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Abstract. Identification of up to d defective items and up to h inhibitors
in a set of n items is the main task of non-adaptive group testing
with inhibitors. To reduce the cost of this Herculean task, a subset
of the n items is formed and then tested. This is called group test-
ing. A test outcome on a subset of items is positive if the subset con-
tains at least one defective item and no inhibitors, and negative oth-
erwise. We present two decoding schemes for efficiently identifying the
defective items and the inhibitors in the presence of e erroneous out-
comes in time poly(d, h, e, log2 n), which is sublinear to the number of
items. This decoding complexity significantly improves the state-of-the-
art schemes in which the decoding time is linear to the number of items,
i.e., poly(d, h, e, n). Moreover, each column of the measurement matrices
associated with the proposed schemes can be nonrandomly generated
in polynomial order of the number of rows. As a result, one can save
space for storing them. Simulation results confirm our theoretical anal-
ysis. When the number of items is sufficiently large, the decoding time
in our proposed scheme is smallest in comparison with existing work.
In addition, when some erroneous outcomes are allowed, the number of
tests in the proposed scheme is often smaller than the number of tests
in existing work.

Keywords: Non-adaptive group testing · Sublinear algorithm ·
Sparse recovery

1 Introduction

Group testing was proposed by an economist, Robert Dorfman, who tried to solve
the problem of identifying which draftees had syphilis [1] in WWII. Nowaday, it
is known as a problem of finding up to d defective items in a colossal number
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of items n by testing t subsets of n items. It can also be translated into the
classification of up to d defective items and at least n− d negative items in a set
of n items. The meanings of “items”, “defective items”, and “tests” depend on
the context. Normally, a test on a subset of items (a test for short) is positive
if the subset has at least one defective item, and negative otherwise. For testing
design, there are two main approaches: adaptive and non-adaptive designs. In
adaptive group testing, the design of a test depends on the earlier tests. With
this approach, the number of tests can be theoretically optimized [2]. However, it
would take a long time to proceed such sequential tests. Therefore, non-adaptive
group testing (NAGT) [2,3] is preferable to be used: all tests are designed in prior
and tested in parallel. The proliferation of applying NAGT in various fields such
as DNA library screening [4], multiple-access channels [5], data streaming [6],
neuroscience [7], has made it become more attractive recently. We thus focus on
NAGT in this work.

The development of NAGT applications in the field of molecular biology led
to the introduction of another type of item: inhibitor. An item is considered to
be an inhibitor if it interferes with the identification of defective items in a test,
i.e., a test containing at least one inhibitor item returns negative outcome. In
this “Group Testing with Inhibitors (GTI)” model, the outcome of a test on a
subset of items is positive iff the subset has at least one defective item and no
inhibitors. Due to great potential for use in applications, the GTI model has
been intensively studied for the last two decades [8–11].

In NAGT using the GTI model (NAGTI), if t tests are needed to identify
up to d defective items and up to h inhibitors among n items, it can be seen
that they comprise a t × n measurement matrix. The procedure for obtaining
the matrix is called the construction procedure. The procedure for obtaining
the outcome of t tests using the matrix is called encoding procedure, and the
procedure for obtaining the defective items and the inhibitor items from t out-
comes is called the decoding procedure. Since noise typically occurs in biology
experiments, we assume that there are up to e erroneous outcomes in the test
outcomes. The objective of NAGTI is to efficiently classify all items from the
encoding procedure and from the decoding procedure in the presence of noise.

There are two approaches when using NAGTI. One is to identify defective
items only. Chang et al. [12] proposed a scheme using O((d + h + e)2 log2 n)
tests to identify all defective items in time O((d + h + e)2n log2 n). Using a
probabilistic scheme, Ganesan et al. [13] reduced the number of tests to O((d +
h) log2 n) and the decoding time to O((d + h)n log2 n). However, this scheme
proposed is applicable only in a noise-free setting, which is restricted in practice.
The second approach is to identify both defective items and inhibitors. Chang
et al. [12] proposed a scheme using O(e(d+h)3 log2 n) tests to classify n items in
time O(e(d + h)3n log2 n). Without considering the presence of noise in the test
outcome, Ganesan et al. [13] used O((d + h2) log2 n) tests to identify at most d
defective items and at most h inhibitor items in time O((d + h2)n log2 n).
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1.1 Problem Definition

We address two problems. The first is how to efficiently identify defective items
in the test outcomes in the presence of noise. The second is how to efficiently
identify both defective items and inhibitor items in the test outcome in the
presence of noise. Let z be an odd integer and e = z − 1

2 be the maximum
number of errors in the test outcomes.

Problem 1. There are n items including up to d defective items and up to h
inhibitor items. Is there a measurement matrix such that

– All defective items can be identified in time poly(d, h, e, log2 n) in the presence
of up to e erroneous outcomes, where the number of rows in the measurement
matrix is much smaller than n?

– Each column of the matrix can be nonrandomly generated in polynomial time
of the number of rows?

Problem 2. There are n items including up to d defective items and up to h
inhibitor items. Is there a measurement matrix such that

– All defective items and inhibitors items can be identified in time
poly(d, h, e, log2 n) in the presence of up to e erroneous outcomes, where the
number of rows in the measurement matrix is much smaller than n?

– Each column of the matrix can be nonrandomly generated in polynomial time
of the number of rows?

We note that some previous works such as [14,15] do not consider inhibitor
items. In these works, Problems 1 and 2 can be reduced to the same problem by
eliminating all terms related to “inhibitor items.”

