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Abstract. Given a set of sensors distributed on the plane and a set
of Point of Interests (POIs) on a line segment, a primary task of the
mobile wireless sensor network is to schedule a coverage of the POIs by
the sensors, such that each POI is monitored by at least one sensor. For
balancing the energy consumption, we study the min-max line barrier
target coverage (LBTC) problem which aims to minimize the maximum
movement of the sensors from their original positions to final positions
for the coverage. We first proved that when the radius of the sensors are
non-uniform integers, even 1-dimensional LBTC (1D-LBTC), a special
case of LBTC in which the sensors are distributed on the line segment
instead of the plane, is NP-hard. The hardness result is interesting, since
the continuous version of LBTC of covering a given line segment instead
of the POIs is known polynomial solvable [2]. Then we presented an exact
algorithm for LBTC with sensors of uniform radius distributed on the
plane, via solving the decision version of LBTC. We showed that our
algorithm always finds an optimal solution in time O(mn(logm+log n))
to LBTC when there exists any, where m and n are the numbers of POIs
and sensors.

1 Introduction

In the past decades, wireless sensor networks have brought tremendous changes
to human society and proposed many technique challenges. Among them, the
coverage topic including area coverage [10] and barrier coverage [8] is one of the
hot spots that attract lots of research interest. In area coverage, the task is to
schedule the new positions of the sensors, such that each point in the given target
region is covered by at least one sensor. Differently, in barrier cover the task is
to monitor only the boundary of a given region, and the aim is to guarantee that
intruders can be found when they are crossing the barrier. Comparing to area
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coverage, barrier coverage has an advantage of using significantly less sensors and
hence is scalable for large scale wireless sensor networks (WSN). Furthermore,
some applications only require a set of Points Of Interest (POIs) along the
boundary to be monitored. In the context, a problem arises how to guarantee
every POI on the barrier to be covered. The current-state-of-art method is to
firstly cover POIs using the stationary sensors, and secondly use mobile sensors
to cover every not-yet covered POI along the boundary. For the second phase,
we traditionally have the following assumptions for the modeling: (1) Sensors
are acquired with mobile ability; (2) The initial positions of the sensors are
distributed on the plane, and the POIs are distributed along a line segment
(Although the shape of the boundary can be various, most researches nonetheless
focus on line boundary since curves of other shapes can be considered as a
variable); (3) The aim of the sensor network is to prolong the lifetime. This
arises the min-max 2D Line Boundary Target Coverage problem in (min-max
2D-LBTC) as follows:

Definition 1. Let Ψ and Γ be respectively a set of POIs distributed in a line
segment [0, M ] and a set of mobile sensors distributed on the plane, where j ∈ Ψ
has a position (pj , 0) and i ∈ Γ has a position (xi, yi) and a positive sens-
ing radius ri. The min-max 2D-LBTC problem aims to compute a new posi-
tion (x′

i, 0) for each sensor i ∈ Γ , such that each POI j ∈ Ψ is covered by
at least one sensor, i.e. for each POI j ∈ Ψ there exists a sensor i ∈ Γ with
position (x′

i, 0) that x′
i − ri ≤ pi ≤ x′

i + ri, and the maximum movement of
the sensors from their original positions to the new positions is minimized, i.e.
maxi∈Γ

{√
(xi − x′

i)2 + yi
2
∣∣∣ i ∈ Γ

}
is minimized.

When no confusion arises, we shall use LBTC short for the min-max 2D-LBTC
problem for the sake of briefness. In particular, we use one dimensional min-
max Line Boundary Target Coverage problem (1D-LBTC) to denote the special
case of LBTC when the initial positions of all the sensors are also distributed
on the line boundary [0, M ]. Moreover, the decision version of LBTC (decision
LBTC for short) is, for a given movement bound D, to determine whether there
exists a feasible coverage with each sensor’s movement bounded by D. Besides,
when the aim is to cover the line boundary itself instead of the POIs thereon,
we respectively have the min-max Line Boundary Coverage (LBC) problem and
one-dimensional-LBC (1D-LBC) problem, which have already been well studied
and a number of algorithms have been developed.

