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Abstract. Champarnaud and Pin (1989) found that the minimal deter-
ministic automaton of a language L ⊂ Σn, where Σ = {0, 1}, has at most

n∑

i=0

min(2i, 22n−i − 1)

states, and for each n there exists L attaining this bound. Câmpeanu
and Ho (2004) have shown more generally that the tight upper bound
for Σ of cardinality k and for complete automata is

kr − 1

k − 1
+

n−r∑

j=0

(2kj − 1) + 1

where r = min{m : km ≥ 2kn−m −1}. (In these results, requiring totality
of the transition function adds 1 to the state count.) Câmpeanu and
Ho’s result can be viewed as concerning functions f : [k]n → [2] where
[k] = {0, . . . , k− 1} is a set of cardinality k. We generalize their result to
arbitrary function f : [k]n → [c] where c is a positive integer.

Let Oi be the number of functions from [bi] to [cb
n−i

] that are onto

[cb
n−i −1]. Câmpeanu and Ho stated that it is very difficult to determine

the number of maximum-complexity languages. Here we show that it is
equal to Oi, for the least i such that Oi > 0.

For monotone languages a tightness result seems harder to obtain.
However, we show that the following upper bound is attained for all
n ≤ 10.

n∑

i=0

min(2i,M(n − i) − 1),

where M(k) is the kth Dedekind number.

1 Introduction

The function + on Z/5Z may seem rather complicated as functions on that
set go. On the other hand, f(x, y, z) = x + y + z mod 5 is less so, in that we
can decompose it as (x + y) + z, so that after seeing x and y, we need not
remember the pair (x, y) but only their sum. Out of the 55

3
ternary functions
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on a 5-element set, at most 52·52 can be decomposed as (x ∗1 y) ∗2 z for some
binary functions ∗1, ∗2. In Sect. 2 we make precise a sense in which such are
not the most complicated ternary functions. We do this by extending a result of
Câmpeanu and Ho [3] to functions taking values in a set of size larger than two.

Rising to an implicit challenge posed by Câmpeanu and Ho, we give a formula
for the number of maximally complex languages in Sect. 2.2.

A motivation from finance will be felt in Sects. 3 and 4. The complexity of
financial securities came into focus with the 2008 financial crisis. While Arora
et al. [1] obtained NP-hardness results for the pricing of a security, here we look
at the automatic complexity associated with executing a given trading strategy.
The possibility of exercising early leads to a less complex option in our sense, as
is easy to see. Thus we shall restrict attention to options which are European
insofar as they can only be exercised at the final time n.

2 Complexity of Languages and Operations

Definition 2.1. A deterministic finite automaton (DFA) [9] M is a 5-tuple,
(Q,Σ, δ, q0, F ), where

• Q is a finite set of states,

• q0 ∈ Q is the start state,

• F ⊆ Q is the set of accept states,

• Σ is a finite set of input symbols and

• δ : Q × Σ −→ Q is the transition
function.

If δ is not required to be total then we speak of a partial deterministic finite
automaton (PDFA).

Definition 2.2. Let Σ = {0, 1}, let n ∈ Z
+ and X ⊆ Σ≤n. Define A−(X)

to be the minimum |Q| over all PDFAs M = (Q,Σ, δ, q0, F ) for which L(M),
the language recognized by M , equals X. We call a PDFA M = (Q,Σ, δ, q0, F )
minimal for X if

|Q| = A−(X).

2.1 Operations

Champarnaud and Pin [4] obtained the following result.

Theorem 2.3 ([4, Theorem 4]). The minimal PDFA of a language L ⊂ {0, 1}n

has at most
n∑

i=0

min(2i, 22
n−i − 1)

states, and for each n there exists L attaining this bound.

