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Abstract. Compact and I/O-efficient data representations play an
important role in efficient algorithm design, as memory bandwidth and
latency can present a significant performance bottleneck, slowing the
computation by orders of magnitude. While this problem is very well
explored in e.g. uniform numerical data processing, structural data
applications (e.g. on huge graphs) require different algorithm-dependent
approaches. Separable graph classes (i.e. graph classes with balanced sep-
arators of size O(nc) with c < 1) include planar graphs, bounded genus
graphs, and minor-free graphs.

In this article we present two generalizations of the separator theo-
rem, to partitions with small regions only on average and to weighted
graphs. Then we propose I/O-efficient succinct representation and mem-
ory layout for random walks in (weighted) separable graphs in the
pointer machine model, including an efficient algorithm to compute them.
Finally, we present a worst-case I/O-optimal tree layout algorithm for
root-leaf path traversal, show an additive (+1)-approximation of optimal
compact layout and contrast this with NP-completeness proof of finding
an optimal compact layout.

1 Introduction

Modern computer memory consists of several memory layers that together con-
stitute a memory hierarchy with every level further from the CPU being larger
and slower [2], usually by more than an order of magnitude, e.g. CPU registers,
L1–L3 caches, main memory, disk drives etc. In order to simplify the model, com-
monly only two levels are considered at once, called main memory and cache of
size M . There, the main memory access is block-oriented, assuming unit time
for reading and writing of a block of size B, making random byte access very
inefficient. While some I/O-efficient algorithms need to know the values of B
and M (generally called cache-aware)[3], cache-oblivious algorithms[13] operate
efficiently without this knowledge.
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Computations that process medium to large volumes of data therefore call for
space-efficient data representations (to utilize the memory capacity and band-
width) and strongly benefit from optimized memory access patterns and layouts
(to utilize the data in fast caches and read-ahead mechanisms). While this area
is very well explored in e.g. numerical data processing and analysis (e.g. [24]),
structural data applications (e.g. huge graphs) require different and application-
dependent approaches. We describe a representations to address these issues in
separable graphs and trees.

Separable graphs satisfy the nc-separator theorem for some c < 1, shown
for planar graphs in 1979 by Lipton and Tarjan [29] (with c = 1/2), where
every such graph on n vertices has a vertex subset of size O(nc) that is a 2/3-
balanced separator (i.e. it separates the graph into two subgraphs each having at
most 2/3-fraction of vertices). These graphs not only include planar graphs [29]
but also bounded genus graphs [17] and minor-free graph classes in general [22].
Small separators are also found in random graph models of small-world networks
(e.g. geometric inhomogeneous random graphs by Bringmann et al. [7] have
sublinear separators w.h.p. for all subgraphs of size Ω(

√
log n)). Some graphs

which come from real-world applications are also separable, such as the road
network graphs [33,35]. Separable graph classes have linear information entropy
(i.e. a separable class can contain only 2O(n) graphs of size n) and have efficient
representations using only O(1) bits per vertex on average [4] and therefore
utilize the memory capacity and bandwidth very efficiently.

This paper is organized as follows: Sects. 1.1 and 1.2 give an overview of the
prior work and our contribution. Section 2 recalls used concepts and notation.
Section 3 contains our results on random walks in separable graphs. Section 4
generalizes the separator theorem. Section 5 discusses the layout of trees.

1.1 Related Work

Turán [34] introduced a succinct representation1 of planar graphs, Blandford et
al. [4] introduced compact representations for separable graphs and Blelloch and
Farzan [5] presented a succinct representation of separable graphs. However, none
of those representations is cache-efficient (or can be easily made so). Analogous
representations for general graphs suffer similar drawbacks [12,32].

Agarwal et al. [1] developed a representation of planar graphs allowing I/O-
efficient path traversal, requiring O(K/ log B) block accesses2 for arbitrary path
of length K. This has been extended to a succinct planar graph representation by
Dillabaugh et al. [11] with the same result for arbitrary path traversal. It appears
unlikely that the representation of [11] could be easily modified to match the
I/O complexity O(K/B) of our random-walk algorithm due to their use of a
global indexing structure.

1 A succinct (resp. compact) data representation uses H + o(H) (resp. O(H)) bits
where H is the class information entropy.

2 Note that Ω(K/ log B) blocks may be required even for trees. Standard graph rep-
resentation would access O(K) blocks.
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Dillabaugh et al. [10] describes a succinct data structure for trees that uses
O(K/B) I/O operations for leaf-to-root path traversal. For root-to-leaf traversal,
they offer a similar but only compact structure.

Among other notable I/O-efficient algorithms, Maheshwari and Zeh [30]
develop I/O-efficient algorithms for computing vertex separators, shortest paths
and several other problems in planar and separable graphs. Jampala and Zeh
[20] extends this to a cache-oblivious algorithm for planar shortest paths. While
there are representations even more efficient than succinct (e.g. implicit repre-
sentations, which use only O(1) bits more than the class information entropy,
see Kannan et al. [21] for an implicit graph representation), these do not seem
to admit I/O-efficient access.

Random walks on graphs are commonly used in Monte Carlo sampling meth-
ods, among others in Markov Chain Monte Carlo methods for inference on
graphical models [14], Markov decision process (MDP) inference and even in
partial-information game theory algorithms [25].

1.2 Our Contribution

Random Walks on Separable Graphs. We present a compact cache-
oblivious representation of graphs satisfying the nc edge separator theorem.
We also present a cache-oblivious representation of weighted graphs satisfying
weighted nc edge separator theorem, where the transition probabilities depend
on the weights. The representations are I/O-efficient when performing random
walks of any length on the graph, starting from a vertex selected according to
the stationary distribution and with transition probabilities at each step pro-
portional to the weights on the incident edges, respectively choosing a neighbor
uniformly at random for the unweighted compact representation.

