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Abstract. Taking into account the time-varying, jump and leverage
effect characteristics of asset price fluctuations, we first obtain the asset
return rate model through the GJR-GARCH model (Glosten, Jagan-
nathan and Rundle-generalized autoregressive conditional heteroskedas-
ticity model) and introduce the infinite pure-jump Levy process into the
asset return rate model to improve the model’s accuracy. Then, to be
more consistent with reality and include more uncertainty factors, we
integrate the more generalized parabolic fuzzy variable (which can cover
the triangle and trapezoid fuzzy variable) to represent asset price volatil-
ity. Next, considering more general situations with fuzzy variables with
mixed distributions, we apply fuzzy simulation technology to the least
squares Monte Carlo algorithm to create fuzzy pricing numerical algo-
rithms, that is the fuzzy least squares Monte Carlo algorithm. Finally, by
using American options data from the Standard & Poor’s 100 index, we
empirically test our fuzzy pricing model with different widely used infi-
nite pure-jump Levy processes (the VG (variance gamma process), NIG
(normal inverse Gaussian process) and CGMY (Carr-Geman-Madan-Yor
process) under fuzzy and crisp environments. The results indicate that
the fuzzy option pricing model is more reasonable; the fuzzy interval can
cover the market prices of options and the prices that obtained by the
crisp option pricing model, the fuzzy option pricing model is feasible one.

Keywords: American option · Fuzzy set theory ·
Fuzzy simulation technology · Levy process · GJR-GARCH model ·
Least squares Monte Carlo approach

1 Introduction

The pricing problem of American options is usually solved with either analyt-
ical or numerical methods. Earlier studies mainly used analytical methods to
determine the price of American options: Johnson [1] used approximate analysis
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to determine the value of an American option under the assumption of no divi-
dend; Geske et al. [2] constructed a model to analyse an American option with a
dividend pay-out, but no closed-form solution was obtained. Therefore, numer-
ical methods began discussed to solve American option pricing; these include
commonly used binomial tree, finite difference, and least square Monte Carlo
methods, among others. Cox et al. [3] proposed the binomial tree method, which
offers simple and effective solutions, and it provides an accurate numerical solu-
tion by continuously shrinking the time step; therefore, it is often used as a ref-
erence to evaluate the accuracy of other numerical approaches. However, when
the model includes multiple random influencing factors, the number of values
increases exponentially to calculate in the binomial tree method, which often
leads to the curse of dimensionality. The finite difference method mainly con-
verts the asset pricing differential equation into a difference equation, and by
obtaining solutions through an iterative method, it mitigates the difficulty in
directly solving the differential equation. In 1978, Brennan et al. [4] applied this
calculation method in the pricing of American options, but the curse of dimen-
sionality persists when this method is used to solve high-dimensional problems.
The Monte Carlo method has the characteristic of forward simulation, so it
cannot be applied directly for the pricing of American options, which have a
backward iterative search characteristic. Longstaff et al. [5] modified the Monte
Carlo method by using the least squares approach and proposed the least squares
Monte Carlo algorithm, which solves the application difficulty of the said method
in the pricing of American options; they also provided empirical evidence of the
method effectiveness. This method uses the least squares approach to estimate
the expected value of continuous holding for each path. By comparing the val-
ues to the value associated with immediate exercise, the exercise point of each
path is determined. Finally, the value of the American option is obtained by
computing the discounted average value of each path’s exercise point.