Theorem 2.3 was generalized by Câmpeanu and Ho [3]:
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Theorem 2.4 ([3, Corollary 10]). For k ≥ 1, let [k] = {0, . . . , k − 1}. Let l ∈ N

and let M be a minimal DFA for a language L ⊆ [k]l. Let Q be the set of states
of M . Then we have:

(i) #Q ≤ kr−1
k−1 +

∑l−r
j=0(2

kj − 1) + 1, where r = min{m | km ≥ 2kl−m − 1};
(ii) there is an M such that the upper bound given by (i) is attained.

Both of these results involve an upper bound which can be viewed as a special
case of Theorem 2.7 below.

Definition 2.5. Let b, n, and c be positive integers. We say that a PDFA M
accepts a function f : [b]n → [c] if there are c−1 many special states q1, . . . , qc−1

of M such that for all �x ∈ [b]n,

• for i > 0, f(�x) = i iff M on input �x ends in state qi; and
• f(�x) = 0 iff M does not end in any of the special states on input �x.

Definition 2.5 generalizes the case b = 2 studied by Champarnaud and Pin.
We write AB for the set of all functions from B to A.

Definition 2.6. Let [c][b]
n

be the set of n-ary functions f : [b]n → [c]. Let b and
c be positive integers and let C ⊆ [c][b]

n

. The Champarnaud–Pin family of C is
the family of sets {Ck}0≤k≤n, where Ck ⊆ [c][b]

n−k

, 0 ≤ k ≤ n, given by

Ck = {g ∈ [c][b]
n−k

: ∃f ∈ C, �d ∈ [b]k ∀�x g(�x) = f(�d, �x)}.

So C0 = C, C1 is obtained from C0 by plugging in constants for the first
input, and so forth. We write C−

n = {f ∈ Cn : f �= 0} in order to throw out the
constant zero function. Note that |C−

n | ≥ |Cn| − 1.

Theorem 2.7. Let b and c be positive integers. Let C ⊆ [c][b]
n

. An upper bound
on the minimal number of states of PDFAs accepting members of C is given by

n∑

i=0

min(bi, |C−
i |).

The proof will be apparent from the proof of the next result, which is a
generalization of Câmpeanu and Ho’s theorem.

Theorem 2.8. Let b and c be positive integers. For the minimal number of
states of PDFAs M accepting functions f : [b]n → [c], the upper bound

n∑

i=0

min(bi, cbn−i − 1)

is attained.
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Proof. Let log = logb. The critical point for this result is the pair of values (i, k)
with i+ k = n such that bi ≤ cbk − 1 (i.e., i < bk log c) and bi+1 > cbk−1 − 1 (i.e.,
bi+1 ≥ cbk−1

, i.e., (i + 1) ≥ bk−1 log c), which can be summarized as

bk−1 log c − 1 ≤ i < bk log c. (1)

bk−1 log c ≤ i + 1 ≤ bk log c.

We shall define a set A of k-ary functions of size (cbk−1
)/b which when using the

b many transitions (substitutions for say p1) maps onto each of the cbk−1
many

k − 1-ary functions α. This will suffice if

cbk−1
/b ≤ bi

which does hold for all b by (1). The construction is similar to that of [3, Figure 1
and Theorem 8]; we shall be slightly more explicit than they were. Let s =
cbk−1 − 1. Let f0, . . . , fs−1 the set of all nonzero k − 1-ary functions. As s may
not be divisible by b, let us write s = qb + r with quotient q ≥ 0 and remainder
0 ≤ r < b. For j with 0 ≤ j ≤ q − 1, let gj be given by

gj(i, �x) = fjb+i(�x)

for each i ∈ [b] and �x ∈ [b]k−1. Let gq be given by gq(i, �x) = fqb+i(�x) for each
0 ≤ i ≤ r − 1, and let gq(i, �x) be arbitrary for r ≤ i < b. Finally, extend the set
of functions g0, . . . , gq to bi many k-ary functions in an arbitrary way, obtaining
functions hσ for σ ∈ [b]i. Then our function attaining the bound is given by

H(σ, τ) = hσ(τ).