Namely, if every vertex contains q bits of extra (user) information, the repre-
sentation uses O(n log(q+2))+qn bits and a random path of length K (sampled
w.r.t. edge weights) uses O(K/( Bw

(1+q) )
1−c) I/O operations with high probability.

The graph representation is compact (as the structure entropy including the
extra bits is Θ((q + 1)n). The amount of memory used for the representation of
the graph is asymptotically strictly smaller than the memory used by the user
data already for the common case of q = Θ(w), in which case only O(K/B1−c)
I/O operations are used. For q = O(1), the representation uses O(n) bits.

In contrast with previous I/O-efficient results for planar graphs, our rep-
resentation is only compact (and not succinct) but works for all separable
graph classes, is cache-oblivious (in contrast to only cache-aware in prior work),
and, most importantly, comes with a much better bound on the number of
I/O operations for randomly sampled paths (order of O(K/B1−c) rather than
O(K/ log B)).

Fast tree path traversal is a ubiquitous requirement for tree-based structures
used in external storage systems, database indexes and many other applications.
With Theorem 9, we present a linear time algorithm to compute a layout of the
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vertices in memory minimizing the worst-case number of I/O operations for leaf-
to-root paths in general trees and root-to-leaf paths in trees with unit vertex size.
We show an additive (+1)-approximation of an optimal compact layout (i.e. one
that fully uses a consecutive block of memory) and show that finding an optimal
compact layout is NP -hard.

The above layout optimality is well defined assuming unit vertex size, an
assumption often assumed and satisfied in practice. Using techniques from Sect. 3
we can turn the layout into a compact representation using O(n) bits of memory,
requiring at most OPTL I/O operations for leaf-to-root paths in general trees
and root-to-leaf paths in trees of fixed degree where OPTL is the I/O complex-
ity of the optimal layout, i.e. I/O-optimal layout with the vertices using any
conventional vertex representation with Θ(w) bits for inter-vertex pointers. See
Theorem 10.

Compared to previous results [10], our representation is compact and we
present the exact optimum over all layouts while they provide the asymptotic
optimum O(K/B). However, this does not guarantee that our representation
has lower I/O complexity, since our notion of optimality only considers different
layouts with each vertex stored by a structure of unit size.

Separable Graph Theorems. We prove two natural generalizations of the
separator theorem (Theorem 7) and show that their natural joint generalization
does not hold by providing a counterexample (Theorem8). The Recursive Sep-
arator Theorem involves graph partitions coming from recursive applications of
the Separator Theorem. Let r and r̄ denote the maximum and average size of
a region in the partition, respectively. We prove stronger bound on number of
edges going between regions – O( n

r̄1−c ) instead of O( n
r1−c ). The second gener-

alization is for weighted graphs, showing that n in the bound O( n
r1−c ) can be

replaced by the total weight W to get O( W
r1−c ). We show that the bound O( W

r̄1−c )
does not hold in general by providing a counterexample.

2 Preliminaries

Throughout this paper, we use standard graph theory notation and terminology
as in Bollobas [6]. We denote the subtree of T rooted in vertex v by Tv, the root
of tree T by rT and the set of children of a vertex v as δ(v). All the logarithms
are binary unless noted otherwise.

We use standard notation and results for Markov chains as introduced in the
book by Grinstead and Snell [19] (Chapter 11) and mixing in Markov chains, as
introduced in the chapter on mixing times in a book by Levin and Peres [27].

2.1 Separators

Let S be a class of graphs closed under the subgraph relation. We say that S
satisfies the vertex (edge) f(n)-separator theorem iff there exist constants α < 1
and β > 0 such that any graph in S has a vertex (edge) cut of size at most
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βf(n) that separates the graph into components of size at most αn. We define a
weighted version of vertex (edge) separator theorem, which requires that there is
a balanced vertex (edge) separator of total weight at most β f(n)

n W , where W is
the sum of weights of all the edges. Note that these definitions make sense even
for directed graphs. f(n)-separator theorem without explicit statement whether
it is edge or vertex separator, means f(n) vertex separator theorem.

Many graphs that arise in real-world applications satisfy nc vertex or edge
separator theorem.

It has been extensively studied how to find balanced separators in graphs. In
planar graphs, a separator of size

√
n can be found in linear time [29]. Separators

of the same size can be found in minor-closed families in time O(n1+ε) for any
ε > 0 [22]. A balanced separator of size n1−1/d can be found in finite-element
mesh in expected linear time [31]. Good heuristics are known for some graphs
which arise in real-world applications, such as the road network [33]. A poly-
logarithmic approximation which works on any graph class is known [26]. A
poly-logarithmic approximation of the separators will be sufficient to achieve
almost the same bounds in our representation (differing by a factor at most
poly-logarithmic in B).

We define a recursive separator partition to be a partition of vertex set of a
graph, obtained by the following recursive process. Given a graph G, we either
set the whole V (G) to be one set of the partition or do the following:

1. Apply separator theorem. This gives us partition of V (G) into two sets A,B
from the separator theorem.

2. Recursively obtain recursive separator partitions of A and B.
3. Return the union of the partitions of A and B as the partition of V (G).

We call the sets in a recursive separator partition regions.
If there is an algorithm that computes balanced separator in time O(f(n)),

there is an algorithm that computes recursive separator partition with region
size Θ(r) in time O(f(n) log n) for any r. A stronger version called r-division
can be computed in linear time on planar graphs [18].

2.2 I/O Complexity

For definitions related to I/O complexity, refer to Demaine [8]. We use the stan-
dard notation with B being the block size and M the cache size. Both B and M
is counted in words. Each word has w bits and it is assumed that w ∈ Ω(log n).

