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Abstract. An oritatami system is a novel mathematical model of RNA
cotranscriptional folding, which has recently proven extremely significant
in information processing in organisms and also controllable artificially
in a test tube to construct an artificial structure by folding an RNA
sequence. This model has turned out to be Turing universal. One next
step is to simplify the Turing universal oritatami system and another
is to characterize weaker oritatami systems as we may not need Turing
universality for applications. In this paper, we look at oritatami systems
that folds a unary sequence, and show that under reasonable assump-
tions, these systems are not universal.

1 Introduction

Transcription is the first essential step of gene expression, in which a DNA
template sequence is copied into a single stranded RNA sequence of nucleotides
A, C, G, and U (letter of RNA alphabet) by a ‘molecular Xerox’ called RNA
polymerase, nucleotide by nucleotide according to the complimentarity relation
A → U, G → C, C → G, and T → A. The copied RNA sequence is called transcript.
The transcript does NOT remain single-stranded until it is fully synthesized. It
rather starts folding upon itself into intricate stable conformations (structures)
primarily via hydrogen bonds, immediately after it emerges from the polymerase,
as illustrated in Fig. 1 (Left).

In a recent breakthrough in molecular engineering by Geary, Rothemund and
Andersen [8] the co-transcriptional folding of RNA is controlled by careful design
of the DNA template. As demonstrated in laboratory, this method, called RNA
Origami, makes it possible to cotranscriptionally self-assemble a unique RNA
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⇒

Fig. 1. (Left) RNA origami. (Right) an abstraction of its product, i.e., an RNA tile,
as a configuration of an oritatami system. A dot • in the figure on the right repre-
sents a sequence of 3-4 nucleotides (oligonucleotides). The solid arrow and dashed lines
represent respectively its RNA transcript and interactions based on hydrogen bonds
between nucleotides.

rectangular tile highly probably (see Fig. 1 (Left)). This breakthrough and the
design of RNA tile has encouraged the research on the nano-scale RNA struc-
ture self-assembly so that several successful attempts to self-assemble artificial
structures by folding a single-stranded RNA sequence [4,10]. Geary et al. [6]
proposed a mathematical model for this process, called oritatami system. In this
model, an oligonucleotide (a short sequence of RNA nucleotides) is considered to
be a bead and an RNA structure is abstracted as a directed path with informa-
tion on hydrogen-based interaction (bonds) between beads over the triangular
grid graph T as illustrated in Fig. 1. An oritatami system folds a transcript of
abstract molecules (beads) of finite number of types over T. This model has
been just proved efficiently Turing universal in [7] by simulating cyclic tag sys-
tems introduced by Cook [2]. The simulation involves a very large and complex
oritatami system. This system is deterministic in the sense that every bead is
stabilized uniquely point-wise as well as interaction-wise (for the formal defi-
nition, see Sect. 2). One future direction of research is to quest for a smaller
Turing-universal oritatami system.

Closely related is the question of where not to look for universal systems,
i.e., what are the limitations of simple oritatami system. In search for simple
oritatami systems, there are a number of restrictions one can pose on them:

– bounds on the relative speed of transcription to folding (delay), the number
of bead types, or the number of hydrogen bonds per bead (arity);

– bounds on the length of the transcript or on the complexity of rules to decide
what types of beads interact with each other (attraction rules);

– structural conditions on the transcript or the attraction rules.

In [3], Demaine et al. proved that at delay 1 and arity 1, upon an initial structure
of n beads, a deterministic oritatami system cannot fold into any conformation of
more than 10n beads, no matter how many bead types are available. We consider
this finiteness problem for unary oritatami systems under various settings of the
values of delay and arity, which is formalized as follows (Table 1).

Problem 1. Give an upper bound on the length of a transcript of a delay-δ, arity-
α deterministic unary oritatami system whose seed is of length n by a function
in δ, α, and n.
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Fig. 2. The zig-zag conformation. This is the only one infinite conformation foldable
deterministically by an unary oritatami system at delay 1 and arity 2.

Table 1. Upper bounds on the length of a conformation foldable by a deterministic
unary oritatami system at delay δ and arity α. At any combination of delay and arity
without anything written, no upper bound is known yet.

α\δ 1 2 and 3 4 and larger

1 10n [3] 3n2+4n+1 (Theorem6)

2 ∞ but zigzag after
(27n2+9n+1)-th bead
(Theorem5)

3 4n+14 (Theorem4)

4 3n(n+1)+1 (Theorem3)

In this paper, we will solve this problem completely at delay 1 and partially
at arity 1 in Sect. 4. At delay 1, we will provide a quadratic upper bound 3n(n+
1) + 1 for the case of arity being 4, while a linear upper bound 4n + 14 for
arity 3. At the delay 1 and arity 2, one infinite structure turns out to be foldable
deterministically, which is the zigzag conformation shown in Fig. 2. At arity 1, we
will prove that at delay 2 or 3, the upper bound is (3n+1)(n+1). Upper bounds
for longer delays remain open. These results as well as known upper bounds are
summarized in Fig. 1. As shown at the end of Sect. 2, the stabilization of the first
t beads of transcript by a deterministic oritatami system can be simulated by
a deterministic Turing machine within t3 steps (Corollary 1). Thus, the above
mentioned upper bounds show that at delay 1 and arity 1, 3, or 4, or at delay 2
or 3 and arity 1, the class of deterministic unary oritatami systems is not Turing
universal. The Turing universal oritatami system by Geary et al. [7] employs
more than 500 types of beads. Thus, this weakness result is not surprising at
all. The unary oritatami system might not be practical very much, though one
bead may abstract an oligonucleotide (a short sequence of nucleotides), and in
that case, unary transcript can be a repetitive but nonunary sequence, which is
not so unrealistic in experiments (see [5]). Nevertheless, this paper makes a first
considerable step towards the characterization of non-Turing-universal oritatami
systems.

