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Abstract. Set Cover is one of the most studied optimization prob-
lems in Computer Science. In this paper, we target two interest-
ing variations of this problem in a geometric setting: (i) Maximum
Disjoint Coverage (MDC), and (ii) Maximum Independent Coverage
(MIC) problems. In both problems, the input consists of a set P of
points and a set O of geometric objects in the plane. The objective is to
maximize the number of points covered by a set O′ of selected objects
from O. In the MDC problem we restrict the objects in O′ are pair-
wise disjoint (non-intersecting). Whereas, in the MIC problem any pair
of objects in O′ should not share a point from P (however, they may
intersect each other). We consider various geometric objects as cover-
ing objects such as axis-parallel infinite lines, axis-parallel line segments,
unit disks, axis-parallel unit squares, and intervals on a real line. For
axis-parallel infinite lines both MDC and MIC problems admit polyno-
mial time algorithms. On the other hand, we prove that the MIC prob-
lem is NP-complete when the objects are horizontal infinite lines and
vertical segments. We also prove that both MDC and MIC problems
are NP-complete for axis-parallel unit segments in the plane. For unit
disks and axis-parallel unit squares, we prove that both these problems
are NP-complete. Further, we present PTASes for the MDC problem for
unit disks as well as unit squares using Hochbaum and Maass’s “shifting
strategy”. For unit squares, we design a PTAS for the MIC problem using
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Chan and Hu’s “mod-one transformation” technique. In addition to that,
we give polynomial time algorithms for both MDC and MIC problems
with intervals on the real line.

Keywords: Set cover · Maximum coverage · Independent set ·
NP-hard · PTAS · Line · Segment · Disk · Square

1 Introduction

The Set Cover problem along with its geometric variations are fundamental
problems in Computer Science with numerous applications in different fields.
In the geometric set cover problem, we are given a set of points P and a set of
objects O, the objective is to cover all the points in P by choosing the minimum
number of objects from O. A variation of the geometric set cover problem is
the Maximum Coverage problem, where in addition to P and O, an integer k is
given as a part of the input. The objective is to select at most k objects from O
that cover the maximum number of points from P . In this paper, we consider
two interesting variations of the maximum coverage problem. In the following,
we give the formal definitions of the problems.

Maximum Disjoint Coverage (MDC ) Problem: Given a set P of
points and a set O of objects in the plane. The objective is to find a set of
disjoint (pairwise non-intersecting) objects O′ ⊆ O that covers maximum
number of points from P (see Fig. 1(a)).

Maximum Independent Coverage (MIC ) Problem: Given a set P of
points and a set O of objects in the plane. The objective is to find a set
O′ ⊆ O of objects that covers maximum number of points from P such that
no two objects in O′ share a point from P (see Fig. 1(b)).

(a) (b)

Fig. 1. (a) An example of the MDC problem. (b) An example of the MIC problem.
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These problems have applications in wireless communication networks, where
the objective is to service each receiver from only a single base station from a
set of given base stations and also to maximize the receivers serviced. In case
a receiver receives signals from more than one base stations then it may not
be able to communicate at all because of signal interference. While in the case
of static receivers, the regions covered by base stations can intersect, the same
is not favorable for moving receivers as the receivers can eventually reach the
intersection of two base stations.

The MDC problem is closely related to the Maximum Weighted
Independent Set (MWIS) problem. In the MWIS problem, we are given a set
of weighted objects O, and the objective is to find a set of pairwise non-
intersecting objects from O whose total weight is maximized. We can inter-
pret the MDC problem as the MWIS problem where the set of objects in the
MDC problem is same as the set of objects in the MWIS problem and the weight
of an object is the number of points it covers. Hence, the MDC problem is same
as the MWIS problem with a special weight function (the number of points cov-
ered by objects). By a similar argument, the MIC problem is also closely related
to the Maximum Weighted Discrete Independent Set (MWDIS) problem [4]. In
the MWDIS problem, we are given a set P of points and a set O of weighted
objects, the objective is to select a subset O′ ⊆ O of the maximum total weight
such that no pair of objects in O′ share a point in P .

In this paper, we consider the following problems.

➥ MICL: The MIC problem with axis-parallel lines.
➥ MICHLVSeg : The MIC problem with horizontal infinite lines and vertical

Segments.
➥ MICUSeg : The MIC problem with axis-parallel unit segments.
➥ MICUD : The MIC problem with unit disks.
➥ MICUS : MIC problem with axis-parallel unit squares.
➥ MICI : The MIC problem with intervals on a real line.

In a similar fashion, we consider the MDC problem with axis-parallel lines
(MDCL), axis-parallel unit segments (MDCUSeg), unit disks (MDCUD),
axis-parallel unit squares (MDCUS), and intervals on a real line (MDCI ).

