CI listeners showed a mean performance of 47% correct responses, 
whereas normal-hearing listeners achieved an average score of 91%.

It is possible that musical training can influence the identification score greatly 
and that CI users, because of their hearing impairment, were generally less musically 
trained. However, in another study by the same group (Gfeller et al. 2002b), CI listen-
ers were trained for 12 weeks on timbre recognition and appraisal. Listeners were 
asked to identify sixteen musical instruments before and after the training. A positive 
effect of training was found as the recognition score increased significantly from 34% 
to 58% correct. However, even after extensive training, the final score still remained 
much lower than the one obtained for normal-hearing listeners without training.

A similar experiment was performed by McDermott and Looi (2004), who found 
comparable results with ten CI listeners. The stimuli were composed of sixteen 
music samples of individual instruments (played for 5 s). Each sample was repre-
sentative of the type of music played by this instrument (for example rock music 
was played on the drums and classical music on the tympani). Therefore, partici-
pants were not only able to rely on timbre cues to identify the instrument, but they 
could also rely on pitch cues and genre-specific information. On average, the 
normal- hearing listeners were able to identify the musical instrument (97% correct 
responses) while the CI listeners showed a much lower score (47%).

Figure 10.3 shows the confusion matrix of the CI listeners. The stimuli can be 
divided into three groups: sustained musical instrument, the human voice, and per-
cussion instruments. As is common in musical instrument identification tasks (see 
McAdams Chap. 2), most of the confusions occurred within groups. For example, 
the male voice was often confused with the female voice, the trumpet with the flute, 
and the piano with the harp. A few exceptions were noted, for example, the female 
voice was confused with the  trumpet and the timpani with the double-bass. This 
latter percussive instrument can play well-defined melodies by varying the tension 
of the skin through a pedal. It might then be easily confused with a double bass, 
which is often played pizzicato in jazz music. Finally, the organ was poorly identi-
fied; this might be caused by the lack of familiarity for that specific instrument.

By analyzing the physical features of the instruments, it appears that the tempo-
ral envelopes of the stimuli might have played an essential role for identification. 
Both the piano and the harp are impulsive instruments with sharp attacks and long 
decays; on the other hand, both the violin and the organ are sustained instruments 
and have slower attack times. Finally both female and male voices share a similar 
temporal envelope with a vibrato specific to the human voice. Although the CI lis-
teners have some difficulties in processing spectral information, the temporal enve-
lope is fairly well conveyed. It is worth noting that the samples from the male and 
female voices were recordings of lyrical singers who sang with a pitch range much 
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higher than their everyday speaking voices. This might partly explain why the male 
voice was often confused with the female voice, but this result is also in agreement 
with various studies showing that gender categorization by CI users is generally 
poorer than the categorization performance of normal-hearing listeners (Fu et al. 
2004, Fu et al. 2005).

Children who have been given an implant as infants display similar behaviors 
(Innes-Brown et  al. 2013). Results show that despite 1 year of musical training, 
children with a CI still underperformed in instrument recognition tasks compared to 
their aged-matched normal-hearing peers with the same amount of musical 
education.

As seen in Sect. 10.2, the cochlear implant divides the overall spectrum in 12 to 
22 bands (depending on the manufacturer), and each of those electrodes will acti-
vate a broad range of overlapping auditory neurons. Therefore, information related 
to the spectral envelope will be highly degraded in electric hearing compared to 
acoustic hearing. On the other hand, the sound processor operates with a reasonably 
fast time window (at the level of milliseconds), and the overall temporal envelope of 
the signal can be preserved. Many previous studies on timbre have demonstrated 
that the temporal envelope is one of the most important factors in the perception of 
timbre (see McAdams, Chap. 2). From the evidence described above, it might then 
be hypothesized that CI listeners would rely on the temporal dimension more than 
on the spectral dimension.
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10.5  Multidimensional Scaling Studies

Timbre is a complex percept that can be decomposed into different perceptual 
dimensions (see McAdams, Chap. 2). The two most important dimensions are the 
impulsiveness, which correlates with the logarithm of the attack time, and the 
brightness, which correlates with the spectral centroid. An advanced technique of 
multidimensional scaling analysis (MDS) allows us to derive the perceptual weight 
that each listener will assign to those dimensions (see information on CLASCAL in 
McAdams, Chap. 2). Such weights will depend primarily on the set of stimuli but 
might also depend on the hearing impairment of the listeners.

In 2012, an experiment by McAdams et al. (1995) was reproduced with seven 
bimodal (one CI and one hearing aid) and five bilateral (two CIs) listeners (Kong 
et al. 2011, 2012). The goal of the study was to evaluate the perceptual weight that 
CI users put on the dimensions correlated to the temporal and spectral descriptors. 
Kong and colleagues hypothesized that, based on studies on instrument recognition, 
the temporal envelope cues will dominate, and the reliance on spectral cues will be 
reduced for bilateral users due to current spread and limited spectral resolution. 
They further hypothesized that bimodal listeners with some residual low-frequency 
hearing and with the help of a hearing aid would be able to rely more on the spectral 
aspect than bilateral users.

Listeners were asked to rate the dissimilarity between all possible pairs of a set 
of sixteen stimuli. Those stimuli were synthesized western musical instruments 
similar to those used by McAdams et al. (1995). Each participant was tested in three 
listening conditions: individual device alone (single CI or hearing aid alone) and 
with the combined use of devices. The dissimilarity results were transformed into 
two-dimensional spaces oriented to provide as good a fit as possible with the first 
two dimensions of the three-dimensional space obtained by McAdams and col-
leagues. A two-dimensional solution was preferred to a three-dimensional solution, 
as the model with three dimensions did not improve the goodness-of-fit signifi-
cantly and could not be interpreted.

Different factors might explain the lack of a third dimension. First, the number 
of participants was much lower in this study (n = 12 CI listeners) compared to the 
study of McAdams and colleagues with 98 normal-hearing listeners.1 The lower the 
number of participants, the less stable the solution will be; thus this factor will 
directly impact the number of dimensions that can be extracted. Second, the number 
of stimuli was slightly lower, 18 in McAdams et al. (1995) versus 16 in the studies 
by Kong et al. (2011, 2012) to keep the duration of the experiment reasonable while 
maintaining the appropriate number of repetitions. The number of stimuli can also 
impact the maximal number of dimensions that can be represented reliability in 
MDS. Finally, it might be possible that CI users cannot perceive the third dimension 
consistently. For normal-hearing listeners, this dimension was correlated with sub-

1 It is worth noting that in CI studies, the number of subjects is often very small as it is quite chal-
lenging to find suitable participants.
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tle spectrotemporal variation cues, known as the spectral flux. It separates stimuli 
with a fluctuating spectrum, like the vibraphone, from stimuli with a steady spectral 
envelope, like the bassoon. A possible explanation for this may be that the sound 
processor would not transmit these cues or that CI users are not able to perceive 
them.

Each of the two dimensions found with the CI users was correlated with the 
descriptors known to correlate well with the perceptual dimensions obtained with 
normal-hearing listeners (Peeters et al. 2011). The left panel of Fig. 10.4 shows that 
the first dimension was highly correlated with a measure of impulsiveness (as 
described in Marozeau et al. 2003). This correlation was highly significant for the 
three conditions of both groups (bilateral and bimodal). As a similar level of correla-
tion is often found with spaces extracted with normal-hearing listeners (see 
McAdams, Chap. 2), this result suggests that CI users (bimodal and bilateral) per-
ceive the first dimension of timbre similarly compared to the normal-hearing listen-
ers. This assumption is further supported by the results of the timbre recognition 
task, described previously, in which CI listeners seem to rely mostly on the temporal 
envelope for stimulus identification.

The second dimension is often found to be highly correlated with the spectral 
centroid (see Fig.  10.4, right panel). However, for the CI listeners, the second 
dimension was only moderately correlated with the spectral centroid, and no other 
descriptor with a better correlation was found. The weak correlation with the spec-
tral centroid stands in contrast to results from the normal-hearing listeners 
(McAdams et al. 1995). It is unclear whether CI users rely on a different physical 
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Fig. 10.4 Correlations between perceptual dimensions and physical descriptors of timbre. The left 
panel shows the correlations between impulsiveness and the projection on the first dimension at the 
group level for the bimodal (one CI or one HA) and the bilateral groups (two CIs) for the three 
conditions: individual device alone (single CI or hearing aid alone) and with the combined use of 
devices. This correlation is very high for the normal-hearing listeners. The right panel shows the 
correlations between the spectral centroid and the projection on the second dimension at the group 
level for the bimodal group and the bilateral group for the three conditions. CI, cochlear implant; 
HA, hearing aid (Data replotted from Kong et al. 2012)
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cue or whether they rely on the same dimension as the normal-hearing listeners but 
with a weaker perceptual resolution.

The weight that each listener had put on the two dimensions was evaluated by 
using an INDSCAL analysis (see McAdams, Chap. 2). The ratios of the weights 
between the two dimensions can indicate if listeners relied more on the temporal 
dimension compared to the spectral dimension. This analysis showed that both 
bilateral and bimodal listeners put more weight on the first dimension compared to 
the second dimension. For the bimodal listeners, the listening conditions also had an 
effect: the contribution of the spectral dimension was larger in the condition with a 
CI (CI-alone and CI plus hearing aid) compared to the condition with hearing aid 
alone.

These results might seem surprising; however, it is worth noting that bimodal 
users have very limited residual hearing, mostly in the low-frequency range. As 
noted above, to be a candidate for a CI, the recipient needs to demonstrate that even 
with a hearing aid, they cannot understand speech at a functional level. Therefore, if 
bimodal patients cannot perceive different vowels with their hearing aid, it is 
unlikely that they can use spectral cues to perceive timbre. All the sounds will be 
rather dull, and listeners might have to rely mainly on temporal information. If they 
had normal hearing on one side (so-called single-sided deafness), it is possible that 
they would rely more on spectral cues through their acoustic hearing. It is also inter-
esting to note that in the CI-alone condition the participants relied more on the 
second dimension compared to bimodal listeners. This observation might also be 
supported by the significant correlation between the second dimension and the spec-
tral centroid for the CI-alone condition compared to the condition with the hearing 
aid alone.

In summary, CI users seem to use the same cues and put similar weight as 
normal- hearing listeners on the first dimension, which is significantly correlated 
with the impulsiveness of a sound. The second dimension is less clear and may be 
related to the spectral centroid, but more studies need to explore the perception of 
this spectral dimension.

10.6  The Perception of a Single Pulse Train

To be able to understand how CI users perceive the timbre of a complex sound, it is 
useful to analyze their auditory perception of simple elements. Just as in acoustic 
hearing when it is useful to consider sounds as a superposition of pure tones, in 
electric hearing it is useful to consider sounds as sums of pulse trains. This section 
will discuss and summarize different experiments that study how CI users perceive 
the sound quality of single-electrode pulse trains when bypassing the signal proces-
sor to control the exact pattern of stimulation. Three of the most popular methods 
that have been used to study timbre of musical sounds will be reviewed in the frame-
work of the perception of electrical pulse trains: (1) MDS analyses, (2) verbal attri-
bute magnitude estimation (VAME), and (3) timbre production.
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10.6.1  Multidimensional Scaling Analysis

The pulse train is a series of symmetric biphasic electric current pulses regularly 
spaced in time. Pulses are composed of two identical phases of opposite polarity to 
avoid charge accumulation inside the cochlea. As mentioned in Sect. 10.2, the over-
all charge is associated with the dimension of loudness (i.e., low-charge pulses are 
perceived as soft and high-charge pulses are perceived as loud); the repetition rate 
of the pulses is associated with the dimension of pitch, often referred to as the rate 
pitch cue. Electrodes deeply inserted into the cochlea, toward the apex, will induce 
a lower pitch sensation than the electrodes located near the base, referred to as the 
place pitch cue. Zeng (2002) confirmed the assumptions by asking CI users to rate 
the pitch height of different pulse trains varying in rate and electrode position. They 
showed that a high-rate pulse train was perceived as higher than a low-rate and a 
pulse train delivered on an electrode placed closer to the apex was perceived as 
lower than on an electrode located at the base. Therefore, it might be tempting to 
assume that both rate and place pitch cues can be associated with two orthogonal 
dimensions of pitch. However, McDermott and McKay (1998) argued that the sen-
sation induced by the place cue might be more related to timbre than pitch. If this is 
the case, the sensation induced by a change of electrode position should be indepen-
dent to a sensation induced by a rate change.

To test that hypothesis, Tong et al. (1983) asked CI listeners to rate the dissimilari-
ties between nine pulse trains composed of the combination of three rates and three 
electrode positions. The obtained dissimilarities were represented in a two- 
dimensional space (see Fig. 10.5). The projection of the stimuli on the first dimension 
is clearly ordered by pulse rate, while the projection on the second is ordered by 
electrode placement. This indicates that the two cues (rate and place) will affect two 
different and orthogonal perceptual dimensions. However, it is unclear how those 
dimensions are related to the perceptual dimensions experienced by normal- hearing 
listeners. As a change in electrode placement and a change in rate of stimulation can 
be ranked on a scale from low to high, one might associate those two dimensions with 
two dimensions of pitch, such as chroma and tone height. However, as the timbre 
attribute “brightness” can be scaled from low to high and is highly correlated to the 
spectral centroid, this second dimension also has been associated with timbre. Even 
though we often refer to place cues as place “pitch”, it is likely to be the timbre of a 
sound that changes when different electrodes are stimulated. Overall, the most impor-
tant conclusion from this study is that the sensation induced by changes in place and 
rate are not equivalent as they are scaled on different perceptual dimensions.

10.6.2  Verbal Attribute Magnitude Estimation

To understand how CI recipients perceive the sound quality of a single pulse train, 
it might seem natural just to ask them to describe it. Unfortunately, humans are not 
trained to talk about sounds. If the recipients describe their sensation freely, it is 
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unlikely that each listener will use the same vocabulary. As a result, it will be very 
challenging to draw general conclusions from their responses. To avoid this diffi-
culty, von Bismarck (1974) proposed a method based on semantic differentials and 
factor analysis to extract the common dimensions of timbre that can be described in 
terms of verbal attributes (also see Saitis and Weinzierl, Chap. 5). In this method, 
participants are asked to rate stimuli on scales of opposite attributes. Because each 
pair of attributes is clearly defined, the variability of interpretation for each partici-
pant can be significantly reduced. Further, to not expose the listeners to too many 
different words, Kendall and Carterette (1993a, b) proposed to use only the attribute 
and its negation (for instance, bright and not bright) instead of using attribute oppo-
sites (bright and dull).

Recently, two studies have explored the perceptual qualities of single-electrode 
pulse trains using this method (Landsberger et al. 2016; Lamping et al. 2018). In the 
latter one, Lamping and colleagues have asked CI users to rate the pitch, and sound 
quality of a stimulus set that varied in pulse rate or (sinusoidal) amplitude  modulation 
frequency and electrode placement using multiple verbal attributes. The results 
indicated that both temporal and place cues could be linked to pitch and timbre.

Figure 10.6A (left) shows that average ratings on the pitch height scale were in 
agreement with previous findings that showed a significant dependency of pitch on 
electrode location and pulse rate (Fearn and Wolfe 2000) while showing no interac-
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tion between the two of them. As noted above, pitch reaches a plateau at around 300 
pps, which can be seen in this study as well as in others (e.g., Zeng 2002; Kong et al. 
2009). Most attributes were highly correlated and can be summarized by looking at 
only two of them: roughness and brightness (Fig. 10.6, middle and right).

Roughness was mainly influenced by the pulse rate. For the region between 80 
and 300 pps, roughness decreased monotonically; thereafter, pulse trains were not 
perceived as rough anymore. The position of the stimulated electrode only had a 
small effect on roughness with pulse trains being rated as less rough at the apex rela-
tive to other locations along the cochlea.

For brightness, both pulse rate and electrode position had a significant effect on 
the scaling: brightness increased to about 600 pps with increasing pulse rate. For 
higher rates, there was no effect of rate cue, and place cues completely dominated the 
perceived brightness. Interestingly, brightness was the only attribute for which there 
was a significant interaction between the two main factors, suggesting that the two 
cues may not be entirely independent, at least in their perceived brightness.

Figure 10.6B shows the ratings for modulated pulse trains. Both rate and elec-
trode location showed a significant effect on all three attributes. However, for the 
brightness attribute, only the rating on electrode 22 (most apical) differed from 
those for other electrodes. The rating for regular pulse trains and modulated pulse 
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trains showed reasonably similar trends. There was no significant difference in 
 rating between the results of these two sets for frequencies of 80 Hz, 150 Hz, and 
300 Hz. These similarities in sound quality seem consistent with measures of tem-
poral acuity in CI listeners. Kong et  al. (2009) showed that rate discrimination 
thresholds have similar patterns for both modulated and unmodulated pulse trains, 
potentially indicating a similar pitch salience for these stimuli. The only attribute for 
which a significant difference between stimulus sets emerged was for roughness, 
possibly because the corresponding temporal modulation was more explicitly coded 
by the CI, that is, the remaining pulses between the peaks and troughs of the wave-
form were still affecting perception.

10.6.3  Timbre Production

As mentioned earlier (Sect. 10.6.2) and discussed by Saitis and Weinzierl (Chap. 5), 
it can be quite challenging to describe a sound because we lack sensory vocabulary 
for auditory experiences. Furthermore, it is impossible to know if someone’s “red” 
is similar to someone else’s “red”; the degree to which vocabulary is shared across 
individuals remains unclear, in particular when it comes to CI listeners, who exhibit 
large interindividual differences. To continue the visual analogy, imagine that you 
need to describe a sophisticated abstract piece of art such as a painting from Pablo 
Picasso. You can try to describe an ensemble of round and triangular shapes and 
dark lines; however, it is hard to convey the essence of the painting. It is much easier 
to draw a simplified sketch. A similar approach was performed with a specific sub-
group of CI users that have near normal hearing in one ear and a CI for the other ear. 
Recently, CI surgeries have been approved for people with only one impaired ear 
and disabling tinnitus. The neural mechanisms underlying tinnitus are still relatively 
unknown, and current theurapeutical approaches mostly rely on psychological 
intervention. In those patients, the CI was introduced to try to alleviate their tinnitus 
through auditory input. This new type of patient can provide the researchers with 
precious information on electric hearing through a CI because it can directly be 
compared to normal acoustic hearing in the same person.

In this study, 10 CI users were asked to vary the parameters of an acoustic sound 
played to their normal-hearing ear and to match its perception with that of the 
electric sensation of two electrodes (Marozeau et al. 2017). Two electrical stimuli 
were tested: a pulse train on the most apical electrode and a similar pulse train on 
a mid- array electrode. The participants used a graphical tablet to modify four 
acoustic parameters of a complex sound. The first two parameters, p1 and p2, were 
linked to the tonal aspect of the sound and set the frequency of each component 
according to the formula:

fn = p1∗np2

where fn is the frequency of the component n. The other two paramters, p3 and 
p4, were linked to the timbre of the sound and set the amplitude of those components. 
The parameter p3 was linked to the spectral centroid and p4 to the spectral spread.
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The results showed some substantial differences among the participants, typi-
cally observed with CI listeners but possibly enhanced by the complicated task. 
Among the four test parameters, participants only significantly varied the parameter 
p3 (spectral centroid) as a function of the electrodes. This can be interpreted as the 
mid-array electrode inducing a significantly brighter timbre than the apical elec-
trode. On the other hand, the other three parameters (p1, p2, and p4) were not sig-
nificantly affected by a change of electrode position. The experiment shows once 
again that the electrode position probably influences timbre rather than the tonality, 
while changes in pitch might be coded through differences in pulse rate. As most 
contemporary processing strategies only incorporate a fixed rate parameter, it is 
easy to comprehend the difficulties that CI users might experience in a task involv-
ing the perception of polyphonic music in which they need to extract the pitch of 
many different instruments playing simultaneously.

10.7  How to Improve the Perception of Timbre

Although cochlear implant technology has existed for over 30 years and CIs have 
been implanted in more than 600,000 patients around the globe, the overall perfor-
mance on music perception tasks, or more specifically, timbre-related tasks such as 
instrument identification (Looi et al. 2012), has not improved substantially for the 
past 20  years and suffers from several persistent shortcomings. In most modern 
technologies, hardware and software evolve in parallel. For example, when an 
update for a computer operating system is released, it is designed for the latest pro-
cessor technology and would not always be compatible with older generations of 
computers. On the other hand, in CI technology, once a patient is implanted with a 
device, they are supposed to keep it for a lifetime. Therefore, although research on 
new types of implants (CI hardware) is fundamental, many studies aim to improve 
the outcome of the CI sound processor algorithms that should be compatible with 
the first generation of implants released more than 30 years ago.

10.7.1  New Sound Processing Strategies

As mentioned in Sect. 10.2, the main limitation in CIs is the spread of current induced 
by each electrode. Because the inner parts of the cochlea constitute a complex shape 
with highly conductive fluid (the perilymph), it is challenging to predict where and 
how exactly the induced current will flow. This complexity will increase if many 
electrodes are activated simultaneously, so cochlear implant strategies activate at 
most two electrodes simultaneously. In the most common stimulation mode, called 
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the monopolar mode, the current flows between an electrode located inside the 
cochlea and a return electrode located outside of the cochlea near the temporal bone.

Van den Honert and Kelsall (2007) hypothesized that if the impedance between 
all electrodes can be measured, it would be possible to create a focused electrical 
field centered around one specific electrode that should consequently activate nar-
rower regions of auditory neurons. This focused electrical field will be created by 
selecting simultaneous current levels and phases on each electrode appropriately. 
Thus the sum of all potentials will result in a narrower field. Marozeau and McKay 
(2016) have tested this new stimulation mode, called the all-polar mode, with five 
participants and compared the sound quality of this stimulation mode to the mono-
polar mode. The participants were asked to judge the sound dissimilarity between 
pairs of stimuli that were presented in either monopolar or all-polar mode. The 
stimuli were designed to produce two peaks of energy in front of two specific elec-
trodes in order to mimic a vowel with two formants. In the monopolar mode, the two 
peaks were produced by activating two electrodes sequentially. In the all-polar 
mode, the currents and phases of all the electrodes were set to produce two separate 
current fields at the same locations as in the monopolar mode but more focused. 
Using an MDS technique, a three-dimensional perceptual space was produced (see 
Fig. 10.7A, B).

The first perceptual dimension was highly correlated with the average position of 
the two peaks and the second dimension was moderately correlated with the dis-
tance between them. Although the electrical field and the spectrum of a sound are 
two different entities, it is worth noting the similarity between the first correlate of 

Fig. 10.7 Multidimensional scaling (MDS). (A) The first two dimensions of the three- dimensional 
solution; (B) dimension 1 versus dimension 3. Each monopolar stimulus is represented by a square 
and each all-polar stimulus is represented by the end of the arrow. The two numbers next to each 
stimulus indicate the location of each formant based on the electrode position within the array. The 
monopolar and all-polar stimuli that shared the same formant are linked by an arrow. (Data replot-
ted from Marozeau and McKay 2016)
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this space (the average location of electrical energy) and the spectral centroid 
(average frequency of the energy spectrum) and the similarity between the second 
correlate (the spread of electrical energy) and the spectral spread. More interest-
ingly, the monopolar and all-polar stimuli were significantly separated by a third 
dimension, which may indicate that all-polar stimuli have a perceptual quality that 
differs from monopolar stimuli. This experiment suggests that the stimulation mode 
can have a direct effect on the timbre, more specifically, on the third dimension. It is 
still unclear how this third dimension can be described. However, using verbal 
descriptors (clean/dirty) with a similar focused stimulation mode (called tripolar 
stimulation), Padilla and Landsberger (2016) showed that “cleanness” correlated 
with a reduced spread of excitation. As all-polar mode is supposed to reduce current 
interaction, it is possible that the third dimension shown in Fig. 10.7 is also related 
to a “cleaner” sound perception. To summarize, use of these focused stimulation 
modes, such as all-polar or tripolar stimulation, bears the potential to reduce spec-
tral smearing and thereby improve perceived sound quality.

10.7.2  Training

As noted above, when the CI of a patient is activated for the first time, speech can 
be hard to understand and the sound sensation may even be confusing. The user 
will have to go through a hearing rehabilitation program that aims to restore the 
perception of speech and, sometimes, music and environmental sounds (Philips 
et al. 2012). However, to restore the perception of timbre, a dedicated training pro-
gram should be designed. In a survey of eighty-four CI users on what they expected 
from musical training, Looi and She (2010) found that the ability to recognize com-
monly known musical instruments was ranked as one of the most desired musical 
skills that they wished to reacquire, immediately after the ability to recognize 
known tunes.

Few studies have been developed to target timbre perception specifically. As 
mentioned in Sect. 10.4, Gfeller et al. (2002b) have found a significant and positive 
effect of their training protocols. This intensive training program was delivered via 
a laptop and was composed of 48 lessons over a period of 12 weeks. In each lesson, 
the student learned about the four principal families of musical instruments (strings, 
woodwinds, brass, and pitched percussion). Then each instrument was introduced, 
and information was provided about the material, how it is played, and the typical 
styles. The students were also gradually exposed to the different sounds that each 
instrument can produce, starting with a simple note to more complex phrases. 
Interestingly, not only has this training program resulted in a significant improve-
ment in the task of instrument recognition, but it also had a positive and significant 
effect on the appraisal of sounds. These results suggest that training can not only 
help CI users to perceive timbre better but could also enhance the enjoyment of 
listening to music.
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10.8  Conclusions

In summary, users of a cochlear implant still struggle substantially with music 
appreciation and timbre-related tasks such as musical instrument identification. 
This may be related to the limited amount of information transmitted via the implant. 
Even though temporal cues, which are correlated with impulsiveness, receive a sim-
ilar perceptual weight as in normal-hearing listeners, a degraded spectral envelope 
emerges due to the limited number of electrodes and current spread. This spread 
causes overlapping neural populations to be activated when stimulating different 
electrode locations in the cochlea. Studies that have bypassed the sound processor 
have shown that the electrode position may be a particularly important cue for tim-
bre perception as it seems to be linked to the timbral attribute of brightness. Finally, 
a processing strategy transmitting spectral cues more delicately may improve tim-
bre perception, and training to use the new sensory input more efficiently may help 
with timbre perception.

