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Preface

Theory and Applications of Models of Computation (TAMC) is a series of annual
conferences that aim to bring together a wide range of researchers with interest in
computational theory and its applications.

There is a need for models. Most scientists begin with either explicit or implicit
“word models” that describe their vision of how a system possibly works. The process
of turning a word model into a formal mathematical model invariably forces the
proponent to confront his or her hidden assumptions. The process ought to be sup-
ported by experimentation. Most of the experimental work tends to be preoccupied
with the myriad and mundane details that are so crucial to doing experiments and
analyzing data. Measurement is always an empirical procedure. Quantification is a kind
of theorizing. The relationship between quantification and measurement is a “feedback
loop.” It is true that the patterns of data thus formulated may suggest theories and/or
models. Ideally, models ought to be intermediate between theory and data. The dis-
tinction between theories and models is blurred. However, data do not impose them-
selves upon the research. “No data or missing data” are a widespread problem is several
disciplines of research. There are some theories or models that may have no link with
data. Theory then is nothing short of legitimized dreaming.

The solution for such problems is very difficult in computational approaches but is
dominant in domains of research such as biology and cognitive sciences. The quest is
for responsive and responsible theories and models of computation to address the
evolving complex and interdisciplinary dynamics of the problem domains.

The TAMC series of conferences have a strong interdisciplinary character, bringing
together researchers working in computer science, mathematics, and the physical sci-
ences with predominantly computational and computability theoretic focus. The most
important theoretical aspects of a model of computation are its power, generality,
simplicity, synthesizability, verifiability, and expressiveness. The TAMC series of
conferences explore the algorithmic foundations, computational methods, and com-
puting devices to meet the rapidly emerging challenges of complexity, scalability,
sustainability, and interoperability, with wide-ranging impacts on virtually every aspect
of human endeavor. The TAMC series is distinguished by an appreciation for math-
ematical depth, scientific—rather than heuristic—approaches and the integration
of theory and implementation. The quality of the conference has caught the attention of
professionals all over the world, who eagerly look forward to the TAMC series.

The main themes of TAMC 2019 were computability, computer science logic,
complexity, algorithms, models of computation, and systems theory. TAMC took place
in Japan after a gap of 8 years with special sessions on “Soft Computing and AI
Models.” TAMC 2011 was held in Tokyo, Japan. TAMC 2019 was organized in
association with the International Society of Management Engineers [ISME], Japan.



The review process was rigorous. There were at least two reviews for every paper.
The authors of the papers and the reviewers are from 36 countries reflecting the
international status of the TAMC series of conferences.

We are very grateful to the Program Committee of TAMC 2019 and the external
reviewers they called on, for the hard work and expertise that they brought to the
difficult selection process. We thank all those authors who submitted their work for our
consideration. We thank the members of the Editorial Board of Lecture Notes in
Computer Science and the editors at Springer for their encouragement and cooperation
throughout the preparation of this conference.

January 2019 T. V. Gopal
Junzo Watada
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Battery Scheduling Problem

Aakash Agrawal1, Krunal Shah1, Amit Kumar1(B), and Ranveer Chandra2
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Abstract. Different batteries have different desirable properties like
energy density, peak power, recharge time, longevity, efficiency, etc. So, it
is beneficial if we multiplex different types of batteries in a single device.
In this paper, we look at ways of scheduling workloads over the multi-
plexed batteries to maximize the overall efficiency. We consider two ways
to model the efficiency and give efficient solutions to the same.

Keywords: Software defined batteries · Battery scheduling

1 Introduction

Software defined batteries seek to leverage the desirable properties of various
types of batteries by multiplexing them. Different types of batteries have dif-
ferent desirable properties like energy density, cost, peak power, recharge time,
longevity, and efficiency. Using a single kind of battery means compromising on
other desirable features. Hence the hardware-software system, Software Defined
Battery (SDB) presented in the paper by Anirudh et al. [1] which allows inte-
grating the different desirable properties of different chemistries by dynamically
scheduling the charge flowing in and out of each battery presents itself as an
exceptional solution.

Software defined batteries can have a wide range of applications from laptops,
mobile phones to drones, etc. [3]. One of the key applications of software defined
batteries is battery driven vehicles [5]. In this paper, we initiate the study of the
manner in which batteries should be multiplexed given a fixed workload at every
point of time. In terms of battery-driven vehicles, this would mean that we are
told the speed of the vehicle at every point of time, and then we want to figure
out the optimal manner (in terms of energy) in which the batteries should be
utilized. In a different setting, we consider the problem where the path followed
by the vehicle is given to us, and we figure out the optimal usage of the batteries
which trade-off time taken for travel and energy consumption. This formulation
is motivated by the problem formulated in Energy-efficient algorithms for flow
time minimization [6].

c© Springer Nature Switzerland AG 2019
T. V. Gopal and J. Watada (Eds.): TAMC 2019, LNCS 11436, pp. 1–12, 2019.
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For both these problems, we design algorithms based on convex programming
relaxations. We show that optimal solutions have nice properties, which allow
us to solve these problems efficiently.

2 Preliminaries

We give the notation used in this paper, and then describe the problems con-
sidered. We are given n batteries B1, . . . , Bn. Each battery Bi has an internal
resistance ri which is assumed to be fixed throughout the lifespan of the battery.
Further, it has an initial charge capacity capi.

We consider two different problems. In the first problem, denoted
EnergyMinimization, we are given current requirements I1, . . . , IT for each
time t ∈ {1, . . . , T}. A solution to such an instance has to specify the current
from each of the batteries at each time step, i.e., quantities ij,t for all batteries
j = 1, . . . , n and time t = 1, . . . , T . These quantities should satisfy the following
conditions: (i) for each time t,

∑
j ij,t = It, and (ii) for all batteries Bj , the

total current drawn from Bj , i.e.,
∑

t ij,t should not exceed capj . The goal is to
minimize the total energy loss, i.e.,

T∑

t=1

n∑

j=1

i2j,t · ri

In the second problem, denoted EnergyTimeTradeoff, we are given m
ordered workload requirements1 W1, . . . ,Wm and their corresponding positive
weights α1, . . . , αm. As in the previous problem, a solution to such an instance
has to specify the current ij,t from each of the batteries Bj at each time step
t. Let the times t1, . . . , tm denote the time taken to complete the correspond-
ing workloads and let T =

∑m
k=1 tk. These m tasks are performed in the given

sequence. These quantities should satisfy conditions that for all batteries Bj , the
total current drawn from Bj , i.e.,

∑
t ij,t should not exceed capj . The goal is

to minimize a (weighted) sum of total energy consumed and the time taken to
finish each of the m tasks, i.e.,

∑

t

n∑

j=1

i2jt · rj +
m∑

k=1

αk · tk

We shall use W to denote
∑m

k=1 Wk and req to denote the effective resistance of
the batteries in parallel i.e. 1

req
=

∑n
j=1

1
rj

.
In both EnergyMinimization and EnergyTimeTradeoff, we take the domain

of current from (−∞,∞) because we consider a negative value of current at a
given instant for a battery to imply that the battery is being charged at that
instant by the current drawn from other batteries. This assumption of ours is
backed in the paper by Anirudh et al. [1] where they describe how one battery
can be used to charge another battery in Software Defined Batteries [1].
1 We will use the terms workload and charge interchangeably.
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2.1 Our Results

For the two problems, we give efficient algorithms for finding the optimal solu-
tions.

Theorem 1. For the EnergyMinimization problem, there is an optimal algo-
rithm with running time O(n log(n) + nm), where m is the length of the time
period.

Theorem 2. For the EnergyTimeTradeoff problem, there is an optimal algo-
rithm with running time O((n log(n) + nm) · log T · log(mW 2req

T 2 )).

We observe that we could state the problems as a convex program, but solving
a convex program in general can take much more time. We exploit the structure
of an optimal solution to get a much simpler algorithm for both the problems.

In Sect. 3, we describe our algorithm for the EnergyMinimization problem.
Subsequently in Sect. 4, we give the algorithm for the EnergyTimeTradeoff
problem.

3 Algorithm for EnergyMinimization

In this section, we describe the algorithm for the EnergyMinimization problem,
and subsequently show that it has the desired properties. Recall that an instance
I consists of n batteries and workload requirement It at each time step t. The
algorithm is given formally in Algorithm1. We define W to be the total charge
requirement, i.e.,

∑
t It. The algorithm consists of two parts. In the first part, it

figures out the total charge Cj which will be utilized by battery Bj , i.e.,
∑

t ij,t.
We know that for a current flowing through a set of resistances in parallel,
energy loss is minimized when the current through the resistors is distributed
proportional to the inverse of their resistance values. This gives us the intuition
for our greedy algorithm to assign Cj values to the batteries. We first try to
distribute the charge contribution to batteries in their inverse resistance ratios
but if a battery’s capacity falls short of this assignment we assign it’s contribution
as it’s capacity and then calculate the distribution of the remaining workload
for the remaining batteries. Once we know the quantities Cj , the algorithm
constructs ij,t in the second part of the algorithm. The formulation for the
ij,t values is obtained by solving the corresponding Lagrangian optimization
problem.

We now describe the first part of the algorithm in detail. We arrange the
batteries in increasing order of capj · rj values in Step 2. It iteratively finds
the Cj values of the batteries in this order. The algorithm maintains a quantity
R which is the total charge required from the batteries which have not been
considered so far. Initially, this quantity is W , the total charge requirement.
It also maintains a variable req which is the effective resistance (in parallel) of
batteries which have yet to be assigned Cj values. In Step 6, we find the smallest
indexed battery Bj in the set B for which the quantity capj · rj exceeds R · req.
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Now if this battery happens to be the first indexed battery in the B, we assign
Cj′ values to all remaining batteries in Step 8; otherwise we assign Cj′ values to
all batteries whose index j′ is less than j in Step 11. We iterate after updating
R, req,B suitably. In Step 17, we define the corresponding ij,t values.

Algorithm 1. Assignment algorithm
1: R ← W
2: B = {B1, B2, ....Bn}, where cap1 · r1 ≤ cap2 · r2 . . . capn · rn.
3: 1

req
=

∑
i

1
ri

4: while B is not empty do
5: Let j� be the smallest index of a battery in B
6: find the smallest index j such that Bj ∈ B and capj ≥ R·req

rj

7: if j = j� then
8: Cj′ =

R·req

rj′ ∀Bj′ ∈ B

9: B ← ∅.
10: else
11: Cj′ = capj′ ∀j′ ∈ {j�, j − 1}
12: R = R − ∑j−1

j′=j� Cj′

13: 1
req

= 1
req

− ∑j−1
j=j�

1
rj′

14: B = B − {Bj� , . . . , Bj−1}
15: Define 1

req
=

∑
i

1
ri

, 〈It〉 = W
T

16: for all batteries Bj and time t = 1, . . . T do

17: ij,t ← Cj

T
+

req

rj
(It − 〈It〉)

3.1 Analysis

In this section, we analyze our algorithm. The analysis again proceeds along two
steps. The first step shows that the computed Cj values are indeed same as the
corresponding quantities for an optimal solution. In the second step, we show
that the computed ij,t values minimize the total energy.

We consider an optimal solution O. Let iOj,t be the current drawn from battery
Bj at time t in this solution. Let CO

j be the total charge from the battery Bj ,
i.e., CO

j =
∑

t iOj,t. We begin with a characterization of the total charge used
from each battery. From here on the index of a battery represents its index in
the list of batteries sorted in increasing order of their capj · rj values.

Lemma 1. If there exist indices k, j such that CO
k ·rk < CO

j ·rj, then CO
k = capk.

Proof. The proof is by contradiction. So assume that there exist indices k, j such
that CO

k · rk < CO
j · rj , but CO

k < capk. Since CO
l =

∑
t iOl,t, it follows that there

exists a time t for which iOk,trk < iOj,trj . At this time t, the total energy consumed
by the these two batteries is given by

(iOk,t)
2 · rk + (iOj,t)

2 · rj
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Now consider modifying this solution by increasing iOk,t by ε and decreasing iOj,t
by ε, where ε is a small enough positive quantity. This can be done because
we have not consumed the entire charge of battery Bk. Also, the total current
requirement at time t does not change, and so, we still have a feasible solution.
But now, the total energy consumed by these two batteries at time t is given by

(iOk,t + ε)2rk + (iOj,t − ε)2rj = (iOk,t)
2rk + (iOj,t)

2rj + 2ε · (iOk,trk − iOj,trj

)

+ ε2 · (rk + rj)

< (iOk,t)
2rk + (iOj,t)

2rj

where the last inequality follows because iOk,trk < iOj,trj and we can always choose

0 < ε < min
(
capk −CO

k , 2 · iO
j,trj−iO

k,trk

rk+rj

)
. But this is a contradiction because we

have a new solution which consumes less energy than O. �

We now consider our algorithm. Recall that the jobs are ordered in ascending
order of capj · rj values. Let Cj denote the value computed by the algorithm
corresponding to battery Bj . Our first observation is that Cj · rj values are also
in ascending order.

Lemma 2. If k < j, then Ck · rk ≤ Cj · rj.

Proof. If batteries Bj and Bk were assigned Cj and Ck values in the same
iteration then we know that Ck · rk ≤ Cj · rj from Step 8 and Step 11 and the
fact that the batteries are sorted in ascending order of their cap · r values.

Let Rl, rl
eq denote the value of R and req at the beginning of iteration l, Sl

be the set of batteries removed in iteration l and Bl be the set of batteries yet
to be assigned C values before the start of iteration l. From the algorithm, we

can see that for any battery Bj , removed in lth iteration Cj ≤ Rl·rl
eq

rj
(from Step

6, 8 and 11). Using this we show that the value of Rl · rl
eq keeps on increasing

with iteration l.

Rl+1 · rl+1
eq =

(
Rl −

∑

Bp∈Sl

Cp

)
· rl+1

eq ≥
(
Rl −

∑

Bp∈Sl

Rl · rl
eq

rp

)
· rl+1

eq

= Rl · rl+1
eq ·

(
1 −

∑
Bp∈Sl( 1

rp
)

∑
Bq∈Bl( 1

rq
)

)

= Rl · rl+1
eq ·

(
∑

Bq∈Bl( 1
rq

) − ∑
Bp∈Sl( 1

rp
)

∑
Bq∈Bl( 1

rq
)

)

= Rl · rl+1
eq ·

(
∑

Bp∈Bl+1( 1
rp

)
∑

Bp∈Bl( 1
rp

)

)

= Rl · rl+1
eq ·

( rl
eq

rl+1
eq

)

= Rl · rl
eq
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Thus we know that the value of Rl ·rl
eq increases with iteration l. Now we observe

that since k < j, if Bj is assigned Cj at Step 11 then Bk must also be assigned
Ck at Step 11, hence Cj = capj =⇒ Ck = capk, in this case we know that
the lemma holds since the batteries are sorted in increasing capj · rj values. In
the other case, assume batteries Bj and Bk are removed from B in the jth and
kth(< j) iteration respectively, then Cj · rj = Rj · rj

eq ≥ Rk · rk
eq ≥ Ck · rk. �

We now show that the Cj values computed by our algorithm also satisfy the
conditions of Lemma1.

Lemma 3. Let C1, . . . , Cn be the quantities computed by Algorithm1. If there
exist indices k, j such that Ck · rk < Cj · rj, then Ck = capk.

Proof. We prove this by contradiction. Suppose Bk and Bj are two batteries for
which Ck · rk < Cj · rj , but Ck �= capk. Lemma 2 implies that k < j because if
j < k, then from Lemma 2, Ck · rk ≥ Cj · rj which violates our assumption. It
must be the case that battery Ck is assigned in Step 8 of Algorithm 1, otherwise
this quantity is equal to capk. Since j > k, battery Bj will also get assigned Cj

value in this step, and Cj · rj will be same as Ck · rk, a contradiction. �
We now show that the computed Cj values are feasible.

Lemma 4. Assuming
∑

j capj ≥ W , the computed values Cj satisfy the prop-
erty that

∑
j Cj = W . Further, Cj ≤ capj for all batteries Bj.

Proof. We first need to show that the algorithm will always find a job j in Step 6.
This follows from the following invariant: if B is the set of batteries as defined in
the algorithm at some time t, and R is the remaining workload at this time, then∑

Bj∈B capj ≥ R. This is true at the beginning by assumption. Suppose it is
also true at some time, and the algorithm executes Step 11. Then both LHS and
RHS in the above invariant decrease by the same quantity, and so the invariant
continues to hold. When it executes Step 8, the total Cj values of batteries in
B is equal to R, and so, the invariant now holds because both sides are 0.

So we can assume that the invariant holds at all times. Now, if no such
battery Bj is found in Step 6, then it implies that for all Bj ∈ B, capj <

R·req

rj
.

Adding these, we see that
∑

Bj∈B capj < R, which is a violation of the invariant.
Having shown this, we now show that

∑
j Cj is equal to W . The proof again

uses the same arguments as above. We consider two quantities at any time t
during the algorithm Δ(t) is defined as the remaining workload R at this time,
and Λ(t) is defined as

∑
j∈B Cj , where B is the remaining set batteries at time

t. Note that in each iteration of the while loop in Step 4, the algorithm either
executes Step 11 or Step 8. When it executes Step 8, it comes out of the while
loop. Whenever it executes Step 11, the quantities Δ(t) and Λ(t) reduce by the
same quantities. Now consider the final iteration when it executes Step 8. Let
R be the value of Δ(t) at this time. Then the total charge assigned to all the
batteries in B is equal to R as well. This proves the lemma.

The final statement follows similarly. We just need to check Step 8. In this
step, the Cj assigned to any battery Bj is at most capj by the condition leading
to this step. �
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Finally, we show that the Cj values match the CO
j values.

Theorem 3. For each battery Bj, CO
j = Cj.

Proof. Suppose the statement is not true. Since
∑

j CO
j = W and Lemma 4

shows that
∑

j Cj = W as well, it follows that there are batteries Bj and Bk

such that CO
j < Cj , but CO

k > Ck. Now consider several cases:

– Cj · rj ≤ Ck · rk: Observe that CO
j · rj < Cj · rj ≤ Ck · rk < CO

k · rk. Lemma 1
now implies that CO

j = capj . But then Cj > capj , which is not possible (by
Lemma 4).

– Cj · rj > Ck · rk: Lemma 3 implies that Ck = capk, and so, CO
k > capk, again

a contradiction.

This proves the desired result. �

This shows the correctness of the first part of algorithm. Now, we come to
the assignment of ij,t values.

Note that ij,t values must be an optimal solution to the following convex
program:

min .

T∑

t=1

n∑

j=1

i2j,t · rj

n∑

j=1

ij,t = It ∀t (1)

T∑

t=1

ij,t = Cj ∀j (2)

We write the Lagrangian function for the above convex program as follows:

L(ij,t, λt, μj) =
∑

t

∑

j

i2j,trj −
∑

t

[λt(
∑

j

ij,t − It)] −
∑

j

[μj(
∑

t

ij,t − Cj)]

For each battery Bj and time t, we get

∂L

∂ij,t
= 2ijtrj − λt − μj = 0,

which implies that

ij,t =
λt + μj

2rj
(3)

Combining the above with Eqs. (1) and (2), we see that

ij,t =
Cj

T
+

req

rj
(It − 〈It〉),
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where 〈It〉 =
∑

t It

T = W
T . Combining with Theorem3, this proves the correct-

ness of our algorithm.
We observe that the current ij,t above can be negative which means that the

battery Bj should be charged with the current ij,t during time t. Further by
our formulation we see that the battery can be charged from the current drawn
from any of the remaining batteries which supply current in that time interval.

Finally, we consider the time complexity of the algorithm. Our algorithm
takes the O(n log(n)) time for preprocessing and since we have a closed form
solution for the current assignment for a given battery at a given time instant,
the time complexity for calculating m · n current assignment values becomes
O(n log(n) + nm).

4 Algorithm for EnergyTimeTradeoff

In this section, we describe the algorithm for the EnergyTimeTradeoff problem,
and subsequently show that it has the desired properties. Recall that an instance
I consists of n batteries and m workloads Wk for k ∈ {1, . . . m} along with
their corresponding weights αk, and these have to be finished in this order. The
algorithm is given formally in Algorithm2.

The algorithm uses a parameter T , which is the total time needed to finish all
the m tasks. We assume that the algorithm knows this parameter, because it can
perform binary search like procedure on it – details are given later. In Step 1, it
computes a parameter λ which satisfies the given equation – this parameter will
turn out to be a Lagrange variable of a suitable convex program. Note that the
LHS of this equation is monotone with respect to λ, and so given T , we can find
λ (to desired accuracy) by binary search. In Step 3, we find the time ti spent on
each of the tasks Wi. For each of the tasks Wi, we shall show that the current
requirement while performing it will remain constant, i.e, Wi/ti. This gives us
the total current requirement It at each time step. We now invoke Algorithm 1
to find the ij,t values.

Algorithm 2. Algorithm to find ij,t values for the EnergyTimeTradeoff prob-
lem, given parameter T .
1: Find λ which satisfies
2:

∑
k Wk ·

√
req

αk+λ
= T

3: Initialize t ← 0.
4: for k = 1, . . . , m do

5: tk ← Wk ·
√

req

αk+λ

6: for t′ = t, . . . , t + tk do
7: It′ ← Wk

tk
.

8: t ← t + tk.

9: Invoke Algorithm 1 with the It values to compute ij,t values.
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4.1 Analysis

In this section, we analyze our algorithm. We first show that the current supplied
by a battery while performing a task Wk remains fixed.

Lemma 5. In an optimal solution, the current supplied by a given battery during
a workload Wk remains fixed.

Proof. The proof is by contradiction. Consider an optimal solution which uses
ij,t current from battery Bj at time t. By assumption, there exists a battery
Bl, workload Wk and times t and t′ during the processing of this workload such
that il,t �= il.t′ . As in the proof of Lemma1, one can check that incrementing
one current by ε and decrementing another by ε strictly reduces the energy
requirement, and the time taken for completing Wk remains unchanged. This
leads to a contradiction. �

Let tOk be the time spent by an optimal solution on workload Wk. The above
Lemma shows that the total current requirement at any time during this work-
load would be Wk

tO
k

. Give this total current requirement at each time t, the optimal
values of ij,t can be computed using Algorithm 1. Therefore, it suffices to show
that the quantities tk computed by Algorithm 2 are equal to tOk .

Lemma 6. Let T denote the total time taken by an optimal solution. Using this
value of T , the computed tk values by Algorithm2 are equal to the time taken by
the optimal algorithm on the corresponding workload.

Proof. Given the values tk, the analysis of Algorithm 1 shows that the ij,t value

for any time t during workload Wk is given by Cj

T + req

rj

(
Wk

tk
− W

T

)
, where Cj is

the quantity computed by Algorithm1 (note that Cj values do not depend on
the tk values, and are dependent on the total workload only).

Therefore, optimal tk values are given by the solution to the following convex
program:

min
m∑

k=1

n∑

j=1

(
Cj

T
+

req

rj

(Wk

tk
− W

T

)
)2

rjtk +
m∑

k=1

αktk (4)

subject to
m∑

k=1

tk = T

Note that we have not explicitly added the constraint tk ≥ 0 – it will so happen
that the optimal solution above will have this property.

Let λ be the Lagrange variable for the equality constraint above. Solving the
above convex program yields the following solution:

tk =
√

req

αk + λ
Wk ∀k = 1, . . . ,m (5)
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From the constraint
∑m

k=1 tk = T , we get

T =
m∑

k=0

(√ req

αk + λ
Wk

)
(6)

We see that in the above equation, we can do a binary search to find the value
of λ because the RHS is a monotonic function in λ (as in Step 1 of Algorithm 2).
We find upper and lower bounds on λ to show that binary search needs to search
in a small range only. Observe that

λ > −min
k

αk (7)

Also by Cauchy-Schwarz,
√

∑
k

W 2
k req

αk+λ

m
≥

∑

k

Wk

m

√
req

αk + λ
=

T

m

Therefore, we get

λ ≤ req
m

∑
k W 2

k

T 2
− min

k
αk (8)

Thus, the time to perform binary search depends on log
(
req

m
∑

k W 2
k

T 2

)
. �

Finally, we show how to search for T .

Lemma 7. We can find the optimal value of T using Golden section search.

Proof. The objective function of the convex program is given by

m∑

k=1

n∑

j=1

(
Cj

T
+

req

rj

(Wk

tk
− W

T

)
)2

rjtk +
m∑

k=1

αktk (9)

We shall show that the first term decreases as T increases, whereas the second
term increases as T increases. Therefore the objective function is a unimodal
function of T (i.e., in decreases with T , at some point reaches a minimum values,
and then increases). The golden section search method can be used to find the
optimal solution (to a desired accuracy) for any unimodal function [2].

From Eq. 6 we can see that on increasing T the value of λ decreases and
from Eq. 5 on decreasing λ the tk values increase. Hence the second term of the
objective function increases with increasing T .

To show that the first term in the objective function decreases as T increases,
we first observe that the first term of the objective function represents the total
energy loss. Consider the optimal solution for some value of T , now when we
increase the value of T to some T ′, let us construct a solution for T ′ such that
the value of the second term for our solution is the same as the value of the
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second term for the optimal solution for T ′. We know the tk values for the
optimal solution for T ′ from Eqs. 5 and 6 and we know that they increase on
increasing T . Now, we construct a solution where we scale the current iTj,k for
any battery j in a given workload k by tTk /tT

′
k (< 1) where tTk and tT

′
k represent

the tk values for the optimal solutions to T and T ′ respectively. The energy loss
for our constructed solution for battery Bj in workload k would be:

(
iTj,k · tTk

tT
′

k

)2

tT
′

k · rj =
(
iTj,k

)2

· tTk · rj

(
tTk
tT

′
k

)

≤
(
iTj,k

)2

· tTk · rj

We can see that the energy loss during workload k of the battery Bj decreases
without changing the charge supplied by the battery Bj in the workload, hence
our constructed solution is a valid solution. Now, since the optimal solution for
T ′ would only be better, we conclude that with increasing T , the value of the first
term in the objective function decreases in the corresponding optimal solution.

�

5 Conclusion

In this paper, we considered two different formulations for the problem of
scheduling current from multiplexed batteries. In the first formulation, we con-
sidered the case where we are given the workload requirement at every point of
time and the objective is to minimize the total energy loss. For this formulation
we introduced an algorithm to calculate the overall contribution of every battery
in any optimal solution and showed that using these values, the resulting convex
program was solvable using Lagrange Optimization and resulted in a closed form
solution.

In the second formulation, we considered the case when we are given a series
of workloads and the objective is to minimize the weighted sum of the total
energy loss and the time taken to complete each workload. We were able to
reduce this problem to the first one by introducing new parameters whose value
was search-able using search algorithms.

We have only looked at the case when the internal resistance of the batteries is
constant, for future work - one can analyze the case where the internal resistance
depends on the charge present inside the battery or consider different objective
functions which deal with other factors like the longevity of the batteries.
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Abstract. In this paper, we consider the computation of the volume
of an n-dimensional crosspolytope truncated by a halfspace. Since a
crosspolytope has exponentially many facets, we cannot efficiently com-
pute the volume by dividing the truncated crosspolytope into simplices.
We show an O(n6) time algorithm for the computation of the volume.
This makes a contrast to the 0−1 knapsack polytope, whose volume is
#P -hard to compute. The paper is interested in the computation of the
volume of the truncated crosspolytope because we conjecture the follow-
ing question may have an affirmative answer: Does the existence of a
polynomial time algorithm for the computation of the volume of a poly-
tope K imply the same for K’s geometric dual? We give one example
where the answer is yes.

Keywords: Polynomial time algorithm · Volume computation ·
Geometric duality

1 Introduction

The computation of the volume of an n-dimensional polytope can be a hard
problem, even for some simple cases. For example, the followings are some results
about the hardness of computing the volume of polytopes.

– Dyer and Frieze [9] showed that computing the volume of a 0−1 knapsack
polytope is #P -hard. A 0−1 knapsack polytope is the intersection of a unit
hypercube and a halfspace {x ∈ R

n|a · x ≤ b}, where a ∈ Z
n
+.

– Khachiyan [12,13] showed that computing the volume of the dual of a 0−1
knapsack polytope is #P -hard. The dual of a 0−1 knapsack polytope is the
convex hull of a crosspolytope conv({±e1, . . . ,±en}) and a point a ∈ Z

n
+.

– Dyer et al. [8] showed that computing the volume of a Zonotope is #P -hard.
Given m vectors a1, . . . ,am ∈ Z

n (m ≥ n), a Zonotope is a polytope given
by the Minkowski sum of line segments given by a1, . . . ,am.

– Ando and Kijima [4] showed that computing the volume of the intersection
of two crosspolytopes is #P -hard.
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If we consider the general convex body K in n-dimensional space, which can
be accessed only by its membership oracle, any polynomial time deterministic
algorithm cannot compute the volume of K. In fact, no polynomial time deter-
ministic algorithm can achieve an exponentially large approximation ratio for
Vol(K) [5,10].

Interestingly, these volumes can be approximated by some randomized algo-
rithms. As for the problem of computing the volume of the general convex
body K, there are fully polynomial time randomized approximation schemes
(FPRAS) [6,7,15].

Recent results show that some of #P -hard volume actually yield determin-
istic FPTASes (Fully Polynomial Time Approximation Schemes). We here list
up some results about the results.

– Lee and Shi [14] showed an FPTAS for the sum distribution of discrete random
variables, which can be used to approximate the volume of the 0−1 knapsack
polytope. Their algorithm are based on the dynamic programming idea due
to Štefankovič et al. [11,17].

– Ando and Kijima [3] showed an FPTAS for the volume of a truncated hyper-
cube by a constant number of halfspace (see also [1]).

– Ando and Kijima [2] showed that there is an FPTAS for the volume of the
dual of a 0−1 knapsack polytope. In the proof, they also showed an FPTAS
for the volume of the intersection of two crosspolytopes.

Since there are FPTASes for computing the volume of the knapsack poly-
tope and its dual, the following question arises: If we know the existence of a
deterministic polynomial time (approximation or exact) algorithm for comput-
ing the volume of a polytope K, is there always a deterministic polynomial time
algorithm for computing the volume of the geometric dual of K?

In order to find out a way to answer this question, we consider how we can
efficiently compute the volume of the geometric dual of polytopes.

The simplest example is a simplex. Let S = conv({a0,a1, . . . ,an}). Since the
geometric dual of a simplex S is another simplex S∗, we can efficiently compute
both Vol(S) and Vol(S∗).

As another example, we consider a convex hull of a hypercube and a point
a ∈ R

n. Then, its dual is a crosspolytope truncated by a halfspace, i.e., the
intersection of a crosspolytope and a halfspace {x ∈ R

n|a · x ≤ b} for a ∈ R
n

and b ∈ R. The volume of the former can easily be confirmed to have a polynomial
time exact algorithm. That is, we can divide the polytope into a hypercube and
at most n “pyramids” each of whose bottom is a hypercube facet visible from a
and whose peak is a. This algorithm finishes in linear time. Thus, our interest is
in whether there exists a polynomial time algorithm for the volume of the latter.
We prove this in the main part of this paper.

In this paper, we show the following theorem.

Theorem 1. Given a ∈ R
n and b ∈ R, there exists an O(n6) time deterministic

algorithm for computing the volume of the intersection of a crosspolytope and a
halfspace {x ∈ R

n|a · x ≤ b}.
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The tricky part of the problem is that a crosspolytope has 2n facets. We cannot
efficiently compute the volume by dividing the truncated crosspolytope into sim-
plices. In order to avoid exponential computational time, though our algorithm
is deterministic, we use some probability arguments in the proof. We show that
the volume can be given by a multiple integral using a kind of step function.
Then, we compute the multiple integral symbolically.

The paper is organized as follows. In Sect. 2, we show that computing the
volume of a convex hull of a hypercube and a point can be done in O(n) time.
In Sect. 3, we show the polynomial time algorithm for the volume of a truncated
crosspolytope. We conclude the paper in Sect. 4.

2 The Volume of the Convex Hull of a Hypercube
and a Point

In this section, we consider the running time for computing the volume of the
convex hull of a hypercube [−1/2, 1/2]n and a point a ∈ R

n.
Our algorithm is the following. For each facet F of the hypercube, we decide

whether or not F is visible from a. To do this, let f be the normal of F directed
to the outside of the hypercube. Then, we have the following observation.

Observation 1. F is visible from a if and only if a · f > 1/2.

We compute the volume of the pyramid whose bottom is F and whose peak is
a. This pyramid has bottom area (i.e., n − 1 dimensional volume of F ) 1 and
height a · f − 1/2. Thus, the volume of the pyramid is (a · f − 1/2)/n. In the
following algorithm, we keep in mind the following points: (1) If F is visible from
a, then the opposite facet F ′ is not visible from a; (2) Since the normal of F is
one of ±e1, . . . ,±en, we have that a · f is one of ±a1, . . . ,±an.

Algorithm 1. Input: Vector a = (a1, . . . , an) ∈ R
n.

1. V ← 0;
2. For i = 1, . . . , n do
3. If |ai| ≥ 1/2 then
4. V ← V + (|ai| − 1/2)/n;
5. done;
6. Output V + 1.

Now, we have the following proposition.

Proposition 1. Given a ∈ R
n, the volume of conv([−1/2, 1/2]n ∪ {a}) can be

computed in O(n) time.

3 The Volume of a Crosspolytope Truncated
by a Halfspace

In this section, we prove Theorem 1. We first show the basic definitions in
Sect. 3.1. After that, we show our algorithm in Sect. 3.2.
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3.1 Basic Definitions

Let C(0, 1) be a unit crosspolytope centered at 0. That is,

C(0, 1) def= conv({±e1, . . . ,±en}) =

⎧
⎨

⎩
x ∈ R

n

∣
∣
∣
∣
∣
∣
||x||1 =

∑

i=1,...,n

|xi| ≤ 1

⎫
⎬

⎭
,

where ei (i = 1, . . . , n) is the vector whose i-th component is 1 and the other
components are all 0.

For a ∈ R
n and b ∈ R, we define CT (a, b) as a crosspolytope truncated by a

halfspace

CT (a, b) def= C(0, 1) ∩ {x ∈ R
n|a · x ≤ b}.

We are going to compute the volume of CT (a, b). Without loss of generality, we
assume that a ∈ R

n
+.

The following definition of the geometric duality is in [16].

Definition 1. For a point set K ⊆ R
n, the dual set K∗ of K is

K∗ def= {y ∈ R
n|x · y ≤ 1 for all x ∈ K}. (1)

A vertex of K corresponds to a halfspace that gives a facet of K∗. For example,
the hypercube [−1, 1]n and the crosspolytope C(0, 1) are geometric dual to each
other. The vertex 1 = (1, 1, . . . , 1) of the hypercube [−1, 1]n corresponds to a
halfspace {x ∈ R

n|1 · x ≤ 1}, which gives a facet of the crosspolytope C(0, 1).
We have the following proposition.

Proposition 2. For a ∈ R
n
+ and b ∈ R+, CT (a, b) is the geometric dual of

conv([−1, 1]n ∪ {a/b}).

Since computing the volume of conv([−1, 1]n ∪ {a/b}) can be finished in O(n)
time, we are interested in whether there is a polynomial time algorithm for
computing the volume of CT (a, b). In the following, we assume that b ∈ R since
our algorithm has no difficulty in dealing with the case where b ≤ 0.

Let f(x) be the density function of a uniform random variable in [−1, 1].
That is,

f(x) =

{
1/2 −1 ≤ x ≤ 1
0 otherwise.

(2)

We use the following step function H(x).

H(x) =

⎧
⎪⎨

⎪⎩

0 x < 0
1/2 x = 0
1 x > 0
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Intuitively, H(x) is a probability distribution function of a normal distribution
whose mean is 0 and whose variance is arbitrarily close to 0. We use H(x) for
writing the functions including breakpoints concisely. By ignoring the values at
x = ±1, we use H(x + 1)H(1 − x)/2 instead of the above definition of f(x).

We note that, like the example above, we may have some wrong values at the
breakpoints (i.e., x = ±1 for f(x)) when we use the step function description
(e.g., H(x+1)H(1−x)/2) instead of the casewise description (e.g., (2)). However,
since the breakpoints are limited to the points where some of the step function’s
arguments are 0, we nevertheless use the step function description. We define
the following ‘equality almost everywhere’.

Definition 2. Let F (x) and G(x) be two piecewise polynomial functions. If
F (x) = G(x) for x ∈ R \ I where I ⊆ R satisfies

∫

x∈I
1dx = 0, then we write

F (x) a.e.= G(x). (3)

If F (x) a.e.= G(x), we say F (x) and G(x) are equal almost everywhere.

Thus, for f(x) defined by (2), we have f(x) a.e.= H(x + 1)H(1 − x)/2.
Let F (x) a.e.= G(x). In case c ∈ I and F (x) is continuous, we have that

F (c) = limε→0 G(c−ε). For the function of two variables, we similarly define the
equality almost everywhere as follows:

Definition 3. Let F (x, y) and G(x, y) be two piecewise polynomial functions. If
F (x, y) = G(x, y) for (x, y) ∈ R \ I where I ⊆ R

2 satisfies
∫∫

(x,y)∈I
1dxdy = 0,

then we write

F (x, y) a.e.= G(x, y). (4)

In case (c, d) ∈ I and F (x, y) is continuous, we have

F (x, y) = lim
ε1→0

lim
ε2→0

G(c − ε1a, d − ε2b) (5)

for some a, b ∈ R. In case we have the complete and finite description of G(x, y),
we can choose a and b where (5) converges to one value, and where there is no
breakpoint in between (a, b) and (c, d). This is because the measure of I is 0 and
I is given by a finite number of linear formulas.

In addition, the following definition allows us to argue how many memory
bits we need to store a piecewise polynomial function.

Definition 4. A piece I of a piecewise polynomial function F (x) is a continuous
interval where there exists a polynomial function G(x) satisfying all the following
conditions:

1.
∫

x∈I
1dx > 0;

2. there exists z ∈ I such that F (z) = G(z);
3. x ∈ I if and only if F (y) = G(y) for all y such that y ∈ [x, z] ∪ [z, x].
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3.2 Our Algorithm

In the following, we show how we can compute Vol(CT (a, b)). Through the
argument of probability, we first show that Vol(CT (a, b)) can be described by
a multiple integral. Then, we prove that the running time of computing the
multiple integral is bounded by a polynomial in n.

We note that a naive approach is not efficient for computing the volume of
CT (a, b). Since C(0, 1) has 2n facets, CT (a, b) may have exponentially many
facets. If we divide CT (a, b) into simplices, we get exponentially many sim-
plices. Therefore, it takes exponentially long time to sum up the volume of those
simplices.

Instead, we can compute the volume of CT (a, b) efficiently by introducing
probability. Let X be a uniform random vector in [−1, 1]n. Then,

Vol(CT (a, b)) = 2n Pr[||X||1 ≤ 1 ∧ a · X ≤ b].

To give the multiple integral expression of Vol(CT (a, b)), we define that

Φ0(u, v) = Pr[0 ≤ u ∧ 0 ≤ t] a.e.= H(u)H(v).

Let X = (X1, . . . , Xn) and a = (a1, . . . , an). We define Φi(u, v) as a function
given by

Φi(u, v) = 2i Pr[|X1| + · · · + |Xi| ≤ u ∧ a1X1 + · · · + aiXi ≤ v]

= 2i

∫

xi∈[−1,1]

Pr

⎡

⎣
i−1∑

j=1

|Xj |+|xi| ≤ u ∧
i−1∑

j=1

ajXj +aixi ≤ v

∣
∣
∣
∣
∣
∣
Xi =xi

⎤

⎦dxi

= 2i

∫

xi∈R

Pr

⎡

⎣
i−1∑

j=1

|Xj | + |xi| ≤ u ∧
i−1∑

j=1

ajXj + aixi ≤ v

⎤

⎦ f(xi)dxi

= 2
∫

xi∈R

Φi−1(u − |xi|, v − aixi)f(xi)dxi, (6)

where f(x) a.e.= H(x + 1)H(1 − x)/2. Then, we have that Φn(1, b) =
Vol(CT (a, b)). By the form of (6), we do not need the value of Φi(u, v) for
u > 1 to compute the value of Φn(1, b). In our algorithm, we compute (6) for
u ≤ 1.

In the following, we prove Theorem1, that is, Φn(1, b) can be computed in
polynomial time. We first show that Φi(u, v) for any fixed u ≤ 1 is a piecewise
polynomial function with degree at most i, and that the number of pieces of
Φi(u, v) is at most 2n + 1. This allows us to process the integral in polynomial
time, which implies Theorem 1. The following proposition is important for our
proof.

Proposition 3. Given a ∈ R
n
+, let K be a convex polytope given by K =

conv({v1, . . . ,vN}), where v1, . . . ,vN ∈ R
n and a · v1 ≤ a · v2 ≤ · · · ≤ a · vN .

Let FK(a, b) be given by

FK(a, b) = Vol({x ∈ K|a · x ≤ b}). (7)
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Then, we have that

1. FK(a, b) is a piecewise polynomial function of b with degree at most n;
2. there are at most N + 1 pieces of FK(a, b) for any fixed a;
3. the pieces of FK(a, b) for fixed a are given by (−∞,a · v1], [a · vN ,+∞) and

[a · vi,a · vi+1] for i = 1, . . . , N .

Proof. Without loss of generality, we assume that a · vh ≤ a · vh+1 for h =
1, . . . , N −1. We prove this proposition by showing how we can compute FK(a, b)
as a polynomial function GK(a, b) of b when a ·vh ≤ b ≤ a ·vh+1. After that, for
b′ ≥ b, we show that GK(a, b′) = FK(a, b′) as long as a · vh ≤ b ≤ b′ < a · vh+1.
In case a · vh ≤ b < a · vh+1 ≤ b′′, we show that GK(a, b′′) may not be equal to
FK(a, b′′), which shows the second claim of the proposition.

Let K ′(b) be the polytope given by K ′(b) = {x ∈ K|a · x ≤ b}, so that
FK(a, b) = Vol(K ′(b)). Fixing the value of b, consider dividing K ′(b) into M
simplices S1, . . . , SM .1 This is called triangulation (see e.g., [16]). Especially, we
assume a triangulation such that all vertices of S1, . . . , SM are the vertices of
K ′(b). The existence of such triangulation can be proved by induction on n. See
Proposition 4 in Appendix.

For i = 1, . . . ,M , let the vertices of Si be given by si0, si1, . . . , sin ∈ R
n.

That is, Si = conv({si0, si1, . . . , sin}). Observe that there are two cases. In case
(1), sij(j = 0, 1, . . . , n) is a vertex of K. In case (2), for sij , there exists a line
segment Lij = conv({v,v′}), where v and v′ are two vertices of K; and, Lij

satisfies that vertex sij of Si is the intersection of Lij and hyperplane a ·x = b.
Since, in case (1), it is clear that the coordinate of sij is constant with respect

to b, we consider case (2) in the following.
In case (2), the coordinate of sij = pv + (1 − p)v′ is given by solving the

equation a·(pv+(1−p)v′) = b for p. Therefore, we can compute each component
of sij (j = 0, . . . , n) as a constant or a linear function of b. Here, we write sij(b)
to show that the coordinate of sij is given depending on b.

We obtain the polynomial GK(a, b) as follows. Let Ri(b) be a matrix, where
j-th column of Ri(b) is given by sij − si0 for j = 1, . . . , n. The volume of Si is
given by | detRi(b)|

n! . Since each element of Ri(b) is a constant or a linear function
of b, the volume is given by a polynomial in b with degree at most n. We have
that GK(b) =

∑
i=1,...,M

| detRi(b)|
n! as long as sij(b) ∈ K for all i = 1, . . . , M and

j = 0, . . . , n.
Apparently, GK(a, b) is equal to FK(a, b) only in a certain interval of b, which

coincides with a piece of FK(a, b). Suppose that the two vertices v and v′ of K
given in the above satisfy a · v ≤ a · v′. Remember that sij(b′) is an interior
point of Lij if and only if sij(b′) satisfy

a · v ≤ a · sij(b′) ≤ a · v′. (8)

1 Though the number M of the simplices may be exponentially large with respect to
n, it does not matter because, in the later part of the paper, we show another way
to compute FK(a, b) efficiently for the case where K is a crosspolytope.
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If b′ does not satisfy (8), then sij(b′) is not an interior point of Lij , which implies
that b′ �∈ K. Thus, in case (8) is not satisfied for a combination of i, j, we have
that Vol(K ′(b′)) may not be equal to GK(a, b′). The correct value of Vol(K ′(b′))
is given by dividing K ′(b′) into M ′ simplices, S′

1, . . . , S
′
M ′ and then computing∑

i=1,...,M ′ Vol(S′), which is given by another polynomial in b′. Since there are N
vertices of K, we have at most N +1 different polynomials in b for each number
of vertices satisfying a · x ≤ b. We note that the third claim is obvious by the
above arguments. �

By Proposition 3, we have the following observation.

Observation 2. Let a1 ≥ a2 ≥ · · · ≥ ai ≥ 0. Then we have,

1. Φi(u, v) = 0 for u ≤ 1 and v ≤ −a1u; also, Φi(u, v) = ui/i! for 0 ≤ u ≤ 1
and v ≥ a1u.

2. Φi(u, v) for any fixed u ≤ 1 is a piecewise polynomial function. The number
of pieces is at most 2i + 1.

3. The pieces of Φi(u, v) are given by (−∞, α1u], [α2iu,+∞) and [αku, αk+1u]
for k = 1, . . . , 2i, where

αk =

{
−ak for k = 1, . . . , i,

a2i−k+1 for k = i + 1, . . . , 2i.
(9)

Then, we define the following.

Definition 5. Let Vk(u, v) = H(v − αku)H(αk+1u − v) for k = 1, . . . , 2n − 1.
The normalized form of Φi(u, v) for u ≤ 1 is

Φi(u, v) a.e.= H(u)H(1 − u)
2i∑

k=0

Vk(u, v)pk(u, v)

+ H(u)H(1 − u)H(v + α2iu)ui/i!,

where pk(u, v) is a polynomial in u and v.

We do not compute the case where u > 1. Because, in that case, Φn(u, v) is
equal to the volume of a polytope C(0, u) ∩ [−1, 1]n ∩ {x ∈ R

n|a · x ≤ v}. This
polytope may have exponentially many vertices.

For u ≤ 1, our algorithm computes the normalized form of Φi(u, v) from the
normalized form of Φi−1(u, v) for i = 1, . . . , n. The normalized form of Φi(u, v)
can be given by an array Ai(k) and a three dimensional array Pi(k, du, dv) for
k = 0, . . . , 2i, du = 0, . . . , i and dv = 0, . . . , i. Here, k represents the index in
the above definition of the normalized form; du and dv represent the degree of
u and v in pk(u, v). For Φi(u, v), the values of the arrays Ai(k) and Pi(k, du, dv)
represents the values αk and the coefficient of a term in pk(u, v) with u’degree
du and with v’s degree dv, respectively. Our algorithm is as follows.

Algorithm 2. Input: a ∈ R
n
+ and b ∈ R.

1. Set P0(0, 0, 0) := 0, A0(0) := 0;
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2. For i = 1, . . . , n do
3. For k = 0, . . . , 2i do
4. Set Ai(k) = αk as given in Observation 2;
5. For all (du, dv) ∈ {0, 1, . . . , i}2 do
6. Compute Pi(k, du, dv);
7. done;
8. done;
9. done;
10. Find k such that An(k − 1) ≤ b ≤ An(k);
11. Output

∑n
du=0

∑n
dv=0 Pn(k, du, dv)bdv .

We need to be careful when we consider the value of Φn(u, v) of a particular
point where (u, v) = (1, b). Since the normalized form of Φn(u, v) is equal to the
original definition of Φn(u, v) only almost everywhere for u ≤ 1, the normalized
form may give a wrong value when any step function argument is equal to zero.
To avoid the wrong value, we use the value of Φn(1 − ε, b − ε′), which tends to∑n

du=0

∑n
dv=0 Pn(k, du, dv)bdv when ε, ε′ → 0.

We prove Theorem 1 using the following lemma.

Lemma 1. For fixed a ∈ R
n
+, the value of Φi(u, v) is given by the normalized

form if all step function arguments in the normalized form are not zero. More-
over, pk(u, v) in the normalized form is a polynomial in u and v with degree at
most i.

Proof. As for the base case, we can compute Φ1(u, v) by

Φ1(u, v) = 2
∫ ∞

−∞
Φ0(u − |x1|, v − a1x1)f(x1)dx1 (10)

=
∫ 1

−1

H(u − |x1|)H(v − a1x1)dx1 (11)

=
∫ 0

−1

H(u)H(u + x1)H(v − a1x1)dx1 +
∫ 1

0

H(u − x1)H(v − a1x1)dx1

(12)
a.e.= (min{0, v/a1} − max{−1,−u})H(min{0, v/a1} − max{−1,−u})

+ min{1, u, v/a1}H(min{1, u, v/a1}). (13)

These max and min can be rewritten by using step functions. That is,

max
i=1,...,�

{p�} a.e.=
∑

i=1,...,�

∏

j �=i

H(pi − pj)pi (14)

min
i=1,...,�

{q�} a.e.=
∑

i=1,...,�

∏

j �=i

H(qj − qi)qi. (15)
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Therefore,

min{0, v/a1} a.e.= H(−v/a1)v/a1,

max{−1,−u} a.e.= H(−1 + u)(−1) + H(−u + 1)(−u),

min{1, u, v/a1} a.e.= H(u − 1)H(v/a1 − 1) + H(1 − u)H(v/a1 − u)u
+ H(1 − v/a1)H(u − v/a1)v/a1.

Also, we have that

H

(

min
i=1,...,�

{pi} − max
j=1,...,�′

{qj}
)

a.e.=
∑

i=1,...,�

∏

j=1,...,�′
H(pi − qj). (16)

We have H(min{0, v/a1}−max{−1,−u}) a.e.= H(u)H(v/a1+1)H(v/a1+u) and
H(min{1, u, v/a1}) a.e.= H(u)H(v/a1). This way, we have

Φ1(u, v) a.e.= H(u)H(v/a1 + 1)H(v/a1 + u)H(−v/a1)v/a1

− H(u)H(v/a1 + 1)H(v/a1 + u)H(−1 + u)(−1)
− H(u)H(v/a1 + 1)H(v/a1 + u)H(−u + 1)(−u)
+ H(u)H(v/a1)H(u − 1)H(v/a1 − 1)
+ H(u)H(v/a1)H(1 − u)H(v/a1 − u)u
+ H(u)H(v/a1)H(1 − v/a1)H(u − v/a1)v/a1 (17)

a.e.=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 u < 0 or v < −a1u

u + v/a1 0 < u < 1 and − a1u < v < a1u

2u 0 < u < 1 and a1u < v

1 + v/a1 1 < u and − a1 < v < a1

2 1 < u and a1 < v.

(18)

The normalized form is immediate from (18). That is,

Φ1(u, v) a.e.= H(u)H(1 − u)H(v + a1u)H(a1u − v)(u + v/a1)
+ H(u)H(1 − u)H(v − a1u)2u, (19)

for u ≤ 1. Therefore, the claims of the lemma holds for the base case.
We proceed to the induction step. We assume that we have the normalized

form of Φi−1(u, v), where pk(u, v) is a polynomial with degree at most i − 1
for k = 0, . . . , 2i. Since we already know how the pieces of Φi(u, v) are given
by the third claim of Observation 2, we show how we can execute the multiple
integral. For 0 ≤ k ≤ 2i, we consider how to integrate each term given by
H(u − |xi|)H(1 − (u − |xi|))Vk(u − |xi|, v − aixi)pk(u − |xi|, v − aixi). For the
conciseness, we omit how the last term can be integrated since the execution of
the integral is similar.

Here, we see what we get as the result of integrating the term. Let qk(u −
xi, v − aixi) and q̃k(u + xi, v − aixi) satisfy d

dxi
qk(u − xi, v − aixi) = pk(u −
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xi, v − aixi) and d
dxi

q̃k(u + xi, v − aixi) = pk(u + xi, v − aixi). In case αk > 0
and αk+1 > 0, we have

∫ 1

−1

H(u − |xi|)H(1 − (u − |xi|))Vk(u − |xi|, v − aixi)pk(u − |xi|, v − aixi)dxi

=
∫ 1

0

H(u − xi)H(1 + xi − u)Vk(u − xi, v − aixi)pk(u − xi, v − aixi)dxi

+
∫ 0

−1

H(u + xi)H(1 − xi − u)Vk(u + xi, v − aixi)pk(u + xi, v − aixi)dxi

(20)
a.e.= [qk(u − xi, v − aixi)]

Tk(u,v)
Sk(u,v)H(Tk(u, v) − Sk(u, v))

+ [q̃k(u + xi, v − aixi)]
T̃k(u,v)

S̃k(u,v)
H(T̃k(u, v) − S̃k(u, v)), (21)

where Tk(u, v), T̃k(u, v), Sk(u, v) and S̃k(u, v) are determined depending on the
values of αk and αk+1. Since the integrands have step function factors H(u ∓
xi)H(1 ± xi − u) and

Vk(u ∓ xi, v − aixi) = H(v − aixi − αk(u ∓ xi))H(αk+1(u ∓ xi) − v + aixi),

these step functions give the upper or the lower limit of the definite integral,
depending on the sign of the coefficient of xi. In case αk + ai ≥ αk − ai > 0 and
αk+1 + ai ≥ αk+1 − ai > 0, we have

Tk(u, v) = min
{

1, u,
−v + αk+1u

αk+1 − ai

}

Sk(u, v) = max
{

0, u − 1,
−v + αku

αk − ai

}

T̃k(u, v) = min
{

0, 1 − u,
v − αku

αk + ai

}

S̃k(u, v) = max
{

−1,−u,
v − αk+1u

αk+1 + ai

}

.

In the above, 1, 0,−1 are from the upper and the lower limit of the integral in
(20). Then, (21) is equal to

qk(u − Tk(u, v), v − Tk(u, v))H(Tk(u, v) − Sk)
− qk(u − Sk(u, v), v − Sk(u, v))H(Tk(u, v) − Sk)

+ q̃k(u + T̃k(u, v), v − T̃k(u, v)))H(T̃k(u, v) − S̃k(u, v))

− q̃k(u + S̃k(u, v), v − S̃k(u, v))H(T̃k(u, v) − S̃k(u, v)).

Since min and max can be rewritten by step functions, the resulting form is
clearly a sum of polynomials in u and v with degree at most i, multiplied by
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some step functions. Then, by the way we replace the min and max by step
function, the arguments of the step functions are the differences

Tk(u, v) − Sk(u, v)

= min
{

1, u,
−v + αk+1u

αk+1 − ai

}

− max
{

0, u − 1,
−v + αku

αk − ai

}

,

and

T̃k(u, v) − S̃k(u, v)

= min
{

0, 1 − u,
v − αku

αk + ai

}

− max
{

−1,−u,
v − αk+1u

αk+1 + ai

}

.

Since the cases for the other combination of αk and αk+1 are similar, we omit
the other cases to keep the paper concise.

The normalized form of Φi(u, v) is given by the resulting form as follows. For
k = 1, . . . , 2i and ε > 0 arbitrarily close to 0, we check whether the step function
factors are 0 or 1 if u = ε and v = αk + ε. That is, we choose ε so that there is no
step function argument equal to 0. We do not replace u and v in the polynomial
factor by ε and αk + ε. Then, pk(u, v) is given by the resulting form when we
replace the step function factors by 0 or 1. Thus, the lemma is proved. �

Then, we can prove Theorem 1 as follows.

Proof (of Theorem 1). We consider the memory space we need to store the
description of Φi(u, v) (length of Φi(u, v)) and the ongoing integral forms for
i = 1, . . . , n and u ≤ 1. Since we store Φi(u, v) by arrays Ai(k) and Pi(k, du, dv)
for k = 0, . . . , 2i, du = 0, . . . , i and dv = 0, . . . , i, O(i3) space is sufficient for
storing Φi(u, v) for u ≤ 1.

Notice that the length of Φi−1(u − |xi|, v − aixi) may temporarily take i
times the length of Φi−1(u, v) because we get sum of i terms by expanding each
of (u + xi)i−1, (u − xi)i−1 and (v − aixi)i−1. Then, remember that executing
the integral of a polynomial symbolically means rewriting the integrand into a
resulting form that can be computed in a constant time for each term. It implies
that executing the integral can be finished linear time with respect to the length
of the integrand. Therefore, O(i4) time is sufficient for obtaining the resulting
form of

∫ 1

−1
Φi−1(u − |xi|, v − aixi)dxi.

Since this resulting form may not be the normalized form, we rewrite the
resulting form into a normalized form in O(i4) × 2i = O(i5) time.

Therefore, we obtain a normalized form of Φi(u, v) from the normalized form
of Φi−1(u, v) in O(i5) time. This implies the theorem. �

4 Conclusion and Future Works

In this paper, we showed that there exists a polynomial time algorithm for
computing the volume of the crosspolytope truncated by a halfspace. Unlike
that computing the volume of a hypercube truncated by a halfspace is #P -hard,
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truncating a crosspolytope does not make the volume computation very hard.
Together with the results [3,4] and the result of this paper, the geometric duality
seems to preserve the existence of the efficient volume computation algorithm.

As future works, we would like to prove or disprove the conjecture. Also, we
conjecture that the volume of a polytope K with the following two conditions
may be computed in polynomial time,

1. K has poly(n) vertices;
2. K is given by a constant number of linear constraints allowing the absolute

value of the variables.

Since the running time of the algorithm for the truncated crosspolytope is O(n6)
while the volume of the convex hull of a hypercube and a point can be computed
in linear time, it is interesting to ask whether the difference of the running
time is essential or not. Since we did not intend to optimize the running time,
there may be much faster algorithm for computing the volume of the truncated
crosspolytope.

Appendix Supplemental Proof

To make this paper self-contained, we prove the following proposition which is
used in the proof of Proposition 3.

Proposition 4. Let P ⊆ R
n be a convex n-dimensional polytope. Then there

exists a set of m simplices S1, . . . , Sm satisfying the following three conditions:

1. P =
⋃

i=1,...,m Si;
2. any vertex of the simplices S1, . . . , Sm is a vertex of P ;
3. Vol(Si ∩ Sj) = 0 for any 1 ≤ i < j ≤ m.

Proof. The proof is the induction on n. As for the base case, we consider the
case n = 1. In this case, P is always a bounded interval, which is a simplex.
Therefore, the proposition holds for the base case.

We proceed to the induction step. We assume that we have the claims of
the proposition in case n = k. Then, in case n = k + 1, we have that any facet
of P can be divided into a set of k-dimensional simplices, satisfying the three
conditions of the claim. Let S′

1, . . . , S
′
M be the k-dimensional simplices obtained

by dividing the P ’s facets satisfying the three conditions for each facet. Let v
be one vertex of P . Then, we obtain the (k + 1)-dimensional simplices as the
convex hulls Si = conv(S′

i ∪ {v}) for i = 1, . . . , M .
As for the first condition of the proposition, we show that for any internal

point p ∈ P , there exists a point q ∈ S′
i for some 1 ≤ i ≤ M such that

p ∈ conv({v, q}). We consider a point given by r(t) = t(p−v)+v, where t > 0.
Since P is bounded, we have that r(t) is on a facet F of P for some t > 1. We
have t > 1 since p is an internal point of P . Since each facet F can be divided
into simplices, q = r(t) is in one of these simplices.
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Since the second condition of the claim clearly holds for S1, . . . , SM by defini-
tion, we proceed to the proof of the third condition. That is, Vol(Si ∩Sj) = 0 for
any 1 ≤ i < j ≤ M . Let p ∈ Si ∩ Sj . We consider the point r(t) = t(p − v) + v
as in the above for t > 1. Let t0 be the value of t such that r(t0) is on the
surface of P . Since Si = conv(S′

i ∪ {v}) and Sj = conv(S′
j ∪ {v}), we have that

r(t0) ∈ S′
i ∩S′

j . Since the k-dimensional volume of S′
i ∩S′

j is 0 by the assumption,
we have that Vol(conv({v} ∪ (S′

i ∩ S′
j))) = 0, which shows the claim. �
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Definition 1.1. Suppose that E and F are equivalence relations on the domain
ω. The relation E is computably reducible to F (denoted by E ≤c F ) if there is
a total computable function f(x) such that for all x, y ∈ ω, the following holds:

(xEy) ⇔ (f(x)Ff(y)).

In what follows, we assume that every considered equivalence relation has
domain ω.

The systematic study of c-degrees, i.e. degrees induced by computable
reducibility, was initiated by Ershov [12,13]. His approach stems from the
category-theoretic methods in the theory of numberings. In 1980s, the research
in the area of c-degrees was concentrated on computably enumerable equiva-
lence relations (or ceers for short): in particular, provable equivalence in formal
systems was studied (see, e.g., [10,11,28]). Note that the acronym ceer was intro-
duced in [17]. Recently, Andrews and Sorbi [1] provided a profound analysis of
the structure of c-degrees of ceers. For the results and bibliographical references
on ceers, the reader is referred to, e.g., the survey [2] and the articles [1,3,17].

Computable reducibility also proved to be useful for classifying equivalence
relations having higher complexity than ceers. In particular, recent works [8,24]
consider c-degrees of Δ0

2 equivalence relations.

Definition 1.2. Let Γ be a complexity class (e.g., Σ0
1 , d-Σ0

1 , Σ0
2 , or Π1

1 ). An
equivalence relation E is Γ complete (for computable reducibility) if E ∈ Γ and
for every equivalence relation R ∈ Γ , we have R ≤c E.

Examples of known Γ complete equivalence relations include:

– The relation of provable equivalence in Peano arithmetic is Σ0
1 complete [11].

– 1-equivalence and m-equivalence on indices of c.e. sets are both Σ0
3 com-

plete [14].
– Turing equivalence on indices of c.e. sets is Σ0

4 complete [21].
– For every n ∈ ω, 1-equivalence on indices of ∅(n+1)-c.e. sets is Σ0

n+4 com-
plete [21].

Furthermore, in [21], it was proved that for any computable ordinal α, there is
no Π0

α+2 complete equivalence relation.
Some of Γ complete equivalence relations have origins in computable struc-

ture theory: Given a class of structures K, one can treat the isomorphism relation
on (the set of computable members of) the class K as an equivalence relation on
ω (to be formally explained in Sect. 2.1). In [15], it was proved that for each of
the following classes K, the isomorphism relation on K is Σ1

1 complete for com-
putable reducibility: trees, graphs, torsion-free abelian groups, abelian p-groups,
linear orders, fields (of arbitrary characteristic), 2-step nilpotent groups.

Fokina, Friedman, and Nies [14] investigated the relation of computable iso-
morphism on a given class. In particular, they showed that for predecessor trees,
equivalence structures, and Boolean algebras, the computable isomorphism rela-
tion is Σ0

3 complete.
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In this paper, we study the relation of Δ0
α isomorphism, denoted by ∼=Δ0

α
,

where α is a non-zero computable ordinal. Δ0
α isomorphisms and the closely

related notion of Δ0
α-categoricity have been extensively studied in the literature

(see, e.g., [6,16] for a survey of results).
Following the approach of [14], our paper shows that the relation ∼=Δ0

α
fits

well in the setting of computable reducibility. The outline of the paper is as
follows. Section 2 contains the necessary preliminaries. In Sect. 3, we prove our
main result: For every computable successor ordinal α, the relation ∼=Δ0

α
on

computable distributive lattices is Σ0
α+2 complete for computable reducibility.

In Sect. 4, we prove consequences of the main theorem: similar results are
obtained for Heyting algebras, undirected graphs, and uniformly discrete metric
spaces. We also give a partial result for Boolean algebras with distinguished
subalgebra. Section 5 discusses some open problems.

2 Preliminaries

We consider only computable languages. For any considered countable structure
S, its domain is contained in the set of natural numbers. By D(S) we denote
the atomic diagram of S.

For a language L, infinitary formulas of L are formulas of the logic Lω1,ω. For
a countable ordinal α, infinitary Σα and Πα formulas are defined in a standard
way (see, e.g., [6, Chap. 6]).

2.1 Isomorphism Relation

Suppose that L is a computable language. For a computable L-structure S, its
computable index is a number e such that the characteristic function χD(S) of the
atomic diagram D(S) is equal to ϕe, where {ϕe}e∈ω is the standard enumeration
of all unary partial computable functions.

For e ∈ ω, by Me we denote the structure with computable index e. Suppose
that K is a class of L-structures. The index set of the class K is the set

I(K) = {e : Me ∈ K}.

Let ∼ be an equivalence relation on (computable members of) the class K.
Then we will identify ∼ with the following equivalence relation ∼# on the set of
natural numbers:

(i ∼# j) ⇔ (i = j) ∨ (i, j ∈ I(K)&Mi ∼ Mj).

Therefore, one can consider the relations of isomorphism and Δ0
α isomorphism

in the setting of computable reducibility.

Lemma 2.1. Let K be a class of structures, and α be a computable non-zero
ordinal. If the index set I(K) is Σ0

α+2, then the relation of Δ0
α isomorphism on

computable members of K is also Σ0
α+2.



Computable Isomorphisms of Distributive Lattices 31

Proof. Essentially follows from [19, Proposition 4.10]. �	
It is not hard to establish the following result (e.g., compare [19, Proposition

4.1]).

Lemma 2.2. For each of the following classes K (in an appropriate language,
to be discussed in the corresponding sections), the index set I(K) is Π0

2 :

(a) distributive lattices,
(b) Heyting algebras,
(c) undirected graphs,
(d) Boolean algebras with distinguished subalgebra.

Lemmas 2.1 and 2.2 together show that on each of the classes K consid-
ered above, the relation ∼=Δ0

α
is Σ0

α+2. Hence, in order to prove our results, it
is sufficient to establish the Σ0

α+2 hardness of the relation ∼=Δ0
α
: Given an arbi-

trary Σ0
α+2 equivalence relation E, we produce a uniformly computable sequence

{Sn}n∈ω of structures from K such that:

(mEn) ⇔ (Sm
∼=Δ0

α
Sn).

We leave the discussion of metric spaces until Sect. 4.3.

2.2 Hyperarithmetical Equivalence Relations

In order to obtain our results on the relation of Δ0
α isomorphism, we will work

with some special hyperarithmetical equivalence relations. Note that the expo-
sition in this subsection mirrors the corresponding recursion-theoretical results
from [14].

Consider an oracle X ⊆ ω. For e ∈ ω, by WX
e we denote the X-c.e. set that

has index e in the standard numbering of all X-c.e. sets.
Suppose that A and B are subsets of ω. We say that A is 1-X-reducible to

B, denoted by A ≤X
1 B, if there is a total X-computable, injective function f(x)

such that for every x ∈ ω, we have x ∈ A iff f(x) ∈ B. As usual, we write
A ≡X

1 B if A ≤X
1 B and B ≤X

1 A.
The sets A and B are X-computably isomorphic if there is an X-computable

permutation σ of the set of natural numbers such that σ(A) = B. The following
lemma is a relativization of Myhill Isomorphism Theorem [23].

Lemma 2.3. Sets A and B are X-computably isomorphic iff A ≡X
1 B.

Now one can consider a relativized version of [14, Theorem 1]:

Theorem 2.1 (essentially [14]). For any Σ0
3(X) equivalence relation E, there

is a total computable function g(x) such that:

(a) If (yEz), then WX
g(y) ≡X

1 WX
g(z).

(b) If ¬(yEz), then WX
g(y) �T WX

g(z) ⊕ X and WX
g(z) �T WX

g(y) ⊕ X.
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Proof (sketch). Proceed with a straightforward relativization of [14, Theorem 1].
Note that this gives only an X-computable function g0(x) with the desired prop-
erties. Nevertheless, there is a computable function g(x) such that WX

g(e) = WX
g0(e)

for all e. Indeed, the set {〈k, e〉 : k ∈ WX
g0(e)

} is c.e. in X and hence, the function
g can be recovered by using s-m-n Theorem (see, e.g., Exercise 1.20 in [26, Chap.
III] for more details). �	

Suppose that α is a computable non-zero ordinal. For convenience, we use
the following notation:

∅(α) :=
{∅(α−1), if α < ω,

∅(α), if α ≥ ω.

Notice that for every α, we have Σ0
α = Σ0

1(∅(α)) and Δ0
α = Δ0

1(∅(α)). The
theorem above implies the following.

Corollary 2.1. Let α be a computable non-zero ordinal. Then the relation ≡∅(α)
1

on the indices of ∅(α)-c.e. sets is Σ0
α+2 complete for computable reducibility.

2.3 Pairs of Computable Structures

Our proofs heavily rely on the technique of pairs of computable structures devel-
oped by Ash and Knight [5,6]. Here we give necessary preliminaries on the tech-
nique.

Suppose that A and B are L-structures. We say that B ≤α A if every infini-
tary Πα sentence true in B is also true in A.

Let α be a computable ordinal. A family K = {Ai : i ∈ I} of L-structures
is α-friendly if the structures Ai are uniformly computable in i ∈ I, and the
relations

Bβ = {(i, ā, j, b̄) : i, j ∈ I, ā ∈ Ai, b̄ ∈ Aj , (Ai, ā) ≤β (Aj , b̄)}

are computably enumerable, uniformly in β < α.

Theorem 2.2 ([5, Theorem 3.1]). Suppose that α is a non-zero computable
ordinal, A and B are L-structures. If B ≤α A and the family {A,B} is α-friendly,
then for any Σ0

α set X, there is a uniformly computable sequence of L-structures
{Cn}n∈ω such that

Cn
∼=

{A, if n �∈ X;
B, if n ∈ X.

Theorem 2.2 and the description of the relations ≤α for countable well-orders
[4,6] together imply the following:

Proposition 2.1. Let β be a computable ordinal.
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(i) For any Σ0
2β+1 set S, there is a uniformly computable sequence of linear

orders {Cn}n∈ω such that

Cn
∼=

{
ωβ , if n �∈ S;
ωβ · 2, if n ∈ S.

(ii) For any Σ0
2β+2 set S, there is a uniformly computable sequence of linear

orders {Cn}n∈ω such that

Cn
∼=

{
ωβ+1, if n �∈ S;
ωβ+1 + ωβ , if n ∈ S.

A sketch of the proof of Proposition 2.1 can be found, e.g., in [9, Theorem 4].

2.4 Distributive Lattices

Consider a language LBL := {∨,∧; 0, 1}. Recall that a lattice is bounded if it
has the least element 0 and the greatest element 1. In this paper, we consider
only bounded lattices. Thus, we treat lattices as LBL-structures. The reader is
referred to [20] for the background on lattice theory.

A partial order ≤ in a lattice A is recovered in a standard lattice-theoretical
way: x ≤ y if and only if x ∨ y = y. For elements a, b ∈ A, by [a; b] we denote
the interval {c ∈ A : a ≤ c ≤ b}.

Suppose that {An}n∈ω is a sequence of distributive lattices. The direct sum of
the sequence {An}n∈ω (denoted by

∑
n∈ω An) is the substructure of the product∏

n∈ω An on the domain
{

f ∈
∏
n∈ω

An : (∃c ∈ {0, 1})∃m(∀k ≥ m)(f(k) = cAk)

}
.

It is not hard to show that
∑

n∈ω An is a distributive lattice. Furthermore, if the
sequence {An}n∈ω is computable, then one can build a computable copy of the
sum

∑
n∈ω An, in a standard way (see, e.g., [9, § 2.1] for details). Hence, in this

case, we will identify the direct sum with its standard computable presentation.
If ai ∈ Ai, i ≤ n, and an �= 0An , then (a0, a1, . . . , an,⊥n+1) denotes the ele-

ment (a0, a1, . . . , an, 0, 0, 0, . . . ) from
∑

n∈ω An. If an �= 1An , then by (a0, a1, . . . ,
an,�n+1) we denote the element (a0, a1, . . . , an, 1, 1, 1, . . . ).

If L is a linear order with the least and the greatest elements, then (as per
usual) L can be treated as bounded distributive lattice D(L).

3 Δ0
α Isomorphism for Distributive Lattices

Theorem 3.1. Suppose that α is a computable successor ordinal. The relation
of Δ0

α isomorphism of computable distributive lattices is a complete Σ0
α+2 equiv-

alence relation under computable reducibility.
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Proof. Here we give a detailed proof for the case when α is odd, i.e. α = 2β + 1.
At the end of the proof, we will briefly comment on how to deal with even α.

Suppose that E is a Σ0
α+2 equivalence relation on ω. Then by Corollary 2.1,

there is a computable function g(x) with the following property: for any m,n ∈ ω,

(mEn) ⇔ W
∅(α)

g(m) ≡∅(α)
1 W

∅(α)

g(n) . (1)

Since α = 2β + 1, the first part of Proposition 2.1 gives a computable sequence
{Ln,k}n,k∈ω of linear orders such that

Ln,k
∼=

{
ωβ , if k �∈ W

∅(α)

g(n) ;

ωβ · 2, if k ∈ W
∅(α)

g(n) .
(2)

For a natural number n, we define a computable distributive lattice Sn as
follows:

Sn :=
∑
k∈ω

D(Ln,k + 1).

Now it is sufficient to prove the following fact: For every m,n ∈ ω,

(mEn) ⇔ (Sm and Sn are Δ0
α-computably isomorphic).

For n, k ∈ ω, consider the element en,k := (0, 0, . . . , 0, cn,k,⊥k+1) from Sn,
where cn,k is the greatest element in the order (Ln,k + 1). Clearly, the sequence
{en,k}n,k∈ω is uniformly computable.

We define auxiliary finitary formulas

Lin(x) := ∀y∀z[(y ≤ x)&(z ≤ x) → (y ≤ z) ∨ (z ≤ y)],
MaxLin(x) := Lin(x)&∀y[(x ≤ y)&Lin(y) → (y = x)].

The ∀∃-formula MaxLin(x) says that an element x is maximal such that the
interval [0;x] is linearly ordered. It is not hard to show that MaxLin(Sn) =
{en,k : k ∈ ω}, see [9, Lemma 3] for details. Since the sequence {en,k}n,k∈ω

is computable, one may assume that the sets MaxLin(Sn) are computable,
uniformly in n.

Lemma 3.1. If Sm and Sn are Δ0
α-computably isomorphic, then m and n are

E-equivalent.

Proof. Let F be a Δ0
α isomorphism from Sm onto Sn. Note that the map F1 :=

F � MaxLin(Sm) is a Δ0
α bijection from MaxLin(Sm) onto MaxLin(Sn). Define

a map σ : ω → ω as follows:

σ(i) = j, if F (em,i) = en,j .

It is easy to see that σ is well-defined. Moreover, σ is a Δ0
α permutation of ω.

For every i ∈ ω, the intervals [0; em,i]Sm
and [0; en,σ(i)]Sn

are isomorphic.
Thus, for any i, the following conditions are equivalent:

i ∈ W
∅(α)

g(m) ⇔ Lm,i
∼= ωβ · 2 ⇔ Ln,σ(i)

∼= ωβ · 2 ⇔ σ(i) ∈ W
∅(α)

g(n) .
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Therefore, the permutation σ witnesses that the sets W
∅(α)

g(m) and W
∅(α)

g(n) are ∅(α)-
computably isomorphic. Equation (1) implies that the numbers m and n are
E-equivalent. �	
Lemma 3.2. If (mEn), then the lattices Sm and Sn are Δ0

α-computably iso-
morphic.

Proof. Assume that m and n are E-equivalent. By Eq. (1), there is a Δ0
α per-

mutation σ such that σ(W ∅(α)

g(m)) = W
∅(α)

g(n) . Therefore, for every i ∈ ω, the orders
Lm,i and Ln,σ(i) are isomorphic. Recall that every Lm,i is isomorphic either to
ωβ , or to ωβ · 2.

In [9, p. 609] (see also Proposition 2 in [9]), the following fact was proved:
There is an effective procedure which, given computable indices of linear orders
M and N such that M and N are both isomorphic to some A ∈ {ωβ , ωβ · 2},
computes a Δ0

2β+1 index of an isomorphism F from M onto N .
Recall that α = 2β + 1. Hence, using the fact above, one can produce a

uniform sequence of Δ0
α isomorphisms {Fi}i∈ω such that Fi maps Lm,i onto

Ln,σ(i).
Now one can arrange a Δ0

α isomorphism G from Sm onto Sn in a pretty
straightforward way. A typical example looks like follows: Consider an element
a = (p0, p1, p2,�3) from Sm, where 0 ≤ pi < em,i. Then

G(a) := F0(p0) ∨ F1(p1) ∨ F2(p2) ∨ b,

where the jth coordinate of the element b (inside Sn) is equal to
{

0, if j ∈ {σ(0), σ(1), σ(2)},
en,j , otherwise.

Lemma 3.2 is proved. �	
The proof of Theorem 3.1 for the case α = 2β + 2 is essentially the same,

modulo the following key modification: one needs to use the ordinals ωβ+1 and
ωβ+1 + ωβ in place of ωβ and ωβ · 2, respectively. More details on this case can
be recovered from the discussion in [9, p. 610]. Theorem3.1 is proved. �	

4 Consequences of the Main Result

The (method of the) proof of Theorem3.1 can be applied to obtain similar results
for other familiar classes of structures.

4.1 Heyting Algebras

Heyting algebras are treated as structures in the language LHA = {∨,∧,→; 0, 1}.
An LHA-structure H is a Heyting algebra if the {∨,∧; 0, 1}-reduct of H is a
bounded distributive lattice, and H satisfies the following three axioms:



36 N. Bazhenov et al.

(a) ∀x∀y[x ∧ (x → y) = x ∧ y];
(b) ∀x∀y∀z[x ∧ (y → z) = x ∧ ((x ∧ y) → (x ∧ z))];
(c) ∀x∀y∀z[z ∧ ((x ∧ y) → x) = z].

If L is a linear order with the least and the greatest elements, then it can be
treated as Heyting algebra by introducing the operation:

x → y :=
{

1, if x ≤ y;
y, if x > y.

Therefore, essentially the same proof as for Theorem 3.1 provides us with the
following result:

Corollary 4.1. Let α be a computable successor ordinal. The relation of Δ0
α

isomorphism of computable Heyting algebras is a Σ0
α+2 complete equivalence

relation.

More computability-theoretical results on Heyting algebras can be found
in [7,9,27].

4.2 Undirected Graphs

Consider a linear order L on the domain {ai : i ∈ ω}. Assume that L has no
greatest element. We define an undirected graph G(L) as follows:

– dom(G(L)) = dom(L) ∪ {bi,j , ci,j : i < j} ∪ {d, e, f}.
– We put (undirected) edges (d, e), (e, f), (f, d), (ai, bi,j), (bi,j , ci,j), (ci,j , aj)

for every i < j.
– Suppose that i < j. If ai <L aj , then add the edge (ci,j , d). Otherwise, put

the edge (bi,j , d).

It is not hard to see that the set dom(L) and the ordering ≤L are definable by
both ∃- and ∀-formulas inside G(L).

The transformation L �→ G(L) allows us to obtain the following:

Proposition 4.1. Let α be a computable successor ordinal. The relation of Δ0
α

isomorphism of computable undirected graphs is a complete Σ0
α+2 equivalence

relation under computable reducibility.

Proof (sketch). We follow the lines of Theorem 3.1, and after obtaining the
sequence {Ln,k}n,k∈ω, we introduce a uniformly computable sequence of undi-
rected graphs {Gn}n∈ω which is constructed as follows. Put into Gn the graphs
G(Ln,k), k ∈ ω, on disjoint domains, i.e. dom(G(Ln,k)) ∩ dom(G(Ln,i)) = ∅ for
k �= i. Suppose that en,k is the element which “plays role” of the node e in the
graph G(Ln,k). Introduce a fresh cycle of size five, fix a node v0 inside the cycle,
and add an edge between every en,k and v0.

It is not difficult to prove that Gm and Gn are Δ0
α isomorphic if and only if

Sm
∼=Δ0

α
Sn. �	
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4.3 Metric Spaces

Consider a Polish metric space (M,d). Assume that (qi)i∈ω is a dense sequence in
M without repetitions. A structure M = (M,d, (qi)i∈ω) is a computable metric
space if the value d(qi, qj) is a computable real, uniformly in i and j. The elements
qi are called special points. For the background on computable metric spaces, the
reader is referred to [29].

Fix a (standard) effective enumeration {ψe}e∈ω of all partial computable
functions acting from ω3 into the set {q ∈ Q : q ≥ 0}.

We say that a number e ∈ ω is a computable index of a computable metric
space M = (M,d, (qi)i∈ω) if the function ψe is total and for all i, j, t ∈ ω, the
following holds:

|d(qi, qj) − ψe(i, j, t)| ≤ 2−t.

The notion of computable index allows us to introduce index sets in the same
way as in Sect. 2.1 (for more details, we refer the reader to [22,25]). Thus, one
can treat the relation of surjective isometry on computable metric spaces as an
equivalence relation on ω.

Recall that a computable metric space is discrete if every its point is isolated.
Note that in such a space, every point is special. A computable metric space M
is uniformly discrete if there is a real ε > 0 such that for any points a �= b from
M, we have d(a, b) ≥ ε. It is easy to see that any uniformly discrete space is
discrete.

Corollary 4.2. Let α be a computable successor ordinal. The relation of Δ0
α

surjective isometry of computable, uniformly discrete metric spaces is a Σ0
α+2

complete equivalence relation.

Proof. Note that the property “e is a computable index of a metric space” is
equivalent to a Π0

2 description (see, e.g., [22, p. 322]). A computable index e
encodes a uniformly discrete space if and only if the following holds:

(∃ε ∈ Q)[(ε > 0)&∀i∀j(i �= j → ∃t(ψe(i, j, t) ≥ ε + 2−t))].

This is a Σ0
3 description, hence the index set of uniformly discrete metric spaces

is Σ0
3 . By (an analogue of) Lemma 2.1, we obtain that Δ0

α surjective isometry
for computable, uniformly discrete spaces is a Σ0

α+2 relation.
Given a countable undirected graph G on the domain {ai : i ∈ ω}, we intro-

duce a discrete metric space M(G) as follows. The domain of M(G) is equal to
dom(G), and for every i �= j, we set

d(ai, aj) =
{

1, if G |= Edge(ai, aj),
3/2, if G |= ¬Edge(ai, aj).

It is easy to see that there is a Δ0
α surjective isometry from M(G) onto M(H)

iff G ∼=Δ0
α

H. Thus, the desired result follows from Proposition 4.1. �	
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4.4 Boolean Algebras with Distinguished Subalgebra

Consider a language LBA = {∨,∧, · ; 0, 1}. A Boolean algebra with a distin-
guished subalgebra is a structure S in the language LBA ∪ {U} such that:

– the LBA-reduct of S (denoted by SBA) is a Boolean algebra, and
– the unary predicate U distinguishes a subalgebra of SBA.

Here we obtain a partial result on the relation of Δ0
α isomorphism for this

class of structures.
If L is a linear order with the least element, then Int(L) denotes the cor-

responding interval Boolean algebra. The background on computable Boolean
algebras can be found in [18].

Proposition 4.2. Let β be a computable ordinal. The relation of Δ0
2β+1 isomor-

phism of computable Boolean algebras with distinguished subalgebra is a complete
Σ0

2β+3 equivalence relation under computable reducibility.

Proof (sketch). Let α = 2β + 1. As in Theorem 3.1, given a Σ0
α+2 equivalence

relation E, we choose a computable function g(x) which satisfies Eq. (1).
It is well-known that the transformation L �→ Int(L) is uniformly effective,

i.e. given a computable index of a linear order L (with the least element), one
can effectively find a computable index for the algebra Int(L). Thus, using the
sequence from Eq. (2), one can build a uniformly computable sequence of Boolean
algebras

Bn,k
∼=

{
Int(ωβ), if k �∈ W

∅(α)

g(n) ,

Int(ωβ · 2), if k ∈ W
∅(α)

g(n) .

Let en,k be the greatest element in Bn,k.
For a natural number n, we define the Boolean algebra Cn :=

∑
k∈ω Bn,k.

Inside Cn, we use a unary predicate Un to distinguish the subalgebra generated
by the elements cn,k := (0, 0, . . . , 0, en,k,⊥k+1), k ∈ ω.

After that, one can show that

(mEn) iff (Cm, Um) and (Cn, Un) are Δ0
α-computably isomorphic.

First, note that the set {cn,k : k ∈ ω} is precisely the set of atoms of the
subalgebra Un. This observation allows us to prove an analogue of Lemma3.1.

In order to obtain an analogue of Lemma3.2, we need the following fact:
There is an effective procedure which, given computable indices of Boolean alge-
bras M and N such that M ∼= N ∼= A ∈ {Int(ωβ), Int(ωβ · 2)}, computes a
Δ0

2β+1 index of an isomorphism F from M onto N . This is an easy consequence
of the proofs of [6, Theorem 17.8] and [9, Proposition 2]. �	

Note that in this setting, the proof of Theorem3.1 for the case α = 2β + 2
cannot be re-used in a direct way. Indeed, it is easy to see that the interval
algebras Int(ωβ+1) and Int(ωβ+1 + ωβ) are isomorphic, and hence, we cannot
use these structures for encoding a Σ0

α+2 equivalence relation E.
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5 Further Discussion

Note that in all our results, we consider only successor ordinals α. Therefore,
the following is left open:

Question 5.1. Suppose that α is a computable limit ordinal. Is the relation
of Δ0

α isomorphism of computable structures Σ0
α+2 complete for computable

reducibility?

Recall that in [14], it was shown that computable isomorphism of Boolean
algebras is Σ0

3 complete. We established Σ0
α+2 completeness of Δ0

α isomorphism
for Heyting algebras (Corollary 4.1). Since every Boolean algebra can be treated
as Heyting algebra under the operation x → y := x ∨ y, it is natural to ask the
following:

Question 5.2. Suppose that α is a computable ordinal such that α ≥ 2. Is the
relation of Δ0

α isomorphism of computable Boolean algebras Σ0
α+2 complete for

computable reducibility?
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7921, pp. 320–328. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-39053-1 37

23. Myhill, J.: Creative sets. Z. Math. Logik Grundlagen Math. 1, 97–108 (1955).
https://doi.org/10.1002/malq.19550010205

24. Ng, K.M., Yu, H.: On the degree structure of equivalence relations under com-
putable reducibility. Notre Dame J. Formal Log. (to appear)

25. Nies, A., Solecki, S.: Local compactness for computable polish metric spaces is
Π1

1 -complete. In: Beckmann, A., Mitrana, V., Soskova, M. (eds.) CiE 2015. LNCS,
vol. 9136, pp. 286–290. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
20028-6 29

26. Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer, Berlin (1987)
27. Turlington, A.: Computability of Heyting algebras and distributive lattices. Ph.D.

thesis, University of Connecticut (2010)

http://arxiv.org/abs/1810.03559
https://doi.org/10.1134/S1995080217040035
https://doi.org/10.1134/S1995080217040035
https://doi.org/10.1007/BF01837553
https://doi.org/10.1007/BF01837553
https://doi.org/10.2307/2273443
https://doi.org/10.1007/BF02218645
https://doi.org/10.1007/BF02218645
https://doi.org/10.1007/978-3-642-32621-9_2
https://doi.org/10.1007/978-3-642-32621-9_2
https://doi.org/10.2178/jsl/1327068695
https://doi.org/10.1023/A:1010521410739
https://doi.org/10.1023/A:1021758312697
https://doi.org/10.1007/978-3-0348-0018-1
https://doi.org/10.1017/jsl.2013.33
https://doi.org/10.1007/978-3-642-39053-1_37
https://doi.org/10.1007/978-3-642-39053-1_37
https://doi.org/10.1002/malq.19550010205
https://doi.org/10.1007/978-3-319-20028-6_29
https://doi.org/10.1007/978-3-319-20028-6_29


Computable Isomorphisms of Distributive Lattices 41

28. Visser, A.: Numerations, λ-calculus and arithmetic. In: Seldin, J.P., Hindley, J.R.
(eds.) To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and For-
malism, pp. 259–284. Academic Press, London (1980)

29. Weihrauch, K.: Computable Analysis. Texts in Theoretical Computer Science.
An EATCS Series. Springer, Berlin (2000). https://doi.org/10.1007/978-3-642-
56999-9

https://doi.org/10.1007/978-3-642-56999-9
https://doi.org/10.1007/978-3-642-56999-9


Minmax-Regret Evacuation Planning
for Cycle Networks

Robert Benkoczi1, Binay Bhattacharya2, Yuya Higashikawa3,
Tsunehiko Kameda2(B), and Naoki Katoh4

1 Department of Mathematics and Computer Science, University of Lethbridge,
Lethbridge, Canada

2 School of Computing Science, Simon Fraser University, Burnaby, Canada
3 School of Business Administration, University of Hyogo, Kobe, Japan

4 School of Science and Technology, Kwansei Gakuin University, Sanda, Japan

Abstract. This paper considers the problem of evacuating people
located at vertices to a “sink” in a cycle network. In the “minmax-regret”
version of this problem, the exact number of evacuees at each vertex is
unknown, but only an interval for a possible number is given. We show
that a minmax-regret 1-sink in cycle networks with uniform edge capac-
ities can be found in O(n2) time, where n is the number of vertices. No
correct algorithm was known before for this problem.

1 Introduction

Due to many recent disasters such as earthquakes, volcanic eruptions, typhoons,
and nuclear accidents, evacuation planning is getting increasing attention. The k-
sink problem is an attempt to model evacuation in such an emergency situation
by a network, where vertices represent the locations where the people to be
evacuated are located, and the edges represent the paths along which they can
evacuate [7]. Each edge has a capacity in terms of the number of people who can
enter it per unit time, and a transit time in terms of the time it takes to cross
the edge.

One of the useful objective functions is the evacuation completion time. Each
evacuee evacuates to one of the k sinks, and we want to place k sinks in a
network in such a way that the evacuation can be completed in minimum time.
One of the main features of evacuation problems, which are different from the
center location problem, for example, is that congestion may develop at non-sink
vertices, due to finite capacities of the outgoing edges.

Mamada et al. [16] solved the 1-sink problem for tree networks with non-
uniform edge capacities in O(n log2 n) time, under the condition that only a
vertex can be a sink, where n is the number of vertices. When edge capacities
are uniform, Higashikawa et al. [11] and Bhattacharya and Kameda [4] presented
O(n log n) time algorithms with a more relaxed condition that the sink can be
on an edge, as well as at a vertex.
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On path networks with uniform edge capacities, it is straightforward to
find a 1-sink location in linear time, as shown by Cheng et al. [7]. Arumugam
et al. [1] showed that the k-sink problem for the path networks can be
solved in O(kn log2 n) time when the edge capacities are non-uniform, and
Higashikawa et al. [12] showed that it can be solved in O(kn) time in the
uniform capacity case. Bhattacharya et al. [3] then improved these results to
O(min{n log3 n, n log n + k2 log4 n}) time in the non-uniform capacity case, and
to O(min{n log n, n + k2 log2 n) time in the uniform capacity case, using a num-
ber of innovations, which include a new data structure, and a use of a sorted
matrix [8], and parametric search [17].

Networks, which are more general than tree networks, contain cycles. A näıve
algorithm for finding an optimal k-sink in a cycle network, which cuts one edge at
a time and uses the path algorithm, takes at least O(n2) time. Practically noth-
ing was known about cycle networks until quite recently. Benkoczi and Das [2]
present an O(n log3 n) (resp. O(n log n)) time algorithm for the case where the
edge capacities are non-uniform (resp. uniform). In the special case of k = 1
and uniform capacities, they can find a 1-sink in O(n) time. Table 1 summarizes
the most efficient algorithms that are currently known for path, tree, and cycle
networks.

Table 1. Most efficient algorithms for computing sinks. [U] means Uniform edge capac-
ities and [G] means General (non-uniform) edge capacities.

Topology Problem Time complexity

Path 1-sink [U] O(n) [12]

2-sink [U] O(n) [12]

2-sink [G] O(n log n) [3]

k-sink [U] O(kn) [12], O(n + k2 log2 n) [3], O(n log n) [3]

k-sink [G] O(n log n + k2 log4 n) [3], O(n log3 n) [3]

Tree 1-sink [U] O(n log n) [4,11]

1-sink [G] O(n log2 n) [15]

k-sink [U] O(kn2 log4 n) [5], O(max{k, log n}kn log3 n) [6]

k-sink [G] O(kn2 log5 n) [5], O(max{k, log n}kn log4 n) [6]

Cycle 1-sink [U] O(n) [2]

1-sink [G] O(n log n) [2]

k-sink [U] O(n log n) [2]

k-sink [G] O(n log3 n) [2]

The concept of regret was introduced by Kouvelis and Yu [13], to model situa-
tions where optimization is required when the exact values (such as the number
of evacuees at the vertices) are unknown, but are given by upper and lower
bounds. A particular instance of the set of such numbers, one for each vertex, is
called a scenario. The objective is to find a solution which is as good as any other
solution in the worst case, where the actual scenario is the most unfavorable.
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Cheng et al. [7] proposed an O(n log2 n) time algorithm for finding a minmax-
regret 1-sink in path networks with uniform edge capacities. This initial result
was soon improved to O(n log n) [10,18], and further to O(n) [4]. Bhattacharya
and Kameda [4] proposed an O(n log4 n) time algorithm to find a minmax-regret
2-sink on path networks. For the k-sink version of the problem, Arumugam
et al. [1] give two algorithms, which run in O(kn3 log n) and O(kn2(log n)k) time,
respectively. As for the tree networks with uniform edge capacities, Higashikawa
et al. [11] propose an O(n2 log2 n) time algorithm for finding a minmax-regret 1-
sink. Golin and Sandeep [9] recently proposed an O(max{k2, log2 n}k2n2 log5 n)
time algorithm for finding a minmax-regret k-sink. Higashikawa et al. [11] and
Bhattacharya and Kameda [4] proposed O(n log n) time algorithms to find a
minmax-regret 1-sink in tree networks. Table 2 summarizes most efficient algo-
rithms currently known for computing minmax-regret sinks.

Table 2. Most efficient algorithms for computing minmax-regret sinks.

Topology Problem Time complexity

Path 1-sink [U] O(n) [4]

2-sink [U] O(n log4 n) [4]

k-sink [U] O(kn3 log n) [1]

Tree 1-sink [U] O(n log n) [4,11]

k-sink [U] O(max{k2, log2 n}k2n2 log5 n) [9]

Cycle 1-sink [U] O(n2) [This paper]

This paper investigates the minmax-regret 1-sink problem in cycle networks.
The only work on locating a minmax-regret sink in cycle networks that we are
aware of is due to Xu and Li [19], who claim that a minmax-regret vertex 1-sink
in cycle networks with uniform capacities can be found in O(n3 log n) time.1 Li
et al. [14] proposed an O(m2n3) time algorithm for computing a minmax-regret
1-sink in general networks with the condition that the evacuees should evacuate
to the nearest sink, where m is the number of edges. The main contribution of
this paper is the following theorem.

Theorem 1. We can find a minmax-regret 1-sink in dynamic flow cycle net-
works with uniform edge capacities in O(n2) time.

As shown in Table 2, the minmax-regret 1-sink problem on path networks can
be solved in O(n) time. Cheng et al. [7] show that there are only O(n) scenarios
“of interest”2 that need to be considered, and we can find a (conventional) 1-
sink for a scenario in amortized constant time per such scenario [4]. On cycle
networks, however, there are O(n2) scenarios that appear to be “of interest,” and
1 We thank Prof. M. Golin of Hong Kong University of Science and Technology for

pointing out that their claim is incorrect.
2 Formally, they are the non-dominated scenarios defined in Sect. 2.4.



Minmax-Regret Evacuation Planning for Cycle Networks 45

we would need O(n) time to find a (conventional) 1-sink for each of them [2].
So just finding the 1-sinks for all of them would take O(n3) time. Therefore, we
cannot use our method in [4] in a straightforward way to achieve sub-cubic time
complexity. One of our main contributions is to reduce the number of scenarios
“of interest” down to O(n).

The rest of this paper is organized as follows. In the next section, we introduce
terms that are used throughout the paper, review some known facts, and describe
our approach. Section 3 presents an algorithm that computes “critical vertices”
that determine the completion time at different points. Then in Sect. 4, we first
present a binary search based algorithm that runs in O(n2 log n) time, and then
improve it to O(n2). Finally Sect. 5 concludes the paper, mentioning some open
problems. Our analysis is accurate for continuous supply or in the case where
the edge capacity equals 1, we often substitute the term evacuees, which are
discrete, for supply, and treat them as synonyms.

2 Preliminaries

2.1 Model

Let C = (V,E) be a cycle network consisting of n vertices, v1, v2, . . . , vn ∈ V ,
clockwise in this order.3 The edges ei = (vi, vi+1) ∈ E, i = 1, . . . , n − 1 and
en = (vn, v1) ∈ E connect adjacent vertices. By x ∈ C, we mean that point x
lies on either an edge or at a vertex of C. For a, b ∈ C, C[a, b] denotes the cw
section of C from a to b, and V [a, b] denotes the set of vertices comprising C[a, b].
If c ∈ C[a, b], we sometimes write a � c � b. Let d(a, b) denote the length (sum
of the edge lengths) of C[a, b]. If a and/or b is on an edge, we use the prorated
length on the edge. The transit time of an evacuee for a unit distance is denoted
by τ , so that it takes d(a, b)τ time to travel from a to b cw, and τ is independent
of the edge. Each vertex vi ∈ V has weight w(vi), which represents the number
of evacuees located there before evacuation starts.

Each edge ei ∈ E has the same capacity c, which represents the number of
evacuees who can enter it per unit time. It is assumed that once an evacuee
enters an edge, he/she traverses the edge at constant speed to reach the other
end vertex of the edge. The evacuees at all vertices start evacuation at the same
time, and the evacuees who were originally at a vertex or who arrive there later
move in the same direction (cw or ccw).4 We define a weight array by

W [vi] �
i∑

j=1

w(vj) for 1 ≤ i ≤ n,

and a cw distance array

D[vi] � d(v1, vi) for 1 ≤ i ≤ n.

3 From now on clockwise and counterclockwise are abbreviated as cw and ccw, respec-
tively.

4 In the parlance of network flow theory, flow obeying the latter condition is called
confluent.
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It is easy to see that arrays W [·] and D[·] can be constructed in O(n)
time from the vertex weights and edge lengths, respectively. Once they are con-
structed, we can compute in constant time the sum of the weights of the vertices
from vh to vi (h ≤ i) by

W [vi, vj ] �
j∑

h=i

w(vh) = W [vj ] − W [vi−1],

and can obtain d(vi, vj) for any pair (vi, vj) in constant time as well.

2.2 Graphical Representation

If we remove an edge of C, it becomes a path. Therefore, we can make use of
some known results about the sink problem on path networks [3,7]. Assume
that we remove edge (vn, v1). In Fig. 1(a), it is assumed that a sink is located
to the right of v4. The first evacuee from v1 starts moving towards the sink
from v1 at time t = 0. He/she traverses edge e1 = (v1, v2) and arrives at v2
at time tb = d(v1, v2)τ . It takes w(v1)/c time units for all the evacuees who
were initially located at v1 to vacate v1, and all of them will have arrived at
v2 at time tc = d(v1, v2)τ + w(v1)/c. Similarly, the evacuees who were initially
located at v2 leave v2 completely at time ta = w(v2)/c. In the example in Fig. 1,
inequality ta < tb holds, so that when the first evacuee from v1 arrives at v2,
finding no evacuee left there, he/she can immediately leave v2 without any delay.
The timing diagram in Fig. 1(b) shows the departure flow rate (c or 0) at v2 as a
function of time. Their arrival at v3 is delayed by d(v2, v3)τ , as shown in Fig. 1(c).
Observe that ta < tb if and only if

d(v1, v2)τ > w(v2)/c. (1)

v1 v2 v3

Time

taw(v1)/c

tc

v4

tb

d(v3, x)τ+W [v3]/c
d(v1, x)τ+W [v1]/c

Distance from v1

(a) Time-distance diagram.

ta0
Time

tb tc

c

(b) Departing clus-
ters from v2.

0
Time

d(v2, v3)τ

c

(c) Arriving clusters at
v3.

Fig. 1. Clockwise cluster sequences from v1, v2, and v3.
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Back to Fig. 1(a), when the first evacuee from v2 arrives at v3, there are still
evacuees left there, waiting for departure from there. We call this congestion,
and it causes the evacuees from v2 to wait for departure from v3, incurring delay
for them. The evacuees from v1, who encountered no delay at v2, must now wait
at v3. Note that for v1 ≺ x � v3,

d(v1, x)τ + W [v1]/c

gives the time at which evacuation to x (if x were the sink) from all the vertices
to the left of x completes, and for v3 ≺ x � v4,

d(v1, x)τ + W [v3]/c (2)

gives the time at which evacuation to x from all the vertices to the left of x
completes.

If we plot the arrival flow rate at, or departure flow rate from, a vertex as
a function of time, as in Fig. 1(b) and (c), it consists of a sequence of temporal
clusters, or just clusters for short, during which the flow rate is c. We call a
cluster from the cw (resp. ccw) side of a point x in question a cw-cluster (resp.
ccw-cluster).

2.3 Completion Time Functions

Since we consider only confluent flow to a sink, there is an edge, called the split
edge ê, across which no evacuee travels. Clearly, removing the split edge converts
C into a path. Let vcw(ê) (resp. vccw(ê)) denote the vertex at the cw (resp. ccw)
end of ê. Then the evacuation completion time to a potential sink x /∈ ê is
given by the maximum of the cw-completion time (cw-time for short) for all the
evacuees on C[vcw(ê), x] to move cw to x, and the ccw completion time (ccw-time
for short) for all the evacuees on C[x, vccw(ê)] to move ccw to x.

Let fcw((x, ê), vh) (resp. fccw((x, ê), vh)) denote the evacuation completion
time to x with split edge ê, for the evacuees on C[vcw(ê), vh] (resp. C[vh, vccw(ê)])
moving cw (resp. ccw), where vcw(ê) � vh ≺ x (resp. x ≺ vh � vccw(ê)), under
the assumption that the first evacuee from vh encounters no delay on its way to
x. By generalizing (2), we obtain

fcw((x, ê), vh) = d(vh, x)τ + W [vcw(ê), vh]/c for vcw(ê) � vh ≺ x. (3)

It is just a lower bound on the actual completion time to x, because the actual
flow may be intermittent (not continuous), or there may be congestion caused
by other vertices on C[vh+1, x]. See the congestion at v3 in Fig. 1(a). Similarly

fccw((x, ê), vh) = d(x, vh)τ + W [vh, vccw(ê)]/c for x ≺ vh � vccw(ê) (4)

represents the evacuation completion time to x for all the evacuees on the vertices
on C[vh, vccw(ê)], moving ccw.

To be precise, the second terms in (3) and (4) should be �W [vi, vh]/c� and
�W [vh, vj ]/c�, respectively, if supply consists of discrete items, such as evacuees,
but we adopt (3) and (4) as our cost functions for simplicity. It is accurate when
c = 1. We refer to the first (resp. second) term in the righthand side of (3) and
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(4) as the distance cost (resp. weight cost). Note that the distance cost is linear
in the distance to x.

For two points a and b on C, let V [a, b) (resp. V (a, b]) denote the set of
vertices that lie on C[a, b], excluding b (resp. a). For a given ê and x /∈ ê, we
define5 the cw-cost and ccw-cost at (x, ê) by

Θcw(x, ê) � max
vh∈V [vcw(ê),x)

{fcw((x, ê), vh)}, (5)

Θccw(x, ê) � max
vh∈V (x,vccw(ê)]

{fccw((x, ê), vh)}, (6)

respectively. Let

Θ(x, ê) � max {Θcw(x, ê), Θccw(x, ê)} . (7)

A result for path networks in [7] implies the following lemma.

Lemma 1. Given split edge ê, the evacuation completion time to x /∈ ê for all
the supplies is given by Θ(x, ê).

The vertex vh ∈ V [vcw(ê), x) that maximizes fcw((x, ê), vh) is called the cw-
critical vertex for x and is denoted by ccw(vi, ê) if vi ≺ x � vi+1. Similarly, the
vertex vh ∈ V (x, vccw(ê)] that maximizes fccw((x, ê), vh) is called the ccw-critical
vertex for x, and is denoted by cccw(vi, ê) if vi−1 � x ≺ vi. Since the cw-critical
vertex (resp. ccw-critical vertex) is the same for any point vi ≺ x � vi+1 (resp.
vi−1 � x ≺ vi), if we know ccw(vi, ê) and cccw(vi, ê) for all i, then we know the
critical vertices for all points x. The following lemma is easy to prove.

Lemma 2 [4]. The cw-critical vertex (resp. ccw-critical vertex) is the first vertex
of the last cw-cluster (resp. ccw-cluster). �	

By (3), we can compute the cw-cost at x (vi ≺ x � vi+1) as follows.

Θcw(x, ê) = d(ccw(vi, ê), x)τ + W [vcw(ê), ccw(vi, ê)]/c. (8)

We can similarly compute Θccw(x, ê). A point x that minimizes

Θ(x) � min
ê∈E

max{Θcw(x, ê), Θccw(x, ê)} (9)

is a 1-sink. The following lemma will be used in proving Lemma10 later.

Lemma 3 [2]. A 1-sink in cycle networks with uniform edge capacities can be
found in O(n) time. �	
Example 1. In Fig. 2, all edges have the same capacity and they all have a unit
length, except edge (v7, v1) whose length is 2. Table 3 shows the costs on the
edges for the split edge in the first column, as a function of the cw distance x
from v1. The 1-sink for each split edge is shown in bold face.

Table 4 reorganizes the costs at the vertices, so that the row and column
unimodality can be more easily observed. However, the minimum elements in
rows (the completion time at the 1-sinks, shown in bold face) are not unimodal.

�	
5 We have Θcw(x, ê) = 0 (resp. Θs

ccw(x, ê) = 0), if x and ê are on the same edge, since
V [vcw(ê), x) = ∅ (resp. V (x, vccw(ê)] = ∅).
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v1
v2

v3

v4
v5

v6

v7

1

2

3

1

3

4

3

p

Fig. 2. Example cycle network.

Table 3. Completion time at point x.

ê v1 e1 v2 e2 v3 e3 v4 e4 v5 e5 v6 e6 v7 e7

(v7, v1) 17 17−x 15 16−x 12 14−x 11 14−x 8 x+6 11 x+9 15 −
(v1, v2) 18 − 16 17−x 13 15−x 12 15−x 9 x+5 10 x+8 14 x+10

(v2, v3) 14 16+x 17 − 15 17−x 14 17−x 13 15−x 8 x+6 12 x+8

(v3, v4) 13 x+13 14 x+13 15 − 15 18−x 14 18−x 10 15−x 9 x+5

(v4, v5) 12 x+12 13 x+12 14 x+14 17 − 15 19−x 11 16−x 9 x+4

(v5, v6) 10 max{10−x, x+9} 10 x+9 11 x+11 14 x+11 15 − 14 19−x 12 18−x

(v6, v7) 14 14−x 12 13−x 9 x+7 10 x+7 11 x+9 14 − 16 21−x

2.4 Regret

In the regret model [13], for each vertex vi ∈ V , only the upper and lower bounds
on its weight are known, which are denoted by w(vi) and w(vi), respectively. A
senario s assigns a particular weight ws(vi), satisfying w(vi) ≤ ws(vi) ≤ w(vi),
to each vertex vi ∈ V . Thus the set of all possible scenarios is a Cartesian product

S �
∏

vi∈V

[w(vi), w(vi)].

The scenario under which all vertices have the minimum (resp. maximum)
weights is denoted by s0 (resp. sM ).

Since we need to express the dependency of various quantities on a scenario,
under scenario s, we use Θs

cw(x, ê), cscw(vi, ê), etc., from now on. Since removing
ê from C results in a path, the following lemma is implied by a result for path
networks [4,7].

Lemma 4. Let a scenario s and a split edge ê be given, and assume that point
x moves cw on the resulting path.

(a) Θs
cw(x, ê) is an increasing function of x.

(b) Θs
ccw(x, ê) is a decreasing function of x.

(c) Θs(x, ê) is unimodal.
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Table 4. Completion times at the vertices and point p in Fig. 2.

ê v1 p v2 v3 v4 v5 v6 v7 v1 p v2 v3 v4 v5 v6 v7

(v7, v1) 17 16.5 15 12 11 8 11 15 · · ·
(v1, v2) · · · 16 13 12 9 10 14 18 · · ·
(v2, v3) · · · 15 14 13 8 12 14 16.5 17 · · ·
(v3, v4) · · · 15 14 10 9 13 13.5 14 15 · · ·
(v4, v5) · · · 15 11 9 12 12.5 13 14 17 · · ·
(v5, v6) · · · 14 12 10 9.5 10 11 14 15 · · ·
(v6, v7) · · · 16 14 13.5 12 9 10 11 14 · · ·

Let qs ∈ C denote a 1-sink under s. The regret [13] at 2-dimensional “point”
(x, ê) under scenario s is defined by

Rs(x, ê) � Θs(x, ê) − Θs(qs), (10)

where Θs(qs) � mine Θs(qs, e), i.e., the cost of the 1-sink under s. The following
lemma is immediate from Lemma 4.

Lemma 5. Under the assumption of Lemma 4, Rs(x, ê) is unimodal.

Note that Θs(qs) is independent of ê. Scenario s′ is said to dominate another
scenario s at (x, ê) if Rs′

(x, ê) ≥ Rs(x, ê) holds. A scenario under which all
the max-weighted vertices are consecutive, including s0 and sM , is said to be
bipartite [4]. Let S̃ denote the set of all bipartite scenarios. It is clear that
|S̃| = O(n2).

The maximum regret at (x, ê) is defined by

Rmax(x, ê) � max
s∈S̃

Rs(x, ê). (11)

A scenario s that maximizes Rs(x, ê), namely, that dominates all others at
(x, ê), is called a worst case scenario [13] for the pair (x, ê). The minmax-regret
1-sink solution is given by a pair (x, ê) that minimizes Rmax(x, ê). This solution
gives an optimal sink q∗ = x and the corresponding split edge e∗.

2.5 Road Map

Now that we have defined most of the necessary concepts and terms, we can
describe our approach to finding a minmax-regret 1-sink on a cycle network. We
call the last cw-cluster with respect to (x, ê) the dominant cw-cluster for (x, ê),
where vi ≺ x � vi+1, and define the set of vertices it is comprised of.

Ds
cw(x, ê) � V [vcw(ê), cscw(vi, ê)].
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Similarly, we define the vertex set of the dominant ccw-cluster for (x, ê),
where vi−1 � x ≺ vi, by

Ds
ccw(x, ê) � V [csccw(vi, ê), vccw(ê)].

See Fig. 3. If w(vj) = w(vj) (resp. w(vj) = w(vj)), we say that vj is max-
weighted (resp. min-weighted). Let si(ê) denote the scenario such that ws(vh) =
wsM (vh) for each vh ∈ DsM

cw (x, ê), and all other vertices are min-weighted. Sim-
ilarly, let s′

i(ê) denote the scenario such that ws(vh) = wsM (vh) for each vh ∈
DsM

ccw(x, ê), and all other vertices are min-weighted. We proceed as follows:

cscw(vi, ê)

vi

lscw(vi, ê)

vi+1

ê

x

Ds
cw(x, ê)

Ds
ccw(x, ê)vcw(ê)

vccw(ê)

Fig. 3. Illustration of symbols.

1. For each split edge ê ∈ E, compute critical vertices

{cscw(vi, ê) | i = 2, . . . , n} ∪ {csccw(vi, ê) | i = 1, . . . , n − 1} (12)

for s = sM and s = s0. They help to compute Θs
cw(x, ê) (resp. Θs

ccw(x, ê))
under s = sM and s = s0, for x with vi ≺ x � vi+1 (resp. vi−1 � x ≺ vi).

2. Based on (12), compute regret

Rsi(ê)
cw (x, ê) � max{Θsi(ê)

cw (x, ê), Θs0
ccw(x, ê)} − Θsi(ê)(qsi(ê))

for vi ≺ x � vi+1, and similarly

R
s′
i(ê)

ccw (x, ê) � max{Θ
s′
i(ê)

ccw (x, ê), Θs0
cw(x, ê)} − Θs′

i(ê)(qs
′
i(ê))

for vi � x ≺ vi+1.

3. For each i, find upper envelope R(x, ê) � max{R
si(ê)
cw (x, ê), R

s′
i+1(ê)

ccw (x, ê)}.
4. For each ê ∈ E, find Rmin(ê) � minx R(x, ê) by binary search on x.
5. Find minê{Rmin(ê)}, which is the cost of a minmax-regret 1-sink.
6. Output the minimizing ê in Step 5, and the corresponding minimizing x in

Step 4. This x is a minmax-regret 1-sink.
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3 Critical Vertices and Dominant Clusters

Given a pair (x, ê), where vi ≺ x � vi+1, let σs
cw(vi, ê) denote the cw-cluster

sequence under scenario s with respect to vi, starting in vi and ending in vcw(ê).
The following lemma, which follows easily from an analogous lemma for path
networks in [7], is needed to prove the correctness of Algorithm1.

Lemma 6. Let x satisfy vi ≺ x � vi+1.

(a) Let vcw(ê1) ≺ vh ≺ vi and ê2 = (vh, vh+1). Then the cw-critical vertex
ccw(vi, ê1) is either ccw(vh, ê1) or ccw(vi, ê2), whichever has a higher cost at
vi.

(b) Let vi ≺ vh ≺ vccw(ê1) and ê2 = (vh, vh+1). Then the ccw-critical vertex
cccw(vi, ê1) is either cccw(vh+1, ê1) or cccw(vi, ê2), whichever has a higher
cost at vi. �	

Algorithm 1. Find-criticalcw
Input : W s[·], D[·], ê ; // Weight and distance arrays, and split edge.

Output: {(vi, c
s
cw(vi, ê)) | 1 ≤ i ≤ n − 1} ;

// Assume ê = (vn, v1), and write σs
cw(vi) for σs

cw(vi, ê) for simplicity.

Let v0 be a dummy vertex with d(v0, v1) = 0.
1 σs

cw(v0) = Λ ; // Null sequence.

2 for i = 1, . . . , n − 1 do
3 Shift σs

cw(vi−1) in the positive direction of time by d(vi−1, vi)τ ;
4 Let C be a single cluster of duration w(vi)/c, starting at time 0 ; // This

time is the local time at vi.
5 Set l = i;
6 if d(vi−1, vi)τ ≤ W s[vi, vi]/c then
7 while [d(vl−1, vi)τ ≤ W s[vl, vi]/c] ∧ [ vl �= v1] do
8 Enlarge C by merging it with the first cluster of σs

cw(vi−1) ;
9 Remove the first cluster from σs

cw(vi−1) ;
10 Update vl to the last vertex of C ;

11 end
12 If vl = v1 then set cscw(vi, ê) = vi ;

13 end
14 Output (vi, cscw(vi, ê)) ;
15 Construct σs

cw(vi), concatenating C and σs
cw(vi−1) ;

16 end

Lemma 7. Algorithm1 generates all the cw-critical vertices with respect to
(x, ê) for split edge ê under scenario s in O(n) time.

Proof. Step 1 initializes the cluster sequence. Step 3 adjusts the time origin of
σs
cw(vi−1) from the local time at vi−1 to the local time at vi. The if clause in the
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for loop tests if the new vertex, vi, should be merged with the first cluster in
σs
cw(vi−1) (starting with vi−1), and if so, the while loop merges all the clusters

in σs
cw(vi−1) that need to be merged by testing if

d(vl−1, vi)τ ≤ W s[vl, vi]/c, (13)

where vl is the end vertex of the first cluster of σs
cw(vi) that is being formed.

See lscw(vi, ê) in Fig. 3. Inequality (13) is a generalized version of the negation
of (1). If the dominant cluster starting with cscw(vi−1, ê), where vi−1 ≺ x � vi,
is also merged, then cscw(vi, ê) is updated to vi by Step 12. Steps 13 and 14 are
self-explanatory. Note that a cw-cluster gets merged with C at most once and
in O(1) time. Thus the total execution time of Algorithm1 is O(n). �	

We can construct an algorithm, Find-criticalccw, which is symmetric to
Find-criticalcw, to generate all the ccw-critical vertices with respect to (x, ê),
where vi � x ≺ vi+1, in O(n) time.

4 Minmax-Regret 1-Sink

4.1 Worst-Case Scenarios

Given a split edge ê, we may assume without loss of generality that the evacua-
tion completion time for the vertices on C[vcw(ê), x] at x is not less than that for
the vertices on C[x, vccw(ê)]. We are interested in the scenario that maximizes
regret, as expressed by (11).

Clearly, reducing the weights of the vertices not in Ds
cw(x, ê) cannot decrease

Θs(x, ê), so assume that they are all min-weighted, so that Θs(qs) in (10) is made
small. In particular, the vertices on C[x, vccw(ê)] are all min-weighted, because
only vertices on C[vcw(ê), x] may belong to Ds

cw(x, ê). Now, for any vertex v ∈
Ds

cw(x, ê), if we increase its weight by δ, i.e., ws′
(v) = ws(v) + δ, where s (resp.

s′) is the scenario before (resp. after) the increase, then we have Θs′
(x, ê) =

Θs(x, ê) + δ/c. The cost of the sink, Θs(qs), increases by the maximum amount
δ/c, if qs

′
= qs and v is in its dominant cw- or ccw-cluster. In all other cases,

either the optimal split edge for the sink or the sink itself will move and its
cost increase is less than δ/c. This implies that increasing the weights of all the
vertices in Ds

cw(x, ê) to their maximum values cannot decrease regret. We thus
end up with a bipartite scenario that dominates the original scenario at (x, ê).

Lemma 8. In looking for a minmax-regret 1-sink in cycle networks with uniform
edge capacities, we have the following.

(a) Any scenario is dominated by a scenario in S̃.
(b) We may assume that, under a dominating scenario for (x, ê), all the vertices

of the dominant cw-cluster or ccw-cluster, i.e., one ending at ê, are max-
weighted and the rest are min-weighted.
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Let us consider two special scenarios sM and s0, defined in Sect. 2.4. It is clear
that for a given pair (vi, ê), we generally have vcw(ê) � cs0cw(vi, ê) � csMcw (vi, ê).
If cs0cw(vi, ê) ≺ csMcw (vi, ê), we can create a scenario satisfying the conditions of
Lemma 8 by making all the vertices in Ds0

cw(x, ê) max-weighted and the remaining
vertices min-weighted. As observed earlier, these changes do not decrease the
regret at (x, ê). Similarly, we can create a scenario satisfying the conditions of
Lemma 8 by making all the vertices in the last two cw-clusters of σs0

cw(vi, ê) max-
weighted and the remaining vertices min-weighted, and so forth, for all clusters
of σs0

cw(vi, ê) whose vertices are in DsM
cw (x, ê). In the illustration in Fig. 4, there

are three such cw-clusters under s0, which are indicated by purple arcs.

cs0cw(vi, ê)

vi vi+1

ê

x

DsM
cw (x, ê)

Ds0
cw(x, ê)

vh=vcw(ê)

csMcw (vi, ê)

Fig. 4. csMcw (vi, ê) and cs0cw(vi, ê).

The above argument proves the following lemma.

Lemma 9. Let si(ê) denote the scenario such that wsi(ê)(vh) = wsM (vh) for
each vh such that vcw(ê) � vh � csMcw (vi, ê), and all other vertices are min-
weighted. Then si(ê) is the worst case scenario for (x, ê).

Clearly, there is at most one worst-case scenario, si(ê), for any (x, ê) pair,
where vi ≺ x � vi+1, i.e., as long as x lies on the same edge. Now that we have
identified a unique worst case scenario, si(ê), for any given pair (x, ê), we shift
gears to find the pair that minimizes the maximum regret Rmax(x, ê) of (11).

4.2 Binary Search Based Algorithm

By Lemma 5, given the split edge ê, we can find the minimum value of the
maximum regret using binary search on position x. For each probed x (vi ≺
x � vi+1), we first look up the precomputed csMcw (vi, ê), make all the vertices in
DsM

cw (x, ê) max-weighted, and then evaluate the regret of the 1-sink under the
resulting scenario. After computing the lowest cost point of the regret function
for each split edge, we identify the minimum among them, which is the minmax-
regret 1-sink. Each binary probe costs O(n) time by Lemma 3. Since a total of
O(n log n) probes are needed for all the n split edges, they cost O(n2 log n) time
in total. Algorithm2, presented below, formally states these steps, following
the road map given in Sect. 2.5 fairly closely.

Lemma 10. Algorithm2 runs in O(n2 log n) time.
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Algorithm 2. Minmax-Regret-Sink

Input : W sM [·],W s0 [·], D[·] ; // Weight and distance arrays.

Output: Minmax-regret 1-sink and the corresponding split edge ;
1 for j = 1, . . . , n do

– Set ê = (vj , vj+1) ;
– Run Find-criticalcw with s = sM to compute {csMcw (vk, ê) | vk ∈ V } ;
– Run Find-criticalccw with s = sM to compute {csMccw(vk, ê) | vk ∈ V } ;
– Run Find-criticalcw with s = s0 to compute {cs0cw(vk, ê) | vk ∈ V } ;
– Run Find-criticalccw with s = s0 to compute {cs0ccw(vk, ê) | vk ∈ V } ;

2 end
3 for each ê ∈ E do

4 For x selected by binary search, let Rmin(ê) � minx R(x, ê) by calling
Procedure R(x, ê) ; // Given below.

5 end

6 Find minê{Rmin(ê)} ;
7 For the minimizing split edge ê in Step 6, find the corresponding minimizing x

in Step 4 ;
8 Output them as a solution.

Procedure. R(x, ê)
Input : (x, ê)
Output: R(x, ê) ;

1 R
si(ê)
cw (x, ê) � max{Θ

si(ê)
cw (x, ê), Θs0

ccw(x, ê)} − Θsi(ê)(qsi(ê)) ;

2 R
s′
i(ê)

ccw (x, ê) � max{Θ
s′
i(ê)

ccw (x, ê), Θs0
cw(x, ê)} − Θs′

i(ê)(qs
′
i(ê)) ;

3 R(x, ê) � max{R
si(ê)
cw (x, ê), R

s′
i(ê)

ccw (x, ê)} ;

Proof. Step 1 takes O(n2) time by Lemma 7. Step 4 makes O(log n) calls to Pro-
cedure R(x, ê) per split edge. Procedure R(x, ê) computes the upper envelope
of four linear segments, one each from Θ

si(ê)
cw (x, ê), Θs0

ccw(x, ê), Θ
s′
i(ê)

ccw (x, ê), and
Θs0

cw(x, ê), which is composed of at most two linear segments. This can be done
constant time, using dominant clusters, precomputed in Step 1. The procedure
also computes the cost of sinks, Θsi(ê)(qsi(ê)) and Θs′

i(ê)(qs
′
i(ê)), which takes O(n)

time by Lemma 3. Since O(n log n) binary probes are made altogether, the total
time required by all calls to Procedure R(x, ê) is O(n2 log n) time. All other
steps take less time. �	

4.3 Proof of Theorem1

To explain our approach intuitively first, let us pretend the values in Table 4 in
Example 1 were regret values. We can make this assumption, because the upper
envelope of the regret functions is unimodal by Lemma5. We start with scanning
row 1 from left to right, until we find the smallest value (8 in this example). We
then move to row 2 to look for the smallest value, which happens to be in the
same column (9 in column v5). We thus move to row 3 and look for the smallest



56 R. Benkoczi et al.

value (8), moving right. This way, we can find the smallest value in every row
by examining only a total of O(n) entries of the table. We can then easily find
the globally smallest value in O(n) extra steps.