1.1 Our Contributions

Our contributions are listed as follows:

➣ We give PTASes for the MDCUD and MDCUS problems using Hochbaum
and Maass’s shifting strategy (Sect. 2.1). However, this technique does not
work for the MICUD and MICUS problems. Hence, using Chan and Hu’s
mod-one approach, we give a PTAS for the MICUS problem (Sect. 2.2). The
natural open question is to find a PTAS for the MICUD problem.

➣ We prove that the MICHLVSeg problem is NP-complete (Sect. 3.1). We
also prove that the MDCUSeg and MICUSeg problems are NP-complete
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(Sect. 3.2). Similar reduction shows that the MDCUD and MICUD prob-
lems are NP-complete (Sect. 3.3). Finally, we prove that both MDCUS and
MICUS problems are also NP-complete (Sect. 3.4).

➣ We present a polynomial time algorithm for the MICL problem by reducing it
to the MWIS problem in vertex weighted bipartite graph (Sect. 4.1). We also
note that the MDCL problem is easy to solve in polynomial time. Further, we
provide polynomial time algorithms for both the MDCI and MICI problems
(Sect. 4.2).

1.2 Related Work

The set cover problem is NP-complete and a greedy algorithm achieves a ln n
factor approximation algorithm [9] and this bound is essentially tight unless
P=NP [9]. Similarly, for the maximum coverage problem, there is a well-known
greedy algorithm which produces an approximation factor of 1 − 1

e , which is
essentially optimal (unless P=NP) [9]. Most of the geometric versions of these
problems are NP-hard as well. Another variation of the set cover problem is
the Maximum Unique Coverage problem [8]. In this problem, we are given
a set of points P and a set of objects O in the plane and one has to find a
subset O′ ⊆ O which uniquely covers the maximum number of points in P . The
authors have shown that the problem is NP-hard for unit disks and provided a
18 factor approximation algorithm. Later, Ito et al. [11], improved this factor
to 4.31. For the case of unit squares, a PTAS is known [12]. Recently, Mehrabi
[15], studied a variation of this problem, called the Maximum Unique Set
Cover, in which one needs to cover all the points in P while maximizing the
number of uniquely covered points in P . Further, he proved that for unit disks
and unit squares, the problem is NP-hard [15] and gave a PTAS for unit squares.
However, no approximation algorithm is known for the unit disks. Note that
the NP-hardness of the MICUD and MICUS problems can also be obtained
from the NP-hardness result of [15]. In [17], the authors show that the problem
of Min-max-coverage-for-unit-square with depth 1 is NP-hard. The same
proof essentially shows that MDCUS is NP-hard.

The MWIS problem is known to be NP-hard for unit disks graphs [6]. Further,
PTASes are also known for disks and squares [7,18]. For the case of axis-parallel
rectangles, a (1 + ε)-approximation algorithm which runs in quasi-polynomial
time is also known [1]. For pseudo-disks, Chan and Har-Peled [4] gave an O(1)-
approximation algorithm for the MWIS problem using linear programming.
Their algorithm can be extended to the MWDIS problem for pseudo-disks in
the plane. Chan and Grant [3] considered the unweighted version of the discrete
independent set problem with the downward shadows of horizontal segments
in the plane. They gave a polynomial time algorithm for this problem. For the
case of MWDIS problem, Chan and Har-Peled [4] gave a O(1)-factor approx-
imation algorithm for pseudo-disks. On a related note, PTASes are known for
MWDIS with disks and axis-parallel squares when all objects have the same
weight [14].
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2 PTASes

2.1 PTASes: The MDCUD and MDCUS Problems

We first design a PTAS for the MDCUD problem. The algorithm is based on
Hochbaum and Maass’s [10] shifting strategy and follows the outline of the algo-
rithm developed in [7] for providing a similar approximation guarantee. Let P
be a set of n points, D be a set of m unit disks in the plane. We first enclose
P and D inside a rectangular box B. Next, we partition B into vertical strips
of unit width. Let us fix a constant k, called the shifting parameter. We define a
fat-strip as the collection of at most k consecutive unit strips. In the i-th shift,
shifti, the first fat-strip consists of the first i consecutive unit vertical strips and
the subsequent fat-strips, except possibly the last one, each contains exactly k
consecutive unit vertical strips. We apply k shifts, shifti for 1 ≤ i ≤ k in the
horizontal direction.

The idea of the algorithm is to find a solution to cover the maximum number
of points for each shift, shifti for 1 ≤ i ≤ k, and then select the solution among
them which covers the maximum points. A solution for a particular shifti is
obtained by finding solutions in each fat-strip Sj , for j = 1, 2, . . ., during that
shift and then taking the union of all such solutions. To obtain a solution for
each fat-strip, the shifting strategy is reapplied to each fat-strip in the vertical
direction. As a result each fat-strip is partitioned into “squares” of size at most
k × k. Later in this section, we will design an exact algorithm that covers a
maximum number of points in each such square.