This chapter has summarized the current experience of CI users and has provided 
possible solutions using signal processing to improve their perception of timbre. 
However, it is worth mentioning that many groups around the world are working on 
solutions for more efficient electrode arrays using light to selectively activate the 
auditory nerves (Jeschke and Moser 2015) or using gene therapy for the conserva-
tion and regeneration of spiral ganglion cells, which would improve the electrode- 
neural interface (Pfingst et al. 2017). Combining both better selectivity and a better 
neural interface should allow a major improvement in sound quality and might 
restore the beautifully complex perception of timbre.
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Chapter 11
Audio Content Descriptors of Timbre

Marcelo Caetano, Charalampos Saitis, and Kai Siedenburg

Abstract This chapter introduces acoustic modeling of timbre with the audio 
descriptors commonly used in music, speech, and environmental sound studies. 
These descriptors derive from different representations of sound, ranging from the 
waveform to sophisticated time-frequency transforms. Each representation is more 
appropriate for a specific aspect of sound description that is dependent on the infor-
mation captured. Auditory models of both temporal and spectral information can be 
related to aspects of timbre perception, whereas the excitation-filter model of sound 
production provides links to the acoustics of sound production. A brief review of the 
most common representations of audio signals used to extract audio descriptors 
related to timbre is followed by a discussion of the audio descriptor extraction pro-
cess using those representations. This chapter covers traditional temporal and spec-
tral descriptors, including harmonic description, time-varying descriptors, and 
techniques for descriptor selection and descriptor decomposition. The discussion is 
focused on conceptual aspects of the acoustic modeling of timbre and the relation-
ship between the descriptors and timbre perception, semantics, and cognition, 
including illustrative examples. The applications covered in this chapter range from 
timbre psychoacoustics and multimedia descriptions to computer-aided orchestra-
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tion and sound morphing. Finally, the chapter concludes with speculation on the 
role of deep learning in the future of timbre description and on the challenges of 
audio content descriptors of timbre.

Keywords Environmental sound · Excitation-filter model · Machine learning · 
Musical instrument · Pattern recognition · Sound color · Speech · Time-frequency 
analysis

11.1  Introduction

A sound wave carries a pattern of oscillations, which was generated by a driving 
force that excited a vibrating object through a physical medium such as the air. 
When the sound wave reaches the ear, these oscillations are processed and inter-
preted by the brain as sound. On its way from the source to the ear, the sound wave 
carries precise information about the vibrating object (e.g., a cello), the driving 
force (e.g., bowed), and possibly other physical objects with which it interacted 
(e.g., the walls of a concert hall). The human brain has a remarkable ability to con-
vert the detailed information contained in sound waves into the meaningful experi-
ence of hearing—from the minute inflections of speech that facilitate human 
communication to the expressiveness of microvariations in music (Handel 1995). 
But how do sound waves convey identifiable properties of the sound source, of the 
sound-generating event, and even of the objects with which the sound wave inter-
acted? What aspects of the audio representation of the sound wave, commonly 
called the waveform, carry information about the size or material of the source, the 
type of excitation (e.g., knocking or rubbing) that generated it, or its perceived tim-
bre? What is the acoustic basis of perceived dissimilarities, such as those between 
different instruments, different registers of the same instrument, and different play-
ers playing the same instrument? This chapter examines how differences in timbre 
manifest themselves in the audio signal and how such information can be extracted 
computationally from different signal representations in the form of audio descrip-
tors to acoustically characterize timbre in music, speech, and environmental sounds.

Today timbre is understood from two perceptual viewpoints: as a sensory quality 
and as a contributor to source identity (Siedenburg and McAdams 2017). In the 
former, two sounds can be declared qualitatively dissimilar without bearing source- 
cause associations. In the latter, timbre is seen as the primary perceptual vehicle for 
the recognition and tracking over time of the identity of a sound source. Both 
approaches consider timbre as a very complex set of perceptual attributes that are 
not accounted for by pitch, loudness, duration, spatial position, and spatial charac-
teristics such as room reverberation (Siedenburg, Saitis, and McAdams, Chap. 1). 
When timbre is viewed as qualia, its attributes underpin dissimilarity (McAdams, 
Chap. 2) and semantic ratings (Saitis and Weinzierl, Chap. 5). In the timbre-as- 
identity scenario, they facilitate sound source recognition (Agus, Suied, and 
Pressnitzer, Chap. 3). Further adding to its complex nature, timbre functions on 
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different scales of detail (Siedenburg and McAdams 2017) in the sense that one 
sound-producing object can yield multiple distinct timbres (Barthet et al. 2010), and 
timbres from sound-producing objects of the same type but different “make” may 
differ substantially enough to affect quality judgements (Saitis et al. 2012). How 
informative is a given audio descriptor when examining different scales of timbre? 
What is the acoustic difference between a note played pianissimo and the same note 
played fortissimo or notes played in different registers on the same instrument?

Some of the most successful attempts to establish relationships between audio 
descriptors and perceptual aspects of timbre have resulted from multidimensional 
scaling (MDS) of pairwise dissimilarity ratings between musical instrument sounds 
(Grey and Gordon 1978; McAdams et al. 1995). Descriptors calculated from tem-
poral and spectrotemporal representations of the audio signal are typically corre-
lated with the dimensions of MDS timbre spaces to capture the acoustic cues 
underpinning the mental representation of timbre (McAdams, Chap. 2). Beyond 
psychoacoustics and music psychology, extracting quantitative descriptors poten-
tially related to timbre from audio signals is an important part of the music informa-
tion retrieval (MIR) discipline (Casey et al. 2008; Levy and Sandler 2009). The MIR 
task most relevant to timbre per se is musical instrument classification, which relies 
on an ensemble of descriptors associated with both the excitation-filter model and 
time-frequency representations to classify musical instrument sounds. However, the 
way audio descriptors are approached by MIR diverges from psychology due to dif-
ferences in epistemic traditions and scientific goals between the two disciplines 
(Siedenburg et al. 2016a), a point discussed further in Sect. 11.4.1.

In MIR, descriptors are more commonly referred to as features. In psychology, 
features are discrete whereas dimensions are continuous (Peeters et al. 2011). In 
multimedia, features are perceptual by nature and descriptors are representations of 
features with specific instantiations (i.e., values) associated with data (Nack and 
Lindsay 1999). Pitch, for instance, is a feature of periodic sounds; fundamental 
frequency f0 is a possible descriptor of pitch and f0 = 440 Hz is the corresponding 
descriptor value. In MIR, features are extracted from the audio independently of the 
intrinsic nature of the information they represent (Casey et al. 2008). As such, a 
chord, the melody, and even the spectral envelope can be a feature. Following 
Peeters et al. (2011), the term descriptor is adopted here to disambiguate the con-
cept of extracting information from the audio signal to describe its content.

Key questions that arise in working with audio descriptors of timbre include the 
following:

• What audio descriptors are appropriate for different tasks?
• What is the relation between the information captured by the descriptor and its 

usefulness?
• What is the relation between audio descriptors and perceptual, semantic, and 

cognitive aspects of timbre?
• What temporal information is important for timbre and how should it be repre-

sented with descriptors?
• How do we deal with timbral dimensions that covary with other perceptual 

dimensions?
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Attempting to provide some answers to these questions, this chapter lays out a 
pathway into audio descriptor design and application. Section 11.2 presents basic 
audio representations that serve as a starting point for the extraction of audio 
descriptors presented in Sect. 11.3. Subsequently, Sect. 11.4 explores important 
applications of audio descriptors in the domain of timbre psychoacoustics, sound 
meta-description, musical orchestration, and sound morphing. Section 11.5 closes 
with a discussion of deep learning in automatic audio description and promising 
avenues for future research.

11.2  Representations of Audio Signals

This section introduces basic mathematical representations of audio from which 
audio descriptors can be extracted, which is not intended as a thorough explanation 
with a full mathematical treatment but rather as a general intuitive overview of the 
main concepts involved. The waveform (see Figs. 11.1–11.3) represents the pattern 
of pressure oscillations of a sound wave. Positive amplitude corresponds to com-
pression and negative amplitude represents rarefaction. In digital audio, the discrete 
representation of sound waves is obtained by sampling continuous waveforms. 
Specifically, a discrete waveform is the result of sampling its analog counterpart at 
regular time intervals. The waveform contains all of the information carried by the 
sound wave it represents, but the waveform itself is seldom useful as a representa-
tion from which to extract perceptually meaningful information about timbral attri-
butes or to categorize the sound source.

Figures 11.1–11.3 illustrate a typical sequence of steps taken to transform a 
waveform into a representation suitable for audio content description. The wave-
form is first windowed into time frames and the spectrum of each frame is obtained 
with the discrete Fourier transform (DFT). Descriptors are then computed globally 
or for each time frame. Details of the different steps are discussed below and in Sect. 
11.3. To hear the sounds used in Figs. 11.1–11.3, go to the sound files “music.mp3”, 
“speech.mp3”, and “water.mp3”.

11.2.1  Short-Time Fourier Transform and Spectrogram

The DFT is the standard method to obtain a representation of the frequency decom-
position of the waveform called the frequency spectrum (Jaffe 1987a, b). The dis-
crete frequencies of the DFT are linearly spaced, which means that adjacent 
frequency samples are separated by a constant interval called a frequency bin.

The short-time Fourier transform (STFT) analyzes a signal in terms of time and 
frequency by viewing it through successive overlapping windows, as depicted in 
Figs. 11.1–11.3, and then taking the DFT of each windowed frame (Portnoff 1980). 
The effect of the window is to concentrate the information in a short temporal frame. 
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Fig. 11.1 Illustration of the sequence of steps to extract audio content descriptors from music. The 
music excerpt comprises four isolated notes (B3, G3, A4, and D4) of the monophonic trumpet track 
from a multitrack recording of Beethoven’s Symphony No. 5. To hear the sounds, go to the sound 
file “music.mp3”. The arrows indicate the connections between the panels. The extraction of 
descriptors from time-frequency representations is illustrated going counter-clockwise from the 
panel labeled waveform and the extraction of descriptors from the excitation-filter model is illus-
trated going clockwise from the panel labeled time frame.  Abbreviations: Aq, amplitude of qth 
partial; CC, cepstral coefficients; DFT, discrete Fourier transform; fq, frequency of qth partial; LP, 
linear prediction; STFT, short-time Fourier transform
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Fig. 11.2 Illustration of the sequence of steps to extract audio content descriptors from speech. 
The speech utterance consists of a 59-year-old white female speaker (U.S. southern accent) saying 
/why charge money for such garbage/, sound file “speech.mp3”. The extraction of descriptors from 
time-frequency representations is illustrated going counter-clockwise from the panel labeled wave-
form and the extraction of descriptors from the excitation-filter model is illustrated going clockwise 
from the panel labelled time frame. Abbreviations: Aq, amplitude of qth partial; CC, cepstral coef-
ficients; DFT, discrete Fourier transform; fq, frequency of qth partial; LP, linear prediction; STFT, 
short-time Fourier transform
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Fig. 11.3 Illustration of the sequence of steps to extract audio content descriptors from environ-
mental sounds. The sample sound is running water, sound file “water.mp3”. The extraction of 
descriptors from time-frequency representations is illustrated going counter-clockwise from the 
panel labeled waveform and the extraction of descriptors from the excitation-filter model is illus-
trated going clockwise from the panel labelled time frame. Abbreviations: Aq, amplitude of qth 
partial; CC, cepstral coefficients; DFT, discrete Fourier transform; fq, frequency of qth partial; LP, 
linear prediction; STFT, short-time Fourier transform
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Figs. 11.1–11.3 show the spectrogram, a visualization of the STFT in which the 
magnitude spectrum of each DFT is plotted against time, while amplitude informa-
tion (in dB) is mapped to color intensity. The STFT has become the de facto analysis 
tool for various speech and music processing tasks. However, the STFT has 
 notorious limitations for spectral analysis, mainly due to the constant length of the 
window.

The STFT is inherently limited by the Fourier uncertainty principle, a mathe-
matical relation stating that a function and its Fourier transform cannot both be 
sharply localized (Jaffe 1987b). For audio processing, this implies that there is a 
fundamental tradeoff between time and frequency information. The constant length 
of the window in the STFT results in fixed temporal and spectral resolutions. 
Intuitively, frequency is a measure of the number of periods (or cycles) per unit 
time. Longer windows span more periods, which increases the accuracy in fre-
quency estimation while simultaneously decreasing the temporal localization of the 
measurement. Therefore, time-frequency uncertainty is at the core of Fourier analy-
sis and only a priori knowledge about the analyzed signal type and about the spec-
tral properties of the window used (Harris 1978) can help choose the most 
appropriate spectral analysis tools for a specific application.

11.2.2  Constant Q Transform

The STFT can be interpreted as a filter bank with constant bandwidth and linear 
separation of the center frequency of each filter (Portnoff 1980; Dolson 1986). The 
constant bandwidth of each filter is a direct consequence of the fixed window length, 
whereas the linear separation of their center frequencies is due to the constant fre-
quency bins of the DFT. However, the frequency intervals of Western musical scales 
are geometrically spaced (Brown 1991), so the frequency bins of the STFT do not 
coincide with the musical notes of Western musical scales. Additionally, the con-
stant bandwidth of the STFT imposes a tradeoff in time-frequency resolution, where 
a window length naturally results in better spectral resolution for higher frequencies 
at the cost of poorer temporal resolution. In practice, each octave would require a 
different window length to guarantee that two adjacent notes in the musical scale 
that are played simultaneously can be resolved. The constant Q transform exploits 
a nonlinear frequency separation with an adaptive window length to yield a more 
compact representation of Western musical scales (Brown 1991). The quality factor 
of a resonator, denoted Q, is defined as the resonance frequency divided by the 
bandwidth of the resonator. The resonance frequency is the frequency at which the 
peak gain occurs, whereas the bandwidth is the frequency range around the reso-
nance frequency where the gain is above a predefined threshold. The higher the Q, 
the narrower and sharper the peak is.

The constant Q transform can be calculated similarly to the DFT with geometri-
cally spaced frequency bins and frames with lengths that depend on the analysis 
frequency. For musical applications, the frequency separation can be based on the 
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musical scale with the semitone spacing of the equal tempered scale. A constant Q 
in the frequency domain corresponds to a frame length that is inversely proportional 
to frequency because the constant Q transform is designed to span the same number 
of periods inside each time frame. Thus, the constant Q transform is equivalent to a 
filter bank with adaptive bandwidths and nonlinear center frequencies in which the 
center frequencies can be aligned with the musical scale and the bandwidths are 
proportional to the center frequencies to yield a similar spectral resolution across all 
octaves.

Despite being useful for the spectral analysis of Western music, the original con-
stant Q transform algorithm (Brown 1991; Brown and Puckette 1992) remained less 
popular than the STFT for two main reasons. Firstly, the constant Q transform was 
computationally inefficient compared to the fast Fourier transform (FFT) com-
monly used to calculate the STFT.  Secondly, the original constant Q transform 
(Brown and Puckette 1992) was not invertible—it allowed sound analysis but not 
resynthesis. Recently, however, an efficient real-time implementation of a fully 
invertible constant Q transform was made possible using the concept of Gabor 
frames (Holighaus et al. 2013).

11.2.3  Auditory Filter Banks

The concepts of auditory filter banks and critical bands of human hearing are closely 
related to spectrum analysis over nonlinear frequency scales. Auditory filter banks 
model the acoustic response of the human ear with a bank of nonuniform bandpass 
filters whose bandwidths increase as the center frequency increases (Lyon 2017). 
Critical bands correspond to equal distances along the basilar membrane and repre-
sent the frequency bands into which the acoustic signal is split by the cochlea. 
Zwicker (1961) proposed the Bark scale to estimate the value of the first 24 critical 
bands as a function of center frequency based on empirical measurements using 
two-tone masking of narrowband noise. The Bark scale is approximately linear for 
frequencies below about 500  Hz and close to logarithmic at higher frequencies. 
Later, Glasberg and Moore (1990) suggested the equivalent rectangular bandwidth 
(ERB) scale for critical band estimation based on measurements using notched- 
noise masking. The ERB of a given auditory filter is defined as the bandwidth of a 
rectangular filter with similar height (peak gain) and area (total power) as the criti-
cal band it models. The ERB values are similar to those obtained by the Bark scale 
for center frequencies above 500 Hz, but they are markedly narrower at lower fre-
quencies and thus more consistent with critical bandwidths measured with the more 
precise notched-noise method.

Gammatone filters are a popular choice to model the shape and frequency 
response of auditory filters because of their well-defined impulse response. A gam-
matone is a simple linear filter defined in the time domain as a waveform with an 
amplitude envelope having the shape of a gamma distribution. Patterson et al. (1992) 
showed that certain gammatone shapes provide a nearly perfect approximation to 
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the measured human auditory filter shapes. A more precise approximation is 
obtained by gammachirp filters, in which the sinusoid is replaced by a monotoni-
cally frequency-modulated signal (i.e., a chirp) (Irino and Patterson 1997). 
Compared to the STFT, ERB-spaced gammatone filter banks offer a physiologically 
more accurate representation of the audio signal from which to extract spectral 
descriptors (Peeters et al. 2011; Siedenburg et al. 2016b). Nevertheless, the use of 
auditory filter banks in acoustic analysis for timbre remains less widespread than 
the STFT or cepstrum-based techniques, which are more straightforward to imple-
ment and are perfectly invertible.

11.2.4  Sinusoidal Modeling

Sinusoidal models (McAulay and Quatieri 1986) are a convenient representation of 
sounds that feature periodicity, such as musical instrument sounds and speech (see 
Figs. 11.1, 11.2) under the assumption that the sinusoids capture locally periodic 
oscillations in the waveform. In essence, sinusoidal models represent spectral peaks 
with sinusoids because the DFT of a sinusoid appears as a peak in the magnitude 
spectrum (Jaffe 1987b). The time frame panels show that musical instruments 
(Fig.  11.1) and speech (Fig.  11.2) feature relatively stable periodic oscillations 
(locally), whereas environmental sounds rarely do (Fig. 11.3). The amplitude and 
frequency of each spectral peak (see the magnitude spectrum panels in Figs. 11.1–
11.3) are estimated for each frame (McAulay and Quatieri 1986). The partials are 
called harmonics when their frequencies are integer multiples of a fundamental fre-
quency. The sum of all time-varying amplitudes of the partials gives the temporal 
envelope of the sound (see Fig. 11.4).

11.2.5  Temporal Envelope

The temporal amplitude envelope follows fluctuations of the amplitude of a signal. 
Mathematically, it is possible to express a signal as a combination of a slowly vary-
ing envelope and a rapidly varying carrier signal. The temporal envelope and time- 
varying phase of this representation of the signal are useful in audio descriptor 
extraction because they model amplitude and phase modulations, respectively 
(Elhilali, Chap. 12). Tremolo and vibrato are also intrinsically related to these 
parameters. For example, Regnier and Peeters (2009) proposed to use vibrato to 
automatically detect a singing voice in polyphonic music.

The Hilbert transform and the closely related analytic signal are useful tools to 
estimate the temporal envelope without prior sinusoidal modeling (Peeters et  al. 
2011). A fundamental property of the DFT is behind the connection between the 
original signal and the analytic signal derived from it. The DFT of a real signal is 
complex and its magnitude spectrum is symmetric around the frequency axis, as 
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shown in Fig. 11.4a. Mathematically, the property of symmetry means that the mag-
nitude spectrum has a negative frequency component that has no physical interpre-
tation. However, removing the negative frequencies and breaking the symmetry (see 
Fig. 11.4b) results in a spectrum that does not correspond to the original real signal 
anymore. In fact, the inverse DFT of the spectrum shown in Fig. 11.4b is a complex 
signal called the analytic signal, whose real part is the original signal and whose 
imaginary part is the Hilbert transform of the original signal. The temporal ampli-
tude envelope can be calculated as the low-pass filtered magnitude of the analytic 
signal (Caetano et al. 2010; Peeters et al. 2011). Fig. 11.4c shows one of the trumpet 
notes seen in Fig. 11.1 with the temporal envelope calculated with the Hilbert trans-
form. The Hilbert transform figures among the most widely used methods to esti-
mate the temporal envelope, but it is hardly the only one (Caetano et al. 2010).

11.2.6  Excitation-Filter Model and Convolution

The excitation-filter model, also called the source-filter model (Slawson 1985; 
Handel 1995), offers a simple yet compelling account of sound production whereby 
a driving force, the excitation, causes a physical object, the filter, to vibrate. Here 

a) b)

c)

Fig. 11.4 Illustration of the analytic signal method to estimate the temporal amplitude envelope: 
(a) the magnitude spectrum of one of the trumpet notes from Fig. 11.1; (b) the magnitude spectrum 
of the analytic signal associated with (a); (c) the original waveform and the corresponding tempo-
ral envelope
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the term excitation is preferred over source to avoid potential confusion with the 
source of a sound, such as a musical instrument or a person. The physical properties 
of the vibrating object cause it to respond differently to different frequencies present 
in the excitation. Consequently, the vibrating object acts as a filter on the excitation, 
attenuating certain frequencies while emphasizing others. For example, a knock on 
a door is a short abrupt driving force that causes the door to vibrate. The sound from 
a wooden door is different from the sound from one with similar dimensions made 
of glass or metal due to their different material properties. Bowing the strings of a 
violin will cause its body to vibrate; the shape, size, and material of the violin body 
are responsible for the unique sonority of the instrument. Similarly, air through the 
lungs causes the vocal folds to vibrate, and the vocal tract shapes these vibrations 
into the unique timbre of a person’s voice.

The interaction between the properties of the excitation and those of the vibrating 
object can be interpreted as filtering, which is mathematically expressed as a convo-
lution. The Fourier transform is the key to understanding why convolution is math-
ematically equivalent to filtering because convolution in the time domain becomes 
multiplication in the frequency domain (Jaffe 1987b). This property of convolution 
is extremely useful for the analysis of sounds and the extraction of audio content 
descriptors of timbre in light of the excitation-filter model. In particular, the filter 
component (or transfer function) models how the physical properties of the vibrat-
ing object respond to the excitation in the frequency domain. The contributions of 
the excitation and filter can theoretically be isolated in the frequency domain and 
inverted, bringing the frequency spectrum back to the time domain. In the time 
domain, the transfer function is called the impulse response and is essentially a 
model of the physical properties of the vibrating object. Consequently, the impulse 
response carries information intrinsically related to timbre perception that can be 
used to extract audio descriptors of timbre. Section 11.3.3 explores some of the most 
widely used audio descriptors of timbre based on the excitation-filter model.

11.3  Extraction of Timbre Descriptors

The raw information provided by audio signal representations such as the STFT and 
the excitation-filter model is usually not specific enough to describe salient aspects 
of timbre. Therefore, a plethora of techniques for extracting timbre-relevant descrip-
tors from these representations has been proposed in the field of audio content anal-
ysis. Some audio descriptors are extracted from generic time-frequency 
representations and are later found to capture aspects of timbre perception, whereas 
others are based on the excitation-filter model and commonly describe physical 
properties of the sound source. In general, audio descriptors can represent global or 
local aspects of sounds. Global descriptors only have one value for the entire dura-
tion of a sound, whereas local descriptors are commonly calculated for every frame 
(see Figs. 11.1–11.3) and result in a time series.

Additionally, descriptors can be categorized as temporal, spectral, or spectrotem-
poral (Peeters et  al. 2011). Temporal descriptors exclusively capture temporal 
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aspects of sounds and are generally global. Some are computed directly from the 
waveform, but most are typically extracted from the temporal energy envelope 
(Sect. 11.2.5). Spectral descriptors capture local features of the frequency content 
regardless of the surrounding frames. Spectral descriptors also have an alternative 
harmonic version calculated from the sinusoidal model. Finally, spectrotemporal 
descriptors capture spectral changes relative to the previous or next frames. Thus, 
spectrotemporal descriptors attempt to incorporate time as relative local spectral 
changes throughout the duration of a sound.

Section 11.3.1 addresses temporal descriptors and Sect. 11.3.2 covers descriptors 
extracted from time-frequency representations. Section 11.3.3 focuses on descrip-
tors based on the excitation-filter model, Sect. 11.3.4 explores the temporal dynam-
ics of the time series of descriptors, and Sect. 11.3.5 discusses information 
redundancy among descriptors.

11.3.1  Temporal Descriptors

The zero-crossing rate is a measure of how many times the waveform changes sign 
(i.e., crosses the zero axis). In general, periodic sounds have a smaller zero-crossing 
rate than noisier sounds, so the zero-crossing rate can be used in voice activity 
detection, voiced-unvoiced decisions for speech, and even in the classification of 
percussive sounds (Peeters et al. 2011), although there is no straightforward percep-
tual interpretation of the zero-crossing rate (Siedenburg et al. 2016a).

The temporal envelope is used to extract temporal descriptors such as tremolo 
(Peeters et al. 2011), the temporal centroid, and attack time. The temporal centroid 
is the temporal counterpart of the spectral centroid (see Sect. 11.4.2). Percussive 
sounds have a lower temporal centroid than sustained sounds. McAdams et  al. 
(2017) found that a lower (i.e., earlier) temporal centroid correlated strongly with 
the valence of musical affect carried by the timbre of musical instrument sounds.

The attack time is the time between the onset of a sound and its more stable part. 
In musical instruments, for example, the attack time accounts for the time the par-
tials take to stabilize into nearly periodic oscillations. Percussive musical instru-
ments, such as the xylophone, feature short attack times with sharp onsets, whereas 
sustained instruments, such as the tuba, feature longer attack times. The attack time 
of a waveform can be estimated with models such as the weakest  effort method 
(Peeters et  al. 2011) or the amplitude/centroid trajectory model (Hajda 2007; 
Caetano et al. 2010). The weakest effort method uses signal-adaptive energy thresh-
olds instead of fixed energy levels to estimate the beginning and end of the attack 
from the temporal envelope. The amplitude/centroid trajectory model uses spectro-
temporal information from both the temporal envelope and the temporal evolution 
of the spectral centroid to segment musical instrument sounds. Section 11.3.3 will 
delve deeper into the amplitude/centroid trajectory model and the timbre descriptors 
used therein. The attack time consistently arises as one of the most salient dimen-
sions in timbre spaces from MDS studies (Grey 1977; Siedenburg et  al. 2016a). 
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McAdams et  al. (1995) found the logarithm of the attack time among the most 
salient dimensions of perceptual dissimilarity.