We perform similar operations for the upper envelope of regret functions.
Just like we examined only O(n) entries in the above paragraph, we identify a
set of O(n) worst-case scenarios. All others in S̃ can be ignored in computing
maximum regret Rmax(x, ê). We can do without binary search, once we find the
lowest regret point for one split edge. After spending O(n log n) time for this,
we can advance both x and ê cw, one after another, so that the total number of
(x, ê) pairs that we probe is reduced to O(n) from O(n log n). Since each probe
entails computing a 1-sink, which takes O(n) time by Lemma 3, the total time
is O(n2). We can move ê cw within the cycle interval spanned by the vertices in
DsM

cw (x, ê), until vcw(ê) reaches csMcw (vi, ê). Note that for any split edge ê′ between
ê and csMcw (vi, ê), we have csMcw (vi, ê′) = csMcw (vi, ê).

Let R
si(ê)
cw (x, ê) and R

s′
i(ê)

ccw (x, ê) be the regret functions defined in Proce-
dure R(x, ê). Starting with ê = (vn, v1) and x ∈ (v1, v2), it is likely that
R

s1(ê)
cw (x, ê) < R

s′
1(ê)

ccw (x, ê) will hold for any x with v1 ≺ x � v2, so that
R(x, ê) = R

s′
n(ê)

ccw (x, ê). If so, we move x cw to the next edge, keeping ê fixed,
until R

si(ê)
cw (x, ê) ≥ R

s′
i(ê)

ccw (x, ê) holds for some x with vi ≺ x � vi+1. (Of course
i = 1 is possible.) See Fig. 5,6 where they intersect at vertex vi+1. At this point,
we can determine the exact point x where the smallest max regret R(x, ê), i.e.,

Rmin(ê) = min
x

max{Rsi(ê)
cw (x, ê), Rs′

i(ê)
ccw (x, ê)}, (14)

is achieved and compute it. Note that moving x cw farther with ê fixed makes
regret larger by Lemma 5, and as observed in Fig. 5. We thus move ê to the next
cw edge, and repeat.

vcw(ê)

Rsi(ê)
cw (x, ê)Rs′

i(ê)
ccw (x, ê)

qs
′
i(ê)qsi(ê) vccw(ê)vi+1vi

Rs′
i(ê)
ccw (x, ê)

Rsi(ê)
cw (x, ê)

Fig. 5. R
si(ê)
cw (x, ê) and R

s′
i(ê)

ccw (x, ê).

Note that whenever ê or x is moved to a new edge, si(ê) and s′
i(ê) may

change and the 1-sinks under them must be computed, which takes O(n) time
by Lemma 3. Since ê and x move at most O(n) times, the total time required is
O(n2). This proves Theorem 1.

6 The tiny circle at an end of each linear segment means that that point is missing.
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5 Conclusion

We have presented an O(n2) time algorithm that finds a minmax-regret 1-sink
in cycle networks with uniform edge capacities. We are working on the extension
of this work to compute the minmax-regret k-sink in a cycle network. Another
problem of interest is to find a minmax-regret 1-sink when the edge capacities
are non-uniform.
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Planar Digraphs for Automatic
Complexity
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Abstract. We show that the digraph of a nondeterministic finite
automaton witnessing the automatic complexity of a word can always
be taken to be planar. In the case of total transition functions studied
by Shallit and Wang, planarity can fail.

Let sq(n) be the number of binary words x of length n having nonde-
terministic automatic complexity AN (x) = q. We show that sq is even-
tually constant for each q and that the eventual constant value of sq is
computable.

Keywords: Automatic complexity · Planar graph · Möbius function ·
Nondeterministic finite automata

1 Introduction

Automatic complexity, introduced by Shallit and Wang [7], is an automata-
based and length-conditional analogue of Sipser’s CD complexity [8] which is
in turn a computable analogue of the noncomputable Kolmogorov complexity.
The nondeterministic case was taken up by Hyde and Kjos-Hanssen [3], who
gave a table of the number of words of length n of a given complexity q for
n ≤ 23. The numbers in the table suggested (see Table 2) that the number
may be eventually constant for each fixed q. Here we establish that that is the
case (Theorem 9), and show that the limit is computable (in exponential time).
Moreover, we narrow down the possible automata that are needed to witness
nondeterministic automatic complexity: they must have planar digraphs, in fact
their digraphs are trees of cycles in a certain sense.

We recall our basic notion.

Definition 1 ([7]). The nondeterministic automatic complexity AN (x) of
a word x is the minimal number of states of a nondeterministic finite automaton
M (without ε-transitions) accepting x such that there is only one accepting path
in M of length |x|.
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2 Automatic Complexity as Chains of Trees of Lumps

Consider the version of automatic complexity where the transition functions
are not required to be total.1 Then we claim that the digraphs representing the
witnessing automata are planar, in fact they are “trees of cycles”. As an example,
for the word 05105160103, we have the following witnessing automaton:

q0start

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

0

0 0

0

0

1

0

0

0
0

1

1 1

1

To explain this, first let us say that a cycle is a sequence of states that starts and
ends with the same state. Let us say that a lump is the automaton whose transi-
tions come from a given cycle. So if a cycle is repetitive, like 3456734567345673,
then it generates the same lump as just 345673.

Consider the sequence of states visited during processing of a unique accepted
word x of length n. Let us call the first visited state 0, the next distinct state 1,
and so on. (So for example the permitted state sequences of length 3 are only
000, 001, 010, 011, 012.)

Then the state sequence starts 0, 1, . . . , q, q+1, . . . , q where q is the first state
that is visited twice. Now the claim is that there will never, at a later point in
the state sequence, be a transition (an edge) q1, q2 such that q2 occurs within
the lump generated by the cycle q, q+1, . . . , q and such that the transition q1, q2
does not occur in that lump. Indeed, otherwise our state sequence would start

0, 1, . . . , q, . . . , q2
︸ ︷︷ ︸

first

, . . . , q, . . . , q1, q2
︸ ︷︷ ︸

second

1 Whether determinism is required is not important in the following, but in the non-
deterministic case we assume we require there to be only one accepting path, as
usual.
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and then there is a second accepting path of the same length where the first and
second segments are switched.

Consequently, the path can only return to states that are not yet in any
lumps. This leaves only two choices whenever we decide to create a new edge
leading to a previously visited state:

Case 1. Go back to a state that was first visited after the last completed
lump so far seen, or Case 2. Go back to a state that was first visited at some
earlier time, before some of the lumps so far seen started (and in general after
some of them were complete).

This gives a tree of lumps where each new lump either (Case 1) creates a
new sibling for the previous lump, or (Case 2) creates a new parent for a final
segment of the so far seen top-level siblings. In this tree of lumps, only the leaves
(the lumps that are not anybody’s parents) can be traversed more than once by
the uniquely accepted path of length n.

So if the first lump created is l1 then next we can have two cases:

(l1, l2) (Case 1)

l1 → l2 (Case 2)

In Case 1, l1 and l2 are siblings ordered from first to second. In Case 2, →
denotes is a child of, which by definition is the same as sub-digraph. Now for the
third lump l3, we have only the following possibilities:

(l1, l2, l3) (Subcase 1.1)

(l1, l2 → l3) (Subcase 1.2)

(l1, l2) → l3 (Subcase 1.3)

(l1 → l2, l3) (Subcase 2.1)

l1 → l2 → l3 (Subcase 2.2)

In Subcase 1.2, l1 and l3 are siblings and l2 is a child of l3. In Subcase 1.3, l3 is
a common parent of l1 and l2. In Subcase 2.1, l3 is a new sibling for l2, and l2
still has l1 as its child. In Subcase 2.2, l3 is a parent of l2.

For instance, the state sequence 01234567345673456720 has the structure
of Subcase 2.2, with l1 being the lump generated from 345673, l2 being gener-
ated from 23456734567345672, and l3 being generated from the whole sequence
01234567345673456720. The corresponding automaton is shown in an online
tool.2 Using this planarity result, we are able to increase the speed of our algo-
rithm for calculating AN (x). Consequently, we have been able to extend the
string length in our computations from n = 23 to n = 25. The number of max-
imally complex binary words of a given length are shown in Table 1. A similar
table for n ≤ 23 was given in [3].
2 http://math.hawaii.edu/wordpress/bjoern/complexity-of-0001111011110111111/.

http://math.hawaii.edu/wordpress/bjoern/complexity-of-0001111011110111111/
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Table 1. Lengths n, number of words of length n of maximal AN (x), 2n, percentage
of maximally complex words, number of non-maximally complex words.

n # 2n %complex 2n-#

0 1 1 100.00% 0

1 2 2 100.00% 0

2 2 4 50.00% 2

3 6 8 75.00% 2

4 8 16 50.00% 8

5 24 32 75.00% 8

6 30 64 46.88% 34

7 98 128 76.56% 30

8 98 256 38.28% 158

9 406 512 79.30% 106

10 344 1,024 33.59% 680

11 1,398 2,048 68.26% 650

12 1,638 4,096 39.99% 2,458

13 5,774 8,192 70.48% 2,418

14 5,116 16,384 31.23% 11,268

15 23,018 32,768 70.25% 9,750

16 22,476 65,536 34.30% 43,060

17 86,128 131,072 65.71% 44,944

18 89,566 262,144 34.17% 172,578

19 351,250 524,288 67.00% 173,038

20 375,710 1,048,576 35.83% 672,866

21 1,461,670 2,097,152 69.70% 635,482

22 1,539,164 4,194,304 36.70% 2,655,140

23 5,687,234 8,388,608 67.80% 2,701,374

24 6,814,782 16,777,216 40.62% 9,962,434

25 24,031,676 33,554,432 71.62% 9,522,756

26 27,782,964 67,108,864 41.40% 39,325,900

27 97,974,668 134,217,728 73.00% 36,243,060

3 The Asymptotic Number of Words of Given
Complexity

In this section, we examine the asymptotic behavior of the number of words with
automatic complexity q for a fixed q ∈ N.

Definition 2. A binary word x is right inextendible if AN (x) < AN (x0) and
AN (x) < AN (x1).
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Inextendibility is closely related to volatility of the automatic complexity, as
examined in the Complexity Option Game [5]. The number and proportion of
right-inextendible words of length n and complexity q can be examined using an
online database [4] and is shown in Table 2 for small q and n.

A basic procedure in our results will be the counting of periodic words, since a
cycle containing a periodic word can be shortened and an automaton containing
such a cycle will not be optimal.

Definition 3. A word x is periodic if there exists a subword y �= x and an
integer n such that

yyy · · · y
︸ ︷︷ ︸

n

= x.

A non-periodic word [2] is also called a primitive word and one starting with 0,
in our setting, is called a Lyndon word [6].

Definition 4 ([1]). Let n be a positive integer with ω(n) denoting the number of
distinct prime factors of n and Ω(n) denoting the total number of prime factors
(i.e., with repetition) of n. The Möbius function μ is defined as

μ(n) :=

{

(−1)ω(n) mod 2 if Ω(n) = ω(n),
0 if Ω(n) > ω(n).

Theorem 5 ([2]). The number of unique periodic binary words of length n is
given by Z(0) = 0 and for n ≥ 1,

Z(n) = 2n −
∑

d|n
μ

(n

d

)

· 2d.

Recall that a necklace is an equivalence class of non-periodic words under cyclic
rotation. Thus, for instance, {0011, 0110, 1100, 1001} is a necklace. Theorem 5 is
a restatement of the following classical result.

Theorem 6 (Witt’s Formula [9]). The number of necklaces of binary words
of length n is

1
n

∑

d|n
μ

(n

d

)

· 2d.

Definition 7. We define the set Sq(n) = {x ∈ {0, 1}n : A(x) = q} and sq(n) =
|Sq(n)|.
Definition 8. Given an automaton, G, whose set of states is Q, we define a
detour to be a pair of finite non-trivial sequences of states, α, β ∈ Q∗, such that
α(0) = β(0), α(|α| − 1) = β(|β| − 1) and α �= β. We call a detour minimal if
{α(i) : 0 < i < |α| − 1} ∩ {β(i) : 0 < i < |β| − 1} = ∅.
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Table 2. Proportions rq(n)/sq(n) of right-inextendible binary words of automatic
complexity q and length n.

n q

3 4 5 6 7 8 9 10

22 8/20 28/58 86/164 322/502 1288/2846 6594/16024 44922/94732 220544/451368

21 8/20 28/58 98/176 292/496 1318/3168 8472/18720 52178/108042 266760/504794

20 8/20 28/58 86/164 238/430 1478/3814 11670/23328 54990/115896 278696/529148

19 8/20 28/58 86/164 402/582 2380/4996 12312/26542 78892/410668 134578/351250

18 8/20 28/58 110/188 356/598 2070/5692 14456/29990 68288/36024 0/0

17 8/20 28/58 104/200 262/514 2850/7102 20516/37042 30486/86128

16 8/20 28/58 80/164 536/752 2908/7738 14230/34320 0/22476

15 8/20 28/58 148/226 578/908 3338/8530 7524/23018

14 8/20 28/58 112/244 774/1270 4442/9868 0/5116

13 8/20 28/58 120/250 1396/2076 1736/5774

12 8/20 28/58 158/282 1048/2090 0/1638

11 8/20 28/58 384/564 576/1398

10 8/20 34/64 244/588 0/344

9 8/20 48/78 112/406

8 8/20 82/130 0/98

7 10/22 38/98

6 14/26 0/30

5 8/24

4 0/8

Consider an automaton with a single cycle (Fig. 5). Suppose the automaton
has i states before the cycle and � states after the cycle (which implies that there
are q − (i + �) states within the cycle). We now obtain a formula for the limit of
the number of binary words of given complexity q.

Theorem 9. sq is eventually constant, with limiting value
∑

i,�≥0
i+�<q

2(i−1)+ · [2q−(i+�) − Z(q − (i + �))] · 2(�−1)+ ,

where Z was defined in Theorem5 and

x+ = max{x, 0}.
Proof. Consider an arbitrary automaton G with q states. There are a finite
number of such automata. We will prove that unless G has at most one minimal
detour, there is an N such that, for all n ≥ N , G cannot accept a unique word
of length n.

We begin with the observation that we may assume that G has a unique
initial state and a unique accepting state.



Planar Digraphs for Automatic Complexity 65

If G has at most one detour, then G has one of the following forms.

If G is of the type on the right and G accepts a unique word σ of length n,
then any accepting path for σ either uses the k states that comprise the top path
of the detour, or uses the j states that comprise the bottom path, but no both.
Thus, if both k and j are non-zero, there is an automaton with fewer states that
accepts only σ among all words of length n. We conclude that in the case of
automata with at most one minimal detour, we need only consider ones of the
form on the left.

Now, we consider the possibilities for automata with at least two distinct
minimal detours. Each of the twelve cases in Fig. 1 falls into one of three cases.

1. On any accepting path, each detour can be used at most once ((1), (2) and
(3)).

2. On any accepting path, one of the detours can be used at most once ((7), (8),
(10), (11) and (12)).

3. There are accepting paths that use each of the detours an arbitrary number
of times ((4), (5), (6) and (9)).

These further break down as follows:

– (1), (4), (7), (10) represent two separated cycles;
– (2), (5), (8), (11) represent overlapping cycles.
– (3), (6), (9), (12) represent nested cycles; and

If G falls into the first case, then σ is also uniquely accepted among words
of length n by an automaton with at most q states and no detours. If G falls
into the second case, then σ is uniquely accepted by an automaton with at most
q states and at most one detour. If G falls into the third category, then there
are two cycles (although they may have common transitions) which can each
be traversed and independent and arbitrary number of times on an accepting
path. Thus, for large enough n, the cycles can be traversed in different orders or
different numbers of times and still reach an accepting state, thereby violating
the requirement that G accept exactly one word of length n.

As an example of the third case, suppose that G is of the type shown in (9).
G has two independent cycles, one of length p+ j +k + � and the other of length
p + j + n + �. Let N = i + a(p + j + k + �) + m = i + b(p + j + n + �) + m, where
a, b ∈ N. There are at least two words of length N that G accepts, and for any
M ≥ N such that G accepts a word of length M , G must accept at least two
words of length M .

In conclusion, we may assume our automata have at most one detour. Thus
they consist of a chain of states, followed by a single (in general multi-state)
cycle, followed by another chain. Let i be the number of states before the cycle,
� the number of states after the cycle, so that q − (i + �) if the number of states
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Fig. 1. The possibilities for automata with at least two distinct minimal detours.
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within the cycle. If the bits read within the cycle do not form a necklace, we
can reduce the number of states. Thus there are [2q−(i+�) −Z(q − (i+ �))] states
within the cycle. The an upper bound for the total number of binary words with
AN (x) = q is

2i · 2� · [2q−(i+�) − Z(q − (i + �))].

Let ξ be the bit that advances the automaton from the ith state to the (i+1)th
state (i.e. the transition that takes the automaton into the cycle) and η be the
bit that advances that automaton from the q − (i + �)th state to the (i + 1)th
state (i.e, the transition that completes the cycle). If ξ = η, then it is possible
to create an automaton with fewer states that accepts the same word and no
other of length n. A similar consideration applies upon leaving the cycle. Thus,
we have

2(i−1)+ · [2q−(i+�) − Z(q − (i + �))] · 2(�−1)+

possible words.
Finally, to conclude that sq(n) is eventually constant, note that while the

single cycle will have to be exited at different points depending on n mod k,
where k is the length of the main cycle, there will always be exactly one value of
n mod k and hence exactly one automaton contributed from the cycle and the
given “head” and “tail” words. See Figs. 2, 3, and 4 for illustrations of the cases
q = 2, 3, 4, respectively.

Remark 10. Here is perhaps a simpler view of the classification of detours in
Fig. 1. Suppose A is an NFA that uniquely accepts some word. Now consider
some shortest directed path P from q0 to the unique final state qf . Let us say

Count Regex Automaton

1 01∗
q1start q2

0

1

2 0∗1
q1start q2

1

0

3 (01)∗

n odd n even

q1start q2

0

1

q1start q2

0

1

Fig. 2. The witnessing automata for limn sq(n)/2 = 3, q = 2. The first two are used
at any length n, whereas the bottom two are each used only for one value of n mod 2,
illustrating Theorem 11.
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Count Regex Automata

1–5
001∗ (shown)
010∗, 01∗0
0∗10, 0∗11

q0start q1 q2
0 0

1

6–8
(001)∗ (shown)
(010)∗, (011)∗

n ≡ 0 mod 3 n ≡ 1 mod 3 n ≡ 2 mod 3

q1 q2

q0

start

0

0

1

q1 q2

q0

start

0

0

1

q1 q2

q0

start

0

0

1

9 0(01)∗

n odd n even

q1 q2

q0start

0

0

1

q1 q2

q0start

0

0

1

10 (01)∗x

n odd n even

q0start q1

q2

0

1
1

q0start q1

q2

0

1
0

Fig. 3. Automata and regular expressions witnessing limn sq(n)/2 = 10 for q = 3. The
exponents indicated by ∗ are not necessarily integers (so that for instance abcd1.5 =
abcdab). The letter x indicates 0 or 1, chosen so as to break a pattern.

that an alternate route is any simple directed path, edge-disjoint from P , joining
two vertices of P .

Suppose there are two alternate routes, Q and R, joining qi and qj, and qk

and ql, respectively. If we do not worry about the direction of the paths for the
moment, we may assume i ≤ j and k ≤ l. Then there are three possibilities:

1. j ≤ k: Q precedes R;
2. k ≤ i and j ≤ l: Q encompasses R;
3. i ≤ k ≤ j ≤ l: Q and R overlap.
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Count Regex Automata

1–3
(001)∗x (shown),
(010)∗x,
(011)∗x

n ≡ 0 mod 3 n ≡ 1 mod 3 n ≡ 2 mod 3

q0

start

q2 q1q3

0

0

1

0

q0

start

q2 q1

q3

0

0

1

1 q0

start

q2 q1

q3

0

0

1 1

4–6
0(001)∗, 0(011)∗,
0(101)∗ edge followed by cycle of length 3

7–8
(01)∗x0 (shown),
(01)∗x1

n ≡ 0 mod 2 n ≡ 1 mod 2

q0

start

q1

q2 q3

0

1
1

0

q0

start

q1

q3 q2

0

1
0

0

9 0(01)∗x edge followed by cycle of length 2 followed by edge

10–15

(0001)∗ (shown),
(0010)∗,
(0100)∗, (0011)∗,
(0110)∗, (0111)∗

n ≡ 0 mod 4 n ≡ 1 mod 4 n ≡ 2 mod 4 n ≡ 3 mod 4

q0

start

q1

q2q3

0

0

0

1

q0

start

q1

q2q3

0

0

0

1

q0

start

q1

q2q3

0

0

0

1

q0

start

q1

q2q3

0

0

0

1

16–17 00(01)∗, 01(10)∗ two edges followed by cycle of length 2

18–21
0∗101, 0∗110,
0∗111, 0∗100 loop followed by chain

22–25
0010∗, 0001∗,
0110∗, 0101∗ chain followed by loop

26–29
010∗1, 001∗0,
01∗00, 01∗01 chain of edges with a single loop near middle

Fig. 4. Witnessing automata for limn sq(n)/2 = 29, q = 4. The exponents indicated by
∗ are not necessarily integers, and the letter x indicates 0 or 1, chosen so as to break
a pattern.

Furthermore, for Q and R one can choose the direction of the edges indepen-
dently. This gives 3 · 4 = 12 possibilities to consider.

The main proviso to Theorem 9 may be that while the number of words with
given complexity reaches a limit, the set of witnessing automata does not quite.
To wit:

Theorem 11. There is a q such that there is no set of automata M1, . . . ,Ms

such that for all sufficiently large n,
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– for each i there is some x of length n such that AN (x) = q and Mi witnesses
the inequality AN (x) ≤ q, and

– for all x of length n, AN (x) = q iff the inequality AN (x) ≤ q is witnessed by
one of the Mi.

Proof. Let q = 2. The limiting value of sq is 6 as witnessed by the patterns: 0∗1,
01∗, (01)∗. However, for (01)∗, different states will be the final state depending
on the length n mod 2; see Fig. 2.

Theorem 12 (Number of right-inextendible words). For q ≥ 1, define a
function rq by

rq(n) = #{x ∈ {0, 1}n | AN (x) + 1 = AN (x0) = AN (x1)}.

Then rq is eventually constant, with limiting value
∑

i≥0,�>0
i+�<q

2(a−1)+ · [2q−(i+�) − Z(q − (i + �))] · 2�−1,

where Z(n) refers to the function defined in Theorem 2, and (x−y)+ := max{(x−
y), 0}.
Proof. Let x be a binary word such that its accepting automaton has a single
cycle, as in Fig. 5. As shown in Theorem 9, we need only consider this particular
case. Let � be the number of states between the cycle and the accepting state of
the automaton.

Fig. 5. Schematic of an automaton with a single cycle.

Suppose � = 0. Then the accepting state must be one of the states within the
cycle. Without loss of generality, suppose the path out of the accepting state is
triggered by a 0 input. Then x0 must have the same automatic complexity as x,
as appending 0 to x does not require the addition of any additional states, and
x is thus not inextendible. Thus, for a word to be inextendible, it is necessary
that � > 0.

Theorem 13. sq(n) is eventually bounded by 2q−2
(

q(q+5)
2 + 1

)

.

Proof. By Theorem 9, we can upper bound the sum by

∑

i,�≥0,i+�<q

2q =
(

q + 1
2

)

2q.
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oe i sVa lue s = [
0 , 0 , 2 , 2 , 4 , 2 , 10 , 2 , 16 , 8 , 34 , 2 , 76 , 2 , 130 , 38 , 256 , 2 ,
568 , 2 , 1036 , 134 , 2050 , 2 , 4336 , 32 , 8194 , 512 , 16396 , 2 , 33814 ,
2 , 65536 , 2054 , 131074 , 158 , 266176 , 2 , 524290 , 8198 , 1048816 , 2 ,
2113462 , 2 , 4194316 , 33272 , 8388610 , 2 , 16842496 , 128 , 33555424

]# from h t t p :// oe i s . org /A152061
def Z(n ) : # number o f p e r i o d i c b inary s t r i n g s o f l e n g t h n

return oe i sVa lue s [ n ]
def plus (k ) :

i f k<0:
return 0

return k
def l imS (q ) : #limitingNumberOfStringsWithNFAComplexity ( q ) :

num = 0
print ” . ”
for i in range (0 , q ) :

for l in range (0 , q ) :
i f i+l<q :

l e f t = 2∗∗( p lus ( i −1))
r i g h t = 2∗∗( p lus ( l −1))
middle = (2∗∗ ( q−( i+l ))−Z(q−( i+l ) ) )
num += l e f t ∗middle∗ r i g h t

return num
def answer (q ) :

bound = 2∗∗(q−2)∗(1+q∗( q+5)/2)
print ”q=” + str ( q ) + ” , ” + str ( limS (q ) ) ,
print ” , bound = ” + str ( bound ) + ” , ” ,
print str ( limS (q )/ f loat ( bound ) )

for q in range (3 , len ( oe i sVa lue s ) ) :
answer (q )

Fig. 6. Python code which when run hints at the sharpness of Theorem 13.

In fact, by considering the four possible truth values for the cases i = 0, � = 0,
we get the upper bound

∑

i=�=0

2q +
∑

i�=0,i+�>0

2q−1 +
∑

i>0,�>0

2q−2 = 2q + 2(q − 1)2q−1 +
(

q − 1
2

)

2q−2

= 2q−2

(

4q +
(

q − 1
2

))

= 2q−2

(

q(q + 5)
2

+ 1
)

.

Remark 14. A comparison of sq with the bound in Theorem13 can be done
using the computer code in Fig. 6. The number in the title of this section was
calculated using that Python script and using a table of values of Z from the
OEIS database. Table 3 shows an initial segment of the resulting sequence. There
we count only words starting with 0, so that the full number would be twice that,
matching the impression that limn s3(n) = 20 given by Table 2.
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Table 3. The number of binary words 0x of length n with AN (0x) = q, for sufficiently
large n. The value for q = 7 is surprisingly small when comparing with Table 2.

q limn sq(n)/2 q limn sq(n)/2

1 1 21 64 594 576

2 3 22 141 046 655

3 10 23 306 858 874

4 29 24 665 342 837

5 82 25 1 438 134 475

6 215 26 3 099 548 927

7 556 27 6 662 442 946

8 1 385 28 14 285 118 725

9 3 391 29 30 557 828 119

10 8 135 30 65 225 030 201

11 19 261 31 138 937 277 596

12 44 963 32 295 385 810 819

13 103 906 33 626 867 939 224

14 237 719 34 1 328 075 901 017

15 539 458 35 2 809 126 944 436

16 1 214 993 36 5 932 793 909 801

17 2 718 760 37 12 511 847 996 740

18 6 047 426 38 26 350 575 690 893

19 13 380 766 39 55 423 630 773 538

20 29 463 632 40 116 429 658 505 697
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Abstract. Numerous approaches study the vulnerability of networks
against social contagion. Graph burning studies how fast a contagion,
modeled as a set of fires, spreads in a graph. The burning process takes
place in synchronous, discrete rounds. In each round, a fire breaks out at
a vertex, and the fire spreads to all vertices that are adjacent to a burn-
ing vertex. The selection of vertices where fires start defines a schedule
that indicates the number of rounds required to burn all vertices. Given
a graph, the objective of an algorithm is to find a schedule that mini-
mizes the number of rounds to burn graph. Finding the optimal schedule
is known to be NP-hard, and the problem remains NP-hard when the
graph is a tree or a set of disjoint paths. The only known algorithm is an
approximation algorithm for disjoint paths, which has an approximation
ratio of 1.5.

We present approximation algorithms for graph burning. For general
graphs, we introduce an algorithm with an approximation ratio of 3.
When the graph is a tree, we present another algorithm with approx-
imation ratio 2. Moreover, we consider a setting where the graph is a
forest of disjoint paths. In this setting, when the number of paths is
constant, we provide an optimal algorithm which runs in polynomial
time. When the number of paths is more than a constant, we provide
two approximation schemes: first, under a regularity condition where
paths have asymptotically equal lengths, we show the problem admits
an approximation scheme which is fully polynomial. Second, for a gen-
eral setting where the regularity condition does not necessarily hold, we
provide another approximation scheme which runs in time polynomial in
the size of the graph.

Keywords: Approximation algorithms · Graph algorithms ·
Graph burning problem · Information dissemination · Social contagion

1 Introduction

Numerous efforts were initiated to characterize and analyze social contagion
or social influence in networks; see, for example, [8,16,29,30]. These studies
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investigate the vulnerabilities and strengths of these networks against the spread
of an emotional state or other data, such as a meme or gossip. For example,
there are studies that suggest emotional states can be transferred to others
via emotional contagion on Facebook; such emotional contagion is known to
occur without direct interaction between people and in the complete absence of
nonverbal cues [30].

The burning number [5,6] measures how prone a network is to fast social
contagion. In the burning protocol, like many other network protocols, data is
communicated between nodes in discrete rounds. The input is an undirected,
unweighted, finite simple graph. We say a node is burning if it has received
data. Initially, no vertex is burning. In each round, a burning vertex sends data
to all its neighbors, and all neighbors will be on fire at the end of the round;
this is consistent with the fact that a user in the network can expose all its
neighbours to a posted piece of data. In addition, in each given round, a new
fire starts at a non-burning vertex called an activator ; this can be interpreted
as a way to target additional users that initiate the contagion. Note that the
burning protocol does not provide a specified algorithm of how the fire spreads.
However, the algorithm can choose where to initiate the fire. The decisions of the
algorithm for the location of activators define a schedule that can be described
by a burning sequence: the ith member of the burning sequence indicates the
vertex at which a fire is started in round i. We say the graph is burned when all
vertices are on fire; that is, all members of the network have received the data.
Figure 1 provides an illustration of the burning process.

To understand how prone a graph is to the spread of data, we are interested in
schedules that minimize the number of rounds required to burn the whole graph.
The burning number of a given graph is the minimum such number; hence, an
optimal algorithm burns the graph in a number of rounds that is equal to the
burning number. Unfortunately, finding optimal solutions is NP-hard even for
elementary graph families [2]. The focus of this paper is to provide approximation
algorithms for burning graphs.

3
3 2

3

3
3

3

3

3

3
2

1

2 2

3

3
2

3

A

B
C

Fig. 1. Burning a graph in three rounds using a schedule defined by burning sequence
〈A,B,C〉. The number on each vertex indicates the rounds at which the vertex becomes
a burning vertex. At round 1, a fire starts at A. At round 2, another fire starts at B
while the fire at A spreads to all neighbors of A. At round 3, the fire spreads to all
vertices except for C, where a new fire is started.
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Previous Work

Bonato et al. [5,6] first introduced the burning process as a way to model spread
of contagion in a social network; they characterized the burning number for some
graph classes and proved some properties for the burning number. The results
of [32,33] extended these results for additional graph families and also studied a
variant of burning number in which the burning sequence is selected according
to some probabilistic rule. Bessy et al. [3] further studied the burning number
and proved that for a connected graph of size n the burning number is at most
2�√n� − 1 and conjectured that this number is indeed at most �√n�. They
proved better bounds for the burning number of trees. Land and Lu [31] slightly
improved the upper bound to

√
6
2

√
n. In [4], burning densities were considered

for the infinite Cartesian grid. Sim et al. [39] provided tight bounds for the
burning number of generalized Petersen graphs. Bonato et al. [2] proved that it
is NP-hard to find a schedule that completes burning in the minimum number
of rounds (in time equal to the burning number). Interestingly, their hardness
result holds for basic graph families such as acyclic graphs with maximum degree
three, spider graphs, and path forests (that is, a disjoint union of paths).

There are numerous gossiping and broadcasting protocols that aim to model
the amount of time it takes to spread information throughout a given network.
For example, in the telephone model for gossiping, there is a distinguished orig-
inator that starts spreading the gossip. In a given round, each node that has
received a piece of data (gossip) can inform one of its neighbors via a phone call.
A gossip schedule defines the order in which each node informs its neighbors.
The goal of a schedule is to minimize the number of rounds required to inform
all vertices. This problem is known to be NP-hard [20,40] (in fact, APX-hard
[38]) and there is an approximation algorithm completes within a sublogarith-
mic factor of optimal schedule [15] (whether a constant approximation algorithm
exists is an open problem). We refer the reader to [22,34,36] for more results on
telephone broadcasting. It is evident that the telephone model is not suitable
for situations where a user can expose all its neighbors by posting a gossip and
without in-person communication with them. The Radio model is more relevant
in this context, where each informed vertex broadcasts the message to all its
neighbors; however, in this model, there is a pre-defined set of originators and it
is often assumed that vertices have limited information about graph structures
(see, for example, [13,21,28,35]).

Social contagion is important from a viral marketing perspective, based on
the observation that targeting a small set of users can have a cascading word-
of-mouth effect in a social network. Domingos and Richardson [14,37] define
influence maximization problems that aim to define a set of initially activated
user that can eventually influence a maximum members of the network. This
problem is known to be NP-hard. Kempe et al. provide several approximation
algorithms for several simple diffusion models [24,26] as well as a more gen-
eral decreasing cascade model, where a behaviour spreads in a cascading fash-
ion according to a probabilistic rule [25]. These results were followed by more
approximation algorithms and inapproximability results for these models (see,
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for example, [10–12]). We refer the reader to Kleinberg [27] for the economic
aspects of cascading behaviour on social networks. Note that besides the diffu-
sion model, the influence maximization problem is different from burning in the
sense that initial informed users start spreading data at the same time (while in
burning they start one at a time).

Another problem related to graph burning is the Firefighter Problem, which
also assumes discrete, synchronous rounds. Given a graph G, at round 1, a fire
starts at a given node r of G. In each subsequent round, a firefighter can defend
one non-burning vertex while the fire spreads to all undefended neighbours of
each burning vertex. Once burning or defended, a vertex remains so for all sub-
sequent rounds. The process ends when the fire can no longer spread. The goal
of an algorithm (which we identify with a firefighter) is to defend a maximum
number of vertices that can be saved; that is, that are not burning at the end
of the process. Despite similarities in the underlying model, the objective in the
Firefighter problem is quite different from the burning problem. As expected,
the Firefighter problem is NP-hard [18], and it is known that no approximation
algorithms can achieve a factor of nα for any α < 1, assuming P �= NP [1]. The
problem remains NP-hard for the trees [18]; however, there are constant-factor
approximation algorithms for trees (see, for example, [9,19]).

Contributions

The burning problem is NP-hard, which is not surprising as many related prob-
lems are NP-hard. However, the fact that the problem remains NP-hard for
elementary graph families such as path forests (that is, disjoint unions of paths)
raises questions about its computational complexity. In particular, we may ask
whether there is a polynomial algorithm that has a constant approximation ratio.
Bonato and Lidbetter [7] answered this question for path forests in the affirma-
tive by introducing a 3/2-approximation algorithm. The problem remained open
for other graph families. This question is particularly interesting because it has
different answers for similar problems (as described in the previous section): for
telephone broadcasting, it remains open whether there is a constant approxima-
tion algorithm. For influence maximization, there is a constant approximation
algorithm, while for the Firefighter problem, it is NP-hard to achieve a sublinear
approximation ratio.

In this paper, we show that there is indeed a simple polynomial algorithm
with constant approximation ratio of at most 3 for any graph. Our algorithm
is intuitive and runs in time O(m log n) for a graph with n vertices and m
edges. When the graph is a tree, we present another algorithm with improved
approximation ratio of 2. Finally, we consider the problem when the graph is
a path forest. In case the graph is formed by a constant number of paths, we
present a dynamic programming algorithm that creates an optimal solution in
polynomial time. When the number of paths is not a constant, we provide two
approximation schemes. The first scheme works under a regularity condition
which implies the lengths of paths are asymptotically equal. For this scheme, we
reduce the problem to the bin covering problem to achieve a fully polynomial
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time approximation scheme (FPTAS) for the problem. For the general setting,
when there is no assumption on the length of the paths, we use a different
approach to present a polynomial time approximation scheme (PTAS) which
runs in time polynomial in the size of the graph.

2 Approximation Algorithm for Burning Graphs

In this section, we devise an approximation algorithm with approximation factor
of 3 for the burning problem. Throughout the section, we use G = (V,E) to
denote an input graph and Opt to denote the optimal algorithm for the problem.
We use Opt(G) to denote the burning number of G. We begin with the following
lemma.

Lemma 1. For a positive integer r, if there are r vertices at pairwise distance
at least 2r − 1, then any burning schedule requires at least r rounds to complete.

Proof. Let x1, x2, . . . , xr be r vertices of pairwise distance at least 2r − 1. For
each xi, consider the ball of radius r − 1 formed by vertices of distance at most
r − 1 from xi. Since the distance of xi and any xj is at least 2r − 1, their balls
do not intersect. Assume that there is a schedule that completes in at most r−1
rounds. That schedule should have a fire started inside each ball (a fire started
at a distance r or more reaches xi after at least r rounds). Hence, at least r
fires must be started, which implies the burning completes in at least r rounds.
This contradicts the initial assumption that the schedule completes within r − 1
rounds.

We devise a procedure Burn-Guess(G, g) that receives a ‘guess’ value g for
the number of rounds required to burn graph G. The output of Burn-Guess is
one of the following.

1. A schedule that completes burning in at most 3g − 3 rounds.
2. ‘Bad-Guess’ that guarantees any schedule requires at least g rounds to com-

plete.

To devise an approximation algorithm, it suffices to find the smallest guess
value g∗ so that Burn-Guess(g∗) returns a schedule (which implies Burn-
Guess(g∗ − 1) returns Bad-Guess). In this way, the returned schedule completes
in at most 3g∗ −3 rounds while Opt requires at least g∗ −1 rounds to complete.
This results in an algorithm with approximation ratio of at most 3.

Burn-Guess processes vertices one-by-one in an arbitrary order and maintains
a set of ‘centers’ that is initially empty. When processing a vertex v, the algorithm
checks the distance of v to its closest center. If such distance is at most 2g − 2,
then v is marked as ‘non-center’; otherwise, v is added to the set of centers. In this
way, all centers are at pairwise distance of at least 2g − 1. After processing any
vertex, if the number of centers becomes equal to g, then Burn-Guess returns
Bad-Guess. When all vertices are processed, the algorithm returns a schedule
defined by a burning sequence formed by an arbitrary ordering of centers.
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Lemma 2. If Burn-Guess(G, g) returns Bad-Guess, then there is no burning
schedule for G that completes in less than g number of rounds.

Proof. Burn-Guess returns Bad-Guess if the number of centers becomes equal
to g. Since all centers are at pairwise distance of at least 2g − 1, we have that
there are g vertices at pairwise distance of 2g − 1 or more. Applying Lemma 1,
we conclude that any burning schedule requires at least g rounds to burn the
graph.

Lemma 3. If Burn-Guess(G, g) returns a burning sequence, then the burning
of that sequence completes in at most 3g − 3 rounds.

Proof. All non-center vertices are at distance at most 2g−2 of at least one center.
Recall that the burning schedule uses centers as activators. The fire starts at the
last center at round g − 1; all vertices within distance 2g − 2 of that center burn
by round 3g − 3. We conclude that all non-center vertices burn by round 3g − 3.

We now arrive at our main result.

Theorem 1. There is a polynomial algorithm with approximation ratio of at
most 3 for burning any graph G = (V,E).

Proof. Let n = |V |. The algorithm finds the smallest value g∗ for which Burn-
Guess returns a schedule (g∗ ≤ n). By Lemma 3, the schedule returned by Burn-
Guess completes in at most 3g∗−3 rounds. Meanwhile, since Burn-Guess returns
Bad-Guess for g∗ − 1, be Lemma 2, no schedule completes in g∗ − 1 rounds.

It is not hard to see the upper bound in Theorem1 is tight. Consider the
graph in Fig. 2, where c1, . . . , ck are the centers selected by the algorithm. Note
the pairwise distance between any two centers is 2k and the distance of a non-
center and a center is at most 2k−2. Thus, Burn-Guess returns a schedule when
its parameter is g = k while it returns Bad-Guess when g = k − 1. Assuming
centers are burned in the same order, the cost of the algorithm is 3k − 2 (a fire
starts at ck at round k and reaches b at round 3k − 2). On the other hand, there
is a better scheme that burns vertex a at round 1 and burns the middle point
of the path p between ck and b at round 2. This scheme burns all vertices by
round k + 1. Consequently, the approximation ratio of the algorithm is at least
3k−2
k+1 which converges to 3 for large values of g.

A straightforward implementation of the Burn-Guess uses breadth-first
traversal of the graph. Starting with an unvisited node v, we add v to the set
of centers and apply breath first to visit all vertices within distance 2g − 2 of
v. After reaching ‘depth’ of 2g − 2, we stop the breath search and pick another
unvisited vertex as the next center and start another breath first traversal. This
process continues until all vertices are visited or the number of centers exceeds
g. Clearly, any edge is visited at most once and hence Burn-Guess runs in time
O(m). Since Burn-Guess is called O(log n) times (via a binary search in the
space of g), we conclude that our algorithm for burning graphs runs in time
O(m log n).
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Fig. 2. An instance for which the scheme by the burning algorithm takes three times
more rounds than the optimal algorithm to burn the graph.

The above implementation is useful when the order in which vertices are
processed is not defined by the algorithm. This is particularly handy when
Burn-Guess has to work based on partial information; for example, a parallel
setting where only a partition of the input graph is available to each processor.
When there is no such restriction, we can apply optimizations like selecting the
point located at the maximum distance to all current centers as the next cen-
ter (this is similar to farthest-first algorithm for the metric k-center problem;
see, for example, [41]). While this optimization is likely to improve the approx-
imation ratio (albeit with analysis techniques that would be more involved) it
degrades the running time: an efficient implementation of requires pre-computing
all-pair shortest-path distances in O(mn + n2 log n) using Dijkstra’s algorithm.
Provided with these distances, running an instance of Burn-Guess(G, g) takes
O(ng), which is O(n2) for general graphs (and O(n3/2) for connected graphs
since g ∈ O(

√
n) when the graph is connected). Burn-Guess is called O(log n)

times, which gives a total time complexity of O(n2 log n). This complexity is
dominated by the O(mn + n2 log n) of pre-computing pair-wise distances.

3 Approximation Algorithm for Trees

In this section, we show that there is an algorithm with an approximation ratio
of at most 2 for burning a tree T . In a way analogous to general graphs, the
algorithm is based on a procedure Burn-Guess-Tree(T, g) that guarantees the
following for a given guess value g.

1. If the algorithm returns Bad-Guess, then any schedule for burning T requires
at least g rounds to complete.

2. If the algorithm returns a schedule for burning T , then that schedule com-
pletes in at most 2g rounds.

It is evident that, provided with the above guarantees, the schedule returned
for the smallest value of g completes within twice the optimal schedule.

Given an input tree T , Burn-Guess-Tree(T, g) selects an arbitrary node s as
the root of the tree. The level of a node v is the distance of v to s and the
k-ancestor of v is the vertex at distance k from v on its path to the root. The
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procedure works in a number of steps and maintains a set of centers as well as a
set of marked vertices. Initially, the set of centers is empty, and all vertices are
unmarked. At the beginning of a step i (where i ≤ g), the algorithm finds an
unmarked vertex v with the highest level. If the level of v is at least g, then the
g-ancestor of v is added to the set of centers; otherwise, the root of T is added to
the set of centers. Meanwhile, all vertices within distance g of the added center
are marked. The procedure continues until all vertices are marked. In this case,
the algorithm returns a burning sequence defined by an arbitrary ordering of
centers as activators. If the number of centers becomes larger than g before all
vertices are marked, then the algorithm returns Bad-Guess. Figure 3 illustrates
the Burn-Guess-Tree procedure.

Lemma 4. If Burn-Guess-Tree(T, g) returns a burning sequence, then the burn-
ing of that sequence completes in at most 2g rounds.

Proof. Since all vertices are marked, they are all within distance g of a cen-
ter. In the returned schedule, a fire is activated at all centers by round g, and
consequently, all vertices are burned by round 2g.

Define a ‘g-site partition’ as a set of at most g vertices, called g ‘sites’, so that
every vertex is within distance g of its closest site. We say that the tree admits
the ‘g-site condition’ if it has a g-site partition. Clearly, in order to burn a tree
in less than g rounds, the tree should pass the g-site condition; otherwise, any
set of at most g activators leaves a vertex outside of combination of the spheres
of all the activators and hence, the burning process cannot complete within g
rounds.

Lemma 5. If Burn-Guess-Tree(T, g) returns Bad-Guess, then T does not admit
g-site condition.

B
C

A

1c

s

2c

Fig. 3. An illustration of Burn-Guess-Tree with parameter g = 2. The tree is rooted
at s. The first selected vertex is A and the first center is c1. The next unmarked vertex
with maximum level is B and c2 is selected as the next center. At this point, since there
are still unmarked vertices (nodes that are not highlighted), the algorithm returns Bad-
Guess. In the next iteration with g = 3, the algorithm returns a schedule formed by
the parent of c1 and s.
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Proof. Consider otherwise; that is, there is a g-site partitioning P defined by
at most g sites so that every vertex in the tree is within distance g of one of
the sites in P . We show that it is possible to update P so that it is still a
g-site partitioning while having the set of g activators selected by Burn-Guess-
Tree(T, g) as its set of sites. If that it is true, then every vertex is within distance
g of the g centers selected by the algorithm. However, we know at the time Bad-
Guess was returned, there was an unmarked node at distance more than g of
the closest center (contradiction).

Let c1, c2, . . . , cg be the centers selected by Burn-Guess-Tree (in the same
order they are selected). We iteratively update P by including these centers in
its set of sites. At the beginning of iteration i, P has c1, . . . , ci−1 in it set of
sites. In Burn-Guess-Tree, vertices at distance g of these centers are marked. Let
v be the unmarked vertex with maximum distance from a marked node; hence,
following the definition of the Burn-Guess-Tree, ci is the g-ancestor of v. Since
P is a g-site partitioning, it should have a site c′ within distance g of v. Note
that such site cannot be any of cj with j < i since v is unmarked. We argue that
if c′ is replaced with ci in S, the partitioning still remains a g-site partitioning.
For that, we show unmarked vertices within distance g of c′ form a subset of
unmarked vertices within distance g of ci. Consider otherwise; that is, there is an
unmarked vertex w at distance more than g of ci and within distance g of c′. If
w is in the tree rooted at ci, then level of w will be more than v that contradicts
v being the unmarked vertex with the highest level. Next assume w is outside
of the tree rooted at ci. Since w has distance more than g to ci and is within
distance g of c′, we conclude that c′ should be outside of the tree rooted at ci;
this contradicts v being within distance g of c′ (since ci is at distance g of v).
To summarize, after replacing c′ with ci in P , the partitioning remains a g-site
partitioning. After repeating this process g times, P will be a g-site partitioning
formed by the g centers selected by Burn-Guess-Tree that is a contradiction as
mentioned above.

Theorem 2. There is a polynomial time algorithm with approximation ratio of
at most 2 for burning a tree.

Proof. The algorithm finds the smallest value g∗ for which Broad-Guess-Tree
returns a schedule. By Lemma 4, such a schedule burns the graph in at most
2g∗ rounds. Meanwhile, since Burn-Guess-Tree returns Bad-Guess for g∗ − 1, by
Lemma 5, the tree does not have any (g∗ − 1)-site partition and hence, the cost
of Opt is more than g∗ − 1. In summary, the cost of the algorithm is at most
2g∗, and the cost of the optimal solution is at least g∗.

4 Algorithms for Disjoint Paths

Consider the burning problem when the input is a disjoint forest of paths. This
problem is NP-hard and a 1.5 approximation exists for it [7]. In this section, we
present exact and approximation algorithms for this problem. When the graph
is formed by a constant number of paths, we provide an exact algorithm that
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runs in polynomial time. For the more interesting case when the graph is formed
by a non-constant number of paths, we provide two approximation schemes for
the problem. Throughout the section, we assume the input is a graph of size n
formed by b paths of length n1, n2, . . . , nb, where ni ≤ ni+1.

Constant Number of Disjoint Paths. We show that when the number of
disjoint paths is constant, there is a polynomial time algorithm which provides
optimal solution. We call a graph G an r-subset of graph G′ if both G and G′

are formed by b disjoint paths of the same lengths, except for one path p which
has length x in G and length x + i in G′ for some i in the range [0, 2r + 1].

Lemma 6. A graph G′ formed by a forest of disjoint paths can be burned in t
rounds if and only if it has a t-subset G which can be burned in t − 1 rounds.

Proof. Assume that G′ can be burned in t rounds. Remove all vertices burned
through the fire started at round 1. There will be at most 2t + 1 such vertices.
Removing them will form a t-subset of G and the same schedule can be used to
burn that subgraph in t−1 rounds. Next, assume G′ has a t-subset G which can
be burned in t − 1 rounds. To burn G′, we use the same schedule for burning G
except that at round 1 a fire is started at a node at distance t of one endpoint of
path p which differentiates the two graphs. By round t, 2t+1 vertices at distance
t of that node are burned. The remaining vertices that form G can be burned in
t rounds following the same burning schedule for G.

The above lemma helps us devise a straightforward dynamic programming
solution. We fill a table of size polynomial to n (size of the graph) which has
a boolean entry for each graph formed by b paths of total size at most n and
for each deadline value τ (which is at most n). Such entry indicates whether
the graph can be burned in τ rounds. Using Lemma 6, we can fill the table in a
bottom-up approach. Additional bookkeeping when filling the table leads us to
the optimal burning scheme.

Theorem 3. Given a graph of size n formed by a forest of b = Θ(1) disjoint
paths, there is an algorithm that generates an optimal burning scheme. The time
complexity of the algorithm is polynomial in n.

Proof. Consider a dynamic-programming table A of dimension b + 1. Here,
A[t][x1][x2] . . . [xb] is a boolean value that indicates whether it is possible to
burn a forest of b paths within t rounds, where the first path of the forest has
length x1, the second path has length x2, and so on. In other words, an entry
in the table is associated with a deadline time t (first dimension) and a graph
formed by b disjoint paths (subsequent b dimensions). Note that the first dimen-
sion takes values between 1 and n (the upper bound for burning time), while any
other dimension takes values between 1 and nb, where nb is the maximum length
of any path. Consequently, the size of the table is O(nb+1), which is polynomial
in n for constant values of b. To find the optimal burning time, after filling
the table, find the smallest t∗ for which A[t∗][n1][n2] . . . [nb] is True; recall that



84 A. Bonato and S. Kamali

n1, . . . , nb are the lengths of paths in the input forest. Additional bookkeeping
when filling the table leads us to the optimal burning scheme which completes
in t∗ rounds.

Next, we describe how to fill the table. Assume that the table is processed
(filled) for values up to t−1 for the first dimension; that is, the entries for graphs
which can be burned within deadline t − 1 are set to True. By Lemma 6, graphs
with True entries for deadline t have a t-subset with True entry for deadline
t − 1. Hence, for any entry with True value associated with deadline t − 1 and
graph G′, we set all entries associated with deadline t and graphs having G′ as
a t-subset to be True. In other words, if entry A[t − 1][x1][x2] . . . [xb] is true,
then for any j ≤ b, the entry A[t][x1][x2] . . . [xj + i] . . . x[b] will be set to True
for i ≤ 2t − 1. In doing so, we also record the value of j. In this fashion, we can
retrieve a burning schedule by looking at the index of the path at which a fire
is started in each given round.

FPTAS for Non-constant Number of Regular Disjoint Paths. In this
section, we use a reduction to the bin covering problem to show the burning
problem admits a fully polynomial time approximation scheme (FPTAS) when
the input graph is formed by a non-constant number of ‘regular’ disjoint paths.
Here, we assume the paths are regular in the sense that the lengths of all paths
are asymptotically equal. The bin covering problem is the dual to the classic bin
packing problem and can be defined as follows.

Definition 1. The input to the bin covering problem is a multi-set of items with
sizes in the range (0,1]. The goal is to ‘cover’ a maximum number of size 1 with
these items. By covering a bin, we mean assigning a multiset of items with total
size at least 1 to the bin.

Bin covering is NP-hard [17]; but there is an FPTAS for the problem:

Lemma 7 [23]. There is an algorithm A that, given a multiset L of n items with
sizes s(ai) ∈ (0, 1] and a positive number ε0 > 0, produces a bin covering of L
such that A(L) ≥ (1 − ε0)OPT (L), assuming OPT (L) is sufficiently large. The
time complexity of A is polynomial in n and 1/ε0.

To provide an FPTAS for the burning problem on regular disjoint paths, we
reduce the problem to the bin covering problem. Before presenting the reduction,
we state two lemmas with respect to the bin covering problem:

Lemma 8. Assume that two bins B1 and B2 are covered with a multiset of items
so that B1 only includes items of sizes at most 1/3 and B2 includes two items
of size at least 2/3. It is possible to modify the covering so that each bin has an
item of size at least 2/3 and both bins are still covered.

Proof. Since all items in B1 have size at most 1/3, it is possible to select a subset
S of these items which has total size in (1/3, 2/3] (start with an empty S and
repeatedly add items until the total size is in the desired range). Move items of
S from B1 to B2 and move an item of size at least 2/3 from B2 to B1. Both bins
will be covered in the result and each contain an item of size at least 2/3.



Approximation Algorithms for Graph Burning 85

Lemma 9. If we remove a multiset of total size x ≥ 2 from an instance of bin
covering, then the number of covered bins in the optimal packing reduces by at
least 	x/2
.
Proof. If we remove a multiset of items with total size at least 1, then the number
of covered bins decreases by at least 1. Otherwise, if removing a set of items with
total size at least 1 does not reduce the number of covered bins, then these items
can cover a new bin without impacting coverage of other bins. This contradicts
the optimality assumption for the covering. Given a multiset of total size x, we
can partition it into 	x/2
 multisets, all having size at least 1; this is possible
because all items have size at most 1. Repeating the above argument 	x/2
 times
completes the proof.

Consider an instance I of the graph burning problem formed by b paths
P1, . . . , Pb of lengths n1, n2, . . . , nb such that ni ≤ ni+1. Let mi = �(ni + 1)/2�
and C = 3mb. We define the k-instance of bin covering associated with I as
an instance of bin covering formed by b ‘large’ items {p1, . . . , pb}, where pi has
size 1 − mi/C for 1 ≤ i ≤ b. We also define k ‘small’ items {q1, . . . , qk}, where
qj has size min{j/C, 1/3} for 1 ≤ j ≤ k. Note that all large items have size
at least 2/3 and small items have size at most 1/3. Also note that large items
appear in same way for any value of k in the k-instances of the bin covering
problem. Figure 4 illustrates this construction. Since paths are regular, the size
large items is upper-bounded by a constant c∗ = 1 − m1/(3mb) which we refer
to as the canonical constant of the graph burning instance. Intuitively, burning
the b disjoint paths is translated to covering b bins. By Lemma 8, the b large
items can be placed in distinct bins without changing the number of covered
bins. The remaining space of bins (to be covered) translates to paths of different
length that should be burned. Small items are associated with the radii of the
fires started at different rounds. These intuitions are formalized in the following
two lemmas:

Lemma 10. Given a solution for the k-instance of bin covering that covers at
least b bins, one can find, in polynomial time, a burning scheme that completes
in at most k rounds.

Proof. Given the solution for bin covering, we apply Lemma8 to ensure that
there are b bins that each include exactly one large item (this is possible because
large items have size at least 2/3 and small items have size at most 1/3). Call
the resulting bins B1, . . . , Bb, where Bi is the bin that includes the large item pi.
Let Si be the set of small items in Bi. We associate items in Si with activators in
a burning schedule. Assume that initially all vertices are unmarked. We process
small items in the solution for bin covering in the following manner. If qj (1 ≤
j ≤ k) appears in set Si in the covering solution, then at time k − j we start a
fire at distance j of the left-most marked node in path Pi and mark any node
at distance j of it. In this way, by the end of round k all marked nodes will
be burned. Since the total size of items in Si is at least mi/C, the number of
marked vertices by the time k would be 2mi + 1 ≥ ni; that is, all vertices will
be burned by the end of round k.
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Fig. 4. A burning scheme for an instance of the burning problem on disjoint paths
(left) and the equivalent covering for the 5-instance of the covering problem (right).
Here, we have m1 = 1,m2 = 3,m3 = 4, and m4 = 4.

Lemma 11. Given a burning scheme that completes within k − 1 rounds, it is
possible to create a solution for the k-instance of bin covering, in polynomial
time, so that at least b bins are covered in the solution.

Proof. We say an edge is burned if its both endpoints are burned. Since the
burning scheme completes in at most k − 1 rounds, we can burn all edges within
k rounds even if the lengths of all paths is increased by 2.

Consider a path Pi of length ni. Assume that the burning schedule starts
fires at rounds k − y1, k − y2, . . . , k − yt in Pi. Note that a fire started at round
x burns at most 2(k − x) edges within k rounds. Hence, if Y denotes the total
sum of yj ’s, then at most 2Y edges are burned by round k. Since all edges can
be burned within k rounds even in a longer path of ni +2 vertices, we have that
2Y ≥ ni + 1; that is Y ≥ mi.

We create a solution for the covering problem as follows. Place the large items
in separate bins, and let Bi be the large bin at which pi is placed. Recall that
fires at the path Pi are started at rounds k − y1, . . . , k − yt. Consider the set
Qi = {min{y1/C, 1/3}, . . . ,min{yt/C, 1/3}}, which is a subset of small items in
the covering instance. We place items in Qi in the bin that contains large item
pi. Next, we show the total size of items in the bin Bi is at least 1. First, note
that if any item in Qi has size 1/3, since pi has size at least 2/3, the total size
of these two items will be 1 and we are done. Next, assume all items in S are
smaller than 1/3; that is, Qi = {y1/C, . . . , yt/C}. The total size of items in Qi

is equal to Y/C which is at least mi/C. Hence, the total size of items in the bin
will be at least mi/C (for small items) plus 1 − mi/C (for the large item bi)
which sums to at least 1. In summary, for any i ≤ k, if we can burn edges in
path Pi within k rounds, we can cover the bin Bi with small items associated
with the rounds at which Pi is burned.

We repeatedly apply the FPTAS of Lemma7 (with a carefully chosen value of
ε0) to find the smallest k such that, for the k-instance of bin covering, the FPTAS
returns a solution that covers at least b bins. By Lemma 10, such solution can be
converted to a burning scheme. Using Lemmas 9 and 11, we can show that this
solution achieves approximation ratio of 1 + ε while running in time polynomial
in both n and 1/ε. More formally, we can prove the following theorem:
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Theorem 4. Given a graph of size n formed by a forest of b = ω(1) regular
disjoint paths and a positive value ε, there is an algorithm that generates a burn-
ing scheme that completes within a factor 1 + ε of an optimal scheme. The time
complexity of the algorithm is polynomial in both n and 1/ε.

Proof. Define ε0 = (1−c∗)ε
4+(5−c∗)ε (recall that c∗ is the canonical constant of the

regular instance of the burning problem). Find the smallest k such that for the
k-instance of bin covering, the FPTAS of Lemma 7 with parameter ε0 returns
a solution that covers at least b bins. Let that value of k be k∗. By Lemma 10,
that solution can be converted, in polynomial time, to a burning scheme that
completes in k∗ rounds. Note that the total size of small items in the k∗-instance
is k∗(k∗+1)/(2C), and the total size of large items is at most bc∗. Since b bins are
covered, we conclude that k∗(k∗ + 1)/(2C) ≥ b − bc∗; that is bC

k∗(k∗+1) ≤ 1
2(1−c∗) .

This implies that for large values of k we have bC
k′2 < 1

1−c∗ where k′ = k∗ − 1 (we
refer to this fact later).

Next, we provide a lower bound for the cost of Opt. Since k∗ is the smallest
value for which the FPTAS failed to cover b bins in the k′-instance of bin covering,
by Lemma 7, an optimal covering algorithm Opt cannot cover more than b/(1−
ε0) bins in the k′-instance. Let ε1 = ε0/(1 − ε0). Thus, Opt cannot cover more
than b(1 + ε1) bins in the k′-instance. Let α = (1 − ε2)k′, where ε2 = 4

1−c∗ ε1.
We claim that Opt cannot cover b bins in the α-instance of the bin covering
problem. If this claim is true, then there is no burning scheme that completes
within α − 1 rounds; otherwise, by Lemma 11 that burning scheme yields to a
covering solution that covers b bins of the α-instance of the bin covering problem.
In summary, we will have a burning scheme that completes in k∗ rounds while
an optimal burning algorithm requires α − 1 rounds to burn the graph. This
gives an approximate ratio of k∗/(α − 1) which approaches to 1

1− ε2
= 1 +

4ε0
(1− ε0)(1− c∗)− 4ε0

= 1 + ε for large values of k∗. Note that, since k∗ is lower-
bounded by the number of paths, we have k∗ ∈ ω(1).

It remains to show that an optimal covering algorithm cannot cover b bins
in the α-instance of bin covering. Note that the α-instance is similar to the
k′-instance except that, among the small items, the ε2k

′ largest items are miss-
ing. Call these items critical items. We claim that the total size of critical items,
denoted by X, is more than 2ε1b. For now assume it is true; by Lemma 9, remov-
ing items with total size at least X decreases the number of covered bins in an
optimal solution of the k′-instance by at least 	X/2
. Thus, if it is possible
to cover b bins in the α-instance then it is possible to cover at least b + ε1b
bins in the k′-instance, which we know is not possible. We conclude that we
cannot cover b bins in the α-instance. We are just left to show X > 2ε1b. We
have X = k′2(2ε2 − ε22)/2C + k′ε2/2C > k′2ε2/2C. Therefore, it suffices to have
k′2ε2/2C > 2ε1b; that is, ε2 > 4bc

k′2 ε1. We previously observed that bc
k′2 < 1

1−c∗ .
Therefore, the inequality holds as long as ε2 ≥ 4

1−c∗ ε1.

PTAS for the General Case of Non-constant Disjoint Paths. In this
section, we use a direct approach to provide a PTAS for graphs formed by
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non-constant number of disjoint paths. Unlike previous section, we do not make
any assumption on the length of the paths, in particular, the length of paths
can be asymptotically larger than the number of paths. We note that when
regularity condition holds, the result of the previous section is stronger as the
provided algorithm is fully polynomial.

Assume that the graph is formed by b disjoint paths, each of length at most
n. An instance of the decision variant of the burning problems has a parameter
g and asks whether it is possible to burn the graph with fires started at times
1, 2, . . . , g. We define the radius of a fire started at round t as g − t + 1; so an
instance I(g) of the decision problem asks whether it is possible to burn the
graph with fires of radii 1, 2, . . . , g. Given a constant integer k, we form at most
k + 1 groups of fires, each containing fires of close radii such that the difference
in the radii of any two fire in a group is at most β = 	g/k
 (there will be β
fires in each group, except potentially the last one). Based on this grouping, we
define two new instances of the decision problem: in the weak instance I ′(g, k),
the fires of the first group (with smallest radii) are removed and the radii of
fires of other groups is rounded to the smallest radius in the group. In the strong
instance I ′′(g, k) the radii are rounded up to the largest radius in the group.
Note that in both weak and strong instances, there are k + 1 radius sizes, and
each fire has radius at least 	g/k
 + 1. In addition, note that if we remove the β
fires of largest radii from the strong instance I ′′(g, k), the result will be the weak
instance I ′(g, k). We prove the following lemma, which will be later applied on
the weak instances of the problem.

Lemma 12. Consider an instance of the burning problem on disjoint paths in
which there are g fires each having a radius among k + 1 possible radii for some
constant k so that each radius is in the range (	g/k
, g]. There is an algorithm
that answers the problem with the following guarantees. If the answer is ‘yes’,
then it is possible to burn the graph with the fires in the instances. If the answer
is ‘no’, then there is a number p ∈ o(g) so that it is not possible to burn the
graph when the p fires of largest radii are removed.

Proof. Assume that there are n vertices in the graph. We divide the paths in the
graph into short paths with length O(g) and long paths with length ω(g). If the
number of long paths is Ω(g), the algorithms sends ‘no’: there are ω(g2) vertices
in the graph while the maximum number of vertices that can be burned with the
instance is O(g2). Next, assume the number of long paths is p where p ∈ o(g).
Further, assume the number of paths is at most g; otherwise, the algorithm
returns ‘no’ as there is no way to burn more than g disjoint paths with g fires.
In order to achieve the desired guarantees, we exhaustively check all possible
burning schemes for short paths and use a simple strategy to burn long paths.
Assume that all short paths have length at most αg for some constant α. Since
all fires have radius more than g/k, it suffices to use at most �αk/2� fires to
burn each path. Hence, for each path, we have at most �αk/2� fires each having
one of the k possible radii. There are τ =

(�αk/2�+k
k

)
ways to assign fires to each

path; define each such assignment a ‘fire schedule’ for a path. Note that τ is a
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constant. There are at most g short paths each taking one of the possible τ fire
schedules. It follows that there are

(
g+τ

τ

)
ways to assign fire schedules to these

paths; this value is polynomial in g as τ is constant. We conclude that there is a
polynomial number of possible burning schedules for short paths. For each such
schedule for the short paths, we complete the burning by using the fires absent
in the schedule to burn long paths. We process these fires in an arbitrary order
and assign them one by one to the long paths. A fire of radius r burns up to
2r − 1 vertices. When this fire is assigned to a path, 2r − 1 vertices in the path
are declared ‘burned’ and the process continues until all vertices in the path are
burned, after which the fires are assigned to burn the next path. This process
continues until all paths are burned, in which case the algorithm returns ‘yes’.
If we run out of fires and not all paths are burned, the burning schedule for the
short paths is not useful and the process continues by checking the next schedule
for short paths. If all schedules for short paths are checked and for all of them
we fail to burn long paths with the remaining fires, the algorithm returns ‘no’.

Next, we show the algorithm provides the desired guarantees. First, if the
algorithm returns ‘yes’, then there has been a schedule to burn short paths and
the remaining fires have successfully burned the long paths. Hence, there is a
schedule for fires in the instance that burns the whole graph. Next, assume the
algorithm returns ‘no’; we claim no algorithm can burn the graph using the same
fires when the p fires with the largest radii are removed (recall that p ∈ o(g) is
the number of long paths). Consider otherwise, that is, assume it is possible to
burn the graphs with the mentioned fires. The burning schedule for assigning
fires to short paths in such solution S is checked also by the algorithm. The
difference is that the algorithm assigns fires to long paths differently from S.
Since the algorithm returns ‘no’, it fails to cover all paths with fires. Hence, if
we remove the last fire assigned to each path by the algorithm, the number of
vertices that can be burned by the remaining fires will be less than the total
size of long paths. Consequently, if we remove the p fires with the largest radii,
the remaining fires do not suffice to burn the long paths. In summary, if we
assign fires to short paths in the same way that S does and remove the largest
p fires from the rest of fires, the remaining fires cannot burn long paths. This
contradicts our assumption that S can burn all graphs with the same fires.

Theorem 5. Given a graph of size n formed by a forest of b = ω(1) disjoint
paths and a positive value ε, there is an algorithm that generates a burning
scheme that completes within a factor 1 + ε of an optimal scheme. The time
complexity of the algorithm is polynomial in n.

Proof. Let k = �1/ε� + 1. We exhaustively apply Lemma 12 to find the smallest
value of g so that the algorithm of the lemma returns ‘yes’ for the weak instance
I ′(g, k) of the problem. Since the graph can be burned with such weak instance,
it can be burned with the actual instance formed by fires of radii (1, 2, . . . , g)
(this only involves increasing the radii of fires in the solution provided by the
weak instance). Hence, we can burn the graph in g rounds. Next we provide a
lower bound for Opt.
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Since the algorithm returns ‘no’ for the weak instance I ′(g − 1, k), by
Lemma 12, it is not possible to burn the graph with fires in the weak-instance
in which p ∈ o(g) largest fires are removed for some value of p. Recall that
the weak instance I ′(g − 1, k) is similar to the strong instance I ′′(g − 1, k) in
which β = 	(g − 1)/k
 fires of largest radii are removed. We conclude that, the
strong instance I ′′(g−1, k) in which β −o(g) fires with largest radii are removed
cannot burn the graph. Meanwhile, such strong instance is similar to the reg-
ular instance formed by fires of radii 1, 2, . . . , g − 1 − β − o(g) in which some
fires radii is increased. We conclude that it is not possible to burn the graph in
g−1−β −o(g) rounds. This implies Opt ≥ g(1−1/k)−o(g). The ratio between
the cost of the algorithm and Opt approaches to g

g(1−1/k) = 1+1/(k−1), which
is at most 1 + ε.

5 Concluding Remarks

For general graphs, we provided an approximation algorithm with constant fac-
tor of 3. This result shows the burning problem is different from problems such as
the Firefighter problem that do not admit constant approximations. The approx-
imation factor is likely to be improved. However, such improvement requires
a different (and more involved) argument that improves the lower bounds of
Lemma 1 for the cost of Opt.

It is not clear whether the burning problem admits a PTAS or is APX-
hard for general graphs. A potential APX-hardness proof requires an approach
different from the current reductions which are confined to input graphs that
are forests of paths. Recall that we showed there is a PTAS for these instances.
As the existing negative results are confined to sparse, disconnected graphs, and
since a PTAS exists for disjoint forests of paths, it might be possible that a PTAS
exists for general graphs. We note that the hardness results concerning similar
problems such as k-center and dominating set problems cannot be applied to
show APX-hardness of the burning problem.
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Abstract. Identification of up to d defective items and up to h inhibitors
in a set of n items is the main task of non-adaptive group testing
with inhibitors. To reduce the cost of this Herculean task, a subset
of the n items is formed and then tested. This is called group test-
ing. A test outcome on a subset of items is positive if the subset con-
tains at least one defective item and no inhibitors, and negative oth-
erwise. We present two decoding schemes for efficiently identifying the
defective items and the inhibitors in the presence of e erroneous out-
comes in time poly(d, h, e, log2 n), which is sublinear to the number of
items. This decoding complexity significantly improves the state-of-the-
art schemes in which the decoding time is linear to the number of items,
i.e., poly(d, h, e, n). Moreover, each column of the measurement matrices
associated with the proposed schemes can be nonrandomly generated
in polynomial order of the number of rows. As a result, one can save
space for storing them. Simulation results confirm our theoretical anal-
ysis. When the number of items is sufficiently large, the decoding time
in our proposed scheme is smallest in comparison with existing work.
In addition, when some erroneous outcomes are allowed, the number of
tests in the proposed scheme is often smaller than the number of tests
in existing work.

Keywords: Non-adaptive group testing · Sublinear algorithm ·
Sparse recovery

1 Introduction

Group testing was proposed by an economist, Robert Dorfman, who tried to solve
the problem of identifying which draftees had syphilis [1] in WWII. Nowaday, it
is known as a problem of finding up to d defective items in a colossal number
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of items n by testing t subsets of n items. It can also be translated into the
classification of up to d defective items and at least n− d negative items in a set
of n items. The meanings of “items”, “defective items”, and “tests” depend on
the context. Normally, a test on a subset of items (a test for short) is positive
if the subset has at least one defective item, and negative otherwise. For testing
design, there are two main approaches: adaptive and non-adaptive designs. In
adaptive group testing, the design of a test depends on the earlier tests. With
this approach, the number of tests can be theoretically optimized [2]. However, it
would take a long time to proceed such sequential tests. Therefore, non-adaptive
group testing (NAGT) [2,3] is preferable to be used: all tests are designed in prior
and tested in parallel. The proliferation of applying NAGT in various fields such
as DNA library screening [4], multiple-access channels [5], data streaming [6],
neuroscience [7], has made it become more attractive recently. We thus focus on
NAGT in this work.

The development of NAGT applications in the field of molecular biology led
to the introduction of another type of item: inhibitor. An item is considered to
be an inhibitor if it interferes with the identification of defective items in a test,
i.e., a test containing at least one inhibitor item returns negative outcome. In
this “Group Testing with Inhibitors (GTI)” model, the outcome of a test on a
subset of items is positive iff the subset has at least one defective item and no
inhibitors. Due to great potential for use in applications, the GTI model has
been intensively studied for the last two decades [8–11].

In NAGT using the GTI model (NAGTI), if t tests are needed to identify
up to d defective items and up to h inhibitors among n items, it can be seen
that they comprise a t × n measurement matrix. The procedure for obtaining
the matrix is called the construction procedure. The procedure for obtaining
the outcome of t tests using the matrix is called encoding procedure, and the
procedure for obtaining the defective items and the inhibitor items from t out-
comes is called the decoding procedure. Since noise typically occurs in biology
experiments, we assume that there are up to e erroneous outcomes in the test
outcomes. The objective of NAGTI is to efficiently classify all items from the
encoding procedure and from the decoding procedure in the presence of noise.

There are two approaches when using NAGTI. One is to identify defective
items only. Chang et al. [12] proposed a scheme using O((d + h + e)2 log2 n)
tests to identify all defective items in time O((d + h + e)2n log2 n). Using a
probabilistic scheme, Ganesan et al. [13] reduced the number of tests to O((d +
h) log2 n) and the decoding time to O((d + h)n log2 n). However, this scheme
proposed is applicable only in a noise-free setting, which is restricted in practice.
The second approach is to identify both defective items and inhibitors. Chang
et al. [12] proposed a scheme using O(e(d+h)3 log2 n) tests to classify n items in
time O(e(d + h)3n log2 n). Without considering the presence of noise in the test
outcome, Ganesan et al. [13] used O((d + h2) log2 n) tests to identify at most d
defective items and at most h inhibitor items in time O((d + h2)n log2 n).
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1.1 Problem Definition

We address two problems. The first is how to efficiently identify defective items
in the test outcomes in the presence of noise. The second is how to efficiently
identify both defective items and inhibitor items in the test outcome in the
presence of noise. Let z be an odd integer and e = z − 1

2 be the maximum
number of errors in the test outcomes.

Problem 1. There are n items including up to d defective items and up to h
inhibitor items. Is there a measurement matrix such that

– All defective items can be identified in time poly(d, h, e, log2 n) in the presence
of up to e erroneous outcomes, where the number of rows in the measurement
matrix is much smaller than n?

– Each column of the matrix can be nonrandomly generated in polynomial time
of the number of rows?

Problem 2. There are n items including up to d defective items and up to h
inhibitor items. Is there a measurement matrix such that

– All defective items and inhibitors items can be identified in time
poly(d, h, e, log2 n) in the presence of up to e erroneous outcomes, where the
number of rows in the measurement matrix is much smaller than n?

– Each column of the matrix can be nonrandomly generated in polynomial time
of the number of rows?

We note that some previous works such as [14,15] do not consider inhibitor
items. In these works, Problems 1 and 2 can be reduced to the same problem by
eliminating all terms related to “inhibitor items.”

1.2 Problem Model

We model NAGTI as follows. Suppose that there are up to 1 ≤ d defectives
and up to 0 ≤ h inhibitors in n items. Let x = (x1, . . . , xn)T ∈ {0, 1,−∞}n

be the vector representation of n items. Note that the number of defective
items must be at least one. Otherwise, the outcomes of the tests designed would
yield negative. Item j is defective iff xj = 1, is an inhibitor iff xj = −∞,
and is negative iff xj = 0. Suppose that there are at most d 1’s in x,
i.e., |D = {j | xj = 1, for j = 1, . . . , n}| ≤ d, and at most h −∞’s in x, i.e.,
|H = {j | xj = −∞, for j = 1, . . . , n}| ≤ h.

Let Q = (qij) be a q×n binary measurement matrix which is used to identify
defectives and inhibitors in n items. Item j is represented by column j of Q (Qj)
for j = 1, . . . , n. Test i is represented by row i in which qij = 1 iff the item j
belongs to test i, and qij = 0 otherwise, where i = 1, . . . , q. Then the outcome
vector using the measurement matrix Q is

r = Q ⊗ x =

⎡
⎢⎣

r1
...
rq

⎤
⎥⎦ , (1)
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where ⊗ is called the NAGTI operator, test outcome ri = 1 iff
∑n

j=1 qijxj ≥ 1,
and ri = 0 otherwise for i = 1, . . . , q. Note that we assume 0 × (−∞) = 0 and
there may be at most e erroneous outcomes in r.

Given l binary vectors yw = (y1w, y2w, . . . , yBw)T for w = 1, . . . , l and some
integer B ≥ 1. The union of y1, . . . ,yl is defined as vector y = ∨l

i=1yi =
(∨l

i=1y1i, . . . ,∨l
i=1yBi)T , where ∨ is the OR operator. Then when vector x is

binary, i.e., there are no inhibitors in n items, (1) can be represented as

r = Q ⊗ x =
n∨

j=1

xjQj =
n∨

j∈D

Qj . (2)

Our objective is to design the matrix Q such that vector x can be recovered
when having r in time poly(q) = poly(d, h, e, log2 n).

1.3 Our Contributions

Overview: Our objective is to reduce the decoding complexity for identifying
up to d defectives and/or up to h inhibitors in the presence of up to e erro-
neous test outcomes. We present two deterministic schemes that can efficiently
solve both Problems 1 and 2 with the probability 1. These schemes use two basic
ideas: each column of a t1×n (d+h, r; z]-disjunct matrix (defined later) must be
generated in time poly(t1) and the tensor product (defined later) between it and
a special signature matrix. These ideas reduce decoding complexity to poly(t1).
Moreover, the measurement matrices used in our proposed schemes are nonran-
dom, i.e., their columns can be nonrandomly generated in time polynomial of
the number of rows. As a result, one can save space for storing the measurement
matrices. Simulation results confirm our theoretical analysis. When the num-
ber of items is sufficiently large, the decoding time in our proposed scheme is
smallest in comparison with existing work.

Comparison: We compare our proposed schemes with existing schemes in
Table 1. There are six criteria to be considered here. The first one is construc-
tion type, which defines how to achieve a measurement matrix. It also affects
how defectives and inhibitors are identified. The most common construction type
is random; i.e., a measurement matrix is generated randomly. The six schemes
evaluated here use random construction except for our proposed schemes.

The second criterion is decoding type: “Deterministic” means the decod-
ing objectives are always achieved with probability 1, while “Randomized”
means the decoding objectives are achieved with some high probability. Ganesan
et al. [13] used randomized decoding schemes to identify defectives and inhibitors.
The schemes in [12] and our proposed schemes use deterministic decoding.

The remaining criteria are: identification of defective items only, identifica-
tion of both defective items and inhibitor items, error tolerance, the number of
tests, and the decoding complexity. The only advantage of the schemes proposed
by Ganesan et al. [13] is that the number of tests is less than ours. Our schemes
outperformed the existing schemes in other criteria such as error-tolerance, the
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Table 1. Comparison with existing schemes. “Deterministic” and “Randomized” are
abbreviated as “Det. and “Rnd.”. The

√
sign means that the criterion holds for that

scheme, while the × sign means that it does not. We set e = z − 1
2

, λ = (d + h) ln n
W((d + h) ln n)

+z,

and α = max
{

λ
(d + h)2

, 1
}

, where W(x) = Θ (ln x − ln ln x) .

Scheme Construction

type

Decoding

type

Max. no.

of # errors

Defectives

only

Defectives and

inhibitors

Number of

tests (t)

Decoding

complexity

Chang et al. [12] Random Det. e
√ × O((d + h +

e)2 ln n)

O(tn)

Ganesan et al. [13]Random Rnd. 0
√ × O((d +

h) ln n)

O(tn)

Proposed

(Theorem4)

Nonrandom Det. e
√ × Θ

(
λ2 ln n

)
O

(
λ5 ln n
(d+h)2

)

Chang et al. [12] Random Det. e
√ √

O(e(d +

h)3 ln n)

O(tn)

Ganesan et al. [13]Random Rnd. 0
√ √

O((d +

h2) ln n)

O(tn)

Proposed

(Theorem5)

Nonrandom Det. e
√ √

Θ
(

λ3 ln n
)

O
(

dλ6 × α
)

decoding type, and the decoding complexity. The number of tests with our pro-
posed schemes for identifying defective items only (both defective items and
inhibitor items, resp.) is smaller (larger, resp.) than that with the scheme pro-
posed by Chang et al. [12]. The decoding complexity in our proposed scheme is
much less than theirs when the number of items is sufficiently large.

2 Preliminaries

Notation is defined here for consistency. We use capital calligraphic letters for
matrices, non-capital letters for scalars, bold letters for vectors, and capital
letters for sets. Capital letters with asterisk is denoted for multisets in which
elements may appear multiple times. For example, S = {1, 2, 3} is a set and
S∗ = {1, 1, 2, 3} is a multiset. Here we assume 0 × (−∞) = 0.

Some frequent notations are listed as follows:

– n; d: number of items; maximum number of defective items. For simplicity,
we suppose that n is the power of 2.

– | · |: the weight, i.e., the number of non-zero entries in the input vector or the
cardinality of the input set.

– ⊗,�: operator for NAGTI and tensor product, respectively.
– [n]: {1, 2, . . . , n}.
– S: s × n measurement matrix used to identify at most one defective item or

one inhibitor item, where s = 2 log2 n.
– M = (mij): m × n disjunct matrix, where integer m ≥ 1 is number of tests.
– T = (tij): t × n measurement matrix used to identify at most d defective

items, where integer t ≥ 1 is number of tests.
– x;y: representation of n items; binary representation of the test outcomes.
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– Sj ,Mj ,Mi,∗: column j of matrix S, column j of matrix M, and row i of
matrix M.

– D;H: index set of defective items; index set of inhibitor items.
– supp(c): support set of vector c = (c1, . . . , ck); i.e., supp(c) = {j | cj �= 0}.

For example, the support vector for v = (1, 0, 0,−∞) is supp(v) = {1, 4}.
– diag(Mi,∗) = diag(mi1,mi2, . . . , min): diagonal matrix constructed from

input vector Mi,∗ = (mi1,mi2, . . . , min).
– e; log; ln: base of natural logarithm; logarithm of base 2; natural logarithm.
– 	x
; �x�: ceiling function of x; floor function of x.
– W(x): the Lambert W function in which W(x)eW(x) = x.

2.1 Tensor Product

Let � be the tensor product notation. Note that the tensor product defined here
is not the usual tensor product used in linear algebra. Given an a × n matrix
A = (aij) and an s × n matrix S = (sij), their tensor product is defined as

R = A � S :=

⎡
⎢⎣

S × diag(A1,∗)
...

S × diag(Af,∗)

⎤
⎥⎦ =

⎡
⎢⎣

a11S1 . . . a1nSn

...
. . .

...
aa1S1 . . . aanSn

⎤
⎥⎦ , (3)

where diag(.) is the diagonal matrix constructed from the input vector, and
Ah,∗ = (ah1, . . . , ahn) is the hth row of A for h = 1, . . . , a. The size of R is r×n,
where r = a × s.

2.2 Reed-Solomon Codes

Let n1, r1, Λ, q be positive integers. Let Σ be a finite field and |Σ| = q. From
now, we set Σ = Fq. Each codeword is considered as a vector of Fn1×1

q . Let C
be a subset of Σn1 . Assume that for any y ∈ C, there exists a message x ∈ F

r1
q

such that y = Gx, where matrix G is a full-rank n1 × r1 matrix in Fq. Then C is
called a linear code with minimum distance Λ = miny∈C |supp(y)| and denoted
as [n1, r1, Λ]q. The cardinality of C is qr1 . Let MC denote the n1 × qr1 matrix
whose columns are the codewords in C.

An [n1, r1, Λ]q-Reed-Solomon (RS) code [16] is an [n1, r1, Λ]q code with Λ =
n1 − r1 + 1. Since the parameter Λ can be obtained from n1 and r1, we usually
refer to an [n1, r1, Λ]q-RS code as [n1, r1]q-RS code.

2.3 Disjunct Matrix

Superimposed code was introduced by Kautz and Singleton [17] and then gener-
alized by D’yachkov et al. [18] and Stinson and Wei [19]. A superimposed code
is defined as follows.
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Definition 1. An m×n binary matrix M is called an (d, r; z]-superimposed code
if for any two disjoint subsets S1, S2 ⊂ [n] such that |S1| = d and |S2| = r, there
exists at least z rows in which there are all 1’s among the columns in S2 while
all the columns in S1 have 0’s, i.e.,

∣∣∣⋂j∈S2
supp (Mj)

∖⋃
j∈S1

supp (Mj)
∣∣∣ ≥ z.

Matrix M is usually referred to as an (d, r; z]-disjunct matrix. Parameter
e = �(z − 1)/2� is referred to as the error tolerance of a disjunct matrix. It is
clear that for any d′ ≤ d, r′ ≤ r, and z′ ≤ z, an (d, r; z]-disjunct matrix is also
an (d′, r′; z′]-disjunct matrix.

Let x = (x1, . . . , xn)T ∈ {0, 1}n be the binary representation vector of n
items, where |x| ≤ d. From (2), the outcome vector of m tests by using M and
x is defined as follows:

y = M ⊗ x =
n∨

j=1

xjMj =
n∨

j∈D

Mj , (4)

where D = supp(x) = {j | xj = 1}. The procedure to get y is called encoding
procedure. It includes the construction procedure, which is to get a measurement
matrix M. The procedure to recover x from y and M is called decoding proce-
dure. Our objective is to recover x when the outcome vector y and the matrix
M are given.

The number of rows in an m×n (d, r; z]-disjunct matrix is usually exponential
to d [15,20]. Cheraghchi [21] proposed a nonrandom construction for (d, r; z]-
disjunct matrices in which the number of tests is larger than the existing works
as d or r increases.

Theorem 1 (Lemma 29 [21]). For any positive integers d, r, z and n with
d + r ≤ n, there exists an m × n nonrandom (d, r; z]-disjunct matrix where
m = O

(
(rd ln n + z)r+1

)
. Moreover, each column of the matrix can be generated

in time poly(m).

An (d, r; z]-disjunct matrix is called an (d; z]-disjunct matrix when r = 1, and
a d-disjunct matrix when r = z = 1. For efficient decoding in the NAGTI model,
we pay attention only to an m × n binary (d, r; z]-disjunct matrix in which each
column can be generated in time poly(m).

2.4 Bui et al.’s Scheme

In this section, the scheme proposed by Bui et al. [14] is described. Its main
contribution is that, given any m × n (d − 1)-disjunct matrix, a bigger t × n
measurement matrix can be generated such that up to d defective items (in a set
of n items having only defective and negative items) can be identified in time
O(t) = O(m log n), where t = 2m log n.

Encoding procedure: Let S be an s × n measurement matrix:

S :=
[
b1 b2 . . . bn

b1 b2 . . . bn

]
=
[
S1 . . . Sn

]
, (5)



100 T. V. Bui et al.

where s = 2 log n, bj is the log n-bit binary representation of integer j − 1,

bj is the complement of bj , and Sj :=
[
bj

bj

]
for j = 1, 2, . . . , n. Item j is

characterized by column Sj and that the weight of every column in S is s/2 =
log n. Furthermore, the index j is uniquely identified by bj .

Given an m×n (d−1)-disjunct matrix M, the new measurement t×n matrix
is constructed as follows:

T = M � S, (6)

where � is the tensor product defined in Sect. 2.1 and t = ms. For any binary
input vector x, its outcome using measurement matrix T is

y = T ⊗ x =

⎡
⎢⎣
y1

...
ym

⎤
⎥⎦ , (7)

where yi = (S × diag(Mi,∗)) ⊗ x =
∨n

j=1 xjmijSj for i = 1, . . . , m.

Decoding Procedure: The decoding procedure is quite simple. We can scan all
yi for i = 1, . . . , m. If wt(yi) = log n, the defective item can be identified by
calculating the first half of yi. Otherwise, no defective item is identified. The
procedure is described in Algorithm 1.

Algorithm 1. GetDefectives(y, n): detection of up to d defective items.
Input: number of items n; outcome vector y
Output: defective items

1: s = 2 log n.
2: S = ∅.
3: Divide y into m = t/s smaller vectors y1, . . . ,ym such that y = (y1, . . . ,ym)T and

their size are equal to s, where t is the number of entries in y.
4: for i = 1 to m do
5: if wt(yi) = log n then
6: Get defective item d0 by checking first half of y.
7: S = S ∪ {d0}.
8: end if
9: end for

10: return S.

This scheme can be summarized as the following theorem:

Theorem 2. Let an m×n matrix M be (d−1)-disjunct. Suppose that a set of n
items has up to d defective and no inhibitors. Then there exists a t×n matrix T
constructed from M that can be used to identify up to d defective items in time
t = m×2 log n. Further, suppose that each column of M can be computed in time
β. Then every column of T can be computed in time 2 log n × β = O(β log n).
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Algorithm 1 is modified and denoted as GetDefectives∗(y, n) if we substitute
S by multiset S∗; i.e., the output of GetDefectives∗(·) may have duplicated items
which are used to handle the presence of erroneous outcomes in Sects. 4 and 5.
Line 7 is interpreted as “Add d0 to set S∗”.

3 Improved Instantiation of Nonrandom (d, r; z]-Disjunct
Matrices

We first state the useful nonrandom construction of (d, r; z]-disjunct matrices,
which is an instance of Theorem 1:

Theorem 3 (Lemma 29 [21]). Let 1 ≤ d, r, z < n be integers and C be a
[n1 = q − 1, k1]q-RS code. For any d < n1−z

r(k1−1) = q−1−z
r(k1−1) and n ≤ qk1 , there

exists a t×n nonrandom (d, r; z]-disjunct matrix where t = O
(
qr+1

)
. Moreover,

each column of the matrix can be constructed in time O
(
qr+2/(r2d2)

)
.

An approximation of a Lambert W function W(x) [22] is ln x − ln lnx ≤
W(x) ≤ ln x − 1

2 ln lnx for any x ≥ e. Then an improved instantiation of non-
random (d, r; z]-disjunct matrix is stated as follows:

Corollary 1. For any positive integers d, r, z, and n with d + r ≤ n, there
exists a t × n nonrandom (d, r; z]-disjunct matrix with t = Θ

(
λr+1

)
, where λ =

(rd ln n)/(W(d ln n))+z. Moreover, each column of the matrix can be constructed
in time O

(
λr+2/(r2d2)

)
.

Proof. From Theorem 3, we only need to find an [n1 = q − 1, k1]q-RS code such
that d < n1−z

r(k1−1) = q−1−z
r(k1−1) and qk1 ≥ n. One chooses

q =

{
rd lnn

W(d lnn) + z + 1 if rd lnn
W(d lnn) + z + 1 is the power of 2.

2η+1, otherwise.
(8)

where η is an integer satisfying 2η < rd lnn
W(d lnn) + z + 1 < 2η+1. We have

q = Θ
(

rd lnn
W(d lnn) + z

)
in both cases because rd lnn

W(d lnn) + z + 1 ≤ q <

2
(

rd lnn
W(d lnn) + z + 1

)
.

Set k1 =
⌈

q−z−1
rd

⌉
≥ lnn

W(d lnn) . Note that the condition on d in Theorem 3
always holds because:

k1 =
⌈

q − z − 1
rd

⌉
=⇒ k1 <

q − z − 1
rd

+ 1 =⇒ d <
q − 1 − z

r(k1 − 1)
=

n1 − z

r(k1 − 1)
.

Finally, our task is to prove that n ≤ qk1 . Indeed, we have:

qk1 ≥
(

rd ln n

W(d ln n)
+ z + 1

) ln n
W(d ln n)

≥
(

d ln n

W(d ln n)

) ln n
W(d ln n)

≥
(
eW(d lnn)eW(d ln n

)1/d

= (ed lnn)1/d = n.

This completes our proof.
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The number of tests in our construction is better than the one in Theorem1.
Furthermore, there is no decoding scheme associated with matrices in this corol-
lary. However, when r = z = 1, the scheme in [14] achieves the same number of
tests and has an efficient decoding algorithm.

4 Identification of Defective Items

In this section, we answer Problem 1 that there exists a t×n measurement matrix
such that: it can handle at most e errors in the test outcome; each column can be
nonrandomly generated in time poly(t); and all defective items can be identified
in time poly(d, h, e, log n), where there are up to d defective items and up to
h inhibitor items in n items. The main idea is to use the modified version of
Algorithm 1 to identify all potential defective items. Then a sanitary procedure
is proceeded to remove all false defective items.

Theorem 4. Let 1 ≤ d, h, d + h ≤ n be integers, z be odd, and λ =
(d+h) lnn

W((d+h) lnn) + z. A set of n items includes up to d defective items and up to h

inhibitors. Then there exists a t × n nonrandom matrix such that up to d defec-
tive items can be identified in time O

(
λ5 log n
(d+h)2

)
with up to e = z−1

2 errors in the

test outcomes, where t = Θ
(
λ2 log n

)
. Moreover, each column of the matrix can

be generated in time poly(t).

The proof is given in the following sections.

4.1 Encoding Procedure

We set e = z−1
2 and λ = (d+h) lnn

W((d+h) lnn) + z. Let an m × n matrix M be an
(d + h; z]-disjunct matrix in Corollary 1 (r = 1), where

m = Θ

((
(d + h) ln n

W((d + h) ln n)
+ z

)2
)

= O(λ2).

Each column in M can be generated in time t1 = O
(

λ3

(d+h)2

)
. Then the final

t × n measurement matrix T is

T = M � S, (9)

where the s × n matrix S is defined in (5) and t = ms = Θ
(
λ2 log n

)
. Then it is

easy to see that each column of T can be generated in time t1 × s = poly(t).
Any input vector x = (x1, . . . , xn)T ∈ {0, 1,−∞}n contains at most d 1’s

and at most h −∞’s as described in Sect. 1.2. Note that D and H are the index
sets of the defective items and the inhibitor items, respectively. Then the binary

outcome vector using the measurement matrix T is y = T ⊗ x =

⎡
⎢⎣
y1

...
ym

⎤
⎥⎦ , where
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yi = (S × diag(Mi,∗))⊗x =

⎡
⎣

y(i−1)s+1

. . .
yis

⎤
⎦ , and y(i−1)s+l = 1 iff

∑n
j=1 mijsljxj ≥

1, and y(i−1)s+l = 0 otherwise, for i = 1, . . . , m, and l = 1, . . . , s. We assume
that there are at most e incorrect outcomes in the outcome vector y.

4.2 Decoding Procedure

Given outcome vector y = (y1, . . . ,ym)T , we can identify all defective items by
using Algorithm 2. Step 1 is to identify all potential defectives and put them in
the set S∗. Then Steps 3 to 8 are to remove duplicate items in the new potential
defective set S0. After that, Steps 9 to 16 are to remove all false defectives.
Finally, Step 17 returns the defective set.

Algorithm 2. GetDefectivesWOInhibitors(y, n, e): detection of up to d defective
items without identifying inhibitors.
Input: a function to generate t×n measurement matrix T ; outcome vector y; maximum
number of errors e
Output: defective items

1: S∗ = GetDefectives∗(y, n). � Identify all potential defectives.
2: S0 = ∅. � Defective set.
3: foreach x ∈ S∗ do
4: if x appears in S∗ at least e + 1 times then
5: S0 = S0 ∪ {x}.
6: Remove all elements that equal x in S∗.
7: end if
8: end foreach
9: for all x ∈ S0 do � Remove false defectives.

10: � Get column corresponding to defective item x.
11: Generate column Tx = Mx � Sx.
12: if ∃i0 ∈ [t] : ti0x = 1 and yi0 = 0 then � Condition for a false defective.
13: S0 = S0 \ {x}. � Remove false defectives.
14: break;
15: end if
16: end for
17: return S0. � Return set of defective item.

4.3 Correctness of Decoding Procedure

Since matrix M is an (d+h; z]-disjunct matrix, there are at least z rows i0 such
that mi0j = 1 and mi0j′ = 0 for any j ∈ D and j′ �∈ D ∪ H \ {j}. Since up to
e = (z−1)/2 errors may appear in test outcome y, there are at least e+1 vectors
yi0 such that the condition in Step 5 of Algorithm1 holds. Consequently, each
value j ∈ D appears at least e + 1 times. Therefore, Steps 1 to 8 return a set S0

containing all defective items and some false defectives.
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Steps 9 to 16 are to remove false defectives. For any index j �∈ D, since there
are at most e = (z − 1)/2 erroneous outcomes, there is at least 1 row i0 such
that ti0j = 1 and ti0j′ = 0 for all j′ ∈ D ∪ H. Because item j �∈ D, the outcome
of that row (test) is negative (0). Therefore, Step 12 is to check whether an item
in S0 is non-defective. Finally, Step 17 returns the set of defective items.

4.4 Decoding Complexity

The time to run Step 1 is O(t). Since |S∗| ≤ m, it takes m time to run Steps 3
to 8. Because |S∗| ≤ m, the cardinality of S0 is up to m. The loop at Step 9
runs at most m times. Steps 11 and 12 take time s × m1.5

(d+h)2 and t, respectively.
The total decoding time is:

O(t) + m + m ×
(

s × m1.5

(d + h)2
+ t

)
= O

(
sm2.5

(d + h)2

)
= O

(
λ5 log n

(d + h)2

)
.

5 Identification of Defectives and Inhibitors

In this section, we answer Problem 2 that there exists a v × n measurement
matrix such that: it can handle at most e errors in the test outcome; each col-
umn can be nonrandomly generated in time poly(v); and all defective items and
inhibitor items can be identified in time poly(d, h, e, log n), where there are up to
d defective items and up to h inhibitor items in n items.

Theorem 5. Let 1 ≤ d, h, d+h ≤ n be integers, z be odd, and λ = (d+h) lnn
W((d+h) lnn)+

z. A set of n items includes up to d defective items and up to h inhibitors. Then
there exists a v × n nonrandom matrix such that up to d defective items and
up to h inhibitor items can be identified in time O

(
dλ6 × max

{
λ

(d+h)2 , 1
})

, with

up to e = z−1
2 errors in the test outcomes, where v = Θ

(
λ3 log n

)
. Moreover,

each column of the matrix can be generated in time poly(v).

To detect both up to h inhibitors and d defectives, we have to use two types of
matrices: an (d+h; z]-disjunct matrix and an (d+h−2, 2; z]-disjunct matrix. The
main idea is as follows. We first identify all defective items. Then all potential
inhibitors are located by using an (d + h − 2, 2; z]-disjunct matrix. The final
procedure is to remove all false inhibitor items.

5.1 Identification of an Inhibitor

Let ∨ be the notation for the union of the column corresponding to the defective
item and the column corresponding to the inhibitor item. We suppose that there
is an outcome o := (o1, . . . , os)T = Sa∨Sb, where the defective item is a and
the inhibitor item is b, and that Sa and Sb are two columns in the s × n matrix
S in (5). Note that oi = 1 iff sia = 1 and sib = 0, and oi = 0 otherwise, for
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Algorithm 3. GetInhibitorFromADefective(o,Sa, n): identification of an
inhibitor when defective item and union of corresponding columns are known.
Input: outcome vector o := (o1, . . . , os) = Sa ∨ Sb; number of items n; vector Sa

corresponding to defective item a
Output: inhibitor item b

1: s = 2 log n.
2: Set Sb = (s1b, . . . , ssb)

T = (−1, −1, . . . , −1)T .
3: for i = 1 to s do � Obtain s/2 entries of Sb.
4: If sia = 1 and oi = 1 then sib = 0. end if
5: If sia = 1 and oi = 0 then sib = 1. end if
6: end for
7: for i = 1 to s/2 do � Obtain s/2 remaining entries of Sb.
8: If sib = −1 then sib = 1 − si+s/2,b. end if
9: If sib = 0 then si+s/2,b = 1. end if

10: If sib = 1 then si+s/2,b = 0. end if
11: end for
12: Get index b by checking first half of Sb.
13: return b. � Return the inhibitor item.

i = 1, . . . , s. Assume that the defective item a is already known. The inhibitor
item b is identified as in Algorithm3.

The correctness of the algorithm is described here. Step 2 initializes the
corresponding column of inhibitor b in S. Since column Sa has exactly s/2 1’s,
Steps 3 to 6 are to obtain s/2 positions of Sb. Since the first half of Sa is the
complement of its second half, it does not exist two indexes i0 and i1 such that
si0a = si1a = 1, where |i0 − i1| = log n. As a result, it does not exist two indexes
i0 and i1 such that si0b = si1b = −1, where |i0 − i1| = log n. Moreover, the first
half of Sb is the complement of its second half. Therefore, the remaining s/2
entries of Sb can be obtained by using Steps 7 to 11. The index of inhibitor b can
be identified by checking the first half of Sb, which is done in Step 12. Finally,
Step 13 returns the index of the inhibitor.

It is easy to verify that the decoding complexity of Algorithm 3 is O(s).
Example: Let S be the matrix in (5), where n = 8 and s = 2 log n = 6. Given
item 1 is the unknown inhibitor and that item 3 is the known defective item,
assume that the observed vector is o = (0, 1, 0, 0, 0, 0)T . The corresponding col-
umn of the defective item is S3. We set Sb = (−1,−1,−1,−1,−1,−1)T . We
get Sb = (−1, 0,−1, 1,−1, 1)T from Steps 3 to 6 and the complete column
Sb = (0, 0, 0, 1, 1, 1)T from Steps 7 to 11. Because the first half of Sb is (0, 0, 0)T ,
the index of the inhibitor is 1.

5.2 Encoding Procedure

We set e = z−1
2 and λ = (d+h) lnn

W((d+h) lnn) + z. Let an m × n matrix M and a g × n

matrix G be an (d+h; z]-disjunct matrix and an (d+h− 2, 2; z]-disjunct matrix
in Corollary 1, respectively, where
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m = Θ

((
(d + h) ln n

W((d + h) ln n)
+ z

)2
)

= Θ
(
λ2
)
,

g = Θ

((
(d + h) ln n

W((d + h) ln n)
+ z

)3
)

= Θ
(
λ3
)
.

Each column in M and G can be generated in time t1 and t2, respectively,
where

t1 = O

(
λ3

(d + h)2

)
, t2 = O

(
λ4

(d + h)2

)
. (10)

The final v × n measurement matrix V is

V =

⎡
⎣

M � S
G � S

G

⎤
⎦ =

⎡
⎣

T
H
G

⎤
⎦ , (11)

where T = M � S and H = G � S. The sizes of matrices T and H are t × n
and h × n, respectively. Then we have t = ms = 2m log n and h = gs = 2g log n.
Note that the matrix T is the same as the one in (9). The number of tests of
the measurement matrix V is

v = t + h + g = ms + gs + g = O((m + g)s) = Θ
(
λ3 log n

)
.

Then it is easy to see that each column of matrix V can be generated in time
(t1 + t2) × s + t2 = poly(v).

Any input vector x = (x1, . . . , xn)T ∈ {0, 1,−∞}n contains at most d 1’s and
at most h −∞’s as described in Sect. 1.2. The outcome vector using measurement
matrix T , i.e., y = T ⊗x, is the same as the one in Sect. 4.1. The binary outcome
vector using the measurement matrix H is

h = H ⊗ x =

⎡
⎢⎣
h1

...
hg

⎤
⎥⎦ , (12)

where hi = (S × diag(Gi,∗)) ⊗ x =

⎡
⎣

h(i−1)s+1

. . .
his

⎤
⎦, h(i−1)s+l = 1 iff

∑n
j=1 gijsljxj

≥ 1, and h(i−1)s+l = 0 otherwise, for i = 1, . . . , g, and l = 1, . . . , s. Therefore,
the outcome vector using the measurement matrix V in (11) is:

v = V ⊗ x =

⎡
⎣

T
H
G

⎤
⎦⊗ x =

⎡
⎣

T ⊗ x
H ⊗ x
G ⊗ x

⎤
⎦ =

⎡
⎣
y
h
g

⎤
⎦ , (13)

where y is as same as the one in Sect. 4.1, h is defined in (12), and g = G ⊗ x =
(r1, . . . , rg)T . We assume that 0× (−∞) = 0 and there are at most e = (z −1)/2
incorrect outcomes in the outcome vector v.
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5.3 Decoding Procedure

Given outcome vector v, number of items n, number of tests in matrix M,
number of tests in matrix G, maximum number of errors e, and functions to
generate matrix V, G, M, and S. The details of the proposed scheme is described
in Algorithm 4. Steps 1 to 2 are to divide the outcome vector v into three smaller
vectors y,h, and g as (13). Then Step 3 is to get the defective set. All potential
inhibitors would be identified in Steps 5 to 12. Then Steps 14 to 23 are to remove
most of false inhibitors. Since there may be some duplicate inhibitors and some
remaining false inhibitors in the inhibitor set, Step 25 to 31 are to remove the
remaining false inhibitors and make each element in the inhibitor set unique.
Finally, Step 32 is to return the defective set and the inhibitor set.

5.4 Correctness of the Decoding Procedure

Because of the construction of V, the three vectors split from the outcome vector
v in Step 2 are y = T ⊗ x,h = H ⊗ x, and g = G ⊗ x. Therefore, the set D
achieved in Step 3 is the defective set as analyzed in Sect. 4.

Let H be the true inhibitor set which we will identify. Since G is an (d + h −
2, 2; z]-disjunct matrix G, for any j1 ∈ H (we have not known H yet) and j2 ∈ D,
there exists at least z rows i0’s such that gi0j1 = gi0j2 = 1 and gi0j′ = 0, for all
j′ ∈ D∪H \{j1, j2}. Then, since there are at most e = (z−1)/2 errors in v, there
exists at least e+1 = (z−1)/2+1 index i0’s such that hi0 = Sj1∨Sj2 . As analyzed
in Sect. 5.1, for any vector which is the union of the column corresponding to the
defective item and the column corresponding to the inhibitor item, the inhibitor
item is always identified if the defective item is known. Therefore, the set H∗

0

obtained from Steps 7 to 12 contains all inhibitors and may contain some false
inhibitors. Our next goal is to remove false inhibitors.

To remove the false inhibitors, we first remove all defective items in the set
H∗

0 as Step 16. Therefore, there are only inhibitors and negative items in the set
H∗

0 after implementing Step 16. One needs to exploit the property of the inhibitor
that it will make the test outcome negative if there are at least one inhibitor
and at least one defective in the same test. We pick an arbitrary defective item
y ∈ D and generate its corresponding column Gy in the matrix G. Since G is an
(d + h − 2, 2; z]-disjunct matrix G and there are at most e = (z − 1)/2 errors
in v, for any j1 ∈ H (we have not known H yet) and y ∈ D, there exists at
least z − e = e + 1 rows i0’s such that gi0j1 = gi0y = 1 and gi0j′ = 0, for all
j′ ∈ D ∪ H \ {j1, y}. The outcome of these tests would be negative. Therefore,
Steps 14 to 23 removes most of false inhibitors. Note that since there are at most
e errors, the are at most e false inhibitors and each of them appears at most e
times in the set H∗

0 . Then Step 25 to 31 are to completely remove false inhibitors
and make each element in the inhibitor set unique. Finally, Step 32 returns the
sets of defective items and inhibitor items.
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Algorithm 4. GetInhibitors(v, n, e,m, g): identification of up to d defectives
and up to h inhibitors.
Input: outcome vector v; number of items n; number of tests in matrix M; number
of tests in matrix G; maximum number of errors e; and functions to generate matrix
V, G, M, and S
Output: defective items and inhibitor items

1: s = 2 log n. � number of rows in the matrix S.
2: Divide vector v into three smaller vectors y,h, and g such that v = (yT ,hT ,gT )T

and number of entries in y,h, and g are ms, gs, and g, respectively.
3: D = GetDefectivesWOInhibitors(y, n, e). � defective set.
4: � Find all potential inhibitors.
5: Divide vector h into g smaller vectors h1, . . . ,hg such that h = (hT

1 , . . . ,hT
g )T and

their size are equal to s.
6: H∗

0 = ∅. � Initialize inhibitor multiset.
7: for i = 1 to g do � Scan all outcomes in h.
8: foreach x ∈ D do
9: i0 = GetInhibitorFromADefective(hi, Sx, n).

10: Add item i0 to multiset H∗
0 .

11: end foreach
12: end for
13: � Remove most of false inhibitors.
14: Assign (r1, . . . , rg)T = g.
15: Generate a column Gy for any y ∈ D. � Get the column of a defective.
16: H∗

0 = H∗
0 \ D.

17: foreach x ∈ H∗
0 do � Scan all potential inhibitors.

18: Generate column Gx

19: if ∃i0 ∈ [g] : gi0x = gi0y = 1 and ri0 = 1 then
20: Remove all elements that equal x in H∗

0 . � Remove the false inhibitor.
21: break;
22: end if
23: end foreach
24: � Completely remove false inhibitors and duplicate inhibitors.
25: H = ∅.
26: foreach x ∈ H∗

0 do
27: if x appears in H∗

0 at least e + 1 times then
28: H = H ∪ {x}.
29: Remove all elements that equal x in H∗

0 .
30: end if
31: end foreach
32: return D and H. � Return set of defective items.

5.5 Decoding Complexity

First, we find all potential inhibitors. It takes time O(v) for Step 2. The time to
get the defective set D is O

(
sm2.5

(d+h)2

)
= O

(
λ5 log n
(d+h)2

)
as analyzed in Theorem 4.

Steps 7 and 8 have up to g and |D| ≤ d loops, respectively. Since Step 9 takes
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time O(s), the running time from Steps 7 to 12 is O(gds) and the cardinality of
H∗

0 is up to gd.
Second, we analyze the complexity of removing false inhibitors. Step 15 takes

time t1 as in (10). Since |H∗
0 | ≤ gd, the number of loops at Step 17 is at most gd.

For the next step, it takes time t2 for Step 18 as in (10). And it takes time O(g)
from Steps 19 to 22. As a result, it takes time O(t1 + gd(t2 + g)) for Steps 14
to 23.

Finally, Steps 25 to 31 are to remove duplicate inhibitors in the new defective
set H. It takes time O(gd) to do that because we know |H∗

0 | ≤ gd.
In summary, the decoding complexity is:

O

(
sm2.5

(d + h)2

)
+ O(gds) + O(t1 + gd × (t2 + g)) + O(gd)

= O

(
sm2.5

(d + h)2

)
+O(gd(t2 + g))=O

(
λ5 log n

(d + h)2

)
+O

(
dλ3 ×

(
λ4

(d+h)2
+λ3

))

= O

(
dλ6 × max

{
λ

(d + h)2
, 1
})

.

6 Simulation

In this section, we visualize the number of tests and decoding times in Table 1. We
evaluated variations of our proposed scheme by simulation using d = 2, 4, . . . , 210,
h = 0.2d, and n = 232 in Matlab R2015a on an HP Compaq Pro 8300SF desk-
top PC with a 3.4-GHz Intel Core i7-3770 processor and 16-GB memory. Two
scenarios are considered here: identification of defective items (corresponding to
Sect. 4) and identification of defectives and inhibitors (corresponding to Sect. 5).
For each scenario, two models of noise are considered in test outcomes: noiseless
setting and noisy setting. In the noisy setting, the number of errors is set to be
as 100 times the summation of the number of defective items and the number
of inhibitor items. Moreover, in some special cases, the number of items and the
number of errors may be reconsidered.

All figures are plotted in 3 dimensions in which the x-axis (on the right
of figures), y-axis (in the middle of figures), z-axis (the vertical line) represent
number of defectives, number of inhibitors, and number of tests. Our proposed
scheme, Ganesan et al.’s scheme, and Chang et al.’s scheme are visualized with
red color with marker of circle, green color with marker of pentagram, and blue
color with marker of asterisk. In the noisy setting, Ganesan et al.’s scheme is not
plotted because the authors of that scheme did not consider the noisy setting.

For decoding time, when the number of items is sufficiently large, the decod-
ing time in our proposed scheme is smaller than that of Chang et al.’s scheme
and Ganesan et al.’s scheme.

6.1 Identification of Defective Items

We illustrate decoding time when defective items are the only items that we want
to recover here. When there are no errors in test outcomes, as shown in Fig. 1, the



110 T. V. Bui et al.

1500

Number of defectives (d)

1000
500

00Number of inhibitors (h)

100
200

×1018

0

1

2

3

300

D
ec

od
in

g 
tim

e Ganesan et al.
Chang et al.
Proposed

1500

Number of defectives (d)

1000
500

00Number of inhibitors (h)

100
200

×1013

5

0

10

300

D
ec

od
in

g 
tim

e

Ganesan et al.
Proposed

Fig. 1. Decoding time vs. number of defectives and number of inhibitors for identifying
only defective items when there are no errors in test outcomes.
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Fig. 2. Decoding time vs. number of defectives and number of inhibitors for identifying
only defective items with presence of erroneous outcomes.

decoding time in our proposed scheme is lowest. Since the decoding times in our
proposed scheme and Ganesan et al.’s scheme are relatively equal, only one line
is visible in the left subfigure of Fig. 1. Therefore, we zoomed in on those lines
to see how close these two decoding times are. As plotted in the right subfigure
of Fig. 1, when the number of defective items and the number of inhibitor items
are small, the decoding time in our proposed scheme is always smaller the one
in Ganesan et al.’s scheme. As the number of defective items and the number of
inhibitor items increase, the decoding time in our proposed scheme first becomes
larger the one in Ganesan et al.’s scheme, though it becomes smaller after the
number of items reaches some threshold. We note that if the number of defective
items and inhibitor items are fixed while the number of total items is sufficiently
large, the decoding time in our proposed scheme is always smaller than the ones
in Chang et al.’s scheme and Ganesan et al.’s scheme.

When some erroneous outcomes are allowed, the decoding time in our pro-
posed scheme is always smaller than the one in Chang et al.’s scheme as shown
in Fig. 2.

6.2 Identification of Defectives and Inhibitors

We illustrate decoding time for classifying all items. In principle, the complexity
of the decoding time in our proposed scheme is smallest in comparison with the
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Fig. 3. Decoding time vs. number of defectives and number of inhibitors for classifying
items when there are no errors in test outcomes.
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Fig. 4. Decoding time vs. number of defectives and number of inhibitors for classifying
items when there are some erroneous outcomes.

ones in Chang et al.’s scheme and Ganesan et al.’s scheme when the number
of items is sufficiently large. When there are no errors in test outcomes, the
decoding time of the proposed scheme is smallest when the number of items is
at least 266, as shown in subfigure (b) of Fig. 3. When some erroneous outcomes
are allowed, the decoding time in our proposed scheme is always smaller than
the one in Chang et al.’s scheme when the number of items is at least 261, as
shown in subfigure (b) of Fig. 4.

7 Conclusion

We have presented two schemes efficiently identifying up to d defective items
and up to h inhibitors in the presence of e erroneous outcomes in time
poly(d, h, e, log n). This decoding complexity is substantially less than that of
state-of-the-art systems in which the decoding complexity is poly(d, h, e, n). How-
ever, the number of tests with our proposed schemes is slightly higher. Moreover,
we have not considered an inhibitor complex model [12] in which each inhibitor
in this work would be transferred to a bundle of inhibitors. Such a model would
be much more complicated and is left for future work.
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Abstract. We consider computations by a distributed team of
autonomous mobile agents that move on an unoriented dynamic ring
network. In particular, we consider 1-interval connected dynamic rings
(i.e. at any time, at most one of the edges might be missing). The agents
move according to a Look-Compute-Move life cycle, under a synchronous
scheduler. The agents may be homogenous (thus identical and monochro-
matic) or they may be heterogenous (distinct agents have distinct colors
from a set of c ≥ 1 colors). For monochromatic agents starting from any
dispersed configuration we want the agents to form a compact segment,
where agents occupy a continuous part of the ring and no two agents are
on the same node – we call this the Compact Configuration Problem. In
the case of multiple colors (c > 1), agents of the same color are required
to occupy continuous segments, such that agents having the same color
are all grouped together, while agents of distinct colors are separated.
These formation problems are different from the classical and well stud-
ied problem of Gathering all agents at a node, since unlike the gathering
problem, we do not allow collisions (each node may host at most one
agent of a color).

We study these two problems and determine the necessary conditions
for solving the problems. For all solvable cases, we provide algorithms
for both the monochromatic and the colored version of the compact con-
figuration problem, allowing for at most one intersection between the
colored segments (which cannot be avoided in a dynamic ring). All our
algorithms work even for the simplest model where agents have no per-
sistent memory, no communication capabilities and do not agree on a
common orientation. To the best of our knowledge this is the first work
on the compaction problem in any type of dynamic network.

1 Introduction

Research in the field of distributed computing has always considered fault
tolerance as an important aspect of algorithm design and there are many
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studies on algorithms tolerating e.g. failures of nodes or links in a network. How-
ever, in recent years researchers started to investigate so called dynamic graphs,
that is graphs where the topological changes are not localized and sporadic;
on the contrary, the topology changes continuously and at unpredictable loca-
tions, and these changes are not anomalies (e.g., faults) but rather an integral
part of the nature of the system [4,9,10,16]. The study of distributed compu-
tations in such dynamic graphs has concentrated on problems of information
diffusion, reachability, agreement, and other communication problems (see e.g.,
[2,6,11,14,15,19]). These studies are on message passing networks under vari-
ous different models of dynamic changes of topology. A general theoretical model
for dynamic networks is the evolving graph model, where the network is mod-
elled as a sequence of graphs each of which is a subgraph of the so-called foot-
print graph which represents the underlying topology. In order to allow useful
tasks to be performed on such a network, we need to make some assumptions
on the connectivity of the network. One natural way of modelling this is the
k-interval connected dynamic graph model (See e.g. [16]). The most restricted
of these models is the 1-interval connected dynamic graph model where the only
assumption is that at each round, the instance of the graph is connected.

One of the ways of dealing with a highly dynamic environment is the use of
mobile code, allowing processes to migrate from node to node on a network dur-
ing the process of computation. This initiated research in algorithms for mobile
agents, where an agent is an autonomous process that moves along the edges of
the a network and can perform computations at the nodes of the network, using
its own memory and state information, as well as the information stored in the
nodes. Mobile agents can also represent agents moving in a dynamic environ-
ment. In this case, the agents may have some vision allowing them to see parts
of the network and take decisions based on this knowledge. There are many dif-
ferent models for mobile agents depending on their capabilities of remembering
(memory), visualizing (vision range), communication and computation abilities.

There has been a lot of research on mobile agents moving in static graphs.
The fundamental problems studied are exploration and patrolling, where a team
of agents has to visit all nodes of the graph, either once or periodically. A related
problem is information dissemination or data collection from the nodes. Several
coordination problems for teams of agents have been studied where the agents
need to form a particular configuration. One of the most studied problem is
rendezvous or gathering where all agents need to meet at a single node of the
graph. This requires mechanisms for symmetry breaking as in the leader elec-
tion problem in distributed computing. The problem has been studied both for
agents with identities or anonymous (and thus identical) agents. For homony-
mous agents (where multiple agents share the same name or color), the problem
of grouping the agents into teams with specific colors, is called the team assem-
bling problem, and has been proposed and studied in [17] for agents moving
freely in a plane. In the above problems, all agents of the same team must be at
the same point or at the same node of the graph. However, it may not always be
possible for a single node to host many agents at the same time. In this paper,



116 S. Das et al.

we avoid multiple agents in the same node, but we want the agents in a team
to be close to each other (e.g. to be able to exchange information and coordi-
nate with each other). Motivated by this requirement, we define and study the
Compact Configuration Problem (CCP) problem: starting from any configuration
of mobile agents scattered in a graph G, the objective is to reach a configura-
tion where each node contains at most one agent and the nodes occupied by
agents of the same color induce a connected subgraph of G. To the best of our
knowledge, this is the first time compaction problems have been studied at least
for distributed teams of autonomous agents. As a preliminary investigation in
this paper we consider one of the simplest topology - the ring network. In a
ring, solving the CCP problem requires agents of the same team to occupy the
nodes of a continuous segment of the ring, without any multiplicities. Although
conceptually simple, a ring is highly symmetrical, and it is challenging to solve
problems in the ring that require symmetry breaking. We assume that neither
the nodes or the agents possess any unique identifiers, which makes the problem
much harder. Moreover we consider the network to be dynamic where at any
stage of the algorithm, some edges may be unavailable. In this paper the net-
work is a 1-interval ring network, at most one edge of the ring may be missing
at any round of the algorithm.

Previous studies of mobile agents in dynamic graphs has focussed on the
fundamental problems of exploration, patrolling, gathering and dispersion [1,5,
7,8,12,13]. All these results consider t-interval connected graphs. Under weaker
models of dynamicity, only weaker versions of gathering may be solved [3]. The
problem of compaction is loosely related to the problem of near-gathering that
has been studied recently in [18].

Our Contribution. In this paper we investigate the problem of compacting
groups of mobile agents initially scattered on dynamic rings. We study the prob-
lem in two different scenarios: the agents either have all the same color (c = 1)
or, there are c > 1 colors. We show that only local visibility is not sufficient for
solving the problem even if the agents have unbounded memory. On the other
hand, under global visibility, even oblivious agents (agents with no persistent
memory) can solve the problem in all solvable instances. However, due to the
dynamicity of the graph, we cannot always avoid intersections between the com-
pacted segments. Our algorithms solve the CCP problem for many colors, with
at most one intersection between two colored compact segments, while all other
segments are separated. The results of this paper provide the full characteri-
zation of solvable instances for the above problems. Due the space limitations,
some of the proofs have been omitted.

2 Preliminaries

Interval Connected Ring. A dynamic graph G is an infinite sequence of static
graphs (G0, G1, . . .). For each round r ∈ N we have a graph Gr : (V,E(r))
where V : {v0, . . . , vn−1} is a set of nodes and E : N → V × V is a function
mapping a round r to a set of undirected edges. Given a dynamic graph G,
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its footprint G is the graph obtained by the union of all graph instances G =
(V,E∞) = (V,∪+∞

i=0E(i)). A dynamic graph G is a 1-interval connected ring if its
footprint is a ring and Gr is connected, for each round r. In this paper, we assume
1-interval connected ring such that at most one edge of the ring can be missing
at any time; such an edge is arbitrarily chosen by an adversary. Throughout the
paper we use the term dynamic ring to always mean such a network. The graph
G is anonymous, i.e. all nodes are identical to the agents, the endpoints of each
edge are unlabelled, and we do not assume any common orientation (i.e the ring
is not oriented).

The Agents. We consider a set of oblivious agents, A = {a1, . . . , ak} that
are initially located on distinct nodes of a dynamic ring. The agents have no
persistent memory, and each agent has an initial color in [1, c] (when c = 1, all
agents have the same color). When c > 1, we assume that the sets of agents
having the same color all have the same size h, with h > 2. Also, we assume that
the size of the ring is at least 2hc + c. Also, we assume a total ordering on the
colors; we call max color the first color in this ordering. Note that the color of
the agents is fixed at the beginning and it cannot be changed.

Agents follow the same algorithm executing a sequence of Look, Compute,
Move cycles. In the Look phase of each cycle, the agent gets a snapshot of the
environment. In the Compute phase the agent uses the information from the
snapshot and the contents to compute the next destination, which may be the
current node or one of its neighbours. During the Move phase an agent traverses
an edge to reach the destination node. Given a direction of movement, we say
that an agent a is blocked by the missing edge, if the edge adjacent to a, in
the chosen direction of movement, is missing. We say that two agents collide if
they occupy the same node at the same round. When two (or more) agents with
distinct colors occupy the same node, we say that the collision is admissible.

The visibility of the agents may be either global or local:

– Global Snapshot: The snapshot obtained by an agent in round r contains the
graph Gr (with the current location of the agent marked), and ∀v ∈ Gr, the
colors of the agents (if any) that are located in node v.

– Local Snapshot: The snapshot obtained by an agent at a node v in round r
contains the same information as in the Global snapshot, but restricted to a
distance of R hops from node v.

Synchronous System. The system is synchronous, agents perform each (Look,
Compute, Move) cycle in a discrete time unit called round. Rounds are univocally
mapped to numbers in N, starting from 0. All agents start the execution at round
0. In each round, each agent in A executes exactly one entire (Look,Compute,
Move) cycle.