Let X be an approximation algorithm applied to each fat-strip Sj : j =
1, 2, . . . which return a solution WX

j (maximum number of points) and αX be
the approximation factor. Further, let sh be the shifting algorithm that applies
X in each fat-strip of a particular shift and αsh be its approximation factor.
Now, we prove the following lemma:

Lemma 1 (Shifting Lemma [10]). αsh ≥ αX(1 − 1
k ), where k, X, αsh, and

αX are defined above.

Proof. Let Sj be a fat-strip of width k during shifti. Let optj be the optimal
number of points covered by disjoint disks in Sj and WX

j be the number of
points covered by disjoint disks while algorithm X applied to Sj . Then, by the
definition of αX we have,

WX
j ≥ αX · optj

Let WX(shifti) denote the number of points return by algorithm X for shifti.
Now summing the solutions over all the fat-strips during shifti we have,

WX(shifti) =
∑

j∈shifti
WX

j ≥ αX

∑
j∈shifti

optj

Let opt be the number of points covered by disjoint disks in an optimal
solution and opt(i) be the number of points in an optimal solution which are
covered by disjoint disks in optimal solution covering two adjacent fat-strips in



Maximum Independent and Disjoint Coverage 139

i-th shift. Let Wsh be the number of points returned by the shifting algorithm
sh. Then, we have: ∑

j∈shifti
optj ≥ opt − opt(i)

and now:
Wsh = maxj=1 to k WX(shifti)

≥ 1
k

∑k
j=1 WX(shifti)

= 1
k

∑k
j=1

(∑
j∈shifti

WX
j

)

≥ 1
kαX

∑k
j=1

(∑
j∈shifti

optj

)

≥ 1
kαX

∑k
j=1

(
opt − opt(i)

)

There can be no disk which covers points from the optimal solution that
cover points in two adjacent strips in more than one shift partition. Therefore,
the sets opt(1), . . . , opt(k) are disjoint and can add up to at most opt. Hence,∑k

j=1

(
opt − opt(i)

)
≥ (k − 1)opt. Finally we have, Wsh ≥ αX(1 − 1

k )opt. Hence
the lemma. ��

Lemma 2. Let T be a square of size k×k and Lv be a vertical line which bisects
T vertically into two equal rectangles. Then at most �

√
2k	 pairwise disjoint unit

disks can intersect Lv.

Proof. Consider a vertical line segment Lv of length k. We want to find a maxi-
mum cardinality pairwise non-intersecting unit disks that intersects Lv. Consider
a rectangle R of width 2 and height k such that Lv vertically partition into two
equal parts. Observe that, any unit disk which intersects Lv has its center inside
R. We take �

√
2k	 squares each of length

√
2. We arrange these squares into two

columns on both sides of Lv with � k√
2
	 in each column (the two columns share

the common boundary with Lv). Then, this arrangement completely covers the
rectangle R. Consider a single square s of length

√
2. Observe that all unit disks

whose centers are inside s, are pairwise intersected. Hence, at most one of them
can be part of a maximum disjoint set. ��

We now describe an algorithm which finds an optimal solution in a k × k
square T . Let PT ⊆ P and DT ⊆ D be the set of points and disks inside T
respectively. Consider a vertical line Lv and a horizontal line Lh that partition
T into four squares T1, T2, T3, and T4 of size k/2 × k/2 each. Let Dvh ⊆ DT be
the set of unit disks which intersect either Lv or Lh, or both. Let D1,D2,D3,
and D4 be the set of unit disks in T1, T2, T3, and T4 respectively such that they
do not intersect Lv and Lh. Now we have the following observations. We can
find the set of non-intersecting disks in optimal solution for Dvh, since the size
of maximum disjoint set is at most 2�

√
2k	 (by Lemma 2). Any two disk that

belongs to two different Di’s are disjoint. Moreover, any disk from any of the
Di’s in the optimal solution cannot intersect Lv and Lh.

Now our algorithm is as follows. Consider all possible subsets D′
vh ⊆ Dvh

of size at most 2�
√

2k	. For each of these choices, do the following in each Ti.
Remove all the points which are covered by D′

vh and remove all the disks from
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Di which have an intersection with D′
vh. We now apply the same algorithm

recursively on each Ti on the modified points and disks. Thus, the number of
combinations of points to be chosen for testing for an optimum solution follows
the recursion relation T (n, k) = 4 ∗ T (n, k/2) × n2�√

2k� = nO(k).

Theorem 1. There exists an algorithm which yields a PTAS for the
MDCUD problem with performance ratio at least (1 − 1

k )2.

Proof. We use two nested applications of the shifting strategy to solve the prob-
lem. First, we apply shifting strategy on vertical strips of width at most k. Then
by Lemma 1, we get αsh ≥ αX(1 − 1

k ). Further, to solve each vertical strip of
width k, we again apply the shifting strategy on horizontal strips of height at
most k. However, we can solve the MDCUD problem optimally inside k × k
square. Thus, we get αX ≥ (1 − 1

k ). Hence, the theorem follows. ��

Corollary 1. By similar analysis as above, we can prove that, there exists an
algorithm which yields a PTAS for the MDCUS problem with performance ratio
at least (1 − 1

k )2.