Other common temporal descriptors (Peeters et al. 2011) include the slopes of 
the energy envelope during the attack and decrease segments, the effective duration, 
and the temporal modulation of energy over time (i.e., tremolo). Energy modulation 
is calculated either from the temporal evolution of the amplitudes of isolated par-
tials across frames or from the temporal envelope.

11.3.2  Time-Frequency Representations and Audio Descriptors

11.3.2.1  Spectral Descriptors

Spectral descriptors are typically calculated for each frame of a time-frequency rep-
resentation such as the STFT (see Figs. 11.1–11.3). Descriptors of spectral shape 
characterize the overall spectral distribution of sounds and are calculated as if the 
STFT magnitude spectrum were a probability distribution. Peeters et  al. (2011) 
remarked that spectral descriptors can use different spectral scales such as magni-
tude, power, or log.

The spectral shape descriptors, calculated similarly to the standardized moments 
of the frequency spectrum, are the spectral centroid, spectral spread, spectral skew-
ness, and spectral kurtosis. The spectral centroid is the amplitude-weighted mean 
frequency. It is measured in Hertz (Hz) and is analogous to the center of mass, so it 
can be interpreted as the center of balance of spectral energy distribution or the 
frequency that divides the spectrum into two regions with equal energy. The spectral 
centroid often appears among the most salient dimensions of timbre spaces (see 
McAdams, Chap. 2), and it is interpreted as capturing the “brightness” of a sound 
(Grey and Gordon 1978; McAdams et al. 1995). Sounds described as bright, such as 
a brassy trombone note, have higher spectral centroids because they feature more 
spectral energy in high frequency regions (see Sect. 11.4.1). The spectral spread 
measures the spread of spectral energy around the spectral centroid. It is related to 
the bandwidth of a filter, so a brighter sound will have a higher spectral spread than 
a duller sound. Spectral skewness is a measure of asymmetry of spectral energy 
around the spectral centroid. Negative values indicate more spectral energy concen-
trated at frequencies lower than the spectral centroid, positive values indicate more 
energy at higher frequencies than the centroid, and zero indicates energy symmetry 
around the centroid. Finally, spectral kurtosis is a measure of the flatness of the 
spectral distribution of energy compared to a normal distribution. A negative value 
of spectral kurtosis indicates a distribution of spectral energy flatter than the normal 
distribution, whereas a positive value indicates the opposite.

Spectral flux or spectral variation (Casey et al. 2008; Peeters et al. 2011) is con-
sidered a spectrotemporal descriptor because it captures local spectral change over 
time. Essentially, it measures the spectral difference of the current frame relative to 
the previous frame. Compared to attack time and spectral centroid, the correlation 
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of spectral flux with listener ratings of timbre similarity has been less consistent. 
While in some studies the third dimension of the MDS timbre space does correlate 
moderately well with the time-varying spectral flux (McAdams et al. 1995), in oth-
ers it correlates better with static descriptors of spectral deviation (deviation of 
partial amplitudes from a global, smoothed spectral envelope; Krimphoff et  al. 
1994) or spectral irregularity (attenuation of even harmonics; Caclin et al. 2005).

Several other spectral descriptors appear in the literature (Peeters et al. 2011), 
many of which capture similar properties of the spectrum. However, there is little 
consensus about their usefulness or even their relationship with timbre (see Sect. 
11.4.1).

11.3.2.2  Harmonic Content

Most spectral descriptors also have a harmonic version calculated by simply replac-
ing the spectral magnitude with the amplitudes of the sinusoidal model (see the 
magnitude spectrum panels in Figs.  11.1–11.3), such as the harmonic energy 
(Peeters et al. 2011). However, some descriptors capture information specifically 
related to the oscillatory modes of the signal, commonly called partials. Figs. 11.1–
11.3 highlight the differences in both time and frequency domains for sounds of 
musical instruments, speech, and environmental sounds (represented by running 
water in Fig. 11.3). The time frame panels reveal that both musical instruments and 
speech feature relatively stable oscillations in some regions (except where changes, 
such as note transitions, are happening), whereas the running water sound is noisy. 
Oscillations in the time domain appear as spectral peaks in the frequency domain. 
The magnitude spectrum of the musical instrument shows prominent spectral peaks 
across the entire frequency range of 0–4 kHz. For speech, the spectral peaks are less 
prominent beyond approximately 2.2 kHz. Finally, the magnitude spectrum for the 
water sound shows a relatively flat distribution of spectral energy typical of noise.

A fundamental result from Fourier analysis (Jaffe 1987a) reveals that the spectrum 
of a perfectly periodic waveform is perfectly harmonic. However, neither speech nor 
musical instrument sounds are perfectly periodic. Consequently, neither type has a 
spectrum that features perfectly harmonic spectral peaks. This can be quantified with 
the descriptor inharmonicity, based on the sinusoidal model (see Sect. 11.2.4). 
Inharmonicity measures the deviation of the frequencies of the partials from pure 
harmonics, calculated as the normalized sum of the differences weighted by the 
amplitudes (Peeters et al. 2011). Sustained musical instruments, such as those from 
the woodwind (e.g., flute, clarinet, bassoon, and oboe), brass (e.g., trumpet, trom-
bone, and tuba), and string (e.g., violin, viola, and cello) families, produce sounds 
whose spectra are nearly harmonic (Fletcher 1999). Percussion instruments (e.g., 
cymbals and timpani) are considered inharmonic, whereas others (e.g., bells or the 
piano) feature different degrees of inharmonicity (Fletcher 1999; Rigaud & David 
2013). The spectrum of the piano, for example, has partials whose inharmonicity is 
proportional to the partial number. So, the higher the frequency, the greater is the 
deviation from the harmonic series (Rigaud & David 2013). This characteristic inhar-
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monicity is an essential property of the timbre of the piano. Features that are specific 
to certain musical instruments, commonly called specificities, are directly related to 
timbre perceptions of these instruments. For instance, the timbre of clarinet sounds, 
described as “hollow” (McAdams et al. 1995), can be linked to spectral energy pre-
dominantly concentrated around odd harmonics. The odd-to- even harmonic energy 
ratio (Peeters et al. 2011) is a descriptor that quantifies this particular specificity.

Pollard and Jansson (1982) proposed a three-dimensional representation of tim-
bre dubbed tristimulus. Each dimension of the tristimulus representation contains 
the loudness of a group of partials (i.e., how much energy each group contributes to 
the overall spectrum). The first dimension has the fundamental frequency, the sec-
ond dimension includes partials two to four, and the third dimension contains the 
rest of the partials from the fifth to the highest. Pollard and Jansson (1982) used the 
tristimulus method to represent the temporal evolution of musical instrument sounds 
and revealed variations in timbre with time, especially between the attack transients 
and the steady state with its more stable oscillatory behavior. Section 11.3.4 will 
explore further the temporal evolution of descriptors and timbre.

11.3.3  The Excitation-Filter Model and Audio Descriptors

There are several descriptors of timbre based on the excitation-filter model of sound 
production (introduced in Sect. 11.2.6). These descriptors typically capture infor-
mation related to the filter component of the model, which is responsible for the 
relative distribution of spectral energy. Perceptually, the relative energy of spectral 
components is directly related to timbre and is sometimes called sound color 
(Slawson 1985). When associated with the excitation-filter model, the spectral enve-
lope (see the spectral envelope panels in Figs.  11.1–11.3) is commonly used to 
represent the filter component.

Descriptors of timbre based on the excitation-filter model commonly use the 
magnitude spectrum and discard the phase, autocorrelation coefficients being the 
quintessential example. Autocorrelation is a measure of self-similarity, whereby a 
signal is compared with its own past and future values. The autocorrelation and 
convolution operations share similarities that become more evident with the DFT 
(Jaffe 1987b). The autocorrelation coefficients are the time domain representation 
of the power spectral density (Jaffe 1987b; Brown et al. 2001), so they are related to 
the filter component. The relationship between autocorrelation coefficients and 
power spectral density is exploited further by linear prediction (Makhoul 1975).

11.3.3.1  Linear Prediction Coefficients

Linear prediction (Makhoul 1975) assumes that a signal can be described as a 
weighted linear combination of past values plus an external influence. The external 
influence accounts for the force exciting the vibrating object that generated the sig-
nal, whereas the vibrating object itself is not explicitly modeled. When the external 
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influence is unknown, the signal can only be approximated by its past values. The 
model parameters can be estimated by minimizing the mean squared error. The 
solution yields the set of linear prediction coefficients (LPC) that best predict the 
next value of the signal given a specific number of preceding values in the least 
squared error sense, which is mathematically equivalent to using the autocorrela-
tions to estimate the LPC (Makhoul 1975).

The LPC are commonly represented in the frequency domain with the 
Z-transform, which encodes essentially the same information as the Fourier trans-
form (Jaffe 1987b) but  in a more general framework. Similarly to the DFT, the 
Z-transform can also be interpreted as the frequency domain representation of the 
signal. The Z-transform of the linear prediction model explicitly reveals the fre-
quency response of the vibrating object under the force that resulted in the sound 
spectrum. This frequency response is the filter component, commonly called the 
transfer function, and it fully characterizes the model of sound production under 
certain assumptions (Makhoul 1975).

Immediate physical and physiological interpretations for musical  instrument 
sounds and speech can be derived from the LPC. For example, the LPC can be inter-
preted as a model of the resonances of the vocal tract in speech production (Makhoul 
1975) because they encode the poles of the filter that approximates the original 
power spectral density. Linear prediction is commonly used to approximate the 
power spectrum with the spectral envelope (see the LP curve in the spectral enve-
lope panels in Figs. 11.1–11.3), defined as a smooth curve that approximately con-
nects the spectral peaks (Burred et al. 2010).

11.3.3.2  The Cepstrum

The cepstrum (Bogert et al. 1963; Childers et al. 1977) is intimately connected with 
the excitation-filter model because it was originally developed as a deconvolution 
method (Bogert et al. 1963). The excitation-filter model postulates that a waveform 
can be described mathematically as the convolution between the filter and the exci-
tation. Deconvolution allows recovery of either the filter or the excitation from the 
waveform. In the frequency domain, convolution becomes multiplication (see Sect. 
11.2.6) and deconvolution becomes inverting the result of the multiplication. 
Division is the simplest method when the DFT of either the excitation or the filter is 
available, allowing recovery of the other. However, in most practical applications, 
only the waveform resulting from the convolution between the excitation and the 
filter is available. In this case, the logarithm can be used to transform the multiplica-
tion operation into addition. If the terms of the resulting addition do not overlap in 
frequency, it is possible to isolate either one from the other by filtering. The ceps-
trum is the formalization of this deconvolution operation (Childers et  al. 1977), 
which has found several applications in audio research, such as fundamental fre-
quency estimation (Childers et al. 1977), spectral envelope estimation (Burred et al. 
2010), wavelet recovery (Bogert et al. 1963), and musical instrument classification 
(Brown 1999; Herrera-Boyer et  al. 2003). The spectral envelope panels in 
Figs. 11.1–11.3 show its estimation with the cepstrum (identified as CC).
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The real cepstrum can be defined as the inverse DFT of the logarithm of the 
magnitude of the DFT of the waveform. Fig.  11.5 illustrates the steps to obtain 
cepstral coefficients from a waveform (labeled input signal). The cepstral coeffi-
cients contain frequency information about the log magnitude spectrum similarly to 
how the LPC encode the resonances of a transfer function. In practice, these coef-
ficients encode information about periodicity of the log magnitude spectrum at 
increasing cepstral frequencies, which were originally called “quefrencies” (Bogert 
et al. 1963), because they carry frequency information in time domain units. This 
unfamiliar symmetry was reflected in language by rearranging syllables of familiar 
terms from Fourier analysis. Particularly, “cepstrum” derives from spectrum and is 
pronounced kepstrum.

11.3.3.3  Mel-Frequency Cepstral Coefficients

Conceptually, the cepstral coefficients are closely related to the filter component of 
the excitation-filter model and of the ubiquitous mel-frequency cepstral coefficients 
(MFCC; mel is short for melody). Davies and Mermelstein (1980) introduced 
MFCC in the context of speech research. The MFCC can be viewed as a perceptu-
ally inspired variation of cepstral coefficients calculated as illustrated in Fig. 11.5. 
The MFCC filter bank uses triangular filters centered at frequencies given by the 
mel scale with a bandwidth proportional to the center frequency.

The perception of pitch allows listeners to order sounds on a scale from low to 
high along the same psychological dimension of melody (Hartmann 1996). A sound 
has a certain pitch if it can be reliably matched by adjusting the frequency of a sine 
wave of arbitrary amplitude (Hartmann 1996). The mel scale was derived by asking 
listeners to set the frequency of a test sine wave to obtain a pitch that was a fraction 
of the pitch of a reference sine wave across the entire audible frequency range 
(approximately between 20 Hz and 20 kHz). It is linear up to 1 kHz and logarithmic 
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Fig. 11.5 Illustration of the sequence of steps to calculate cepstral coefficients with the real ceps-
trum (a) and mel-frequency cepstral coefficients (MFCC) (b) from the waveform. Abbreviations: 
abs(), absolute value; DCT, discrete cosine transform; DFT, discrete Fourier transform; IDFT, 
inverse discrete Fourier transform; log(), logarithm function; MFCC, mel-frequency cepstral 
coefficients
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above 1 kHz. Stevens et al. (1937) concluded that the mel scale captures the concept 
of pitch height (i.e., higher or lower pitches) as opposed to pitch chroma (i.e., the 
octave-independent musical notes). The MFCC use the discrete cosine transform 
(commonly used in MPEG audio and image compression) instead of the DFT or the 
Z-transform commonly used for cepstral coefficients. Thus, MFCC are considered 
a particularly compact representation of the filter due to the compression properties 
of the discrete cosine transform, which results in most of the spectral shape being 
captured typically by the first thirteen coefficients.

The MFCC are ubiquitous not only in speech for tasks such as speaker recogni-
tion (On et al. 2006; Martínez et al. 2012) but also in MIR tasks such as musical 
instrument classification (Deng et al. 2008). Some results suggest that MFCC can 
also explain timbre. For example, Terasawa et al. (2005) compared MFCC, LPC, 
and tristimulus (see Sect. 11.3.2.2) representations to explain the pairwise percep-
tual dissimilarity ratings of sounds created with frequency-modulation synthesis. 
They found that the Euclidean distances between MFCC accounted for 66% of the 
variance and concluded that thirteen MFCC can be used as a model of timbre spaces. 
Horner et al. (2011) compared different error metrics to predict the discrimination 
performance of listeners for sounds synthesized with fixed fundamental frequency 
and variable spectral envelope. They found that the first twelve MFCC were suffi-
cient to account for around 85% of the variance of data from human listeners.

11.3.4  Temporal Dynamics of Audio Descriptors

Many descriptors are calculated for every frame of time-frequency representations, 
such as the STFT, giving rise to a time series of descriptor values that characterizes 
the temporal evolution of each descriptor. The descriptor evolution panels in 
Figs. 11.1–11.3 show the temporal evolution of the spectral centroid and spectral 
spread, revealing local variations corresponding to changes such as note transitions. 
However, most applications, such as musical instrument classification, require one 
single value of each descriptor that would be representative of the entire sound dura-
tion. Commonly, the time average of each descriptor is used for each sound, result-
ing in a descriptor vector. Descriptors such as the spectral centroid are unidimensional, 
whereas others, such as MFCC, are multidimensional. Therefore, descriptor vectors 
discard all information about the temporal variation of descriptors.

The simplest way to include more information than the time average of the 
descriptors is to use a set of summary statistics such as mean, standard deviation (or 
variance), minimum, and maximum values (Casey et al. 2008). Peeters et al. (2011) 
found that robust summary statistics had a greater impact than the audio representa-
tion on the descriptors. Specifically, the median and the interquartile range captured 
distinct aspects of the signals. McDermott et al. (2013) suggested that environmental 
sounds are recognized by summary statistics alone because the temporal information 
in environmental sounds can be captured by summary statistics. However, the tem-
poral structure inherent to speech and musical sounds requires encoding temporal 
information in different ways.
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The first and second derivatives with respect to time (of the time series of descrip-
tor values) are another popular approach to include temporal information in the 
descriptor vector. It is particularly common to use MFCC and their first and second 
temporal derivatives, called delta and delta-delta coefficients, respectively (De Poli 
and Prandoni 1997; Peeters et al. 2011). However, the delta and delta-delta coeffi-
cients are usually added to the descriptor vector as extra dimensions assumed to be 
independent from the descriptor values. Consequently, the information contained in 
the time series of descriptor values is not fully exploited. For example, Fig. 11.2 
reveals that the spectral centroid of speech varies considerably between periodic 
and noisier segments. Similarly, for musical instruments, the temporal variation of 
descriptors follows musical events such as note transitions. The amplitude/centroid 
trajectory model (Hajda 2007) shown in Fig. 11.6 proposes to use the root-mean- 
squared amplitude envelope in conjunction with the temporal evolution of the spec-
tral centroid to segment sustained sounds from musical instruments into attack, 
transition (so-called decay), sustain, and release portions. Fig.  11.6 shows the 
amplitude-centroid trajectory model used to segment notes from sustained musical 
instruments (Caetano et al. 2010). Segmentation of musical instrument sounds with 
the amplitude-centroid trajectory model yields better results for sustained instru-
ments than percussive ones because sustained instruments fit the model better.

The use of a descriptor vector with the time average of each descriptor in each 
dimension is called the bag of frames approach because it treats the time series of 
descriptors as a global distribution, neglecting both the temporal variation and the 
sequential order of descriptor values (Levy and Sandler 2009; Huq et al. 2010). This 
approach can be successfully used to classify environmental sounds (Aucouturier 

Fig. 11.6 Temporal segmentation of musical instrument sound with the Amplitude/Centroid 
Trajectory (ACT) model. Top panel: the full-wave rectified waveform outlined by the temporal 
amplitude envelope (solid line) and the temporal evolution of the spectral centroid (dashed line). 
The vertical bars mark the segments estimated with the ACT method. See text for an explanation 
of the segments. Bottom panel: the spectrogram of the waveform on the top. (Reproduced from 
Caetano et al. 2010; used with permission)
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et al. 2007) with Gaussian mixture models representing the global distribution of 
MFCC. However, it is inappropriate for polyphonic music (Aucouturier et al. 2007) 
in which the sequence of events contains important information. In music, there is a 
clear hierarchical structure where higher levels of abstraction emerge from lower 
levels. For example, patterns of notes are organized into phrases, and rhythmic 
structure emerges from relative note durations. Aucouturier et al. (2007) speculated 
that the hierarchical structure of polyphonic music carries information on a more 
symbolic level than is captured by descriptors such as MFCC, requiring incorpora-
tion of information such as harmony and melody.

Temporal modeling of descriptors has been successfully applied in instrument 
classification and detection. Models of musical instrument sounds that rely on spec-
trotemporal representations are capable of capturing the dynamic behavior of the 
spectral envelope (Burred and Röbel 2010; Burred et al. 2010). Principal component 
analysis reduces the dimensionality of the model by projecting the time- varying 
parameters of the spectral envelopes onto a lower-dimensional space, such as the 
three-dimensional space shown in Fig. 11.7. The resultant prototypical temporal evo-
lution of the spectral envelopes was modeled as a nonstationary Gaussian process 
and was shown to outperform MFCC for the classification of isolated musical instru-
ments and to allow for instrument recognition in polyphonic timbral mixtures.

Fig. 11.7 Temporal evolution of the spectral envelope of musical instrument sounds. The tempo-
ral trajectory of the spectral envelope of the musical instruments indicated (clarinet, oboe, piano, 
trumpet, and violin) is shown in a three-dimensional representation obtained with principal com-
ponent analysis. (Reproduced from Burred and Röbel 2010; used with permission)
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11.3.5  Information Redundancy of Audio Descriptors

Descriptor vectors stack several descriptors under the assumption that each dimen-
sion is statistically independent from the others. While this assumption might hold 
true for some descriptors, such as MFCC, which are decorrelated by construction 
due to the discrete cosine transform (see Sect. 11.3.2.2), other descriptors are highly 
correlated. Peeters et al. (2011) investigated the correlation structure among descrip-
tors extracted with alternative representations based on an analysis of over 6000 
musical instrument sounds with different pitches, dynamics, articulations, and play-
ing techniques. The authors observed that a change in the audio representation (e.g., 
STFT versus ERB-spaced filterbank versus harmonic content) had relatively little 
effect on the interdescriptor correlation compared to the change in the summary 
statistic computed on the time-varying descriptors, although no prediction of per-
ceptual data was undertaken in that paper.

Several strategies have been proposed to decrease information redundancy in 
descriptor vectors. Among these, the most common ones fall generally into descrip-
tor selection or descriptor decomposition strategies. Descriptor selection involves 
finding the subset of descriptors that is useful to build a good predictor (Huq et al. 
2010) by eliminating descriptors that are either irrelevant or redundant. On the other 
hand, descriptor decomposition techniques apply transformations on the original 
space of descriptors that aim to maximize the information that is relevant for a task 
in the reduced space, such as the variance of the descriptors or the discriminability 
of classes. These transformations commonly involve projection or compression 
techniques, such as principal component analysis for the former and the discrete 
cosine transform for the latter. Descriptor decomposition techniques commonly dis-
tort the original representation in ways that can render interpretation more difficult. 
For example, principal component analysis results in linear combinations of the 
original dimensions that, in practice, render a perceptual interpretation of the results 
that is more arduous because each principal component accounts for more than one 
descriptor. Descriptor selection preserves the original meaning of the variables by 
preserving their original representation, ultimately offering the advantage of inter-
pretability. At the same time, descriptor selection can lead to choices that seem arbi-
trary in that the selected descriptors may vary a great deal from one study to another.

11.4  Applications of Timbre Descriptors

Audio content descriptors find several applications that involve timbre description. 
Examples about the study of timbre psychoacoustics are discussed in Sect. 11.4.1; 
the multimedia content description interface also known as MPEG-7 is discussed 
in Sect. 11.4.2; computer-aided orchestration is discussed in Sect. 11.4.3; and 
musical instrument sound morphing guided by descriptors of timbre is discussed in 
Sect. 11.4.4.
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11.4.1  Timbre Psychoacoustics

Audio signal descriptors have been central to the psychoacoustics of timbre, which 
seeks an explanation of timbre perception on acoustic grounds. Most of this research 
has used musical instrument sounds. A notable exception is the work by Zwicker 
and Fastl (1990), who presented acoustic models of sharpness, fluctuation strength, 
and roughness, which have been used mainly to characterize the sound quality of 
product sounds (see Lemaitre and Susini, Chap. 9). In the following discussion, 
three examples of using audio descriptors for psychoacoustics research will be 
addressed. These examples highlight the search for acoustic correlates of timbral 
brightness judgements and sound source recognition.

For musical sounds, two methods to study brightness perception can be distin-
guished. First, timbre space dimensions obtained via MDS of general dissimilarity 
judgements have consistently been interpreted as associated with the brightness of 
sounds (see McAdams, Chap. 2). Second, several studies have directly asked par-
ticipants to rate the brightness of sounds and have correlated the resulting ratings 
with descriptor values. For instance, Schubert and Wolfe (2006) considered whether 
direct brightness ratings are better predicted by the absolute spectral centroid or the 
(supposedly pitch invariant) centroid rank (the centroid divided by the fundamental 
frequency). The latter predictor, however, failed to correlate significantly with sub-
jective brightness, whereas the absolute centroid did.

Marozeau and de Cheveigné (2007) proposed a refined spectral centroid descrip-
tor to model the brightness dimension of dissimilarity ratings. The approach was 
conceptually related to the sharpness descriptor by Zwicker and Fastl (1990) in that 
it relied on the computation of partial loudness in spectral bands (but the Zwicker 
model only insufficiently predicted brightness scaling data in Almeida et al. 2017). 
Specifically, the descriptor by Marozeau and de Cheveigné (2007) was obtained 
from partial loudness values calculated in ERB-spaced spectral bands obtained 
from gammatone filtering (see Sect. 11.2.3). An instantaneous spectral centroid was 
obtained through the integration across bands and the resulting time series was inte-
grated over time by weighting with an estimate of instantaneous loudness (the sum 
over channels of partial loudness). In comparison to the linear spectral centroid 
descriptor, the refined brightness descriptor by Marozeau and de Cheveigné (2007) 
improved the amount of the explained variance with the perceptual data by 10% 
points up to 93%. Further analysis showed that it was much less affected by pitch 
variation compared to the more simplistic linear spectral centroid.

Fewer studies have used signal descriptors to address the acoustic features under-
lying sound source recognition and classification (see Agus, Suied, and Pressnitzer, 
Chap. 3). Ogg et al. (2017) modeled participant responses in a go/no-go categoriza-
tion task of short sound excerpts varying in duration (12.5–200 ms). Three sound 
categories were tested: speech, musical instruments, and human environmental 
sounds generated by everyday objects (e.g., keys jingling), by objects of various 
materials impacting one another or being deformed (e.g., crumpling newspaper), 
and sounds generated by movements of liquid (fingers splashing) or rolling objects 
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(marbles rolling down wood). Using exploratory regression analysis with timbre 
descriptors from the Timbre Toolbox (Peeters et al. 2011), the study characterized 
the acoustic features that listeners were using to correctly classify sounds. Globally, 
regression analysis for sounds from every target category indicated that listeners 
relied on cues derived from spectral, temporal, pitch, and “noisiness” information. 
Different sound categories required different sets of descriptors and weightings of 
regression coefficients. For instance, as the median spectral centroid value increased, 
listeners were more likely to categorize the stimuli as human environmental sounds 
and less likely to consider the sounds as coming from musical instruments. The 
descriptors “noisiness” and “spectral flatness” were associated with environmental 
and instrument responses, respectively.