Configurations and Other Definitions. The configuration of the set of agents
A at round r, is a function Cr : A → V that maps agents in A to nodes of V where
agents are located. The term initial configuration indicates the configuration of
agents at round 0, when it is clear from the context we omit the round and
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(a) |S1| = |S2| (b) |S1| < |S2|

Fig. 1. (a) Impossibility with no overlap. (b) A Solution for ColoredCCP problem.

we use C to indicate the current configuration. We use the notation Cr(A) to
indicate the set of nodes where agents in A are located at round r, and we use
G[Cr(A)] to indicate the subgraph induced by the locations of agents in A in
graph G.

A segment indicates a set of nodes of G that have connected footprint and
that do not form a cycle. Given a node v ∈ G we say that the node is empty at
round r, if in Cr there is no agent on v. Similarly, we say that a segment of nodes
is empty at round r if all nodes of the segment are empty. We say that a segment
is full if each node of the segment contain agents of the same color. Given two
full segments S1 and S2, let a be any agent in S1 and b any agent in S2; we
define the distance between S1 and S2 as the smallest number of consecutive
empty nodes between a and b. We say that a full segment S is blocked by the
missing edge if the first agent in S is blocked according to the chosen direction
of movement. Also, the “full segment” is said to move when all agents in the
segment do a move in a given direction. Given two disjoint segments the distance
between them is the minimum number of nodes between two endpoints of the
segments.

Any given configuration at a round r can be represented by a sequence of n
sets, representing the contents of the n nodes of the ring, starting from any given
node. The configuration is said to be: (1) periodic if this sequence is periodic,
(2) Palindrome if some cyclic rotation of this sequence is a palindrome, and
(3) Asymmetric if it is neither Periodic nor Palindrome.

The Compact Configuration Problem. We introduce the problems we will inves-
tigate in the following. The first definition is for monochromatic agents.

Definition 1 (Compact Configuration Problem). Given a dynamic graph G with
footprint G and a set of agents A, we say that an algorithm solves the distributed
Compact Configuration Problem (CCP) if and only if there exists a round r, when
G[Cr(A)] is connected and each agent occupies a distinct node.

For multi-colored agents, we want agents of the same color to occupy con-
tinuous segments, while agents of distinct colors should be separated. Consider
the example configuration in Fig. 1a where agents of two colors are interleaved.
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Suppose the adversary blocks the edge marked with a dash, forever. In this case
the only way to solve the problem would require two pairs of agents of two dis-
tinct colors to cross each other along the other continuous segment of the ring.
Now during this process the agents would form an interleaved configuration in
another part of the ring and now the adversary can block a new edge (releas-
ing the previously blocked edge) in such a way that a similar configuration as
in Fig. 1a is created again. Thus it is not possible to completely segregate the
agents of different colors under such an adversary. We therefore allow at most
one overlap between two segments of different colors as in Fig. 1b.

Definition 2 (Colored Compact Configuration Problem). Given a dynamic
graph G with footprint G and set of agents Ai having color i ∈ [1, c], where c ≥ 2,
we say that an algorithm solves the distributed Colored Compact Configuration
Problem (ColoredCCP) if and only if there exists a round r where, for each
i ∈ [1, c] except two colors j, p, each agent in Ai occupies a different node and
G[Cr(Si)] is connected. Moreover, if p �= j it holds that G[Cr(Sp)] and G[Cr(Sj)]
intersect.

Intuitively, in the CCP problem we ask all agents, initially arbitrarily placed,
to move so to form one full segment (i.e., with no empty nodes). While in the
ColoredCCP problem, we require that all agents having the same color form
one full segment, and that at most two of these full segments intersect. All the
algorithms presented here allow only admissible collisions: i.e., at any point in
time no two agents having the same color occupy the same node of the ring.

Table 1. Results for the CCP and ColoredCCP problems.

c = 1, Global c = 2, Global c > 2, Global Local

Asymmetric � (Sect. 3.1) � (Sect. 5) � (Sects. 4.1, 4.2) × (Theorem 2)

Palindrome � (Sect. 3.2) � (Sect. 5.2) � (Sect. 4.3) × (Theorem 2)

A summary of the results that we show in this paper is reported in Table 1.
The first thing to notice is that solving CCP is impossible when the initial con-
figuration is periodic as shown below (Theorem 1).

Theorem 1. Given a dynamic ring G, and a set of agents A initially placed on
G0 in a configuration that is periodic and disconnected, it is impossible to solve
the CCP or the ColoredCCP problem, even if the agents have global visibility.

Proof. In a periodic configuration, the ring can be partitioned into identical
segments and none of these are full segments. In case no edge is ever missing, the
symmetry between the agents in the two consecutive segments cannot be broken
deterministically, thus agents in equivalent positions take the same action in
each step and the resulting configuration remains periodic. Since any compacted
configuration (with k < n) is not periodic, the theorem follows.
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Therefore, in the following we assume that the initial configuration is either
asymmetric or palindrome. These two cases are handled separately. However
even for aperiodic configurations, the compaction problem cannot be solved in
the local visibility model. In the following, the visibility graph of a configuration
C is the defined as the graph Gvis = (A,E), where A is the set of agents and
there is an edge (a, b) ∈ E whenever agent b is within distance R from a.

Theorem 2. In the local snapshot model, starting from a configuration C such
that C is asymmetric and has a connected visibility graph, there is no correct
algorithm that solves CCP, avoiding collisions. The result holds even if the agents
have unbounded memory.

Thus, in the following, we will consider the global snapshot model. We assume
that the initial configuration is aperiodic (i.e. it is either asymmetric or palin-
drome). We will also assume that there are more than two agents in total (the
special case of exactly k = 2 agents is handled separately in Sect. 6).

3 CCP with Global Snapshot

3.1 The Asymmetric Case

First, let us consider the case when the initial configuration is asymmetric. We
denote by Er the empty segment of maximum size in the configuration at round
r. If initially there is only one empty segment of maximum size, we call this
segment D. Otherwise, if there is more than one empty segment of maximum
size, we can deterministically select one of these as segment D (since the initial
configuration is asymmetric). Let S1 and S2 be the full segments of length at
least 1 on the two sides of segment D (see Fig. 2a). In case |S1| �= |S2|, without
loss of generality let |S1| < |S2; we define the augmented S1, denoted by S+

1 ,
as the block of nodes constituted by the nodes in S1 (all non empty), plus the
empty node v close to S1 and not in D, plus, if any, all agents between v and
the next empty node (moving away from S1, see Fig. 3a).

The algorithm for solving CCP tries to increase the length of the empty
segment D in each step, while preserving the asymmetric configuration. This is
done by moving either S1 or S2 or both. The details are explained in Algorithm1
(Fig. 4).

Lemma 1. Starting from an asymmetric configuration, by executing Algorithm
One Color Connected Formation, at any round r ≥ 0:

(i) |Er| > |Er−1|, and
(ii) The configuration is either asymmetric or solves CCP.

By previous lemma, since the size of Er strictly increases at each round, we can
state the following:

Theorem 3. If the initial configuration is asymmetric, the agents executing
Algorithm One Color Connected Formation, solve CCP within at most
n rounds.
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(a) |S1| = |S2|
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(b) |S1| < |S2|

Fig. 2. Asymmetric initial configuration.
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Fig. 3. (a) Definition of S+
1 (b) Movement of S+

1 (The arrows denotes the direction of
movement)

3.2 The Palindrome Case

Let us now consider the case where the initial configuration C is palindrome i.e.,
there exists an axis of symmetry.

Theorem 4. Let the initial configuration be palindrome, aperiodic, and not com-
pact. Then, if the axis of symmetry passes through two empty nodes, then CCP
is not solvable.

Proof. Let us assume that the problem is solvable, and that, by contradiction,
the axis of symmetry of the initial configuration passes through two empty nodes
(see Fig. 5(a)). If no edge is missing during the algorithm, the agents in both sides

S2

D

S1

e1
e2

Fig. 4. Case 2 of Algorithm 1: the distance between S1 and S2 is 1.
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Algorithm 1. One Color Connected Formation

Pre-condition: Initial configuration is asymmetric.

Let S1 and S2 be the non-empty segments adjacent to the chosen empty segment D.
Let a1 and a2 be the agents closest to S1 and S2 respectively (going away from D).

1. If the smallest distance between S1 and S2 is strictly greater than one:
(a) If |S1| = |S2|,

– If neither S1 nor S2 is blocked, they both move away from D.
– Otherwise, let di be the distance between Si and ak,

• If d1 = d2, the segment that is not blocked moves away from D.
• Otherwise, without loss of generality, let d1 < d2.

∗ If S1 is not blocked, then S1 moves away from D.
∗ If S1 is blocked, then all agents not in S1 move towards S1 (pre-

serving the distance d2).
(b) If |S1| �= |S2|, without loss of generality, let |S1| < |S2| (refer to Fig. 2b). S+

1

and S2 move away from D.
2. Else: let v the only empty node separating S1 and S2. If the largest among the

segments S1 and S2 is not blocked, this segment moves towards empty node v.
Otherwise the other segment moves towards node v.

(a) Impossibility in
the palindrome case.

e

(b) Possibility in the
palindrome case.

Fig. 5. Example configurations for CCP in the palindrome case.

of the axis perform symmetric actions and the configuration stays palindrome
with the same axis of symmetry. Since the agents avoid collision, no agent can
move to the nodes on the axis; therefore, CCP cannot be solved in this case.

In Algorithm 2, we present a solution for CCP with more than 2 agents, when
the initial configuration is aperiodic and palindrome, and the axis of symmetry
either (a) passes through at least one edge, or (b) passes through at least one
non empty node.

By Algorithm 2, and by Theorem3, it follows that:

Theorem 5. If the initial configuration is aperiodic and palindrome with more
than two agents, and the axis of symmetry either (a) passes through at least one
edge, or (b) passes through at least one non empty node, then CCP is solvable.
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Algorithm 2. One Color Palindrome

Pre-condition: Initial configuration is aperiodic and palindrome, with more than two
agents. The axis of symmetry does not pass through two empty nodes.

(a) If the axis of symmetry passes through at least one edge. Since the con-
figuration is aperiodic, we can elect a unique edge e that is crossed by the axis of
symmetry ax. Once e has been elected, the two agents nearest to e that do not
belong to a full segment containing e, are selected to move towards e. If none of
these agents are blocked by a missing edge, the symmetry axis is preserved after
the moves of the agents. Otherwise, if an agent cannot move because of a missing
edge, the next configuration becomes asymmetric, and Algorithm 1 can be applied.

(b) If the axis of symmetry passes through at least one non empty node. In
aperiodic configurations, it is always possible to elect one of the agents (agent a)
among those that occupy the nodes crossed by the unique axis of symmetry.

1. If the neighbors nodes of a are empty, a moves to one of the neighbors (cho-
sen arbitrarily when both incident edges are available); After the move, the
configuration becomes asymmetric and Algorithm 1 can be applied.

2. If the two neighbors nodes of a are both occupied, and the axis of symmetry
passes through another node occupied by agent b, and the two neighbors nodes
of b are both empty, then a moves to one of the neighbors (chosen arbitrarily
when both incident edges are available); After the move, the configuration
becomes asymmetric.

3. If no agent on the symmetry axis can move, since the configuration is palin-
drome, there must be two (full) segments of equal size to both the left and
the right of a. These two segments move away from a by one position. Now,
either the configuration becomes asymmetric (if one of the two segments can-
not completely move because of a missing edge), or previous Case b.1 applies.

4 ColoredCCP with Global Snapshot and c > 2

In this section, we investigate the compaction problem for heterogenous agents
having c > 2 distinct colors. Recall that h = k/c is the number of agents of each
color. Obviously there is nothing to solve when h = 1.

4.1 Asymmetric Initial Configuration and h ≥ 3

The algorithm for this case builds segments around some specific points of the
ring, called rally points. These points are identified during the execution of the
algorithm, and to each color is assigned a specific rally point.

Definition 3. We say that agents are forming a compact line if they are forming
a full segment of size h around the rally point of their color. We say that agents
are forming an almost compact line if they are forming a full segment of size
h − 1 around the rally point of their color; the only agent that is not part of the
almost compact line is called a dangling agent.
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FC denotes the set of agents colored with max color. We say that the current
configuration is correctly placed if and only if both the following conditions hold:

(i) There are at least c − 2 compact lines that do not overlap;
(ii) There is at most one almost compact line.

Algorithm 3. Multi Color Connected Segment (First Step)
Pre-condition: Current configuration is not correctly placed and FC is symmetric.
Let a be the first agent in FC, according to the total ordering; a will move of one step
to make FC asymmetric.

The algorithm is split into three main steps, described in Algorithms 3, 4, and 6,
respectively. Let us first describe the intuition behind each step.

– First Step (Algorithm 3). The main idea of the first step is to make an agent
with color FC move in such a way that all agents with color FC become
asymmetrically placed (this step is skipped if FC is already asymmetric).
Once FC is asymmetric, we keep still the agents in FC until the last phase of
the algorithm: these agents are used as reference points to univocally identify
both the rally points and a unique orientation of the ring.

– Second Step (Algorithm 4). In the second step, the algorithm proceeds by
making each color but FC to form a full segment around the respective rally
point. This step lasts until the configuration becomes correctly placed. Note
that it is not possible to wait until all agents not in FC form compact lines
(i.e., with no dangling agents): in fact, one of the agents not in FC might
become blocked by a missing edge, and the whole system become blocked
forever.

– Third Step (Algorithm 6). Once the configuration is correctly placed, the
only agents still to fix in order to solve the problem, are the agents in FC
(that are still asymmetrically placed), and the only dangling agent (that has
a color different from FC), if any. Note that, if there is no dangling agents,
then there are c − 1 compact lines, and no almost compact line.
The idea is to use the compact lines formed so far to establish a global chi-
rality of the ring, and a rally point for FC. In particular, the already formed
compact lines do not move, hence the computed chirality can be kept; the
other agents (i.e., those in FC and the dangling agent) move as done in the
second step. The movements go on until either ColoredCCP is solved, or there
are c− 1 compact lines and one almost compact line. In this second case, the
only dangling agent and the almost compact line (by construction, all these
agents have the same color) move one towards each other until they form a
compact line.
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Correctness: Since the initial configuration is asymmetric, we have the
following:

Lemma 2. If in the initial configuration FC is not asymmetric, by executing
Algorithm3 (Step One), within finite time agents in FC are placed asymmetri-
cally on the ring.

Once the agents in FC occupy asymmetric positions on the ring, it is possible
to elect one of them as a leader, which provides a global orientation to the ring.
Once a global orientation has been computed, the positions of agents in FC allow
also to compute the rally points where all other agents will form their respective
compact lines (Algorithms 4). Let us denote these points by rpi, 0 ≤ i ≤ c−1. To
each rally point rpi, 0 ≤ i ≤ c− 1, is assigned a color, ci (color c0 is max color,
and is assigned to FC): all agents of color ci will gather around rpi, as described
in Routine Rally Points Connected Formation, reported in Algorithm5.
Given a rally point rpi, let us call the rally line of color ci a full segment of color
ci that is formed around rpi. Extending Definition 3, we will call dangling any
agent that is not part of a rally line.

Algorithm 4. Multi Color Connected Segment (Second Step)
Precondition: Current configuration is not correctly placed, and FC is asymmetric.

During this step, FC never moves until current configuration is correctly placed. Since
FC is asymmetric, it can be used to establish an orientation of the ring; also let vf the
first node in FC according to this orientation.

1. Rally Points Computation. FC is now used to compute c − 1 rally points, as
follows: vf is the first rally point, rp0. The i− th rally point rpi is the node of the
ring at distance i ∗ (2 · h + 1) from rp0 (in the clockwise direction; we assume the
ring size is at least 2 · h · c + c).

2. Formation using Rally Points. The rally points are now used by the other
colored classes to form a line, by executing routine Rally Points Connected
Formation in Algorithm 5.

Lemma 3. Within finite time, by executing Routine Rally Points Con-
nected Formation in Algorithm5, the system reaches a configuration with
c − 1 almost compact rally lines.

Proof. If c− 1 rally lines are almost compact, the lemma trivially follows. Thus,
let us assume that there exists at least one rally line, rli, that has at least two
dangling agents. By construction, only Pattern 1 of Rally Points Connected
Formation can be executed. Let us consider only agents having color ci. Let
a be the closest agent in the counter-clockwise direction to rpi that has not
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Algorithm 5. Multi Color Connected Segment (Auxiliary routine)
There are c rally points, sorted according to the ring orientation.

Case:(Pattern 1) There exists a rally line rli of color different from max color that
is being formed around rally point rpi that has at least two dangling agents. Given
a dangling agent a, let p be the counter-clockwise path that connects a with its
own rally line.
Movement (see Fig. 6):

– If a is not the farthest agent from its rally line (according to the counter-
clockwise direction), and on p there is a missing edge, then a does not move.

– If on p there is no missing edge, then a moves counterclockwise.
– If on p there is a missing edge, and a is the farthest agent from it rally line

(according to the counter-clockwise direction), then a moves clockwise.

Case:(Pattern 2) For all rally lines of color different from max color, there is at most
one dangling agent; let m be the number of rally lines with exactly h−1 agents (i.e.,
only one dangling agent). Given a dangling agent a, let p be the counter-clockwise
path that connects a with its own rally line.
Movement (see Fig. 7):

– If a does not have the shortest distance to its own rally line among all distances
of all other dangling agents from their own rally lines (according to clockwise
direction), then a does not move.

– If the first edge on p is not missing, then a moves counter-clockwise.
– If there are m − 1 dangling agents that are blocked by a missing edge, and a

has the shortest distance to its own rally line among all distances of all other
dangling agents from their own rally lines, then a moves clockwise.

(a) The dangling agents are
not blocked. They move counter-
clockwise towards their rally line.

(b) The dangling agents are
blocked. The last agent changes
direction and move clockwise to-
wards its rally line.

Fig. 6. Pattern 1 of Algorithm 5.

reached rli yet. We will show that, within finite time, the size of rli increases.
Note that, as long as a is not blocked, it will always move towards its own rally
line, even if other agents are blocked.
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(a) The black agent switches
direction.

(b) The vertical striped agent
switches direction.

Fig. 7. Pattern 2 of Algorithm5.

Therefore, if a is never blocked by the missing edge, the statement triv-
ially follows. Otherwise, let r be the furthest agent from rli: by Pattern 1,
r switches direction, and starts moving towards rli. As long as a is blocked,
r keeps approaching rli. If r becomes blocked, a does at least one step towards
rli decreasing its distance from rli. Thus, within finite time, either a or r will
join rli.

In conclusion, within finite time, rli becomes almost compact, and the lemma
follows.

Lemma 4. Let us assume that in the current configuration there exist m > 2
rally lines with exactly one dangling agent each, and c − 1 − m compact lines.
Within finite time, by executing Routine Rally Points Connected Forma-
tion in Algorithm5, m decreases.

Thus, by previous Lemmas 3 and 4, the following holds:

Lemma 5. Within finite time, by executing Algorithm4, the configuration
becomes correctly placed.

Finally, by executing Algorithm6, agents are able to solve the problem. In par-
ticular, at the beginning of this step, there are at least c − 2 compact lines, at
most one line with just one dangling agent, and finally the agents in FC, that
still needs to be compacted. Thus, the agents that still need to be placed to
correctly solve the problem, are those in FC and the dangling agent.

Lemma 6. If there are 3 or more colors, then, within finite time, by executing
Algorithm6 (Third Step), the ColoredCCP is solved.

Combining all the results from this section, we have the following result:

Theorem 6. Starting from an asymmetric initial configuration, with c ≥ 3 and
h ≥ 3, algorithm Multi Color Connected Segment correctly solves the
ColoredCCP problem.
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Algorithm 6. Multi Color Connected Segment (Third Step)
Precondition: Current configuration is correctly placed.

– Since agents in FC have to move, it is possible that the orientation of the ring that
FC is establishing gets lost. Therefore, before moving any agent in FC, the other
c − 1 classes (one class per color) are used to establish a new orientation of the
ring: in particular, let L2 and L3 be the set of agents colored with the second and
third color. The agents in L2 and L3 are either both already compacted, or one
of them (at most) forms an almost compact line. Without loss of generality, let us
assume that L2 forms a compact line. The new orientation of the ring follows the
smallest distance from L2 to L3 (note that, by the definition of rally points, this
distance is unique).
Now, the rally point for FC, call it rp∗, is computed by taking the middle point
of the largest segment between the lines that are not colored FC.

– The agents in FC and the dangling agent starts compacting, using rules described
in Rally Points Connected Formation, as follows: agents in FC use rp∗ as
rally point, and the dangling agent uses as rally point the middle point of the
almost compact line having its own color.

– If all lines are formed, and at most one has a dangling agent, the two portion of
the last line to be compacted move towards each other.

4.2 Asymmetric Initial Configuration and h = 2

In this section we focus on the case of agents with many colors (c > 2) but
only two agents of each color (h = 2). In this case, agents execute again the
three steps of previous section with a slight modification; The agents of the two
maximum colors act as a single team having just one color. Thus, FC is the
union of the agents having these two colors. This ensures that there are at least
3 agents in FC, such that the previous algorithm can still be executed.

At the end of the algorithm, agents of c−2 colors have formed compact lines
and only the agents in FC form a segment where two colors are interleaved.
More specifically, Configuration A in Fig. 8 is, up to symmetries, the only possi-
ble interleaved configuration. At this point we run a simple separation procedure
that separates the agents of distinct colors and forms the remaining two compact
lines. As shown in Fig. 8 from the configuration A, we can reach either config-
uration B or configuration C by swapping the agents on either edge e1 or edge
e2 (at least one of these edges must be available). Thus we reach a configuration
where c−1 compact lines are already formed. For the two agents of the last color
that is not compacted yet, these two agents can simply move towards each-other.
Since there are at least 2 compact lines of other colors already formed, the con-
figuration remains asymmetric after any movement of these two agents. Thus,
eventually these two agents will reach adjacent nodes and thus, the ColoredCCP
problem would be solved.
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b2b1

a1 a2
e1 e2 e3A

B C

Fig. 8. Separating an interleaved line with h = 2 and two colors.

Theorem 7. Starting from an asymmetric initial configuration, with c ≥ 3 and
h = 2, the modified algorithm Multi Color Connected Segment in this
section correctly solves the ColoredCCP problem.

4.3 Palindrome Initial Configuration for c > 2 Colors

We now consider the only remaining case for ColoredCCP with c > 2 colors.

Theorem 8. Starting from an initial configuration that is palindrome, aperi-
odic, and not compact, the ColoredCCP problem for c > 2 is not solvable if

1. the axis of symmetry passes through two empty nodes, or,
2. the axis of symmetry passes through one edge and one empty node, or,
3. the axis of symmetry passes through two edges and c > 3.

Proof. We prove each of the statements independently.

1. The proof comes directly from Theorem 4.
2. By hypothesis, the configuration is palindrome; moreover, the symmetry axis

intersects the ring on a node v and an edge e. Therefore, the agents can form
the compact lines either around v or around e. If the lines are formed around
v, since the ring not oriented, two agents with the same color would move to
v, thus violating the no collision requirement of the problem. If the line would
be formed around e, then there would be three compact lines of three different
colors around e, intersecting, and thus violating the ColoredCCP specification.

3. Since the configuration is palindrome, then compact lines formable by agents
have to be centred around the symmetry axis. By construction, it is only
possible to form two disjoint compact lines. Since there are more than 3
colors, by the pigeonhole principle, these three compact lines will intersect,
thus violating the specification of ColoredCCP.

Algorithm 7 solves the remaining cases when (a) the axis of symmetry passes
through at least one occupied node, or, (b) there is an axis of symmetry passing
through two edges, and c = 3. We can thus conclude that:

Theorem 9. If the initial configuration is aperiodic and palindrome and either
(a) the axis of symmetry passes through at least one occupied node, or (b) there
is an axis of symmetry passing through two edges, and c = 3, then ColoredCCP
is solvable.
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Algorithm 7. Algorithm Multi Color Palindrome

Pre-condition: Initial configuration is aperiodic and palindrome.

(a) If the axis of symmetry passes through at least one occupied node.
We follow the statements of Case (b) in Algorithm 2. In particular, since the
configuration is not periodic, it is always possible to elect one among the agents
that are on the axis of symmetry, let this agent be a. We distinguish the three
possible cases:
1. If the neighbors nodes of a are empty, a moves of one position, and the con-

figuration becomes asymmetric. Now, Algorithm of Sect. 4.1 can be run.
2. If the neighbors nodes of a are occupied, and the axis of symmetry passes

through another node b, and the neighbors nodes of b are empty, then b moves
of one position, and the configuration becomes asymmetric. Now, Algorithm
of Sect. 4.1 can be run.

3. Finally, no node on the symmetry axis can move. In this case, since the con-
figuration is palindrome, there must be two block of nodes of equal size to the
left and to the right of a. These two block of nodes move away from a of one
position. Now, either the configuration becomes asymmetric (one of the two
block does not move because of a missing edge), or previous Case a.1 applies.

(b) If the axis of symmetry passes through two edges, and c = 3.
Let e be one of the edges intersected by the symmetry axis, elected as in Case
(a) of Algorithm 2. The agents proceed as follows: at each round, only agents with
maximum color are allowed to move. In particular, the two agents nearest to e that
do not belong to a full segment containing e, move towards e. If no agent is blocked
by an edge removal, the symmetry axis is preserved and eventually all agents with
maximum color form a full segment around e. Otherwise, if an agent is blocked,
the next configuration becomes asymmetric; thus we can apply the algorithm of
Sect. 3.1.
Once we have a compact segment of the first color, following the same strategy,
the second color in the order will form a full segment around the antipodal edge
e′ of e. Finally, the agents of the third color form a full segment around edge e,
solving ColoredCCP.

5 Colored CCP with Global Snapshot and c = 2

5.1 Asymmetric Initial Configuration

If h = 2, the agents act like they have the same a color, and form one full segment
using the algorithm presented in Sect. 3.1. Once this full segment is formed, they
separate using the technique described in Sect. 4.2.

If h ≥ 3, algorithm Two Color Connected Segment (Algorithm 8) solves
the problem. The algorithm is based on a modification of the strategy in Sect. 4.1:
eventually two compact lines are formed, with possible overlap.

By the discussion presented in previous Sect. 4.1, we have:

Theorem 10. If c = 2, and the initial configuration is asymmetric, within finite
time, Algorithm8 solves ColoredCCP.
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Algorithm 8. Two Color Connected Segment

1. First Step is the same as in Algorithm 3.
2. Second Step is the same as in Algorithm 4. Please note that, at the end of this

step, agents in FC are not forming a full segment, while the agents with the other
color form an almost compact line.

3. Third Step: at this point the dangling agent and the almost compact line will
form a unique line by moving towards each other. Once this is done, the agents in
FC form a compact line, by executing Algorithm 1.

5.2 Palindrome Initial Configuration

First of all, by Theorem4, we can state that:

Theorem 11. Let the initial configuration be palindrome, aperiodic, and not
compact. If the axis of symmetry passes through two empty nodes, then Colored-
CCP is not solvable.

Finally, following the lines of previous Algorithm7, it is easy to show that
(a) if the axis of symmetry passes through at least one occupied node, or (b) if
h ≥ 2, c = 2 and there is an axis of symmetry passing through at least one edge,
then ColoredCCP is solvable.

6 Special Case: Compaction of k = 2 Agents

For the CCP problem, we assumed that there are k > 2 agents throughout this
paper and we now consider the remaining case. For the case of k = 2 agents of the
same color, the CCP cannot be solved in dynamic rings using oblivious agents.
Any configuration with two agents is a palindrome configuration. Thus, if the
axis of symmetry passes through two nodes (i.e the distance between the agents is
even on both sides), then the problem in not solvable due to previous results. On
the other hand if the symmetry axis passes through an edge, when the agents try
to approach this edge, one agent may be blocked, so the resulting configuration
would have the axis of symmetry passing through a node and the agents would
not be able to solve the problem. Thus, some form of persistent memory is needed
to solve the problem. If the agents have some persistent memory of at least one
bit, then during the execution of the algorithm when one of the agents is blocked,
then this agent can be elected, by setting a flag in the memory of this agent;
during the rest of the algorithm, the agent can simply approach each-other until
they are compacted or there is exactly one empty node between them. If there
is only one empty node between the agents and none of the agents are blocked
then the leader agent can move to the empty node to solve the problem. On
the other hand, if none of the agents are blocked during the execution of the
algorithm, then both agents can move in synchronous steps (maintaining the
same symmetry axis) and eventually reaching the two end-points of the edge
through which the axis passes. Thus we can state the following result:
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Theorem 12. For exactly two agents, ColoredCCP is solvable if and only if (i)
the initial configuration has the axis of symmetry passing through at least one
edge and (ii) the agents have persistent memory.

7 Conclusions

In this paper we introduced and studied the Compact Configuration Problem and
the Colored Compact Configuration Problem for a set of autonomous mobile agents
on a dynamic ring networks. We showed that both the problems can be solved
only if the initial configuration is aperiodic. The results of this paper provides
the exact characterization of the solvable initial configurations for the CCP and
ColoredCCP problems. We also showed that having persistent memory is not
necessary for solving the problem (except in the special case of two agents).
It would be interesting to determine what additional capabilities of the agents
would allow them to the solve the ColoredCCP problem without any overlaps.
Future investigations on this problem could also consider other graph topologies
under either the same or a more relaxed model for dynamicity. Another interest-
ing issue is to consider less synchronous models where all agents may not start
at the same time and they may not be active at the same time.
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Abstract. Set Cover is one of the most studied optimization prob-
lems in Computer Science. In this paper, we target two interest-
ing variations of this problem in a geometric setting: (i) Maximum
Disjoint Coverage (MDC), and (ii) Maximum Independent Coverage
(MIC) problems. In both problems, the input consists of a set P of
points and a set O of geometric objects in the plane. The objective is to
maximize the number of points covered by a set O′ of selected objects
from O. In the MDC problem we restrict the objects in O′ are pair-
wise disjoint (non-intersecting). Whereas, in the MIC problem any pair
of objects in O′ should not share a point from P (however, they may
intersect each other). We consider various geometric objects as cover-
ing objects such as axis-parallel infinite lines, axis-parallel line segments,
unit disks, axis-parallel unit squares, and intervals on a real line. For
axis-parallel infinite lines both MDC and MIC problems admit polyno-
mial time algorithms. On the other hand, we prove that the MIC prob-
lem is NP-complete when the objects are horizontal infinite lines and
vertical segments. We also prove that both MDC and MIC problems
are NP-complete for axis-parallel unit segments in the plane. For unit
disks and axis-parallel unit squares, we prove that both these problems
are NP-complete. Further, we present PTASes for the MDC problem for
unit disks as well as unit squares using Hochbaum and Maass’s “shifting
strategy”. For unit squares, we design a PTAS for the MIC problem using
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Chan and Hu’s “mod-one transformation” technique. In addition to that,
we give polynomial time algorithms for both MDC and MIC problems
with intervals on the real line.

Keywords: Set cover · Maximum coverage · Independent set ·
NP-hard · PTAS · Line · Segment · Disk · Square

1 Introduction

The Set Cover problem along with its geometric variations are fundamental
problems in Computer Science with numerous applications in different fields.
In the geometric set cover problem, we are given a set of points P and a set of
objects O, the objective is to cover all the points in P by choosing the minimum
number of objects from O. A variation of the geometric set cover problem is
the Maximum Coverage problem, where in addition to P and O, an integer k is
given as a part of the input. The objective is to select at most k objects from O
that cover the maximum number of points from P . In this paper, we consider
two interesting variations of the maximum coverage problem. In the following,
we give the formal definitions of the problems.

Maximum Disjoint Coverage (MDC ) Problem: Given a set P of
points and a set O of objects in the plane. The objective is to find a set of
disjoint (pairwise non-intersecting) objects O′ ⊆ O that covers maximum
number of points from P (see Fig. 1(a)).

Maximum Independent Coverage (MIC ) Problem: Given a set P of
points and a set O of objects in the plane. The objective is to find a set
O′ ⊆ O of objects that covers maximum number of points from P such that
no two objects in O′ share a point from P (see Fig. 1(b)).

(a) (b)

Fig. 1. (a) An example of the MDC problem. (b) An example of the MIC problem.
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These problems have applications in wireless communication networks, where
the objective is to service each receiver from only a single base station from a
set of given base stations and also to maximize the receivers serviced. In case
a receiver receives signals from more than one base stations then it may not
be able to communicate at all because of signal interference. While in the case
of static receivers, the regions covered by base stations can intersect, the same
is not favorable for moving receivers as the receivers can eventually reach the
intersection of two base stations.

The MDC problem is closely related to the Maximum Weighted
Independent Set (MWIS) problem. In the MWIS problem, we are given a set
of weighted objects O, and the objective is to find a set of pairwise non-
intersecting objects from O whose total weight is maximized. We can inter-
pret the MDC problem as the MWIS problem where the set of objects in the
MDC problem is same as the set of objects in the MWIS problem and the weight
of an object is the number of points it covers. Hence, the MDC problem is same
as the MWIS problem with a special weight function (the number of points cov-
ered by objects). By a similar argument, the MIC problem is also closely related
to the Maximum Weighted Discrete Independent Set (MWDIS) problem [4]. In
the MWDIS problem, we are given a set P of points and a set O of weighted
objects, the objective is to select a subset O′ ⊆ O of the maximum total weight
such that no pair of objects in O′ share a point in P .

In this paper, we consider the following problems.

➥ MICL: The MIC problem with axis-parallel lines.
➥ MICHLVSeg : The MIC problem with horizontal infinite lines and vertical

Segments.
➥ MICUSeg : The MIC problem with axis-parallel unit segments.
➥ MICUD : The MIC problem with unit disks.
➥ MICUS : MIC problem with axis-parallel unit squares.
➥ MICI : The MIC problem with intervals on a real line.

In a similar fashion, we consider the MDC problem with axis-parallel lines
(MDCL), axis-parallel unit segments (MDCUSeg), unit disks (MDCUD),
axis-parallel unit squares (MDCUS), and intervals on a real line (MDCI ).

1.1 Our Contributions

Our contributions are listed as follows:

➣ We give PTASes for the MDCUD and MDCUS problems using Hochbaum
and Maass’s shifting strategy (Sect. 2.1). However, this technique does not
work for the MICUD and MICUS problems. Hence, using Chan and Hu’s
mod-one approach, we give a PTAS for the MICUS problem (Sect. 2.2). The
natural open question is to find a PTAS for the MICUD problem.

➣ We prove that the MICHLVSeg problem is NP-complete (Sect. 3.1). We
also prove that the MDCUSeg and MICUSeg problems are NP-complete
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(Sect. 3.2). Similar reduction shows that the MDCUD and MICUD prob-
lems are NP-complete (Sect. 3.3). Finally, we prove that both MDCUS and
MICUS problems are also NP-complete (Sect. 3.4).

➣ We present a polynomial time algorithm for the MICL problem by reducing it
to the MWIS problem in vertex weighted bipartite graph (Sect. 4.1). We also
note that the MDCL problem is easy to solve in polynomial time. Further, we
provide polynomial time algorithms for both the MDCI and MICI problems
(Sect. 4.2).

1.2 Related Work

The set cover problem is NP-complete and a greedy algorithm achieves a ln n
factor approximation algorithm [9] and this bound is essentially tight unless
P=NP [9]. Similarly, for the maximum coverage problem, there is a well-known
greedy algorithm which produces an approximation factor of 1 − 1

e , which is
essentially optimal (unless P=NP) [9]. Most of the geometric versions of these
problems are NP-hard as well. Another variation of the set cover problem is
the Maximum Unique Coverage problem [8]. In this problem, we are given
a set of points P and a set of objects O in the plane and one has to find a
subset O′ ⊆ O which uniquely covers the maximum number of points in P . The
authors have shown that the problem is NP-hard for unit disks and provided a
18 factor approximation algorithm. Later, Ito et al. [11], improved this factor
to 4.31. For the case of unit squares, a PTAS is known [12]. Recently, Mehrabi
[15], studied a variation of this problem, called the Maximum Unique Set
Cover, in which one needs to cover all the points in P while maximizing the
number of uniquely covered points in P . Further, he proved that for unit disks
and unit squares, the problem is NP-hard [15] and gave a PTAS for unit squares.
However, no approximation algorithm is known for the unit disks. Note that
the NP-hardness of the MICUD and MICUS problems can also be obtained
from the NP-hardness result of [15]. In [17], the authors show that the problem
of Min-max-coverage-for-unit-square with depth 1 is NP-hard. The same
proof essentially shows that MDCUS is NP-hard.

The MWIS problem is known to be NP-hard for unit disks graphs [6]. Further,
PTASes are also known for disks and squares [7,18]. For the case of axis-parallel
rectangles, a (1 + ε)-approximation algorithm which runs in quasi-polynomial
time is also known [1]. For pseudo-disks, Chan and Har-Peled [4] gave an O(1)-
approximation algorithm for the MWIS problem using linear programming.
Their algorithm can be extended to the MWDIS problem for pseudo-disks in
the plane. Chan and Grant [3] considered the unweighted version of the discrete
independent set problem with the downward shadows of horizontal segments
in the plane. They gave a polynomial time algorithm for this problem. For the
case of MWDIS problem, Chan and Har-Peled [4] gave a O(1)-factor approx-
imation algorithm for pseudo-disks. On a related note, PTASes are known for
MWDIS with disks and axis-parallel squares when all objects have the same
weight [14].
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2 PTASes

2.1 PTASes: The MDCUD and MDCUS Problems

We first design a PTAS for the MDCUD problem. The algorithm is based on
Hochbaum and Maass’s [10] shifting strategy and follows the outline of the algo-
rithm developed in [7] for providing a similar approximation guarantee. Let P
be a set of n points, D be a set of m unit disks in the plane. We first enclose
P and D inside a rectangular box B. Next, we partition B into vertical strips
of unit width. Let us fix a constant k, called the shifting parameter. We define a
fat-strip as the collection of at most k consecutive unit strips. In the i-th shift,
shifti, the first fat-strip consists of the first i consecutive unit vertical strips and
the subsequent fat-strips, except possibly the last one, each contains exactly k
consecutive unit vertical strips. We apply k shifts, shifti for 1 ≤ i ≤ k in the
horizontal direction.

The idea of the algorithm is to find a solution to cover the maximum number
of points for each shift, shifti for 1 ≤ i ≤ k, and then select the solution among
them which covers the maximum points. A solution for a particular shifti is
obtained by finding solutions in each fat-strip Sj , for j = 1, 2, . . ., during that
shift and then taking the union of all such solutions. To obtain a solution for
each fat-strip, the shifting strategy is reapplied to each fat-strip in the vertical
direction. As a result each fat-strip is partitioned into “squares” of size at most
k × k. Later in this section, we will design an exact algorithm that covers a
maximum number of points in each such square.

Let X be an approximation algorithm applied to each fat-strip Sj : j =
1, 2, . . . which return a solution WX

j (maximum number of points) and αX be
the approximation factor. Further, let sh be the shifting algorithm that applies
X in each fat-strip of a particular shift and αsh be its approximation factor.
Now, we prove the following lemma:

Lemma 1 (Shifting Lemma [10]). αsh ≥ αX(1 − 1
k ), where k, X, αsh, and

αX are defined above.

Proof. Let Sj be a fat-strip of width k during shifti. Let optj be the optimal
number of points covered by disjoint disks in Sj and WX

j be the number of
points covered by disjoint disks while algorithm X applied to Sj . Then, by the
definition of αX we have,

WX
j ≥ αX · optj

Let WX(shifti) denote the number of points return by algorithm X for shifti.
Now summing the solutions over all the fat-strips during shifti we have,

WX(shifti) =
∑

j∈shifti
WX

j ≥ αX

∑
j∈shifti

optj

Let opt be the number of points covered by disjoint disks in an optimal
solution and opt(i) be the number of points in an optimal solution which are
covered by disjoint disks in optimal solution covering two adjacent fat-strips in
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i-th shift. Let Wsh be the number of points returned by the shifting algorithm
sh. Then, we have: ∑

j∈shifti
optj ≥ opt − opt(i)

and now:
Wsh = maxj=1 to k WX(shifti)

≥ 1
k

∑k
j=1 WX(shifti)

= 1
k

∑k
j=1

(∑
j∈shifti

WX
j

)

≥ 1
kαX

∑k
j=1

(∑
j∈shifti

optj

)

≥ 1
kαX

∑k
j=1

(
opt − opt(i)

)

There can be no disk which covers points from the optimal solution that
cover points in two adjacent strips in more than one shift partition. Therefore,
the sets opt(1), . . . , opt(k) are disjoint and can add up to at most opt. Hence,∑k

j=1

(
opt − opt(i)

)
≥ (k − 1)opt. Finally we have, Wsh ≥ αX(1 − 1

k )opt. Hence
the lemma. ��

Lemma 2. Let T be a square of size k×k and Lv be a vertical line which bisects
T vertically into two equal rectangles. Then at most �

√
2k	 pairwise disjoint unit

disks can intersect Lv.

Proof. Consider a vertical line segment Lv of length k. We want to find a maxi-
mum cardinality pairwise non-intersecting unit disks that intersects Lv. Consider
a rectangle R of width 2 and height k such that Lv vertically partition into two
equal parts. Observe that, any unit disk which intersects Lv has its center inside
R. We take �

√
2k	 squares each of length

√
2. We arrange these squares into two

columns on both sides of Lv with � k√
2
	 in each column (the two columns share

the common boundary with Lv). Then, this arrangement completely covers the
rectangle R. Consider a single square s of length

√
2. Observe that all unit disks

whose centers are inside s, are pairwise intersected. Hence, at most one of them
can be part of a maximum disjoint set. ��

We now describe an algorithm which finds an optimal solution in a k × k
square T . Let PT ⊆ P and DT ⊆ D be the set of points and disks inside T
respectively. Consider a vertical line Lv and a horizontal line Lh that partition
T into four squares T1, T2, T3, and T4 of size k/2 × k/2 each. Let Dvh ⊆ DT be
the set of unit disks which intersect either Lv or Lh, or both. Let D1,D2,D3,
and D4 be the set of unit disks in T1, T2, T3, and T4 respectively such that they
do not intersect Lv and Lh. Now we have the following observations. We can
find the set of non-intersecting disks in optimal solution for Dvh, since the size
of maximum disjoint set is at most 2�

√
2k	 (by Lemma 2). Any two disk that

belongs to two different Di’s are disjoint. Moreover, any disk from any of the
Di’s in the optimal solution cannot intersect Lv and Lh.

Now our algorithm is as follows. Consider all possible subsets D′
vh ⊆ Dvh

of size at most 2�
√

2k	. For each of these choices, do the following in each Ti.
Remove all the points which are covered by D′

vh and remove all the disks from
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Di which have an intersection with D′
vh. We now apply the same algorithm

recursively on each Ti on the modified points and disks. Thus, the number of
combinations of points to be chosen for testing for an optimum solution follows
the recursion relation T (n, k) = 4 ∗ T (n, k/2) × n2�√

2k� = nO(k).

Theorem 1. There exists an algorithm which yields a PTAS for the
MDCUD problem with performance ratio at least (1 − 1

k )2.

Proof. We use two nested applications of the shifting strategy to solve the prob-
lem. First, we apply shifting strategy on vertical strips of width at most k. Then
by Lemma 1, we get αsh ≥ αX(1 − 1

k ). Further, to solve each vertical strip of
width k, we again apply the shifting strategy on horizontal strips of height at
most k. However, we can solve the MDCUD problem optimally inside k × k
square. Thus, we get αX ≥ (1 − 1

k ). Hence, the theorem follows. ��

Corollary 1. By similar analysis as above, we can prove that, there exists an
algorithm which yields a PTAS for the MDCUS problem with performance ratio
at least (1 − 1

k )2.

2.2 PTAS: The MICUS Problem

In this section, we give a PTAS for the MICUS problem. Our PTAS is on the
same lines of the PTAS-es designed by Chan and Hu [5] and Mehrabi [15]. Our
main contribution is an exact algorithm for the MICUS problem when the points
and unit squares are inside a k ×k square, where k is a fixed constant. With the
help of the shifting strategy of Hochbaum and Maass [10], we obtain a PTAS for
the MICUS problem.

Let s1, s2, . . . , s� be a sequence of unit squares containing a common point
such that their centers are increasing x-coordinate. If the centers of s1, s2, . . . , s�

are either in increasing or in decreasing y-coordinate, then we say that the set
{s1, s2, . . . , s�} forms a monotone set. The boundaries of the union of these
squares form two monotone chains (staircases), called complementary chains
(see Fig. 2).

Fig. 2. Two sets of staircases.
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We consider the following lemma from [15] (Lemma 4 in [15]). One can look
[5] also for a similar result.

Lemma 3. Let (P, S) be an instance of the MICUS problem such that all the
points in P are inside a k × k square. Further, let OPT ⊆ S be the optimal set
of squares for the instance (P, S). Then, OPT can be decomposed into O(k2)
(disjoint) monotone sets.

We now define the mod-one transformation given by Chan and Hu [5]. Let
(x, y) be a point in the plane. Then (x, y) mod-one is defined as (x′, y′) where
x′ and y′ are the fractional parts of x and y respectively.

Theorem 2. There exists a polynomial time algorithm for the MICUS problem
where the given points and squares are inside a k × k square, for some constant
k > 0.

Proof. Note that the squares in an optimal solution can be decomposed into
O(k2) monotone sets (Lemma 3). Every monotone set forms two staircases.
Under mod-one transformation, both staircases map to two monotone chains
which join at the corners after the mod-one. Thus, at a point (after mod-one)
where a square disappears from the boundary of a staircase, the square starts
appearing on the boundary of another staircase. Our dynamic programming
algorithm is based on the above facts.

We now discuss the sweep-line based dynamic programming in the form of a
state-transition diagram. Every state stores O(k2) 6-tuples of unit squares. More
specifically, the following defines a state in the state-transition diagram.

1. A vertical sweep-line l, which is always placed at a corner of any one of the
given unit squares, and

2. O(k2) 6-tuples of unit squares and each 6-tuple forms a monotone set i.e.,
every 6-tuple is (sstart, sprev′ , sprev, scurr, scurr′ , send) such that
(a) the sequence of squares sstart, sprev′ , sprev, scurr, scurr′ , and send are

in the increasing x-coordinate of their centers and hence, they form a
monotone set, and

(b) sweep-line l lies between the corners of squares sprev and scurr after mod
1 transformation.

In a 6-tuple (sstart, sprev′ , sprev, scurr, scurr′ , send), the squares sstart and send

are the start and end squares of the corresponding monotone set, sprev′ is the
square which is the immediate predecessor of sprev and scurr′ is the square which
is the immediate successor of scurr in the monotone set. Further, sprev′ and scurr′

are stored to verify a point is uniquely covered or not.
We now describe the transitions from a state A to a state B. Assume that the

current position of the sweep-line is l. Let (sstart, sprev′ , sprev, scurr, scurr′ , send)
be the 6-tuple in A such that the x-coordinate, after mod 1, of the corner of
scurr is the smallest among all other tuples and which is to the right of the
position of the sweep-line l. Then the next possible position of the sweep-line is,
l′, the x-coordinate of the corner (after mod 1) of scurr. Hence, there can be a



142 A. K. Dhar et al.

transition from the state A to a state B that has all other tuples as in the state
A except the 6-tuple (sstart, sprev′ , sprev, scurr, scurr′ , send) that is changed to
(sstart, sprev, scurr, scurr′ , snew, send) for some unit squares snew only if no point
in P between l and l′, after taking mod 1, are covered by more than one square
in the O(k2) 6-tuples in state B, before taking mod 1. Further, the cost of the
transition is the number of points in P between l and l′, after taking mod 1,
which are uniquely covered by the squares in the O(k2) 6-tuples in the state B,
before taking mod 1.

Note that there are only O(nO(k2)) states and transitions in the diagram.
However, to check the existence of a transition and finding the cost of a transition
requires O(m) time. Hence, the state-transition diagram can be constructed in
O(mṅO(k2)) time. Since the sweep-line always moves to the right, the state-
transition diagram is a directed acyclic graph (DAG). Further, one can suitably
add a source X and sink Y to this DAG. It is easy to observe that the cost of
an optimal solution to an instance of the MICUS problem is nothing but the
cost of the longest path from X to Y in the corresponding DAG, which can be
computed in the time polynomial with respect to the size of the DAG. ��

We now apply the shifting strategy of Hochbaum and Maass [10] to obtain
a PTAS for the MICUS problem (see Sect. 2.1 above for the explanation).

Theorem 3. There exists a PTAS for the MICUS problem.

3 NP-Completeness Results

In this section we prove the NP-completeness results for the MDC and
MIC problems with various geometric objects. To proceed further,
we require the following definitions and results. We first define the
Positive Exactly 1-in-3SAT (P1-in-3SAT) problem [19]. We are given a 3SAT
formula φ with n variables x1, x2, . . . , xn and m clauses C1, C2, . . . , Cm such that
each clause contains exactly 3 positive literals. The objective is to find an assign-
ment to the variables of φ such that exactly one literal is true in every clause.
Schaefer [19] proved that this problem is NP-complete. A planar variation of this
problem is the rectilinear-positive-planar-one-in-3-SAT (RPP1-in-3SAT) prob-
lem [16]. In this case, the variables are placed horizontally on a line. Each clause
is connected with exactly three variables either from the top or from the bottom
such that the clause-variable connection graph is planar. The objective is to find
a truth assignments to the variables of φ such that exactly one literal in each
clause of φ is true. Refer Fig. 3 for an instance of the RPP1-in-3SAT problem.
Mulzer and Rote [16] proved that this problem is also NP-complete.

3.1 NP-Completeness: The MICHLVSeg Problem

In this section, we prove that the MIC problem with infinite horizontal lines and
vertical segments (MICHLVSeg problem) is NP-complete. We give a reduction
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Fig. 3. An instance of the RPP1-in-3SAT problem.

from the P1-in-3SAT problem. Let φ be an instance of the P1-in-3SAT problem.
We create an instance I of the MICHLVSeg problem as follows.

Variable Gadget: For each variable xi, we take a horizontal infinite line hi, a
vertical line vi, and a point pi. The point pi is placed in the intersection between
hi and vi (see Fig. 4). In order to cover pi, either one of these two lines needs to
be picked. Note that between any pair of consecutive horizontal lines there is a
horizontal gap. In the later stage, we place some points corresponding to clauses
in these gaps.

Clause Gadget: For each clause we take a vertical infinite strip say region of
that clause. We place the regions side by side to the right of all the vertical lines
for variables such that no two regions intersect. Let Cc be a clause containing
variables xi, xj and xk. For this clause we take 5 points {pc

1, p
c
2, p

c
3, p

c
4, p

c
5} and

4 vertical segments {sc
1, s

c
2, s

c
3, s

c
4}. All the points and segments are on a vertical

line and placed inside the region of Cc. The points pc
1, pc

3, and pc
5 are on hi,

hj and hk respectively. The point pc
2 are inside a gap between hi, and hj and

pc
4 are inside a gap between hj , and hk. The segment sc

� covers only the points
{pc

�, p
c
�+1}, for 1 ≤ � ≤ 4.

This completes the construction. See Fig. 4 for the complete construction.
Clearly, the construction can be done in polynomial time with respect to the
number of variables and clauses in φ. We now prove the following theorem.

Theorem 4. The MICHLVSeg problem is NP-Complete.

Proof. It is easy to prove that the MICHLVSeg problem is in NP. We now show
that exactly one literal is true in every clause of φ if and only if I has a solution
that covers all the points.

Assume that φ has a satisfying assignment such that exactly one literal is
true in every clause of φ. For the gadget of xi, select hi in the solution if xi is
true. Otherwise select vi. Now consider a clause Cc = (xi ∨ xj ∨ xk). Note that
exactly one literal is true for Cc i.e., exactly one of hi, hj , or hk is selected in the
solution. So exactly one of pc

1, pc
3, or pc

5 is covered by the variable gadgets. Hence
the remaining 4 points are covered by exactly two segments from the gadget of
Cc. Thus we have a solution for I covering all the points.
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Fig. 4. Variable and clause gadgets and their interaction.

On the other hand, assume that I has a solution covering all the points. Now
to cover pi in the gadget of xi either hi or vi is in the solution. So we set xi to
be true if hi is in the solution. Otherwise, xi is false. Now we show that this is a
satisfying assignment of φ. Let Cc = (xi ∨ xj ∨ xk) be a clause. To cover all the
points corresponding to Cc, exactly one of pc

1, pc
3, or pc

5 is covered from variable
gadgets, and we set that variable to be true. ��

3.2 NP-Completeness: The MDCUSeg and MICUSeg Problems

In this section, we first prove that the MDCUSeg problem is NP-complete by a
reduction from the RPP1-in-3SAT problem. The reduction is in the same line
of the reduction provided for the Min-max-coverage-for-unit-square problem in
[17]. We present a variation of the proof for vertical and horizontal unit segments
in detail here to be self-complete. This reduction also directly implies that the
MICUSeg problem is NP-complete.

We now describe the construction to convert an instance φ of the RPP1-in-
3SAT problem to an instance Γ of the MDCUSeg problem in polynomial time.
As shown in Fig. 3, a clause can connect to exactly three positive literals, either
from top or from bottom. We represent these clause-literal connections as loops
and more specifically as left, middle, and right loops. For example, Fig. 5 shows
some of these loops for the instance φ in Fig. 3.

Variable Gadgets: The variable gadget for xi is represented as a
rectangular loop as is shown in Fig. 6. This loop has 2α points (value of α is
established later), which are covered by 2α unit horizontal and vertical seg-
ments (see Fig. 6). Each segment covers exactly two consecutive points along the
loop. A segment ti, 1 ≤ i ≤ 2α−1 covers i-th and (i+1)-th points. The segment
t2α covers 1-st and the 2α-th point.
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Fig. 5. A schematic diagram of the construction of a MDCUSeg problem instance.

Fig. 6. Rectangular variable loop

Note that, a clause Cc can connect to xi from top or bottom. Hence, apart
from a rectangular loop, every variable gadget has multiple connections through
its left, middle and right loops from top or bottom. Let σ represents the maxi-
mum number of clause connections to the rectangular loop of any variable from
either top or bottom. For example, in Fig. 3 the value of σ is two since in each
variable at most two clauses are connected either from the top or from the
bottom. Figure 7 describes a left and a middle loop which connect to the rect-
angular loop of xi from the top. The right loop is a horizontal mirror image
of the left loop. In the design of every connection loop, there are three special
segments namely t∗, t∗∗ and tci . The segments t∗ and t∗∗ connects the vertical
arrangement of every loop to the rectangular loops. Whereas, the segment tci is
a clause segment, which is used to connect with the clause gadget.

Figure 7 also shows an example of connecting left/middle loop with the vari-
able rectangular loop. All other loops are similarly connected with the variable
rectangular loop. If clause connections to a variable rectangular loop from top
are numbered as 1, 2, ..., l, ..., δ (δ ≤ σ) then the l-th connection is made through
the t4l-th segment on the rectangular loop. The segment t4l is removed from the
variable rectangular loop and the points 4l and 4l + 1 covered by t4l are now
covered by the segments t∗ and t∗∗ respectively (see Fig. 7). To accommodate
this arrangement, we set the value of α to be 4σ + 4. Similarly, different loops
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(a) (b)

Fig. 7. Rectangular loop connects with clause connection loops, (a) left loop (b) middle
loop, segment t4l is removed and points 4l and 4l + 1 are covered by segments t∗ and
t∗∗ respectively. (Color figure online)

for clause connections from bottom are the vertical mirror image of the loops
described in Fig. 7.

The rectangular loop for a variable along with at most σ clause connection
loops are called as a big-loop, that constitute our variable gadget. It is easy to
see that the number of segments in the big-loop are even and all the points can
be covered by either selecting all odd numbered segments (blue) or by selecting
all even numbered segments (orange). These two sets are disjoint and represent
the truth value of the corresponding variable.

Clause Gadgets: Let Cc = (xi ∨ xj ∨ xk) be a clause. For this clause, we take
four points and three unit segments as shown in Fig. 8(a). Figure 8(b) shows the
interaction of clause segments sc

i , sc
j and sc

k from variables xi, xj , and xk with
the clause gadget. The clause point pc is covered by all three clause segments sc

i ,
sc

j , and sc
k corresponding to the variables in Cc. Hence, to have a valid solution

(maximum coverage) for the MDCUSeg problem, the clause point pc has to be
covered by exactly one of these three segments.

Since the number of points and segments in Γ is a polynomial function on
the number of clauses and variables in φ. Hence, the construction can be done
in polynomial time. This completes the construction.

Theorem 5. The MDCUSeg problem is NP-complete.

Proof. Clearly, the problem is in NP. We now prove that exactly one literal is
true in every clause of φ if and only if Γ has a solution of size |P |, where P is
the point-set in Γ . Observe that, in a variable gadget (big-loop) there are only
two ways to cover all points using disjoint segments, either by selecting all even
numbered (orange colored) or all odd numbered (blue colored) segments.

Assume that exactly one literal is true in every clause by a truth assignment
to the variables of φ. If xi is true then in the gadget of xi, blue segments are
chosen. Otherwise, orange segments are chosen. From the above observation, the
chosen segments will cover all the points in a variable gadget. Since, exactly one
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(a) (b)

Fig. 8. (a) Structure of a clause gadget (b) Connection between clause and variable
gadgets. (Color figure online)

literal is true for each clause Cc, exactly two of the three points pc
i , pc

j , and pc
k

are covered by the false variable. So the remaining two uncovered points (pc and
one of the uncovered point pc

i , pc
j , and pc

k) is covered by the corresponding clause
segment. Hence, we have a solution of size |P |.

On the other hand, assume that there exists a covering of all the points in
the instance Γ of MDCUSeg problem using disjoint segments. Recall that, all
points in a variable gadget is covered by either all blue or orange segments.
Thus, we can construct a truth assignment as follows. For the gadget of xi, if
all blue segments are chosen then set xi to be 1, otherwise set xi to be 0. Since
every point is covered by all the segments, in any clause gadget Cc, the point
pc can be covered by exactly one of the three segments sc

i , sc
j , and sc

k. Without
loss of generality assume that sc

i is selected in the solution. Then the point pc
i on

segment tci (orange colored) in the variable gadget of xi is also covered. Therefore
in the gadget of xi we can not select the orange segments. Further, in the gadgets
of xj and xk, we need to select the orange segments since the points pc

j and pc
k

are on orange segments in their corresponding variable gadgets. As a result, xi

becomes true and both xj and xk become false. Therefore, exactly one of the
three literals is true in every clause of φ. ��

We note that the above reduction also works for MICUSeg problem. Hence,
we have the following theorem.

Theorem 6. The MICUSeg problem is NP-complete.

3.3 NP-Completeness: The MDCUD and MICUD Problems

We prove that both MDCUD and MICUD problems are NP-complete. Here, we
give a brief outline for the MDCUD problem. A similar reduction can be done
for the MICUD problem. We give a reduction from the RPP1-in-3SAT problem
to the MDCUD problem. Similar to the construction in Sect. 3.2, we construct
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an instance Γ (P,D) of the MDCUD problem from a given instance φ of the
RPP1-in-3SAT problem, where P is a set points and D is a set of unit disks.

Variable Gadgets: The variable gadgets for the MDCUD problem are analo-
gous to that of the MDCUD problem discussed in Sect. 3.2. A rectangular loop
of a variable in φ is given in Fig. 9(a). The placement of points and unit squares
for the left loop is shown in Fig. 9(b). The other loops can be constructed sim-
ilarly. Figure 9(c) shows the connection between the rectangular loop and the
left loop. Observe that, as in Sect. 3.3, there are two sets of alternative unit
disks, blue and orange, such that each set of unit disks covers all the points in
a variable gadget. Note that the blue disks represent the true assignment of the
corresponding variable whereas the orange disks represent the false assignment.

Clause Gadgets: The clause gadget is similar to the clause gadget of
MDCUSeg problem (Sect. 3.2) with the following differences. Here the gadget
for clause Cc consists of a single point pc only. Let Cc be a clause with variables
xi, xj , and xk. Then, the three squares dc

i , d
c
j , and dc

k corresponding to the vari-
ables xi, xj , and xk respectively contain the clause point pc as shown in Fig. 9(d).
Now to cover pc, exactly one of the three literals xi, xj , and xk in the clause Cc

is true.
Since the rest of the argument is almost similar to that in Sect. 3.2, we con-

clude the following theorem.

Theorem 7. The MDCUD and MICUD problems are NP-complete.

3.4 NP-Completeness: The MDCUS and MICUS problems

We prove that both MDCUS and MICUS problems are NP-complete. We
give a polynomial time reduction from the RPP1-in-3SAT problem [16] to
MDCUS (and hence MICUS ) problem. Similar to the construction in Sect. 3.3,
we construct an instance β(P,O) of MDCUS problem from a given instance φ
of RPP1-in-3SAT problem, where O is the set of unit squares.

Variable Gadgets: Variable gadgets for the MDCUS problem are analogous
to that of the MDCUD problem discussed in Sect. 3.3. A rectangular loop of a
variable in φ is given in Fig. 10(a). The placement of points and unit squares for
the left loop is shown in Fig. 10(b). The other loops can be constructed similarly.
Figure 10(c) shows the connection between the rectangular loop and the left loop.
Observe that, as in Sect. 3.3, there are two sets of alternative unit squares, blue
and orange, such that each set of unit squares covers all the points in a variable
gadget.

Clause Gadgets: This is similar to the clause gadget of MDCUD problem in
Sect. 3.3. Let Ca be a clause with variables xi, xj , and xk. Then, the three squares
sa

i , sa
j , and sa

k will contain the clause point pa as shown in Fig. 10(d).
Since the rest of the argument is similar to the that in Sect. 3.3, we conclude

the following theorem.

Theorem 8. The MDCUS and MICUS problems are NP-complete.
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(a) (b)

(c) (d)

Fig. 9. (a) Rectangular variable loop (b) A left loop (c) Connection of rectangular loop
with the vertical arrangement of any other loop (d) Clause gadget and variable clause
interaction.

4 Polynomial Time Algorithms

4.1 The MDCL and MICL Problems

In this section, we show that the MDCL and MICL problems can be solved
in polynomial-time. We recall that the input for both problems is a set L of
axis-parallel lines and a set P of points in the plane.

The MDCL Problem: The polynomial-time algorithm for the MDCL problem
is straightforward. We need to find a set of non-intersecting axis-parallel lines
covering the maximum number of points. Thus the optimal solution selects the
set of either all horizontal lines or all vertical lines based on the set which covers
the maximum number of points.

The MICL Problem: We show that the MICL problem can be solved in poly-
nomial time. To do so, we first reduce this problem to an equivalent problem,
the maximum weight independent set problem in bipartite graphs. Let L be a
set of lines and P be a set of points. Also let Lh ⊆ L and Lv ⊆ L be sets of ver-
tical and horizontal lines respectively. We generate the vertex weighted bipartite
graph G(U,W,E) as follows. For each vertical line vi ∈ Lv, we take a vertex ui in
U and for each horizontal line hj ∈ Lh, we take a vertex wj in W . For each point
p ∈ P , if p is on the intersection between a vertical line vi and a horizontal line
hj , take an edge eij between vertices ui and wj . Finally, we assign the weight of
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(a) (b)

(c) (d)

Fig. 10. (a) A rectangular loop (b) A left loop (c) Connection of rectangular loop
with the vertical arrangement of any other loop (d) Clause gadget and variable clause
interaction.

a vertex as the total number of the points contained by its corresponding lines.
See the construction in Fig. 11.

It is now observed that finding a maximum weight independent set in G is
equivalent to finding a solution to its corresponding MICL problem instance.
Since the maximum weight independent set problem on a bipartite graph can
be solved in polynomial time1 [2], and so the MICL problem.

4.2 The MDCI and MICI Problems

We give polynomial time algorithms for both MDCI and MICI problems. The
algorithm is very similar to that of [17], and hence we would only provide outlines
for the same. Let I be a set of n intervals {i1, . . . , in} and P be a set of m points
{p1, . . . , pm} on the real line.

The MDCI Problem: We formulate the MDCI problem as a MWIS problem
with weighted intervals. Let us define a weight function w : I → N as follows:
the weight of an interval it ∈ I is the total number of points in P covered by it,
i.e., w(it) = {|pj | such that pj ∈ P, pj ∈ it}. We first build a binary search tree
T on P . Next for each interval ij ∈ I, we make a counting query on T . Hence,
the total time will be taken as O(m log m + n log m).
1 Let G(V,E) be a bipartite graph. Finding a minimum weight vertex cover V ∗ ⊂ V
in G can be solved by a minimum cut computation or a maximum flow computation
in a related graph. Then the maximum weight independent set of G is V \ V ∗.
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(a) (b)

Fig. 11. (a) An instance of the MICL problem. (b) A vertex weighted bipartite graph
instance constructed from the instance of the MICL problem in (a).

We now have a set Iw of n weighted intervals, and the objective is to compute
a subset I ′

w ⊆ Iw of pairwise non-intersecting intervals of maximum weight. Note
that MWIS problem in weighted intervals can be solved in O(n log n)-time [13].
Let I∗

w = {i∗w1, i
∗
w2, . . . , i

∗
wk} be an optimal solution to the MWIS problem on Iw.

Then, clearly the set I∗ corresponding to the intervals in I∗
w is also an optimal

solution for MDCI problem which covers w(I∗
w) =

∑k
j=1 w(i∗wj) points. Hence,

we can find the optimal solution to MDCI problem in O(m log m + n log m +
n log n)-time.

Theorem 9. The MDCI problem can be solved in O(m log m+n log m+n log n)
time.

The MICI Problem: Here we apply the same algorithm presented for the
MDCI problem in the previous section. To apply the algorithm, we first truncate
every interval ij ∈ I such that it starts with the leftmost and ends with the
rightmost point covered by ij . Next, we assign a weight to each interval as
the number of points in P that are covered by it. Finally, we find maximum
weight non-intersecting intervals in the generated weighted intervals. Thus, we
can conclude the following theorem.

Theorem 10. There exists an O(m log m+n log m+n log n) time algorithm for
the MICI problem.

5 Conclusion

In this paper, we consider the Maximum Disjoint Coverage (MDC ) and Max-
imum Independent coverage (MIC ) problems. For both problems, we present
some positive and negative results on various geometric objects. In the negative
side, we show that when the objects are horizontal lines and vertical segments,
the MIC problem is NP-hard. Further, with unit axis-parallel segments, unit
squares, and unit disks in the plane both the MIC and MDC problems are
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NP-complete. In the positive side, we give polynomial-time algorithms for both
problems with axis-parallel lines in the plane and intervals on a line. We pro-
vide PTASes for the MDC problem with unit squares and unit disks based on
Shifting Strategy whereas for the MIC problem with unit square we provide a
PTAS using the mod-one transformation. It is now open to design a PTAS for
the MICUD problem.
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Abstract. A new distance between strings, termed rank distance, was
introduced by Dinu (Fundamenta Informaticae, 2003). Since then, the
properties of rank distance were studied in several papers. In this article,
we continue the study of rank distance. More precisely we tackle three
problems that concern the distance between strings.

1. The first problem that we study is String with Fixed Rank Distance
(SFRD): given a set of strings S and an integer d decide if there
exists a string that is at distance d from every string in S. For this
problem we provide a polynomial time exact algorithm.

2. The second problem that we study is named is the Closest String
Problem under Rank Distance (CSRD). The input consists of a set
of strings S, asks to find the minimum integer d and a string that
is at distance at most d from all strings in S. Since this problem is
NP-hard (Dinu and Popa, CPM 2012) it is likely that no polynomial
time algorithm exists. Thus, we propose three different approaches: a
heuristic approach and two integer linear programming formulations,
one of them using geometric interpretation of the problem.

3. Finally, we approach the Farthest String Problem via Rank Distance
(FSRD) that asks to find two strings with the same frequency of
characters (i.e. the same Parikh vector) that have the largest possible
rank distance. We provide a polynomial time exact algorithm for this
problem.

1 Introduction

In many important problems from various research fields (e.g., computational
biology, image processing, computational linguistics, information retrieval),
when a new objects is given, the first step taken by a specialist is to compare the
new object with objects that are already well studied and annotated. Objects
that are similar probably have the same function and behavior. For example, in
bioinformatics, a common task is to design a new sequence that is similar to the
c© Springer Nature Switzerland AG 2019
T. V. Gopal and J. Watada (Eds.): TAMC 2019, LNCS 11436, pp. 154–171, 2019.
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input given sequences: the design of genetic drugs with a structure similar to a
set of existing sequences of RNA [22], PCR primer design [16,22], genetic probe
design [22], antisense drug design [6], finding unbiased consensus of a protein
family [4], motif finding [24,34]. Language classification, authorship identifica-
tion, historical linguistics, etc., are few of the computational linguistics’ topics
which deal with similarity problems. In information retrieval, similarity is at the
basis of most techniques that seek an optimal match between query and docu-
ment, and the vision domain is full of applications regarding the similarity of
images or video objects.

Even if a lot of measures are already available and well studied in mathe-
matics [7] alternative approaches are explored in daily applications. In a work-
shop dedicated to Linguistics distances [27], the organizers assume that “there
is always a hidden variable in the similarity relation, so that we should always
speak of similarity with respect to some property”, and they suggest that the
researchers are often unclear on this point.

In computational biology the standard method for sequence comparison
is by sequence alignment. Sequence alignment is the procedure of comparing
two sequences (pairwise alignment) or more sequences (multiple alignment) by
searching for a series of individual characters or character patterns that are in
the same order in the sequences. The standard pairwise alignment method is
based on dynamic programming: the algorithm compares every pair of charac-
ters of the two sequences and generates an alignment and a score (edit distance
is based on a scoring scheme for insertion or deletion penalties). The sequence
alignment procedure is by far too slow to compare a large number of sequences
and therefore alternative approaches might be explored in bioinformatics if we
can answer the following question: is it possible to design a sequence distance
which is at the same time easily computable and non-trivial? This important
problem, known also as DNA sequence comparison, is a major open problem in
bioinformatics [35], being ranked on the first position in two list of major open
problems in bioinformatics [21,35].

The standard distances with respect to the alignment principle are edit (Lev-
enshtein) distance or ad-hoc variants. However, as previously mentioned, Lev-
enstein distance is too slow in some computational biology tasks which imply a
large number of sequences. In other fields, like natural language classification,
the accuracy of results obtained with Levensthein distance is too low, and new
methods are required by a linguist. Moreover, notice the surprising conclusion
through the severity of tone “there is no reason to continue using the Levenshtein
distance to classify languages” [17].

Rank Distance is a metric introduced with linguistics motivation in 2003
by Dinu [9] (it is also called Dinu rank distance by Gagolewski [15]) in order
to measure the similarity between strings, and begin to be very attractive for
various research topics in the last decade: sequence aligner and phylogenetic
analysis [10], predicting synergistic drugs for cancer [33], DNA similarity [13],
natural language identification [19], authorship identification [30], language sim-
ilarity [8], image processing [18], etc.
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To measure the distance between two strings, Rank distance uses the follow-
ing strategy: we scan (from left to right) both strings and for each letter from the
first string we count the number of elements between its position in first string
and the position of its first occurrence in the second string. Finally, we sum all
these scores and obtain the rank distance. In other words, rank distance mea-
sures the gap between the positions of a letter in the two given strings, and then
sums up these values. Intuitively, rank distance gives us the total non-alignment
score between two sequences. Clearly, the rank distance gives a score zero only
to letters which are in the same position in both strings, as Hamming distance
does. Rank distance can be computed fast and benefits from some features of
the edit distance. On the other hand, an important aspect is that the reduced
sensitivity of the rank distance w.r. to deletions and insertions is of paramount
importance, since it allows us to make use of ad hoc extensions to arbitrary
strings, such as do not affect its low computational complexity.

1.1 Our Results

In this paper we study three problems related to string similarity and for each
we propose one or more solutions, aiming for polynomial time algorithms when
possible.

String with Fixed Rank Distance (SFRD). The input of the SFRD problem is
a set of n strings S = {s1, s2, . . . , sn} and an integer d decide if there exists a
string that is at distance d from every string in S. For this problem we provide
a polynomial time exact algorithm.

We start from a geometrical interpretation of the problem and we consider
the input strings as vectors in the n-dimensional space. Then, we observe that
the vector of interest is the center of a (n−1)-sphere and sits on another (n−1)-
sphere centered in the origin. We also show how to transform our problems from
the rank distance to the l2 norm and then we construct an equation system
whose solution is equivalent to the solution of the SFRD problem. This equation
system is polynomial time solvable.

Closest String Problem Under Rank Distance (CSRD). The input of the second
problem consists of a set of strings S and the goal is to find the minimum integer
d and a string that is at distance at most d from all strings in S.

We begin by introducing the notion of degenerate strings, that are strings
where two characters might have the same index. Then, based on the proper-
ties of degenerate strings, we present a heuristic algorithm. Next, we propose
two integer programming (IP) formulations, the second one being an improved
version of the first by adding additional constraints based on the properties of
heuristic approach. At last, we gave a geometrical interpretation of CSRD and
using the bounding sphere center projection, we propose another IP formulation
which has the least number of variables and constraints.
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Farthest String Problem via Rank Distance (FSRD). Finally, we aim to find
two strings with the same frequency of characters (i.e., the same Parikh vector)
that have the largest possible rank distance. For this problem, we provide a
polynomial time exact algorithm.

1.2 Previous Work

The above mentioned problems were previously studied in relation with other
distances. For example, the first similarity measure used in the closest string
problem is the Hamming distance and emerged from a coding theory appli-
cation [14]. The closest string problem via Hamming distance is known to be
NP-complete [14] and there exist a number of approximation algorithms and
heuristics (see, for example, [2,22,24,25]).

As the closest string problem is used in many contexts, alternative distance
measures were introduced. The most studied alternative approach is the edit
distance. The closest string problem via edit distance is NP-hard even for binary
alphabets [28,29]. The existence of fast exact algorithms when the number of
input strings is fixed is investigated in [28].

The study of genome rearrangement introduces new problems related to clos-
est string via new distances. Popov [31] shows that the closest string via swap
distance (or Kendal distance) and element duplication distance (i.e. the mini-
mum number of element duplications needed to transform a string into another)
is also NP-complete.

Another remarkable fact is that the median string in the rank case is a
tractable problem [11], while in the edit case it is NP-hard [5]. In terms of the
closest string problem, both in the case of edit [28] and rank [12] both approaches
are NP-hard. An IP based technique has been proposed for the closest string via
rank distance [1] and via Hamming distance [26].

2 Preliminaries

In this section we introduce notation and preliminaries. We first introduce the
rank distance and then we define the problems that we study in this paper.

Let Σ = {a1, a2, . . . , an} be an alphabet. The Parikh vector p : Σ∗ → N
n of

a word w ∈ Σ∗ is defined as p(w) = (|w|a1 , . . . , |w|an
), where |w|ai

is the number
of occurrences of character ai in w. Given a string s ∈ Σ∗, we denote by si the
i-th character of the string.

Definition 1. Given two permutations σ and τ over the same universe U , we
define the rank distance between them as:

Δ(σ, τ) =
∑

x∈U
|σ(x) − τ(x)|.

In [9] Dinu proves that Δ is a distance function. The rank distance is naturally
extended to strings. The next definition [11] formalizes the transformation of
strings into rankings.
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Definition 2. Let n be an integer and let w = a1 . . . an be a finite word
of length n over an alphabet Σ. We define the extension of w, w̄ =
a1(1)a1(2) . . . a1(j) . . . an(i), where i(j) is the j occurrence of ai in the string
a1a2 . . . an.

Example 1. If w = aaababbbac then w̄ = a1a2a3b1a4b2b3b4a5c1.

Observe that given w̄ we can obtain w by simply deleting all the indexes.
Note that the transformation of a string into a permutation can be done in linear
time (by storing for each symbol, in an array, the number of times it appears
in the string). We extend the rank distance to arbitrary strings with the same
Parikh verctor1 as follows:

Definition 3. Given w1, w2 ∈ Σ∗, we define Δ(w1, w2) = Δ(w̄1, w̄2).

Example 2. Consider the following two strings x = abca and y = baac. Then,
x̄ = a1b1c1a2 and ȳ = b1a1a2c1. The order of the characters in x̄ and ȳ is the
following:

– a1: 1 and 2;
– a2: 4 and 3;
– b1: 2 and 1;
– c1: 3 and 4;

Thus, the rank distance between x and y is the sum of the absolute differences
between the orders of the characters in x̄ and ȳ

Δ(x, y) = |1 − 2| + |4 − 3| + |2 − 1| + |3 − 4| = 4

The computation of the RD between two strings can be done in linear time
in the length of the strings.

Let χn be the space of all strings of length n over an alphabet Σ and let
p1, p2, . . . , pk be k strings with the same Parikh vector from χn. The first prob-
lem that we study in this paper, namely the String with Fixed Rank Distance
Problem (SFRD), is defined as follows.

Problem 1 (String with Fixed Rank Distance (SFRD)). Given a set of strings
S = {s1, s2, . . . , sk}, the goal is to find a string t of size n such the rank distance
between t and all strings from S is equal with a given d. Notice that t may not
be unique. The set of strings t is defined formally as follows:

T = {t ∈ Σn |Δ(t, s) = d, ∀s ∈ S} (1)

The SFRD problem is illustrated in the following example.

1 Rank distance can be defined for strings that do not necessarily have the same Parikh
vector (see, e.g., [12]). However, these strings can be transformed into strings with
the same Parikh vector without affecting the rank distance. Thus, for the sake of
simplicity, we do not consider such strings in our paper.
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Example 3. Consider a set of three permutations S = {(6, 7, 2, 4, 1, 5, 0, 2),
(4, 6, 7, 3, 0, 2, 1, 5), (1, 3, 0, 5, 4, 2, 6, 7)}. In this case T = ∅, ∀ d = 1, . . . , k. If
S = {(6, 4, 2, 7, 5, 0, 3, 1), (6, 0, 2, 7, 4, 3, 5, 1)}, then T = {(6, 2, 4, 7, 0, 3, 5, 1),
(6, 4, 2, 0, 7, 3, 5, 1)} for d = 6 and T has cardinality 14 for d = 8.

Then, we study the closest string problem under the metric defined by the
rank distance.

Problem 2 (Closest string via rank distance (CSRD)). Let P = {p1, p2, . . . , pk}
be a set of k length n strings over an alphabet Σ. The closest string problem via
rank distance (CSRD) is to find a minimal integer d (and a corresponding string
t of length n) such that the maximum rank distance from t to any string in P
is at most d. We say that t is the closest string to P and we name d the radius.
Formally, the goal is to compute:

min
x∈χn

max
i=1..k

Δ(x, pi) (2)

Remark 1. The string t that minimizes (2) is not necessary unique. For example,
if P = {(1, 2, 3), (3, 1, 2), (2, 3, 1)} is a set of three length 3 permutations, then
every length 3 permutation is a closest string to P .

We introduce now the concept of partition, necessary to define the third
problem that we study, namely, the Furthest String Problem under Rank Distance
(FSRD)

Definition 4. Given an alphabet Σ and a number k where k ≤ |Σ|, we define
a partition, denoted part(k, n) as a set of k multisets M1, . . . ,Mk such that∑k

i=1 |Mi| = n and each multiset Mi has only one distinct element.

Example 4. If Σ = {a, b, c} and n = 5, then a partition part(2, 5) could be:
M1 = {a, a},M2 = {b, b, b}. A partition part(3, 5) could be: M1 = {a},M2 =
{b, b},M3 = {c, c}.

We say that a string x is generated by a partition part(k, n) if and only if
|x| = n and x contains all Mi elements ∀i = 1, n. For example, let Σ = {a, b, c},
n = 5 and partition part(2, 5). Thus, the partition has two multisests M1 and
M2 with |M1| + |M2| = 5. We can choose M1 = {a, a} and M2 = {b, b, b}. The
string x = abbab is generated from partition part, while x = aaabb is not since
it has three a.

We introduce now the notion of a diameter of a partition.

Definition 5. The diameter of partition part(x, n) is defined as:

D(Σ,part(k,n)) = max(Δ(x1, x2))

∀ x1, x2 are generated from partition part(k, n).

We are now ready to define the third problem.
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Problem 3 (Furthest Strings under Rank Distance (FSRD)). The input of the
problem consists of an alphabet Σ with |Σ| > 2 and two integers k and n,
k, n ∈ N, k ≤ n. The goal is to find two strings x1 and x2 generated from a
partition part(k, n) such that D(Σ,part(k,n)) is maximized.

3 An Exact Algorithm for the SFRD Problem

In this section we present a polynomial time algorithm for the SFRD problem
defined in Sect. 2. As described in Sect. 2, we can transform the input strings
into permutations in O(n) time. Thus, to ease the presentation, throughout this
section we consider that the input strings are permutations, and more precisely,
n-dimensional vectors.

Our approach is based on the following geometric observation. Since every
string s ∈ S represents an n-dimensional vector it follows that all strings s ∈ S
reside on a (n−1) sphere. Even more, since we are looking for a string c situated
at a fixed distance d, then c is the center of another sphere in (n−1) dimensions.

Our geometrical intuition uses l2 2-norm distance and not the rank distance
Δ. In fact, in our current configuration, Δ is actually the l1 1-norm distance.
Hence, the key to obtain a polynomial time algorithm for SFRD is to exploit the
relation between l1 and l2 distances. The lemma below establishes the connection
between the two aforementioned norms.

Lemma 1. For any x ∈ Rn the following inequality holds:

‖x‖1 ≤ √
n‖x‖2

Proof. Applying Cauchy-Schwarz inequality we have:

‖x‖1 =
n∑

i=1

|xi|

=
n∑

i=1

|xi| · 1

≤ (
n∑

i=1

|xi|2)1/2 · (
n∑

i=1

1)1/2

=
√

n‖x‖2
Based on Lemma 1 we can reformulate the SFRD problem in relation with l2

by observing that all string s and c resides on the surface of the (n − 1)-sphere
with the center at the origin.

Theorem 1. The SFRD problem can be reduced in polynomial time to solving
a system of inequalities with n + 1 variables and k constraints.
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Proof. Formalizing all the observation above we have that SFRD is equivalent
to the following systems of equations:

n∑

j=1

s2ij = γ2, ∀i = 1, . . . , k

n∑

j=1

c2j = γ2

n∑

j=1

|sij − cj | = d, ∀i = 1, . . . , k (3)

where c1, . . . , cj , d, γ are variables. Using Eq. 3 we expand l2:

n∑

j=1

(sij − cj)2 =
n∑

j=1

s2ij − 2
n∑

j=1

sijcj +
n∑

j=1

c2j

= 2γ2 − 2
n∑

j=1

sijcj , ∀i = 1, . . . , k (4)

Based on out initial assumption that si ∈ S are permutations over Σ with
distinct consecutive elements, we have that:

γ2 = ‖c‖22 =
n∑

i=1

c2i =
1
6
(n − 1)n(2n − 1)

Next, based on Lemma 1 we have:

n∑

j=1

|sij − cj | ≤ √
n · (

n∑

j=1

(sij − cj)2)1/2

d ≤ √
n · (

n∑

j=1

(sij − cj)2)1/2

d2 ≤ n ·
n∑

j=1

(sij − cj)2, ∀i = 1, . . . , k (5)

From Eqs. 5 and 4

d2 ≤ n · (2γ2 − 2
n∑

j=1

sijcj)

n∑

j=1

sijcj ≤ γ2 − d2

2n
, ∀i = 1, . . . , k (6)
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Equation 6 is an inequality system with n+1 variables (cj and d) and k con-
straints and can be solved in polynomial time since the number of variables ci is
constant in given n-dimensional space where c and si resides, while the number
of points s may vary. This is a special case of integer programming problem:
integer programming with a fixed number of variables and algorithms proposed
by [23] and [20] can offer a polynomial time solution. If Lenstra’s algorithm
will produce a solution, then it guaranties it will have integer coefficients. The
inequality system can be extended to include constraints of s ∈ V like distinct-
ness of elements and fact that they are permutations and d can be regarded as
constant, chosen form a heuristically determined interval. 	

Observation 1. Equation system 6 can be extended for strings that do not have
distinct elements and the only thing that needs to be changed is the computation
of γ2 which is a simple sum of k squared values, where k is the size of string s
from S.

4 Heuristic Algorithm for the CSRD Problem

In this section we introduce a heuristic algorithm for the CSRD problem. As in
the previous section, without loss of generality, we consider that the input strings
are permutations and more precisely, vectors from an n-dimensional space. To
present our algorithm (formally defined in Algorithm1) we introduce some pre-
liminary notions. Since all the strings are permutations, for a string s and a
character x ∈ s we define s(x) = i if and only if si = x. This is the position
function that for a given character x returns the index in the string.

Let min(x,S ) be the lowest position of symbol x found in all s ∈ S . In a
similar manner we define max(x,S ) as being the highest position of symbol x.
For example, if S = {3142, 3241, 1423}, then we have min(1,S ) = 1, max(1,S ) =
4 or min(4,S ) = 2, max(4,S ) = 3.

Intuitively, if we plan to construct an optimal string t̂, then we have to place
every symbol somewhere between the positions given by min and max of those
symbols in relation with S . To be more precise we need to place them in the
middle of the [min,max] interval.

We now formalize this idea by introducing the concept of degenerated string
which is a string that accepts none or multiple symbols on the same position
(index). The position of a character in the case of degenerated string is a real
value. For example, consider the string s = 1234 with all four symbols on position
2 while the other indexes are empty. In the case of degenerated strings the
positions of two distinct characters might be the same. For example, s(1) =
s(2) = s(3) = s(4).

Our goal is to find a degenerated string t̂∗ in which every symbol c has the
index given by formula:

s(c) =
min(c,S ) + max(c,S )

2
(7)

where c is a symbol from Σ.
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The string t̂∗ has several interesting properties and one of them in particular
because it gives a lower bound about minimal Δ achievable by t.

Property 1. The string t̂∗ is the closest degenerated-string for S .

Proof. Assume there exists another t̂∗∗ as closest degenerated-string for S . We
have Δ(t̂∗∗) < Δ(t̂∗) meaning

n∑

i=1

|t̂∗∗(i) − s(i)| <
n∑

i=1

|t̂∗(i) − s(i))| (8)

It follows that there exists at least one i with |t̂∗∗(i)− s(i)| < |t̂∗(i)− s(i)|. Since
t̂∗ elements are in the middle of lower and upper bound in relation with S , it
follows there is at least one string s′ from S that gets added to Δ the same
amount that is subtracted from Δ(t̂∗∗, s′). By the definition of Problem2 we
have a contradiction. 	


Now we have t̂∗ and we want to design an algorithm to construct t̂. Before
we present the algorithm, we introduce another useful property of t̂ that will
help us to lower the complexity for both heuristic and IP formulation.

Observation 2. In the string t̂ the index of every symbol c is in the interval
[min(c, S),max(c, S)].

Proof. If at least one symbol c is outside of his [min(c,S ),max(c,S )] with a
value x then Δ(t,S ) is increased with at least x. 	


Next we define cluster C as being the set of symbols c having the same
integer part of s(c). Formally:

Cα = {c ∈ Σ | [s(c)] = α} (9)

α is called cluster center.
We are now in the position to formulate a simple algorithm to compute t̂.

Starting from t̂∗ we align the symbols to an integer index called cluster center
and the we start moving symbols from the same index to nearby empty indexes.
We alternate between left and right part when searching for an empty index near
the cluster center. An outline of the algorithm is presented in Algorithm1.

Next, we analyze the running time of Algorithm1.

Theorem 2. The complexity of the algorithm is O(|Σ|).
Proof. The efficiency of our algorithm in terms of how close is t̂ from t (CSRD
string) is highly impacted by the method of selecting symbols from clusters. A
naive way is to selected them based on list order. But minimization of Δ(t̂,S ) is
influenced by how items are positioned on empty indexes around cluster center.
For example, if we place a symbol to the left that increases the distance from t̂
to a string s′ and we place a symbol to the right that also increases s′ distance,
then we diverge from t. To control this outcome we maintain a weight vector
w where we count the impact, the increase caused by placing previous symbols
for every vector s. Is this manner we can approach a greedy method to always
select the symbol that minimize the difference between max(w) and min(w). 	
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Data: Set S
Result: t̂ string
for every symbol c of Σ do

compute [min(c,S), max(c, S)];
end

compute t̂∗;
compute clusters center;
for every symbol c of Σ do

alternate direction (starting from cluster center) ;
select non-allocated cluster item ;
allocate it to the next empty index in the selected direction ;

end

Algorithm 1. Heuristic algorithm for the construction of a string t̂.

5 Integer Programming Formulations for the CSRD
Problem

In this section we present integer programming (IP) formulations for the CSRD
problem. As before, we consider that the input strings are n-dimensional vectors.
Initially, we start with a simple formulation which we improve based on the
properties discussed in the previous sections.

5.1 The Standard IP Formulation

Recall that the goal of the CSRD problem is to minimize distance d between t
all s from S . An IP sketch is the following:

min d
s.t. Δ(t, si) ≤ d i = 1, . . . , k

d ∈ Z+

ti ∈ Z+ i = 1, . . . , n

(10)

We expand Δ in Eq. 10 and we obtain:

min d
s.t.

∑
c∈Σ

|t(c) − si(c)| ≤ d i = 1, . . . , k

d ∈ Z+

ti ∈ Z+ i = 1, . . . , n

(11)

In Eq. (11) and the following ones, t(c) and si(c) represent position functions
as defined at the beginning of Sect. 4.

The inequalities are not linear so we need to define additional variables
for inequalities to have a proper IP formulation. We use that |x| ≤ y can be
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replaced with the following two constraints −x ≤ y and x ≤ t. First we replace∑
c∈Σ |t(c)−si(c)| by adding new variables tsic = |t(c)−si(c)| and reformulating

constraints. We obtain the following formulation which is now correct but not
complete for our problem:

min d

s.t.
n∑
i

tsic ≤ d i = 1, . . . , k

tsic ≥ t(c) − si(c) i = 1, . . . , k; ∀c ∈ Σ
tsic ≥ si(c) − t(c) i = 1, . . . , k; ∀c ∈ Σ

d ∈ Z+

ti ∈ Z+ i = 1, . . . , n

(12)

Next, we want to make sure that t is properly defined, meaning that is a string
of size n with symbols appearing only once, meaning that is a permutation.
We introduce another set of variables as follows: for every symbol ti of t we
introduce n variables bi1, bi2, . . . , bin to control what values ti can have. We
constrain all 0 ≤ bij ≤ 1 and

∑n
j=1 bij = 1. Therefore, exactly one variable from

bi1, bi2, . . . , bin can be 1. If we set ti = 1bi1 + 2bi2 + · · · + nbin then ti can have a
value from 1 to n. To control distinctiveness between ti symbols, we need to add
an additional constrain as

∑
j bji ≤ 1. Rewriting Eq. (12) with new constraints

we obtain:

min d

s.t.
n∑
i

tsic ≤ d i = 1, . . . , k

tsic ≥ t(c) − si(c) i = 1, . . . , k; ∀c ∈ Σ
tsic ≥ si(c) − t(c) i = 1, . . . , k; ∀c ∈ Σ

0 ≤ bij ≤ 1 i = 1, . . . , n; j = 1, . . . , n
n∑

j=1

bij = 1 i = 1, . . . , n

n∑
j=1

bji ≤ 1 i = 1, . . . , n

ti = 1bi1 + 2bi2 + · · · + kbin i = 1, . . . , n
t(i) ∈ Z+ i = 1, . . . , n

d ∈ Z+

(13)

The IP formulation is now complete. Next, by using Observation 2 we can
improve on IP formulation (13), since we can introduce additional constrains for
ti: min(c,S ) ≤ ti ≤ max(c,S ), where c = ti.
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min d

s.t.
n∑
i

tsic ≤ d i = 1, . . . , k

tsic ≥ t(c) − si(c) i = 1, . . . , k; ∀c ∈ Σ
tsic ≥ si(c) − t(c) i = 1, . . . , k; ∀c ∈ Σ

0 ≤ bij ≤ 1 i = 1, . . . , n; j = 1, . . . , n
k∑

j=1

bij = 1 i = 1, . . . , k

n∑
j=1

bji ≤ 1 i = 1, . . . , n

ti = 1bi1 + 2bi2 + · · · + nbin i = 1, . . . , n
d ∈ Z+

min(ti,S ) ≤ ti ≤ max(ti,S ) i = 1, . . . , k
ti ∈ Z+ i = 1, . . . , n
d ∈ Z+

(14)

Condition ti ∈ Z+ can be droped in both formulations since ti = 1bi1+2bi2+
· · · + nbin force ti to be an integer between 1, . . . , n.

5.2 Geometric Formulation

Since we consider that all the strings are permutations of the alphabet Σ , we
treat strings s as vectors in a space R

n. Then, we observe that all vectors s from
S reside on the (n − 1) sphere.

Now we are interested to find a vector t with the property that the distance
between t and all vectors s is minimized.

t = mint(max‖t − si‖2) (15)

Equation (15) can be transformed into the bounding sphere problem and can
be approximated by using various algorithms like Ritterś bounding sphere [32],
Linear programming or Core-set based 1+ε approximation [3].

Given a good approximation of t we attempt to find an approximation of
t̂ that resides on the (n − 1) sphere and the vector binds to the restrictions
described above. Let Proj (t) be the projection of t on the unit n-sphere. We
now can use another IP formulation to minimize ‖t̂ − Proj (t)‖1 which is exactly
Δ(t̂,Proj (t)).

min
n∑

i=1

|t̂i − Proj (t)i|

s.t. t̂ = σ(se) se = {1, 2, . . . , n} (16)
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Now we add new variables pti = t̂i − Proj (t)i and new constraints using the
same method as in equation system 12 and we obtain:

min
k∑

i=1

pti

s.t. t̂ = σ(se) se = {1, 2, . . . , n}
pti ≥ t̂i − Proj (t)i i = 1, . . . , n
pti ≥ Proj (t)i − t̂i i = 1, . . . , n

(17)

Next step is to transform t̂ = σ(se) in a propper IP formulation. We use
the same method as in Eq. (13) by adding variables nij along with necessary
constraints:

min
n∑

i=1

pti

s.t. pti ≥ t̂i − Proj (t)i i = 1, . . . , n
pti ≥ Proj (t)i − t̂i i = 1, . . . , n

0 ≤ bij ≤ 1 i = 1, . . . , n; j = 1, . . . , n
n∑

j=1

bij = 1 i = 1, . . . , n

n∑
j=1

bji ≤ 1 i = 1, . . . , n

ti = 1bi1 + 2bi2 + · · · + nbin i = 1, . . . , n
ti ∈ Z+ i = 1, . . . , n

(18)

The IP formulation is now complete. We can drop the last constrain since
ti = 1bi1 + 2bi2 + · · · + nbin forces ti to be a integer between 1, . . . , n.

6 An Exact Algorithm for the FSRD Problem

In this section, we study the FSRD problem defined in Sect. 2. More precisely, we
describe an algorithm that finds two strings generated from the same partition
that have the maximum rank distance.

Our target is to find a formula for D(Σ,part(k,n)) where part(k, n) is a partition
and Σ is an alphabet with |Σ| > 2, k, n ∈ N, k ≤ n. From now on, without loss
of generality, we assume n is even. Observe that all the strings x generated by a
partition part(k, n) have the same Parikh vector. For a string x, we denote by
x̄ the reversed string. Observe that, given a string x, the string with the same
Parikh vector that is farthest apart from x is x̄.

To design our algorithm we start with a simple lemma.

Lemma 2. To maximize Δ(x, x), x must have identical elements in consecutive
order and near one of the two ends of the vector.

Proof. Let k and l be the positions of the identical elements in x. Assume k < l.
The two identical elements contribute to Δ(x, x) with |k − n + l| + |l − n + k| =
2 ∗ (n − l − k). To maximize n − l − k we need to have k = 1 and l = 2.
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For a given string x we call the pair (xi, xj) a canceling pair iff xi = xj and
j = n − i + 1. A canceling pair does not contribute with anything to Δ(x, x).
Based on previous work we know that:

Δ(x, x) =
n2

2
− n

2
� − �n

2
�

if and only if x does not have overlapping elements with x (i.e. ∀i = 1, n, xi �= xi)
We continue with another lemma.

Lemma 3. To maximize Δ(x, x), x must have the canceling elements in the
middle of the vector.

Proof. Let k be the position of one of the canceling elements. The direct contri-
bution of those two identical elements to Δ(x, x) is 0. Assume k = 0. Compute
Δ(x, x) and let 2m = Δ(x, x). Now let k = 1. It follows by simple comutation
that Δ(x, x) = 2(m+2). Continuing this approach we obtain max(Δ(x, x)) when
k = �n

2 �.
Based on above properties we can derive an algorithm to generate a vector

x from a given partition p, such that D(V,part(k,n)) = Δ(x, x), as described in
Algorithm 2. Running time is O(n).

Data: given partition
Result: build string x to maximize Δ
Initialize vector x of size n;
for every multiset of partition do

read next multiset;
for every element of multiset do

write element at first empty slot of x;
alternate the first empty slot between left and right of the vector;

end

end
D(V,part(k,n)) = Δ(x, x),;

Algorithm 2. The computation of the diameter of a partition.

Next, we present an example that illustrates our algorithm.

Example 5. Consider the partition p(3, 5) with M1 = {a},M2 = {b, b},M3 =
{c, c}. We initialize x of size 5. We write M1 starting from left, then write M2

to the right. Finally starting from the left first empty slot, we fill x with M3

elements. We obtain x = accbb.

In the next lemma we determine the number of canceling pairs for a given
partition part(k, n).
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Lemma 4. Given a partition part(k, n) the number of canceling pairs is

C(part(k, n)) =
∣∣∣
∣∣∣

� k
2 �∑

i=1

|M2i−1| − |M2i|
∣∣∣ −

(⌈k

2

⌉
−

⌊k

2

⌋)
|Mn|

∣∣∣

Proof. We follow the steps of the algorithm presented above and at each step
we count the number of the remaining elements that need to be further paired
to get a non-canceling pairs. This number is M2i−1 - M2i. Using the equality∑k

i=1 |Mi| = n we conclude that the sum of the differences for every n
2 steps

needs to 0 to have no canceling pairs.

As an example, for the previous lemma, consider the partition part(3, 5) with
M1 = {a},M2 = {b, b},M3 = {c, c}. We have |M1|−|M2| = −1. Then |1−2| = 1.
Thus, we have one canceling pair.

Now we prove the main result of this section, namely we give a formula for
D given a partition part(k, n).

Theorem 3. Given a partition part(k, n) then

D(V,part(k,n)) =
n2 − C(part(k, n))2

2

Moreover, D(V,part(k,n)) can be computer in O(n) time.

Proof. The x is built using the Algorithm2. It follows that the canceling pairs
are located in the middle of x. If we have l canceling pairs then the amount not
added to the Δ(x, x) is Δ(y, y) where y is a vector with distinct elements and
|y| = l. Then Δ(x, x) = Δ(x′, x′) - Δ(y, y), where x′ is a vector with distinct
elements and |x′| = n. It follows Δ(x, x) = n2

2 − Δ(y, y). But |y| = C(pk,n). We
have already showed that Δ(x, x) is maximal. The algorithm runs in linear time
since we have one step for each character of the string x.

Example 6. If part(3, 5) is a partition with M1 = {a},M2 = {b, b},M3 = {c, c}
then we have C(p3,5) = 1 meaning that max(Δ(pk,n)) = 52−1

2 = 12.

7 Conclusions and Future Work

In this paper we enhanced the study of the rank distance and we tackled three
problems, String with Fixed Rank Distance, Closest String Problem under Rank
Distance and Farthest String via Rank Distance. We provided several exact
algorithms, IP formulation and heuristic algorithms.

There are still many interesting problems. For example, it is interesting to
provide an experimental study of our heuristic algorithm for the CSRD prob-
lem. From our tests, Algorithm 1 produces a very good approximation of t̂. For
example in our experiments with 10–20 strings of size 7–9 the average distance
between t and t̂ was 2.
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Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676,
pp. 315–327. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44888-
8 23

29. Nicolas, F., Rivals, E.: Hardness results for the center and median string problems
under the weighted and unweighted edit distances. J. Discrete Algorithms 3(2–4),
390–415 (2005)

30. Popescu, M., Dinu, L.P.: Rank distance as a stylistic similarity. In: 22nd Inter-
national Conference on Computational Linguistics, Posters Proceedings, COLING
2008, 18–22 August 2008, Manchester, UK, pp. 91–94 (2008)

31. Popov, V.Y.: Multiple genome rearrangement by swaps and by element duplica-
tions. Theor. Comput. Sci. 385(1–3), 115–126 (2007)

32. Ritter, J.: An efficient bounding sphere. In: Graphics Gems, pp. 301–303. Elsevier
(1990)

33. Sun, Y., et al.: Combining genomic and network characteristics for extended capa-
bility in predicting synergistic drugs for cancer. Nat. Commun. 6, 8481 (2015)

34. Wang, L., Dong, L.: Randomized algorithms for motif detection. J. Bioinf. Comput.
Biol. 3(5), 1039–1052 (2005)

35. Wooley, J.C.: Trends in computational biology: a summary based on a RECOMB
plenary lecture. J. Comput. Biol. 6(3/4), 459–474 (1999)

https://doi.org/10.1007/11527503_70
https://doi.org/10.1007/3-540-44888-8_23
https://doi.org/10.1007/3-540-44888-8_23


Computable Analysis of Linear
Rearrangement Optimization

Amin Farjudian(B)

School of Computer Science, University of Nottingham Ningbo China, Ningbo, China
Amin.Farjudian@nottingham.edu.cn

http://www.nottingham.edu.cn/en/science-engineering/staffprofile/amin-farjudian.aspx

Abstract. Optimization problems over rearrangement classes arise in
various areas such as mathematics, fluid mechanics, biology, and finance.
When the generator of the rearrangement class is two-valued, they
reduce to shape optimization and free boundary problems which can
exhibit intriguing symmetry breaking phenomena. A robust framework
is required for computable analysis of these problems. In this paper, as
a first step towards such a robust framework, we provide oracle Turing
machines that compute the distribution function, decreasing rearrange-
ment, and linear rearrangement optimizers, with respect to functions
that are continuous and have no significant flat zones. This assumption
on the reference function is necessary, as otherwise, the aforementioned
operations may not be computable. We prove that the results can be
computed to within any degree of accuracy, conforming to the frame-
work of Type-II Theory of Effectivity.

Keywords: Computable analysis · Rearrangements of functions ·
Optimization

1 Introduction

The aim of the current paper is to lay the foundation for computability and
complexity analysis of optimization problems over rearrangement classes, in the
framework of Type-II Theory of Effectivity (TTE) [17].

The theory of rearrangements of functions may be traced back to 1899, when
it was introduced as a framework for the study of a problem in hydrostatics [16].
In the following decades, even though it attracted attention from some of the
most prominent mathematicians of the twentieth century, it remained a periph-
eral tool in mathematical analysis, until it re-emerged in the 1970s in the work of
Benjamin [1]. Specifically, a problem in fluid mechanics related to steady vortices
was formulated by Benjamin as an optimization problem over a rearrangement
class.

In response, G. R. Burton laid out a theory for optimization of convex func-
tionals over rearrangement classes [3,5]. Although PDE-constrained rearrange-
ment optimization problems have their origins in fluid mechanics, the abstract
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formulation of these problems has shown greater potential, and Burton’s the-
ory has been used in the study of PDE-constrained rearrangement optimization
problems in several areas, e. g., finance [12], free boundary problems [8], non-local
problems [11], population biology [10], and eigenvalue problems [9], to name a
few. Of special interest is the case when the generator of the rearrangement
class is a two-valued function. Rearrangement optimization problems with two-
valued generators form some important examples of shape optimization and free
boundary problems.

In virtually all but exceptional cases, analytic solutions do not exist for these
problems. Even when existence of (not necessarily analytic) solutions is guar-
anteed by the theory, there are no rigorous computational frameworks for com-
putability and complexity analysis of the solutions. Apart from rare cases, even
qualitative accounts of the optimal shapes are missing from the literature. In
summary, assuming the existence of a solution is guaranteed, in the majority of
cases, the answers to the following questions are still unknown:

(1) Is the optimal solution computable?
(2) Does there exist a Type-II Turing machine, which takes the input parameters

of the problem, and returns the optimal solution? Note that this is the
uniform version of Question (1).

(3) What are the robustness properties of the optimal solutions?

The following question arises in the related shape optimization problems:

(4) If symmetry breaking occurs, how does it occur? If symmetry is preserved
for the n-dimensional ball B, but breaks for the given reference domain Ω,
and if we obtain Ω from B through a smooth deformation, at what point
does symmetry break?

1.1 Contributions of the Paper

On the computational side of PDE-constrained rearrangement optimization
problems, only sporadic attempts have been made, with the main focus on
numerical algorithms based on floating-point arithmetic [7,10,11,13]. The cur-
rent paper is meant to serve as a starting point towards answering questions of
the type just listed. We aim to lay the foundation for a computational frame-
work that allows us to study rearrangement optimization problems in a validated
setting.

Specifically, we provide oracle Turing machines that compute the distribution
function, decreasing rearrangement, and linear rearrangement optimizers, with
respect to functions that are continuous and have no significant flat zones. This
assumption on the reference function is necessary, as otherwise, the aforemen-
tioned operations may not be computable. Furthermore, the reference functions
are solutions of the constraint partial differential equations (PDEs), which, in
virtually all applications, satisfy the assumption on continuity and flat zones. For
this reason, many of the results in the literature on rearrangement optimization
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problems—including Burton’s seminal papers [3,5]—are formulated with respect
to this assumption.

We prove that the results can be computed to within any degree of accuracy,
conforming to the framework of Type-II Theory of Effectivity.

Remark 1. It should be noted that the existence of linear rearrangement opti-
mizers is a fundamental result in the theory of rearrangements of functions
(Lemma 1 (iv)). Our aim here is to investigate its computability.

1.2 Our Approach

Throughout the paper, we make sure that the arguments adhere to Type-II The-
ory of Effectivity, as presented in [17]. Yet, instead of using the concepts and
notations of [17], we work directly with the discretizations of the domains and
maps involved. We hope that this makes the content accessible to a broader audi-
ence, as we believe that this direct approach allows us to express our algorithms
in a way that is more intuitive.

1.3 Structure of the Paper

– In Sect. 2, we present the background concepts and results from the theory of
rearrangements, together with some basic notations that we will be adopting
for the remainder of the paper.

– Section 3 contains our main results regarding computable analysis of the
distribution function and the decreasing rearrangements.

– In Sect. 4, we present our main results regarding linear rearrangement opti-
mization.

– Section 5 discusses some generalizations of the main results to other domains
and dimensions.

– We conclude the paper in Sect. 6, where we also discuss some future work
on computable analysis of rearrangement optimization problems.

2 Preliminaries

The material in this section includes some basic concepts and results from the
theory of rearrangements of functions. We will also establish some notations that
we will be adopting throughout the paper.

2.1 Rearrangement Theory

Let (Ω,Σ, μ) be a measure space, in which Ω is a non-empty set, Σ is a σ-algebra
on Ω, and μ is a positive measure on Ω satisfying μ(Ω) < ∞.

Definition 1 (distribution function λf ). For a real measurable f : Ω →
R, the distribution function λf : R → R is defined by: ∀s ∈ R : λf (s) :=
μ

(
f−1[s,∞)

)
.
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Definition 2 (rearrangement class RΩ (f0)). Let (Ω0, Σ0, μ0) and (Ω,Σ, μ)
be two measure spaces, such that μ0(Ω0) = μ(Ω).

(a) We say that f0 : Ω0 → R and f : Ω → R are rearrangements of each other
if and only if ∀s ∈ R : μ0

(
f−1
0 [s,∞)

)
= μ

(
f−1[s,∞)

)
.

(b) The rearrangement class RΩ(f0) generated by f0 is defined as follows:

RΩ(f0) := {f : Ω → R | f is a rearrangement of f0}.

Whenever (Ω0, Σ0, μ0) = (Ω,Σ, μ), we may simply write R(f0). If both f0
and Ω are clear from the context, we may just use the symbol R to denote
the rearrangement class.

For any Lebesgue-measurable Ω ⊆ R
n and f : Ω → R, we let ‖ f ‖p denote the

usual Lp norm:

‖ f ‖p :=

{ (∫
Ω

| f(x) |p dx
) 1

p , if p ∈ [1,∞),

ess sup{| f(x) | | x ∈ Ω}, if p = ∞.

For every p ≥ 1, we let q denote its conjugate exponent satisfying 1/p + 1/q = 1
when p > 1, and q = ∞ when p = 1.

Henceforth, we make the following assumptions:

– Ω denotes a bounded, open, and connected domain in R
n;

– Σ denotes the Lebesgue σ-algebra over Ω, with μ denoting the Lebesgue
measure. Indeed, for simplicity, we denote the n-dimensional Lebesgue mea-
sure of any Lebesgue-measurable E ⊆ R

n by |E |.
– Ω0 denotes the open interval (0, |Ω |).

Definition 3 (fΔ , fΔ : non-increasing and non-decreasing rearrange-
ments). For a real measurable f : Ω → R:

(i) The (essentially unique) non-increasing rearrangement fΔ of f is defined
on Ω0 by fΔ(s) := sup{α ∈ R | λf (α) ≥ s}. In case f can be extended to Ω,
with an essential infimum a and an essential supremum b, we extend fΔ to
Ω0 by letting fΔ(0) := b and fΔ(|Ω |) := a.

(ii) The (essentially unique) non-decreasing rearrangement fΔ of f is defined on
Ω0 by fΔ(s) := fΔ(|Ω | − s).

Definition 4 (significant flat zones). A measurable function f : Ω → R is
said to have no significant flat zones on Ω if ∀c ∈ R : | f−1(c) | = 0.

The following is very easy to establish:

Proposition 1. (i) If f is continuous, then λf has no significant flat zones.
(ii) If f has no significant flat zones, then fΔ is decreasing, and fΔ is increas-

ing.
(iii) If f is continuous and has no significant flat zones, then fΔ and λf are

both continuous, decreasing, and are the inverses of each other.
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We will consider linear rearrangement optimization against functions that
have no significant flat zones. This condition guarantees uniqueness of solutions,
and provides a convenient optimality condition, as summarized in the following
lemma:

Lemma 1. Assume that f0 ∈ Lp(Ω0), and let R := RΩ(f0) be its rearrangement
class over Ω. Then:

(i) R ⊆ Lp(Ω).
(ii) ∀f ∈ R : ‖ f ‖p = ‖ f0 ‖p.
(iii) The weak closure of R in Lp(Ω), denoted by R, is weakly compact and

convex.
(iv) For every h ∈ Lq(Ω), the linear functional Lh : Lp(Ω) → R defined by:

Lh(f) :=
∫

Ω

f(x)h(x) dx (1)

has a maximizer f̂ over R.
(v) If f̂ is the unique maximizer of the linear functional Lh over R, then it

is the unique maximizer of Lh over all of R. Moreover, f̂ = ψ̂(h), almost
everywhere in Ω, for some non-decreasing function ψ̂.

(vi) For any h ∈ Lq(Ω) with no significant flat zones, there exists a non-
decreasing function ψ̂ such that ψ̂(h) ∈ R, and f̂ := ψ̂(h) is the unique
maximizer of the linear functional Lh defined in (1) over R. Furthermore:

ψ̂ = fΔ
0 ◦ λh. (2)

(vii) Items (iv), (v), and (vi) remain valid if one replaces ‘maximizer’ with ‘min-
imizer’, and ‘non-decreasing function ψ̂’ with ‘non-increasing function ψ̌’,
in which case, Eq. (2) becomes ψ̌ = f0Δ ◦ λh.

Proof. See [3] and [4]. 
�
We will also refer to the following results related to non-increasing rearrange-

ments from the literature:

Lemma 2. Assume that 1 ≤ p < ∞. Then:

(i) For any given f ∈ Lp(Ω), there exists a measure-preserving map ρ : Ω →
[0, |Ω |] such that f = fΔ ◦ ρ.

(ii) ∀f, g ∈ Lp(Ω) : ‖ fΔ − gΔ ‖p ≤ ‖ f − g ‖p.

Proof. (i) See [4, Lemma 2.4].
(ii) See [6], or [4, Lemma 2.7]. 
�
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2.2 Further Definitions and Notations

The set of dyadic numbers will be denoted by D, i. e., D := {p/2n | p ∈ Z, n ∈ N}.
For any n, k ∈ N, let Mn

k be the meshgrid with granularity k over [0, 1]n whose
vertices are:

{(p1
2k

,
p2
2k

, . . . ,
pn

2k

)
p1, p2, . . . , pn ∈ {0, 1, . . . , 2k}

}
.

By an element (or a cell) in a meshgrid Mn
k , we mean a compact box of the

form:
[

p1

2k
,
p1 + 1

2k

]
×

[
p2

2k
,
p2 + 1

2k

]
×· · ·×

[
pn

2k
,
pn + 1

2k

]
, p1, p2, . . . , pn ∈ {0, 1, . . . , 2k −1}.

Clearly, every meshgrid Mn
k is the union of 2kn such cells, and for each such box

S:
∀x, y ∈ S : ‖x − y ‖∞ ≤ 2−k,

in which ‖ . ‖∞ is the sup norm on R
n. When n is clear from the context, we

may just write Mk.
A box

∏n
i=1[ai, bi] with rational vertices will be represented by the following

element of Q2n:
(a1, b1, a2, b2, . . . , an, bn) .

For any set T , we denote the set of finite subsets of T as Pfin (T ). For instance,
a finite set of two-dimensional rational boxes is an element of Pfin

(
Q

4
)
.

Definition 5 (simple step function). Let q > 0 be a rational number. A
function f : [0, q] → R is said to be a simple step function if for some n ∈ N,
there is a set {x0, x1, . . . , xn, y1, . . . , yn} ⊆ Q such that:

(a) 0 = x0 < x1 < · · · < xn = q.
(b) f(0) = y1 and ∀x ∈ (xi−1, xi] : f(x) = yi for 1 ≤ i ≤ n.

We denote the closure and interior of a set A by A and A◦, respectively. The
characteristic function of a subset A of a reference set Y will be denoted as χA,
which is defined as:

∀y ∈ Y : χA(y) :=

{
0, if y ∈ A,

1, if y ∈ A.

Another concept that we will refer to quite frequently is that of a modulus
of continuity of a function:

Definition 6 (modulus of continuity). Let (X, dX) and (Y, dY ) be two met-
ric spaces, and assume that f : X → Y is continuous. Then, a function
φ : N → N is said to be a modulus function for f (on X) iff:

∀n ∈ N,∀x, y ∈ X : dX(x, y) ≤ 2−φ(n) ⇒ dY (f(x), f(y)) ≤ 2−n. (3)
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A fundamental property of computable real functions is that they are contin-
uous, and over compact domains, they have a recursive modulus of continuity:

Theorem 1. Let f : [0, 1]n → R be computable. Then, f is continuous, and has
a recursive modulus of continuity.

Proof. See, e. g., [14, Theorem 2.13]. 
�

3 Distribution Function and Non-increasing
Rearrangement

In this section, we discuss computable analysis of the distribution function λu of a
given u : [0, 1]n → R, and its non-increasing rearrangement uΔ. For every d ∈ R,
define Au(d) := {x ∈ [0, 1]n | u(x) > d}, and Bu(d) := {x ∈ [0, 1]n | u(x) < d}.
In [14, Theorems 5.14 and 5.15], it has been shown that:

– u is computable iff the classes of sets Au(d) and Bu(d) (when d ranges over
D) are uniformly recursively open.

– u is recursively approximable iff the classes of sets Au(d) and Bu(d) (when
d ranges over D) are uniformly recursively Gδ.

In both cases, by uniform, we mean uniform in d.
Important as they are, these results do not address the question of com-

putability of λu. In fact, it is not difficult to see that:

Proposition 2. If u has a significant flat zone, then λu is not computable.

Proof. Let us assume that u has a significant flat zone with value c. Then λu is
not continuous at c. By Theorem 1, λu is not computable. 
�

Here, we consider the case where u and one of its moduli of continuity are
provided, respectively, as oracles Ou and φu—hence, their computability is not
assumed—but we have to demand u not to have any significant flat zones. For
simplicity, we focus on the case n = 2, though the results may be generalized in
a straightforward way to any finite dimension.

First, we consider the machine DistFunQ, which operates under Algorithm 1.
This machine takes a height c ∈ Q together with an accuracy parameter k ∈ N,
and then, through querying the oracles Ou and φu, provides an approximation of
{x ∈ [0, 1]2 | u(x) ≥ c} to within 2−k accuracy. This can then be used to obtain
a rational approximation of λu(c) to within 2−k accuracy. The way the oracle
Ou operates is as expected:

– On any input query ((x, y),m) ∈ (Q∩ [0, 1])2 ×N received on its input chan-
nel, Ou outputs a rational û := Ou((x, y),m) ∈ Q such that | û − u(x, y) | ≤
2−m.

The correctness of the algorithm for rational input values hinges on the fol-
lowing:
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Algorithm 1. Pseudocode for DistFunQ

Input: Received on four channels:
c ∈ Q: height of the level set;
k ∈ N: accuracy;
u ∈ C([0, 1]2): target function, queried through oracle Ou;
φu : N → N: a modulus of continuity of u.

Output: Approximation of {x ∈ [0, 1]2 | u(x) ≥ c} to within 2−k accuracy.
n ← 0
error ← 1 + 2−k // anything larger than 2−k would do
while error ≥ 2−k do

Query φu with n + 1
Create meshgrid Mφu(n+1)

for S ∈ Mφu(n+1) do
Sσ ← centroid of S
uS ← Ou(Sσ, n + 1) // uS is assigned the reply to query (Sσ, n + 1) sent to
Ou

end for
A ← {S ∈ Mφu(n+1) | uS > c + 2−n}
B ← {S ∈ Mφu(n+1) | uS < c − 2−n}
C ← {S ∈ Mφu(n+1) | c − 2−n ≤ uS ≤ c + 2−n}
error ← ΣS∈C | S |
n ← n + 1

end while
return A

Lemma 3. Assume that u : Ω → R is continuous with no significant flat zones,
where Ω ⊆ R

n is a bounded domain. Then:

∀c ∈ R,∀ε > 0,∃δ > 0 : | {x ∈ Ω | |u(x) − c | < δ} | < ε. (4)

Proof. Assume that c and ε are given. As u is continuous with no significant
flat zones, the level set uc := {x ∈ Ω | u(x) = c} is closed and has Lebesgue
measure zero. Hence, there exists an open set O ⊆ R

n such that |O | < ε and
uc ⊆ O. The function v(x) := |u(x) − c | is continuous over the compact domain
Ω \O. Hence, it attains its minimum at some point (say) x0, for which, we have
v(x0) = 0. The value δ := |u(x0) − c | satisfies (4). 
�
Theorem 2. Assume that u : [0, 1]2 → R is a continuous function with no
significant flat zones, and let φu : N → N be a modulus of continuity for u.
Then, the machine DistFunQ, operating under Algorithm1, halts on any input
c ∈ Q and k ∈ N, and returns a finite set A of two-dimensional rational boxes,
such that:

– ∪A ⊆ αc := {x ∈ Ω | u(x) ≥ c}, and |αc \ ∪A | ≤ 2−k.
– q := | ∪A | ∈ Q and satisfies: | q − λu(c) | ≤ 2−k.

Proof. A careful inspection of Algorithm 1 reveals that, at every iteration of the
while loop, we have:

∪ A ⊆ αc ⊆ (∪A) ∪ (∪C) (5)
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To see this, assume that S ∈ A, and Sσ is its centroid. For all y ∈ S, we have
‖ y − Sσ ‖∞ < 2−φu(n+1), which, by (3), entails that u(y) ≥ u(Sσ) − 2−(n+1). As
the oracle Ou has been queried with accuracy n+1, we have u(Sσ) ≥ uS−2−(n+1).
Therefore u(y) ≥ uS − 2−n > c. This proves that S ⊆ αc, hence ∪A ⊆ αc. A
similar argument shows that ∀S ∈ B : ∀y ∈ S : u(y) < c, which proves that
αc ⊆ (∪A) ∪ (∪C).

From (5), we obtain:

| ∪A | ≤ |αc | ≤ | ∪A | + | ∪C |. (6)

Now, at the n-th iteration of the while loop, we have:

∀x ∈ ∪C : |u(x) − c | ≤ 2−n + 2−(n+1) < 2−(n−1). (7)

According to (4), for the given c ∈ Q and k ∈ N, there exists an n0 ∈ N such
that:

∀n ≥ n0 : | {x ∈ Ω | |u(x) − c | < 2−(n−1)} | < 2−k. (8)

From (8) and (7), we infer that at iterations n > n0, we have | ∪C | < 2−k.
But | ∪C | is exactly the value of error in Algorithm 1, and the output of the
algorithm is A. This, together with (6), proves the result. 
�

Although Theorem 2 is sufficient for our purposes, we discuss the general case
where c ∈ R for completeness. As rational numbers are finitely representable, in
Algorithm 1, the value of c is provided to the machine DistFunQ in one trans-
action. When c ∈ R, the value should be provided to the respective machine
DistFunR (Algorithm 2) through an oracle Oc, which, on any given input n ∈ N,
supplies DistFunR with a rational cn ∈ Q satisfying:

| c − cn | ≤ 2−n. (9)

Theorem 3. Assume that u : [0, 1]2 → R is a continuous function with no
significant flat zones, and let φu : N → N be a modulus of continuity for u.
Then, the machine DistFunR, operating under Algorithm2, halts on any input
c ∈ R and k ∈ N, and returns a finite set A of two-dimensional rational boxes,
such that:

– ∪A ⊆ αc := {x ∈ Ω | u(x) ≥ c}, and |αc \ ∪A | ≤ 2−k.
– q := | ∪A | ∈ Q and satisfies: | q − λu(c) | ≤ 2−k.

Proof. By (9) we have ∀n : cn − 2−n ≤ c ≤ cn + 2−n. As λu is decreasing
(Proposition 1), we have:

λu(cn + 2−n) < λu(c) < λu(cn − 2−n). (10)

Let us define qn := | ∪An | and q′
n := | ∪A′

n |. By Theorem 2, we have:
{

| qn − λu(cn − 2−n) | ≤ 2−n,

| q′
n − λu(cn + 2−n) | ≤ 2−n.

(11)
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Algorithm 2. Pseudocode for DistFunR

Input: Corresponding to the four channels:
c ∈ R: height of the level set, queried through oracle Oc;
k ∈ N: accuracy;
u ∈ C([0, 1]2): target function, queried through oracle Ou;
φu : N → N: a modulus of continuity of u.

Output: Approximation of {x ∈ [0, 1]2 | u(x) ≥ c} to within 2−k accuracy.
n ← 0
error ← 1 + 2−k // anything larger than 2−k would do
while error ≥ 2−k do

cn ← Oc(n) // Note that | cn − c | < 2−n

An ← DistFunQ(cn − 2−n, n, u, φu)
A′

n ← DistFunQ(cn + 2−n, n, u, φu)
error ← | ∪An | − | ∪A′

n | + 2−(n−1)

n ← n + 1
end while
return An

From (10) and (11), we get:

q′
n − 2−n ≤ λu(c) ≤ qn + 2−n,

which explains why error is defined as the value of qn − q′
n + 2−(n−1).

Note that λu is continuous (Proposition 1). Therefore:

lim
n→∞ λu(cn − 2−n) = lim

n→∞ λu(cn + 2−n) = λu(c).