3 Representation for Random Walks

In this section, we present our cache-oblivious representation of separable graphs
optimized for random walks and related results.

Theorem 1. Let G be a graph from a graph class satisfying the nc edge separa-
tor theorem where every vertex contains q extra bits of information. Then there
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is a cache-oblivious representation of G using O (n log(q + 2))+ qn bits in which
a random walk of length k starting in a vertex sampled from the stationary dis-
tribution uses in expectation O(

k/
(

Bw
(1+ q)

)1−c) I/O operations. Moreover, such
representation can be computed in time O(n1+ε) for any ε > 0.

For other random walks and weighted graphs where the transition probabil-
ities are proportional to the random walk stationary distribution, we can show
a weaker result. Namely, we can no longer guarantee a compact representation.

Theorem 2. Let M be any Markov chain of random walks on a graph G and
assume M has a unique stationary distribution π. Assume G satisfies the nc edge
separator theorem with respect to the edges-traversal probabilities in π. Let M ′ be
a Markov chain of random walks on G with transition probabilities proportional
to M , e.g. π′(e) = Θ(π(e)). Then there is a layout of vertices of G into blocks
with Θ(B) vertices each such that a random walk in M ′ of length k crosses
memory block boundary in expectation O(k/B1−c) times.

Note that this gives an efficient memory representation when NG(v) and the
probabilities on incident edges can be represented by (or computed from) O(1)
words, which is the case for bounded degree graphs with some chains M ′. We
also note that such partially-implicit graph representations are present in the
state graphs of some MCMC probabilistic graphical model inference algorithms.

Additionally, we present a result on the concentration of the number of I/O
operations which applies to both Theorems 1 and 2.

Theorem 3. Let G be a fixed graph, tmix the mixing time of G and X the num-
ber of edges going between blocks crossed during the random walk. Then the prob-
ability that (1 − δ)E(X) ≤ X ≤ (1 + δ)E(x) does not hold is O(

me−c′ δ2nBc−1
m

)

for some value c′ and m = tmix log(n2/E(X1)), where the variable Xi indicates
if the walk crossed an edge between two different blocks in step i.

The following lemma is implicit in [4], as the authors use the same layout
to get compact representation of separable graphs and they use the following
property.

Lemma 1 (Blandford et al. [4]). If π in Theorem2 gives the same traversal
probability to all edges, the representation induces a vertex order l : V → 1 . . . n
such that

∑
e=uv∈E log |l(u) − l(v)| = O(n).

3.1 Proofs of Theorems 1–3

Proof (Proof of Theorem 1).
Since the stationary distribution on an undirected graph assigns equal prob-

ability to every edge, we can apply Lemma 1 on G to obtain vertex ordering
r : V → 1 . . . n such that

∑
e=uv∈EG

log |r(u)−r(v)| = O(n). We could therefore
compactly store the edges as variable-width vertex order differences (offsets).
However, it is not straightforward to find the memory location of a given vertex
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when a variable-width encoding is used. To avoid an external (and I/O ineffi-
cient) index used in some other approaches, we replace the edge offset informa-
tion with relative bit-offsets, directly pointing to the start of the target vertex,
using Theorem 4 on the edge offsets. We expand the representation by inserting
the q bits of extra information to every vertex, adjusting the pointers and thus
widening each by O(log q) bits.

To prove the bound on I/O complexity, we use the same argument as in the
proof of Theorem2. Average of O(1 + q) bits is used for representation of single
vertex and, therefore, average of Θ( Bw

q +1 ) vertices fit into one cache line. By
Theorem 7, part i, the total probability on edges going between memory blocks
is O(1/ Bw

q +1 ). Again, by linearity of expected value, this proves the claimed I/O
complexity.

Compact representation as in Theorem 4 can be computed in the claimed
bound, as is shown in Theorem5. ��
Proof (Proof of Theorem 2). We use the following recursive layout. Let S be an
edge separator with respect to edge-traversal probabilities in π. Then S par-
titions G into two subgraphs X and Y . We recursively lay out X and Y and
concatenate the layouts. Note that X and Y are stored in memory contigu-
ously. At some level of recursion, we get partition into subgraphs represented
by between εB and B words for ε > 0 constant. We call these subgraphs block
regions. Since the average degree in graphs satisfying nc edge separator theorem
is O(1) [28], the average vertex representation size is also O(1) and the average
number of vertices in a block region is, therefore, Θ(B). It follows from Theo-
rem 7, part ii, that the total probability on edges going between block regions
is O(1/B1−c). From linearity of expectation, O(1/Bc−1)-fraction of steps in the
random walk cross between block regions in expectation. Moreover, each of the
block regions in the partition is stored in O(1) memory blocks, which proves the
claimed bound on I/O complexity. ��
Proof (Proof of Theorem 3). Let X be the number of edges crossed during the
random walk that go between blocks. We are assuming that there is at least one
edge going between two blocks in the graph.

We choose δ′ =
√

3
4δ (arbitrary constant c′′ < 1 would work). Note that m

is a number of steps, after which the probabilities on edges differ from those in
stationary distribution by at most E(X1)/n2, regardless from what distribution
we started the random walk since tmix(ε) ≤ �log ε−1	tmix [27]. This means that
the probability that an edge going between two blocks is crossed after m steps
differs by at most 1

n -fraction from the probability in stationary distribution.
Let Xi be indicator random variable that is 1 iff the random walk crosses

edge going between blocks in step i. We consider the following sets of random
variables Si = {Xj |Xj−m : j mod m} = i} for 1 ≤ i ≤ m (not conditioning on
variables with nonpositive indices). Note that the random variables in each of
sets Si are independent and (1 − 1

n )E(Xj) ≤ E(Xj |Xj−m) ≤ (1 + 1
n )E(Xj), as

mentioned above. Let μi be E(
∑

X∈Si
X) and μ = E(

∑
i

∑
X∈Si

X). Note that
μi ∈ Θ(nBc−1/m) for each i. By applying the Chernoff inequality, we get that
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the following bounds hold for all n ≥ n0 for some n0 for each i:

P
( ∑

X∈Si

X ≥ (1 + δ′)μi

)
≤ e− δ′2μi

3 = e− δ2μi
4

P
( ∑

X∈Si

X ≤ (1 − δ′)μi

)
≤ e− δ′2μi

2 ≤ e− δ2μi
4

The probability that there exists i such that either
∑

X∈Si
X ≥ (1 + δ′)μi or∑

X∈Si
X ≤ (1 − δ)μi is by the union bound for some value of c′ at most the

following:

2�log(n/E(X1))	tmixe− δ2μ
4m ∈ O(me−c′ δ2nBc−1

m )

Note that μi converges to |Si|E(X1), which is the value that we are showing
concentration of

∑
X∈Si

X around. The asymptotic bound on the probability
follows. ��

3.2 Expanding Relative Offsets to Relative Bit-Offsets

Having the edges of a graph encoded as relative offsets to the target vertex and
having these numbers encoded by a variable-length encoding, we need a way to
find the exact location of the encoded vertex. Others have used a global index
for this purpose but this is generally not I/O-efficient.

Our approach encodes the relative offsets as slightly wider numbers that
directly give the relative bit-index of the target. However, this is not straight-
forward as expanding just one relative offset to a relative bit-offset can make
other bit-offsets (spanning over this value) larger and even requiring more space,
potentially cascading the effect.

Note that one simple solution would be to widen every offset representation
by Θ(log log N) bits where N is the total number of bits required to encode all
the n offsets, yielding N + n ∗ O(log log N) encoding. log n bits are sufficient to
store each offset. Therefore, by expanding the offsets, they increase at most log n
times. By adding log(2 log n) bits, we can encode increase of offsets by factor of
up to 2 log n ≥ log n + log(2 log n).

However, we propose more efficient encoding with the following theorem. We
interpret the numbers ai as relative pointers, i-th number pointing to the location
of the (i + ai)-th value. In the proof, we use a dynamic width gamma number
encoding in the form [(sign)B00B10B20 . . . Bi1], where 2i + 1-th bit encodes
whether Bi is the last bit encoded.

Theorem 4. Let a1 . . . an be a sequence of numbers such that −i ≤ ai ≤ n − i
and

∑n
i=0 log |an| = m. Then there are n-element sequences {wi} (the encoded

bit-widths) and {bi} (the bit-offsets) of numbers such that for all 1 ≤ i ≤ n,
wi ≥ 2 log |bi|+1 (i.e. bi can be gamma-encoded in wi bits), P (i)+wi = P (i+ai)
where P (j) :=

∑j−1
i=1 wi (so wi is a relative bit-offset of encoded position i + ai)

and
∑n

i=1 wi = O(m + n).
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Proof. There are certainly some non-optimal valid choices for wi’s and bi’s, and
we can improve upon them iteratively by shrinking wi’s to fit gamma-encoded bi

with sign (i.e. wi = 1 + 2 log |bi|), which may, in turn, decrease some bi’s. Being
monotonic, this process certainly has a fixpoint {bi}i and {wi}i and we assume
arbitrary such fixpoint.

Let C < 1 and D > 1 be constants to be fixed below. Denote vi = log |ai|
and Ri = {i . . . i+ai − 1} (resp. {i+ai . . . i− 1} when ai < 0). Intuitively, when
expanding offsets ax to bit offsets bx, it may happen that Rx contains y with
wy � ax, forcing wx � vx. We amortize such cases by distributing “extra bits”
to such “smaller” offsets.

Let x ≺ y ⇐⇒ y ∈ Rx ∧vx ≤ C log wy ∧vx > D and let x↑ = arg maxy�xwy

(or undefined if there is no such y) and let y↓ = {x|y ∈ x↑}. Observe that
|y↓| ≤ 2 · 2C log wy = 2wC

y since all x ∈ y↓ have |ax| ≤ 2vx ≤ wC
y . We also note

that y = x↑ implies wx < wy since wy ≤ wx would imply bx ≤ |ax|wx and
wx > 2vx/C leading to wx ≤ vx + log wx and 2vx/C < wx ≤ 2vx, which gives the
desired contradiction with D large enough (depending only on C).

We will distribute the extra bits starting from the largest wi’s. Every y
uses wy bits for its encoding and distributes another wy bits to y↓. Let rx =
wx↑/|(x↑)↓| ≥ 1

2w1−C
x↑ be the number of extra bits received from x↑ in this way.

For every offset x we use 10vx + 2D bits and the received bits rx. Since
the received bits are accounted for in other offsets, this uses

∑n
i=1 10vx + D =

10m + O(n) bits in total. Therefore we only need to show that the number of
bits thus available at x is sufficient, i.e. that 2wx ≤ rx + 10vx + 2D (one wx to
represent bx, one to distribute to x↓).

Now either there is y = x↑ and we have bx ≤ |ax|wy so wx ≤ 1+2vx+2 log wy

and noting that for large enough D only depending on C: 2 log wy ≤ 1
4w1−C

y +
D ≤ 1

2rx + D, so we obtain wx ≤ 1
2rx + 5vx + 2D as desired.