Approaches such as these provide valuable starting points to reveal the most 
important acoustic features for a given psychophysical task from the plethora of 
available audio content descriptors. Giordano et al. (2012) further showed that audio 
descriptors can be applied to neuroimaging research (for neurophysiological details, 
see Alluri and Kadiri, Chap. 6). Following the approach of representational similar-
ity analyses, they used descriptors to decode fMRI data recorded while participants 
listened to environmental sounds. They extracted descriptors based on pitch, loud-
ness, spectral centroid, and harmonicity, and they computed dissimilarity matrices 
that contained the pairwise dissimilarity of stimuli according to these descriptors. 
Dissimilarity matrices were also derived from the imaging data, specifically, from 
the response of each voxel in a region of interest. Then, correlation of the neuro-
physiological and the acoustic dissimilarity matrices resulted in maps that indicated 
the association of the activity in a given voxel to a specific acoustic property. Hence, 
this approach can infer the brain areas associated with the processing of low-level 
acoustic properties represented by the audio descriptors.

These examples indicate that a variety of psychophysical and even psychophysi-
ological questions on timbre can benefit from a deeper involvement with audio 
descriptors, which can be easily computed today (Peeters et al. 2011). At the same 
time, the correlational nature of the approach warrants rigorous confirmatory stud-
ies to circumvent the strong mutual covariance of descriptors.

More generally, it seems important to acknowledge that work on timbre-related 
audio content descriptors is at the crossroads of distinct academic fields, including 
MIR, music cognition, and psychoacoustics. Hence, it is important to appreciate 
the distinct epistemic traditions and objectives that are ingrained in these fields 
(Siedenburg et al. 2016a). Music information retrieval is a task-oriented discipline 
rooted in applied computer science and machine learning and, therefore, is pri-
marily interested in the question of how to build robust systems. This implies that 
the predictive power of a descriptor is more important than the exact acoustic 
properties it encodes. In psychology, however, researchers are interested in the 
insights an audio descriptor can bring to the study of a given perceptual phenom-
enon. If a descriptor does not add significantly to the overall explanatory power of 
a model, and if the information it encodes is not transparent, then it should be 
omitted for the sake of parsimony. These considerations reflect some of the epis-
temic undercurrents of this topic and explain why studies on timbre psychoacous-
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tics have traditionally used relatively fewer audio descriptors, whereas MIR 
research on automatic instrument classification used the full gamut of available 
descriptors.

11.4.2  MPEG-7 Audio Content Description

The multimedia content description interface (Nack and Lindsay 1999; Martínez 
et al. 2002), also known as MPEG-7, is part of a large effort to standardize multime-
dia descriptors and descriptor schemes that allow indexing and searching multime-
dia content, such as pictures, video, audio, and information about how those 
elements combine in a multimedia context. Unlike the previous MPEG standards 
that addressed coded representations of audiovisual information, MPEG-7 addresses 
the representation of information about the content, but not the content itself. 
MPEG-7 began as a scheme for making audiovisual material as searchable as text is 
today (Nack and Lindsay 1999) and grew to include complex scenarios that employ 
image processing (such as surveillance) and media conversion, for example, speech 
to text (Martínez et al. 2002). Within the audio domain, MPEG-7 provides a unified 
interface for automatic organization of audio from different multimedia sources 
(i.e., music and film) for applications in sound archiving and classification, and for 
retrieval, such as music indexing, similarity matching, and MIR (Casey 2001a, b). 
In addition to traditional timbre description methods that have been applied mainly 
to isolated musical instrument notes, MPEG-7 also represents noise textures, envi-
ronmental sounds, music recordings, melodic sequences, vocal utterances (singing 
and speech), and audio mixtures of the above (Casey 2001b).

MPEG-7 audio comprises text-based description by category labels, also called 
semantic tags, and quantitative description using audio content descriptors, as 
explained in Sect. 11.3. Text-based description consists of semantic tags from 
human annotations (Casey 2001a; Levy and Sandler 2009), whereas audio content 
descriptors, including descriptors of timbre, are automatically extracted from audio 
(Lartillot and Toiviainen 2007; Peeters et al. 2011). Audio content descriptors for 
MPEG-7 include temporal (i.e., the root-mean-squared energy envelope, zero- 
crossing rate, temporal centroid, and autocorrelation coefficients), spectral (i.e., 
centroid, flatness, roll-off, and flux), cespstral (i.e., cepstral coefficients and MFCC), 
perceptual (i.e., sharpness), and specific descriptors (i.e., odd-to-even harmonic 
energy ratio, harmonic-noise ratio, and attack time).

The semantic tags in text-based descriptions commonly belong to a taxonomy 
that consists of a number of categories organized into a hierarchical tree used to 
provide semantic relationships between categories. For example, audio can be cat-
egorized into music, speech, or environmental sounds. Each of these categories can 
be further divided, such as the family of a musical instrument (i.e., brass, wood-
winds, strings, and percussion), male or female speech, etc. As the taxonomy gets 
larger and more fully connected, the utility of the category relationships increases 
(Casey 2001b). Semantic tags are commonly used in text-based query applications, 
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such as Internet search engines, where text from the query is matched against text 
from the tags (Casey 2001a). For example, the query “violin” would retrieve sounds 
tagged with “violin” and possibly also “musical instrument,” “strings,” etc. Query- 
by- example applications require audio content descriptors to retrieve sounds in a 
database that are similar to a target sound provided by the user. In this case, MPEG-7 
audio content descriptors are used to compute the similarity with a distance metric 
such as dynamic time warping for hidden Markov models (Casey 2001b). Hidden 
Markov models are statistical models particularly suited to describe sequences 
where the probability of the current value depends on the previous value. In fact, 
Casey points out (also see Sect. 11.3.4) that sound phenomena are dynamic and the 
descriptors vary in time. In music and speech, this variation carries important infor-
mation that plays a central role both in perception and in automated tasks. Thus, he 
proposes to use hidden Markov models in MPEG-7 sound recognition models. 
Hidden Markov models partition a sound class into a finite number of states, each 
of which is modeled by a continuous (typically Gaussian) probability distribution. 
Subsequently, individual sounds are described by their trajectories through this state 
space, also called state path. The state path is an important method of description in 
the context of MPEG-7 since it describes the evolution of a sound with respect to 
states that represent events such as onset, sustain, and release (Casey 2001b).

The categorical information in the MPEG-7 tags can be used for automatic clas-
sification in which the aim is to automatically assign a class from the taxonomy to 
audio to which the classifier has not had previous access. Automatic classification 
involves training statistical models to learn to recognize the class using a descriptor 
vector as input. Among the most widely used descriptors for automatic audio recog-
nition and classification are representations derived from the power spectrum (Casey 
2001a). The raw spectrum is rarely used as input in automatic classification due to 
the inherent high-dimensionality and redundancy. The typical number of bins of 
linearly spaced spectra lies between 128 and 1024, whereas probabilistic classifiers, 
such as hidden Markov models, commonly require low-dimensional representa-
tions, preferably fewer than 10 dimensions (Casey 2001b). In MPEG-7, the audio 
spectrum projection scheme (Casey 2001a; Kim et al. 2004) requires the application 
of dimensionality reduction techniques, such as principal component analysis or 
independent component analysis, prior to classification or query-by-example.

Casey concluded that MPEG-7 yielded very good recognizer performance across 
a broad range of sounds with applications in music genre classification. However, 
works that compared MFCC with MPEG-7 descriptors in multimedia indexing 
tasks, such as recognition, retrieval, and classification, found that MFCC outper-
formed MPEG-7.

Kim et al. (2004) compared the performance of MPEG-7 audio spectrum projec-
tion descriptors against MFCC in a video sound track classification task. They used 
three matrix decomposition algorithms to reduce the dimensionality of the MPEG-7 
audio spectrum projection descriptors to 7, 13, and 23 dimensions and compared the 
resulting approaches with the same number of MFCC.  They found that MFCC 
yielded better performance than MPEG-7 in most cases. They also pointed out that 
MPEG-7 descriptors are more computationally demanding to extract than MFCC.
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Similarly, Deng et al. (2008) compared the performance of traditional descrip-
tors (zero-crossing rate, root-mean-squared energy, spectral centroid, spectral 
spread, and spectral flux) with MFCC and MPEG-7 on automatic instrument clas-
sification tasks. They used several classification algorithms in musical instrument 
family classification, individual instrument classification, and classification of solo 
passages. Principal component analysis was used to reduce the dimensionality of 
MPEG-7 audio spectrum projection descriptors. They concluded that MFCC out-
performed MPEG-7 and traditional descriptors when used individually.

Finally, Deng et al. (2008) tested descriptor combinations, such as MFCC with 
MPEG-7 and MFCC with traditional descriptors, and concluded that the addition of 
MPEG-7 to MFCC improved classification performance, whereas traditional 
descriptors plus MFCC yielded the poorest performance. They finally noted that the 
higher the dimensionality of the descriptors vector, the better the performance; so 
they tested the classification performance of descriptor combinations followed by 
dimensionality reduction with principal component analysis and found that the 
combinations exhibit strong redundancy.

MPEG-7 is a very ambitious international standard that encompasses audio, 
video, and multimedia description. MPEG-7 audio was developed to have a similar 
scale of impact on the future of music technology as the MIDI and MPEG-1 Audio 
Layer III (popularized as the MP3 format) standards have had in the past (Casey 
2001b). However, more than 15  years after the introduction of the standard, the 
world of audio content descriptors still seems anything but standardized—research-
ers and practitioners continue to develop new approaches that are custom-made for 
the specific content-description problem at hand.

11.4.3  Computer-Aided Orchestration

Musical orchestration denotes the art of creating instrumental combinations, con-
trasts, and stratifications (see McAdams, Chap. 8). Initially, orchestration was 
restricted to the assignment of instruments to the score and, as such, was largely 
relegated to the background of the compositional process. Progressively, composers 
started regarding orchestration as an integral part of the compositional process 
whereby the musical ideas themselves are expressed. Compositional experimenta-
tion in orchestration originates from the desire to achieve musically intriguing tim-
bres by means of instrumental combinations. However, orchestration manuals are 
notoriously empirical because of the difficulty in formalizing knowledge about the 
timbral result of instrument combinations.

Computer-aided orchestration tools (Carpentier et al. 2010a; Caetano et al. 2019) 
automate the search for instrument combinations that perceptually approximate a 
given reference timbre. The aim of computer-aided orchestration is to find a combi-
nation of notes from musical instruments that perceptually approximates a given 
reference sound when played together (Abreu et  al. 2016; Caetano et  al. 2019). 
Descriptors of timbre play a key role in the following steps of computer-aided 
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orchestration: (1) timbre description of isolated sounds, (2) timbre description of 
combinations of musical  instrument sounds, and (3) timbre similarity between 
instrument combinations and the reference sound.

The timbre of both the reference sound and of the isolated musical instrument 
sounds is represented with a descriptor vector comprising a subset of the traditional 
descriptors of timbre (Peeters et al. 2011). The extraction of the descriptors is com-
putationally expensive, so the descriptors of the isolated musical instrument sounds 
are extracted prior to the search for instrument combinations and kept as metadata 
in a descriptor database. The descriptors for the reference sound are extracted for 
every new reference used.

Each instrument combination corresponds to a vector of descriptors that captures 
the timbral result of playing the instruments together. However, the total number of 
instrument combinations makes it impractical to extract descriptors for each possi-
ble combination (Carpentier et al. 2010a). Instead, the descriptor vector of an instru-
ment combination is estimated from the descriptor vectors of the isolated sounds 
used in the combination (Carpentier et al. 2010b).

The timbral similarity between the reference sound and the instrument combina-
tion is estimated as the distance between the corresponding descriptor vectors. 
Smaller distances indicate a higher degree of timbral similarity (Carpentier et al. 
2010a) with the reference, so the instrument combinations with the smallest dis-
tances are returned as proposed orchestrations for a given reference sound.

The resulting instrument combinations found to orchestrate a given reference 
sound will depend on which descriptors are included in the descriptor vector. For 
example, spectral shape descriptors focus on approximating the distribution of spec-
tral energy of the reference sound. Carpentier et  al. (2010a) proposed using the 
normalized harmonic energy, global noisiness, attack time, spectral flatness, rough-
ness, frequency and amplitude of the energy modulation, and frequency and ampli-
tude of the modulation of the fundamental frequency. Additionally, they added the 
following descriptors not related to timbre: fundamental frequency and total energy. 
Caetano et al. (2019) used the frequency and amplitude of the spectral peaks, spec-
tral centroid, spectral spread, and also fundamental frequency, loudness, and root- 
mean- squared energy.

The type of reference sound to be orchestrated also plays a fundamental role in 
the instrument combinations found by computer-aided orchestration algorithms. 
For example, if the composer uses a clarinet sound as reference (and the 
 musical instrument sound database contains clarinet sounds), the composer should 
naturally expect an isolated clarinet note to be the closest instrument combination 
found (unless the composer imposes constraints to the search such as returning 
instrument combinations without clarinet sounds or with at least three different 
instruments). Aesthetically interesting results can be achieved by choosing a refer-
ence sound that belongs to a different abstract category than musical instruments, 
such as environmental sounds or vocal utterances, because these references usually 
result in complex instrument combinations. To hear examples of orchestrations 
using different types of reference sounds, go to the sound files “car_horn.mp3”, 
“carnatic.mp3”, “choir.mp3”, and wind_harp.mp3”. Each sound file consists of the 
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reference sound followed by four proposed orchestrations from Caetano et  al. 
(2019).

Perceptually, two important phenomena contribute to attaining aesthetically 
interesting orchestrations: timbre blends and sensory proximity. Timbre blends 
occur when the timbre of the different instruments used in the combination fuse into 
a single percept (see McAdams, Chap. 8). The categorical distinction between the 
musical instruments must disappear so the sensory attributes of the combination 
emerge as a new timbre. Computer-aided orchestration algorithms find instrument 
combinations whose sensory attributes approximate those of the reference sound to 
evoke abstract auditory experiences. Audio descriptors of timbre play a key role in 
determining the timbre similarity between the instrument combinations and the ref-
erence sound (Siedenburg et al. 2016a). Traditionally, timbre similarity approaches 
compare time-averaged descriptor vectors from different musical  instrument 
sounds, neglecting temporal variations (Esling and Agon 2013). While this is con-
sistent with static timbre spaces, dynamic representations, such as the one shown in 
Fig. 11.7, require the use of time series of descriptors.

Computer-aided orchestration exemplifies the benefit of incorporating temporal 
information into timbre similarity. The static timbre similarity measure is appropri-
ate when orchestrating reference sounds that are relatively stable (Carpentier et al. 
2010a; Abreu et al. 2016). However, matching targets with dynamic variations, such 
as an elephant trumpeting, requires a time-series method that takes temporal varia-
tions of descriptors into consideration. Esling and Agon (2013) proposed a multi- 
objective time series-matching algorithm capable of coping with the temporal and 
multidimensional nature of timbre. The multi-objective time series-matching algo-
rithm adopts a multi-dimensional measure of similarity that simultaneously opti-
mizes the temporal evolution of multiple spectral properties and returns a set of 
efficient solutions rather than a single best solution.

11.4.4  Musical Instrument Sound Morphing

The aim of sound morphing is to synthesize sounds that gradually blur the categori-
cal distinction between the sounds being morphed by blending their sensory attri-
butes (Caetano and Rodet 2013). Therefore, sound  morphing techniques allow 
synthesizing sounds with intermediate timbral qualities by interpolating the sounds 
being morphed. Fig. 11.8 shows a striking example of image morphing to illustrate 
sound morphing with a visual analogy. The morph is determined by a single param-
eter α that varies between 0 and 1. Only the source sound S is heard when α = 0, 
whereas only the target sound T is heard when α  =  1. Intermediate values of α 
should correspond to perceptually intermediate sounds. However, simple morphing 
techniques seldom satisfy this perceptual requirement (Caetano and Rodet 2013). 
Sound morphing typically comprises the following steps: (1) modeling, (2) interpo-
lation, and (3) resynthesis.
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The sounds being morphed (S and T) are modeled (e.g., with the sinusoidal 
model or the excitation-filter model) to obtain a parametric representation of S and 
T. For example, the parameters of the sinusoidal model are the frequencies and the 
amplitudes of the time-varying sinusoids that represent the partials of S and T. The 
parameters of the spectral envelope represent the filter component of the 
 excitation- filter model. Cepstral coefficients and LPC are common representations 
of the filter in the excitation-filter model (Caetano and Rodet 2013).

The parameters of the morphed sound are obtained via linear interpolation 
between the parameters of S and T, for example, interpolation of the amplitudes and 
frequencies of the sinusoidal model or interpolation of the cepstral coefficients rep-
resenting the spectral envelope of the excitation-filter model.

Finally, the morphed sound is resynthesized from the interpolated parameters. 
Perceptually, the model parameters play a crucial role in the final result, depending 
on the information captured by the model. For example, morphing with the sinusoi-

α = 0 α = 0.25 α = 0.5 α = 0.75 α = 1

α = 0 α = 0.5 α = 1

a) Image morphing

b) Sound morphing

Fig. 11.8 Illustration of morphing for images and sounds: (a) face morphing; (b) musical instru-
ment sound morphing. The source sound is the C#3 note played forte on a harpsichord and the 
target sound is the same note played forte on a tuba. The figure shows the morphing factor α below 
each corresponding panel. To hear the sounds, go to the sound file “harpsichord_tuba_morph.
mp3”. The image in (a) is currently publicly available at https://paulbakaus.com/wp-content/
uploads/2009/10/bush-obama-morphing.jpg
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dal model will result in intermediate amplitudes and frequencies (the model param-
eters), whereas morphing with the excitation-filter model will result in intermediate 
spectral envelopes.

The importance of the parametric representation is twofold: resynthesis and 
transformation. A parametric model should allow resynthesizing a sound that is 
perceptually very similar to the original sound from the model parameters alone. 
Sound transformations are achieved via manipulation of the model parameters fol-
lowed by resynthesis, resulting in a sound that is perceptually different from the 
original sound. Striking transformations can be achieved by careful manipulation of 
model parameters depending on what information they represent. For example, the 
frequencies of the sinusoidal model can be manipulated to obtain a pitch transposi-
tion. Sound morphing is the result of parameter interpolation. However, most mor-
phing techniques in the literature interpolate the parameters of the model used to 
represent the sounds regardless of the perceptual impact of doing so. Consequently, 
the morph is intermediate in the space of parameters rather than perceptually 
intermediate.

Caetano and Rodet (2013) used descriptors of timbre to guide musical  instrument 
morphing toward more gradual transformations. They developed a sophisticated 
morphing technique based on a hybrid excitation-filter model where the filter is 
represented with spectral envelopes and the excitation has a sinusoidal component 
accounting for the partials and a residual component accounting for transients and 
noise missed by the sinusoids. Caetano and Rodet (2013) investigated the result of 
interpolating several representations of the spectral envelope: the spectral envelope 
curve, cepstral coefficients, LPC, reflection coefficients, and line spectral frequen-
cies. Both reflection coefficients and line spectral frequencies arise from an inter-
connected tube model of the human vocal tract. Reflection coefficients represent the 
fraction of energy reflected at each section of the model, whereas line spectral fre-
quencies represent the resonance conditions that describe the vocal tract being fully 
open or fully closed at the glottis (McLoughlin 2008).

Caetano and Rodet (2013) were interested in measuring the linearity of the mor-
phing transformation with the different spectral envelope representations. They var-
ied α linearly between 0 and 1 for each spectral envelope representation and recorded 
the corresponding variation of spectral shape descriptors (spectral centroid, spectral 
spread, spectral skewness, and spectral kurtosis). They found that linear interpola-
tion of line spectral frequencies led to the most linear variation of spectral shape 
descriptors. Next, they performed a listening test to evaluate the perceptual linearity 
of the morphs with their hybrid excitation-filter model and the sinusoidal model. 
The listening test confirmed that the hybrid excitation-filter model resulted in 
morphs that were perceived as more perceptually linear than the sinusoidal model. 
Fig. 11.8 shows an example of musical instrument sound morphing from Caetano 
and Rodet (2013). To hear the sounds used in Fig. 11.8, go to the sound file “harp-
sichord_tuba_morph.mp3”.

Perceptually, sound morphing can be viewed as an auditory illusion that is inher-
ently intertwined with timbre because morphing manipulates both the sensory and the 
categorical perceptions of the sounds being morphed. For the sake of simplicity, the 
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following examples will consider musical instruments and timbre spaces. In theory, 
sound morphing can break the categorical perception of musical instrument timbre. 
For example, when S and T are from different musical instruments, setting α = 0.5 
would produce a morph that theoretically resembles the sound of a hybrid musical 
instrument. Additionally, sound morphing can be used to create a sonic continuum. 
Timbre spaces are inherently sparse, with musical instrument sounds occupying spe-
cific points in an otherwise void space. Morphing musical  instrument sounds can 
theoretically fill the gaps and create continuous timbre spaces by connecting musical 
instruments with intermediate sounds that no acoustical instrument can produce.

11.5  Summary

This chapter introduced the acoustic modeling of timbre via audio content descrip-
tors. Sections were organized around the descriptor extraction process, covering 
important topics from general audio representations used to extract timbre descrip-
tors to applications of these descriptors in psychology, sound synthesis, and music 
information retrieval. Audio content descriptors have played an important role in 
understanding the psychoacoustics of timbre, have become part of the industry stan-
dard MPEG-7 for audio content description, and play crucial roles for current devel-
opments of techniques such as computer-aided orchestration and musical instrument 
sound morphing. In these applications, audio descriptors help extract properties 
from the audio signal that are often of perceptual relevance and much more specific 
when compared to the general audio representations from which they are computed. 
At the same time, the audio descriptors described in this chapter are versatile enough 
to be valuable across a variety of different timbre-related audio processing tasks.

Audio descriptors could play a pivotal role in future research into timbre percep-
tion and sound processing in myriad ways. Section 11.4.1 outlined the ways in 
which the perception of timbral brightness has been modeled on acoustic grounds 
using audio descriptors. However, a model of timbre brightness perception that 
clearly delineates the acoustic ingredients of this important aspect of timbre percep-
tion has yet to be constructed and evaluated. Such a model would need to account 
for a variety of experimental phenomena (see McAdams, Chap. 2) across a large set 
of sounds. Section 11.4.3 and 11.4.4 summarized the role of audio descriptors in 
computer-aided orchestration and sound morphing. Here audio descriptors act as a 
perceptual proxy to allow synthesizing sounds with predefined perceptual charac-
teristics. Adaptive processing (Verfaille et al. 2006) and content-based transforma-
tions (Amatriain et al. 2003) use audio descriptors to address the highly nonlinear 
connection between the audio and sound perception. However, the fundamental 
problem of synthesizing a waveform that matches a desired perceptual result 
remains a challenge.

Currently, the status of various approaches to audio content description is at a 
crossroads. The rise of machine learning architectures, such as deep neural networks, 
renders traditional audio descriptors obsolete in tasks such as musical instrument 
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identification, environmental scene classification, or speaker recognition. Traditional 
audio descriptor-based classification architectures require two steps prior to learning 
per se: descriptor extraction followed by either descriptor selection or dimensional-
ity reduction (see Sect. 11.3.4). One problem of these architectures is that they often 
fail to capture the highly nonlinear relationships commonly found in complex clas-
sification tasks. Deep neural networks are feed-forward artificial neural networks 
with several layers of hidden units between inputs and outputs (Hinton et al. 2012). 
The depth of the network provides sufficient flexibility to represent the nonlineari-
ties critical to a given task such that deep neural networks jointly learn the descrip-
tors and the classifier (Takahashi et al. 2018).

However, the main challenge of deep learning architectures lies in their applica-
tion in timbre acoustics, perception, and cognition. Kell et al. (2018) made a signifi-
cant contribution when they presented a deep neural network optimized for both 
speech and music recognition tasks. The deep neural network performed as well as 
humans, exhibited error patterns that resembled those of humans, and outperformed 
a linear spectrotemporal filter model of auditory cortex in the prediction of fMRI 
voxel responses. Moreover, the trained network replicated aspects of human cortical 
organization and provided evidence of hierarchical organization within the auditory 
cortex, with intermediate and deep layers best predicting primary and nonprimary 
auditory cortical responses, respectively. Nonetheless, prediction is not identical to 
understanding. Even though a good model should predict future data, a model needs 
to be transparent in order to allow for proper theory building. Future work in this 
direction will be able to draw insightful connections between the pattern of oscilla-
tions carried by sound waves and the timbre that listeners extract from these waves.
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Chapter 12
Modulation Representations for Speech 
and Music

Mounya Elhilali

Abstract The concept of modulation has been ubiquitously linked to the notion of 
timbre. Modulation describes the variations of an acoustic signal (both spectrally 
and temporally) that shape how the acoustic energy fluctuates as the signal evolves 
over time. These fluctuations are largely shaped by the physics of a sound source or 
acoustic event and, as such, are inextricably reflective of the sound identity or its 
timbre. How one extracts these variations or modulations remains an open research 
question. The manifestation of signal variations not only spans the time and fre-
quency axes but also bridges various resolutions in the joint spectrotemporal space. 
The additional variations driven by linguistic and musical constructs (e.g., seman-
tics, harmony) further compound the complexity of the spectrotemporal space. This 
chapter examines common techniques that are used to explore the modulation space 
in such signals, which include signal processing, psychophysics, and neurophysiol-
ogy. The perceptual and neural interpretations of modulation representations are 
discussed in the context of biological encoding of sounds in the central auditory 
system and the psychophysical manifestations of these cues. This chapter enumer-
ates various representations of modulations, including the signal envelope, the mod-
ulation spectrum, and spectrotemporal receptive fields. The review also examines 
the effectiveness of these representations for understanding how sound modulations 
convey information to the listener about the timbre of a sound and, ultimately, how 
sound modulations shape the complex perceptual experience evoked by everyday 
sounds such as speech and music.
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12.1  Introduction

If one asks a telecommunication engineer what is “modulation”, the answer is rather 
simple: It is the process of multiplexing two signals: a signal that can carry informa-
tion and can be physically transmitted over a communication channel (the carrier 
signal, typically a quickly varying wave) with a signal that contains the information 
or the message to be transmitted or broadcasted (the modulation or data signal, 
typically a slowly varying envelope) (Freeman 2004). This characterization pro-
vides a formal account of modulation but fails to capture the nuances of multiplex-
ing two signals that get rather complicated depending on the domain under study. 
This definition presumes a priori knowledge of the identity, attributes, and behavior 
of such signals, which is only possible in specific applications (e.g., on/off keying—
OOF—used to transmit binary 0/1 codes over a sinusoidal carrier that can be 
decoded directly from the signal amplitude).