1.2 Problem Model

We model NAGTI as follows. Suppose that there are up to 1 ≤ d defectives
and up to 0 ≤ h inhibitors in n items. Let x = (x1, . . . , xn)T ∈ {0, 1,−∞}n

be the vector representation of n items. Note that the number of defective
items must be at least one. Otherwise, the outcomes of the tests designed would
yield negative. Item j is defective iff xj = 1, is an inhibitor iff xj = −∞,
and is negative iff xj = 0. Suppose that there are at most d 1’s in x,
i.e., |D = {j | xj = 1, for j = 1, . . . , n}| ≤ d, and at most h −∞’s in x, i.e.,
|H = {j | xj = −∞, for j = 1, . . . , n}| ≤ h.

Let Q = (qij) be a q×n binary measurement matrix which is used to identify
defectives and inhibitors in n items. Item j is represented by column j of Q (Qj)
for j = 1, . . . , n. Test i is represented by row i in which qij = 1 iff the item j
belongs to test i, and qij = 0 otherwise, where i = 1, . . . , q. Then the outcome
vector using the measurement matrix Q is

r = Q ⊗ x =

⎡
⎢⎣

r1
...
rq

⎤
⎥⎦ , (1)
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where ⊗ is called the NAGTI operator, test outcome ri = 1 iff
∑n

j=1 qijxj ≥ 1,
and ri = 0 otherwise for i = 1, . . . , q. Note that we assume 0 × (−∞) = 0 and
there may be at most e erroneous outcomes in r.

Given l binary vectors yw = (y1w, y2w, . . . , yBw)T for w = 1, . . . , l and some
integer B ≥ 1. The union of y1, . . . ,yl is defined as vector y = ∨l

i=1yi =
(∨l

i=1y1i, . . . ,∨l
i=1yBi)T , where ∨ is the OR operator. Then when vector x is

binary, i.e., there are no inhibitors in n items, (1) can be represented as

r = Q ⊗ x =
n∨

j=1

xjQj =
n∨

j∈D

Qj . (2)

Our objective is to design the matrix Q such that vector x can be recovered
when having r in time poly(q) = poly(d, h, e, log2 n).

1.3 Our Contributions

Overview: Our objective is to reduce the decoding complexity for identifying
up to d defectives and/or up to h inhibitors in the presence of up to e erro-
neous test outcomes. We present two deterministic schemes that can efficiently
solve both Problems 1 and 2 with the probability 1. These schemes use two basic
ideas: each column of a t1×n (d+h, r; z]-disjunct matrix (defined later) must be
generated in time poly(t1) and the tensor product (defined later) between it and
a special signature matrix. These ideas reduce decoding complexity to poly(t1).
Moreover, the measurement matrices used in our proposed schemes are nonran-
dom, i.e., their columns can be nonrandomly generated in time polynomial of
the number of rows. As a result, one can save space for storing the measurement
matrices. Simulation results confirm our theoretical analysis. When the num-
ber of items is sufficiently large, the decoding time in our proposed scheme is
smallest in comparison with existing work.

Comparison: We compare our proposed schemes with existing schemes in
Table 1. There are six criteria to be considered here. The first one is construc-
tion type, which defines how to achieve a measurement matrix. It also affects
how defectives and inhibitors are identified. The most common construction type
is random; i.e., a measurement matrix is generated randomly. The six schemes
evaluated here use random construction except for our proposed schemes.

The second criterion is decoding type: “Deterministic” means the decod-
ing objectives are always achieved with probability 1, while “Randomized”
means the decoding objectives are achieved with some high probability. Ganesan
et al. [13] used randomized decoding schemes to identify defectives and inhibitors.
The schemes in [12] and our proposed schemes use deterministic decoding.

The remaining criteria are: identification of defective items only, identifica-
tion of both defective items and inhibitor items, error tolerance, the number of
tests, and the decoding complexity. The only advantage of the schemes proposed
by Ganesan et al. [13] is that the number of tests is less than ours. Our schemes
outperformed the existing schemes in other criteria such as error-tolerance, the
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Table 1. Comparison with existing schemes. “Deterministic” and “Randomized” are
abbreviated as “Det. and “Rnd.”. The

√
sign means that the criterion holds for that

scheme, while the × sign means that it does not. We set e = z − 1
2

, λ = (d + h) ln n
W((d + h) ln n)

+z,

and α = max
{

λ
(d + h)2

, 1
}

, where W(x) = Θ (ln x − ln ln x) .

Scheme Construction

type

Decoding

type

Max. no.

of # errors

Defectives

only

Defectives and

inhibitors

Number of

tests (t)

Decoding

complexity

Chang et al. [12] Random Det. e
√ × O((d + h +

e)2 ln n)

O(tn)

Ganesan et al. [13]Random Rnd. 0
√ × O((d +

h) ln n)

O(tn)

Proposed

(Theorem4)

Nonrandom Det. e
√ × Θ

(
λ2 ln n

)
O

(
λ5 ln n
(d+h)2

)

Chang et al. [12] Random Det. e
√ √

O(e(d +

h)3 ln n)

O(tn)

Ganesan et al. [13]Random Rnd. 0
√ √

O((d +

h2) ln n)

O(tn)

Proposed

(Theorem5)

Nonrandom Det. e
√ √

Θ
(

λ3 ln n
)

O
(

dλ6 × α
)

decoding type, and the decoding complexity. The number of tests with our pro-
posed schemes for identifying defective items only (both defective items and
inhibitor items, resp.) is smaller (larger, resp.) than that with the scheme pro-
posed by Chang et al. [12]. The decoding complexity in our proposed scheme is
much less than theirs when the number of items is sufficiently large.

2 Preliminaries

Notation is defined here for consistency. We use capital calligraphic letters for
matrices, non-capital letters for scalars, bold letters for vectors, and capital
letters for sets. Capital letters with asterisk is denoted for multisets in which
elements may appear multiple times. For example, S = {1, 2, 3} is a set and
S∗ = {1, 1, 2, 3} is a multiset. Here we assume 0 × (−∞) = 0.

Some frequent notations are listed as follows:

– n; d: number of items; maximum number of defective items. For simplicity,
we suppose that n is the power of 2.