On the other hand, undefined x↑ implies that ∀y ∈ Rx : wy ≤ 2vx/C . There-
fore bx ≤ |ax|2vx/C and wx ≤ 1 + 2vx + 2vx/C = 1 + (2 + 2/c)vx. Now we may
fix C = 2/3, obtaining wx ≤ 5vx + D as required for D ≥ 1. This finishes the
proof for any fixpoint {bi}i and {wi}i. ��

The algorithm from the beginning of the proof can be shown to run in polyno-
mial time. We start with e.g. wi = w0 = 1 + 4 log n and bi = sign(ai)

∑
j∈Ri

wj .
Then we iteratively update wi := 1 + 2�log bi	 and recompute bi as above. Since
every iteration takes O(n2) time and in every iteration at least one wi decreases,
the total time is at most O(n3 log n). In the following section, we show an algo-
rithm that computes a representation with the same asymptotic bounds, running
in time O(n1+ε) for any ε > 0.

Constructing the Compact Representation. In this section, we use nota-
tion defined in Sect. 3.2, specifically Re and be. Recall that Re is the set of edges
of G spanned by the edge e in the representation and be is the relative offset
of edge e in the (expanded) representation). Let G be the graph we want to
represent. We assume that G satisfies the nc edge separator theorem.
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We find a representation using O(n log log n) bits, as mentioned above by
expanding all pointers and then modify it to make it compact.

We define a directed graph H on the set E(G) with arc going from v to u iff
v ∈ Ru. Let us fix a recursive separator hierarchy of G. We call l(e) the level of
recursion on which the edge e is part of the separator. We define a graph H≤k

to be the subgraph of H induced by vertices corresponding to edges of G which
appear in the recursive separator hierarchy in a separator of subgraph of size at
most k.

The following lemma will be used to bound the running time of the algorithm:

Lemma 2. The maximum out-degree of H≤nc′ is nc∗c′
. For any fixed c′ > 0,

|H \ H≤nc′ | ∈ n1−ε′
where ε′ > 0 is some constant depending only on c and c′.

Proof. We first prove that maximum out-degree of H is O(nc).
There are O(nc) edges e ∈ G with l(e) = 1 spanning any single vertex. The

number of edges e spanning some vertex with l(e) = k decreases exponentially
with k, resulting in a geometric sequence summing to O(nc).

The maximum out-degree of H≤nc′ is the same as that of graph H ′ corre-
sponding to a subgraph of G of size at most nc′

. Maximum out-degree of H≤nc′

is, therefore, O(nc∗c′
).

The number of vertices in H \ H≤nc′ is equal to the number of edges in G

going between blocks of size Θ(nc′
). This number is, by Theorem 7, equal to

n/nc′(1−c), which is O(n1−ε) for some ε′ > 0. ��
Theorem 5. Given a separator hierarchy, the representation from Theorem1
can be computed in time O(n1+ε) for any ε > 0.

Proof. We first describe an algorithm running in time O(n1+c log log n), where
c is the constant from the separator theorem, and then improve it.

Just as in the proof of Theorem4, bv denotes the relative offset of edge v in
the representation. We store a counter cv for each vertex v ∈ H equal to the
decrease of bv required to shrink its representation by at least one bit. That is,
cv = bv − �bv�2k + 1, where �i�2k is i rounded down to closest power of two.
When we shrink the representation of edge corresponding to vertex v ∈ H, we
have to update counters cu for all u, such that vu ∈ E(H). Since the out-degree
of H is O(nc), the updates take O(nc) time. We start with representation with
O(n log log n) bits and at each step, we shorten the representation by at least
one bit. This gives the running time of O(n1+c log log n).

To get the running time of O(n1+ε log log n), we consider the graph H≤nε′

for some sufficiently small epsilon. Note that the maximum out-degree of H≤nε′

is O(ncε′
). We can fix ε′ small enough to decrease the maximum out-degree

to nε. Therefore, by using the same algorithm as above on graph H≤nε′ for ε′

sufficiently small, we can get a running time of O(n1+ε log log n) for any fixed
ε > 0. The representations of edges corresponding to vertices not in the graph
H≤nε′ are not shrunk.
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Note that the presumptions of Theorem 4 are fulfilled by the edges corre-
sponding to vertices in H≤nε and the obtained representation of graph G′ =
(V (G), V (H≤nε)), is therefore compact. The edges not in H≤nε are then added,
increasing some offsets. The representation of an offset of length at least nε′′

for
ε′′ > 0 is never increased asymptotically by inserting edges since it already
has Θ(log n) bits. There are at most O(nε′′

) edges of G′ shorter than nε′′

that span any single inserted edge. Lengthening of offsets shorter than nε′′
,

therefore, contributes at most O(n1−ε′
nε′′

log log n) ∈ o(n) for some ε′′ suffi-
ciently small. The inserted edges themselves have representations of total length
O(n1−ε′

log n) ∈ o(n). Additional o(n) bits are used after the insertion of edges
and the representation, therefore, remains compact. ��

4 Separator Hierarchy

In this section, we prove two generalizations of the separator hierarchy theorem.
Our proof is based on the proof from [23]. Most importantly, we show that the
recursive separator theorem also holds if we want the regions to have small size
on average and not in the worst case. We also prove the theorem for weighted
separator theorem with weights on edges. We show that the natural generaliza-
tion of our two generalizations does not hold by presenting a counterexample.

Since the two theorems are very similar and their proofs only differ in one
step, we present them as one theorem with two variants and show only one
proof proving both variants. The difference lies in the reason why the Inequality
1 holds. The following lemma and observation prove the inequality under some
assumptions and they will be used in the proof of the theorem.

c′γwW

r1−c
1

+
c′(1 − γw)W

r1−c
2

≤ c′Wn

r1−c
(1)

Observation 6. The Inequality 1 holds for r1 = r2 = r.