As a result of independent significance, in Sect. 3, we show that increasing
the delay from 1 to 2 enables an oritatami system to yield a conformation of
quadratic length in n as long as 9 types of beads are available.
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2 Preliminaries

Let Σ be a finite set of types of abstract molecules, or beads. A bead of type
a ∈ Σ is called an a-bead. By Σ∗ and Σω, we denote the set of finite sequences of
beads and that of one-way infinite sequences of beads, respectively. The empty
sequence is denoted by λ. Let w = b1b2 · · · bn ∈ Σ∗ be a sequence of length n
for some integer n and bead types b1, . . . , bn ∈ Σ. The length of w is denoted by
|w|, that is, |w| = n. For two indices i, j with 1 ≤ i ≤ j ≤ n, we let w[i..j] refer
to the subsequence bibi+1 · · · bj−1bj ; if i = j, then w[i..i] is simplified as w[i]. For
k ≥ 1, w[1..k] is called a prefix of w.

Oritatami systems fold their transcript, which is a sequence of beads, over
the triangular grid graph T = (V,E) cotranscriptionally. We designate one point
in V as the origin O of T. For a point p ∈ V , let �d

p denote the set of points
which lie in the regular hexagon of radius d centered at the point p. Note that�d

p consists of 3d(d + 1) + 1 points. A directed path P = p1p2 · · · pn in T is a
sequence of pairwise-distinct points p1, p2, . . . , pn ∈ V such that {pi, pi+1} ∈ E
for all 1 ≤ i < n. Its i-th point is referred to as P [i]. Now we are ready to abstract
RNA single-stranded structures in the name of conformation. A conformation C
(over Σ) is a triple (P,w,H) of a directed path P in T, w ∈ Σ∗ of the same length
as P , and a set of h-interactions H ⊆ {{i, j} ∣

∣ 1 ≤ i, i+2 ≤ j, {P [i], P [j]} ∈ E
}
.

This is to be interpreted as the sequence w being folded along the path P in
such a manner that its i-th bead w[i] is placed at the i-th point P [i] and the
i-th and j-th beads are bound (by a hydrogen-bond-based interaction) if and
only if {i, j} ∈ H. The condition i + 2 ≤ j represents the topological restriction
that two consecutive beads along the path cannot be bound. The length of C is
defined to be the length of its transcript w (that is, equal to the length of the
path P ). A rule set R ⊆ Σ × Σ is a symmetric relation over Σ, that is, for all
bead types a, b ∈ Σ, (a, b) ∈ R implies (b, a) ∈ R. A bond {i, j} ∈ H is valid
with respect to R, or simply R-valid, if (w[i], w[j]) ∈ R. This conformation C
is R-valid if all of its bonds are R-valid. For an integer α ≥ 1, C is of arity α
if it contains a bead that forms α bonds but none of its beads forms more. By
C≤α(Σ), we denote the set of all conformations over Σ whose arity is at most α;
its argument Σ is omitted whenever Σ is clear from the context.

The oritatami system grows conformations by an operation called elongation.
Given a rule set R and an R-valid conformation C1 = (P,w,H), we say that
another conformation C2 is an elongation of C1 by a bead b ∈ Σ, written as
C1

R−→b C2, if C2 = (Pp,wb,H ∪ H ′) for some point p ∈ V not along the path
P and set H ′ ⊆ {{i, |w| + 1} ∣

∣ 1 ≤ i < |w|, {P [i], p} ∈ E, (w[i], b) ∈ R
}

of bonds
formed by the b-bead; this set H ′ can be empty. Note that C2 is also R-valid.
This operation is recursively extended to the elongation by a finite sequence of
beads as: for any conformation C, C

R−→
∗
λ C; and for a finite sequence of beads

w ∈ Σ∗ and a bead b ∈ Σ, a conformation C1 is elongated to a conformation
C2 by wb, written as C1

R−→
∗
wb C2, if there is a conformation C ′ that satisfies

C1
R−→

∗
w C ′ and C ′ R−→b C2.
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An oritatami system (OS) Ξ = (Σ,R, δ, α, σ, w) is composed of

– a set Σ of bead types,
– a rule set R ⊆ Σ × Σ,
– a positive integer δ called the delay,
– a positive integer α called the arity,
– an initial R-valid conformation σ ∈ C≤α(Σ) called the seed, whose first bead

is assumed to be at the origin O without loss of generality,
– a (possibly infinite) transcript w ∈ Σ∗ ∪ Σω, which is to be folded upon

the seed by stabilizing beads of w one at a time so as to minimize energy
collaboratively with the succeeding δ−1 nascent beads.

The energy of a conformation C = (P,w,H), denoted by ΔG(C), is defined to
be −|H|; the more bonds a conformation has, the more stable it gets. The set
F(Ξ) of conformations foldable by the system Ξ is recursively defined as: the
seed σ is in F(Ξ); and provided that an elongation Ci of σ by the prefix w[1..i]
be foldable (i.e., C0 = σ), its further elongation Ci+1 by the next bead w[i + 1]
is foldable if

Ci+1 ∈ arg min
C∈C≤αs.t.

Ci
R−→w[i+1]C

min
{

ΔG(C ′)
∣
∣
∣ C

R−→
∗
w[i+2...i+k] C ′, k ≤ δ, C ′ ∈ C≤α

}
. (1)

Then we say that the bead w[i+1] and the bonds it forms are stabilized according
to Ci+1. The easiest way to understand this stabilization process should be the
video available at https://www.dailymotion.com/video/x3cdj35, in which the
Turing universal oritatami system by Geary et al. [7], whose delay is 3, is running.
Note that an arity-α oritatami system cannot fold any conformation of arity
larger than α. A conformation foldable by Ξ is terminal if none of its elongations
is foldable by Ξ. The oritatami system Ξ is deterministic if for all i ≥ 0, there
exists at most one Ci+1 that satisfies (1). A deterministic oritatami system folds
into a unique terminal conformation. An oritatami system with the empty rule
set just folds into an arbitrary elongation of its seed nondeterministically. Thus,
the rule set is reasonably assumed non-empty.

In this paper, we considerably focus on the unary oritatami system. An ori-
tatami system is unary if it involves only one type of bead, say a, that is,
Σ = {a}. Its rule set is R = {(a, a)}. Its transcript is a sequence of a-beads so
that nothing can be hardcoded on it.