In particular limn→∞ qn = limn→∞ q′
n = λu(c). This, together with (11),

ensure that the aforementioned error goes below 2−k for sufficiently large n.
This proves halting of the algorithm. 
�

By Proposition 1, when u is continuous and has no significant flat zones, then
uΔ and λu are inverses of each other. This, together with the fact that both
functions are one-to-one, continuous, and decreasing, provides a simple way of
obtaining the decreasing rearrangement of u from its distribution function:

Corollary 1. There exists an oracle machine InvDistFunR which, given:

– a continuous u ∈ C([0, 1]2) with no significant flat zones and a modulus of
continuity φu : N → N for u;

– a real number r ∈ [0, 1] and an accuracy k ∈ N,

returns a rational number c ∈ Q, together with a finite set of cells Ar ⊆ Mn0 ,
for some meshgrid of granularity n0, such that | c − uΔ(r) | ≤ 2−(k+1), ∪Ar ⊆
{x ∈ [0, 1]2 | u(x) ≥ c}, and |ΣS∈Ar

|S | − r | ≤ 2−(k+1).
Furthermore, if cr = uΔ(r) and αcr := {x ∈ [0, 1]2 | u(x) ≥ cr}, then:

| ∪ArΔαcr | ≤ 2−k, (12)

in which Δ denotes symmetric difference of sets defined as XΔY := (X \ Y ) ∪
(Y \ X).
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Proof. As a modulus of continuity is provided, a lower bound a and an upper
bound b for u can be easily obtained. All that remains to do for InvDistFunR is
to perform a binary search using the machine DistFunQ of Theorem 2. 
�

So far, we have only demanded the level sets of u to have measure zero. By
Theorem 3, these level sets become computably measure zero provided that u is
computable:

Corollary 2. Assume that u : [0, 1]2 → R is a computable function with no
significant flat zones. Then for any computable c ∈ R, the level set u−1(c) is
computably measure zero.

4 Linear Rearrangement Optimization

Assume that, for some p ∈ [1,∞), we are given a generator f0 ∈ Lp([0, 1]) and
a function u ∈ C([0, 1]2) which has no significant flat zones. Our task is to
compute the necessarily unique f̂ ∈ R[0,1]2(f0) which maximizes the functional
Lu as defined in (1). Equation (2) provides the basis for the results of this section.
Nonetheless, as f0 is in Lp([0, 1])—hence might have discontinuities—we need to
go through some careful computable analysis to make sure that error estimates
are accurately accounted for.

Requiring u to be continuous might seem like a strong condition, but in prac-
tice, solutions of the PDE constraints to rearrangement optimization problems
that we have in mind invariably are ‘continuous’, i. e., the solutions lie in C(Ω),
where Ω is the domain over which the PDE is stated. Furthermore, requiring
u not to have any significant flat zones ensures uniqueness of solutions, and
again, it is a condition that is satisfied in the vast majority of PDE-constrained
rearrangement optimization problems in the literature.

For computational purposes, the function u and one of its moduli of continu-
ity φu will be provided as oracles, in the same manner as in Sect. 3. As for the
generator f0, we first note that for any given p ∈ [1,∞), the set of simple step
functions is dense in Lp([0, 1]). Thus, we represent f0 ∈ Lp([0, 1]) as the limit of
a Cauchy sequence of simple step functions converging to it. Using the results
of Sect. 3, we obtain tight approximations of linear rearrangement maximizers
for the approximant simple step functions, and then prove that these approxi-
mations, in turn, converge to the true maximizer for the given (potentially not
finitely representable) function f0.

Remark 2. Although we focus on maximization, corresponding results for linear
rearrangement minimization may be obtained with straightforward tweaking of
the arguments and the proofs.

4.1 Simple Step Function Generator

For some p ∈ [1,∞), assume that f ∈ Lp([0, 1]) is a simple step function, repre-
sented by the set:

{x0, x1, . . . , xn, y1, . . . , yn} ⊆ Q,
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Without loss of generality, we assume that f is non-increasing and ∀i = j : yi =
yj . If this is not the case, a simple sorting and then gluing of subintervals can
ensure these two conditions. Let f̂ be the unique maximizer of Lu over R[0,1]2(f)
as in Lemma 1 (vi), and let γ := 2max{| yi | | 1 ≤ i ≤ n}.

Now, assume that we are given an ε > 0, and our aim is to find some f̃ which
approximates f̂ to within ε accuracy. Let k ∈ N be large enough such that:

2−k <
εp

nγp
. (13)

Together with u, we provide this value k, and successive values of xi, to the
machine InvDistFunR, and for each i ∈ {1, . . . , n}, let Axi

be as in Corollary 1.
In particular, if ci := λ−1

u (xi) and αci := {x ∈ [0, 1]2 | u(x) ≥ ci}, then by (12)
we know that ∪Ai approximates αci to within 2−k accuracy. Next, we define:

{
Âx1 := ∪Ax1 ,

Âxk
:= ∪Axk

\ ∪Axk−1 , (2 ≤ k ≤ n),

and note that Âxi
’s partition [0, 1]2. Hence, we can define a piecewise constant

function f̃ : [0, 1]2 → R as follows:

∀x ∈ [0, 1]2 : f̃(x) :=
n∑

i=1

yi χÂxi
(x).

From Corollary 1, we deduce that f̃ and f̂ coincide on all of [0, 1]2 except perhaps
on a set of Lebesgue measure at most n2−k. Thus:

(∫

[0,1]2
| f̃(x) − f̂(x) |p dx

)1/p

<
(
n2−kγp

)1/p

(by (13)) < ε.

Putting all of the above together, we obtain:

Lemma 4. There exists an oracle machine M1 which, given:

– a continuous u ∈ C([0, 1]2) with no significant flat zones, and a modulus of
continuity φu : N → N for u;

– a real number p ∈ [1,∞), and a simple step function f ∈ Lp([0, 1]);
– an accuracy parameter n ∈ N;

returns a piecewise constant function f̃ ∈ Lp([0, 1]2) such that ‖ f̃ − f̂ ‖p < 2−n,
in which f̂ is the unique maximizer of Lu over R[0,1]2(f) as in Lemma 1 (vi).
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Ou

Q

N

N

Approximations of f̂ to within 2−k accuracy.

oracle for

u ∈ C([0, 1]2)
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continuity of u

Pfin(Q)Of

φu

N

Pfin(Q)
f ∈ LP ([0, 1])
oracle for

LinMax

(Q ∩ [0, 1])2 × N

p k

N NQ

accuracyLebesgue exponent

Fig. 1. An oracle machine representation of LinMax, which computes the linear rear-
rangement maximizer f̂ of Lu over R[0,1]2(f).

4.2 General Case

For an arbitrary f ∈ LP ([0, 1]), we consider the oracle machine LinMax of Fig. 1.
On receiving the accuracy demand k ∈ N, the machine sends k + 1 as a query
to the oracle Of , which in turn returns a simple step function fk+1 : [0, 1] → R

satisfying:
‖ fk+1 − f ‖p ≤ 2−(k+1). (14)

Subsequently, LinMax uses the machine M1 from Lemma 4, providing it with p,
u, φu, fk+1, and accuracy parameter k + 1. The machine M1, in turn, returns a
piecewise constant f̃k+1 ∈ LP ([0, 1]2) which satisfies:

‖ f̃k+1 − f̂k+1 ‖p ≤ 2−(k+1). (15)

Finally, LinMax returns f̃k+1 as output.
To prove that LinMax is working correctly, we need to prove that:

‖ f̃k+1 − f̂ ‖p ≤ 2−k. (16)

By Lemma 2 (i), there exists a measure-preserving map ρ : [0, 1]2 → [0, 1] satis-
fying:

u = uΔ ◦ ρ, (17)
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where uΔ is the decreasing rearrangement of u. As f̂ and f̂k+1 are maximizers
of Lu over R[0,1]2(f) and R[0,1]2(fk+1), respectively, by Lemma 1 (vi), there are
non-decreasing functions ψ1 and ψ2 such that:

f̂ = ψ1 ◦ u and f̂k+1 = ψ2 ◦ u. (18)

As ψ1 and ψ2 are non-decreasing, it is straightforward to show that:

fΔ = ψ1 ◦ uΔ and fΔ
k+1 = ψ2 ◦ uΔ. (19)

From (17), (18), and (19), we deduce f̂ = fΔ ◦ ρ and f̂k+1 = fΔ
k+1 ◦ ρ, which

implies that:

‖ f̂ − f̂k+1 ‖p = ‖ fΔ − fΔ
k+1 ‖

p

(by Lemma 2 (ii)) ≤ ‖ fk+1 − f ‖p

(by (14)) ≤ 2−(k+1). (20)

By combining (15) and (20), we obtain (16). Hence, we have:

Theorem 4. There exists an oracle machine LinMax which, given:

– a continuous u ∈ C([0, 1]2) with no significant flat zones, and a modulus of
continuity φu : N → N for u;

– a real number p ∈ [1,∞), and a function f ∈ Lp([0, 1]);
– an accuracy parameter k ∈ N;

returns a piecewise constant function f̃ ∈ Lp([0, 1]2) such that ‖ f̃ − f̂ ‖p ≤ 2−k,
in which f̂ is the unique maximizer of Lu over R[0,1]2(f) as in Lemma 1 (vi).

Essentially, we have fleshed out the algorithm for computing f̂ which is sug-
gested by Eq. (2). If we define ψ := fΔ ◦ λu, then we will have f̂ = ψ ◦ u. Now
it should be clear that the measure-preserving transformation ρ of (17) is just
λu◦u. Note that λu can be obtained by Theorem3, and fΔ may be approximated
using the simple step function approximations {fn | n ∈ N} of f .

5 Generalizations

To stay focused on the essence of rearrangements, we presented our results for
the simple two dimensional cube [0, 1] × [0, 1]. Generalizations to the following,
however, are straightforward:

– Linear rearrangement minimization;
– n-dimensional cube [0, 1]n, for all n ∈ N;
– Open, bounded, and connected domains Ω ⊆ R

n, for which Ω is a union of
n-dimensional cubes with rational coordinates.
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Some careful error analysis, together with (say) Delaunay triangulation, may
provide a further generalization to polygonal domains with rational coordinates.
Indeed, domains Ω that can be approximated from within via rational polygonal
domains, whose boundary vertices lie on the boundary of Ω, may also be treated,
using more careful error analysis.

Going further to general domains might need substantial change in approach,
especially if the approximants of the domain Ω have to cover locations out of
Ω. This is reminiscent of the finite element methods for numerical solutions of
PDEs, where care is taken to have the finite element space as a subspace of the
reference Sobolev space.

6 Conclusions and Future Work

We have taken some steps towards computable analysis of rearrangement opti-
mization problems. We provided oracle Turing machines that compute the distri-
bution function, decreasing rearrangement, and linear rearrangement optimizers,
with respect to functions that are continuous and have no significant flat zones.

The next step will be the computable analysis of a complete PDE-constrained
rearrangement optimization problem. Note that linear rearrangement optimiza-
tion is one of the two main components of some numerical methods for solving
PDE-constrained rearrangement optimization problems [7,10], the other being
PDE solving. Apart from some isolated work (e. g., [2,15]) computable analysis
of PDE solving is largely an unexplored area.

In longer term, we aim to develop validated methods for shape optimization
and free boundary problems arising as PDE-constrained rearrangement opti-
mization problems.
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295–319 (1989)

5. Burton, G.R., McLeod, J.B.: Maximisation and minimisation on classes of rear-
rangements. Proc. R. Soc. Edinb. Sect. A 119(3–4), 287–300 (1991)

6. Crowe, J.A., Zweibel, J.A., Rosenbloom, P.C.: Rearrangements of functions. J.
Funct. Anal. 66(3), 432–438 (1986)

7. Elcrat, A., Nicolio, O.: An iteration for steady vortices in rearrangement classes.
Nonlinear Anal. 24(3), 419–432 (1995)

https://doi.org/10.1007/BFb0088744


Computable Analysis of Linear Rearrangement Optimization 187

8. Emamizadeh, B., Marras, M.: Rearrangement optimization problems with free
boundary. Numer. Funct. Anal. Optim. 35(4), 404–422 (2014)

9. Emamizadeh, B., Zivari-Rezapour, M.: Rearrangements and minimization of the
principal eigenvalue of a nonlinear Steklov problem. Nonlinear Anal. 74(16), 5697–
5704 (2011)

10. Emamizadeh, B., Farjudian, A., Liu, Y.: Optimal harvesting strategy based on
rearrangements of functions. Appl. Math. Comput. 320, 677–690 (2018)

11. Emamizadeh, B., Farjudian, A., Zivari-Rezapour, M.: Optimization related to some
nonlocal problems of Kirchhoff type. Canad. J. Math. 68(3), 521–540 (2016)

12. Emamizadeh, B., Hanai, M.A.: Rearrangements in real estate investments. Numer.
Funct. Anal. Optim. 30(5–6), 478–485 (2009)

13. Kao, C.Y., Su, S.: Efficient rearrangement algorithms for shape optimization on
elliptic eigenvalue problems. J. Sci. Comput. 54(2), 492–512 (2013)

14. Ko, K.I.: Complexity Theory of Real Functions. Birkhäuser, Boston (1991)
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Abstract. An oritatami system is a novel mathematical model of RNA
cotranscriptional folding, which has recently proven extremely significant
in information processing in organisms and also controllable artificially
in a test tube to construct an artificial structure by folding an RNA
sequence. This model has turned out to be Turing universal. One next
step is to simplify the Turing universal oritatami system and another
is to characterize weaker oritatami systems as we may not need Turing
universality for applications. In this paper, we look at oritatami systems
that folds a unary sequence, and show that under reasonable assump-
tions, these systems are not universal.

1 Introduction

Transcription is the first essential step of gene expression, in which a DNA
template sequence is copied into a single stranded RNA sequence of nucleotides
A, C, G, and U (letter of RNA alphabet) by a ‘molecular Xerox’ called RNA
polymerase, nucleotide by nucleotide according to the complimentarity relation
A → U, G → C, C → G, and T → A. The copied RNA sequence is called transcript.
The transcript does NOT remain single-stranded until it is fully synthesized. It
rather starts folding upon itself into intricate stable conformations (structures)
primarily via hydrogen bonds, immediately after it emerges from the polymerase,
as illustrated in Fig. 1 (Left).

In a recent breakthrough in molecular engineering by Geary, Rothemund and
Andersen [8] the co-transcriptional folding of RNA is controlled by careful design
of the DNA template. As demonstrated in laboratory, this method, called RNA
Origami, makes it possible to cotranscriptionally self-assemble a unique RNA
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⇒

Fig. 1. (Left) RNA origami. (Right) an abstraction of its product, i.e., an RNA tile,
as a configuration of an oritatami system. A dot • in the figure on the right repre-
sents a sequence of 3-4 nucleotides (oligonucleotides). The solid arrow and dashed lines
represent respectively its RNA transcript and interactions based on hydrogen bonds
between nucleotides.

rectangular tile highly probably (see Fig. 1 (Left)). This breakthrough and the
design of RNA tile has encouraged the research on the nano-scale RNA struc-
ture self-assembly so that several successful attempts to self-assemble artificial
structures by folding a single-stranded RNA sequence [4,10]. Geary et al. [6]
proposed a mathematical model for this process, called oritatami system. In this
model, an oligonucleotide (a short sequence of RNA nucleotides) is considered to
be a bead and an RNA structure is abstracted as a directed path with informa-
tion on hydrogen-based interaction (bonds) between beads over the triangular
grid graph T as illustrated in Fig. 1. An oritatami system folds a transcript of
abstract molecules (beads) of finite number of types over T. This model has
been just proved efficiently Turing universal in [7] by simulating cyclic tag sys-
tems introduced by Cook [2]. The simulation involves a very large and complex
oritatami system. This system is deterministic in the sense that every bead is
stabilized uniquely point-wise as well as interaction-wise (for the formal defi-
nition, see Sect. 2). One future direction of research is to quest for a smaller
Turing-universal oritatami system.

Closely related is the question of where not to look for universal systems,
i.e., what are the limitations of simple oritatami system. In search for simple
oritatami systems, there are a number of restrictions one can pose on them:

– bounds on the relative speed of transcription to folding (delay), the number
of bead types, or the number of hydrogen bonds per bead (arity);

– bounds on the length of the transcript or on the complexity of rules to decide
what types of beads interact with each other (attraction rules);

– structural conditions on the transcript or the attraction rules.

In [3], Demaine et al. proved that at delay 1 and arity 1, upon an initial structure
of n beads, a deterministic oritatami system cannot fold into any conformation of
more than 10n beads, no matter how many bead types are available. We consider
this finiteness problem for unary oritatami systems under various settings of the
values of delay and arity, which is formalized as follows (Table 1).

Problem 1. Give an upper bound on the length of a transcript of a delay-δ, arity-
α deterministic unary oritatami system whose seed is of length n by a function
in δ, α, and n.
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Fig. 2. The zig-zag conformation. This is the only one infinite conformation foldable
deterministically by an unary oritatami system at delay 1 and arity 2.

Table 1. Upper bounds on the length of a conformation foldable by a deterministic
unary oritatami system at delay δ and arity α. At any combination of delay and arity
without anything written, no upper bound is known yet.

α\δ 1 2 and 3 4 and larger

1 10n [3] 3n2+4n+1 (Theorem6)

2 ∞ but zigzag after
(27n2+9n+1)-th bead
(Theorem5)

3 4n+14 (Theorem4)

4 3n(n+1)+1 (Theorem3)

In this paper, we will solve this problem completely at delay 1 and partially
at arity 1 in Sect. 4. At delay 1, we will provide a quadratic upper bound 3n(n+
1) + 1 for the case of arity being 4, while a linear upper bound 4n + 14 for
arity 3. At the delay 1 and arity 2, one infinite structure turns out to be foldable
deterministically, which is the zigzag conformation shown in Fig. 2. At arity 1, we
will prove that at delay 2 or 3, the upper bound is (3n+1)(n+1). Upper bounds
for longer delays remain open. These results as well as known upper bounds are
summarized in Fig. 1. As shown at the end of Sect. 2, the stabilization of the first
t beads of transcript by a deterministic oritatami system can be simulated by
a deterministic Turing machine within t3 steps (Corollary 1). Thus, the above
mentioned upper bounds show that at delay 1 and arity 1, 3, or 4, or at delay 2
or 3 and arity 1, the class of deterministic unary oritatami systems is not Turing
universal. The Turing universal oritatami system by Geary et al. [7] employs
more than 500 types of beads. Thus, this weakness result is not surprising at
all. The unary oritatami system might not be practical very much, though one
bead may abstract an oligonucleotide (a short sequence of nucleotides), and in
that case, unary transcript can be a repetitive but nonunary sequence, which is
not so unrealistic in experiments (see [5]). Nevertheless, this paper makes a first
considerable step towards the characterization of non-Turing-universal oritatami
systems.

As a result of independent significance, in Sect. 3, we show that increasing
the delay from 1 to 2 enables an oritatami system to yield a conformation of
quadratic length in n as long as 9 types of beads are available.
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2 Preliminaries

Let Σ be a finite set of types of abstract molecules, or beads. A bead of type
a ∈ Σ is called an a-bead. By Σ∗ and Σω, we denote the set of finite sequences of
beads and that of one-way infinite sequences of beads, respectively. The empty
sequence is denoted by λ. Let w = b1b2 · · · bn ∈ Σ∗ be a sequence of length n
for some integer n and bead types b1, . . . , bn ∈ Σ. The length of w is denoted by
|w|, that is, |w| = n. For two indices i, j with 1 ≤ i ≤ j ≤ n, we let w[i..j] refer
to the subsequence bibi+1 · · · bj−1bj ; if i = j, then w[i..i] is simplified as w[i]. For
k ≥ 1, w[1..k] is called a prefix of w.

Oritatami systems fold their transcript, which is a sequence of beads, over
the triangular grid graph T = (V,E) cotranscriptionally. We designate one point
in V as the origin O of T. For a point p ∈ V , let �d

p denote the set of points
which lie in the regular hexagon of radius d centered at the point p. Note that�d

p consists of 3d(d + 1) + 1 points. A directed path P = p1p2 · · · pn in T is a
sequence of pairwise-distinct points p1, p2, . . . , pn ∈ V such that {pi, pi+1} ∈ E
for all 1 ≤ i < n. Its i-th point is referred to as P [i]. Now we are ready to abstract
RNA single-stranded structures in the name of conformation. A conformation C
(over Σ) is a triple (P,w,H) of a directed path P in T, w ∈ Σ∗ of the same length
as P , and a set of h-interactions H ⊆ {{i, j} ∣

∣ 1 ≤ i, i+2 ≤ j, {P [i], P [j]} ∈ E
}
.

This is to be interpreted as the sequence w being folded along the path P in
such a manner that its i-th bead w[i] is placed at the i-th point P [i] and the
i-th and j-th beads are bound (by a hydrogen-bond-based interaction) if and
only if {i, j} ∈ H. The condition i + 2 ≤ j represents the topological restriction
that two consecutive beads along the path cannot be bound. The length of C is
defined to be the length of its transcript w (that is, equal to the length of the
path P ). A rule set R ⊆ Σ × Σ is a symmetric relation over Σ, that is, for all
bead types a, b ∈ Σ, (a, b) ∈ R implies (b, a) ∈ R. A bond {i, j} ∈ H is valid
with respect to R, or simply R-valid, if (w[i], w[j]) ∈ R. This conformation C
is R-valid if all of its bonds are R-valid. For an integer α ≥ 1, C is of arity α
if it contains a bead that forms α bonds but none of its beads forms more. By
C≤α(Σ), we denote the set of all conformations over Σ whose arity is at most α;
its argument Σ is omitted whenever Σ is clear from the context.

The oritatami system grows conformations by an operation called elongation.
Given a rule set R and an R-valid conformation C1 = (P,w,H), we say that
another conformation C2 is an elongation of C1 by a bead b ∈ Σ, written as
C1

R−→b C2, if C2 = (Pp,wb,H ∪ H ′) for some point p ∈ V not along the path
P and set H ′ ⊆ {{i, |w| + 1} ∣

∣ 1 ≤ i < |w|, {P [i], p} ∈ E, (w[i], b) ∈ R
}

of bonds
formed by the b-bead; this set H ′ can be empty. Note that C2 is also R-valid.
This operation is recursively extended to the elongation by a finite sequence of
beads as: for any conformation C, C

R−→
∗
λ C; and for a finite sequence of beads

w ∈ Σ∗ and a bead b ∈ Σ, a conformation C1 is elongated to a conformation
C2 by wb, written as C1

R−→
∗
wb C2, if there is a conformation C ′ that satisfies

C1
R−→

∗
w C ′ and C ′ R−→b C2.
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An oritatami system (OS) Ξ = (Σ,R, δ, α, σ, w) is composed of

– a set Σ of bead types,
– a rule set R ⊆ Σ × Σ,
– a positive integer δ called the delay,
– a positive integer α called the arity,
– an initial R-valid conformation σ ∈ C≤α(Σ) called the seed, whose first bead

is assumed to be at the origin O without loss of generality,
– a (possibly infinite) transcript w ∈ Σ∗ ∪ Σω, which is to be folded upon

the seed by stabilizing beads of w one at a time so as to minimize energy
collaboratively with the succeeding δ−1 nascent beads.

The energy of a conformation C = (P,w,H), denoted by ΔG(C), is defined to
be −|H|; the more bonds a conformation has, the more stable it gets. The set
F(Ξ) of conformations foldable by the system Ξ is recursively defined as: the
seed σ is in F(Ξ); and provided that an elongation Ci of σ by the prefix w[1..i]
be foldable (i.e., C0 = σ), its further elongation Ci+1 by the next bead w[i + 1]
is foldable if

Ci+1 ∈ arg min
C∈C≤αs.t.

Ci
R−→w[i+1]C

min
{

ΔG(C ′)
∣
∣
∣ C

R−→
∗
w[i+2...i+k] C ′, k ≤ δ, C ′ ∈ C≤α

}
. (1)

Then we say that the bead w[i+1] and the bonds it forms are stabilized according
to Ci+1. The easiest way to understand this stabilization process should be the
video available at https://www.dailymotion.com/video/x3cdj35, in which the
Turing universal oritatami system by Geary et al. [7], whose delay is 3, is running.
Note that an arity-α oritatami system cannot fold any conformation of arity
larger than α. A conformation foldable by Ξ is terminal if none of its elongations
is foldable by Ξ. The oritatami system Ξ is deterministic if for all i ≥ 0, there
exists at most one Ci+1 that satisfies (1). A deterministic oritatami system folds
into a unique terminal conformation. An oritatami system with the empty rule
set just folds into an arbitrary elongation of its seed nondeterministically. Thus,
the rule set is reasonably assumed non-empty.

In this paper, we considerably focus on the unary oritatami system. An ori-
tatami system is unary if it involves only one type of bead, say a, that is,
Σ = {a}. Its rule set is R = {(a, a)}. Its transcript is a sequence of a-beads so
that nothing can be hardcoded on it.

Proposition 1. For any rule set R, arity α and conformation C = (P,w,H) it
is possible to check whether C is R-valid and whether C ∈ C≤α in time O(|H| ·
|w| · |R|).
Proof. To check whether C is R-valid:

1. FOR each (i, j) ∈ H:
2. IF (w[i], w[j]) /∈ R THEN answer NO and HALT
3. answer YES and HALT.

https://www.dailymotion.com/video/x3cdj35
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Checking the condition in 2. can be done in O(|w| · |R|) time for any reasonable
representation of w and R, hence the whole process takes O(|H| · |w| · |R|) time.
To check the arity constraint C ∈ C≤α:

1. FOR each i ∈ {1, . . . , |w|}:
2. IF degree(i) = |{j|(i, j) ∈ H}| > α THEN answer NO and HALT
3. answer YES and HALT.

Checking the condition in 2. can be done in O(|H|) time for any reasonable
representation of H, hence the whole process takes O(|w| · |H|) time. �	
Theorem 1. There is an algorithm that simulates any deterministic oritatami
system Ξ = (Σ,R, δ, α, σ, w) in time 2O(δ) · |R| · |w|.
Proof. Take any step in the computation, up to which some i ≥ 0 first beads
of w have been stabilized, with the last bead at a point p. The number of all
possible elongations of the current conformation by the next δ-beads is (6 ×
5δ−1) × ((24)δ−1 × 25) ∈ 2O(δ). By Proposition 1, we can check for each of these
elongations whether its arity is at most α or not and whether it is R-valid or not
in time O((24)δ−1 · 25 · δ · |R|) = 2O(δ) · |R|. Therefore, the total running time is
2O(δ) · |R| · |w|. �	
Corollary 1. For fixed δ, the class of problems solvable by deterministic ori-
tatami systems (Σ,R, δ, α, σ, w) is included in DTIME(|w|3).
Proof. The claim follows from Theorem 1 and the fact that |R| is implicitly
bounded by |w|2. �	

Considering the following decision problem: given an oritatami system, inte-
ger i, and a point p, decides whether the bead w[i] is stabilized at p. By Corol-
lary 1, this problem is in P for a fixed delay δ. Because of the time hierarchy
theorems, we know that P � EXP (see, e.g., [1]), so we can conclude that
OS which cannot deterministically fold transcripts of length exponential in the
length of the seed are not computationally universal.

3 Quadratic Lower Bound for Delay 2, Arity 1

First we present a lower bound construction for arity 1 systems. At α = 1, hav-
ing delay δ = 2 allows the deterministic folding of quadratic length transcripts
compared with δ = 1, where, as stated before, the maximum length is linear in
the length of the seed. We demonstrate this with an infinite family of OS, which
fold deterministically a transcript of length (n−1)2

4 starting from a given seed of
length n.

Consider the following δ = 2, α = 1 system with bead types {0, 1, . . . , 8} and
attraction rules {(i, i) | 1 ≤ i ≤ 8}. Let the seed σ be a conformation of a 4k + 1
long bead sequence of the form (10205060)k/20 and (10205060)(k−1)/2(1020)0,
for k even and odd, respectively. Bead σ[i] of the seed is stabilized at point (i, 0),
for all 1 ≤ i ≤ 4k − 1. Bead 4k is at (4k − 1,−1) and bead 4k + 1 is at (4k, 0).
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Fig. 3. Quadratic length transcript folding deterministically into pyramid shape. Seed:
thick black path. Transcript: thin blue path. Bonds: dashed red lines. (Color figure
online)

The transcript is w = row1 · · · row2k, where

– row1 = (24136857)(k−1)/2241 if k is odd, and row1 = (68572413)k/2−16857241
if k is even;

– rowi+1 = (rowi[2..|rowi|− 1])r for i ∈ {1, . . . , 2k − 1}, where wr is the reverse
of w. In other words, each row is the reverse of the previous without its first
and last bead.

The transcript above is written in rows which correspond to beads in the
conformation stabilized along the same row on the grid. To simplify the argu-
ment we will use row both for the transcript above and for the conformation it
stabilizes in (note that in the figure the row index grows from bottom to top).

Row 1 is of length 4k − 1 and row 	 + 1 is two beads shorter than row 	, so
the length of the whole transcript is |w| = 4k2 = (4k +1− 1)2

4 = (|σ| − 1)2

4 . As an
example, see Fig. 3, where k = 5, so the length of the seed is 4k + 1 = 21 and
the transcript is 4k2 = 100 beads long.

Stabilizing the first bead of a row goes by binding to the penultimate bead of
the previous row, as they are of the same type according to how we constructed
the transcript, and they have free hands (see Fig. 5).

As for the other beads, in rows j ≡ 1, 3 mod 4, beads of type 1, 2, 5, 6 bind
to a bead in row j − 1. In rows j ≡ 2, 4 mod 4 beads of type 3, 4, 7, 8 can bind
to a bead in row j − 1. This is true for row 1, because beads of type 1, 2, 5, 6
from row 1 can only bind to every second bead of the seed, whereas the other
beads of row 1 cannot bind to anything (Fig. 4, (c)). Once this dynamic holds
for a row, it holds inductively for the next, as a bead that binds to another loses
its only free hand at arity 1.
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Within one row of the transcript, no bead i can bind to a preceding bead,
because if there is a previous bead of the same type in that row, it is stabilized
at a distance of at least 6 from any point where i could be placed.

By the arguments above, the beads in row i of the transcript are stabilized
along row i on the grid, forming the pyramid-like conformation from Fig. 3.

(a) First transcript bead
(b) Second bead

(c) Portions of row 1

Fig. 4. Fixing transcript beads in first row, when k is odd

Fig. 5. Beads 4k, 8k − 2, . . . stabilize at turning points because the bead two positions
before is the same type and has a free hand.

4 Upper Bounds for Determinisitc Unary Oritatami
Systems at Delay 1 or Arity 1

In this section, we consider Problem 1 at delay 1 first and then at arity 1. Let
Ξ = (Σ,R, δ, α, σ, w) be a deterministic oritatami system of delay 1. For i ≥ 0
let Ci be the unique elongation of σ by w[1..i], that is, foldable by Ξ. Hence
C0 = σ.

At delay 1, a bead cannot collaborate with its successors in order to stabilize
itself. In fact, there are just two ways for a bead to get stabilized at delay 1
(or the bead has no place to be stabilized around so that the system halts), as
observed in [3]. One is to be bound to another bead and the other is through a 1-
in-1-out structure called the tunnel section. See Fig. 6. A tunnel section consists
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of one free point pc and four beads that occupy four neighbors of pc. In order
for an oritatami system to stabilize the bead w[i] at the central point pc, its
predecessor w[i − 1] must be put at one of the two free neighbors of p. Thus, at
the stabilization of w[i], only one neighbor of p is left free so that the successor
w[i + 1] is to be stabilized there, even without being bound. In this case, the
point pe where w[i−1] is stabilized is considered to be an entrance of the tunnel
section and the point ps where w[i + 1] is stabilized is considered as its exit. A
tunnel is a maximal set of tunnel sections whose central points form a path.

pcpe ps

Type S

pcpe

ps

Type O

pcpe

ps

Type A

Fig. 6. Tunnel sections of all possible three types: straight (Type S), obtuse turn (Type
O), and acute turn (Type A).

Fig. 7. A tunnel divides the world into two.

The behavior of an oritatami system at delay 1 can be described by a sequence
of S of b (bound), ts (straight tunnel section), to (obtuse-turn tunnel section),
and ta (acute-turn tunnel section); priority is given to tunnel, that is, S[i] is ts
(resp. to, ta) if the i-th bead of the system is stabilized not only by being bonded
but also through a straight (resp. obtuse-turn, acute-turn) tunnel section. Let
us introduce t as a wildcard for ts, to, and ta. We also let S take the value � for
halt (due to the lack of free neighbors).

We say that a neighbor of a point p is reachable from a conformation C if
there exists an elongation of C in which a bead occupies the neighbor and it
binds with a bead at p. For example, in Fig. 7, the transcript w is about to step
into a tunnel. The wall beads w[i − 	] and w[i − k] are both older than the bead
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at the entrance, w[i]. Even if w[i] leaves a free neighbor, the neighbor is not
reachable because the path of a conformation must be non-self-intersecting, and
its subpath between these two wall beads divides the plane into two regions, one
of which includes the entrance of the tunnel and the other of which includes the
exit (Jordan curve theorem [9]). Taking this reachability into account, we define
the binding capability of a conformation as the number of free bonds of its beads
available geometrically for elongations of C. It is defined formally as follows:

Definition 1 (Binding Capability). Let α be an arity and C = (P,w,H)
be a conformation of arity at most α. Let Hk = H ∩ {(i, j) | i = k or j = k}.
Moreover, let Rk be a set of neighbors of the point P [k] that are free and reachable
from C. The binding capability of C at arity α, denoted by #bcα(C), is defined
by

∑|w|
k=1 min{α − |Hk|, |Rk|}. The subscript α is omitted whenever it is clear

from context.

Observe one almost-trivial but important fact that a bead inside a tunnel does
not increase the binding capability. This is because for such a bead w[k], |Rk| = 0.

We now prove that in “almost all” tunnels is a troll domiciled and robs the
transcript of binding capability (the original story is from [11]). Originally, we
tried to find a troll in every tunnel but failed; a troll seems to dislike the very
first bead w[1], or its property that only α+1 beads around may take all hands of
w[1] thanks to the absence of its predecessor; any other bead must be surrounded
by at least α+2 beads in order to be free from free hand because a bead cannot
bind with its predecessor or successor. We call a bead singular if it is surrounded
by only α+1 beads but forms α bonds. No bead but w[1] can be singular because
of their predecessor and successor. A tunnel is singular if its entrance or exit is
next to w[1] that is singular. There can be at most 3 tunnels around one bead so
that no more than 3 tunnels can be singular. A singular tunnel will be denoted
with the superscript × like t×s or t×. In contrast, the notation without × such
as ts and t shall imply their non-singularity.

Theorem 2 (Tunnel Troll Theorem). Let Ξ be a deterministic unary ori-
tatami system of delay δ = 1. The following statements hold.

1. At arity α ≥ 3, if S[i] = t (i.e. the tunnel that stabilizes w[i] is not singular)
and S[i + 1] �= �, then #bc(Ci−1) > #bc(Ci).

2. At arity α = 2, if m is the number of occurrences of bt as a factor in S[1..k]
for an index k, then #bc(C0) − m ≥ #bc(Ck).

In order to prove this theorem, we use the following three lemmas.

Lemma 1. Let Ξ be a deterministic unary oritatami system at delay δ = 1 and
arity α = 2. Assume Ξ stabilizes the transcript until w[i− 1]. If S[i+1] = b and
S[i + 2] ∈ {ts, to}, then #bc(Ci−1) > #bc(Ci).

Proof. See Fig. 8. S[i + 2] ∈ {ts, to} means that w[i + 2] is stabilized by a tunnel
section of type S or O. Thus, its predecessor w[i + 1] must be inside the tunnel
section, that is, n1 and n2 must be occupied. Free bonds of w[i], if any, cannot
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be used in future by another bead w[j] because otherwise the part of transcript
w[i..j] and the bond between w[i] and w[j] would form a closed curve and the
curve would cross the path of Ci−1 between n1 and n2, contradiction. Therefore,
if w[i] forms a bond at its stabilization #bc(Ci−1) > #bc(Ci) holds. We now
prove that w[i] must form a bond.

Suppose w[i] were stabilized without any bond, that is, by a tunnel. For that
the two points that are a neighbor of both w[i − 1] and w[i] must be occupied
already. In addition, at least one of the neighbors of w[i] must be free because
S[i+1] = b. Thus, only the case to be considered is Fig. 8 (middle) with n5 being
occupied (that is, n4 is free). In this case, before w[i] is stabilized, at lest three
neighbors of n2 were free and hence, a bead at n2 was provided with one free
bond and could form a bond with w[i]. �	

w[i] w[i+ 1]

n1

n2

n3

n4

w[i] w[i+ 1]

n1

n2

n3

n4

n5

w[i] w[i+ 1]

n1

n2

n3

n4

n5

Fig. 8. The three ways to enter a tunnel: (Left) straight, (Middle) obtuse, (Right)
acute. The bead w[i] is stabilized at the entrance and w[i + 1] is stabilized inside.

w[j]

n1

n2

n3

n4

w[j − 1] w[j]
n0

n1

n2

n3

n4

w[j − 1]

Fig. 9. Two kinds of exit of a tunnel: (Left) Both n1 and n2 are free, (Right) One of
n1 and n2 is occupied.

Lemma 2. Let Ξ be a deterministic unary oritatami system of delay δ = 1 and
arity α = 2. If S[i + 1..j + 1] = bt(j−i−1)b for some i, j with i ≤ j − 2 and
S[j] ∈ {ts, to}, then #bc(Cj−2) ≥ #bc(Cj), and hence, #bc(Ci) ≥ #bc(Cj). If
i ≤ j − 3, then the second inequality is strengthened as #bc(Ci) > #bc(Cj).

Proof. Since the binding capability never increases inside a tunnel, we just need
to consider the exit of a tunnel. See Fig. 9. At least one of points n1 or n2 must
be free because otherwise w[j] would be inside of a tunnel, that is, S[j+1] would
not be b.

Let m be the number of bonds w[j − 1] forms, that is, #bc(Cj−2) −
#bc(Cj−1) = m. We claim #bc(Cj) − #bc(Cj−1) ≤ m. Indeed, if both n1 and
n2 are free (see Fig. 9), the predecessor w[j −1] must be bound to both beads at
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n3 and at n4 because both of them still have a free hand. Hence, m ≥ 2. Since
#bc(Cj) − #bc(Cj−1) is less than the arity, this difference is at most m.

If n1 is occupied, then n2 is free. The predecessor w[j − 1] must be bound
n4. Hence, m ≥ 1. The bead w[j] can increase the binding capability at most
by 1 because one of its free neighbors would, n0 or n2, is to be occupied by the
successor w[j + 1]. Therefore, #bc(Cj) − #bc(Cj−1) ≤ m.

Thus, #bc(Cj−2) ≥ #bc(Cj), and hence, #bc(Ci) ≥ #bc(Cj). If i ≤ j − 3,
then the second inequality is strengthened as #bc(Ci) > #bc(Cj) because S[i +
1] = b, that is, #bc(Ci) > #bc(Ci+1) and #bc(Ci+1) ≥ #bc(Cj). �	

w[i]

w[i+ 1]

w[i+ 2]

w[i]

w[i+ 1]

w[i+ 2]

w[i− 2]

Fig. 10. The bead w[i + 2] is stabilized by a tunnel of type A. (Right) Moreover
S[i] = ta.

Lemma 3. Let Ξ be a deterministic unary oritatami system of delay δ = 1 and
arity α = 2. If S[i + 2] = ta, the following statements hold.

1. If w[i] forms at least one bond, #bc(Ci−1) > #bc(Ci+2).
2. If w[i] does not consume any bond and S[i] ∈ {ts, to}, #bc(Ci−2) >

#bc(Ci+2).
3. If w[i] does not consume any bond and S[i] = ta, #bc(Ci−3)−2 ≥ #bc(Ci+2).

Proof. We consider each statement. First we prove Statement 1. The bead w[i+1]
consumes one hand and provides nothing. If w[i] forms two bonds, then even if
w[i + 2] provides two free hands, #bc(Ci−1) > #bc(Ci+2). On the other hand,
if it leaves a free hand, it will be used by w[i + 2], and hence, w[i + 2] does not
increase the binding capability. Thus, #bc(Ci−1) > #bc(Ci+2). This argument
actually work also for the case when w[i] is stabilized rather by binding.

Let us proceed to Statement 2. See Fig. 10. Consider the case when w[i] is
stabilized by a tunnel section of type S or O. As prove in Lemma2, #bc(Ci−2) ≥
#bc(Ci). The bead w[i] leaves two free hand, it will be used by w[i+2], and hence,
w[i+2] does not increase the binding capability. Thus, #bc(Ci−2) > #bc(Ci+2).
This argument actually work also for the case when w[i] is stabilized rather by
binding.

We finalize this proof by showing Statement 3. In order for w[i] not to bind,
w[i − 2] must have already used up its hands. The bead w[i − 1] consumes
one hand and provides nothing. Thus, #bc(Ci−3) − 1 ≥ #bc(Ci). The bead
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w[i + 1] consumes one hand and provides nothing. Finally, w[i + 2] uses one
hand of w[i], and hence, does not increase the binding capability. Therefore,
#bc(Ci−3) − 2 ≥ #bc(Ci+2). This argument actually works also for the case
when w[i] is stabilized rather by binding. �	

Now we are ready to prove the Tunnel Troll Theorem.

Proof. Let us first consider cases of δ ≥ 3, α = 1. See Fig. 9. Consider the
stabilization of w[i]. This bead w[i], once stabilized, shares two neighbors with
its predecessor w[i − 1], which are denoted by n3, n4. Both of them have been
already occupied because S[i] = t.

Since S[i + 1] �= �, at least one of the other three neighbors, denoted by
n0, n1, n2, must be free. Assume that in the neighborhood of w[i], there are two
beads with one free neighbor even after w[i] is stabilized. Before the stabilization
of w[i], such a bead had two free neighbors, and hence, is provided with at least
one free bond. Thus, w[i] is to be bonded to these two beads, and it decreases
the binding capability by at least 1. It now suffices to check that this assumption
holds no matter how n0, n1, n2 are occupied as long as at least one of them is
left free.

Next, we consider the case of δ = 2, α = 1. We assume there are indices i,
j such that S[i + 1..j + 1] = bt(j−i−1)b. If S[i + 2] is ts or to, then Lemma 1
implies #bc(Ci−1) > #bc(Ci) and Lemma 2 implies #bc(Ci) ≥ #bc(Cj). Thus,
binding capability decreases by 1 per a factor bts or bto.

Now, we assume S[i + 2] = ta. Then, we have to make sure that one troll is
not double-counted. If w[i] forms a bond, Lemmas 2 and 3 imply that binding
capability decreases through this tunnel.

Assume w[i] forms no bond. If S[i] ∈ {ts, to}, Lemmas 2 and 3 imply
#bc(Ci−2) > #bc(Ci+2). Observe that the bead w[i − 1] is at the entrance
of the previous tunnel or inside. It is when a bead is stabilized at the entrance
of a tunnel that the troll of the tunnel decreases binding capability. Thus, the
inequality does not rely on the troll of previous tunnel. If S[i] = ta, Lemma 3
implies #bc(Ci−3)− 2 ≥ #bc(Ci+2). This inequality involves two tunnels but its
difference 2 enables us to consider that binding capability decreases by 1 through
this tunnel. �	

4.1 Upper Bounds on the Length of Conformation Foldable
Deterministically at Delay δ = 1

Theorem 3 (δ = 1, α = 4). The terminal conformation of a deterministic
unary oritatami system of δ = 1, α = 4 is of length at most 3n2 + 3n + 1.

Proof. Consider the moment when a bead, say b, is stabilized outside �n
O for the

first time. The bead must be bound a bead at the periphery of �n
O as depicted

in Fig. 11. In order to avoid nondeterminism, the bead b must not be attracted
anyhow else by beads around.

The point p1 must be empty because a bead there would have at least two
free neighbors and hence is provided with a free hand. If there is a bead at p2,



Power of Unary Oritatami Cotranscriptional Folding 201

n must be at least 2 so that the bead is not singular. Since p1 is empty, this
bead has at least one free hand, a contradiction. Thus, p2 must be also empty.
In the same way, we can easily show that the point p3 must not be occupied by a
non-singular bead. Suppose p3 = O. The point p4 must not be empty; otherwise
the singular bead, at O, would have a free hand. However, then a bead at p4
would be provided with a free hand, a contradiction. �	

p1

p2

p3

p4

n

n+ 1

Fig. 11. The first bead out of �n
O

Theorem 4 (δ = 1, α = 3). The terminal conformation of a deterministic
unary oritatami system of δ = 1, α = 3 is of length at most 4n + 14.

Proof. In this proof, we shall verify the claim that when the bead w[i] is stabilized
with S[i] = b and S[i+1] �= �, if the circle of radius 2 centered at its predecessor
w[i−1] is free from the singular point, then w[i] must form at least 2 bonds. Recall
that the circle of radius 2 centered at the origin O, where the only candidate of
singularity is, consists of 19 points including O. In order for the bead at O to be
singular, its α+1 = 4 neighbors must be occupied. This means that there are at
most 14 points where a bead find a singular bead within 2 points. Therefore, the
claim, once proved, and the Tunnel Troll Theorem imply that all but at most
14 beads strictly decrease the binding capability. The binding capability of the
seed is at most 3n. Consequently, this theorem holds.

Now let us verify the claim. Suppose w[i] were stabilized by just one bond.
There are three cases to be considered as depicted in Fig. 12, depending on the
relative position of w[i] to w[i − 2] and w[i − 1]. Since S[i] = b, at least one
of the four neighbors of w[i − 1] must be empty. If n3 is free, then w[i − 2]
must have used up all of its hands; otherwise, w[i] would be stabilized also at
n3 nondeterministically, a contradiction. Thus, α + 2 = 5 neighbors of w[i − 2],
that is, all of its neighbors, must be occupied. Hence, n5 is occupied. (All the
remaining arguments are based on this “merry-go-round” occupation. This works
only if the circle of radius 2 around w[i − 1] is free from the singular bead). In
the same way, all the neighbors of n3 turned out to be occupied in the clockwise
order, but eventually, we would encounter a neighbor that is adjacent to also
the point where w[i] is supposed to go. Thus, n3 must be occupied (in the left
and middle cases). In the left case, n4 is symmetric to n3, and hence, it must
be occupied, too. Since S[i] = b, n1 or n2 must be free; assume n1 is. Going
clockwise around n1 implies that n−1 is occupied, but the bead at n1 has a free
hand and would cause a nondeterminism.
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Let us focus on the remaining cases: middle and right. Suppose that among
the 5 neighbors of w[i] at which w[i − 1] is not, only one can be occupied.
Otherwise, a bead without any hand is found at one of them, and staring from
the point, merry-go-round occupies all the neighbors, but then w[i + 1] would
lose its way to go. In the middle case, this means n0 is free. Since n−1 is free,
so must be n2. Repeating this, we get that both n4 and n5 are free, but then
w[i − 2] would have a free hand and a free neighbor, attract w[i], and cause a
nondeterminism. Even in the right case, the points n1, n0, n2, n4 turn out to be
free one after another likewise, but then w[i − 2] would have a free hand and
neighbor, a contradiction. �	

w[i−2]

w[i−1]

w[i]

n1

n2

n3

n4

n−1n5

w[i−2]

w[i−1]

w[i]

n0

n2

n3

n4

n−1

n5

w[i−2]

w[i−1]

w[i]

n0

n1

n2n4

n−1

Fig. 12. All possible directions of w[i]: straight, obtuse, acute.

p

n

n+ 1

n+ 2

w[i− 1]

w[i]w[i+ 1]

p

n

n+ 1

n+ 2

w[i− 1]

w[i] w[i+ 1]

Fig. 13. The moment when the transcript steps outside �n
O.

Theorem 5 (δ = 1, α = 2). A deterministic unary oritatami system of δ =
1, α = 2 can fold into an infinite conformation, but its transcript folds into the
zig-zag conformation (Fig. 2) after its (27n2 + 9n + 1)-th bead.

Proof. We assume w[i] is the first bead stabilized outside �n
O. See Fig. 13. The

next bead w[i+1] is to be bound for stabilization. Hence, it goes to the west or to
the east (Fig. 13). Once w[i + 2] is stabilized at p, the remaining transcript folds
into the zig-zag conformation. In order to avoid this or nondeterminism, w[i+2]
must form two bonds; it thus decreases binding capability by 1. Until when a
bead is stabilized outside �n+1

O , binding capability never increases because of
arity being 2 and of the Tunnel Troll Theorem. This means that, only at most
#bc(C0) ≤ 2n times we can thus expand that hexagonal region. In other words,
outside �3n

O the transcript cannot help but fold zig-zag. �	



Power of Unary Oritatami Cotranscriptional Folding 203

4.2 Quadratic Upper Bounds for Arity 1 and Delay 2 or 3

In this section we will argue that unary systems at arity 1 and delay 2 and 3,
respectively, cannot fold infinite transcripts deterministically. As we will see, in
fact, the length of transcripts deterministically foldable by these systems has
an upper bound quadratic in the length n of the seed. The main result is the
following theorem, which is a direct consequence of Lemmas 4 and 5 which follow.

Theorem 6 (δ ∈ {2, 3}, α = 1). The terminal conformation of a deterministic
unary oritatami system at arity α = 1 and delay δ ∈ {2, 3} is of length at most
3n2 + 4n + 2.

Fig. 14. �n
p and the position (1, 1) of

the first bead fixed outside of it.

Let us fix some common starting points
for Lemmas 4 and 5. Let the point where
the first transcript bead was fixed be p. We
will argue about the situation when the first
bead is stabilized outside �n

p (a hexagon of
radius n). Let this be the ith bead of the
transcript. Without loss of generality, we
can translate the origin (0, 0) to the coor-
dinates of bead i − 1 (which is still in �n

p ),
and we can assume that bead i is fixed at
(1, 1) (see Fig. 14).

Lemma 4 (δ = 2, α = 1). The terminal conformation of a deterministic unary
oritatami system of δ = 2 and α = 1 is of length at most 3n2 + 4n + 2.

Proof. In the elongation that places bead i at (1, 1) there are two possibilities.

– i forms a bond with a bead at (1, 0).
– i does not bond to anything and i + 1 is at (2, 1) bonding with a bead at

(2, 0). If there is no bead at (1, 0), then placing i at (1, 0) instead of (1, 1)
results in the same number of bonds, leading to nondeterminism. Therefore,
there has to be a bead at (1, 0) and it is inactive, otherwise it would bond to
i. This is analogous to case 1. below, with the only difference being that the
bond between (1, 1) and (1, 0) is missing.

Because of the above, we need only consider the case when i binds to a bead
at (1, 0). The next bead, i + 1, can be fixed at (2, 1) or at (0, 1) as all other
possibilities result in nondeterministic behavior immediately, so we have two
cases.

Case 1. bead i + 1 is fixed at (2, 1) and can bond with a bead at (2, 0) (see
Fig. 15). Now consider bead i+2. For i+1 to be fixed at (2, 1), i+2 needs to form
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a bond somewhere, otherwise i + 2 could go to (2, 1) forming the bond with the
bead at (2, 0) and there would be two conformations with the maximal 1 bond.
The only possibility is that there is a bead at (3, 0) and i + 2 can bond with
it when placed at (3, 1). We can apply the same argument inductively: there is
some m ≥ 0 such that grid points (	, 0) are occupied by beads with free hands,
for all 	 ∈ {2, . . . , 2 + m}, and there is no bead at (3 + m, 0). Such an m exists,
and it is not greater than n, because those beads are all stabilized along the
same side of �n

p . Then, bead i + 	 is fixed at (	 + 1, 1) and bonds with (	 + 1, 0).
However, bead i + 2 + m cannot be fixed anywhere, because i + 2 + m and
i+3+m can only add one bond to the conformation, and that is possible either
with i+2+m → (2+m, 1), i+3+m → (3+m, 1) or with i+2+m → (2+m, 2),
i + 3 + m → (2 + m, 1). Intuitively, when we reach a corner of the hexagon �n

p ,
the next bead of the transcript cannot deterministically stabilize, as depicted
in Fig. 15. In this case, the size of the transcript which was deterministically
stabilized is bounded by the size of �n

p plus the length of one side of �n+1
p , so

by (3n2 + 3n + 1) + (n + 1) = 3n2 + 4n + 2.

Fig. 15. When bead i + 2 + m is fixed

Case 2. bead i + 1 is fixed at (0, 1). This is only possible if
(a) there is an inactive bead at (−1, 0) and one with a free hand one at (−2, 0).
This case is symmetrical to (1). there is no bead at (−1, 0), bead i + 1 can bond
with bead i−1 at (0, 0) and the bead i+2 can be placed at (−1, 0) where it can
bond with (−2, 0), (−2,−1) or (−1,−1). This leads to nondeterminism, because
placing bead i at (−1, 0) and bead i + 1 at (0, 1) would yield two bonds, just as
the original conformation.
(b) there is a bead at (−1, 0) and bead i + 1 can bond with that or with bead
i − 1 at (0, 0). However, this means that placing bead i at (0, 1) at bead i + 1 at
(1, 1) creates the same number of hydrogen bonds, thus resulting in bead i not
being placed deterministically.

Case 2.(a) gives the same upper bound as case 1. Cases 2.(b)-(c) give the
smaller upper bound |�n

p | + 1, thereby concluding the proof. �	
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Fig. 16. When bead i + 1 is fixed at (0,1)

Lemma 5 (δ = 3, α = 1). The terminal conformation of a deterministic unary
oritatami system of δ = 3 and α = 1 is of length at most 3n2 + 4n + 2.

Proof. We will argue similarly to the δ = 2 case: when we stabilize beads outside�n
p , we can only do so at points right next to one of the sides and even there

only until we reach a corner. This yields the upper bound immediately.
As before, let us assume that the last bead stabilized within �n

p is at point
(0, 0) and the next bead is the first to be stabilized outside �n

p at point (1, 1).
Depending on whether bead i − 1 at point (0, 0) has a free hand to form a bond
or not, we distinguish two cases (similarly to Fig. 16).

Case 1. Bead i − 1 at (0, 0) has a free hand. If the most stable conformation
formed by beads i, i + 1, i + 2 adds only two bonds, it will be nondeterministic
because there are at least two possibilities (see Fig. 19, except it starts from (0, 0)
not (1, 1)). Therefore, it needs to make three new bonds to deterministically
stabilize i. There are five possible cases in which beads i, i + 1, i + 2 can add
three bonds, see Fig. 17. In the cases (b) and (e) in Fig. 17, there are beads
having a free hand at (1, 0) and (−1, 0) already stabilized before bead i − 1 is
fixed at (0, 0). One of these two beads may be a predecessor of bead i − 1, but
at least one of them is not. When bead i − 1 is fixed at (0, 0), it makes a bond
with the one of these two beads which is not its predecessor. This means that
it is impossible to have three beads at (−1, 0), (0, 0) and (1, 0), each with a free
hand, when bead i is fixed, and consequently, cases (b) and (e) in Fig. 17 cannot
occur. Case (d) in Fig. 17 becomes nondeterministic when bead i is fixed because
bead i can be fixed at (−1, 0) and bond with (−2, 0), bead i + 1 can be placed
(0, 1) and bond with (0, 0) and bead i + 2 can be placed (1, 1) and bond with
(0, 1). If it makes three bonds once, such as (a) and (c) in Fig. 17, it will need to
make three bonds forever to be deterministic. Similarly to case 1. in the previous
section, cases (a) and (c) in Fig. 17 lead to nondeterministism eventually, when
the transcript reaches a first corner of �n

p .

Case 2. Bead i − 1 at (0, 0) does not have a free hand.

(i) First, let us assume that there is a bead at (1, 0) which has a free hand.
If there is a bead at (1, 0) and beads i, i + 1, i + 2 add only two bonds, we
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(0, 0)

(1, 1)

(a)

(0, 0)

(1, 1)

(b)

(0, 0)

(1, 1)

(c)

(0, 0)

(1, 1)

(d)

(0, 0)

(1, 1)

(e)

Fig. 17. When beads i, i + 1, i + 2 make three hydrogen bonds (c) there is an inactive
bead at (−1, 0). (d) there is no bead at (−1, 0).

instantly get nondeterministism as in Fig. 18. Hence, beads i, i+1, i+2 need
to make three bonds to stabilize i, but if they make three hydrogen bonds,
the situation is analogous to (a) and (c) in Fig. 17.

(ii) Now consider when there is no bead at (1, 0) or there is one, but with no free
hand. Let us discuss the moment after bead i is fixed outside �n

p . Now bead
i has a free hand because it cannot bind to (1, 0). If beads i + 1, i + 2, i + 3
can form only two bonds, it will be nondeterministic because there are at
least two possible such conformations, as in Fig. 19. Hence, they need to
form three bonds to deterministically stabilize, such as in Fig. 20. Case (a)
in Fig. 20 becomes the same as case (a) in Fig. 17. Case (b) in Fig. 20 becomes
nondeterministic already when bead i is fixed because bead i could also be
fixed at (1, 0).

(0, 0)

(1, 1)

(1, 0) (0, 0)

(0, 1)

(1, 0)

Fig. 18. Two conformations when a
bead at (1, 0) has a free hand.

(1, 1) (1, 1)

Fig. 19. Two conformations when a
bead i at (1, 1) has a free hand

(0, 0)

(1, 1)

(a)

(0, 0)

(1, 1)

(b)

Fig. 20. When beads i + 1, i + 2, i + 3 make three hydrogen bonds (a) there is an
inactive bead at (1, 0). (b) there is no bead at (1, 0).

We have shown that at α = 1 and δ ∈ {2, 3}, unary oritatami systems
can only fold finite length transcripts deterministically, and the length of that
transcript is bounded by the size of the regular hexagon of radius n plus the
length of one side of the surrounding hexagon. This gives us the upper bound
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|�n
p | + (n + 1) = 3n2 + 4n + 2, where n is the length of the seed, concluding the

proof of Theorem6.

5 Conclusion

In this work, we have considered unary oritatami systems at δ = 1 or α = 1. As a
result, we found that a unary oritatami system does not have Turing universality
at δ = 1 and at δ ≤ 3, α = 1. This non-Turing universality was obtained by the
following results. One is that unary oritatami systems are not able to make any
infinite structures at δ = 2, 3, α = 1 and at δ = 1, α = 1, 3, 4 (Theorems 3, 4,
6 and due to [3]). The other is that a unary oritatami system can only produce
a single type of simple infinite structures, which is zigzag at δ = 1, α = 2
(Theorem 5).

The case of δ ≥ 4 and α = 1 remains an open problem. Our results should be
extended to non-unary oritatami systems, that is, characterization Turing uni-
versality of oritatami systems with respect to delay, arity or some other param-
eters such as the number of bead types.

Acknowledgements. We thank Yo-Sub Han for his valuable comments on the con-
tents of this paper.
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Abstract. A stochastic programming model of the operation of energy plants
with the introduction of photovoltaic generation and a storage battery is
developed. The uncertainty of the output of the photovoltaic generation is
represented by a set of discrete scenarios, and the expected value of the oper-
ation cost is minimized. The effectiveness of the stochastic programming model
by comparing it with the deterministic model is shown. As an economic eval-
uation, the recovery period for the initial investment of photovoltaic generation
and storage battery is also shown.

Keywords: Stochastic programming � Optimization � Energy plant �
Operational planning � Photovoltaic generation � Unit commitment problem

1 Introduction

Because of the prevalent environmental problems, the need to spread awareness about
the use of renewable energy is an urgent concern worldwide. In the Paris Agreement
issued in 2016, the long-term goal was to keep the global average temperature increase
within 2 °C as a result of the industrial revolution. To achieve this, efforts are under
way to adapt smart community all over the world. Furthermore, in Japan, the reex-
amination of energy costs has been dealt with as a problem of management engineering
due to the liberalization of electricity. Based on these, introduction of renewable energy
as a new type of energy supply in large-scale facilities such as factories and shopping
centers is being studied. However, as the output of renewable energy is unstable,
decision making under uncertain conditions is required at the time of introduction.

In this research, an optimization model for operation planning by stochastic pro-
gramming by introducing photovoltaic power generation as renewable energy into
factory energy plant was developed. We showed that the modeling by stochastic
programming is more suitable as a realistic operation plan than conventional deter-
ministic mixed integer programming method and economic evaluation on implemen-
tation plan was carried out.

Figure 1 shows the outline of the basic model which can quantitatively evaluate the
energy cost etc. of the smart community. An industrial model of energy consumption at
the factory in the basic model is modeled based on a benchmark problem seeking an
optimum operation plan of an energy plant presented by Suzuki and Okamoto [1], Inui
and Tokoro [2].
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2 Introduction Model for Photovoltaic Generation

The optimization model for photovoltaic generation extends the benchmark problem by
including photovoltaic generation and a storage battery. To consider the uncertainty of
photovoltaic power generation, stochastic programming is applied.

The benchmark problem is a model of an energy plant that purchases electricity and
gas as shown in the dotted frame in Fig. 1, and generates electricity, heat, and steam to
meet the demand. As equipment, there are a gas turbine, a boiler, two kinds of
refrigerators, and a thermal storage tank. The objective of the benchmark problem is to
establish an operation plan that minimizes the cost of purchasing electricity and gas
while satisfying the constraints on equipment and energy balance. Decision variables
consists of variables related to the amount of purchase and generation of energy, and
variables concerning the start and stop of each device.

The photovoltaic generation introduction model includes MW-class photovoltaic
generation equipment so that the generated electricity flows to the demand and turbo
refrigerators. The photovoltaic generation of power is for in-house power consumption.
We assumed that the storage battery can store only the electric power of photovoltaic
power generation, and that some of the charged electricity will be lost by the time of
discharge. Figure 1 shows the energy flow of the energy plant when photovoltaic
generation and storage batteries are introduced.

The uncertainty of photovoltaic generation output is expressed using a set of
deterministic scenarios. Because the uncertainty of the output of photovoltaic gener-
ation also affects the entire energy flow, decision variables related to the purchase
amount of energy and generation amount are also defined for each scenario. As a result,
the number of decision variables increases according to the number of scenarios. When
the number of scenarios is 30, the number of decision variables increases from 192 to
5826, considering the introduction of photovoltaic power generation.

The objective of the photovoltaic generation introduction model is to establish an
operation plan that minimizes the expected value of electricity and gas purchase cost
while satisfying the restrictions on equipment and storage battery and energy balance.

Fig. 1. Energy plant with photovoltaic generation.
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3 Formulation of Photovoltaic Generation IntroductionModel

Table 1 shows the definitions of the symbols used for formulating the photovoltaic
power generation introduction model:

Table 1. Notation for the model.

Parameter

Nt;Ns: Number of turbo refrigerators and steam absorption refrigerators
I: Number of time zones
age: Coefficient of input and output of gas and the electric power in gas turbine
ags: Coefficient of input and output of gas and steam in gas turbine
ab: Coefficient of input and output of gas and steam in boiler
at;j: Coefficient of input and output of power and heat in the turbo refrigerator j
as;j: Coefficient of input and output relational expression of quantity of steam and

heat at steam absorption refrigerator jbs;j:
cs;j:

Qmin
t;j ;Qmax

t;j Lower and upper limits of heat production of turbo refrigerator j

Qmin
s;j ;Q

max
s;j Lower and upper limits of heat production amount of steam absorption

refrigerator j

Emin
g ;Emax

g Lower and upper limits of power generation amount of gas turbine

Smin
b ; Smax

b Lower and upper limits of boiler steam production

Qmin
ts : Lower limit of heat storage amount of thermal storage tank

Qmax1
ts : Upper limit of the thermal storage amount of the thermal storage tank in the

first time zone to the (I − 1) time zone

Qmax2
ts : Upper limit of the thermal storage amount of the thermal storage tank in the Ith

time zone

Qinit
ts : Initial thermal storage of the thermal storage tank

Qloss: The amount of heat loss in the thermal storage tank
Lt;j; Ls;j: Minimum startup/stop time of the turbo refrigerator j and steam absorption

refrigerator j
Lg; Lb: Minimum startup/stop time of the gas turbine and boiler

Ci
Er;C

i
Fr: Purchase cost of electricity and gas in time i

�Ei
L;
�Qi
L;
�SiL: Demand of electricity, heat, and steam in time i

Ei
rm;

~Sirm: Remaining amount of electric energy and steam in time i

K: Number of scenarios
Prk: Probability of scenario k

Ei;k
pv : Electric energy of photovoltaic power generation in time i under scenario k

zinitsb : Initial storage of storage battery

Emax
sb : Capacity of storage battery

a: Charge and discharge efficiency

(continued)
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In this model, xi;kt ; xi;ks 8i i ¼ 1; � � � ; Ið Þ; 8k k ¼ 1; � � � ;Kð Þ is defined as xi;kt ¼
xi;kt;1; � � � ; xi;kt;Nt

� �T
; xi;ks ¼ xi;ks;1; � � � ; xi;ks;Ns

� �T
:

The formulation of the photovoltaic generation introduction model is shown below:

min
XK
k¼1

Prk
XI

i¼1

Ci
ErE

i;k
r xi;kg ; xi;kt ; zi;kpv ; z

i;k
out; �E

i
L;E

i
rm

� �
þCi

Fr xi;kg þ xi;kb
� �n o" #

ð1Þ

s:t:
Qmin

ts �Qi;k
ts xi;kt ; xi;ks ;Qi�1;k

ts ; �Qi
L

� �
�Qmax1

ts ; i ¼ 1; � � � ; I � 1; k ¼ 1; � � � ;K ð2Þ

Table 1. (continued)

Parameter

Decision variable

xi;kt;j ; x
i;k
s;j : Heat production of the turbo refrigerator j and steam absorption refrigerator j in

time i under scenario k

xi;kg ; xi;kb : Gas consumption of gas turbine and the boiler in time i under scenario k

yit;j; y
i
s;j: State of the turbo refrigerator j and the steam absorption refrigerator j in time

i 1 for running; 0 for stoppedð Þ
yig; y

i
b: State of the gas turbine and the boiler in time i (1 for running, 0 for stopped)

zi;kin : Electric energy to be charged from the photovoltaic generation to the storage
battery in time i under scenario k

zi;kout: Discharge of storage battery in time i under scenario k

zi;kpv : Electric energy directly consumed from photovoltaic power generation in time
i under scenario k

zi;ksb : The storage of the storage battery in time i under scenario k

Function

Qi;k
ts xi;kt ; xi;ks ;Qi�1;k

ts ; �Qi
L

� �
:

The heat storage of the thermal storage tank in time i under scenario k

Ei;k
r xi;kg ; xi;kt ; zi;kpv ; z

i;k
out; �Ei

L;E
i
rm

� �
:

Purchase of electric power in time i under scenario k

Si;krm xi;kg ; xi;kb ; xi;ks ; �SiL
� �

:

Remaining amount of steam in time i under scenario k

fge xi;kg
� �

: Power generation of the gas turbine in time i under scenario k

fgs xi;kg
� �

: The steam generation of the gas turbine in time i under scenario k

fb xi;kb
� �

: Steam generation in the boiler in time i under scenario k

ft;j xi;kt;j
� �

: Power input of the turbo refrigerator j in time i under scenario k

fs;j xi;ks;j
� �

: Steam input of steam absorption refrigerator j in time i under scenario k
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Qmin
ts �Qi;k

ts xi;kt ; xi;ks ;Qi�1;k
ts ; �Qi

L

� ��Qmax2
ts ; i ¼ I; k ¼ 1; � � � ;K ð3Þ

Si;krm xi;kg ; xi;kb ; xi;ks ; �SiL
� �

¼ ~Sirm; i ¼ 1; � � � ; I; k ¼ 1; � � � ;K ð4Þ

Qmin
t;j yit;j � xi;kt;j �Qmax

t;j yit;j; i ¼ 1; � � � ; I; j ¼ 1; � � � ;Nt; k ¼ 1; � � � ;K ð5Þ

Qmin
s;j y

i
s;j � xi;ks;j �Qmax

s;j yis;j; i ¼ 1; � � � ; I; j ¼ 1; � � � ;Ns; k ¼ 1; � � � ;K ð6Þ

Emin
g yig � fge xi;kg

� �
�Emax

g yig; i ¼ 1; � � � ; I; k ¼ 1; � � � ;K ð7Þ

Smin
b yib � fb xi;kb

� �
� Smax

b yib; i ¼ 1; � � � ; I; k ¼ 1; � � � ;K ð8Þ

yit;j � yi�1
t;j � yst;j; s ¼ iþ 1; � � � ;min iþ Lt;j � 1; I

� �
; i ¼ 2; � � � ; I; j ¼ 1; � � � ;Nt ð9Þ

yi�1
t;j � yit;j � 1� yst;j; s ¼ iþ 1; � � � ;min iþ Lt;j � 1; I

� �
;

i ¼ 2; � � � ; I; j ¼ 1; � � � ;Nt

ð10Þ

yis;j � yi�1
s;j � yss;j; s ¼ iþ 1; � � � ;min iþ Ls;j � 1; I

� �
;

i ¼ 2; � � � ; I; j ¼ 1; � � � ;Ns

ð11Þ

yi�1
s;j � yis;j � 1� yss;j; s ¼ iþ 1; � � � ;min iþ Ls;j � 1; I

� �
;

i ¼ 2; � � � ; I; j ¼ 1; � � � ;Ns

ð12Þ

yig � yi�1
g � ysg; s ¼ iþ 1; � � � ;min iþ Lg � 1; I

� �
; i ¼ 2; � � � ; I ð13Þ

yi�1
g � yig � 1� ysg; s ¼ iþ 1; � � � ;min iþ Lg � 1; I

� �
; i ¼ 2; � � � ; I ð14Þ

yib � yi�1
b � ysb; s ¼ iþ 1; � � � ;min iþ Lb � 1; If g; i ¼ 2; � � � ; I ð15Þ

yi�1
b � yib � 1� ysb; s ¼ iþ 1; � � � ;min iþ Lb � 1; If g; i ¼ 2; � � � ; I ð16Þ

zi�1;k
sb þ azi;kin ¼ zi;ksb þ zi;kout; i ¼ 1; � � � ; I; k ¼ 1; � � � ;K; z0;ksb ¼ zI;ksb ¼ zinitsb ð17Þ

zi;ksb �Emax
sb ; i ¼ 1; � � � ; I; k ¼ 1; � � � ;K ð18Þ

Ei;k
pv ¼ zi;kpv þ zi;kin ; i ¼ 1; � � � ; I; k ¼ 1; � � � ;K ð19Þ

xi;kt;j � 0; i ¼ 1; � � � ; I; j ¼ 1; � � � ;Nt; k ¼ 1; � � � ;K ð20Þ

xi;ks;j � 0; i ¼ 1; � � � ; I; j ¼ 1; � � � ;Ns; k ¼ 1; � � � ;K ð21Þ
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xi;kg ; xi;kb ; zi;kin ; z
i;k
out; z

i;k
pv � 0; i ¼ 1; � � � ; I; k ¼ 1; � � � ;K ð22Þ

zi;ksb � 0; i ¼ 1; � � � ; I � 1; k ¼ 1; � � � ;K ð23Þ

yit;j 2 0; 1f g; i ¼ 1; � � � ; I; j ¼ 1; � � � ;Nt ð24Þ

yis;j 2 0; 1f g; i ¼ 1; � � � ; I; j ¼ 1; � � � ;Ns ð25Þ

yig; y
i
b 2 0; 1f g; i ¼ 1; � � � ; I ð26Þ

Where

Qi;k
ts xi;kt ; xi;ks ;Qi�1;k

ts ; �Qi
L

� �
¼ �PNt

j¼1
xi;kt;j

n o
�PNs

j¼1
xi;ks;j

n o
þQi�1;k

ts þ �Qi
L þQloss;

i ¼ 1; � � � ; I; k ¼ 1; � � � ;K;Q0;k
ts ¼ Qinit

ts

ð27Þ

Ei;k
r xi;kg ; xi;kt ; zi;kpv ; z

i;k
out; �E

i
L;E

i
rm

� �
¼

XNt

j¼1

ft;j xi;kt;j
� �n o

þ �Ei
L � fge xi;kg

� �
þEi

rm � zi;kpv � zi;kout � 0;

i ¼ 1; � � � ; I; k ¼ 1; � � � ;K

ð28Þ

Si;krm xi;kg ; xi;kb ; xi;ks ; �SiL
� �

¼ fgs xi;kg
� �

þ fb xi;kb
� �

�PNs

j¼1
fs;j xi;ks;j
� �n o

� �SiL;

i ¼ 1; � � � ; I; k ¼ 1; � � � ;K
ð29Þ

fge xi;kg
� �

¼ agex
i;k
g ; i ¼ 1; � � � ; I; k ¼ 1; � � � ;K ð30Þ

fgs xi;kg
� �

¼ agsx
i;k
g ; i ¼ 1; � � � ; I; k ¼ 1; � � � ;K ð31Þ

fb xi;kb
� �

¼ abx
i;k
b ; i ¼ 1; � � � ; I; k ¼ 1; � � � ;K ð32Þ

ft;j xi;kt;j
� �

¼ at;jx
i;k
t;j ; i ¼ 1; � � � ; I; j ¼ 1; � � � ;Nt; k ¼ 1; � � � ;K ð33Þ

fs;j xi;ks;j
� �

¼ xi;ks;j

�as;j xi;ks;j
n o2

þ bs;jx
i;k
s;j þ cs;j

; i ¼ 1; � � � ; I; j ¼ 1; � � � ;Ns; k ¼ 1; � � � ;K

ð34Þ

Objective function (1) represents the minimization of the expected value of the
purchase cost of electricity and gas. Constraints (2) and (3) represent the capacity
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constraints of the thermal storage tank. Inequality (2) represents the case of the first
time zone to the (I - 1) time zone, and (3) represents the case of the I time zone.
Equation (4) is a constraint on the remaining amount of steam. Inequalities (5)–(8)
represent the capacity constraints of the energy production amounts of two types of
refrigerators, gas turbines, and boilers. Inequalities (9)–(16) are constraints on on/off
decision of each device, and they are represented by a linear inequality based on the
unit commitment problem [3]. For these restrictions, two constraints are used for each
unit, and the first one means that once the unit starts, it must keep its operating state for
a certain period of time. The second one represents the case of stop. Constraint (17) is
related to the storage amount of the storage battery. To consider that a certain amount
of electric power is lost at the time of charge and discharge, zi;kin is multiplied by
efficiency a. The initial charge amount and the storage amount in time zone I are the
same. Constraint (18) represents the capacity of the storage battery.

Equation (19) shows that the power generated by the photovoltaic generation is
divided into the power to satisfy the demand and the power charged in the storage
battery. Constraints (20)–(26) represent non-negative constraints and 0-1 constraints of
decision variables.

Function (27) represents the heat storage amount of the thermal storage tank.
Function (28) represents the purchase amount of the electricity. However, as it does not
consider power selling, it imposes non-negativity constraints. Function (29) represents
the remaining amount of steam. Function (30)–(34) represent the relational expressions
of the input and output quantities of the gas turbine, the boiler, and the two types of
refrigerators. Function (34) represents the relationship between the input and output
amounts of the steam absorption refrigerator. This function is expressed in the form of
non-convex nonlinear constraints to account for a practical operating plan. Because
these types of constraints are non-convex, they are difficult to deal with.

4 Piecewise Linear Approximation of Nonlinear Constraint
Equation

This research model includes the nonlinear constraint Eq. (34) expressing the rela-
tionship between the input and output quantities of the steam absorption refrigerator.
To treat the model as a mixed integer programming problem, it was linearized by
piecewise linear approximation [4] on (34).

Let �fs;j xi;ks;j
� �

be the approximation of fs;j xi;ks;j
� �

and xs;j;l; fs;j xs;j;l
� �� �8i; j;

k i ¼ 1; � � � ; I; j ¼ 1; � � � ;Ns; k ¼ 1; � � � ;Kð Þ be the split points of the function. The

approximation �fs;j xi;ks;j
� �

is given by Eqs. (36) and (37).

Constraints (38) and (39) represent the SOS 2 constraint that requires only two
adjacent ki;kj;l is at most positive. Because of adding the decision variables to the
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piecewise linear approximation, the number of decision variables further increases,
resulting in a large-scale mixed integer programming problem.

xi;ks;j ¼
Xpj
l¼1

ki;kj;l xs;j;l ð35Þ

�fs;j xi;ks;j
� �

¼
Xpj
l¼1

ki;kj;l fs;j xs;j;l
� � ð36Þ

Xpj
l¼1

ki;kj;l ¼ 1; ki;kj;l � 0; l ¼ 1; � � � ; pj ð37Þ

ki;kj;1 � li;kj;1
ki;kj;2 � li;kj;1 þ li;kj;2
..
.

ki;kj;pj � li;kj;pj�1 þ li;kj;pj

9>>>>=
>>>>;

ð38Þ

Xpj
l¼1

li;kj;l ¼ 1; 0� li;kj;l 2 Z; l ¼ 1; � � � ; pj ð39Þ

The exact algorithm using piecewise linear approximation is as follows: For each
iteration, we increase the number of split points and improve the accuracy of piece-wise
linear approximation. This made it possible to solve a large-scale mixed integer pro-
gramming problem.

Piecewise Linear Approximation Algorithm

Step 0: Given initial number of split points, and tolerance e

Step 1: Set the initial split points
Step 2: Solve the problem of piecewise linear approximation of constraint Eq. (34)
Step 3: If fs;j x̂i;ks;j

� �
� �fs;j x̂i;ks;j

� ����
���[ e at the optimal solution x̂i;ks;j , add x̂i;ks;j ; fs;j x̂i;ks;j

� �� �
to the

set of split points
Step 4: If there are additional split points, the process returns to Step 2. If there are no

points added, stop

5 Evaluation of Solution by Stochastic Programming

For evaluating the solution of the stochastic programming method, we use the value
VSS (value of stochastic solution) [5] of the solution of the stochastic programming
problem.
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If the random variable is defined as n, we define the optimization problem on the
realization n of the random variable n as follows:

minx z x; nð Þ ¼ cTxþ miny qTyjWy ¼ h� Tx; y� 0
� � ð40Þ

s:t: Ax ¼ b; x� 0 ð41Þ

The optimum objective function value RP (recourse problem) of the stochastic
programming problem is defined as follows:

RP ¼ minx Enz x; nð Þ ð42Þ

We define the optimal objective function value ADP (average deterministic prob-
lem) of a deterministic problem in which the random variable n is replaced by its mean
value �n, and let the optimal solution of the problem be �x �n

� �
.

ADP ¼ minx z x; �n
� � ð43Þ

The optimal objective function value RP �n
� �

when �x �n
� �

is applied to the stochastic
programming problem is defined as follows.

RP �n
� � ¼ En z �x �n

� �
; n

� �� � ð44Þ

VSS is defined as follows.

VSS ¼ RP �n
� �� RP ð45Þ

Because the optimal solution obtained in the problem of finding RP �n
� �

is a feasible
solution to the problem for obtaining RP, the following relation holds.

RP�RP �n
� �

;VSS� 0 ð46Þ

The problem for obtaining RP is a stochastic programming model that is, formu-
lated as (1)–(34). On the other hand, the problem of finding ADP is a deterministic
model that considers the output of the photovoltaic generation fixed at the average
value. RP �n

� �
becomes a problem to find out how much expense the deterministic

solution in the problem for ADP will be under uncertainty.
Table 2 lists the definitions of symbols in the problem of ADP.
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Table 2. Notation for ADP problem.

Parameter
�Ei
pv: Average value of photovoltaic generation amount in time i

Decision variable

xit;j: Heat production of the turbo refrigerator j in time i

xis;j: Heat production of the steam absorption refrigerator j in time i

xig: Gas consumption of gas turbine in time i

xib: Gas consumption of boiler in time i

ziin: The amount of electricity stored in the storage battery

ziout: Discharge amount of storage battery in time i

zipv: The amount of electricity directly consumed from photovoltaic power generation
in time i

zisb: The storage amount of the storage battery in time i

Function

Qi
ts xit; x

i
s;Q

i�1
ts ; �Qi

L

� �
:

The heat storage of the thermal storage tank in time i

Ei
r xig; x

i
t; z

i
pv; z

i
out; �E

i
L;E

i
rm

� �
:

Purchase amount of electricity in time i

Sirm xig; x
i
b; x

i
s;
�SiL

� �
:

Remaining amount of steam in time i

fge xig
� �

: Power generation of gas turbine in time i

fgs xig
� �

: Steam generation of gas turbine in time i

fb xib
� �

: Steam generation in boiler in time i

ft;j xit;j
� �

: Power input of the turbo refrigerator j in time i

fs;j xis;j
� �

: Steam input of steam absorption refrigerator j in time i

The formulation of the problem for solving the problem for ADP, using

xit ¼ xit;1; � � � ; xit;Nt

� �T
; xis ¼ xis;1; � � � ; xis;Ns

� �T
, is as shown below:

ADP ¼ min
XI

i¼1

Ci
ErE

i
r xig; x

i
t; z

i
pv; z

i
out; �E

i
L;E

i
rm

� �
þCi

Fr xig þ xib
� �n o

ð47Þ

s:t:

Qmin
ts �Qi

ts xit; x
i
s;Q

i�1
ts ; �Qi

L

� ��Qmax1
ts ; i ¼ 1; � � � ; I � 1

ð48Þ

Qmin
ts �Qi

ts xit; x
i
s;Q

i�1
ts ; �Qi

L

� ��Qmax2
ts ; i ¼ I ð49Þ
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Sirm xig; x
i
b; x

i
s;
�SiL

� �
¼ ~Sirm; i ¼ 1; � � � ; I ð50Þ

Qmin
t;j yit;j � xit;j �Qmax

t;j yit;j; i ¼ 1; � � � ; I; j ¼ 1; � � � ;Nt ð51Þ

Qmin
s;j y

i
s;j � xis;j �Qmax

s;j yis;j; i ¼ 1; � � � ; I; j ¼ 1; � � � ;Ns ð52Þ

Emin
g yig � fge xig

� �
�Emax

g yig; i ¼ 1; � � � ; I ð53Þ

Smin
b yib � fb xib

� �� Smax
b yib; i ¼ 1; � � � ; I ð54Þ

(9)–(16)

zi�1
sb þ aziin ¼ zisb þ ziout; i ¼ 1; � � � ; I; z0sb ¼ zIsb ¼ zinitsb ð55Þ

zisb �Emax
sb ; i ¼ 1; � � � ; I ð56Þ

�Ei
pv ¼ zipv þ ziin; i ¼ 1; � � � ; I ð57Þ

xit;j � 0; i ¼ 1; � � � ; I; j ¼ 1; � � � ;Nt ð58Þ

xis;j � 0; i ¼ 1; � � � ; I; j ¼ 1; � � � ;Ns ð59Þ

xig; x
i
b; z

i
in; z

i
out; z

i
pv � 0; i ¼ 1; � � � ; I ð60Þ

zisb � 0; i ¼ 1; � � � ; I � 1 ð61Þ

(24)–(26)
where

Qi
ts xit; x

i
s;Q

i�1
ts ; �Qi

L

� � ¼ �PNt

j¼1
xit;j

n o
�PNs

j¼1
xis;j

n o
þQi�1

ts þ �Qi
L þQloss;

i ¼ 1; � � � ; I;Q0
ts ¼ Qinit

ts

ð62Þ

Ei
r xig; x

i
t; z

i
pv; z

i
out; �E

i
L;E

i
rm

� �
¼ PNt

j¼1
ft;j xit;j
� �n o

þ �Ei
L � fge xig

� �
þEi

rm � zipv � ziout

� 0; i ¼ 1; � � � ; I
ð63Þ

Sirm xig; x
i
b; x

i
s;
�SiL

� �
¼ fgs xig

� �
þ fb xib

� ��
XNs

j¼1
fs;j xis;j
� �n o

� �SiL; i ¼ 1; � � � ; I ð64Þ

fge xig
� �

¼ agexig; i ¼ 1; � � � ; I ð65Þ

fgs xig
� �

¼ agsx
i
g; i ¼ 1; � � � ; I ð66Þ
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fb xib
� � ¼ abx

i
b; i ¼ 1; � � � ; I ð67Þ

ft;j xit;j
� �

¼ at;jxit;j; i ¼ 1; � � � ; I; j ¼ 1; � � � ;Nt ð68Þ

fs;j xis;j
� �

¼ xis;j

�as;j xis;j
n o2

þ bs;jxis;j þ cs;j
; i ¼ 1; � � � ; I; j ¼ 1; � � � ;Ns ð69Þ

The optimal solution concerning the on/off scheduling for ADP is given by
ŷit;j i ¼ 1; � � � ; I; j ¼ 1; � � � ;Ntð Þ, ŷis;j i ¼ 1; � � � ; I; j ¼ 1; � � � ;Nsð Þ, ŷig i ¼ 1; � � � ; Ið Þ,
ŷib i ¼ 1; � � � ; Ið Þ. The problem of finding RP �n

� �
is shown below:

The difference from the original photovoltaic power generation introduction model
is that the decision variable regarding on/off is fixed and becomes a constant, and the
restriction on on/off is removed.

RP �n
� � ¼ min

XK
k¼1

Prk
XI

i¼1

Ci
ErE

i;k
r xi;kg ; xi;kt ; zi;kpv ; z

i;k
out; �E

i
L;E

i
rm

� �
þCi

Fr xi;kg þ xi;kb
� �n o" #

ð70Þ

s. t.
(2)–(4)

Qmin
t;j ŷit;j � xi;kt;j �Qmax

t;j ŷit;j; i ¼ 1; � � � ; I; j ¼ 1; � � � ;Nt; k ¼ 1; � � � ;K ð71Þ

Qmin
s;j ŷ

i
s;j � xi;ks;j �Qmax

s;j ŷis;j; i ¼ 1; � � � ; I; j ¼ 1; � � � ;Ns; k ¼ 1; � � � ;K ð72Þ

Emin
g ŷig � fge xi;kg

� �
�Emax

g ŷig; i ¼ 1; � � � ; I; k ¼ 1; � � � ;K ð73Þ

Smin
b ŷib � fb xi;kb

� �
� Smax

b ŷib; i ¼ 1; � � � ; I; k ¼ 1; � � � ;K ð74Þ

(17)–(23)
Where
(27)–(34)

6 Numerical Experiments

Based on the benchmark problem data, we conducted numerical experiments to obtain a
daily operation plan. However, only one steam absorption refrigerator is used. Demand
for power, heat, and steam during the daytime is approximately about 20 [MWh], 20 [GJ],
10 [t], respectively. The capacity of photovoltaic power generation is set to 4 [MW], and
the capacity of storage battery is compared in 4 ways for of 0.5, 1, 1.5, 2 [MWh].
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The initial storage amount zinitsb of the storage battery was 30% of the storage battery
capacity and the charge/discharge efficiency a was set to 0.8.

A scenario representing the uncertainty of photovoltaic power generation is created
on a monthly basis based on the horizontal level total solar insolation in Tokyo in the
average year of NEDO (New Energy and Industrial Technology Development Orga-
nization) database (METPV - 11) [6].

According to the Agency for Natural Resources and Energy of Ministry of Econ-
omy, Trade and Industry [7, 8], the annual power generation of photovoltaic power is
approximately 1100 [kWh] per 1 [kW] capacity. To satisfy the relationship between this
capacity and annual power generation amount, the scenario was generated by multi-
plying the horizontal plane total solar insolation by a constant. The number of scenarios
is the number of days of the month, and the probability of each scenario is 1/(the number
of days of the month). We used AMPL as the modeling language and Gurobi 7.5.0 as the
solver. The parameter of Gurobi was MIPGAP = 10−7. The piecewise linear approxi-
mation parameter was set as 256 for the initial number of split points and e = 10−6.

First, we compare RP and RP �n
� �

for evaluating the model by stochastic program-
ming. Table 3 shows a comparison of RP and RP �n

� �
in the case the storage battery

capacity is set to 1 [MWh]. The maximum value of VSS is 2,007 [yen] in November,
equivalent to 2.3 [%] of cost reduction due to the introduction of photovoltaic power.
The operating cost per day before the introduction of photovoltaic generation was
4,042,763 [yen].

Next, the recovery period for the initial investment cost is calculated. According to
the Ministry of Economy, Trade and Industry [7, 8], the initial investment cost of
photovoltaic generation of capacity 1 [MW] or more is 27.5 [yen/kW], the cost of NAS
battery used as a large storage battery is 4 [104 yen/kWh]. Based on the internal rate of
return [9], the recovery period for the initial investment cost is calculated by finding n
as shown in (75) given the discount rate r. In this formula, the difference in cost is the
difference in the annual cost before and after installing photovoltaic power generation.

initial investment cost ¼
Xn
i¼1

difference of cost

1þ rð Þi ð75Þ

The calculation result of the discount rate r = 1 [%] is listed in Table 4. Comparing
the recovery years with the present model by using the stochastic programming method
and deterministic model, the initial investment cost recovery period is smaller in this

Table 3. RP and RP �n
� �

Emax
sb ¼ 1 MWh½ �� �

.

Month RP yen½ � RP �n
� �

yen½ � Month RP yen½ � RP �n
� �

yen½ �
1 3,946,209 3,947,316 7 3,872,237 3,873,733
2 3,921,607 3,921,607 8 3,880,117 3,881,212
3 3,906,488 3,908,086 9 3,925,601 3,925,601
4 3,881,487 3,882,983 10 3,938,757 3,938,757
5 3,868,814 3,870,060 11 3,953,877 3,955,884
6 3,896,726 3,898,624 12 3,956,763 3,956,763
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research model. Compared with the capacity of the storage battery, the larger the
capacity, the larger the recovery period.

7 Concluding Remarks

In this research, we extended the benchmark problem on energy plant operation of
large-scale facilities to the problem including photovoltaic power generation and
storage battery and showed that modeling by stochastic programming method is useful.
The new model for the introduction of large capacity photovoltaic power generation
was developed. And the evaluation for the introduction of photovoltaic power gener-
ation for the purpose of self-power generation at large facilities has been made possible.
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Abstract. Compact and I/O-efficient data representations play an
important role in efficient algorithm design, as memory bandwidth and
latency can present a significant performance bottleneck, slowing the
computation by orders of magnitude. While this problem is very well
explored in e.g. uniform numerical data processing, structural data
applications (e.g. on huge graphs) require different algorithm-dependent
approaches. Separable graph classes (i.e. graph classes with balanced sep-
arators of size O(nc) with c < 1) include planar graphs, bounded genus
graphs, and minor-free graphs.

In this article we present two generalizations of the separator theo-
rem, to partitions with small regions only on average and to weighted
graphs. Then we propose I/O-efficient succinct representation and mem-
ory layout for random walks in (weighted) separable graphs in the
pointer machine model, including an efficient algorithm to compute them.
Finally, we present a worst-case I/O-optimal tree layout algorithm for
root-leaf path traversal, show an additive (+1)-approximation of optimal
compact layout and contrast this with NP-completeness proof of finding
an optimal compact layout.

1 Introduction

Modern computer memory consists of several memory layers that together con-
stitute a memory hierarchy with every level further from the CPU being larger
and slower [2], usually by more than an order of magnitude, e.g. CPU registers,
L1–L3 caches, main memory, disk drives etc. In order to simplify the model, com-
monly only two levels are considered at once, called main memory and cache of
size M . There, the main memory access is block-oriented, assuming unit time
for reading and writing of a block of size B, making random byte access very
inefficient. While some I/O-efficient algorithms need to know the values of B
and M (generally called cache-aware)[3], cache-oblivious algorithms[13] operate
efficiently without this knowledge.

The work was supported by the Czech Science Foundation (GACR) project 17-10090Y
“Network optimization”.
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Computations that process medium to large volumes of data therefore call for
space-efficient data representations (to utilize the memory capacity and band-
width) and strongly benefit from optimized memory access patterns and layouts
(to utilize the data in fast caches and read-ahead mechanisms). While this area
is very well explored in e.g. numerical data processing and analysis (e.g. [24]),
structural data applications (e.g. huge graphs) require different and application-
dependent approaches. We describe a representations to address these issues in
separable graphs and trees.

Separable graphs satisfy the nc-separator theorem for some c < 1, shown
for planar graphs in 1979 by Lipton and Tarjan [29] (with c = 1/2), where
every such graph on n vertices has a vertex subset of size O(nc) that is a 2/3-
balanced separator (i.e. it separates the graph into two subgraphs each having at
most 2/3-fraction of vertices). These graphs not only include planar graphs [29]
but also bounded genus graphs [17] and minor-free graph classes in general [22].
Small separators are also found in random graph models of small-world networks
(e.g. geometric inhomogeneous random graphs by Bringmann et al. [7] have
sublinear separators w.h.p. for all subgraphs of size Ω(

√
log n)). Some graphs

which come from real-world applications are also separable, such as the road
network graphs [33,35]. Separable graph classes have linear information entropy
(i.e. a separable class can contain only 2O(n) graphs of size n) and have efficient
representations using only O(1) bits per vertex on average [4] and therefore
utilize the memory capacity and bandwidth very efficiently.

This paper is organized as follows: Sects. 1.1 and 1.2 give an overview of the
prior work and our contribution. Section 2 recalls used concepts and notation.
Section 3 contains our results on random walks in separable graphs. Section 4
generalizes the separator theorem. Section 5 discusses the layout of trees.

1.1 Related Work

Turán [34] introduced a succinct representation1 of planar graphs, Blandford et
al. [4] introduced compact representations for separable graphs and Blelloch and
Farzan [5] presented a succinct representation of separable graphs. However, none
of those representations is cache-efficient (or can be easily made so). Analogous
representations for general graphs suffer similar drawbacks [12,32].

Agarwal et al. [1] developed a representation of planar graphs allowing I/O-
efficient path traversal, requiring O(K/ log B) block accesses2 for arbitrary path
of length K. This has been extended to a succinct planar graph representation by
Dillabaugh et al. [11] with the same result for arbitrary path traversal. It appears
unlikely that the representation of [11] could be easily modified to match the
I/O complexity O(K/B) of our random-walk algorithm due to their use of a
global indexing structure.

1 A succinct (resp. compact) data representation uses H + o(H) (resp. O(H)) bits
where H is the class information entropy.

2 Note that Ω(K/ log B) blocks may be required even for trees. Standard graph rep-
resentation would access O(K) blocks.
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Dillabaugh et al. [10] describes a succinct data structure for trees that uses
O(K/B) I/O operations for leaf-to-root path traversal. For root-to-leaf traversal,
they offer a similar but only compact structure.

Among other notable I/O-efficient algorithms, Maheshwari and Zeh [30]
develop I/O-efficient algorithms for computing vertex separators, shortest paths
and several other problems in planar and separable graphs. Jampala and Zeh
[20] extends this to a cache-oblivious algorithm for planar shortest paths. While
there are representations even more efficient than succinct (e.g. implicit repre-
sentations, which use only O(1) bits more than the class information entropy,
see Kannan et al. [21] for an implicit graph representation), these do not seem
to admit I/O-efficient access.

Random walks on graphs are commonly used in Monte Carlo sampling meth-
ods, among others in Markov Chain Monte Carlo methods for inference on
graphical models [14], Markov decision process (MDP) inference and even in
partial-information game theory algorithms [25].

1.2 Our Contribution

Random Walks on Separable Graphs. We present a compact cache-
oblivious representation of graphs satisfying the nc edge separator theorem.
We also present a cache-oblivious representation of weighted graphs satisfying
weighted nc edge separator theorem, where the transition probabilities depend
on the weights. The representations are I/O-efficient when performing random
walks of any length on the graph, starting from a vertex selected according to
the stationary distribution and with transition probabilities at each step pro-
portional to the weights on the incident edges, respectively choosing a neighbor
uniformly at random for the unweighted compact representation.

Namely, if every vertex contains q bits of extra (user) information, the repre-
sentation uses O(n log(q+2))+qn bits and a random path of length K (sampled
w.r.t. edge weights) uses O(K/( Bw

(1+q) )
1−c) I/O operations with high probability.

The graph representation is compact (as the structure entropy including the
extra bits is Θ((q + 1)n). The amount of memory used for the representation of
the graph is asymptotically strictly smaller than the memory used by the user
data already for the common case of q = Θ(w), in which case only O(K/B1−c)
I/O operations are used. For q = O(1), the representation uses O(n) bits.

In contrast with previous I/O-efficient results for planar graphs, our rep-
resentation is only compact (and not succinct) but works for all separable
graph classes, is cache-oblivious (in contrast to only cache-aware in prior work),
and, most importantly, comes with a much better bound on the number of
I/O operations for randomly sampled paths (order of O(K/B1−c) rather than
O(K/ log B)).

Fast tree path traversal is a ubiquitous requirement for tree-based structures
used in external storage systems, database indexes and many other applications.
With Theorem 9, we present a linear time algorithm to compute a layout of the
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vertices in memory minimizing the worst-case number of I/O operations for leaf-
to-root paths in general trees and root-to-leaf paths in trees with unit vertex size.
We show an additive (+1)-approximation of an optimal compact layout (i.e. one
that fully uses a consecutive block of memory) and show that finding an optimal
compact layout is NP -hard.

The above layout optimality is well defined assuming unit vertex size, an
assumption often assumed and satisfied in practice. Using techniques from Sect. 3
we can turn the layout into a compact representation using O(n) bits of memory,
requiring at most OPTL I/O operations for leaf-to-root paths in general trees
and root-to-leaf paths in trees of fixed degree where OPTL is the I/O complex-
ity of the optimal layout, i.e. I/O-optimal layout with the vertices using any
conventional vertex representation with Θ(w) bits for inter-vertex pointers. See
Theorem 10.

Compared to previous results [10], our representation is compact and we
present the exact optimum over all layouts while they provide the asymptotic
optimum O(K/B). However, this does not guarantee that our representation
has lower I/O complexity, since our notion of optimality only considers different
layouts with each vertex stored by a structure of unit size.

Separable Graph Theorems. We prove two natural generalizations of the
separator theorem (Theorem 7) and show that their natural joint generalization
does not hold by providing a counterexample (Theorem8). The Recursive Sep-
arator Theorem involves graph partitions coming from recursive applications of
the Separator Theorem. Let r and r̄ denote the maximum and average size of
a region in the partition, respectively. We prove stronger bound on number of
edges going between regions – O( n

r̄1−c ) instead of O( n
r1−c ). The second gener-

alization is for weighted graphs, showing that n in the bound O( n
r1−c ) can be

replaced by the total weight W to get O( W
r1−c ). We show that the bound O( W

r̄1−c )
does not hold in general by providing a counterexample.

2 Preliminaries

Throughout this paper, we use standard graph theory notation and terminology
as in Bollobas [6]. We denote the subtree of T rooted in vertex v by Tv, the root
of tree T by rT and the set of children of a vertex v as δ(v). All the logarithms
are binary unless noted otherwise.

We use standard notation and results for Markov chains as introduced in the
book by Grinstead and Snell [19] (Chapter 11) and mixing in Markov chains, as
introduced in the chapter on mixing times in a book by Levin and Peres [27].

2.1 Separators

Let S be a class of graphs closed under the subgraph relation. We say that S
satisfies the vertex (edge) f(n)-separator theorem iff there exist constants α < 1
and β > 0 such that any graph in S has a vertex (edge) cut of size at most
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βf(n) that separates the graph into components of size at most αn. We define a
weighted version of vertex (edge) separator theorem, which requires that there is
a balanced vertex (edge) separator of total weight at most β f(n)

n W , where W is
the sum of weights of all the edges. Note that these definitions make sense even
for directed graphs. f(n)-separator theorem without explicit statement whether
it is edge or vertex separator, means f(n) vertex separator theorem.

Many graphs that arise in real-world applications satisfy nc vertex or edge
separator theorem.

It has been extensively studied how to find balanced separators in graphs. In
planar graphs, a separator of size

√
n can be found in linear time [29]. Separators

of the same size can be found in minor-closed families in time O(n1+ε) for any
ε > 0 [22]. A balanced separator of size n1−1/d can be found in finite-element
mesh in expected linear time [31]. Good heuristics are known for some graphs
which arise in real-world applications, such as the road network [33]. A poly-
logarithmic approximation which works on any graph class is known [26]. A
poly-logarithmic approximation of the separators will be sufficient to achieve
almost the same bounds in our representation (differing by a factor at most
poly-logarithmic in B).

We define a recursive separator partition to be a partition of vertex set of a
graph, obtained by the following recursive process. Given a graph G, we either
set the whole V (G) to be one set of the partition or do the following:

1. Apply separator theorem. This gives us partition of V (G) into two sets A,B
from the separator theorem.

2. Recursively obtain recursive separator partitions of A and B.
3. Return the union of the partitions of A and B as the partition of V (G).

We call the sets in a recursive separator partition regions.
If there is an algorithm that computes balanced separator in time O(f(n)),

there is an algorithm that computes recursive separator partition with region
size Θ(r) in time O(f(n) log n) for any r. A stronger version called r-division
can be computed in linear time on planar graphs [18].

2.2 I/O Complexity

For definitions related to I/O complexity, refer to Demaine [8]. We use the stan-
dard notation with B being the block size and M the cache size. Both B and M
is counted in words. Each word has w bits and it is assumed that w ∈ Ω(log n).

3 Representation for Random Walks

In this section, we present our cache-oblivious representation of separable graphs
optimized for random walks and related results.

Theorem 1. Let G be a graph from a graph class satisfying the nc edge separa-
tor theorem where every vertex contains q extra bits of information. Then there
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is a cache-oblivious representation of G using O (n log(q + 2))+ qn bits in which
a random walk of length k starting in a vertex sampled from the stationary dis-
tribution uses in expectation O(

k/
(

Bw
(1+ q)

)1−c) I/O operations. Moreover, such
representation can be computed in time O(n1+ε) for any ε > 0.

For other random walks and weighted graphs where the transition probabil-
ities are proportional to the random walk stationary distribution, we can show
a weaker result. Namely, we can no longer guarantee a compact representation.

Theorem 2. Let M be any Markov chain of random walks on a graph G and
assume M has a unique stationary distribution π. Assume G satisfies the nc edge
separator theorem with respect to the edges-traversal probabilities in π. Let M ′ be
a Markov chain of random walks on G with transition probabilities proportional
to M , e.g. π′(e) = Θ(π(e)). Then there is a layout of vertices of G into blocks
with Θ(B) vertices each such that a random walk in M ′ of length k crosses
memory block boundary in expectation O(k/B1−c) times.

Note that this gives an efficient memory representation when NG(v) and the
probabilities on incident edges can be represented by (or computed from) O(1)
words, which is the case for bounded degree graphs with some chains M ′. We
also note that such partially-implicit graph representations are present in the
state graphs of some MCMC probabilistic graphical model inference algorithms.

Additionally, we present a result on the concentration of the number of I/O
operations which applies to both Theorems 1 and 2.

Theorem 3. Let G be a fixed graph, tmix the mixing time of G and X the num-
ber of edges going between blocks crossed during the random walk. Then the prob-
ability that (1 − δ)E(X) ≤ X ≤ (1 + δ)E(x) does not hold is O(

me−c′ δ2nBc−1
m

)

for some value c′ and m = tmix log(n2/E(X1)), where the variable Xi indicates
if the walk crossed an edge between two different blocks in step i.

The following lemma is implicit in [4], as the authors use the same layout
to get compact representation of separable graphs and they use the following
property.

Lemma 1 (Blandford et al. [4]). If π in Theorem2 gives the same traversal
probability to all edges, the representation induces a vertex order l : V → 1 . . . n
such that

∑
e=uv∈E log |l(u) − l(v)| = O(n).

3.1 Proofs of Theorems 1–3

Proof (Proof of Theorem 1).
Since the stationary distribution on an undirected graph assigns equal prob-

ability to every edge, we can apply Lemma 1 on G to obtain vertex ordering
r : V → 1 . . . n such that

∑
e=uv∈EG

log |r(u)−r(v)| = O(n). We could therefore
compactly store the edges as variable-width vertex order differences (offsets).
However, it is not straightforward to find the memory location of a given vertex
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when a variable-width encoding is used. To avoid an external (and I/O ineffi-
cient) index used in some other approaches, we replace the edge offset informa-
tion with relative bit-offsets, directly pointing to the start of the target vertex,
using Theorem 4 on the edge offsets. We expand the representation by inserting
the q bits of extra information to every vertex, adjusting the pointers and thus
widening each by O(log q) bits.

To prove the bound on I/O complexity, we use the same argument as in the
proof of Theorem2. Average of O(1 + q) bits is used for representation of single
vertex and, therefore, average of Θ( Bw

q +1 ) vertices fit into one cache line. By
Theorem 7, part i, the total probability on edges going between memory blocks
is O(1/ Bw

q +1 ). Again, by linearity of expected value, this proves the claimed I/O
complexity.

Compact representation as in Theorem 4 can be computed in the claimed
bound, as is shown in Theorem5. ��
Proof (Proof of Theorem 2). We use the following recursive layout. Let S be an
edge separator with respect to edge-traversal probabilities in π. Then S par-
titions G into two subgraphs X and Y . We recursively lay out X and Y and
concatenate the layouts. Note that X and Y are stored in memory contigu-
ously. At some level of recursion, we get partition into subgraphs represented
by between εB and B words for ε > 0 constant. We call these subgraphs block
regions. Since the average degree in graphs satisfying nc edge separator theorem
is O(1) [28], the average vertex representation size is also O(1) and the average
number of vertices in a block region is, therefore, Θ(B). It follows from Theo-
rem 7, part ii, that the total probability on edges going between block regions
is O(1/B1−c). From linearity of expectation, O(1/Bc−1)-fraction of steps in the
random walk cross between block regions in expectation. Moreover, each of the
block regions in the partition is stored in O(1) memory blocks, which proves the
claimed bound on I/O complexity. ��
Proof (Proof of Theorem 3). Let X be the number of edges crossed during the
random walk that go between blocks. We are assuming that there is at least one
edge going between two blocks in the graph.

We choose δ′ =
√

3
4δ (arbitrary constant c′′ < 1 would work). Note that m

is a number of steps, after which the probabilities on edges differ from those in
stationary distribution by at most E(X1)/n2, regardless from what distribution
we started the random walk since tmix(ε) ≤ �log ε−1	tmix [27]. This means that
the probability that an edge going between two blocks is crossed after m steps
differs by at most 1

n -fraction from the probability in stationary distribution.
Let Xi be indicator random variable that is 1 iff the random walk crosses

edge going between blocks in step i. We consider the following sets of random
variables Si = {Xj |Xj−m : j mod m} = i} for 1 ≤ i ≤ m (not conditioning on
variables with nonpositive indices). Note that the random variables in each of
sets Si are independent and (1 − 1

n )E(Xj) ≤ E(Xj |Xj−m) ≤ (1 + 1
n )E(Xj), as

mentioned above. Let μi be E(
∑

X∈Si
X) and μ = E(

∑
i

∑
X∈Si

X). Note that
μi ∈ Θ(nBc−1/m) for each i. By applying the Chernoff inequality, we get that
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the following bounds hold for all n ≥ n0 for some n0 for each i:

P
( ∑

X∈Si

X ≥ (1 + δ′)μi

)
≤ e− δ′2μi

3 = e− δ2μi
4

P
( ∑

X∈Si

X ≤ (1 − δ′)μi

)
≤ e− δ′2μi

2 ≤ e− δ2μi
4

The probability that there exists i such that either
∑

X∈Si
X ≥ (1 + δ′)μi or∑

X∈Si
X ≤ (1 − δ)μi is by the union bound for some value of c′ at most the

following:

2�log(n/E(X1))	tmixe− δ2μ
4m ∈ O(me−c′ δ2nBc−1

m )

Note that μi converges to |Si|E(X1), which is the value that we are showing
concentration of

∑
X∈Si

X around. The asymptotic bound on the probability
follows. ��

3.2 Expanding Relative Offsets to Relative Bit-Offsets

Having the edges of a graph encoded as relative offsets to the target vertex and
having these numbers encoded by a variable-length encoding, we need a way to
find the exact location of the encoded vertex. Others have used a global index
for this purpose but this is generally not I/O-efficient.

Our approach encodes the relative offsets as slightly wider numbers that
directly give the relative bit-index of the target. However, this is not straight-
forward as expanding just one relative offset to a relative bit-offset can make
other bit-offsets (spanning over this value) larger and even requiring more space,
potentially cascading the effect.

Note that one simple solution would be to widen every offset representation
by Θ(log log N) bits where N is the total number of bits required to encode all
the n offsets, yielding N + n ∗ O(log log N) encoding. log n bits are sufficient to
store each offset. Therefore, by expanding the offsets, they increase at most log n
times. By adding log(2 log n) bits, we can encode increase of offsets by factor of
up to 2 log n ≥ log n + log(2 log n).

However, we propose more efficient encoding with the following theorem. We
interpret the numbers ai as relative pointers, i-th number pointing to the location
of the (i + ai)-th value. In the proof, we use a dynamic width gamma number
encoding in the form [(sign)B00B10B20 . . . Bi1], where 2i + 1-th bit encodes
whether Bi is the last bit encoded.

Theorem 4. Let a1 . . . an be a sequence of numbers such that −i ≤ ai ≤ n − i
and

∑n
i=0 log |an| = m. Then there are n-element sequences {wi} (the encoded

bit-widths) and {bi} (the bit-offsets) of numbers such that for all 1 ≤ i ≤ n,
wi ≥ 2 log |bi|+1 (i.e. bi can be gamma-encoded in wi bits), P (i)+wi = P (i+ai)
where P (j) :=

∑j−1
i=1 wi (so wi is a relative bit-offset of encoded position i + ai)

and
∑n

i=1 wi = O(m + n).
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Proof. There are certainly some non-optimal valid choices for wi’s and bi’s, and
we can improve upon them iteratively by shrinking wi’s to fit gamma-encoded bi

with sign (i.e. wi = 1 + 2 log |bi|), which may, in turn, decrease some bi’s. Being
monotonic, this process certainly has a fixpoint {bi}i and {wi}i and we assume
arbitrary such fixpoint.

Let C < 1 and D > 1 be constants to be fixed below. Denote vi = log |ai|
and Ri = {i . . . i+ai − 1} (resp. {i+ai . . . i− 1} when ai < 0). Intuitively, when
expanding offsets ax to bit offsets bx, it may happen that Rx contains y with
wy � ax, forcing wx � vx. We amortize such cases by distributing “extra bits”
to such “smaller” offsets.

Let x ≺ y ⇐⇒ y ∈ Rx ∧vx ≤ C log wy ∧vx > D and let x↑ = arg maxy�xwy

(or undefined if there is no such y) and let y↓ = {x|y ∈ x↑}. Observe that
|y↓| ≤ 2 · 2C log wy = 2wC

y since all x ∈ y↓ have |ax| ≤ 2vx ≤ wC
y . We also note

that y = x↑ implies wx < wy since wy ≤ wx would imply bx ≤ |ax|wx and
wx > 2vx/C leading to wx ≤ vx + log wx and 2vx/C < wx ≤ 2vx, which gives the
desired contradiction with D large enough (depending only on C).

We will distribute the extra bits starting from the largest wi’s. Every y
uses wy bits for its encoding and distributes another wy bits to y↓. Let rx =
wx↑/|(x↑)↓| ≥ 1

2w1−C
x↑ be the number of extra bits received from x↑ in this way.

For every offset x we use 10vx + 2D bits and the received bits rx. Since
the received bits are accounted for in other offsets, this uses

∑n
i=1 10vx + D =

10m + O(n) bits in total. Therefore we only need to show that the number of
bits thus available at x is sufficient, i.e. that 2wx ≤ rx + 10vx + 2D (one wx to
represent bx, one to distribute to x↓).

Now either there is y = x↑ and we have bx ≤ |ax|wy so wx ≤ 1+2vx+2 log wy

and noting that for large enough D only depending on C: 2 log wy ≤ 1
4w1−C

y +
D ≤ 1

2rx + D, so we obtain wx ≤ 1
2rx + 5vx + 2D as desired.

On the other hand, undefined x↑ implies that ∀y ∈ Rx : wy ≤ 2vx/C . There-
fore bx ≤ |ax|2vx/C and wx ≤ 1 + 2vx + 2vx/C = 1 + (2 + 2/c)vx. Now we may
fix C = 2/3, obtaining wx ≤ 5vx + D as required for D ≥ 1. This finishes the
proof for any fixpoint {bi}i and {wi}i. ��

The algorithm from the beginning of the proof can be shown to run in polyno-
mial time. We start with e.g. wi = w0 = 1 + 4 log n and bi = sign(ai)

∑
j∈Ri

wj .
Then we iteratively update wi := 1 + 2�log bi	 and recompute bi as above. Since
every iteration takes O(n2) time and in every iteration at least one wi decreases,
the total time is at most O(n3 log n). In the following section, we show an algo-
rithm that computes a representation with the same asymptotic bounds, running
in time O(n1+ε) for any ε > 0.

Constructing the Compact Representation. In this section, we use nota-
tion defined in Sect. 3.2, specifically Re and be. Recall that Re is the set of edges
of G spanned by the edge e in the representation and be is the relative offset
of edge e in the (expanded) representation). Let G be the graph we want to
represent. We assume that G satisfies the nc edge separator theorem.
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We find a representation using O(n log log n) bits, as mentioned above by
expanding all pointers and then modify it to make it compact.

We define a directed graph H on the set E(G) with arc going from v to u iff
v ∈ Ru. Let us fix a recursive separator hierarchy of G. We call l(e) the level of
recursion on which the edge e is part of the separator. We define a graph H≤k

to be the subgraph of H induced by vertices corresponding to edges of G which
appear in the recursive separator hierarchy in a separator of subgraph of size at
most k.

The following lemma will be used to bound the running time of the algorithm:

Lemma 2. The maximum out-degree of H≤nc′ is nc∗c′
. For any fixed c′ > 0,

|H \ H≤nc′ | ∈ n1−ε′
where ε′ > 0 is some constant depending only on c and c′.

Proof. We first prove that maximum out-degree of H is O(nc).
There are O(nc) edges e ∈ G with l(e) = 1 spanning any single vertex. The

number of edges e spanning some vertex with l(e) = k decreases exponentially
with k, resulting in a geometric sequence summing to O(nc).

The maximum out-degree of H≤nc′ is the same as that of graph H ′ corre-
sponding to a subgraph of G of size at most nc′

. Maximum out-degree of H≤nc′

is, therefore, O(nc∗c′
).

The number of vertices in H \ H≤nc′ is equal to the number of edges in G

going between blocks of size Θ(nc′
). This number is, by Theorem 7, equal to

n/nc′(1−c), which is O(n1−ε) for some ε′ > 0. ��
Theorem 5. Given a separator hierarchy, the representation from Theorem1
can be computed in time O(n1+ε) for any ε > 0.

Proof. We first describe an algorithm running in time O(n1+c log log n), where
c is the constant from the separator theorem, and then improve it.

Just as in the proof of Theorem4, bv denotes the relative offset of edge v in
the representation. We store a counter cv for each vertex v ∈ H equal to the
decrease of bv required to shrink its representation by at least one bit. That is,
cv = bv − �bv�2k + 1, where �i�2k is i rounded down to closest power of two.
When we shrink the representation of edge corresponding to vertex v ∈ H, we
have to update counters cu for all u, such that vu ∈ E(H). Since the out-degree
of H is O(nc), the updates take O(nc) time. We start with representation with
O(n log log n) bits and at each step, we shorten the representation by at least
one bit. This gives the running time of O(n1+c log log n).

To get the running time of O(n1+ε log log n), we consider the graph H≤nε′

for some sufficiently small epsilon. Note that the maximum out-degree of H≤nε′

is O(ncε′
). We can fix ε′ small enough to decrease the maximum out-degree

to nε. Therefore, by using the same algorithm as above on graph H≤nε′ for ε′

sufficiently small, we can get a running time of O(n1+ε log log n) for any fixed
ε > 0. The representations of edges corresponding to vertices not in the graph
H≤nε′ are not shrunk.
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Note that the presumptions of Theorem 4 are fulfilled by the edges corre-
sponding to vertices in H≤nε and the obtained representation of graph G′ =
(V (G), V (H≤nε)), is therefore compact. The edges not in H≤nε are then added,
increasing some offsets. The representation of an offset of length at least nε′′

for
ε′′ > 0 is never increased asymptotically by inserting edges since it already
has Θ(log n) bits. There are at most O(nε′′

) edges of G′ shorter than nε′′

that span any single inserted edge. Lengthening of offsets shorter than nε′′
,

therefore, contributes at most O(n1−ε′
nε′′

log log n) ∈ o(n) for some ε′′ suffi-
ciently small. The inserted edges themselves have representations of total length
O(n1−ε′

log n) ∈ o(n). Additional o(n) bits are used after the insertion of edges
and the representation, therefore, remains compact. ��

4 Separator Hierarchy

In this section, we prove two generalizations of the separator hierarchy theorem.
Our proof is based on the proof from [23]. Most importantly, we show that the
recursive separator theorem also holds if we want the regions to have small size
on average and not in the worst case. We also prove the theorem for weighted
separator theorem with weights on edges. We show that the natural generaliza-
tion of our two generalizations does not hold by presenting a counterexample.

Since the two theorems are very similar and their proofs only differ in one
step, we present them as one theorem with two variants and show only one
proof proving both variants. The difference lies in the reason why the Inequality
1 holds. The following lemma and observation prove the inequality under some
assumptions and they will be used in the proof of the theorem.

c′γwW

r1−c
1

+
c′(1 − γw)W

r1−c
2

≤ c′Wn

r1−c
(1)

Observation 6. The Inequality 1 holds for r1 = r2 = r.

Lemma 3. The Inequality 1 holds for γw = γn and r1, r2 and r satisfying the
following.

r =
1

γn

r1
+ 1−γn

r2

=
r1r2

γnr2 + (1 − γn)r2
. (2)

Proof. Let γ = γw = γn. We simplify the inequality

γ

r1−c
1

+
1 − γ

r1−c
2

≤ 1
r1−c

for r1, r2 and r satisfying the equality (2). By substituting for r and rearranging
the inequality, we get

γr1−c
1 + (1 − γ)r1−c

2 ≤ (γr1 + (1 − γ)r2)1−c

We substitute r2 = λr1. Note that this holds for λ = 1 and that we may
assume r1 ≤ r2 by symmetry. Since the inequality holds for λ = 1, it is sufficient
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to show the inequality for λ ≥ 1 with both sides differentiated with respect to
λ. By differentiating both sides and simplifying the inequality, we get

(x − (λ − 1)γ)−c ≥ x−c

which obviously holds, since λ ≥ 1 and γ > 0.

Now we proceed to prove the two generalizations of the recursive separator
theorem. Note that in the following, r is the average or maximum region size,
depending on whether the graph is weighted or not.

Theorem 7. Let G be a (possibly weighted) graph satisfying the nc separator
theorem with respect to its weights and let P be its recursive balanced separator
partition. Then if either

(i) the graph in not weighted and r is the average size of a region in the partition
P , or

(ii) the graph is weighted and r is the maximum size of a region in the partition
P .

Then the total weight of edges not contained inside a region of P is O(W/r1−c),
where W is the total weight (resp. number if unweighted) of all edges of G.

In this proof, let w(S) be the total weight of the edges in S with w(e) denoting
the weight of the single edge e.

Proof. We use induction on the number of vertices to prove the following claim.

Claim. Let us have a recursive separator partition P of n-vertex graph G of
average region size r. Then w(E(G) \ ⋃

p∈P p) < c′W
r1−c − c′′W

n1−c for some c′ and c′′.

Before the actual proof of this claim, let us define some notation. Let c, α and
β be the constants from the separator theorem (recall that separator theorem
ensures existence of a partition of V (G) into two sets of size at least αV (G)
with edges of total weight at most β W

n1−c going across). Let B(W,n, r) be the
maximum value of w(E(G) \⋃

p∈P p) over all n-vertex graphs of total weight W
and all their recursive separator partitions with average region size r. We use γn

to denote a fraction of the number of vertices and γw to denote a fraction of the
total weight.

Proof (Proof of the claim). We defer the proof of the base case until we fix the
constant c′.

By the separator theorem, B(W,n, r) satisfies the following recurrence.

B(W,n, r) = 0 for n ≤ r

B(W,n, r) ≤ β
W

n1−c
+ max

α≤γn≤1−α
γw∈[0,1]

B(γwW,γnn, r1) + B((1 − γw)W, (1 − γn)n, r2)
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where r1, r2 are the respective average region sizes in the two subgraphs. It,
therefore, holds that r = 1

γn
r1

+ 1 − γn
r2

= r1r2
γnr2 +(1− γn)r2

.

From the inductive hypothesis, we get the first inequality of the following.
The second inequality follows from the Observation 6 for the case i and from the
Lemma 3 for the case ii.

B(W,n, r) ≤ β
W

n1−c
+

c′γwW

r1−c
1

+
c′(1 − γw)W

r1−c
2

− c′′ W

n1−c
(γc

n + (1 − γn)c) ≤ (3)

≤ β
W

n1−c
+

c′Wn

r1−c
− c′′ W

n1−c
(γc

n + (1 − γn)c)

It holds that γc
n + (1 − γn)c ≥ 1 + εα, where εα > 0 is a constant depending

only on α, since γn ∈ [α, 1 − α] for α > 0. We can therefore set c′′ such that

c′′ W

n1−c
(γc

n + (1 − γn)c) − β
W

n1−c
≥ c′′ W

n1−c

This completes the induction step.
For c′ large enough, the claimed bound in the base case is negative and it,

therefore, holds. ��
We conclude this section by showing that the following natural generalization

of Theorem 7 does not hold:

Theorem 8. The following generalization does not hold: Let G be a weighted
graph satisfying the nc separator theorem with respect to its weights and let P
be its recursive separator partition. Let r be the average size of a region in the
partition P . Then the total weight of edges not contained in a region of P is
O(W/r1−c), where W is the total weight of all edges of G.

Proof. We show that there is a weighted graph satisfying the nc-separator theo-
rem with respect to its weight and a recursive partition P of G with edges going
between partition regions of P that have total weight Θ(W ), where W is the
total weight of all edges, and with average region size of Θ(n/ log n).

Let G be an unweighted graph of bounded degree satisfying the nc-separator
theorem. We set weights of all its edges to be 1, except for one arbitrary edge e
with weight m−1, where m is the number of edges of G. Note that w(e) = W/2.
We denote this weighted graph by Gw.

Let S be a separator in G from the separator theorem. We modify S in order
to obtain a balanced separator Sw in Gw of weight O(W/n1−c). If e �∈ S, we set
Sw = S. Otherwise, we remove e from S and add all other edges incident to its
endpoints. This gives us Sw which is a separator and its weight differs from the
weight of S only by an additive constant, since the graph G has bounded degree.
It follows that Gw satisfies the nc-separator theorem with respect to its weights.

We consider a partition P constructed by the following process. Let S be a
separator from the separator theorem on Gw, partitioning V (Gw) into vertex
sets A and B. If e ∈ S, we stop and set A and B as the regions of P . Otherwise,
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without loss of generality, e ∈ A. We set B as a region of P and recursively
partition A.

At the end of this process, we get P with edges of total weight at least W/2
between regions (as e is not contained within any region). The partition P has
Θ(log n) regions, so the average region size is Θ(n/ log n). ��

5 Representation for Paths in Trees

In this section, we show a linear algorithm that computes a cache-optimal layout
of a given tree. We are assuming that the vertices have unit size and B is the
number of vertices that fit into a memory block. The same assumption has been
used previously by Gil and Itai [16]. This is a reasonable assumption for trees of
fixed degree and for trees in which each vertex only has a pointer to its parent. It
does not matter in which direction the paths are traversed and we may, therefore,
assume that the paths are root-to-leaf.

We also show that it is NP -hard to find an optimal compact layout of a tree
and show an algorithm which gives a compact layout with I/O complexity at
most OPT + 1.