2.2 PTAS: The MICUS Problem

In this section, we give a PTAS for the MICUS problem. Our PTAS is on the
same lines of the PTAS-es designed by Chan and Hu [5] and Mehrabi [15]. Our
main contribution is an exact algorithm for the MICUS problem when the points
and unit squares are inside a k ×k square, where k is a fixed constant. With the
help of the shifting strategy of Hochbaum and Maass [10], we obtain a PTAS for
the MICUS problem.

Let s1, s2, . . . , s� be a sequence of unit squares containing a common point
such that their centers are increasing x-coordinate. If the centers of s1, s2, . . . , s�

are either in increasing or in decreasing y-coordinate, then we say that the set
{s1, s2, . . . , s�} forms a monotone set. The boundaries of the union of these
squares form two monotone chains (staircases), called complementary chains
(see Fig. 2).

Fig. 2. Two sets of staircases.
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We consider the following lemma from [15] (Lemma 4 in [15]). One can look
[5] also for a similar result.

Lemma 3. Let (P, S) be an instance of the MICUS problem such that all the
points in P are inside a k × k square. Further, let OPT ⊆ S be the optimal set
of squares for the instance (P, S). Then, OPT can be decomposed into O(k2)
(disjoint) monotone sets.

We now define the mod-one transformation given by Chan and Hu [5]. Let
(x, y) be a point in the plane. Then (x, y) mod-one is defined as (x′, y′) where
x′ and y′ are the fractional parts of x and y respectively.

Theorem 2. There exists a polynomial time algorithm for the MICUS problem
where the given points and squares are inside a k × k square, for some constant
k > 0.

Proof. Note that the squares in an optimal solution can be decomposed into
O(k2) monotone sets (Lemma 3). Every monotone set forms two staircases.
Under mod-one transformation, both staircases map to two monotone chains
which join at the corners after the mod-one. Thus, at a point (after mod-one)
where a square disappears from the boundary of a staircase, the square starts
appearing on the boundary of another staircase. Our dynamic programming
algorithm is based on the above facts.

We now discuss the sweep-line based dynamic programming in the form of a
state-transition diagram. Every state stores O(k2) 6-tuples of unit squares. More
specifically, the following defines a state in the state-transition diagram.

1. A vertical sweep-line l, which is always placed at a corner of any one of the
given unit squares, and

2. O(k2) 6-tuples of unit squares and each 6-tuple forms a monotone set i.e.,
every 6-tuple is (sstart, sprev′ , sprev, scurr, scurr′ , send) such that
(a) the sequence of squares sstart, sprev′ , sprev, scurr, scurr′ , and send are

in the increasing x-coordinate of their centers and hence, they form a
monotone set, and

(b) sweep-line l lies between the corners of squares sprev and scurr after mod
1 transformation.

In a 6-tuple (sstart, sprev′ , sprev, scurr, scurr′ , send), the squares sstart and send

are the start and end squares of the corresponding monotone set, sprev′ is the
square which is the immediate predecessor of sprev and scurr′ is the square which
is the immediate successor of scurr in the monotone set. Further, sprev′ and scurr′

are stored to verify a point is uniquely covered or not.
We now describe the transitions from a state A to a state B. Assume that the

current position of the sweep-line is l. Let (sstart, sprev′ , sprev, scurr, scurr′ , send)
be the 6-tuple in A such that the x-coordinate, after mod 1, of the corner of
scurr is the smallest among all other tuples and which is to the right of the
position of the sweep-line l. Then the next possible position of the sweep-line is,
l′, the x-coordinate of the corner (after mod 1) of scurr. Hence, there can be a
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transition from the state A to a state B that has all other tuples as in the state
A except the 6-tuple (sstart, sprev′ , sprev, scurr, scurr′ , send) that is changed to
(sstart, sprev, scurr, scurr′ , snew, send) for some unit squares snew only if no point
in P between l and l′, after taking mod 1, are covered by more than one square
in the O(k2) 6-tuples in state B, before taking mod 1. Further, the cost of the
transition is the number of points in P between l and l′, after taking mod 1,
which are uniquely covered by the squares in the O(k2) 6-tuples in the state B,
before taking mod 1.

Note that there are only O(nO(k2)) states and transitions in the diagram.
However, to check the existence of a transition and finding the cost of a transition
requires O(m) time. Hence, the state-transition diagram can be constructed in
O(mṅO(k2)) time. Since the sweep-line always moves to the right, the state-
transition diagram is a directed acyclic graph (DAG). Further, one can suitably
add a source X and sink Y to this DAG. It is easy to observe that the cost of
an optimal solution to an instance of the MICUS problem is nothing but the
cost of the longest path from X to Y in the corresponding DAG, which can be
computed in the time polynomial with respect to the size of the DAG. ��

We now apply the shifting strategy of Hochbaum and Maass [10] to obtain
a PTAS for the MICUS problem (see Sect. 2.1 above for the explanation).