Lemma 3. The Inequality 1 holds for γw = γn and r1, r2 and r satisfying the
following.

r =
1

γn

r1
+ 1−γn

r2

=
r1r2

γnr2 + (1 − γn)r2
. (2)

Proof. Let γ = γw = γn. We simplify the inequality

γ

r1−c
1

+
1 − γ

r1−c
2

≤ 1
r1−c

for r1, r2 and r satisfying the equality (2). By substituting for r and rearranging
the inequality, we get

γr1−c
1 + (1 − γ)r1−c

2 ≤ (γr1 + (1 − γ)r2)1−c

We substitute r2 = λr1. Note that this holds for λ = 1 and that we may
assume r1 ≤ r2 by symmetry. Since the inequality holds for λ = 1, it is sufficient
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to show the inequality for λ ≥ 1 with both sides differentiated with respect to
λ. By differentiating both sides and simplifying the inequality, we get

(x − (λ − 1)γ)−c ≥ x−c

which obviously holds, since λ ≥ 1 and γ > 0.

Now we proceed to prove the two generalizations of the recursive separator
theorem. Note that in the following, r is the average or maximum region size,
depending on whether the graph is weighted or not.

Theorem 7. Let G be a (possibly weighted) graph satisfying the nc separator
theorem with respect to its weights and let P be its recursive balanced separator
partition. Then if either

(i) the graph in not weighted and r is the average size of a region in the partition
P , or

(ii) the graph is weighted and r is the maximum size of a region in the partition
P .

Then the total weight of edges not contained inside a region of P is O(W/r1−c),
where W is the total weight (resp. number if unweighted) of all edges of G.

In this proof, let w(S) be the total weight of the edges in S with w(e) denoting
the weight of the single edge e.

Proof. We use induction on the number of vertices to prove the following claim.

Claim. Let us have a recursive separator partition P of n-vertex graph G of
average region size r. Then w(E(G) \ ⋃

p∈P p) < c′W
r1−c − c′′W

n1−c for some c′ and c′′.

Before the actual proof of this claim, let us define some notation. Let c, α and
β be the constants from the separator theorem (recall that separator theorem
ensures existence of a partition of V (G) into two sets of size at least αV (G)
with edges of total weight at most β W

n1−c going across). Let B(W,n, r) be the
maximum value of w(E(G) \⋃

p∈P p) over all n-vertex graphs of total weight W
and all their recursive separator partitions with average region size r. We use γn

to denote a fraction of the number of vertices and γw to denote a fraction of the
total weight.

Proof (Proof of the claim). We defer the proof of the base case until we fix the
constant c′.

By the separator theorem, B(W,n, r) satisfies the following recurrence.

B(W,n, r) = 0 for n ≤ r

B(W,n, r) ≤ β
W

n1−c
+ max

α≤γn≤1−α
γw∈[0,1]

B(γwW,γnn, r1) + B((1 − γw)W, (1 − γn)n, r2)
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where r1, r2 are the respective average region sizes in the two subgraphs. It,
therefore, holds that r = 1

γn
r1

+ 1 − γn
r2

= r1r2
γnr2 +(1− γn)r2

.

From the inductive hypothesis, we get the first inequality of the following.
The second inequality follows from the Observation 6 for the case i and from the
Lemma 3 for the case ii.

B(W,n, r) ≤ β
W

n1−c
+

c′γwW

r1−c
1

+
c′(1 − γw)W

r1−c
2

− c′′ W

n1−c
(γc

n + (1 − γn)c) ≤ (3)

≤ β
W

n1−c
+

c′Wn

r1−c
− c′′ W

n1−c
(γc

n + (1 − γn)c)

It holds that γc
n + (1 − γn)c ≥ 1 + εα, where εα > 0 is a constant depending

only on α, since γn ∈ [α, 1 − α] for α > 0. We can therefore set c′′ such that

c′′ W

n1−c
(γc

n + (1 − γn)c) − β
W

n1−c
≥ c′′ W

n1−c

This completes the induction step.
For c′ large enough, the claimed bound in the base case is negative and it,

therefore, holds. ��
We conclude this section by showing that the following natural generalization

of Theorem 7 does not hold:

Theorem 8. The following generalization does not hold: Let G be a weighted
graph satisfying the nc separator theorem with respect to its weights and let P
be its recursive separator partition. Let r be the average size of a region in the
partition P . Then the total weight of edges not contained in a region of P is
O(W/r1−c), where W is the total weight of all edges of G.

Proof. We show that there is a weighted graph satisfying the nc-separator theo-
rem with respect to its weight and a recursive partition P of G with edges going
between partition regions of P that have total weight Θ(W ), where W is the
total weight of all edges, and with average region size of Θ(n/ log n).

Let G be an unweighted graph of bounded degree satisfying the nc-separator
theorem. We set weights of all its edges to be 1, except for one arbitrary edge e
with weight m−1, where m is the number of edges of G. Note that w(e) = W/2.
We denote this weighted graph by Gw.

Let S be a separator in G from the separator theorem. We modify S in order
to obtain a balanced separator Sw in Gw of weight O(W/n1−c). If e �∈ S, we set
Sw = S. Otherwise, we remove e from S and add all other edges incident to its
endpoints. This gives us Sw which is a separator and its weight differs from the
weight of S only by an additive constant, since the graph G has bounded degree.
It follows that Gw satisfies the nc-separator theorem with respect to its weights.

We consider a partition P constructed by the following process. Let S be a
separator from the separator theorem on Gw, partitioning V (Gw) into vertex
sets A and B. If e ∈ S, we stop and set A and B as the regions of P . Otherwise,
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without loss of generality, e ∈ A. We set B as a region of P and recursively
partition A.