Proposition 1. For any rule set R, arity α and conformation C = (P,w,H) it
is possible to check whether C is R-valid and whether C ∈ C≤α in time O(|H| ·
|w| · |R|).
Proof. To check whether C is R-valid:

1. FOR each (i, j) ∈ H:
2. IF (w[i], w[j]) /∈ R THEN answer NO and HALT
3. answer YES and HALT.

https://www.dailymotion.com/video/x3cdj35
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Checking the condition in 2. can be done in O(|w| · |R|) time for any reasonable
representation of w and R, hence the whole process takes O(|H| · |w| · |R|) time.
To check the arity constraint C ∈ C≤α:

1. FOR each i ∈ {1, . . . , |w|}:
2. IF degree(i) = |{j|(i, j) ∈ H}| > α THEN answer NO and HALT
3. answer YES and HALT.

Checking the condition in 2. can be done in O(|H|) time for any reasonable
representation of H, hence the whole process takes O(|w| · |H|) time. �	
Theorem 1. There is an algorithm that simulates any deterministic oritatami
system Ξ = (Σ,R, δ, α, σ, w) in time 2O(δ) · |R| · |w|.
Proof. Take any step in the computation, up to which some i ≥ 0 first beads
of w have been stabilized, with the last bead at a point p. The number of all
possible elongations of the current conformation by the next δ-beads is (6 ×
5δ−1) × ((24)δ−1 × 25) ∈ 2O(δ). By Proposition 1, we can check for each of these
elongations whether its arity is at most α or not and whether it is R-valid or not
in time O((24)δ−1 · 25 · δ · |R|) = 2O(δ) · |R|. Therefore, the total running time is
2O(δ) · |R| · |w|. �	
Corollary 1. For fixed δ, the class of problems solvable by deterministic ori-
tatami systems (Σ,R, δ, α, σ, w) is included in DTIME(|w|3).
Proof. The claim follows from Theorem 1 and the fact that |R| is implicitly
bounded by |w|2. �	

Considering the following decision problem: given an oritatami system, inte-
ger i, and a point p, decides whether the bead w[i] is stabilized at p. By Corol-
lary 1, this problem is in P for a fixed delay δ. Because of the time hierarchy
theorems, we know that P � EXP (see, e.g., [1]), so we can conclude that
OS which cannot deterministically fold transcripts of length exponential in the
length of the seed are not computationally universal.

3 Quadratic Lower Bound for Delay 2, Arity 1

First we present a lower bound construction for arity 1 systems. At α = 1, hav-
ing delay δ = 2 allows the deterministic folding of quadratic length transcripts
compared with δ = 1, where, as stated before, the maximum length is linear in
the length of the seed. We demonstrate this with an infinite family of OS, which
fold deterministically a transcript of length (n−1)2

4 starting from a given seed of
length n.

Consider the following δ = 2, α = 1 system with bead types {0, 1, . . . , 8} and
attraction rules {(i, i) | 1 ≤ i ≤ 8}. Let the seed σ be a conformation of a 4k + 1
long bead sequence of the form (10205060)k/20 and (10205060)(k−1)/2(1020)0,
for k even and odd, respectively. Bead σ[i] of the seed is stabilized at point (i, 0),
for all 1 ≤ i ≤ 4k − 1. Bead 4k is at (4k − 1,−1) and bead 4k + 1 is at (4k, 0).



194 S. Z. Fazekas et al.

Fig. 3. Quadratic length transcript folding deterministically into pyramid shape. Seed:
thick black path. Transcript: thin blue path. Bonds: dashed red lines. (Color figure
online)

The transcript is w = row1 · · · row2k, where

– row1 = (24136857)(k−1)/2241 if k is odd, and row1 = (68572413)k/2−16857241
if k is even;

– rowi+1 = (rowi[2..|rowi|− 1])r for i ∈ {1, . . . , 2k − 1}, where wr is the reverse
of w. In other words, each row is the reverse of the previous without its first
and last bead.

The transcript above is written in rows which correspond to beads in the
conformation stabilized along the same row on the grid. To simplify the argu-
ment we will use row both for the transcript above and for the conformation it
stabilizes in (note that in the figure the row index grows from bottom to top).

Row 1 is of length 4k − 1 and row 	 + 1 is two beads shorter than row 	, so
the length of the whole transcript is |w| = 4k2 = (4k +1− 1)2

4 = (|σ| − 1)2

4 . As an
example, see Fig. 3, where k = 5, so the length of the seed is 4k + 1 = 21 and
the transcript is 4k2 = 100 beads long.

Stabilizing the first bead of a row goes by binding to the penultimate bead of
the previous row, as they are of the same type according to how we constructed
the transcript, and they have free hands (see Fig. 5).

As for the other beads, in rows j ≡ 1, 3 mod 4, beads of type 1, 2, 5, 6 bind
to a bead in row j − 1. In rows j ≡ 2, 4 mod 4 beads of type 3, 4, 7, 8 can bind
to a bead in row j − 1. This is true for row 1, because beads of type 1, 2, 5, 6
from row 1 can only bind to every second bead of the seed, whereas the other
beads of row 1 cannot bind to anything (Fig. 4, (c)). Once this dynamic holds
for a row, it holds inductively for the next, as a bead that binds to another loses
its only free hand at arity 1.
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Within one row of the transcript, no bead i can bind to a preceding bead,
because if there is a previous bead of the same type in that row, it is stabilized
at a distance of at least 6 from any point where i could be placed.

By the arguments above, the beads in row i of the transcript are stabilized
along row i on the grid, forming the pyramid-like conformation from Fig. 3.

(a) First transcript bead
(b) Second bead

(c) Portions of row 1

Fig. 4. Fixing transcript beads in first row, when k is odd

Fig. 5. Beads 4k, 8k − 2, . . . stabilize at turning points because the bead two positions
before is the same type and has a free hand.

4 Upper Bounds for Determinisitc Unary Oritatami
Systems at Delay 1 or Arity 1

In this section, we consider Problem 1 at delay 1 first and then at arity 1. Let
Ξ = (Σ,R, δ, α, σ, w) be a deterministic oritatami system of delay 1. For i ≥ 0
let Ci be the unique elongation of σ by w[1..i], that is, foldable by Ξ. Hence
C0 = σ.