1.1 Related Works

To the best of our knowledge, Kumar et al. [8] were the first to consider the
barrier coverage problem using sensors against a closed curve (i.e., a moat), via
transforming the coverage problem to the path problem of determining whether
there exists a path between two specified nodes, although the research of barrier
coverage started from early 90s in the last century due to Gage [7]. The algorithm
from Kumar et al. is scalable and can also be extended to solve the k-coverage
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problem by transforming to the k-disjoint path problem, but can only be used
to determine whether a coverage exists using the deployed stationary sensors.
A problem for stationary sensors is that, after deployment there might exist
no coverage over all targets. For the case, a state-of-art solution is to employ
mobile sensors to fill the gaps between the stationary sensors. In the scenario, the
WSN applications would require to maximize the minimum lifetime of the mobile
sensors or to minimize the total energy consumption. For the former, the aim is to
schedule new positions for the mobile sensors such that the barrier is completely
covered, and that the maximum movement of the sensors is minimized as to
prolong the lifetime of the WSN. When the sensors are on the line of the barrier,
the 1D-LBC problem is shown optimally solvable in O(n2) time for uniform
radius in Paper [4]. The same paper has also proposed an algorithm with O(n)
time for uniform radii and

∑
i ri ≤ L, and with x1 ≤ · · · ≤ xn for the sensor

Γ = {s1, · · · , sn}, where L is the length of the barrier, n is the number of
the sensors. Later, Chen et al. have improved the time complexity to O(n log n)
for uniform sensor radii and proposed an O(n2 log n) time algorithm for non-
uniform radii in paper [2]. Besides straight line barrier, circle/simple polygon
barriers has been studied and two algorithms have been given developed by
Bhattacharya et al. in [1], which have an O(n3.5 log n) time relative to cycle
barriers and an O(mn3.5 log n) time relative to polygon barriers, in which m is
the number of the edges on the polygon. The later time complexity was then
decreased to O(n2.5 log n) in [12]. For the more generalized case in which the
sensors are distributed on the plane, the LBC problem is known to be strongly
NP-hard for sensors with general integral sensing radius [6], while LBC using
uniform radius sensors is shown solvable in O(n3 log n) time [9].

Other than the Min-Max case, there are also applications require min-sum
coverage that is to minimize the total energy consumption, which is to minimize
the total movement of the mobile sensors. For this objective, both Min-Sum LBC
and LBTC, which aim to minimize the sum of the movements of all the sensors,
were studied in literature. Min-Sum LBC was shown NP-complete for arbitrary
radius while solvable in time O(n2) for uniform radii by Czyzowicz et al. [5].
The Min-Num relocation problem of minimizing the number of sensors moved, is
also proven NP-complete for arbitrary radii and polynomial solvable for uniform
radii by Mehrandish et al. [11]. A PTAS has been developed for the Min-Sum
relocation problem against circle/simple polygon barriers by Bhattacharya et
al. [1], which was later improved to an O(n4) time exact algorithm by Tan
and Wu [12]. For covering targets with Min-Sum movement, the most recent
result is a factor-

√
2 approximation algorithm for covering targets along a barrier

using uniform-radius sensors, aiming to minimize the sum of the movement [3].
However, it remains open whether the min-sum LBC problem is NP-hard.

1.2 Our Results

In this paper, we first show that 1D-LBTC is NP-hard when the sensors are with
non-uniform integral radii by proposing a reduction from the 3-partition problem
that is known strongly NP-complete. This hardness result is surprising, because
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1D-LBC, the continuous version of 1D-LBTC, is shown solvable in polynomial
time O(n2 log n).