The above calculation methods are effective in pricing American options;
however, these studies use the Black-Scholes (B-S) model as their theoretical
basis, in which the asset price random process is treated as a geometric Brown-
ian motion, which is unfit for real-life financial markets. Empirical studies have
demonstrated that fluctuations in asset price and rate of return are often char-
acterized by non-continuity, clustering and leverage effects; consequently, we
need to construct a more flexible asset pricing model to accurately reflect how
asset prices change in reality. Asset price usually jumps in movements, and by
adding a Levy process in the pricing model, we can construct a jump model with
random jumps of different strengths. Moreover, generalized autoregressive condi-
tional heteroskedasticity (GARCH) models are most frequently used to express
the volatility in asset price fluctuations and leverage effects, and such models are
highly expandable and more capable of providing accurate descriptions of volatil-
ity; therefore, by combining the two models to form the Levy-GARCH model,
we can better capture the characteristics of the volatility of the underlying asset.
The Levy-GARCH model is widely used in the pricing of European options, but
due to the complexity of American options, the model is less frequently applied
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as a theoretical model for American options. Based on the background described
above, jump measure, time-varying volatility and leverage effects are incorpo-
rated in this study to construct the Levy-GARCH pricing model for American
options proposed by Glosten, Jagannathan and Rundle (Levy-GJR-GARCH)
on the basis of an infinite pure jump Levy process and an asymmetric GARCH
model. In addition, in real-life financial markets, many subjective and objective
uncertainty factors lead to randomness and fuzziness in the price of the option.
Therefore, it is necessary to incorporate fuzzy set theory in the pricing model
to improve the classic pricing theory. Hence, this study analysed the American
option pricing model under a fuzzy environment, incorporated fuzzy simulation
technology, and used the least squares Monte Carlo algorithm to analyse the
model. Lastly, through empirical analysis, we compared the option pricing sim-
ulation results of the three infinite pure jump Levy processes (variance gamma
(VG), normal inverse Gaussian (NIG), Carr-Geman-Madan-Yor (CGMY)) com-
bined with the GJR-GARCH model.

Through the review of the existing literature, we found abundant studies
regarding European option, but studies about American option pricing are still
limited. Furthermore, the existing studies mainly focus on numerical algorithm
improvements, and insufficient research was pursued to improve the theoretical
model. Therefore, we constructed the fuzzy Levy-GJR-GARCH American option
pricing model, which is more consistent with reality, and verify the model’s
efficiency by using empirical analysis. The rest of this chapter is structured as
follows: Sect. 2 introduces the parabolic fuzzy variable; Sect. 3 deduces the Levy-
GJR-GARCH American option pricing model under a fuzzy environment; Sect. 4
provides a brief introduction of fuzzy simulation technology, then based on it
design the algorithms for fuzzy American option pricing model, that is fuzzy
least squares Monte Carlo algorithm. Section 5 combines the Standard & Poor’s
100 index (S&P 100 Index) American put option prices to perform empirical
testing. Section 6 summaries the findings of this study.

2 Parabolic Fuzzy Variable

The concept of fuzzy sets was first proposed by Zadeh in 1965 [6]. It gradually
developed into a more complete fuzzy theory, which revealed a new direction for
asset pricing theories.

Let Ã be a mapping of the domain X to [0, 1], that is, Ã : X → [0, 1], x →
Ã(x) is called a fuzzy set on X. Ã(x) is called the membership function of the
fuzzy set Ã, and the set of all fuzzy sets on X is denoted as F̃ (X). If α ∈ [0, 1],
Ãα = {x ∈ X | Ã(x) ≥ α}, then Ãα is called the α-level set of fuzzy set Ã. If ã
is a regular convex fuzzy set with a upper semi-continuous membership function
ã(x) and the level set ãα is bounded, i.e., α ∈ [0, 1], then ã is called a fuzzy
number.
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If the membership function form of fuzzy number Ã is:

μÃ(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
x − a1

a2 − a1

)n

, a1 ≤ x ≤ a2

1, a2 ≤ x ≤ a3(
x − a4

a3 − a4

)n

, a3 ≤ x ≤ a4

0, others

(1)

where Ã is a parabolic fuzzy number called Ã = (a1, a2, a3, a4)n. If n = 1, the
above is a trapezoidal fuzzy number; if n = 1 and a2 = a3, the above is a
triangular fuzzy number. Therefore, triangular fuzzy numbers and trapezoidal
fuzzy numbers are special cases of parabolic fuzzy numbers (See Fig. 1). At this

point, the α level set of Ã can be expressed as
∼

Aα = [
∼

Aα

L

,
∼

Aα

U

] = [a1+ n
√

α(a2−
a1), a4 − n

√
α(a4 − a3)], where

∼
Aα

L

is the α pessimistic value of fuzzy variable
∼
A

and
∼

Aα

U

is the α optimistic value of
∼
A.