At delay 1, a bead cannot collaborate with its successors in order to stabilize
itself. In fact, there are just two ways for a bead to get stabilized at delay 1
(or the bead has no place to be stabilized around so that the system halts), as
observed in [3]. One is to be bound to another bead and the other is through a 1-
in-1-out structure called the tunnel section. See Fig. 6. A tunnel section consists
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of one free point pc and four beads that occupy four neighbors of pc. In order
for an oritatami system to stabilize the bead w[i] at the central point pc, its
predecessor w[i − 1] must be put at one of the two free neighbors of p. Thus, at
the stabilization of w[i], only one neighbor of p is left free so that the successor
w[i + 1] is to be stabilized there, even without being bound. In this case, the
point pe where w[i−1] is stabilized is considered to be an entrance of the tunnel
section and the point ps where w[i + 1] is stabilized is considered as its exit. A
tunnel is a maximal set of tunnel sections whose central points form a path.

pcpe ps

Type S

pcpe

ps

Type O

pcpe

ps

Type A

Fig. 6. Tunnel sections of all possible three types: straight (Type S), obtuse turn (Type
O), and acute turn (Type A).

Fig. 7. A tunnel divides the world into two.

The behavior of an oritatami system at delay 1 can be described by a sequence
of S of b (bound), ts (straight tunnel section), to (obtuse-turn tunnel section),
and ta (acute-turn tunnel section); priority is given to tunnel, that is, S[i] is ts
(resp. to, ta) if the i-th bead of the system is stabilized not only by being bonded
but also through a straight (resp. obtuse-turn, acute-turn) tunnel section. Let
us introduce t as a wildcard for ts, to, and ta. We also let S take the value � for
halt (due to the lack of free neighbors).

We say that a neighbor of a point p is reachable from a conformation C if
there exists an elongation of C in which a bead occupies the neighbor and it
binds with a bead at p. For example, in Fig. 7, the transcript w is about to step
into a tunnel. The wall beads w[i − 	] and w[i − k] are both older than the bead
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at the entrance, w[i]. Even if w[i] leaves a free neighbor, the neighbor is not
reachable because the path of a conformation must be non-self-intersecting, and
its subpath between these two wall beads divides the plane into two regions, one
of which includes the entrance of the tunnel and the other of which includes the
exit (Jordan curve theorem [9]). Taking this reachability into account, we define
the binding capability of a conformation as the number of free bonds of its beads
available geometrically for elongations of C. It is defined formally as follows:

Definition 1 (Binding Capability). Let α be an arity and C = (P,w,H)
be a conformation of arity at most α. Let Hk = H ∩ {(i, j) | i = k or j = k}.
Moreover, let Rk be a set of neighbors of the point P [k] that are free and reachable
from C. The binding capability of C at arity α, denoted by #bcα(C), is defined
by

∑|w|
k=1 min{α − |Hk|, |Rk|}. The subscript α is omitted whenever it is clear

from context.

Observe one almost-trivial but important fact that a bead inside a tunnel does
not increase the binding capability. This is because for such a bead w[k], |Rk| = 0.

We now prove that in “almost all” tunnels is a troll domiciled and robs the
transcript of binding capability (the original story is from [11]). Originally, we
tried to find a troll in every tunnel but failed; a troll seems to dislike the very
first bead w[1], or its property that only α+1 beads around may take all hands of
w[1] thanks to the absence of its predecessor; any other bead must be surrounded
by at least α+2 beads in order to be free from free hand because a bead cannot
bind with its predecessor or successor. We call a bead singular if it is surrounded
by only α+1 beads but forms α bonds. No bead but w[1] can be singular because
of their predecessor and successor. A tunnel is singular if its entrance or exit is
next to w[1] that is singular. There can be at most 3 tunnels around one bead so
that no more than 3 tunnels can be singular. A singular tunnel will be denoted
with the superscript × like t×s or t×. In contrast, the notation without × such
as ts and t shall imply their non-singularity.

Theorem 2 (Tunnel Troll Theorem). Let Ξ be a deterministic unary ori-
tatami system of delay δ = 1. The following statements hold.

1. At arity α ≥ 3, if S[i] = t (i.e. the tunnel that stabilizes w[i] is not singular)
and S[i + 1] �= �, then #bc(Ci−1) > #bc(Ci).

2. At arity α = 2, if m is the number of occurrences of bt as a factor in S[1..k]
for an index k, then #bc(C0) − m ≥ #bc(Ck).

In order to prove this theorem, we use the following three lemmas.

Lemma 1. Let Ξ be a deterministic unary oritatami system at delay δ = 1 and
arity α = 2. Assume Ξ stabilizes the transcript until w[i− 1]. If S[i+1] = b and
S[i + 2] ∈ {ts, to}, then #bc(Ci−1) > #bc(Ci).

Proof. See Fig. 8. S[i + 2] ∈ {ts, to} means that w[i + 2] is stabilized by a tunnel
section of type S or O. Thus, its predecessor w[i + 1] must be inside the tunnel
section, that is, n1 and n2 must be occupied. Free bonds of w[i], if any, cannot
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be used in future by another bead w[j] because otherwise the part of transcript
w[i..j] and the bond between w[i] and w[j] would form a closed curve and the
curve would cross the path of Ci−1 between n1 and n2, contradiction. Therefore,
if w[i] forms a bond at its stabilization #bc(Ci−1) > #bc(Ci) holds. We now
prove that w[i] must form a bond.

Suppose w[i] were stabilized without any bond, that is, by a tunnel. For that
the two points that are a neighbor of both w[i − 1] and w[i] must be occupied
already. In addition, at least one of the neighbors of w[i] must be free because
S[i+1] = b. Thus, only the case to be considered is Fig. 8 (middle) with n5 being
occupied (that is, n4 is free). In this case, before w[i] is stabilized, at lest three
neighbors of n2 were free and hence, a bead at n2 was provided with one free
bond and could form a bond with w[i]. �	

w[i] w[i+ 1]

n1

n2

n3

n4

w[i] w[i+ 1]

n1

n2

n3

n4

n5

w[i] w[i+ 1]

n1

n2

n3

n4

n5

Fig. 8. The three ways to enter a tunnel: (Left) straight, (Middle) obtuse, (Right)
acute. The bead w[i] is stabilized at the entrance and w[i + 1] is stabilized inside.

w[j]

n1

n2

n3

n4

w[j − 1] w[j]
n0

n1

n2

n3

n4

w[j − 1]

Fig. 9. Two kinds of exit of a tunnel: (Left) Both n1 and n2 are free, (Right) One of
n1 and n2 is occupied.