– | · |: the weight, i.e., the number of non-zero entries in the input vector or the
cardinality of the input set.

– ⊗,�: operator for NAGTI and tensor product, respectively.
– [n]: {1, 2, . . . , n}.
– S: s × n measurement matrix used to identify at most one defective item or

one inhibitor item, where s = 2 log2 n.
– M = (mij): m × n disjunct matrix, where integer m ≥ 1 is number of tests.
– T = (tij): t × n measurement matrix used to identify at most d defective

items, where integer t ≥ 1 is number of tests.
– x;y: representation of n items; binary representation of the test outcomes.
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– Sj ,Mj ,Mi,∗: column j of matrix S, column j of matrix M, and row i of
matrix M.

– D;H: index set of defective items; index set of inhibitor items.
– supp(c): support set of vector c = (c1, . . . , ck); i.e., supp(c) = {j | cj �= 0}.

For example, the support vector for v = (1, 0, 0,−∞) is supp(v) = {1, 4}.
– diag(Mi,∗) = diag(mi1,mi2, . . . , min): diagonal matrix constructed from

input vector Mi,∗ = (mi1,mi2, . . . , min).
– e; log; ln: base of natural logarithm; logarithm of base 2; natural logarithm.
– 	x
; �x�: ceiling function of x; floor function of x.
– W(x): the Lambert W function in which W(x)eW(x) = x.

2.1 Tensor Product

Let � be the tensor product notation. Note that the tensor product defined here
is not the usual tensor product used in linear algebra. Given an a × n matrix
A = (aij) and an s × n matrix S = (sij), their tensor product is defined as

R = A � S :=

⎡
⎢⎣

S × diag(A1,∗)
...

S × diag(Af,∗)

⎤
⎥⎦ =

⎡
⎢⎣

a11S1 . . . a1nSn

...
. . .

...
aa1S1 . . . aanSn

⎤
⎥⎦ , (3)

where diag(.) is the diagonal matrix constructed from the input vector, and
Ah,∗ = (ah1, . . . , ahn) is the hth row of A for h = 1, . . . , a. The size of R is r×n,
where r = a × s.

2.2 Reed-Solomon Codes

Let n1, r1, Λ, q be positive integers. Let Σ be a finite field and |Σ| = q. From
now, we set Σ = Fq. Each codeword is considered as a vector of Fn1×1

q . Let C
be a subset of Σn1 . Assume that for any y ∈ C, there exists a message x ∈ F

r1
q

such that y = Gx, where matrix G is a full-rank n1 × r1 matrix in Fq. Then C is
called a linear code with minimum distance Λ = miny∈C |supp(y)| and denoted
as [n1, r1, Λ]q. The cardinality of C is qr1 . Let MC denote the n1 × qr1 matrix
whose columns are the codewords in C.

An [n1, r1, Λ]q-Reed-Solomon (RS) code [16] is an [n1, r1, Λ]q code with Λ =
n1 − r1 + 1. Since the parameter Λ can be obtained from n1 and r1, we usually
refer to an [n1, r1, Λ]q-RS code as [n1, r1]q-RS code.

2.3 Disjunct Matrix

Superimposed code was introduced by Kautz and Singleton [17] and then gener-
alized by D’yachkov et al. [18] and Stinson and Wei [19]. A superimposed code
is defined as follows.
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Definition 1. An m×n binary matrix M is called an (d, r; z]-superimposed code
if for any two disjoint subsets S1, S2 ⊂ [n] such that |S1| = d and |S2| = r, there
exists at least z rows in which there are all 1’s among the columns in S2 while
all the columns in S1 have 0’s, i.e.,

∣∣∣⋂j∈S2
supp (Mj)

∖⋃
j∈S1

supp (Mj)
∣∣∣ ≥ z.

Matrix M is usually referred to as an (d, r; z]-disjunct matrix. Parameter
e = �(z − 1)/2� is referred to as the error tolerance of a disjunct matrix. It is
clear that for any d′ ≤ d, r′ ≤ r, and z′ ≤ z, an (d, r; z]-disjunct matrix is also
an (d′, r′; z′]-disjunct matrix.

Let x = (x1, . . . , xn)T ∈ {0, 1}n be the binary representation vector of n
items, where |x| ≤ d. From (2), the outcome vector of m tests by using M and
x is defined as follows:

y = M ⊗ x =
n∨

j=1

xjMj =
n∨

j∈D

Mj , (4)

where D = supp(x) = {j | xj = 1}. The procedure to get y is called encoding
procedure. It includes the construction procedure, which is to get a measurement
matrix M. The procedure to recover x from y and M is called decoding proce-
dure. Our objective is to recover x when the outcome vector y and the matrix
M are given.

The number of rows in an m×n (d, r; z]-disjunct matrix is usually exponential
to d [15,20]. Cheraghchi [21] proposed a nonrandom construction for (d, r; z]-
disjunct matrices in which the number of tests is larger than the existing works
as d or r increases.

Theorem 1 (Lemma 29 [21]). For any positive integers d, r, z and n with
d + r ≤ n, there exists an m × n nonrandom (d, r; z]-disjunct matrix where
m = O

(
(rd ln n + z)r+1

)
. Moreover, each column of the matrix can be generated

in time poly(m).

An (d, r; z]-disjunct matrix is called an (d; z]-disjunct matrix when r = 1, and
a d-disjunct matrix when r = z = 1. For efficient decoding in the NAGTI model,
we pay attention only to an m × n binary (d, r; z]-disjunct matrix in which each
column can be generated in time poly(m).

2.4 Bui et al.’s Scheme

In this section, the scheme proposed by Bui et al. [14] is described. Its main
contribution is that, given any m × n (d − 1)-disjunct matrix, a bigger t × n
measurement matrix can be generated such that up to d defective items (in a set
of n items having only defective and negative items) can be identified in time
O(t) = O(m log n), where t = 2m log n.