Fig. 1. Plot of membership function of a parabolic fuzzy number

3 Fuzzy Levy-GJR-GARCH American Option
Pricing Model

As the notations used in the remainder of this paper are listed as follows:
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Variable Description

S0 The underlying asset price at initial time

St The underlying asset price at time t

T Time to expiration

K Exercise price

r Risk-free interest rate

V (St, t) Option price at time t

σt Volatility at time t

Xt Levy process

θ Drift rate

v Jump rate

g Gamma function

3.1 The Process of the Underlying Asset Price

We assumed the fluctuation of the underlying asset price has the characteris-
tics of time-varying, jump and leverage effect, thus the sequence of the rate
of return of the underlying asset is described using an asymmetric conditional
heteroskedasticity model. GJR-GARCH model can express the conditional het-
eroskedasticity “leverage effect”. Therefore, we chose to use GJR-GARCH model
proposed by Glosen et al. [7] as the specific form of the asset return rate model,
specifically as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Rt = ln(
St

St−1
) = ut − γt + σtzt

σ2
t = w + ασ2

t−1 + βσ2
t−1z

2
t−1 + δIt−1σ

2
t−1z

2
t−1

It=
{

1, zt < 0
0, zt ≥ 0

zt|Ft−1 ∼ D(0, 1; θD)

(2)

In the asset return rate model (2), Rt is asset’s logarithmic return rate, ut

is the expected rate of return under the condition of information set Ft−1, γt

is the mean correction factor, and σ2
t is the time-varying variance sequence,

It represents the indicator function. w represents intercept, α is the influence
coefficient of the variance of previous period to the variance of current period,
β is the influence coefficient of the residual of previous period to the residual
of current period, δ represents asymmetric effect coefficient. zt represents the
innovation of the mean equation, and it follows distribution D(•) with mean
value of 0, variance of 1, and parameter θD, for which this study will establish
several different infinite pure jump Levy processes, such as VG, NIG and CGMY
process.
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(1) VG process:

E(eiuXt) = ϕ(u;σ, v, θ)

= (1 − iuvθ +
1
2
σ2vu2)− 1

v (3)

of which,

C =
1
v

> 0

M = (

√
1
4
θ2v2 +

1
2
σ2v +

1
2
vθ)−1 > 0

G = (

√
1
4
θ2v2 +

1
2
σ2v − 1

2
vθ)−1 > 0

(2) NIG process:

E(eiuXt) = ϕ(u;λ, η, κ)

= exp(η
√

λ2 − η2−κ
√

λ2 − (η + iu)2) (4)

of which, λ > 0, κ > 0, −λ < η < λ.

(3) CGMY process:

E(eiuXt) = ϕ(u;C,G,M, Y )

= exp(Cg(−Y)(M − iu)Y

+ (G + iu)Y −MY −GY ) (5)

of which, C > 0, G > 0, M > 0, Y < 2, g represents gamma function.

3.2 The Risk-Neutral Conversion of the Underlying Asset Pricing

In theory, there should be no arbitrage in the option value; therefore, the
asset return rate model (see Eq. (2)) requires risk-neutral conversion to ensure
the validity of the no-arbitrage assumption. Under risk-neutral measure Q,
EQ(St|St−1) = St−1e

rt , where rt represents the risk-free rate of return. Here,
the risk-neutral model is,

St = St−1e
rt−ϕQ(σt)+σtς

Q
t (6)

Above, ϕQ(σt) = EQ(eσtς
Q
t ) is the mean correction factor, where ςQ

t is white
noise with mean of 0 and variance of 1. Using the Christofersen et al. [8] method
to construct the pricing kernel {ςt}, we establish a Radon-Nikodym deriva-
tive sequence that can materialise real measurement of risk-neutral measure
conversion:

dQ

dP
|Ft−1 = exp(−

t∑

i=1

(ςiσizi + ψ(ςi))) (7)
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Under a non-normal environment, the kernel sequence {ςt} is not the only
one that fulfils the following formula:

ψt(ςt − 1) − ψt(ςt) + ut − rt − γt = 0 (8)

Here, ψ(•) represents the exponential part of the moment-generating func-
tion. Based on the characteristics of the moment-generating function ψ′

t(0) =
Et−1[σtzt], ψ′′

t (0) = V art−1[σtzt] = σ2
t , we obtain the following analytical

expression for the kernel sequence {ςt}:

