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Abstract. A standard tool for the classifying computability-theoretic
complexity of equivalence relations is provided by computable reducibil-
ity. This gives rise to a rich degree-structure which has been extensively
studied in the literature. In this paper, we show that equivalence rela-
tions, which are complete for computable reducibility in various levels
of the hyperarithmetical hierarchy, arise in a natural way in computable
structure theory. We prove that for any computable successor ordinal
α, the relation of Δ0

α isomorphism for computable distributive lattices
is Σ0

α+2 complete. We obtain similar results for Heyting algebras, undi-
rected graphs, and uniformly discrete metric spaces.
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1 Introduction

We study computability-theoretic complexity of equivalence relations which arise
in a natural way in computable structure theory. Our main working tool is
computable reducibility.
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Definition 1.1. Suppose that E and F are equivalence relations on the domain
ω. The relation E is computably reducible to F (denoted by E ≤c F ) if there is
a total computable function f(x) such that for all x, y ∈ ω, the following holds:

(xEy) ⇔ (f(x)Ff(y)).

In what follows, we assume that every considered equivalence relation has
domain ω.

The systematic study of c-degrees, i.e. degrees induced by computable
reducibility, was initiated by Ershov [12,13]. His approach stems from the
category-theoretic methods in the theory of numberings. In 1980s, the research
in the area of c-degrees was concentrated on computably enumerable equiva-
lence relations (or ceers for short): in particular, provable equivalence in formal
systems was studied (see, e.g., [10,11,28]). Note that the acronym ceer was intro-
duced in [17]. Recently, Andrews and Sorbi [1] provided a profound analysis of
the structure of c-degrees of ceers. For the results and bibliographical references
on ceers, the reader is referred to, e.g., the survey [2] and the articles [1,3,17].

Computable reducibility also proved to be useful for classifying equivalence
relations having higher complexity than ceers. In particular, recent works [8,24]
consider c-degrees of Δ0

2 equivalence relations.

Definition 1.2. Let Γ be a complexity class (e.g., Σ0
1 , d-Σ0

1 , Σ0
2 , or Π1

1 ). An
equivalence relation E is Γ complete (for computable reducibility) if E ∈ Γ and
for every equivalence relation R ∈ Γ , we have R ≤c E.

Examples of known Γ complete equivalence relations include:

– The relation of provable equivalence in Peano arithmetic is Σ0
1 complete [11].

– 1-equivalence and m-equivalence on indices of c.e. sets are both Σ0
3 com-

plete [14].
– Turing equivalence on indices of c.e. sets is Σ0

4 complete [21].
– For every n ∈ ω, 1-equivalence on indices of ∅(n+1)-c.e. sets is Σ0

n+4 com-
plete [21].

Furthermore, in [21], it was proved that for any computable ordinal α, there is
no Π0

α+2 complete equivalence relation.
Some of Γ complete equivalence relations have origins in computable struc-

ture theory: Given a class of structures K, one can treat the isomorphism relation
on (the set of computable members of) the class K as an equivalence relation on
ω (to be formally explained in Sect. 2.1). In [15], it was proved that for each of
the following classes K, the isomorphism relation on K is Σ1

1 complete for com-
putable reducibility: trees, graphs, torsion-free abelian groups, abelian p-groups,
linear orders, fields (of arbitrary characteristic), 2-step nilpotent groups.

Fokina, Friedman, and Nies [14] investigated the relation of computable iso-
morphism on a given class. In particular, they showed that for predecessor trees,
equivalence structures, and Boolean algebras, the computable isomorphism rela-
tion is Σ0

3 complete.
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In this paper, we study the relation of Δ0
α isomorphism, denoted by ∼=Δ0

α
,

where α is a non-zero computable ordinal. Δ0
α isomorphisms and the closely

related notion of Δ0
α-categoricity have been extensively studied in the literature

(see, e.g., [6,16] for a survey of results).
Following the approach of [14], our paper shows that the relation ∼=Δ0

α
fits

well in the setting of computable reducibility. The outline of the paper is as
follows. Section 2 contains the necessary preliminaries. In Sect. 3, we prove our
main result: For every computable successor ordinal α, the relation ∼=Δ0

α
on

computable distributive lattices is Σ0
α+2 complete for computable reducibility.