Encoding procedure: Let S be an s × n measurement matrix:

S :=
[
b1 b2 . . . bn

b1 b2 . . . bn

]
=
[
S1 . . . Sn

]
, (5)
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where s = 2 log n, bj is the log n-bit binary representation of integer j − 1,

bj is the complement of bj , and Sj :=
[
bj

bj

]
for j = 1, 2, . . . , n. Item j is

characterized by column Sj and that the weight of every column in S is s/2 =
log n. Furthermore, the index j is uniquely identified by bj .

Given an m×n (d−1)-disjunct matrix M, the new measurement t×n matrix
is constructed as follows:

T = M � S, (6)

where � is the tensor product defined in Sect. 2.1 and t = ms. For any binary
input vector x, its outcome using measurement matrix T is

y = T ⊗ x =

⎡
⎢⎣
y1

...
ym

⎤
⎥⎦ , (7)

where yi = (S × diag(Mi,∗)) ⊗ x =
∨n

j=1 xjmijSj for i = 1, . . . , m.

Decoding Procedure: The decoding procedure is quite simple. We can scan all
yi for i = 1, . . . , m. If wt(yi) = log n, the defective item can be identified by
calculating the first half of yi. Otherwise, no defective item is identified. The
procedure is described in Algorithm 1.

Algorithm 1. GetDefectives(y, n): detection of up to d defective items.
Input: number of items n; outcome vector y
Output: defective items

1: s = 2 log n.
2: S = ∅.
3: Divide y into m = t/s smaller vectors y1, . . . ,ym such that y = (y1, . . . ,ym)T and

their size are equal to s, where t is the number of entries in y.
4: for i = 1 to m do
5: if wt(yi) = log n then
6: Get defective item d0 by checking first half of y.
7: S = S ∪ {d0}.
8: end if
9: end for

10: return S.

This scheme can be summarized as the following theorem:

Theorem 2. Let an m×n matrix M be (d−1)-disjunct. Suppose that a set of n
items has up to d defective and no inhibitors. Then there exists a t×n matrix T
constructed from M that can be used to identify up to d defective items in time
t = m×2 log n. Further, suppose that each column of M can be computed in time
β. Then every column of T can be computed in time 2 log n × β = O(β log n).
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Algorithm 1 is modified and denoted as GetDefectives∗(y, n) if we substitute
S by multiset S∗; i.e., the output of GetDefectives∗(·) may have duplicated items
which are used to handle the presence of erroneous outcomes in Sects. 4 and 5.
Line 7 is interpreted as “Add d0 to set S∗”.

3 Improved Instantiation of Nonrandom (d, r; z]-Disjunct
Matrices

We first state the useful nonrandom construction of (d, r; z]-disjunct matrices,
which is an instance of Theorem 1:

Theorem 3 (Lemma 29 [21]). Let 1 ≤ d, r, z < n be integers and C be a
[n1 = q − 1, k1]q-RS code. For any d < n1−z

r(k1−1) = q−1−z
r(k1−1) and n ≤ qk1 , there

exists a t×n nonrandom (d, r; z]-disjunct matrix where t = O
(
qr+1

)
. Moreover,

each column of the matrix can be constructed in time O
(
qr+2/(r2d2)

)
.

An approximation of a Lambert W function W(x) [22] is ln x − ln lnx ≤
W(x) ≤ ln x − 1

2 ln lnx for any x ≥ e. Then an improved instantiation of non-
random (d, r; z]-disjunct matrix is stated as follows:

Corollary 1. For any positive integers d, r, z, and n with d + r ≤ n, there
exists a t × n nonrandom (d, r; z]-disjunct matrix with t = Θ

(
λr+1

)
, where λ =

(rd ln n)/(W(d ln n))+z. Moreover, each column of the matrix can be constructed
in time O

(
λr+2/(r2d2)

)
.

Proof. From Theorem 3, we only need to find an [n1 = q − 1, k1]q-RS code such
that d < n1−z

r(k1−1) = q−1−z
r(k1−1) and qk1 ≥ n. One chooses

q =

{
rd lnn

W(d lnn) + z + 1 if rd lnn
W(d lnn) + z + 1 is the power of 2.

2η+1, otherwise.
(8)

where η is an integer satisfying 2η < rd lnn
W(d lnn) + z + 1 < 2η+1. We have

q = Θ
(

rd lnn
W(d lnn) + z

)
in both cases because rd lnn

W(d lnn) + z + 1 ≤ q <

2
(

rd lnn
W(d lnn) + z + 1

)
.

Set k1 =
⌈

q−z−1
rd

⌉
≥ lnn

W(d lnn) . Note that the condition on d in Theorem 3
always holds because:

k1 =
⌈

q − z − 1
rd

⌉
=⇒ k1 <

q − z − 1
rd

+ 1 =⇒ d <
q − 1 − z

r(k1 − 1)
=

n1 − z

r(k1 − 1)
.

Finally, our task is to prove that n ≤ qk1 . Indeed, we have:

qk1 ≥
(

rd ln n

W(d ln n)
+ z + 1

) ln n
W(d ln n)

≥
(

d ln n

W(d ln n)

) ln n
W(d ln n)

≥
(
eW(d lnn)eW(d ln n

)1/d

= (ed lnn)1/d = n.

This completes our proof.
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The number of tests in our construction is better than the one in Theorem1.
Furthermore, there is no decoding scheme associated with matrices in this corol-
lary. However, when r = z = 1, the scheme in [14] achieves the same number of
tests and has an efficient decoding algorithm.