ςt ≈ 1
2

+
ut − rt − γt − ψ′

t(0)
ψ′′

t (0)
=

1
2

+
ut − rt − γt

σ2
t

(9)

After obtaining the kernel sequence {ςt}, we can perform risk-neutral adjust-
ment on the stochastic item εt = σtzt and obtain the following formula:

εQ
t = εt − EQ

t−1[εt] = εt − ψ′
t(ςt) (10)

Therefore, under the risk-neutral measure, the mean equation can be
expressed as follows:

RQ
t = rt − ψQ

εQ
t

(1) + εQ
t = rt − ψQ

zQ
t

(σQ
t ) + σQ

t zQ
t (11)

The conditional variance formula for the risk-neutral asset return rate model
can be expressed as

(σ2
t )Q = wQ + αQ(σ2

t−1)
Q + βQ(εQ

t−1 + ψ′(ςt−1))2 + δQIt−1(ε
Q
t−1 + ψ′(ςt−1))2

(12)

At this point, we can see that there is some discrepancy between the risk-
neutral measure and the real measure of sequence εQ

t and (σ2
t )Q; therefore, it is

necessary to perform parameter adjustment using kernel sequence {ςt}.

4 The Algorithm Design for Fuzzy American Option
Pricing Model

4.1 Fuzzy Simulation Technology

Fuzzy simulation technology only provides a statistical estimate of the model,
not the precise result, but it is the effective method for complex problems for
which analytical results are unattainable.

If ξ is a fuzzy variable with probability space (Θ, P (Θ), Pos), the function
f(ξ) is also a fuzzy variable; at the same time, the membership function of f(ξ)
can be obtained using the following simulation method:

Step 1. Randomly and evenly extract a number ξk (k = 1, 2. . .N) from the
level set of fuzzy variable ξ, calculate ξk membership from the membership func-
tion of ξ, and denote it as vk.
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Step 2. Based on the formula for function f(ξk), calculate the function value
f(ξk).

Step 3. Repeat Steps 1 through 2 N times.
Step 4. Calculate the expected value E(f(ξ)) = 1

N f(ξk) of function f(ξ) and
draw the membership function of f(ξ) based on (f(ξk), vk).

4.2 Fuzzy Least Squares Monte Carlo Algorithm

Presuming that the number of Monte Carlo algorithm-simulated paths is N
and that the time to expiration T is divided into M periods, at time ti, the
exercise value of path-j is Ii,j(Si,j) = max(K − Si,j , 0), where K is the exercise
price and Si,j is the asset price on path j during ti. The conditional expected
value of continuous option holding can only obtained using backward inference
Ei,j(Si,j) = E[exp(−rΔt)Vi+1,j(Si+1,j)|Si,j ]. Therefore, the conventional Monte
Carlo method is not suitable for numerical simulation of the American option
pricing model. The least squares Monte Carlo approach regards the discounted
value of the option value at time ti+1, exp(−rΔt)Vi+1,j(Si+1,j), as the Y variable
and Si,j and S2

i,j as X variable, constructing a least squares regression model
for Y as a function of X and obtaining regression coefficients a1, a2 and a3. The
following formula can yield an approximation for Ei,j(Si,j):

Ei,j(Si,j) ≈ a1 + a2Si,j + a3S
2
i,j (13)

Based on the above method, compare the value of continuation holding and
the value of exercise at each node of N paths, thereby obtaining the optimal
exercise strategy for each path. Discount the option value of each path to the
present period and obtain the average of each path’s discounted option value;
this said average value is the acquired option price.

If the asset price volatility σ is a fuzzy number, the asset price Si,j is also
a fuzzy number, whereas the exercise value Ii,j(Si,j) and value of continuous
holding Ei,j(Si,j) are both functions of Si,j ; therefore, Ii,j(Si,j) and Ei,j(Si,j)
are also fuzzy numbers. Their α level set can be expressed as follows:

∼
Ii,j

α

(Si,j) = [max{K −
∼

Si,j

U

(α)}+,max{K −
∼

Si,j

L

(α)}+] (14)

∼
Ei,j

α

(Si,j) = [a1 + a2S
L
i,j + a3S

2
i,j

L
, a1 + a2S

U
i,j + a3S

2
i,j

U
] (15)

Because the asset price and option value are fuzzy variables, when comparing
and solving the least squares regression equation, the expected value of fuzzy
variable is used in the calculation. The calculation of the option price using the
least squares Monte Carlo algorithm is as follows:

Step 1. Randomly and evenly extract a number σk(k = 1, 2. . .N) from the α

level set of the fuzzy variable
∼
σ, calculate the membership degree of σk from the

membership function of
∼
σ, and denote it as vk.