Then, we propose a sufficient and necessary condition to determine whether
there exists a feasible cover for the barrier under the relocation distance bound
D. Based on the condition, we propose a simple greedy approach that outputs
“infeasible” if D < D∗, and otherwise computes a feasible solution under the
movement bound D, such that new positions for the sensors wrt which each
target is monitored by at least a sensor. We show that the decision algorithm
is with a runtime O(n log n). By employing the binary search technique, we
propose an algorithm using the decision algorithm as a routine which takes
O(n log n log(dmax + L)) time to actually find a minimum integral movement
bound D = D∗, where dmax is the maximum distance between the sensors and
the POIs, and L is the length of the line segment.

For instances with large dmax and L, we propose another algorithm that
employs the binary search method against O(mn) possible values of D∗ instead
of the continuous value range. This improves the runtime of the algorithm to
O(mn(log m + log n)), which is the time needed to sort the O(mn) values. The
later algorithm remains correct even when D is any real number. In contrast,
the former algorithm only works for integral D∗.

1.3 Organization

The following paragraphs will be organized as below: Sect. 2 gives the NP-
completeness proof; Sect. 3 presents the algorithm for Decision LBTC with uni-
form sensor radii, and shows that it always produces an optimal solution; Sect. 4
actually solves the LBTC problem by employing the binary search method, and
then improve the runtime to O(mn(log m + log n)); Sect. 5 concludes the paper.

2 NP-Completeness of Decision 1D-LBTC

In this section, we shall show the Decision LBTC problem is NP-complete when
the sensors are with non-uniform integral radii by giving a reduction from the
3-partition problem. In the 3-partition problem that is known strongly NP-
complete, we are given a set of integers U = {a1, . . . , a3n} with

∑3n
i=1 ai = Bn

for an integer B > 0. The aim is to determine whether U can be divided into n
subsets, such that each subset is with an equal sum B.

Theorem 2. Decision 1D-LBTC is NP-complete when the sensors are with
non-uniform integral radii.

The key idea of the proof is to construct a reduction from 3-Partition to the
decision LBTC problem. For a given instance of 3-Partition, the construction of
the corresponding instance of decision LBTC is simply as below:
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1. Construct a line barrier with length (2n − 1)B;
2. Place 2nB targets on the line barrier composed by n sections,where in the

ith section, i = 0, . . . , n − 1, the targets are with positions 2iB + j + jε and
2iB + j + 1 − (B − j)ε, for j = 0, . . . , B − 1;

3. Place 3n sensors on position (0, 0), where sensor i is with radii ai

2 ;
4. The maximum movement is D = (2n − 1)B.

Note that, the instance of decision 1D-LBTC constructed above contains
2nB POIs and 3n sensors. Anyhow, 3-Partition is known strongly NP-complete,
which means, 3-Partition remains NP-complete even when B is polynomial to
n. Therefore, the construction can be done in polynomial time for B being poly-
nomial to n.

The main idea behind the construction is to construct a relationship between
the number of covered targets and the diameters of the sensors that are actually
the integers in U . More precisely, the property on the relationship is as in the
following:

Proposition 3. Against a 1D-LBTC instance produced by the above construc-
tion, a sensor with diameter 2r can cover at most 4r targets.

Proof. When a sensor is with a diameter 2, apparently it can cover at most 4
targets. Suppose the proposition is true for sensors with diameter smaller than
2r. Then, let r1 + r2 = r be two positive integers smaller than r. By induction,
we have that sensors with diameters 2r1 and 2r2 can cover upto 4r1 and 4r2
targets, respectively. In addition, the two sensors with radii r1 and r2 can cover
as many POIs as a sensor with a radii r = r1 + r2 does. Therefore, the sensor
with diameter 2r can cover no more than 4r1 +4r2 = 4r targets. This completes
the proof. ��
Lemma 4. An instance of 3-Partition is feasible if and only if the corresponding
1D-LBTC instance is feasible.