Definition 1. Laid out tree: A laid out tree is an ordered triplet T = (V,E,L),
where (V,E) is a rooted tree and L : V → {0, 1, 2, · · · , |V |} assigns to each vertex
the memory block that it is in. We require that at most B vertices are assigned
to any block. We treat the block 0 specially as the block already in the cache.

We define c′
L(P ) = |{L(v) for v ∈ P} \ {0}| to be the cost of path P in a given

layout L. We define c(T, k), the worst-case I/O complexity given k free slots, as

c(T, k) = min
L

(max
P

(c(P )))

where P ranges over all root-to-leaf paths and L over all layouts that assign
at most k vertices to block 0. Since block 0 is assumed to be already in cache,
accessing these vertices does not count towards the I/O complexity. We define
c(T ), the worst-case I/O complexity of laid out tree T , to be c(T, 0). This means
c(T ) is the maximum number of blocks on a root-to-leaf path. We define a worst-
case optimal layout of a tree T given k free memory slots as a layout attaining
c(T, k).

We can observe that c(T ) ≤ 1 + maxu∈δ(rT )(c(Tu)). From the lemmas below
follows that c(T ) only depends on the subtrees rooted in children of rT with the
maximum value of c(Tu).

Lemma 4. For any k1, k2 ∈ [B], |c(T, k1) − c(T, k2)| ≤ 1 and c(T, k) is non-
increasing in k.

Proof. The function c(T, k) is monotonous in k since a layout given k1 free slots
is a valid layout given k2 slots for k2 ≥ k1. Moreover c(T, 0) = c(T,B) − 1, since
we can map vertices in the root’s block to block 0 instead. From this and the
monotonicity, the lemma follows. ��
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We define deficit of a tree k(T ) = min{k, such that c(T, k) < c(T, 0)}. Note
that k(T ) ≤ B. It follows from Lemma 4 that c(T, k′) = c(T, 0) = c(T,B)+1 for
all k′ < k(T ) and c(T, k′) = c(T, 0) − 1 = c(T,B) for k′ ≥ k(T ).

Lemma 5. For k ≥ 1, there is a worst-case optimal layout attaining c(T, k)
such that root is in block 0.

Proof. Let L be a layout that does not assign block 0 to the root. If no vertex is
mapped to block 0, we can move root to block 0. Since block 0 does not count
towards I/O complexity, doing this can only improve the layout. Otherwise, let
v be vertex, which is mapped to block 0. We construct layout L′ such that
L′(v) = L(r), L′(r) = L(v) and L′(u) = L(u) for all other vertices u. For any
path P , c′

L(P ) ≥ c′
L′(P ), since any path which contains v in layout L′ already

contained it in L and block 0 does not count towards the I/O complexity. ��
It is natural to consider layouts in which blocks form connected subgraphs.

This motivates the following definition

Definition 2. A partition of a rooted tree is convex if the intersection of any
root-to-leaf path with any set of the partition is a (possibly empty) path.

Let Mv be the set of successors u of vertex v with maximum value of c(Tu).

Lemma 6. The function c(T, k) satisfies the following recursive formula for
k ≥ 1.

c(T, k) = min
{ku}

max
u∈Mv

c(Tu, ku)

where the min is over all sequences {ku} such that
∑

u∈δ(v) ku = k − 1.

Proof. By Lemma 5, we may assume that an optimal layout attaining c(T, k) for
k ≥ 1 puts the root to block 0 and allocates the remaining k − 1 slots of block
0 to root’s subtrees, ku slots to the subtree Tu. On the other hand, from values
of ku, we can construct a layout with cost maxu∈Mv

(c(Tu, ku)). ��
Problem 1.
Input: Rooted tree T
Output: Worst-case optimal memory layout of T .

Theorem 9. There is an algorithm which computes a worst-case optimal layout
in time O(n). Moreover, this algorithm always outputs a convex layout.

Proof. We solve the problem using a recursive algorithm. For each vertex, we
compute k(Tv) and c(Tv). First, we define d(T ) and cmax(v).

d(Tv) = 1 +
∑

u∈Mv

k(u), cmax(v) = max
u∈δ(v)

(c(Tu))

If d(T ) < B, we let k(Tv) = d(T ) and c(Tv) = cmax(v). Otherwise k(Tv) = 1
and c(Tv) = cmax(v)+1. As a base case, we use that c(T, k) = 0 when |V (T )| ≤ k.
For k = 0, we use that c(T, 0) = c(T,B) + 1.
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Using the values k(Tu) and c(Tu) calculated using the above recurrence, we
reconstruct the worst-case optimal layout in a recursive manner. When laying
out a subtree given k free slots, we check whether k ≥ d(T ). If it is, we distribute
the k − 1 empty slots (one is used for the root) in a way that subtrees Tv for
v ∈ M(rT ) get at least k(Tv) empty slots. Otherwise, distribute them arbitrarily.
We put the root of a subtree into a newly created block if the subtree gets 0 free
slots. Otherwise, we put the root into the same block as its parent. It follows
from the way we construct the solution that it is convex.

It follows from Lemmas 4 and 6 that c(T, k) = c(T, 0) − 1 if and only if k − 1
free slots can be allocated among the subtrees Tu, u ∈ δ(rT ) such that subtree
Tu gets at least k(Tu) of them. It can be easily proven by induction that the
algorithm finds for each vertex the smallest number of free slots required to make
the allocation possible and calculates the correct value of c(Tv). ��

If the subtree sizes are computed beforehand, we spend deg(v) time in vertex
v. By charging this time to the children, we show that the algorithm runs in
linear time.

This algorithm can be easily modified to give a compact layout which ensures
I/O complexity of walking on a root-to-leaf path to be at most c(T ) + 1. This
is especially relevant since finding the worst-case optimal layout is NP-hard, as
we show in Sect. 5.1. The algorithm can be modified to give a compact layout
by changing the reconstruction phase such that we never give more than |V (Tv)|
free slots to the subtree of T rooted in v unless k > |V (T )|. Note that only the
last block on a path can have unused slots. We can put blocks which are not full
consecutively in memory, ignoring the block boundaries. Any path goes through
at most c(T ) blocks out of which at most one is not aligned, which gives total
I/O complexity of c(T ) + 1.

The following has been proven before in [9] and follows directly from Theo-
rem 9.

Corollary 1. For any tree T , there is a convex partition of T which is worst-
case optimal.

Proof. The corollary follows from Theorem 9, since the algorithm given in the
proof is correct and always gives a convex solution. ��

Since the layout computed by the algorithm is always convex, we never re-
enter a block after leaving it. This means that c(T ) really is the worst-case I/O
complexity.

Finally, we show how to construct a compact representation with similar
properties. Note that we do not claim I/O optimality among all compact repre-
sentations but only relative to the tree layout optimality as in Theorem9.

Theorem 10. For a given tree T with q bits of extra data per vertex, there is
a compact memory representation of T using O(nq) bits of memory requiring at
most OPTL I/O operations for leaf-to-root paths in general trees and root-to-leaf
paths in bounded degree d trees. Here OPTL is the I/O complexity of the optimal
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layout from Theorem9 when we set the vertex size to be q+2 log n for leaf-to-root
paths, or to q + 2d log n for root-to-leaf paths.

Proof. The theorem is an indirect corollary of Theorems 9 and 4. We set the
vertex size as indicated in the theorem statement (depending on the desired
direction of paths) and obtain an assignment of vertices to blocks by Theorem9.
We call the set of the blocks D. Note that for q = Ω(log n), this is already a
compact representation.

For smaller q, we construct an auxiliary tree T ′ on the blocks D representing
their adjacency in T . We can assume that T ′ is a tree due to the convexity of
the blocks of D. We apply the separator decomposition to obtain an ordering R
of VT ′ with short representation of offset edge representation (Lemma1). Sim-
ilarly, we can get an ordering for each block in D. We order the vertices of T ′

according to R, ordering the vertices within blocks according to orderings of
the individual blocks. We obtain an ordering having offset edge representation
of total length O(n log q), as there is O(n/B) edges going between blocks with
offset edge representations of total length O(n log B log q/B) and edges within
blocks with offset edge representations of total length O(n log q).

We now apply Theorem4 on the edge offsets still split in memory blocks
according to D, obtaining a bit-offset edge representation where the vertex rep-
resentation of every block of D still fits within one memory block, as we have
previously reserved 2 log n+Θ(1) memory for every pointer and wi ≤ 1+2 log n.
We merge consecutive blocks whose vertices fit together into one block. This
ensures that every block has at least B/2 vertices. ��

5.1 Hardness of Worst-Case Optimal Compact Layouts

In this section, we prove that it is NP-hard to find a worst-case optimal compact
layout (that is, the packing with minimum I/O complexity out of all compact lay-
outs). We show this by reduction from the 3-partition problem, which is strongly
NP-hard [15] (i.e. it is NP-hard even if all input numbers are written in unary).
This result is in contrast with Theorem 9 which shows how to find worst-case
optimal non-compact layout.

Problem 2 (3-partition).
Input: Natural numbers x1, · · · , xn.
Output: Partition of {xi}n

1 into sets Y1, · · · , Yn/3 such that
∑

x∈Yi
x =

3(
∑n

1 xi)/n = S for each i.

Theorem 11. It is NP-hard to find a worst-case optimal compact layout of a
given tree T .

Proof. We let B = S. We construct the following tree. It consists of a path
P = p1p2 · · · pB of length B rooted in p1. For each number xi from the 3-
partition instance, we create a path of length xi. We connect one of the end
vertices of each of these paths to pB .
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Next, we prove the following claim. There is a layout of I/O complexity 2 iff
the instance of 3-partition is a yes instance. We can get such layout from a valid
partition easily by putting in a memory block exactly the paths corresponding to
xi’s that are in the same partition set. For the other implication, we first prove
that P is stored in one memory block. If it were not, we would visit at least
two different memory block while traversing P and there would be a root-to-leaf
path that would visit three memory blocks. If P is stored in one memory block,
the I/O complexity of the tree is 2 iff the paths pi can be partitioned such that
ever no part is stored in multiple memory blocks. There is such partition iff the
instance of 3-partition is a yes instance. ��

6 Further Research

Finally, we propose several open problems and future research directions.
Experimental comparison of traditional graph layouts with the layouts pre-

sented in our work and layouts proposed in prior work could both direct and
motivate further research in this area.

While we optimize the separable graph layout for random walks it is conceiv-
able that a minor modification would also match the worst-case performance of
the previous results.

The worst-case performance of the algorithm for finding the bit-offsets in
Sect. 3.2 is most likely not optimal, and we suspect that the practical perfor-
mance would be much better.

For the sake of simplicity, both our and prior representations of trees assume
fixed vertex size (e.g. implicitly in the results on layouts) or allow q = O(1)
extra bits per vertex in the compact separable graph representation. This could
be generalized for vertices of different sizes and unbounded degrees.
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Abstract. Given permutations π, σ1 and σ2, the permutation π (viewed
as a string) is said to be a shuffle of σ1 and σ2, in symbols π ∈ σ1�σ2, if π
can be formed by interleaving the letters of two strings p1 and p2 that are
order-isomorphic to σ1 and σ2, respectively. Given a permutation π ∈ S2n

and a bijective mapping f : Sn → Sn, the f -Unshuffle-Permutation
problem is to decide whether there exists a permutation σ ∈ Sn such
that π ∈ σ� f(σ). We consider here this problem for the following bijec-
tive mappings: inversion, reverse, complementation, and all their possible
compositions. In particular, we present combinatorial results about the
permutations accepted by this problem. As main results, we obtain that
this problem is NP-complete when f is the reverse, the complementation,
or the composition of the reverse with the complementation.

Keywords: Permutation · Shuffle product ·
Computational complexity

1 Introduction

Given permutations π, σ1 and σ2, π is said to be a shuffle of σ1 and σ2, in
symbols π ∈ σ1� σ2, if π is the disjoint union of two patterns p1 and p2 (i.e., if,
viewed as a string, it can be formed by interleaving the letters of p1 and p2) that
are order-isomorphic to σ1 and σ2, respectively. This shuffling operation � was
introduced by Vargas [12] in an algebraic context and was called supershuffle.
In case σ = σ1 = σ2, the permutation π is said to be a square w.r.t. the shuffle
product (or simply a square when clear from the context), and σ is said to
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be a square root of π w.r.t. the shuffle product (or simply a square root of π
when clear from the context). Note that a permutation may have several square
roots. For example, π = 18346752 ∈ 1234 � 4321 since π is a shuffle of the
patterns p1 = 1347 and p2 = 8652 that are order-isomorphic to σ1 = 1234 and
σ2 = 4321, respectively (as shown in 18346752). However, π is not a square.
Besides, π′ = 24317856 is a square as it is a shuffle of the patterns 2175 and
4386 that are both order-isomorphic to 2143 (as shown in 24317856). Note that
2143 is not the unique square root of π′ since π′ is also a shuffle of patterns 2156
and 4378 that are both order-isomorphic to 2134 (as shown in 24317856).

The above definitions are of course intended to be natural counterparts to the
ordinary shuffle of words and languages. Given words u, v1 and v2, u is said to be
a shuffle of v1 and v2 (denoted u ∈ v1 � v2), if u can be formed by interleaving
the letters of v1 and v2 in a way that maintains the left-to-right ordering of
the letter from each word. For example, u = abccbabacbb ∈ abcab� cbabcb (as
shown in abccbabacbb). Similarly, in case v = v1 = v2, the word u is said to be a
square w.r.t. the shuffle product, and v is said to be a square root of u w.r.t. the
shuffle product. For example, abaaabaabb is a square w.r.t. the shuffle product
since it belongs to the shuffle of abaab with itself (as shown in abaaabaabb).
Given words u, v1 and v2, deciding whether u ∈ v1� v2 is O(|u|2/ log(|u|)) time
solvable [6]. To the best of our knowledge, the first O(|u|2) time algorithm for
this problem appeared in [7]. However, deciding whether a given word u is a
square w.r.t. the shuffle product is NP-complete [2,9]. Finally, for a given word
u, deciding whether there exists a word v such that u is in the shuffle of v with
its reverse vR (i.e., u ∈ v�vR) is NP-complete as well [9]. However, the problem
is polynomial-time solvable for words built from a binary alphabet.

Coming back to permutations, by using a pattern avoidance criterion on
directed perfect matchings, it is proved in [4] that recognizing permutations that
are squares is NP-complete, and a bijection between (213, 231)-avoiding square
permutations and square binary words is presented. Given (3142, 2413)-avoiding
(a.k.a. separable) permutations π, σ1 and σ2, it can be decided in polynomial
time whether π ∈ σ1 � σ2 [8].

We finally observe that deciding whether a permutation is a shuffle of two
monotone permutations is in P:

(i) merge permutations are the union of two increasing subsequences and
are characterized by the fact that they contain no decreasing subsequence of
length 3 [5], whereas (ii) skew-merged permutations are the union of an increasing
subsequence with a decreasing subsequence and are characterized by the fact that
they contain no subsequence ordered in the same way as 2143 or 3412 [11].

In this paper, we are interested in a generalization of the problem con-
sisting in recognizing square permutations. We call this new problem the f -
Unshuffle-Permutation problem, which is defined as follows. Given a per-
mutation π ∈ S2n and a bijective mapping f : Sn → Sn, the f -Unshuffle-
Permutation problem asks whether there exists a permutation σ ∈ Sn such
that π ∈ σ�f(σ). We say in this case that π is a generalized square permutation.
In case f = id, the id-Unshuffle-Permutation problem reduces to recogniz-
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ing square permutations, and hence is NP-complete. This paper is devoted to
studying the f -Unshuffle-Permutation problem in case f is either a trivial
bijection (identity, complement, reverse or inverse) or obtained by composing
trivial bijections. These bijections act on permutations by performing a trans-
formation on their permutation matrices and can hence be seen as elements of
the Dihedral group D4, as discussed in the next section. The paper is organized
as follows. In Sect. 2, we provide the needed definitions. Section 3 is devoted to
presenting generalized square permutations and some associated enumerative
properties. Finally, in Sect. 4, we show hardness of recognizing some generalized
square permutations.

2 Definitions

For any nonnegative integer n, [n] is the set {1, . . . , n}. We follow the usual
terminology on words [3]. Let us recall here the most important ones. Let u be
a word. The length of u is denoted by |u|. The empty word, the only word of
null length, is denoted by ε. For any i ∈ [|u|], the i-th letter of u is denoted by
u(i). If I is a subset of [|u|], u|I is the subword of u consisting in the letters of
u at the positions specified by the elements of I. A permutation of size n is a
word π of length n on the alphabet [n] such that each letter admits exactly one
occurrence. The set of all permutations of size n is denoted by Sn.

Definition 1 (Reduced form). If λ is a list of distinct integers, the reduced
form of λ, denoted reduce(λ), is the permutation obtained from λ by replacing
its i-th smallest entry with i. For instance, reduce(31845) = 21534.

Definition 2 (Order-isomorphism). Let λ1 and λ2 be two words of distinct
integers such that reduce(λ1) = reduce(λ2). We say that λ1 and λ2 are order-
isomorphic and we denote it by λ1 � λ2.

Definition 3 (Pattern containment). A permutation σ is said to be con-
tained in, or to be a subpermutation of, another permutation π, written σ � π,
if π has a (not necessarily contiguous) subsequence whose terms are order-
isomorphic to σ. We also say that π admits an occurrence of the pattern σ.

Thus, σ � π if there is a set I of positions in π such that reduce(π|I) = σ. For
example, 1423 � 149362785 since reduce

(
149362785|{2,3,5,8}

)
= reduce (4968) =

1423.

Definition 4 (Trivial bijections). Let π = π(1)π(2) . . . π(n) be a permutation
of size n. The reverse of π is the permutation r(π) = π(n)π(n − 1) . . . π(1). The
complement of π is the permutation c(π) = π′(1)π′(2) · · · π′(n), where π′(i) =
n−π(i)+1. The inverse is the regular group theoretical inverse on permutations,
that is the π(i)-th position of the inverse i(π) is occupied by i. The reverse,
complement and inverse are called the trivial bijections from Sn to itself.

Abusing notations, for any S ⊆ Sn, we let c(S), i(S) and r(S) stand respec-
tively for {c(π) : π ∈ S}, {i(π) : π ∈ S} and {r(π) : π ∈ S}.
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Definition 5 (Shuffle). Let σ1 ∈ Sk1 and σ2 ∈ Sk2 be two permutations. A
permutation π = π(1)π(2) . . . π(k1 + k2) is a shuffle of σ1 and σ2 if there is a
subset I of [n] such that π|I � σ1 and π|Ī � σ2, where Ī = [n]\I and n = k1+k2.
In other terms, π is obtained by interleaving the letters of two words respectively
order-isomorphic with σ1 and σ2. We denote by σ1�σ2 the set of all shuffles of
σ1 and σ2.

For example,

12� 21 = {1243, 1324, 1342, 1423, 1432, 2134, 2314, 2341, 2413, 2431,

3124, 3142, 3214, 3241, 3421, 4123, 4132, 4213, 4231, 4312} .

We are now ready to define the f -Unshuffle-Permutation problem we
focus on in this paper.

Definition 6 (f-Unshuffle-Permutation). Given a permutation π ∈ S2n and
a bijective mapping f : Sn → Sn, the f-Unshuffle-Permutation problem is
to decide whether there exists a permutation σ ∈ Sn such that π ∈ σ� f(σ).

3 Generalized Square Permutations and Enumerative
Properties

The bijections c, i, and r are involutions and can be seen as particular elements
of the dihedral group D4 encoding all the symmetries of the square. Before
explaining why, let us recall a definition for D4.

The group D4 is generated by two elements a and b subjected exactly to the
nontrivial relations

aa = ε, bbbb = ε, abab = ε, (1)

where ε is the unit of D4. One can think of element a (resp. b) acting on a
square by performing a symmetry through the vertical axis (resp. a 90◦ clockwise
rotation). Now, we can regard, for any n ∈ N, each element of D4 as a map
φ : Sn → Sn such that φ(π), π ∈ Sn, is the permutation obtained by performing
on its permutation matrix the transformations specified by φ. The maps c, i, and
r can thus be expressed as

c = bba, i = ba, r = a. (2)

Figure 1 shows the Cayley graph of this group. The main interest of seeing
the three trivial bijections on Sn as elements of D4 lies in the fact that all the
other bijections obtained by composing the trivial ones can be expressed by
compositions of the two elements a and b. This will allow us to gain concision
in some proofs presented in the sequel.

We now turn to defining identity squares, complement squares, reverse squares
and inverse squares that are natural generalizations of square permutations to
trivial bijections from Sn to itself.
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ε

b

bb

bbb

abba

a

bba

b

bb

b

b b

b

b

a

aa

a

Fig. 1. The Cayley graph of the group D4.

Definition 7 (Square permutations for trivial bijections). For n ∈ N,
define

Sε
2n = {π ∈ S2n : ∃σ ∈ Sn, such that π ∈ σ� σ},

Sc
2n = {π ∈ S2n : ∃σ ∈ Sn such that π ∈ σ� c(σ)},

Sr
2n = {π ∈ S2n : ∃σ ∈ Sn such that π ∈ σ� r(σ)},

S i
2n = {π ∈ S2n : ∃σ ∈ Sn such that π ∈ σ� i(σ)}.

We begin by proving that applying any trivial bijection is in some sense
compatible with the shuffle operator.

Lemma 1 (Trivial bijections and shuffle). Let π, σ1 and σ2 be permutations
such that π ∈ σ1 � σ2. Then

– c(π) ∈ c(σ1)� c(σ2);
– r(π) ∈ r(σ1)� r(σ2);
– i(π) ∈ i(σ1)� i(σ2).

Proof. Let n be the size of π. Since π is a shuffle of σ1 and σ2, there is a subset
I = {i1 < · · · < ik} of [n] such that π|I � σ1 and π|Ī � σ2.

By setting J = {n − ik + 1 < · · · < n − i1 + 1}, we have

r(π)|J = (π(n) . . . π(1))|J = π(ik) . . . π(i1) � r(σ1). (3)

For the same reason, we have also r(π)|J̄ � r(σ2). Hence, r(π) is a shuffle of r(σ1)
and r(σ2).

Now, set J = {π(i) : i ∈ I} = {π(�1) < · · · < π(�k)} where �1, . . . , �k are
elements of I. We have

i(π)|J =
(
π−1(1) . . . π−1(n)

)
|J = π−1(π(�1)) . . . π−1(π(�k)) = �1 . . . �k � i(σ1).

(4)
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For the same reason, we have also i(π)|J̄ � i(σ2). Hence, i(π) is also shuffle of
i(σ1) and i(σ2).

Finally, since b = i ◦ r in D4, the map c can be expressed as compositions
involving r and i. Hence, c(π) is a shuffle of c(π1) and c(π2).

The following lemma is well-known and is a consequence of interpreting c, r,
and i as compositions involving a and b according to (2) and the relations (1)
between a and b.

Lemma 2 (Compositions of trivial bijections). For any permutation π,

– (c ◦ r)(π) = (r ◦ c)(π);
– (i ◦ c)(π) = (r ◦ i)(π);
– (i ◦ r)(π) = (c ◦ i)(π).

According to Lemma 2 (and the fact that the group D4 has exactly eight
elements), we thus only need to consider the following compositions in the rest
of the paper.

Definition 8 (Square permutations for compositions of trivial
bijections). For n ∈ N, define

Src
2n = {π ∈ S2n : ∃σ ∈ Sn such that π ∈ σ� (r ◦ c)(σ)},

Sci
2n = {π ∈ S2n : ∃σ ∈ Sn such that π ∈ σ� (c ◦ i)(σ)},

S ic
2n = {π ∈ S2n : ∃σ ∈ Sn such that π ∈ σ� (i ◦ c)(σ)},

S irc
2n = {π ∈ S2n : ∃σ ∈ Sn such that π ∈ σ� (i ◦ r ◦ c)(σ)}.

We hence obtain the eight sets Sε
2n, Sc

2n, Sr
2n, S i

2n, Src
2n, Sci

2n, S ic
2n, and S irc

2n

of square permutations provided by Definitions 7 and 8. Let us now investigate
some easy bijective and enumerative properties satisfied by these sets.

Proposition 1 (Bijection between Sc
2n and Sr

2n ). For any n ∈ N, i (Sc
2n) =

Sr
2n.

Proof. Let π ∈ S2n. We have

π ∈ Sc
2n ⇔ ∃σ ∈ Sn, π ∈ σ� c(σ)

⇔ ∃σ ∈ Sn, i(π) ∈ i(σ)� (i ◦ c)(σ) (Lemma 1)
⇔ ∃σ ∈ Sn, i(π) ∈ i(σ)� (r ◦ i)(σ) (Lemma 2)
⇔ ∃σ ∈ Sn, i(π) ∈ σ� r(σ)
⇔ i(π) ∈ Sr

2n.

Proposition 2 (Bijection between S ic
2n and Sci

2n). For any n ∈ N, c
(S ic

2n

)
=

Sci
2n, i

(S ic
2n

)
= Sci

2n, and r
(S ic

2n

)
= Sci

2n.
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Proof. Let π ∈ S2n. We have

π ∈ S ic
2n ⇔ ∃σ ∈ Sn, π ∈ σ� (i ◦ c)(σ)

⇔ ∃σ ∈ Sn, c(π) ∈ c(σ)� (c ◦ i ◦ c)(σ) (Lemma 1)
⇔ ∃σ ∈ Sn, c(π) ∈ σ� (c ◦ i)(σ)

⇔ c(π) ∈ Sci
2n.

Moreover, we have

π ∈ S ic
2n ⇔ ∃σ ∈ Sn, π ∈ σ� (i ◦ c)(σ)

⇔ ∃σ ∈ Sn, i(π) ∈ i(σ)� (i ◦ i ◦ c)(σ) (Lemma 1)
⇔ ∃σ ∈ Sn, i(π) ∈ i(σ)� (i ◦ r ◦ i)(σ) (Lemma 2)
⇔ ∃σ ∈ Sn, i(π) ∈ σ� (i ◦ r)(σ)
⇔ ∃σ ∈ Sn, i(π) ∈ σ� (c ◦ i)(σ) (Lemma 2)

⇔ i(π) ∈ Sci
2n.

Finally, the fact that i ◦ c ◦ i = r implies that r is also a bijection between S ic
2n

and Sci
2n.

Proposition 3 (Bijection between S i
2n and S irc

2n). For any n ∈ N,
(i ◦ c)

(S irc
2n

)
= S i

2n.

Proof. Let π ∈ S2n. We have

π ∈ S irc
2n ⇔ ∃σ ∈ Sn, π ∈ σ� (i ◦ r ◦ c)(σ)

⇔ ∃σ ∈ Sn, i(π) ∈ i(σ)� (r ◦ c)(σ) (Lemma 1)
⇔ ∃σ ∈ Sn, (r ◦ i)(π) ∈ (r ◦ i)(σ)� c(σ) (Lemma 1)
⇔ ∃σ ∈ Sn, (i ◦ c)(π) ∈ (i ◦ c)(σ)� c(σ) (Lemma 2)
⇔ ∃σ ∈ Sn, (i ◦ c)(π) ∈ i(σ)� σ

⇔ (i ◦ c)(π) ∈ S i
2n.

To simplify notations, we write sε
2n, sc2n, sr2n, si2n, src2n, sci2n, sic2n, and sirc2n for the

cardinalities of the sets Sε
2n, Sc

2n, Sr
2n, S i

2n, Src
2n, Sci

2n, S ic
2n, and S irc

2n , respectively.
Table 1 shows the first cardinalities. We note that, at this time, none of the
corresponding integer sequence does appear in OEIS [10].

Lemma 3 (Upper bound for the number of generalized squares). For
any n ∈ N,

|Q2n| ≤
(

2n − 1
n − 1

)(
2n

n

)
n!, (5)

where Q2n is any of the sets Sε
2n, Sc

2n, Sr
2n, S i

2n, Src
2n, Sci

2n, S ic
2n, or S irc

2n .
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Table 1. Cardinalities of the sets of square permutations of sizes 0 ≤ 2n ≤ 10.

n 0 1 2 3 4 5

src2n 1 2 20 472 18 988 1 112 688

sc2n = sr2n 1 2 20 480 19 744 1 185 264

si2n = sirc2n 1 2 20 488 20 250 1 229 858

sε
2n 1 2 20 504 21 032 1 293 418

sci2n = sic2n 1 2 20 586 27 990 2 044 596

(2n)! 1 2 24 720 40 320 3 628 800

Proof. This is a consequence of the fact that to construct a permutation π of
Q2n, we can proceed by first choosing a set of n letters among the alphabet [2n]
(
(
2n
n

)
choices), then by specifying an order from left to right for these letters (n!

choices), and finally by deploying the chosen letters onto a set I of n positions
among the set of all possible positions [2n] (

(
2n
n

)
choices). The empty positions

are filled by the unique authorized completion such that π|I � φ
(
π|Ī

)
where φ

is the considered bijection on Sn. For this reason, there is no more than
(
2n
n

)2
n!

elements in Q2n. The tighter bound (5) is the consequence of the fact that we
can assume that the first position can always be fixed.

Let us denote by S•
2n the union of all the sets Sε

2n, Sc
2n, Sr

2n, S i
2n, Src

2n, Sci
2n,

S ic
2n, and S irc

2n . We show that S2n and S•
2n do not coincide.

Proposition 4 (Existence of non-square permutations). For any n ∈ N,
n ≥ 9, S2n �= S•

2n.

Proof. By Lemma 3 (and using its notations), we have

| S•
2n | ≤ 8 |Q2n| ≤ 8

(
2n − 1
n − 1

)(
2n

n

)
n!. (6)

The proportion of the elements of S•
2n among all the permutations of S2n admits

as upper bound, when n ≥ 1,

| S•
2n |

|S2n| ≤ 8
(
2n−1
n−1

)(
2n
n

)
n!

(2n)!
= 4

(
2n

n

)
1
n!

. (7)

But 4
(
2n
n

)
1
n! < 1 for n ≥ 9, thereby proving the result.

Proposition 5 (Square permutations in some intersections). Let n ∈ N

such that 2n ≡ 0 (mod 4). Then,
the permutation π = 12 . . . (n − 1)(n) (2n)(2n − 1) . . . (n + 2)(n + 1)
belongs to Sε

2n ∩ Sr
2n ∩ Sc

2n ∩ S i
2n ∩ Sci

2n ∩ S ic
2n.



250 G. Fertin et al.

Proof. Let I = {1, 3, 5, . . . , 2n − 1} and Ī = [2n] \ I. Then, since

π|I � 12 . . .
n

2
n(n − 1) . . .

(n

2
+ 1

)
� π|Ī , (8)

we have π|I � π|Ī � i(π|Ī). This shows that π belongs to Sε
2n ∩ S i

2n.
Now, let J = {1, 2, . . . , n} and J̄ = [2n] \ J . Then, since

π|J � 12 . . . n and π|J̄ � n . . . 21, (9)

we have π|J � r(π|J̄) � c(π|J̄ ) � (i ◦ c)(π|J̄ ) � (c ◦ i)(π|J̄ ). This shows that π

belongs to Sr
2n ∩ Sc

2n ∩ S ic
2n ∩ Sci

2n.

4 Recognizing Generalized Square Permutations

This section is devoted to proving that deciding membership to Sr
2n, Sc

2n and
Src
2n is NP-complete. The approach relies on constraint directed matchings on

permutations.

Definition 9 (Directed matching on permutations). Let π ∈ Sn. A
directed matching on π is a set M of pairwise disjoint arcs (i, j), 1 ≤ i, j ≤ n
and i �= j, that connect pairs of elements of π. The directed matching M is
perfect if every element of π is the source or the sink of an arc of M.

Definition 10 (Two-arcs pattern occurrences). A two-arc pattern is a per-
fect directed matching on the set [4]. A perfect directed matching M on a per-
mutation π of size 2n admits an occurrence of a two-arc pattern A if there is
an increasing map φ : [4] → [2n] (i.e., i < i′ implies φ(i) < φ(i′)) such that, if
(i, i′) is an arc of A, then (φ(i), φ(i′)) is an arc of M. We say moreover that M
avoids A if A does not admits any occurrence of A.

We shall draw two-arcs patterns by unlabeled graphs wherein vertices are
implicitly indexed from 1 to 4 from left to right. Figure 2 shows an example of a
directed perfect matching on a permutation. The directed matching does contain

the patterns , , , and and does avoid the patterns

, , , , , and .

1
2

2
5

3
4

4
8

5
1

6
7

7
6

8
3

π =

M

Fig. 2. A directed perfect matching M = {(1, 5), (4, 2), (7, 3), (6, 8)} on the permuta-
tion π = 25481763. Recall that arcs refer to positions in π.
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In case π is written as a concatenation of contiguous patterns π =
π1 π2 · · · πk, we write Mπi→πj

for the subset of arcs of M with source index in
πi and sink index in πj . Hence,

M =
⊔

i∈[k]
j∈[k]

Mπi→πj
. (10)

The following properties will prove useful for defining equivalences between
squares and restricted directed perfect matchings.

Definition 11 (Property P1—Order isomorphism). Let π be a permuta-
tion. A directed perfect matching M on π is said to have property P1 if, for
any two distinct arcs (i, i′) and (j, j′) of M, we have π(i) < π(j) if and only if
π(i′) < π(j′).

Definition 12 (Property P2—Order anti-isomorphism). Let π be a per-
mutation. A directed perfect matching M on π is said to have property P2 if,
for any two distinct arcs (i, i′) and (j, j′) of M, we have π(i) < π(j) if and only
if π(i′) > π(j′).

Definition 13 (Property Q1—First start first terminal). Let π be a per-
mutation. A directed perfect matching M on π is said to have property Q1 if it
avoids the following set of two-arcs patterns:

Q1 =
{

, , , , ,

}
.

Definition 14 (Property Q2 —First start last terminal). Let π be a
permutation. A directed perfect matching M on π is said to have property Q2 if
it avoids the following set of two-arcs patterns:

Q2 =
{

, , , , ,

}
.

Observe that Q1 � Q2 is the set of all two-arcs patterns.

Theorem 1 ([4]). Let π ∈ S2n. The two following statements are equivalent.

1. π ∈ Sε
2n.

2. There exists a directed perfect matching M on π that satisfies properties P1

and Q1.

The following two definitions will intervene in the next constructions.

Definition 15 (Lifting). Let π = π(1)π(2) . . . π(n) be a permutation of size n
and k be a positive integer. We call k-lifting of π, denoted π[k], the permutation
(k + π(1)) (k + π(2)) . . . (k + π(n)) on the alphabet {k + 1, . . . , k + n}.
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Definition 16 (Monotone). For any positive integer k, we let ↗k stand for
the increasing permutation 1 2 . . . k and ↘k stand for the decreasing permutation
k (k − 1) . . . 1.

Lemma 4 (One shot lemma). Let π ∈ S2n and M be a perfect directed
matching on π that satisfies properties Pi and Qj, i ∈ {1, 2} and j ∈ {1, 2}.
Then, the perfect directed matching M′ obtained by reversing each arc of M
satisfies properties Pi and Qj.

Lemma 5. Let I1 = {i1j : j ∈ [n]}, i11 < i12 < · · · < i1n, and I2 = {i2j : j ∈ [n]},
i21 < i22 < · · · < i2n, be such that I1 ∩ I2 = ∅. The directed perfect matching

M = ([2n], E) defined by E =
{(

i1j , i
2
j

)
: j ∈ [n]

}
avoids the patterns ,

, , , , and .

Proof. Suppose, aiming at a contradiction, that M does contain the pattern

, , , , , or , say for arcs
(
i1j , i

2
j

)
and

(
i1k, i2k

)
.

Wlog, assume i1j < i1k (see Fig. 3). This is a contradiction since i1j < i1k implies
j < k, and hence, i2j < i2k.

i2k i2j i1j i1k i2k i1j i2j i1k i1j i2k i1k i2j
(i) (ii) (iii)

i1j i1k i2k i2j i2k i1j i1k i2j i1j i2k i2j i1k
(iv) (v) (vi)

Fig. 3. Arcs (i1j , i
2
j ) and (i1k, i2k) with i1j < i2k.

Lemma 6. Let I1 = {i1j : j ∈ [n]}, i11 < i12 < · · · < i1n, and I2 = {i2j : j ∈ [n]},
i21 < i22 < · · · < i2n, be such that I1 ∩ I2 = ∅. The directed perfect matching

M = ([2n], E) defined by E =
{(

i1j , i
2
n−j+1

)
: j ∈ [n]

}
avoids the patterns ,

, , , , and .

Proof. Suppose, aiming at a contradiction, that M does contain the pattern

, , , , , or , say for arcs
(
i1j , i

2
n−j+1

)
and(

i1k, i2n−k+1

)
.

Wlog, assume i1j < i1k (see Fig. 4). This is a contradiction since i1j < i1k implies
j < k, and hence, i2n−j+1 > i2n−k+1.
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i2n−j+1 i1j i2n−k+1 i1k i2n−j+1 i1j i1k i2n−k+1 i1j i2n−j+1 i2n−k+1 i1k
(i) (ii) (iii)

i1j i2n−j+1 i1k i2n−k+1 i2n−j+1 i2n−k+1 i1j i1k i1j i1k i2n−j+1 i2n−k+1

(iv) (v) (vi)

Fig. 4. Arcs (i1j , i
2
n−j+1) and (i1k, i2n−k+1) with i1j < i2k.

Proposition 6. Let π ∈ S2n. The two following statements are equivalent.

1. π ∈ Sr
2n.

2. There exists a directed perfect matching M on π that satisfies properties P1

and Q2.

Proof. (1 ⇒ 2) Let π ∈ Sr
2n. Then, there exists σ ∈ Sn such that π ∈ σ� r(σ),

and hence there exist two disjoint set of indexes I1 = {i1j : j ∈ [n]},
i11 < i12 < · · · < i1n, and I2 = {i2j : j ∈ [n]}, i21 < i22 < · · · < i2n, such
that π(i11)π(i12) · · · π(i1n) is order-isomorphic to σ and π(i21)π(i22) · · · π(i2n) is order-
isomorphic to r(σ). Let M = (V,E) be the directed graph defined by V = [2n]
and E =

{(
i1j , i

2
n−j+1

)
: j ∈ [n]

}
. Clearly, M is a directed perfect matching since

I1 ∩ I2 = ∅ and I1 ∪ I2 = [2n]. According to Lemma 6, M does avoid the pat-

terns , , , , , and . Finally, for any two distinct
arcs

(
i1j , i

2
n−j+1

)
and

(
i1k, i2n−k+1

)
of M, we have π

(
i1j

)
< π

(
i1k

)
if and only if

π
(
i2n−j+1

)
< π

(
i2n−k+1

)
since π(i11)π(i12) · · · π(i1n) is order-isomorphic to σ and

π(i21)π(i22) · · · π(i2n) is order-isomorphic to r(σ). Therefore, M satisfies proper-
ties P1 and Q2.

i2p i1j i2n−j+1 i1q i2p i1j i1q i2n−j+1 i1j i2p i2n−j+1 i1q
(i) (ii) (iii)

i1j i2p i1q i2n−j+1 i2p i2n−j+1 i1j i1q i1j i1q i2p i2n−j+1

(iv) (v) (vi)

Fig. 5. All possible configurations considered in Proof of Proposition 6 (2 ⇒ 1).

(2 ⇒ 1) Let M be a directed perfect matching that satisfies properties P1

and Q2. Let I1 = {i1j : j ∈ [n]}, i11 < i12 < · · · < i1n, be the set of the sources of
the arcs of M and let I2 = {i2j : j ∈ [n]}, i21 < i22 < · · · < i2n, be the set of the
sinks of the arcs of M. We first show that, for every j ∈ [n],

(
i1j , i

2
n−j+1

)
is an

arc of M. The proof is by induction on j = 1, 2, . . . , n.
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– Base. Suppose, aiming at a contradiction that
(
i11, i

2
n

)
is not an arc of M.

Then, there exist 1 ≤ p < n and 1 < q ≤ n such that
(
i11, i

2
p

)
and

(
i1q, i

2
n

)
are

two arcs of M. But i11 < i1q and i2p < i2n, and hence one of the configurations
of Fig. 5 (with j = 1 and k = n) does occur in M. This is a contradiction
since M satisfies Property Q2, and hence

(
i11, i

2
n

)
is an arc of M.

– Induction step. Assume that
(
i1k, i2n−k+1

)
is an arc of M for 1 ≤ k < j,

and suppose, aiming at a contradiction, that
(
i1j , i

2
n−j+1

)
is not an arc of M.

Then, there exist 1 ≤ p < n − j + 1 and j < q ≤ n such that
(
i1j , i

2
p

)
and(

i1q, i
2
n−j+1

)
are two arcs of M. But i1j < i1q and i2p < i2n−j+1, and hence one

of the configurations of Fig. 5 does occur in M. This is a contradiction since
M satisfies Property Q2, and hence

(
i1j , i

2
n−j+1

)
is an arc of M.

Now, let σ1 be the pattern of π induced by the sources of M and σ2 be the
pattern of π induced by the sinks of M (i.e., σ1 = π

(
i11

)
π

(
i12

)
. . . π

(
i1n

)
and

σ2 = π
(
j21

)
π

(
j22

)
. . . π

(
i2n

)
). Clearly σ1 and σ2 are disjoint in π (since M is a

matching) and cover π (since M is perfect). Moreover, the fact that M satisfies
P1 implies immediately that reduce(σ1) is order-isomorphic to (reduce ◦ r)(σ2),
and hence this shows that π ∈ Sr

2n.

Lemma 7. Let π ∈ S2n and M be a perfect directed matching on π that avoids

the patterns , , , and . Then, for any arc (i, j) ∈ M, either
1 ≤ i ≤ n < j ≤ 2n or 1 ≤ j ≤ n < i ≤ 2n.

Proof. We only prove the case 1 ≤ i ≤ n < j ≤ 2n since the proof for 1 ≤ j ≤
n < i ≤ 2n is similar.

Suppose, aiming at a contradiction, that there exists an arc (i, j) ∈ M with

1 ≤ i < j ≤ n. Since M avoids the patterns , , and , there
is no arc (k, �) ∈ M with j < k ≤ 2n and j < � ≤ 2n, k �= �. Then it follows
that there exist 2n − j ≥ n distinct arcs (k, �) ∈ M with 1 ≤ min{k, �} ≤ j − 1
and j +1 ≤ max{k, �} ≤ 2n, k �= �. This is a contradiction since (i, j) ∈ M with
1 ≤ i < j ≤ n.

The following technical lemma is needed to simplify the proof of upcoming
Proposition 7.

Lemma 8. Let k, �1, �2, �3 and �4 be positive integers and π ∈ Sr
2k+�1+�2+�3+�4

be the permutation defined by π = X1 L X2 X3 R X4, where X1 = μ1[k + �2],
L =↗k [�2], X2 = μ2, X3 = μ3[k + �1 + �2], R = ↘k[k + �1 + �2 + �3] and
X4 = μ4[2k+ �1 + �2 + �3] for some permutations μi ∈ S�i

, 1 ≤ i ≤ 4 (see Fig. 6).
Let M be a directed perfect matching on π that satisfies properties P1 and Q2.
If ML→R �= ∅ or MR→L �= ∅, then either |ML→R| = k or |MR→L| = k.

Proof. Suppose first, aiming at a contradiction, that ML→R �= ∅ and MR→L �= ∅.
Let (i, j) ∈ ML→R and (i′, j′) ∈ MR→L. By construction, we have π(i) < π(i′)
and π(j) > π(j′) thereby contradicting Property P1. Then it follows that either
ML→R �= ∅ or MR→L �= ∅, but not both.
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Suppose now that ML→R �= ∅ and MR→L = ∅ (the case ML→R = ∅ and
MR→L �= ∅ can be proved with the same arguments). Suppose, aiming at a
contradiction, that |ML→R| �= k and let (i, j) ∈ ML→R. According to Lemma 7,
we are left with considering the four following cases.

– There exists (i′, j′) ∈ ML→μ3 . Since M avoids , we have i < i′, and
hence π(i) < π(i′) and π(j) > π(j′). This is a contradiction since M satisfies
Property P1.

– There exists (i′, j′) ∈ Mμ3→L and hence π(i) < π(i′) and π(j) > π(j′). This
is a contradiction since M satisfies Property P1.

– There exists (i′, j′) ∈ ML→μ4 . Since M avoids , we have i′ < i, and
hence π(i) > π(i′) and π(j) < π(j′). This is a contradiction since M satisfies
Property P1.

– There exists (i′, j′) ∈ Mμ4→L and hence π(i) < π(i′) and π(j) > π(j′). This
is a contradiction since M satisfies Property P1.

Therefore, |ML→R| = k.

μ1

L

μ2

μ3

R

μ4

�2

k

�1

�3

k

�4

Fig. 6. Illustration of Lemma 8, where π = X1 L X2 X3 R X4.

Proposition 7. r-Unshuffle-Permutation is NP-complete.

Proof. We reduce from Permutation Pattern which, given two permutations
π ∈ Sn and σ ∈ Sk with k ≤ n, asks whether σ is a pattern of π. Permutation
Pattern is known to be NP-complete [1]. Let π ∈ Sn and k ∈ Sk be an instance
of Permutation Pattern. Set N2 = n + k + 1 and N1 = 2N2. Define a target
permutation μ ∈ S2n+2k+2N1+2N2 by μ = μπ μ2 μ1 μσ μ′

2 μ′
π μ′

1 μ′
σ, where

μσ = σ, μπ = π[k + N1 + N2],
μ′

π = r(π)[2n + k + 2N1 + 2N2] μ′
σ = r(σ)[n + k + N1 + 2N2],

μ1 =↗N1 [k], μ′
1 = ↘N1

[2n + k + N1 + 2N2],
μ2 =↗N2 [k + N1], μ′

2 = ↘N2
[n + k + N1 + N2].
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μπ

μ2

μ1

μσ

μ′
2

μ′
π

μ′
1

μ′
σ

k

N1

N2

n

N2

n

N1

k

Fig. 7. Schematic representation of the construction used in Proposition 7.

Clearly, the construction can be carried out in polynomial time. We claim
that σ is a pattern of π if and only if μ ∈ Sr

2n+2k+2N1+2N2
(Fig. 7).

(⇒) Suppose that σ is a pattern of π. Then there exist indices P =
{p1, p2, . . . , pk}, 1 ≤ p1 < p2 < · · · < pk ≤ n, such that σ and
π(p1)π(p2) · · · π(pk) are order-isomorphic. For the sake of simplification, let
Q = [n] \ P and write Q = {q1, q2, · · · , qn−k}, 1 ≤ q1 < q2 < · · · < qn−k ≤ n.
Define a directed matching

M = Mμσ→μ′
π

� Mμ′
π→μπ

� Mμπ→μ′
σ

� Mμ1→μ′
1
� Mμ2→μ′

2

on μ as follows.

Mμσ→μ′
π

= {(n + N1 + N2 + i, n + k + N1 + 2N2 + pi) : 1 ≤ i ≤ k}
Mμ′

π→μπ
= {(2n + k + N1 + 2N2 − qi + 1, qi) : 1 ≤ i ≤ n − k}

Mμπ→μ′
σ

= {(pi, 2n + 2k + 2N1 + 2N2 − i) : 1 ≤ i ≤ k}
Mμ1→μ′

1
= {(n + N2 + i, 2n + k + 2N1 + 2N2 − i + 1) : 1 ≤ i ≤ N1}

Mμ′
2→μ2 = {(n + k + N1 + 2N2 − i + 1, n + i) : 1 ≤ i ≤ N2}.

Informally,

– Mμσ→μ′
π

is the directed (left-to-right) matching describing the (reversed)
occurrence of σ in r(π),

– Mμ′
π→μπ

is the directed (right-to-left) matching connecting the elements of
r(π) and π that are not part of the occurrence of σ in π,

– Mμπ→μ′
σ

is the directed (left-to-right) matching describing the (reversed)
occurrence of r(σ) in π,
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– Mμ1→μ′
1

is a directed (left-to-right) matching that fully connects μ1 to μ′
1

and
– Mμ′

2→μ2 is a directed (right-to-left) matching that fully connects μ′
2 to μ2.

It is now a simple matter to check that M is a directed matching on μ
that satisfies properties P1 and Q2. Therefore, according to Proposition 6,
μ ∈ Sr

2n+2k+2N1+2N2
.

(⇐) Suppose that μ ∈ Sr
2n. Therefore, according to Proposition 6, there exists

a directed perfect matching M on μ that satisfies properties P1 and Q2. We
begin with a sequence of claims that help defining the general structure of M.

Claim. We may assume that |Mμ1→μ′
1
| = N1.

Proof. Combining Lemma 7 and N1 = 2N2 > n + k + N2, we conclude that
Mμ1→μ′

1
�= ∅ or Mμ′

1→μ1 �= ∅. Thus, applying Lemma8, we obtain |Mμ1→μ′
1
| =

N1 or |Mμ′
1→μ1 | = N1. Therefore, by Lemma 4 (One shot lemma), we may

assume that Mμ1→μ′
1

�= ∅.

Claim. Assuming |Mμ1→μ′
1
| = N1, we have |Mμ′

2→μ2 | = N2.

Proof. Combining Claim 4, Lemma 7 and N2 > n + k, we conclude that
Mμ2→μ′

2
�= ∅ or Mμ′

2→μ2 �= ∅. Applying Lemma 8, we obtain |Mμ2→μ′
2
| = N2

or |Mμ′
2→μ2 | = N2. The claim now follows from Mμ1→μ′

1
�= ∅ (Claim 4) and the

fact that M avoids (Property Q2).

From the above two claims and the fact that M avoids (Property Q2),
we conclude that |Mμσ→μ′

π
| = k. But M satisfies Property P1 and hence there

exists an occurrence of r(σ) in r(π). It follows that σ is a pattern of π.

Proposition 8. Let π ∈ S2n. The two following statements are equivalent.

1. π ∈ Sc
2n.

2. There exists a directed perfect matching M that satisfies properties P2

and Q1.

Proof. (1 ⇒ 2) Let π ∈ Sr
2n. Then, there exists σ ∈ Sn such that π ∈ σ� c(σ),

and hence there exist two disjoint set of indices I1 = {i1j : j ∈ [n]}, i11 <

i12 < · · · < i1n, and I2 = {i2j : j ∈ [n]}, i21 < i22 < · · · < i2n, such that
π(i11)π(i12) · · · π(i1n) is order-isomorphic to σ and π(i21)π(i22) · · · π(i2n) is order-
isomorphic to c(σ). Let M = (V,E) be the directed graph defined by V = [2n]
and E =

{(
i1j , i

2
j

)
: j ∈ [n]

}
. Clearly, M is a directed perfect matching since

I1∩I2 = ∅ and I1∪I2 = [2n]. According to Lemma 5, the directed perfect match-

ing M does avoid the patterns , , , , , . Finally,
for any two distinct arcs

(
i1j , i

2
j

)
and

(
i1k, i2k

)
of M, we have π

(
i1j

)
< π

(
i1k

)
if

and only if π
(
i2j

)
> π

(
i2k

)
since π(i11)π(i12) · · · π(i1n) is order-isomorphic to σ and

π(i21)π(i22) · · · π(i2n) is order-isomorphic to c(σ) (and hence π(i2j ) = n−π(i1j ) and
π(i2k) = n − π(i1k)). Therefore, M satisfies properties P2 and Q1.
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i2j i2p i1j i1q i2j i1j i2p i1q

)ii()i(

i1j i2j i1q i2p i1j i1q i2j i2p

(iii) (iv)

i2j i1j i1q i2p i1j i2j i2p i1q
(v) (vi)

Fig. 8. All possible configurations considered in proof of proposition 8 (2 ⇒ 1).

(2 ⇒ 1) Let M be a directed perfect matching that satisfies properties P2

and Q1. Let I1 = {i1j : j ∈ [n]}, i11 < i12 < · · · < i1n, be the set the sources of the
arcs of M and let I2 = {i2j : j ∈ [n]}, i21 < i22 < · · · < i2n, be the set of the sinks
of the arcs of M. We first show that, for every j ∈ [n],

(
i1j , i

2
j

)
is an arc of M.

The proof is by induction on j = 1, 2, · · · , n.

– Base. Suppose, aiming at a contradiction that
(
i11, i

2
1

)
is not an arc of M.

Then, there exist 1 < p ≤ n and 1 < q ≤ n such that
(
i11, i

2
p

)
and

(
i1q, i

2
1

)
are

two arcs of M. But i11 < i1q and i21 < i2p, and hence one of the configurations of
Fig. 8 (with j = 1) does occur in M. This is a contradiction since M satisfies
Property Q1, and hence

(
i11, i

2
1

)
is an arc of M.

– Induction step. Assume that
(
i1k, i2n−k+1

)
is an arc of M for 1 ≤ k < j, and

suppose, aiming at a contradiction, that
(
i1j , i

2
j

)
is not an arc of M. Then,

there exist j < p ≤ n and j < q ≤ n such that
(
i1j , i

2
p

)
and

(
i1q, i

2
n−j+1

)
are

two arcs of M. But i1j < i1q and i2j < i2p, and hence one of the configurations of
Fig. 8 does occur in M. This is a contradiction since M satisfies Property Q1,
and hence

(
i1j , i

2
j

)
is an arc of M.

Now, let σ1 be the pattern of π induced by the sources of M and σ2 be the
pattern of π induced by the sinks of M (i.e., σ1 = π

(
i11

)
π

(
i12

)
. . . π

(
i1n

)
and

σ2 = π
(
j21

)
π

(
j22

)
. . . π

(
i2n

)
). Clearly σ1 and σ2 are disjoint in π (since M is a

matching) and cover π (since M is perfect). Moreover, the fact that M satisfies
P2 implies immediately that reduce(σ1) is order-isomorphic to (reduce ◦ c)(σ2),
and hence this shows that π ∈ Sc

2n.

Corollary 1. c-Unshuffle-Permutation is NP-complete.

Proof. Combine Proposition 7 with Proposition 1.
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Proposition 9. Let π ∈ S2n. The two following statements are equivalent.

1. π ∈ Src
2n.

2. There exists a directed perfect matching M that satisfies properties P2

and Q2.

Proof. (1 ⇒ 2) Let π ∈ Src
2n. Then, there exists σ ∈ Sn such that π ∈

σ� (r ◦ c)(σ), and hence there exist two disjoint set of indices I1 = {i1j : j ∈ [n]},
i11 < i12 < · · · < i1n, and I2 = {i2j : j ∈ [n]}, i21 < i22 < · · · < i2n, such that
π(i11)π(i12) · · · π(i1n) is order-isomorphic to σ and π(i21)π(i22) · · · π(i2n) is order-
isomorphic to (r ◦ c)(σ). Let M = (V,E) be the directed graph defined by
V = [2n] and E =

{(
i1j , i

2
n−j+1

)
: j ∈ [n]

}
. Clearly, M is a directed perfect

matching since I1 ∩ I2 = ∅ and I1 ∪ I2 = [2n]. According to Lemma 6, the

directed perfect matching M does avoid the patterns , , , ,

and . Finally, for any two distinct arcs
(
i1j , i

2
n−j+1

)
and

(
i1k, i2n−k+1

)

of M, we have π
(
i1j

)
< π

(
i1k

)
if and only if π

(
i2n−j+1

)
> π

(
i2n−k+1

)
since

π(i11)π(i12) · · · π(i1n) is order-isomorphic to σ and π(i21)π(i22) · · · π(i2n) is order-
isomorphic to (r ◦ c)(σ). Therefore, M satisfies properties P1 and Q2.

i2p i1j i2n−j+1 i1q i2p i1j i1q i2n−j+1

)ii()i(

i1j i2p i2n−j+1 i1q i1j i2p i1q i2n−j+1

)vi()iii(

i2p i2n−j+1 i1j i1q i1j i1q i2p i2n−j+1

)iv()v(

Fig. 9. All possible configurations considered in proof of proposition 9 (2 ⇒ 1).

(2 ⇒ 1) Let M be a directed perfect matching that satisfies properties P1

and Q2. Let I1 = {i1j : j ∈ [n]}, i11 < i12 < · · · < i1n, be the set the sources of the
arcs of M and let I2 = {i2j : j ∈ [n]}, i21 < i22 < · · · < i2n, be the set of the sinks
of the arcs of M. We first show that, for every j ∈ [n],

(
i1j , i

2
n−j+1

)
is an arc of

M. The proof is by induction on j = 1, 2, · · · , n.
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– Base. Suppose, aiming at a contradiction that
(
i11, i

2
n

)
is not an arc of M.

Then, there exist 1 ≤ p < n and 1 < q ≤ n such that
(
i11, i

2
p

)
and

(
i1q, i

2
n

)
are

two arcs of M. But i11 < i1q and i2p < i2n, and hence one of the configurations
of Fig. 9 (with j = 1 and k = n) does occur in M. This is a contradiction
since M satisfies Property Q2, and hence

(
i11, i

2
n

)
is an arc of M.

– Induction step. Assume that
(
i1k, i2n−k+1

)
is an arc of M for 1 ≤ k < j,

and suppose, aiming at a contradiction, that
(
i1j , i

2
n−j+1

)
is not an arc of M.

Then, there exist 1 ≤ p < n − j + 1 and j < q ≤ n such that
(
i1j , i

2
p

)
and(

i1q, i
2
n−j+1

)
are two arcs of M. But i1j < i1q and i2p < i2n−j+1, and hence one

of the configurations of Fig. 9 does occur in M. This is a contradiction since
M satisfies Property Q2, and hence

(
i1j , i

2
n−j+1

)
is an arc of M.

Now, let σ1 be the pattern of π induced by the sources of M and σ2 be
the pattern of π induced by the sinks of M (i.e., σ1 = π

(
i11

)
π

(
i12

)
. . . π

(
i1n

)

and σ2 = π
(
j21

)
π

(
j22

)
. . . π

(
i2n

)
). Clearly σ1 and σ2 are disjoint in π (since

M is a matching) and cover π (since M is perfect). Moreover, the fact that
M satisfies P2 implies immediately that reduce(σ1) is order-isomorphic to
(reduce ◦ r ◦ c)(σ2), and hence this shows that π ∈ Src

2n.

Proposition 10. (r ◦ c)-Unshuffle-Permutation is NP-complete.

Proof. (sketch) The proof is similar to Proposition 7, replacing μ′
1 by ↗N1 [2n +

k+N1 +2N2], μ′
2 by ↗N2 [n+k+N1 +N2], μ′

π by (r ◦ c)(π)[2n+k+2N1 +2N2]
and μ′

σ by (r ◦ c)(σ)[n + k + N1 + 2N2].

5 Conclusion and Perspectives

In this paper we have proposed to investigate the problem of recognizing those
permutations π for which there exists a permutation σ such that π ∈ σ � f(σ)
for some bijection f : Sn → Sn. Quite a number of problems are left open by
the results presented here. For instance, can we efficiently decide membership to
S i
2n (i.e., the permutations π for witch there exists a permutation σ such that

π ∈ σ� i(σ))? To conclude, we wish to mention two conjectures.

Conjecture 1 (Enumeration). For any n ∈ N, src2n ≤ sc2n = sr2n ≤ sirc2n = si2n ≤
sε
2n ≤ sci2n = sic2n.

Conjecture 2 (Ubiquitous generalized squares). For any n ∈ N, Sε
2n ∩Sr

2n ∩Sc
2n ∩

S i
2n ∩ Sci

2n ∩ S ic
2n ∩ Src

2n ∩ S irc
2n �= ∅.
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Abstract. We study logics with team semantics in computable met-
ric spaces. We show how to define approximate versions of the usual
independence/dependence atoms. For restricted classes of formulae, we
show that we can assume w.l.o.g. that teams are closed sets. This then
allows us to import techniques from computable analysis to study the
complexity of formula satisfaction and model checking.

Keywords: Team semantics · Continuous logic ·
Computable analysis · Independence Logic · Dependence logic

1 Introduction

Team semantics is a semantical framework for logics of dependence and inde-
pendence. Team semantics was originally invented by Hodges [11] and later sys-
tematically developed and made popular by Väänänen by the introduction of
Dependence Logic [22]. In team semantics formulas are evaluated using sets of
assignments (called teams) rather than single assignments as in first-order logic.
Therefore, it is not surprising that the expressive power of many of the logics
studied in team semantics exceeds the expressive power of first-order logic. The
introduction of Independence Logic (FO(⊥)) in [9] and inclusion (x ⊆ y) and
exclusion atoms (x | y) (and the corresponding logics) [8] demonstrated the
versatility of the framework and have led to several studies on the applications
of team semantics in areas such as database theory, model theory, and quantum
information theory (see, e.g. [1,6,10,12,13,16]).

In this article we explore and apply team semantics in a metric context.
The expressive power that team semantics makes available to us in the form of
dependence and independence atoms comes at the prize that in the definitions,
we have to quantify over the powerset of our structure. On the logical level, this
lets the expressivity exceed first-order logic, and in many cases, reach existential
second-order logic. From an algorithmic perspective, this involves an exponential
blow-up in the relevant search space, and causes a number of hardness results.
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In a metric context, we are facing having to deal with sets such as the power-
set of the unit interval. This would seem to destroy the hope of any algorithmic
approach, and very much opens the door to the specter of independence of ZFC.
Fortunately, our first main results show that for certain well-behaved classes
of sentences, it is safe to assume that all teams are closed. The hyperspace of
closed subsets of a (compact separable) metric space is much better understood,
and been made accessible to algorithmic approaches through the development
of computable analysis. We make use of the opportunity, and show that model-
checking and satisfaction are semidecidable for the aforementioned well-behaved
formulae. This is the best possible result in full generality.

In the metric context, it is very natural to consider approximate versions of
the usual dependence and independence atoms (see, e.g., [6,15,23] for related pre-
vious work on so-called metric functional dependencies and approximate depen-
dencies in (non-metric) team semantics). As an added bonus, the approximate
versions are compatible with our notions of well-behaved formulae, and thus
greatly increase what we can express directly without leaving the realm of tame-
ness. We conclude our investigation (for now) by considering the translatability
between the approximate versions, and contrast these to the established transla-
bility results regarding the exact versions.

2 Definitions

We are working with a fixed structure, which here is a (compact separable1)
metric space (X, d) together with certain predicates, i.e. subsets of Xn for n ∈ ω.
To simplify notation, we will usually not explicitly mention the structure, but
simply take it for granted. We then proceed to define when T |= φ holds, where
T ⊆ Xn is a team, and φ is a positive formula involving both basic predicates
and certain special primitives. These definitions are completely standard, see
[8,22].

Variables are assumed to correspond to specific dimensions. We write πx for
the projection to the dimensions corresponding to the variables comprising the
tuple x; and π−x for the projection to all dimensions except the one correspond-
ing to the variable x. Note that the order n which the variables appear in x
impacts the meaning of πx, e.g. πxyA and πyxA are related by (a, b) ∈ πxyA iff
(b, a) ∈ πyxA. We allow for the case of variables appearing multiple times in a
tuple, this means the corresponding dimension will be duplicated in the result.
By × we denote the usual cartesian product and, for R over xz and R′ over zy,
the join R �� R′ of R and R′ is defined by

R �� R′ = {xzy | xz ∈ R and zy ∈ R′}.

T |= P (x1, . . . , xk) if ∀(x1, . . . , xk) ∈ T it holds that P (x1, . . . , xk).
T |= φ ∧ ψ if both T |= φ and T |= ψ.

1 These requirements are used for the proofs, but are not strictly needed for our
definitions to make sense.
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T |= φ ∨ ψ if there are T1, T2 such that T1 |= φ, T2 |= ψ and T = T1 ∪ T2.
T |= ∀x φ if (X × T ) |= φ.
T |= ∃x φ if there is T ′ such that π−xT ′ = T and T ′ |= φ.
T |= = (x, y) if for any s, s′ ∈ T it holds that if s(x) = s′(x) then s(y) = s′(y).
T |= x ⊥ y if (πxT ) × (πyT ) = πxyT .
T |= x ⊥z y if (πxzT ) �� (πzyT ) = πxzyT .
T |= x ⊆ y if (πxT ) ⊆ (πyT ).

There is one case of a primitive where we will deviate from its usual definition.
Usually, one would define

T |= x|y if πxT ∩ πyT = ∅ (Classical definition)

However, in a metric context apartness seems to be a far more natural notion
than disjointness – and they obviously coincide in the traditional setting of finite
models. We thus chose:

T |= x|y if d(πxT, πyT ) > 0 (Our modified definition)

We point out that in the semantics for ∃ and ∨, we are quantifying over
teams. The precise scope of this quantification will vary in our investigation. We
consider the case where the quantification ranges over the entire powerset of X,
the case where only closed teams are permitted, and briefly also the case where
only open teams are permitted. These options are compared in Sect. 3.

2.1 Approximate Dependence/Independence Atoms

We can use the metric available as part of our structure to define approximate
versions of the dependence/independence atoms. As mentioned in the introduc-
tion, this has precedence in database theory, related to data cleaning. In many
cases, there are two independent parameters describing how exactly we approxi-
mate the atoms. Typically, one parameter corresponds to relaxing the atom, the
other to strengthening it. Depending on whether we chose strict or non-strict
inequalities, one gets both open and closed versions of the atoms2. We denote
the closed versions with , the open versions are the non-decorated ones.

T |= =ε
δ (x, y) if for any s, s′ ∈ T it holds that if d(s(x), s′(x)) ≤ δ then

d(s(y), s′(y)) < ε.
T |= =ε

δ(x, y) if for any s, s′ ∈ T it holds that if d(s(x), s′(x)) < δ then
d(s(y), s′(y)) ≤ ε.

T |= x ⊥δ,ε
z y if for all s, s′ ∈ T , if d(s(z), s′(z)) ≤ δ then there is s′′ ∈ T such

that d(s′′(xz), s(xz)) < ε and d(s′′(zy), s′(zy)) < ε.
T |= x⊥δ,ε

zy if for all s, s′ ∈ T , if d(s(z), s′(z)) < δ then there is s′′ ∈ T such
that d(s′′(xz), s(xz)) ≤ ε and d(s′′(zy), s′(zy)) ≤ ε.

T |= x ⊆ε y if (πxT ) ⊆ B(πyT, ε).
T |= x⊆εy if (πxT ) ⊆ B(πyT, ε).
T |= x|εy if d(πxT, πyT ) > ε.
T |= x|εy if d(πxT, πyT ) ≥ ε.
2 Of course, we could also mix the cases. However, part of the overall theme of this

article is to control topological complexity, so this seems undesirable.
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3 Restricting Teams to Closed Sets

In this section, we show that for restricted formulae the semantics allowing
arbitrary teams and the semantics allowing only closed teams coincide, and then
give some examples how this breaks down for arbitrary formulae.

3.1 Closed Formulae

Theorem 1. For positive sentences involving closed basic predicates, ⊥, ⊆,
=ε

δ(·, ·), ⊥δ,ε·, ⊆ε and |ε, the usual team semantics and the teams-are-closed
sets semantics agree.

Proof. This is a special case of Corollary 1 below.

Lemma 1. For an arbitrary team T , we find that

1. T |= P (x) implies T |= P (x), where P is a basic closed predicate
2. T |= x ⊥ y implies T |= x ⊥ y
3. T |= x ⊆ y implies T |= x ⊆ y
4. T |= =ε

δ(x, y) implies T |= =ε
δ(x, y)

5. T |= x⊥δ,ε
zy implies T |= x⊥δ,ε

zy
6. T |= x⊆εy implies T |= x⊆εy
7. T |= x|εy implies T |= x|εy
Proof. For 1–3, we only need that closure and projection commute. For 4, 5
we note that since the premise of the implication in the definition has a strict
inequality and the conclusion a non-strict one, taking the closure of the team
has no impact. For 6, 7 we are using the distance to the team, which is invariant
under taking the closure.

Corollary 1. Let φ be a positive formula involving basic closed predicates, ⊥,
⊆, =ε

δ(·, ·), ⊥δ,ε·, ⊆ε and |ε. For an arbitrary team T , we find that T |= φ
implies that T |= φ.

Proof. Induction over the structure of φ. Lemma 1 provides the base case. The
only non-trivial steps are ∃ and ∨, where we use that projection commutes with
closure for the former, and that T = T1 ∪ T2 implies T = T 1 ∪ T 2 for the latter.

3.2 Open Formulae

Theorem 2. For positive sentences involving basic open predicates and |, the
following all agree:

1. the semantics allowing arbitrary sets as teams
2. the semantics demanding teams to be open sets
3. the semantics demanding teams to be closed sets

Proof. By Lemma 2, truth in (1) implies truth in (2). By Lemma3, truth in (2)
implies truth in (3). That truth in (3) implies truth in (1) is trivial.
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Lemma 2. Let φ be a positive formula involving basic open predicates and |, let
T |= φ and let x ∈ T . Then there is some ε > 0 such that T ∪ B(x, ε) |= φ,
with only open teams being used as witnesses.

Proof. We proceed by induction over the structure of φ. Universal and existential
quantifier are trivial. For conjunctions, we use that the relevant formulae are
downwards-closed, and take the minimum ε from both sides. For disjunctions,
we note that from x ∈ T = T1 ∪ T2 we find x ∈ T1 or x ∈ T2, proceed to use
the induction hypothesis on the relevant side, and then use that T ∪ B(x, ε) =
(Ti ∪ B(x, ε)) ∪ T3−i.

The base cases for the induction are the basic open predicates and |, in both
cases the claim follows from the definition.

Lemma 3. Let φ be a positive formula involving basic open predicates and |, let
T |= φ for open T , let n ∈ N. Define Tn = {x ∈ T | d(x, TC) ≥ 2−n}. Then
Tn |= φ, with only closed teams used as witnesses.

Proof. Straight-forward from downwards-closure.

Downwards-closure of | makes the proofs of Lemmas 2, 3 very simple, but this
proof does not extent to the open approximate atoms that are not downwards-
closed. We conjecture that downwards-closure is not actually needed for the
statements to hold, but leave this for future work at this stage.

3.3 Counterexamples

We proceed to give some counterexamples showing that if we allow using both
open and closed basic predicates in a formula, then the semantics for arbitrary
teams and the semantics where we allow only closed teams differ. Using closed
teams only lets us express some topological properties of the carrier metric space,
and reveals some similarities to constructive mathematics.

Example 1. The formula

∀x∀y (x = y) ∨ (x �= y)

is a tautology for arbitrary teams, but expresses that the space is discrete for
closed teams. Note that this is in line with how the formula works in constructive
mathematics.

Example 2. The formula

∃x∀y (x = y) ∨ (x �= y)

is a tautology for arbitrary teams, but expresses that the space contains some
isolated point for closed teams. Note that this is in line with how the formula
works in constructive mathematics.
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Example 3. The formula

∀x∃y∃z ((x = y ∨ x = z) ∧ y|z)

holds over X = [0, 1] if arbitrary teams are allowed, but not if teams have to
be closed sets. The reason is that the y and the z values have to be disjoint
non-empty sets covering X. For closed teams, this formula expresses that the
space is disconnected.

Example 4. The formula

∀x∃y (x �= y)∧ = (x, y)

holds over every model with at least two elements, if arbitrary teams are allowed.
If teams are restricted to closed sets, it asserts the negation of the fixed-point-
property for X.

4 Background on Computability on Metric Spaces and
for Closed Sets

We wish to study the algorithmic properties of questions such as satisfiability and
model checking for our continuous team semantics. The algorithmic aspects of
logics with team semantics have been studied extensively over finite structures
(see the survey [7]). This requires notions of effectivity and computability for
separable metric spaces, for hyperspaces of closed subsets of metric spaces, and
finally for the entire collection of compact separable metric spaces. The field of
computable analysis provides all of these notions. The standard reference is [24],
but we follow [18]. Another short introduction to the area is [3].

As we lack the space for a rigorous development of the area, we will restrict
our undertaking to a cursory description of the needed notions and special cases.
The foundational concept in computable analysis is a represented space, which
is just a set X together with a partial surjection δ :⊆ N

N → X. Here δ tells
us how the elements of interest are coded. We can then lift the usual notion of
computation on N

N to any represented space by letting our machine model act
on names for elements.

A class of represented spaces of particular interest for us are the computable
metric spaces: We take a separable metric space with a designated dense sequence
(an)n∈N such that s < d(an, am) < t is recursively enumerable in n,m ∈ N,
s, t ∈ Q. Then a point x is coded by giving a sequence p of indices such that
d(ap(n), x) < 2−n. A computable metric space X is computably compact, if the set
of finite sequences (n0, r0), . . . , (n�, r�) such that X ⊆ ⋃

i≤� B(ani
, 2−ri) is recur-

sively enumerable. Computable metric spaces always have two further properties
we will use; they are computably Hausdorff and computably overt.

We use several hyperspace constructions, i.e. constructions of certain spaces
of subsets of a given represented space. We have the space O(X) of open subsets,
the space A(X) of closed subsets and the space V(X) of compact subsets.
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The open subsets are characterized by x ∈ U being semidecidable (rec-
ognizable) in x ∈ X and U ∈ O(X). For a computable metric space X,
this can concretely be achieved by coding U ∈ O(X) as 〈p, q〉 with U =⋃

{n|p(n) �=0} B(ap(n)+1, 2−q(n)). The closed subsets are the formal complements of
the open sets, i.e. the codes for A ∈ A(X) are just the codes for (X \A) ∈ O(X).

The overt subsets V(X) are assumed to be closed extensionally, but have
different codes and subsequently very different associated computable operations
from A(X). The overt subsets are characterized by U∩A �= ∅ being semidecidable
(recognizable) in U ∈ O(X) and A ∈ V(X). In a computable metric space they
can be coded as a list of all basic open balls intersecting them.

Since A(X) and V(X) pointwise have the same elements, we can also con-
struct A∧V(X), where a set is coded by the combination of its A(X)-code and its
V(X)-code. Over a computably compact computable metric space X, the space
A∧V(X) corresponds to the space of closed subsets equipped with the Hausdorff
metric. In this case, the space is characterized by making d : X×(A∧V(X)) → R

computable.

4.1 Overtness and Compactness

The relevance of the notions of compactness and overtness for spaces in general,
and for our purposes in particular, is exhibit by the following lemmas tying it
in to the preservation of the complexity of formula under quantification.

Lemma 4. The following are equivalent for a represented space X:

1. X is computably overt.
2. ∃ : O(X×Y) → O(Y) is computable for all represented spaces Y (respectively

some space containing a computable point)
3. ∀ : A(X×Y) → A(Y) is computable for all represented spaces Y (respectively

some space containing a computable point)

Proof. The equivalence of 1 and 2 is a special case of [18, Proposition 40]. The
equivalence of 2 and 3 is by duality.

Lemma 5. The following are equivalent for a represented space X:

1. X is computably compact.
2. ∀ : O(X×Y) → O(Y) is computable for all represented spaces Y (respectively

some space containing a computable point)
3. ∃ : A(X×Y) → A(Y) is computable for all represented spaces Y (respectively

some space containing a computable point)

Proof. The equivalence of 1 and 2 is a special case of [18, Proposition 42]. The
equivalence of 2 and 3 is by duality.
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4.2 Computable Operations on the Closed and Overt Sets

We proceed to recall or establish the basic properties of the space A ∧ V(X)
which we shall use in the following.

Theorem 3 (Park, Park, Park, Seon and Ziegler [17]). For a computably
compact computable metric space X, the space A∧V(X) is a computably compact
computable metric space again.

Corollary 2. For a computably compact computable metric space X, the space
A ∧ V(X) is computably overt.

Corollary 3. For a computably compact computable metric space X, the space
A ∧ V(X) is computably compact.

Lemma 6. The following maps are computable for computably compact Y, and
countably-based X,Y:

1. πx : A ∧ V(X × Y) → A ∧ V(X)
2. × : A ∧ V(X) × A ∧ V(Y) → A ∧ V(X × Y)

Proof. 1. We can show separately that πx : A(X×Y) → A(X) and πx : V(X×
Y) → V(X) are computable. The former is [18, Proposition 8 (8)] (using
computable compactness of Y), the latter is [18, Proposition 21 (6)].

2. Again, this can be shown separately for A and V. The former is [18, Propo-
sition 6 (8)]. For the latter, we use the fact that X,Y being countably-based
implies that O(X×Y) effectively is the product topology, i.e. that there is a
computable multi-valued operation Decompose : O(X × Y) ⇒ C(N,O(X) ×
O(Y)) such that (Ui, Vi)i∈N ∈ Decompose(O) iff O =

⋃
n∈N

Un × Vn. Now if
(Ui, Vi)i∈N ∈ Decompose(O) we find that O intersects A × B ⊆ X × Y iff
∃n ∈ N Un ∩ A �= ∅ ∧ Vn ∩ B �= ∅. By currying, this is all we need.

Lemma 7. In a computably compact computable metric space X, the map
(A, ε) �→ B(A, ε) : A(X) × R+ → A(X) is computable.

Proof. We have y /∈ B(A, ε) iff B(y, ε) ∩ A = ∅. The latter is an open property
by computable compactness.

Lemma 8. The following are closed predicates on A ∧ V(X) × A ∧ V(X):

1. ⊆
2. =

Proof. Note that A ⊆ B iff A ∩ BC = ∅, and that by definition of A and V,
A ∩ BC �= ∅ is already an open predicate on V(X) × A(X). For 2., just observe
that A = B iff A ⊆ B ∧ B ⊆ A.

Lemma 9. ∪ : A ∧ V(X) × A ∧ V(X) → A ∧ V(X) is computable.

Proof. This is the combination of [18, Proposition 6(3)] and [18, Proposition
21(3)].
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4.3 Compact Metric Structures

We shall now discuss the connection of the theory of computable metric subspace
and the induced hyperspaces to the notion of a structure as used to interpret
logical formulas. First, we note that we have the represented space Pol of Polish
spaces and the represented space KPol of compact separable metric spaces. A
similar hyperspace of countably-based spaces was introduced and studied in [20].
In the space Pol, we code a separable space X by presupposing N as a dense set,
and then providing all distances dX(n,m). This uniquely determines a Polish
space by considering the completion. The space KPol is not merely the subspace
of Pol restricted to compact spaces, but here we additionally code all finite
covers B(n0, 2−k0) ∪ . . . ∪ B(n�, 2−k�) into the name of the space. We point out
that all arguments given above3 regarding the properties of computably compact
computable metric spaces hold uniformly in a compact metric space given as an
element of KPol.

To introduce the notion of a structure, we first need the notion of a signature.
A signature consists of function and relation symbols, each with some finite
arity. Once a signature is fixed, we define a structure to be an underlying set A,
together with a function fi : Ani → A for each function symbol of arity ni, and
a subset Ri ⊆ Ani for each relation symbol of arity ni. Note that, contrary to
convention, we do not make equality available for free. Instead, we can only use
equality in our formula if it is provided as a relation by the signature/structure.
We lift this to compact metric spaces as follows:

Definition 1. A compact metric closed (respectively open) structure (over a
given signature) consists of a compact separable metric space X as carrier, a
continuous function fi : Xni → X for each function symbol of arity ni in the
signature, and a closed (respectively open) subset Ri ⊆ Xni for each relation
symbol of arity ni in the signature.

We write ACMS (respectively OCMS) for the represented space of com-
pact metric closed (respectively open) structures, where the carrier is given as
X ∈ KPol, the functions as fi ∈ C(Xni ,X) and the relations as Ri ∈ A(Xni)
(respectively as Ri ∈ O(Xni)).

5 Topological Complexity

We proceed to study the topological complexity of the atoms, of formula satis-
faction and of model checking. Since we have a topology on the space of closed
and overt sets we are using for teams, and on the spaces of structures, these are
all well-defined notions.

3 In fact, example of statements that are computable for each computable metric
space, yet are not computable uniformly in the metric space are very rare in the
literature. See [19, Proposition 14] for such a rare example.
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5.1 Topological Complexity of Dependence Atoms

Proposition 1. The following are closed predicates in the team:

1. T |= P (x), where P is a basic closed predicate
2. T |= x ⊥ y
3. T |= x ⊆ y
4. T |= =ε

δ(x, y)
5. T |= x⊥δ,ε

zy
6. T |= x⊆εy
7. T |= x|εy
Proof. By Lemmas 6, 8, 1–3 follow immediately from the definitions. For 4–5,
we have a universal quantification over the team, and then a closed property,
which makes for a closed property by Lemma 5. For 6, note this is obtained by
combining Lemmas 6, 7 and 8. Finally, 7. just follows from the continuity of the
Hausdorff distance on A ∧ V(X).

Proposition 2. The following are open predicates in the team:

1. T |= P (x), where P is a basic open predicate
2. T |= x|y
3. T |==ε

δ (x, y)
4. T |= x ⊥δ,ε

z y
5. T |= x ⊆ε y
6. T |= x|εy
Proof. For 1., note that this means πxT ⊆ P . By Lemma 6, we can compute
πxT as a closed set, which we also have as a compact set due to the fact that we
are working in a compact space. By definition of compact sets, this makes the
predicate open. Claim 2. follows immediately from the definition by Lemmas 6, 8.
Items 3., 4., 5. and 6. are analogous to their closed counterparts in Proposition 1.

Proposition 3. The following are Π0
2 -complete predicates in the team:

1. T |= =(x, y)
2. T |= x ⊥z y

Proof. We obtain a lower bound for T |= =(x, y) from Lemma 10, and an upper
bound for T |= x ⊥z y by noting that ∀ε∃∃δT |= xδ ⊥δ,ε

z y is equivalent to
T |= x ⊥z y. These are then linked by noting that =(x, y) ≡ y ⊥x y.

Lemma 10. T |= =(x, y) is Π0
2 -hard over {0, 1}N.

Proof. Given some p ∈ {0, 1}N, we compute some Tp ∈ A ∧ V({0, 1}N × {0, 1}N)
such that Tp |= =(x, y) iff p contains infinitely many 1s. We point out that
a set A ∈ A ∧ V({0, 1}N) can be represented as a sequence (Wk)k∈N where
Wk ⊆ {0, 1}2k

satisfy that ∀w ∈ Wk∃u ∈ {0, 1}2k

wu ∈ Wk+1 and q ∈ A ⇔
∀k q≤2k ∈ Wk.
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We define our sequence inductively, and take into account the standard bijec-
tion {0, 1}N × {0, 1}N ∼= {0, 1}N. We start with W1 = {00, 01, 10, 11}. Whenever
p(k) = 1, then we let Wk+1 = {〈wu, uu〉 | 〈w, u〉 ∈ Wk}. Whenever p(k) = 0,
then Wk+1 = {wu | w ∈ Wk ∧ u ∈ {0, 1}2k}.

To argue that this construction works as intended, let us first consider the
case where p has only finitely many 1s. Let K be sufficiently large that p(j) = 0
for all j ≥ K. Pick some 〈w, u〉 ∈ WK . Now the construction ensures that
w{0, 1}N × u{0, 1}N ⊆ Tp, hence Tp �|= =(x, y).

Conversely, assume for the sake of a contradiction that p contains infinitely
many 1s, yet Tp �|= =(x, y). Pick witnesses a, b1, b2 for the latter, i.e. satisfying
that (a, b1) ∈ Tp and (a, b2) ∈ Tp, yet b1 �= b2. Pick K such that p(K) =
1 and (b1)≤2K �= (b2)≤2K . We must have that 〈a≤2K+1 , (b1)≤2K+1〉 ∈ WK+1

and 〈a≤2K+1 , (b2)≤2K+1〉 ∈ WK+1, but these cannot both be of form 〈wu, uu〉,
contradiction.

5.2 Complexity of Formula Satisfaction

Theorem 4. Let φ be a positive formula involving closed basic predicates, ⊥,
⊆, =ε

δ(·, ·), ⊥δ,ε·, ⊆ε and |ε. Then T |= φ defines a closed predicate in the team
(uniformly in φ).

Proof. By induction on the structure of φ. The base cases are provided by
Proposition 1.

Dealing with ∧ is trivial.
Let φ = φ1 ∨ φ2. By induction hypothesis, Ti |= φi is a closed predicate in

Ti. Then T = T1 ∪ T2 ∧ T1 |= φ1 ∧ T2 |= φ2 is a closed predicate in (T, T1, T2),
since ∪ is computable on A ∧ V(X) by Lemma 9 and A ∧ V(X) is Hausdorff by
Lemma 8. By Corollary 3, Lemma 5 applies and lets us conclude that quantifying
existentially over T1 and T2 still leaves us with a closed predicate.

For φ = ∀x ψ, we note that T �→ X × T is computable, and that T |= φ is
preimage of the closed predicate T ′ |= ψ under that map.

For φ = ∃x ψ, we invoke Lemma 5 by means of Corollary 3.

Since we have not yet established whether the semantics for arbitrary teams
and closed teams still agree when also the approximate open predicates are
permitted, for now we study the complexity of satisfaction only in the case
where satisfaction is unambiguous:

Theorem 5. Let φ be a positive formula involving basic open predicates and
|. Then T |= φ defines a open predicate in the team (uniformly in φ). As a
consequence, if T |= φ, then we can effectively find some n ∈ N such that any
T ′ with d(T, T ′) satisfies T ′ |= φ.

Proof. By induction on the structure of φ. The base cases are provided by
Proposition 2.

Dealing with ∧ is trivial.
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Let φ = φ1∨φ2. By induction hypothesis, Ti |= φi is an open predicate in Ti.
Given T0, T1 with Ti |= φi, we can find some n ∈ N such that if d(Ti, T

′
i ), then

T ′
i |= φi. The map Ti �→ OTi := {x ∈ Xk | d(x, Ti) < 2−n} :⊆ A ∧ V(Xk) →

O(Xk) is computable. We can extend this to a computable total map (i.e. define
it also for Ti �|= φ by setting OTi = ∅ in that case. Now T1 |= φ1 ∧ T2 |=
φ2 ∧ T ⊆ OT1 ∪ OT2 is an open predicate in (T, T1, T2). Clearly, whenever the
Ti are suitable witnesses for T |= φ, this predicate is satisfied. Conversely, if
the predicate is satisfied, consider T ′

i = {x ∈ T | d(x, Ti) ≤ d(x, T2−i)} and note
that d(Ti, T

′
i ) < 2−n, hence T ′

i |= φ. Thus, our modified predicate is equivalent
to the existence of witnesses for T |= φ. Corollary 2 lets us invoke Lemma 4 to
remove the existential quantifier over Ti.

For φ = ∀x ψ, we note that T �→ X × T is computable, and that T |= φ is
preimage of the open predicate T ′ |= ψ under that map.

Let φ = ∃x ψ. Similar to the argument above, the map T ′ �→ OT ′ : A ∧
V(Xk+1) → O(Xk) is computable; mapping T ′ with T ′ |= ψ to OT ′ = {y ∈
Xk | d(x, π−xT ′) < 2−n}, where n is chosen such that if d(T ′, T ′′) < 2−n, then
T ′′ |= ψ; and mapping T ′ �|= ψ to OT ′ = ∅. Now T ′ |= ψ ∧T ⊆ OT ′ is an open
predicate in (T, T ′), and as above, equivalent to the existence of a witness for
T |= φ. Corollary 2 lets us invoke Lemma 4 to remove the existential quantifier
over T ′.

5.3 The Complexity of Model Checking

As the proofs of Theorems 4 and 5 are fully uniform, we can obtain a classifica-
tion of the model checking problem. We shall write L+(⊥,⊆,=ε

δ(·, ·),⊥δ,ε·,⊆ε, |ε)
for the set of positive sentences involving basic predicates, ⊥, ⊆, =ε

δ(·, ·), ⊥δ,ε·,
⊆ε and |ε. Likewise, we write L+(|) for the set of positive sentences involving
basic predicates and |. These sets are coded in the obvious way, including the
real-valued parameters. Note that formulae from L+(⊥,⊆,=ε

δ(·, ·),⊥δ,ε·,⊆ε, |ε)
can use all potential choices for ε and δ, but that no quantification over these
parameters is available. We recall our convention that equality is not automat-
ically available, but would need to be provided by interpreting some binary
relation symbol accordingly. We then find:

Corollary 4. It is semidecidable whether a formula L+(⊥,⊆,=ε
δ(·, ·),⊥δ,ε·,

⊆ε, |ε) does not hold in a structure S ∈ ACMS.

Proof. From Theorem 4. Note that a sentence φ is satisfied in a structure with
carrier X iff {1} |= φ for the trivial non-empty team {1} ⊆ X0.

Corollary 5. It is semidecidable whether a formula φ ∈ L+(|) holds in a struc-
ture S ∈ OCMS.

Proof. From Theorem 5. Note that a sentence φ is satisfied in a structure with
carrier X iff {1} |= φ for the trivial non-empty team {1} ⊆ X0.
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A priori, having even decidability may seem desirable. This, however, is com-
pletely out of the question:

Proposition 4. It is undecidable whether ∀xR(x) holds in a structure S ∈
AMCS or S ∈ OMCS, even if we restrict to the case where the carrier space is
the one-point space 1.

Proof. In the restricted case, the question becomes whether R is interpreted
as the universal predicate or as the empty predicate. This is undecidable for
R ∈ O(1) or R ∈ A(1).

6 Translations Between Approximate Atoms

In classical dependence logic the expressive power of logics appended with var-
ious combinations of dependence/independence atoms has been studied. The
comparisons rely on translations of the atoms. In an approximate setting we
don’t get exact translations, but can ‘sandwich’ atoms between parameterised
variants of a formula using some other atoms.

In the translations we use as underlying logic first order logic without equal-
ity, and replace equality by either open or closed metric predicates.

We give three ‘translations’ between dependency atoms. We only show the
open versions here, but the closed counterparts are proved similarly.

Proposition 5. 1. If ε > δ ≥ 0, then =ε
δ (x, y) ⇒ y ⊥δ,ε

x y.
2. For any δ ≥ 0, ε > 0, y ⊥δ,ε/2

x y ⇒ =ε
δ (x, y).

Proof. For the first, assume T |= =ε
δ (x, y) and let s, s′ ∈ T be such that

d(s(x), s′(x)) ≤ δ. Then d(s(y), s′(y)) < ε, so s satisfies the independence witness
requirement d(s(xy), s(xy)) < ε and d(s(xy), s′(xy)) < ε.

For the second claim, assume T |= y ⊥δ,ε/2
x y and let s, s′ ∈ T be such that

d(s(x), s′(x)) ≤ δ. Then there is s′′ ∈ T such that d(s′′(xy), s(xy)) < ε and
d(s′′(xy), s′(xy)) < ε, and the claim follows by the triangle inequality.

The next proposition is a metric modification of Galliani’s proof from [8].
The remarkable thing is, that the Boolean encoding he uses can be made to
work in this metric setting.

Proposition 6. Assuming all models considered have diameter at least D,

x ⊆ε y ⇒ ∀v1∀v2∀z(
(d(z, x) > δ/2 ∧ d(z, y) > ε)∨
(d(v1, v2) < d2 + δ ∧ d(v1, v2) > d1 − δ)∨
(d(v1, v2) > d2 ∧ d(z, y) > ε)∨
((d(v1, v2) < d1 ∨ d(z, y) < ε + δ/2) ∧ z ⊥δ v1v2))

for any d1 < d2 < D and 0 < δ < d1,D − d2.
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Proof. Assume T |= x ⊆ε y. Let T ′ = T [M/v1][M/v2][M/z].4 Let

T1 = {s ∈ T ′ : d(s(z), s(x)) > δ/2& d(s(z), s(y) > ε},

T2 = {s ∈ T ′ : d(s(v1), s(v2)) < d2 + δ & d(v1, v2) > d1 − δ},

T3 = {s ∈ T ′ : d(s(v1), s(v2)) > d2 & d(s(z), s(y)) > ε},

T4 = T ′\(T1 ∪ T2 ∪ T3).

So we need to show that anything not in T1∪T2∪T3 satisfies the fourth disjunct.
Now, if s ∈ T4 is such that d(s(v1), s(v2)) ≥ d1 > d1 − δ, then (as it is not in T2)
d(s(v1), s(v2)) ≥ d2 + δ > d2. Thus (since s /∈ T3) d(s(z), s(y)) ≤ ε < ε+ δ/2. So
the first conjunct is satisfied.

Next consider s, s′ ∈ T4. If d(s(z), s(y)) ≤ ε, then s′′ = s[s′(v1v2)/v1v2] ∈ T4

and it witnesses the independence atom with respect to s and s′. If, on the
other hand, d(s(z), s(y)) > ε, then (by s /∈ T1 ∪ T2 ∪ T3) d(s(z), s(x)) ≤ δ/2
and d(s(v1), s(v2)) ≤ d2, and thus d(s(v1), s(v2)) < d1. Since T , and thus also T ′

satisfies x ⊆ε y, there is s+ ∈ T ′ such that d(s+(y), s(x)) < ε, so d(s+(y), s(z)) <
ε+δ/2. Let s′′ = s+[s′(v1v2)/v1v2][s(x)/z]. Then d(s′′(z), s(z)) = d(s(x), s(z)) ≤
δ/2 < δ and s′′(v1v2) = s′(v1v2) so we are done if we can show s′′ ∈ T4. But
by the values for v1v2, s′′ /∈ T2, and d(s′′(z), s′′(y)) = d(s(x), s+(y)) < ε so
s′′ /∈ T1 ∪ T3.

Proposition 7.

x ⊆ε+δ y ⇐ ∀v1∀v2∀z(
(d(z, x) > δ/2 ∧ d(z, y) > ε)∨
(d(v1, v2) < d2 + δ ∧ d(v1, v2) > d1 − δ)∨
(d(v1, v2) > d2 ∧ d(z, y) > ε)∨
((d(v1, v2) < d1 ∨ d(z, y) < ε + δ/2) ∧ z ⊥m v1v2))

for any d1 < d2 < D and 0 < δ < d1,D − d2 and with m = min{d2−d1
2 , δ

2}.
Proof. Assume T satisfies the formula on the right hand side and let s ∈ T be
arbitrary. Let T ′ = T [M/v1][M/v2][M/z] and choose s′ ∈ T ′ such that s′(z) =
s′(x) = s(x) and d(s′(v1), s(v2)) < d1 (exists by universal quantification). Fur-
ther choose s+ ∈ T ′ such that d(s+(z), s+(y)) ≤ ε and d(s+(v1), s+(v2)) ≥ d2+δ.
Then neither of s′ and s+ satisfies any of the first three disjuncts of the right
hand side formula, so both must be in the part of T ′ satisfying the fourth. Thus
there is s′′ in this part satisfying d(s′′(z), s′(z)) < m, d(s′′(v1v2), s+(v1v2)) < m.
So d(s′′(v1), s′′(v2)) > d2−2m > d1, and we must have d(s′′(z), s′′(y)) ≤ ε+δ/2.
So d(s′′(y), s(x)) = d(s′′(y), s′(z)) < ε + δ/2 + m ≤ ε + δ.

Note that in the following translation we only have a translation for the
dependence atom =ε

ε (·) and not the general form =ε
δ (·). We show the proof for

4 T [M/x] = {s(a/x) : s ∈ T, a ∈ M} denotes the team one gets by adding every
possible value for x to each assignment of T .
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the open forms, but the closed ones go through practically verbatim. Here the
closed version of the dependence atom may feel a bit more natural, as the open
form talks about a contraction.

Proposition 8. 1. =ε
ε (x̄, y) ⇒ ∀z(d(z, y) < 2ε ∨ x̄z|εx̄y).

2. =ε
ε (x̄, y) ⇐ ∀z(d(z, y) < ε ∨ x̄z|εx̄y).

Proof. For the first direction assume T |= =ε
ε (x̄, y) and let T ′ = T [M/z]. Let

Y1 = {s ∈ T ′ : d(s(z), s(y)) < 2ε} and Y2 = T ′\Y1. Now if s, s′ ∈ Y2 we
cannot have d(s(x̄z), s′(x̄y)) ≤ ε, as then we would have d(s(y), s′(y)) < ε and
thus d(s(z), s(y)) ≤ d(s(z), s′(y)) + d(s′(y), s(y)) < 2ε, a contradiction. Thus Y2

satisfies the second disjunct.
For the other direction, assume T satisfies the right hand side, and s, s′ ∈ T

are such that d(s(x̄), s′(x̄)) ≤ ε. If d(s(y), s′(y)) ≥ ε, then s+ := s[s′(y)/z] and
s

′+ := s′[s(y)/z] cannot satisfy the first disjunct on the right hand side, so we
must have d(s+(x̄z), s

′+(x̄y)) > ε, a contradiction.

7 Outlook

We have introduced team semantics for logics with both exact and approximate
dependence/independence atoms in the setting of metric spaces. We have shown
that for compact carrier spaces, requiring teams to be closed sets leads to very
nice behaviour, provided that our formulae contain only atoms of a certain type.
While not all atoms are permitted in a single formula for this, we have approxi-
mate version of all atoms available. For formulae using the open variants of the
approximate atoms, some questions remain open for now, but we believe that
this will be straight-forward to settle.

There are some potential connections to other areas of logic we wish to
explore in the future. On the one hand, as observed in Subsect. 3.3 requir-
ing teams to be closed adds a flavour of constructive math to the resulting
statements. Concretely, there could be some relationship between satisfaction
of formula interpreted via team semantics with closed teams, and provability in
systems such as RCA0 + WKL from reverse math [21] or BISH + WKL from
intuitionistic reverse math (e.g. [5,14]).

On the other hand, the translations in Sect. 6 do not really give us a true
comparison of logics, as they don’t contain a measure of accuracy of the transla-
tions. A remedy seems to be considering many-valued logics, e.g., continuous first
order logic from [2], that have a built-in grading of the strength of implications.
Such a logic opens up a plethora of questions of the right choice of semantics,
as it allows both for new connectives and enables new ways of aggregating truth
values over a team.
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Abstract. The XSAT problem asks for solutions of a set of clauses
where for every clause exactly one literal is satisfied. The present work
investigates a variant of this well-investigated topic where variables can
take a joker-value (which is preserved by negation) and a clause is satis-
fied iff either exactly one literal is true and no literal has a joker value or
exactly one literal has a joker value and no literal is true. While JX2SAT
is in polynomial time, the problem becomes NP-hard when one searches
for a solution with the minimum number of jokers used and the decision
problem X3SAT can be reduced to the decision problem of the JX2SAT
problem with a bound on the number of jokers used. JX3SAT is in both
cases, with or without optimisation of the number of jokers, NP-hard and
X3SAT can be reduced to it without increasing the number of variables.
Furthermore, the general JXSAT problem can be solved in the same
amount of time as variable-weighted XSAT and the obtained solution
has the minimum amount of number of jokers possible.

1 Introduction

Consider a propositional formula ϕ with n variables, say x1, x2, ..., xn. A well-
studied question is which values for xi from {0, 1} one can take so that ϕ eval-
uates to 1. This problem is also known as the Boolean satisfiability problem,
SAT, and was shown to be the first NP-complete problem.

Since then, many variants of Boolean satisfiability problem have been intro-
duced. One such variant is the 3SAT problem, where every clause must have
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exactly 3 literals. Another variant is the Exact Satisfiability problem, XSAT,
where we require that exactly 1 literal can take on the value 1 and the other
literals must take on 0. The problems X2SAT and X3SAT are special instances
of XSAT where we restrict the clauses to 2 and 3 literals respectively. It is
known that the decision problem of 2SAT, X2SAT are in the class P. On the
other hand, the decision problems 3SAT [5], XSAT [12] and X3SAT [14] are
known to be NP-complete. Furthermore, one can also deviate from the decision
problems as mentioned above to talk about optimisation problems. If we wish
to maximise the number of satisfied clauses in an 2SAT problem, also known
as Max2SAT, the complexity of this problem increases and is now NP-hard
as compared to its decision counterpart [1,9]. Here Max2SAT asks how many
clauses of (perhaps weighted) 2SAT-formulas can be satisfied in the best case
and this problem has been widely studied [6,8,13]. Max2SAT can be generalised
to Max-2-CSP where one has to satisfy as many constraints as possible over a
domain, in this case a binary domain [3]. Chen [2] shows that various natural
classes of CSP-problems have either a complement solvable in logarithmic time or
satisfy one of the conditions LOGSPACE-complete, ⊕LOGSPACE-complete,
NLOGSPACE-complete, P-complete and NP-complete.

The Boolean satisfiability problem with two truth values are indeed well-
studied and instead of asking, how many clauses can be satisfied, one can also
ask how many special third values are needed in order to satisfy all clauses. So in
this paper, we introduce another truth value, “J” for joker, into our framework.
The value “J” can be treated as an alternative to the truth value 1 with some
slight changes. In this case, our satisfying condition can be either the values 1
or “J”. The goal of this paper is to investigate if having more truth values can
change the structural complexity of known existing problems. If one allows more
truth values in the framework, will some existing NP-hard problem be brought
down to P or vice versa.

We are in fact, not the first to introduce an additional truth value in our
framework and study them. For example, Lardeux, Saubion and Hao, like us,
introduce a new truth value into the system [7] and then study Boolean satis-
fiability from there. Their goal, unlike what we do, is to introduce a new truth
value in order to define a local search procedure and to study the fundamental
mechanisms behind it.

We show the following results. The decision problem JX2SAT is in the class
P while the decision problem JX3SAT is NP-complete; in these problems we
allow the usage of joker-values without making any statement on their number.
The optimisation variant MinJX2SAT is shown to be NP-hard when asked to
find the minimum amount of jokers or NP-complete when asked whether the
number of jokers can be brought below a certain threshold. Finally, we give an
exponential time algorithm to solve MinJXSAT in O(1.185n) time.

This algorithm builds on one of Porschen [10]; we refer the interested reader
to the textbook of Fomin and Kratsch [4] for an overview on exponential time
algorithms.
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2 The Underlying Logic and Joker Assignments

Given a set V = {x1, . . . , xn} of variables, propositional formulas are defined
inductively with the usual connectives like ¬,∨,∧,→,↔.

In this paper, we only use formulas in conjunctive normal form, that is,
conjunctions of disjunctions (clauses) of literals. k-CNFs are formulas in CNF
where every clause contains at most k literals. For XSAT-formulas and JXSAT-
formulas, we make however the convention that a clause is satisfied if and only
if exactly one literal in the clause is not 0; thus clauses like x1 ∨ x2 ∨ ¬x3 have
a different meaning in XSAT than in normal SAT, see below for more details.

The semantics of propositional formulas in XSAT problems with joker values
is defined by assignments β : V → {0, 1, J}. Negation maps 0 to 1, 1 to 0 and J
to J .

In SAT problems, an assignment β : V → {0, 1, J} satisfies a k-clause l1 ∨
· · · ∨ lk iff there is at least one i ∈ {1, . . . , k} such that β(li) ∈ {1, J}.

In XSAT problems, an assignment β : V → {0, 1, J} satisfies a k-clause
l1 ∨ · · · ∨ lk iff there is exactly one i ∈ {1, . . . , k} such that β(li) ∈ {1, J} and
β(lj) = 0 for all other literals.

An assignment β : V → {0, 1, J} satisfies a CNF ϕ iff it satisfies every clause
in ϕ. The problem JSAT is defined as follows:

Instance: CNF ϕ.
Question: Is there an assignment β : vars(ϕ) → {0, 1, J} such that β maps

at least one literal in each clause of ϕ to 1 or J?

The problem JXSAT is defined as follows:

Instance: CNF ϕ.
Question: Is there an assignment β : vars(ϕ) → {0, 1, J} such that β maps

exactly one literal in each clause of ϕ to 1 or J and the other
literals in the clause to 0?

For CNFs containing only positive literals, the problems JSAT and JXSAT
coincide with SAT and XSAT. In our work we mainly concentrate on JXSAT,
JX2SAT and JX3SAT as well as MinJXSAT, MinJX2SAT and MinJX3SAT.

Proposition 1. For every negation-free CNF ϕ, ϕ ∈ JXSAT iff ϕ ∈ XSAT.

Proof. We translate each assignment β : vars(ϕ) → {0, 1, J} to the assignment
β′ : vars(ϕ) → {0, 1} where

∀xi ∈ vars(ϕ) : β′(xi) =
{

0 if β(xi) = 0
1 if β(xi) ∈ {1, J}

}
.

Then β′ satisfies ϕ iff β satisfies ϕ. 	

CNFs containing a variable xi only negated can be translated to another CNF
by replacing each negative literal ¬xi by positive literal x′

i. Since the translated
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formula does not contain xi, the number of variables in the formula does not
increase.

Hence on the set of all CNFs containing each variable only positive or only
negated, the problem JXSAT coincides with XSAT. Note that negation-free SAT
is trivially in P, as one can make all literals true, since no literal comes in two
opposed forms; thus also here the negation-free JSAT and SAT problems are
equivalent. So the interesting case is negation-free XSAT and that is as hard as
normal XSAT, as one can translate every XSAT instance in polynomial time into
a negation-free XSAT instance where the number of variables and the number of
clauses does not increase. For that reason, JXSAT is at least as hard as XSAT.
A direct proof, not relying on this fact, for the hardness of JXSAT can also be
obtained by the direct transfer of the reduction of Theorem7 from X3SAT to
JX3SAT into a reduction from XSAT to JXSAT.

3 Encodings of Truth Values and Clauses

3.1 Encoding of Truth Values as Pairs of Booleans

In the following, we will use the encoding e2 : {0, 1, J} → {0, 1}2 of the truth
values x ∈ {0, 1, J} as a pair (n, p) ∈ {0, 1}2 defined by

e2(0) = (1, 0), e2(1) = (0, 1), e2(J) = (0, 0). (1)

For each variable xi ∈ V , ni and pi denote the first and second element of this
pair, respectively. This encoding is a bijection between the sets {0, 1, J} and
{(1, 0), (0, 1), (0, 0)}. The inverse of e2 is e−1

2 : {(1, 0), (0, 1), (0, 0)} → {0, 1, J}.

e−1
2 (1, 0) = 0, e−1

2 (0, 1) = 1, e−1
2 (0, 0) = J. (2)

3.2 Encoding of 2CNFs

Every 2-clause li ∨ lj with variables in {x1, . . . , xn} is translated to a conjunction
of two 2-clauses with variables in {n1, . . . , nn, p1, . . . , pn} by

e2c(xi ∨ xj) = (ni ∨ nj) ∧ (¬ni ∨ ¬nj),
e2c(xi ∨ ¬xj) = (ni ∨ pj) ∧ (¬ni ∨ ¬pj),
e2c(¬xi ∨ xj) = (pi ∨ nj) ∧ (¬pi ∨ ¬nj),
e2c(¬xi ∨ ¬xj) = (pi ∨ pj) ∧ (¬pi ∨ ¬pj).

(3)

To prevent the pair (1, 1) that is not an encoding of a truth value from {0, 1, J},
we add a clause ¬ni ∨ ¬pi for each variable xi to the resulting 2CNF.

This encoding transforms every 2CNF ϕ =
∧

i∈{1,...,m} ci to a 2CNF

e2c(ϕ) =
∧

i∈{1,...,m}
e2c(ci) ∧

∧
i∈{1,...,n}

(¬ni ∨ ¬pi) (4)

with 2n variables and 2m + n clauses that will be interpreted as 2SAT instance.



Exact Satisfiabitity with Jokers 283

Proposition 2. For every set C of 2-clauses with variables from {x1, . . . , xn},
there is an assignment

β : {x1, . . . , xn} → {0, 1, J}

such that for each clause c = (li ∨ lj) in C exactly one of β(li), β(lj) is 0 iff there
is an assignment

β′ : {n1, . . . , nn, p1, . . . , pn} → {0, 1}
such that for each clause c = (li ∨ lj) in C, at least one of β′(li), β′(lj) is 1 in
each clause of e2c(c) as well as (¬ni ∨ ¬pi) for every variable xi occurring in c.

Proof. (⇒) Given an assignment β : V → {0, 1, J}, we define the assignment
β′ : {n1, . . . , nn, p1, . . . , pn} → {0, 1} for ec2(c) by the encoding of the truth
values in {0, 1, J} given in Eq. 1, i.e., for each i ∈ {1, . . . , n}, β′(ni) and β′(pi)
are defined by

(β′(ni), β′(pi)) = e2(β(xi)).

Let β be a satisfying assignment for C which satisfies exactly one literal in each
clause in C. By definition of e2 (Eq. 1), we have ¬ni ∨ ¬pi for every variable xi

occurring in c.
We show that β′ satisfies at least one literal in each clause in e2c(c), for all

c ∈ C.
For every type c = li ∨ lj of clauses we show that if β satisfies exactly one

literal in c then β′ satisfies e2c(c) defined in Eq. 3.

– In clause c = (xi ∨xj), exactly one of xi, xj is satisfied in each of the following
cases:

• In case {β(xi), β(xj)} = {0, 1},
We have {(β′(ni), β′(pi)), (β′(nj), β′(pj))} = {(1, 0), (0, 1)}.

• In case {β(xi), β(xj)} = {0, J},
We have {(β′(ni), β′(pi)), (β′(nj), β′(pj))} = {(1, 0), (0, 0)}.

In both cases, we have {β′(ni), β′(nj)} = {0, 1} and therefore β′ satisfies at
least one literal in each clause of e2c(c) = (ni ∨ nj) ∧ (¬ni ∨ ¬nj).

– In clause c = xi∨¬xj , exactly one of xi,¬xj is satisfied in each of the following
cases:

• In case β(xi) = β(xj) ∈ {0, 1},
We have (β′(ni), β′(pi)) = (β′(nj), β′(pj)) ∈ {(1, 0), (0, 1)}.

• In case β(xi) = 0 and β(xj) = J ,
We have (β′(ni), β′(pi)) = (1, 0) and (β′(nj), β′(pj)) = (0, 0).

• In case β(xi) = J and β(xj) = 1,
We have (β′(ni), β′(pi)) = (0, 0) and (β′(nj), β′(pj)) = (0, 1).

In all cases, we have {β′(ni), β′(pj)} = {0, 1} and therefore β′ satisfies at
least one literal in each clause of e2c(c) = (ni ∨ pj) ∧ (¬ni ∨ ¬pj).

– The case c = ¬xi ∨ xj is similar to the previous case.
– In clause c = ¬xi ∨ ¬xj , exactly one of ¬xi,¬xj is satisfied in each of the

following cases:
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• In case {β(xi), β(xj)} = {0, 1},
We have {(β′(ni), β′(pi)), (β′(nj), β′(pj))} = {(1, 0), (0, 1)}.

• In case {β(xi), β(xj)} = {1, J},
We have {(β′(ni), β′(pi)), (β′(nj), β′(pj))} = {(0, 1), (0, 0)}.

In both cases, we have {β′(pi), β′(pj)} = {0, 1} and therefore β′ satisfies at
least one literal in each clause of e2c(c) = (pi ∨ pj) ∧ (¬pi ∨ ¬pj).

(⇐) Let β′ : {n1, . . . , nn, p1, . . . , pn} → {0, 1} be an assignment such that at
least one of β′(li), β′(lj) is 1 in each clause of e2c(c) and in ¬ni ∨ ¬pi for every
variable xi occurring in c, for each c ∈ C.

We define β : {x1, . . . , xn} → {0, 1, J} by the inverse encoding defined in
Eq. 2:

β(xi) = e−1
2c (β′(ni), β′(pi)).

For each clause c = (li ∨ lj) ∈ C, we show that exactly one of β(li), β(lj) is 0.

– In case c = xi ∨ xj ,
β′ satisfies e2c(c) = (ni ∨ nj) ∧ (¬ni ∨ ¬nj), that is, {β′(ni), β′(nj)} = {0, 1}.

• In case β′(ni) = 0, β′(nj) = 1,
(ni, pi) ∈ {(0, 1), (0, 0)} and (nj , pj) = (1, 0) and hence β(xi) ∈ {1, J}
and β(xj) = 0.

• In case β′(ni) = 1, β′(nj) = 0 (similar to the above case),
we have (ni, pi) = (1, 0) and (nj , pj) ∈ {(0, 1), (0, 0)} and hence β(xi) = 0
and β(xj) ∈ {1, J}.

In each case, β maps exactly one of the literals xi, xj to 0.
– In case c = xi ∨ ¬xj ,

β′ satisfies e2c(xi ∨ ¬xj) = (ni ∨ pj) ∧ (¬ni ∨ ¬pj), that is, {β′(ni), β′(pj)} =
{0, 1}.

• In case β′(ni) = 0, β′(pj) = 1,
We have (ni, pi) ∈ {(0, 0), (0, 1)} and (nj , pj) = (0, 1) and hence β(xi) ∈
{1, J} and β(xj) = 1, that is, β(¬xj) = 0.

• In case β′(ni) = 1, β′(pj) = 0,
We have (ni, pi) = (1, 0) and (nj , pj) ∈ {(1, 0), (0, 0)} and hence β(xi) = 0
and β(xj) ∈ {0, J}, that is, β(¬xj) ∈ {1, J}.

In each case, β maps exactly one of the literals xi,¬xj to 0.
– The case c = ¬xi ∨ xj is similar to the previous case.
– In case c = ¬xi ∨ ¬xj ,

β′ satisfies e2c(¬xi ∨¬xj) = (pi ∨ pj)∧ (¬pi ∨¬pj), that is, {β′(pi), β′(pj)} =
{0, 1}.

• If β′(pi) = 0, β′(pj) = 1,
Then (β′(ni), β′(pi)) ∈ {(0, 0), (1, 0)}, that is, β(xi) ∈ {0, J} and
β(¬xi) ∈ {1, J}, and (β′(nj), β′(pj)) = (0, 1), that is, β(xj) = 1 and
β(¬xj) = 0.

• If β′(pi) = 1, β′(pj) = 0 (similar to the above case),
Then (β′(ni), β′(pi)) = (0, 1), that is, β(xi) = 1, and β(¬xi) = 0, and
(β′(nj), β′(pj)) ∈ {(1, 0), (0, 0)}, that is, β(xj) ∈ {0, J} and β(¬xj) ∈
{1, J}

In each case, β maps exactly one of the literals ¬xi,¬xj to 0.

This completes the proof. 	
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3.3 Encoding of Truth Values as Triples of Booleans

In the following, we will use the encoding e3 : {0, 1, J} → {0, 1}3 of the truth
values x ∈ {0, 1, J} as a triple (n, p, o) ∈ {0, 1}3 defined by

e3(0) = (1, 0, 0), e3(1) = (0, 1, 0), e3(J) = (0, 0, 1). (5)

For each variable xi ∈ V , ni, pi and oi denote the first, second and third element
of this triple, respectively. This encoding is a bijection between the sets {0, 1, J}
and {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. The inverse of e3 is e−1

3 : {(1, 0, 0), (0, 1, 0),
(0, 0, 1)} → {0, 1, J}:

e−1
3 (1, 0, 0) = 0, e−1

3 (0, 1, 0) = 1, e−1
3 (0, 0, 1) = J. (6)

3.4 Encoding of 3CNFs

Every 3-clause li ∨ lj ∨ lk with variables in {x1, . . . , xn} is translated to a clause
with variables in {n1, . . . , nn, p1, . . . , pn, o1, . . . , on}. Because the semantic inter-
pretation of ∨ is symmetric, it suffices to define e3c in the following cases:

e3c(xi ∨ xj ∨ xk) = (¬ni ∨ ¬nj ∨ ¬nk),
e3c(¬xi ∨ xj ∨ xk) = (¬pi ∨ ¬nj ∨ ¬nk),
e3c(¬xi ∨ ¬xj ∨ xk) = (¬pi ∨ ¬pj ∨ ¬nk),
e3c(¬xi ∨ ¬xj ∨ ¬xk) = (¬pi ∨ ¬pj ∨ ¬pk).

(7)

For every variable xi, we add the 3-clause pi ∨ ni ∨ oi to guarantee that every
satisfying assignment maps each variable xi to a unique truth value in {0, 1, J}.

This encoding transforms every 3CNF ϕ =
∧

i∈{1,...,m} ci to a 3CNF

e3c(ϕ) =
∧

i∈{1,...,m}
e3c(ci) ∧

∧
i∈{1,...,n}

(ni ∨ pi ∨ oi) (8)

with 3n variables and m+n clauses that will be interpreted as X3SAT instance.

Proposition 3. For every set of clauses C, with variables from {x1, . . . , xn},
there is an assignment β : {x1, . . . , xn} → {0, 1, J} such that exactly one of
β(li), β(lj), β(lk) is in {1, J} for every clause (li ∨ lj ∨ lk) in C
iff there is an assignment β′ : {n1, . . . , nn, p1, . . . , pn, o1, . . . , on} → {0, 1} such
that exactly one of β′(li), β′(lj), β′(lk) is 1 in each clause (li ∨ lj ∨ lk) of e3c(c)
for each c ∈ C as well as for each (ni ∨ pi ∨ oi) for each variable xi occurring in
clauses of C.

Proof. Note that β(xi) ∈ {1, J} iff β′(¬ni) = 1, and β(¬xi) ∈ {1, J} iff β′(¬pi) =
1. The Proposition now follows from the definition of e3c. 	
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4 The Decision Problem JX2SAT

Instance: 2CNF ϕ.
Question: Is there an assignment β : vars(ϕ) → {0, 1, J} such that β maps

exactly one literal in each clause of ϕ to 1 or J and the other literal
to 0?

The encoding defined in Sect. 3.2, Eqs. 3 and 4, maps JX2SAT instances ϕ to
2SAT instances e2c(ϕ).

Lemma 4. For every 2CNF ϕ we have

ϕ ∈ JX2SAT iff e2c(ϕ) ∈ 2SAT.

Proof. Suppose ϕ is in JX2SAT as witnessed by assignment β to the variables.
From the proof of Proposition 2, we know how to transform β to an assignment
β′ : {n1, . . . , nn, p1, . . . , pn} → {0, 1} that satisfies the corresponding 2SAT for-
mula e2c(c), for each clause c in ϕ, as well as ¬ni ∨ ¬pi for every variable xi

occurring in c. Hence β′ satisfies the 2SAT instance e2c(ϕ).
Suppose β′ witnesses that e2c(ϕ) ∈ 2SAT. Then, from the proof of Propo-

sition 2, we know how to transform β′ to an assignment β such that β satisfies
exactly one literal in each clause of ϕ. Thus, ϕ ∈ JX2SAT. 	

Theorem 5. The decision problem JX2SAT is in P.

Proof. By Lemma 4, the encoding in Eq. 3 is a reduction from JX2SAT to 2SAT.
Since 2SAT is in P and the reduction is linear, JX2SAT is also in the class P. 	


5 The Optimisation Problem MinJX2SAT

MinJX2SAT is the problem to decide if 2CNF has a satisfying assignment with
a given number of jokers.

Instance: (ϕ, h), where ϕ is a 2CNF and h ∈ N.
Question: Is there an assignment β : vars(ϕ) → {0, 1, J} such that

|β−1(J)| ≤ h and
β maps exactly one literal in each clause of ϕ to 1 or J and the
other literals in the clause to 0?

The minimum number of jokers required to satisfy a 2CNF ϕ can be found
by iteratively increasing h in (ϕ, h), beginning with h = 0. We note that the
problem, as stated above, is even in NP; however, if one wants to determine the
h by iterated solving of the problem, then the problem to get the optimal h from
an JX2SAT instance is NP-hard, but there is no known method to reduce this
numerical problem to a decision problem in NP with one query only.

Theorem 6. MinJX2SAT is NP-hard.
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Proof. We will show this via a reduction of X3SAT to MinJX2SAT. Then we
have NP-completeness of MinJX2SAT by NP-completeness of X3SAT [14].

First, we translate 3CNFs ϕ =
∧

i∈{1,...,m} ci with vars(ϕ) = {x1, . . . , xn}, to
MinJX2SAT instances (ϕ′,m) where m is the number of clauses in ϕ. Then we
show that ϕ ∈ X3SAT iff (ϕ′,m) ∈ MinJX2SAT.

ϕ′ = e32c(ϕ) is defined by encoding each clause ci = {li1 ∨ li2 ∨ li3} in ϕ by
a conjunction of six clauses

e32c(ci) = (li1 ∨ yi1) (ci1)
∧(li2 ∨ ¬yi1) (ci2)
∧(li2 ∨ yi2) (ci3)
∧(li3 ∨ ¬yi2) (ci4)
∧(li3 ∨ yi3) (ci5)
∧(li1 ∨ ¬yi3) (ci6)

(9)

e32c(ϕ) contains n + 3m variables vars(e32c(ϕ)) = {x1, . . . , xn} ∪ ⋃
i∈{1,...,m}

{yi1, yi2, yi3}. The auxiliary variables yij guarantee that in every assignment
that satisfies e32c(ϕ), exactly one literal is true in each clause of ϕ.

For every variable xi, we add the clause xi∨¬xi to avoid assignments mapping
xi to J .

We get the transformation of X3SAT instances ϕ =
∧

i∈{1,...,m} ci to a
MinJX2SAT instance (e32c(ϕ),m) where

e32c(ϕ) =
∧

i∈{1,...,m}
e32c(ci) ∧

∧
i∈{1,...,n}

(xi ∨ ¬xi). (10)

We show that an assignment β satisfies exactly one literal in each clause of ϕ
iff there is an assignment β′ with |β′−1(J)| ≤ m mapping exactly one literal in
each clause of e32c(ϕ) to 1 or J and the others to 0.

(⇒) Let β : {x1, . . . , xn} → {0, 1} be an assignment that satisfies exactly one
literal in each clause li1 ∨ li2 ∨ li3 in ϕ.

We extend the assignment β to an assignment

β′ : {x1, . . . , xn} ∪ {yij | i ∈ {1, . . . , m}, j ∈ {1, 2, 3}} → {0, 1, J}

with |β′−1(J)| = m and show that β′ satisfies the encoded 2CNF defined in
Eq. 9.

For every clause ci in ϕ, we define the undirected graph G(ci) = (V,E) where

V = {li1, li2, li3, yi1, yi2, yi3,¬yi1,¬yi2,¬yi3} and
E = {{yij ,¬yij} | j ∈ {1, 2, 3}}

∪{{lij , l} | (lij ∨ l) is a clause in e32c(ci)};

In this graph we have that two neighbouring nodes are either in a JX2SAT-clause
or a pair of negated literals. Now G(ci) = li1 − yi1 − ¬yi1 − li2 − yi2 − ¬yi2 −
li3 − yi3 − ¬yi3 − li1 is a circle of length nine and thus has no 2-colouring using
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0 and 1. Hence every satisfying assignment β′ for ϕ′ maps at least one literal in
e32c(c) to J . Because β′ satisfies

∧
i∈{1,...,n}(xi ∨ ¬xi), it maps each xi to 0 or 1.

Therefore, β′(yij) = J for one or more variables among yi1, yi2, yi3.
The following construction shows that it suffices to map exactly one of the

yij to J for each clause ci = li1 ∨ li3 ∨ li3 in ϕ. Let β′(xi) = β(xi).
Without loss of generality, we can assume β(li1) = 1 and β(li2) = β(li3) = 0,

because the semantic interpretation of ∨ is symmetric.
Since β′(li1) = β(li1) = 1, we have β′(yi1) = 0 and β′(yi3) = 1 to satisfy

clauses ci1 and ci6 in Eq. 9. Since β′(li2) = β′(li3) = 0, clauses ci2 and ci5 are
satisfied by β′ as well.

The remaining clauses ci3 and ci4 contain the variable yi2 as positive and
negative literal, respectively. Because β(li2) = β(li3) = 0, neither yi2 nor ¬yi2

can be mapped to 0 by a satisfying assignment. To satisfy both clauses, β′ maps
yi2 to J .

Applied to each clause in the original formula ϕ, this proves that β′ satisfies
e32c(ϕ) using exactly one joker for each clause of the original formula ϕ.

We have defined a construction of an exact satisfying assignment β′ for
e32c(ϕ), given an exact satisfying assignment β for ϕ. Hence we have shown
that exact satisfiability of ϕ implies exact satisfiability of e32c(ϕ).

