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Abstract. In this paper, we propose a reduction method for the mul-
tiobjective multiclass support vector machine (MMSVM), one of all-
together method of the SVM. The method can maintain the discrimi-
nation ability, and reduce the computational complexity of the original
MMSVM. First, we derive an approximate convex multiobjective opti-
mization problem for the MMSVM by linearizing some constraints, and
we secondly restrict the normal vectors of classifier candidates by using
centroids obtained from the k-means clustering for each class dataset.
The derived problem can be solved by the reference point method based
on the centers of gravity of class datasets, in which the geometric margins
between all pairs are exactly maximized. Some numerical experiments
for benchmark problems show that the proposed method can reduce the
computational complexity without decreasing its generalization ability
widely.
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1 Introduction

The binary support vector machine (SVM) [12] is one of popular machine learn-
ing methods, which finds a classifier with a high classification ability by maximiz-
ing the geometric margin between data and a separating hyperplane. In addition,
various extended methods of the binary SVM have been investigated for multi-
class classification. In this paper, we focus on all-together (AT) method among
the extended ones, especially, the multiobjective multiclass SVM (MMSVM) [7].
It was reported that comparing with the simplest AT method maximizing func-
tional margins, the MMSVM can obtain a classifier with a higher classification
rate by maximizing exactly the geometric margin between each class pair. How-
ever, it requires a larger amount of computational resources than the simplest
AT and other methods [7–9].
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Therefore, in this paper, we propose a method of reducing the computa-
tional complexity without decreasing its generalization ability widely. First, we
derive an approximate convex multi-objective optimization problem (MOP) by
linearizing some constraints of the original non-convex MOP which is used to
find a classifier in MMSVM. Secondly, we restrict the normal vectors of classi-
fier candidates to a space spanned by centroids obtained from the preliminary
k-means clustering. Thirdly, we solve the derived MOP by applying the refer-
ence point method. Through numerical experiments for benchmark problems,
we evaluate performance of classifiers obtained by the proposed method and its
computational complexity.

2 Multiclass Classification

The multiclass classification means discriminating data into more than two
classes. We assume that a dataset (xi, yi), i = 1, . . . , l are generated by the
same distribution P (x, y), where xi ∈ Rn denotes an n-dimensional input, and
yi ∈ M := {1, . . . , m} denotes a label which the corresponding xi should be
classified into. The aim is finding a classifier f(x) which satisfies yi = f(xi), i =
1, . . . , l and which can correctly classify a new unknown input x from the same
distribution. In this paper, we assume that there exists an appropriate feature
space F and a corresponding function φ : Rn → F . Thus, we mainly discuss a
linear classification on F which uses the kernel method.

In the representative SVMs for multiclass classification such as one-against-
all (OAA) [2] and all-together (AT) methods [11,12], the following discriminant
function is often used:

f(x) = argmax
p∈M

wp�φ(x) + bp

where wp, bp, p ∈ M denote a weight vector and a bias value, respectively.
Thus, the aim is finding appropriate (wp, bp), p ∈ M .

2.1 SVM Maximizing Functional Margins

As the simplest AT method, the SVM maximizing the sum of functional mar-
gins was proposed in [11,12], which can be straightforwardly derived from the
binary SVM.

(AT) min
∑

p∈M

∑
q∈M ||wp − wq||2

s.t. (wp − wq)�φ(xi) + (bp − bq) ≥ 1, i ∈ Ip, q > p, p, q ∈ M,
(wq − wp)�φ(xi) + (bq − bp) ≥ 1, i ∈ Iq, q > p, p, q ∈ M,

where Ip := {i ∈ {1, . . . , l}| yi = p}, p ∈ M . Note that maximizing the functional
margin in binary SVM can guarantee exact maximization of the distance between
data and a separating hyperplane, called geometric margin, which can contribute
its high generalization ability. On the other hand, in the problem (AT) for the
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multiclass classification, maximizing functional margins 1/||wp − wq|| does not
necessarily guarantees the maximization of the geometric margins. Namely, the
functional margin for a class pair pq does not necessarily represent the distance
between the corresponding separating hyperplane:

(wp − wq)�φ(x) + (bp − bq) = 0

and the closest data in classes {p, q}, as pointed out in [7], which is represented by

dpq(w, b) = min
i∈Ip∪Iq

|(wp − wq)�φ(x)i + (bp − bq)|
‖wp − wq‖ , q > p, p, q ∈ M.