Proof. Suppose the instance of 3-Partition is feasible. Without loss of generality,
we assume that {Ui|i = 0, . . . , n − 1} is a solution to the 3-Partition instance
which divides U to a collection of n sets, among which Ui = {ali+1, . . . , ali+1}
and l0 = 0. Since D = (2n − 1)B equals the length of the barrier and the
original position of each sensor is (0, 0), each sensor can be moved any point of
the barrier. Then we need only to use the sensors in Ui, which are with radius
aij , . . . , aij+1 and with a sum exactly B, to cover the segment from 2iB to
(2i + 1)B. That apparently results in a coverage for all the targets in the ith
section.

Conversely, suppose the corresponding LBTC instance is feasible. Then since
sensor j with radii aj

2 can at most cover 2aj continuous targets, and each section
contains exactly 2B targets, so the diameter sum of the sensors for each section
is at least B. Then because the diameter sum of all the sensors is Bn, and there
are n sections, the diameter sum of the sensors for each section is exactly B.
Therefore, the diameters for the sensors for the sections is a solution to the
corresponding instance of 3-Partition. ��
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From the fact that 3-Partition is strongly NP-complete, and following a sim-
ilar idea of the above proof for Theorem2, we immediately have the following
hardness for LBTC:

Corollary 5. Decision 1D-LBTC is strongly NP-complete.

3 A Greedy Algorithm for 2D-LBTC with Uniform
Sensors

The basic idea of the algorithm is to cover the target from left to right, preferably
using sensors that are likely less useful for later coverage. More precisely, let
[li, gi] be the possible coverage range of sensor i, where li and gi are respectively
the positions of the leftmost and the rightmost targets, with respect to the given
distance D. That is, li and gi are the leftmost and the rightmost targets sensor i
can cover within movement D. Then the key idea of our algorithm is to cover the
targets from left to right, using the sensor that can cover the leftmost uncovered
target within movement D and is with minimum gi.

The algorithm is first to compute its possible coverage range [li, gi] for each
sensor i with respect to the movement constraint D. Apparently, (xi, 0) is the
projective point of sensor i on the line, so we have li = xi − √

D2 − y2
i − D and

gi = xi +
√

D2 − y2
i for each sensor i. Then, the algorithm starts from point

s = (0, 0), to cover the line from left to right. The algorithm prefers using the
sensor with a small gi, since a sensor with a large gi would has a better potential
to cover the targets on the right part of the line.

Let s be the position the uncovered leftmost target on the line barrier. Then
among the set of sensors {i|li ≤ s ≤ gi}, the algorithm repeats selecting the
sensor with minimum gi to cover the uncovered targets of the line barrier starting
at s. Note that {i|li ≤ s ≤ gi} is exactly the set of sensors that can monitor
a set of uncovered targets starting at s by relocating at most D distance. The
algorithm terminates either the set of targets are completely covered, or the
instance is found infeasible (i.e. there exists no unused sensor i with li ≤ s ≤ gi

while the coverage is not yet done). The detailed algorithm is formally as in
Algorithm 1.

Note that Algorithm 1 takes O(n) time to compute li and gi for all the sensors
in Steps 2–3, and takes O(n log n) time to assign the sensors to cover the targets
on the line barrier in Steps 4–15. Therefore, we have the time complexity of the
algorithm:

Lemma 6. Algorithm1 runs in time O (n log n).

Before proving the correctness of Algorithm1, we need the following lemma
stating the existence of a special coverage for a feasible LBTC instance.

Proposition 7. Let (xj , yj) be the position of sensor j in the plane. Assume
p1(s, 0), p2(x′

j , 0) and p3(x′′
j , 0) are three points on a line segment. If s ≤ x′′

j ≤
x′

j, then d(j, p3) ≤ max{d(j, p1), d(j, p2)} holds. That is, the distance between
the sensor and the middle point is not larger than the larger distance between
the sensor and the other two points.
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Algorithm 1. A simple greedy algorithm for decision LBTC.
Input: A movement distance upper bound D ∈ Z