�
When b = 2 and c is larger, Theorem 2.8 corresponds to automatic complexity

of equivalence relations on binary strings as studied in [6]. When b = c, we have
the case of n-ary operations on a given finite set, which is of great interest in
universal algebra.

2.2 The Number of Maximally Complex Languages

Definition 2.9. Let b and c be positive integers and let 0 ≤ i ≤ n. Let Oi =
O

(b,c,n)
i be the number of functions from [bi] to [cbn−i

] that are onto [cbn−i − 1].
That is, functions f : [bi] → [cbn−i

] such that for each y ∈ [cbn−i − 1] there is an
x ∈ [bi] with f(x) = y.
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Câmpeanu and Ho lamented that it seemed very difficult to count the number
of maximum-complexity languages. Here we show

Theorem 2.10. Let b and c be positive integers and let n ≥ 0. The number of
maximum complexity functions f : [b]n → [c] is Oi, where 0 ≤ i ≤ n is minimal
such that Oi > 0.

Proof. Champarnaud and Pin, and Câmpeanu and Ho, and the present authors
in Theorem 2.8, all found a maximal complexity by explicitly exhibiting the
general automaton structure of a maximal-complexity language: we start with
states corresponding to binary strings and end with strings corresponding to
Boolean functions, and there is a crossover point in the middle where, in order
that all states be used, we need an onto function exactly as specified in the
definition of Oi. The crossover point occurs for the least i such that Oi > 0,
which is when the value of the minimum of (bi, cbn−i − 1) switches from the first
to the second coordinate. The number of such functions is then the number of
such onto functions. Since we do not require totality and do not use a state for
output 0 (“reject”) we omit the constant 0 Boolean function in the range of our
onto maps. �

Note that the number of onto functions is well known in terms of Stirling
numbers of the second kind. Let Om,n be the number of onto functions from [m]
to [n]. Then

Om,n = n!
{

m

n

}
,

where
{

m
n

}
, the number of equivalence relations on [m] with n equivalence classes,

is a Stirling number of the second kind.
Note also that the number of functions from [a] to [b] that are onto the first

b − 1 elements of [b] is, in terms of the number m of elements going to the
not-required element,

a−(b−1)∑

m=0

(
a

m

)
Oa−m,b−1.

Example 2.11. When n = 3 and b = c = 2, we have that Oi is the number of
functions from 2i to 22

3−i

that are onto 22
3−i −1. In this case, O1 = 0. However,

O2 is the number of functions from 4 to 4 that are onto 3. This is

4−(4−1)∑

m=0

(
4
m

)
O4−m,4−1 = O4,3 + 4O3,3 = 36 + 24 = 60.

These 60 languages are shown in Table 1.
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Table 1. All possible sets Z with A (Z) = 7.

Size Z

|Z| = 4 {000, 001, 010, 101}, {000, 001, 010, 111},

{000, 001, 011, 100}, {000, 001, 100, 111},
{000, 001, 011, 110}, {000, 001, 101, 110},
{000, 010, 011, 101}, {000, 010, 011, 111},
{001, 010, 011, 100}, {010, 011, 100, 111},
{001, 010, 011, 110}, {010, 011, 101, 110},
{000, 011, 100, 101}, {000, 100, 101, 111},
{001, 010, 100, 101}, {010, 100, 101, 111},
{001, 100, 101, 110}, {011, 100, 101, 110};