4 Identification of Defective Items

In this section, we answer Problem 1 that there exists a t×n measurement matrix
such that: it can handle at most e errors in the test outcome; each column can be
nonrandomly generated in time poly(t); and all defective items can be identified
in time poly(d, h, e, log n), where there are up to d defective items and up to
h inhibitor items in n items. The main idea is to use the modified version of
Algorithm 1 to identify all potential defective items. Then a sanitary procedure
is proceeded to remove all false defective items.

Theorem 4. Let 1 ≤ d, h, d + h ≤ n be integers, z be odd, and λ =
(d+h) lnn

W((d+h) lnn) + z. A set of n items includes up to d defective items and up to h

inhibitors. Then there exists a t × n nonrandom matrix such that up to d defec-
tive items can be identified in time O

(
λ5 log n
(d+h)2

)
with up to e = z−1

2 errors in the

test outcomes, where t = Θ
(
λ2 log n

)
. Moreover, each column of the matrix can

be generated in time poly(t).

The proof is given in the following sections.

4.1 Encoding Procedure

We set e = z−1
2 and λ = (d+h) lnn

W((d+h) lnn) + z. Let an m × n matrix M be an
(d + h; z]-disjunct matrix in Corollary 1 (r = 1), where

m = Θ

((
(d + h) ln n

W((d + h) ln n)
+ z

)2
)

= O(λ2).

Each column in M can be generated in time t1 = O
(

λ3

(d+h)2

)
. Then the final

t × n measurement matrix T is

T = M � S, (9)

where the s × n matrix S is defined in (5) and t = ms = Θ
(
λ2 log n

)
. Then it is

easy to see that each column of T can be generated in time t1 × s = poly(t).
Any input vector x = (x1, . . . , xn)T ∈ {0, 1,−∞}n contains at most d 1’s

and at most h −∞’s as described in Sect. 1.2. Note that D and H are the index
sets of the defective items and the inhibitor items, respectively. Then the binary

outcome vector using the measurement matrix T is y = T ⊗ x =

⎡
⎢⎣
y1

...
ym

⎤
⎥⎦ , where
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yi = (S × diag(Mi,∗))⊗x =

⎡
⎣

y(i−1)s+1

. . .
yis

⎤
⎦ , and y(i−1)s+l = 1 iff

∑n
j=1 mijsljxj ≥

1, and y(i−1)s+l = 0 otherwise, for i = 1, . . . , m, and l = 1, . . . , s. We assume
that there are at most e incorrect outcomes in the outcome vector y.

4.2 Decoding Procedure

Given outcome vector y = (y1, . . . ,ym)T , we can identify all defective items by
using Algorithm 2. Step 1 is to identify all potential defectives and put them in
the set S∗. Then Steps 3 to 8 are to remove duplicate items in the new potential
defective set S0. After that, Steps 9 to 16 are to remove all false defectives.
Finally, Step 17 returns the defective set.

Algorithm 2. GetDefectivesWOInhibitors(y, n, e): detection of up to d defective
items without identifying inhibitors.
Input: a function to generate t×n measurement matrix T ; outcome vector y; maximum
number of errors e
Output: defective items

1: S∗ = GetDefectives∗(y, n). � Identify all potential defectives.
2: S0 = ∅. � Defective set.
3: foreach x ∈ S∗ do
4: if x appears in S∗ at least e + 1 times then
5: S0 = S0 ∪ {x}.
6: Remove all elements that equal x in S∗.
7: end if
8: end foreach
9: for all x ∈ S0 do � Remove false defectives.

10: � Get column corresponding to defective item x.
11: Generate column Tx = Mx � Sx.
12: if ∃i0 ∈ [t] : ti0x = 1 and yi0 = 0 then � Condition for a false defective.
13: S0 = S0 \ {x}. � Remove false defectives.
14: break;
15: end if
16: end for
17: return S0. � Return set of defective item.

4.3 Correctness of Decoding Procedure

Since matrix M is an (d+h; z]-disjunct matrix, there are at least z rows i0 such
that mi0j = 1 and mi0j′ = 0 for any j ∈ D and j′ �∈ D ∪ H \ {j}. Since up to
e = (z−1)/2 errors may appear in test outcome y, there are at least e+1 vectors
yi0 such that the condition in Step 5 of Algorithm1 holds. Consequently, each
value j ∈ D appears at least e + 1 times. Therefore, Steps 1 to 8 return a set S0

containing all defective items and some false defectives.
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Steps 9 to 16 are to remove false defectives. For any index j �∈ D, since there
are at most e = (z − 1)/2 erroneous outcomes, there is at least 1 row i0 such
that ti0j = 1 and ti0j′ = 0 for all j′ ∈ D ∪ H. Because item j �∈ D, the outcome
of that row (test) is negative (0). Therefore, Step 12 is to check whether an item
in S0 is non-defective. Finally, Step 17 returns the set of defective items.

4.4 Decoding Complexity

The time to run Step 1 is O(t). Since |S∗| ≤ m, it takes m time to run Steps 3
to 8. Because |S∗| ≤ m, the cardinality of S0 is up to m. The loop at Step 9
runs at most m times. Steps 11 and 12 take time s × m1.5

(d+h)2 and t, respectively.
The total decoding time is:

O(t) + m + m ×
(

s × m1.5

(d + h)2
+ t

)
= O

(
sm2.5

(d + h)2

)
= O

(
λ5 log n

(d + h)2

)
.

5 Identification of Defectives and Inhibitors

In this section, we answer Problem 2 that there exists a v × n measurement
matrix such that: it can handle at most e errors in the test outcome; each col-
umn can be nonrandomly generated in time poly(v); and all defective items and
inhibitor items can be identified in time poly(d, h, e, log n), where there are up to
d defective items and up to h inhibitor items in n items.