On the flip side, defining modulation as a multiplexing operation is rather inef-
fective when it comes to the inverse problem: demodulating a signal in order to 
identify its modulator and carrier components. If one does not have specific con-
straints on these signal components, it is not trivial to untangle them because many 
(possibly infinite) solutions are conceivable. How one judges which solution is a 
reasonable one is again domain and signal specific. As such, the modulation/demod-
ulation problem is ill-posed (Turner and Sahani 2011) but is still fundamental to 
understanding the information-bearing components of signals.

In the case of complex audio signals (speech, music, natural, or communication 
sounds), getting a clear idea of the identity of the message and carrier components 
remains one of the holy grails of research on the physical and perceptual underpin-
nings of sound. Interest in modulations of an audio signal aims to pinpoint the 
information-bearing components of these signals, especially given the redundant 
nature of the waveforms that can emanate from both mechanical (e.g., instrument, 
vocal tract) or electrical (e.g., computer generated) sound sources.

The problem is particularly compounded because complex audio signals, such as 
speech and music, contain information and modulations at multiple time scales and 
across various spectral constructs. In the case of speech, there is an extensive body 
of work dating back to the early twentieth century that explored the span and dynam-
ics of the speech envelope. The argument that the slow envelope is the chief carrier 
of phonetic information in speech is quite old. In the 1930’s, Dudley advocated that 
the dynamics of signal envelopes are important for describing linguistic information 
in speech (Dudley 1939, 1940). In his view, the vocal tract is a sluggish system that 
slowly changes shape, with low syllabic frequencies up to 10 Hz, giving rise to 
varying modulating envelopes that contribute most to the intelligibility of speech.

Building on this work, numerous studies have shown that speech intelligibility is 
well maintained after temporal envelopes are lowpass filtered or degraded, with a 
critical range between 5–15 Hz that spans the range of phonemic and syllabic rates 
in natural speech (Greenberg 2004). Still, the modulation spectrum profile of speech 
is a complex one and reveals that the speech envelope contains energy of the order of 
a few to tens or hundreds of Hertz. This profile highlights key energy fluctuations in 
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speech signals, ranging from hundreds of milliseconds (of the order of multiple syl-
lables or words) to tens of milliseconds (typically spanning subsyllabic and phone-
mic segments) (Rosen 1992; Divenyi et al. 2006). The complexity of speech signals 
includes the multiplexed information across various time scales but also variations 
across frequency bands and in the phase relationships across bands (Pickett 1999).

In the case of music signals, a similar picture emerges spanning multiple time 
scales, frequency bands, and spectral profiles. The information-bearing components 
of a musical signal, be it an isolated note or a full orchestral piece, appear to multi-
plex across a complex construct of spectrotemporal dimensions. Much like speech, 
music signals have melodic, harmonic, and rhythmic structures that intertwine into 
intricate patterns (both in time and frequency) to convey the complex acoustic expe-
rience of music perception. Recent advances in computing power, signal processing 
techniques, and increased availability of digitized audio material have led to fairly 
sophisticated analysis tools to study various aspects of regularity in music, such as 
rhythm, melody, harmony, or timbre (Müller 2015; Meredith 2016).

Despite the intricate nature of spectrotemporal regularities in both speech and 
music, they share fundamental attributes reflected in their decomposition into alpha-
betic tokens (phonemes, syllables, word, notes, chords), assembly of sequences of 
events (accents, grouping, words, phrases), and rhythmic structure (time, stress), all 
interleaved with specific spectral patterns that reflect the sound sources (instrument, 
oral cavity), production style, and contextual attributes. The correlates of these reg-
ularities can be gleaned from examining the modulation patterns in the signal at 
multiple time scales and granularities. This chapter reviews common techniques 
used to represent modulations in speech and music signals and their implications for 
understanding the information-bearing components in these signals. Section 12.2 
reviews signal processing tools commonly used to represent modulations: funda-
mental time-frequency representations (Sect. 12.2.1), spectrotemporal modulation 
profiles (Sect 12.2.2), and temporal modulation spectra (Sect 12.2.3). Sect. 12.2.4 
delves into representations that are unique to speech and music signals and consid-
ers constraints imposed by the physics of the vocal tract and controlled sound pro-
duction through most musical instruments. Section 12.3 offers insights into the 
neurophysiological interpretation of modulations, particularly encoding of the spec-
trotemporal signal envelope along the auditory pathway. Section 12.4 reviews key 
findings in psychophysical and physiological research into the role of modulation in 
speech and music perception. Section 12.5 provides a summary of the main ideas in 
the text along with perspectives on future research directions.

12.2  Representation of Modulations

12.2.1  The Time-Frequency Representation

A complete description of the information content of speech and music signals is 
not possible. However, one can derive a number of low-level empirical descriptors 
that reveal a lot about the structure of these signals. Common ways to explore the 
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nature of these signals involve analysis of the acoustic waveform as well as its fre-
quency content. A time-frequency profile, typically obtained via short-time Fourier 
transform, wavelet, or filterbank analysis (Caetano, Saitis, and Siedenburg, Chap. 
11), best displays the variations of energy as the signal evolves over time. Fig. 12.1A 
depicts the time-frequency representation of a speech utterance produced by a male 
speaker saying /we think differently/. Immediately emerging from this spectro-
graphic view of speech is the fact that the temporal envelope varies slowly over the 
course of tens to hundreds of milliseconds. In fact, one can easily discern the volleys 
of activity across frequency channels, occurring at a rate of 5–7 peaks per second, 
commensurate with phonemic and syllabic contours of the speech utterance. The 
right subpanel in Fig. 12.1A highlights a cross-section of this spectrogram around 
450 Hz, which represents the half-wave rectified output of the auditory filter cen-
tered about that spectral region. The time waveform clearly shows an overall fluctu-
ating pattern around 6 Hz, which closely follows segmental and syllabic landmarks 
of the speech signal (Poeppel et al. 2008). A similar structure emerges spectrally 
with frequency profiles that are largely coarse. The energy distribution across fre-
quency channels appears to mostly delineate harmonic and formant peaks (bottom- 
left subpanel in Fig. 12.1A).

In parallel, Fig. 12.1B illustrates an example of the time-frequency spectrogram 
of the finale of Tchaikovsky’s violin concerto in D major, Op. 35. The time- frequency 
spectrogram highlights the exuberant energy in this piece with a very dynamic tem-
poral profile reflective of the vigorous nature of this finale. The clear steady tones 
typical of bowed string instruments are also clearly visible throughout the passage, 
with the spectral profile showing the clear harmonic nuances of the solo violin per-
formance. Still, the rich energy of this final movement of the concert is not readily 
discernable from the spectrogram view only. The cross-section of this spectrogram 
along time emphasizes the nested dynamics over the course of a 6 s period. The soft 
onset signature of the violin is not very evident due to the multiscale rhythmic mod-
ulations in this extravagantly energetic piece with discernable Russian rhythmic 
undertones (Sadie 2001). The temporal envelope clearly shows a fast- paced profile 
modulated by a much slower rhythmic profile varying at rate of 1–3 peaks/s. The 
spectral cross-section shown in the bottom-left panel in Fig. 12.1B takes a closer 
look at the frequency profile of the signal around 2.3 s. The characteristic profile of 
a violin note clearly emerges with the overall envelope highlighting the resonance of 
the violin body with three obvious peaks (Katz 2006). Within the broad peaks, one 
can glimpse details of the spectral structure imposed by the mechanical constraints 
of the violin along with the unambiguous harmonic structure of the note.

Fig. 12.1 (Continued) as a function of time; a frequency cross-section of the spectrogram around 
250 ms as a function of log-frequency; and the two-dimensional Fourier transform (2D FFT) of the 
time-frequency spectrograms that yields the modulation power spectrum of the signal. The figure 
was interpolated using linear interpolation and compressed to a power of 2.5 to obtain better color 
contrast (for display purposes only). (B) The spectrotemporal details of the finale of Tchaikovsky’s 
violin concerto in D major, Opus 35, using similar processing steps as in panel A
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Fig. 12.1 Spectrotemporal details of speech and music. (A) The time-frequency spectrogram of a 
male utterance saying /we think differently/ over a time span of 1  s and frequency range of 5 
octaves (note the log frequency axis); a temporal cross-section of the spectrogram around 450 Hz 
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12.2.2  The Spectrotemporal Modulation Profile

A better illustration of these spectrotemporal modulation details can be achieved in 
the spectral/Fourier domain, obtained by performing a two-dimensional Fourier 
transform of the time-frequency spectrogram (Fig. 12.1A, B, lower right panels). 
This operation estimates the power distribution of both spectral and temporal com-
ponents over the chosen time and frequency spans and yields the modulation spec-
trum of the signal (Singh and Theunissen 2003). The modulation spectrum is an 
account of the distribution of time-frequency correlations of adjacent and far-away 
elements in the signal and, hence, is an estimate of the degree and dynamics of sig-
nal fluctuations along time and frequency axes. Immediately worth noting in this 
modulation spectrum is that the energy in the Fourier domain is mostly concentrated 
in a highly localized region of the modulation space.

For a speech signal (Fig. 12.1A), the modulation spectrum highlights what was 
already seen in the unidimensional profiles. For instance, the temporal envelope 
induces a strong activation peak between 5 and 7 Hz, while the spectral modulations 
reveal discernable energy at a harmonic rate (i.e., distance between harmonic peaks) 
or coarser (i.e., distance between formant peaks), which appear as strong activity 
around 1 cycle/octave and below. The modulation spectrum energy for the music 
signal (Fig. 12.1B) also accentuates the modulation patterns observed in the cross- 
sections of the spectrogram. A strong activation pattern around 1  cycle/octave 
clearly highlights the crisp harmonic peaks of a violin sound, while the temporal 
modulations show a distributed energy that is strongest below 3 Hz but spread as far 
as 10 Hz, highlighting the strong vibrato and clear articulation in this piece that 
carry the slower rhythmic structure.

Unlike conventional methods for computing the modulation spectrum (tradition-
ally confined to a transform in the temporal dimension, discussed in Sect. 12.2.3), 
the two-dimensional modulation spectrum highlights both the spectral and temporal 
dynamics of the signal as well as the time alignment of these modulation patterns 
(i.e., cross-channel modulation phase), which is an important component for under-
standing spoken material and music compositions (Greenberg and Arai 2001; 
Hepworth-Sawyer and Hodgson 2016). The combined profile—across time and fre-
quency—is the only mapping able to highlight subtle patterns in the original 
 envelopes, such as frequency-modulations (FM), which are key signatures of many 
patterns in transitional speech sounds (e.g., diphthongs, semi-vowels), and metallic 
or percussive bell sounds (Chowning 1973).

Because of its span of the joint time-frequency space, the spectrotemporal modu-
lation power spectrum (MPS) representation has been used as a dashboard to explore 
the precise loci of modulation energy driving the perception of speech and music. 
Recent work examined detailed tiling of the spectrotemporal modulation spectrum 
using granular techniques that inspected the perceptual contribution of various 
regions or building-blocks of the two-dimensional modulation profile. These meth-
ods, originally developed in vision research, aim to assign a quantifiable contribu-
tion of specific modulation energies to perceptual recognition of sound constructs 
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using an approach referred to as “bubbles” (Gosselin and Schyns 2001). Because 
the spectrotemporal modulation profile is in a fact an image with temporal modula-
tions on the x-axis and spectral modulations on the y-axis, the adoption of vision 
techniques can be seamlessly applied. These approaches have shown that the intel-
ligibility of speech signals depends significantly on both spectrotemporal modula-
tions that carry considerable modulation energy in the signal as well as those that 
carry linguistically relevant information (Venezia et al. 2016). A similar observation 
has also been reported for musical instrument recognition where low spectral and 
temporal modulation are the most salient regions to correlate with musical timbre, 
though signatures of individual instruments can be clearly discerned in the MPS 
space (Thoret et al. 2016). Alternative tiling techniques that use filtering (low-pass, 
notch filters) as well as dimensionality reduction and scaling have also been used to 
explore the informative regions of the MPS space (Elliott and Theunissen 2009; 
Elliott et al. 2013).

Overall, the MPS representation is proving to be a powerful descriptor of sound 
identity and timbre representation. It is also a space where joint interactions across 
time and frequency can be readily discerned. Still, it is not a very intuitive mapping 
of the acoustic waveform because it is a representation derived from the signal via 
at least two (typically more) transformations: from the acoustic signal to a time- 
frequency spectrogram and then to a time-frequency modulation spectrum (in addi-
tion to computing magnitude, power, binning operations, etc.). The models 
employed to perform these transformations do shape the salient details of the modu-
lation profile and can invariably emphasize different aspects in this mapping, be it 
stimulus energies or perceptual energies.

The representation shown in Fig. 12.1 employs a straightforward two- dimensional 
Fourier transform to the time-frequency spectrogram. Other approaches have been 
proposed, including the use of two-dimensional wavelet transforms (Anden and 
Mallat 2014), bio-mimetic affine transforms mimicking receptive fields in mam-
malian auditory cortex (Chi et al. 2005), or even physiologically recorded receptive 
fields from single neurons in primary auditory cortex (Patil et al. 2012). Naturally, 
incorporating nonlinearities as reported in auditory processing can further color the 
readout of such modulation profiles, though limited work has been done that can 
shed light on the biological and perceptual relevance of nonlinearly warping the 
modulation space (as discussed in Sec. 12.5).

One of the other limitations of the modulation spectrum stems from the funda-
mental limit in precision by which modulations can be measured simultaneously in 
time and frequency. Much like the uncertainty principle is applied in a time- 
frequency spectrogram, the same is true in the modulation domain, which is effec-
tively a transformation of the original space. The uncertainty principle, or Heisenberg 
principle, articulates the trade-off that one can achieve when attempting to represent 
time and frequency with infinite precision (Cohen 1995; Grochenig 2001). The 
smaller the window in time used to perform the analysis, the larger the bandwidth 
of spectral resolution afforded by this analysis because these two quantities have 
effectively a fixed product. Similarly, the temporal and spectral modulations derived 
within these constraints are also restricted relative to each other and, as such, pro-
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vide a limited view of the spectrotemporal modulation profile of a signal (Singh and 
Theunissen 2003). How the brain deals with these limitations remains unknown, 
though they may explain the multi-resolution mapping of modulation in auditory 
cortical networks, as discussed in Sec. 12.3.

12.2.3  The Temporal Modulation Spectrum

As discussed in Sect. 12.2.2, the notion of modulation aims at identifying the pat-
terns of inflection or change imposed on a signal. While the formal definition of 
such change does not necessarily identify the dimension on which it needs to oper-
ate, there is a large body of work that has focused on the temporal envelope. The 
temporal envelope is the main carrier of rhythmic fluctuations in the signal, and 
therefore its timescale and timespan are crucial information-bearing components of 
the signal. It is important to note that modulations along frequency also play a cru-
cial role (as mentioned in Sect. 12.2.2; this issue will be expanded further in Sect. 
12.4). Still, the temporal profile has garnered particular interest because of its sim-
ple mathematical derivation yet powerful importance in speech and music percep-
tion (Patel 2008).

The temporal modulation spectrum is obtained through a series of transforma-
tions that pass a signal x[n] through a bank of M bandpass filters in order to derive 
the envelope of each filter output. While this process is traditionally done on band-
limited signals at the output of each filter, the premise of the computation does not 
preclude using broadband signals nor does it confine the bandwidth of the filterbank 
to a specific range. Naturally, the fluctuations of the filter outputs will be dictated by 
the choice of filterbank parameters, bandwidths, and frequency span.

Techniques used in the literature vary from using simple Fourier-like spectral 
decompositions (e.g., Fig. 12.1) to more perceptually grounded spectral mappings 
based on critical bands or a Bark scale (Moore 2003). The output of this filterbank 
analysis is an array of M filter outputs:

 x n m Mm [ ] = …; , ,1  

The fluctuations of these output signals are then further isolated using an envelope 
extraction technique (either using the Hilbert transform or other transformations 
such as half-wave rectification and low-pass filtering), which results in a smooth 
envelope of each filter output (E[xm]) whose variations are bounded both by the 
original bandwidth of the filterbank as well as the constraints of the envelope- 
tracking technique (Lyons 2011). Typically, this process is followed by a nonlinear 
mapping that compresses the linear envelope output using a nonlinear scaling func-
tion, such as square, logarithm, or a biologically motivated nonlinearity-mimicking 
nonuniform gain compression in the activation of the auditory nerve (Yang et al. 
1992; Zhang et al. 2001). The compression is also used to counter the strong expo-
nential nature of envelope amplitudes in natural sounds (Attias and Schreiner 1997). 
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The readout of the fluctuations in the envelope signal is then obtained in the Fourier 
domain by mapping the time-domain signals onto a frequency-axis profile that is 
then summed across channels and transformed into power, root-mean-squared 
energy, or compressed magnitudes (Fig. 12.2).

Historically, this approach has been developed in the room acoustics literature 
via the concept of a modulation transfer function (MTF) (Houtgast and Steeneken 
1985) and thus has relied on modulation filters employed to analyze the energy in 
the envelope signal at specific modulation points chosen along a logarithmic scale. 
An equivalent readout can be obtained using linearly spaced filters or by directly 
employing a Fourier transform on the compressed envelope signals. In either case, 
the resulting profile can then be combined across frequency bands and properly 
binned and scaled to yield an amplitude modulation spectrum that reflects envelope 
energies along different modulation frequencies. A major underlying assumption in 
this transformation is that such modulation frequencies of interest are below the 
pitch range, focusing primarily on the true envelope patterns or slow fluctuations in 
the signal. A number of constraints in the design of the processing steps must be 
considered in order to avoid artifacts or distortions that could mislead the readout of 
the spectrum profile (Qin Li and Les Atlas 2005).

12.2.4  Domain-Centric Representations

Some approaches have considered more structured analyses of the signal. In the 
case of speech sounds, the source-filter model of speech production has led to 
widely used techniques such as Linear Predictive Coding (LPC) (Schroeder and 
Atal 1985; see Caetano, Saitis, and Siedenburg, Chap. 11). The approach builds on 
the minimal but powerful simplification of speech production as a coupling of a 
vibrating source that generates the carrier signal with a filter that colors this carrier, 
hence giving speech its spectral shapes. As such, being able to decompose the signal 
into these two fundamental components disentangles the voicing characteristics pri-
marily present in the source from the timbral cues primarily shaped by the filter, 

Fig. 12.2 Schematic of processing stages to derive the temporal modulation spectrum from an 
acoustic signal. The acoustic signal undergoes an initial analysis to map it onto a time-frequency 
representation before transformations of this spectrogram extract a temporal modulation spectrum 
from the envelope across different frequency channels. DFT, discrete Fourier transform; RMS, 
root-mean-squared

12 Modulation in Speech and Music



344

though there is a strong interaction between the two. From a linear systems point of 
view, separating the source (glottal signal) from the system (parameters of the vocal 
tract) means that the current speech sample can be closely approximated as a linear 
combination of past samples (hence the name linear predictive coding) (Rabiner and 
Schafer 2010). While an oversimplification of the complex dynamics of speech pro-
duction, LPC modeling offers an indirect, yet effective, account of the spectral 
modulations shaping phonetic tokens of speech signals, though the temporal dynam-
ics are often ignored by assuming the system (vocal tract) is quasi-stationary over 
short periods of time that span the analysis window.

A similar decomposition of source and filter cues underlies the widely popular 
cepstral decomposition, which provides a transformation of the filter characteristics 
in the cepstral domain. The cepstrum (a rotated version of the word spectrum) is an 
application of homomorphic signal processing techniques that apply a nonlinear 
mapping to a new domain wherein two components of a signal can be disentangled 
or deconvolved (Rabiner and Schafer 2010). Applied to speech signals, the power 
cepstrum of a signal is defined as the squared magnitude of the inverse Fourier 
transform of the logarithm of the magnitude of the Fourier transform of a signal 
(Caetano, Saitis, and Siedenburg, Chap. 11). Effectively, the cepstrum domain sepa-
rates the slowly varying envelope (or modulation) signal from the rapidly varying 
excitation carrier signal, allowing the analysis of each component separately. The 
result is cepstral coefficients (and the related mel-frequency cepstral coefficients or 
MFCC) that offer an effective account of phoneme-dependent signal characteristics 
(Childers et al. 1977). Much like LPC, cepstral analysis remains limited to static 
representation of short segments of the speech signal (typically of the order of a 
phoneme) and focuses solely on the spectral characteristics of the modulating 
envelope.

Other approaches have been used to extend these representations to the time 
domain by computing derivative and acceleration over time, often referred to as 
delta and delta-delta coefficients of the signal, in an attempt to capture some of the 
temporal dynamics in the speech signal driven by prosodic and syllabic rhythms. 
While derivatives are rather simplistic extensions to capture the intricate temporal 
structure of the vocal tract during speech production, techniques such as LPC and 
MFCC remain powerful tools that provide a basic bread-and-butter analysis of 
speech signals with a formidable impact on many applications of speech analysis 
(Chen and Jokinen 2010; Hintz 2016). Their popularity speaks to the tremendous 
redundancies in speech signals as well as the powerful impact of a simple source- 
filter model in capturing some of the nuances of how speech signals are shaped and 
how they carry information.

While this source-filter view is rather unique to the speech production system, 
it is also applicable and quite popular for music analysis (Collins 2009; also see 
Caetano, Saitis, and Siedenburg, Chap. 11). Many musical instruments can be 
viewed as pairings of a source (a vibrating object such as a string) coupled with 
a filter (the body of the instrument that shapes the sound produced). Unlike a 
unitary model of source-filter analysis in speech, a common production system 
cannot be applied across instruments since the production may depend on vibrat-
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ing strings, membranes, or air columns. As such, the distinction between the 
source and the filter is not as distinct as it is in speech and poses some challenges 
when applied to music signals, especially for non-Western music or polyphonic 
music (Muller et al. 2011).

While many approaches for music analysis borrow from a long tradition of 
speech processing, a number of elegant techniques have been developed specifi-
cally for music analysis particularly applied to domains of pitch, harmony, beat, 
tempo, and rhythm. The modulatory fluctuations in music, of both the spectral 
profile as well as the temporal envelope, have inspired a number of clever decom-
positions of music in order to hone in on the modulatory fluctuations in the sig-
nal. Some of these techniques extend the concept of a temporal modulation 
spectrum across multiple time scales. For instance, a family of modulation spec-
tra spanning fast tempi (called meter vectors) offer a hierarchy of modulation 
spectra that summarizes the temporal patterning of events in a music signal 
nested across multiple time constants (Schuller 2013).

Overall, the analysis of modulations in speech and music signals is often 
informed by particular aspects of signal perception or production under study or 
with the ultimate goal of identification, recognition, or tracking. As such, the field 
enjoys a wide variety of tools developed from different perspectives that represent 
various facets of modulation. Ultimately, the modulation spectrum (in its many 
forms) has rather direct neurophysiological interpretations, as discussed in Sec. 
12.3, though the elucidation of the exact substrate of specific forms of modulation 
encoding remains an open area of research.

12.3  Neurophysiological Interpretation of Modulations

The mapping of the informative acoustic attributes of an incoming signal takes dif-
ferent forms and varying levels of granularity as the signal is analyzed along the 
auditory pathway (Eggermont 2001). As early as cochlear processing, a sound sig-
nal entering the ear is decomposed along many bandpass frequency regions that 
span the basilar membrane, resulting in a time-frequency representation much like 
a short-term Fourier transform. The intricate details of sensory hair cell transduction 
shape the response across cochlear channels through a number of processing stages 
often modeled using half-wave rectification, low-pass filtering, and nonlinear com-
pressions (Yang et al. 1992; Ibrahim and Bruce 2010). This process, analogous to 
deriving the envelope of an analytic signal using the Hilbert transform, effectively 
tracks the temporal variations of the signal along different frequency bands, which 
not only highlights the overall temporal patterns of the signal but specifically under-
scores the profiles of onsets and sustained activity as well as rhythmic changes (e.g., 
temporal cross-sections in Fig. 12.1).

The details in this temporal profile are encoded with gradually lower resolutions 
along the auditory pathway where the neural code appears to be increasingly selec-
tive to the slower dynamics that modulate the signal profile (Miller et  al. 2002; 
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Escabi and Read 2003). This selectivity is reflected in the tuning parameters of 
neurons from the midbrain all the way to primary auditory cortex. Neural tuning 
characteristics are typically summarized using spectrotemporal receptive fields 
(STRF) (Elhilali et al. 2013). The STRF is a powerful tool in studying the selectivity 
of neurons to particular patterns in the stimulus. It typically treats a neuron as a 
system with a known input (the sound stimulus) and a measured output (the neural 
response). As is common in systems theory, the characteristics of a system (i.e., the 
system function) can be derived from its input and output or a class of inputs and 
corresponding outputs. This system function allows one to think of a neuron as a 
filter with a STRF that reflects the characteristics of the stimulus that best induces a 
strong response.

This STRF representation has been invaluable in shedding light on tuning char-
acteristics of neurons along the auditory pathway. Of particular interest to the cur-
rent discussion is the selectivity of neurons at the level of auditory cortex. While 
there is a great deal of variability across species and cortical layers, most auditory 
cortical neurons are sensitive to slow temporal and spectral modulation patterns 
(Depireux et al. 2001; Liu et al. 2003) commensurate with scales and dynamics of 
interest in modulation profiles, as discussed in Sect. 12.2. Unlike tuning in periph-
eral auditory nuclei, which captures mostly tonotopic energy across frequency, cor-
tical neurons exhibit tuning sensitivity across at least three dimensions: (1) best 
frequencies (BF) that span the entire auditory range; (2) bandwidths that span a 
wide range from very broad (∼2 octaves) to narrowly tuned (< 25% of an octave) 
(Schreiner and Sutter 1992; Versnel et  al. 1995); and (3) temporal modulation 
dynamics that range from very slow to fast (1–30 Hz) (Miller et al. 2002).