{000, 011, 110, 111}, {000, 101, 110, 111},
{001, 010, 110, 111}, {010, 101, 110, 111},
{001, 100, 110, 111}, {011, 100, 110, 111}

|Z| = 5 {000, 001, 010, 100, 111}, {000, 001, 010, 101, 110},

{000, 001, 011, 100, 110}, {000, 001, 011, 101, 110},
{000, 001, 011, 100, 111}, {000, 001, 010, 101, 111},
{000, 010, 011, 100, 111}, {000, 010, 011, 101, 110},
{001, 010, 011, 100, 110}, {001, 010, 011, 101, 110},
{001, 010, 011, 100, 111}, {000, 010, 011, 101, 111},
{000, 010, 100, 101, 111}, {000, 011, 100, 101, 110},
{001, 010, 100, 101, 110}, {001, 011, 100, 101, 110},
{001, 010, 100, 101, 111}, {000, 011, 100, 101, 111},
{000, 010, 101, 110, 111}, {000, 011, 100, 110, 111},
{001, 010, 100, 110, 111}, {001, 011, 100, 110, 111},
{001, 010, 101, 110, 111}, {000, 011, 101, 110, 111}

|Z| = 6 {000, 001, 010, 011, 100, 111},
{000, 001, 010, 011, 101, 110},
{000, 001, 010, 100, 101, 111},
{000, 001, 011, 100, 101, 110},
{000, 001, 010, 101, 110, 111},
{000, 001, 011, 100, 110, 111},
{000, 010, 011, 100, 101, 111},
{001, 010, 011, 100, 101, 110},
{000, 010, 011, 101, 110, 111},
{001, 010, 011, 100, 110, 111},
{000, 011, 100, 101, 110, 111},

{001, 010, 100, 101, 110, 111}
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Listing 1. Pseudocode for our variant of the Myhill–Nerode algorithm.

Input : S t r i ng s s and t , a s e t o f s t r i n g s L , and a max length n .
Output : The boolean o f whether s and t are equ iva l en t f o r L .
For u a binary s t r i n g o f l ength between 0 and n−1,

i f l en ( s+u ) , l en ( t+u) both at most n
and exac t l y one o f s+u , t+u i s in the up−c l o s u r e o f L ,

re turn Fa l se
Return True .

2.3 Polynomial-Time Algorithm

It is perhaps worth pointing out that there is a polynomial-time algorithm for
finding the minimal automaton of Boolean functions, based on essentially the
Myhill–Nerode theorem [5,10]. In this subsection we detail that somewhat.

Definition 2.12. Given a language L, and a pair of strings x and y, define a
distinguishing extension to be a string z such that exactly one of the two strings
xz and yz belongs to L. Define a relation RL on strings by the rule that xRLy
if there is no distinguishing extension for x and y.

As is well known, RL is an equivalence relation on strings, and thus it divides
the set of all strings into equivalence classes.

Theorem 2.13 (Myhill–Nerode). A language L is regular if and only if RL

has a finite number of equivalence classes. Moreover, the number of states in
the smallest deterministic finite automaton (DFA) recognizing L is equal to the
number of equivalence classes in RL. In particular, there is a unique DFA with
minimum number of states.

The difference is that for us we require |xz| ≤ n and |yz| ≤ n, see Listing 1.

3 Monotone Boolean Functions

The main theoretical results of the paper are in Sect. 2. The present, longer
section deals with a more computational and exploratory investigation: what
happens if we try to prove that the natural upper bound on complexity is
attained in restricted settings such as monotone functions?

Definition 3.1. An isotone map is a function ϕ with a ≤ b =⇒ ϕ(a) ≤ ϕ(b).

The Online Encyclopedia of Integer Sequences (OEIS) has a tabulation of
Dedekind numbers, i.e., the number M(n) of monotone functions [12], which is
also the number of elements of the free distributive lattice on n generators and
the number of antichains of subsets of [n].

Definition 3.2. For an integer n ≥ 0, Fn is the set of monotone Boolean func-
tions of n variables (equivalently, the free distributive lattice on n generators,
allowing 0 and 1 to be included), and F−

n = Fn \ {0} where 0 is the constant 0
function.
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Fig. 1. Isotone 1:1 map from 24 to F−
3 .

The illustrative case n = 3 is shown in Fig. 4.

Theorem 3.3. The minimal automaton of a monotone language L ⊂ {0, 1}n

has at most
n∑

i=0

min(2i, |Fn−i| − 1)

states. This bound is attained for n ≤ 10.