+, a set of sensors Γ = {1, . . . , n}
with original position {(xi, yi)|i ∈ [n]+} and r being the sensing radii, a set of POIs
P = {1, . . . , m} with positions p1 � p2 � · · · � pm, where pj is the position for j ∈ P ;
Output: New positions {x′

i|i ∈ [n]+} for the sensors or return “infeasible”.
1: Set I := Γ , s := p1; /*s is the leftmost point of the uncovered part of the barrier.*/
2: For each sensor i do
3: Compute the leftmost position li and the rightmost position gi, both of which

sensor i can monitor;
4: While I �= ∅ do
5: If there exists i′ ∈ I, such that li′ ≤ s ≤ gi′ then
6: Select sensor i ∈ I for which gi = mini′: li′ ≤s≤gi′ {gi′};

/* Select the sensor with minimum gi among all the sensors {i′|li′ ≤ s ≤ gi′}.*/
7: Set t := min{s + 2r, gi}, I := I \ {i}, x′

i := t − r;
8: If {p|p > t, p ∈ P} = ∅ then /*All targets are covered. */
9: Return “feasible” together with the new positions {x′

i|i ∈ Γ};
10: Endif
11: Set s := min{pj |pj > t};
12: Else
13: Return “infeasible”;
14: Endif
15: Endwhile

Lemma 8. If an instance of LBTC is feasible, then there must exist a coverage
in which the sensors are s-ordered.

Proof. The key idea of the proof is that, any coverage of LBTC that is not s-
ordered, can be converted to an s-ordered coverage by re-scheduling the sensors
of covering the POIs.

Suppose there exist two sensors i and j, such that gi > gj but x′
i < x′

j . Then
we need only to swap the final positions of i and j, i.e. to simply set the new final
positions x′′

i and x′′
j of sensor i and j as below: If x′

i − r ≥ s, then set x′′
i := x′

j

and later x′′
j := x′

i; Otherwise set x′′
i := x′

j and x′′
j := s + r.

Apparently, the POIs exclusively covered by i are now covered by sensor j,
and vice versa. So after the swap the sensors will remains a coverage for the
POIs on the line. It remains to show the swap will not increase the maximum
movement. Recall that the leftmost and the rightmost points sensor j can cover
are respectively lj and gj . Because sensor j can move to x′

j under the movement
bound D, we have

lj ≤ x′
j − r ≤ x′

j + r ≤ gj ≤ gi. (1)

On the other hand, in either case of the swap, we have x′′
i = x′

j ≥ x′
i. So

combining Inequality (1), we have li ≤ x′′
i − r ≤ x′′

i + r ≤ gi. That means

li + r ≤ x′′
i ≤ gi − r.

Then following Proposition 7, the distance between sensor i and its new position
x′′

i is bounded by D = max{d(i, (li + r, 0)), d(i, (gi − r, 0))}. The case for the
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new position of sensor j is similar except that the distance between sensor j and
its new position x′′

i is bounded by D = max{d(j, (max{s, lj + r}, 0)), d(i, (gi −
r, 0))}. This completes the proof. ��
Based on Lemma 8, given a feasible instance of LBTC, we can assume there exists
an s-ordered coverage, say Γ ′ = {s1, . . . , sk} which is the set of sensors used to
compose the coverage with ji being the rightmost target covered by si. Then we
have the following lemma, which leads to the correctness of the algorithm:

Lemma 9. When running against a feasible LBTC instance, Algorithm1 covers
the targets {1, . . . , ji} without using any sensor in {si+1, . . . , sk}.
Proof. We shall prove this claim by induction. When i = 1, the lemma is obvi-
ously true, as we need only s1 to cover the targets {1, . . . , j1}. Suppose the
lemma holds for i = h, then it remains only to show the case for i = h + 1. By
induction, Algorithm1 covers the targets {1, . . . , jh} without using any sensor
in {sh+1, . . . , sk}. Then Algorithm 1 can simply cover targets {jh +1, . . . , jh+1}
by using sensor sh+1. Combining with the induction, we covers {1, . . . , jh+1}
without using any sensor in {sh+2, . . . , sk}. This completes the proof. ��
We can now prove the following theorem to get the correctness of Algorithm 1:

Theorem 10. Algorithm1 returns “feasible” iff the targets can be completely
covered by the sensors within relocation distance D.