Theorem 3. There exists a PTAS for the MICUS problem.

3 NP-Completeness Results

In this section we prove the NP-completeness results for the MDC and
MIC problems with various geometric objects. To proceed further,
we require the following definitions and results. We first define the
Positive Exactly 1-in-3SAT (P1-in-3SAT) problem [19]. We are given a 3SAT
formula φ with n variables x1, x2, . . . , xn and m clauses C1, C2, . . . , Cm such that
each clause contains exactly 3 positive literals. The objective is to find an assign-
ment to the variables of φ such that exactly one literal is true in every clause.
Schaefer [19] proved that this problem is NP-complete. A planar variation of this
problem is the rectilinear-positive-planar-one-in-3-SAT (RPP1-in-3SAT) prob-
lem [16]. In this case, the variables are placed horizontally on a line. Each clause
is connected with exactly three variables either from the top or from the bottom
such that the clause-variable connection graph is planar. The objective is to find
a truth assignments to the variables of φ such that exactly one literal in each
clause of φ is true. Refer Fig. 3 for an instance of the RPP1-in-3SAT problem.
Mulzer and Rote [16] proved that this problem is also NP-complete.

3.1 NP-Completeness: The MICHLVSeg Problem

In this section, we prove that the MIC problem with infinite horizontal lines and
vertical segments (MICHLVSeg problem) is NP-complete. We give a reduction
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Fig. 3. An instance of the RPP1-in-3SAT problem.

from the P1-in-3SAT problem. Let φ be an instance of the P1-in-3SAT problem.
We create an instance I of the MICHLVSeg problem as follows.

Variable Gadget: For each variable xi, we take a horizontal infinite line hi, a
vertical line vi, and a point pi. The point pi is placed in the intersection between
hi and vi (see Fig. 4). In order to cover pi, either one of these two lines needs to
be picked. Note that between any pair of consecutive horizontal lines there is a
horizontal gap. In the later stage, we place some points corresponding to clauses
in these gaps.

Clause Gadget: For each clause we take a vertical infinite strip say region of
that clause. We place the regions side by side to the right of all the vertical lines
for variables such that no two regions intersect. Let Cc be a clause containing
variables xi, xj and xk. For this clause we take 5 points {pc

1, p
c
2, p

c
3, p

c
4, p

c
5} and

4 vertical segments {sc
1, s

c
2, s

c
3, s

c
4}. All the points and segments are on a vertical

line and placed inside the region of Cc. The points pc
1, pc

3, and pc
5 are on hi,

hj and hk respectively. The point pc
2 are inside a gap between hi, and hj and

pc
4 are inside a gap between hj , and hk. The segment sc

� covers only the points
{pc

�, p
c
�+1}, for 1 ≤ � ≤ 4.

This completes the construction. See Fig. 4 for the complete construction.
Clearly, the construction can be done in polynomial time with respect to the
number of variables and clauses in φ. We now prove the following theorem.

Theorem 4. The MICHLVSeg problem is NP-Complete.

Proof. It is easy to prove that the MICHLVSeg problem is in NP. We now show
that exactly one literal is true in every clause of φ if and only if I has a solution
that covers all the points.

Assume that φ has a satisfying assignment such that exactly one literal is
true in every clause of φ. For the gadget of xi, select hi in the solution if xi is
true. Otherwise select vi. Now consider a clause Cc = (xi ∨ xj ∨ xk). Note that
exactly one literal is true for Cc i.e., exactly one of hi, hj , or hk is selected in the
solution. So exactly one of pc

1, pc
3, or pc

5 is covered by the variable gadgets. Hence
the remaining 4 points are covered by exactly two segments from the gadget of
Cc. Thus we have a solution for I covering all the points.
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Fig. 4. Variable and clause gadgets and their interaction.

On the other hand, assume that I has a solution covering all the points. Now
to cover pi in the gadget of xi either hi or vi is in the solution. So we set xi to
be true if hi is in the solution. Otherwise, xi is false. Now we show that this is a
satisfying assignment of φ. Let Cc = (xi ∨ xj ∨ xk) be a clause. To cover all the
points corresponding to Cc, exactly one of pc

1, pc
3, or pc

5 is covered from variable
gadgets, and we set that variable to be true. ��

3.2 NP-Completeness: The MDCUSeg and MICUSeg Problems

In this section, we first prove that the MDCUSeg problem is NP-complete by a
reduction from the RPP1-in-3SAT problem. The reduction is in the same line
of the reduction provided for the Min-max-coverage-for-unit-square problem in
[17]. We present a variation of the proof for vertical and horizontal unit segments
in detail here to be self-complete. This reduction also directly implies that the
MICUSeg problem is NP-complete.