Interpreting this representation from the vantage point of signal modulations, 
neural responses of a whole population of cortical neurons are mostly driven by 
temporal dynamics in the signal that are commensurate with the sound envelope (< 
30 Hz). As a population, ensemble tuning of cortical neurons can therefore be tied 
to the temporal modulation spectrum of natural and complex sounds (Depireux 
et al. 2001; Miller et al. 2002). Complementing this axis are the spectral dynamics 
of the neural response across a cortical ensemble of neurons, which also spans spec-
tral energies typical in signals with a characteristic resonance structure (extended 
over many octaves), that are able to extract harmonic and subharmonic structures in 
the spectrum (Schreiner and Calhoun 1995; Kowalski et  al. 1996). The spectral 
selectivity of cortical neurons appears to match rather well the distinctive profile of 
spectral shapes in natural sounds, supporting the theory of a faithful alignment 
between acoustic modulation energy and neural encoding of such spectral modula-
tions, which ultimately guides processing and perception of complex sounds (Leaver 
and Rauschecker 2010). Taking both dimensions into account, the considerable 
match between the modulation spectrum (derived directly from a signal corpus) and 
the tuning characteristics of an ensemble of cortical STRFs has been argued in the 
literature as possible evidence for the underlying role of the mammalian auditory 
cortex in encoding information-bearing components of complex sounds (Singh and 
Theunissen 2003).
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While this view—at the ensemble level—reveals a formidable match between 
the acoustic properties of the signal and cortical neural tuning, the details of how 
these contours are derived are important to bear in mind because they impose a 
number of constraints on the modulation profiles under study and their interpreta-
tions. As mentioned earlier, the STRF is commonly interpreted through a systems 
theory view that deduces a system function based on the mapping between the input 
stimulus and the recorded neural response. Given interest in a system function that 
spans both time and frequency, a spectrotemporal representation of the stimulus is 
often preferred. However, the exact signal processing transformation used to map 
the spectrotemporal space dictates, to a great degree, the view and details emerging 
about the STRF. For instance, the tiling of the time-frequency space, the detailed 
resolution or sampling of such space, and the scaling of the amplitude energy profile 
of the stimulus can greatly affect the readout emerging from the neural mapping of 
this transformation and its match to the brain responses induced by complex acous-
tic stimuli.

Of particular interest is whether the use of a wavelet-based representation (based 
on logarithmic filter spacing) versus a spectrogram approach (akin to a Fourier 
transform) is more informative about the modulation spectrum and its neural under-
pinnings. On the one hand, wavelet-based analyses are generally preferred in 
explaining a number of perceptual findings, including modulation-tuning thresholds 
(Chi et al. 1999), given the closer biological realism in mimicking the frequency 
resolution provided by the auditory periphery. On the other hand, the time-frequency 
resolution tradeoff allows more modulation dynamics at the higher frequency bands 
of a wavelet representation and could magnify the effect of faster temporal dynam-
ics. As such, linearly spaced filters have been preferred for deriving modulation 
spectra, especially when considering the temporal dynamics (Jepsen et  al. 2008; 
Elliott and Theunissen 2009).

Though it is difficult to objectively quantify and compare the adequacy of dif-
ferent time-frequency mappings, a common technique used in the literature is to 
assess the goodness-of-fit for different mappings. A report by Gill et al. (2006) 
performed a systematic study of sound representations in an effort to elucidate 
the importance of certain factors in the derivation of neuronal STRFs. The study 
examined a number of parameters, particularly the use of linear versus logarith-
mic spacing of modulation filters, in deriving the time-frequency representation 
of the signal. Gill et al. (2006) found little evidence for a clear advantage in using 
linear versus logarithmic filter tiling for the derivation of time-frequency spec-
trograms of the stimulus and, subsequently, for the goodness-of-fit models of 
auditory neurons in the songbird midbrain and forebrain.

In contrast to the different ways of spectral tiling, which show little to no effect, 
Gill et al. (2006) reported stronger effects of adaptive gain control and amplitude 
compression of the stimulus in assessing auditory tuning. Those two aspects reflect 
the need for nonlinear transformations (both static and dynamic) in characterizing 
the neural underpinnings of auditory tuning to sound modulations. Nonlinear map-
pings of the time-frequency profile of the stimulus not only reflect the complex 
nature of neural processing along the auditory pathway, they also highlight the mul-
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tiplexed layers of information-bearing components of natural sounds (Santoro et al. 
2014). Reducing the concept of modulations to an envelope riding on top of a carrier 
is too simple to explain its role in timbre perception, especially for complex sounds.

12.4  How Informative are Modulations?

12.4.1  Modulations in Speech

What does the speech modulation spectrum reveal about understanding spoken lan-
guage? Work dating a few decades back showed that comprehension of speech 
material is highly impaired in acoustic environments where distortions attenuate 
energies between 2–8 Hz (Steeneken and Houtgast 1979; Houtgast and Steeneken 
1985). Those observations were further corroborated by later work in different lan-
guages that showed a dramatic decline in intelligibility if the integrity of the tempo-
ral modulation profile of speech was altered (with operations such as low-pass or 
bandpass filtering) (Drullman et al. 1994; Arai et al. 1999). Similar distortions dis-
rupting the integrity of the spectral modulation profile by phase jitter or bandpass 
filtering are also equally detrimental to intelligibility, even if they do not alter the 
temporal envelope profile of speech (Arai and Greenberg 1998; Elhilali et al. 2003). 
In contrast, numerous studies have argued that any manipulations of speech that do 
not disrupt the integrity of its spectrotemporal modulations are harmless to its intel-
ligibility (Shannon et al. 1995; Zeng et al. 2005). All in all, there is growing evi-
dence that the spectrotemporal features captured by the speech MPS (see Sect. 
12.2.2) offer a representation that closely maintains the phonetic identity of the 
sound as perceived by human listeners (Elliott and Theunissen 2009). The fidelity 
of the speech MPS correlates closely with intelligibility levels of speech in the pres-
ence of ambient noise and other distortions (Elhilali and Shamma 2008). The more 
a noise distorts the speech MPS, the more the decline of speech intelligibility. 
Conversely, noises that fall outside the core acoustic energy of the speech MPS have 
little effect on its intelligibility levels (Carlin et al. 2012).

The role of the spectrotemporal modulations of speech as information-bearing 
components has been leveraged extensively to sample speech signals for many 
applications, particularly automatic speech recognition (ASR) in the presence of 
background noise. Modulation-based analysis has enjoyed a lot of success as front- 
ends for ASR systems. Most studies have focused on the temporal evolution of the 
signal envelope to quantify modulation spectra (Kingsbury et al. 1998; Moritz et al. 
2011), or estimations of the envelope pattern using temporal envelopes (Hermansky 
and Sharma 1999; Morgan et al. 2004), or using frequency-domain linear prediction 
(FDLP) (Athineos and Ellis 2003; Ganapathy et al. 2010). Also, a few attempts have 
been made to extend the analysis of modulations to both spectral and temporal 
domains; these studies have focused mainly on using two-dimensional Gabor filters 
(or other variants) as localized features for analysis of speech (Kleinschmidt 2003; 
Meyer et al. 2011). Across all of these different representations, the common thread 
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is that once the speech signal is mapped onto a space that directly highlights its 
modulation content, the fidelity of that representation is sufficient to maintain the 
speech content and facilitate its robust recognition (Nemala et al. 2013). As such, 
this robustness provides empirical corroboration that such envelope modulations are 
indeed important information-bearing components of speech.

A faithful representation of speech signals has direct relevance for hearing pros-
thetics, particularly cochlear implants (CI), for which the fidelity of the signal has 
direct perceptual implications for the user (for more on timbre perception by CI 
users, see Marozeau and Lamping, Chap. 10). Speech modulations along the spec-
tral axis are of particular interest in the case of cochlear implants because they dic-
tate the resolution of the frequency axis and, ultimately, the channel capacity of the 
prosthetic device. Numerous studies have reported minimal disruption of speech 
comprehension in noise-free environments when only a few frequency channels are 
present over a range of hundreds of Hertz below 4  kHz (Shannon et  al. 1995). 
Importantly, as few as four channels (i.e., a spectral resolution as low as 1.6 cycles/
octave) are sufficient to maintain intelligibility. Such resolution is generally too low 
for acceptable levels of speech recognition in noise and also results in impoverished 
music perception (as discussed in Sec. 12.4.2). By the same token, it has been 
argued that fully resolving formant spectral peaks (up to 2 cycles/octave) results in 
great improvement in intelligibility, especially when speech is corrupted with noise 
(Friesen et al. 2001; Elliott and Theunissen 2009). The tradeoff between the spectral 
resolution sufficient for speech perception in quiet settings and the spectral resolu-
tion necessary for speech recognition in the presence of noise remains a matter of 
debate (Friesen et al. 2001; Croghan et al. 2017). This is especially important given 
the variability across listeners in their ability to utilize the spectrotemporal cues 
available to them.

The debate over modulations and spectrotemporal resolutions necessary for 
speech perception highlight the fact that there is more to speech than just its enve-
lope (Moore 2014). While the view of modulations as an envelope fluctuation riding 
a fast carrier is true to a great extent, that view conceals the complex role played by 
the underlying fast structure of the signal in complementing the representation, and 
ultimately the perception, of speech signals. The temporal fine-structure and  spectral 
details play key roles in speech perception in noise (Qin and Oxenham 2003; 
Shamma and Lorenzi 2013), sound localization (Smith et  al. 2002), lexical-tone 
perception (Xu and Pfingst 2003), repetition or residue pitch perception (deBoer 
1976), and fundamental frequency discrimination (Houtsma and Smurzynski 1990). 
Psychophysical evidence suggests that one of the advantages that normal subjects 
have over hearing-impaired listeners is improved local target-to-masker ratios, 
especially in the presence of spectrally and temporally fluctuating backgrounds 
(Peters et al. 1998; Qin and Oxenham 2003). The notion of listening in the spectral 
and temporal “dips” of the masker sounds is less realizable for hearing impaired 
listeners because of poor spectral selectivity and reduced temporal resolution 
(Glasberg and Moore 1992).

Fine details of speech (especially along the spectrum) are also crucial for dealing 
with stationary and narrowband noises and pitch-centric speech processing 
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(McAuley et al. 2005; Wang and Quatieri 2012). Hence, one has to be careful in 
interpreting the perceptual salience of the slow envelope for speech perception as an 
exhaustive account of the speech signal. Reducing the speech signal to a dichotomy 
consisting of two independent components—envelope and fine-structure—is a 
flawed premise. The envelope and fine-structure components are not only impossi-
ble to tease apart, but they also convey complementary information about the speech 
signal, especially in everyday listening environments (Shamma and Lorenzi 2013).

12.4.2  Modulations in Music

Much like speech, music signals carry a multiplexed and highly layered structure of 
dynamics both spectrally and temporally. Music perception evokes a complex expe-
rience that spans multiple elements that include pitch, melody, timbre, and rhythm 
among others. The representations of signal modulations in their different forms 
directly encode many facets of these musical attributes (see Caetano, Saitis, and 
Siedenburg, Chap. 11). Among musical elements, modulations have a very tight 
affiliation with the perception of timbre both in terms of sound identity but also as 
musical quality.

Acoustically, a musical note is shaped by the physical constraints of the instru-
ments as well as the motor control of the player. These constraints whittle the acous-
tic signal with modulatory envelopes that carry some of the timbral properties of 
music. The acoustic signature of these constraints naturally shapes both spectral and 
temporal profiles of the acoustic signal, and they ultimately inform the perceptual 
experience as these cues are decoded by the auditory system. Numerous perceptual 
studies have shed light on these acoustic correlates (McAdams, Chap. 2; Agus, 
Suied, and Pressnitzer, Chap. 3) with spectrum as the most obvious candidate. The 
spectral shape of a musical note is naturally shaped by the vibration mode and reso-
nances of the instrument and that modulates not only the spectral energy profile but 
also frequency peaks, spectral sharpness and brightness, amplitudes of harmonic 
partials, spectral centroid, and spectral irregularities. The temporal envelope of the 
signal is also heavily modulated, and correlates of timbre can also be gleaned from 
the energy buildup, onset information, attack over time, and the spectral flux over 
time. All these attributes, spanning both spectral and temporal modulations, not 
only determine the identity of a musical instrument but also the perceived timbral 
quality of musical-instrument sounds.

In a study directly relating spectrotemporal modulations to the perception of 
timbre, Patil et al. (2012) explored the fidelity of neural activation patterns in mam-
malian auditory cortex in accurately replicating both classification of musical 
instruments as well as perceptual judgements of timbre similarities. The study 
examined the ability of a cortical mapping to reflect instrument-specific character-
istics. Patil et  al. (2012) specifically assessed whether a processing pipeline that 
mimicked the transformation along the auditory pathway up to primary auditory 
cortex was able to capture the instrument identity from a wide variety of isolated 
notes from eleven instruments playing 30–90 different pitches with 3–10 playing 
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styles, 3 dynamic levels, and 3 manufacturers for each instrument (an average of 
1980 tones per instrument). The model was able to distinguish the identity of differ-
ent instruments with an accuracy of 98.7%, corroborating the hypothesis that timbre 
percepts can be effectively explained by the joint spectrotemporal analysis per-
formed at the level of mammalian auditory cortex.

Patil et al. (2012) also examined a more stringent constraint to explore how well 
this cortical mapping reflected distances between instruments that correlated with 
the perceptual judgements of timbre similarity by human listeners. In other words, 
it is not sufficient to judge whether a timbre representation is able to distinguish a 
violin from a cello, but can it also discern that a violin is perceived as more similar 
to a cello than it is to a bassoon. The representation based on spectrotemporal recep-
tive fields was indeed able to project notes from individual instruments onto a space 
that maintains their relative distances according to similarity judgements of human 
listeners. The faithful representations of spectrotemporal modulations in the cortical 
space were correlated with human similarity judgements with an accuracy of 
r = 0.944.

While the relation between spectrotemporal modulation tuning at the level of 
primary auditory cortex and timbre perception is quite strong, it is important to note 
a number of observations. The fact that the timbre space spans a complex interplay 
of spectral and temporal dimensions is not surprising and has been established 
through a large body of work spanning many decades (see Siedenburg, Saitis, and 
McAdams, Chap. 1). What timbre analysis via a biomimetic cortical model sheds 
light on is the fact that the decoding of acoustic modulations along both time and 
frequency over a rich representational space appears to be necessary and sufficient 
to almost fully capture the complete set of acoustic features pertinent to instrument 
identity and timbre similarity. It also pushes forth the debate about the cardinality of 
a timbre space, one that extends beyond few descriptors to require a high number of 
dimensions. This direct relationship between modulations and timbre perception 
reinforces the theories tying modulation with information-bearing components of 
the musical signal.

One of caveats to this theory (that the study by Patil and colleagues brought to 
light) is that the modulation space cannot be a separable one, spanning marginally 
along time and frequency (Patil et al. 2012). Rather, the joint representation along 
both directions is crucial, emphasizing spectrotemporal dynamics in the timbre pro-
file (see McAdams, Chap. 2). For instance, frequency modulations (FM), such as 
vibrato, impose rich dynamics in music signals, and they can only be discerned 
reliably by examining the joint spectrotemporal space. The role of spectrotemporal 
modulations that underly music perception has been directly reported using psycho-
physical studies that correlate music perception abilities and modulation detection 
thresholds for time alone, frequency alone, and joint time-frequency (Choi et al. 
2018). The correlations are stronger with spectrotemporal modulation-detection 
thresholds, further corroborating the idea that the configuration of the timbre space 
directly invokes a modulation space based on joint spectrotemporal dynamics 
(Elliott et al. 2013).

Another important observation from the Patil et al. (2012) study is that timbre 
representation in a biomimetic spectrotemporal modulation space is only effective 
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at replicating human judgements when augmented by a nonlinear mapping bound-
ary. A number of studies, in fact, have established this nonlinear behavior, espe-
cially at the level of auditory cortex, as it pertains to encoding of complex sound 
patterns (Sadagopan and Wang 2009). The exact nature, neural underpinnings, and 
the specificity of this nonlinearity to different sound classes remain unclear. As 
such, the quest for a direct mapping between spectrotemporal modulations and a 
timbre space remains unfulfilled.

12.4.3  Common and Unique Modulation Profiles in Speech 
and Music

As one examines the relationship between modulation profiles and the perception of 
speech and music, a natural question that arises pertains to commonalties and differ-
ences between profiles of these two sound classes. While temporal dynamics of speech 
are widely diverse and multiscale (e.g., variations across speakers, languages, prosodic 
profiles), variations in musical temporal patterns are even more diverse across genres, 
performances, and arrangements (Patel 2008). An analysis of modulation temporal 
profiles contrasting speech with Western musical samples shows drastic differences 
between these two sound classes (Fig. 12.3). This analysis, reproduced from (Ding 
et al. 2017), depicts temporal modulation profiles obtained by computing a discrete 
Fourier transform (DFT) of narrowband power envelope signals representing the root-
mean-squared of the outputs of cochlear channels that correspond to four frequency 
bands. This processing contrasts the dynamics of a speech corpus, consisting of nine 
languages (American English, British English, Chinese, Danish, Dutch, French, 
German, Norwegian, and Swedish), against datasets of Western music samples that 
include classical music by single-voice string instruments and multi-voice instruments, 
symphonic ensembles, jazz, and rock (for details, see Ding et al. 2017). Immediately 
notable is the shift in the peak temporal modulation between speech and music. While 
speech has the now established peak around 4–8 Hz (typically attributed to physical 
dynamics of speech production articulators), the music dataset analyzed in this study 
shows visibly lower peaks with a plateau between 0.5–3 Hz. A number of physical and 
perceptual constraints can offer some explanations for the disparity. The kinematics of 
hand movements in music production (for the Western samples analyzed) impose a 
natural constraint on the temporal rates of movement with a preferred frequency of arm 
movements at around 1.5 Hz (Van Der Wel et al. 2009). There is also a relationship 
between emergent temporal modulations of music signals and underlying beats of the 
musical phrasing that also tend to highlight a rate of 1.5–3  Hz (van Noorden and 
Moelants 1999).

In addition to temporal modulation profiles, the distinction between speech and 
musical sounds is also very prominent with respect to their spectral profiles. Speech 
perception remains effective even over rather coarse sampling of the spectral axis. 
A case in point is the effectiveness of cochlear implants at conveying intelligible 
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speech with very few channels, at least in favorable listening conditions (Wilson 
2004). That is far from being the case for music perception (McDermott 2004), for 
which poor spectral resolution directly impacts melody recognition as well as tim-
bre perception, two crucial aspects of the complex experience that constitutes music 
perception. Fig. 12.3 reproduces an illustration by Shannon (2005) that highlights 
the effects of spectral resolution on the perception of speech and music signals in 
addition to the effect of difficulty of listening. Panel B provides a meta-analysis 
across a number of studies that examine speech and music recognition rates as a 
function of the number of spectral channels in a noise-band vocoder. Speech detec-
tion in quiet listening conditions is contrasted with the same task under more 
 challenging situations (including more difficult sentences, background noise, recog-
nition in a second language, etc.). The trends show a clear need for improved spec-
tral resolution under challenging conditions. This requirement for finer spectral 
resolution is further underscored when a task of melody recognition in the presence 
of competing melodies is used. This latter study results in the interesting contrast 
between speech versus melody identification: as low as 3 channels to achieve 75% 
correct identification of speech sentences in quiet listening conditions to as high as 
40 channels to achieve 75% correct identification of melodies (Smith et al. 2002).

An interesting question regarding the distinction between spectral and temporal 
modulations of speech and music signals is how the perceptual system integrates 
across these modulation cues. For speech signals, joint spectrotemporal modula-
tions capture temporal fluctuations of certain spectral peaks (e.g., formant transi-
tions or speech glides). But work on automatic speech recognition suggests that 
joint spectrotemporal modulations are not necessary to improve recognition of 
words in the presence of distortions (Schädler and Kollmeier 2015).
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Fig. 12.3 Modulation profiles in speech and music. (A) The modulation spectrum of speech 
(black), single-instrument (gray), and multi-part music (colors). (B) Meta-analysis incorporating 
results across many studies to examine speech and music recognition (y-axis) as a function of the 
number of spectral channels (x-axis) in a noise band vocoder (A reprinted from Ding et al. 2017; 
B reprinted from Shannon 2005; both used with permission from Elsevier)
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These results argue that capturing signal transitions along both time and fre-
quency may be less crucial for recognizing speech in noise. Instead, a reduced rep-
resentation of spectral and temporal modulations (separately) is argued to yield 
comparable recognition as the joint-modulation representation. Unfortunately, there 
have been limited extensions of this exploration to definitely rule out a role of joint 
spectrotemporal modulations in speech recognition.

In contrast, the role of joint spectrotemporal modulations in musical timbre has 
been clearly demonstrated. There is strong evidence that a separable space, span-
ning time and frequency separately, is insufficient to capture the nuances of timbre 
required for distinguishing the timbre of different musical instruments. Instead, a 
modulation representation of both time and frequency axes is important to explicitly 
encode key musical constructs such as frequency modulations common in string 
vibrato (Patil et al. 2012; Elliott et al. 2013).

The divergence in acoustic attributes of both sound classes offers a potential 
rationale for different neural circuits that underlie the processing of speech and 
music in the brain (Zatorre et  al. 2002; Norman-Haignere et  al. 2015). The left 
hemisphere plays a more prominent role in complex linguistic functions; whereas, 
the right hemisphere appears to notably favor tasks involving tonal patterns or spec-
tral processing, two aspects that are most related to the perception of music 
(Liégeois-Chauvel et al. 1998). This specialization beyond auditory cortex builds on 
an underlying common circuitry of mid-level and primary cortical representations 
that appear to focus primarily on extracting spectrotemporal modulations in incom-
ing complex sound patterns. These very modulations appear to be a crucial back-
bone needed to carry information about complex sounds such as speech and music.

12.5  Summary

Theoretically, modulation is nothing but a mapping of an acoustic signal that high-
lights its fluctuations or indicates how its energy changes over time and frequency. 
These modulations are shaped by the source from which the signal emanates; hence, 
they can inform about the physics of that source and ultimately the signal’s timbre. 
In practice, however, quantifying modulations is a nontrivial endeavor that takes 
many formulations and interpretations. Modulations of complex signals, such as 
speech and music, are a multifaceted construct that varies along multiple time scales 
and granularities, and they are shaped as much by the physics of the source as by the 
neural representations of acoustic energy in the brain. This chapter reviews some of 
the common representations of modulations and reflects on their perceptual and 
neural interpretation.

A number of questions surrounding the representation and role of modulations 
remain open. For example, what is the contribution of nonlinearities, which are 
pervasive in brain networks, in shaping the encoding of signal modulations in the 
auditory system? As discussed throughout this chapter, most constructs of modula-
tions rely on transformation of the signal energy to another domain via spectral 
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mappings such as the Fourier transform. These transformations maintain operations 
in the original vector space of time-frequency and, as such, are limited in their abil-
ity to manipulate or warp the mapping of spectrotemporal modulations. This is also 
true in the case of biomimetic constructs, such as spectrotemporal receptive fields, 
used to analyze neural activity in the central auditory system (Depireux and Elhilali 
2013). While the receptive field view of auditory processing offers a rich set of tools 
to explore the encoding of sound characteristics, they are very much limited by 
approximative assumptions of linearity that are often compensated for in backend 
systems by means of nonlinear kernels that are often used in machine learning 
(Hemery and Aucouturier 2015). Understanding these nonlinearities is not only 
essential in the study and modeling of brain networks but also crucial to truly grasp 
the role played by sound modulations in informing perception.

The encoding of modulations is likely to be further shaped by active engagement 
in listening tasks and deployment of cognitive processes, notably attention. These 
top-down processes are known to greatly modulate neural encoding of incoming 
signals (Shamma and Fritz 2014), yet their role in shaping the representation of 
signal modulations remains largely unknown. Future research efforts addressing 
these questions will shed light on aspects of modulations that the brain hones in on 
when listening in multisource environments, for instance, their function in helping 
the auditory system deal with the cocktail party problem (Elhilali 2017).
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Timbre from Sound Synthesis  
and High- Level Control Perspectives
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Abstract Exploring the many surprising facets of timbre through sound manipula-
tions has been a common practice among composers and instrument makers. The 
digital era radically changed the approach to sounds thanks to the unlimited possi-
bilities offered by computers, which made it possible to investigate sounds without 
physical constraints. In this chapter, we describe investigations on timbre based on 
the analysis-by-synthesis approach, which consists of using digital synthesis algo-
rithms to reproduce sounds and further modify the parameters of the algorithms to 
investigate their perceptual relevance. In the first part of the chapter, timbre is inves-
tigated in a musical context. An examination of the sound quality of different wood 
species used to make xylophones is first presented. Then the influence of physical 
control on instrumental timbre is described in the case of clarinet and cello perfor-
mances. In the second part of the chapter, investigations of environmental sounds 
are presented to identify invariant sound structures that can be considered as the 
backbone or the bare minimum of the information contained in a sound that enables 
the listener to recognize its source both in terms of structure (e.g. size, material) and 
action (e.g. hitting, scraping). Such invariants are generally composed of combina-
tions of audio descriptors (e.g., decay, attack, spectral density, and pitch). Various 
investigations on perceived sound properties responsible for the evocations of sound 
sources are identified and described through both basic and applied studies.
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13.1  Introduction

13.1.1  Historical Overview of Timbre and Instrumental 
Control

Timbre has been one of the main concerns for instrument makers, musicians, and 
composers throughout history. Certain instruments, such as organs, were particu-
larly well adapted to exploring various timbres due to the numerous pipes that made 
it possible to combine different harmonics. In the eighteenth century, Dom Bedos de 
Celles, a French Benedictine monk and organ maker, published a treatise entitled 
The Art of the Organ-Builder (L’art du facteur d’orgues) in which he not only 
describes the principles behind organ building but also the many ways of imitating 
certain instrumental timbres by adding or removing sounds of pipes tuned to mul-
tiples of the fundamental frequency (Dom Bedos 1766) (for a detailed description 
of organ structure and timbre, see Angster et  al. 2017). Such techniques, which 
constitute a practical application of the Fourier (1878) theorem on periodic func-
tions, are claimed to have been used as early as in the fifteenth century, that is, four 
centuries before Fourier published his fundamental theorem showing that sounds 
can be reconstituted by a sum of harmonics and before Helmholtz (1868) related 
timbre to the proportion of harmonic amplitudes.