Theorem 5. Let 1 ≤ d, h, d+h ≤ n be integers, z be odd, and λ = (d+h) lnn
W((d+h) lnn)+

z. A set of n items includes up to d defective items and up to h inhibitors. Then
there exists a v × n nonrandom matrix such that up to d defective items and
up to h inhibitor items can be identified in time O

(
dλ6 × max

{
λ

(d+h)2 , 1
})

, with

up to e = z−1
2 errors in the test outcomes, where v = Θ

(
λ3 log n

)
. Moreover,

each column of the matrix can be generated in time poly(v).

To detect both up to h inhibitors and d defectives, we have to use two types of
matrices: an (d+h; z]-disjunct matrix and an (d+h−2, 2; z]-disjunct matrix. The
main idea is as follows. We first identify all defective items. Then all potential
inhibitors are located by using an (d + h − 2, 2; z]-disjunct matrix. The final
procedure is to remove all false inhibitor items.

5.1 Identification of an Inhibitor

Let ∨ be the notation for the union of the column corresponding to the defective
item and the column corresponding to the inhibitor item. We suppose that there
is an outcome o := (o1, . . . , os)T = Sa∨Sb, where the defective item is a and
the inhibitor item is b, and that Sa and Sb are two columns in the s × n matrix
S in (5). Note that oi = 1 iff sia = 1 and sib = 0, and oi = 0 otherwise, for
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Algorithm 3. GetInhibitorFromADefective(o,Sa, n): identification of an
inhibitor when defective item and union of corresponding columns are known.
Input: outcome vector o := (o1, . . . , os) = Sa ∨ Sb; number of items n; vector Sa

corresponding to defective item a
Output: inhibitor item b

1: s = 2 log n.
2: Set Sb = (s1b, . . . , ssb)

T = (−1, −1, . . . , −1)T .
3: for i = 1 to s do � Obtain s/2 entries of Sb.
4: If sia = 1 and oi = 1 then sib = 0. end if
5: If sia = 1 and oi = 0 then sib = 1. end if
6: end for
7: for i = 1 to s/2 do � Obtain s/2 remaining entries of Sb.
8: If sib = −1 then sib = 1 − si+s/2,b. end if
9: If sib = 0 then si+s/2,b = 1. end if

10: If sib = 1 then si+s/2,b = 0. end if
11: end for
12: Get index b by checking first half of Sb.
13: return b. � Return the inhibitor item.

i = 1, . . . , s. Assume that the defective item a is already known. The inhibitor
item b is identified as in Algorithm3.

The correctness of the algorithm is described here. Step 2 initializes the
corresponding column of inhibitor b in S. Since column Sa has exactly s/2 1’s,
Steps 3 to 6 are to obtain s/2 positions of Sb. Since the first half of Sa is the
complement of its second half, it does not exist two indexes i0 and i1 such that
si0a = si1a = 1, where |i0 − i1| = log n. As a result, it does not exist two indexes
i0 and i1 such that si0b = si1b = −1, where |i0 − i1| = log n. Moreover, the first
half of Sb is the complement of its second half. Therefore, the remaining s/2
entries of Sb can be obtained by using Steps 7 to 11. The index of inhibitor b can
be identified by checking the first half of Sb, which is done in Step 12. Finally,
Step 13 returns the index of the inhibitor.

It is easy to verify that the decoding complexity of Algorithm 3 is O(s).
Example: Let S be the matrix in (5), where n = 8 and s = 2 log n = 6. Given
item 1 is the unknown inhibitor and that item 3 is the known defective item,
assume that the observed vector is o = (0, 1, 0, 0, 0, 0)T . The corresponding col-
umn of the defective item is S3. We set Sb = (−1,−1,−1,−1,−1,−1)T . We
get Sb = (−1, 0,−1, 1,−1, 1)T from Steps 3 to 6 and the complete column
Sb = (0, 0, 0, 1, 1, 1)T from Steps 7 to 11. Because the first half of Sb is (0, 0, 0)T ,
the index of the inhibitor is 1.

5.2 Encoding Procedure

We set e = z−1
2 and λ = (d+h) lnn

W((d+h) lnn) + z. Let an m × n matrix M and a g × n

matrix G be an (d+h; z]-disjunct matrix and an (d+h− 2, 2; z]-disjunct matrix
in Corollary 1, respectively, where
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m = Θ

((
(d + h) ln n

W((d + h) ln n)
+ z

)2
)

= Θ
(
λ2
)
,

g = Θ

((
(d + h) ln n

W((d + h) ln n)
+ z

)3
)

= Θ
(
λ3
)
.

Each column in M and G can be generated in time t1 and t2, respectively,
where

t1 = O

(
λ3

(d + h)2

)
, t2 = O

(
λ4

(d + h)2

)
. (10)

The final v × n measurement matrix V is

V =

⎡
⎣

M � S
G � S

G

⎤
⎦ =

⎡
⎣

T
H
G

⎤
⎦ , (11)

where T = M � S and H = G � S. The sizes of matrices T and H are t × n
and h × n, respectively. Then we have t = ms = 2m log n and h = gs = 2g log n.
Note that the matrix T is the same as the one in (9). The number of tests of
the measurement matrix V is

v = t + h + g = ms + gs + g = O((m + g)s) = Θ
(
λ3 log n

)
.

Then it is easy to see that each column of matrix V can be generated in time
(t1 + t2) × s + t2 = poly(v).