Thus, it might be difficult to expect the generalization ability similar to the
binary SVM. The method of maximizing exactly geometric margins was already
proposed in [7]. We introduce it in the next section.

2.2 SVM Maximizing Geometric Margins

In order to maximize exactly the geometric margins, an AT method called
MMSVM was already proposed, which was formulated as the following mul-
tiobjective optimization problem (MOP) [7]:

(M) max
w,b,σ

θ12(w, σ), . . . , θm−1,m(w, σ),

s.t. (wp − wq)�φ(xi) + (bp − bq) ≥ σpq, i ∈ Ip, q > p, p, q ∈ M,
(wq − wp)�φ(xi) + (bq − bp) ≥ σpq, i ∈ Iq, q > p, p, q ∈ M,
σpq ≥ 1, q > p, p, q ∈ M,

where we define θpq(w, σ) = σpq/‖wp − wq‖, q > p, p, q ∈ M. Note that
(M) has more than two objective functions, and the number of them is that of
all combinations of class pairs. In [7], it was shown that at any Pareto optimal
solution (w∗, b∗, σ∗) of (M), each of objective functional values θpq(w∗, σ∗) is
equal to the geometric margin dpq(w∗, b∗) of the corresponding class pair [7].

Since in general the optimal solutions of the MOP are often given as a set
called Pareto optimal solutions, and, in addition, (M) is not convex. The problem
is more difficult to solve than the single-objective optimization problem (SOP).
However, a method of finding a Pareto optimal solution by solving a convex SOP
was introduced, and the kernel method can be easily applied to (M).

Now, let’s consider the kernel method for (M). The weight vector wp of the
separating hyperplane is represented as a weighted sum of φ(xi) by introducing
new decision variables αp

i ∈ R, i = 1, . . . , l, p ∈ M :

wp =
l∑

i=1

αp
i φ(xi), p ∈ M. (1)
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Then, by defining K := (φ(x1), . . . , φ(xl))�(φ(x1), . . . , φ(xl)), αp :=
(αp

1, . . . , αp
l )

�, p ∈ M , θ̄pq(α, σ) := σpq/
√

(αp − αq)�K(αp − αq), q > p,
p, q ∈ M , κ(xi) := (k(x1, xi), . . . , k(xl, xi))�, i = 1, . . . , l, (M) can be rewrit-
ten as

(M2) max
α,b,σ

θ̄12(α, σ), . . . , θ̄(m−1)m(α, σ)

s.t. (αp − αq)�κ(xi) + (bp − bq) ≥ σpq, i ∈ Ip, q > p, p, q ∈ M,
(αq − αp)�κ(xi) + (bq − bp) ≥ σpq, i ∈ Iq, q > p, p, q ∈ M,
σpq ≥ 1, q > p, p, q ∈ M,

In addition, the discriminant function can be represented by f(x) =
argmax

p∈M
{αp∗�κ(x) + bp∗}, where (α∗, b∗, σ∗) is the Pareto optimal solution

of (M2).
As a method of solving (M2), the ε-constraint method is used, which is one

of popular scalarization methods for the MOP [4]. In the method, the SOP is
derived instead of (M2), in which one of objective functions of (M2) is used as
the objective function of the new SOP, and other objective functions are changed
into its constraints by using an appropriate constant vector ε. In addition, the
following transformation was used to solve the SOP [7,8].