Proof. The upper bound follows from Theorem2.7. The sharpness results are
obtained in a series of theorems tabulated in Table 2. �

Thinking financially, an option is monotone if whenever s is pointwise dom-
inated by t and s ∈ L then t ∈ L, where L is the set of exercise situations
for the option. This is the case for common options like call options or Asian
average-based options and makes financial sense if a rise in the underlying is
always desirable and always leads to a higher option value.

Example 3.4 (Asian option; Shreve [11, Exercise 1.8]). This is the example
that in part motivates our looking at monotone options. Let n = 3 and consider
a starting capital S0 = 4, up-factor u = 2, down-factor d = 1

2 . Let Yi =
∑i

k=0 Sk.
The payoff at time n = 3 is (14Y3 − 4)+. To fit this example into our framework
in the present paper, let us look at which possibilities lead to exercising, i.e.,
1
4Y3 − 4 > 0 or Y3 > 16. Computation shows that the set of exercise outcomes is
{011, 100, 101, 110, 111}. The complexity is 6 (Fig. 3), so it is maximally complex
for a monotone option.

For n = 3 we are looking at isotone functions from {0, 1} to the family of
monotone functions on two variables p and q. For the Asian option in Example 3.4
{0, 1} are mapped to {p ∧ q, 1}. For the majority function, {0, 1} are mapped to
{p ∧ q, p ∨ q} (Fig. 3).
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Table 2. Maximum complexity of monotone securities.

n Adequacy diagram #States Proof/witness

0

1

↓
(1)

1

1

1 (2)

↓
(2) ⇒ 1

2 Theorem3.9

2

1 2 (4)

↓
(2) ⇒ 1

4 Theorem3.9

3

1 2 (4)

↓
(5) ⇒ 2 1

6 Theorem3.9; Example 3.4

4

1 2 4 (8)

↓
(5) ⇒ 2 1

10 Theorem3.9

5

1 2 4 (8)

↓
(19) ⇒ 5 2 1

15 Theorem3.9

6

1 2 4 8 (16)

↓
(19) ⇒ 5 2 1

23 Theorem3.10

7

1 2 4 8 16 (32)

↓
(19) ⇒ 5 2 1

39 Figure 1; Theorem3.10

8

1 2 4 8 16 (32)

↓
(167) ⇒ 19 5 2 1

58 Theorem3.8

9

1 2 4 8 16 (32) (64)

↓
(167) ⇒ 19 5 2 1

90 Theorem3.13

10

1 2 4 8 16 32 64 (128)

↓
(167) ⇒ 19 5 2 1

154 Theorem3.12

The sets {p ∧ q, p ∨ q} and {p ∧ q, 1} both have the desirable property (from
the point of view of increasing the complexity) that by substitution we obtain a
full set of nonzero monotone functions in one fewer variables, in this case {p, 1}.

Definition 3.5. Let us say that a set of monotone functions on variables
p1, . . . , pn is adequate if by substitutions of values for p1 ∈ {0, 1} they con-
tain all monotone nonzero functions on p2, . . . , pn. If one value for p1 suffices
then we say strongly adequate.

Let us write 2i for the set {0, 1}i with the product ordering.
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Fig. 2. Adequacy in the proof that 24 → 19 ⇒ 5.

Fig. 3. Asian option, and European call option (corresponding to the majority
function).

Definition 3.6. If there is an embedding of 2i into F−
j ensuring adequacy onto

F−
j−1, in the sense that we map into Fj−1 (so self-loops may be used in the

automaton), and we map onto F−
j−1, then we write

2i → |F−
j | ⇒ |F−

j−1|.
It is crucial to note that in Sect. 2, adequacy was automatic: the concept

of function is much more robust than that of a monotone function, meaning
that functions can be combined in all sorts of ways and remain functions. As an
example of the unusual but convenient notation of Definition 3.6, we have:
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Theorem 3.7. There is an embedding of 22 into F−
3 ensuring adequacy onto

F−
2 . In symbols,

4 → 19 ⇒ 5.