At the end of this process, we get P with edges of total weight at least W/2
between regions (as e is not contained within any region). The partition P has
Θ(log n) regions, so the average region size is Θ(n/ log n). ��

5 Representation for Paths in Trees

In this section, we show a linear algorithm that computes a cache-optimal layout
of a given tree. We are assuming that the vertices have unit size and B is the
number of vertices that fit into a memory block. The same assumption has been
used previously by Gil and Itai [16]. This is a reasonable assumption for trees of
fixed degree and for trees in which each vertex only has a pointer to its parent. It
does not matter in which direction the paths are traversed and we may, therefore,
assume that the paths are root-to-leaf.

We also show that it is NP -hard to find an optimal compact layout of a tree
and show an algorithm which gives a compact layout with I/O complexity at
most OPT + 1.

Definition 1. Laid out tree: A laid out tree is an ordered triplet T = (V,E,L),
where (V,E) is a rooted tree and L : V → {0, 1, 2, · · · , |V |} assigns to each vertex
the memory block that it is in. We require that at most B vertices are assigned
to any block. We treat the block 0 specially as the block already in the cache.

We define c′
L(P ) = |{L(v) for v ∈ P} \ {0}| to be the cost of path P in a given

layout L. We define c(T, k), the worst-case I/O complexity given k free slots, as

c(T, k) = min
L

(max
P

(c(P )))

where P ranges over all root-to-leaf paths and L over all layouts that assign
at most k vertices to block 0. Since block 0 is assumed to be already in cache,
accessing these vertices does not count towards the I/O complexity. We define
c(T ), the worst-case I/O complexity of laid out tree T , to be c(T, 0). This means
c(T ) is the maximum number of blocks on a root-to-leaf path. We define a worst-
case optimal layout of a tree T given k free memory slots as a layout attaining
c(T, k).

We can observe that c(T ) ≤ 1 + maxu∈δ(rT )(c(Tu)). From the lemmas below
follows that c(T ) only depends on the subtrees rooted in children of rT with the
maximum value of c(Tu).

Lemma 4. For any k1, k2 ∈ [B], |c(T, k1) − c(T, k2)| ≤ 1 and c(T, k) is non-
increasing in k.

Proof. The function c(T, k) is monotonous in k since a layout given k1 free slots
is a valid layout given k2 slots for k2 ≥ k1. Moreover c(T, 0) = c(T,B) − 1, since
we can map vertices in the root’s block to block 0 instead. From this and the
monotonicity, the lemma follows. ��
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We define deficit of a tree k(T ) = min{k, such that c(T, k) < c(T, 0)}. Note
that k(T ) ≤ B. It follows from Lemma 4 that c(T, k′) = c(T, 0) = c(T,B)+1 for
all k′ < k(T ) and c(T, k′) = c(T, 0) − 1 = c(T,B) for k′ ≥ k(T ).

Lemma 5. For k ≥ 1, there is a worst-case optimal layout attaining c(T, k)
such that root is in block 0.

Proof. Let L be a layout that does not assign block 0 to the root. If no vertex is
mapped to block 0, we can move root to block 0. Since block 0 does not count
towards I/O complexity, doing this can only improve the layout. Otherwise, let
v be vertex, which is mapped to block 0. We construct layout L′ such that
L′(v) = L(r), L′(r) = L(v) and L′(u) = L(u) for all other vertices u. For any
path P , c′

L(P ) ≥ c′
L′(P ), since any path which contains v in layout L′ already

contained it in L and block 0 does not count towards the I/O complexity. ��
It is natural to consider layouts in which blocks form connected subgraphs.

This motivates the following definition

Definition 2. A partition of a rooted tree is convex if the intersection of any
root-to-leaf path with any set of the partition is a (possibly empty) path.

Let Mv be the set of successors u of vertex v with maximum value of c(Tu).

Lemma 6. The function c(T, k) satisfies the following recursive formula for
k ≥ 1.

c(T, k) = min
{ku}

max
u∈Mv

c(Tu, ku)

where the min is over all sequences {ku} such that
∑

u∈δ(v) ku = k − 1.

Proof. By Lemma 5, we may assume that an optimal layout attaining c(T, k) for
k ≥ 1 puts the root to block 0 and allocates the remaining k − 1 slots of block
0 to root’s subtrees, ku slots to the subtree Tu. On the other hand, from values
of ku, we can construct a layout with cost maxu∈Mv

(c(Tu, ku)). ��
Problem 1.
Input: Rooted tree T
Output: Worst-case optimal memory layout of T .

Theorem 9. There is an algorithm which computes a worst-case optimal layout
in time O(n). Moreover, this algorithm always outputs a convex layout.

Proof. We solve the problem using a recursive algorithm. For each vertex, we
compute k(Tv) and c(Tv). First, we define d(T ) and cmax(v).

d(Tv) = 1 +
∑

u∈Mv

k(u), cmax(v) = max
u∈δ(v)

(c(Tu))

If d(T ) < B, we let k(Tv) = d(T ) and c(Tv) = cmax(v). Otherwise k(Tv) = 1
and c(Tv) = cmax(v)+1. As a base case, we use that c(T, k) = 0 when |V (T )| ≤ k.
For k = 0, we use that c(T, 0) = c(T,B) + 1.
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Using the values k(Tu) and c(Tu) calculated using the above recurrence, we
reconstruct the worst-case optimal layout in a recursive manner. When laying
out a subtree given k free slots, we check whether k ≥ d(T ). If it is, we distribute
the k − 1 empty slots (one is used for the root) in a way that subtrees Tv for
v ∈ M(rT ) get at least k(Tv) empty slots. Otherwise, distribute them arbitrarily.
We put the root of a subtree into a newly created block if the subtree gets 0 free
slots. Otherwise, we put the root into the same block as its parent. It follows
from the way we construct the solution that it is convex.