Any input vector x = (x1, . . . , xn)T ∈ {0, 1,−∞}n contains at most d 1’s and
at most h −∞’s as described in Sect. 1.2. The outcome vector using measurement
matrix T , i.e., y = T ⊗x, is the same as the one in Sect. 4.1. The binary outcome
vector using the measurement matrix H is

h = H ⊗ x =

⎡
⎢⎣
h1

...
hg

⎤
⎥⎦ , (12)

where hi = (S × diag(Gi,∗)) ⊗ x =

⎡
⎣

h(i−1)s+1

. . .
his

⎤
⎦, h(i−1)s+l = 1 iff

∑n
j=1 gijsljxj

≥ 1, and h(i−1)s+l = 0 otherwise, for i = 1, . . . , g, and l = 1, . . . , s. Therefore,
the outcome vector using the measurement matrix V in (11) is:

v = V ⊗ x =

⎡
⎣

T
H
G

⎤
⎦⊗ x =

⎡
⎣

T ⊗ x
H ⊗ x
G ⊗ x

⎤
⎦ =

⎡
⎣
y
h
g

⎤
⎦ , (13)

where y is as same as the one in Sect. 4.1, h is defined in (12), and g = G ⊗ x =
(r1, . . . , rg)T . We assume that 0× (−∞) = 0 and there are at most e = (z −1)/2
incorrect outcomes in the outcome vector v.
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5.3 Decoding Procedure

Given outcome vector v, number of items n, number of tests in matrix M,
number of tests in matrix G, maximum number of errors e, and functions to
generate matrix V, G, M, and S. The details of the proposed scheme is described
in Algorithm 4. Steps 1 to 2 are to divide the outcome vector v into three smaller
vectors y,h, and g as (13). Then Step 3 is to get the defective set. All potential
inhibitors would be identified in Steps 5 to 12. Then Steps 14 to 23 are to remove
most of false inhibitors. Since there may be some duplicate inhibitors and some
remaining false inhibitors in the inhibitor set, Step 25 to 31 are to remove the
remaining false inhibitors and make each element in the inhibitor set unique.
Finally, Step 32 is to return the defective set and the inhibitor set.

5.4 Correctness of the Decoding Procedure

Because of the construction of V, the three vectors split from the outcome vector
v in Step 2 are y = T ⊗ x,h = H ⊗ x, and g = G ⊗ x. Therefore, the set D
achieved in Step 3 is the defective set as analyzed in Sect. 4.

Let H be the true inhibitor set which we will identify. Since G is an (d + h −
2, 2; z]-disjunct matrix G, for any j1 ∈ H (we have not known H yet) and j2 ∈ D,
there exists at least z rows i0’s such that gi0j1 = gi0j2 = 1 and gi0j′ = 0, for all
j′ ∈ D∪H \{j1, j2}. Then, since there are at most e = (z−1)/2 errors in v, there
exists at least e+1 = (z−1)/2+1 index i0’s such that hi0 = Sj1∨Sj2 . As analyzed
in Sect. 5.1, for any vector which is the union of the column corresponding to the
defective item and the column corresponding to the inhibitor item, the inhibitor
item is always identified if the defective item is known. Therefore, the set H∗

0

obtained from Steps 7 to 12 contains all inhibitors and may contain some false
inhibitors. Our next goal is to remove false inhibitors.

To remove the false inhibitors, we first remove all defective items in the set
H∗

0 as Step 16. Therefore, there are only inhibitors and negative items in the set
H∗

0 after implementing Step 16. One needs to exploit the property of the inhibitor
that it will make the test outcome negative if there are at least one inhibitor
and at least one defective in the same test. We pick an arbitrary defective item
y ∈ D and generate its corresponding column Gy in the matrix G. Since G is an
(d + h − 2, 2; z]-disjunct matrix G and there are at most e = (z − 1)/2 errors
in v, for any j1 ∈ H (we have not known H yet) and y ∈ D, there exists at
least z − e = e + 1 rows i0’s such that gi0j1 = gi0y = 1 and gi0j′ = 0, for all
j′ ∈ D ∪ H \ {j1, y}. The outcome of these tests would be negative. Therefore,
Steps 14 to 23 removes most of false inhibitors. Note that since there are at most
e errors, the are at most e false inhibitors and each of them appears at most e
times in the set H∗

0 . Then Step 25 to 31 are to completely remove false inhibitors
and make each element in the inhibitor set unique. Finally, Step 32 returns the
sets of defective items and inhibitor items.
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Algorithm 4. GetInhibitors(v, n, e,m, g): identification of up to d defectives
and up to h inhibitors.
Input: outcome vector v; number of items n; number of tests in matrix M; number
of tests in matrix G; maximum number of errors e; and functions to generate matrix
V, G, M, and S
Output: defective items and inhibitor items

1: s = 2 log n. � number of rows in the matrix S.
2: Divide vector v into three smaller vectors y,h, and g such that v = (yT ,hT ,gT )T

and number of entries in y,h, and g are ms, gs, and g, respectively.
3: D = GetDefectivesWOInhibitors(y, n, e). � defective set.
4: � Find all potential inhibitors.
5: Divide vector h into g smaller vectors h1, . . . ,hg such that h = (hT

1 , . . . ,hT
g )T and

their size are equal to s.
6: H∗

0 = ∅. � Initialize inhibitor multiset.
7: for i = 1 to g do � Scan all outcomes in h.
8: foreach x ∈ D do
9: i0 = GetInhibitorFromADefective(hi, Sx, n).

10: Add item i0 to multiset H∗
0 .

11: end foreach
12: end for
13: � Remove most of false inhibitors.
14: Assign (r1, . . . , rg)T = g.
15: Generate a column Gy for any y ∈ D. � Get the column of a defective.
16: H∗

0 = H∗
0 \ D.

17: foreach x ∈ H∗
0 do � Scan all potential inhibitors.

18: Generate column Gx

19: if ∃i0 ∈ [g] : gi0x = gi0y = 1 and ri0 = 1 then
20: Remove all elements that equal x in H∗

0 . � Remove the false inhibitor.
21: break;
22: end if
23: end foreach
24: � Completely remove false inhibitors and duplicate inhibitors.
25: H = ∅.
26: foreach x ∈ H∗

0 do
27: if x appears in H∗

0 at least e + 1 times then
28: H = H ∪ {x}.
29: Remove all elements that equal x in H∗

0 .
30: end if
31: end foreach
32: return D and H. � Return set of defective items.