Step 2. Based on the asset price formula, calculate the asset price Sk,j(j =
1, 2. . .M) at each node of path j.
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Step 3. Find the option exercise value Ik,j(Sk,j) at each node of path j, and
calculate the value of continuous option holding Ek,j(Sk,j) at each node using
the least squares method.

Step 4. Repeat Steps 1 through 3 N times.
Step 5. Calculate the expected option value E(V0) = Vk,0/N , and based on

(Vk,0, vk), draw the fuzzy option value membership function diagram.

5 Empirical Analysis

5.1 Source of Data

This study used the S&P 100 Index and American put options acquired from
S&P 100 Index as the data for empirical analysis. The S&P 100 Index prices
were selected from the closing prices of data of 1526 days dating from March 22,
2011 to March 23, 2017 (data source: Yahoo!Finance), and the American S&P
100 Index put option prices were selected to be the average prices of the final
transacted prices for different expiry dates and different exercise prices for put
options on March 23, 2017 (data source: Chicago Board of Options Exchange).
The data used in this research excluded options with same month expiry. We
only took into account American options with exercise prices within the range of
95%–105% of the index prices and eliminated contracts with option values close
to 0. Consequently, we obtained 70 data points, of which 22 expire in April, 22
expire in May, 11 expire in June, 5 expire in July, 5 expire in September and 5
expire in December.

Table 1. Estimated results for the Levy-GJR-GARCH model parameters

GJR-GARCH model parameters VG process parameters

ω α β δ θ σ υ -

0.0001***
(2.9711)

0.0050
(0.4902)

0.7364***
(40.3428)

0.4746***
(9.9941)

−0.2131
(−1.2262)

1.0676***
(6.1442)

0.3740**
(2.1527)

-

NIG process parameters CGMY process parameters

λ η κ - C G M Y

1.7806***
(5.1771)

−0.2396
(−0.6968)

0.8883***
(2.5827)

- 6.6594***
(76.5830)

3.1636***
(36.3812)

2.7937***
(32.1268)

1.6961***
(19.5048)

Remark: The numerical values in parentheses correspond to the t-statistics of the
parameter values, * indicates significant at the 10% significance level, ** indicates sig-
nificant at the 5% significance level, and *** indicates significant at the 1% significance
level.

Table 2. Descriptive statistics regarding volatility and innovations

Indicator Sample
size

Maximum
value

Minimum
value

Average
value

Standard
deviation

Skewness Kurtosis

Time-varying volatility 1525 0.0005 0.0000 0.0000 0.0000 7.7168 88.3883

Innovation 1525 3.4999 −6.6548 0.0753 1.0338 −0.4951 4.9872



206 H. Zhang and J. Watada

5.2 Parameter Estimation

To reduce the complexity of parameter estimation, this study used a two-step
method to estimate the parameters of GJR-GARCH model and Levy process:
in step 1, set innovations as Gaussian distribution and use maximum likelihood
estimation to estimate the parameters of the GJR-GARCH model; in step 2,
based on the innovations data obtained in step 1, use the generalised method of
moments to estimate the parameters of the VG, NIG and CGMY models. The
results of the parameters estimation are presented in Table 1, from which we
can see that the “leverage effect” parameter δ of GJR-GARCH model is greater
than 0. At the 1% significance level, the significance is not 0, indicating that
the changes in volatility are clearly asymmetric, with downward fluctuations
stronger than upward fluctuations.

Figures 2 and 3 show the time-varying volatility sequence and the innovations
sequence, and Table 2 presents the descriptive statistics of innovations. From the
characteristics of the innovation data, we can see that volatility in innovations
is not white noise; the skewness and kurtosis are −0.4951 < 0 and 4.9872 > 3,
respectively, indicating a leptokurtic, fat-tailed distribution. Therefore, a Levy
process can provide higher accuracy than a Gaussian distribution.