(⇐) Let β′ : {x1, . . . , xn}∪⋃
i∈{1,...,m}{yi1, yi2, yi3} → {0, 1, J} be an assignment

that satisfies exactly one literal of each clause in e32c(ϕ).
We show that the restriction of β′ to the domain {x1, . . . , xn} is an assignment
β : {x1, . . . , xn} → {0, 1} that maps exactly one literal of each clause li1∨ li2∨ li3
in ϕ to 1.

Because e32c(ϕ) contains a clause xi ∨ ¬xi for each original variable xi ∈
{x1, . . . , xn}, there is no xi ∈ {x1, . . . , xn} such that β(xi) = β′(xi) = J .

For each clause ci = li1 ∨ li2 ∨ li3 in ϕ we know that β′ satisfies the encoding
e32c(ci) defined in Eq. 9.

We show that β maps exactly one of the literals lij to 1 and the others to 0.

1. We show that β maps at least one of the literals lij to 1.
Assume β(li1) = β(li2) = β(li3) = 0.
Then all clauses ci1, . . . , ci6 can only be satisfied if β′(yi1) = β′(yi2) =
β′(yi3) = J . But in this case, β′ does not satisfy the condition |β′−1(J)| ≤ m
since the encoding of each clause requires at least one J .
A contradiction to the assumption; thus β maps at least one of the literals
lij to 1.

2. We show that β maps at most one of the literals lij to 1.
Assume there are distinct k and k′ in {1, 2, 3} such that β(lik) = β(lik′) = 1.
Without loss of generality, we can assume k = 1 and k′ = 2, e.g., β(li1) =
β(li2) = 1.
Then e32c(ci) contains the pair of clauses (li1 ∨ yi1) and (li2 ∨ ¬yi1). There is
no value β′(yi1) ∈ {0, 1, J} such that exactly one literal in each clause of ci

is satisfied.
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A contradiction to the assumption; thus β maps at most one of the literals
lij to 1.

We have shown that the restriction of β′ to {x1, . . . , xn} satisfies exactly one lit-
eral in each clause of ϕ and therefore ϕ. Therefore exact satisfiability of e32c(ϕ)
implies exact satisfiability of ϕ, and we have shown both directions of the equiv-
alence ϕ ∈ X3SAT ⇔ e32c(ϕ) ∈ MinJX2SAT. 	


6 The Decision Problem JX3SAT

Instance: 3CNF ϕ.
Question: Is there an assignment β : vars(ϕ) → {0, 1, J} such that β maps

exactly one literal in each clause of ϕ to 1 or J and all other literals
to 0?

Theorem 7. The decision problem JX3SAT is NP-hard.

Proof. We show this by reduction of X3SAT to JX3SAT. Then JX3SAT is NP-
hard because X3SAT is NP-hard [14].

X3SAT instances ϕ are translated to JX3SAT instances ϕ′ by adding clauses
xi ∨ ¬xi ∨ F for each variable xi occurring in ϕ. This translates each 3CNF ϕ
with n variables and m clauses to a 3CNF

ϕ′ = ϕ ∧
∧

xi∈vars(ϕ)

(xi ∨ ¬xi ∨ F )

with n+1 variables and m+n clauses. In above, F is a new variable which would
always take value 0 in any satisfying assignment. We show that ϕ ∈ X3SAT iff
ϕ′ ∈ JX3SAT.

(⇒) Assume β : {x1, . . . , xn} → {0, 1} satisfies exactly one literal in each clause
of ϕ. Take F to be 0. Because β maps every variable xi to 0 or 1, it satisfies
exactly one of the literals in xi ∨ ¬xi ∨ F , for each variable xi. Therefore it
satisfies exactly one literal in each clause of ϕ′.

(⇐) Assume β′ : {x1, . . . , xn} → {0, 1, J} maps exactly one literal in each clause
of ϕ′ to 1 or J . ϕ′ contains a clause xi ∨ ¬xi ∨ F for each variable xi and β′

satisfies ϕ′, e.g. β′ maps exactly one literal in each clause of ϕ to 1 or J .
Assume β′(xi) = J for a variable xi ∈ vars(ϕ). Then β′(¬xi) = J and β′

satisfies more than one literal in xi ∨ ¬xi ∨ F . Therefore β′ maps every variable
xi to a value in {0, 1} and satisfies exactly one literal in each clause of ϕ. 	


7 An Exponential Algorithm to Solve MinJXSAT

Earlier, we defined the optimisation problem MinJX2SAT and showed that it is
NP-hard. Similarly, we define the NP-hard optimisation problem MinJXSAT.
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Instance: (ϕ, h), where ϕ is in CNF and h ∈ N.
Question: Is there an assignment β : vars(ϕ) → {0, 1, J} such that

|β−1(J)| ≤ h and β maps exactly one literal in each clause of
ϕ to 1 or J and the other literals in the clause to 0?

Note that since the MinJXSAT problem is more general than MinJX2SAT, hav-
ing an algorithm to solve it would also mean having an algorithm to solve
MinJX2SAT. Here, we first reduce the MinJXSAT problem to the MinXSAT
problem, which is known to be NP-hard. Before presenting the reduction, we
define the MinXSAT problem.

Instance: (ϕ, ω, h), where ϕ is in CNF and ω are weights assigned to variables
when they take on certain values and h ∈ N.

Question Is there an assignment satisfying ϕ such that exactly one literal in
each clause is true—the rest are false and, in addition, the sum of
weights of variables assigned true in this assignment is at most h?

Theorem 8. MinJXSAT instances can be reduced to MinXSAT instances, using
at most the same number of variables and clauses.

Proof. Consider a MinJXSAT instance P having variables x1, . . . , xn with at
most h jokers. h remains the same for all instances constructed. Start with
MinXSAT instance G0 as follows:

(a) Variables of G0 are ui, vi, wi for i ∈ {1, 2, . . . , n}, where the intended mean-
ing is the following: ui = 1 iff xi = J ; vi = 1 iff xi = 0; wi = 1 iff xi = 1.

(b) Clauses of G0 are given by (b.1) and (b.2).
(b.1) Clauses (ui ∨ vi ∨ wi), for i = 1, . . . , n Note that this ensures exactly

one of ui, vi, wi is one. Thus, we can have our intended interpretation of
ui, vi, wi with respect to the values of xi.

(b.2) For each clause (xi1 ∨ xi2 ∨ . . . ∨ xik ∨ ¬xj1 ∨ ¬xj2 + . . . ∨ ¬xjr ) in P ,
the following clause is in G0:
(¬vi1 ∨ ¬vi2 ∨ . . . ∨ ¬vik ∨ ¬wj1 ∨ ¬wj2 ∨ . . . ∨ ¬wjr ).

(c) Weights of ui are 1 and weights of vi, wi are 0.

Note that if exactly one of xi1 , xi2 , . . . , xik ,¬xj1 ,¬xj2 , . . . ,¬xjr is non-
zero then using the values for ui, vi, wi as in (a), exactly one of
¬vi1 ,¬vi2 , . . . ,¬vik ,¬wj1 ,¬wj2 , . . . ,¬wjr is non-zero. Similarly, if exactly one
of ¬vi1 ,¬vi2 , . . . ,¬vik ,¬wj1 ,¬wj2 , . . . ,¬wjr is non-zero then using the substi-
tution of values as in (a), exactly one of xi1 , xi2 , . . . , xik ,¬xj1 ,¬xj2 , . . . ,¬xjr is
non-zero.

Thus, any solution for G0 as a XSAT instance with weight w gives a solution
for P as a JXSAT instance using w jokers (using the interpretation in (a)).
Similarly, any solution for P as an JXSAT instance using w jokers gives a solution
for G0 using weight w.

Note that G0 has 3n variables. Below we will progressively construct
G1, G2, . . . , Gn to reduce the number of variables. The following invariants are
maintained for k = 0, 1, . . . , n:
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(I): In Gk, for i = 1, . . . , k, at most one of ui, vi, wi appears in any clause. If
uk does not appear: then any solution for Gk is a solution for Gk−1 by
fixing uk = 0 and vk = ¬wk. Furthermore, the minimal weight solution for
Gk−1 has uk = 0, and any solution for Gk−1 with uk = 0 is also a solution
for Gk.

(II): For all i with k < i ≤ n: Except for the clauses (ui ∨vi ∨wi), the variables
vi, wi only appear as ¬vi,¬wi in the clauses in Gk. In Gk, ui,¬ui, only
appear in the clause (ui ∨ vi ∨ wi).

(III): If k > 0, the number of clauses in Gk is at most the number of clauses in
Gk−1. The variables used in Gk are a subset of the variables used in Gk−1.

We now describe how to obtain Gk from Gk−1 for k = 1, . . . , n:

(1) Suppose all the clauses which have ¬vk or ¬wk in them are ¬vk ∨ αi for
i ∈ {1, . . . , s} and ¬wk ∨ βj for j ∈ {1, . . . , r}, where αi, βj are disjunctive
formula over variables.
Without loss of generality assume that no clause has both ¬vk and ¬wk

(as otherwise, for the clause (¬vk ∨ ¬wk ∨ α) along with (uk ∨ vk ∨ wk) we
trivially have that exactly one vk and wk is 1 and the other 0; thus uk must
be 0 and all literals in α must be 0; we can thus simplify the clauses in Gk−1,
and drop the clause (¬vk ∨ ¬wk ∨ α)).

(2) Case 1: s > 0 and r > 0, then form Gk from Gk−1 as follows:
(a) Drop ¬vk ∨ αi for i ∈ {1, . . . , s},
(b) Drop ¬wk ∨ βj for j ∈ {1, . . . , r},
(c) Drop (uk ∨ vk ∨ wk),
(d) Add (αi ∨ uk ∨ β1) for i ∈ {1, . . . , s},
(e) Add (α1 ∨ uk ∨ βj) for j ∈ {1, . . . , r}.
Note that the old clauses of type (a), (b) and (c) imply vk ≡ α1 ≡ . . . ≡ αs

and wk ≡ β1 ≡ . . . ≡ βr and that the new clauses of types (d) and (e)
imply α1 ≡ α2 ≡ . . . ≡ αs and β1 ≡ β2 ≡ . . . ≡ βr. The above modification
removes the variables vk and wk. Each solution for Gk−1 is also a solution for
Gk as we must have vk ≡ αi, wk ≡ βj in Gk−1. Furthermore, any solution
for Gk gives a solution for Gk−1, by taking vk ≡ α1, wk ≡ β1 in Gk−1.

(3) Case 2: At most one of s, r is 0:
Then, fix uk = 0 and let vk ≡ ¬wk, and drop the clause (uk ∨ vk ∨ wk) from
Gk−1 to form Gk.
Note that any solution of Gk is also a solution for Gk−1 by taking uk = 0
and vk ≡ ¬wk. Also, any solution for Gk−1 with uk = 0 is also a solution
for Gk. Note here that in the minimal weight solution of Gk−1, uk must
be 0.

From the above analysis, it follows that MinXSAT solution for Gn gives a
MinJXSAT solution for the P and vice versa. 	

Porschen [10] provided an algorithm which solves variable-weighted XSAT in
time O(1.185n). Although Porschen and Pagge [11] provided a faster algorithm
for the special case of variable-weighted X3SAT, this algorithm cannot be used
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above, as the elimination of variables increases the clause-length and therefore
also JX2SAT and JX3SAT are only translated to weighted XSAT. For Corol-
lary 9 (b), note that one can use the elimination procedure of the previous theo-
rem to eliminate from any XSAT-instance variables occurring both positive and
negative without increasing the number of clauses and then use Proposition 1.

Corollary 9

(a) MinJXSAT can be solved in time O(1.185n).
(b) JXSAT has the same time complexity (except for additional polynomial time)

as XSAT when measured in dependence of the number of variables and the
number of clauses.

8 Conclusion

In this paper, we studied the structural complexity of satisfiability with a specific
joker value besides the usual two Boolean values; the joker value is preserved
by negation and can be used to satisfy an XSAT formula if all other literals
in the clause are 0; however, two joker values or a joker value plus a 1 do not
satisfy the clause. The aim of introducing the joker value was to allow to solve
also instances which would normally be unsatisfiable in the XSAT model: for
example (x ∨ y) ∧ (¬x ∨ y) ∧ (¬y) can be solved by choosing the values x = J
and y = 0 but cannot be solved using binary values. However, one would still
want that the exception-value J is used as rarely as possible.

For this specific model of satisfiability with a joker value, our results show
that their main structural properties are similar: The decision problem JX2SAT
is shown to be in the class P by reducing it to 2SAT while the decision problem
JX3SAT is NP-complete. However, when trying to minimise the number of
joker values, we can show hardness of the problem. In order to keep it a decision
problem, we formalised MinJXSAT with a bound, that is, the input is an instance
plus a bound and solvable when there is a solution for which the number of jokers
does not exceed the bound. Now this problem MinJX2SAT is NP-complete,
similarly also MinJX3SAT and MinJXSAT are NP-complete.

This contrasts to the binary case where minimum variable weight X2SAT is
in P: Each clause links two variables as x = y or x = ¬y and after all clauses
are processed, the variables are split into linked groups of variables. If there is
now a solution, that is, if the process of linking did not lead to a contradiction
like (x = y) ∧ (x = ¬y), then one checks such linked group, which of the two
possible values would give the lower weight and assigns the variables accordingly.
So variable-weighted JX2SAT behaves more like variable-weighted 2SAT than
variable-weighted X2SAT.

Finally, we also gave an exponential time algorithm to solve MinJXSAT in
time O(1.185n) by reducing the problem, with some preprocessing, to an algo-
rithm to solve variable-weighted MinXSAT. Questions left open in our research
are the following ones:
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(a) Can the preprocessing of the MinJX2SAT algorithm be improved so that it
produces an MinX3SAT problem rather than a MinXSAT problem? We did
not find any way to do so, but perhaps there is some way on improving the
current algorithm.

(b) Does randomness help in the algorithm? In other words, if one allows the
usage of randomness, does this help to reduce the exponential time com-
plexity at least a little bit? Though we expect that also the randomised
algorithm will use exponential time, perhaps it can do it in time O(αn) for
some α < 1.185.

(c) Chen [2] showed that for natural classes in CSP-solving, they are
either in the complement of NLOGTIME or LOGSPACE-complete or
NLOGSPACE-complete or ⊕LOGSPACE-complete or P-complete or
NP-complete. So it would be worth looking into this for classes defined
using the present or other notions of joker values for X2SAT, X3SAT and
XSAT.
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Abstract. While FPGAs have been used extensively as hardware accel-
erators in industrial computation [20], no theoretical model of compu-
tation has been devised for the study of FPGA-based accelerators. In
this paper, we present a theoretical model of computation on a system
with conventional CPU and an FPGA, based on word-RAM. We show
several algorithms in this model which are asymptotically faster than
their word-RAM counterparts. Specifically, we show an algorithm for
sorting, evaluation of associative operation and general techniques for
speeding up some recursive algorithms and some dynamic programs. We
also derive lower bounds on the running times needed to solve some
problems.

1 Introduction

While Moore’s law has dictated the increase in processing power of processors
for several decades, the current technology is hitting its limits and the single core
performance is largely staying the same. A new paradigm is needed to speed up
computation. Many alternative architectures have been made, such as multicore,
manycore (specifically GPU) and FPGA, which is the one we consider in this
paper. FPGA (Field-programmable gate array) is a special hardware for efficient
execution of boolean circuits. While there exists a theoretical model which allows
theoretical treatment of algorithms in the multicore and manycore model [17],
no such model has been devised for computation with FPGA-based accelerators,
despite their rising popularity. In this paper, we consider heterogeneous systems
which have a conventional CPU and an FPGA. This is especially relevant since
Intel has recently introduced combined CPU with an FPGA [13], which should
lower the latency between CPU and FPGA. We define a theoretical model for
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such systems and show several asymptotically fast algorithms on this model
solving some fundamental problems.

1.1 Previous Work

While there is no theory of FPGA algorithms, there are experimental results
which show that FPGA can be used to speed up the computation by one to
two orders of magnitude and decrease the power consumption by up to three
orders of magnitude. Chrysos et al. [6] and Mahram [18] show how FPGA can
be used to speed up computations in bioinformatics. FPGAs have also been used
to speed up genetic algorithms, as shown by Alam [2]. In the following paper,
the authors discuss what causes the performance gains of using an FPGA [10].
Che et al. [4] and Grozea et al. [9] showed a comparison with GPU and multicore
CPU. Several algorithms have been implemented on FPGA and benchmarked,
including matrix inversion [16], AES [5] and k-means [14].

1.2 Our Contributions

The main contribution of this paper is the definition of a model of computation
which captures computation with FPGA-based accelerators (Sect. 3). In this
model, we speed up classical algorithms for some fundamental problems, specifi-
cally sorting (Sect. 4.2), evaluation of associative operation (Sect. 4.3), speed up
some dynamic programming problems including longest common subsequence
and edit distance (Sect. 4.4) and speed up some recursive algorithms including
Strassen algorithm, Karatsuba algorithm as well as many state-of-the-art algo-
rithms for solving NP-hard problems (Sect. 4.5). In Sect. 5 we show some lower
bounds which follow from a relation to cache-aware algorithms.

2 Preliminaries

2.1 Boolean Circuits

Definition 1 (Boolean circuit). A boolean circuit with n inputs and m out-
puts is a labeled directed acyclic graph. It has n vertices x1, · · · , xn with no
incoming edges, which we call the input nodes, and m vertices y1, · · · , ym with no
outgoing edges, which we call output nodes. We call the vertices x1, · · · xn, y1, · · · ,
ym the I/O nodes. Each non-input vertex in this graph corresponds to a boolean
function from the set {∨,∧,¬, id} and is called a gate. All gate vertices have
indegree equal to the arity of their boolean function.

The circuit computes a function {0, 1}n → {0, 1}m by evaluating this graph.
At the beginning of computation, an input node xi is set to the i-th bit of input. In
each step of computation, gates which received their input calculate the function
and send their output to the connected vertices. When all output nodes receive
their value, the circuit outputs the result with the value of yi being the i-th bit of
output.
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The order of a circuit is the number of its input nodes. Note that in Sect. 4.5
we introduce a different notion of order of a circuit, which does not equal the
number of circuit’s input nodes.

We consider two complexity measures of circuits – circuit size, defined as the
number of gates, and depth, defined as the length of the longest path from an
input node to an output node.

We denote the size and depth of a circuit C by size(C) and del(C), respec-
tively. Size complexity and depth of a family of circuits C is denoted by sizeC(n)
and delC(n), respectively, where n is the order of the circuit.

Definition 2 (Synchronous circuit). A circuit is synchronous if for every
gate g, all paths from input nodes to g have the same length and all output nodes
are in the same depth.

While any circuit can be made synchronous by adding intermediate identity
gates, this can asymptotically increase the number of gates used. Note that our
notion of synchronous circuits is stronger than the one introduced by Harper
[12]. The original definition does not require the output gates to be in the same
depth.

For more detailed treatment of this topic, refer to [25].

2.2 Field Programmable Gate Arrays

Field Programmable Gate Array, abbreviated as FPGA, is hardware which can
efficiently execute boolean circuits. It has programmable gates, which can be
programmed to perform a specific function. The gates can then be connected
via interconnects into the desired circuit. Usual FPGA consists of a grid of
gates with interconnects between them. The architecture of FPGAs only allows
for the execution of synchronous circuits, but multiple synchronous circuits of
different depths can be realised on an FPGA. There are techniques for delaying
signals which can be used for execution of asynchronous circuits. However, only
limited number of signals can be delayed. For this reason, we limit the model to
synchronous circuits.

Let G denote the number of gates of the FPGA. Then we assume that any set
of circuits with a total of at most G gates can be realised by the interconnects.
This assumption tends to be mostly correct in practice, at least asymptotically.
The FPGA communicates with other hardware using I/O pins, which are usually
placed at the edges of the FPGA. Let I denote the number of I/O pins. It usually
holds that I ≈ √

G since the I/O pins are placed at the edges of the chip.
In the theoretical model, we count execution of a circuit on FPGA as a

single operation, not accounting for the memory transfers. This is to capture
the increased throughput of FPGA compared to a conventional CPU. Moreover,
the speed of RAM is on the same order of magnitude as the speed with which
the data can be read by the FPGA. For example, Intel claims that their new
FPGA embedded on CPU has I/O throughput of 160 Gbs [13], while modern
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RAM memories have both reading and writing speed at least 160 Gbs (for dual-
channel) and up to 480 Gbs (for quad-channel) [22].

The computation of the FPGA takes place in discrete time-steps and can be
pipelined. Each time-step, output signals of layer i of the circuit go to the layer
i + 1, while layer i receives and processes the output signals of layer i − 1. This
means that in each time-step, we can give the FPGA an input and we get the
output delayed by a number of steps proportional to the depth of the circuit.
If we run the FPGA at least as many times as is the depth of the circuit, the
amortized time spent per input is, therefore, O(1).

Reprogramming an FPGA can take up a significant amount of time. For
this reason, we require in the model that the circuits used in an algorithm are
constructed beforehand and stay fixed during the computation.

3 Model of Computation

Throughout this paper, we use the following model of computation. We call the
model Pipelining Circuit RAM, abbreviated as PCRAM. The computer consists
of word-RAM of word-size w together with a circuit execution module with G
circuit gates and I circuit inputs/outputs. A program in the PCRAM model
consists of two parts. First is a program in the word-RAM running in time
polynomial in G and I, taking no input and outputting a sequence of circuits
C = C1, · · · , Cm for some m, in a standard adjacency list representation (i.e.
for each gate, the incoming edges are specified) with a total of at most G gates
and I I/O nodes. Since the algorithm generating the circuits does not take any
input except G and I, the sequence C only depends on this parameters. The
time needed for generating C does not count towards the time complexity of the
algorithm. After the end of the first phase, the sequence of circuits C cannot be
changed. Second part is the main program, working in a modified word-RAM:

At the beginning of execution of the main program, the values G and I are
stored in memory. We always assume that G ≥ I. Additionally, one might assume
that G ∈ Θ(I2) because it is usually the case in practice as explained in Sect. 2.2.
This assumption can greatly simplify sharing of resources, as is described below.

The word-RAM has an additional instruction RunCircuit(i, s, t) that starts
computation of circuit Ci on specified input. The instruction has three param-
eters. Parameter i ∈ [m] identifies which circuit should be run. Parameter s is
the source address of the input data. The address s has to be aligned to whole
words. If the circuit has l inputs then the contiguous block of l bits starting from
address s is used as input for the circuit. Similarly, t is the address where the
output of the circuit is stored after the circuit computes its output. The output
is also stored as a contiguous block of bits and, as with the input, the address
t has to be aligned to whole words. However, note that variable shift operation
by at most w bits can be easily implemented in depth O(log log w), making it
possible to use unaligned inputs and outputs. Instruction RunCircuit lasts one
time-step and it only starts execution of the circuit and does not wait for the
results. The computation time of a circuit is proportional to its depth. If we are
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evaluating instruction RunCircuit(i, s, t) then we get the output starting at
address t exactly del(Ci) steps after we executed the instruction. This can result
in concurrent writes. While concurrent writes are allowed, the resulting value
is undefined and the memory cells which are in the intersection of the writes
can have any value. The model allows for use of the RunCircuit instruction
without waiting for the results of the previous RunCircuit instruction. This is
called pipelining and it is a critical feature of the PCRAM model which makes
it possible to speed up many algorithms.

We also consider a randomized version of PCRAM with an extra operation
which assigns to a memory cell a value chosen uniformly at random indepen-
dently from other calls of the operation.

As in the case of (word) RAM, we measure the time complexity by the
number of operations executed in a worst case. We express the complexity of an
algorithm in terms of the input size n, the word size w, the number of available
circuit inputs and outputs I and the number of available gates G. The complexity
of a query on a data structure is measured in time, defined as the number of
steps executed on the RAM, and delay, defined as the number of steps when
the RAM is waiting for an output of a circuit. The reason for devising two
complexity measures is that when performing multiple queries, the processor
time is sequential and cannot be pipelined, whereas the execution of the circuit
can potentially be pipelined, not necessarily resulting in the delay adding up.

Note that in general, it is not possible to use multiple circuits and assume
that each can use all G gates and I I/O nodes. However, if all circuits use at most
polynomial number of gates in their number of input/output nodes, the speedup
caused by the circuits is at most polynomial in the number of their I/O nodes.
Shrinking the circuits by a constant factor (that is, taking circuits for values
of I and G smaller by a constant factor) will, therefore, incur at most constant
slowdown. In this paper, whenever we use multiple circuits in an algorithm, they
all use a polynomial number of gates and we do not further discuss the necessity
to share resources between circuits.

We assume that we can copy O(I) bits in memory in time O(1). We call
this the Copy instruction. For the case when G is polynomial in I, this follows
from the following theorem (however, in practice it would not make sense to use
FPGA for copying data).

Theorem 1. In the PCRAM model, if G ∈ O(poly(I)), a contiguous block of
O(I) bits can be copied in time O(1) without use of the Copy instruction.

Proof. Let CPk be a copy circuit of size k that is formed by k identity gates.
CPk copies a contiguous block of k bits in time O(1) and it uses 2k I/O pins.
Next, let K denote the greatest power of two such that 8K ≤ I. We put C =
{CP1, CP2, CP4, . . . , CPK}. In total the circuits in C use 2K − 1 < G gates and
4K − 2 < I I/O pins.

For every contiguous block of O(I) bits there exists s ∈ {20, 21, 22, . . . ,K}
such that the block can be covered by O(1) contiguous intervals of size s, not
necessarily pairwise disjoint. The block can then be copied by O(1) calls of
RunCircuit(CPs) instruction in time O(1).
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At most one half of available gates and I/O gates are used for the Copy
circuit. We set G′ = 1

2G and I ′ = 1
2I as the parameters of the circuit module for

the other circuits. Since G ∈ O(poly(I)), we incur at most constant slowdown
by a constant decrease in the model’s parameters. 
�

The running time of the algorithms will often depend on “number of elements
that can be processed on the circuit at once”. We usually call this number k and
define it when needed.

4 Algorithmic Results

In this section, we show several algorithms that are asymptotically faster than
the best known algorithms in the word-RAM.

It would also be possible to use in PCRAM a circuit to speed up data struc-
tures. However, since efficient data structures often depend on doing random
access in memory, it will be difficult to improve the running time of the data
structure by more than a factor of Θ(log(I)), as speedups gained from circuits
depend on sequential access to data. It is likely that this improvement will not
be enough to justify practical use of an FPGA. In Sect. 5, we give lower bounds
in the PCRAM model, including lower bound on search trees.

4.1 Aggregation

We show an efficient algorithm performing aggregation operation on an array.
While this operation cannot be done in constant time on word-RAM, pipelining
can be used to get constant time per operation when amortized over great enough
number of instances in the PCRAM model. In Sect. 4.2, we use this operation
for sorting numbers.

Problem 1 (Aggregation)

Input: array A of n numbers, n-bit mask M
Output: t – the number of ones in M and array B – a permutation of A such
that if M [i] = 1 and M [j] = 0, then A[i] precedes A[j] in array B for all i, j.

In this section, we use k ∈ Θ
(
min

(
I
w , G

w / log2 G
w

))
.

Theorem 2. Aggregation of n numbers can be computed on PCRAM in time
O(

n
k + log2 k

)
.

Proof. Without loss of generality, we suppose that n is divisible by k. Otherwise,
we use a circuit to extend the input to the smallest greater size divisible by k.

We construct a circuit that can aggregate k numbers using a sorting network
of order k [3]. We call this the aggregator circuit. We use a sorting network
to sort M in descending order. The sorting network uses modified comparators
that do not only compare and potentially swap values in M , but also swap the



Theoretical Model of Computation and Algorithms 301

corresponding items in array A when swapping values in M . We use a syn-
chronous sorting network called the bitonic sorter [3]. Bitonic sorter of order k
uses O(k log2 k) comparators and has depth O(log2 k). The modified comparator
that also moves items in array A can be implemented using O(w) gates in depth
O(1), since we are only comparing one-bit values. Therefore, our modification
of the sorting network uses O(kw log2 k) gates, its depth is O(log2 k) and uses
O(kw) I/O nodes.

Number t has �log k bits and each of them can be derived independently on
others from the position of the last occurrence of bit 1 in sorted array M . First,
the circuit determines in parallel for every position of sorted M whether it is the
last occurrence of 1. This can be done in constant depth with O(k) gates. Then,
for every bit of t, the circuit checks if the last 1 is at one of the positions that
imply that the bit of t is equal to 1. The value of one bit of t can be computed
in depth O(log k) with O(k) gates using a binary tree of OR gates, therefore we
need O(k log k) gates to compute the value of t from sorted M in depth O(log k).

In total the circuit uses O(kw log2 k) gates, it takes k(w + 1) input bits,
produces kw + �log k output bits and its depth is O(log2 k).

The algorithm runs in two phases:
In the first phase, split the input into chunks (A1,M1), (A2,M2), . . . (An/k,

Mn/k) of size k and use the aggregator circuit to separately aggregate elements
in each block. The circuit produces outputs t1, t2, . . . , tn/k and B1, B2, . . . , Bn/k.
It may be necessary to wait for the delay after this phase.

In the second phase, for every i ∈ 1, 2, . . . , n/k split array Bi into two arrays
Pi and Si, where Pi is the prefix of Bi of length ti and Si is the rest of Bi. Con-
catenate the arrays P1, P2, . . . , Pn/k, S1, S2, . . . , Sn/k using the Copy instruction.
In total, the algorithm runs in time O(

n
k + log2 k

)
. 
�

The construction can likely be asymptotically improved by using a sorting
network with O(n log n) comparators and depth O(log n) [1]. However, such
sorting networks are complicated and impractical due to large multiplicative
constants.

Theorem 3. The aggregation operation on m arrays with a total length n can
be computed in time O(

n
k + m + log2 k

)
.

Proof. We use the algorithm from the proof of Theorem2 and interleave its
executions to decrease delay.

First, we run the first phase of the algorithm from proof of Theorem2 for all
the arrays and then run the second phases. This way, we only wait for the delay
before the second phase at most once. 
�

4.2 Sorting

We show an asymptotically faster modification of randomized Quicksort with
expected running time O (

n
k log n + polylog(n, k, w)

)
. We achieve this by improv-

ing the time complexity of the partition subroutine. Throughout this section, we
use k ∈ Θ

(
min

(
I
w , G

w log w/ log2 G
w log w

))
.
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Problem 2 (Pivot Partition)

Input: array A of n numbers, pivot p
Output: arrays A1, A2 and the integer |A1|, such that A1 ∪· A2 = A and A1

consists exactly of elements a ∈ A, s.t. a ≤ p, where ∪· is the disjoint union.

Theorem 4. Pivot partition of n numbers can be computed in the PCRAM
model in time O(n/k + log2 k + log w).

Proof. We reduce the pivot partition problem to aggregation. For each 0 ≤ i < n
we set M [i] = [A[i] ≤ p] and perform aggregation with input (A,M), getting
output (t, B). A1 consists of the first t elements of B and A2 of the rest of B.
The array length |A1| is then equal to t.

The reduction can be done on PCRAM in time O(n/k + log w) by using a
circuit to compute k values of array M at once in depth O(log w) with O(kw)
gates. Together with aggregation, this gives the desired running time. 
�

Similarly to aggregation, pivot partition problems can be solved in bulk. The
next theorem follows from Theorem 3 by the same reduction as in Theorem 4.

Theorem 5. We can solve m independent pivot partition problems for arrays
of total length n in the PCRAM model in time O(n/k + m + log2 k + log w).

Theorem 6. There is a randomized algorithm in the PCRAM model which sorts
n numbers in expected time O (

n
k log n + polylog(n, k, w)

)
.

Proof. We show a modification of randomized Quicksort. We use bulk pivot
partitioning from Theorem5 and a bitonic sorter [3] of order k sorting w-bit
numbers. Each comparator can be synchronously implemented by O(w log w)
gates in depth O(log w) by taking a standard comparator of depth O(log w) and
adding indentity gates to make it synchronous. Therefore, the bitonic sorter has
O(kw log2 k log w) gates and depth O(log2 k log w). Note that we can also use the
bitonic sorter of order k to sort less than k numbers if we fill the unused inputs by
the maximum w-bit value and it is therefore enough to only have sorting circuit
of one size. The algorithm traverses the recursive tree of Quicksort algorithm
in BFS manner. Whenever a subproblem has size at most k, it is sorted by the
bitonic sorter. Each layer of the recursion tree corresponds to a sequence of blocks
B1, . . . , Bm for some integer m to be sorted satisfying that if b1 ∈ Bj , b2 ∈ B�,
such that 1 ≤ j < � ≤ m, then b1 ≤ b2. In each layer, blocks of length at most
k are sorted using the bitonic sorter and the remaining blocks are partitioned
into two by the bulk pivot partition algorithm from Theorem5 with pivots being
chosen uniformly at random for each of the blocks.

In each layer, there can be at most n/k blocks with more than k elements.
Thus, from Theorem 5 follows that the partition requires O(n/k+log2 k+log w)
time. Furthermore, there can be at most 2n/k blocks of size at most k. We do
not have to wait for the delay of the sorting circuit before processing of the next
layer. Therefore, we spend O(n/k + log2 k + log w) time per layer.
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The expected depth of the Quicksort recursion tree is O(log n) [19] (note that
Quicksort recursion depth is the same as the depth of a random binary search
tree, which is proven to be O(log n) in the cited paper). It follows that the total
expected time complexity of our algorithm is O((

n/k + log2 k + log w
)
log n +

log2 k log w
)
. 
�

4.3 Associative Operation

Let ⊗ : {0, 1}w × {0, 1}w → {0, 1}w be an associative operation (such as maxi-
mum or addition over a finite group). Let C1 be a synchronous boolean circuit
with g′ gates, 2w inputs and depth d′ which computes the function ⊗. We want
to efficiently compute

⊗n
i=1 ai for input numbers a1, . . . , an ∈ {0, 1}w.

We can assume without loss of generality that there is a neutral element e
satisfying (∀x ∈ {0, 1}w) (x ⊗ e = e ⊗ x = x). If there is no such e, we extend ⊗
to have one. This only changes the size and depth of C1 by a constant factor.

Problem 3 (
⊗

-sum)

Input: array A of n numbers a1, . . . , an ∈ {0, 1}w

Output: value
⊗n−1

i=0 A [i]

The idea of the algorithm is to split the input into blocks that can be pro-
cessed by the circuit simultaneously by pipelining the computation. In order to
do this, we arrange copies of circuit C1 into a full binary tree. For j ≥ 1 we
inductively define circuit Cj+1 that consists of two copies of Cj whose outputs
go into a copy of C1.

In this section, we use k ∈ Θ
(
min

(
I
w , G

g′
))

. We assume that k is a power of
two.

Theorem 7.
⊗

-sum of n w-bit numbers can be evaluated on PCRAM in time
O(n

k + d′ log (kd′)).

Proof. The algorithm repeatedly calls subroutine SumBlocks which splits the
input into blocks of size k and computes the ⊗-sum of the block using the circuit
Clog k. The results from Clog k are collected in a buffer that is used as the input
for the next call of the subroutine. Each call of SumBlocks reduces the input
size k times, therefore we have to call the subroutine �logk n times.

If the length of the input of subroutine SumBlocks is not divisible by k we
fill the last block to the full size with neutral element e. By an argument similar
to that in Theorem1, this can be done in constant time by having Θ(log n)
circuits, the i-th of which has size w2i, has no inputs and produces 2i copies
of e.

For an input of length n′, SumBlocks invokes
⌈

n′
k

⌉
calls of Clog k and runs

in time Θ
(

n′
k

)
with delay Θ(d′ log k).

The size of the problem decreases exponentially, so the first call of Sum-
Blocks dominates in terms of time complexity. The delay is the same for each
call of SumBlocks. However, if the input has length of Ω(kd′ log k) words, the
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individual values are computed by the circuit before they are needed in the cur-
rent call of SumBlocks and it is, therefore, not necessary to wait for the delay.
We only wait for the delay the last O(logk(kd′ log k)) = O(logk(kd′)) execu-
tions of SumBlocks, resulting in total waiting time of O(d′ log k logk(kd′)) =
O(d′ log(kd′)).

4.4 Dynamic Programs

A dynamic program is a recursive algorithm where the computed values are
being memoized, meaning that the function is not computed if it has already been
computed with the same parameters. Many dynamic programs used in real-world
applications have the property that the subproblems form a multidimensional
grid. We then call the individual subproblems cells. For simplicity, we will focus
only on dynamic programs with a rectangular grid. However, it is possible to
generalise the described technique to higher dimensions.

Many dynamic programs such as those solving the longest common sub-
sequence, shortest common supersequence and edit distance problems or the
Needleman-Wunsch algorithm satisfy the following three properties:

1. Each cell depends only on a constant number of other cells.
2. Each cell C depends only on cells which are in the upper-left quadrant with

C in the corner (as shown in Fig. 1).
3. For any cell C, the cells that C depends on have the same relative position

with respect to C (as shown in Fig. 2).

We call such dynamic programs CULD (constant upper-left dependency).

Fig. 1. The grey cell can only depend on the hatched cells in a CULD dynamic program

A CULD dynamic program has linear number of cells that are near the left
or top edge of the grid and, therefore, should have a dependency on a cell that
does not exist (because it would have at least one coordinate negative). These
cells have to have their values computed in some other way and are called base
cases. As it is usually trivial to compute the values of these cells, we will not
deal with computing them in this paper.

Dynamic programs can be sped up on the PCRAM model using the circuit
for (1) speeding up the computation of the individual values (it has to take
more than constant time to compute each value for this to be possible) or (2)
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parallelizing the computation of the values (usually when the individual values
can be computed in constant time). Computation of individual values of the
function can be sped up in the special case of associative operation using the
algorithm described in Sect. 4.3. In this section, we show how to use the second
approach to speed up the computation of the CULD dynamic programs.

Theorem 8. Let P be a CULD dynamic program with dependency grid of size
M × N . Let g′ and d′ be the number of gates and delay, respectively, of a circuit
which computes value of a cell from the values that the cell depends on. After
all base cases of the dynamic program have been computed, the remaining values
in the dependency grid can be computed in time O(

MN
k + M + N + kd′2) where

k
def= min

(
I
w , G

g′
)
.

Proof. Instead of storing the grid in a row-major or column-major layout, we
store it in antidiagonal-major layout. That is, the antidiagonals are stored con-
tiguously in memory.

Let d be the number of cells that a cell depends on. We calculate the values
of k cells in parallel using a circuit. Notice that subsequent cells in the layout
depend on at most d contiguous sequences of cells (see Fig. 2). First, we move
these cells to one contiguous chunk of memory. This can be used as input to a
circuit which computes the values of the k cells.

This process can be done repeatedly for all antidiagonals, computing values
of all cells in the grid. Note that it is necessary to wait for the delay only if the
antidiagonal that is being computed has O(kd′) cells. The total waiting time is,
therefore, O(kd′2) and the total time complexity O(

MN
k + M + N + kd′2). 
�

The circuit computing the cell value can be obtained either by using the general
technique of simulating a RAM, which we show in Sect. 4.5, or an ad-hoc circuit
can be used.

Fig. 2. Contiguous sequence of cells (grey) depend on a constant number (in this case
two) of contiguous sequences of cells (hatched)

4.5 Recursive Algorithms

In this section, we describe how the circuit can be used to speed up recursive algo-
rithms in which the amount of work is increasing exponentially in the recursion
level. This includes some algorithms whose time complexity can be analyzed
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by the Master theorem [7] as well as many exponential time algorithms. Our
approach does not result in a substantial increase of memory usage.

We use the circuit to solve the problem for small input sizes. We do this
by using the concept of totally computing circuits, which we introduce. Totally
computing circuit is a circuit that computes a given family of functions for all
inputs of length bounded by some constant. This is a natural concept in PCRAM
since we often want to use the circuit to compute a function on arbitrary input
that is short enough and not only for inputs of a specific length.

Definition 3 (Totally computing circuit). Let {fk}k∈N be a family of func-
tions such that fk : {0, 1}k → {0, 1}k for every k. Boolean circuit Cn is a totally
computing circuit of order n of sequence {fk}k∈N if it has n + �log2 n inputs,
interpreting the first �log2 n bits of input as a binary representation of number
n′ and it outputs on the first k outputs the value of function fn′ evaluated on
the next n′ bits of the input.

A similar definition could be made, where the circuit would work in ternary
logic with one of the values meaning “no input”, requiring that the input is con-
tiguous and starts at the first I/O node. We stick with the definition mentioned
above because this notion of totally computing circuits can be easily simulated
by totally computing circuits according to Definition 3.

Definition 4 ((f,G)-recursive algorithm with independent branches).
We call an algorithm A in word-RAM model to be (f,G)-recursive with inde-
pendent branches if it is of the form A(0) = 0 (the recursion base case) and
A(x) = f(A(g1(x)), . . . , A(gk(x))) otherwise, where the functions f and gi have
no side effects, can use randomness and G = {gi}k

i=1 is the family of functions gi.

Theorem 9. Let R be an (f,G)-recursive algorithm with independent branches
for some f,G in which the time spent on recursion level i increases exponen-
tially with i. Let CR be a family of circuits computing the same function as
R such that the circuits in CR can be generated by a Turing machine in time
polynomial in their size. Then there exists an algorithm in the PCRAM that
runs in time equal to the total time spent by R on problems of size smaller
than k

def= min(size−1
CR(G),K)/w, where K is the greatest number such that

2K + �log2 K ≤ I, plus delCR(kw).

Proof. Notice that k is the maximum subproblem size which can be solved using
the circuit. We run a recursion similar to R while using the circuit for solving
subproblems of size at most k. The algorithm has two phases and it uses a buffer
to store results from the first phase.

In the first phase, we compute results of subproblems of size at most k. We
run R with the modification that results of subproblems of size at most k are
computed using the circuit and stored in the buffer.

In the second phase, we compute results of subproblems of size more than
k. We run R with the modification that when subproblem size is at most k, we
obtain the result computed in phase 1 from the buffer and return it.
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Both phases take asymptotically same amount of time which is spent in
algorithm R on subproblems of size more than k. The second phase might have
to wait for the delay of the circuit before its execution. 
�

The memory consumption of the algorithm can be high, as we store all the
results for subproblems of size at most k in the buffer. This can be avoided by
running both phases in parallel with the second phase delayed by the number of
time-steps equal to the delay caused by the circuit. Then, at any moment, the
number of items in the buffer does not exceed the delay of the circuit and it is,
therefore, enough to use a buffer of size equal to the delay of the circuit.

Corollary 1. Let R be a recursive algorithm with independent branches whose
time complexity can be analysed by the Master theorem, running in time t(n).
If the time spent on recursion level i of R is increasing exponentially in i, then
there is an equivalent algorithm R′ in the PCRAM model that runs in time
O(t(n/k) + del(Ck)) where Ck is the circuit used do solve subproblems of size at
most k.

Such problems include the Karatsuba algorithm [15] and the Strassen algo-
rithm [23]. Other algorithms which are not analyzed by master theorem but can
be sped up using this technique include some exponential recursive algorithms
for solving 3-SAT, maximum independent set, as well as other exponential algo-
rithms based on the branch-and-reduce method [21,26].

Note that it may be possible to avoid using totally computing circuits by
ensuring that the subproblems which are solved using the circuit have all the
same size or only have constant number different sizes.

Simulation of RAM or a Turing Machine can be used to get totally
computing circuits. We say that a circuit of order n simulates given Turing
Machine (word-RAM program), if it computes the same function as the Turing
machine (word-RAM program) for all inputs of size n.

Observation 1. Let A be an algorithm that runs on RAM or Turing machine
and computes function f(x), where x is the input. Then for any n, there is in an
algorithm A′ which takes the first �log2 n inputs as the binary representation of
n′ and computes the function f on next n′ inputs. Moreover, there is such A′

that has the same asymptotic complexity as A.

This observation can be used as a basis for creation of totally computing
circuits as it is sufficient to simulate the algorithm A′ to get a totally computing
circuit.

The following theorems say that it is possible to simulate a Turing machine or
RAM on a circuit. For proof of Theorem10, see the Appendix A. Theorem 11 is
well known and its proof can be found in lecture notes by Zwick and Gupta [27].

Theorem 10. A Word RAM with word size w running in time t(n) using m(n)
memory can be simulated by a circuit of size O(t(n)m(n)w log(m(n)w)) and
depth O(t(n) log(m(n)w)).

Theorem 11. A Turing Machine running in time t(n) using m(n) memory can
be simulated by a synchronous circuit of size O(t(n)m(n)) and depth O(t(n)).
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5 Lower Bounds

In this section, we use the I/O model of computation to obtain several lower
bounds for the PCRAM model.

5.1 I/O Model

The computer in the I/O model is a word-RAM [11] with two levels of memory
– cache and main memory. Both the main memory and the cache are partitioned
into memory blocks. A block consists of B aligned consecutive words. The pro-
cessor can only work with data stored in the cache. If a word that is accessed is
not in the cache, its whole block is loaded into the cache from the main memory.
When a word which is already in the cache is accessed, the computer does not
access the main memory. Only M words fit into the cache. When the cache is
full and a block is to be loaded into it, a block which is stored in the cache has
to be evicted from it. This is done according to a specified eviction strategy,
usually to evict the least recently used item (abbreviated as LRU).

The I/O complexity is defined to be the function f such that f(n) is equal
to the maximum number of memory blocks transferred from the main memory
to the cache over all inputs of length n.

A cache-aware algorithm is an algorithm in the word-RAM model with the
knowledge of B and M . The measure of I/O complexity is usual for cache-aware
algorithms.

5.2 Lower Bounds

There are several lower bounds known on the I/O complexity of cache-aware
algorithms. We show a general theorem which gives lower bounds in PCRAM
from lower bounds in the cache-aware model. Recall that the set of circuits C
is generated by a polynomial algorithm in word-RAM. Throughout this section,
we use tgen(G, I) to denote the time complexity of this program.

Theorem 12. Let A be an algorithm in the PCRAM model running in time
t(n,G, I, w) where n is the input size. Then there is a cache-aware algo-
rithm A′ in the I/O model, simulating algorithm A with I/O complexity
O(t(n,M,Bw,w) + tgen(M,Bw)).

Note that since B and M is the number of words of cache-line and cache, respec-
tively, they have Bw and Mw bits, respectively.

Proof. We simulate algorithm A using O(1) amortized I/O operations per
instruction. We can achieve this by simulating the circuits of A in the cache.
Instructions of PCRAM model that do not work with circuits can be trivially
performed with O(1) I/O operations. There exists c < 1 such that synchronous
circuits with at most cM gates and Bw I/O nodes can be simulated in the cache.
At the beginning of the simulation, we generate the set of circuits C and load
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them into the cache. This takes time tgen(M,Bw). Any time we simulate circuit
execution, we charge the I/O operations necessary for loading the circuit into
the cache to the operation which caused eviction of the blocks which have to
be loaded. This proves a bound of O(1) amortized I/O operation per simulated
operation.

We can, therefore, simulate A with I/O complexity O(t(n, cM,Bw,w) +
tgen(cM,Bw)). Since the speedup in the PCRAM model and tgen depend on the
number of gates at most polynomially then O(t(n, cM,Bw,w)+tgen(cM,Bw)) =
O(t(n,M,Bw,w) + tgen(M,Bw)). 
�
Corollary 2. If there is a lower bound on a problem of Ω(t(n,M,B,w)) in the
cache-aware model, then the lower bound of Ω(t(n,G, I/w,w)− tgen(G, I)) holds
in the PCRAM.

Some lower bounds in the cache-aware model hold even if the cache can have
arbitrary content independent of the input at the start of the computation. Such
lower bounds in the cache-aware model imply a lower bound of Ω(t(n,G, I/w,w))
in the PCRAM. This is the case for the lower bound used in Corollary 3.

The following lower bound follows from Corollary 2 and a lower bound shown in
a survey by Demaine [8].

Corollary 3. In the PCRAM model, given a set of numbers, assuming that we
can only compare them, the search query takes Ω(logI/w n) time.

More lower bounds on cache-aware algorithms are known, but, like in the
Corollary 3, they often make further assumptions about operations that we can
perform, often requiring that we treat the input items as indivisible objects.
Problems for which a non-trivial lower bound is known include sorting, perform-
ing permutation and FFT [24].

6 Open Problems

There are many problems waiting to be solved. An important direction of pos-
sible future work is to implement the algorithms described in this paper and
compare experimental results with predictions based on time complexities in
our model. The soundness of the model of computation needs to be empirically
verified.

There are many theoretical problems that are not yet solved, including the
following:

Open problem 1 (Fast Fourtier Transform). Is there an asymptotically
fast algorithm performing the Fast Fourier Transform in the PCRAM model?

Open problem 2 (Data structures). Are there any data structures in the
PCRAM model with asymptotically faster queries than their word-RAM coun-
terparts?
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A Simulation of Word-RAM

Theorem 10. A Word RAM with word size w running in time t(n) using m(n)
memory can be simulated by a circuit of size O(t(n)m(n)w log(m(n)w)) and
depth O(t(n) log(m(n)w)).

Proof. We first construct an asynchronous circuit. In the proof, we will be using
the following two subcircuits for writing to and reading from the RAM’s memory.

Memory read subcircuit gets as input nw bits consisting of m(n) words of
length w together with a number k which fits into one word when represented
in binary. It returns the k’th group. There is such circuit with O(m(n)w) gates
and depth O(log(m(n)w)).

Memory write subcircuit gets as input m(n)w bits consisting of m(n) words
of length w and additional numbers k and v, both represented in binary, each
fitting into a word. The circuit outputs the m(n)w bits from input with the
exception of the k’th word, which is replaced by value v. There is such circuit
with O(m(n)w) gates in depth O(log w).

The circuit consists of t(n) layers, each of depth O(log(m(n)w)). Each layer
executes one step of the word-RAM. Each layer gets as input the memory of the
RAM after execution of the previous instruction and the instruction pointer to
the instruction which is to be executed and outputs the memory after execution
of the instruction and a pointer to the next instruction. Each layer works in two
phases.

In the first phase, we retrieve from memory the values necessary for execution
of the instruction (including the address where the result is to be saved, in case
of indirect access). We do this using the memory read subcircuit (or possibly two
of them coupled together in case of indirect addressing). This can be done since
the addresses from which the program reads can be inferred from the instruction
pointer.

In the second phase, we execute all possible instruction on the values retrieved
in phase 1. Note that all instructions of the word-RAM can be implemented by
a circuit of depth O(log w). Each instruction has an output and optional wires
for outputting the next instruction (which is used only by jump and conditional
jump – all other instructions will output zeros). The correct instruction can be
inferred from the instruction pointer, so we can use a binary tree to get the
output from the correct instruction to specified wires. This output value is then
stored in memory using the memory store subcircuit.

The first layer takes as input the input of the RAM. The last layer outputs
the output of the RAM.

Every signal has to be delayed for at most O(log(m(n)w)) steps. The number
of gates is, therefore, increased by a factor of at most O(log(m(n)w)). 
�
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Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink!.
LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36478-1 17. http://dl.acm.org/citation.cfm?id=885909

27. Zwick, U., Gupta, A.: Concrete complexity lecture notes, lecture 3 (1996). www.
cs.tau.ac.il/∼zwick/circ-comp-new/two.ps

http://www.sciencedirect.com/science/article/pii/S0167739X13001349
https://open.bu.edu/handle/2144/11126
https://doi.org/10.1145/765568.765571
http://www.sciencedirect.com/science/article/pii/S0166218X11002393
http://www.sciencedirect.com/science/article/pii/S0166218X11002393
https://www.techspot.com/news/62129-ddr3-vs-ddr4-raw-bandwidth-numbers.html
https://www.techspot.com/news/62129-ddr3-vs-ddr4-raw-bandwidth-numbers.html
https://doi.org/10.1007/BF02165411
https://doi.org/10.1561/0400000014
https://doi.org/10.1007/978-3-662-03927-4
https://doi.org/10.1007/3-540-36478-1_17
https://doi.org/10.1007/3-540-36478-1_17
http://dl.acm.org/citation.cfm?id=885909
www.cs.tau.ac.il/~zwick/circ-comp-new/two.ps
www.cs.tau.ac.il/~zwick/circ-comp-new/two.ps


On the Complexity of and Algorithms
for Min-Max Target Coverage

On a Line Boundary

Peihuang Huang1, Wenxing Zhu2, and Longkun Guo2(B)

1 College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
peihuang.huang@foxmail.com

2 College of Mathematics and Computer Science, Fuzhou University, Fuzhou, China
{wxzhu,lkguo}@fzu.edu.cn

Abstract. Given a set of sensors distributed on the plane and a set
of Point of Interests (POIs) on a line segment, a primary task of the
mobile wireless sensor network is to schedule a coverage of the POIs by
the sensors, such that each POI is monitored by at least one sensor. For
balancing the energy consumption, we study the min-max line barrier
target coverage (LBTC) problem which aims to minimize the maximum
movement of the sensors from their original positions to final positions
for the coverage. We first proved that when the radius of the sensors are
non-uniform integers, even 1-dimensional LBTC (1D-LBTC), a special
case of LBTC in which the sensors are distributed on the line segment
instead of the plane, is NP-hard. The hardness result is interesting, since
the continuous version of LBTC of covering a given line segment instead
of the POIs is known polynomial solvable [2]. Then we presented an exact
algorithm for LBTC with sensors of uniform radius distributed on the
plane, via solving the decision version of LBTC. We showed that our
algorithm always finds an optimal solution in time O(mn(logm+log n))
to LBTC when there exists any, where m and n are the numbers of POIs
and sensors.

1 Introduction

In the past decades, wireless sensor networks have brought tremendous changes
to human society and proposed many technique challenges. Among them, the
coverage topic including area coverage [10] and barrier coverage [8] is one of the
hot spots that attract lots of research interest. In area coverage, the task is to
schedule the new positions of the sensors, such that each point in the given target
region is covered by at least one sensor. Differently, in barrier cover the task is
to monitor only the boundary of a given region, and the aim is to guarantee that
intruders can be found when they are crossing the barrier. Comparing to area
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coverage, barrier coverage has an advantage of using significantly less sensors and
hence is scalable for large scale wireless sensor networks (WSN). Furthermore,
some applications only require a set of Points Of Interest (POIs) along the
boundary to be monitored. In the context, a problem arises how to guarantee
every POI on the barrier to be covered. The current-state-of-art method is to
firstly cover POIs using the stationary sensors, and secondly use mobile sensors
to cover every not-yet covered POI along the boundary. For the second phase,
we traditionally have the following assumptions for the modeling: (1) Sensors
are acquired with mobile ability; (2) The initial positions of the sensors are
distributed on the plane, and the POIs are distributed along a line segment
(Although the shape of the boundary can be various, most researches nonetheless
focus on line boundary since curves of other shapes can be considered as a
variable); (3) The aim of the sensor network is to prolong the lifetime. This
arises the min-max 2D Line Boundary Target Coverage problem in (min-max
2D-LBTC) as follows:

Definition 1. Let Ψ and Γ be respectively a set of POIs distributed in a line
segment [0, M ] and a set of mobile sensors distributed on the plane, where j ∈ Ψ
has a position (pj , 0) and i ∈ Γ has a position (xi, yi) and a positive sens-
ing radius ri. The min-max 2D-LBTC problem aims to compute a new posi-
tion (x′

i, 0) for each sensor i ∈ Γ , such that each POI j ∈ Ψ is covered by
at least one sensor, i.e. for each POI j ∈ Ψ there exists a sensor i ∈ Γ with
position (x′

i, 0) that x′
i − ri ≤ pi ≤ x′

i + ri, and the maximum movement of
the sensors from their original positions to the new positions is minimized, i.e.
maxi∈Γ

{√
(xi − x′

i)2 + yi
2
∣∣∣ i ∈ Γ

}
is minimized.

When no confusion arises, we shall use LBTC short for the min-max 2D-LBTC
problem for the sake of briefness. In particular, we use one dimensional min-
max Line Boundary Target Coverage problem (1D-LBTC) to denote the special
case of LBTC when the initial positions of all the sensors are also distributed
on the line boundary [0, M ]. Moreover, the decision version of LBTC (decision
LBTC for short) is, for a given movement bound D, to determine whether there
exists a feasible coverage with each sensor’s movement bounded by D. Besides,
when the aim is to cover the line boundary itself instead of the POIs thereon,
we respectively have the min-max Line Boundary Coverage (LBC) problem and
one-dimensional-LBC (1D-LBC) problem, which have already been well studied
and a number of algorithms have been developed.

1.1 Related Works

To the best of our knowledge, Kumar et al. [8] were the first to consider the
barrier coverage problem using sensors against a closed curve (i.e., a moat), via
transforming the coverage problem to the path problem of determining whether
there exists a path between two specified nodes, although the research of barrier
coverage started from early 90s in the last century due to Gage [7]. The algorithm
from Kumar et al. is scalable and can also be extended to solve the k-coverage
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problem by transforming to the k-disjoint path problem, but can only be used
to determine whether a coverage exists using the deployed stationary sensors.
A problem for stationary sensors is that, after deployment there might exist
no coverage over all targets. For the case, a state-of-art solution is to employ
mobile sensors to fill the gaps between the stationary sensors. In the scenario, the
WSN applications would require to maximize the minimum lifetime of the mobile
sensors or to minimize the total energy consumption. For the former, the aim is to
schedule new positions for the mobile sensors such that the barrier is completely
covered, and that the maximum movement of the sensors is minimized as to
prolong the lifetime of the WSN. When the sensors are on the line of the barrier,
the 1D-LBC problem is shown optimally solvable in O(n2) time for uniform
radius in Paper [4]. The same paper has also proposed an algorithm with O(n)
time for uniform radii and

∑
i ri ≤ L, and with x1 ≤ · · · ≤ xn for the sensor

Γ = {s1, · · · , sn}, where L is the length of the barrier, n is the number of
the sensors. Later, Chen et al. have improved the time complexity to O(n log n)
for uniform sensor radii and proposed an O(n2 log n) time algorithm for non-
uniform radii in paper [2]. Besides straight line barrier, circle/simple polygon
barriers has been studied and two algorithms have been given developed by
Bhattacharya et al. in [1], which have an O(n3.5 log n) time relative to cycle
barriers and an O(mn3.5 log n) time relative to polygon barriers, in which m is
the number of the edges on the polygon. The later time complexity was then
decreased to O(n2.5 log n) in [12]. For the more generalized case in which the
sensors are distributed on the plane, the LBC problem is known to be strongly
NP-hard for sensors with general integral sensing radius [6], while LBC using
uniform radius sensors is shown solvable in O(n3 log n) time [9].

Other than the Min-Max case, there are also applications require min-sum
coverage that is to minimize the total energy consumption, which is to minimize
the total movement of the mobile sensors. For this objective, both Min-Sum LBC
and LBTC, which aim to minimize the sum of the movements of all the sensors,
were studied in literature. Min-Sum LBC was shown NP-complete for arbitrary
radius while solvable in time O(n2) for uniform radii by Czyzowicz et al. [5].
The Min-Num relocation problem of minimizing the number of sensors moved, is
also proven NP-complete for arbitrary radii and polynomial solvable for uniform
radii by Mehrandish et al. [11]. A PTAS has been developed for the Min-Sum
relocation problem against circle/simple polygon barriers by Bhattacharya et
al. [1], which was later improved to an O(n4) time exact algorithm by Tan
and Wu [12]. For covering targets with Min-Sum movement, the most recent
result is a factor-

√
2 approximation algorithm for covering targets along a barrier

using uniform-radius sensors, aiming to minimize the sum of the movement [3].
However, it remains open whether the min-sum LBC problem is NP-hard.

1.2 Our Results

In this paper, we first show that 1D-LBTC is NP-hard when the sensors are with
non-uniform integral radii by proposing a reduction from the 3-partition problem
that is known strongly NP-complete. This hardness result is surprising, because
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1D-LBC, the continuous version of 1D-LBTC, is shown solvable in polynomial
time O(n2 log n).

Then, we propose a sufficient and necessary condition to determine whether
there exists a feasible cover for the barrier under the relocation distance bound
D. Based on the condition, we propose a simple greedy approach that outputs
“infeasible” if D < D∗, and otherwise computes a feasible solution under the
movement bound D, such that new positions for the sensors wrt which each
target is monitored by at least a sensor. We show that the decision algorithm
is with a runtime O(n log n). By employing the binary search technique, we
propose an algorithm using the decision algorithm as a routine which takes
O(n log n log(dmax + L)) time to actually find a minimum integral movement
bound D = D∗, where dmax is the maximum distance between the sensors and
the POIs, and L is the length of the line segment.

For instances with large dmax and L, we propose another algorithm that
employs the binary search method against O(mn) possible values of D∗ instead
of the continuous value range. This improves the runtime of the algorithm to
O(mn(log m + log n)), which is the time needed to sort the O(mn) values. The
later algorithm remains correct even when D is any real number. In contrast,
the former algorithm only works for integral D∗.

1.3 Organization

The following paragraphs will be organized as below: Sect. 2 gives the NP-
completeness proof; Sect. 3 presents the algorithm for Decision LBTC with uni-
form sensor radii, and shows that it always produces an optimal solution; Sect. 4
actually solves the LBTC problem by employing the binary search method, and
then improve the runtime to O(mn(log m + log n)); Sect. 5 concludes the paper.

2 NP-Completeness of Decision 1D-LBTC

In this section, we shall show the Decision LBTC problem is NP-complete when
the sensors are with non-uniform integral radii by giving a reduction from the
3-partition problem. In the 3-partition problem that is known strongly NP-
complete, we are given a set of integers U = {a1, . . . , a3n} with

∑3n
i=1 ai = Bn

for an integer B > 0. The aim is to determine whether U can be divided into n
subsets, such that each subset is with an equal sum B.

Theorem 2. Decision 1D-LBTC is NP-complete when the sensors are with
non-uniform integral radii.

The key idea of the proof is to construct a reduction from 3-Partition to the
decision LBTC problem. For a given instance of 3-Partition, the construction of
the corresponding instance of decision LBTC is simply as below:
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1. Construct a line barrier with length (2n − 1)B;
2. Place 2nB targets on the line barrier composed by n sections,where in the

ith section, i = 0, . . . , n − 1, the targets are with positions 2iB + j + jε and
2iB + j + 1 − (B − j)ε, for j = 0, . . . , B − 1;

3. Place 3n sensors on position (0, 0), where sensor i is with radii ai

2 ;
4. The maximum movement is D = (2n − 1)B.

Note that, the instance of decision 1D-LBTC constructed above contains
2nB POIs and 3n sensors. Anyhow, 3-Partition is known strongly NP-complete,
which means, 3-Partition remains NP-complete even when B is polynomial to
n. Therefore, the construction can be done in polynomial time for B being poly-
nomial to n.

The main idea behind the construction is to construct a relationship between
the number of covered targets and the diameters of the sensors that are actually
the integers in U . More precisely, the property on the relationship is as in the
following:

Proposition 3. Against a 1D-LBTC instance produced by the above construc-
tion, a sensor with diameter 2r can cover at most 4r targets.

Proof. When a sensor is with a diameter 2, apparently it can cover at most 4
targets. Suppose the proposition is true for sensors with diameter smaller than
2r. Then, let r1 + r2 = r be two positive integers smaller than r. By induction,
we have that sensors with diameters 2r1 and 2r2 can cover upto 4r1 and 4r2
targets, respectively. In addition, the two sensors with radii r1 and r2 can cover
as many POIs as a sensor with a radii r = r1 + r2 does. Therefore, the sensor
with diameter 2r can cover no more than 4r1 +4r2 = 4r targets. This completes
the proof. ��
Lemma 4. An instance of 3-Partition is feasible if and only if the corresponding
1D-LBTC instance is feasible.

Proof. Suppose the instance of 3-Partition is feasible. Without loss of generality,
we assume that {Ui|i = 0, . . . , n − 1} is a solution to the 3-Partition instance
which divides U to a collection of n sets, among which Ui = {ali+1, . . . , ali+1}
and l0 = 0. Since D = (2n − 1)B equals the length of the barrier and the
original position of each sensor is (0, 0), each sensor can be moved any point of
the barrier. Then we need only to use the sensors in Ui, which are with radius
aij , . . . , aij+1 and with a sum exactly B, to cover the segment from 2iB to
(2i + 1)B. That apparently results in a coverage for all the targets in the ith
section.

Conversely, suppose the corresponding LBTC instance is feasible. Then since
sensor j with radii aj

2 can at most cover 2aj continuous targets, and each section
contains exactly 2B targets, so the diameter sum of the sensors for each section
is at least B. Then because the diameter sum of all the sensors is Bn, and there
are n sections, the diameter sum of the sensors for each section is exactly B.
Therefore, the diameters for the sensors for the sections is a solution to the
corresponding instance of 3-Partition. ��
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From the fact that 3-Partition is strongly NP-complete, and following a sim-
ilar idea of the above proof for Theorem2, we immediately have the following
hardness for LBTC:

Corollary 5. Decision 1D-LBTC is strongly NP-complete.

3 A Greedy Algorithm for 2D-LBTC with Uniform
Sensors

The basic idea of the algorithm is to cover the target from left to right, preferably
using sensors that are likely less useful for later coverage. More precisely, let
[li, gi] be the possible coverage range of sensor i, where li and gi are respectively
the positions of the leftmost and the rightmost targets, with respect to the given
distance D. That is, li and gi are the leftmost and the rightmost targets sensor i
can cover within movement D. Then the key idea of our algorithm is to cover the
targets from left to right, using the sensor that can cover the leftmost uncovered
target within movement D and is with minimum gi.

The algorithm is first to compute its possible coverage range [li, gi] for each
sensor i with respect to the movement constraint D. Apparently, (xi, 0) is the
projective point of sensor i on the line, so we have li = xi − √

D2 − y2
i − D and

gi = xi +
√

D2 − y2
i for each sensor i. Then, the algorithm starts from point

s = (0, 0), to cover the line from left to right. The algorithm prefers using the
sensor with a small gi, since a sensor with a large gi would has a better potential
to cover the targets on the right part of the line.

Let s be the position the uncovered leftmost target on the line barrier. Then
among the set of sensors {i|li ≤ s ≤ gi}, the algorithm repeats selecting the
sensor with minimum gi to cover the uncovered targets of the line barrier starting
at s. Note that {i|li ≤ s ≤ gi} is exactly the set of sensors that can monitor
a set of uncovered targets starting at s by relocating at most D distance. The
algorithm terminates either the set of targets are completely covered, or the
instance is found infeasible (i.e. there exists no unused sensor i with li ≤ s ≤ gi

while the coverage is not yet done). The detailed algorithm is formally as in
Algorithm 1.

Note that Algorithm 1 takes O(n) time to compute li and gi for all the sensors
in Steps 2–3, and takes O(n log n) time to assign the sensors to cover the targets
on the line barrier in Steps 4–15. Therefore, we have the time complexity of the
algorithm:

Lemma 6. Algorithm1 runs in time O (n log n).

Before proving the correctness of Algorithm1, we need the following lemma
stating the existence of a special coverage for a feasible LBTC instance.

Proposition 7. Let (xj , yj) be the position of sensor j in the plane. Assume
p1(s, 0), p2(x′

j , 0) and p3(x′′
j , 0) are three points on a line segment. If s ≤ x′′

j ≤
x′

j, then d(j, p3) ≤ max{d(j, p1), d(j, p2)} holds. That is, the distance between
the sensor and the middle point is not larger than the larger distance between
the sensor and the other two points.
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Algorithm 1. A simple greedy algorithm for decision LBTC.
Input: A movement distance upper bound D ∈ Z

+, a set of sensors Γ = {1, . . . , n}
with original position {(xi, yi)|i ∈ [n]+} and r being the sensing radii, a set of POIs
P = {1, . . . , m} with positions p1 � p2 � · · · � pm, where pj is the position for j ∈ P ;
Output: New positions {x′

i|i ∈ [n]+} for the sensors or return “infeasible”.
1: Set I := Γ , s := p1; /*s is the leftmost point of the uncovered part of the barrier.*/
2: For each sensor i do
3: Compute the leftmost position li and the rightmost position gi, both of which

sensor i can monitor;
4: While I �= ∅ do
5: If there exists i′ ∈ I, such that li′ ≤ s ≤ gi′ then
6: Select sensor i ∈ I for which gi = mini′: li′ ≤s≤gi′ {gi′};

/* Select the sensor with minimum gi among all the sensors {i′|li′ ≤ s ≤ gi′}.*/
7: Set t := min{s + 2r, gi}, I := I \ {i}, x′

i := t − r;
8: If {p|p > t, p ∈ P} = ∅ then /*All targets are covered. */
9: Return “feasible” together with the new positions {x′

i|i ∈ Γ};
10: Endif
11: Set s := min{pj |pj > t};
12: Else
13: Return “infeasible”;
14: Endif
15: Endwhile

Lemma 8. If an instance of LBTC is feasible, then there must exist a coverage
in which the sensors are s-ordered.

Proof. The key idea of the proof is that, any coverage of LBTC that is not s-
ordered, can be converted to an s-ordered coverage by re-scheduling the sensors
of covering the POIs.

Suppose there exist two sensors i and j, such that gi > gj but x′
i < x′

j . Then
we need only to swap the final positions of i and j, i.e. to simply set the new final
positions x′′

i and x′′
j of sensor i and j as below: If x′

i − r ≥ s, then set x′′
i := x′

j

and later x′′
j := x′

i; Otherwise set x′′
i := x′

j and x′′
j := s + r.

Apparently, the POIs exclusively covered by i are now covered by sensor j,
and vice versa. So after the swap the sensors will remains a coverage for the
POIs on the line. It remains to show the swap will not increase the maximum
movement. Recall that the leftmost and the rightmost points sensor j can cover
are respectively lj and gj . Because sensor j can move to x′

j under the movement
bound D, we have

lj ≤ x′
j − r ≤ x′

j + r ≤ gj ≤ gi. (1)

On the other hand, in either case of the swap, we have x′′
i = x′

j ≥ x′
i. So

combining Inequality (1), we have li ≤ x′′
i − r ≤ x′′

i + r ≤ gi. That means

li + r ≤ x′′
i ≤ gi − r.

Then following Proposition 7, the distance between sensor i and its new position
x′′

i is bounded by D = max{d(i, (li + r, 0)), d(i, (gi − r, 0))}. The case for the
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new position of sensor j is similar except that the distance between sensor j and
its new position x′′

i is bounded by D = max{d(j, (max{s, lj + r}, 0)), d(i, (gi −
r, 0))}. This completes the proof. ��
Based on Lemma 8, given a feasible instance of LBTC, we can assume there exists
an s-ordered coverage, say Γ ′ = {s1, . . . , sk} which is the set of sensors used to
compose the coverage with ji being the rightmost target covered by si. Then we
have the following lemma, which leads to the correctness of the algorithm:

Lemma 9. When running against a feasible LBTC instance, Algorithm1 covers
the targets {1, . . . , ji} without using any sensor in {si+1, . . . , sk}.
Proof. We shall prove this claim by induction. When i = 1, the lemma is obvi-
ously true, as we need only s1 to cover the targets {1, . . . , j1}. Suppose the
lemma holds for i = h, then it remains only to show the case for i = h + 1. By
induction, Algorithm1 covers the targets {1, . . . , jh} without using any sensor
in {sh+1, . . . , sk}. Then Algorithm 1 can simply cover targets {jh +1, . . . , jh+1}
by using sensor sh+1. Combining with the induction, we covers {1, . . . , jh+1}
without using any sensor in {sh+2, . . . , sk}. This completes the proof. ��
We can now prove the following theorem to get the correctness of Algorithm 1:

Theorem 10. Algorithm1 returns “feasible” iff the targets can be completely
covered by the sensors within relocation distance D.

Proof. Suppose Algorithm 1 returns “feasible”, then obviously the produced
solution {x′

i|i ∈ Γ} is truly a coverage, because in the solution the movement
of each sensor is bounded by D and all the targets are covered by at least one
sensor.

Conversely, suppose there is a coverage for the instance. Then by Lemma 8,
there must exist an s-ordered coverage, say Γ ′ = {s1, . . . , sk} which is the
set of sensors used to compose the coverage. Following Lemma 9, Algorithm 1
covers targets {1, . . . , ji} without using any sensor in {si+1, . . . , sk} for every
i ∈ [1, k]. So the algorithm can always find sensors for further coverage, and in
the worst case use si+1 to cover the targets {ji + 1, . . . , ji+1}. Therefore, the
algorithm will eventually find a feasible coverage. This completes the proof. ��

4 The Complete Algorithms

In this section, we will show how to employ Algorithm 1 to really compute D∗ the
minimum movement bound for LBTC. Firstly, when only considering integral
D∗, we can find it simply by employing the binary search method against a large
range that contains D∗; Secondly, for real number D∗, we construct a set of size
O(mn) which arguably contains D∗, and then eventually finds D∗ in the set
again by the binary search method.
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Algorithm 2. The whole algorithm for optimal LBTC.
Input: A movement distance upper bound D ∈ Z

+, a set of sensors Γ = {1, . . . , n}
with original position {(xi, yi)|i ∈ [n]+} and r being the sensing radii, a set of POIs
P = {1, . . . , m} with positions p1 � p2 � · · · � pm, where pj is the position for j ∈ P ;
Output: The minimized maximum movement of the sensors together with their new
positions {x′

i|i ∈ [n]+}.
1: Set upper := dmax and lower := 1, where dmax is the maximum distance between
the sensors and the POIs;

2: If there exists no coverage by calling Algorithm 1 wrt D = dmax then
3: Return “infeasible”;
4: EndIf
5: Set temp :=

⌈
lower+upper

2

⌉
;

6: While upper − lower > 1 do
7: If there exists no coverage by calling Algorithm 1 wrt D = temp then
8: Set lower := temp and then temp :=

⌈
lower+upper

2

⌉
;

9: Else
10: Set upper := temp and then temp :=

⌊
lower+upper

2

⌋

11: EndIf
12: EndWhile
13: Return the result of calling Algorithm 1 wrt D = temp and terminate.

4.1 A Simple Binary Search Based Algorithm

The algorithm is simply applying the binary search method to find D∗ within
the range of [1, dmax], where dmax is the maximum distance between the targets
and the sensors. The main observation is as the following proposition whose
correctness is easy to prove:

Proposition 11. If LBTC is feasible, then we have D∗ ≤ dmax.

The detailed algorithm is as in Algorithm2.
For the correctness and time complexity of Algorithm 2, we immediately have

the following lemma:

Lemma 12. Using binary search and employing Algorithm1 for O(log Dmax)
times, Algorithm2 will compute the optimum movement D∗ within time com-
plexity O(n log n log Dmax).

4.2 An Improved Algorithm via Discretized Binary Search

In this subsection, we shall show the time complexity of our algorithm can be fur-
ther improved via a more sophisticated implementation over the binary search.
The key observation is that, we need only to apply a binary search over a set
of discrete values which arguably contain the optimum min-max movement D∗.
Let {c1, . . . , ct} be the set of possible combinations. Let dij be the minimum
movement using sensor i to cover combination cj , where cj is a set of POIs which
can be exactly covered by a sensor. Then we have the following lemma:
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Algorithm 3. A fast algorithm for LBTC.
Input: A set of sensors Γ = {1, . . . , n} with original position {(xi, yi)|i ∈ [n]+} and
an identical sensing radii r, a set of POIs P = {1, . . . , m} on the line segment with
positions p1 � p2 � · · · � pm, where pj is the position for j ∈ P ;
Output: Minimum movement bound D under which the sensors can be relocated to
covered all the POIs of P .
0: Set Ψ := ∅ and compute the collection of combinations Φ := {c1, . . . , ct};
1: For each sensor i do
2: For each combination cj ∈ Φ do
3: Compute dij , the minimum movement needed to using sensor i to cover cj ;
4: Set Ψ := Ψ ∪ {dij};
5: EndFor
6: EndFor
7: Sort Ψ in a non-decreasing order and set lb := 1 and ub := |Ψ |;
8: Use Ψ [1] as the movement bound (i.e. D) to call Algorithm 1;

/*Ψ [1] is the smallest element in Ψ . */
9: If there exists a feasible coverage under movement bound Ψ [1] then

10: Return Ψ [1] as the optimum movement bound;
11: Endif
12: While ub − lb > 1 do
13: Set idx :=

⌈
lb+ub

2

⌉
;

14: Use Ψ [idx] as the movement bound (i.e. D) and call Algorithm 1;
/*Ψ [idx] is the idx smallest element in Ψ . */

15: If there exists a feasible coverage under movement bound Ψ [idx] then
16: Set ub := idx;
17: Else
18: Set lb := idx;
19: Endif
20: Endwhile
21: Return Ψ [idx] as the optimum movement bound.

Lemma 13. Let dopt be an optimal solution to the uniform 2D-LBTC problem.
Then dopt ∈ Ψ = {dij |i ∈ Γ, cj ∈ {c1, . . . , ct}}.
Proof. Suppose the lemma is not true. Then let dmax = maxd{d | d ∈ Ψ, d <
dopt}. First we show that under maximum distance dmax and dopt, every sensor i
covers an identical collection of combinations. That is because every POI, which
sensor i can cover under movement bound dopt, can also be covered by sensor
i under movement bound dmax (as dij ≤ dmax iff dij < dopt), and conversely
every POI, which cannot be covered by sensor i under dmax, can not be covered
by the same sensor within the movement bound dopt (dij > dmax iff dij > dopt).
Therefore, a feasible coverage solution under maximum movement dopt would
also remain feasible under dmax. This together with dmax < dopt contradicts
with the fact that dopt is an optimal solution to the problem. ��

Our algorithm will first compute the collection of distances between the com-
binations and the sensors, say Ψ = {dij |i ∈ Γ, cj ∈ {c1, . . . , ct}}, and then sort
the distance in Ψ in non-decreasing order. Then by applying the binary search
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method to Ψ and using Algorithm 1 as a subroutine, we find a minimum dij

under which there exists a relocation of the sensors such that all the targets can
be covered. The detailed algorithm is as in Algorithm 3.

Lemma 14. The time complexity of Algorithm3 is O(mn(log m + log n)).

Proof. Apparently, |Φ| = O(m), so we have |Ψ | = O(mn). Then sorting the
elements in Ψ takes O(|Ψ | log |Ψ |) = O(mn log mn) = O(mn(log m + log n))
time. Besides, the while-loop from Step 12 to Step 20 will be repeated for at most
O(log m + log n) times, each of which takes O(n log n) time to run Algorithm1.
Therefore, the total time complexity of the algorithm is O(mn(log m + log n)).

��
Theorem 15. Algorithm3 produces an optimum solution to the LBTC problem.

5 Conclusion

In this paper, we first proved that 1D-LBTC is NP-hard when the radius of the
sensors are not identical, in contrast with the known result that 1D-LBC problem
can be efficiently solved in a polynomial time. Then, we designed an algorithm
for decision 2D-LBTC with uniform radius, and consequently proposed an algo-
rithm for really solving 2D-LBTC based on the binary search method. Moreover,
we improved the binary search method to a runtime O(mn(log m + log n)) by
observing that the optimum movement bound is within the set of distances
between combinations of POIs and the sensors. We are currently investigating
how to further improve the runtime of the algorithm.
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Abstract. In the online version of Travelling Salesman Problem,
requests to the server (salesman) may be presented in an online manner
i.e. while the server is moving. In this paper, we consider a special case
in which requests are located only on the circumference of a circle and
the server moves only along the circumference of that circle. We name
this problem as online Travelling Salesman Problem on a circle (OLTSP-
C). Depending on the minimization objective, we study two variants of
this problem. One is the homing variant called H-OLTSP-C in which the
objective is to minimize the time to return to the origin after serving
all the requests. The other is the nomadic variant called N-OLTSP-C in
which after serving all the requests, it is not required to end the tour at
the origin. The objective is to minimize the time to serve the last request.
For both the problem variants, we present online algorithms and lower
bounds on the competitive ratios. An online algorithm is said to be zeal-
ous if the server that is used by the online algorithm does not wait when
there are unserved requests. For N-OLTSP-C, we prove a lower bound of
28
13

on the competitive ratio of any zealous online algorithm and present
a 2.5-competitive zealous online algorithm. For H-OLTSP-C, we show
how the proofs of some of the known results of OLTSP on general metric
space and on a line metric, can be adapted to get lower bounds of 7

4

and 2 on the competitive ratios of any zealous and non-zealous online
algorithms, respectively.

Keywords: Online algorithms · Competitive ratio ·
Travelling Salesman Problem

1 Introduction

In the classical Travelling Salesman Problem (TSP), a salesman (server) is given
a designated origin O and a set of n requests (points in some metric space). The
goal is to find a tour that starts and ends at the origin and minimizes the total
distance travelled or the completion time, by serving each point at least once. So,
the nature of classical TSP is “offline”, in the sense that at time t = 0 when the
server is located at the origin, it has all the information about the input. TSP and
many of its variants have been studied extensively in this offline setting, where
all the information about the requests is known to the server before starting
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the tour. But in many practical situations, we do not have all the information a-
priori. This is the motivation to consider the online version of TSP called OLTSP,
where requests are revealed online while the server is moving. Each request is
associated with a release time, only after which information about the request
becomes known and can it be served.

In this paper, we study a special case of the online Travelling Salesman
Problem in which the requests are located on the circumference of a circle and
the server moves only along the circumference of that circle. We call this problem
as OLTSP-C.

A standard technique which has been used for analysing many problems in
an online setting is competitive analysis in which the performance of an online
algorithm is compared against an optimal offline algorithm which knows all the
input data in advance. More formally, over all possible input sequences, consider
the ratio between the objective function value produced by an online algorithm
and the objective function value produced by an optimal offline algorithm. Such
a ratio is called competitive ratio. Therefore, an online algorithm is said to be
ρ-competitive if for every input its objective value is at most ρ times the optimal
offline objective value for the same input.

1.1 Preliminaries

Depending on the minimization objective, we consider two variants of OLTSP-C.
When the objective is to minimize the time to serve the last request, it is the
nomadic variant called N-OLTSP-C. When there is an additional requirement
to end the tour at the origin, then the objective is to minimize the time to
reach the origin after serving all the requests. This is the homing variant called
H-OLTSP-C. Thus,

N-OLTSP-C Minimize the time it takes for the online server to all the requests.
H-OLTSP-C Minimize the time it takes for the online server to serve all the

requests and return to the origin.

In this paper, we restrict ourselves to deterministic online algorithms. The
server used by a deterministic online algorithm can move at any speed varying
between 0 and 1 (maximum speed). Blom et al. [5] proposed a particular class
of algorithms called zealous algorithms.

Definition 1. [Zealous Algorithm] An algorithm ALG for the OLTSP is called
zealous, if it satisfies the following conditions:

– If there are still unserved requests, then the direction of the server operated
by ALG changes only if a new request becomes known, or the server is either
in the origin or at a request that has just been served.

– At any time when there are unserved requests, the server operated by ALG
either moves towards an unserved request or to the origin at maximum (i.e.
unit) speed. (The latter case is only allowed if the server operated by ALG is
not yet in the origin.)
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Notation: Consider the circle C of radius r. Let the origin O be the top-most
point on the circle where the online server is initially located at time t = 0.
Each request σ = (t, x) is identified by its release time t and a location x on the
circumference of the circle. A request can be served only at or after its release
time. The offline version of OLTSP-C is the problem known as TSP With Release
Dates in which the release dates of the requests are known to the offline server
at time t = 0. For OLTSP-C, let Zol and Z∗ denote the objective function
values of an online algorithm and the corresponding optimal offline algorithm,
respectively. Such an online algorithm is said to be ρ-competitive if there exists
a constant ρ such that for any request sequence, Zol ≤ ρZ∗.

1.2 Related Work

Ausiello et al. [3] introduced OLTSP and proved lower bound results and com-
petitive ratios of online algorithms for both the nomadic and homing versions of
OLTSP on general graphs and on the real line. Blom et al. [5] introduced the
notion of zealous algorithms and fair adversaries and studied the homing version
of OLTSP on a half-line. They proved that non-zealous algorithms are strictly
better than the zealous ones. Lipmann [8] presents many results on OLTSP on
the line and half-line with sophisticated mathematical analysis of the non-zealous
algorithms. More recently, tight bounds and competitive analysis of OLTSP on
real line have been presented [4]. Feuerstein [6] and Ascheuer [2] have studied
the generalized version of OLTSP called online Dial-a-Ride Problem where online
requests should be picked up from a source and delivered to a destination. Jaillet
and Wegner [7] and Albers [1] presents survey about online routing and online
algorithms in general, respectively.

1.3 Our Contribution

In the seminal paper of Ausiello et al. [3], the authors introduced and analysed
OLTSP from the perspective of competitive analysis for the first time. In the
concluding section of their paper, the authors pointed out that it would be
interesting to studying OLTSP on special metrics like the circle. This motivated
us to consider OLTSP on a circle. To the best of our knowledge, we believe that
the results in this paper, for the first time, give a formal treatment to OLTSP-C.

For N-OLTSP-C, we prove a lower bound of 28
13 on the competitive ratio

of any zealous online algorithm and present a 2.5-competitive zealous online
algorithm. We consider this as our main contribution.

For H-OLTSP-C, we show how the proofs of some of the known results of
OLTSP on general metric space and on a line metric, can be adapted to get lower
bounds of 7

4 and 2 on the competitive ratios of any zealous and non-zealous online
algorithm, respectively.

Though various bounds are known for OLTSP on the line and half-line, the
problem becomes interesting to analyse on a circle due to the following reasons.
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– In a circle, from any point, the online server can reach the origin O in two
ways (clockwise or anti-clockwise). While in the case of a line or halfline, there
is only one direction by which online server can reach the origin.

– A circle is finite but a line/half-line is infinite. So, in case of a circle, there is
a boundary within which the adversary can release requests.

It is therefore important to understand that not all the results known for line
directly apply for circle due to the reasons stated above. Some of the lower bound
results for OLTSP on a line rely on the fact that the line is of infinite length
on either sides of the origin. Thus, there arises a need to rework some of these
proofs for OLTSP on the circle.

Outline: Structure of this paper is as follows. We discuss lower bound results on
the competitive ratios for H-OLTSP-C and N-OLTSP-C in Sect. 2. Algorithms
for H-OLTSC-C and N-OLTSC-C are presented in Sect. 3. Section 4 concludes
with the summary.

2 Lower Bound Proofs

In this section, we present the lower bounds on the competitive ratios of zealous
and non-zealous online algorithms, respectively.

Some lower bound proofs for competitive ratios of algorithms for TSP on the
line can be extended to the circular case by assuming that the size of the circle
is relatively large and all the requests occur close to the origin thereby imitating
a line on the circle. But certain lower bound proofs on a line which relies on the
property that the line is of infinite length on either sides of the origin do not
extend trivially to a circle, as in the case of a circle we cannot assume an infinite
length path on either sides of the origin.

Lemma 1. Any ρ-competitive deterministic zealous online algorithm for N-
OLTSP-C has ρ ≥ 28

13 .

Proof. For the ease of notations, let the point π
2 radians from the origin O in

the clockwise direction be denoted as A, the point diametrically opposite to the
origin O be denoted as B and the point diametrically opposite to A be denoted
as C. Let us also assume, without loss of generality, that the circumference of
the circle is of length 8 units. Denote by D as the point π

4 radians away from
the origin in the clockwise direction and denote by E as the point π

4 radians
away from the origin in the anticlockwise direction. Denote by X and Y as the
mid-points of the minor arcs OD and OE, respectively (Fig. 1).

Suppose two requests σ1 = (0,X) and σ2 = (12 , O) are released. After serving
these requests, the online server should be at the origin at time 1. At time 1, two
requests σ3 = (1,D) and σ4 = (1, E) are released. At time 3, the online server
is again at the origin after serving either σ3 or σ4. Assume WLOG, that it has
served σ3.

At time 3, another request σ5 = (3,D) is presented. Therefore, at time t = 3,
the online server is at the origin and has to serve σ4 and σ5 at locations D and
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Fig. 1. LB instance for (zealous) N-OLTSP-C.

E, respectively. Assume, WLOG, that it decides to serve σ5 as both the requests
are symmetric. At time t = 4, the online server reaches the location of σ5 i.e D.
On the other hand, the offline server can serve this request sequence in the order
(E, Y,O,X,D,A) and can be in location A at time 4.

Therefore, at time 4, the offline server is at location A and the online server
is at location D.

The online server, in order to serve σ4 at location E, starts moving towards
the origin from location D at time 4 (if instead the online server continues to
move in the clockwise direction at time 4 in order to serve σ4 then the adversary
can stop releasing any further requests and the algorithm performs bad). On
the other hand, suppose that at time 4, the offline server, located at A, starts
moving away from the origin and continues to move in the same direction till it
reaches a point P such that current position of the online server is exactly the
mid-point of the path with end points P and the location of σ4 i.e E. The path
we consider here is the one that passes through the origin. Let x be the length of
the minor arc PA. Note that this is the same distance that the online server has
covered, starting from the location of σ5 i.e. D. We can calculate x as follows.

1 + 2 + x = 2(1 + (1 − x)) =⇒ x =
1
3

At time t = (4 + 1
3 = 13

3 ), a new request σ5 is presented at location 2 + 1
3 = 7

3
i.e. σ6 = (133 , 7

3 ). Completion time of the offline server is 13
3 . On the other hand,

completion time of the online server which has to serve both requests σ4 and
σ6 is 13

3 + 3(1 + (1 − 1
3 )) = 13

3 + 5. Therefore, the competitive ratio is given by
( 13

3 +5)
13
3

≈ 2.153. �

Lemma 2. Any ρ-competitive deterministic online algorithm for N-OLTSP-C
has ρ ≥ 2.

Proof. We can trivially extend Theorem 3.1 of Ausiello et al. [3] for the line to
that of a circle, since the proof does not require a line of infinite length. For the
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ease of notations, let the point π
2 radians away from the origin O in the clockwise

direction be denoted as A and the point diametrically opposite to A be demoted
as C. Without loss of generality, assume that the circumference of the circle is
of length 4 units.

At time 1, if position of the online server is on the minor arc OC, then a
request is released in point A i.e σ = (1, A). Otherwise, the request is released
in point C i.e σ = (1, C). Online server, in order to serve σ, takes 1+1 = 2 time
units. On the other hand, the optimal offline server would be at the location of
σ at time 1. Therefore, the lower bound on the competitive ratio is 2

1 = 2. �

Lemma 3. Any ρ-competitive deterministic zealous online algorithm for
H-OLTSP-C has ρ ≥ 7

4 .

Proof. For the ease of notations, let the point π
2 radians from the origin O in

the clockwise direction be denoted as A, the point diametrically opposite to the
origin O be denoted as B and the point diametrically opposite to A be denoted
as C. Denote by D as the point π

4 radians away from the origin in the clockwise
direction. Let us also assume, without loss of generality, that the circumference
of the circle is of length 4 units.

At time 0, the request σ1 = (0,D) is released. Online server, after serving
σ1, reaches the origin at time 1. At this time, two new requests σ2 = (1, A)
and σ3 = (1, C) are released. Due to zealousness, at time 3, the online server
would be located in either O or B after having served either σ2 or σ3. Without
loss of generality, assume that the online server has served σ2 before time 3. On
the other hand, the optimal offline server, after serving σ3 at time 1, would be
located in A at time 3. That means that at time 3, the offline server has served
both the requests σ2 and σ3.

At time 3, a new request σ4 = (3, A) is released. Irrespective of whether
the online server is located in O or B at time 3, it shall take an additional
4 units of time to return to the origin after serving the unserved requests i.e.
Zol = 3+4 = 7. On the other hand, the optimal offline server is already present
at A at time 3. Thus, Z∗ = 3 + 1 = 4. Therefore, the lower bound on the
competitive ratio is 7

4 . �

Lemma 4. Any ρ-competitive deterministic online algorithm for H-OLTSP-C
has ρ ≥ 2.

Proof. Consider a circle with the top-most point as the origin O. Suppose,
WLOG, that the circumference of the circle is 4 units. Denote the point diamet-
rically opposite to O as O

′
. The position of the online server at time t is denoted

by pol
t . Define distance between any two points on the circle as the length of the

minor arc between them. Call the two semi-circles with the diameter OO
′
as left

half and right half, respectively.
At time 0, multiple requests are released all along the circumference of the

circle with a distance of ε between any consecutive requests. The number of
requests can be arbitrarily large with small ε.
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We first show that for some δ ∈ [0, 2], at time 2 + δ any on-line server must
be in one of the two points at distance 2 − δ from the origin (not necessarily
requested points). To formalize this notion, consider a function f : [0, 2] → [0, 2]
such that f(δ) is the distance of the position of the online server from the point O

′

at time 2+δ. Define another function g(δ) = f(δ)−δ. Clearly, g(0) = f(0)−0 ≥ 0
and g(2) = f(2) − 2 ≤ 0. Since g is continuous, there exists δ0 ∈ [0, 2] such that
g(δ0) = 0 i.e. f(δ0) = δ0. Consider smallest such δ0. Therefore, at time 2 + δ0,
the online server is at a distance of 2 − δ0 from the origin O (Fig. 2).

Fig. 2. LB instance for (non-zealous) H-OLTSP-C.

Next, we prove that there exists a segment of length atleast 2 such that none
of the requests in that segment have been touched at time 2 + δ0. Let S be the
segment corresponding to the minor arc with end points as the origin O and pol

t ,
respectively. Let T1 be the segment starting from the origin O in the clockwise
direction to some point such that the requests in T1 are served before time
2 + δ0. Similarly, let T2 be the segment starting from the position of the online
server at time 2 + δ0, i.e. pol

2+δ0
, in the anti-clockwise direction to some point

such that requests in T2 are served before time 2 + δ0. Clearly, we have

|S| + 2|T1| + 2|T2| ≤ 2 + δ0

2 − δ0 + 2|T1| + 2|T2| ≤ 2 + δ0

|T1| + |T2| ≤ δ0

Therefore, |S| + |T1| + |T2| ≤ 2. The arc excluding segments S, T1 and T2

has length atleast 2. Therefore, such an arc is a segment of length atleast 2 such
that none of the requests in that segment have been touched at time 2 + δ0.

At time 2 + δ0, a new set of requests (with a distance of ε between them)
are released in the segment S. The optimal completion time, Z∗ = 4 since the
optimal offline server can tour the cycle in the anti-clockwise direction and serve
all the requests at or after their release times. The completion time of the online
server Zol ≥ 2 + δ0 + 4 + 2 − δ0 = 8. Therefore, the competitive ratio is Zol

Z∗ ≥ 2.
�
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3 Online Algorithms

In this section, we present the online algorithms for H-OLTSP-C and
N-OLTSP-C, respectively.

3.1 Algorithm for N-OLTSP-C

First, we present some intuition behind the algorithm and its analysis. Here,
the objective is to minimize the time at which the last request is served and
the server is not required to return to the origin after serving all the requests.
Therefore, at any time t, when the new requests arrive, we first find the smallest
interval, along the circumference of the circle, that covers all the released but
yet to be served requests. Then, the online server from its current position at
time t goes to the nearest end point of the interval and serves all the requests.
This is a very simple and natural strategy. We call this algorithm ERF (Extreme
Request First).

In the proof, we analyse different cases that arise based on the interval length
and the position of the online server at the time when the interval is calculated.

Algorithm 1. Extreme Request First (ERF)
The online server is located at the origin at time t = 0. At the moment when the
first request(s) are released, find the smallest interval I along the circumference, that
covers all the released requests. Serve I through the shortest route. New requests
may arrive while the server is moving.
1. If the new request(s) can be served on the current route then we can safely ”ignore”
them, as they will be anyway served.
2. Otherwise, recalculate the shortest interval I which covers released but not yet
served requests. Go to the extreme (end point) of I that is nearest to the server’s
current position and then serve all of I.

Theorem 1. ERF is 2.5-competitive.

Proof. Let t be the release time of last request and pol
t be the position of the

online server at time t. Denote by I as the shortest interval consisting of all the
unserved requests at time t. Suppose Xl and Xr denote the end points of I such
that I = [Xl,Xr]. Denote by ds(a, b) and dl(a, b) as the lengths of minor arc and
major arc with end points a and b, respectively. We proceed with the proof by
considering the different cases that arise depending on the length of I and the
current position of the online server, pol

t .

1. |I| > πr
– pol

t ∈ I
In this case, for the offline server we have Z∗ ≥ t and Z∗ ≥ |I|. Assume
WLOG that the nearest extreme from pol

t is Xr. The upper bound on Zol

is given by the following
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Zol ≤ t + ds(pol
t ,Xr) + |I|

≤ t +
|I|
2

+ |I| ≤ 2.5Z∗

– pol
t /∈ I

In this case, for the offline server we have Z∗ ≥ t, Z∗ ≥ |I| and Z∗ ≥ πr.
Assume WLOG that the nearest extreme from pol

t is Xr. The upper bound
on Zol is given by the following

Zol ≤ t + ds(pol
t ,Xr) + |I|

≤ t +
(2πr − |I|)

2
+ |I|

= t + πr +
|I|
2

≤ Z∗ + Z∗ +
Z∗

2
= 2.5Z∗

2. |I| ≤ πr
– pol

t ∈ I
The offline server has to wait till the release time of the last request,
so Z∗ ≥ t. Also, the offline server should cover requests in I. Therefore,
Z∗ ≥ |I|. Assume, WLOG, that the extreme of I that is nearest to pol

t is
Xr. The upper bound on Zol is given by the following

Zol ≤ t + ds(pol
t ,Xr) + |I|

≤ t +
|I|
2

+ |I| ≤ 2.5Z∗

– pol
t /∈ I

Let XlX
′
l and XrX

′
r be the diameters passing through Xl and Xr respec-

tively. Given that pol
t /∈ I, there are three regions where pol

t could be in.
Define R1 as the region covering the minor arc with end points Xl and
X

′
r, R2 as the region covering the minor arc with end points X

′
r and X

′
l

and R3 as the region covering the minor arc with end points X
′
l and

Xr. Depending on the region where pol
t lies, we analyse the upper bound

on Zol.
• pol

t ∈ R2
∗ R2 does not contain the origin
If online server has entered R2 from a different region, then claim
that there must exist some request(s) in R2. We prove this by con-
tradiction. Assume WLOG, that the online server entered R2 from
R1. We know that at time t, there were no requests in R3. If there
were no request(s) in R2 also, then the semi-circle with end points
Xr and X

′
r containing R2 and R3 had no requests. In such a situa-

tion, the online server, always seeking the shortest paths, would have
never moved from X

′
r along R2. This means, it should not have been
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located anywhere in this semi-circle at time t. This is a contradiction
since the current position is in R2. Therefore, if pol

t is in R2, then
there must exist some request(s) in R2.
So, in order to serve requests in I and request(s) in R2, the offline
server would have to cover at least the length of one half circle i.e.
Z∗ ≥ πr. Also, we have Z∗ ≥ t and Z∗ ≥ |I|.
Let us assume that for the online server WLOG, that the nearest
extreme from pol

t is Xr. Then, the upper bound on Zol is given by the
following.

Zol ≤ t + ds(pol
t ,Xr) + |I|

≤ t +
(2πr − |I|)

2
+ |I| = t + πr +

|I|
2

≤ Z∗ + Z∗ +
Z∗

2
= 2.5Z∗

∗ R2 contains the origin
In this case, the online server is already in R2. In order to serve the
interval I, the optimal offline server has to travel at least πr distance.
So we have Z∗ ≥ πr, Z∗ ≥ t and Z∗ ≥ |I|. For the online server,
we have Zol ≤ t + ds(pol

t ,Xr) + |I|. These are the same inequalities
that we have in the previous sub-case. so we get the bound of 2.5-
competitiveness.

• pol
t ∈ R1

∗ R1 does not contain the origin
If R1 does not contain the origin then there must be some request(s)
in the semi-circle C with Xl and X

′
l as the end-points i.e. there must

be some request in either R1 or R2, since otherwise the online server
is not on the shortest path. Let F be the farthest request from the
origin in C that is ever presented.
If F is in R2 then by the same arguments as discussed in the previous
sub-case hold here as well and we get 2.5 competitiveness.
If F is in R1, then F should be in the minor arc with end points pol

t

and X
′
r. Therefore, Z∗ ≥ ds(F,Xl) + |I|. Upper bound on Zol is the

following

Zol ≤ t + ds(pol
t ,Xl) + |I|

≤ t + ds(F,Xl) + |I|
≤ Z∗ + Z∗ = 2Z∗

∗ R1 contains the origin
Here, R1 contains the origin and the online server is already present
in R1 at time t (meaning the online server did not enter R1 from
outside). Within R1, if pol

t is between the origin O and Xl then we
have Z∗ ≥ ds(O,Xl) + I and Z∗ ≥ t. Clearly, we have ds(pol

t ,Xl) ≤
ds(O,Xl). Upper bound on Zol is the following.
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Zol ≤ t + ds(pol
t ,Xl) + |I|

≤ t + ds(O,Xl) + |I|
≤ Z∗ + Z∗ = 2Z∗

But if pol
t is in the part between the origin O and X

′
r then there must

exist some request(s) in that part (since otherwise there is no reason
for the online server to move towards X

′
r, away from the interval I). Of

all such request(s), let F be the position of the request that is farthest
from the origin. For the optimal offline server, we have Z∗ ≥ t and
Z∗ ≥ ds(F,Xl) + |I|. Also, ds(pol

t ,Xl) ≤ ds(F,Xl). Upper bound on
Zol is the following

Zol ≤ t + ds(pol
t ,Xl) + |I|

≤ t + ds(F,Xl) + |I|
≤ Z∗ + Z∗ = 2Z∗

• pol
t ∈ R3

Proof for this case is analogous to the previous sub-case where pol
t is

in R1. �

3.2 Algorithm for H-OLTSP-C

Ausiello et al. [3] presented a 2-competitive online algorithm called PAH (Plan
At Home) for H-OLTSP on any general metric space. PAH is the best possible
online algorithm for H-OLTSP-C (since the lower bound is 2, see Lemma4).

The intuition behind PAH is that since the online server returns to the origin
after serving all the requests, it can ignore any new online requests that are
“closer” to the origin. Such ignored requests can be served in a separate tour.
A new online request is considered to be “closer” to the origin if at the time of
it’s release, it’s distance from the origin (measured as shortest path) is less than
the distance of the online server from the origin. For completeness, we present
the algorithm here but omit the analysis (see [3] for the complete proof).

Algorithm 2. Plan At Home (PAH)
1. Whenever the server is at the origin, it starts to follow an optimal route that serves

all the requests yet to be served and goes back to the origin.
2. If at time t a new request is presented at point x , then it takes one of two actions

depending on its current position p :
(a) If d(x,O) > d(p,O), then the server goes back to the origin (following the

shortest path from p ) where it appears in the Case 1 situation.
(b) If d(x,O) ≤ (p,O) then the server ignores it until it arrives at the origin, where

again it reenters Case 1.

Theorem 4.2 Ausiello et al. [3]. PAH is 2-competitive.
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4 Concluding Remarks

We have studied the homing and nomadic versions of online TSP for the special
case in which the points/requests lie on a circle. We have presented lower bound
proofs and an online algorithm for both homing and nomadic variants of this
problem.

For N-OLTSP-C, there is work to be done in closing the gap between the
lower bound of 28

13 and the 2.5-competitive ratio of the zealous online algorithm
that we have presented. It would also be interesting to study generalizations of
TSP such as Dial-A-Ride-Problem in this setting.

Acknowledgements. We are thankful to Shyam K.B for being part of technical dis-
cussions that led to this work and for reviewing this paper.
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Abstract. In this work we put forward a complexity class of type-two
linear-time. For such a definition to be meaningful, a detailed protocol
for the cost of interactions with functional inputs has to be fixed. This
includes some design decisions the defined class is sensible to and we
carefully discuss our choices and their implications. We further discuss
some properties and examples of operators that are and are not com-
putable in linear-time and nearly linear-time and some applications to
computable analysis.
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1 Introduction

Classical computability and complexity theory is concerned with programs whose
inputs and outputs are finite strings over a finite alphabet. Mathematical struc-
tures are operated on by use of encodings. Since the set of finite strings is count-
able, the mathematical structures that can be treated have to be countable.
However, many of the computational branches of mathematics like numerical
analysis use objects of continuum cardinality in an essential way. The set of real
numbers, e.g., is uncountable and thus it is impossible to uniquely identify each
real number by a finite string. On the other hand, any real x can be encoded by
a function that gives arbitrarily exact rational approximations to x. Since ratio-
nal numbers can be encoded by finite strings, real numbers can be encoded by
elements of Baire-space. To compute on real numbers one may thus fix a model
of computation for operators on Baire space, i.e., do higher order computability
theory.

Since it is essential that Baire-space is uncountable, restricting to computable
elements and operating on indices is not an option. The accepted model of com-
putation on the full Baire space is that of oracle Turing machines. Besides their
name, oracle Turing machines provide a realistic model of computation where
any computation is finitary and the access to functional inputs is provided via
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calls for the function values. The field of research dealing with computation on
the real numbers in this setting is known as computable analysis and already
dates back to Turing [22]. The theory of computing real valued functions has
further been developed by Grzegorczyk [7], Lacombe [15] and others, and a more
general theory of computation on continuous structures via encodings called rep-
resentations was developed by Weihrauch and Kreitz [23]. Computable analysis
is an active field of research [19,20, and many more] and the model of computa-
tion used in computable analysis has applications in many other areas such as
for instance machine learning [3,4].

While computability theory asks whether tasks are algorithmically solvable,
it is clear that in practice not only correctness but also performance is impor-
tant. Computational complexity theory is concerned with judging the quality of
algorithms. The most common measure for the quality of an algorithm is the
number of steps a Turing machine carrying out this algorithm takes. Of course,
this number depends on the input and is usually bounded by a function in the
size of the input. The computationally feasible functions are identified with those
functions whose runtime can be bounded by a polynomial. Note that this makes
essential use of the classical setting, where all inputs are finite strings and no
functional inputs are present.

For computations at type level two, that is when some inputs may reach
over Baire space, the class of basic feasible functionals is widely accepted as
the natural class of feasible operations [9]. This class was originally introduced
by Mehlhorn [16] by means of a bounded recursion scheme, and accepted to
capture feasibility after Kapron and Cook [10] gave an characterization in terms
of oracle machines whose runtimes are bounded polynomially in the sizes of the
inputs. The characterization lead to many applications in computable analysis
[11,14,17,21] as well as in other fields [4–6].

In practice, a proof that an algorithm runs in polynomial time does not
necessarily imply that it performs well, but should be understood as evidence
that it does not perform unreasonably bad for large inputs. Traditionally, sub-
polynomial complexity classes are used for more refined quality judgements.
Examples of such classes use logarithmic bounds on the memory, restrict the
degree of a polynomial runtime, or use different classes of sub-polynomial run-
times such as quasi-linear ones which are linear up to a logarithmic factor.

Unfortunately, this part of complexity theory does not translate to a higher
order setting very well: In Kapron and Cook’s characterization, the size of a func-
tional input is a function on the natural numbers. Thus, the runtimes, and also
the class of polynomial runtimes, consists of higher-order functions for which
the structure theory is considerably more complicated. For instance, different
notions of the ‘degree’ of second-order polynomials have been suggested by dif-
ferent authors [13,24] and none of them seem fully satisfactory. As a result,
the existent work on sub-polynomial classes in a higher order setting is mostly
concerned with restrictions of a different nature. Somewhat surprisingly, since
restrictions to memory consumption are known to be problematic with respect
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to relativization [2], space-based complexity classes such as L and NC have
recently been extended to a type-two setting by Kawamura and Ota [12].

The present paper is concerned with linear-time computability. In classical
complexity theory, linear-time or real-time computation is a two sided sword.
On one hand, proofs of linear time computability are considered highly desirable
in applications and there is a well-developed theory for the model of multi-tape
Turing machines [18]. On the other hand, linear time computability is subtle
due to its lack of robustness under minor changes in the computational model
[8], and the fact that the best known universal Turing machines introduce a
logarithmic overhead in execution times.

The reason we still decided to look into linear-time computability in a higher-
order setting in more detail is that a candidate class of linear running times is
readily available by omitting the multiplication from the generation scheme of
second-order polynomials. The linear second-order polynomials introduced in
this way share many of the closure properties making second-order polynomials
useful. It should be noted that this approach is somewhat orthogonal to notions
of “hyper-linearity” that can be obtained from restricting the different notions
of degree of the second-order polynomials [1,24]. This is because the notions of
degree are mostly concerned with restricting the number of iterations of the func-
tional argument. Our approach does not restrict this quantity as this necessarily
leads to a loss of desirable closure properties.

To give a meaningful definition of linear-time computable operators on Baire-
space as those computable by an oracle machine whose runtime is bounded by
a linear second-order polynomial, a protocol for oracle interactions and some
other details about the machine model have to be fixed. Thus, Sect. 2 recalls
some definitions in some detail and discusses some of the choices we are faced
with and some of their implications. Its last part discusses the classical proof
that polynomial-time computable operations on Baire-space are closed under
composition.

Section 3 introduces linear second-order polynomials and type-two linear-
time computability and subsequently investigates closure under composition:
We prove that the linear-time computable operators take linear-time computable
inputs to linear-time computable outputs but that a composition of linear-time
computable operators need not be linear time computable. We also investigate
the closure of the linear-time computable operators under composition and call
operators from this class nearly linear-time computable. These operators still
have the important property that they preserve linear-time computability.

We give an explicit example of linear-time computable operators such that
there does not exist any machine that computes their composition in linear time.
This counter-example works mostly independently of the details of the oracle
interaction protocols. We believe that the failure of closure under composition
is due to the complexity of the operation of composing oracle machines and not
an artifact of our definitions. It should be noted that in many use-cases one
is not interested in composing general oracle machines but only those relevant
for a fixed application and that often optimized composition schemes can be
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specified. It should also be noted that the failure of closure under composition is
foreshadowed by a formula for bounding the runtime of the composition derived
in Sect. 2: It includes a product that, while clearly being a coarse overestimation,
is impossible to remove completely.

Finally in Sect. 4 we apply our theory to problems from computable analysis.
One important property we prove is a very strong equivalence of the signed
digit and the Cauchy representation: The notion of linear time computable real
numbers does not change when switching between these representations. We also
prove that the standard representation of the continuous functions on the unit
interval as introduced by Kawamura and Cook allows for a linear-time evaluation
algorithm. We establish that a function has a linear-time computable name in
this representation if and only if it has a realizer from our class of linear-time
computable operators. Furthermore, we prove that the linear-time computable
functions on the reals are closed under composition, i.e., that there is an efficient
way to compose those linear-time computable operators that appear as realizers
of real-valued functions.

2 Machines

Let Σ := {0, 1} be the binary alphabet, Σ∗ the set of finite binary strings and
denote the elements of the later by a,b, . . .. Let B := Σ∗ → Σ∗ denote the space
of all functions from finite binary strings to finite binary strings and denote its
elements by ϕ,ψ, . . .. In this paper we choose the basic devices that carry out
computations to be Turing machines with an arbitrary but fixed finite number
of memory tapes. Let K be a finite list of instructions, i.e., a program for such a
machine. For a finite string a written to the input tape of the machine, one may
run the machine on the set of instructions K. The machine has a designated
return state to indicate that the computation has terminated. If after finite time
the machine enters the return state, we interpret the collections of digits on the
output tape (up to the first empty cell) to be the return value and denote it by
K(a). K computes a partial function fK : ⊆ Σ∗ → Σ∗, where dom(fK) are the
elements such that K(a) is defined and fK(a) = K(a) in this case. Note that,
due to being partial, this function need not be an element of Baire space.

Interaction with a functional input can be modeled by oracle Turing
machines. In the literature, such machines are most commonly given access to a
subset of the finite binary strings, i.e., they may write a finite string to a tape
and call an external procedure to test a condition on this string. We consider
a slightly different model and allow the return value not only to be a Boolean
but a finite binary string again: An oracle machine is a Turing machine that has
an additional instruction called the oracle query instruction and two designated
working tapes for oracle input and output. For a given string function ϕ and
string a an oracle machine with a set of instructions M behaves just like a Tur-
ing machine with one exception. Whenever entering the oracle state, the state of
the machine is altered as follows: Let b be the content of the oracle input tape
up to the first empty cell. Change the oracle output tape to contain ϕ(b) fol-
lowed by empty cells. Erase the oracle input tape and set the heads on the oracle
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input and output tapes to the first position. If the oracle machine on functional
input ϕ and string input a eventually enters the return state, let Mϕ(a) denote
the content of the output tape up to the first empty cell. In this case, we denote
the set of oracle queries asked during the computation by QM (ϕ,a).

As we are mostly interested in applications to computable analysis, we adapt
the interpretation of what an oracle Turing machine computes with a specific
instruction set to the conventions common in computable analysis. That is, we
understand each M to correspond to an operation that takes inputs from Baire
space and returns elements of Baire space. Fix some function ϕ ∈ B. Note
that the function a �→ Mϕ(a) need not be total. In the case where it is total,
denote the corresponding element of Baire space by Mϕ. The partial operator
FM : ⊆ B → B corresponding to M is defined as follows: The set dom(FM )
consists of all ϕ such that Mϕ is defined and the value is given by FM (ϕ) := Mϕ.
We consider an operator F : ⊆ B → B to be computable if there exists an M
such that FM extends F , i.e., such that FM |dom(F ) = F . In accordance with this
we say that M computes F if FM extends F .

2.1 Runtimes and Input Sizes

For a set of instructions K for a regular Turing machine and an input string a
such that K(a) is defined, the runtime timeK(a) ∈ N is defined to be the num-
ber of applications of the transition function needed until termination. If some
higher-level programming language is used to specify the transition function, one
may instead count the number of commands executed, provided that the com-
mands are chosen from a finite list of possible commands each of which takes
finite time to carry out. The runtime is specific to the exact model of compu-
tation used. For more stability under switching between models of computation
we use O-notation: For t, t′ : A → N by t ∈ O(t′) we mean that there exists
a C ∈ N such that t(a) ≤ Ct′(a) + C for all a ∈ A. We leave the type of the
input open for reasons that become apparent shortly, by abuse of notation we
sometimes use the O-notation with the arguments filled in.

For oracle machines we use very similar conventions: We denote by
timeM (ϕ,a) the number of instructions executed in the run of M on oracle
ϕ and input a. In particular, executing the oracle instruction is considered to
take one time step. As we require the oracle tape to be emptied on execution of
an oracle query, and only one bit may be written per time step it follows that

∑

b∈QM (ϕ,a)

|b| ∈ O(timeM (ϕ,a)). (Q)

(Where ϕ and a are the inputs the bigo-notation reaches over.) We use this
inequality several times throughout the paper. While the dependency on the
details of the time-counting conventions of non-oracle instructions of oracle
machines is taken care of by the O-notation, the protocol of interaction with
the functional input is essential for its validity. For instance, if the query tape
was not erased, a machine could ask a linear number of queries of linear size
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with coinciding initial segments in linear time. We believe that for any reason-
able convention this inequality should hold. Some additional discussion as to
why we believe this can be found in Sect. 3.2.

For a set of instructions K for a regular Turing machine, the time function
has type timeK : Σ∗ → N. In complexity theory one is usually interested in
bounding the time function by means of the size of the input, where the size of
a binary string a is considered to be the number |a| ∈ N of digits of the string.
That is, one looks for slowly growing functions t : N → N such that for all valid
inputs a it holds that timeK(a) ≤ t(|a|). The most common notion of being
slowly growing is to consider polynomials and the corresponding set of functions
are called the polynomial-time computable functions.

It might seem like we are diverging from the most common definitions by
allowing the time constraint to only hold on a specified set of ‘valid inputs’.
However, under some weak additional assumptions one can easily modify an
instruction set to fulfill the time-constraint globally. Namely the time bounds
considered should be time constructible and one should only be interested in
time consumption up to multiplicative and additive constants. Thus, for regular
Turing machines our notions are essentially equivalent to the standard notions.

For a set M of instructions for an oracle machine, the time function has type
timeM : B × Σ∗ → N. To be able to bound the time depending on the size of
inputs, it is necessary to say what the size of an element of Baire-space is. The
usual choice for this size function is the worst-case rate of increase in size from
input to output: For any function ϕ ∈ B let |ϕ| : N → N denote the function

|ϕ|(n) := max{|ϕ(a)| : |a| ≤ n}.

For instance, if K is a set of instructions for a Turing machine that computes
ϕ, i.e., fM = ϕ, then for any input a writing the output requires time and thus
|ϕ(a)| ∈ O(timeK(a)). We assume that writing each bit of the output takes one
time step. Thus the following lemma holds.

Lemma 1 (size and time). Let ϕ ∈ B be computable in time t : N → N. Then

∀n, |ϕ|(n) ≤ t(n).

A function T : NN × N → N is called a time-bound for M if for all valid inputs
ϕ and a it holds that timeM (ϕ,a) ≤ T (|ϕ|, |a|).

One of the main sources of additional difficulties over the situation for regular
Turing machines is the infeasibility of the size function: We have to deal with
the fact that the size is not polynomial-time computable.

2.2 Second-Order Polynomials

The class of second order polynomials is the smallest class of functions of type
N

N × N → N that contains the constant zero and one function, the function
(l, n) �→ n and is closed under point wise addition and multiplication as well as
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the operation P �→ P+, where P+(l, n) := l(P (l, n)). An example of a second-
order polynomial is (l, n) �→ l(n2 + 4) · l(l(n)2 + n) + n4. We denote the function
n �→ P (l, n) by P (l, ·).

A machine is said to run in polynomial time on a set A ⊆ B of valid inputs if
there exists a second-order polynomial P such that timeM (ϕ,a) ≤ P (|ϕ|, |a|) for
all ϕ ∈ A and a ∈ Σ∗. An operator F : ⊆ B → B is computable in polynomial
time if there is a machine that computes F and runs in polynomial time on
dom(F ). Restricted to the total operators, this class of polynomial-time com-
putable operations is well investigated, has been characterized in several different
ways and is established as the correct one for classifying feasibility in a type-two
setting.

We list some well known properties of second-order polynomials:

Lemma 2. The following properties hold for second-order polynomials.

1. If P is a second-order polynomial and p is a polynomial, then P (p, ·) is a
polynomial.

2. If P is a second-order polynomial, l, k : N → N are non-decreasing functions
and k is point wise bigger than l, then the same is true for the functions
P (l, ·) and P (k, ·).

Note that the natural inputs to second-order polynomials are sizes of elements
of Baire-space and that exactly the non-decreasing functions turn up as such.
As we are mostly interested in second-order polynomials as runtimes, the impor-
tant class of functions are those that are point wise majorized by second-order
polynomials.

There are two canonical ways to compose second-order polynomials: Given
P and Q one may hand the value of the later polynomial as input to the first
polynomial, i.e., set (P � Q)(l, n) := P (l, Q(l, n)) or use the function Q(l, ·) as
input for P , i.e., (P ◦ Q)(l, n) := P (Q(l, ·), n).

Both of these operations result in second-order polynomials again. For exam-
ple, for P (l, n) = Q(l, n) = l(n) + n the compositions are given by P ◦ Q(l, n) =
Q(l, n) + n = l(n) + 2n and P � Q(l, n) = P (l, l(n) + n) = l(l(n) + n) + n. In
particular, � may introduce iterations of the functional argument.

2.3 Composition of Machines

Given operators F,G : ⊆ B → B let F ◦ G denote their composition, i.e., the
operator whose domain dom(F ◦ G) is the set of ϕ from dom(G) such that
G(ϕ) ∈ dom(F ) and whose value on such a ϕ is given by (F ◦G)(ϕ) := F (G(ϕ)).
One of the first questions one may ask about the class of polynomial-time com-
putable operators is whether this class is closed under composition. That is,
whether F ◦ G is a polynomial-time computable operator whenever F and G
are polynomial-time computable operators. Indeed it is possible to answer this
question positively in a fully uniform sense: We can specify a way to combine two
sets of instructions N and M fully uniformly to a new set of instructions NM
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such that the corresponding operator F
N M extends the composition FM ◦ FN of

the operators corresponding to N and M respectively.
Intuitively it is fairly obvious what the program NM should look like. This

program runs on a machine whose number of tapes is the sum of the numbers of
tapes needed by N and M separately and replaces each oracle query instruction
that appears in N by inlining M . Of course references to memory tapes have
to be corrected and some management tasks have to be done: Following the
inlining of a copy of M for N to correctly continue its run, it is necessary to
erase the memory tape that it writes to instead of the oracle query tape and
return its head to the beginning of the tape. The cost for doing so is bounded
by a constant times the length of the oracle query that was asked plus the time
executing M took. Furthermore, some cleanup of the work tapes the machine
M uses is needed to make the next execution of M run smoothly. The cost for
cleaning up is again bounded by a constant times the time the execution of M
took. In total we end up with an estimation for the runtime of NM as follows:

time
N M (ϕ,a) ∈ O(

timeN (Mϕ,a) +
∑

b∈QN (Mϕ,a)

(timeM (ϕ,b) + |b|)).

Here, the constant hidden in the O-notation may depend on M , i.e. M is not con-
sidered an input but fixed. Using the inequality from equation (Q), the formula
can be further simplified to

time
N M (ϕ,a) ∈ O(

timeN (Mϕ,a) +
∑

b∈QN (Mϕ,a)

timeM (ϕ,b)
)
. (T)

Let PM and PN be second-order polynomials that bound the runtimes of M
and N on sets AM , AN ⊆ B respectively. Note that the existence of the time
bound guarantees that Mϕ is defined whenever ϕ ∈ AM . For ease of writing we
say that ϕ is valid if ϕ ∈ AM and Mϕ ∈ AN . To obtain a polynomial runtime
bound for NM from the above inequality first note that for any ϕ ∈ AM

|Mϕ|(n) = max{|Mϕ(a)| : |a| ≤ n} ≤ max{timeM (ϕ,a) : |a| ≤ n} ≤ PM (|ϕ|, n),

where we used the monotonicity of second-order polynomials from Lemma 2 to
remove the maximum. The above leads to an estimate for the first summand on
the right hand side of the inequality from equation (T): For any valid ϕ

timeN (Mϕ,a) ≤ PN (|Mϕ|, |a|) ≤ PN (PM (|ϕ|, ·), |a|).
The second inequality again uses the monotonicity property to substitute the
estimate for |Mϕ| in the argument. Note that the outcome can be expressed as
PN ◦PM (|ϕ|, |a|) by using one of the compositions for second-order polynomials.

To estimate the sum in the second summand on the right of the inequality
in equation (T), two additional arguments about oracle queries are necessary.
Firstly note that writing each oracle query consumes time and thus, whenever
ϕ is valid, each b ∈ QN (Mϕ,a) is in size bounded by the time taken by N . I.e.
|b| ≤ PN ◦ PM (|ϕ|, |a|). For valid ϕ and b ∈ QN (Mϕ,a) it follows that

timeM (ϕ,b) ≤ PM (|ϕ|, |b|) ≤ PM (|ϕ|, (PN ◦ PM )(|ϕ|, |a|)),



Second-Order Linear-Time Computability 345

where the outcome PM � (PN ◦ PM )(|ϕ|, |a|) involves the other composition for
second-order polynomials from the last section. Secondly, note that each execu-
tion of the oracle instruction takes time and thus the number #QN (Mϕ,a) of
oracle queries done by N can be bounded whenever ϕ is valid:

#QN (Mϕ,a) ≤ timeN (Mϕ,a) ≤ (PN ◦ PM )(|ϕ|, |a|).

The uniform bound on each summand together with a bound on their number
proves that

time
N M ∈ O(

(PN ◦ PM ) · (1 + (PM � (PN ◦ PM )))
)
, (P)

where the domain of the time-function reaches over all valid ϕ, i.e., such that ϕ ∈
AM and Mϕ ∈ AN . This bound is a polynomial by the closure of second-order
polynomials under the two kinds of composition, addition and multiplication.
To complete the argument for polynomial-time computability: Let F and G be
polynomial time computable operators. Then there exist M and N that compute
F and G and run in time polynomial on dom(F ) and dom(G). Note that FM ◦FN

extends F ◦ G and thus NM computes F ◦ G. Furthermore the above specifies
a polynomial runtime bound of NM on the set of ϕ ∈ dom(G) such that Mϕ =
G(ϕ) ∈ dom(F ), i.e., on the natural domain of the composition.