Proof. We use formulas of the form (r ∧ b) ∨ a with a ≤ b, as follows:

22 F−
3 F−

2
(0, 1) (r ∧ p) ∨ p ≡ p
(1, 0) (r ∧ q) ∨ q ≡ q
(0, 0) (r ∧ (p ∧ q)) ∨ (p ∧ q) ≡ p ∧ q
(1, 1) (r ∧ 1) ∨ (p ∨ q) �→r=1 1

�→r=0 p ∨ q

Theorem 3.8. There is an embedding of 24 into F−
4 ensuring adequacy

onto F−
3 :

16 → 167 ⇒ 19

Proof. We make sure to hit p, q, r as follows: (r ∧ b) ∨ ai, 1 ≤ i ≤ 2, where
a1 < a2 ≤ b, and ai, b ∈ F−

3 , with b ∈ T . Here T is the top cube in F−
3 ,

T = {b ∈ F−
3 : maj ≤ b ≤ p ∨ q ∨ r}

=

⎧
⎨

⎩

(p ∧ q) ∨ (p ∧ r) ∨ (q ∧ r),
p ∨ (q ∧ r), q ∨ (p ∧ r), r ∨ (p ∧ q),
p ∨ q, p ∨ r, q ∨ r, p ∨ q ∨ r

⎫
⎬

⎭ .

Let ψ : {0, 1}3 → T be an isomorphism. Not that b �∈ {0̂, p, q, r}. And {a1, a2} ⊂
{b, p, q, r, 0̂} where 0̂ is p ∧ q ∧ r, the least element of F−

3 . Let

(a1, a2) =

{
(0̂, b) if b bounds none of p, q, r;
(p, b) or (0̂, p) if say b > p;

By Lemma above, (r ∧ ψ(x)) ∨ ai ≤ (r ∧ ψ(y)) ∨ ci iff x ≤ y and ai ≤ ci. �
We can consider whether u → v ⇒ w whenever the numbers are of the form

2m, |F−
n | ∈ {1, 2, 5, 19, 167, . . . }, |F−

n−1|, and u ≤ v and w ≤ 2u (as u increases,
being 1:1 becomes harder but being adequate becomes easier). In the case of
strong adequacy witnessed by p = p0 we write simply u → v →p0 w; this can
only happen when w ≤ u.

Theorem 3.9. We have the following adequacy calculations:

1. 20 → 2 → 1
2. 21 → 2 → 1
3. 20 → 5 ⇒ 2
4. 21 → 5 → 2
5. 22 → 5 → 2
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We omit the trivial proof of Theorem 3.9.

Theorem 3.10. 23 → 19 ⇒ 5 and 24 → 19 ⇒ 5.

Proof. The map in Fig. 1 is onto F−
3 \ {p, q, r} so it works. As shown in Fig. 2,

if we restrict that map to the top cube, mapping onto T ∪ {1} \ {p ∨ q ∨ r}, and
set r = 0 then we map onto F−

2 . �
Lemma 3.11. Let a1, a2, b1, b2 be Boolean functions of p, q, r and let

faibi(p, q, r, s) = [s ∧ bi] ∨ [¬s ∧ ai].

Then fa1b1 ≤ fa2b2 ⇐⇒ a1 ≤ a2 and b1 ≤ b2.

Proof. By definition,

fa1b1 ≤ fa2b2 ⇐⇒ [p4 ∧ b1] ∨ [¬p4 ∧ a1] ≤ [p4 ∧ b2] ∨ [¬p4 ∧ a2].

Clearly, a1 ≤ a2 and b1 ≤ b2 implies this, so we just need the converse. If a1 �≤ a2

then any assignment that makes p4 false, a1 true, and a2 false will do. Similarly
if b1 �≤ b2 then any assignment that makes p4 true, b1 true, and b2 false will do.