Proof. Suppose Algorithm 1 returns “feasible”, then obviously the produced
solution {x′

i|i ∈ Γ} is truly a coverage, because in the solution the movement
of each sensor is bounded by D and all the targets are covered by at least one
sensor.

Conversely, suppose there is a coverage for the instance. Then by Lemma 8,
there must exist an s-ordered coverage, say Γ ′ = {s1, . . . , sk} which is the
set of sensors used to compose the coverage. Following Lemma 9, Algorithm 1
covers targets {1, . . . , ji} without using any sensor in {si+1, . . . , sk} for every
i ∈ [1, k]. So the algorithm can always find sensors for further coverage, and in
the worst case use si+1 to cover the targets {ji + 1, . . . , ji+1}. Therefore, the
algorithm will eventually find a feasible coverage. This completes the proof. ��

4 The Complete Algorithms

In this section, we will show how to employ Algorithm 1 to really compute D∗ the
minimum movement bound for LBTC. Firstly, when only considering integral
D∗, we can find it simply by employing the binary search method against a large
range that contains D∗; Secondly, for real number D∗, we construct a set of size
O(mn) which arguably contains D∗, and then eventually finds D∗ in the set
again by the binary search method.
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Algorithm 2. The whole algorithm for optimal LBTC.
Input: A movement distance upper bound D ∈ Z

+, a set of sensors Γ = {1, . . . , n}
with original position {(xi, yi)|i ∈ [n]+} and r being the sensing radii, a set of POIs
P = {1, . . . , m} with positions p1 � p2 � · · · � pm, where pj is the position for j ∈ P ;
Output: The minimized maximum movement of the sensors together with their new
positions {x′

i|i ∈ [n]+}.
1: Set upper := dmax and lower := 1, where dmax is the maximum distance between
the sensors and the POIs;

2: If there exists no coverage by calling Algorithm 1 wrt D = dmax then
3: Return “infeasible”;
4: EndIf
5: Set temp :=

⌈
lower+upper

2

⌉
;

6: While upper − lower > 1 do
7: If there exists no coverage by calling Algorithm 1 wrt D = temp then
8: Set lower := temp and then temp :=

⌈
lower+upper

2

⌉
;

9: Else
10: Set upper := temp and then temp :=

⌊
lower+upper

2

⌋

11: EndIf
12: EndWhile
13: Return the result of calling Algorithm 1 wrt D = temp and terminate.

4.1 A Simple Binary Search Based Algorithm

The algorithm is simply applying the binary search method to find D∗ within
the range of [1, dmax], where dmax is the maximum distance between the targets
and the sensors. The main observation is as the following proposition whose
correctness is easy to prove:

Proposition 11. If LBTC is feasible, then we have D∗ ≤ dmax.

The detailed algorithm is as in Algorithm2.
For the correctness and time complexity of Algorithm 2, we immediately have

the following lemma:

Lemma 12. Using binary search and employing Algorithm1 for O(log Dmax)
times, Algorithm2 will compute the optimum movement D∗ within time com-
plexity O(n log n log Dmax).

4.2 An Improved Algorithm via Discretized Binary Search

In this subsection, we shall show the time complexity of our algorithm can be fur-
ther improved via a more sophisticated implementation over the binary search.
The key observation is that, we need only to apply a binary search over a set
of discrete values which arguably contain the optimum min-max movement D∗.
Let {c1, . . . , ct} be the set of possible combinations. Let dij be the minimum
movement using sensor i to cover combination cj , where cj is a set of POIs which
can be exactly covered by a sensor. Then we have the following lemma:
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Algorithm 3. A fast algorithm for LBTC.
Input: A set of sensors Γ = {1, . . . , n} with original position {(xi, yi)|i ∈ [n]+} and
an identical sensing radii r, a set of POIs P = {1, . . . , m} on the line segment with
positions p1 � p2 � · · · � pm, where pj is the position for j ∈ P ;
Output: Minimum movement bound D under which the sensors can be relocated to
covered all the POIs of P .
0: Set Ψ := ∅ and compute the collection of combinations Φ := {c1, . . . , ct};
1: For each sensor i do
2: For each combination cj ∈ Φ do
3: Compute dij , the minimum movement needed to using sensor i to cover cj ;
4: Set Ψ := Ψ ∪ {dij};
5: EndFor
6: EndFor
7: Sort Ψ in a non-decreasing order and set lb := 1 and ub := |Ψ |;
8: Use Ψ [1] as the movement bound (i.e. D) to call Algorithm 1;