Lemma 2. Let Ξ be a deterministic unary oritatami system of delay δ = 1 and
arity α = 2. If S[i + 1..j + 1] = bt(j−i−1)b for some i, j with i ≤ j − 2 and
S[j] ∈ {ts, to}, then #bc(Cj−2) ≥ #bc(Cj), and hence, #bc(Ci) ≥ #bc(Cj). If
i ≤ j − 3, then the second inequality is strengthened as #bc(Ci) > #bc(Cj).

Proof. Since the binding capability never increases inside a tunnel, we just need
to consider the exit of a tunnel. See Fig. 9. At least one of points n1 or n2 must
be free because otherwise w[j] would be inside of a tunnel, that is, S[j+1] would
not be b.

Let m be the number of bonds w[j − 1] forms, that is, #bc(Cj−2) −
#bc(Cj−1) = m. We claim #bc(Cj) − #bc(Cj−1) ≤ m. Indeed, if both n1 and
n2 are free (see Fig. 9), the predecessor w[j −1] must be bound to both beads at
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n3 and at n4 because both of them still have a free hand. Hence, m ≥ 2. Since
#bc(Cj) − #bc(Cj−1) is less than the arity, this difference is at most m.

If n1 is occupied, then n2 is free. The predecessor w[j − 1] must be bound
n4. Hence, m ≥ 1. The bead w[j] can increase the binding capability at most
by 1 because one of its free neighbors would, n0 or n2, is to be occupied by the
successor w[j + 1]. Therefore, #bc(Cj) − #bc(Cj−1) ≤ m.

Thus, #bc(Cj−2) ≥ #bc(Cj), and hence, #bc(Ci) ≥ #bc(Cj). If i ≤ j − 3,
then the second inequality is strengthened as #bc(Ci) > #bc(Cj) because S[i +
1] = b, that is, #bc(Ci) > #bc(Ci+1) and #bc(Ci+1) ≥ #bc(Cj). �	

w[i]

w[i+ 1]

w[i+ 2]

w[i]

w[i+ 1]

w[i+ 2]

w[i− 2]

Fig. 10. The bead w[i + 2] is stabilized by a tunnel of type A. (Right) Moreover
S[i] = ta.

Lemma 3. Let Ξ be a deterministic unary oritatami system of delay δ = 1 and
arity α = 2. If S[i + 2] = ta, the following statements hold.

1. If w[i] forms at least one bond, #bc(Ci−1) > #bc(Ci+2).
2. If w[i] does not consume any bond and S[i] ∈ {ts, to}, #bc(Ci−2) >

#bc(Ci+2).
3. If w[i] does not consume any bond and S[i] = ta, #bc(Ci−3)−2 ≥ #bc(Ci+2).

Proof. We consider each statement. First we prove Statement 1. The bead w[i+1]
consumes one hand and provides nothing. If w[i] forms two bonds, then even if
w[i + 2] provides two free hands, #bc(Ci−1) > #bc(Ci+2). On the other hand,
if it leaves a free hand, it will be used by w[i + 2], and hence, w[i + 2] does not
increase the binding capability. Thus, #bc(Ci−1) > #bc(Ci+2). This argument
actually work also for the case when w[i] is stabilized rather by binding.

Let us proceed to Statement 2. See Fig. 10. Consider the case when w[i] is
stabilized by a tunnel section of type S or O. As prove in Lemma2, #bc(Ci−2) ≥
#bc(Ci). The bead w[i] leaves two free hand, it will be used by w[i+2], and hence,
w[i+2] does not increase the binding capability. Thus, #bc(Ci−2) > #bc(Ci+2).
This argument actually work also for the case when w[i] is stabilized rather by
binding.

We finalize this proof by showing Statement 3. In order for w[i] not to bind,
w[i − 2] must have already used up its hands. The bead w[i − 1] consumes
one hand and provides nothing. Thus, #bc(Ci−3) − 1 ≥ #bc(Ci). The bead
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w[i + 1] consumes one hand and provides nothing. Finally, w[i + 2] uses one
hand of w[i], and hence, does not increase the binding capability. Therefore,
#bc(Ci−3) − 2 ≥ #bc(Ci+2). This argument actually works also for the case
when w[i] is stabilized rather by binding. �	

Now we are ready to prove the Tunnel Troll Theorem.

Proof. Let us first consider cases of δ ≥ 3, α = 1. See Fig. 9. Consider the
stabilization of w[i]. This bead w[i], once stabilized, shares two neighbors with
its predecessor w[i − 1], which are denoted by n3, n4. Both of them have been
already occupied because S[i] = t.

Since S[i + 1] �= �, at least one of the other three neighbors, denoted by
n0, n1, n2, must be free. Assume that in the neighborhood of w[i], there are two
beads with one free neighbor even after w[i] is stabilized. Before the stabilization
of w[i], such a bead had two free neighbors, and hence, is provided with at least
one free bond. Thus, w[i] is to be bonded to these two beads, and it decreases
the binding capability by at least 1. It now suffices to check that this assumption
holds no matter how n0, n1, n2 are occupied as long as at least one of them is
left free.

Next, we consider the case of δ = 2, α = 1. We assume there are indices i,
j such that S[i + 1..j + 1] = bt(j−i−1)b. If S[i + 2] is ts or to, then Lemma 1
implies #bc(Ci−1) > #bc(Ci) and Lemma 2 implies #bc(Ci) ≥ #bc(Cj). Thus,
binding capability decreases by 1 per a factor bts or bto.

Now, we assume S[i + 2] = ta. Then, we have to make sure that one troll is
not double-counted. If w[i] forms a bond, Lemmas 2 and 3 imply that binding
capability decreases through this tunnel.