We now describe the construction to convert an instance φ of the RPP1-in-
3SAT problem to an instance Γ of the MDCUSeg problem in polynomial time.
As shown in Fig. 3, a clause can connect to exactly three positive literals, either
from top or from bottom. We represent these clause-literal connections as loops
and more specifically as left, middle, and right loops. For example, Fig. 5 shows
some of these loops for the instance φ in Fig. 3.

Variable Gadgets: The variable gadget for xi is represented as a
rectangular loop as is shown in Fig. 6. This loop has 2α points (value of α is
established later), which are covered by 2α unit horizontal and vertical seg-
ments (see Fig. 6). Each segment covers exactly two consecutive points along the
loop. A segment ti, 1 ≤ i ≤ 2α−1 covers i-th and (i+1)-th points. The segment
t2α covers 1-st and the 2α-th point.
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Fig. 5. A schematic diagram of the construction of a MDCUSeg problem instance.

Fig. 6. Rectangular variable loop

Note that, a clause Cc can connect to xi from top or bottom. Hence, apart
from a rectangular loop, every variable gadget has multiple connections through
its left, middle and right loops from top or bottom. Let σ represents the maxi-
mum number of clause connections to the rectangular loop of any variable from
either top or bottom. For example, in Fig. 3 the value of σ is two since in each
variable at most two clauses are connected either from the top or from the
bottom. Figure 7 describes a left and a middle loop which connect to the rect-
angular loop of xi from the top. The right loop is a horizontal mirror image
of the left loop. In the design of every connection loop, there are three special
segments namely t∗, t∗∗ and tci . The segments t∗ and t∗∗ connects the vertical
arrangement of every loop to the rectangular loops. Whereas, the segment tci is
a clause segment, which is used to connect with the clause gadget.

Figure 7 also shows an example of connecting left/middle loop with the vari-
able rectangular loop. All other loops are similarly connected with the variable
rectangular loop. If clause connections to a variable rectangular loop from top
are numbered as 1, 2, ..., l, ..., δ (δ ≤ σ) then the l-th connection is made through
the t4l-th segment on the rectangular loop. The segment t4l is removed from the
variable rectangular loop and the points 4l and 4l + 1 covered by t4l are now
covered by the segments t∗ and t∗∗ respectively (see Fig. 7). To accommodate
this arrangement, we set the value of α to be 4σ + 4. Similarly, different loops
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(a) (b)

Fig. 7. Rectangular loop connects with clause connection loops, (a) left loop (b) middle
loop, segment t4l is removed and points 4l and 4l + 1 are covered by segments t∗ and
t∗∗ respectively. (Color figure online)

for clause connections from bottom are the vertical mirror image of the loops
described in Fig. 7.

The rectangular loop for a variable along with at most σ clause connection
loops are called as a big-loop, that constitute our variable gadget. It is easy to
see that the number of segments in the big-loop are even and all the points can
be covered by either selecting all odd numbered segments (blue) or by selecting
all even numbered segments (orange). These two sets are disjoint and represent
the truth value of the corresponding variable.

Clause Gadgets: Let Cc = (xi ∨ xj ∨ xk) be a clause. For this clause, we take
four points and three unit segments as shown in Fig. 8(a). Figure 8(b) shows the
interaction of clause segments sc

i , sc
j and sc

k from variables xi, xj , and xk with
the clause gadget. The clause point pc is covered by all three clause segments sc

i ,
sc

j , and sc
k corresponding to the variables in Cc. Hence, to have a valid solution

(maximum coverage) for the MDCUSeg problem, the clause point pc has to be
covered by exactly one of these three segments.

Since the number of points and segments in Γ is a polynomial function on
the number of clauses and variables in φ. Hence, the construction can be done
in polynomial time. This completes the construction.

Theorem 5. The MDCUSeg problem is NP-complete.

Proof. Clearly, the problem is in NP. We now prove that exactly one literal is
true in every clause of φ if and only if Γ has a solution of size |P |, where P is
the point-set in Γ . Observe that, in a variable gadget (big-loop) there are only
two ways to cover all points using disjoint segments, either by selecting all even
numbered (orange colored) or all odd numbered (blue colored) segments.

Assume that exactly one literal is true in every clause by a truth assignment
to the variables of φ. If xi is true then in the gadget of xi, blue segments are
chosen. Otherwise, orange segments are chosen. From the above observation, the
chosen segments will cover all the points in a variable gadget. Since, exactly one
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(a) (b)

Fig. 8. (a) Structure of a clause gadget (b) Connection between clause and variable
gadgets. (Color figure online)

literal is true for each clause Cc, exactly two of the three points pc
i , pc

j , and pc
k

are covered by the false variable. So the remaining two uncovered points (pc and
one of the uncovered point pc

i , pc
j , and pc

k) is covered by the corresponding clause
segment. Hence, we have a solution of size |P |.