In Sect. 4, we prove consequences of the main theorem: similar results are
obtained for Heyting algebras, undirected graphs, and uniformly discrete metric
spaces. We also give a partial result for Boolean algebras with distinguished
subalgebra. Section 5 discusses some open problems.

2 Preliminaries

We consider only computable languages. For any considered countable structure
S, its domain is contained in the set of natural numbers. By D(S) we denote
the atomic diagram of S.

For a language L, infinitary formulas of L are formulas of the logic Lω1,ω. For
a countable ordinal α, infinitary Σα and Πα formulas are defined in a standard
way (see, e.g., [6, Chap. 6]).

2.1 Isomorphism Relation

Suppose that L is a computable language. For a computable L-structure S, its
computable index is a number e such that the characteristic function χD(S) of the
atomic diagram D(S) is equal to ϕe, where {ϕe}e∈ω is the standard enumeration
of all unary partial computable functions.

For e ∈ ω, by Me we denote the structure with computable index e. Suppose
that K is a class of L-structures. The index set of the class K is the set

I(K) = {e : Me ∈ K}.

Let ∼ be an equivalence relation on (computable members of) the class K.
Then we will identify ∼ with the following equivalence relation ∼# on the set of
natural numbers:

(i ∼# j) ⇔ (i = j) ∨ (i, j ∈ I(K)&Mi ∼ Mj).

Therefore, one can consider the relations of isomorphism and Δ0
α isomorphism

in the setting of computable reducibility.

Lemma 2.1. Let K be a class of structures, and α be a computable non-zero
ordinal. If the index set I(K) is Σ0

α+2, then the relation of Δ0
α isomorphism on

computable members of K is also Σ0
α+2.
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Proof. Essentially follows from [19, Proposition 4.10]. �	
It is not hard to establish the following result (e.g., compare [19, Proposition

4.1]).

Lemma 2.2. For each of the following classes K (in an appropriate language,
to be discussed in the corresponding sections), the index set I(K) is Π0

2 :

(a) distributive lattices,
(b) Heyting algebras,
(c) undirected graphs,
(d) Boolean algebras with distinguished subalgebra.

Lemmas 2.1 and 2.2 together show that on each of the classes K consid-
ered above, the relation ∼=Δ0

α
is Σ0

α+2. Hence, in order to prove our results, it
is sufficient to establish the Σ0

α+2 hardness of the relation ∼=Δ0
α
: Given an arbi-

trary Σ0
α+2 equivalence relation E, we produce a uniformly computable sequence

{Sn}n∈ω of structures from K such that:

(mEn) ⇔ (Sm
∼=Δ0

α
Sn).

We leave the discussion of metric spaces until Sect. 4.3.

2.2 Hyperarithmetical Equivalence Relations

In order to obtain our results on the relation of Δ0
α isomorphism, we will work

with some special hyperarithmetical equivalence relations. Note that the expo-
sition in this subsection mirrors the corresponding recursion-theoretical results
from [14].

Consider an oracle X ⊆ ω. For e ∈ ω, by WX
e we denote the X-c.e. set that

has index e in the standard numbering of all X-c.e. sets.
Suppose that A and B are subsets of ω. We say that A is 1-X-reducible to

B, denoted by A ≤X
1 B, if there is a total X-computable, injective function f(x)

such that for every x ∈ ω, we have x ∈ A iff f(x) ∈ B. As usual, we write
A ≡X

1 B if A ≤X
1 B and B ≤X

1 A.
The sets A and B are X-computably isomorphic if there is an X-computable

permutation σ of the set of natural numbers such that σ(A) = B. The following
lemma is a relativization of Myhill Isomorphism Theorem [23].

Lemma 2.3. Sets A and B are X-computably isomorphic iff A ≡X
1 B.