Now, we focus on all positive eigenvalues values λ1, . . . , λτ of K, and the
corresponding eigenvectors t1, . . . , tτ , where τ > 0 denotes the number of the
positive eigenvalues. Then, we have that

K = [t1, . . . , tτ ]diag{λ1, . . . , λτ}[t1, . . . , tτ ]� =: TΛT� (2)

Then, new decision variables zp are defined as zp := Λ
1
2 T�αp, p ∈ M , and the

following convex SOP is obtained:

(εM2) max
z,b,σ

crs

‖zr − zs‖
s.t.

σpq

‖zp − zq‖ ≥ εpq, q > p, (p, q) �= (r, s), p, q ∈ M,

(zp − zq)�Λ
1
2 t̄i + (bp − bq) ≥ σpq, i ∈ Ip, q > p, p, q ∈ M,

(zq − zp)�Λ
1
2 t̄i + (bq − bp) ≥ σpq, i ∈ Iq, q > p, p, q ∈ M,

σpq ≥ 1, q > p, (p, q) �= (r, s), p, q ∈ M,
σrs = crs,

where t̄i� denotes the i-th row vector of T , the constant εpq, p, q ∈ M is appro-
priately selected for the feasibility of (εM2), and class pair rs is appropriately
selected. Note that the constraint σrs = crs with a sufficiently large constant crs

is added so that (εM2) is convex, and a large crs guarantees that the optimal
solution of (εM2) is Pareto optimal [7]. Moreover, (εM2) is a second-order cone
programming problem (SOCP), which is a convex problem having the second-
order and linear constraints, and which can be effectively solved by using some
primal-dual interior method [1]. In addition, numerical experiments showed that
the geometric margins of separating hyperplanes constructed by the optimal solu-
tion of (εM2) are larger than those obtained by the functional margin method
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(AT), and that classifiers of (M2) obtained by (εM2) have better classification
ability than (AT) [7–9].

Next, let us evaluate the computational resources required to solve (εM2)
and (AT). Since in (εM2), a constant vector ε is determined by the optimal
solution of (AT), (εM2) requires solving (AT). In addition, CPU time of solv-
ing an SOCP (εM2) is considerably larger than that of (AT) because of many
decision variables. Moreover, if the element number l of all datasets is large, the
diagonalization of l × l matrix K also requires a large amount of computational
resources. Therefore, in [5], an approximation method for (M) was proposed, in
which a single-objective SOCP is derived by introducing the sum of objective
functions of (M) and linearizing the right-hand side of the first and second con-
straints of (M). The SOCP is easily solved due to its convexity, and an feasible
solution of (M) can be easily obtained from the optimal solution of the SOCP.
The numerical experiments showed that the generalization ability of classifiers
obtained by approximation method is better than that of (AT).

In this paper, we derive an approximate MOP by using the same approxi-
mation technique, and, furthermore, we restrict the normal vectors of classifier
candidates to a space spanned by centroids obtained from a preliminary cluster-
ing in order to reduce its computational complexity.

3 Approximate MMSVM

In this section, we introduce the following problem by defining δpq := σ2
pq and

putting a constant upper limit ρ ≥ 1 on δpq, q > p, p, q ∈ M .

(S1)

min
w,b,δ

η12(w, δ), . . . , η(m−1)m(w, δ)

s.t. (wp − wq)�φ(xi) + (bp − bq) ≥ √
δpq, i ∈ Ip, q > p, p, q ∈ M,

(wq − wp)�φ(xi) + (bq − bp) ≥ √
δpq, i ∈ Iq, q > p, p, q ∈ M,

1 ≤ δpq ≤ ρ, q > p, p, q ∈ M.