/*Ψ [1] is the smallest element in Ψ . */
9: If there exists a feasible coverage under movement bound Ψ [1] then

10: Return Ψ [1] as the optimum movement bound;
11: Endif
12: While ub − lb > 1 do
13: Set idx :=

⌈
lb+ub

2

⌉
;

14: Use Ψ [idx] as the movement bound (i.e. D) and call Algorithm 1;
/*Ψ [idx] is the idx smallest element in Ψ . */

15: If there exists a feasible coverage under movement bound Ψ [idx] then
16: Set ub := idx;
17: Else
18: Set lb := idx;
19: Endif
20: Endwhile
21: Return Ψ [idx] as the optimum movement bound.

Lemma 13. Let dopt be an optimal solution to the uniform 2D-LBTC problem.
Then dopt ∈ Ψ = {dij |i ∈ Γ, cj ∈ {c1, . . . , ct}}.
Proof. Suppose the lemma is not true. Then let dmax = maxd{d | d ∈ Ψ, d <
dopt}. First we show that under maximum distance dmax and dopt, every sensor i
covers an identical collection of combinations. That is because every POI, which
sensor i can cover under movement bound dopt, can also be covered by sensor
i under movement bound dmax (as dij ≤ dmax iff dij < dopt), and conversely
every POI, which cannot be covered by sensor i under dmax, can not be covered
by the same sensor within the movement bound dopt (dij > dmax iff dij > dopt).
Therefore, a feasible coverage solution under maximum movement dopt would
also remain feasible under dmax. This together with dmax < dopt contradicts
with the fact that dopt is an optimal solution to the problem. ��

Our algorithm will first compute the collection of distances between the com-
binations and the sensors, say Ψ = {dij |i ∈ Γ, cj ∈ {c1, . . . , ct}}, and then sort
the distance in Ψ in non-decreasing order. Then by applying the binary search
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method to Ψ and using Algorithm 1 as a subroutine, we find a minimum dij

under which there exists a relocation of the sensors such that all the targets can
be covered. The detailed algorithm is as in Algorithm 3.

Lemma 14. The time complexity of Algorithm3 is O(mn(log m + log n)).

Proof. Apparently, |Φ| = O(m), so we have |Ψ | = O(mn). Then sorting the
elements in Ψ takes O(|Ψ | log |Ψ |) = O(mn log mn) = O(mn(log m + log n))
time. Besides, the while-loop from Step 12 to Step 20 will be repeated for at most
O(log m + log n) times, each of which takes O(n log n) time to run Algorithm1.
Therefore, the total time complexity of the algorithm is O(mn(log m + log n)).

��
Theorem 15. Algorithm3 produces an optimum solution to the LBTC problem.

5 Conclusion

In this paper, we first proved that 1D-LBTC is NP-hard when the radius of the
sensors are not identical, in contrast with the known result that 1D-LBC problem
can be efficiently solved in a polynomial time. Then, we designed an algorithm
for decision 2D-LBTC with uniform radius, and consequently proposed an algo-
rithm for really solving 2D-LBTC based on the binary search method. Moreover,
we improved the binary search method to a runtime O(mn(log m + log n)) by
observing that the optimum movement bound is within the set of distances
between combinations of POIs and the sensors. We are currently investigating
how to further improve the runtime of the algorithm.
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