Now one can consider a relativized version of [14, Theorem 1]:

Theorem 2.1 (essentially [14]). For any Σ0
3(X) equivalence relation E, there

is a total computable function g(x) such that:

(a) If (yEz), then WX
g(y) ≡X

1 WX
g(z).

(b) If ¬(yEz), then WX
g(y) �T WX

g(z) ⊕ X and WX
g(z) �T WX

g(y) ⊕ X.
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Proof (sketch). Proceed with a straightforward relativization of [14, Theorem 1].
Note that this gives only an X-computable function g0(x) with the desired prop-
erties. Nevertheless, there is a computable function g(x) such that WX

g(e) = WX
g0(e)

for all e. Indeed, the set {〈k, e〉 : k ∈ WX
g0(e)

} is c.e. in X and hence, the function
g can be recovered by using s-m-n Theorem (see, e.g., Exercise 1.20 in [26, Chap.
III] for more details). �	

Suppose that α is a computable non-zero ordinal. For convenience, we use
the following notation:

∅(α) :=
{∅(α−1), if α < ω,

∅(α), if α ≥ ω.

Notice that for every α, we have Σ0
α = Σ0

1(∅(α)) and Δ0
α = Δ0

1(∅(α)). The
theorem above implies the following.

Corollary 2.1. Let α be a computable non-zero ordinal. Then the relation ≡∅(α)
1

on the indices of ∅(α)-c.e. sets is Σ0
α+2 complete for computable reducibility.

2.3 Pairs of Computable Structures

Our proofs heavily rely on the technique of pairs of computable structures devel-
oped by Ash and Knight [5,6]. Here we give necessary preliminaries on the tech-
nique.

Suppose that A and B are L-structures. We say that B ≤α A if every infini-
tary Πα sentence true in B is also true in A.

Let α be a computable ordinal. A family K = {Ai : i ∈ I} of L-structures
is α-friendly if the structures Ai are uniformly computable in i ∈ I, and the
relations

Bβ = {(i, ā, j, b̄) : i, j ∈ I, ā ∈ Ai, b̄ ∈ Aj , (Ai, ā) ≤β (Aj , b̄)}

are computably enumerable, uniformly in β < α.

Theorem 2.2 ([5, Theorem 3.1]). Suppose that α is a non-zero computable
ordinal, A and B are L-structures. If B ≤α A and the family {A,B} is α-friendly,
then for any Σ0

α set X, there is a uniformly computable sequence of L-structures
{Cn}n∈ω such that

Cn
∼=

{A, if n �∈ X;
B, if n ∈ X.

Theorem 2.2 and the description of the relations ≤α for countable well-orders
[4,6] together imply the following:

Proposition 2.1. Let β be a computable ordinal.
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(i) For any Σ0
2β+1 set S, there is a uniformly computable sequence of linear

orders {Cn}n∈ω such that

Cn
∼=

{
ωβ , if n �∈ S;
ωβ · 2, if n ∈ S.

(ii) For any Σ0
2β+2 set S, there is a uniformly computable sequence of linear

orders {Cn}n∈ω such that

Cn
∼=

{
ωβ+1, if n �∈ S;
ωβ+1 + ωβ , if n ∈ S.

A sketch of the proof of Proposition 2.1 can be found, e.g., in [9, Theorem 4].

2.4 Distributive Lattices

Consider a language LBL := {∨,∧; 0, 1}. Recall that a lattice is bounded if it
has the least element 0 and the greatest element 1. In this paper, we consider
only bounded lattices. Thus, we treat lattices as LBL-structures. The reader is
referred to [20] for the background on lattice theory.

A partial order ≤ in a lattice A is recovered in a standard lattice-theoretical
way: x ≤ y if and only if x ∨ y = y. For elements a, b ∈ A, by [a; b] we denote
the interval {c ∈ A : a ≤ c ≤ b}.