Here, ηpq is defined by ηpq(w, δ) = ‖wp − wq‖2/2δpq, q > p, p, q ∈ M . If ρ is
sufficiently large, (S1) can be considered to be equivalent to (M). Then, in order
to approximate (S1), we replace the right-hand sides of the first and second
constraint inequalities with (δpq +

√
ρ)/(1 +

√
ρ) by using a constant ρ in the

same way to [5]. Then, we obtain

(S2)

min
w,b,δ

η12(w, δ), . . . , η(m−1)m(w, δ)

s.t. (wp − wq)�φ(xi) + (bp − bq) ≥ δpq +
√

ρ

1 +
√

ρ
, i ∈ Ip, q > p, p, q ∈ M,

(wq − wp)�φ(xi) + (bq − bp) ≥ δpq +
√

ρ

1 +
√

ρ
, i ∈ Iq, q > p, p, q ∈ M,

1 ≤ δpq ≤ ρ, q > p, p, q ∈ M.

Figure 1 shows the relation of
√

δ and (δ +
√

ρ)/(1 +
√

ρ), which shows that
√

δ ≥ δ+
√

ρ

1+
√

ρ
for any δ ∈ [1, ρ]. By making use of the property, for any Pareto
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Fig. 1. Approximate affine function

optimal solution (w, b, δ) of (S2), we can obtain a feasible solution (w, b, δ′) of
(S1) as follows:

δ′ =

⎛

⎝

(
δ12 +

√
ρ

1 +
√

ρ

)2

, . . . ,

(
δ(m−1)m +

√
ρ

1 +
√

ρ

)2
⎞

⎠

�

.

Since (S2) can be regarded as convex, it is easier to solve the problem than
(M2). In addition, we can show the following properties between solutions of
(S1) and (S2): The relation of objective function values at (w, b, δ) and (w, b, δ′)
is given by

ηpq(w, b, δ′)
ηpq(w, b, δ)

=
δpq

δ′
pq

≤ (1 +
√

ρ)2

4
√

ρ
, q > p, p, q ∈ M.

Thus, for the Pareto solution or the feasible solution (w̄, b̄, δ̄) of (S1) which
dominate (w, b, δ′) such that ηpq(w̄, b̄, δ̄) ≤ ηpq(w, b, δ′), q > p, p, q ∈ M, we have
that

ηpq(w, b, δ′) ≤ (1 +
√

ρ)2

4
√

ρ
ηpq(w̄, b̄, δ̄), q > p, p, q ∈ M.

The approximate method for MMSVM proposed in this section is called
AMMSVM.

4 AMMSVM Based on K-Means Clustering

Next, we introduce a dimension reduction which restricts the weights of (1) of
separating hyperplanes to AMMSVM. This method is based on the assumption
that the representation of appropriate weights of the separating hyperplanes
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does not need all datasets such as (1), and thus, the weights can be represented
by the weighted sum of a smaller number of data. Namely, instead of using all
φ(xi), i = 1, . . . , l, the method selects representative points in F for weights wp

of each p ∈ M . Since by using this restriction, the feasible region of the proposed
problem is smaller than the original (M2), solving time and used memories can
be expected to be widely reduced. At the same time, the proposed method keeps
all the constraints of (M2) which guarantee that all training data is correctly
classified. Thus, the method is quite different from a reduction method of deleting
training data by some preliminary technique [3]. The proposed method uses the
k-means clustering [6] with an appropriate number of clusters to each class data
φ(xi), i ∈ Ip, and centroids of obtained clusters are used as representative points
for the class.

4.1 k-Means Clustering

In the proposed method, the k-means clustering is applied to each dataset
φ(xi), i ∈ Ip for class p in order to obtain clusters {φ(xl)}l∈Ik

p
, k = 1, . . . , cp, such

that Ip = ∪cp
k=1I

k
p , individually, which means minimizing the following function:

Ep =
cp∑

k=1

∑

i∈Ik
p

‖φ(xi) − ψp,k‖2,

where cp denotes the number of clusters which is appropriately selected for class
p. In the numerical experiments at Sect. 5, we set cp = 
r|Ip|�, and r is a small
constant. Centroids of each cluster k are given by ψp,k =

∑
i∈Ik

p
φ(xi)/|Ik

p |. Here,
note that the kernel method can be easily applied to the clustering method.