Assume w[i] forms no bond. If S[i] ∈ {ts, to}, Lemmas 2 and 3 imply
#bc(Ci−2) > #bc(Ci+2). Observe that the bead w[i − 1] is at the entrance
of the previous tunnel or inside. It is when a bead is stabilized at the entrance
of a tunnel that the troll of the tunnel decreases binding capability. Thus, the
inequality does not rely on the troll of previous tunnel. If S[i] = ta, Lemma 3
implies #bc(Ci−3)− 2 ≥ #bc(Ci+2). This inequality involves two tunnels but its
difference 2 enables us to consider that binding capability decreases by 1 through
this tunnel. �	

4.1 Upper Bounds on the Length of Conformation Foldable
Deterministically at Delay δ = 1

Theorem 3 (δ = 1, α = 4). The terminal conformation of a deterministic
unary oritatami system of δ = 1, α = 4 is of length at most 3n2 + 3n + 1.

Proof. Consider the moment when a bead, say b, is stabilized outside �n
O for the

first time. The bead must be bound a bead at the periphery of �n
O as depicted

in Fig. 11. In order to avoid nondeterminism, the bead b must not be attracted
anyhow else by beads around.

The point p1 must be empty because a bead there would have at least two
free neighbors and hence is provided with a free hand. If there is a bead at p2,
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n must be at least 2 so that the bead is not singular. Since p1 is empty, this
bead has at least one free hand, a contradiction. Thus, p2 must be also empty.
In the same way, we can easily show that the point p3 must not be occupied by a
non-singular bead. Suppose p3 = O. The point p4 must not be empty; otherwise
the singular bead, at O, would have a free hand. However, then a bead at p4
would be provided with a free hand, a contradiction. �	

p1

p2

p3

p4

n

n+ 1

Fig. 11. The first bead out of �n
O

Theorem 4 (δ = 1, α = 3). The terminal conformation of a deterministic
unary oritatami system of δ = 1, α = 3 is of length at most 4n + 14.

Proof. In this proof, we shall verify the claim that when the bead w[i] is stabilized
with S[i] = b and S[i+1] �= �, if the circle of radius 2 centered at its predecessor
w[i−1] is free from the singular point, then w[i] must form at least 2 bonds. Recall
that the circle of radius 2 centered at the origin O, where the only candidate of
singularity is, consists of 19 points including O. In order for the bead at O to be
singular, its α+1 = 4 neighbors must be occupied. This means that there are at
most 14 points where a bead find a singular bead within 2 points. Therefore, the
claim, once proved, and the Tunnel Troll Theorem imply that all but at most
14 beads strictly decrease the binding capability. The binding capability of the
seed is at most 3n. Consequently, this theorem holds.

Now let us verify the claim. Suppose w[i] were stabilized by just one bond.
There are three cases to be considered as depicted in Fig. 12, depending on the
relative position of w[i] to w[i − 2] and w[i − 1]. Since S[i] = b, at least one
of the four neighbors of w[i − 1] must be empty. If n3 is free, then w[i − 2]
must have used up all of its hands; otherwise, w[i] would be stabilized also at
n3 nondeterministically, a contradiction. Thus, α + 2 = 5 neighbors of w[i − 2],
that is, all of its neighbors, must be occupied. Hence, n5 is occupied. (All the
remaining arguments are based on this “merry-go-round” occupation. This works
only if the circle of radius 2 around w[i − 1] is free from the singular bead). In
the same way, all the neighbors of n3 turned out to be occupied in the clockwise
order, but eventually, we would encounter a neighbor that is adjacent to also
the point where w[i] is supposed to go. Thus, n3 must be occupied (in the left
and middle cases). In the left case, n4 is symmetric to n3, and hence, it must
be occupied, too. Since S[i] = b, n1 or n2 must be free; assume n1 is. Going
clockwise around n1 implies that n−1 is occupied, but the bead at n1 has a free
hand and would cause a nondeterminism.
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Let us focus on the remaining cases: middle and right. Suppose that among
the 5 neighbors of w[i] at which w[i − 1] is not, only one can be occupied.
Otherwise, a bead without any hand is found at one of them, and staring from
the point, merry-go-round occupies all the neighbors, but then w[i + 1] would
lose its way to go. In the middle case, this means n0 is free. Since n−1 is free,
so must be n2. Repeating this, we get that both n4 and n5 are free, but then
w[i − 2] would have a free hand and a free neighbor, attract w[i], and cause a
nondeterminism. Even in the right case, the points n1, n0, n2, n4 turn out to be
free one after another likewise, but then w[i − 2] would have a free hand and
neighbor, a contradiction. �	

w[i−2]

w[i−1]

w[i]

n1

n2

n3

n4

n−1n5

w[i−2]

w[i−1]

w[i]

n0

n2

n3

n4

n−1

n5

w[i−2]

w[i−1]

w[i]

n0

n1

n2n4

n−1

Fig. 12. All possible directions of w[i]: straight, obtuse, acute.

p

n

n+ 1

n+ 2

w[i− 1]

w[i]w[i+ 1]

p

n

n+ 1

n+ 2

w[i− 1]

w[i] w[i+ 1]

Fig. 13. The moment when the transcript steps outside �n
O.

Theorem 5 (δ = 1, α = 2). A deterministic unary oritatami system of δ =
1, α = 2 can fold into an infinite conformation, but its transcript folds into the
zig-zag conformation (Fig. 2) after its (27n2 + 9n + 1)-th bead.

Proof. We assume w[i] is the first bead stabilized outside �n
O. See Fig. 13. The

next bead w[i+1] is to be bound for stabilization. Hence, it goes to the west or to
the east (Fig. 13). Once w[i + 2] is stabilized at p, the remaining transcript folds
into the zig-zag conformation. In order to avoid this or nondeterminism, w[i+2]
must form two bonds; it thus decreases binding capability by 1. Until when a
bead is stabilized outside �n+1

O , binding capability never increases because of
arity being 2 and of the Tunnel Troll Theorem. This means that, only at most
#bc(C0) ≤ 2n times we can thus expand that hexagonal region. In other words,
outside �3n

O the transcript cannot help but fold zig-zag. �	
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4.2 Quadratic Upper Bounds for Arity 1 and Delay 2 or 3

In this section we will argue that unary systems at arity 1 and delay 2 and 3,
respectively, cannot fold infinite transcripts deterministically. As we will see, in
fact, the length of transcripts deterministically foldable by these systems has
an upper bound quadratic in the length n of the seed. The main result is the
following theorem, which is a direct consequence of Lemmas 4 and 5 which follow.