�
Theorem 3.12. There is an injective isotone map from 26 into F4, and in fact

26 → 167 ⇒ 19.

Proof. We start with a monotone version of the simple equation 22
n

= (22
n−1

)2.
Namely, a pair of monotone functions g, h of n − 1 variables, with g ≤ h, gives
another monotone function via

f(p1, . . . , pn) = [pn ∧ f(p1, . . . , pn−1, 1)] ∨ [¬pn ∧ f(p1, . . . , pn−1, 0)]
= [pn ∧ h(p1, . . . , pn−1)] ∨ [¬pn ∧ g(p1, . . . , pn−1)]
= [pn ∧ h(p1, . . . , pn−1)] ∨ g(p1, . . . , pn−1).

Now consider elements a of the bottom hypercube in F3 and b of the top hyper-
cube in F3 in Fig. 2. So we must have a ≤ b since the bottom is below the top
(and a = b can happen since the two hypercubes overlap in the majority func-
tion). Let fab = [p4∧b]∨ [¬p4∧a]. Since a ≤ b, fab is monotonic. By Lemma 3.11,
these functions fab are ordered as 26 = 23 × 23.

Finally, in order to ensure adequacy we modify this construction to reach
higher in F−

4 , replacing the top cube in the lower half by a cube formed from
the upper half. In more detail, consider (r ∧ b) ∨ a with a ≤ b from F−

3 , where
the a’s are chosen from the bottom cube of F3, and the b’s from the top cube,
except that when a is the top of the bottom cube we let b be the top cube with
the top replaced by 1, and when a is the bottom of the bottom cube we let b be
the cube

{p, q, r, p ∧ q, p ∧ r, q ∧ r, p ∨ q, p ∨ r, q ∨ r, p ∧ q ∧ r, p ∨ q ∨ r}.

�
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Theorem 3.13. 25 → 167 ⇒ 19.

Proof. A small modification of Theorem 3.12; only use bottom, top and two
intermediate “cubes” within the cube. �

Open Problem. For n = 11 we need to determine whether the following holds,
which has so far proved too computationally expensive:

27 → 167 ⇒ 19?

That is, is there an isotone map from the 128-element lattice 27 into F−
4 , the

set of nonzero monotone functions in variables p, q, r, s, such that upon plugging
in constants for p, we cover all of F−

3 , the set of nonzero monotone functions in
q, r, s?

Fig. 4. The lattice F3 of all monotone Boolean functions in three variables p, q, r.
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4 Early-Monotone Functions and Complete Simple
Games

In this section we take the financial ideas from Sect. 3 one step further, by noting
that the Asian option (Example 3.4) has the added property that earlier bits
matter more. In economics terms, we have what is called a complete simple
game: there is a set of goods linearly ordered by intrinsic value. You get some
of the goods and there are thresholds for how much value you need to win.

Definition 4.1. Let ei ∈ {0, 1}n be defined by ei(j) = 1 if and only if j = i.
An n-ary Boolean function f is early if for all 0 ≤ i < j < n and all y ∈ {0, 1}n

with y(i) = y(j) = 0, if f(y + ej) = 1 then f(y + ei) = 1.

The number of early (not necessarily monotone) functions starts

2, 4, 12, 64, 700, 36864, . . .

If a function is early and monotone we shall call it early-monotone. Early-
monotonicity encapsulates an idea of time-value-of-money; getting paid now is
better than next week, getting promoted now is better than next decade, etc.

In the early context one needs the map from 2m into the early functions to be
“early”, i.e., the function mapped to by 100 should dominate the one mapped
to by 010 etc. That is, the map must be order-preserving from 2m with the
majorization lattice order into the complete simple games.

The number of early-monotone functions on n variables, including zero, is

2, 3, 5, 10, 27, 119, 1173, . . .

which appears in OEIS A132183 as the number of “regular” Boolean functions
in the terminology of Donald Knuth. He describes them also as the number of
order ideals (or antichains) of the binary majorization lattice with 2n points.