It follows from Lemmas 4 and 6 that c(T, k) = c(T, 0) − 1 if and only if k − 1
free slots can be allocated among the subtrees Tu, u ∈ δ(rT ) such that subtree
Tu gets at least k(Tu) of them. It can be easily proven by induction that the
algorithm finds for each vertex the smallest number of free slots required to make
the allocation possible and calculates the correct value of c(Tv). ��

If the subtree sizes are computed beforehand, we spend deg(v) time in vertex
v. By charging this time to the children, we show that the algorithm runs in
linear time.

This algorithm can be easily modified to give a compact layout which ensures
I/O complexity of walking on a root-to-leaf path to be at most c(T ) + 1. This
is especially relevant since finding the worst-case optimal layout is NP-hard, as
we show in Sect. 5.1. The algorithm can be modified to give a compact layout
by changing the reconstruction phase such that we never give more than |V (Tv)|
free slots to the subtree of T rooted in v unless k > |V (T )|. Note that only the
last block on a path can have unused slots. We can put blocks which are not full
consecutively in memory, ignoring the block boundaries. Any path goes through
at most c(T ) blocks out of which at most one is not aligned, which gives total
I/O complexity of c(T ) + 1.

The following has been proven before in [9] and follows directly from Theo-
rem 9.

Corollary 1. For any tree T , there is a convex partition of T which is worst-
case optimal.

Proof. The corollary follows from Theorem 9, since the algorithm given in the
proof is correct and always gives a convex solution. ��

Since the layout computed by the algorithm is always convex, we never re-
enter a block after leaving it. This means that c(T ) really is the worst-case I/O
complexity.

Finally, we show how to construct a compact representation with similar
properties. Note that we do not claim I/O optimality among all compact repre-
sentations but only relative to the tree layout optimality as in Theorem9.

Theorem 10. For a given tree T with q bits of extra data per vertex, there is
a compact memory representation of T using O(nq) bits of memory requiring at
most OPTL I/O operations for leaf-to-root paths in general trees and root-to-leaf
paths in bounded degree d trees. Here OPTL is the I/O complexity of the optimal
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layout from Theorem9 when we set the vertex size to be q+2 log n for leaf-to-root
paths, or to q + 2d log n for root-to-leaf paths.

Proof. The theorem is an indirect corollary of Theorems 9 and 4. We set the
vertex size as indicated in the theorem statement (depending on the desired
direction of paths) and obtain an assignment of vertices to blocks by Theorem9.
We call the set of the blocks D. Note that for q = Ω(log n), this is already a
compact representation.

For smaller q, we construct an auxiliary tree T ′ on the blocks D representing
their adjacency in T . We can assume that T ′ is a tree due to the convexity of
the blocks of D. We apply the separator decomposition to obtain an ordering R
of VT ′ with short representation of offset edge representation (Lemma1). Sim-
ilarly, we can get an ordering for each block in D. We order the vertices of T ′

according to R, ordering the vertices within blocks according to orderings of
the individual blocks. We obtain an ordering having offset edge representation
of total length O(n log q), as there is O(n/B) edges going between blocks with
offset edge representations of total length O(n log B log q/B) and edges within
blocks with offset edge representations of total length O(n log q).

We now apply Theorem4 on the edge offsets still split in memory blocks
according to D, obtaining a bit-offset edge representation where the vertex rep-
resentation of every block of D still fits within one memory block, as we have
previously reserved 2 log n+Θ(1) memory for every pointer and wi ≤ 1+2 log n.
We merge consecutive blocks whose vertices fit together into one block. This
ensures that every block has at least B/2 vertices. ��

5.1 Hardness of Worst-Case Optimal Compact Layouts

In this section, we prove that it is NP-hard to find a worst-case optimal compact
layout (that is, the packing with minimum I/O complexity out of all compact lay-
outs). We show this by reduction from the 3-partition problem, which is strongly
NP-hard [15] (i.e. it is NP-hard even if all input numbers are written in unary).
This result is in contrast with Theorem 9 which shows how to find worst-case
optimal non-compact layout.

Problem 2 (3-partition).
Input: Natural numbers x1, · · · , xn.
Output: Partition of {xi}n

1 into sets Y1, · · · , Yn/3 such that
∑

x∈Yi
x =

3(
∑n

1 xi)/n = S for each i.

Theorem 11. It is NP-hard to find a worst-case optimal compact layout of a
given tree T .

Proof. We let B = S. We construct the following tree. It consists of a path
P = p1p2 · · · pB of length B rooted in p1. For each number xi from the 3-
partition instance, we create a path of length xi. We connect one of the end
vertices of each of these paths to pB .
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Next, we prove the following claim. There is a layout of I/O complexity 2 iff
the instance of 3-partition is a yes instance. We can get such layout from a valid
partition easily by putting in a memory block exactly the paths corresponding to
xi’s that are in the same partition set. For the other implication, we first prove
that P is stored in one memory block. If it were not, we would visit at least
two different memory block while traversing P and there would be a root-to-leaf
path that would visit three memory blocks. If P is stored in one memory block,
the I/O complexity of the tree is 2 iff the paths pi can be partitioned such that
ever no part is stored in multiple memory blocks. There is such partition iff the
instance of 3-partition is a yes instance. ��

6 Further Research

Finally, we propose several open problems and future research directions.
Experimental comparison of traditional graph layouts with the layouts pre-

sented in our work and layouts proposed in prior work could both direct and
motivate further research in this area.

While we optimize the separable graph layout for random walks it is conceiv-
able that a minor modification would also match the worst-case performance of
the previous results.

The worst-case performance of the algorithm for finding the bit-offsets in
Sect. 3.2 is most likely not optimal, and we suspect that the practical perfor-
mance would be much better.

For the sake of simplicity, both our and prior representations of trees assume
fixed vertex size (e.g. implicitly in the results on layouts) or allow q = O(1)
extra bits per vertex in the compact separable graph representation. This could
be generalized for vertices of different sizes and unbounded degrees.
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