It is well-known that the k-means does not necessarily find the global min-
imum of Ep. Thus, we executed 20 times k-means clustering and select the
centroids of the clustering in which the least Ep was obtained in the numerical
experiments.

4.2 Dimension Reduction Based on k-Means Clustering

The centroids obtained by the k-means clustering for the dataset in class p are
represented by ψp,k, k = 1, . . . , cp. By introducing new decision variables βp

q,k,
k = 1, . . . , np, p, q ∈ M , the weight wp of AMMSVM for class p ∈ M are given by

wp =
∑

q∈M

cp∑

h=1

βp
q,hψq,h = Ψβp (3)

where matrix Ψ and a decision vector βp is defined as

Ψ := (ψ1,1, ψ1,2, . . . , ψ1,c1 , ψ2,1, . . . , ψm,cm) ∈ Rcall×call ,

βp := (βp
1,1, β

p
1,2, . . . , β

p
1,c1

, βp
2,1, . . . , β

p
m,cm)� ∈ Rcall ,
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and call is defined as
∑

p∈M cp. Then, the discriminant function is represented by

f(x) = argmax
p

{
(Ψβp)�φ(x) + bp

}
,

and the decision variables (βp, bp), q > p, p, q ∈ M are determined by solving
the following MOP:

(KMS)

min
β,b,δ

1
2

‖Ψβ1 − Ψβ2‖2
δ12

, . . . ,
1
2

‖Ψβm−1 − Ψβm‖2
δ(m−1)m

s.t. (Ψβp − Ψβq)�φ(xi) + (bp − bq) ≥ δpq +
√

ρ

1 +
√

ρ
, i ∈ Ip, q > p, p, q ∈ M,

(Ψβq − Ψβp)�φ(xi) + (bq − bp) ≥ δpq +
√

ρ

1 +
√

ρ
, i ∈ Iq, q > p, p, q ∈ M,

1 ≤ δpq ≤ ρ, q > p, p, q ∈ M.

The geometric margins between all class pairs are maximized by solving (KMS)
under the restriction (3). Moreover, since a centroid of each cluster is represented
by the weighted sum of φ(xi), the kernel method can be applied to (KMS).

Now, similarly to (2), we have that Ψ�Ψ = T̂ Λ̂T̂�, where Λ̂ ∈ Rτc×τc is
a diagonal matrix whose diagonal components are all positive eigenvalues of
Ψ�Ψ , T ∈ Rcall×τc consists of the corresponding eigenvectors, and τc denotes
the number of the positive eigenvalues. Then, by introducing decision variables:

zp = Λ̂
1
2 T̂�βp, (4)

and defining as k̄p(x) :=
(∑

j∈I1
p
k(xj , x)/|I1p | , . . . ,

∑
j∈I

cp
p

k(xj , x)/|Icp
p |

)�

and κ̄(x) :=
(
k̄1(x), . . . , k̄m(x)

)�, we can transform (KMS) to the following
MOP:

(KMS2)

min
z,b,δ

1

2

‖z1 − z2‖2

δ12
, . . . ,

1

2

‖zm−1 − zm‖2

δ(m−1)m

s.t. (zp − zq)�Λ̂− 1
2 T̂ �κ̄(xi) + (bp − bq) ≥ δpq +

√
ρ

1 +
√

ρ
, i ∈ Ip, q > p, p, q ∈ M,

(zq − zp)�Λ̂− 1
2 T̂ �κ̄(xi) + (bq − bp) ≥ δpq +

√
ρ

1 +
√

ρ
, i ∈ Iq, q > p, p, q ∈ M,

1 ≤ δpq ≤ ρ, q > p, p, q ∈ M.
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We can easily show that any Pareto optimal solution of (KMS) is obtained by
solving (KMS2) as follows:

Theorem 1. For a Pareto optimal solution (z∗, b∗, δ∗) of (KMS2), a solution
(β∗, b∗, δ∗) of which β∗ is defined as βp∗ = T̂ Λ̂− 1

2 zp∗, p ∈ M is Pareto optimal
for (KMS). Conversely, for a Pareto optimal solution (β∗, b∗, δ∗) of (KMS),
(z∗, b∗, δ∗) in which z∗ is defined by (4) is Pareto optimal for (KMS2).