Definition 4.2. The binary majorization lattice En is the set {0, 1}n ordered
by (a1, . . . , an) ≤ (b1, . . . , bn) iff a1 + · · · + ak ≤ b1 + · · · + bk for each k.

The lattice E5 for n = 5 is illustrated in [7, Fig. 8, Volume 4A, Part 1].
The basic properties of this lattice are discussed in [7, Exercise 109 of Section
7.1.1]. The majorization order is obtained by representing e.g. 1101 as (1, 2, 4,∞),
showing where the kth 1 appears (the ∞ signifying that there is no fourth 1 in
1101), and ordering these tuples by majorization. OEIS cites work of Stefan Bolus
[2] who calls the “regular” functions complete simple games [8], a term from the
economics and game theory literature. There, arbitrary monotone functions are
called simple games, and“complete” refers to the fact that the positions have a
complete linear ordering (in the finance application, earlier positions are most
valuable). Figure 5 shows that in the complete-simple-games setting we have

1 → 2 → 4 → 8 → 16
↓
26 ⇒ 9 → 4 → 2 → 1
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for a total maximal complexity of 47 for complete simple games at n = 8. This
contrasts with Theorem 3.8 which shows that for arbitrary simple games the
complexity can reach 58 at n = 8.

Fig. 5. (a) The majorization lattice E4 on 4 variables. (b) The 27 complete simple
games C4 on 4 variables. The symbol ∨ denotes an element that is join-reducible. Red
and blue denote the image under the first map E4 → C4 and blue in particular denotes
some elements sufficient for the second map C4 → C3 to be onto. (c) The 10 complete
simple games C3 on 3 variables. (Color figure online)

References

1. Arora, S., Barak, B., Brunnermeier, M., Ge, R.: Computational complexity and
information asymmetry in financial products. Commun. ACM 54(5), 101–107
(2011)

2. Bolus, S.: Power indices of simple games and vector-weighted majority games by
means of binary decision diagrams. Eur. J. Oper. Res. 210(2), 258–272 (2011)

3. Câmpeanu, C., Ho, W.H.: The maximum state complexity for finite languages. J.
Autom. Lang. Comb. 9(2–3), 189–202 (2004)

4. Champarnaud, J.-M., Pin, J.-E.: A maxmin problem on finite automata. Discrete
Appl. Math. 23(1), 91–96 (1989)

5. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley Series in Computer Science. Addison-Wesley
Publishing Co., Reading (1979)



The Number of Languages with Maximum State Complexity 409

6. Kjos-Hanssen, B.: On the complexity of automatic complexity. Theory Comput.
Syst. 61(4), 1427–1439 (2017)

7. Knuth, D.E.: The Art of Computer Programming. Combinatorial Algorithms, Part
1, vol. 4A. Addison-Wesley, Upper Saddle River (2011)

8. Kurz, S., Tautenhahn, N.: On Dedekind’s problem for complete simple games. Int.
J. Game Theory 42(2), 411–437 (2013)

9. Linz, P.: An Introduction to Formal Language and Automata. Jones and Bartlett
Publishers Inc., Burlington (2006)

10. Nerode, A.: Linear automaton transformations. Proc. Am. Math. Soc. 9, 541–544
(1958)

11. Shreve, S.E.: Stochastic Calculus for Finance I: The Binomial Asset Pricing Model.
Springer Finance Textbooks. Springer, New York (2004)

12. Sloane, N.J.A.: The online encyclopedia of integer sequences (2018). Sequence
A000372


	The Number of Languages with Maximum State Complexity
	1 Introduction
	2 Complexity of Languages and Operations
	2.1 Operations
	2.2 The Number of Maximally Complex Languages
	2.3 Polynomial-Time Algorithm

	3 Monotone Boolean Functions
	4 Early-Monotone Functions and Complete Simple Games
	References