On the other hand, assume that there exists a covering of all the points in
the instance Γ of MDCUSeg problem using disjoint segments. Recall that, all
points in a variable gadget is covered by either all blue or orange segments.
Thus, we can construct a truth assignment as follows. For the gadget of xi, if
all blue segments are chosen then set xi to be 1, otherwise set xi to be 0. Since
every point is covered by all the segments, in any clause gadget Cc, the point
pc can be covered by exactly one of the three segments sc

i , sc
j , and sc

k. Without
loss of generality assume that sc

i is selected in the solution. Then the point pc
i on

segment tci (orange colored) in the variable gadget of xi is also covered. Therefore
in the gadget of xi we can not select the orange segments. Further, in the gadgets
of xj and xk, we need to select the orange segments since the points pc

j and pc
k

are on orange segments in their corresponding variable gadgets. As a result, xi

becomes true and both xj and xk become false. Therefore, exactly one of the
three literals is true in every clause of φ. ��

We note that the above reduction also works for MICUSeg problem. Hence,
we have the following theorem.

Theorem 6. The MICUSeg problem is NP-complete.

3.3 NP-Completeness: The MDCUD and MICUD Problems

We prove that both MDCUD and MICUD problems are NP-complete. Here, we
give a brief outline for the MDCUD problem. A similar reduction can be done
for the MICUD problem. We give a reduction from the RPP1-in-3SAT problem
to the MDCUD problem. Similar to the construction in Sect. 3.2, we construct
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an instance Γ (P,D) of the MDCUD problem from a given instance φ of the
RPP1-in-3SAT problem, where P is a set points and D is a set of unit disks.

Variable Gadgets: The variable gadgets for the MDCUD problem are analo-
gous to that of the MDCUD problem discussed in Sect. 3.2. A rectangular loop
of a variable in φ is given in Fig. 9(a). The placement of points and unit squares
for the left loop is shown in Fig. 9(b). The other loops can be constructed sim-
ilarly. Figure 9(c) shows the connection between the rectangular loop and the
left loop. Observe that, as in Sect. 3.3, there are two sets of alternative unit
disks, blue and orange, such that each set of unit disks covers all the points in
a variable gadget. Note that the blue disks represent the true assignment of the
corresponding variable whereas the orange disks represent the false assignment.

Clause Gadgets: The clause gadget is similar to the clause gadget of
MDCUSeg problem (Sect. 3.2) with the following differences. Here the gadget
for clause Cc consists of a single point pc only. Let Cc be a clause with variables
xi, xj , and xk. Then, the three squares dc

i , d
c
j , and dc

k corresponding to the vari-
ables xi, xj , and xk respectively contain the clause point pc as shown in Fig. 9(d).
Now to cover pc, exactly one of the three literals xi, xj , and xk in the clause Cc

is true.
Since the rest of the argument is almost similar to that in Sect. 3.2, we con-

clude the following theorem.

Theorem 7. The MDCUD and MICUD problems are NP-complete.

3.4 NP-Completeness: The MDCUS and MICUS problems

We prove that both MDCUS and MICUS problems are NP-complete. We
give a polynomial time reduction from the RPP1-in-3SAT problem [16] to
MDCUS (and hence MICUS ) problem. Similar to the construction in Sect. 3.3,
we construct an instance β(P,O) of MDCUS problem from a given instance φ
of RPP1-in-3SAT problem, where O is the set of unit squares.

Variable Gadgets: Variable gadgets for the MDCUS problem are analogous
to that of the MDCUD problem discussed in Sect. 3.3. A rectangular loop of a
variable in φ is given in Fig. 10(a). The placement of points and unit squares for
the left loop is shown in Fig. 10(b). The other loops can be constructed similarly.
Figure 10(c) shows the connection between the rectangular loop and the left loop.
Observe that, as in Sect. 3.3, there are two sets of alternative unit squares, blue
and orange, such that each set of unit squares covers all the points in a variable
gadget.

Clause Gadgets: This is similar to the clause gadget of MDCUD problem in
Sect. 3.3. Let Ca be a clause with variables xi, xj , and xk. Then, the three squares
sa

i , sa
j , and sa

k will contain the clause point pa as shown in Fig. 10(d).
Since the rest of the argument is similar to the that in Sect. 3.3, we conclude

the following theorem.

Theorem 8. The MDCUS and MICUS problems are NP-complete.
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(a) (b)

(c) (d)

Fig. 9. (a) Rectangular variable loop (b) A left loop (c) Connection of rectangular loop
with the vertical arrangement of any other loop (d) Clause gadget and variable clause
interaction.

4 Polynomial Time Algorithms

4.1 The MDCL and MICL Problems

In this section, we show that the MDCL and MICL problems can be solved
in polynomial-time. We recall that the input for both problems is a set L of
axis-parallel lines and a set P of points in the plane.