Theorem 6 (δ ∈ {2, 3}, α = 1). The terminal conformation of a deterministic
unary oritatami system at arity α = 1 and delay δ ∈ {2, 3} is of length at most
3n2 + 4n + 2.

Fig. 14. �n
p and the position (1, 1) of

the first bead fixed outside of it.

Let us fix some common starting points
for Lemmas 4 and 5. Let the point where
the first transcript bead was fixed be p. We
will argue about the situation when the first
bead is stabilized outside �n

p (a hexagon of
radius n). Let this be the ith bead of the
transcript. Without loss of generality, we
can translate the origin (0, 0) to the coor-
dinates of bead i − 1 (which is still in �n

p ),
and we can assume that bead i is fixed at
(1, 1) (see Fig. 14).

Lemma 4 (δ = 2, α = 1). The terminal conformation of a deterministic unary
oritatami system of δ = 2 and α = 1 is of length at most 3n2 + 4n + 2.

Proof. In the elongation that places bead i at (1, 1) there are two possibilities.

– i forms a bond with a bead at (1, 0).
– i does not bond to anything and i + 1 is at (2, 1) bonding with a bead at

(2, 0). If there is no bead at (1, 0), then placing i at (1, 0) instead of (1, 1)
results in the same number of bonds, leading to nondeterminism. Therefore,
there has to be a bead at (1, 0) and it is inactive, otherwise it would bond to
i. This is analogous to case 1. below, with the only difference being that the
bond between (1, 1) and (1, 0) is missing.

Because of the above, we need only consider the case when i binds to a bead
at (1, 0). The next bead, i + 1, can be fixed at (2, 1) or at (0, 1) as all other
possibilities result in nondeterministic behavior immediately, so we have two
cases.

Case 1. bead i + 1 is fixed at (2, 1) and can bond with a bead at (2, 0) (see
Fig. 15). Now consider bead i+2. For i+1 to be fixed at (2, 1), i+2 needs to form
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a bond somewhere, otherwise i + 2 could go to (2, 1) forming the bond with the
bead at (2, 0) and there would be two conformations with the maximal 1 bond.
The only possibility is that there is a bead at (3, 0) and i + 2 can bond with
it when placed at (3, 1). We can apply the same argument inductively: there is
some m ≥ 0 such that grid points (	, 0) are occupied by beads with free hands,
for all 	 ∈ {2, . . . , 2 + m}, and there is no bead at (3 + m, 0). Such an m exists,
and it is not greater than n, because those beads are all stabilized along the
same side of �n

p . Then, bead i + 	 is fixed at (	 + 1, 1) and bonds with (	 + 1, 0).
However, bead i + 2 + m cannot be fixed anywhere, because i + 2 + m and
i+3+m can only add one bond to the conformation, and that is possible either
with i+2+m → (2+m, 1), i+3+m → (3+m, 1) or with i+2+m → (2+m, 2),
i + 3 + m → (2 + m, 1). Intuitively, when we reach a corner of the hexagon �n

p ,
the next bead of the transcript cannot deterministically stabilize, as depicted
in Fig. 15. In this case, the size of the transcript which was deterministically
stabilized is bounded by the size of �n

p plus the length of one side of �n+1
p , so

by (3n2 + 3n + 1) + (n + 1) = 3n2 + 4n + 2.

Fig. 15. When bead i + 2 + m is fixed

Case 2. bead i + 1 is fixed at (0, 1). This is only possible if
(a) there is an inactive bead at (−1, 0) and one with a free hand one at (−2, 0).
This case is symmetrical to (1). there is no bead at (−1, 0), bead i + 1 can bond
with bead i−1 at (0, 0) and the bead i+2 can be placed at (−1, 0) where it can
bond with (−2, 0), (−2,−1) or (−1,−1). This leads to nondeterminism, because
placing bead i at (−1, 0) and bead i + 1 at (0, 1) would yield two bonds, just as
the original conformation.
(b) there is a bead at (−1, 0) and bead i + 1 can bond with that or with bead
i − 1 at (0, 0). However, this means that placing bead i at (0, 1) at bead i + 1 at
(1, 1) creates the same number of hydrogen bonds, thus resulting in bead i not
being placed deterministically.

Case 2.(a) gives the same upper bound as case 1. Cases 2.(b)-(c) give the
smaller upper bound |�n

p | + 1, thereby concluding the proof. �	
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Fig. 16. When bead i + 1 is fixed at (0,1)

Lemma 5 (δ = 3, α = 1). The terminal conformation of a deterministic unary
oritatami system of δ = 3 and α = 1 is of length at most 3n2 + 4n + 2.

Proof. We will argue similarly to the δ = 2 case: when we stabilize beads outside�n
p , we can only do so at points right next to one of the sides and even there

only until we reach a corner. This yields the upper bound immediately.
As before, let us assume that the last bead stabilized within �n

p is at point
(0, 0) and the next bead is the first to be stabilized outside �n

p at point (1, 1).
Depending on whether bead i − 1 at point (0, 0) has a free hand to form a bond
or not, we distinguish two cases (similarly to Fig. 16).

Case 1. Bead i − 1 at (0, 0) has a free hand. If the most stable conformation
formed by beads i, i + 1, i + 2 adds only two bonds, it will be nondeterministic
because there are at least two possibilities (see Fig. 19, except it starts from (0, 0)
not (1, 1)). Therefore, it needs to make three new bonds to deterministically
stabilize i. There are five possible cases in which beads i, i + 1, i + 2 can add
three bonds, see Fig. 17. In the cases (b) and (e) in Fig. 17, there are beads
having a free hand at (1, 0) and (−1, 0) already stabilized before bead i − 1 is
fixed at (0, 0). One of these two beads may be a predecessor of bead i − 1, but
at least one of them is not. When bead i − 1 is fixed at (0, 0), it makes a bond
with the one of these two beads which is not its predecessor. This means that
it is impossible to have three beads at (−1, 0), (0, 0) and (1, 0), each with a free
hand, when bead i is fixed, and consequently, cases (b) and (e) in Fig. 17 cannot
occur. Case (d) in Fig. 17 becomes nondeterministic when bead i is fixed because
bead i can be fixed at (−1, 0) and bond with (−2, 0), bead i + 1 can be placed
(0, 1) and bond with (0, 0) and bead i + 2 can be placed (1, 1) and bond with
(0, 1). If it makes three bonds once, such as (a) and (c) in Fig. 17, it will need to
make three bonds forever to be deterministic. Similarly to case 1. in the previous
section, cases (a) and (c) in Fig. 17 lead to nondeterministism eventually, when
the transcript reaches a first corner of �n

p .