Suppose that {An}n∈ω is a sequence of distributive lattices. The direct sum of
the sequence {An}n∈ω (denoted by

∑
n∈ω An) is the substructure of the product∏

n∈ω An on the domain
{

f ∈
∏
n∈ω

An : (∃c ∈ {0, 1})∃m(∀k ≥ m)(f(k) = cAk)

}
.

It is not hard to show that
∑

n∈ω An is a distributive lattice. Furthermore, if the
sequence {An}n∈ω is computable, then one can build a computable copy of the
sum

∑
n∈ω An, in a standard way (see, e.g., [9, § 2.1] for details). Hence, in this

case, we will identify the direct sum with its standard computable presentation.
If ai ∈ Ai, i ≤ n, and an �= 0An , then (a0, a1, . . . , an,⊥n+1) denotes the ele-

ment (a0, a1, . . . , an, 0, 0, 0, . . . ) from
∑

n∈ω An. If an �= 1An , then by (a0, a1, . . . ,
an,�n+1) we denote the element (a0, a1, . . . , an, 1, 1, 1, . . . ).

If L is a linear order with the least and the greatest elements, then (as per
usual) L can be treated as bounded distributive lattice D(L).

3 Δ0
α Isomorphism for Distributive Lattices

Theorem 3.1. Suppose that α is a computable successor ordinal. The relation
of Δ0

α isomorphism of computable distributive lattices is a complete Σ0
α+2 equiv-

alence relation under computable reducibility.
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Proof. Here we give a detailed proof for the case when α is odd, i.e. α = 2β + 1.
At the end of the proof, we will briefly comment on how to deal with even α.

Suppose that E is a Σ0
α+2 equivalence relation on ω. Then by Corollary 2.1,

there is a computable function g(x) with the following property: for any m,n ∈ ω,

(mEn) ⇔ W
∅(α)

g(m) ≡∅(α)
1 W

∅(α)

g(n) . (1)

Since α = 2β + 1, the first part of Proposition 2.1 gives a computable sequence
{Ln,k}n,k∈ω of linear orders such that

Ln,k
∼=

{
ωβ , if k �∈ W

∅(α)

g(n) ;

ωβ · 2, if k ∈ W
∅(α)

g(n) .
(2)

For a natural number n, we define a computable distributive lattice Sn as
follows:

Sn :=
∑
k∈ω

D(Ln,k + 1).

Now it is sufficient to prove the following fact: For every m,n ∈ ω,

(mEn) ⇔ (Sm and Sn are Δ0
α-computably isomorphic).

For n, k ∈ ω, consider the element en,k := (0, 0, . . . , 0, cn,k,⊥k+1) from Sn,
where cn,k is the greatest element in the order (Ln,k + 1). Clearly, the sequence
{en,k}n,k∈ω is uniformly computable.

We define auxiliary finitary formulas

Lin(x) := ∀y∀z[(y ≤ x)&(z ≤ x) → (y ≤ z) ∨ (z ≤ y)],
MaxLin(x) := Lin(x)&∀y[(x ≤ y)&Lin(y) → (y = x)].

The ∀∃-formula MaxLin(x) says that an element x is maximal such that the
interval [0;x] is linearly ordered. It is not hard to show that MaxLin(Sn) =
{en,k : k ∈ ω}, see [9, Lemma 3] for details. Since the sequence {en,k}n,k∈ω

is computable, one may assume that the sets MaxLin(Sn) are computable,
uniformly in n.

Lemma 3.1. If Sm and Sn are Δ0
α-computably isomorphic, then m and n are

E-equivalent.

Proof. Let F be a Δ0
α isomorphism from Sm onto Sn. Note that the map F1 :=

F � MaxLin(Sm) is a Δ0
α bijection from MaxLin(Sm) onto MaxLin(Sn). Define

a map σ : ω → ω as follows:

σ(i) = j, if F (em,i) = en,j .

It is easy to see that σ is well-defined. Moreover, σ is a Δ0
α permutation of ω.