When electricity became viable for use in technology thanks to Faraday in 1831, 
inventors started to build new musical instruments often based on the additive syn-
thesis technique, which consists of creating sounds by adding elementary signals, 
typically sine functions with different frequencies and amplitudes. Phonic wheels, 
with which the harmonics of the sounds could be added and removed to imitate 
timbres of both known and unknown instruments, were used to develop the 
Telharmonium in 1897. The Hammond organ developed in the 1930s was based on 
the same principle but with new control features. With the B-3 model, which offered 
control of the attack time (Caetano, Saitis, and Siedenburg, Chap. 11), the instru-
ment suddenly became extremely attractive to jazz musicians due to its new means 
of adjusting the degree of percussiveness of the sounds (De Wilde 2016). Another 
invention that focused on the possibilities of controlling timbre variations was the 
“ondes Martenot,” which was based on high-frequency (radio) waves (similarly to 
the more widespread theremin). This instrument was equipped with a six-octave 
keyboard, a sliding metal ring that enabled the performer to produce glissandi, as 
well as a drawer with timbre controls that made it possible to switch between differ-
ent waveforms (e.g., sinusoidal, triangle and square waves, pulse waves, and noises) 
and to route the instrument’s output to various loudspeakers providing either rever-
beration effects, sympathetic resonances, or “halo” effects (creation of diffuse 
sound fields).

Yet another instrument that offered a huge palette of new timbres was the modu-
lar Moog synthesizer developed in the 1960s, which enabled the creation of sounds 
using four basic modules, namely oscillators, amplifiers, filters, and envelopes. By 
offering fine envelope control of the attack, release, sustain, and decay parts of the 
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sound, an extremely rich and subtle timbre control was made possible for the musi-
cian. Unfortunately, the many control possibilities were not intuitive and made the 
first versions of the instrument difficult to use. These examples illustrate musicians’ 
and composers’ passionate quest for new timbres, which was nicely expressed by 
the composer Edgar Varèse (1917, p. 1): “I dream of instruments obedient to my 
thought and which with their contribution to a whole new world of unsuspected 
sounds, will lend themselves to the exigencies of my inner rhythm” (translated from 
the French by Louise Varèse).

13.1.2  Timbre Studies Induced by the Digital Era

In spite of the many amazing instruments dedicated to analog synthesis (obtained 
from electric pulses of varying amplitude), the arrival of the digital era, in which the 
computer was introduced, revolutionized our conception of musical sounds and per-
ception. In 1957, Max Mathews developed the first sound synthesis computer pro-
gram (MUSIC I) at the Bell Labs in the USA, which he used to create the first 
computer-generated musical piece in history (Mathews 1963). The use of sound 
synthesis enables one to generate an infinite number of sounds without being con-
strained by physics. Several pioneers in the field, such as Jean-Claude Risset, David 
Wessel, and John Chowning (all both composers and scientists), rapidly seized the 
opportunity to use this new tool as a means to establish links between perception 
and sound structures by developing an analysis-by-synthesis approach in which the 
reconstruction of the sound became the criterion for the relevance of the analysis. It 
was by such an approach that Risset (1965), for example, revealed the importance 
of the temporal evolution of different spectral components in trumpet sounds; his 
study pointed out that the increase in spectral bandwidth as a function of amplitude 
is linked to the brassy effect of the instrument. Similarly, Mathews et  al. (1965) 
managed to improve the realism of the attack of bowed string instruments by intro-
ducing frequency variations to synthetic sounds.

The analysis-by-synthesis approach also was used in the first studies on the per-
ceptual representation of timbre proposed by Grey (1977). The study involved con-
structing synthetic emulations of musical instruments in which certain parts of the 
signal were degraded through simple transformations. Through listening tests, cer-
tain acoustic parameters (e.g., the attack time and spectral centroid) were identified 
as relevant from a perceptual point of view. More recent studies based on either 
resynthesized sounds obtained from the analysis of recorded sounds or from synthe-
sized sounds that are not necessarily perfect imitations of the original sound have 
revealed several audio descriptors (Peeters et  al. 2011) that are representative of 
specific sound categories (McAdams, Chap. 2; Saitis and Weinzierl, Chap. 5).

At this stage one might think that Varèse’s dream of instruments that give access 
to any timbre that a composer imagines would be available due to the many studies 
that have established links between sound categories and audio descriptors. This is 
true in theory but not that easy in practice, since our ability to describe and control 
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sound structures to obtain given timbres is limited. In fact, digital sound synthesis is 
based on low-level parameters such as amplitudes and frequencies of spectral com-
ponents and their temporal evolution. This signal content is a consequence of the 
physical behavior of the source and does not necessarily reflect how the sound is 
perceived (McAdams, Chap. 2). A major challenge in the domain of digital synthe-
sis, therefore, is to unveil the sound structures that are responsible for the recognition 
of the sound source (e.g., size, shape) and the sound-producing action (e.g., hitting, 
scraping) in order to be able to reproduce and control such evocations in an intuitive 
manner. This means that various scientific disciplines must be associated in order to 
link perceptual and cognitive experiments with physical characteristics of sounds.

13.1.3  Source Recognition and Timbre

Several composers, psychologists, musicians, and scientists have worked on human 
perceptions of environmental sounds. During the late 1940s, the French scientist, 
philosopher, and musician Pierre Schaeffer introduced a new musical genre that he 
called “musique concrète” in the “Studio d’essai” of the French public radio (RTF). 
This new trend consisted of distributing recorded sounds for which the source could 
not be easily recognized over loudspeakers in order to favor reduced or acousmatic 
listening, thereby forcing listeners to focus on the sound itself and not on the source 
that created the sound. Schaeffer realized that the specification of the physical struc-
ture of the sound was not adequate to control the auditory effects because “all music 
is made to be heard” (Schaeffer 2017, p. 97), and the relation between the physical 
signal and the perception of musical sounds at the time was grossly insufficient 
from his viewpoint (also see Schaeffer 1966).

Schaeffer’s ideas can be found in later studies. For instance, Smalley (1994) 
introduced the term source bonding as “the natural tendency to relate sounds to sup-
posed sources and causes and to relate sounds to each other because they appear to 
have shared or associated origins.” Gaver (1993) distinguished what he called “eco-
logical or everyday listening” (hearing events per se) from analytical or musical 
listening (focusing on intrinsic sound properties as in the case of Schaeffer’s reduced 
listening). Gaver also took his inspiration from Gibson (1979), who introduced the 
ecological approach to perception in the visual domain. This theory supposes that 
our perception is direct, without any influence of inference or memory, and is based 
on the recognition of specific signal morphologies, which can be considered as 
invariant structures that transmit the perceptual information. In addition to Gaver 
(1993), several other authors have adapted (or at least partially integrated) the eco-
logical approach for use in the auditory domain (Warren and Verbrugge 1984; 
McAdams and Bigand 1993). The notion of invariant sound structures is particu-
larly interesting for sound synthesis and control purposes since the identification of 
such structures makes it possible to focus on evocative sound structures to produce 
sounds and sound metaphors, and it enables intuitive or high-level control of sounds 
from semantic descriptors (e.g., small, big, metal, wood, hollow, plain).
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Accordingly, this chapter is a discussion of timbre from the point of view of 
sound synthesis and control. In the first part, timbre and musical sounds are investi-
gated in various cases. First, wood species are evaluated by a xylophone maker in 
terms of sound quality. Then the link between instrumental control and timbre is 
examined in the case of clarinet and cello performances. In the second part, environ-
mental sounds are explored through studies based on brain imaging techniques cen-
tered on semiotics of sounds, that is, how meaning is attributed to sounds. Then the 
implications of audio descriptors are examined with regard to the identification of 
invariant sound structures responsible for the evocation of sound sources and events. 
Finally, particular mapping strategies between low-level synthesis parameters, 
audio descriptors, and semantic labels describing the sound sources for intuitive 
high-level control of sounds are considered.

13.2  Timbre Studies Based on Analysis-Synthesis 
Approaches in Musical Contexts

This section deals with timbre-related questions about musical instruments, in par-
ticular, the quality of musical sounds and the role of timbre in instrumental control 
and musical performances.

13.2.1  Timbre-Based Wood Selection by a Xylophone Maker

The mechanical properties of wood species strongly influence the sound quality. 
When choosing their wood species, xylophone makers carefully listen to the sounds 
they produce. Little is known about the relationship between the sound quality and 
the physical parameters characterizing wood species or the criteria used to choose 
wood. Aramaki et al. (2007) studied the perceptual criteria. For this purpose, a pro-
fessional xylophone maker was asked to evaluate samples of different tropical and 
subtropical wood species with the same geometry. Sounds produced by these sam-
ples were first recorded and classified by the instrument maker through a free clas-
sification test. Then the sounds were resynthesized and tuned to the same pitch 
before the same instrument maker performed a new classification. Statistical analy-
ses of both classifications revealed the influence of pitch on the xylophone maker’s 
judgements and pointed out the importance of two audio descriptors: frequency- 
dependent damping and spectral bandwidth, indicating that the instrument maker 
searched for highly resonant and crystal-clear sounds. These descriptors can be fur-
ther related to physical and anatomical characteristics of wood species, thereby pro-
viding recommendations for choosing attractive wood species for percussive 
instruments. Previous studies relating auditory cues to geometry and material prop-
erties of vibrating objects have pointed out the importance of internal friction related 
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to the damping factors of the spectral components (Lutfi and Oh 1997; Giordano 
and McAdams 2006) as hypothesized by Wildes and Richards (1988). Other studies 
on the sound quality of musical instruments have been performed for violins (Saitis 
et al. 2012, 2017). These studies were based on quantitative analyses of violinists’ 
preference judgements during playing tasks and psycholinguistic analyses of their 
spontaneous verbalizations describing the playing experience, and they led to a 
model linking auditory and haptic sensations to the timbre, quality, and playability 
of the instrument (cf. Saitis et al. 2018).

13.2.2  Timbre Control in Clarinet Performances

Investigations on musical timbre do not solely focus on the mechanical properties 
of the instrument itself but also on the way a musician can control timbre while 
playing the instrument. The following section describes a study on the influence of 
a clarinet player’s pressure and aperture on the resulting timbre, using a physical 
synthesis model (Barthet et al. 2010a), which is followed by an investigation of the 
influence of timbre on expressiveness in clarinet performance (Barthet et al. 2010b).

To draw a link between the control parameters and the resulting timbre in clarinet 
performance, a synthesis model was used to generate perfectly calibrated sounds 
(Guillemain et al. 2005). Fifteen sounds obtained by different values of reed aper-
ture and blowing pressure were evaluated through dissimilarity ratings. The statisti-
cal analyses of the perceptual evaluations resulted in a timbre space with dimensions 
that correlated well with attack time and spectral centroid for the first dimension, 
the energy ratio between odd and even harmonics for the second dimension, and the 
energy of the second to fourth harmonics for the third dimension (second tristimulus 
coefficient). A correlation between the control parameters and the timbre space 
could also be found, revealing that the pressure control correlated well with the third 
dimension and had a strong influence on the odd/even ratio. Furthermore, the reed 
aperture was well correlated with the first dimension and with the attack time and 
the spectral centroid (see Fig. 13.1). These results allowed for the prediction of the 
instrumental timbre from the values of the control parameters. Hence, small values 
of reed opening and blowing pressure result in long attack times and low spectral 
centroid values, while increasing reed aperture induces increases in the odd/even 
ratio. For more information on the acoustics of wind instruments, refer to Moore 
(2016) and Wolfe (2018).

Studies on musical performance have revealed rhythmic and intensity devia-
tions with respect to the musical score, leading to proposals of various musical 
rules (Sundberg 2000). Although timbre variations are likely to be used by musi-
cians as a means to add expressivity to the performance, they have been more or 
less ignored, probably for two reasons: (1) scores do not contain timbre specifica-
tions; and (2) timbre variations strongly depend on the specificities of each instru-
ment and,  therefore, might be difficult to integrate with general performance 
rules. In the study by Barthet et al. (2010b), timbre variations were analyzed in 
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order to investigate their influence on expressiveness in clarinet performance. 
Mechanical and expressive clarinet performances of excerpts from Bach and 
Mozart were recorded. An objective performance analysis was then conducted, 
focusing on the acoustic correlates of timbre. A strong interaction between the 
expressive intentions and the audio descriptors (attack time, spectral centroid, 
odd/even ratio) was observed for both musical excerpts. The timbre-related 
changes across expressive levels did not occur at every note but were specific to 
some notes or groups of notes in the musical phrases (such as the first note in a 
phrase or specific passages). The most salient changes were in the mean spectral 
centroid and odd/even ratio values and in the range of variation in the durations of 
the tones. These changes seemed to be made more frequently in the case of long 
notes (such as half and quarter notes), possibly because a performer needs a cer-
tain time to control the timbre while playing.

In a companion study, Barthet et al. (2011) examined the perceptual influence of 
certain acoustic timbre correlates (spectral centroid, SC), timing (intertone onset 
interval, IOI), and intensity (root-mean-squared envelope) on listeners’ preferences 
between various renderings. An analysis-by-synthesis approach was used to trans-
form previously recorded clarinet performances by reducing the expressive devia-
tions from the SC, the IOI, and the root-mean-squared envelope (dynamics). Twenty 
skilled musicians were asked to select which version (recorded versus transformed) 
they preferred in a paired-comparison task. The results showed that the removal of 
the SC variations most significantly decreased the musical preference of the perfor-
mances. That finding indicates the transformation altered the original timbre of the 
clarinet tones (the identity of the instrument) and drastically affected the time- 
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evolving spectral shapes, causing the tones to be static and not lively. This result 
suggests that acoustic morphology, which strongly depends on the context (i.e., the 
previous and following notes, a fast or slow musical tempo), is important to convey 
expressiveness in music. More recent studies have analyzed the combination of tim-
bre from different musical instruments and have examined how the timbres of cer-
tain instruments can blend together and whether musicians consciously control 
blend during performances (Lembke et al. 2017a, b). Those studies revealed that 
musicians adjusted their timbre, in particular the frequencies of the main formant or 
spectral centroid, depending on whether they had a role as leader or follower during 
the performance. Other studies have explored the more general role of timbre in 
orchestration and musical tension and proposed a typology of orchestral gestures 
based on large-scale timbral and textural changes (Goodchild et al. 2017; McAdams, 
Chap. 8).

13.2.3  Timbre and Ancillary Gestures

Another aspect that appears to be important for musical expressiveness is the musi-
cian’s movements during the performance. Are the sound-producing gestures solely 
responsible for the sound quality and expressiveness or do ancillary gestures that 
are not directly involved in the sound production also play a role? Several studies 
on ancillary gestures have been performed in the case of the clarinet (Wanderley 
et al. 2005; Desmet et al. 2012), the piano (Jensenius 2007; Thompson and Luck  
2012), the harp (Chadefaux et al. 2013), and the violin (Van Zijl and Luck 2013). 
In the case of clarinet performances, the body movements of the musician gener-
ated amplitude modulations of partials of the sounds, which were often perceived 
as beating effects. Such modulations are essentially due to changes in directivity of 
the instrument that follows the ancillary gestures of the musician. In the case of 
piano performance, a circular movement of the elbow enables a larger displacement 
of the hand (Jensenius 2007). This gesture depends on parts of the body that are not 
directly implied in the instrumental gesture (Thompson and Luck 2012). In a study 
on ancillary gestures in cello performances (Rozé et al. 2016, 2017), professional 
cellists were asked to play a score as expressively as possible in four postural con-
ditions. The four conditions were a normal condition (N), a mentally constrained 
condition in which the cellists were asked to move as little as possible (static men-
tal), and two physically constrained conditions in which the torso was attached to 
the back of the chair with a race harness (static chest) and, for the most constrained 
condition (Fig. 13.2), both the head and torso were immobilized with the addition 
of a neck collar (static chest, head).

A musical score was divided into six parts based on cello exercises with specific 
technical difficulties. The tempo (45 beats per minute) was given by a metronome 
before the beginning of each session and two bowing modes (detached and legato) 
were compared. Sounds and body movements were recorded. The analyses of the 
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performances revealed that, for certain notes, the timbre (and to a certain extent 
the rhythm) was modified in the fully constrained condition. In particular, in a spe-
cific passage of the score, a degradation of the timbre induced a noticeable percep-
tion of harshness. An analysis-by-synthesis approach associated with listening tests 
revealed that this phenomenon could be characterized by an energy transfer or a for-
mant shift toward higher-order harmonics, a decrease in attack time, and an increase 
in fluctuations of harmonic amplitudes.

Based on those results, a predictive model of perceived harshness was pro-
posed that depended on three audio descriptors: (1) the attack time; (2) the ratio 
between the first and second mel-frequency cepstral coefficients (MFCC), char-
acterizing slow fluctuations of the spectral envelope; and (3) the harmonic spec-
tral variation, reflecting the evolution of the energy of the harmonic components 
over time. The three-dimensional space resulting from this analysis presented 
tight analogies with the acoustic correlates of classical timbre spaces (McAdams, 
Chap. 2). The first dimension indicated that participants were particularly sensi-
tive to spectral fluctuation properties (harmonic spectral variation), while the 
second and third dimensions, respectively, were well explained by spectral attri-
butes (harmonic spectral centroid, the MFCC ratio) and a temporal attribute 
(the attack slope). This indicates that a greater brightness combined with a 
softer attack would contribute to an increase in the perceived harshness of a 
cello sound.

Fig. 13.2 Constrained 
postural condition in which 
the cellist is attached to the 
chair by a race harness, 
and his head is 
immobilized by a neck 
collar. The reflective 
markers on the picture 
enable body movement 
recordings by motion- 
capture cameras
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13.3  Semiotics of Environmental Sounds

In timbre research, musical sounds have been given a lot of attention since the first 
multidimensional representations proposed by Grey (McAdams, Chap. 2; Saitis and 
Weinzierl, Chap. 5). Fewer studies are available on environmental sounds, possibly 
because such sounds are hard to control and often complex to model from both 
physical and signal points of view. Although environmental sounds have been an 
important source of inspiration for composers throughout history, the focus in this 
section is not on the musical context but rather is on a pragmatic approach that con-
siders the way meaning is perceived and attributed to environmental sounds.

In daily life, people are confronted with environmental sounds that are more or 
less consciously processed. Sounds tell us about the weather, living creatures in our 
surroundings, potential dangers, for example, which means that our environment 
constantly communicates information to us. How do people interpret and attribute 
meaning to such sounds? Can these sounds provide new ways to communicate if we 
manage to extract their perceptual essence and further implement it in sound synthe-
sis processes? Can a common sense be attributed to such “environmental languages” 
that can be compared to the semantics of spoken languages?

As a first attempt to answer these questions, an investigation on the perception of 
isolated sounds would be interesting. One of the major issues that arises from the 
cognitive neuroscience point of view is whether similar neural networks are involved 
in the allocation of meaning in the case of language and that of sounds of other 
kinds. In a seminal study, Kutas and Hillyard (1980) showed that sentences that 
ended with words that were out of context (e.g., the fish is swimming in the river/
carpet) elicited a larger negative amplitude of the evoked-related potential (ERP) 
component (measured on the scalp of the subjects 400 ms after the onset of the 
incongruous word: the N400 component) than when the last word was congruent. 
The N400 has been widely used since that time to study semantic processing in 
language. Authors of recent studies used a priming procedure with nonlinguistic 
stimuli such as pictures, odors, music, and environmental sounds (for reviews, see 
Aramaki et al. 2009; Schön et al. 2009). In the next section, two priming experi-
ments are presented that used nonlinguistic stimuli to observe the negativity of ERP 
components for related versus unrelated stimuli. In the first case, priming effects 
induced by pairs of abstract sounds (favoring reduced listening) and by written 
words were investigated; in the second case, pairs of impact sounds evoking differ-
ent material categories were examined.

13.3.1  Priming with Abstract Sounds

Although the results of previous priming experiments have been interpreted 
mostly as reflecting some kind of conceptual priming between words and nonlin-
guistic stimuli, they may also reflect linguistically mediated effects. For instance, 
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watching a picture of a bird or listening to a birdsong might automatically activate 
the verbal label “bird”. The conceptual priming cannot be taken to be purely non-
linguistic, therefore, because of the implicit naming induced by processing the 
stimulus.

Certain studies have attempted to reduce the likelihood that a labeling process of 
this kind takes place. To this end, “abstract” sounds, which have the advantage of 
not being easily associated with an identifiable physical source, are useful (Schaeffer 
1966; Merer et al. 2011). Sounds of this kind include environmental sounds that 
cannot be easily identified by listeners or that can give rise to many different inter-
pretations that are dependent on the context. Abstract sounds also include synthe-
sized sounds and laboratory-generated sounds in general, if their origin is not clearly 
detectable. Note that alarm or warning sounds do not qualify as abstract sounds, 
since they obey specific acoustic and emotional criteria (Bergman et al. 2009). In 
practice, making recordings with a microphone close to the sound source, using 
musical instruments in untraditional ways, or using everyday objects (e.g., tools or 
toys) are common ways of creating abstract sounds. Sound synthesis methods such 
as granular synthesis, which consists of adding many very short (typically 1–50 ms) 
sonic grains to form larger acoustic events (Roads 1988), are also efficient means of 
creating abstract sounds.

In the present study conceptual priming tests were conducted using word/
sound pairs, for which the level of congruence between the prime and the target 
was varied. In the first experiment, a written word (the prime) was presented visu-
ally before an abstract sound (the target), and the participants had to decide 
whether or not the sound and the word matched. In the second experiment, the 
order of presentation was reversed. Results showed that participants were able to 
assess the relationship between the prime and the target in both sound/word and 
word/sound presentations, showing low intersubject variability and good consis-
tency. The contextualization of the abstract sound facilitated by the presentation 
of a word reduced the variability of the interpretations and led to a consensus 
between participants in spite of the fact that the sound sources were not easily 
recognizable. Electrophysiological data showed the occurrence of an enhanced 
negativity in the 250–600  ms latency range in response to unrelated targets as 
compared to related targets in both experiments, suggesting that similar neural 
networks are involved in the allocation of meaning in the case of language and 
sounds. In addition, differences in scalp topography were observed between word 
and sound targets (from frontocentral to centroparietal distributions), which can 
be taken to argue that the N400 effect encompasses different processes and may 
be influenced by both the high-level cognitive processing of the conceptual rela-
tion between two stimuli and lower-level perceptual processes that are linked with 
the specific acoustic features of the sounds, such as attack time, spectral centroid, 
spectral variation, and others (Schön et al. 2009). This means that a combination 
of sound features, called invariants (cf. Sect. 13.4.2), might be used by listeners to 
determine specific aspects of sounds.
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13.3.2  Priming with Material Categories

Pursuing this topic farther in a subsequent study, Aramaki et al. (2009) sought to 
completely avoid the use of words as primes or targets. Conceptual priming was 
therefore studied using a homogeneous class of nonlinguistic sounds (e.g., impact 
sounds) as both primes and targets. The degree of congruence between the prime 
and the target was varied in the following three experimental conditions: related, 
ambiguous, and unrelated. The priming effects induced in these conditions were 
then compared with those observed with linguistic sounds in the same group of 
participants.

Results showed that the error rate was highest with ambiguous targets, which 
also elicited larger N400-like components, than related targets in the case of both 
linguistic and nonlinguistic sounds. Aramaki et al. (2009) also found that N400-like 
components were activated in a sound-sound (rather than word-sound) design, 
showing that linguistic stimuli were not necessary for this component to be elicited. 
The N400-like component, therefore, may reflect a search for meaning that is not 
restricted to linguistic meaning. This study showed the existence of similar relation-
ships in the congruity processing of both nonlinguistic and linguistic target sounds, 
thereby confirming that sounds can be considered as an interesting way to convey 
meaningful messages.

13.4  Toward Intuitive Controls of Sounds

The identification of perceptually relevant signal morphologies is of great interest in 
the domain of sound synthesis since it opens a new world of control possibilities. 
When computer music was at its very beginning in the 1960s, the famous scientist 
John Pierce made the following enthusiastic statement about sounds made from 
computers: “Wonderful things would come out of that box if only we knew how to 
evoke them” (Pierce 1965, p. 150, emphasis added). In spite of the many synthesis 
algorithms that have been developed based on signal models (Kronland-Martinet 
et al. 1997; Cook and Scavone 1999) or physical models (Bensa et al. 2003; Bilbao 
and Webb 2013) that provide a perfect resynthesis of sounds (no difference is per-
ceived between the original and the synthesized sound), the issue of control is still 
a great challenge that prevents many potential users from considering sound synthe-
sis in their applications. This issue has always interested composers and musicians, 
and a large number of interfaces and control strategies for digital sound synthesis 
have been proposed in the musical domain, starting with the pioneering works of 
Moog (1987) to more recent works (Cook 2001; Gobin et al. 2003). An overview of 
digital musical interfaces can be found in Miranda and Wanderley (2006).

The first works on perceptual control were presented by David Wessel (1979) 
who proposed a new way to navigate within a perceptual sound space based on 
timbre space (Grey 1977), defined by Krimphoff et al. (1994, p. 625) as “the mental 
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organization of sound events at equal pitch, loudness and duration. The geometric 
distance between two timbres corresponds to their degree of perceived dissimilar-
ity.” Hence, instead of directly controlling the parameters of an additive synthesis 
algorithm, he defined a control of the audio descriptors that is correlated to the 
dimensions of the perceptual space, in particular the evolving spectral energy distri-
bution and various temporal features (either the attack rate or the extent of syn-
chronicity among the various components). Such a control was more intuitive than 
the control of basic signal parameters that defines synthesis algorithms, such as the 
frequencies and amplitudes of spectral components.

However, the sound manipulation remains difficult and insufficient for controls 
based on a direct description of the sound event (e.g. « the sound from a big wooden 
barrel rolling on gravels »). In this case a deeper analysis that enables to identify 
complex sound structures that are responsible for evoking sources and events is 
necessary to propose such intuitive controls based on verbal labels describing the 
perceived event. Such an approach necessitates a confrontation of distinct scientific 
domains: experimental psychology, cognitive neuroscience, acoustics, physics, and 
mathematics.

13.4.1  Evidence of Actions on Objects in Everyday Timbres

During the last 20 years, automobile manufacturers have shown an increasing inter-
est regarding the influence of sounds on the perceived quality of cars. A large vari-
ety of sound sources have been investigated, such as the noises from flashing lights 
and alarms (Suied et  al. 2008), the air conditioning system (Susini et  al. 2004; 
Roussarie 2005), and car horns (Lemaitre et al. 2009). Such sounds carry a lot of 
information that a driver (or a passenger) uses unconsciously. In the following sec-
tions two studies are presented that were aimed at linking the signal properties of 
car-door sounds and motor noise to the listeners’ impressions of automobile 
quality.