5.3 Empirical Result Analysis

The multiplier of S&P 100 Index options is 100 USD (i.e. each point represents
100 USD). The closing price of S&P 100 Index on March 23, 2017 was 1,040,
i.e. S0 = 1, 040. We used the 10-year T-bond yield as of March 23, 2017 as the
risk-free interest rate, r = 2.4% (data source: official website of US Treasury
Department). To examine the pricing effect of the Levy-GJR-GARCH model
under a fuzzy environment, we compared the pricing result with that of the
Levy-GJR-GARCH model under a crisp environment. Under fuzzy theory, the
volatility σ of an asset price is set as a fuzzy variable, whereas in the GARCH

Fig. 2. Time-varying volatility
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Fig. 3. Innovations sequence diagram

model, the volatility σ is set as a time-varying variable. To reduce the complexity
of the fuzzy calculation, the membership function of the time-varying volatility
{ ∼
σt} was set as an equal form of parabolic membership function. Because esti-

mation of four parameter values was required for parameter interval of parabolic
fuzzy numbers, the historical rates of return of 1525, 1200, 800 and 400 trad-
ing days before March 23, 2017 were selected as observation samples based on
different market information reflected by different sampling intervals.

The expected values under a fuzzy environment were obtained from the upper

and lower weights of the α = 0.95 level set of fuzzy number
∼
Vt, and the exact

formula is as follows:

M(
∼
V ) =

M(
∼
V )L + M(

∼
V )U

2

=

∫ 1

0
f(α)

∼
Vα

L

dα +
∫ 1

0
f(α)

∼
Vα

U

dα

2

=
∫ 1

0

f(α)
2

(
∼
Vα

L

+
∼
Vα

U

)dα (16)

Furthermore, we selected 22 short-term option pricing results with expiry in
April 2017 to further analyse the differences in option pricing under fuzzy and
crisp environments. The result is shown in Fig. 4. From the simulation result, we
can see that all market prices fall within the fuzzy interval of the VG, NIG and
CGMY models under a fuzzy environment, which shows that the market prices
of options are better covered when a fuzzy price interval is used. In contrast
with the smaller fuzzy interval of the VG model and the greater fuzzy interval of
the NIG model, the fuzzy interval of the CGMY model offers better simulation
results. Simultaneously, we observe that under a crisp environment, the simu-
lation results of the VG and CGMY models are greater than the market price
when the exercise price is lower and less than the market price when the exercise
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Fig. 4. Option pricing results for April 2017 expiry (Remark: “Fuzzy” denotes sim-
ulation under a fuzzy environment,“Crisp” denotes simulation under a crisp environ-
ment,“lsm” denotes the least squares Monte Carlo algorithm. VG, NIG and CGMY
are Levy processes.)

price is higher, whereas the simulation result of the NIG model is less than the
market price when the exercise price is lower and greater than the market price
when the exercise price is higher.

6 Conclusions

The decision of the optimal stopping time makes American option pricing prob-
lems more complicated than the European option pricing problem, and the tra-
ditional BS (Black Schloes) model is not capable of deciding American option
pricing. Taking into account the time-varying, jump and leverage effect char-
acteristics of the asset price fluctuation, this study built a Levy-GJR-GARCH
American option pricing model based on an infinite pure jump process. Mean-
while we incorporated fuzzy set theory and set the underlying asset price volatil-
ity as the more generalized parabolic fuzzy variable and considering more general
situations with the fuzzy variables with mixed distributions, based on fuzzy sim-
ulation technology established fuzzy least squares Monte Carlo numerical algo-
rithms for the proposed model. Lastly, using the S&P 100 Index and data for
the corresponding American put options, we empirically tested our fuzzy pricing
model with different widely used infinite pure-jump Levy processes (the VG,
NIG and CGMY processes) under fuzzy and crisp environments. The results
indicate that the fuzzy option pricing model is more reasonable; the fuzzy inter-
val can cover the market prices of options and the prices that obtained by the
crisp option pricing model, the fuzzy option pricing model is feasible one.
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