For every i ∈ ω, the intervals [0; em,i]Sm
and [0; en,σ(i)]Sn

are isomorphic.
Thus, for any i, the following conditions are equivalent:

i ∈ W
∅(α)

g(m) ⇔ Lm,i
∼= ωβ · 2 ⇔ Ln,σ(i)

∼= ωβ · 2 ⇔ σ(i) ∈ W
∅(α)

g(n) .
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Therefore, the permutation σ witnesses that the sets W
∅(α)

g(m) and W
∅(α)

g(n) are ∅(α)-
computably isomorphic. Equation (1) implies that the numbers m and n are
E-equivalent. �	
Lemma 3.2. If (mEn), then the lattices Sm and Sn are Δ0

α-computably iso-
morphic.

Proof. Assume that m and n are E-equivalent. By Eq. (1), there is a Δ0
α per-

mutation σ such that σ(W ∅(α)

g(m)) = W
∅(α)

g(n) . Therefore, for every i ∈ ω, the orders
Lm,i and Ln,σ(i) are isomorphic. Recall that every Lm,i is isomorphic either to
ωβ , or to ωβ · 2.

In [9, p. 609] (see also Proposition 2 in [9]), the following fact was proved:
There is an effective procedure which, given computable indices of linear orders
M and N such that M and N are both isomorphic to some A ∈ {ωβ , ωβ · 2},
computes a Δ0

2β+1 index of an isomorphism F from M onto N .
Recall that α = 2β + 1. Hence, using the fact above, one can produce a

uniform sequence of Δ0
α isomorphisms {Fi}i∈ω such that Fi maps Lm,i onto

Ln,σ(i).
Now one can arrange a Δ0

α isomorphism G from Sm onto Sn in a pretty
straightforward way. A typical example looks like follows: Consider an element
a = (p0, p1, p2,�3) from Sm, where 0 ≤ pi < em,i. Then

G(a) := F0(p0) ∨ F1(p1) ∨ F2(p2) ∨ b,

where the jth coordinate of the element b (inside Sn) is equal to
{

0, if j ∈ {σ(0), σ(1), σ(2)},
en,j , otherwise.

Lemma 3.2 is proved. �	
The proof of Theorem 3.1 for the case α = 2β + 2 is essentially the same,

modulo the following key modification: one needs to use the ordinals ωβ+1 and
ωβ+1 + ωβ in place of ωβ and ωβ · 2, respectively. More details on this case can
be recovered from the discussion in [9, p. 610]. Theorem3.1 is proved. �	

4 Consequences of the Main Result

The (method of the) proof of Theorem3.1 can be applied to obtain similar results
for other familiar classes of structures.

4.1 Heyting Algebras

Heyting algebras are treated as structures in the language LHA = {∨,∧,→; 0, 1}.
An LHA-structure H is a Heyting algebra if the {∨,∧; 0, 1}-reduct of H is a
bounded distributive lattice, and H satisfies the following three axioms:
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(a) ∀x∀y[x ∧ (x → y) = x ∧ y];
(b) ∀x∀y∀z[x ∧ (y → z) = x ∧ ((x ∧ y) → (x ∧ z))];
(c) ∀x∀y∀z[z ∧ ((x ∧ y) → x) = z].

If L is a linear order with the least and the greatest elements, then it can be
treated as Heyting algebra by introducing the operation:

x → y :=
{

1, if x ≤ y;
y, if x > y.

Therefore, essentially the same proof as for Theorem 3.1 provides us with the
following result:

Corollary 4.1. Let α be a computable successor ordinal. The relation of Δ0
α

isomorphism of computable Heyting algebras is a Σ0
α+2 complete equivalence

relation.

More computability-theoretical results on Heyting algebras can be found
in [7,9,27].

4.2 Undirected Graphs

Consider a linear order L on the domain {ai : i ∈ ω}. Assume that L has no
greatest element. We define an undirected graph G(L) as follows:

– dom(G(L)) = dom(L) ∪ {bi,j , ci,j : i < j} ∪ {d, e, f}.
– We put (undirected) edges (d, e), (e, f), (f, d), (ai, bi,j), (bi,j , ci,j), (ci,j , aj)

for every i < j.
– Suppose that i < j. If ai <L aj , then add the edge (ci,j , d). Otherwise, put

the edge (bi,j , d).