13.4.1.1  Door-Closure Sounds

The first study by Bezat (2007) was initiated by an automobile company whose 
employees noticed that the brief sound produced when slamming the car door was 
responsible for the customers’ mental impressions of the quality and the solidity of 
the car—this sound even was important for car sales! It was quite surprising that 
such a brief sound (duration less than 250 ms) could have any influence on the cus-
tomers. To understand how the sound influenced the customers, signal morpholo-
gies responsible for the evocation of solidity and quality of the car had to be found 
in order to propose a predictive model of this relationship (Bezat 2007). For this 
purpose, door-closure sounds obtained from recordings of car doors (different 
brands and car categories) were analyzed and evaluated. The perceptual judgements 
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of car doors were obtained from different types of listening tests. Following Gaver’s 
(1993) definition, both analytical and ecological listening were considered.

In the case of analytical (or musical) listening, the sound is described without 
reference to the event in order to reveal perceptually relevant signal morphologies 
useful for signal analysis. To incite participants to characterize sounds in this 
rather unnatural way, a sensory analysis method was used (Roussarie et al. 2004). 
For this purpose, naive subjects were trained during several sessions to define a 
minimal number of descriptors to qualify the sound they heard. Then the naïve 
subjects evaluated the stimuli. Through this method, a sensory profile could be 
obtained for each sound. The conditions for success of a sensory panel (consisting 
of the trained naïve subjects) are sound discriminability, consistency over time, 
and their consensus. This is the reason why such a long procedure is necessary to 
transform naive subjects into efficient judges in order to obtain their consensus on 
all the descriptors. This approach revealed that the door-closure sound is described 
mainly by the intensity (e.g., loud or soft) and by the onomatopoeias BONM (pro-
nounced [bɔm̃]) and KE (pronounced [kø]) as determined by the sensory panel. By 
comparing the analytical properties with expert listening, the BONM descriptor 
could be related to the low-frequency closure sound and the KE descriptor was 
related to the high- frequency contribution that characterizes the lock component in 
the car door signal.

In the case of ecological (or everyday) listening, the event associated with the 
sound characterized by a set of natural properties and the evoked associations were 
described. Listening tests with both naive and expert listeners were performed, 
revealing that naive listeners were able to discriminate the doors by their quality, 
solidity, energy of closure, door weight, and door closure effectiveness in a coherent 
manner. This is in line with previous studies (Kuwano et al. 2006) that resulted in 
coherent quality evaluations of car-door sounds across participants from semantic 
differential tests based on a predefined adjective scale (Saitis and Weinzierl, Chap. 5). 
The expert listeners identified the elements of the car door that contribute to the 
sound (the joints, the lock mechanism, and the door panel) in contrast to the more 
macroscopic evaluations of the naive listeners.

These different listening tests allowed the establishment of a network of percep-
tual properties of door-closure sounds (Fig. 13.3) that illustrated the links between 
the sensory panel’s description of the sounds (i.e., its analytical properties), the 
notion of weight and closure linked to the natural properties and, finally, the evoca-
tions of quality and solidity of the car. The impressions of solidity and quality were 
linked to the sensation of a heavy door and a gentle gesture, which in turn was 
characterized by the members of the sensory panel as closing sounds without flaws 
(e.g., vibrations) that were low-pitched with little lock presence (strong BONM and 
weak KE) and of low intensity. In line with these results, the influence of the weight 
of the car door on the perceived quality was also confirmed by Scholl and Amman 
(1999) in a study in which car-door noises were evaluated after physical modifica-
tions of the car door sources.

An analysis-synthesis approach based on empirical mode decomposition (EMD) 
(Huang et al. 1998) was then applied to separate the perceived source contributions 
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(lock and closure) contained in the sound. This method consists of identifying itera-
tively intrinsic mode functions (IMFs) of the signal (both amplitude and frequency 
modulated) and separating (on an oscillatory scale) fast components from slower 
ones. This is done by pointing out the located maxima and minima of the signal, 
constructing the superior and inferior envelopes, and then calculating the mean 
envelope. The first mode is thus obtained. The algorithm is then processed on the 
rest of the signal until the second mode is obtained. By finding EMD modes, the rest 
of the signal (the residue) has less and less extrema. The decomposition process 
stops when the last residue has only three extrema. The signal can then be repro-
duced perfectly by simple addition of the modes. Based on this signal analysis that 
enables separation of slow and rapid oscillations and the perceptual analyses, it 
could be concluded that an acceptable car-door noise should contain three impacts 
that evoke the latch mechanism (characterized as KE by the sensory panel) and one 
low-frequency impact that evokes the door impact (characterized as BOMN by the 
sensory panel).

An additive synthesis model based on exponentially damped sinusoids was then 
used to synthesize the sounds. By adjusting the amplitudes, the damping coeffi-
cients, and the time between the different impacts, car-door closure sounds corre-
sponding to different vehicle qualities could then be generated. Further listening 

Fig. 13.3 Relation between the sensory descriptors (onomatopoeia terms: BONM, KE; plus 
INTENSE), the natural properties (weight and energy closure), and the evocations of quality and 
solidity of a car for sounds during door closure. The bottom part of the figure refers to the the way 
intrinsic sound properties are perceived through analytical listening. The middle part refers to the 
way the different sources are perceived through natural listening, while the top part refers to the 
global impression of the car. The evocations of a heavy door and a gentle gesture induced the sen-
sation of a solid, high quality car
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tests were run using the synthesized stimuli in order to relate the signal parameters 
to the perceived quality. The results indicated that the energy and the damping of the 
door impact (linked to the evocation of the weight of the door) and the elapsed time 
between the four impacts (related to the evocation of a well-closed door) were found 
to mediate the perception of solidity and quality of the car (Bezat et al. 2014). This 
study confirmed that signal invariants evoking the solidity and quality of a car can 
be identified.

13.4.1.2  Motor Sounds

Another challenging study by Sciabica (2011) that sought to relate evocations and 
sound structures was proposed by the same car company and concerned the percep-
tion of motor noise during acceleration. The aim was to characterize the dynamic 
behavior of motor noise timbre in terms of “sportiness” and further propose a per-
ceptual control of a synthesis model related to the degree of sportiness.

Sounds perceived in car passenger compartments are the result of three acoustic 
sources: the engine sounds, the tire-road source, and the aerodynamic source. The 
sound from tire-road source is due to the interaction between the tires and the road 
and depends on three main parameters: car speed, tire texture, and road texture. The 
contact between tire and road generates low-frequency noise. The sound from the 
aerodynamic source is a broadband noise whose global sound level increases with 
speed. It mainly has a low-frequency energy distribution (below 400 Hz), but its 
perceptual contribution is also important in the high-frequency domain (up to 
1000  Hz). Indeed, aerodynamic noise mainly masks high engine orders, but its 
impact can also be observed at low engine orders. The engine sound is complex with 
rich overtones: the fundamental frequency varies with the engine rotation speed, 
and the level of each harmonic depends on the multiple resonances inside the car. 
When the engine sound is sufficiently audible in the car, it can be described by per-
ceptual attributes such as booming, brightness, and roughness. Booming is associ-
ated with a resonant low-frequency harmonic and can be considered as annoying for 
the driver (Chaunier et al. 2005). Increased brightness reflects the presence of audi-
ble high-order harmonics, whereas increased roughness reflects audible secondary 
harmonics that interact with the main harmonics. The resulting signal, therefore, is 
a mixture of several harmonics and a low-frequency broadband noise.

Although these perceptual attributes can be clearly identified at a given instant, 
they fail to properly characterize the dynamic variation of the car sounds during 
acceleration, for instance. Hence, the evocation of identity and perceived quality 
must be investigated in terms of timbre variations during acceleration. Several 
methods can be used to elucidate such timbre variations. In this study, a sensory 
analysis similar to the one used for car-door noise was first performed on various 
motor noises (Roussarie et al. 2004). Among the descriptors that were identified by 
the panel, three were considered essential to characterize the acceleration: “ON” 
(pronounced [ɔ]̃) characterizes the booming of the motor determined by the audibil-
ity of low order, even harmonics; “REU” (pronounced [rœ]) characterizes the 
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roughness of the sound; and “AN” (pronounced [ɑ]̃) translates the spectral richness 
of the motor noise provided by an increased intensity of the odd harmonics. It was 
hypothesized that the transition between ON and AN was linked to an increased 
impression of sportiness compared to a monotonous ON sound.

In addition to standard Fourier analyses (Caetano, Saitis, and Siedenburg, Chap. 11), 
an auditory model that focuses on the perceptually relevant parts of the motor noise 
was applied to the sound stimuli (Pressnitzer and Gnansia 2005). This model 
revealed an energy transfer from one group of harmonics toward another during 
acceleration (Fig. 13.4). To investigate the dynamic aspect of this energy transfer 
more thoroughly, vocal imitations in which subjects were asked to imitate an accel-
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Fig. 13.4 Spectrogram of engine noise during an increase in engine speed (A) and cochleogram 
of the same engine noise (B). In the lower part of the figure harmonics are indicated by solid lines. 
The dotted lines at 7 s and 8 s indicate a beating effect between 300 Hz and 400 Hz revealed by the 
cochleogram. (A from figure 7.4 and B from figure 7.5 in Sciabica 2011; used with permission)
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erating car were performed. Such approaches have been used, for instance, in the 
synthesis of guitar sounds using vocal imitation (Traube and Depalle 2004) and to 
extract relevant features of kitchen sounds (Lemaitre et  al. 2011; Lemaitre and 
Susini, Chap. 9). Vocal imitations are currently used to identify perceptually rele-
vant sound structures of evoked movements and materials (Bordonné et al. 2017).

The vocal imitations provided a simplified description of the dynamic evolution 
that established a link between the perceived sportiness and the ON/AN transitions. 
A source/filter synthesis method (which consists of filtering an input signal that 
generally is either a noise or a pulse train) was then developed to control both the 
roughness (determined by the source) and the formant structure of the sound (deter-
mined by the filter). The perceived sportiness could then be controlled intuitively by 
varying the characteristics of the filter to simulate the ON/AN transition and by 
modifying the density of the pulse train that constitutes the source related to the 
roughness (Sciabica et al. 2010, 2012).

13.4.2  Proposing a New Action/Object Paradigm for Sound 
Synthesis

The last part of this chapter presents the development of new synthesis tools based 
on perceptual and cognitive studies that unveil perceptually relevant sound mor-
phologies and the construction of synthesis algorithms that are based on these mor-
phologies and thereby enable intuitive sound control. Previous studies on the 
perception of various sound categories have led to a new sound synthesis paradigm 
called the action-object paradigm, which considers any sound as the result of an 
action on an object and is based on a semantic description of the sound. This para-
digm is coherent with the ecological approach to perception, initially proposed by 
Gibson (1979) in the case of vision, which suggests the existence of invariant mor-
phological structures associated with the recognition of objects (structural invari-
ants) and actions (transformational invariants). In this paradigm, the notions of 
action and object can be considered in a broad sense. Hence, the action can be 
associated with the dynamics of a sound (temporal evolution) and the object with a 
sound texture. This paradigm is in line with the phenomenological approach to 
sound listening adopted by Schaeffer (1966), who proposed a classification system 
of sounds that he called “typology of sound objects”. In this typology, Schaeffer 
proposes a general classification of sounds (both musical and environmental) that 
relates to the facture of sounds, that is, the way the energy spreads over time, and the 
mass related to the spectral content. Facture distinguishes sustained, iterative, and 
impulsive sounds and can be linked to the perceived action, whereas mass (or spec-
tral content) distinguishes sounds with constant, varying, or indefinable pitch and 
can be linked to the object (also see Saitis and Weinzierl, Chap. 5).

The action/object paradigm allows for the development of synthesizers that offer 
sound control from semantic descriptions of the events that created the sound, such 

S. Ystad et al.



379

as scraping a wooden plate, rubbing a metallic string, or rolling on stones (Conan 
et al. 2014b). Such synthesizers make it possible to continuously navigate in a sound 
space based on perceptual invariants of the acoustic signal. This new sound synthe-
sis approach constitutes a radical methodological change and offers new research 
perspectives in the domains of human perception and cognition, sound design, and 
musical creation.

13.4.2.1  Perception of Material Categories

A recent study by Aramaki et al. (2011) investigated the perceptual identification of 
different materials based on impact sounds (see also McAdams, Chap. 2; Agus, 
Suied, and Pressnitzer, Chap. 3). Particular attention was paid to three different 
materials: wood, metal, and glass. For this purpose, natural sounds were recorded, 
analyzed, resynthesized, and tuned to the same pitch class, ignoring octave, to 
obtain sets of synthetic sounds representative of each material category. A sound 
morphing process was then applied to obtain sound continua simulating progressive 
transitions between materials. This morphing process consisted of mixing the spec-
tra between sounds from different material categories and interpolating the damping 
laws of the two extreme sounds. Each progressive transition between materials was 
composed of twenty-two hybrid sounds. Participants were asked to categorize all 
the randomly presented sounds as wood, metal, or glass in a categorization task. 
Based on the response rates, “typical sounds” were defined as sounds that were clas-
sified by more than 70% of the participants in the same material category and 
“ambiguous sounds” as those that were classified by less than 70% of the partici-
pants in a given category. Note that these ambiguous sounds were used in the study 
presented in Sect. 13.3.2.

While performing the categorization task, reaction times and electrophysiologi-
cal data were collected using a standard ERP protocol. Analysis of the participants’ 
ERPs showed that the processing of metal sounds differed significantly from the 
processing of glass and wood sounds as early as 150 ms after the sound onset. These 
early differences most likely reflect the processing of spectral complexity (Shahin 
et al. 2005; Kuriki et al. 2006), whereas the later differences observed between the 
three material categories are likely to reflect differences in sound duration (i.e., dif-
ferences in damping) (see Alain et al. 2002; McAdams 1999).

The association between the results of the acoustic and electrophysiological 
analyses suggested that spectral complexity (more precisely the roughness) and 
both global damping and frequency-dependent damping are relevant cues explain-
ing the perceptual distinction among categories (Aramaki et al. 2011). In particular, 
both global and frequency-dependent damping differed between categories with 
metal sounds that had the weakest damping, on the one hand, and sounds from the 
wood category that were most strongly damped, on the other. Metal sounds also had 
the largest number of spectral components that introduced roughness in these 
sounds. Glass sounds had the smallest number of spectral components but a weaker 
damping than wood sounds.
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These results can be linked to the physical behavior of the sound sources in line 
with previous studies (see Klatzky et al. 2000; McAdams et al. 2010). The wave 
propagation process is altered by the characteristics of the medium when the mate-
rial changes. This process leads to dispersion (due to the stiffness of the material) 
and dissipation (due to loss mechanisms). Dispersion, which introduces inhar-
monicity in the spectrum, results from the fact that the wave propagation speed 
varies depending on the frequency. The dissipation is directly linked to the damping 
of the sound, which is generally frequency-dependent (high-frequency components 
are damped more quickly than low-frequency components). These results made it 
possible to determine the acoustic invariants associated with various sound catego-
ries and to propose a timbre space of material categories (Fig. 13.5).

The differences between typical and ambiguous sounds were smaller in the 
wood-metal and glass-metal continua than in the wood-glass continuum. This is 
interesting from an acoustic perspective because metal sounds typically present 
higher spectral complexity (related to the density and repartition of spectral compo-
nents) than both wood and glass sounds, which have more similar sound properties. 
Thus, ambiguous sounds in wood-metal and glass-metal continua were easier to 
categorize than those in the wood-glass continuum, and the ambiguity effect was 
smaller.

In addition, results showed that ambiguous sounds were associated with slower 
reaction times than typical sounds. As might be expected, ambiguous sounds are 
more difficult to categorize than typical sounds. This result is in line with previous 
findings in the literature showing slower response times for nonmeaningful than for 
meaningful sounds (e.g., Cummings et al. 2006).

The same categorization protocol was used in a more recent study with partici-
pants diagnosed with schizophrenia. The results interestingly revealed that the tran-
sitions between material categories were shallower for these participants than for 
control participants, suggesting the existence of perceptual impairments in such 
patients due to sensory processing dysfunctions (Micoulaud-Franchi et al. 2011).

Fig. 13.5 Timbre space of 
material categories. The 
distinction between glass, 
wood, and metal depends 
on three audio descriptors: 
global and relative 
damping and roughness. 
By acting on these three 
descriptors continuous 
transitions between 
different material 
categories can be 
synthesized
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The timbre space of material categories is particularly interesting from synthesis 
and control perspectives since timbre space provides cues for establishing links 
between low-level synthesis parameters (e.g., amplitudes, frequencies), acoustic 
descriptors describing pitch and timbre, and semantic labels (wood, metal, glass) 
that can be used in high-level control interfaces. The positions of the sounds in this 
material space tell us, for instance, how a sound that evokes wood can be trans-
formed into a sound that evokes metal—by decreasing the damping factors and 
increasing the roughness. Mapping strategies that enable intuitive controls can 
therefore be proposed (Fig. 13.6).

13.4.2.2  Perception of Shapes and Excitation

Previous acoustic studies on the links between perception and the physical charac-
teristics of sound sources have brought to light several important properties that can 
be used to identify the perceived effects of action on an object and the properties of 
the vibrating object itself (for reviews see Aramaki et al. 2009, 2010). In addition to 
the frequency-dependent damping and roughness that were found to be important 
for the perceptual identification of material properties (see McAdams, Chap. 2; 
Agus, Suied and Pressnitzer, Chap. 3), the perceived hardness of a mallet striking a 
metallic object is predictable from the characteristics of the attack time.

From a physical point of view, the shape of the impacted object determines the 
spectral content of the impact sound. The frequencies of the spectral components 
correspond to the so-called eigenfrequencies, which characterize the modes of the 
vibrating object and convey important perceptual information about the shape. 
Previous studies have investigated the auditory perception of physical attributes 
linked to shape, hollowness, or material. In particular, studies on the geometry of 
objects have demonstrated that height-width ratios and lengths could be recovered 
from sounds with reliable accuracy (Lakatos et al. 1997; Carello et al. 1998). Lutfi 
(2001) showed that the perception of hollowness could be related to frequency 
judgements and to some extent (depending on the subjects) to acoustic parameters 

Fig. 13.6 Three-level mapping strategy between basic synthesis parameters (low layer), audio 
descriptors (middle layer), and verbal descriptions top layer)

13 Timbre, Sound Synthesis, and Sound Control



382

such as damping. Rocchesso (2001) revealed that spherical cavities sounded brighter 
than cubic cavities, since sounds were more strongly absorbed in cubes than in 
spheres.

Rakovec et al. (2013) investigated the perception of shapes and found that sounds 
obtained from striking three-dimensional shapes (e.g., bowls, tubes) were easier to 
recognize than one-dimensional objects (e.g., bars, strings). The hollow and solid 
attributes appeared to be quite evocative since no confusion between hollow and 
solid occurred. The results also revealed a mutual influence between the perceived 
material and the perceived shape, in line with Tucker and Brown (2002) and 
Giordano (2003), who found that shape recognition abilities were limited and 
strongly depended on the material composition.

The perception of the size of the object is mainly correlated with pitch: large 
objects generally vibrate at lower eigenfrequencies than do small ones. In the case 
of quasi-harmonic sounds, we assume the pitch to be related to the frequency of the 
first spectral component. All of these observations lead to the hypothesis of a three- 
layer mapping strategy that links basic signal parameters via acoustic descriptors to 
high-level semantic control parameters (see Fig. 13.6).

13.4.2.3  Perception of Various Actions

Invariant sound structures can be linked to the evoked object, such as combinations 
of specific damping factors and spectral density in the case of material perception, 
pitch in the case of size perception, or harmonic structure in the case of shape per-
ception. The next question concerns whether invariants linked to the sound- 
producing action, called transformational invariants, can be found. For this purpose, 
several studies on continuous interactions between solid objects were performed by 
considering a subset of continuous interaction sounds: rubbing, scratching, and roll-
ing. Synthesis models for such sounds have already been proposed in previous stud-
ies. Some are based on physical modeling (Houben 2002; Stoelinga and Chaigne 
2007) or physically informed considerations (van den Doel et al. 2001; Rath and 
Rocchesso 2004). Others are based on analysis-synthesis schemes (Lagrange et al. 
2010; Lee et al. 2010).

Like the control space described in Sect. 13.4.2.1 that allows the user to control 
the perceived material and to morph continuously from one material to another 
(e.g., from glass to metal through a continuum of ambiguous materials), a control 
space that enables continuous control of evoked interactions was developed in this 
study (e.g., being able to synthesize a rubbing sound and slowly transform it into a 
rolling one). For this purpose, Conan et al. (2014a) first identified invariants related 
to the auditory perception of interactions. Phenomenological considerations, physi-
cal modeling, and qualitative signal analysis were investigated. They concluded that 
the interaction forces conveyed the relevant perceptual information regarding the 
type of interaction. In particular, the interaction force associated with rubbing and 
scratching sounds could be modeled as an impact series in which impacts are sepa-
rated by shorter time intervals for rubbing than for scratching. To evoke rolling 
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sounds, it is necessary to consider the strong correlation between the amplitudes of 
each impact and the time interval that separates them. These findings led to the 
design of a generic synthesis model that sought to reproduce those interaction 
forces. An intuitive control space was designed that enables continuous transitions 
between those interactions.

13.4.3  The Metaphorical Sound Synthesizer

By combining this “action space” with the simulation of the properties of the object 
(material and shape as described in Sects. 13.4.2.1 and 13.4.2.2), an interface that 
enables intuitive and interactive real-time control of evoked actions and objects 
could be designed, as illustrated in Fig. 13.7. This interface offers a large field of 
sound investigations in which the verbal descriptions of actions and objects only 
constitute intuitive support to the expression of the composer’s imagination. It 
should be mentioned that other invariant structures that are not described in this 
chapter have been identified in the case of evoked motion (Merer et al. 2013), and a 
synthesizer of environmental sounds offering intuitive control of auditory scenes 
(rain, waves, wind, fire, footsteps) has been developed by Verron and collaborators 
(2010). Even if the action/object approach is naturally adapted to the control of 
realistic sounds produced by objects belonging to our surroundings, one might won-
der if such a tool also could satisfy Varèse’s old dream about the creation of “a 
whole new world of unsuspected sounds”. Hence, the unexpected association 
between objects and actions might be a means to guide composers in their search for 
unsuspected or unheard sounds.

The sound space dedicated to the intuitive control of solid objects and their inter-
actions presented earlier in this chapter makes it possible to freely associate actions 
and objects. This means that it is possible to simulate physically impossible 

Fig. 13.7 Synthesis interface that enables intuitive and interactive real-time control of evoked 
actions and objects. The action control in the left part enables generation of sounds that evoke dif-
ferent sound-producing actions (e.g., rubbing, scratching); the material control in the middle panel 
evokes different material categories (e.g., wood, metal); the shape control in the right panel evokes 
different shapes (e.g., membrane, string, size)
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 situations and, for instance, to rub the wind, make a water drop bounce, or make an 
orchestra squeak. Even if it is difficult to describe sounds that we imagine with 
words from our language or with metaphoric expressions, new experiences reveal 
that such a control space opens the door to the creation of unsuspected sounds that 
conserve the cognitive references of objects and actions due to the invariant struc-
tures on which the control space is founded.

In addition to the navigation in this action space, the gesture can be taken into 
account in the control strategy. Indeed, for such continuous interactions, the under-
lying gesture is a fundamental attribute that can be conveyed in the dynamics of the 
sound (Merer et al. 2013; Thoret et al. 2014). Following the synthesis process dis-
cussed by van den Doel et al. (2001), the resulting interaction force is low-pass fil-
tered with a cutoff frequency directly related to the relative transversal velocity 
between the objects that interact (e.g., hand, plectrum) and the surface. When asso-
ciated with a biological law, a specific calibration of the velocity profile enables the 
evocation of a human gesture (Thoret et al. 2016). Such a synthesis tool has been 
used in several applications, for instance, for video games (Pruvost et al. 2015), and 
can be associated with a graphic tablet to sonify handwriting as a remediation device 
for dysgraphic children (Danna et al. 2015).

13.5  Summary

The analysis-by-synthesis approach can be used to identify timbre and, more gener-
ally, perceptually relevant sound morphologies. Frequency-dependent damping and 
spectral bandwidth were the most salient descriptors used by xylophone makers 
when choosing optimal wood species, indicating that they selected highly resonant 
and crystal-clear sounds. Investigations into the role of timbre in musical perfor-
mance revealed that musicians consciously used timbre variations to enhance 
expressiveness. In addition, a detailed study of cello performances showed that 
ancillary gestures were important and produced a round (as opposed to harsh) 
timbre.

In the second part of the chapter, particular attention was given to environmental 
sounds, both in order to better understand how meaning is conveyed by such sounds 
and to extract sound morphologies that enable the construction of synthesizers that 
offer easy, intuitive, and continuous sound controls. Electrophysiological measure-
ments have been conducted to investigate how sense is attributed to environmental 
sounds and to determine whether the brain activity associated with the interpreta-
tion of such sounds is similar to the brain activity observed in the case of language 
processing. Those studies confirmed the existence of a semiotics of isolated sounds, 
thus suggesting that a language of sounds might be drawn up based on invariant 
sound structures.

In the last part of the chapter, perceptually salient signal morphologies were 
identified and associated with evocations of quality, solidity, and sportiness for 
sounds produced by cars. Invariant structures linked to evocations of solid sounds 
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and their interactions could also be extracted and used to develop synthesizers that 
enable intuitive control from semantic descriptions of sound events. These develop-
ments open the way to new and captivating possibilities for using nonlinguistic 
sounds for communication. New approaches linked to machine learning (see 
Caetano, Saitis, and Siedenburg, Chap. 11) and neural responses obtained for spec-
trotemporal receptive fields (see Elhilali, Chap. 12) should facilitate the develop-
ment of new tools for generating sound metaphors (see Saitis and Weinzierl, Chap. 
5) based on invariant signal structures that can be used to evoke specific mental 
images via selected perceptual and cognitive attributes. These metaphors can be 
constructed from scratch or obtained by shaping initially inert sound textures using 
intuitive (high-level) control approaches.
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