As a final remark of this section note that the formula for the runtime of
the composition of two machines includes the two compositions of second-order
polynomials and additionally a product that originates from the coarse overesti-
mation: The assumed worst case would be that a machine queries in each of its
steps a string as long as the total number of steps it takes and will clearly not
be assumed in realistic situations.

3 A Notion of Type-Two Linear-Time

Linear-time computability in a type-two setting is in particular appealing as
the class of runtime bounds can be chosen as a subset of the polynomials that is
closed under the two kinds of composition. The class of second-order polynomials
allows for a straight forward modification in its production rules to exclude any
non-linear operations we use to obtain a candidate for the linear higher-order
runtimes:

Definition 1. Let the class of linear second-order polynomials be the smallest
class of functions of type N

N × N → N that contains the constant zero and one
function, the function (l, n) �→ n and is closed under point wise addition as well
as the operation P �→ P+, where P+(k, n) := l(P (l, n)).

By definition, the linear second-order polynomials form a subset of the second-
order polynomials. Many of the properties of second-order polynomials have
straight forward counterparts with identical proofs for the linear second-order
polynomials:
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Lemma 3 (linearity). The following properties hold for linear second-order
polynomials.

1. If P is a linear second-order polynomial and p is a linear function, then P (p, ·)
is a linear function.

2. Let the runtime of M be bounded by a linear second-order polynomial P on a
set A. Then for each ϕ ∈ A of linear size, Mϕ is of linear size.

3. Let P and Q be linear second-order polynomials, then so are the functions
P ◦ Q and P � Q defined by (P ◦ Q)(l, n) := P (Q(l, ·), n) and (P � Q)(l, n) :=
P (l, Q(l, n)).

The following lemma is useful for proving that certain functions cannot be
majorized by a linear second-order polynomials:

Lemma 4 (constant values). For each linear second-order polynomial P there
exist constants K1, K2, K3 such that for all c, n ∈ N

P (m �→ c, n) = K1 · c + K2 · n + K3.

Proof. The constants are given by K3 = P (m �→ 0, 0), K2 = P (m �→ 0, 1) − K3

and K1 := P (m �→ 1, 0) − K3, as can be verified by an easy induction.

Lemma 5 (counter-examples). Let f : N → N be an unbounded function and
let g : N → N be arbitrary. The function T (l, n) := f(n) · l(g(n)) can not be
majorized by a linear second-order polynomial, not even on the constant func-
tions.

Proof. Let P be a linear second-order polynomial and let K1, K2, K3 be the
constants from the previous lemma. Since f is unbounded we may pick a large
enough n and a constant c such that K1 · c + K2 · n + K3 < f(n) · c.

Instances of the previous lemma are that the functions (l, n) �→ n · l(0) and
(l, n) �→ 	 n

log n
l(log n) can not be majorized by linear second-order polynomials.

3.1 Counter Examples and Composition

First let us formally state our definition of a linear-time computable operator:
We say that an oracle machine M runs in linear time, if there exists a linear
second-order polynomial bounding its runtime.

Definition 2. We call an operator F : ⊆ B → B linear-time computable if
there exists a machine that computes it and runs in linear time.

Examples for linear-time computable operators are the identity on Baire-space,
that can be computed in time O(n+ l(n)) and the operator F (ϕ) := ϕ◦ϕ, which
can be computed in time O(n + l(n) + l(l(n))). As an example of an important
operator that is not linear-time computable, consider the operator F : B → B
defined by F (ϕ)(a) := 1max{|ϕ(b)| : b⊆a}, where b ⊆ a means that b is an initial
segment of a. We call this operator the maximization operator. The straight
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forward algorithm runs in polynomial time. To see that F is not linear-time
computable, let ϕε be the constant function always returning the empty string
and consider the run of M on ϕε. Since M computes F it must also hold that
Mϕε(a) = ε. Argue that the query set QM (ϕε,a) contains all initial segments
of a: If b was an initial segment that is not queried we could modify ϕε in b
without the machine noticing. That is, we could replace ϕε by the oracle ϕ′ that
is identical to ϕε except that ϕ′(b) = 1. Since b is not queried, the run of M
on oracle ϕ′ would be identical and we arrive at a contradiction. Note that the
sum of the sizes of the initial segments is quadratic in the size of a and that our
conventions for oracle access force each bit of an oracle query to consume a time
step leading to a quadratic lower bound on the runtime. It is possible to prove
in a rather straight forward way that linear time computable operators preserve
linear time computability.

Proposition 1. Let ϕ ∈ B be linear-time computable. If M runs in linear time
then Mϕ is linear-time computable.

Note that attempts to generalize this statement to the general case of compo-
sition of two oracle machines fail. Indeed, it is fairly easy to see that no such
proof can be obtained when the composition procedure we specified is used. One
may for instance use a machine that asks the input as query, and returns two
copies of the answer written after one another as top machine and let the lower
procedure pose the length of its string input many queries of the empty word.
The composed machine evaluates each of the oracle queries separately and this
leads to a time investment of about |a| · |ϕ|(0) steps, which is not bounded by
any linear second-order polynomial by Lemma5.

One is tempted to say that this behaviour is due to a lack of care when
implementing the composition and that the behaviour described above can easily
be circumvented. However, the next example shows that in general there is no
strategy to solve the problem: The product that appeared in the estimate for
the runtime of the composition of two operators from equation (P) can indeed
not fully be removed.

Example 1. For a string a let a∨ be the bit-wise or over all the digits, i.e. a∨ = 0
if all digits of a are zero and a∨ = 1 otherwise. Let bi denote the smallest binary
encoding of the number i. The operator defined by

F (ϕ)(a) := ϕ(b|a|−� |a|
�log(|a|)� 	)∨ . . . ϕ(b|a|)∨

is not computable in linear time but can be written as a composition of two
linear-time computable operators.

Proof. First argue, that the operator can be written as a composition of two
linear-time computable operators. For this let a0 denote the leftmost digit of the
string a. Let G and G′ be the operators defined by

G(ϕ)(b) := ϕ(b)∨ and G′(ψ)(a) := ϕ(b|a|−� |a|
�log(|a|)� 	)0 . . . ϕ(b|a|)0.
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It is easy to verify that G′ ◦ G = F and that the operator G is computable in
time O(n + l(n)). To argue that also G′ is computable in time bounded by a
linear second-order polynomial, note that 	log(|a|)
 can be computed in linear
time by converting |a| to binary and that the standard algorithm for integer
division can be used to compute 	|a|/	log(|a|)

 in time sub quadratic in the
size of |a|, i.e. logarithmic in the size of a.

To see that the operator itself can not be computed in linear time let M
be a machine to compute F . By a similar argument as used to show that the
maximization operator is not linear-time computable, we can show that for any
ϕ0 that only returns strings of 0s, the set QM (ϕ0,a) includes all of the strings bi

for i ∈ {|a| − 	|a|/	log(|a|)

, . . . , |a|} =: I|a|. As the machine has to read each
digit of each answer at least once (otherwise we could change that very digit)
we get the lower bound

∑
i∈I|a| |ϕ0(bi)| ≤ timeM (ϕ,a).

By restricting the possible ϕ0 to those functions that satisfy |ϕ0(a)| ≤ |ϕ0(b)|
whenever |a| ≤ |b| and noting that for |a| ≥ 2 at least half of the queries have size
at least �log(|a|)−1, obtain 	|a|/2	log(|a|)

·|ϕ0|(�log(|a|)−1) ≤ timeM (ϕ,a).

Finally note, that any non-decreasing function can be obtained as the length
of a length-increasing function only returning zeros. Thus, using the counter-
example formula from Lemma 5 the function on the left hand side can not be
majorized by a linear second-order polynomial already on constant inputs, let
alone on non-decreasing inputs. It follows, that the time consumption of M can
not be bounded by a linear second-order polynomial.

The runtimes of the component operators are both O(n + l(n)), in particular
they do not contain iterations of the length function. The lower bound on the
runtime of their composition involves a product of something that is almost linear
in the input size and the length function evaluated in a non-constant term. The
argument that the operator G′ should not be linear-time computable because the
time for writing the oracle return value should be accounted for in the runtime
can easily be countered by making the operator G′ abort the computation once
it encounters the first oracle answer that is longer than one digit.

The example can be modified to show that the notion of linear-time com-
putability of operators is not stable under seemingly minor changes in the model:
Replacing the or operation with just returning the last bit allows for the same
argumentation as the head on the answer tape is always reset to the first position
but the same operator will be computable efficiently if the head is always put in
the last position of the string instead. A candidate for a more stable notion is
the closure under composition of linear-time computable operators.

Definition 3. We call an operator nearly linear-time computable if it can
be written as a composition of linear-time computable operators.

It is reasonable to ask how much taking the closure under composition increases
the size of the class. The following lemma immediately implies that the class is
still strictly contained in the class of polynomial-time computable operators.

Lemma 6. Any nearly linear-time computable operator maps linear-time com-
putable functions to linear-time computable functions.
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Proof. The proof is an easy induction, where the induction step is taken care of
by linear-time computability being preserved pointwise by Lemma3.

In the same way the preservation of linear sizes from Lemma 3 carries over to all
nearly linear-time computable operators.

Lemma 7. Any nearly linear-time computable operator maps functions of linear
size to functions of linear size.

3.2 Quantitative Continuity

It is well known, that computability and complexity considerations about oper-
ators on Baire space are tightly connected to quantitative notions of continuity.
This chapter makes this connection more explicit for the notion of nearly linear-
time computability introduced in the last section. As an application we prove
that the maximization operator is indeed also not nearly linear-time computable.

An operator F : ⊆ B → B is called continuous if for all ϕ ∈ dom(F ) and all
a ∈ Σ∗ there exists a finite list L(ϕ,a) of strings such that F (ϕ)(a) and F (ψ)(a)
coincide whenever ψ coincides with ϕ on L(ϕ,a), i.e., whenever b ∈ L(ϕ,a)
implies that ψ(b) = ϕ(b). We call such a list L(ϕ,a) a certificate for ϕ and
a and a function L that returns certificates for any ϕ ∈ dom(F ) and a ∈ Σ∗

a modulus of continuity. Any computable operator is continuous: The function
QM that assigns to ϕ and a the finite list of oracle queries that are posed when
M is run with oracle ϕ and input a is a modulus of continuity. We have implicitly
used this fact a couple of times in proofs. Indeed, one may make the case that
any computable operator has a computable modulus of continuity, as one may
follow the run of the computation to obtain the list of queries that were done.

For a list L of finite binary strings, let |L| be defined as the sum of the sizes
of its elements. One may ponder the dependency of the size of certificates on the
sizes of the inputs of an operator. Note that the requirement for a reasonable
model of oracle interaction that we imposed in equation (Q) can directly be
interpreted as a statement about the sizes of certificates. It requires the model
to be chosen such that the size of certificates of an operator can be bounded
from the runtime of a machine computing that operator.

Recall that the maximization operator defined in Sect. 3.1 is not computable
in linear time. The core of this argument was a quadratic lower bound on sizes
of queries a machine computing the operator has to do. Indeed, the main part
of the argument is involved with proving the query set of a machine computing
the operator to be a modulus of continuity and then using that whenever L is a
modulus of continuity of F , then

|a|(|a| − 1)
2

≤ |L(ϕ,a)|. (L)

It is not a priori clear how to obtain bounds on the modulus of continuity
of a nearly linear-time computable operator. This is because the nearly linear-
time computable operators are the closure under composition of the linear-time
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computable operators which contains operators that are not linear-time com-
putable. However, an argument very similar to the point-wise preservation of
nearly linear-time computability can be used to prove that a linear bound can
be obtained for all possible inputs of size bounded by a fixed linear function.
To see this, we first prove a technical lemma about compositions of machines.
Recall that an oracle ϕ is called valid if in a computation of a composition of
machines on function input ϕ all intermediate results are contained in the sets
in which the runtime bounds are valid.

Lemma 8. For r ∈ N let M be the composition of machines M1, . . . ,Mr that
each run in time bounded by a linear second-order polynomial on sets A1, . . . , Ar.
For any linear function p there exists a linear function qp such that for valid ϕ

|ϕ| ≤ p ⇒ ∀a ∈ Σ∗, timeM (ϕ,a) ≤ qp(|a|).

Proof. The proof proceeds by induction on the number r of machines involved.
For r = 1 the statement is immediate since linear second-order polynomials map
linear functions to linear functions and are monotone. For the induction step let
N be the composition of the machines M2, . . . ,Mr. Then M is the composition
of M1 with N . Fix some linear function p and let qp(n) = Cn + D be the linear
function that is guaranteed to exist by the induction hypothesis. The formula for
the time-function of the composition of machines from equation (T) on page 8
and the linear time-bound from the induction hypothesis provides that any valid
ϕ with |ϕ| ≤ p(n) satisfies

timeM (ϕ,a) ≤ CN · (
timeM1(N

ϕ,a) +
∑

b∈QM1 (N
ϕ,a)

(C · |b| + D)
)
.

Using the linearity of summation, and estimating both the sum over the length
of queries in the second term and the number of summands in the third term by
the time M1 takes, we end up with

timeM (ϕ,a) ≤ CN · (C + D) timeM1(N
ϕ,a) ≤ (C + D) · P (|Nϕ|, |a|),

where P is a linear second-order polynomial that bounds the runtime of M1. The
statement now follows from the fact that linear time computable operators take
inputs of linear length to outputs of linear length and that linear second-order
polynomials preserve linearity.

This lemma fixes the input ϕ to have size bounded by a linear function and only
talks about linearity of the size in the size of the string input. This is for a reason:
Both in its proof as well as in the proof that linear second-order polynomials
preserve linearity, the constants appearing in the linear functions are multiplied.

Corollary 1. For any nearly linear-time computable F : ⊆ B → B there exists
a modulus of continuity L such that for any ϕ ∈ dom(F ) of linear size there is a
linear function pϕ bounding the size of the certificates, i.e., |L(ϕ,a)| ≤ pϕ(|a|).
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We now again consider the maximization operator defined in Sect. 3.1.

Theorem 1. The maximization operator is not nearly linear-time computable.

Proof. Towards a contradiction assume the operator was nearly linear-time com-
putable. This means that by Corollary 1 there exists a modulus of continuity L
such that for any function ϕ of linear size there is a linear function pϕ with
|L(ϕ,a)| ≤ pϕ(|a|). Pick any specific function ϕ of linear size, for instance the
constant function returning the empty string. Since in equation (L) on page 13
a quadratic lower bound on the size of any certificate was provided, we have just
bounded a quadratic function by a linear function, which is a contradiction.

4 Operating on Real Numbers and Functions

In this chapter we discuss some applications in computable analysis. Computable
analysis considers representations to carry out computations on infinite struc-
tures. There are two different models that are popular and known to be compu-
tationally equivalent. From the point of view of polynomial-time complexity, the
models are known to be distinct. However, as long as the space computed on is
not too large for one of the frameworks to lead to a good complexity theory it
can be shown that the models coincide. The first question we ask is whether the
models can be proven equivalent in our refined setting in a meaningful way.

We first describe the model that fits in with the way we have talked about
complexity so far most conveniently: A representation of a set X is a partial sur-
jective mapping δ : ⊆ B → X. An element ϕ ∈ B is called a δ-name of an element
x ∈ X if δ(ϕ) = x. Note that surjectivity of the representation means that each
element of X is given at least one name. A pair X := (X, δX) of a set together
with a representation is called a represented space. An element of a represented
space is called computable resp. polynomial-time or linear time computable, if it
has a name with this property. A representation should be understood to induce
notions of computability and complexity and whether or not an element is com-
putable, polynomial-time computable or linear-time computable depends on the
details of the representation.

Example 2 (Cauchy representation). The dyadic numbers are the rational num-
bers of the form z · 2−n for some z ∈ Z and n ∈ N. Denote the set of all dyadic
numbers by D. Let νD : Σ∗ → D be a surjective encoding of the dyadic numbers
by binary strings and let the corresponding Cauchy representation δC of the real
numbers be defined by

δC(ϕ) = x ⇔ ∀a ∈ Σ∗, |νD(ϕ(a)) − x| ≤ 2−|a|.

We are interested in comparing different representations. Given two representa-
tions δ and δ′ of a set X, we say that an operator F : ⊆ B → B is a translation
of δ into δ′ if whenever its argument is a δ-name, its return value is a δ′-name,
i.e., if for all ϕ ∈ dom(δ) it holds that δ(ϕ) = δ′(F (ϕ)). Two representations are
called computably, polynomial-time or linear-time equivalent if a computable,
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polynomial-time computable, or linear-time computable translations in both
directions exist. Note that there are point-wise preservation theorems for each of
these classes. Thus, the notion of computable elements is stable under switching
between computably equivalent representations, the notion of polynomial-time
computable elements is stable under polynomial-time equivalence and the notion
of linear-time computable elements under linear-time equivalence.

Next let us describe the second model, which is also popular for doing com-
putable analysis. Let C := Σω denote the set of infinite strings over a finite
alphabet. Here C is for Cantor-space. A Cantor-space representation of a set X
is a partial surjective mapping ρ : ⊆ C → X. Again, an infinite string χ is called
a ρ-name, or just name of x ∈ X if ρ(χ) = x. To define computability and com-
plexity of an element of a Cantor-space represented set it is necessary to specify
how to compute on infinite strings: An infinite string χ ∈ C is computable if
there is a Turing machine with a write only output tape that does not take any
inputs and successively writes the digits of an infinite sequence to the output
tape. Computably, this notion is equivalent to decidability of the set that has χ
as a characteristic function. However, the above description suggests a specific
notion of resource consumption: χ is said to be computable in time t : N → N if
there is a machine producing the n-th digit within the first t(n) steps of its run.
In particular, this leads to notions of polynomial- and linear-time computability.

Example 3 (signed digits). It is a well know fact that encoding real numbers by
their binary expansions does not lead to a well-behaved Cantor-space represen-
tation. Instead consider the three element alphabet Σ := {-1, 0, 1}, and define
the signed digit representation ρsd of the unit interval by

ρsd(χ) = x ⇔ x =
∞∑

i=0

χi · 2−i,

where the elements of the alphabet are interpreted as the obvious real numbers
and the infinite sum is defined as the limit of its partial sums. In this case the
represented space is not all real numbers but the unit interval.

The way to make a connection between the two models that is suitable for
our purposes is as follows:

Definition 4. For a Cantor-space representation ρ : ⊆ C → X of a set X let
the representation δρ : ⊆ B → X be defined by

δρ(ϕ) = x ⇔ ∃χ ∈ C, ρ(χ) = x ∧ ∀a ∈ Σ∗, ϕ(a) = χ≤|a|.

By being a little clever about the instances to run algorithms on, one can now
establish the desired property:

Proposition 2. For any Cantor-space representation ρ the representation δρ

has the same computable, polynomial-time computable and linear-time com-
putable elements.



Second-Order Linear-Time Computability 353

Proof. To see the equality of computable and polynomial-time computable ele-
ments, the straight-forward translations of the algorithms work. For the linear-
time case first assume we have an algorithm to compute a ρ-name of x in linear-
time. An algorithm to compute a δρ-name in linear time can be obtained by
producing the digits using the linear-time algorithm for the ρ-name and counting
down the length of the input to check when enough digits have been produced.

For the other direction, given an algorithm to compute a δρ-name produce
a diverging program as follows: Successively execute the given linear-time pro-
gram on inputs 12

i

and each time after it finishes copy the second half of the
resulting string to the output tape to extend what was written there before. The
exponential increase in the size of queries leads to a geometric series in and thus
to a linear bound of the time consumption.

4.1 Signed-Digit and Cauchy Representation Compared

The goal of this section is to prove that the Cauchy representation from Exam-
ple 2 and the signed digit representation from Example 3 are equivalent in a very
strong sense. Since the Cauchy representation is a representation of the real
numbers and the signed digit representation only of the unit interval, we take
the subspace representation, i.e., a range restriction for the Cauchy representa-
tion. As the signed digit and the Cauchy representation use different models of
computability and complexity we use the translation from Definition 4.

Theorem 2. The range restriction of the Cauchy-representation to the unit
interval is linear-time equivalent to the representation δρsd

obtained form the
signed-digit representation as described in Definition 4.

Proof. First specify an algorithm that translates from the Cauchy representation
to the signed digit representation. Let ϕ be a δC-name of some x and a an input.
Recall that we need to produce the string of the |a| first digits of a fixed ρsd name
of x. The important part in this direction is to make sure that the digits of later
approximations do not contradict digits of earlier approximations. To ensure
this consistency, query the oracle for ϕ(12

i

) for each i such that 2i−1 ≤ |a|.
Read approximation of length linear in 2i off the oracle answer tape. Note that
the returned strings may be long, but the reading head is reset to the inital
position during an oracle query and thus the first bits are readily available. The
obtained values are approximations in binary, but it need not be the case that
the previous ones are initial segments of the later ones. This can be accounted
for by comparing the last two digit of the previous approximation with the
corresponding digits of current approximation. Due to the use of signed digits,
it is possible to correct the difference by changing the first digit of the second
half of the current approximation if neccessary and then copying it to the output
tape to extend the previous approximation. This algorithm produces consistent
intial segments of a fixed ρsd name. The exponentially growing queries lead to
a geometric series when counting the steps and to a time consumption that
depends linearly on the size of a.
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That the translation in the other direction is linear time computable is a
direct consequence of the existence of a linear time translation from integers
represented as sequences of signed digits to integers represented in binary.

As an immediate consequence of Theorem 2 we note that:

Corollary 2. The signed-digit representation and the Cauchy representation
have the same linear-time computable elements.

As a non-uniform result, this remains true if the signed-digit representation is
extended to all of the real numbers.

4.2 Operating on Continuous Functions

Once the representations are fixed, one can also define what it means for func-
tions between spaces to be computable: An operator F : ⊆ B → B is called a
realizer of a function f : X → Y between represented spaces if it maps each
name of some x ∈ X to a name of f(x) ∈ Y, i.e. if for all ϕ ∈ dom(δX) it holds
that δY(F (ϕ)) = f(δX(ϕ)). In particular the domain of δX should be included in
the domain of F . A function between represented spaces is called computable if
it has a computable realizer. We may go ahead and call a function between rep-
resented spaces polynomial-time computable or linear-time computable if there
is a realizer that has this property. Computable analysis usually makes the addi-
tional assumptions that the names come from a fixed subset of Baire-space where
the length function is computable in polynomial-time. While the representations
we consider do not only use names from this fixed set, it is easy to check that
they make the size information easily accessible for a machine.

For the space C([0, 1]) of continuous functions f : [0, 1] → R, we use the
standard representation introduced in [11]: A ϕ ∈ B is a name for f ∈ C([0, 1])
if it has the following two properties:

1. For any n ∈ N, ϕ(1n) = 1μ(n) where μ : N → N is a modulus of continuity of
the function f , i.e., |x − y| ≤ 2−μ(n) ⇒ |f(x) − f(y)| ≤ 2−n.

2. Whenever a is an encoding of a dyadic rational number from [0, 1] then
|νD(ϕ(01na)) − f(νD(a))| ≤ 2−n for all n ∈ N.

Lemma 9. A function f : [0, 1] → R is linear-time computable if and only if it
has a linear-time computable name.

Proof. First assume there is a linear-time machine K that computes a name for
f : [0, 1] → R and its running time is bounded by a linear function lK : N → N.
We describe an oracle machine M that computes f , i.e., on input 1n and a name
ϕ of x ∈ [0, 1] returns an approximation of f(x) with error at most 2−n. To
achieve this first follow what M does on input 1n+1 to get a string 1m such that
for all x1, x2 ∈ [0, 1], |x1 − x2| ≤ 2−m ⇒ |f(x1) − f(x2)| ≤ 2−(n+1). Note that
m ≤ lM (n + 2) as writing symbols to the output tape consumes time. Thus, the
string 1m can be produced on the oracle tape in linear time. An oracle query
results in an encoding a of a dyadic approximation on the oracle answer tape.
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We follow the instructions of K with input 01n+10a to get an approximation of
f(νD(a)) with error at most 2−(n+1) in time linear in n + |ϕ| (n + 1) + 3. Using
the assumptions that K computes a name of f and ϕ is a name of x, a simple
triangle inequaltiy argument proves that this is a valid return value.

Next, assume that there is an oracle machine M computing f with a linear
time bound P . By definition of the Cauchy representation, there exists a linear
function l such that each element of the unit interval has a name of length l and
one can verify that P (l, ·+1) is a modulus of continuity of f . Let C and D be the
constants of the linear function P (l, · + 1). A machine K that computes a name
of f in linear may act as follows: On input 1n evaluate C · n + D in linear time
and return its value in unary. On input 01n0a follow the run of the machine M
on input 1n, where a is put on the oracle answer tape and the oracle answers are
ignored. I.e. where M receives a as answer to each oracle call. Since the constant
function returning a is a valid name of the dyadic number a encodes interpreted
as a real number, this leads to a valid return value. For the time consumption
let K1, K2 and K3 be the constants from Lemma 4. Then, the time consumption
of M is bounded by K1 · |a| + K2 · n + K3, which is a linear bound in the size
n + |a| + 3 of the input.

The proof of the first implication is uniform and can be modified to prove
the following:

Theorem 3. Evaluation C([0, 1]) × [0, 1], (f, x) �→ f(x) is linear time com-
putable.

Theorem 4. Let f : R → R and g : R → R be linear-time computable. Then
f ◦ g is linear-time computable.

Proof. Let M1 and M2 be machines that compute f and g in linear time. It fol-
lows from the Definition of the Cauchy representation that there exists constants
C,D such that each real number x has a name of size n+D · |ϕ|(0)+C and that
such a name can be obtained from an arbitary name in linear time by truncating.
Let P be the linear time-bound of M1. An easy induction shows that there exist
constants E′,D′ and C ′ such that for ϕ such that |ϕ|(n) ≤ n + D · |ϕ|(0) + C, it
holds that P (|ϕ|, n) ≤ E′·n+D′·|ϕ|(0)+C ′. To evaluate the composition, assume
that x is some input and ϕ is a name of x that is as specified above. Furthermore
let Q be a linear time bound of the machine M2. To get an approximation to
f(g(x)) in linear time, first evaluate k := Q(m �→ E′ ·n+D′ ·|ϕ|(0)+C ′, n). Since
the constants E′,D′, C ′ and the linear second order polynomial Q are fixed, this
amounts to evaluating a linear function and can be done in linear time. Then run
the machine M1 on input 1k to obtain an encoding a of an 2−k-approximation
to g(x). Finally run M2 on input 1n while simulating the constant oracle with
value a. Since the number of steps M2 takes is bounded by k the machine can
only ask oracle queries with less than k bits. Furthermore, since a encodes an
approximation to g(x), g(x) has a name starting in the constant function return-
ing a on all strings smaller than k. As each machine is only evaluated once on
inputs of linear size, the overall time-consumption is linear.
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5 Conclusion

This paper puts forward a class for linear-time computability in the setting of
type-2 computations by naturally restricting the second-order polynomials used
as time-bounds for the running time of oracle machines. This class is not stable
under composition and we investigated some examples that indicate that this
property can not be expected in a setting as general as the one we work in. We
also investigated the closure of this class under composition and provide some
tools that allow to prove that an operator is not included in this wider class. As
an application we proved that the maximization operator can not be written as
a composition of linear-time computable operators.

The motivation for looking at linear-time computability in a higher-order
setting came from the availability of a class of linear functions that is suggested
by the definition of the second-order polynomials used in type-two complexity
theory and the availability of a canonical benchmark problem: Can the product
that arises in the standard proof of closure under composition, and is clearly a
coarse overestimation, be removed? We gave a negative answer to this question.
Since the type-two class that was considered is even less stable than the type-
one linear-time class that is already considered fairly fragile, it seems desirable
to have a type-two analogue of almost linear-time computability. Unfortunately,
in a type-two setting it is not clear how to find an appropriate class of ‘almost
linear’ running times and we did not succeed to prove closure under composition
for any of the candidates we considered. Thus, finding such a class has to be left
open for future research.

We also took a look at some applications in computable analysis. We detailed
a translation between the two most common models of computation used in
computable analysis that preserves linear time computability of names. Using
this translation we proved that the most commonly used representations in the
corresponding models have the same linear-time computable names and we made
this statement uniform when only the unit interval is considered. Finally we
proved that the standard representation of continuous functions is well-behaved
with respect to linear-time computability in the sense that it gives linear-time
computable names exactly to linear time computable functions and that linear
time computable functions on the real numbers are closed under composition.

While the results are satisfactory, there is a lack of examples. The real num-
bers that are known to be linear-time computable are constructed particularly
for this purpose and for even the most basic real numbers of practical relevance
it is an open problem whether there are linear time algorithms. For instance,
there is no known algorithm for computing π in linear time. The same holds
true for functions on the real numbers computable in linear time. Finally note,
that many of the results from the last section depend on removing the higher-
order asspects when computing on real numbers. A notable exception to this is
the linear-time computability of the evaluation operator.
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Abstract. Superposed on a distributed computation, a snapshot algo-
rithm computes a global state, the so-called snapshot, consistent with
the underlying computation. On intuive grounds it can be argued that
the snapshot is a global state which would have been obtained when pro-
cesses would have been frozen at the time their local states were recorded
(their checkpoints). This interpretation is stronger than consistency as
it also considers the nondeterministic behaviour of processes up to their
checkpoints.

In this paper, we provide a formal setup to study the latter inter-
pretation. In particular, we introduce the notion of a freeze bisimula-
tion which allows us to express the above intuition formally as progres-
sive bi-consistency. This definition does not only capture branching time
behaviour but also applies to snapshot algorithms that compute a partial
snaphshot and of which the intermediate behaviour is of equal interest as
the final snapshot (eg in case of approximations or eventual consistency).
We establish fundamental properties of progressive bi-consistency which
includes a theorem similar to the CAP theorem for distributed databases:
it is impossible to have a partial snapshot algorithm which computes a
minimal number of checkpoints, is progressively bi-consistent and non-
inhibiting at the same time.

We illustrate our results by evaluating snapshot algorithms modelled
in Milner’s process algebra CCS. This includes the seminal algorithms by
Chand/Lamport [9] and Lai/Yang [14] and a recent snapshot algorithm
for data stream processing systems [8].

Keywords: Snapshot · Consistency · Distributed systems

1 Introduction

Snapshot algorithms (see [2,13,17]) are used to compute a consistent global state
of an ongoing distributed application computation. Consistency, in its traditional
sense, means the global state computed, the snapshot, is a state the distributed
application computation could be reset to. Formally, this is expressed by looking
at the application computation retrospectively and by arguing that the snapshot
computed posesses this property. This is the classical approach. It is linear time
as the application computation is looked at out of context, not considering events
which could have been enabled at some time but had not been executed.
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In this paper we take a different approach and argue that a snapshot is a
global state which would have been obtained when application processes would
have been frozen at the time their local states were recorded to be part of the
snapshot. This interpretation is stronger as it takes into account the nondeter-
ministic behavior of processes up to their state recording. It is forward looking
and branching time.

The difference between these two approaches becomes apparent when the
quality of a snapshot algorithm is to be established. A snapshot algorithm con-
sists of a set of routines superposed on local processes. The routines act as an
interface between application processes and the channels of the system. They
may block [8,18], delay [11] or modify [14] application messages when these
are to be received or sent. The routines may also send their own messages like
requests to record the local state [9]. Such features – though not all of them
together – are required to ensure that there are no two processes of which the
recorded state of one of them shows a message as having been received while at
the recorded state of the other process that message had not yet been sent. With
these features, it is easy to influence the behavior of the application computation
in some way. A snapshot algorithm that computes correct snapshots according
to the linear time notion, still may influence the course of the application com-
putation by enforcing it to proceed in a certain direction (by blocking some of
the communication channels eg). Correctness with respect to the branching time
notion, however, would guarantee that all this would not happen.

We express the branching time notion of consistency by what we call pro-
gressive bi-consistency. It uses concepts of concurrency theory, in particular, of
bisimilarity [15]. It ensures that the application computation does not display
new behavior while its local states are recorded, and that messages which in prin-
ciple can be delivered to the application computation can indeed be received by
it. In a similar way, we define what it means for a snapshot algorithm to be non-
inhibiting. A snapshot algorithm is non-inhibiting if, superposed an application
computation, the resulting system is observation equivalent with the application
computation without superposed snapshotting. This refined definition allows to
detect blocked channels.

With these definitions at hand, we are able to express an interesting result for
partial snapshot algorithms which only take checkpoints of some of the processes
of an application computation: no partial snapshot algorithm exists which is
non-inhibiting, progressively bi-consistent while taking a minimal number of
checkpoints, only. This refines an earlier result in [5].

In the second part of the paper we investigate existing snapshot algorithms.
Depending on the nature of the snapshot routines, one distinguishes between
coordinated snapshot algorithms [9], communication induced checkpointing [14]
and combinations of these. We also explore partial snapshot algorithms which
only checkpoint some and not all of the processes [4,10–12]. With [8] a recent
checkpoint algorithm for data stream processing systems is considered. All these
algorithms except mutable checkpointing [4] are progressively bi-consistent. This
shows that progressive bi-consistency is a natural concept.
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All snapshot algorithms are formulated in Milner’s process algebra CCS, [15].
They are contained in Sect. 4. Section 2 provides the formal model and neces-
sary background definitions, and Sect. 3 the definition and results of progressive
(bi-)consistency.

2 Basic Definitions

Throughout the paper, by a distributed system we understand a set of sequen-
tial application processes Ai, i ∈ I, without shared data communicating by
message passing over reliable FIFO channels Cij , i, j ∈ I, i �= j. Processes
and channels are modelled as terms of the process algebra CCS, cf. [15].
Every process Ai has its own action set Act i, disjoint from all Actj , j �= i.
Process Ai sends and receives messages to and from Aj via the actions in
Commi = {send ij(msg), receiveji(msg) | msg ∈ MSG , j ∈ I \ {i}} a subset of
Act i where MSG is the set of application messages. All such events are given by
L1 =

⋃
i∈I Commi. We use App to denote the collection of application processes

of an application computation, that is App =
∏

i∈I Ai.
We explicitly model the interface between application processes and channels

by Int which simply passes on messages sent by the application to channels and,
respectively, receives messages from channels and delivers them to the applica-
tion. So Int =

∏
i∈I Ui where

Ui =
∑

j∈I,i �=j,msg∈MSG send ij(msg).i send ij(msg).Ui +
∑

j∈I,i �=j i receiveji(msg).receiveji(msg).Ui.

msg ,msg ′ ∈ MSG . With i send ij(msg) and i receiveji(msg) the message is put
into or removed from the channel leading from Pi to Pj , respectively. Channels,
however, may transfer other kind of items as well. With MSG int we denote the
set of all items that may be put into a channel. This includes application mes-
sages, manipulated application messages and coordination messages. Channels
are modelled by

Cij(ε) :=
∑

m∈MSGint
i send ij(m).Cij(m)

Cij(s.m) := i receiveij(m).Cij(s)
+

∑
m∈MSGint

i send ij(m′).Cij(m′.s.m)

where m ∈ MSG int . The complete system consisting of application processes,
interface and channels, thus, is

⎛

⎝
∏

i∈I

Ai |
⎛

⎝
∏

i∈I

Ui |
∏

i,j∈I,i �=j

Cij(ε)

⎞

⎠ \L2

⎞

⎠ \L1.

where L2 = {i send ij(m), i receiveji(m) | m ∈ MSG int}. The restriction by
L1 ∪ L2 ensures that processes cannot send and receive messages without syn-
chronizing with the interface and respective channels. To ease readability, we
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render it by
∏

Ai ‖ (
∏

Ui ‖ ∏
Cij(ε)) assuming that indices i, j are under-

stood. Further R ‖ S stands for (R | S) \ X where X is the set of actions over
which R and S can communicate. The infrastructure or network of the system
is given by IntSYS =

∏
Ui ‖ ∏

Cij(ε) which in variations will be studied in the
sequel. Further, we sometimes abbreviate

∏
Cij(ε) by Channels.

A distributed computation is a sequence of transitions

π = S0 e1−→ S1 e2−→ S2 . . .
en−→ Sn

where each transition Si ei+1−−−→ Si+1 is obtained from the semantics of CCS. With
π, trace(π) = (t1, . . . , t|I|) is obtained where each ti is the restriction of e1 . . . en

to the (visible) events of process Ai. We say, trace(π) leads to Sn. Note, that
the trace does not record events of the network. Differing from the classical CCS
semantics (see next section) we observe send and receive events of application
processes by SEND and RECEIVE . Hence, the states of application processes
at state Sj can be retrieved from the trace of the computation up to Sj and
this trace is a prefix of trace(π). A tuple (h1, . . . , h|I|) is a prefix of (t1, . . . , t|I|)
if hi � ti for all i ∈ I (� being the prefix relation on strings). However, not
every prefix of trace(π) corresponds to a reachable state. For this, additionally
consistency is required.

Definition 1. A trace (h1, . . . , h|I|) is consistent with trace (t1, . . . , t|I|) if

1. hj � tj for all j ∈ I,
2. whenever RECEIVE ij(msg) is contained in hj, SEND ij(msg) is contained

in hi.

Traditional correctness proofs of snapshot algorithms are based on this con-
sistency notion. It is shown that for a given snapshot computation π, the trace
identified with the snapshot is consistent with trace(π), see eg. [9].

2.1 Operational Semantics

Processes are specified in CCS, [15]. We recall the rules of its operational seman-
tics as they are slightly modified but without changing the overall behaviour.
For a sequential process Q two kind of transitions are possible. If Q = μ.R

where μ can be any action, unconditionally, Q
μ−→ R. If Q =

∑
i∈M Qi, M ⊆ I,

the nondeterministic choice expressed by the sum operator, is resolved with any
transition Qi

μ−→ Ri, i ∈ M :

Qi
μ−→ Ri

∑
i∈M Qi

μ−→ Ri

Transitions of a entire distributed system are stated in a compact way. In a
product like

∏
Ai ‖ (

∏
Ui ‖ ∏

Cij(αij)) we only show the processes that
change with a transition. Transitions of channels depend on the contents, only.
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That is, Cij(α)
i receiveij(msg)−−−−−−−−−−→ Cij(β) if and only if α = β.msg . Similarly,

Cij(α)
i sendij(msg)−−−−−−−−−→Cij(msg .α) is always possible. We use the shorter expres-

sions in the rules where α, β ∈ MSG∗. With these conventions we obtain the
following compact rules.

Transitions Involving Application Processes

The main difference in our semantics compared to the classical CCS semantics
is that we keep send and receive events visible though they are communicating
with the channel.

– internal events μ, μ /∈ L:

Ai
μ−→ A′

i

. . . | Ai | . . . ‖ . . .
μ−→ . . . | A′

i | . . . ‖ . . .

– send events of application process Ai:

Ai
sendij(msg)−−−−−−−−→ A′

i Pi
sendij(msg)−−−−−−−−→ P ′

i

. . . | Ai | . . . ‖ . . . | Pi | . . .
SENDij(msg)−−−−−−−−−→ . . . | A′

i | . . . ‖ . . . | P ′
i | . . .

– receive events of application process Ai:

Ai
receiveji(msg)−−−−−−−−−→ A′

i Pi
receiveji(msg)−−−−−−−−−→ P ′

i

. . . | Ai | . . . ‖ . . . | Pi | . . .
RECEIVEji(msg)−−−−−−−−−−−−→ . . . | A′

i | . . . ‖ . . . | P ′
i | . . .

Snapshot algorithms consist of a set or routines superposed on application
processes. We model a snapshot algorithm Snp as a special interface which can
trigger checkpoints (that is, the recording of local states), pass on, buffer, modify,
withhold application messages or send its own messages (so-called coordination
messages) over the channels. The checkpointing of a process by Pi is indicated
by the event cp takeni.

Internal Transitions of the Interface

Messages sent may be application or coordination messages, or a combination
of both of them.

– Adding a message to a channel:

Pi
i sendij(m)−−−−−−−−→ P ′

i

. . . | Pi | . . . ‖ . . . | Cij(α) | . . .
τ−→ . . . | P ′

i | . . . ‖ . . . | Cij(m.α) | . . .
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In Sect. 4 we use a broadcasting of messages as well. With i send iM (m),
M ⊆ I, message m is added to all channels Cij , j ∈ M . The concerned
channels are updated as in the rule given here.

– Removing a message from a channel:

Pi
i receiveji(m)−−−−−−−−−→ P ′

i α = β.m does not trigger checkpoint

. . . | Pi | . . . ‖ . . . | Cji(α) | . . .
τ−→ . . . | P ′

i | . . . ‖ . . . | Cji(β) | . . .

Pi
i receiveji(m)−−−−−−−−−→ P ′

i α = β.m triggers checkpoint

. . . | Pi | . . . ‖ . . . | Cji(α) | . . .
cp takeni−−−−−−→ . . . | P ′

i | . . . ‖ . . . | Cji(β) | . . .

Note that whether an event triggers a checkpoint or not can be derived from
the state of the executing process. In other words, it is a predicate over process
states.

– initiating the checkpointing (WLOG we assume this to be done by P1):

P1
cp taken1−−−−−−→ P ′

1

. . . ‖ . . . | P1 | . . .
cp taken1−−−−−−→ . . . ‖ . . . | P ′

1 | . . .

Each of these rules can be derived from the original rules of CCS if we ignore
the observability of communications of application processes.

A snapshot algorithm Snp takes a checkpoint of each application process. So
a completed snapshot computation

π = S0 e1−→ S1 e2−→ S2 . . .
en−→ Sn

of App ‖ (Snp ‖ Channels) contains a cp takeni event for each process Ai. Let
hi be the restriction of the prefix e1 . . . cp takeni of e1 . . . en to the visible events
of Ai. The state of App identified with (h1, . . . , h|I|) is the snapshot computed.

Definition 2. A snapshot algorithm Snp is correct (in the classical sense) if
for every application App and every snapshot computation π of App ‖ (Snp ‖
Channels) with completed checkpointing, the trace identified with the computed
snapshot is consistent with trace(π).

3 Progressive (Bi-)Consistency

The intention behind the notion of progressive bi-consistency is to capture the
branching time behavior of a system before a snapshot. Up to the snapshot the
system with overlaid snapshot routines should be weakly bisimilar to the original
system. That is, the application processes should be able to communicate (send
and receive messages) in the same way as they would do without the superlaid
checkpoint routines. To capture this independently of any particular application,
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we model the snapshot algorithm together with the network (FIFO channels)
and analyze it independently. We require system SYSSnp consisting of snapshot
algorithm Snp and channels to be weakly bisimilar (up to checkpointing) to the
system in which communications are disabled (frozen) at the time a checkpoint is
taken. The intuition is that in the context of an application process, if a process
takes a checkpoint then from this local state it will not further proceed.

The interface system in which communications for individual processes may
be frozen autonomously defines the freeze system. Its individual processes are
defined by:

Fi =
∑

j∈I,i �=j,msg∈MSG send ij(msg).i send ij(msg).Fi +
∑

j∈I,i �=j i receiveji(msg).receiveji(msg).Fi + freezei.Frozeni

The initial state is FSYS =
∏

Fi ‖ Channels.
The comparison of SYSSnp = Snp ‖ Channels and FSYS is done via a freeze

bisimulation. It is a variation of a bisimulation but sensitive to processes having
taken a checkpoint and to frozen processes. If a checkpoint is taken, this has to
be matched with freezing the respective process in the freeze system. A frozen
process cannot perform any action nor can it be un-frozen. However, it is not
deemed to match any action.

We use predicates cp takenS
i to indicate whether a checkpoint has been taken

by Pi at state S and, respectively, frozenS
i to indicate whether Qi has been frozen

at S. As usual, ν=⇒ = ( ν−→)∗.

Definition 3. R ⊆ STATES (SYSSnp) × STATES (FSYS ) is a freeze bisimula-
tion if for all (P,Q) ∈ R the following holds

1. (a) if P
a−→ P ′ where a ∈ {send ij(msg), receiveij(msg) | msg ∈ MSG , j ∈ I}

then{
¬cp takenP

i : ∃Q′ : Q
a=⇒ Q′ and (P ′, Q′) ∈ R

cp takenP
i : frozeni(Q) and (P ′, Q) ∈ R

(b) if P
τ−→ P ′ then ∃Q′ : Q

ε=⇒ Q′ and (P ′, Q′) ∈ R or (P ′, Q) ∈ R,

(c) if P
cp takeni−−−−−−→ P ′ then ∃Q′ : Q

freezei=⇒ Q′ and (P ′, Q′) ∈ R,

2. (a) if Q
a−→ Q′ where a ∈ {send ij(msg), receiveij(msg) | msg ∈ MSG , j ∈ I},

then ¬cp takenP
i and ∃P ′ : P

a=⇒ P ′, and (P ′, Q′) ∈ R,
(b) if Q

τ−→ Q′ then ∃P ′: P
ε=⇒ P ′ and (P ′, Q′) ∈ R.

If R satisfies item 1. only, it is called a freeze simulation.

Definition 4 (Progressive (Bi-)Consistency). A Snapshot Algorithm Snp
is called progressively bi-consistent if there is freeze bisimulation R containing
(SYSSnp ,FSYS ).

A Snapshot Algorithm Snp is progressively consistent if there is freeze sim-
ulation R containing (SYSSnp ,FSYS ).



366 A. Kiehn and M. Pattathurajan

The name progressive (bi-)consistency is justified with the following lemma.

Lemma 1. Let Snp be a progressively bi-consistent or progressively consistent
snapshot algorithm. Let App =

∏
Ai be any application. If T is the trace of

a snapshot computation of App ‖ SYSSnp and H is the trace of π up to the
checkpoints taken, then H is consistent with T .

Proof. It is sufficient to consider progressively consistent snapshot algorithms,
only. Let

π = A0 ‖ S0 e1−→ A1 ‖ S1 · · · en−→ An ‖ Sn

be a snapshot computation of App ‖ SYSSnp , not necessarily completed (where
A0 and S0 denotes the initial state of App and SYSSnp , respectively). The prefix
of trace(π) up to the checkpoints taken is defined by (h1, . . . , h|I|) where hi is
the restriction of e0 . . . en to events of Ai up to cp takeni. If e0 . . . en does not
contain cp takeni then it is simply the restriction to events of Ai. Note, that
cp takeni will not appear in hi or ti as it is not an event of Ai but of Pi.

As Snp is progressively consistent there is a freeze simulation R containing
(SYSSnp ,FSYS ). By means of R we inductively built up a computation of App ‖
FSYS

πfrozen = A0 ‖ S0 ê1=⇒ Â1 ‖ Ŝ1 · · · ên=⇒ Ân ‖ Ŝn

in which each transition of SYSSnp is matched according to clause 1.(a), 1.(b)
or 1.(c) of Definition 4. Let πj and πj

frozen be the prefix of π up to the jth
computation step, and let T j = (tj1, . . . , t

j
|I|) and Hj = (hj

1, . . . , h
j
|I|) be the traces

of πj and πj
frozen , respectively. In the induction step, the following properties are

assumed to hold for πj and πj
frozen and need to be shown for πj+1 and πj+1

frozen :

1. hj
i = tji and Aj

i = Âj
i if Ai has not been checkpointed yet,

2. hj
i � tji if the checkpoint of Ai has been taken,

3. if RECEIVEki(msg) is contained in hj
i then SENDki(msg) is contained in

hj
k,

4. hj
i is the restriction of e0 . . . ej to events of Ai up to cp takeni (if e0 . . . ej

does not contain cp takeni then it is simply the restriction to events of Ai),
5. (Sj , S′j) ∈ R.

For S0 the statement is obviously true.
For the induction step we inspect how πj

frozen was extended to πj+1
frozen .

– Case: ej+1 is an internal event of some Aj
i .

If Aj
i has not been checkpointed yet, Âj

i = Aj
i by IH and Âj

i can perform the
same transition. So, A′j+1

i = Aj+1
i , êj+1 = ej+1 and hj+1

i = hj
i .ei = tji .ei =

tji+1. Property 3. holds as ej+1 is an event.
If Aj

i has been checkpointed then êj+1 = ε and Âj+1
i = Âj

i and all the
properties are satisfied.
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– Case: ej+1 is a SEND ij(msg) event of some Aj
i .

This case is similar to the previous case, but this time SYSSnp has to partic-
ipate with a send ij(msg) transition (as Aj

i performed a send ij(msg) event).
If Ai has not been checkpointed yet, then F j can match the move by 1.(a)
of Definition 4 and (Sj+1, F j+1) ∈ R. So, êj+1 = ej+1 and conditions 1.-3.
hold. If Ai has been checkpointed then êj+1 = ε and Âj+1

i = Âj
i and all the

properties are satisfied.
– Case: ej+1 is a RECEIVE ji(msg) event of some Ai.

This case is similar to the previous case. However, property 3. needs to be
verified. It follows from the fact, that πj

frozen is a computation of App ‖ FSYS .
Messages can only be received if they have earlier been sent.

– Case: ej+1 is a τ event of Sj . In this case neither Aj nor the traces get
modified, so the properties follow from induction hypothesis and 1.(b) of
Definition 4.

– Case: ej+1 is cp takeni of some P j
i . In this case traces do not change, as êj+1 =

frozeni. All the properties are satisfied. In particular, note that hj+1
i = hj

i =
tji = tj+1

i , so the history of Aj+1
i equals that of Âj+i

i up to the checkpoint.

From conditions 3. and 4. we obtain consistency of Hj with T j according to
Definition 1. ��

As a corollary of Lemma 1 we obtain correctness of progressively consistent
snapshot algorithms in the classical sense.

Theorem 1. A snapshot computed by a progressively consistent or progressively
bi-consistent snapshot algorithm is consistent.

Proof. Let App =
∏

Ai be any application and let π be a snapshot computation
of App ‖ SYSSnp in which every process has taken a checkpoint. The trace of
π up to checkpointing is the trace of the computed snapshot. By Lemma 1 it is
consistent with the trace of π. ��

A snapshot algorithm correct in the classical sense, is not necessarily pro-
gressively consistent. A counterexample is Mutable Checkpointing algorithm,
see Sect. 4.

For snapshot algorithms it is desirable that they are not inhibiting the appli-
cation computation. Intuitively, that means that if all actions related to the
ongoing checkpointing are made transparent, the snapshot computation should
not be distinguishable from an application computation without overlaid snap-
shot algorithm. This property can naturally be expressed as weak bisimlarity
(≈) with IntSYS .

Definition 5 (Non-Inhibitance). A snapshot algorithm Snp is called non-
inhibiting if (SYSSnp ‖ CK ) ≈ IntSYS where CK =

∑
cp takeni.CK.

Note, that non-inhibitance would simply reduce to bisimilarity with IntSYS
if cp takeni transitions would be invisible (that is treated as τ transitions).
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It is easy to see that a progressively bi-consistent snapshot algorithm does not
need to be non-inhibiting. For example, an algorithm may suspend a process after
it has taken a checkpoint. Conversely, non-inhibitance does not imply progressive
bi-consistency as shown next.

Theorem 2. Progressive consistency and non-inhibitance do not imply progres-
sive bi-consistency.

Proof. A counterexample is given by a modification of algorithm CL/LY, the
combined algorithms of Chandy-Lamport and Lai-Yang given in Sect. 4.1. The
modification concerns the initiating process only of which the propagation of
checkpoint requests is done before the checkpoint is taken. With this modifica-
tion, P1 can broadcast the checkpoint requests without having taken the initial
checkpoint. This move can be matched by FSYS , with an ε move (doing noth-
ing). But now, FSYS could proceed with a send12(msg) event, which cannot be
matched by P1 without taking the checkpoint prior to that. Hence, the mod-
ified algorithm is not progressively bi-consistent. That the modified algorithm
is progressively consistent and non-inhibiting can be shown similarly as for the
unmodified algorithm. ��

Snapshot algorithms, traditionally, take a snapshot of the entire system. More
recently, snapshot algorithms have been considered which only take checkpoints
of processes relevant to keep consistently of the process initiating the snapshot-
ting, like mutable checkpointing [4,10], blocking queue algorithms [12,18] and
partial snaphshotting [11]. The motivation behind them is that in a large dis-
tributed system, taking an overall snapshot is expensive and not always required.
Indeed, the intention is to keep the number of checkpoints as small as possible.
A checkpoint needs to be taken if there is a Z-dependency from the process
checkpointed to the initiating process. A z-dependency covers causal dependen-
cies and related scenarios which would result in an orphan (a message received
but not sent) if the checkpoint is not taken.

A snapshot algorithms is called minimal if for every checkpoint, either it is
the initiating checkpoint or there is a Z-dependency from the respective process
to the initiator. Z-dependencies are induced by the flow of application messages.
If a process Pi before taking a checkpoint had received an application message
from Pj sent before a checkpoint was taken, then there is a Z-dependency from
Pj to Pi. The Z-dependency relation is transitive, see [13] for more details.

Theorem 3. There is no non-inhibiting, progressively bi-consistent or progres-
sively consistent, minimal snapshot algorithm for systems with at least two pro-
cesses.

Proof. It suffices to consider progressive consistency.
Suppose Snp is a non-inhibiting, progressively consistent, minimal snapshot

algorithm. We consider a computation up to a state in which Pi has taken a
checkpoint and afterwards sent a message to Pj . The computation can progress
as described by π:

π = SYSSnp
ε=⇒ cp takeni−−−−−−→ S1

ε=⇒ sendij(msg)−−−−−−−−→ S2
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The weak ε moves may arise from internal computation steps of Snp. The
send ij(msg) event is justified by non-inhibitance of Snp (as IntSYS can per-
form send ij(msg) as a first event). FSYS has as matching sequence of events
only

FSYS
freezei−−−−→ F 1

with (S1, F 1), (S2, F 1) ∈ R where R is the relation justifying progressive con-
sistency of Snp. By non-inhibitance of Snp, Pj needs to be able to receive msg .
According to algorithm Snp

1. a checkpoint of Pj is taken before receiving msg , or
2. a checkpoint of Pj is not taken before receiving msg .

In the first case, S2 ε=⇒ cp taken2−−−−−−→ S3 ε=⇒ receiveij(msg)−−−−−−−−−→ S4. So, FSYS will match

the checkpointing with F 1 ε=⇒ freeze2−−−−→ F 2, (S3, F 2) ∈ R. However, this means
that a checkpoint of Pj was taken without there being a Z-dependency from Pj

to Pi, contradicting that Snp is minimal.

In the second case, S2 ε=⇒ S3 receiveij(msg)−−−−−−−−−→ S4. This can be matched by

FSYS only with F 1 ε=⇒ receiveij(msg)−−−−−−−−−→ F 2. But then the trace of F 2 in the con-
text of a suitable application is (ε,RECEIVE ij(msg)) which is not consistent,
contradicting Lemma 1. As in both cases we obtained a contradiction, FSYS
cannot match the last move, so Snp cannot be progressively consistent if it is
minimal and non-inhibiting. ��

Theorem 3 relates to an earlier result in [5] which states that there is no
minimal coordinated snapshot algorithm which is not blocking the computation
of processes. The possibility of blocking only channels is not considered and not
expressible in their linear time framework. Our result applies to a larger class
of snapshot algorithms (like communication induced checkpointing) and refines
non-blocking to non-inhibiting. Non-inhibitance cannot be expressed in a linear
time framework.

4 Snapshot Algorithms Analyzed

For the analysis we translated snapshot algorithms into CCS assuming chan-
nels as in Sect. 2. In this way we modeled Chandy/Lamport’s algorithm [9], its
modification discussed in the proof of Theorem2, Lai/Yang’s algorithm [14],
the combined Chandy/Lamport-Lai/Yang algorithm, and Mutable checkpoint-
ing [4]. To provide an example for data stream processing, we also analyzed the
ABS algorithm of [8].

The results are summarized in Fig. 1. Mutable Checkpointing (column M)
is not progressively bi-consistent as this algorithm takes checkpoints on a ten-
tative basis and later possibly discards them (see [10] for details, a concept of
unfreezing would be required). We included results on blocking queue algorithms
(column B) [12,18] and partial snapshotting (column PS), [11]. These algorithms
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property CL LY CL/LY CL/LYmod. M BQ PS ABS
prog. consistent

√ √ √ √
-

√ √ √
prog. b-consistent

√ √ √
- -

√ √ √
non-inhibiting

√ √ √ √ √ − − −
minimal − − − − √ √ √ −

Fig. 1. Properties of snaphshot algorithms

– additionally to coordination messages and flags– use the concept of message
buffering. The algorithms are minimal and progressively consistent, proved in
a setting that does not separate application and snapshot computation. By
Theorem 3 they are not non-inhibiting. Intuitively, they are not non-inhibiting
as both algorithms temporarily buffer messages (that is prevent them from being
delivered) after a checkpoint. However, they are progressively bi-consistent stated
here without a proof. The ABS algorithm shows similar features.

We show in detail the proofs for the combined Chandy/Lamport-Lai/Yang
algorithm and the ABS algorithm. The former exhibits coordination induced
and communication induced checkpointing. The latter gives an example for a
snapshot algorithm buffering messages temporarily.

4.1 The Combined Algorithm of Chandy/Lamport and Lai/Yang

Algorithm CL/LY is a combination of Chandy/Lamport’s and of Lai/Yang’s
checkpoint algorithms. It combines coordinated checkpointing with communica-
tion induced checkpointing. The process initiating the snapshotting (assumed to
be P1) sends out checkpoint requests (that is coordination messages) to all other
processes. Having received such a request when a checkpoint had not been taken,
a process takes its checkpoint. From then onward it attaches a flag to its mes-
sages indicating these have been sent after a checkpoint. If a flagged message is
received before a checkpoint had been taken then a checkpoint is taken instantly
before the reception of the message (a communication induced checkpoint). The
CCS model of this algorithm is given in Fig. 2. The CCS model of the CL/LY
algorithm is thus

∏
i∈I Pi and superposed an application

∏
i∈I Ai within the

channels connecting processes it is
⎛

⎝
∏

i∈I

(Ai | Pi) \ L1 |
∏

i,j∈I,i �=j

Cij(ε)

⎞

⎠ \L2

which is bisimilar to
⎛

⎝
∏

i∈I

Ai |
⎛

⎝
∏

i∈I

Pi |
∏

i,j∈I,i �=j

Cij(ε)

⎞

⎠ \L2

⎞

⎠ \ L1

where
L1 = {send ij(msg), receiveij(msg) | i �= j,msg ∈ MSG}
L2 = {i send ij(m), i receiveij(m) | i �= j,m ∈ MSG int}.
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snaphot initiating process:

P1 =
∑

j �=1 send1j(msg).i send1j(msg , 0).P1

+
∑

j �=1 i receivej1(msg , 0).receivej1(msg).P1

+cp taken1.P
cpr
1

P cpr
1 = i send1I(cpr).P cpt

1

P cpt
1 =

∑
j �=1 send1j(msg).i send1j(msg , 1).P cpt

1

+
∑

j �=1 i receivej1(msg , ∗).receivej1(msg).P cpt
1

non-initiator processes:

Pi =
∑

j �=i send ij(msg).i send ij(msg , 0).Pi

+
∑

j �=i i receiveji(msg , 0).receiveji(msg).Pi

+i receive1i(cpr).P cpt
i +

∑
j �=i i receiveji(msg , 1).P cpt

i

P cpt
i =

∑
j �=i send ij(msg).i send ij(msg , 1).P cpt

i

+
∑

j �=i i receiveji(msg , ∗).receiveji(msg).P cpt
i

+i receive1i(cpr).P cpt
i

where ∗ ∈ {0, 1}.

Fig. 2. The CCS model of the CL/LY snapshot algorithm

In short, this is App ‖ SYSCL/LY. A communication induced checkpoint is trig-
gered with i receiveji(msg , 1) executed by Pi, i ∈ I.

Theorem 4. The combined algorithm of Chandy/Lamport and Lai/Yang is pro-
gressively bi-consistent.

Proof. To set up a freeze bisimulation establishing progressive bi-consistency,
we integrate the history into process terms. Transitions of a sequential process
P

α−→ P ′, α �= τ , are replaced by their history extended version h ::P α−→ hα ::P ′

where h is the history of visible events of P . For channels we keep the original
semantics. So for example,
(U1|U2) ‖ (C12(ε)|C21(ε))
send12(msg1)−−−−−−−−−→ (send12(msg1) :: i send12(msg1).U1|U2) ‖ (C12(ε)|C21(ε))
τ−→ (send12(msg1).i send12(msg1) ::U1|U2) ‖ (C12(msg1)|C21(ε))
τ−→ (send12(msg1).i send12(msg1) ::U1|i receive12(msg1) :: receive12(msg1).U2)

(‖ C12(ε)|C21(ε))
The set-up is similar to the location sensitive semantics underlying location
equivalence and related work [3,6]. Let Rh(SYSCL/LY) denote the set of reach-
able states with histories. For the freeze bisimulation we construct the pair
〈[A], Â〉 out of A ∈ Rh(SYSCL/LY) where [ ] removes the histories from a term.
With ̂ processes and channel contents is modified as follows:
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Q [Q] Q̂

h ::P1 P1 F1

h :: i send1j(msg , 0).P1 i send1j(msg , 0).P1 i send1j(msg).F1

h :: receivej1(msg).P1 receivej1(msg).P1 receivej1(msg).F1

h ::P cpr
1 P cpr

1 Frozen1

h ::P cpt
1 P cpt

1 Frozen1

h :: i send1j(msg , 1).P cpt
1 i send1j(msg , 1).P cpt

1 Frozen1

h :: receivej1(msg).P cpt
1 receivej1(msg).P cpt

1 Frozen1

h :: receivej1(msg , 1).P cpt
1 receivej1(msg).P cpt

1 Frozen1

h ::Pi Pi Ui

h :: i send ij(msg , 0).Pi i send ij(msg , 0).Pi i send ij(msg).Ui

h :: receiveji(msg).Pi receiveji(msg).Pi receiveji(msg).Fi

h ::P cpt
i P cpt

i Frozeni

h :: i send ij(msg , 1).P cpt
i i send ij(msg , 1).P cpt

i Frozeni

h :: receiveji(msg).P cpt
i receiveji(msg).P cpt

i Frozeni

h :: receiveji(msg).P cpt
i receiveji(msg).P cpt

i Frozeni

In case of channel Cij(α), the modification of α to β is based on the check-
point status of the two processes which the channel is connecting. In all cases
flags and cpr messages must be removed (indicated by delineation in [| |]). The
status is one of the following:

1. If both the processes have not taken the checkpoint, β = [|α|].
2. If Pi has not and Pj has taken the checkpoint, then let γ denote the sequence

of messages which are received from Pi by Pj after having taken the check-
point in sending order. Then β = [|αγ|].

3. If Pi has taken and Pj has not taken the checkpoint, let γ be the largest suffix
of α not including cpr or a flagged message. Then β = [|γ|].

4. If both Pi and Pj have taken the checkpoint then let γ1 be the largest suffix
of α not including cpr or a flagged message, and γ2 be the messages received
by Pj after having taken the checkpoint, sent by Pi before having taken the
checkpoint, in sending order. Then β = [|γ1γ2|].

Strings γ, γ1 and γ2 can be determined from the histories of the concerned
processes.

The relation R = {〈[A], Â〉 | A ∈ Rh(SYSCL/LY)} can then shown to be a
freeze bisimulation. For details, confer [16]. ��
Theorem 5. The combined algorithm of Chandy/Lamport and Lai/Yang is
non-inhibiting.

Proof. The relation R = {〈A,A′〉 | A ∈ Reachable(SYSCL/LY ‖ CK )} can be
shown a weak bisimulation, where A′ =

∏
Ui ‖ ∏

Cij([|αij |]) and αij being the
contents of channel Cij in A. ��
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4.2 A Snapshot Algorithms for Data Stream Processing

A comparably new application of snapshot algorithms is distributed data stream
processing, [7,8]. A data stream is pipelined through a set of tasks which perform
simple operations on it (like counting keywords etc.). Snapshots of the tasks are
taken not only to recover from failures but also to reallocate tasks or to adjust
to reconfigurations.

In this section we model the ABS (Asynchronous Barrier Snapshotting) algo-
rithm of [8]. It assumes an acyclic infrastructure, that is the tasks together with
their connecting channels form an acyclic graph. In our model tasks, correspond
to application processes and data items to application messages. So, MSG cor-
responds to DATA. Due to the acyclic streaming, a task obtains input from
one set of tasks and outputs to another set of tasks, denoted by Input i and
Output i, respectively, for task i. Earlier we assumed full connectivity, that is,
Input i = Output i = I \ {i}.

The basic idea behind the ABS algorithms is as follows. The snapshotting
is started by injecting so-called barriers into the input data streams. Barriers
correspond to checkpoint request messages. If a task receives a barrier from one
of its input channels, it will block that channel by buffering all data items coming
from that channel until it has received a barrier from all its other input channels.
If barriers have been received from all input channels, the task is checkpointed
and barriers are sent out on all output channels. As the infrastructure is acyclic,
the checkpointing moves like a wave through the system.

ABS processes are of the form ABSblocked
i,buffered where blocked ⊆ I denotes

the input channels of Pi currently blocked (that is Cji for j ∈ blocked), and
buffered = (αj)j∈Inputi , αj ∈ DATA∗, which gives the contents of the channel
buffers. Initially, blocked = ∅ and αj = ε for all j ∈ Input i. The CCS model
of ABSblocked

i,buffered is given in Fig. 3. The updating of a buffer j with contents α is
denoted by buffered [α/αj ] (α replaces αj).

None of the ABS processes is a designated snapshot initiator. However, addi-
tionally to the ABS processes, there is a source and a sink process. The source
process So creates the data stream which we model by sending data to output
channels. The snapshotting will be induced by injecting barriers to the data
streams of all channels. The task processes of the data stream processing sys-
tem are thus reacting to the reception of barriers, only. They will not initiate a
snapshotting by themselves.

So =
∑

j∈OutputSo
sendSo,j(d).i sendSo,j(d).So

+ i sendSo,OutputSo
(b).Socpt

Socpt =
∑

j∈OutputSo
sendSo,j(d).i sendSo,j(d).Socpt

The sink process Si absorbs all data items sent through the data processing
system. The initial state of the sink process is Si∅. With the superscript the task
identifiers are recorded from which a barrier has already been received.
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Siblockedbuffered =
∑

j /∈blocked i receivej,Si(d).receivej,Si(d).Siblockedbuffered

+
∑

j∈blocked i receivej,Si(d).Siblockedbuffered[d.αj/αj ]

+
∑

blocked∪{j}�=OUT i receivej,Si(b).Si
blocked∪{j}
buffered

+
∑

blocked∪{j}=InputSi
i receivej,Si(b).Si

cpt
buffered

Sicptbuffered = +
∑

αj=ε i receiveji(d).receiveji(d).Si
cpt
buffered

+
∑

αj=α.d receiveji(d).Si
cpt
buffered[α/αj ]

ABSblocked
i,buffered =

∑
j∈Outputi

send ij(d).i send ij(d).ABSblocked
i,buffered

+
∑

j /∈blocked i receiveji(d).receiveji(d).ABSblocked
i,buffered

+
∑

j∈blocked i receiveji(d).ABSblocked
i,buffered[d.αj/αj ]

+
∑

blocked∪{j}�=Inputi
i receiveji(b).ABSblocked∪{j}

i,buffered

+
∑

blocked∪{j}=Inputi
i receiveji(b).ABScp

i,buffered

ABScp
i,buffered = i send iOutputi(b).ABScpt

i,buffered

ABScpt
i,buffered =

∑
j∈Outputi

send ij(d).i send ij(d).ABScpt
i,buffered

+
∑

αj=ε i receiveji(d).receiveji(d).ABScpt
i,buffered

+
∑

αj=α.d receiveji(d).ABScpt
i,buffered[α/αj ]

Fig. 3. The CCS model of the ABS algorithm for snapshotting data stream processing

The entire system is thus

SYSABS = (So | (
∏

i∈I

ABS∅
i,init) | Si) ‖ Channels

where init is the initial buffered channel contents which is empty. Superposed a
task system it is

⎛

⎝(So | (
∏

i∈I

Ti | ABS∅
i,init) | Si) \ L1 |

∏

i,j∈I,i �=j

Cij(ε)

⎞

⎠ \L2

SYSABS is bisimilar to Task ‖ SYSABS where Task =
∏

i∈I Ti. A checkpoint
is triggered with i receiveji(b) by ABSblocked

i,buffered if Cji is the last input channel to
deliver a barrier (blocked ∪ {j} = Input i).

To establish progressive bi-consistency of ABS, we need to adapt the freeze
system for data stream processing. What is required is the addition of a source
and a sink process:
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FSo =
∑

j∈OutputSo
sendSo,j(d).i send So,j(d).FSo

+ freezeSo .F rozenSo

FSi =
∑

j∈InputSi
i receivej,Si(d).receivej,Si(d).FSi

+ freezeSi .FSi

So the freeze system for data processing is FSYSDS = (FSo | ∏
i∈I Fi | FSi) ‖

Channels.

Theorem 6. The ABS snapshot algorithm for data stream processing is pro-
gressively bi-consistent.

Proof. We define a freeze simulation containing (SYSABS,FSYSDS). This proves
progressive consistency of ABS.

For the freeze simulation we construct the pair 〈A, Â〉 out of A ∈ R(SYSABS)
where R(SYSABS) is the set of reachable states of SYSABS. With ̂ processes
and channel contents are modified as follows:

Q Q̂

So FSo

i sendSo,j(d).So i sendSo,j(d).FSo

Socpt FrozenSo

i sendSo,j(d).Socpt FrozenSo

Siblockedbuffered FSi

receivej,Si(d).Siblockedbuffered receivej,Si(d).FSi

Sicptbuffered FrozenSi

receivej,Si(d).Sicptbuffered FrozenSi

ABSblocked
ibuffered Fi

receiveji(d).ABSblocked
i,buffered receiveji(d).Fi

i send ij(d).ABSblocked
i,buffered i send ij(d).Fi

ABScp
ibuffered Frozeni

receiveji(d).ABScpt
i,buffered Frozeni

i send ij(d).ABScpt
i,buffered Frozeni

In case of channel Cij(α), the modification of α to β is based on the check-
point status of the tasks which the channel is connecting. Recall, that for ABS
we assume that the communication graph is acyclic. So if we consider the chan-
nel from process i to process j, and process i has not been checkpointed, then
task j cannot have been checkpointed either nor can channel Cij be blocked.
ABSi has taken a checkpoint if it is in a state with superscript cp or cpt .
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For the remaining cases, the following states need to be considered.

1. If both processes have not taken a checkpoint, β = α.
2. If ABSi has taken a checkpoint but ABSj has not, ABSj is in a state of the

form ABSblocked
i,buffered . If i /∈ blocked , β is the largest suffix of α without a barrier.

If i ∈ blocked , β = ε.
3. If both, ABSi and ABSj have taken a checkpoint then β = ε.

The relation R = {〈A, Â〉 | A ∈ R(SYSABS)} is a freeze simulation.

5 Conclusions

With progressive bi-consistency we have proposed a refined correctness notion
for snapshot algorithms. Apart from ensuring consistency of the computed snap-
shot, it also takes into account the partially computed snapshot and guarantees
consistency in the context of the ongoing computation at any point of the com-
putation. In preliminary work and a different setting, two particular algorithms
–partial snapshotting [11] and a blocking queue algorithm [12]– have been shown
progressively consistent. However, the notions given in this paper is detached
from any particular snapshot algorithm and uses the well-established concepts
of bisimilarity and observation equivalence [15]. As a novel feature, it allows to
check whether a superposed snapshot algorithm preserves and does not inhibit
the behavior of the underlying computation. So it can detect whether the course
of the underlying computation is forced into a particular direction once the
checkpointing has started (eg by disabling certain communications). This is a
branching time property which cannot be expressed in the traditional, linear
time correctness notion.

We further established the fundamental result that it is impossible to have a
progressively (bi-)consistent and non-inhibiting partial snapshot algorithm which
takes a minimal number of checkpoints. This result makes more precise an ear-
lier statement in [5] which says that a minimal partial snapshot cannot be com-
puted without blocking processes. As shown here, blocking must be understood as
blocking channels or –but not necessarily– suspending processes. Existing mini-
mal partial snapshot algorithms are either not progressively consistent (mutable
checkpointing [4]) or they are inhibiting (blocking queue algorithms [12,18], par-
tial snapshotting [11]).

We tested our definitions by establishing for well-known existing algorithms
whether they are progressively (bi-)consistent and non-inhibiting or not. The
results add to the understanding of these algorithms and show the applicability
of our notion for snapshot algorithms using features like coordination message,
communication induced checkpointing or message buffering.

From a broader point of view, we have shown how algorithms superposed
on other algorithms can formally be verified using well-established notions of
concurrency theory. We hope that this will benefit formal verification techniques
for such algorithms. An example for a related verification can be found in [1].
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The present article is a continuation of [20] by Le Roux and P., which already
obtained some results on the connections between closed choice for convex sets
and closed choice for finite sets. We introduce new proof techniques and explore
the connection to the degree of sorting infinite sequences. Besides laying the
foundations for future investigations of specific theorems, we are also address-
ing a question on the complexity caused by dimension: Researchers have often
wondered whether there is a connection between the dimension of the ambient
space and the complexity of certain choice principles. An initial candidate was to
explore closed choice for connected subsets, but it turned out that the degree is
independent of the dimension, provided this is at least 2 [10]. As already shown
in [20], this works for convex choice. One reason for this was already revealed in
[20]: We need n dimensions in order to encode a set of cardinality n+1. We add
another reason here: Each dimension requires a separate instance of sorting an
infinite binary sequence in order to find a point in a convex set.

Structure of the Paper. Most of our results are summarized in Fig. 1 on Page 5.
Section 2 provides a brief introduction to Weihrauch reducibility. In Sect. 3 we
provide formal definitions of the principles under investigation, and give a bit
more context. We proceed to introduce our new technique to prove separations
between Weihrauch degrees in Sect. 4; it is based on Kleene’s recursion theorem.
The degree of sorting an infinite binary sequence is studied in Sect. 5, including a
separation technique adapted specifically for this in Subsect. 5.1, its connection
to convex choice in Subsect. 5.2 and a digression on the task of finding connected
components of countable graphs in Subsect. 5.3. Section 6 is constituted by The-
orem 5 and its proof, establishing the precise relationship between finite choice
and sorting. Finally, in Sect. 7 we introduce a game characterizing reducibility
between finite choice for varying cardinalities.

2 Background on Weihrauch Reducibility

Weihrauch reducibility is a quasiorder defined on multi-valued functions between
represented spaces. We only give the core definitions here, and refer to [25] for
a more in-depth treatment. Other sources for computable analysis are [8,29].

Definition 1. A represented space X is a set X together with a partial surjection
δX :⊆ N

N → X.

A partial function F :⊆ N
N → N

N is called a realizer of a function f :⊆
X → Y between represented spaces, if f(δX(p)) = δY(F (p)) holds for all p ∈
dom(f◦δX). We denote F being an realizer of f by F � f . We then call f :⊆ X →
Y computable (respectively continuous), iff it has a computable (respectively
continuous) realizer.

Represented spaces can adequately model most spaces of interest in everyday
mathematics. For our purposes, we are primarily interested in the construction
of the hyperspace of closed subsets of a given space.

The category of represented spaces and continuous functions is cartesian-
closed, by virtue of the UTM-theorem. Thus, for any two represented spaces
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X, Y we have a represented spaces C(X,Y) of continuous functions from X
to Y. The expected operations involving C(X,Y) (evaluation, composition,
(un)currying) are all computable.

Using the Sierpiński space S with underlying set {�,⊥} and representation
δS : N

N → {�,⊥} defined via δS(⊥)−1 = {0ω}, we can then define the repre-
sented space O(X) of open subsets of X by identifying a subset of X with its
(continuous) characteristic function into S. Since countable or and binary and
on S are computable, so are countable union and binary intersection of open
sets.

The space A(X) of closed subsets is obtained by taking formal complements,
i.e. the names for A ∈ A(X) are the same as the names of X \A ∈ O(X) (i.e. we
are using the negative information representation). Intuitively, this means that
when reading a name for a closed set, this can always shrink later on, but never
grow. It is often very convenient that we can alternatively view A ∈ A({0, 1}N)
as being represented by some tree T via [T ] = A (here [T ] denotes the set of
infinite paths through T ).

We can now define Weihrauch reducibility. Again, we give a very brief treat-
ment here, and refer to [7] for more details and references.

Definition 2 (Weihrauch reducibility). Let f, g be multivalued functions on
represented spaces. Then f is said to be Weihrauch reducible to g, in sym-
bols f ≤W g, if there are computable functions K,H :⊆ N

N → N
N such that

(p 
→ K〈p,GH(p)〉) � f for all G � g.

The Weihrauch degrees (i.e. equivalence classes of ≤W) form a distributive
lattice, but we will not need the lattice operations in this paper. Instead, we use
two kinds of products. The usual cartesian product induces an operation × on
Weihrauch degrees. We write fk for the k-fold cartesian product with itself. The
compositional product f � g satisfies that

f � g ≡W max
≤W

{f1 ◦ g1 | f1 ≤W f ∧ g1 ≤W g}

and thus is the hardest problem that can be realized using first g, then something
computable, and finally f . The existence of the maximum is shown in [12] via
an explicit construction, which is relevant in some proofs. Both products as well
as the lattice-join can be interpreted as logical and, albeit with very different
properties.

We’ll briefly mention a further unary operation on Weihrauch degrees, the
finite parallelization f∗. This has as input a finite tuple of instances to f and
needs to solve all of them.

As mentioned in the introduction, the closed choice principles are valuable
benchmark degrees in the Weihrauch lattice:

Definition 3. For a represented space X, the closed choice principle CX :⊆
A(X) ⇒ X takes as input a non-empty closed subset A of X and outputs some
point x ∈ A.
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3 The Principles Under Investigation

We proceed to give formal definitions of the three problems our investigation is
focused on. These are finite choice, the task of selecting a point from a closed
subset (of {0, 1}N or [0, 1]n) which is guaranteed to have either exactly or no more
than k elements; convex choice, the task of selecting a point from a convex closed
subset of [0, 1]k; and sorting an infinite sequence over the alphabet {0, 1, . . . , k}
in increasing order. Our main result is each task forms a strictly increasing
chain in the parameter k, and these chains are perfectly aligned as depicted in
Fig. 1. For finite choice and convex choice, this was already established in [20].
Our Theorem 5 implies the main theorem from [20] with a very different proof
technique.

Definition 4 ([20, Definition 7]). For a represented space X and 1 ≤ n ∈ N,
let CX,�=n := CX|{A∈A(X)||A|=n} and CX,�≤n := CX|{A∈A(X)|1≤|A|≤n}.

It was shown as [20, Corollary 10] that for every computably compact com-
putably rich computable metric space X we find CX,�=n ≡W C{0,1}N,�=n and
CX,�≤n ≡W C{0,1}N,�≤n. This in particular applies to X = [0, 1]d. We denote this
Weihrauch degree by C�=n respectively C�≤n.

Definition 5 ([20, Definition 8]). By XCn we denote the restriction of C[0,1]n

to convex sets.

Since for subsets of [0, 1] being an interval, being convex and being connected
all coincide, we find that XC1 is the same thing as one-dimensional connected
choice CC1 as studied in [10] and as interval choice CI as studied in [3].

Definition 6. Let Sortd : dω → dω be defined by Sortd(p) = 0c01c1 . . . k∞, where
|{n | p(n) = 0}| = c0, |{n | p(n) = 1}| = c1, etc, and k is the least such that
|{n | p(n) = k}| = ∞. We write just Sort for Sort2.

Sort was introduced and studied in [22], and then generalized to Sortk in
[9]. Note that the principle just is about sorting a sequence in order without
removing duplicates. In [26] it is shown that Sortn+1 ≡W Sortn; it follows that
Sort∗ ≡W Sort∗

d ≡W

∐
d∈N

Sortd. The degree Sort∗ was shown in [22] to capture
the strength of the strongly analytic machines [13,15], which in turn are an
extension of the BSS-machines [1]. Sort is equivalent to Thomae’s function; and
to the translation of the standard representation of the reals into the continued
fraction representation [28]. In [17], Sort is shown to be equivalent to certain
projection operators.

There are some additional Weihrauch problems we make passing reference
to. All-or-unique choice captures the idea of a problem either having a unique
solution, or being completely undetermined:

Definition 7. Let AoUCX be the restriction of CX to {{x} | x ∈ X} ∪ {X}.
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CN Sort Sort2 Sortn Sort∗

XC1 XC2 XCn

C�≤2 C�≤3 C�≤n+1

C�=2 C�=3 C�=n+1 CN

1 ≡W C{0} C{0,1} C{0,1,2} C{0,...,n} XC1

Fig. 1. Overview of our results; extending [20, Fig. 1] by the top row. The diagram
depicts all Weihrauch reductions between the stated principles up to transitivity. Boxes
mark degrees appearing in two places in the diagram. Our additional results are pro-
vided as Theorems 3 and 5.

A prototypical example (which is equivalent to the full problem) is solving
ax = b over [0, 1] with 0 ≤ b ≤ a: Either there is the unique solution b

a , or
b = a = 0, and any x ∈ [0, 1] will do. The degree of AoUCX is the same for any
computably compact computably rich computable metric space, in particular for
X = {0, 1}N or X = [0, 1]d. We just write AoUC for that degree. This problem
was studied in [19,23] where it is shown that AoUC∗ is the degree of finding
Nash equilibria in bimatrix games and of executing Gaussian elimination.

4 Proving Separations via the Recursion Theorem

A core technique we use to prove our separation results invokes Kleene’s recursion
theorem in order to let us prove a separation result by proving computability
of a certain map (rather than having to show that no computable maps can
witness a reduction). We had already used this technique in [19], but without
describing it explicitly. Since the technique has proven very useful, we formally
state the argument here as Theorem 1 after introducing the necessary concepts
to formulate it.

Definition 8. A representation δ of X is precomplete, if every computable par-
tial f :⊆ 2ω → X extends to a computable total F : 2ω → X.

Proposition 1. For effectively countably-based X, the space O(X) (and hence
A(X)) is precomplete.



Finite Choice, Convex Choice and Sorting 383

Proof. It suffices to show this for O(N), where it just follows from the fact that
we can delay providing additional information about a set as long as we want;
and will obtain a valid name even if no additional information is forthcoming.

The preceding proposition is a special case of [27, Theorem 6.5], which shows
that many pointclasses have precomplete representations.

Proposition 2. The subspaces of A([0, 1]n) consisting of the connected respec-
tively the convex subsets are computable multi-valued retracts, and hence pre-
complete.

Proof. For the connected sets, this follows from [10, Proposition 3.4]; for convex
subsets this follows from computability of the convex hull operation on [0, 1]n,
see e.g. [20, Proposition 1.5] or [30].

By M(X,Y) we denote the represented space of strongly continuous multi-
valued functions from X to Y studied in [12]. The precise definition of strong
continuity is irrelevant for us, we only need every partial continuous function
on {0, 1}N induces a minimal strongly continuous multivalued function that it is
a realizer of; and conversely, every strongly continuous multivalued function is
given by a continuous partial realizer.

Theorem 1. Let X have a total precomplete representation. Let f : X ⇒ Y
and g : U ⇒ V be such that there exists a computable e : U × M(V,Y) ⇒ X
such that if x ∈ e(u, k) and v ∈ g(u), then k(v) � f(x). Then f �W g.

Proof. Assume that f ≤W g via computable H, K. Let computable E be a
realizer of e. Let (φn :⊆ N → N)n∈N be a standard enumeration of the partial
computable functions. By assumption, we can consider each φn to denote some
element in X. Let λ be a computable function such that φλ(n) = E(H(φn), (v 
→
K(φn, v))). By Kleene’s recursion theorem, there is some n0 with φn0 = φλ(n0).
Inputting φn0 to f fails the assumed reduction witnesses.

As simple sample application for how to prove separations of Weihrauch
degrees via the recursion theorem, we shall point out that XC1 already cannot
solve some simple products. For contrast, however, note that C∗

2 ≤W XC1 was
shown as [10, Proposition 9.2].

Theorem 2. C2 × AoUC �W XC1.

Proof. Given a convex tree T ⊆ 2<ω and a partial continuous function φ :⊆
{0, 1}N → 2 × {0, 1}N, we compute set S ∈ A({0, 1}) and V ∈ A({0, 1}N) such
that S �= ∅, and V = {0, 1}N or V = {p} for some p ∈ {0, 1}N. Our construction
ensures that ∃p ∈ [T ] φ(p) /∈ S × V .

Initially, S = {0, 1} and V = {0, 1}N.
We first search for s such that for any σ ∈ T of length s, the first value of

φ(σ) is determined. If we never find one, then S = {0, 1} and V = {0, 1}N work
as desired.
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Next, we search for some τ ∈ {0, 1}s such that Pτ := [T ]∩⋃
j<2 φ−1(j, [τ ]) is

such that any interval contained in Pτ is contained in some [σ] for σ ∈ {0, 1}s.
Note that if (Ji)i∈I is a collection of pairwise disjoint intervals in {0, 1}N such
that every Ji intersects with at least two cylinders [σ] and [σ′] for some strings
σ �= σ′ of length s, then the size of I is at most 2s − 1. Hence, if φ is defined on
[T ], such a τ has to exist. Once we have found it, we set V = {τ0ω}.

Either we are already done (since we would have that ∃p ∈ [T ] φ(p) /∈ S×V ),
or it holds that [T ] ⊆ [σ] for some σ ∈ {0, 1}s. In that case, by choice of s we
find that ∃j ∈ {0, 1} π0φ(p) = j for all p ∈ [T ]. We can set S = {1 − j}, and
have obtained the desired property that ∃p ∈ [T ] φ(p) /∈ S × V . By Theorem 1,
the claim follows.

5 Some Observations on Sort

5.1 Displacement Principle for Sortk

The basic phenomenon that the number of parallel copies of Sort being used
corresponds to a dimensional feature can already by a result similar in feature
to the displacement principle from [10]:

Proposition 3. C2 × f ≤W Sortk+1 implies f ≤W Sortk × CN.

Proof. Let the reduction C2 × f ≤W Sortk+1 be witnessed by computable H,
K1, K2. Assume, for the sake of a contradiction, that for some input x to f and a
name p for {0, 1} it holds that H(p, x) contains infinitely many 0s. In that case,
Sortk(H(p, x)) = 0ω, and hence K1 is defined as either 0 or 1 on p, x, 0ω. But
then there is some k ∈ N such that K1 already outputs the answer on reading
some prefix p≤k, x≤k, 0k. Additionally, we can chose some k′ ≥ k such that H
writes at least k′ 0s upon reading the prefixes p≤k′ , x≤k′ . By changing p after k′

to be a name of {1 − K1(p, x, 0ω)} shows the contradiction.
Now we note that x 
→ H(p, x) and K2 witness a reduction from f to the

restriction of Sortk+1 to inputs containing only finitely many 0s. But this restric-
tion is reducible to Sortk×CN: In parallel, call Sortk on the sequence obtained by
skipping 0s and decrementing every other digit by 1, and using CN to determine
the original number of 0s.

Corollary 1. Let f be a closed fractal. Then C2 × f ≤W Sortk+1 implies f ≤W

Sortk.

Corollary 2. C2 × Cn
�≤2 �W Sortn+1.

Corollary 3. C2 × XCn
1 �W Sortn+1.

We also get an alternative proof of the following, which was previously shown
in [22] using the squashing principle from [14]:

Corollary 4. Sortk+1 �W Sortk.
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5.2 Sort and Convex Choice

The one-dimensional case of the following theorem was already proven as [9,
Proposition 16]:

Theorem 3. XCn ≤W Sortn+1.

Proof. Let (Hd
i )i∈N be an effective enumeration of the d-dimensional rational

hyperplanes for each d ≤ n − 1. Given A ∈ A([0, 1]n), we can recognize that
A ∩ Hd

i = ∅ by compactness of [0, 1]n. We proceed to compute an input p to
Sortn+1 as follows:

We work in stages (	0, . . . , 	n−1). We simultaneously test whether A∩Hn−1
�0

=
∅, whether A ∩ Hn−1

�0
∩ Hn−2

�1
= ∅, . . ., and whether A ∩ Hn−1

�0
∩ . . . ∩ H1

�n−1
= ∅.

If we find a confirmation for a query involving 	k as the largest index, we
write a k to p, increment 	k by 1, and reset any 	i for i > k. All tests of smaller
indices are continued (and hence will eventually fire if true before a largest index
test interferes). In addition, we write ns to p all the time to ensure an infinite
result.

Now consider the output Sortn+1(p). If this is 0ω, then A does not intersect
any n − 1-dimensional rational hyperplane at all. As a convex set, A has to be a
singleton. Thus, as long as we read 0s from Sortn+1(p), we can just wait until A
shrinks sufficiently to produce the next output approximation. If we ever read a
1 in Sortn+1(p) at position t, we have thus found a n−1-dimensional hyperplane
Hn−1

t intersecting A. We can compute A ∩ Hn−1
t ∈ A([0, 1]n), and proceed to

work with that set. By retracing the computation leading up to the observation
that A∩Hn−1

t−1 = ∅, we can find out how many larger-index tests were successful
before that. We disregard their impact on Sortn+1(p). Now as long as we keep
reading 1s, we know that A∩Hn−1

t−1 is not intersecting n−2-dimensional rational
hyperplanes (and hence could be singleton). Finding a 2 means we have identified
a n− 2-dimensional hyperplane Hn−2

t′ intersecting A∩Hn−1
t−1 , and we proceed to

work with A∩Hn−1
t−1 ∩Hn−2

t′ . Continuing this process, we always find that either
our set has been collapsed to singleton (from which we can extract the point), or
we will be able to reduce its dimension further (which can happen only finitely
many times).

5.3 A Digression: Sort and Finding Connected Components
of a Graph

On a side note, we explore how Sort relate to the problem FCC of finding a
connected component of a countable graph with only finitely many connected
components. Here the graph (V,E) is given via the characteristic functions of
V ⊆ N and E ⊆ N×N, and the connected component is to be produced likewise
as its characteristic function. In addition, we have available to us an upper bound
for the number of its connected components. In the reverse math context, this
problem was studied in [18] and shown to be equivalent to Σ0

2 -induction.
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Theorem 4. The following are equivalent:
1. FCC
2. Sort∗

Proof. FCC ≤W

∐
k∈N

Sortk

We are given n ∈ N and a graph with at most n connected components.
For each 2 ≤ i ≤ n, we pick some standard enumeration (V i

j )j∈N of the i-
element subsets of N. As soon as we learn that none of the V i

j with j ≤ l is
an independent set, we write the l-th symbol i − 2 on the input to Sortn−1.
We write an n − 1 occasionally to ensure that the output is actually infinite.
Now assume we have access to the corresponding output q of Sortn−1. This
will be 0ω iff the graph had a single connectedness component, and of the
form 0l1p else where V 2

l is an independent pair. We can thus start computing
the connectedness component of 0 by searching in parallel whether q �= 0ω

and searching for a path from 0 to the current number. Either search will
terminate. In the latter case, we can answer yes. In the former, we now search
for paths to the two vertices in the pair (and thus might be answer to correctly
no). Simultaneously we investigate the remnant p whether p = 1ω (and thus
the graph has 2 connectedness components, and any vertex is linked to either
member of V 2

l ), or find an independent set of size 3, etc.
Sortk ≡W Sortk−1

This was shown in [26].
Sort ≤W FCC

We compute a graph with at most 2 connectedness components. The graph
will be bipartite, with the odd and even numbers being separate components.
All odd numbers are connected to 0, and at any stage there will be some even
number 2n not yet connected to 0, which represents some number i such that
we have not yet read i times 0 in the input p to Sort. If we read the i-th 0
in p at time t, we connect 2t + 1 to both 0 and 2n. If we read a 1 at time t,
then 2t + 1 gets connected to 0 and 2t.
If p contains infinitely many 0s, then we end up with a single connectedness
component. Otherwise we obtain either the connectedness component of 0, or
equivalently, its complement. Once we see that e.g. 2 is in this connectedness
component, then we can output 0. Moreover, then 2 must be linked to 0 via
some 2t + 1 (which we can exhaustively search for), and whether 2t is in the
connectedness component tells us whether the next bit of the output is 1 (and
then continuous as 1ω), or 0 again, in which case we need to search for the
next significant digit.

FCC × FCC ≤W FCC
Just use the product graph.

6 Finite Choice and Sorting

Theorem 5. C#≤k+1 �≤W Sortk.

Proof. By the recursion theorem, it suffices to describe an effective procedure
which, given α ∈ kω and Φ, constructs an instance C of C#≤k+1 such that there
is a solution q to Sortk(α) such that Φ(q) is not a solution to C.
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For a finite tree T of height s, we say that σ ∈ T is extendible if there is
a leaf ρ ∈ T of height s which extends σ. Note that an instance of C#≤k+1 is
generated by an increasing sequence (Ts)s∈ω of finite binary trees satisfying the
following conditions for every s.

(I) Ts is of height s, and Ts has at least one, and at most k+1 extendible leaves.
(II) Every node σ ∈ Ts+1 \ Ts is of length s + 1, and extends an extendible leaf

of Ts.

More precisely, for such a sequence (Ts), the union T =
⋃

s Ts forms a (Ts)-
computable tree which has at most k +1 many infinite paths. Therefore, the set
of all infinite paths through T is an instance of C#≤k+1.

For η ∈ k<ω and u < k, let N [η, u] be the number of the occurrences of u’s
in η, i.e., N [η, u] = #{i : η(i) = u}. We define the u-partial sort of η as the
following string:

(η)sortu = 0N [η,0]1N [η,1]2N [η,2] . . . (u − 1)N [η,u−1].

Our description of an effective procedure which, given an instance α of Sortk,
returns a sequence (Ts)s∈ω of finite trees generating an instance of C#≤k+1 is
subdivided into k many strategies (Su)u<k. At stage s, the u-th strategy Su for
u < k believes that u is the least number occurring infinitely often in a given
instance α of Sortk, and there is no i ≥ s such that α(i) < u. In other words, the
strategy Su believes that (α � s)sortu

�uω, the u-partial sort of the current approx-
imation of α followed by the infinite constant sequence uω, is the right answer to
the instance α of Sortk. Then, the strategy Su waits for Φ((α � s)sortu

�uω) being
a sufficiently long extendible node ρ of Ts, and then make a branch immediately
after an extendible leaf ρu ∈ Ts extending ρ, where this branch will be used for
diagonalizing Φ((α � s)sortu

�uω). This action injures all lower priority strategies
(Sv)u<v<k by initializing their states and letting ρv be undefined.

More precisely, each strategy Su has a state, states(u) ∈ {0, 1, 2}, at each
stage s, which is initialized as state0(u) = 0. We also define a partial function
u 
→ ρs

u for each s, where ρs
u is extendible in Ts if it is defined. Roughly speaking,

ρs
u is the stage s approximation of the diagonalize location for the u-th strategy

as described above. We assume that ρ0u is undefined for u > 0, for any s ∈ ω, ρs
0

is defined as an empty string, and ρs
u is a finite string whenever it is defined.

At the beginning of stage s + 1, inductively assume that a finite tree Ts of
height s and a partial function u 
→ ρs

u has already been defined. Moreover,
we inductively assume that if states(u) = 1 then ρs

u is defined, and ρs
u

�i is
extendible in Ts for each i < 2. At substage u of stage s + 1, the strategy Su

acts as follows:

1. If (α � s + 1)sortu �= (α � s)sortu , then initialize the strategy, that is, put
states+1(u) = 0, and let ρs+1

u be undefined. Then go to the next substage
u + 1 if u < k; otherwise go to the next stage s + 2.

2. If (α � s + 1)sortu = (α � s)sortu and states(u) = 0, then ask if
Φ((α � s)sortu

�uω)[s] is an extendible node ρ ∈ Ts such that for any v < u, if
ρs

v is defined, then ρ �� ρs
v holds.
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(a) If yes, define ρs+1
u as the leftmost extendible leaf of Ts extending such a

ρ, and put states+1(u) = 1. Injure all lower priority strategies, that is,
put states+1(v) = 0 and let ρs+1

v be undefined for any u < v < k. Then
go to the next stage s + 2.

(b) If no, go to the next substage u + 1 if u < k; otherwise go to the next
stage s + 2.

3. If (α � s + 1)sortu = (α � s)sortu and states(u) = 1, then ask if
Φ((α � s)sortu

�uω)[s] is an extendible node ρ ∈ Ts which extends ρs
u

�i for
some i < 2.
(a) If yes, define ρs+1

u = ρs
u

�(1 − i) for such i, and put states+1(u) = 2.
Injure all lower priority strategies, that is, put states+1(v) = 0 and let
ρs+1

v be undefined for any u < v < k. Then go to the next stage s + 2.
(b) If no, go to the next substage u + 1 if u < k; otherwise go to the next

stage s + 2.
4. If not mentioned, set states+1(u) = states(u) and ρs+1

u = ρs
u.

At the end of stage s+1, we will define Ts+1. Consider the downward closure
T ∗

s+1 of the following set:

{ρs+1
u

�i : state(u) = 1 and i < 2} ∪ {ρs+1
u : state(u) = 2}.

Let T ∗,leaf
s+1 be the set of all leaves of T ∗

s+1. Note that every element of T ∗,leaf
s+1

is extendible in Ts since ρs+1
u is extendible in Ts. For each leaf ρ ∈ T ∗,leaf

s+1 ,
if |ρ| = s + 1 then put ηρ = η; otherwise choose an extendible leaf η ∈ Ts

extending ρ, and define ηρ = η�0.
Let T0 be an empty tree. We define Ts+1 as follows:

Ts+1 = Ts ∪ {ηρ : ρ ∈ T ∗,leaf
s+1 }.

Note that the extendible nodes in Ts+1 are exactly the downward closure of
{ηρ : ρ ∈ T ∗,leaf

s+1 }, and every element of T ∗
s+1 is extendible in Ts+1, that is,

– If states+1(u) = 1, then ρs+1
u

�i is extendible in Ts+1 for each i < 2.
– If states+1(u) = 2, then ρs+1

u is extendible in Ts+1.

Our definition of (Ts)s∈ω clearly satisfies the property (II) mentioned above.
Concerning the property (I), one can see the following:

Lemma 1. Ts+1 has at least one, and at most k + 1 extendible leaves.

Proof. The former assertion trivially holds since ρs
0 is always defined as an empty

string for any s ∈ ωω. For the latter assertion, it suffices to show that any
branching extendible node of Ts+1 is of the form ρs+1

u for some u < k. This is
because Ts is binary, and then the above property automatically ensures that Ts

has at most k + 1 extendible leaves.
Let σ be a branching extendible node of Ts+1. If |σ| = s, since Ts is of height

s, σ is of the form ρs+1
u by our definition of Ts+1. If |σ| < s, then it is also a

branching extendible node of Ts by the property (II) of our construction, and
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thus it is of the form ρs
u by induction. If ρs

u = ρs+1
u for any u, then our Lemma

clearly holds. If ρs
u �= ρs+1

u , then it can happen at (2a) or (3a), and thus, there
is v ≤ u such that the v-th strategy has acted at stage s + 1. We claim that for
any ρ ∈ T ∗

s+1 we have ρs
u �≺ ρ. This claim implies that ρs

u is not a branching
extendible node in Ts+1, which is a contradiction, and therefore we must have
ρs

u = ρs+1
u .

To show the claim, note that ρs+1
w is undefined for w > v. If w < u and ρs

w

is defined then ρs
u �� ρs

w by Su’s action at (2a). If w < v then ρs+1
w = ρs

w. For
w = v, if states+1(v) = 1 then Sv reaches at (2a) at stage s + 1 and ρs

v �� ρs
u by

Sv’s action. If states+1(v) = 2 then Sv reaches at (3a) at stage s + 1, and thus
ρs+1

v is a successor of ρs+1
u and thus ρs

u �≺ ρs+1
v . Hence, there is no ρ ∈ T ∗

s+1 such
that ρs

u ≺ ρ as desired.

Lemma 2. If states+1(u) = 2, then Φ((α � s + 1)sortu
�uω) is not extendible in

Ts+1.

Proof. If states+1(u) = 2, then there is stage t ≤ s + 1 such that (α � t)sortu =
(α � s + 1)sortu and the u-th strategy Su arrives at (2a) at stage s and (3a) at
s+1, and the u-th strategy is not injured by any higher priority strategy during
stages between t and s + 1, and in particular, ρt

u = ρs
u. By our action (3a),

Φ((α � s + 1)sortu
�uω) extends the sister of ρs+1

u . If v > u then ρs+1
v is undefined.

If v < u and ρt
v is undefined, then since no injury happens below u during stages

between t and s+1, we have ρs
u = ρt

u �� ρt
v = ρs+1

v , which implies that ρs+1
v does

not extend the sister of ρs+1
u . Hence the sister of ρs+1

u does not extend to a leaf
of T ∗

s+1. Therefore, Φ((α � s + 1)sortu
�uω) is not extendible in Ts+1.

We now verify our construction. Put T =
⋃

k Tk. By Lemma 1, since our
construction of (Ts)s∈ω satisfies the conditions (I) and (II), the set [T ] of all
infinite paths through T is an instance of C#≤k+1. Let α be an instance of Sortk.

Lemma 3. Φ(Sortk(α)) �∈ [T ].

Proof. By pigeonhole principle, there exists u such that α(i) = u for infinitely
many i. Let u be the least such number. Then there exists s such that (α)sort :=
(α � s)sortu

�uω is the right answer to the instance α of Sortk, that is, it is the
result by sorting α. Then, for any v ≤ u, the v-partial sort of α stabilizes after
s, that is, (α � t + 1)sortv = (α � t)sortv for all t ≥ s. After the v-partial sort of
α stabilizes, the v-th strategy Sv can injure lower priority strategies at most
two times, i.e., at (2a) and (3a). Therefore, there is stage s0 ≥ s such that the
u-th strategy Su is never injured by higher priority strategies after s0. Then,
statet(u) converges to some value.

Case 1. limt statet(u) = 0. By our choice of s0, Su always goes to (2b), and
never goes to (2a) after s0. However, if Φ((α)sort) is an infinite string, then the
strategy must go to (2a) since {ρs

v : v < u} is finite. Hence, Φ((α)sort) cannot be
an infinite path through T .

Case 2. limt statet(u) = 1. Let s1 ≥ s0 be the least stage such that Su reaches
(2a) with some ρ. We claim that if an extendible node in Tt extends ρ, then it
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also extends ρt
u for any t > s1. According to the condition of Su’s strategy (2),

for any v < u, we have ρ �� ρs1
v = ρs0

v . By injury in (2a), ρs1
v is undefined for

any v > u. Therefore, any extendible node of Ts1+1 extends ρt
v or ρt

v
�i for some

v ≤ u and i < 2. Hence, if an extendible node in Ts1+1 extends ρ, then it also
extends ρs1+1

u = ρt
u. By the property (II) of our construction, the claim follows.

Now, by our assumption, Su always goes to (3b), and never goes to (3a). This
means that Φ((α � t)sortu

�uω) extends ρ, but does not extend ρt
u for any t > s1.

Therefore, Φ((α � t)sortu
�uω) is not extendible in Tt for any t > s1. Consequently,

Φ((α)sort) �∈ [T ].

Case 3. limt statet(u) = 2. Let s2 ≥ s0 be the least stage such that Su reaches
(3a). Then by Lemma 2, Φ((α � s2)sortu

�uω) is not extendible in Ts2 . Since Su is
not injured after s0, we conclude Φ((α)sort) �∈ [T ].

By the recursion theorem, this obviously implies the desired assertion.

7 The Comparison Game for Products of Finite Choice

In this section we consider the question when finite choice for some cardinality
is reducible to some finite product of finite choice operators. We do not obtain
an explicit characterization, but rather an indirect one. We introduce a special
reachability game (played on a finite graph), and show that the winner of this
game tells us whether the reduction holds. This in particular gives us a decision
procedure (which so far has not been implemented yet, though).

Our game is parameterized by numbers k, and n0, n1, . . . , n�. We call the
elements of

⋃
i≤�{i} × ni colours, and the elements of Πi≤�ni tokens. A token w

has colour (i, c), if wi = c.
The current board consists of up to k boxes each of which contains some set of

tokens, with no token appearing in distinct boxes. If there ever is an empty box,
then Player 1 wins. If the game continues indefinitely without a box becoming
empty, Player 2 wins. The initial configuration is chosen by Player 1 selecting
the number of boxes, and by Player 2 distributing all tokens into these boxes.

The available actions are as follows:

Remove Player 1 taps a box b. Player 2 selects some colours C such that every
token in b has a colour from C. Then the box b and all tokens with a colour
from C are removed.

Reintroduce colour Player 2 picks two ‘adjacent’ colours (i, c) and (i, d), such
that no token on the board has colour (i, d). For every box b, and every token
w ∈ b having colour c, he then adds a token w′ to b that is identical to w
except for having colour (i, d) rather than (i, c).

Split box If there are less than k boxes on the board, Player 1 can select a box
b to be split into two boxes b0 and b1. Player 2 can chose how to distribute
the tokens from b between b0 and b1. Moreover, Player 2 can do any number
of Reintroduce colour moves before the Split box -move takes effect.
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Theorem 6. C�≤k ≤W C�≤n0 ×. . .C�≤n�
iff Player 2 wins the comparison game

for parameters k, n0, . . . , n�.

The proof proceeds via Lemmas 4 and 5 below. We observe that the game is
a reachability game played on a finite graph. In particular, it is decidable who
wins the game for a given choice of parameters. We have only considered the
case ni = 2 so far, and know:

Proposition 4

1. Player 2 wins for k + 1 ≤ 	.
2. Player 1 wins for k + 1 ≥ 2�−1.

Proof. The first claim follows from Theorem 6 in conjunction with [20, Proposi-
tion 3.9] stating that C�≤n+1 ≤W Cn

�≤2. The second is immediate when analyzing
the game.

Lemma 4. From a winning strategy of Player 2 in the comparison game we can
extract witnesses for the reduction C�≤k ≤W C�≤n0 × . . .C�≤n�

.

Proof. We recall that the input to C�≤k can be seen as an infinite binary tree
having at most k vertices on each level. We view this tree as specifying a strategy
for Player 1 in the comparison game: The boxes correspond to the paths existing
up to the current level of the tree. If a path dies out, Player 1 taps the corre-
sponding box. If a path splits into two, Player 1 splits the corresponding box.

Which tokens exist at a certain time tells us how the instances to
C�≤n0 , . . . ,C�≤n�

are built. The colour (i, j) refers to the j-path through the
i-th tree at the current approximation. If a colour gets removed, this means that
the corresponding path dies out. If a colour gets reintroduced, we split the path
corresponding to the duplicated colour into two.

It remains to see how the outer reduction witness maps infinite paths through
these trees back to an infinite path through the input tree. If we are currently
looking at some finite approximation of the input tree and the query trees,
together with an infinite path through each query tree, then the infinite paths
indicates some token which never will be removed. That means that any box
containing that token never gets tapped, i.e. that certain prefixes indeed can be
continued to an infinite path.

Lemma 5. From a winning strategy of Player 1 in the comparison game we can
extract a witness for the non-reduction C�≤k �W C�≤n0 × . . .C�≤n�

according to
Theorem1.

Proof. We need to describe a procedure that constructs an input for C�≤k

given inputs to C�≤n0 , . . . ,C�≤n�
and an outer reduction witness. Inverting the

procedure from Lemma 4, we can view the given objects as describing a strategy
of Player 2 in the game. We obtain the input tree to C�≤k by observing how the
winning strategy of Player 1 acts against this. When Player 1 taps the i-th box,
we let the i-th path through the tree die out. When Player 1 splits the i-th box,
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we let both children of the i-th vertex present at the current layer be present
at the subsequent layer. Otherwise, we keep the left-most child of any vertex on
the previous layer.

Since Player 1 is winning, we will eventually reach an empty box. At that
point, we let all other paths die out, and only keep the one corresponding to the
empty box. This means that any path selected by the outer reduction witness
we obtained Player 2’s strategy from will fall outside the tree, and thus satisfy
the criterion of Theorem 1.

Acknowledgement. We are grateful to Stéphane Le Roux for a fruitful discussion
leading up to Theorems 2 and 3.
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Abstract. Champarnaud and Pin (1989) found that the minimal deter-
ministic automaton of a language L ⊂ Σn, where Σ = {0, 1}, has at most

n∑

i=0

min(2i, 22n−i − 1)

states, and for each n there exists L attaining this bound. Câmpeanu
and Ho (2004) have shown more generally that the tight upper bound
for Σ of cardinality k and for complete automata is

kr − 1

k − 1
+

n−r∑

j=0

(2kj − 1) + 1

where r = min{m : km ≥ 2kn−m −1}. (In these results, requiring totality
of the transition function adds 1 to the state count.) Câmpeanu and
Ho’s result can be viewed as concerning functions f : [k]n → [2] where
[k] = {0, . . . , k− 1} is a set of cardinality k. We generalize their result to
arbitrary function f : [k]n → [c] where c is a positive integer.

Let Oi be the number of functions from [bi] to [cb
n−i

] that are onto

[cb
n−i −1]. Câmpeanu and Ho stated that it is very difficult to determine

the number of maximum-complexity languages. Here we show that it is
equal to Oi, for the least i such that Oi > 0.

For monotone languages a tightness result seems harder to obtain.
However, we show that the following upper bound is attained for all
n ≤ 10.

n∑

i=0

min(2i,M(n − i) − 1),

where M(k) is the kth Dedekind number.

1 Introduction

The function + on Z/5Z may seem rather complicated as functions on that
set go. On the other hand, f(x, y, z) = x + y + z mod 5 is less so, in that we
can decompose it as (x + y) + z, so that after seeing x and y, we need not
remember the pair (x, y) but only their sum. Out of the 55

3
ternary functions
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on a 5-element set, at most 52·52 can be decomposed as (x ∗1 y) ∗2 z for some
binary functions ∗1, ∗2. In Sect. 2 we make precise a sense in which such are
not the most complicated ternary functions. We do this by extending a result of
Câmpeanu and Ho [3] to functions taking values in a set of size larger than two.

Rising to an implicit challenge posed by Câmpeanu and Ho, we give a formula
for the number of maximally complex languages in Sect. 2.2.

A motivation from finance will be felt in Sects. 3 and 4. The complexity of
financial securities came into focus with the 2008 financial crisis. While Arora
et al. [1] obtained NP-hardness results for the pricing of a security, here we look
at the automatic complexity associated with executing a given trading strategy.
The possibility of exercising early leads to a less complex option in our sense, as
is easy to see. Thus we shall restrict attention to options which are European
insofar as they can only be exercised at the final time n.

2 Complexity of Languages and Operations

Definition 2.1. A deterministic finite automaton (DFA) [9] M is a 5-tuple,
(Q,Σ, δ, q0, F ), where

• Q is a finite set of states,

• q0 ∈ Q is the start state,

• F ⊆ Q is the set of accept states,

• Σ is a finite set of input symbols and

• δ : Q × Σ −→ Q is the transition
function.

If δ is not required to be total then we speak of a partial deterministic finite
automaton (PDFA).

Definition 2.2. Let Σ = {0, 1}, let n ∈ Z
+ and X ⊆ Σ≤n. Define A−(X)

to be the minimum |Q| over all PDFAs M = (Q,Σ, δ, q0, F ) for which L(M),
the language recognized by M , equals X. We call a PDFA M = (Q,Σ, δ, q0, F )
minimal for X if

|Q| = A−(X).

2.1 Operations

Champarnaud and Pin [4] obtained the following result.

Theorem 2.3 ([4, Theorem 4]). The minimal PDFA of a language L ⊂ {0, 1}n

has at most
n∑

i=0

min(2i, 22
n−i − 1)

states, and for each n there exists L attaining this bound.

Theorem 2.3 was generalized by Câmpeanu and Ho [3]:
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Theorem 2.4 ([3, Corollary 10]). For k ≥ 1, let [k] = {0, . . . , k − 1}. Let l ∈ N

and let M be a minimal DFA for a language L ⊆ [k]l. Let Q be the set of states
of M . Then we have:

(i) #Q ≤ kr−1
k−1 +

∑l−r
j=0(2

kj − 1) + 1, where r = min{m | km ≥ 2kl−m − 1};
(ii) there is an M such that the upper bound given by (i) is attained.

Both of these results involve an upper bound which can be viewed as a special
case of Theorem 2.7 below.

Definition 2.5. Let b, n, and c be positive integers. We say that a PDFA M
accepts a function f : [b]n → [c] if there are c−1 many special states q1, . . . , qc−1

of M such that for all �x ∈ [b]n,

• for i > 0, f(�x) = i iff M on input �x ends in state qi; and
• f(�x) = 0 iff M does not end in any of the special states on input �x.

Definition 2.5 generalizes the case b = 2 studied by Champarnaud and Pin.
We write AB for the set of all functions from B to A.

Definition 2.6. Let [c][b]
n

be the set of n-ary functions f : [b]n → [c]. Let b and
c be positive integers and let C ⊆ [c][b]

n

. The Champarnaud–Pin family of C is
the family of sets {Ck}0≤k≤n, where Ck ⊆ [c][b]

n−k

, 0 ≤ k ≤ n, given by

Ck = {g ∈ [c][b]
n−k

: ∃f ∈ C, �d ∈ [b]k ∀�x g(�x) = f(�d, �x)}.

So C0 = C, C1 is obtained from C0 by plugging in constants for the first
input, and so forth. We write C−

n = {f ∈ Cn : f �= 0} in order to throw out the
constant zero function. Note that |C−

n | ≥ |Cn| − 1.

Theorem 2.7. Let b and c be positive integers. Let C ⊆ [c][b]
n

. An upper bound
on the minimal number of states of PDFAs accepting members of C is given by

n∑

i=0

min(bi, |C−
i |).

The proof will be apparent from the proof of the next result, which is a
generalization of Câmpeanu and Ho’s theorem.

Theorem 2.8. Let b and c be positive integers. For the minimal number of
states of PDFAs M accepting functions f : [b]n → [c], the upper bound

n∑

i=0

min(bi, cbn−i − 1)

is attained.
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Proof. Let log = logb. The critical point for this result is the pair of values (i, k)
with i+ k = n such that bi ≤ cbk − 1 (i.e., i < bk log c) and bi+1 > cbk−1 − 1 (i.e.,
bi+1 ≥ cbk−1

, i.e., (i + 1) ≥ bk−1 log c), which can be summarized as

bk−1 log c − 1 ≤ i < bk log c. (1)

bk−1 log c ≤ i + 1 ≤ bk log c.

We shall define a set A of k-ary functions of size (cbk−1
)/b which when using the

b many transitions (substitutions for say p1) maps onto each of the cbk−1
many

k − 1-ary functions α. This will suffice if

cbk−1
/b ≤ bi

which does hold for all b by (1). The construction is similar to that of [3, Figure 1
and Theorem 8]; we shall be slightly more explicit than they were. Let s =
cbk−1 − 1. Let f0, . . . , fs−1 the set of all nonzero k − 1-ary functions. As s may
not be divisible by b, let us write s = qb + r with quotient q ≥ 0 and remainder
0 ≤ r < b. For j with 0 ≤ j ≤ q − 1, let gj be given by

gj(i, �x) = fjb+i(�x)

for each i ∈ [b] and �x ∈ [b]k−1. Let gq be given by gq(i, �x) = fqb+i(�x) for each
0 ≤ i ≤ r − 1, and let gq(i, �x) be arbitrary for r ≤ i < b. Finally, extend the set
of functions g0, . . . , gq to bi many k-ary functions in an arbitrary way, obtaining
functions hσ for σ ∈ [b]i. Then our function attaining the bound is given by

H(σ, τ) = hσ(τ).

�
When b = 2 and c is larger, Theorem 2.8 corresponds to automatic complexity

of equivalence relations on binary strings as studied in [6]. When b = c, we have
the case of n-ary operations on a given finite set, which is of great interest in
universal algebra.

2.2 The Number of Maximally Complex Languages

Definition 2.9. Let b and c be positive integers and let 0 ≤ i ≤ n. Let Oi =
O

(b,c,n)
i be the number of functions from [bi] to [cbn−i

] that are onto [cbn−i − 1].
That is, functions f : [bi] → [cbn−i

] such that for each y ∈ [cbn−i − 1] there is an
x ∈ [bi] with f(x) = y.
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Câmpeanu and Ho lamented that it seemed very difficult to count the number
of maximum-complexity languages. Here we show

Theorem 2.10. Let b and c be positive integers and let n ≥ 0. The number of
maximum complexity functions f : [b]n → [c] is Oi, where 0 ≤ i ≤ n is minimal
such that Oi > 0.

Proof. Champarnaud and Pin, and Câmpeanu and Ho, and the present authors
in Theorem 2.8, all found a maximal complexity by explicitly exhibiting the
general automaton structure of a maximal-complexity language: we start with
states corresponding to binary strings and end with strings corresponding to
Boolean functions, and there is a crossover point in the middle where, in order
that all states be used, we need an onto function exactly as specified in the
definition of Oi. The crossover point occurs for the least i such that Oi > 0,
which is when the value of the minimum of (bi, cbn−i − 1) switches from the first
to the second coordinate. The number of such functions is then the number of
such onto functions. Since we do not require totality and do not use a state for
output 0 (“reject”) we omit the constant 0 Boolean function in the range of our
onto maps. �

Note that the number of onto functions is well known in terms of Stirling
numbers of the second kind. Let Om,n be the number of onto functions from [m]
to [n]. Then

Om,n = n!
{

m

n

}
,

where
{

m
n

}
, the number of equivalence relations on [m] with n equivalence classes,

is a Stirling number of the second kind.
Note also that the number of functions from [a] to [b] that are onto the first

b − 1 elements of [b] is, in terms of the number m of elements going to the
not-required element,

a−(b−1)∑

m=0

(
a

m

)
Oa−m,b−1.

Example 2.11. When n = 3 and b = c = 2, we have that Oi is the number of
functions from 2i to 22

3−i

that are onto 22
3−i −1. In this case, O1 = 0. However,

O2 is the number of functions from 4 to 4 that are onto 3. This is

4−(4−1)∑

m=0

(
4
m

)
O4−m,4−1 = O4,3 + 4O3,3 = 36 + 24 = 60.

These 60 languages are shown in Table 1.
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Table 1. All possible sets Z with A (Z) = 7.

Size Z

|Z| = 4 {000, 001, 010, 101}, {000, 001, 010, 111},

{000, 001, 011, 100}, {000, 001, 100, 111},
{000, 001, 011, 110}, {000, 001, 101, 110},
{000, 010, 011, 101}, {000, 010, 011, 111},
{001, 010, 011, 100}, {010, 011, 100, 111},
{001, 010, 011, 110}, {010, 011, 101, 110},
{000, 011, 100, 101}, {000, 100, 101, 111},
{001, 010, 100, 101}, {010, 100, 101, 111},
{001, 100, 101, 110}, {011, 100, 101, 110};

{000, 011, 110, 111}, {000, 101, 110, 111},
{001, 010, 110, 111}, {010, 101, 110, 111},
{001, 100, 110, 111}, {011, 100, 110, 111}

|Z| = 5 {000, 001, 010, 100, 111}, {000, 001, 010, 101, 110},

{000, 001, 011, 100, 110}, {000, 001, 011, 101, 110},
{000, 001, 011, 100, 111}, {000, 001, 010, 101, 111},
{000, 010, 011, 100, 111}, {000, 010, 011, 101, 110},
{001, 010, 011, 100, 110}, {001, 010, 011, 101, 110},
{001, 010, 011, 100, 111}, {000, 010, 011, 101, 111},
{000, 010, 100, 101, 111}, {000, 011, 100, 101, 110},
{001, 010, 100, 101, 110}, {001, 011, 100, 101, 110},
{001, 010, 100, 101, 111}, {000, 011, 100, 101, 111},
{000, 010, 101, 110, 111}, {000, 011, 100, 110, 111},
{001, 010, 100, 110, 111}, {001, 011, 100, 110, 111},
{001, 010, 101, 110, 111}, {000, 011, 101, 110, 111}

|Z| = 6 {000, 001, 010, 011, 100, 111},
{000, 001, 010, 011, 101, 110},
{000, 001, 010, 100, 101, 111},
{000, 001, 011, 100, 101, 110},
{000, 001, 010, 101, 110, 111},
{000, 001, 011, 100, 110, 111},
{000, 010, 011, 100, 101, 111},
{001, 010, 011, 100, 101, 110},
{000, 010, 011, 101, 110, 111},
{001, 010, 011, 100, 110, 111},
{000, 011, 100, 101, 110, 111},

{001, 010, 100, 101, 110, 111}
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Listing 1. Pseudocode for our variant of the Myhill–Nerode algorithm.

Input : S t r i ng s s and t , a s e t o f s t r i n g s L , and a max length n .
Output : The boolean o f whether s and t are equ iva l en t f o r L .
For u a binary s t r i n g o f l ength between 0 and n−1,

i f l en ( s+u ) , l en ( t+u) both at most n
and exac t l y one o f s+u , t+u i s in the up−c l o s u r e o f L ,

re turn Fa l se
Return True .

2.3 Polynomial-Time Algorithm

It is perhaps worth pointing out that there is a polynomial-time algorithm for
finding the minimal automaton of Boolean functions, based on essentially the
Myhill–Nerode theorem [5,10]. In this subsection we detail that somewhat.

Definition 2.12. Given a language L, and a pair of strings x and y, define a
distinguishing extension to be a string z such that exactly one of the two strings
xz and yz belongs to L. Define a relation RL on strings by the rule that xRLy
if there is no distinguishing extension for x and y.

As is well known, RL is an equivalence relation on strings, and thus it divides
the set of all strings into equivalence classes.

Theorem 2.13 (Myhill–Nerode). A language L is regular if and only if RL

has a finite number of equivalence classes. Moreover, the number of states in
the smallest deterministic finite automaton (DFA) recognizing L is equal to the
number of equivalence classes in RL. In particular, there is a unique DFA with
minimum number of states.

The difference is that for us we require |xz| ≤ n and |yz| ≤ n, see Listing 1.

3 Monotone Boolean Functions

The main theoretical results of the paper are in Sect. 2. The present, longer
section deals with a more computational and exploratory investigation: what
happens if we try to prove that the natural upper bound on complexity is
attained in restricted settings such as monotone functions?

Definition 3.1. An isotone map is a function ϕ with a ≤ b =⇒ ϕ(a) ≤ ϕ(b).

The Online Encyclopedia of Integer Sequences (OEIS) has a tabulation of
Dedekind numbers, i.e., the number M(n) of monotone functions [12], which is
also the number of elements of the free distributive lattice on n generators and
the number of antichains of subsets of [n].

Definition 3.2. For an integer n ≥ 0, Fn is the set of monotone Boolean func-
tions of n variables (equivalently, the free distributive lattice on n generators,
allowing 0 and 1 to be included), and F−

n = Fn \ {0} where 0 is the constant 0
function.
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Fig. 1. Isotone 1:1 map from 24 to F−
3 .

The illustrative case n = 3 is shown in Fig. 4.

Theorem 3.3. The minimal automaton of a monotone language L ⊂ {0, 1}n

has at most
n∑

i=0

min(2i, |Fn−i| − 1)

states. This bound is attained for n ≤ 10.