It is not hard to see that the set dom(L) and the ordering ≤L are definable by
both ∃- and ∀-formulas inside G(L).

The transformation L �→ G(L) allows us to obtain the following:

Proposition 4.1. Let α be a computable successor ordinal. The relation of Δ0
α

isomorphism of computable undirected graphs is a complete Σ0
α+2 equivalence

relation under computable reducibility.

Proof (sketch). We follow the lines of Theorem 3.1, and after obtaining the
sequence {Ln,k}n,k∈ω, we introduce a uniformly computable sequence of undi-
rected graphs {Gn}n∈ω which is constructed as follows. Put into Gn the graphs
G(Ln,k), k ∈ ω, on disjoint domains, i.e. dom(G(Ln,k)) ∩ dom(G(Ln,i)) = ∅ for
k �= i. Suppose that en,k is the element which “plays role” of the node e in the
graph G(Ln,k). Introduce a fresh cycle of size five, fix a node v0 inside the cycle,
and add an edge between every en,k and v0.

It is not difficult to prove that Gm and Gn are Δ0
α isomorphic if and only if

Sm
∼=Δ0

α
Sn. �	
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4.3 Metric Spaces

Consider a Polish metric space (M,d). Assume that (qi)i∈ω is a dense sequence in
M without repetitions. A structure M = (M,d, (qi)i∈ω) is a computable metric
space if the value d(qi, qj) is a computable real, uniformly in i and j. The elements
qi are called special points. For the background on computable metric spaces, the
reader is referred to [29].

Fix a (standard) effective enumeration {ψe}e∈ω of all partial computable
functions acting from ω3 into the set {q ∈ Q : q ≥ 0}.

We say that a number e ∈ ω is a computable index of a computable metric
space M = (M,d, (qi)i∈ω) if the function ψe is total and for all i, j, t ∈ ω, the
following holds:

|d(qi, qj) − ψe(i, j, t)| ≤ 2−t.

The notion of computable index allows us to introduce index sets in the same
way as in Sect. 2.1 (for more details, we refer the reader to [22,25]). Thus, one
can treat the relation of surjective isometry on computable metric spaces as an
equivalence relation on ω.

Recall that a computable metric space is discrete if every its point is isolated.
Note that in such a space, every point is special. A computable metric space M
is uniformly discrete if there is a real ε > 0 such that for any points a �= b from
M, we have d(a, b) ≥ ε. It is easy to see that any uniformly discrete space is
discrete.

Corollary 4.2. Let α be a computable successor ordinal. The relation of Δ0
α

surjective isometry of computable, uniformly discrete metric spaces is a Σ0
α+2

complete equivalence relation.

Proof. Note that the property “e is a computable index of a metric space” is
equivalent to a Π0

2 description (see, e.g., [22, p. 322]). A computable index e
encodes a uniformly discrete space if and only if the following holds:

(∃ε ∈ Q)[(ε > 0)&∀i∀j(i �= j → ∃t(ψe(i, j, t) ≥ ε + 2−t))].

This is a Σ0
3 description, hence the index set of uniformly discrete metric spaces

is Σ0
3 . By (an analogue of) Lemma 2.1, we obtain that Δ0

α surjective isometry
for computable, uniformly discrete spaces is a Σ0

α+2 relation.
Given a countable undirected graph G on the domain {ai : i ∈ ω}, we intro-

duce a discrete metric space M(G) as follows. The domain of M(G) is equal to
dom(G), and for every i �= j, we set

d(ai, aj) =
{

1, if G |= Edge(ai, aj),
3/2, if G |= ¬Edge(ai, aj).

It is easy to see that there is a Δ0
α surjective isometry from M(G) onto M(H)

iff G ∼=Δ0
α

H. Thus, the desired result follows from Proposition 4.1. �	
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4.4 Boolean Algebras with Distinguished Subalgebra

Consider a language LBA = {∨,∧, · ; 0, 1}. A Boolean algebra with a distin-
guished subalgebra is a structure S in the language LBA ∪ {U} such that:

– the LBA-reduct of S (denoted by SBA) is a Boolean algebra, and
– the unary predicate U distinguishes a subalgebra of SBA.