Case 2. Bead i − 1 at (0, 0) does not have a free hand.

(i) First, let us assume that there is a bead at (1, 0) which has a free hand.
If there is a bead at (1, 0) and beads i, i + 1, i + 2 add only two bonds, we
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(0, 0)

(1, 1)

(a)

(0, 0)

(1, 1)

(b)

(0, 0)

(1, 1)

(c)

(0, 0)

(1, 1)

(d)

(0, 0)

(1, 1)

(e)

Fig. 17. When beads i, i + 1, i + 2 make three hydrogen bonds (c) there is an inactive
bead at (−1, 0). (d) there is no bead at (−1, 0).

instantly get nondeterministism as in Fig. 18. Hence, beads i, i+1, i+2 need
to make three bonds to stabilize i, but if they make three hydrogen bonds,
the situation is analogous to (a) and (c) in Fig. 17.

(ii) Now consider when there is no bead at (1, 0) or there is one, but with no free
hand. Let us discuss the moment after bead i is fixed outside �n

p . Now bead
i has a free hand because it cannot bind to (1, 0). If beads i + 1, i + 2, i + 3
can form only two bonds, it will be nondeterministic because there are at
least two possible such conformations, as in Fig. 19. Hence, they need to
form three bonds to deterministically stabilize, such as in Fig. 20. Case (a)
in Fig. 20 becomes the same as case (a) in Fig. 17. Case (b) in Fig. 20 becomes
nondeterministic already when bead i is fixed because bead i could also be
fixed at (1, 0).

(0, 0)

(1, 1)

(1, 0) (0, 0)

(0, 1)

(1, 0)

Fig. 18. Two conformations when a
bead at (1, 0) has a free hand.

(1, 1) (1, 1)

Fig. 19. Two conformations when a
bead i at (1, 1) has a free hand

(0, 0)

(1, 1)

(a)

(0, 0)

(1, 1)

(b)

Fig. 20. When beads i + 1, i + 2, i + 3 make three hydrogen bonds (a) there is an
inactive bead at (1, 0). (b) there is no bead at (1, 0).

We have shown that at α = 1 and δ ∈ {2, 3}, unary oritatami systems
can only fold finite length transcripts deterministically, and the length of that
transcript is bounded by the size of the regular hexagon of radius n plus the
length of one side of the surrounding hexagon. This gives us the upper bound
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|�n
p | + (n + 1) = 3n2 + 4n + 2, where n is the length of the seed, concluding the

proof of Theorem6.

5 Conclusion

In this work, we have considered unary oritatami systems at δ = 1 or α = 1. As a
result, we found that a unary oritatami system does not have Turing universality
at δ = 1 and at δ ≤ 3, α = 1. This non-Turing universality was obtained by the
following results. One is that unary oritatami systems are not able to make any
infinite structures at δ = 2, 3, α = 1 and at δ = 1, α = 1, 3, 4 (Theorems 3, 4,
6 and due to [3]). The other is that a unary oritatami system can only produce
a single type of simple infinite structures, which is zigzag at δ = 1, α = 2
(Theorem 5).

The case of δ ≥ 4 and α = 1 remains an open problem. Our results should be
extended to non-unary oritatami systems, that is, characterization Turing uni-
versality of oritatami systems with respect to delay, arity or some other param-
eters such as the number of bead types.

Acknowledgements. We thank Yo-Sub Han for his valuable comments on the con-
tents of this paper.

References

1. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge
University Press, Cambridge (2009)

2. Cook, M.: Universality in elementary cellular automata. Complex Syst. 15, 1–40
(2004)

3. Demaine, E., et al.: Know when to fold ’Em: self-assembly of shapes by folding in
oritatami. In: Doty, D., Dietz, H. (eds.) DNA 2018. LNCS, vol. 11145, pp. 19–36.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00030-1 2

4. Elonen, A., et al.: Algorithmic design of 3D wireframes RNA polyhedral. DNA 24
poster (2018)

5. Geary, C.W., Andersen, E.S.: Design principles for single-stranded RNA origami
structures. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp.
1–19. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11295-4 1

6. Geary, C., Meunier, P.E., Schabanel, N., Seki, S.: Programming biomolecules that
fold greedily during transcription. In: Proceedings of MFCS 2016, LIPIcs, vol. 58,
pp. 43:1–43:14 (2016)

7. Geary, C., Meunier, P.E., Schabanel, N., Seki, S.: Proving the turing universality
of oritatami cotranscriptional folding. In: Proceedings of ISAAC 2018 (2018, in
press)

8. Geary, C., Rothemund, P.W.K., Andersen, E.S.: A single-stranded architecture
for cotranscriptional folding of RNA nanostructures. Science 345(6198), 799–804
(2014)

9. Hales, T.C.: The Jordan curve theorem, formally and informally. Am. Math. Mon.
114(10), 882–894 (2007)

10. Han, D., et al.: Single-stranded DNA and RNA origami. Science 358(6369), 1402
(2017)

11. Pratchett, T.: Troll Bridge. Pan Books, London (1992)

https://doi.org/10.1007/978-3-030-00030-1_2
https://doi.org/10.1007/978-3-319-11295-4_1

	On the Power of Oritatami Cotranscriptional Folding with Unary Bead Sequence
	1 Introduction
	2 Preliminaries
	3 Quadratic Lower Bound for Delay 2, Arity 1
	4 Upper Bounds for Determinisitc Unary Oritatami Systems at Delay 1 or Arity 1
	4.1 Upper Bounds on the Length of Conformation Foldable Deterministically at Delay = 1
	4.2 Quadratic Upper Bounds for Arity 1 and Delay 2 or 3

	5 Conclusion
	References