4.3 Solving Based on Reference Point Method

In this subsection, we apply the reference point method to solve (KMS2), which
finds a Pareto optimal solution by minimizing the distance between a given
reference point and Pareto optimal solutions in the objective space. The following
SOP can be derived:

(KMS3)

min
z,b,r,δ

max
p,q∈M

{ωpq(rpq − r∗
pq)} + μ

∑

p,q∈M

ωpqrpq

s.t. 2rpqδpq ≥ ‖zp − zq‖2, rpq ≥ 0, q > p, p, q ∈ M,

(zp − zq)�Λ̂− 1
2 T̂ �κ̄(xi) + (bp − bq) ≥ δpq +

√
ρ

1 +
√

ρ
, i ∈ Ip, q > p, p, q ∈ M,

(zq − zp)�Λ̂− 1
2 T̂ �κ̄(xi) + (bq − bp) ≥ δpq +

√
ρ

1 +
√

ρ
, i ∈ Iq, q > p, p, q ∈ M,

1 ≤ δpq ≤ ρ, q > p, p, q ∈ M.

Here, r∗
pq is a given reference point which is used as the criterion of minimizing. In

(KMS3), the distance between the reference point and Pareto optimal solutions
is measured by the augmented Tchebyshev function, in which ω is a weight
vector which determines a balance between objective functions, and μ shows the
rate of the second term to the first one. The weight vector ω and reference point
r∗ are selected as the following three kinds of pairs:

(R0) ωpq = 1, r∗
pq = 0,

(R1) ωpq = ‖gp − gq‖2, r∗
pq = 0,

(R2) ωpq = ‖gp − gq‖2, r∗
pq = 1/‖gp − gq‖2,

where gp denotes the center of gravity of the data set of class p, namely, gp =
(1/|Ip|)

∑
i∈Ip

φ(xi). The selection is based on the idea that the appropriate
balance of margins is roughly estimated at the balance of the distances between
the centers of gravity. Then, the discriminant function is represented by

f(x) = argmax
p

{
z∗p�Λ̂− 1

2 T̂� (
k(x1, xi), . . . , k(xl, xi)

)�
+ b∗p

}
. (5)

where (z∗, b∗, δ∗) denotes the optimal solution of (KMS3). Although (KMS3) is
not smooth, an equivalent smooth SOCP can be easily derived, which means
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that a Pareto optimal solution of (KMS3) can be easily obtained by solving the
SOCP. Moreover, in the numerical experiments, we solve the dual problem of
the smooth SOCP problem because its computational time can be expected to
be less than that of the original problem.

4.4 Comparison of Computational Complexities

Now, let us compare computational complexities of (εM2) and (KMS3). The
constant vector ε used in (εM2), are determined by solutions of (AT), which is a
large-scale quadratic optimization problem using all class datasets at once. On
the other hand, the calculation of centroids for (KMS3) requires a considerably
small amount of computational resources even if it is executed 20 times because
the k-means clustering is individually applied to each class dataset.

Next, let us compare the diagonalization of kernel matrices used in (εM2)
and the dual problem of (KMS3), and the numbers of the decision variables and
constraints of them. The size of matrices diagonalized for (εM2) and (KMS3) are
l × l and call × call, respectively. The numbers of decision variables of (εM2) and
the dual problem of (KMS3) are m(m+2τ +1)/2−1 and m(m+τc), respectively,
and the sizes of constraints of them are (m−1)(l+m/2)−1 and (m−1)(l+3m/2)),
respectively. Since in general, we have that m ≤ τc ≤ call � τ ≤ l, more
reduction can be expected if call is small.