5.5 Decoding Complexity

First, we find all potential inhibitors. It takes time O(v) for Step 2. The time to
get the defective set D is O

(
sm2.5

(d+h)2

)
= O

(
λ5 log n
(d+h)2

)
as analyzed in Theorem 4.

Steps 7 and 8 have up to g and |D| ≤ d loops, respectively. Since Step 9 takes
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time O(s), the running time from Steps 7 to 12 is O(gds) and the cardinality of
H∗

0 is up to gd.
Second, we analyze the complexity of removing false inhibitors. Step 15 takes

time t1 as in (10). Since |H∗
0 | ≤ gd, the number of loops at Step 17 is at most gd.

For the next step, it takes time t2 for Step 18 as in (10). And it takes time O(g)
from Steps 19 to 22. As a result, it takes time O(t1 + gd(t2 + g)) for Steps 14
to 23.

Finally, Steps 25 to 31 are to remove duplicate inhibitors in the new defective
set H. It takes time O(gd) to do that because we know |H∗

0 | ≤ gd.
In summary, the decoding complexity is:

O

(
sm2.5

(d + h)2

)
+ O(gds) + O(t1 + gd × (t2 + g)) + O(gd)

= O

(
sm2.5

(d + h)2

)
+O(gd(t2 + g))=O

(
λ5 log n

(d + h)2

)
+O

(
dλ3 ×

(
λ4

(d+h)2
+λ3

))

= O

(
dλ6 × max

{
λ

(d + h)2
, 1
})

.

6 Simulation

In this section, we visualize the number of tests and decoding times in Table 1. We
evaluated variations of our proposed scheme by simulation using d = 2, 4, . . . , 210,
h = 0.2d, and n = 232 in Matlab R2015a on an HP Compaq Pro 8300SF desk-
top PC with a 3.4-GHz Intel Core i7-3770 processor and 16-GB memory. Two
scenarios are considered here: identification of defective items (corresponding to
Sect. 4) and identification of defectives and inhibitors (corresponding to Sect. 5).
For each scenario, two models of noise are considered in test outcomes: noiseless
setting and noisy setting. In the noisy setting, the number of errors is set to be
as 100 times the summation of the number of defective items and the number
of inhibitor items. Moreover, in some special cases, the number of items and the
number of errors may be reconsidered.

All figures are plotted in 3 dimensions in which the x-axis (on the right
of figures), y-axis (in the middle of figures), z-axis (the vertical line) represent
number of defectives, number of inhibitors, and number of tests. Our proposed
scheme, Ganesan et al.’s scheme, and Chang et al.’s scheme are visualized with
red color with marker of circle, green color with marker of pentagram, and blue
color with marker of asterisk. In the noisy setting, Ganesan et al.’s scheme is not
plotted because the authors of that scheme did not consider the noisy setting.

For decoding time, when the number of items is sufficiently large, the decod-
ing time in our proposed scheme is smaller than that of Chang et al.’s scheme
and Ganesan et al.’s scheme.

6.1 Identification of Defective Items

We illustrate decoding time when defective items are the only items that we want
to recover here. When there are no errors in test outcomes, as shown in Fig. 1, the
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Fig. 1. Decoding time vs. number of defectives and number of inhibitors for identifying
only defective items when there are no errors in test outcomes.
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Fig. 2. Decoding time vs. number of defectives and number of inhibitors for identifying
only defective items with presence of erroneous outcomes.

decoding time in our proposed scheme is lowest. Since the decoding times in our
proposed scheme and Ganesan et al.’s scheme are relatively equal, only one line
is visible in the left subfigure of Fig. 1. Therefore, we zoomed in on those lines
to see how close these two decoding times are. As plotted in the right subfigure
of Fig. 1, when the number of defective items and the number of inhibitor items
are small, the decoding time in our proposed scheme is always smaller the one
in Ganesan et al.’s scheme. As the number of defective items and the number of
inhibitor items increase, the decoding time in our proposed scheme first becomes
larger the one in Ganesan et al.’s scheme, though it becomes smaller after the
number of items reaches some threshold. We note that if the number of defective
items and inhibitor items are fixed while the number of total items is sufficiently
large, the decoding time in our proposed scheme is always smaller than the ones
in Chang et al.’s scheme and Ganesan et al.’s scheme.

When some erroneous outcomes are allowed, the decoding time in our pro-
posed scheme is always smaller than the one in Chang et al.’s scheme as shown
in Fig. 2.

6.2 Identification of Defectives and Inhibitors

We illustrate decoding time for classifying all items. In principle, the complexity
of the decoding time in our proposed scheme is smallest in comparison with the
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(b) n = 266

Fig. 3. Decoding time vs. number of defectives and number of inhibitors for classifying
items when there are no errors in test outcomes.
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Fig. 4. Decoding time vs. number of defectives and number of inhibitors for classifying
items when there are some erroneous outcomes.

ones in Chang et al.’s scheme and Ganesan et al.’s scheme when the number
of items is sufficiently large. When there are no errors in test outcomes, the
decoding time of the proposed scheme is smallest when the number of items is
at least 266, as shown in subfigure (b) of Fig. 3. When some erroneous outcomes
are allowed, the decoding time in our proposed scheme is always smaller than
the one in Chang et al.’s scheme when the number of items is at least 261, as
shown in subfigure (b) of Fig. 4.

7 Conclusion

We have presented two schemes efficiently identifying up to d defective items
and up to h inhibitors in the presence of e erroneous outcomes in time
poly(d, h, e, log n). This decoding complexity is substantially less than that of
state-of-the-art systems in which the decoding complexity is poly(d, h, e, n). How-
ever, the number of tests with our proposed schemes is slightly higher. Moreover,
we have not considered an inhibitor complex model [12] in which each inhibitor
in this work would be transferred to a bundle of inhibitors. Such a model would
be much more complicated and is left for future work.
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