Here we obtain a partial result on the relation of Δ0
α isomorphism for this

class of structures.
If L is a linear order with the least element, then Int(L) denotes the cor-

responding interval Boolean algebra. The background on computable Boolean
algebras can be found in [18].

Proposition 4.2. Let β be a computable ordinal. The relation of Δ0
2β+1 isomor-

phism of computable Boolean algebras with distinguished subalgebra is a complete
Σ0

2β+3 equivalence relation under computable reducibility.

Proof (sketch). Let α = 2β + 1. As in Theorem 3.1, given a Σ0
α+2 equivalence

relation E, we choose a computable function g(x) which satisfies Eq. (1).
It is well-known that the transformation L �→ Int(L) is uniformly effective,

i.e. given a computable index of a linear order L (with the least element), one
can effectively find a computable index for the algebra Int(L). Thus, using the
sequence from Eq. (2), one can build a uniformly computable sequence of Boolean
algebras

Bn,k
∼=

{
Int(ωβ), if k �∈ W

∅(α)

g(n) ,

Int(ωβ · 2), if k ∈ W
∅(α)

g(n) .

Let en,k be the greatest element in Bn,k.
For a natural number n, we define the Boolean algebra Cn :=

∑
k∈ω Bn,k.

Inside Cn, we use a unary predicate Un to distinguish the subalgebra generated
by the elements cn,k := (0, 0, . . . , 0, en,k,⊥k+1), k ∈ ω.

After that, one can show that

(mEn) iff (Cm, Um) and (Cn, Un) are Δ0
α-computably isomorphic.

First, note that the set {cn,k : k ∈ ω} is precisely the set of atoms of the
subalgebra Un. This observation allows us to prove an analogue of Lemma3.1.

In order to obtain an analogue of Lemma3.2, we need the following fact:
There is an effective procedure which, given computable indices of Boolean alge-
bras M and N such that M ∼= N ∼= A ∈ {Int(ωβ), Int(ωβ · 2)}, computes a
Δ0

2β+1 index of an isomorphism F from M onto N . This is an easy consequence
of the proofs of [6, Theorem 17.8] and [9, Proposition 2]. �	

Note that in this setting, the proof of Theorem3.1 for the case α = 2β + 2
cannot be re-used in a direct way. Indeed, it is easy to see that the interval
algebras Int(ωβ+1) and Int(ωβ+1 + ωβ) are isomorphic, and hence, we cannot
use these structures for encoding a Σ0

α+2 equivalence relation E.
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5 Further Discussion

Note that in all our results, we consider only successor ordinals α. Therefore,
the following is left open:

Question 5.1. Suppose that α is a computable limit ordinal. Is the relation
of Δ0

α isomorphism of computable structures Σ0
α+2 complete for computable

reducibility?

Recall that in [14], it was shown that computable isomorphism of Boolean
algebras is Σ0

3 complete. We established Σ0
α+2 completeness of Δ0

α isomorphism
for Heyting algebras (Corollary 4.1). Since every Boolean algebra can be treated
as Heyting algebra under the operation x → y := x ∨ y, it is natural to ask the
following:

Question 5.2. Suppose that α is a computable ordinal such that α ≥ 2. Is the
relation of Δ0

α isomorphism of computable Boolean algebras Σ0
α+2 complete for

computable reducibility?
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https://doi.org/10.1007/978-3-0348-0018-1

21. Ianovski, E., Miller, R., Ng, K.M., Nies, A.: Complexity of equivalence relations
and preorders from computability theory. J. Symb. Logic 79(3), 859–881 (2014).
https://doi.org/10.1017/jsl.2013.33

22. Melnikov, A.G., Nies, A.: The classification problem for compact computable met-
ric spaces. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013. LNCS, vol.
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