5 Numerical Experiments

We applied the existing methods, AT and MMSVM and the variations of the pro-
posed methods to seven benchmark problems [10], and compared the mean cor-
rect classification rate and mean CPU time by using the 10-fold cross-validation,
in which hyperparameters were appropriately selected. To solve optimization
problems, we used software package MOSEK. As variations of the proposed
methods, we used the AMMSVM which does not use the dimension reduction
based on the k-means clustering and which is solved by the reference point
method, and KMSs in which r was varied in {0.05, 0.1, 0.15, 0.2}, which are rep-
resented by AMM, KMS5, KMS10, KMS15 and KMS20, respectively, and three
kinds of reference point and weights, R0, R1 and R2, were used for AMMSVM
and each KMS. We used the RBF kernel, namely, k(x, y) = exp

(−γ‖x − y‖2).
The results are shown in Tables 1 and 2. In Table 1, the numbers in parenthe-

ses denote the best hyperparameters of each method: (γ) in AT and MMSVM,
and (γ, ρ, μ) in AMMSVM and KMSs. The italic and bold number denote the
first and second best classification rate for each problem.

Table 1 shows that MMSVM obtained a high classification rate for many
problems, while the classification rates of AMMSVM and KMSs with a large r are
equal or slightly smaller than those of MMSVM. The classification rates of KMSs
mostly increase as r increases. In particular, although the rates are considerably
low if r is small for Ecoli, the highest rate was obtained by the KMS with r =
0.15. In addition, AMMSVM and KMSs achieved a higher rate than MMSVM
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for some problems. The superiority of AMMSVM and KMSs is considered to
be caused by the diversity of obtained solutions: The reference point method
used in AMMSVM and KMSs finds a solution under various kinds of balances of
objective functions, while in MMSVM, a single margin is maximized by the ε-
constraint method using the optimal solution of (AT). From Table 2, we can see
that AMMSVM reduced CPU time than AT or MMSVM without a dimension
reduction, and KMSs did more greatly for large-scale problems even if r = 0.15
or 0.20. Comparing performance of KMSs using three kinds of reference point
and weights, namely, KMSs with R0, R1 and R2, each method obtained a high
rate for different problems, though no significant difference was observed.

Table 2. Mean CPU time (sec) of four methods for benchmark problems

Wine Balance DNA Car Dermatology Zoo Ecoli

AT 0.313 4.567 104.677 258.805 12.566 1.103 21.233

MMSVM 0.802 15.727 854.189 1019.577 5.414 3.206 34.363

AMM R0 0.253 1.484 103.038 184.486 1.934 0.248 11.956

R1 0.441 1.478 103.688 162.613 1.930 0.295 11.625

R2 0.247 1.491 79.488 120.569 1.552 0.317 11.261

KMS5 R0 0.116 0.559 6.392 4.009 0.292 0.356 0.748

R1 0.169 0.614 6.144 3.942 0.645 0.370 0.409

R2 0.105 0.581 4.145 6.344 0.645 0.141 0.458

KMS10 R0 0.291 0.858 8.363 8.644 0.542 0.445 1.055

R1 0.294 0.878 12.692 8.431 0.950 0.123 0.830

R1 0.109 0.853 12.656 12.136 0.759 0.156 0.513

KMS15 R0 0.375 1.361 19.758 25.919 0.550 0.408 0.961

R1 0.373 1.242 15.536 26.998 1.280 0.130 0.923

R2 0.131 1.308 21.891 28.375 1.300 0.494 1.044

KMS20 R0 0.423 1.361 38.100 46.297 0.917 0.481 1.331

R1 0.455 1.828 38.447 48.706 1.538 0.195 1.314

R2 0.120 3.120 37.603 50.661 1.591 0.503 1.889

6 Conclusion

In this paper, we have proposed an approximate method of MMSVM which
approximates its non-convex MOP by linearizing the constraints, and a reduction
method which restricts the normal vectors of separating hyperplanes by using
centroids from the k-means clustering. Through numerical experiments, we have
observed that the proposed methods are effective to reduce the computational
resources without decreasing the classification ability widely.
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