The MDCL Problem: The polynomial-time algorithm for the MDCL problem
is straightforward. We need to find a set of non-intersecting axis-parallel lines
covering the maximum number of points. Thus the optimal solution selects the
set of either all horizontal lines or all vertical lines based on the set which covers
the maximum number of points.

The MICL Problem: We show that the MICL problem can be solved in poly-
nomial time. To do so, we first reduce this problem to an equivalent problem,
the maximum weight independent set problem in bipartite graphs. Let L be a
set of lines and P be a set of points. Also let Lh ⊆ L and Lv ⊆ L be sets of ver-
tical and horizontal lines respectively. We generate the vertex weighted bipartite
graph G(U,W,E) as follows. For each vertical line vi ∈ Lv, we take a vertex ui in
U and for each horizontal line hj ∈ Lh, we take a vertex wj in W . For each point
p ∈ P , if p is on the intersection between a vertical line vi and a horizontal line
hj , take an edge eij between vertices ui and wj . Finally, we assign the weight of
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(a) (b)

(c) (d)

Fig. 10. (a) A rectangular loop (b) A left loop (c) Connection of rectangular loop
with the vertical arrangement of any other loop (d) Clause gadget and variable clause
interaction.

a vertex as the total number of the points contained by its corresponding lines.
See the construction in Fig. 11.

It is now observed that finding a maximum weight independent set in G is
equivalent to finding a solution to its corresponding MICL problem instance.
Since the maximum weight independent set problem on a bipartite graph can
be solved in polynomial time1 [2], and so the MICL problem.

4.2 The MDCI and MICI Problems

We give polynomial time algorithms for both MDCI and MICI problems. The
algorithm is very similar to that of [17], and hence we would only provide outlines
for the same. Let I be a set of n intervals {i1, . . . , in} and P be a set of m points
{p1, . . . , pm} on the real line.

The MDCI Problem: We formulate the MDCI problem as a MWIS problem
with weighted intervals. Let us define a weight function w : I → N as follows:
the weight of an interval it ∈ I is the total number of points in P covered by it,
i.e., w(it) = {|pj | such that pj ∈ P, pj ∈ it}. We first build a binary search tree
T on P . Next for each interval ij ∈ I, we make a counting query on T . Hence,
the total time will be taken as O(m log m + n log m).
1 Let G(V,E) be a bipartite graph. Finding a minimum weight vertex cover V ∗ ⊂ V
in G can be solved by a minimum cut computation or a maximum flow computation
in a related graph. Then the maximum weight independent set of G is V \ V ∗.



Maximum Independent and Disjoint Coverage 151

(a) (b)

Fig. 11. (a) An instance of the MICL problem. (b) A vertex weighted bipartite graph
instance constructed from the instance of the MICL problem in (a).

We now have a set Iw of n weighted intervals, and the objective is to compute
a subset I ′

w ⊆ Iw of pairwise non-intersecting intervals of maximum weight. Note
that MWIS problem in weighted intervals can be solved in O(n log n)-time [13].
Let I∗

w = {i∗w1, i
∗
w2, . . . , i

∗
wk} be an optimal solution to the MWIS problem on Iw.

Then, clearly the set I∗ corresponding to the intervals in I∗
w is also an optimal

solution for MDCI problem which covers w(I∗
w) =

∑k
j=1 w(i∗wj) points. Hence,

we can find the optimal solution to MDCI problem in O(m log m + n log m +
n log n)-time.

Theorem 9. The MDCI problem can be solved in O(m log m+n log m+n log n)
time.

The MICI Problem: Here we apply the same algorithm presented for the
MDCI problem in the previous section. To apply the algorithm, we first truncate
every interval ij ∈ I such that it starts with the leftmost and ends with the
rightmost point covered by ij . Next, we assign a weight to each interval as
the number of points in P that are covered by it. Finally, we find maximum
weight non-intersecting intervals in the generated weighted intervals. Thus, we
can conclude the following theorem.

Theorem 10. There exists an O(m log m+n log m+n log n) time algorithm for
the MICI problem.

5 Conclusion

In this paper, we consider the Maximum Disjoint Coverage (MDC ) and Max-
imum Independent coverage (MIC ) problems. For both problems, we present
some positive and negative results on various geometric objects. In the negative
side, we show that when the objects are horizontal lines and vertical segments,
the MIC problem is NP-hard. Further, with unit axis-parallel segments, unit
squares, and unit disks in the plane both the MIC and MDC problems are
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NP-complete. In the positive side, we give polynomial-time algorithms for both
problems with axis-parallel lines in the plane and intervals on a line. We pro-
vide PTASes for the MDC problem with unit squares and unit disks based on
Shifting Strategy whereas for the MIC problem with unit square we provide a
PTAS using the mod-one transformation. It is now open to design a PTAS for
the MICUD problem.
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