Proof. The upper bound follows from Theorem2.7. The sharpness results are
obtained in a series of theorems tabulated in Table 2. �

Thinking financially, an option is monotone if whenever s is pointwise dom-
inated by t and s ∈ L then t ∈ L, where L is the set of exercise situations
for the option. This is the case for common options like call options or Asian
average-based options and makes financial sense if a rise in the underlying is
always desirable and always leads to a higher option value.

Example 3.4 (Asian option; Shreve [11, Exercise 1.8]). This is the example
that in part motivates our looking at monotone options. Let n = 3 and consider
a starting capital S0 = 4, up-factor u = 2, down-factor d = 1

2 . Let Yi =
∑i

k=0 Sk.
The payoff at time n = 3 is (14Y3 − 4)+. To fit this example into our framework
in the present paper, let us look at which possibilities lead to exercising, i.e.,
1
4Y3 − 4 > 0 or Y3 > 16. Computation shows that the set of exercise outcomes is
{011, 100, 101, 110, 111}. The complexity is 6 (Fig. 3), so it is maximally complex
for a monotone option.

For n = 3 we are looking at isotone functions from {0, 1} to the family of
monotone functions on two variables p and q. For the Asian option in Example 3.4
{0, 1} are mapped to {p ∧ q, 1}. For the majority function, {0, 1} are mapped to
{p ∧ q, p ∨ q} (Fig. 3).
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Table 2. Maximum complexity of monotone securities.

n Adequacy diagram #States Proof/witness

0

1

↓
(1)

1

1

1 (2)

↓
(2) ⇒ 1

2 Theorem3.9

2

1 2 (4)

↓
(2) ⇒ 1

4 Theorem3.9

3

1 2 (4)

↓
(5) ⇒ 2 1

6 Theorem3.9; Example 3.4

4

1 2 4 (8)

↓
(5) ⇒ 2 1

10 Theorem3.9

5

1 2 4 (8)

↓
(19) ⇒ 5 2 1

15 Theorem3.9

6

1 2 4 8 (16)

↓
(19) ⇒ 5 2 1

23 Theorem3.10

7

1 2 4 8 16 (32)

↓
(19) ⇒ 5 2 1

39 Figure 1; Theorem3.10

8

1 2 4 8 16 (32)

↓
(167) ⇒ 19 5 2 1

58 Theorem3.8

9

1 2 4 8 16 (32) (64)

↓
(167) ⇒ 19 5 2 1

90 Theorem3.13

10

1 2 4 8 16 32 64 (128)

↓
(167) ⇒ 19 5 2 1

154 Theorem3.12

The sets {p ∧ q, p ∨ q} and {p ∧ q, 1} both have the desirable property (from
the point of view of increasing the complexity) that by substitution we obtain a
full set of nonzero monotone functions in one fewer variables, in this case {p, 1}.

Definition 3.5. Let us say that a set of monotone functions on variables
p1, . . . , pn is adequate if by substitutions of values for p1 ∈ {0, 1} they con-
tain all monotone nonzero functions on p2, . . . , pn. If one value for p1 suffices
then we say strongly adequate.

Let us write 2i for the set {0, 1}i with the product ordering.



The Number of Languages with Maximum State Complexity 403

Fig. 2. Adequacy in the proof that 24 → 19 ⇒ 5.

Fig. 3. Asian option, and European call option (corresponding to the majority
function).

Definition 3.6. If there is an embedding of 2i into F−
j ensuring adequacy onto

F−
j−1, in the sense that we map into Fj−1 (so self-loops may be used in the

automaton), and we map onto F−
j−1, then we write

2i → |F−
j | ⇒ |F−

j−1|.
It is crucial to note that in Sect. 2, adequacy was automatic: the concept

of function is much more robust than that of a monotone function, meaning
that functions can be combined in all sorts of ways and remain functions. As an
example of the unusual but convenient notation of Definition 3.6, we have:
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Theorem 3.7. There is an embedding of 22 into F−
3 ensuring adequacy onto

F−
2 . In symbols,

4 → 19 ⇒ 5.

Proof. We use formulas of the form (r ∧ b) ∨ a with a ≤ b, as follows:

22 F−
3 F−

2

(0, 1) (r ∧ p) ∨ p ≡ p
(1, 0) (r ∧ q) ∨ q ≡ q
(0, 0) (r ∧ (p ∧ q)) ∨ (p ∧ q) ≡ p ∧ q
(1, 1) (r ∧ 1) ∨ (p ∨ q) �→r=1 1

�→r=0 p ∨ q

Theorem 3.8. There is an embedding of 24 into F−
4 ensuring adequacy

onto F−
3 :

16 → 167 ⇒ 19

Proof. We make sure to hit p, q, r as follows: (r ∧ b) ∨ ai, 1 ≤ i ≤ 2, where
a1 < a2 ≤ b, and ai, b ∈ F−

3 , with b ∈ T . Here T is the top cube in F−
3 ,

T = {b ∈ F−
3 : maj ≤ b ≤ p ∨ q ∨ r}

=

⎧
⎨

⎩

(p ∧ q) ∨ (p ∧ r) ∨ (q ∧ r),
p ∨ (q ∧ r), q ∨ (p ∧ r), r ∨ (p ∧ q),
p ∨ q, p ∨ r, q ∨ r, p ∨ q ∨ r

⎫
⎬

⎭ .

Let ψ : {0, 1}3 → T be an isomorphism. Not that b �∈ {0̂, p, q, r}. And {a1, a2} ⊂
{b, p, q, r, 0̂} where 0̂ is p ∧ q ∧ r, the least element of F−

3 . Let

(a1, a2) =

{
(0̂, b) if b bounds none of p, q, r;
(p, b) or (0̂, p) if say b > p;

By Lemma above, (r ∧ ψ(x)) ∨ ai ≤ (r ∧ ψ(y)) ∨ ci iff x ≤ y and ai ≤ ci. �
We can consider whether u → v ⇒ w whenever the numbers are of the form

2m, |F−
n | ∈ {1, 2, 5, 19, 167, . . . }, |F−

n−1|, and u ≤ v and w ≤ 2u (as u increases,
being 1:1 becomes harder but being adequate becomes easier). In the case of
strong adequacy witnessed by p = p0 we write simply u → v →p0 w; this can
only happen when w ≤ u.

Theorem 3.9. We have the following adequacy calculations:

1. 20 → 2 → 1
2. 21 → 2 → 1
3. 20 → 5 ⇒ 2
4. 21 → 5 → 2
5. 22 → 5 → 2
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We omit the trivial proof of Theorem 3.9.

Theorem 3.10. 23 → 19 ⇒ 5 and 24 → 19 ⇒ 5.

Proof. The map in Fig. 1 is onto F−
3 \ {p, q, r} so it works. As shown in Fig. 2,

if we restrict that map to the top cube, mapping onto T ∪ {1} \ {p ∨ q ∨ r}, and
set r = 0 then we map onto F−

2 . �
Lemma 3.11. Let a1, a2, b1, b2 be Boolean functions of p, q, r and let

faibi(p, q, r, s) = [s ∧ bi] ∨ [¬s ∧ ai].

Then fa1b1 ≤ fa2b2 ⇐⇒ a1 ≤ a2 and b1 ≤ b2.

Proof. By definition,

fa1b1 ≤ fa2b2 ⇐⇒ [p4 ∧ b1] ∨ [¬p4 ∧ a1] ≤ [p4 ∧ b2] ∨ [¬p4 ∧ a2].

Clearly, a1 ≤ a2 and b1 ≤ b2 implies this, so we just need the converse. If a1 �≤ a2

then any assignment that makes p4 false, a1 true, and a2 false will do. Similarly
if b1 �≤ b2 then any assignment that makes p4 true, b1 true, and b2 false will do.

�
Theorem 3.12. There is an injective isotone map from 26 into F4, and in fact

26 → 167 ⇒ 19.

Proof. We start with a monotone version of the simple equation 22
n

= (22
n−1

)2.
Namely, a pair of monotone functions g, h of n − 1 variables, with g ≤ h, gives
another monotone function via

f(p1, . . . , pn) = [pn ∧ f(p1, . . . , pn−1, 1)] ∨ [¬pn ∧ f(p1, . . . , pn−1, 0)]
= [pn ∧ h(p1, . . . , pn−1)] ∨ [¬pn ∧ g(p1, . . . , pn−1)]
= [pn ∧ h(p1, . . . , pn−1)] ∨ g(p1, . . . , pn−1).

Now consider elements a of the bottom hypercube in F3 and b of the top hyper-
cube in F3 in Fig. 2. So we must have a ≤ b since the bottom is below the top
(and a = b can happen since the two hypercubes overlap in the majority func-
tion). Let fab = [p4∧b]∨ [¬p4∧a]. Since a ≤ b, fab is monotonic. By Lemma 3.11,
these functions fab are ordered as 26 = 23 × 23.

Finally, in order to ensure adequacy we modify this construction to reach
higher in F−

4 , replacing the top cube in the lower half by a cube formed from
the upper half. In more detail, consider (r ∧ b) ∨ a with a ≤ b from F−

3 , where
the a’s are chosen from the bottom cube of F3, and the b’s from the top cube,
except that when a is the top of the bottom cube we let b be the top cube with
the top replaced by 1, and when a is the bottom of the bottom cube we let b be
the cube

{p, q, r, p ∧ q, p ∧ r, q ∧ r, p ∨ q, p ∨ r, q ∨ r, p ∧ q ∧ r, p ∨ q ∨ r}.

�
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Theorem 3.13. 25 → 167 ⇒ 19.

Proof. A small modification of Theorem 3.12; only use bottom, top and two
intermediate “cubes” within the cube. �

Open Problem. For n = 11 we need to determine whether the following holds,
which has so far proved too computationally expensive:

27 → 167 ⇒ 19?

That is, is there an isotone map from the 128-element lattice 27 into F−
4 , the

set of nonzero monotone functions in variables p, q, r, s, such that upon plugging
in constants for p, we cover all of F−

3 , the set of nonzero monotone functions in
q, r, s?

Fig. 4. The lattice F3 of all monotone Boolean functions in three variables p, q, r.
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4 Early-Monotone Functions and Complete Simple
Games

In this section we take the financial ideas from Sect. 3 one step further, by noting
that the Asian option (Example 3.4) has the added property that earlier bits
matter more. In economics terms, we have what is called a complete simple
game: there is a set of goods linearly ordered by intrinsic value. You get some
of the goods and there are thresholds for how much value you need to win.

Definition 4.1. Let ei ∈ {0, 1}n be defined by ei(j) = 1 if and only if j = i.
An n-ary Boolean function f is early if for all 0 ≤ i < j < n and all y ∈ {0, 1}n

with y(i) = y(j) = 0, if f(y + ej) = 1 then f(y + ei) = 1.

The number of early (not necessarily monotone) functions starts

2, 4, 12, 64, 700, 36864, . . .

If a function is early and monotone we shall call it early-monotone. Early-
monotonicity encapsulates an idea of time-value-of-money; getting paid now is
better than next week, getting promoted now is better than next decade, etc.

In the early context one needs the map from 2m into the early functions to be
“early”, i.e., the function mapped to by 100 should dominate the one mapped
to by 010 etc. That is, the map must be order-preserving from 2m with the
majorization lattice order into the complete simple games.

The number of early-monotone functions on n variables, including zero, is

2, 3, 5, 10, 27, 119, 1173, . . .

which appears in OEIS A132183 as the number of “regular” Boolean functions
in the terminology of Donald Knuth. He describes them also as the number of
order ideals (or antichains) of the binary majorization lattice with 2n points.

Definition 4.2. The binary majorization lattice En is the set {0, 1}n ordered
by (a1, . . . , an) ≤ (b1, . . . , bn) iff a1 + · · · + ak ≤ b1 + · · · + bk for each k.

The lattice E5 for n = 5 is illustrated in [7, Fig. 8, Volume 4A, Part 1].
The basic properties of this lattice are discussed in [7, Exercise 109 of Section
7.1.1]. The majorization order is obtained by representing e.g. 1101 as (1, 2, 4,∞),
showing where the kth 1 appears (the ∞ signifying that there is no fourth 1 in
1101), and ordering these tuples by majorization. OEIS cites work of Stefan Bolus
[2] who calls the “regular” functions complete simple games [8], a term from the
economics and game theory literature. There, arbitrary monotone functions are
called simple games, and“complete” refers to the fact that the positions have a
complete linear ordering (in the finance application, earlier positions are most
valuable). Figure 5 shows that in the complete-simple-games setting we have

1 → 2 → 4 → 8 → 16
↓
26 ⇒ 9 → 4 → 2 → 1
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for a total maximal complexity of 47 for complete simple games at n = 8. This
contrasts with Theorem 3.8 which shows that for arbitrary simple games the
complexity can reach 58 at n = 8.

Fig. 5. (a) The majorization lattice E4 on 4 variables. (b) The 27 complete simple
games C4 on 4 variables. The symbol ∨ denotes an element that is join-reducible. Red
and blue denote the image under the first map E4 → C4 and blue in particular denotes
some elements sufficient for the second map C4 → C3 to be onto. (c) The 10 complete
simple games C3 on 3 variables. (Color figure online)
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Abstract. The PageRank algorithm is used by search engines to rank
websites in their search results. The algorithm outputs a probability dis-
tribution that a person randomly clicking on links will arrive at any
particular page. Intuitively, a node in the center of the network should
be visited with high probability even if it has few edges, and an iso-
lated node that has many (local) neighbours will be visited with low
probability. The idea of PageRank is to rank nodes according to a stable
state and not according to the previous local measurement of inner/outer
edges from a node that may be manipulated more easily than the corre-
sponding entry in the stable state.

In this paper we present a deterministic and completely parallelizable
algorithm for computing an ε-approximation to the PageRank of a graph
of n nodes. Typical inputs consist of millions of pages, but the average
number of links per page is less than ten. Our algorithm takes advan-
tage of this sparsity, assuming the out-degree of each node at most s,
and terminates in O(ns/ε2) time. Beyond the input graph, which may
be stored in read-only storage, our algorithm uses only O(n) memory.
This is the first algorithm whose complexity takes advantage of sparsity.
Real data exhibits an average out-degree of 7 while n is in the millions,
so the advantage is immense. Moreover, our algorithm is simple and
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is based on reducing the PageRank problem to an �2 approximation of
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such as in machine learning and game theory. We hope that our approach
will be useful for many other applications for learning sparse data and
graphs.

Algorithm, analysis, and open code with experimental results are pro-
vided.

1 Introduction

Matrix Notation. For an integer n ≥ 1, let [n] = {1, · · · , n}. We denote by R
n×n

the set of n × n real matrices. The jth column of G is denoted by G•j and the
entry on its ith row is Gij . The ith entry of a column vector v ∈ R

n is denoted by
vj . We write 0n for the n-dimensional zero vector, and In for the n × n identity
matrix. Let ej denote the jth column of In.

Stochastic Matrix. A distribution vector z ∈ [0, 1]n is a non-negative vector
whose sum is 1. A column-stochastic matrix is a matrix such that every one of
its columns is a distribution vector. The input matrix G is called the transition
matrix of a graph if it is equal to the adjacency matrix but with each non-
zero column scaled to have unit sum. Every positive column-stochastic matrix
A ∈ R

n×n (i.e. whose entries are positive) has a distribution vector z∗ ∈ R
n such

that Az∗ = z∗ by the Perron-Frobenius theorem. This vector is called the stable
state of A.

Problem Setup. The input to the PageRank problem is a non-negative square
matrix G ∈ [0, 1]n×n that represents the scaled adjacency matrix of a graph, i.e.
the entry Gij represents the probability of moving from node i to node j, and
each column of G is scaled so that its sum is 1. For simplicity, we assume (only
for the moment) that there is no node with out-degree 0.

Hence, G is a column-stochastic matrix where each of its columns defines
a distribution, i.e., a vector whose entries are non-negative and sum to 1. For
example, its second column G•2 defines the visited node after taking a single
step (random walk) from the second node to its random neighbour. For a given
vector z ∈ [0, 1]n that defines a distribution over the currently visited nodes, the
multiplication y = Gz yields the distribution y of the visited nodes after taking
a single random step from the current state. In this sense, G describes a Markov
Chain. If Gz∗ = z∗ for some distribution z∗, then z∗ is called a stable state of G.
Hence, given an initial distribution z∗, the distributed on the next visited node
will not change.

Stable State and Page’s Rank. The stable state z∗ is important because it can
be also be proved roughly that the probability of stopping on the ith node after
a sufficiently long random walk (when the initial visited node has almost no
influence), approaches z∗

i . Intuitively, a node in the center of the network should
be visited with high probability even if it has few edges, and an isolated node
that has many (local) neighbours will be visited with low probability.
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The idea of PageRank is to rank nodes according to this stable state z∗ and
not according to the previous local measurement of inner/outer edges from a
node, since these may be manipulated more easily than the corresponding entry
in the stable state. Intuitively, this is because the stable state measures a global
property that depends on all the nodes in the graph (connecting a single edge
in one side of the graph changes the rank of a node even of the other side of
the graph). Unfortunately, this is also why the problem of computing the stable
state of G is hard. In fact, this vector is not unique.

Damping Factor. To solve this issue, the PageRank algorithm uses a given a
parameter d ∈ (0, 1) which is called the damping factor. A common value is
d = 0.15. Let 1 denote the n × n matrix whose all entries are 1, and let A =
(1−d)G+ d

n ·1. For example, suppose that in Gji = Gki = 1/2 for the transitions
i → j and i → k. In the matrix A, the probability of moving to any other node
increases from 0 to d/n, and the probability 1/2 of moving from i to j or k is
changed to 1−d

2 + d
n . The new sum of probabilities is still 1, so A is now a positive

column-stochastic matrix. In the context of surfing the internet, if each column
of G represents links in a web-page, in A, with probability d we will visit a new
random page that is not linked from our current web-page.

More generally, in the v-Personalized PageRank we get an additional input
distribution vector v ∈ (0, 1)n whose entries are strictly positive and sum to one,
and define A = (1 − d)G + d · v · (1, · · · , 1). In this case, v defines a distribution
over the webpages to visit in case that no web-link is chosen in the existing page.
For the uniform distribution v = (1/n, · · · , 1/n)� the v-Personalized PageRank
is the same as PageRank.

Unlike G, which is a non-negative matrix, A is a positive column-stochastic
matrix. By this fact and the Perron-Frobenius theorem, A has a unique sta-
ble state distribution z∗ such that Az∗ = z∗. Hence, the PageRank problem
reduced to the problem of computing this vector. A common way to compute
the largest eigenvector of such a matrix A is to use the power method. This
iterative technique computes z(0) = A · (1/n, · · · , 1/n)T , and z(i) = Az(i−1) for
every i ≥ 1. It can be proven that the approximation error

∥
∥Az(i) − z(i)

∥
∥
2

≤ ε
after O(log(n)/ε) iterations. Recall that ‖Az∗ − z∗‖2 = 0 since Az∗ = z∗.

Our Result. In this paper we suggest a deterministic algorithm for computing a
provable ε-approximation z to the PageRank z∗ of a graph with n nodes. The
exact running time and memory depends on the sparsity s of each column of G,
i.e. the maximal number of neighbours or, more precisely the out-degree, of each
node in G. This number is small in social or web networks, where most of the
nodes have few related links to neighbor nodes, compared to the total number
n of nodes in the network. In fact, real datasets show s ≈ 7 and n > 106 [8],
making the improvement from O(n2) to O(ns) quite drastic.

Formally, we present an algorithm that computes a distribution vector z such
that ‖Az − z‖2 ≤ ε, compared to the optimal solution where ‖Az∗ − z∗‖ = 0.
The algorithm runs in O(ns/ε2) time and requires only O(n) read-write memory
in addition to reading the input graph (which is sparsely represented using O(ns)
memory).
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Our output z is a sparse vector with O(1/ε2) non-zero entries. Intuitively,
the non-zero entries of z are the “heavy hitters” or important nodes, while small
ranks are rounded to 0. Our algorithm is iterative, and the user can stop it after
finding the top desired ranks, or after observing that the last returned rank is
already small.

Our Techniques. We show that the PageRank problem can be reduced to the
Approximated Carathéodory, which was recently used in applications such as
machine learning, and game theory [5]. In this problem we wish to approximate
a point in the convex hull of n points by a convex combination of a small subset
of these points.

The problem of computing z∗ such that Az∗ = z∗ is the same as computing
z∗ such that (A − In)z∗ = 0. We define B = A − In and seek a distribution
vector z such that ‖Bz‖2 ≤ ε. Viewing the columns of B as points in R

d, the
problem is reduced to finding a convex combination of points close to the origin.
We instantiate the Frank-Wolfe algorithm to iteratively add columns of B until
we arrive sufficiently close to the origin. At most O(1/ε2) columns are needed
before we arrive at a sufficient solution.

While the input G is has sparse columns, the matrix B is not sparse because
of the damping factor d and distribution vector v. In fact, B has no zeros.
We show a technique to cache previous computations and extract the relevant
information from G, d, and v without every actually computing B.

For simplicity, we prove the main claim for the PageRank application, but
the proof is written in more general notation that we hope will be used by other
researchers for other functions, such as estimators that are robust to outliers as
the m-estimators, that usually have the required smoothness condition.

Related Work. A frequently explored technique for solving PageRank involves
some variant of random walks, appearing in results such as [2,6,12,16,17] A
sampling based approach is suggest in [1]. Multipass streaming algorithms for
approximating the rank (i.e. value in the stable state) of a single node have been
explored [15]. Under some assumptions, it is also possible to return a list of the
top-k ranked nodes [3].

In the distributed setting, [17] present a O( log n
d )-round algorithm that

approximates each entry of the stable state up to a multiplicative factor of
(1 + ε). However, they treat computation time as an unlimited resource and the
runtime is not explicitly bounded.

Extensions of PageRank where the stable state may fluctuate in time have
been explored [4,13,14,18]. When considering location-based networks, an algo-
rithm was presented by [9].

Classical techniques include the power method (iterating until the stable
state is approached asymptotically) and explicit computation (involving finding
a matrix inverse). These classical techniques are deterministic but require ω(n2)
time. All prior O(n2) time algorithms require randomization, making ours the
first fast algorithm to be entirely deterministic. Moreover, we take advantage of
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sparsity and therefore run in optimal O(n) time on real datasets whose average
out-degree is around 7 [8].

2 Preliminaries

The network of n pages is represented by an n × n matrix G. The ith column
represents the links on the ith page. If a page contains no links, its column is
filled with zeros. Otherwise, the column’s entries sum to 1 where the jth entry
represents the probability that a user who clicks on a link from page i will follow
a link to page j.

Definition 1 (Unprocessed PageRank Matrix). The input to the PageR-
ank problem is a non-negative n × n matrix G where each column represents the
links from a page. If the page is a sink node with no links to other pages, the
column is all zeros. Otherwise, the column represents the transition probabilities
to other pages and has unit �1 norm. We call such a matrix the unprocessed
PageRank matrix.

With probability d ∈ (0, 1), a user may jump to page without clicking a link
from the current page. The distribution vector v represents the probabilities that
a user will randomly jump to a particular page. The matrix Ψ , introduced in the
next definition, accounts for this possibility of jumping without following any
link. The entry Ψij is the probability that a user on page j will move to page i.

Definition 2 (Approximate PageRank). Let G ∈ R
n×n be an unprocessed

PageRank matrix. Given a damping factor d ∈ (0, 1) and a positive distribution
vector v, the processed PageRank matrix Ψ(G, d, v) is defined column-by-column
as:

Ψ(G, d, v)•i =
{

v if G•i = 0
dG•i + (1 − d)v if ‖G•i‖1 = 1

Note that Ψ(G, d, v) is a positive column-stochastic matrix, so there exists a
unique distribution vector z∗ such that Ψ(G, d, v)z∗ = z∗. A distribution vector
x is called an ε-approximation if ‖(Ψ(G, d, v) − In)x‖2 ≤ ε.

We relate PageRank to a well-studied geometric problem called the
Carathéodory problem. In what follows, 0d denotes the origin in R

d, and C(P )
denotes the convex hull of a point-set P .

Definition 3. Let P be a set of n points in R
d such that 0d ∈ C(P ). An ε-

approximation to the �2-Carathéodory Problem is a multiset Q of T points from
P such that: ∥

∥
∥
∥
∥
∥

1
T

∑

q∈Q

q

∥
∥
∥
∥
∥
∥
2

≤ ε
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In the previous definition, the unweighted average is taken over Q. However,
Q is a multiset meaning that it may contain points with multiplicity. One can
consider a point with multiplicity m to have weight m

T . As a simple example,
let P ⊂ R

2 be three points whose convex hull contains the origin. Depending on
the location of the origin, an arbitrarily large Q is required for sufficiently small
ε despite the fact that P contains only three distinct points.

Definition 4 (Smoothness). A continuously differentiable function f : Rd →
R is said to be β-smooth with respect to norm ‖·‖ on domain D ⊂ R

d if:

‖∇f(x) − ∇f(y)‖ ≤ β ‖x − y‖
for every x, y ∈ D.

For p ≥ 1 we write ‖x‖p to denote the �p-norm of x which is (xp
1 + . . .+xp

d)
1
p .

Observe that the function ‖x‖p
p is convex and continuously differentiable.

Lemma 1. The function f(x) = ‖x‖22 is 2-smooth with respect to any norm on
R

d.

Proof.

∇(‖x‖22) = ∇(x2
1 + . . . + x2

d)

= (2x1 , . . . 2xd)�

= 2x

Therefore ‖∇f(x) − ∇f(y)‖ = 2 ‖x − y‖ where we have pulled out the 2 by the
scalability property of a norm.

Outline of Presentation. In the next section, we present the well-known Frank-
Wolfe algorithm (Algorithm 1 and Theorem 1). We show that Frank-Wolfe can
be used to solve the Carathéodory problem (Corollary 1). We will transform
the PageRank problem so it can be solved by Frank-Wolfe, presenting a simple
deterministic algorithm (Algorithm 2 and Lemma 3). Finally, we make modifi-
cations to the algorithm so that it takes advantage of the sparsity of the input
(Algorithm 3 and Theorem 2).

3 Algorithm

The following algorithm was first presented by Frank and Wolfe in 1956 [7]. As
written, it loops infinitely. In practice, we terminate the loop after a sufficient
number of iterations given by gaurantees such as in Theorem1.

We begin by setting x to be an arbitrary point of P . In each iteration, we
select a point y which is a vertex of the convex hull of P . We then redefine x as
a weighted average of itself and y, where each iteration gives less weight to the
new y.

The first observation is that the {x(t)} are simply averages of the {y(t)}.
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Algorithm 1. Input: continuously differentiable function f : Rd → R and point
set P = {p1, . . . , pn} ⊂ R

d

1: x(0) ← p1

2: t ← 1
3: while true do
4: η(t) ← 1/t
5: y(t) ← argminy∈P y�∇f(x(t−1))
6: x(t) ← (1 − η(t))x(t−1) + η(t)y(t)

7: t ← t + 1

Lemma 2. x(t) = 1
t (y

(1) + . . . + y(t)) for every t ≥ 1.

Proof. Observe directly from Line 6 that x(1) = y(1). Now assume inductively
that x(t−1) = 1

t−1 (y(1) + . . . + y(t−1)). η(t) = 1
t and so:

x(t) =
(

1 − 1
t

)

x(t−1) +
1
t
y(t)

=
(

t − 1
t

)(
1

t − 1

)

(y(1) + . . . + y(t−1)) +
1
t
y(t)

=
1
t
(y(1) + . . . + y(t))

The following theorem governs the behavior of the Frank-Wolfe algorithm,
and was presented in the original paper.

Theorem 1 ([7]). Fix a norm ‖·‖. If Algorithm1 is run for T iterations on
input (f ,P ) where maxp∈P ‖p‖ ≤ R and f is a β-smooth convex function with
respect to ‖·‖ on C(P ), then:

f(xT ) − min
x∈C(P )

f(x) ≤ 2βR2

T + 1

We arrive at the following corollary by applying the previous theorem with
basic manipulations. In this form, it is apparent how the Carathéodory problem
may be solved using Frank-Wolfe.

Corollary 1. Let f(x) = ‖x‖22 and T = 
 8
ε2 − 1�. If Algorithm1 is run for T

iterations on input (f ,P ) where maxp∈P ‖p‖2 ≤ √
2 and 0 ∈ C(P ), then:

∥
∥
∥x(T )

∥
∥
∥
2

≤ ε

We now show that Algorithm 1 provides an algorithm for PageRank, forging
a connection between the two problems. Observe that when we form a d × n
matrix B whose columns are the points of P , then C(P ) is the union of Bz over
all distribution vectors z ∈ R

n.
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Algorithm 2 outputs an ε-approximation for Personalized PageRank. When
adapting Algorithm1, we have set f(x) = ‖x‖22 and so ∇f(x(t−1)) is simply
2x(t−1). We also introduce a new vector z which will be the approximate stable
state.

Lemma 3. Algorithm2 outputs a distribution vector z that satisfies ‖Bz‖2 ≤ ε.

Proof. It is clear that z is a distribution vector since Line 10 is executed T times
so z is non-negative and ‖z‖1 = 1. It remains to show the bound ‖Bz‖2 ≤ ε.

Given the positive column-stochastic matrix B = Ψ(G, d, v) − In, we wish
to find a vector z such that ‖z‖1 = 1 and ‖Bz‖2 ≤ ε. Let P ⊂ R

n be the
columns of B. By the Perron-Frobenius theorem, there exists a unique stable
state z∗ such that Bz∗ = 0. This implies that the convex hull of P contains
the origin, since the values of z∗ define weightings of a convex combination of
the columns of B. The reader can verify that ‖A•i‖1 = 1 implies ‖B•i‖2 ≤ √

2.
Therefore by Corollary 1, Algorithm 1 will satisfy that

∥
∥x(T )

∥
∥
2

≤ ε since we have
set T = 
 8

ε2 − 1� on Line 4.
It now suffices to show that Bz = x(T ). Observe that Bei = B•i. Let j(t) be

the value set on Line 8 during the tth iteration of the while-loop. y(t) = B•j(t) =
Bej(t) . By Line 10, z = 1

T

∑

t≤T ej(t) when the algorithm terminates. Therefore:

Bz =
1
T

∑

t≤T

Bej(t)

=
1
T

∑

t≤T

y(t)

= x(T )

where the last line follows from Lemma 2.

Algorithm 2. Input: an unprocessed n×n PageRank matrix G, damping factor
d ∈ (0, 1), positive distribution vector v ∈ (0, 1)n, approximation factor ε > 0
1: B ← Ψ(G, d, v) − In

2: x(0) ← B•1
3: t ← 1
4: T ← � 8

ε2
− 1�

5: z ← 0n

6: while t ≤ T do
7: η(t) ← 1/t
8: j ← argmini∈[n] B

�
•ix

(t−1)

9: y(t) ← B•j

10: zj ← zj +
1
T

11: x(t) ← (1 − η(t))x(t−1) + η(t)y(t)

12: t ← t + 1

13: Output z
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Theorem 3 gaurantees an ε-approximation, but the matrix B = Ψ(G, d, v) −
In is not sparse. In fact, B does not have any zero entries. As written, Algorithm 2
runs in O(n2/ε2) time. In the next section, we will improve the runtime by taking
advantage of the fact that although B is not sparse, it can be represented as a
function of the sparse matrix G.

4 Sparse Runtime

Each column of G has at most s non-zero entries. We can leverage this in the com-
putation to improve the O(n2/ε2) runtime of Algorithm 2 to the vastly improved
O(ns/ε2) time. Recall that the average out-degree of a page is around 7 while
the total number of pages is at least in the millions, so this causes a drastic
improvement.

To take advantage of the sparsity, we assume that the columns of G are
stored in memory with an s-sparse representation which means a list of at most
s index-value pairs. In contrast, by a standard representation we mean a list of
n values including the zeros such that the value for any index can be retrieved
in O(1) time.

Fact 1. Let u and w be two vectors in R
n. If u has an s-sparse representation,

then u�w can be computed in O(s) time and O(1) space if w has either an
s-sparse representation or a standard representation.

The proof of Fact 1 is clear. When u is represented as a list of s index-value
pairs, we need not even bother to read the values of any entries of v that are not
in the list of u. Since these entries are zero in u, their value in v is irrelevant.

We begin with a lemma on how to compute the dot product efficiently
between columns of B. This is important because we must compute (see Line 8
of Algorithm 2) the value of i that minimizes the dot product B�

•ix
(t−1). Recall

from Lemma 2 that x(t−1) = 1
t−1 (y(1) + . . . + y(t−1)). From Line 9, each y(i) is a

column of B. Therefore we may distribute and write this dot product as a sum
of dot products between columns of B.

Lemma 4. Assume that the value v�v is known. For any 1 ≤ i, j ≤ n, the value
B�

•iB•j can be computed in O(s) time and O(1) memory.

Proof. We break into three cases about the two columns G•i and G•j : (1) both
are zero-columns, (2) only G•j is a zero-column, (3) neither are zero-columns.
Note that Case (2) has no loss of generality since if only G•i is a zero-column
then we can simply swap i and j before proceeding.

In what follows, we assume that i = j. If i = j we simply add 1 due to the
term e�

i ej . Otherwise e�
i ej = 0.

Case 1:

B�
•iB•j = (v − ei)�(v − ej)

= v�v − vi − vj
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Case 2:

B�
•iB•j = (dG•i + (1 − d)v − ei)�(v − ej)

= dG�
•iv + (1 − d)v�v − vi − dGji + (1 − d)vj

Case 3:

B�
•iB•j = (dG•i + (1 − d)v − ei)�(dG•j + (1 − d)v − ej)

= d2G�
•iG•j + d(1 − d)(G�

•iv + G�
•jv)

− d(Gij + Gji) − (1 − d)(vi + vj)

+ (1 − d)2v�v

Given the input tuplet (G, d, v,X, i, j) where X = v�v, the time and space
complexities are proven as follows. Case 1 is simple since we return X along
with entries for v (retrievable in O(1) time from the standard representation).
For Case 2, we must also use Fact 1 to address the G�

•iv term. For the Gji term,
this can be found in O(s) time (not necessarily O(1) time since G•i has an
s-sparse representation). Case 3 follows using the same principles.

We write DOT(G, d, v,X, i, j) to denote the O(s) time procedure from
Lemma 4 which computes B�

•iB•j given that X = v�v. We use this procedure
in Algorithm 3 which is an efficient implementation of Algorithm 2.

Algorithm 3. Input: an unprocessed n×n PageRank matrix G, damping factor
d ∈ (0, 1), positive distribution vector v ∈ (0, 1)n, approximation factor ε > 0
1: T ← � 8

ε2
− 1�

2: X ← v�v
3: j ← 1
4: CACHE ← 0n

5: z ← 0n

6: for t ∈ [T ] do
7: j ← argmini∈[n] CACHEi + DOT(G, d, v, X, i, j)
8: zj ← zj +

1
T

9: for i ∈ [n] do
10: CACHEi ← CACHEi + DOT(G, d, v, X, i, j)

11: Output z

The vectors x(t) and y(t), which were central to Algorithms 1 and 2, are only
implicitly present in Algorithm3. At the end of the tth iteration of the while-loop,
y(t) = B•j and xt = T

t Bz.
The vector CACHE stores previous computations of B�

•ix
(t) so we can simply

compute B�
•iy

(t+1) in O(s) time instead of re-computing this entire quantity in
O(ts) time. Without caching the computation, we would have an overall runtime
of O(ns/ε4).
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Lemma 5. In Algorithm3, CACHEi = tB�
•ix

(t) after the tth iteration of the while-
loop. Here x(t) is the value from Algorithm2.

Proof. Let CACHE(t) denote the value of CACHE after the tth iteration of the while-
loop. Then CACHE(0) = 0n. By Lemma 2, tx(t) = y(1) + . . . + y(t). By induction,
it suffices to show that CACHE

(t)
i = CACHE

(t−1)
i + B�

•iy
(t).

After Line 7 of the tth iteration, j is such that y(t) = B•j . Lemma 4 estab-
lishes that DOT(G, d, v,X, i, j) = B�

•iB•j . Combining these statements shows that
Line 10 sets CACHE

(t)
i = CACHE

(t−1)
i + B�

•iy
(t) as desired.

We now present our main theoretical result. Algorithm3 is simple, determin-
istic, parallelizable, and takes advantage of the sparsity of the input.

Theorem 2. Algorithm3 is deterministic, terminates in O(ns/ε2) time,
requires O(n) memory in addition to the read-only input, and returns an ε-
approximation for Personalized PageRank of an input (G, d, v). Moreover, the
algorithm is parallelizable with P ≤ n processors with runtime O(( n

P +log P )s/ε2)
and the same memory requirement.

Proof. It is clear that the algorithm is deterministic. Correctness follows from
equivalence to Algorithm 2 which is straightforward to verify.

For runtime, Line 2 takes O(n) time. On Line 7, there are n invocations of
DOT, each of which takes O(s) time by Lemma 4. Therefore this line takes O(ns)
time. The loop has O( 1

ε2 ) iterations, resulting in the runtime of O(ns/ε2).
For space, besides constant-size variables, only two vectors CACHE and z are

stored in memory. It has been established in Lemma 4 that the DOT procedure
requires O(1) memory, so P ≤ n processors could compute Lines 2 and 7 in
parallel in O(n/P + log P ) time. The only other line of code requiring ω(1) time
is Line 10, which can clearly be parallelized to O(n/P ) time.

5 Results

In this section, we evaluate the practical effectiveness of our scalable and sparse
PageRank algorithm on real world, benchmark data sets [11]. In particular, we
evaluated our algorithm on the following data sets:

1. Youtube Social Network and Ground Truth Communities (youtube)—network
representation of the Youtube social network. Contains 1,134,890 nodes and
2,987,624 edges.

2. California Road Network (roadNet-CA)—A road network of California con-
sisting of 1,965,206 nodes and 2,766,607 edges.

3. Wikipedia Talk Network (wiki-Talk)—representation of the activity and dis-
cussions (edges) between the users (nodes) on the Wikipedia page. A directed
edge (u, v) between two users u and v exists if user u edited a page of user v.
The graph contains 2,394,385 nodes and 5,021,410 edges.
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Fig. 1. Evaluation of the relative error ‖Bx∗‖2 = ‖(Ψ(G, d, v) − In)x
∗‖2 of the sparse,

approximate distribution vector x∗.

4. Google Web Graph (web-Google)—Network composed of 875,713 nodes and
5,105,039 edges denoting web pages and the hyperlinks between them, respec-
tively.

We compared the performance of our Frank-Wolfe-based approach in gener-
ating a sparse solution x that minimizes ‖Bx‖2 to that of constructing an x via
uniform sampling for various values of sparsity (i.e., sample size). All algorithms
were implemented in Python using the Sparse package of the SciPy library [10]
and simulations were conducted on a computer with a 2.60 GHz Intel i9-7980XE
processor (18 cores total) and 128 GB RAM.

Experimental Setup. For each data set represented by the scaled adjacency
matrix G ∈ R

n×n, we constructed a set of k = 10 geometrically-spaced sub-
sample sizes S = {S1, . . . , Sm} ⊆ [log n,

√
n]k and for each sample size m ∈ S,

we invoked each algorithm to construct an approximate distribution vector x
with sparsity m. The results were averaged across 100 trials for each subsample
size. More specifically, for each m ∈ S, we ran our algorithm for m iterations
to construct an m-sparse vector x. The uniform sampling procedure was imple-
mented in a similar iterative manner, where at each iteration a random index
j ∈ [n] was selected and the vector x (initially all zeros) was modified to be



422 H. Lang et al.

xj ← xj +
1
T

.

Empirical Results. Evaluations of our algorithm and comparisons to uniform
sampling on the 4 benchmark networks are shown in Fig. 1. Our empirical results
reaffirm the favorable theoretical properties of our algorithm and show that it can
efficiently and judiciously generate a sparse distribution vector with significantly
smaller error than that constructed by uniform sampling.
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Abstract. Optical flow is the apparent motion pattern of pixels in two
consecutive images. Optical flow has many applications: navigation con-
trol of autonomous vehicles, video compression, noise suppression, and
others. There are different methods to estimate the optical flow, where
variational models are the most frequently used. These models state an
energy model to compute the optical flow. These models may fail in pres-
ence of occlusions and illumination changes. In this work is presented a
method that estimates the flow from the classical Horn-Schunk method
and the incorporation of an occlusion layer that gives to the model the
ability to handle occlusions. The proposed model was implemented in
an Intel i7, 3.5 GHz, GPU GeForce NVIDIA-GTX-980-Ti, using a stan-
dard webcam. Using images of 320× 240 pixels we reached 4 images per
second, i.e. this implementation can be used in an application like an
autonomous vehicle.

Keywords: Optical flow · Occlusion estimation · Variational model

1 Introduction

Optical flow is defined as the apparent motion pattern of the objects in an image
sequence. There are different methods to estimate the optical flow. Frequently,
these methods propose an energy model to estimate the motion field. Generally,
this model or variational model is composed of two terms: a data term and a
regularization term. The data term considers the similarity between the intensity
of the pixels of consecutive images. The regularity term imposes spatial smooth-
ness to the estimated motion field. The flow v that minimizes both terms: the
data term and the regularization term is the estimated optical flow of the video
sequence.

In general, variational models are nonlinear and non-convex, therefore the
minimization of the proposed energy cannot be performed using a descent gra-
dient.
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Some optical flow estimation methods use a linear approximation of the
data term transforming the model in a convex one [5]. The seminal work of
Horn-Schunck [5] has been successfully proved in video sequences of images that
present small displacements.

This work presents a method for estimating the optical flow that integrates
this two ideas: (i) linearization of the data term and (ii) an occlusion estimation.

In order to handle occlusion, we will follow the method proposed in [2]. The
authors proposed a model that considers three consecutive frames (previous
frame, the current frame, and the next frame). Their approach incorporates
information that allows detecting occluded pixels (χ(x) function). The authors
assumed that occluded pixels in the current frame are visible (χ(x) = 1) in the
previous frame. The optical flow on non-occluded pixels (χ(x) = 0) is estimated
forward and the flow in occluded pixels is estimated backward [2].

In [6] the authors extended the model given in [2] to color images and to
handle illumination changes. The authors proposed a model which is able to deal
with the usual drawback of variational methods related to large displacements of
objects in the scene which are larger than the object itself. The addition of a term
that balances gradient and intensities increases the robustness of the model to
illumination changes. The inclusion of supplementary information coming from
matching obtained by exhaustive search helps to follow large displacements.

The proposed model presented in this article was implemented in a GPU
NVIDIA improving its processing time and obtaining a near real-time perfor-
mance.

In Sect. 2 is presented the methodology to estimate the optical flow and the
occlusion. In Sect. 3 we present a proposition that let us compute the optical
flow and the occlusion layer. In Sect. 4 is presented the implementation of the
methodology. In Sect. 5 is presented the database used to perform experiments.
Results are presented in Sect. 6 and finally, conclusions are presented in Sect. 7.

2 Methodology

Our proposed model estimates jointly the occlusion and the optical flow of three
consecutive images following the main ideas are given in [2] but adapted to the
Horn-Schunck method.

The proposed model uses a binary occlusion layer ξ(x) that indicates the
location where pixels, visible in the current frame, are not visible in the next
frame. Assuming that occluded pixels are visible in the previous frame, the opti-
cal flow on visible pixels is forward estimated while optical flow in the occluded
pixels is backward estimated.

Our proposed model is based on the L-2 total variation regularization of
the flow and in the L-2 norm of the data fidelity term. These terms consider
non-linearities, which are decoupled by introducing an auxiliary variable. These
decoupling variables w1, w2, also represent the forward and backward flow. This
new energy is minimized by means of a numerical scheme based on [5].
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2.1 Horn-Schunck Method

This method estimates the optical flow v(x) = (v1(x), v2(x)) assuming that two
consecutive images are given I0, I1 : Ω ⊂ Z × Z → R. The optical flow v(x) is
estimated minimizing the following functional:

J(v(x)) = Jdata(v(x)) + Jreg(v(x)), (1)

where
Jdata(v(x)) =

1
2

∫
Ω

|Ix(x)v1(x) + Iy(x)v2(x) + It(x)|2 dx (2)

and
Jreg(v(x)) =

∫
Ω

α |∇v1(x)|2 + α |∇v2(x)|2 dx, (3)

where ∇v1(x) is the gradient of the horizontal component of the estimated opti-

cal flow v(x) i.e. ∇v1(x) =
(

∂v1(x)
∂x

,
∂v2(x)

∂y

)
. Analogously, for vertical compo-

nent ∇v2(x) and α is a real constant value.
Values Ix(x), Iy(x) and It(x) are the partial derivatives and temporal deriva-

tive of the considered images, respectively.
The Euler-Lagrange equation are computed in order to estimate v(x) obtain-

ing the following set of equations:

(Ix(x)v1(x) + Iy(x)v2(x) + It(x))Ix(x) − αdiv(∇v1(x)) = 0
(Ix(x)v1(x) + Iy(x)v2(x) + It(x))Iy(x) − αdiv(∇v2(x)) = 0, (4)

where div(∇v1(x)) is the Laplacian operator Δv1(x) =
∂2v1(x)

∂x2
+

∂2v1(x)
∂y2

. This

operator is approximated as Δv1(x) = (v̄1(x) − v1(x)), where v̄1(x) is a filtered
version of v1(x), v̄1(x) = G ∗ v1(x). The G matrix is defined as:

G =

⎛
⎝1/12 1/6 1/12

1/6 0 1/6
1/12 1/6 1/12

⎞
⎠

Taking into account the Laplacian approximation given in [5], the following set
of equation is obtained:

Ix(x)2v1 + Ix(x)Iy(x)v2(x) + Ix(x)It(x) − α(v̄1(x) − v1(x)) = 0
Ix(x)Iy(x)v1(x) + Iy(x)2v2(x) + Iy(x)It(x) − α(v̄2(x) − v2(x)) = 0. (5)

Solving this equation system in Eq. 5 for v1(x) and v2(x):

v1(x) = v̄1(x) − Ix(x) Ix(x)v1(x)+Iy(x)v2(x)+It(x)
α+Ix(x)2+Iy(x)2

v2(x) = v̄2(x) − Iy(x) Ix(x)v1(x)+Iy(x)v2(x)+It(x)
α+Ix(x)2+Iy(x)2

.
(6)
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2.2 A Model for Estimating Occlusions

In the proposed model ξ : Ω → [0, 1] is the occlusion layer. If ξ(x) = 1 means
that visible pixel in I0(x) is occluded pixel in I1(x).

In [2] is assumed that pixels not visible in I1(x) are visible in the previ-
ous frame I−1. If ξ(x) = 0, ∇I1(x) with It(x) are compared, in the other
hand, if ξ(x) = 1, ∇I−1(x) with −It−1(x) are compared. Where Ix−1(x) =
(I−1(x) + I0(x)) ∗ Gx

4
, Iy−1(x) =

(I−1(x) + I0(x)) ∗ Gy

4
and

It−1(x) =
(I−1(x) − I0(x)) ∗ Gt

4
. The occluded regions, where ξ(x) = 1 as in

[2] are considered as regions where the div(v(x)) < 0. The following model is
proposed:

J(v, ξ) = Jdata(v, ξ) + Jreg(v, ξ) + 2β
∫

ξdiv(v)dx, (7)

where,

Jdata(v, ξ) =
∫

Ω

(1 − ξ)|Ixv1 + Iyv2 − It|2 + ξ|Ix−1v1 + Iy−1v2 + It−1|2dx, (8)

and,

Jreg(v, ξ) =
∫

Ω

(α|∇v1|2 + α|∇v2|2 + δ|∇ξ|2)dx, (9)

where α and δ are real constants, and for simplicity we omitted the explicit
dependency of x in the images and in the flow. The arguments v that minimize
Eq. 7 is the estimated optical flow of the image sequence.

The drawback of the above model is that it cannot handle large displace-
ments. An approach to tackle this problem is supposing that the flow v is already
computed and a small variation dv can be estimated using Horn-Schunck model.
Let us define warped image Ĩ1(x) and warped image Ĩ−1(x) as Ĩ1(x) = I1(x+v)
and Ĩ−1(x) = I−1(x−v) respectively. Using these definitions is possible to state:

Ĩ1(x) = ∇Ĩ1(x)T dv + I1(x), (10)

and
Ĩ−1(x) = ∇Ĩ−1(x)T dv − I−1(x). (11)

Taking into account this consideration the proposed model become:

J(dv, ξ) = Jdata(dv, ξ) + Jreg(dv, ξ) + 2β
∫

ξdiv(v + dv)dx, (12)

where,

Jdata(dv, ξ) =
∫

Ω

(1 − ξ)|∇ĨTdv + It|2 + ξ|∇ĨT
−1dv − It−1|2dx, (13)

and,

Jreg(dv, ξ) =
∫

Ω

(α|∇dv1|2 + α|∇dv2|2 + δ|∇ξ|2)dx. (14)



428 V. Lazcano and F. Rivera

2.3 Justification of the Proposed Model

The use of the divergence of the optical flow v(x) in order to estimates the occlu-
sion layer was proposed originally by [7]. The authors argued that the divergence
of the flow is positive for not-occluded boundaries, negative for occluding bound-
aries, and near to zero for shear boundaries. The authors defined a one-sided
divergence function d(x):

d(x) =

{
div(v(x)) div(v(x)) < 0,

0 otherwise.

this d function is included in the data term of their optical flow model.

3 Solving the Model

Two decoupling variables w1 and w2 are introduced. These variables represent
the forward and backward optical flow respectively. A deviation w.r.t. dv is
penalized, therefore the new functional to be minimized is given by:

J(dv,w1,w2, ξ) = Jdata(w1,w2, ξ) + Jreg(dv, ξ) + 2β
∫

ξdiv(v + dv)dx

+
1
θ

∫
Ω

(1 − ξ)|dv − w1|2dx +
1
θ

∫
Ω

ξ|dv + w2|2dx,

(15)
This energy depends on the variables dv, w1, w2 and ξ, θ > 0. In order to solve
this model one proposition is stated:

Proposition 1. The minimum of model (15) w.r.t. dv(x) is:

dv(x) =
αθdv(x) + (1 − ξ(x))w1(x) − ξ(x)w2(x) + βθ∇ξ(x)

1 + αθ
. (16)

Minimum of (15) w.r.t, w1(x),w2(x) is given by:

w1(x) =
(
I + θ∇I1I

T
1

)−1 (
dv(x) − θ∇I1(x)T It(x)

)
(17)

w2(x) =
(
I + θ∇I−1(x)I−1(x)T

)−1 (
dv(x) − θ∇I−1(x)T It−1(x)

)
(18)

Given w1(x),w2(x) and v, the minimum of the model in (15) with respect to
ξ(x) can be obtained by:

A = |ρ|2−|ρ−1|2+(dv(x) − w1(x))2

θ
− (dv(x) + w2(x))2

θ
−2βdiv(v+dv), (19)

ξ(x) =

⎧⎪⎨
⎪⎩

1 ξ(x) + 1
2δ A ≥ 1

ξ(x) + 1
2δ A other case

0 ξ(x) + 1
2δ A ≤ 0

(20)

where ρ = ∇Ĩ(x)Tw1(x) + It(x) and ρ = ∇Ĩ−1(x)Tw2(x) + It−1(x).
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4 Implementation

4.1 Derivative Computation

Derivatives are computed using the following centered difference kernels Gx, Gy

and Gt:
Gx =

(−1 8 0 −8 1
)

Gy =

⎛
⎜⎜⎜⎜⎝

−1
8
0

−8
1

⎞
⎟⎟⎟⎟⎠

.

Gt =
(

1 1
1 1

)

Ix =
(I1 + I0) ∗ Gx

12
, Iy =

(I1 + I0) ∗ Gy

12
and It =

(I1 − I0) ∗ Gt

4
, where ” ∗ ” is

the convolution operator.

4.2 Divergence Computation

The estimation of the divergence is computed as the dual operator of derivatives.
Those points at borders of the image are mirrored. The divergence operator is
given by:

divxξi,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ2,j − 7ξ1,j i = 1,
8ξ2,j − ξ3,j i = 2,
ξ4,j − 8ξ3,j − ξ1,j i = 3,
ξi+2,j − 8ξi+1,j + 8ξi−1,j − ξi−2,j otherwise,
−8ξN−1,j + 8ξN−3,j − ξN−4,j i = N − 2,
8ξN−2,j − ξN−3,j i = N − 1,
7ξN−1,j − ξN−2,j i = N.

and,

divyξi,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξi,2 − 7ξi,1 j = 1,
8ξi,2 − ξi,3 j = 2,
ξi,4 − 8ξi,3 − ξi,1 j = 3,
ξi,j+2 − 8ξi,j+1 + 8ξi,j−1 − ξi,j−2 otherwise,
−8ξi,M−1 + 8ξi,M−3 − ξi,M−4 j = M − 2,
8ξi,M−2 − ξi,M−3 j = M − 1,
7ξi,M−1 − ξi,M−2 j = M.

where N and M are the column and row numbers of the image, respectively.
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4.3 Pseudo-code

In order to minimize the proposed model in Eq. (15), a numerical procedure is
employed. In this case, the proposed energy is convex but this model is valid only
if the displacements are small. Hence, the energy minimization is embedded in
a coarse-to-fine approach. The pseudo code is presented in Algorithm1. Inputs
to the algorithm are three consecutive images I−1 I0, and I1 the balance param-
eter between data term and regularization, α, scales number Nscales, iterations
number per each scale MaxIter and, finally, warping number MaxWarp.

Input : three consecutive gray level images I−1, I0, I1.
Parameters α, θ , β, δ, MaxIter, β, Numberscales, Numberwarpings.
Output : optical flow v = (u1, u2) and occlusion mask ξ
Down-scale I−1, I0, I1,
Initialization u1 = u2 = 0;nj = ni = 0
for scales ← Numberscales to 1

compute Iscales
1w (x + vscales), Iscales

−1w (x − vscales)
compute ∇Iscales

1w (x + vscales), ∇Iscales
−1w (x − vscales)

for nj ← Numberwarpings to 1
compute dvscales, equation 16.
compute wi, equation 17 and 18.
compute A, equation 19
compute ξ equation 20.

endfor
update vscales = vscales + dvscales

up-sample vscales

endfor
Out v.

4.4 GPU Implementation

We have implemented the proposed model in a GeForce NVIDIA GTX GPU
980 Ti, based on the code presented in [8]. With this implementation (in images
of 320 × 240 pixels) we processed 965 images and we processed on average 4.074
images per second with a variance of 0.008 s.

5 Database and Experiments

The performance of the proposed model is evaluated in Middlebury [1] database.
This database contains video sequences that present moving objects and also
camera movements. For some of these sequences, the Middlebury database has
ground-truth. This ground-truth is used to compute the performance of the
proposed optical flow method. The performance of the method is evaluated con-
sidering EPE (endpoint error) and AAE [3] (average angular error). Figure 1
shows examples of image sequences of the Middlebury. In these sequences the
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)c()b()a(

)f()e()d(

)i()h()g(

Fig. 1. Image sequences of the Middlebury database. (a), (b): Urban2 sequence, (c) the
displacements is shown with white arrows. (d) and (e): Grove2 sequence. (f) displace-
ments of the pixels represented with white arrows. (g) and (h): RubberWhale sequence.
(i) displacement represented with white arrows.

ground-truth is available and we show it using white arrows in Fig. 1(c), (f) and
(i) for Urban2, Grove3, and RubberWhale respectively.

Additionally, Middlebury includes large displacements image sequences as is
shown in Fig. 2. In these sequences, the ground-truth is not available. And only
qualitative evaluations can be performed.

Let g(x) = (g1(x), g2(x)) and v(x) = (v1(x), v2(x)) be the ground truth and
the estimated optical flow respectively. Let N be the number of points of the
image. EPE and AAE is defined:

EPE =
1
N

N∑
i=1

√
(g1i − v1i)2 + (g2i − v2i)2

AAE =
1
N

N∑
i=1

cos−1

(
1 + g1iv1i + g2iv2i√

1 + g21i + g22i

√
1 + v2

1i + v2
2i

) (21)
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(a) (b)

(c) (d)

Fig. 2. Large displacements image sequence. (a), (b) BeanBags sequence. (b) and (c)
MiniCooper sequence.

In Fig. 3 is shown the ground-truth of the Middlebury small displacements
for sequence Urban2, Grove3, and RubberWhale. The groud-truth is color-coded
based on Fig. 3(a).

As a proof of concept the forward optical flow was implemented and the opti-
cal flow is computed for three image sequence of Middlebury. In Fig. 4 the optical
flow is shown estimated for sequences: Urban2, RubberWhale and MiniCooper.

In [9] The occlusion layer is determined using the largest values of the data
term. The data term is compared with a threshold and pixels that present errors
larger than the threshold that are considered occluded. In [9] is proposed the
function ρocc(v) for detecting occlusions as:

ρocc(v) =

{
1 (I0(x) − I1(x + v))2 > εI ,

0 otherwise

where εI is the threshold, ρocc(v) = 1 means that the pixel is occluded and
ρocc(v) = 0 the pixel is visible. The εI value is set in εI = 0.005.

In [2] the negative values divergence of the optical flow is used as an estimator
of the occlusion. The value of the divergence of the flow is compared with a
threshold θocc. In this case, was set in θocc = −0.5. In Fig. 5 is shown the occlusion
estimations using the proposal given in [9]. It is observed that the occlusion in (a)
is very sparse, the occlusion in (b) is not well estimated, and in (c) presents many
false estimations. In Fig. 5(d), (e) and (f) are shown the occlusion estimated
using negative values of the divergence. It is observed that in (d) the occlusion
is overestimated but it presents a good correlation with the correct one. In (e)
the occlusion is well estimated and also overestimated. In (f) the occlusion is
estimated well and overestimated presenting good correlation with the correct
one. In (g), (h) and (i) the estimated occlusion is overlapped in red on the current
image.
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(a) (b)

(c) (d)

Fig. 3. Color coded ground-truth. (a) color code, (b) RubberWhale, (c) Urban2 and
(d) Grove2 sequences. (Color figure online)

(a) (b) (c)

Fig. 4. Estimated optical flow color, coded for sequences: (a) Urban2, (b) RubberWhale
and (c) MiniCooper. (Color figure online)

Our model uses directly the divergence of the flow as we presented in
Eqs. (16), (19) and (20).

6 Results

6.1 Results in Real-Time Estimation

We present some results in image sequences acquired with a webcam of 320 × 480
pixels. In Fig. 6 we show images of captures with the webcam where an individual
moves his arms upward and downward. Our proposal was compared with the
results obtained by [6] and [2], which implementation is available in [4].

In Fig. 6(a) and (b) the individual moves the arm on the right downward.
In (c) we show the estimated occlusion. In (d) we show the estimated occlusion
obtained by [6]. In (e) is shown the occlusion estimated by [2]. In Fig. 6(f) and
(g) the individual moves the arm on the right upward. In Fig. 6(h) the occlusion
is overestimated due to illumination changes. In (i) estimated occlusion given by
[6]. (j) The occlusion layer given by [2]. In Fig. 6(k) and (l) the individual moves
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)c()b()a(

)f()e()d(

)i()h()g(

Fig. 5. Estimated occlusion for Urban2, RubberWhale and MiniCooper in first, second
and third column, respectively. In (a), (b) and (c) is shown the occlusion estimation
using larger error of the data term according to [9]. Estimated occlusions using negative
values of the divergence of the flow are shown in (d), (e), (f). Overlapped occlusion (in
red) (d), (e) and (f) on the original reference image. (Color figure online)

the arms on the left upward and the arm on the right downward. In Fig. 6(m) the
occlusion is estimated correctly. In Fig. 6(n) and (o) is shown results obtained by
[6] and [2], respectively. In (p) and (q) the individual moves the arm on the left
downward and the arm on the right upward. In Fig. 6(r) we show our occlusion
estimation which is estimated correctly. Figure 6(s) and (t) present the results
given by [6] and [2], respectively.

Comparing Fig. 6(c), (d) and (e) we observe that the estimation in (d) and
(e) is very sparse and present many false detections in comparison to (c) which
is very regular. Estimation in (h) presents false detection on the right arm. If
we compare figure in (h) with figures (i) and (j), the estimation in (h) is very
regular and the estimation in (i) and (j) presents many false detection on the
wall due to illumination changes.

Obtained results show that our proposal outperforms [6] and [2] estimating
the occlusion layer for these image sequences. Our proposal performs better in
small images with low resolution obtained by a webcam. In order to be fairer we
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Fig. 6. Image Sequences processed in real-time. (a) image66 and (b) image67. (c) Esti-
mated occlusion superimposed to the images66 (in red). (d) estimated occlusion using
[6] and (e) occlusion estimation given by [2]. (f) image68 and (g) image69. (h) Esti-
mated occlusion superimposed to image68.(i) Estimated occlusion layer obtained by
[6]. (j) Estimated occlusion given by [2]. (k) image90 and (l) image91. (m) Estimated
occlusion superimposed to image90. (n) Estimated occlusion given by [6]. (o) results
given by [2]. (p) image92 and (q) image93 respectively. (r) Estimated occlusion super-
imposed to image92. (s) and (t) Estimated occlusion layer obtained by [6] and [2]
respectively. (Color figure online)

present results obtained in a sequence of much better quality an larger size. We
show in Fig. 7 results obtained by our model and results obtained by [6] and [2].

In Fig. 7 we show obtained results in three sequences: Urban2, RubberWhale
and Mini. These sequences are part of the Middlebury database. Figure 7(a),
(b) and (c) shows our results for the three image sequences. In (d), (e) and (f)
We show the results obtained by [2] and finally (g), (h) and (j) show the results
obtained by [6]. If we compare the results obtained by these three methods for
the sequence Urban2 we observe that our proposal overestimated the occlusion
in (a). The estimation in (d) given by [2] underestimates the occlusion and in (g)
a better estimation is obtained. Comparing images in (b), (e) and (h) we observe
that the occlusion in (b) is near the wheel and above the RubberWhale. This
occlusion is overestimated but well located, in (e) the occlusion is underestimated
but in (h) the occlusion is very sparse. In MiniCooper sequence in (c) is very
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(a) (b) (c)

(d) (e) (f)

(g) (h) (j)

Fig. 7. Results obtained by our method and results obtained by [6] and [2] in sequences
Urban2, RubberWhale, and Mini. (a), (b) and (c) results obtained by our method in
these three sequences. (d), (e), and (f) results obtained by [2]. (g), (h), and (j) results
obtained by [6].

well located but the width of the occlusion is overestimated, in (f) the occlusion
is underestimated and (j) the method in [6] is better estimates but presents false
detection in the sky.

6.2 Long-Term Experiment

As an empirical proof of the stability of our proposal, we performed an experi-
ment in order to detect instability of the proposed model. In our experiment, we
processed 10000 images obtained by a webcam. In this experiment, our prototype
performed in a similar way to short-term experiments. In this long term experi-
ment, we estimated the optical flow and the occlusion layer for three consecutive
images.

7 Conclusions

We have extended the Horn-Schunck model to handle and to estimate occlu-
sions. We evaluated the model qualitatively and the results show that the model
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estimates the occlusion correctly. The proposed model considers three gray level
images estimating the correspondences in occluded pixels backward as other
works in the literature. The proposal considers a TVL-2 regularization term and
the obtained results show a very regular and well-located occlusion layer in com-
parison with two similar methods that use the TVL-1 regularization term. Our
implementation runs in a GPU reaching 4 images per second which is useful in
real-time applications as in a control of autonomous vehicles. As a future work
is necessary to develop a methodology to compensate illumination changes in
order to improve occlusion estimation.
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Abstract. This paper presents an algorithm design of Music Visualization on
Robot (MVR) which could automatically link the flashlight, color, and emotion
through music. We call this algorithm as MVR algorithm that composed by two
analyses. First, we focus on Music Signal Analysis. Second, we focus on Music
Sentiment Analysis. We integrate two analysis results and implement the MVR
algorithm on a robot called Zenbo which is released from ASUS Company. We
perform the Zenbo Robot in luminous environments. The MVR system not only
could be used in Zenbo robot but also could extend to other fields of Artificial
Intelligent (AI) equipment in the future.

Keywords: Music Visualization on Robot (MVR) � Beat tracking �
Music Sentiment Analysis � Music Information Retrieval �
Music Signal Analysis � Robot computing

1 Introduction and Literature Review

Music visualization is a feature in electronic music visualizers’ and media players’
software that generates animated images based on a piece of music. Images are typi-
cally generated during live playback, rendered and synchronized with music. Some
music visualization systems such as Geiss’ MilkDrop [1–3] are created different
visualizations for each song or audio. Music visualization can be implemented in a 2D
or 3D coordinate system where adding color, intensity and transparency can increase
the dimension to 4th, 5th and even up to 6 dimensions.

Visualization techniques range from simple (i.e. only oscilloscope display) to the
complex technology which typically comprises a plurality of synthetic effects. Music
loudness and spectral change are also the key properties to the visualizations. Effective
music visualization is intended to achieve a high degree of visual correlation between
the spectral characteristics of the soundtrack (e.g. frequency and amplitude) and the
objects or components of the visual image being rendered and displayed.

To realize the music visualization on Robot, it not only needs to know the music
signal analysis but the emotions concerned with color. There are many types of
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research works on Music Signal Analysis (MSA). For example, Muller et al. [4],
provided an overview of some signal analysis techniques specific to the musical
dimension, such as harmony, melody, rhythm, and tone. They studied how specific
characteristics of music signals affect and determine these techniques, and highlight
their techniques to handle novel music analysis and retrieval tasks. Moreover, McFee
et al. [5] provides a document describing Librosa version 0.4.0 which is a Python
package for audio and music signal processing. At a higher level, Librosa provides an
implementation of various common functions used in the field of Music Information
Retrieval (MIR). In this package, they provided a brief overview of the capabilities of
Librosa, as well as design goals, software development practices, and explanations of
symbolic conventions. The documents are consistent with our design process of MVR
system. Hence we decided to use Librosa to import our Musical Instrument Digital
Interface (MIDI) music.

Music Sentiment Analysis (MSEA) is a kind of sentiment analysis method that
analyzes the music features. Martín-Gómez and Cáceres [6] said that listening to music
can affect people emotions. They propose a sentiment analysis method based on data
mining to analyze the musical features. Also, Shukla et al. [7] present a review on how
lyrics can prove its usefulness in mood classification utilizing the features like linguistic
lyric feature set and text stylistic feature set. Jamdar et al. [8] propose to detect the
emotion of a song based on its lyrical and audio features. They use feature weighting
and stepwise threshold reduction based on the k-Nearest Neighbors (KNN) algorithm
and fuzziness in the classification. Combing those technical methods, Abboud and
Tekli [9] propose a MUsical Sentiment Expression (MUSE) system which combined
the MSA methods and fuzzy statistical methods to import a MIDI music file and
producing output a sentiment vector which describing 6 primary emotions (i.e., anger,
fear, joy, love, sadness, and surprise). The process is more consistent with our concept.
We will adopt this concept to build our MVR system in this paper.

In the field of design, color is always an indispensable element to meet the needs of
human beings. Color designers must understand the target customers’ feelings in many
industrial fields such as architecture, beauty, advertising, and automobiles [10]. The
color can also be correlated to other sensations or emotions. Colors can evoke emo-
tions, but without a face, it is always hard to express what the robot wants to say.
Different colors can influence personal feelings. For example, despite that blue can
represent sadness, sometimes, blue might represent happiness if blue is their favorite
color. There are many studies presented on the research of colors and emotions. For
example, the color red may correlate to anger, excitation, and arousal, whereas blue
might represent sadness, and green to be refreshing or natural [11].

Kim et al. showed that the intensity of emotions can be expressed in terms of color
and flicker. These are all applicable to the robot through LED lights [12]. Their results
found that color and blinking can increase four of the six emotions, two of which are
fear and sadness. This highly suggests that with the use of lighting effects and other
features from the robots such as gestures and sounds as mentioned, that a colorful robot
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can impart more meaningful emotions. In another research paper, Terada et al. pro-
vided a similar approach to robots by dynamically changing the color brightness of its
body [13].

In view of those investigates, we have proposed an MVR prototype [14]. To
consistently the topic of MVR, we provide the MVR algorithm in this paper. The
structure of this paper is organized as follows. Section 2 describes the ASUS Zenbo
robot characteristics. We give our MVR algorithm in Sect. 3. Section 4 describes a
performance based on ASUS Zenbo robot. Section 5 gives conclusions and future
work.

2 ASUS Zenbo

ASUS release a robot called Zenbo which is positioned as a small cute home robot to
the consumers. Zenbo has 24 different facial expressions except for the emotion anger.
The 24 facial expressions make Zenbo be one of the many upcoming social robots that
can remove misconceptions about robots. Zenbo also has a couple of wheel LED
indicators that are generally used to indicate the system’s status. It can be pro-
grammable to the user’s preference.

Therefore, Zenbo can be programmed to express emotions using colors along with
its 24 different facial expressions. In addition to Zenbo’s wheel LED indicators, Zenbo
could also use gestures, movements, and sound to intensify the expression of emotion.
A blinking red light could mean a warning, blinking various light might represent a
party, soft breathing/fading effects could mean a romantic, serious, and/or calm situ-
ation depending on the color. We give a short explanation of Zenbo commands which
concert with our system in Table 1. The commands can be executed by Zenbo’s App
Builder [15].

As Table 1 shown, there are 8 LED lights on each of Zenbo’s wheels. This
determines how many lights could be displayed on Zenbo’s wheels. The developers of
Zenbo have decided the colors in different group types: 255 (8 lights), 15 (4 lights), 7 (2
lights), 1 (1 light). The color is calculated by Red (R), Green (G) and Blue (B) Color
System (RGB system) which forms all the colors of the RGB color combination.
The R, G and B colors use 8 bits in each, and their integer values range from 0 to 255.
This makes 256 * 256 * 256 = 16777216 possible colors. Each pixel in the LED
monitor displays colors in this manner through a combination of R, G and B LEDs.
When the red pixel is set to 0, the LED is turned off. When the red pixel is set to 255,
the LED will be fully turned on. Any value between them sets the LED to partial light
emission [23].

We integrate Zenbo Commands into our MVR algorithm and import two other
systems which are Librosa packages [5] and Tone Analyzer [16] that is from IBM
developer cloud. We give the detail of this algorithm in the next section.
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Table 1. Zenbo commands from APP Builder [15]

Commands Actions Parameters
setExpression() Change Zenbo’s 

facial expression
• Face_id

- The name or id that corresponds to the 
name of the facial expression
- Can be the following:

-2 or "hideface"
1 or "interested"
2 or "doubting"
3 or "proud"
4 or "default"
5 or "happy"
6 or "expecting"
7 or "shocked"
8 or "question-
ing"
9 or "impatient"
10 or "confident"
11 or "active"
12 or "pleased"

13 or "helpless"
14 or "serious"
15 or "worried"
16 or "pretend-
ing"
17 or "lazy"
18 or "aware_r"
19 or "tired"
20 or "shy"
21 or "innocent"
22 or "singing"
23 or "aware_l"
24 or "de-
fault_still"

playMusic() Play a music file • source_name
- String of the audio filename

• dura on 
- The dura on for how many seconds Zenbo 
should play of the audio file
- Can be an integer or float value 

• volume
- The volume to play the audio file
- Can be from 0 to 100

• star rom 
- The me in the audio file that Zenbo should 
start playing from. I don’t see any reason to 
not always keep this at 0
- Can be an integer or float value

ledWheel() Light up Zenbo’s
wheel LED lights

• side
- Determines which side of Zenbo’s wheels 
will light up
- Can be the following: 

o “SYNC_BOTH”
o “ASYNC_LEFT” 
o “ASYNC_RIGHT”

• type 
- Indicates a different pa ern of ligh ng for 
Zenbo’s wheel lights
- Can be the following strings:

o “blink”
o “breathing”
o “stable” 
o “marques”
o “charging” 
o “rainbow” 

(continued)
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3 MVR Algorithm

In this section, we simply describe how to perform music visualization on Zenbo by
programming.

3.1 Music to Beat Time

Music is always around us. Whenever we hear any music related to our hearts, we will
lose it. Subconscious, we will hear the beats we hear. You may not notice that your feet
have automatically followed the beat of the music. However, turning this cognitive
process into an automated system that reliably applies to a variety of musical styles is a
challenging task [4].

To overcome the above problem, we first simplify the problem as considering only
the beat time to perform music on the robot. We display the emotion and color on beat
time which could be found by considering the method of musical signal analysis. There
are many types of research works on how to analyze the audio. Most of those research
works are concerned with the field of MIR, which is the interdisciplinary science of
retrieving information from music. MIR is a rapidly developing field of research in
recent years, which contains many practical applications. Researchers involved in MIR
may have many combinations of knowledge, such as machine learning, informatics,
signal processing, intelligent computing, musicology, psychoacoustics, psychology,
and academic music research, etc.

Considering the MVR algorithm should be combined with methods in different
fields, and the Librosa software package [5] has included all the analysis methods

Table 1. (continued)

• led_color
- The color Zenbo’s lights will use
- Can be an HTML hex color code string such 
as “#00FF00”, the color for lime green

• display
- There are 8 LEDs on each of Zenbo’s wheels 
This determines how many are lit
- Can be the following:

o 255 (8 lights)
o 15 (4 lights)
o 7 (2 lights)
o 1 (1 light)

• brightness
- The brightness of the led wheel lights
- Can be from 0 to 100

• dura on 
- The amount of the me in seconds the light 
should be on
- Can be an integer or float value
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which we need in this paper. We use this package in detecting the beat time of MIDI
music. Librosa software packages have many topics of packages which are “core
functionality,” “spectral features,” “display,” “onsets, tempo, and beats,” “structural
analysis,” “decompositions,” “effects,” “output,” etc.

The tempo and beat positions for an input signal can be easily calculated by onsets’,
tempo’, and beats’ packages. The onset and beat sub-modules provides information on
all aspects of time in the estimated music [5]. The onset module provides two func-
tions: onset_strength and onset_detect. The onset_strength function
calculates the threshold spectral flux operation on the spectrogram and returns a one-
dimensional array. On the other hand, the onset_detect function selects the peak
position from the initial intensity curve after the heuristic described by Böck et al. [17].
The beat module uses the method of Ellis [18] to provide a function that estimates the
global tempo and positions of the beat events from the onset_strength function.

3.2 Music to Emotions

Emotions are defined as “a strong feeling deriving from one’s circumstances, mood, or
relationships with others” [19]. When talking about emotions pertaining to social
robots, it can be about how people feel about the appearance, the tone, the movement,
the interaction, and the communication of the robot. For social robots, emotion is
crucial as it is one of the biggest design features. In order to be social, it must
understand, and express emotions making it more companionable and home friendly.

While it is easy to understand emotions, such as feeling angered when frustrated,
happy when excited, and depressed when sad. It is harder for the machine to understand
that through code. Therefore, it is important for social robots to not only express
emotions carefully but also to understand emotions. For example, Zenbo designers
make a friendly robot on its cute faces design to convey the feeling from users. We
divide the facial expressions into two parts: Optimistic/Positive (P) and
Pessimistic/Negative (N). We hope that when we import music on the robot, the Zenbo
face could express its feeling of this music automatically.

To realize this system, we use the Tone Analyzer [16] which is from IBM devel-
oper cloud. We first transfer the audio to text (lyrics) and then the Tone Analyzer will
provide the degree of emotion results from lyrics for us. In Feature Parsing Compo-
nents, we recognize the feature parsing components by considering its degree of
emotions. Generally speaking, high-level symbolic features belong to
Optimistic/Positive (P) emotions and Low-level frequency-domain features belong to
Pessimistic/Negative (N) emotions.

We link the degrees of emotions with music and it’s P/N emotions as the results
shown in two-dimensional space’s emotions (See Fig. 1).

3.3 Emotions with Colors

As mentioned above, colors are an excellent way to express but the latter a bit more
difficult. Some ways for social robots to understand when people interact with it could
be the pitch of the voice, tone of voice, facial expression, gestures, etc.
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Facial expressions of emotions are one of the ways social robots could use to better
understand emotion. With the camera and facial recognition, social robots can learn to
react to the feelings of their “masters”. Though, not completely effective, because the
robot must recognize the expression each time. But over time if it can learn, perhaps
through the use of colors, learning the pitch and tone of the voice as well as memo-
rizing the faces it can effectively become a companionable and understanding robot.

There were many types of research works which have mentioned that colors are
relative to emotions. Most of the researchers were making experiments designs to
discover the relationships between “Colors and emotions” [20], “Music and emotions”
[21], but they do not link these three relationships/factors (music, emotion, and color).
Recently, Palmer et al. [22] discovers the music-color associations with emotion by a
serious of experiments and reveal the relationship with three factors by using Analysis
of variance (ANOVA) which is a statistical technique that allows us to test the null
hypothesis of three or more populations, using their sample information, equal to the
alternative hypothesis of non-equivalent means. We continue this experimental design
and considering the complex thoughts of human psychology, we add fuzzy ANOVA
test [23] in analyzing the relationships between music, emotions, and colors.

In this paper, we generally divide the emotions into two groups Optimistic/Positive
(P) emotions and Pessimistic/Negative (N) emotions. To subdivide the P/N emotions,
we divide them into 8 basic emotions (say, Angry, Anticipation, Joy, Trust, Fear,
Surprise, Sadness, and Disgust. Here, Anticipation, Joy, Trust, and Surprise belong to P
emotions, and Anger, Fear, Sadness, and Disgust belong to N emotions. After clear
group the emotions, we link the 8 emotions with 8 basic colors (say, Red, Orange,
Yellow, Chartreuse, Green, Cyan, Blue, Purple) based on RGB color system. The
colors of LED lights will decide by the degree of two-dimensional emotions (as shown
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Fig. 1. Category of Zenbo facial expressions and its degrees of Emotions [14] (Zenbo facial
expressions adopted from [15]) (Color figure online)
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in Fig. 1). The 256 color codes we used in Zenbo developer’s system can be found in
reference [24].

Hence, we link the emotions, colors with music. Our MVR Algorithm is given in
Fig. 2 and the system is put on GitHub [25]. We give a real case study for using MVR
algorithm on Zenbo robot in the following section.

4 Performance

To design a humanity interface for Zenbo as an automatically dancer, we design a user-
friendly system which could let the user have just a finger to input the music and the
system could automatically output a performance. The performance will include the
emotions on Zenbo’s faces and LED lights on Zenbo’s wheels. We give the process of
using MVR algorithm for performance as follows:

1. Calculate the beat time through music by Librosa packages [5].
We first calculate the beat time by using Librosa software packages. Every fol-
lowing action will be based on the beat time. To calculate the duration time of LED
lights, we first calculate the waiting time which is the time between two beats. In
our experiments, the duration time of the LED lights will be decided as half waiting
time that will have better action on LED lights and do not overlap the lights on next
beat.

2. Design the Emotion from Tone Analyzer [16].
The results of Tone Analyzer have 7 emotions which are anger, fear, joy, sadness,
analytical, confident, and tentative. We divide them into positive and negative
emotions. The positive emotions are joy, analytical, and confident. The negative
emotions are anger, fear, sadness, and tentative. Ever emotions will link the Zenbo
24 faces by different degree of their emotions.

3. Generate the file genzba.py [25] with total actions (faces, LED colors etc.).
We integrate the code as genzba.py and provide it on Github [25]. We give three
different situations to perform music with lights and emotions. The three kinds of
different performances are shown in Table 2.

MIDI Music

Music Sen ment 
Analysis

Music Signal 
Analysis

Emo ons

Beat Time

Colors

Fig. 2. MVR algorithm [14]
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5 Conclusion and Future Work

In this paper, we would like to display a performance of music visualization on the
robot. We give an algorithm design to show that how to program the Zenbo to perform
music automatically with LED lights on its wheels and express emotion on its face.
The MVR prototype system contains two components of systems: MSA system
(Librosa software packages), Tone Analyzer system. Based on ASUS Zenbo devel-
oper’s APP, we link these two systems to control ASUS Zenbo developer’s APP and
hence, we could easily insert music and output a performance automatically. We hope
that the MVR system not only could be used in Zenbo robot but also could extend to
other fields of Artificial Intelligent (AI) equipment in the future.
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Abstract. The non-trivial extension of Fibonacci words to Fibonacci
arrays was proposed by Apostolico and Brimkov in order to study repe-
titions in arrays. In this paper we investigate several combinatorial as well
as formal language theoretic properties of Fibonacci arrays. In particular,
we show that the set of all Fibonacci arrays is a 2D primitive language
(under certain conditions), count the number of borders in Fibonacci
arrays, and show that the set of all Fibonacci arrays is a non-recognizable
language. We also show that the set of all square Fibonacci arrays is a
two dimensional code.

Keywords: Fibonacci words · Fibonacci arrays ·
Recognizable picture language · Two dimensional code · Primitivity

1 Introduction

Pattern recognition and image processing have largely motivated the extension of
concepts in formal language and combinatorics on words from one dimension to
two dimensions, [9,14,25]. Since then, the field has witnessed a surge of activity,
especially in generalizing formal language theoretic notions to two dimensions,
to define formal models to recognize two dimensional (2D) languages, see [17] for
a review on 2D languages. From combinatorial and coding theory perspective,
concepts like codes [4,6,10], palindromes [9,16,19], periodicity [3,15], Fine and
Wilf’s theorem [24], Sturmian sequences [8], Fibonacci words [7,13], etc., have
been generalized to their respective two dimensional counterparts.

The detection of repetitions in a string forms the very base of the field of
combinatorics on words. These repetitions play a major role in the field of biology
and computer science. Squares are the most fundamental of all repetitions. When
extended to two dimensions, it is known that the number of square blocks in a 2D
array of size m×n has the upper bound, O(m2n log n), [7]. Moreover, Fibonacci
arrays are shown to attain this general upper bound, [7].

The study of Fibonacci arrays, however, lacks the natural combinatorial per-
spective. In this paper, we aim to fill this gap by studying combinatorial and
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formal language theoretic properties of Fibonacci arrays. The paper is orga-
nized as follows: In Sect. 2, we state the basic notations and definitions that will
be used throughout the paper. In Sect. 3, we recall the definition of Fibonacci
arrays from [7], and discuss some basic properties of such arrays including var-
ious decomposition properties, whereas in Sect. 4, we discuss the primitivity,
non-recognizability property of the set of Fibonacci arrays, and also count the
number of borders of any Fibonacci array fm,n. In Sect. 5, we give an algorithm
to check whether a given array over an alphabet Σ is a Fibonacci array or not.
We end the paper with few concluding remarks in Sect. 6.

2 Preliminaries

An alphabet Σ is a finite non-empty set of symbols. By Σ∗, we denote the set
of all words over Σ including the empty word λ, whereas Σ+ denotes the set
of all non-empty words over Σ. The length of a word u ∈ Σ∗ (i.e., the number
of symbols in a word) is denoted by |u|. A word u ∈ Σ∗ is a prefix (suffix,
respectively) of a word w ∈ Σ∗ if w = uv (w = vu, respectively) for some
v ∈ Σ∗. A word w ∈ Σ+ is said to be bordered if there exists x ∈ Σ+ such
that w = xy = zx where y, z ∈ Σ+. A word is called unbordered if it is not
bordered. Moreover, the set of all words with exactly i borders (including λ),
where i ≥ 1, is denoted by D(i). The reversal of u = a1a2 · · · an is defined to be
the string uR = an · · · a2a1, where ai ∈ Σ for 1 ≤ i ≤ n. A word u is said to be
a palindrome or a 1D palindrome if u = uR. A word w is said to be primitive
if w = un implies n = 1 and w = u. For all other concepts in formal language
theory and combinatorics on words, the reader is referred to [18,20].

2.1 Arrays

Definition 1. An array (also called a picture or two-dimensional word) u =
[ui,j ]1≤i≤m,1≤j≤n of size (m,n) over Σ is a two-dimensional rectangular finite
arrangement of letters:

u =

u1,1 u1,2 · · · u1,n−1 u1,n

u2,1 u2,2 · · · u2,n−1 u2,n

...
...

. . .
...

...
um−1,1 um−1,2 · · · um−1,n−1 um−1,n

um,1 um,2 · · · um,n−1 um,n

Given an array u, by |u|row and |u|col, we denote the number of rows and
columns of u, respectively. An empty array is an array of size (0, 0), and we
denote it by λ, by the abuse of notation. The arrays of size (m, 0) and (0,m) for
m > 0 are not defined. The set of all arrays over Σ including the empty array,
λ, is denoted by Σ∗∗, whereas Σ++ is the set of all non-empty arrays over Σ.

We recall the following definition of the concatenation operation between two
arrays, and two array languages.
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Definition 2. [17] Let u, v be arrays of sizes (m1, n1) and (m2, n2), respectively
with m1, n1,m2, n2 > 0, over Σ. Then,

1. The column concatenation of u and v, denoted by �, is a partial operation,
defined if m1 = m2 = m, and is given by

u � v =

u1,1 · · · u1,n1 v1,1 · · · v1,n2

...
...

...
...

um,1 · · · um,n1 vm,1 · · · vm,n2

2. The row concatenation of u and v, denoted by �, is a partial operation, defined
if n1 = n2 = n, and is given by

u � v =

u1,1 · · · u1,n

...
...

um1,1 · · · um1,n

v1,1 · · · v1,n
...

...
vm2,1 · · · vm2,n

It is clear that, similar to the concatenation operation in one dimension, the
operations of column and row concatenations are associative but not commuta-
tive. Moreover, the column and row concatenation of u and the empty array λ
is always defined and λ is a neutral element for both the operations.

Note that, the operations of column and row concatenation can be extended
to languages in a similar fashion.

Definition 3. [19] Let u ∈ Σ∗∗. An array v ∈ Σ∗∗ is said to be a prefix of
u (suffix of u, respectively), denoted by v ≤2d

p u (v ≤2d
s u, respectively) if u =

(v � x) � y (u = y � (x � v), respectively) for some x, y ∈ Σ∗∗. Furthermore,
v is said to be a proper prefix of u (proper suffix of u, respectively) denoted by
v <2d

p u (v <2d
s u, respectively) if either x �= λ or y �= λ, or both x, y ∈ Σ++.

An array v is said to be a border of an array u if v is a prefix and as well a
suffix of u. Note that, the empty array, λ, is always a border of any array. By
D2d(i), let us denote the set of all arrays with exactly i ≥ 1 borders.

If x ∈ Σ++, then by (xk1�)k2� we mean that the array is constructed by
repeating x, k1 times column-wise and xk1�, k2 times row-wise. An array w ∈
Σ++ is said to be 2D primitive if w = (xk1�)k2� implies that k1k2 = 1 and
w = x, [15]. By Q2d, let us denote the set of all 2D primitive arrays. Also, if
w = (xk1�)k2� and x is 2D primitive, then x is said to be a 2D-primitive root
of w denoted by ρ2d(w) which is always unique for a given array, [15].

Definition 4. Let u = [ui,j ] be an array of size (m,n).
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1. [9] The reverse image of u, i.e.,

uR =

um,n um,n−1 · · · um,2 um,1

um−1,n um−1,n−1 · · · um−1,2 um−1,1

...
...

. . .
...

...
u2,n u2,n−1 · · · u2,2 u2,1

u1,n u1,n−1 · · · u1,2 u1,1

Furthermore, if u is equal to its reverse image uR, then u is said to be a two-
dimensional palindrome, [9,16]. By P2d, we denote the set of all 2D palin-
dromes.

2. The transpose of u, i.e., uT is defined as:

uT =

u1,1 u2,1 · · · um−1,1 um,1

...
...

. . .
...

...
u1,n u2,n · · · um−1,n um,n

3 Fibonacci Arrays

Recall that, the Fibonacci numerical sequence F (n) is defined recursively as
F (0) = 1, F (1) = 1, F (n) = F (n − 1) + F (n − 2) for n ≥ 2. Similarly, for
Σ = {a, b}, the sequence {fn}n≥0 ({f ′

n}n≥0, respectively) of Fibonacci words,
is defined recursively by f0 = a, f1 = b, fn = fn−1fn−2 for n ≥ 2 (f ′

0 = a,
f ′
1 = b, f ′

n = f ′
n−2f

′
n−1, respectively). Moreover, |fn| = |f ′

n| = F (n) for n ≥ 0.
Since f2 = f1f0, f3 = f2f1, · · · , we note that all the Fibonacci words fn, n ≥ 1
over {f0, f1} has f1 as its prefix. Note that, throughout the paper, the Fibonacci
words, fn and f ′

n, are always defined over the binary alphabet, {a, b}, unless
otherwise specified.

In [7], authors have extended the concept of Fibonacci words to Fibonacci
arrays.

Definition 5. [7] Let Σ = {a, b, c, d}. The sequence of Fibonacci arrays, {fm,n}
where m,n ≥ 0, is defined as:

1. f0,0 = β, f0,1 = γ, f1,0 = δ, f1,1 = α where α, β, γ and δ are symbols from Σ
with some but not all, among α, β, γ and δ might be identical.

2. For k ≥ 0 and m,n ≥ 1,

fk,n+1 = fk,n � fk,n−1, fm+1,k = fm,k � fm−1,k.

For the sake of convenience, we fix f0,0 = a, f0,1 = b, f1,0 = c, f1,1 = d, where
some but not all of a, b, c and d might be identical. We call fk,n+1 = fk,n�fk,n−1,
the column-wise expansion and fm+1,k = fm,k�fm−1,k, the row-wise expansion.
We demonstrate the definition of Fibonacci arrays with the following example.
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Example 6. Let Σ = {a, b, c, d}. Then,
f2,3 = f1,3 � f0,3 = (f1,2 � f1,1) � (f0,2 � f0,1)

= (f1,1 � f1,0 � f1,1) � (f0,1 � f0,0 � f0,1).

It can also be obtained by column-wise expansion,
f2,3 = f2,2 � f2,1 = f2,1 � f2,0 � f2,1

= (f1,1 � f0,1) � (f1,0 � f0,0) � (f1,1 � f0,1).

Using the fact that f0,0 = a, f0,1 = b, f1,0 = c, f1,1 = d, f2,3 is given by

f2,3 =
d c d
b a b

Observation: It can be observed that, when we perform the column-wise
expansion of fm,n till the index j of each entry, fi,j , becomes either 0 or 1,
we get F (n) number of columns. Furthermore, when the row-wise expansion is
performed till the index i of each entry, fi,j , becomes either 0 or 1, we get F (m)
number of rows. Thus, the size of Fibonacci array fm,n is (F (m), F (n)).

Similar to the definition of Fibonacci word f ′
n, we can define the sequence of

Fibonacci arrays {f ′
m,n}m,n≥0 recursively as,

f ′
m,n = f ′

m,n−2 � f ′
m,n−1, f ′

m,n = f ′
m−2,n � f ′

m−1,n,

where f ′
0,0 = a, f ′

0,1 = b, f ′
1,0 = c and f ′

1,1 = d with some but not all of a, b, c
and d might be identical. However, we study the properties of only fm,n in this
paper, as equivalent properties of f ′

m,n can be obtained similarly. We state the
relation between fm,n and f ′

m,n in Corollary 12.

Lemma 7. [7] If f0,0 �= f0,1 and f1,0 �= f1,1, then for m,n ≥ 1, each row of
the Fibonacci array fm,n, written as a 1D word is the Fibonacci word fn over
either {f0,0, f0,1} (starting with f0,1) or {f1,0, f1,1} (starting with f1,1). Also,
each column of fm,n, written as a 1D word is the Fibonacci word fm over either
{f0,0, f1,0} (starting with f1,0) or {f0,1, f1,1} (starting with f1,1).

We recall the following result from [11].

Theorem 8. Every integer n ≥ 0 admits a representation as sum of distinct
Fibonacci numbers, i.e.,

n = F (kr) + F (kr−1) + . . . + F (k1), (kr > kr−1 > . . . > k1).

Furthermore, for the above representation, we associate the word akr
· · · a1a0

with akr
= . . . = ak1 = 1 and ai = 0, otherwise. Such a binary word is called

a Fibonacci representation of a given integer n. For example, the Fibonacci
representations of 5 and 6(=5 + 1) are 1000 and 1001, respectively.

However, in the following, we define a new notion called the reduced repre-
sentation of a given Fibonacci word, fn, for n ≥ 2, and the corresponding binary
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word as a Fibonacci reduced representation of n, namely FibRed(n). This defini-
tion will aid us in a much simpler way of constructing the Fibonacci array, fm,n

for any m,n ≥ 0, irrespective of the knowledge of the intermediate Fibonacci
arrays.

Definition 9. Given a Fibonacci word, fn, for n ≥ 2, if fn is simplified using
the recurrence relation fn = fn−1fn−2 until fn is expressed using only f0 and f1,
then such an expression is called the reduced representation of fn. Formally, fn =
fi1fi2 · · · fiF (n) with i1, i2, . . . , iF (n) ∈ {0, 1}, is called the reduced representation
of fn. Also, the binary string i1i2 · · · iF (n) = FibRed(n) is called the Fibonacci
reduced representation of the integer n.

Note that, FibRed(1) = 1 and FibRed(0) = 0 and also one can observe that,
FibRed(5) = 10110101 and FibRed(6) = 1011010110110.

Lemma 10. FibRed(n) ends with 10 if n is even and ends with 01 if n is odd.
Also {FibRed(n)}n≥1 are 1D Fibonacci words over {0, 1}(starting with 1).

Proof. If n is even, n − 2, n − 4, · · · are all even. Therefore, the expansion,
fn = fn−1fn−2 = fn−2fn−3fn−3fn−4 ultimately becomes, f1 · · · f1f0 and hence
FibRed(n) ends with 10. Similarly, we can prove that, FibRed(n) ends with
01 if n is odd. Now, for n ≥ 1, since fn = fi1fi2 · · · fiF (n)(i1, i2, . . . , iF (n) ∈
{0, 1}), is a 1D Fibonacci word over {f0, f1} (starting with f1), by replacing
fi1 , fi2 , . . . fiF (n) in fi1fi2 · · · fiF (n) by the respective suffixes i1, i2, . . . , iF (n) we
observe that FibRed(n) is a 1D Fibonacci word over {0, 1} (starting with 1).

Based on the Definition 9, we state the following result which yields fm,n for any
given m,n ≥ 0, using the Fibonacci reduced representation of m and n.

Lemma 11. Let FibRed(m) = i1i2 · · · iF (m) and FibRed(n) = j1j2 · · · jF (n).
Then the indices of the elements in fm,n (f ′

m,n, respectively) are ordered pairs
of the cartesian product {i1, i2, . . . , iF (m)}×{j1, j2, . . . , jF (n)} ({iF (m), . . . , i1}×
{jF (n), . . . , j1}, respectively). Further, fn,m = [f̂m,n]T where f̂m,n is the array
obtained by replacing each entry fi,j, i, j ∈ {0, 1} of fm,n by fj,i.

Proof. We prove the result only for fm,n. Given fm,n, we know that the size of
fm,n is (F (m), F (n)). Thus, when we expand fm,n column wise till the column
index of each element becomes either 0 or 1, the concatenation of the column
indices (from left to right) of any row, results into the Fibonacci reduced rep-
resentation of n, FibRed(n) = j1j2 · · · jF (n). Furthermore, when the row wise
expansion is performed till the row index of each element becomes either 0 or 1,
the concatenation of the row indices (from top to bottom) of any column, results
into the Fibonacci reduced representation of m, FibRed(m) = i1i2 · · · iF (m).
That is to say that fm,n = (fi1,j1 � fi1,j2 � · · · � fi1,jF (n)) � (fi2,j1 � fi2,j2 �

· · · � fi2,jF (n)) � · · · � (fiF (m),j1 � fiF (m),j2 � · · · � fiF (m),jF (n)). Hence, the
indices of elements in fm,n are the ordered pairs of the cartesian product
{i1, i2, . . . , iF (m)} × {j1, j2, . . . , jF (n)}.



454 M. S. Kulkarni et al.

Also, since fn,m = (fj1,i1 �fj1,i2 �· · ·�fj1,iF (m))�(fj2,i1 �fj2,i2 �· · ·�fj2,iF (m))�
· · · � (fjF (n),i1 � fjF (n),i2 � · · · � fjF (n),iF (m)), we see that fn,m = [f̂m,n]T where
f̂m,n is the array obtained by replacing each entry fi,j , i, j ∈ {0, 1} of fm,n by
fj,i. ��

Using Lemma 11, we state the relation between Fibonacci arrays, fm,n and
f ′
m,n in the following result. Let F2d = {fm,n : m,n ≥ 0} and F ′

2d = {f ′
m,n :

m,n ≥ 0}.

Corollary 12. Let f ∈ F2d and f ′ ∈ F ′
2d be two Fibonacci arrays of the same

size. Then f ′ = fR.

3.1 Decomposition of Fibonacci Arrays

Partitioning a word in to smaller segments (or sub words), which have relatively
simpler properties, is one way of understanding the structure and properties of
the given word. Analysis of these decompositions will help in two-dimensional
string matching which is infact the core of any image processing algorithm [12].
In this section, we establish two possible decompositions of the Fibonacci array
fm,n which will enhance our understanding of its structural properties.

Lemma 13. [21] Any Fibonacci word fn over {f0, f1} (starting with f1), can
be written as a concatenation of a palindrome of length F (n) − 2, say αn, and a
suffix of length 2, say dn, which is f1f0 if n is even, and f0f1 if n is odd.

Lemma 14. If w ∈ Σ++ is such that every row and every column of w is a 2D
palindrome, then w ∈ P2d.

Proposition 15. Let {fm,n}m,n≥0 be the sequence of Fibonacci arrays over the
alphabet Σ = {a, b, c, d}. For m,n ≥ 3,

fm,n = (A � B) � (C � D) with |A|col = |C|col, such that

1. A is a 2D palindrome of size (F (m) − 2, F (n) − 2);
2. B and C are arrays of size (F (m) − 2, 2) and (2, F (n) − 2), respectively.

Moreover, if m = n, [B]T = Ĉ where Ĉ is the array obtained from C by
replacing each entry fi,j of C with fj,i for i, j ∈ {0, 1};

3. D is an array of size (2, 2) such that
(i) (f1,1 � f1,0) � (f0,1 � f0,0) if both m and n are even.
(ii) (f0,0 � f0,1) � (f1,0 � f1,1) if both m and n are odd.
(iii) (f1,0 � f1,1) � (f0,0 � f0,1) if m is even and n is odd.
(iv) (f0,1 � f0,0) � (f1,1 � f1,0) if m is odd and n is even.

Proof. 1. By Lemma 7, we know that if f0,0 �= f0,1 and f1,0 �= f1,1(f0,0 �= f1,0
and f0,1 �= f1,1, respectively), then each row (column, respectively) of
the Fibonacci array fm,n, written as a 1D word is the Fibonacci word
fn (fm, respectively), and furthermore by Lemma13, each of these rows



Combinatorial Properties of Fibonacci Arrays 455

(columns, respectively) has a palindromic prefix of length F (n)−2 (F (m)−2,
respectively). Therefore, all rows and columns of the prefix array of size
(F (m)−2, F (n)−2) of fm,n will be palindromes and hence by Lemma 14, the
prefix array itself is a palindrome. Note that, even if some of f0,0, f0,1, f1,0, f1,1
are identical, each row and column of the prefix array of size (F (m)−2, F (n)−
2) of fm,n is still a palindrome. Thus, fm,n has a palindromic prefix A of size
(F (m) − 2, F (n) − 2).

2. Since |A|row = |B|row and |A|col = |C|col, the sizes of B and C are (F (n)−2, 2)
and (2, F (m)−2), respectively. Further, if m = n, F (m) = F (n) and the sizes
of [B]T and C become the same. Hence, by Lemma 11, [B]T = Ĉ where Ĉ
is the array obtained from C by replacing each entry fi,j of C with fj,i for
i, j ∈ {0, 1}.

3. We prove the result only when m and n are even. Since m and n are even, the
Fibonacci reduced representations of both m and n end with 10. Thus, the
elements of the suffix of size (2, 2) of fm,n have the indices which are ordered
pairs of the cartesian product {1, 0}×{1, 0}. That is to say that such a suffix
is nothing but (f1,1 � f1,0) � (f0,1 � f0,0). ��
It is known from [21] that any Fibonacci word, fn, can be uniquely written

as a concatenation of two distinct palindromes of length F (n−1)−2 and F (n−
2)+2. In the following proposition, we provide the unique decomposition of any
Fibonacci array into four palindromic subarrays.

Lemma 16. [21] For all n > 4, fn is the product unvn of two uniquely
determined palindrome words of Σ+, Σ = {f0, f1}, whose lengths are |un| =
F (n − 1) − 2 and |vn| = F (n − 2) + 2.

Proposition 17. For m,n > 4 we have that

fm,n = (Ftl � Ftr) � (Fbl � Fbr)

where Ftl, Ftr, Fbl, Fbr are all palindromic subarrays such that
size(Ftl) = (F (m−1)−2, F (n−1)−2), size(Ftr) = (F (m−1)−2, F (n−2)+2),
size(Fbl) = (F (m−2)+2, F (n−1)−2) and size(Fbr) = (F (m−2)+2, F (n−2)+2).

Proof. Existence: If f0,0 �= f0,1 and f1,0 �= f1,1 (f0,0 �= f1,0 and f0,1 �= f1,1,
respectively), then by Lemma 7, each row (column, respectively) of a Fibonacci
array, written as a 1D word is a Fibonacci word. Furthermore, by Lemma16,
these Fibonacci words (over whatever symbols they may be), can be represented
as a product of two palindromes of lengths F (n−1)−2 and F (n−2)+2 (F (m−
1) − 2 and F (m − 2) + 2, respectively). Thus, in the Fibonacci array, fm,n,
each row (column, respectively) can be represented as a column catenation (row
catenation, respectively) of two palindromes of sizes (1, F (n−1)−2) and (1, F (n−
2) + 2) ((F (m − 1) − 2, 1) and (F (m − 2) + 2, 1), respectively). The result then
follows by Lemma 14. Note that, even if some of these a, b, c, d are identical, the
result still holds.

Uniqueness: When none of a, b, c, d are identical, the uniqueness follows from
the uniqueness result in one dimension. In all other cases, at least one row or one
column will be a 1D Fibonacci word, and hence the representation is unique. ��
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We have seen various unique decompositions of fm,n in this subsection. How-
ever, from the definition it is clear that the decomposition of fm,n in terms of
other Fibonacci arrays is certainly not unique. The natural question that arises
in this context is whether any array u ∈ Σ∗∗ can be decomposed uniquely into
Fibonacci arrays. The general answer is “no” as demonstrated in the following
example:

fm,n+3 � fm,n = fm,n+2 � fm,n+1 � fm,n = fm,n+2 � fm,n+2.

We recall the following from [5].

Definition 18. The domain of a picture p is the set of coordinates dom(p) =
{1, 2, · · · , |p|row}×{1, 2, · · · , |p|col}. A subdomain of dom(p) is a set d of the form
{i, i+1, · · · , i′}×{j, j +1, · · · , j′}, where 1 ≤ i ≤ i′ ≤ |p|row, 1 ≤ j ≤ j′ ≤ |p|col,
also specified by the pair [(i, j), (i′, j′)].

Definition 19. Let X ⊆ Σ∗∗. The tiling star of X, denoted by X∗∗, is the
set of pictures p whose domain can be partitioned in to disjoint subdomains
{d1, d2, . . . , dk} such that, for any h = 1, · · · , k, the subpicture ph of p asso-
ciated with the subdomain dh belongs to X. Also if p ∈ X∗∗, the partition
t = {d1, d2, . . . , dk} of the domain of p, together with the corresponding pictures
{p1, p2, · · · , pk}, is called a tiling decomposition of p in X.

Definition 20. A set X ⊆ Σ∗∗ is a code if any p ∈ Σ∗∗ has at most one tiling
decomposition in X.

Picture codes are an important class of codes in two dimensions, with poly-
omino codes being the more general class. Though many results pertaining to
codes are available in one dimensional language theory, major results in a two
dimensional context are still in demand [10]. Studies are carried out with an aim
to construct efficient two dimensional codes which are useful in communication
theory.

Our earlier demonstration, fm,n+3 � fm,n = fm,n+2 � fm,n+2, proves that,
the language, F2d = {fm,n : m,n ≥ 0} is not a code. But it is interesting to
observe the following theorem, in which, we prove that, when m = n and none
of a, b, c, d are identical, the language of Fibonacci arrays, L = {fn,n : n ≥ 0} is
a two dimensional code.

Theorem 21. Let {fm,n}m,n≥0 be the sequence of Fibonacci arrays over Σ =
{a, b, c, d}. Then when none of a, b, c, d are identical, the language L = {fn,n :
n ≥ 0} is a two-dimensional code.

Proof. For the sake of contradiction, assume that the language L is not a code.
Then, there exists a w ∈ Σ++ such that w has two distinct decompositions in
L, say t1 and t2.

Now, consider the bottom right blocks of t1 and t2, say fk1,k1 and fk2,k2 ,
respectively, such that k1 �= k2. Let us assume that k2 < k1. Since both fk1,k1

and fk2,k2 are square arrays and k2 < k1, fk2,k2 must be a suffix of fk1,k1 , i.e.,
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fk2,k2 <2d
s fk1,k1 . Without loss of generality, let us assume that k1 is even. Then,

by Proposition 15, the suffix of fk1,k1 in t1 is (f1,1 � f1,0) � (f0,1 � f0,0), which
is also a suffix of fk2,k2 in t2, and thus k2 has to be even as well. We now divide
the proof into following two cases:

Case (1): Let k1 = k2 + 2. Then, for k3 = k2 + 1, we have, F (k1) =
F (k2)+F (k3). Furthermore, since k1 and k2 are both even, the Fibonacci reduced
representations of k1 and k2 end with 10, and hence the last column of fk1,k1

(and fk2,k2) consists of f1,0 = c and f0,0 = a alone. Since k3 is odd, the Fibonacci
reduced representation of k3 ends with 01. This further implies that, the entries
in the last column of fk1,k1 above the last column of fk2,k2 must consist of f0,1 = b
and f1,1 = d, a contradiction.

Case (2): Let k1 > k2 + 2. Since k1 and k2 + 2 are both even, fk2,k2 <2d
s

fk1−2,k1−2. Now, we can use the argument as that of Case 1 to arrive at a
similar contradiction.

Since, both the cases lead to contradictions, we conclude that k1 = k2. We
can extend this argument to all other blocks in t1 and t2, and arrive at a similar
contradiction. The case when k1 is odd can be proved similarly. Thus w has an
unique decomposition in L. Hence L is a code. ��

4 Other Properties of Fibonacci Arrays

A study of primitive words in a language is required for a better understanding
of that language [26]. Also, primitive words play a major role in designing algo-
rithms for natural language processing and in computational biology. In addition,
by locating and counting special patterns like palindromes, squares and borders
in the words of a language, we can design efficient algorithms for text editing,
information retrieval and data compression. In this section, first we prove that
the set of Fibonacci arrays is 2D primitive (under certain conditions). Then,
we prove the non-recognizability of Fibonacci arrays. And finally, an explicit
formula for counting the number of borders in a given Fibonacci array fm,n is
derived.

Theorem 22. The set of Fibonacci arrays fm,n for m,n > 1 is 2D primitive
except in the following cases:

1. f0,0 = f1,0 (a = c) and f0,1 = f1,1 (b = d)
2. f0,0 = f0,1 (a = b) and f1,0 = f1,1 (c = d)

Furthermore, Fibonacci arrays {f0,0, f0,1, f1,0, f1,1} ∪ {f1,n, fm,1} ⊆ Q2d for
m,n > 1 if b �= d and c �= d.

Proof. The Fibonacci arrays f0,0, f0,1, f1,0 and f1,1 are trivially 2D primitive.
First, let us assume that none of a, b, c, d are identical. Now, if m = 1 and

n > 1 (n = 1 and m > 1, respectively), then f1,n (fm,1, respectively), written as
a 1D word is a Fibonacci word and hence primitive, [21].

Now, assume that, fm,n is not 2D primitive for some m,n ≥ 2. Then, fm,n =
(uk1�)k2� where at least one of k1 or k2 is strictly greater than 1. Without loss of
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generality, let k1 = 1 and k2 > 1, then fm,n = uk2�. This implies that, the first
column of fm,n is uk2�

1 where u1 <2d
p u. However, this contradicts the fact that

Fibonacci words are primitive. The cases when k1 > 1, k2 = 1 and k1, k2 > 1
can be proved similarly.

Now, from the definition of Fibonacci arrays, we know that, some of a, b, c, d
might be identical. Thus, we have the following possible cases:

Case (1): Let a = b, c �= d. Then, we have the following three subcases:
Case (1a): Let a = d. Then, we have a = b = d �= c. This implies that,

the first row (second column, respectively) of fm,n written as a 1D word is a
Fibonacci word over {a, c}. Moreover, since the Fibonacci words are primitive,
there cannot exist u ∈ Q2d such that fm,n = (uk1�)k2� where either k1 > 1 or
k2 > 1.

The subcases (1b): a = b = c �= d and (1c): a = b �= d �= c can be proved
similarly. Also, the cases when (2): a = c, b �= d, (3): a = d, b �= c, (4): b =
c, a �= d, (5): b = d, a �= c and (6): c = d, a �= b, and its subcases can be proved
similarly.

Case (7): Let b = c, a = d. Then, the first row and the first column of fm,n

written as a 1D words are Fibonacci words over {a, b} and the set of Fibonacci
words is known to be primitive.

Now, let us consider the following cases:
Case (I): Let a = b, c = d. If a = b �= c then all the columns are identical.

Moreover, all these columns are Fibonacci words over {a, c}, say u, and hence
for F (n) ≥ 2, fm,n = uF (n)�, which is not 2D primitive.

The case (II): a = c, b = d can be proved similarly.
Hence, the set of Fibonacci arrays fm,n for m,n ≥ 0 are 2D primitive except

in Case (I) and Case (II). ��
Recall that an array x ∈ Σ∗∗ is said to be a border of an array u ∈ Σ++ if x

is a prefix as well as a suffix of u. Moreover, the set of all arrays with exactly i
borders (including λ), where i ≥ 1, is denoted by D2d(i). We state the following
result from [27] regarding the borders of 1D Fibonacci words.

Theorem 23. [27] Let {fn}n≥1 be the sequence of 1D Fibonacci words over
{a, b}. Then,

1. {f0, f1, f2} ⊆ D(1)
2. For i ≥ 3, fi ∈ D(j) where j = � i

2�.
We state an analogous result for Fibonacci arrays in Theorem24. Note that,

since the indices of the elements of fm,n for any given m,n ≥ 0, are cartesian
product of FibRed(m) and FibRed(n), the borders of fm,n are created by the
borders of FibRed(m) and FibRed(n).

Theorem 24. Let {fm,n}m,n≥0 be the sequence of 2D Fibonacci arrays over
{a, b, c, d} such that none of a, b, c, d are identical. Then,
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1. {f0,0, f0,1, f1,0, f1,1, f1,2, f2,1} ⊆ D2d(1)
2. {f1,n}n≥3 ⊆ D2d(j), where j = �n

2 � and {fm,1}m≥3 ⊆ D2d(j), where j = �m
2 �

3. For m,n ≥ 2, fm,n ∈ D2d(j) where j = �m
2 ��n

2 �.

Proof. The statement (1) can be easily verified. Since, {f1,n}n≥3 and {fm,1}m≥3,
written as 1D words are nothing but 1D Fibonacci words, statement (2) follows
from Theorem 23.

Now, let m,n ≥ 2 and let FibRed(m) = i1i2 · · · iF (m) and FibRed(n) =
j1j2 · · · jF (n).

By Lemma 10, we note that FibRed(m) and FibRed(n) are 1D Fibonacci
words over {0, 1}, starting with 1. Furthermore, since m,n ≥ 2, by Theorem 23,
both FibRed(m) and FibRed(n) will have non-empty borders. For any k, l such
that 1 ≤ k < F (m) and 1 ≤ l < F (n), let B = i1 · · · ik and B′ = j1 · · · jl,
be the borders of FibRed(m) and FibRed(n), respectively. Due to the fact
that the indices of elements in fm,n are ordered pairs of the cartesian prod-
uct {i1, i2, . . . , iF (m)} × {j1, j2, . . . , jF (n)}, the prefix array of size (k, l) of fm,n

is
x = (fi1,j1 � · · · � fi1,jl) � · · · � (fik,j1 � · · · � fik,jl).

Since i1 · · · ik and j1 · · · jl are borders of FibRed(m) and FibRed(n) respectively,
the same subarray x occurs as a suffix of fm,n. Note that, these prefix and suffix
subarrays can overlap with each other. Hence, the borders of fm,n are generated
due to the borders of FibRed(m) and FibRed(n), and therefore, by Theorem23
fm,n has �m

2 � × �n
2 � number of borders. ��

Table 1. Number of borders in fm,n under various cases.

Case → 1 2 3 4

m odd m odd m even m even

Subcase ↓ n odd n even n even n odd

(a) (a = b), (c = d) V6 V6 V6 V6

(b) (a = c), (b = d) V5 V5 V5 V5

(c) (a = d), (b = c) V7 V1 V7 V1

(d) (a = b) �= (c �= d) V1 V1 V1 V1

(e) (a = c) �= (b �= d) V1 V1 V1 V1

(f) (a = d) �= (b �= c) V1 V1 V7 V1

(g) (b = c) �= (a �= d) V1 V1 V1 V1

(h) (b = d) �= (a �= c) V2 V1 V1 V2

(i) (c = d) �= (a �= b) V3 V3 V1 V1

(j) a �= (b = c = d) V4 V3 V1 V2

(k) b �= (a = c = d) V3 V3 V7 V1

(l) c �= (a = b = d) V2 V1 V7 V2

(m) d �= (a = b = c) V1 V1 V1 V1
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By definition of 2D Fibonacci words, we know that some of a, b, c, d can be
identical. Thus, together with the fact that m,n can be even or odd, in total, 52
different cases arise. The number of borders in each of the 52 cases are listed in
Table 1, where the values of Vi’s for 1 ≤ i ≤ 7 are as per Theorem 25.

Note that, in the proof of Theorem25, for s, t ∈ Σ, we use fk,{s<t} to denote,
by the abuse of notation, the kth Fibonacci word over {s, t} starting with s.

Theorem 25. Let {fm,n}m,n≥0 be the sequence of 2D Fibonacci arrays over
{a, b, c, d} such that some but not of all a, b, c, d are identical. Then, the number
of borders of fm,n takes any of the values from the set {V1, V2, V3, V4, V5, V6, V7}
where,

1. V1 = �m
2 ��n

2 �
2. V2 = �m

2 ��n
2 � + (F (m) − �m

2 �)
3. V3 = �m

2 ��n
2 � + (F (n) − �n

2 �)
4. V4 = �m

2 ��n
2 � + (F (m) − �m

2 �) + (F (n) − �n
2 �) − 1

5. V5 = �m
2 ��n

2 � + �n
2 �(F (m) − �m

2 �)
6. V6 = �m

2 ��n
2 � + �m

2 �(F (n) − �n
2 �)

7. V7 = �m
2 ��n

2 � + 1

Proof. We divide the proof in to four main cases depending on the values of
m,n, and further in to subcases depending on the equality among a, b, c, d.

Case 1: m is odd, n is odd.
Case 1(a): Let a = b, c = d. Note that, all the columns written as 1D words,

are Fibonacci words fm,{d<b}. Thus fm,n = f
F (n)�
m,1 .

In the case when none of the a, b, c, d are identical, we already have �m
2 ��n

2 � = k
borders. Thus fm,n, in this case will surely have k borders. Since m is odd, along
with the 1st row even the last row will be of the form dF (n)�. Thus every prefix
of dF (n)� becomes a border of fm,n. Thus, we get F (n) − �n

2 � extra borders.
Since every column is identical and we have �m

2 � borders for fm,{d<b}, we get
in total �m

2 �(F (n) − �n
2 �) extra borders.

Case 1(b): Let a = c, b = d. Here fm,n = f
F (m)�
1,n where f1,n written as a 1D

word is fn,{d<c}. This case can be proved similar to that of Case 1(a).
Case 1(c): Let a = d, b = c. Here, all the rows and the columns, written

individually as 1D words are either fn,{d<c} or fn,{c<d}, and either fm,{d<c} or
fm,{c<d}, respectively. Since m,n are odd, the prefix and the suffix of fm,n, of
size (2, 2) are (d � c) � (b � a) and (a � b) � (c � d), respectively. Now since
a = d, b = c, both the prefix and suffix will become (d � c) � (c � d). Thus, this
will contribute to an extra border of fm,n. Hence the count.

Case 1(d): Let (a = b) �= (c �= d). Recall that, the first two rows and the
first two columns play a key role in contributing the borders of fm,n. Since in
this case 1st row and 1st column written as 1D words are fn,{d<c} and fm,{d<b}
respectively, we will not get any extra borders other than the available �m

2 ��n
2 �

borders.
The sub cases 1(e-g) and 1(m) can be proved similarly as that of case 1(d).
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Case 1(h): Let (b = d) �= (a �= c). Here, since n is odd, the first and the last
columns of fm,n are of the form dF (m)�. Thus, prefixes of of dF (m)� become
borders of fm,n. Hence we get F (m) − �m

2 � extra borders.
Case 1(l): Proof is similar to that of Case 1(h).
Case 1(i): Let (c = d) �= (a �= b). Here, since m is odd, the first and the last

rows of fm,n are of the form dF (n)� and hence the proof is similar to that of
Case 1(h).

Case 1(k): Proof is similar to that of Case 1(i).
Case 1(j): Let a �= (b = c = d). Since m and n are odd, the first and last rows,

and the first and last columns of fm,n are dF (n)� and dF (m)� respectively. Thus,
we get (F (m) − �m

2 �) + (F (n) − �n
2 �) extra borders. However, since the (1, 1)

sized border ‘d’ is counted twice in the above count, we get V4 as the number of
borders.

Case 2: m is odd, n is even.
Case 2(a): Let a = b, c = d. Here fm,n = f

F (n)�
m,1 where fm,1 written as a 1D

word is fm,{d<b} and hence the proof is similar to that of Case 1(a).
Case 2(b): Let a = c, b = d. Here fm,n = f

F (m)�
1,n where fm,1 written as a 1D

word is fn,{d<c}. Also since n is even, fm,n has a prefix and a suffix of the form
(d � c)F (m)�. The argument similar to that of Case 1(b) can now be applied.

The proofs of cases 2(c-h), 2(l-m) are similar to that of 1(d), since in all these
cases, the first row and the first column written as 1D words are fn,{d<c}, and
fm,{d<c} or fm,{d<b} respectively.

Cases 2(i-k): Since m is odd, the argument similar to that of Case 1(i) can
be applied.

Case 3: m is even, n is even.
Case 3(a): Let a = b, c = d. The proof is similar to that of Case 1(a).
Case 3(b): a = c, b = d. Since n is even, the proof is similar to that of Case

2(b).
Case 3(c): a = d, b = c. Here, all the rows and the columns, written as 1D

words, are either fn,{d<c} or fn,{c<d}, and either fm,{d<c} or fm,{c<d}, respec-
tively. Since m,n are even, the prefix and the suffix of fm,n, of size (1, 1) are
‘d’ and ‘a’, respectively. Now since a = d, we get an extra border of size (1, 1).
Hence the count.

As in the cases 3(f), 3(k) and 3(l), d = a with m and n being even, we get
an an extra border of size (1, 1).

The proofs of cases 3(d), 3(e), 3(g-j) and 3(m) are similar to that of Case
1(d).

Case 4: m is even, n is odd.
Cases 4(a), 4(b), 4(h) and 4(l) are similar to that of cases 1(a), 1(b), 1(h)

and 1(l), respectively.
Case 4(j): Since n is odd and b = a the first and last columns are of the form

bF (m)� and hence the count.
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Cases 4(c-g), 4(i), 4(k), 4(m): In these cases any one of the following situ-
ations may happen and hence there is no possibility of creation of extra bor-
ders. (I) The first row and the first column are 1D Fibonacci words (4(c,g,m):
fn,{d<c}, fm,{d<c}, 4(d-f): fn,{d<c}, fm,{d<b}), (II) The first row is of the form
dF (n)�, but the last row and the first column are over two-letter alphabet. ��

4.1 Non-recognizability 2D Fibonacci Language

In this subsection, we prove that the set of Fibonacci arrays is not tiling recog-
nizable.

Let Γ and Σ be finite alphabets and let w = [wi,j ] be an array of size (m,n).
Let us call an array of size (2, 2) a tile. By B2,2(w), let us denote the set of all
tiles/subarrays of w (of size (2, 2)). Let ŵ be the word of size (m + 2, n + 2)
obtained from w by surrounding w with a special boundary symbol # such that
# /∈ Σ.

For an array w ∈ Γ ∗∗ of size (m,n), the projection by mapping π : Γ → Σ
of w is an array w′ = [w′

i,j ] ∈ Σ∗∗ such that w′
i,j = π(wi,j), for all 1 ≤ i ≤

m, 1 ≤ j ≤ n. Similarly, the projection by mapping π of a 2D language L is the
language L′ = {w′ : w′ = π(w) ,∀w ∈ L} ⊆ Σ∗∗.

Definition 26. [17] Let Γ be a finite alphabet. A 2D language L ⊆ Γ ∗∗ is
local if there exists a finite set Θ of tiles over the alphabet Γ ∪ {#} such that
L = {w ∈ Γ ∗∗ : B2,2(ŵ) ⊆ Θ}, whereas Γ is called a local alphabet.

Definition 27. [17] A tiling system (TS) is a 4-tuple τ = (Σ,Γ,Θ, π), where Σ
and Γ are two finite alphabets, Θ is a finite set of tiles over the alphabet Γ ∪{#}
and π : Γ → Σ is a projection.

A tiling system τ is said to recognize a language L′, denoted by L′ = L′(τ),
if L′ = π(L) where L is the underlying local language. A language L′ ⊆ Σ∗∗ is
said to be recognizable if there exists a tiling system τ = (Σ,Γ,Θ, π) such that
L′ = L′(τ).

The following lemma is analogous to the pumping lemma for regular lan-
guages.

Lemma 28 [17] (Horizontal Iteration Lemma). Let L′ be a recognizable two-
dimensional language. Then, there is a function ϕ : N → N such that if p is an
array in L′ such that |p|row = n and |p|col > ϕ(n), we may write p = x � q � y
with |x� q|col ≤ ϕ(n) and |y|col ≥ 1; and for all i ≥ 0, word x� qi� � y is in L′.
Furthermore, ϕ(n) ≤ γn, n ∈ N, where γ is the size of any local alphabet used
to represent L′.

Theorem 29. The set F2d = {fm,n : m,n ≥ 2}, is not a tiling recognizable 2D
language.

Proof. We prove the result by contradiction. Let us assume that F2d is tiling
recognizable. Then, there exists a tiling system τ = (Σ,Γ,Θ, π) that recognizes
F2d. Let γ be the size of a local alphabet Γ .
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For p ∈ F2d, let |p|row = k, and thus, k must be a Fibonacci number. Then,
by horizontal iteration lemma, there exists a function ϕ : N → N such that
ϕ(k) ≤ γk and |p|col > ϕ(k), and we can write p = x�q�y with |x�q|col ≤ ϕ(k)
and |y|col ≥ 1; and for all i ≥ 0, the array x � qi� � y is in F2d. There certainly
exists some i ≥ 0 such that the number of columns of x � qi� � y will not be
a Fibonacci number, a contradiction, since the number of rows and columns of
any array in the set F2d must be a Fibonacci number. Hence, F2d is not a tiling
recognizable language. ��

5 An Algorithm to Check an Array for Fibonacci

In this section, we provide an algorithm that decides whether any given array
w ∈ Σ = {a, b, c, d} is Fibonacci or not.

Let Σ1 = {a, b}, Σ2 = {c, d}, Σ′
1 = {a, c} and Σ′

2 = {b, d}. We use the prop-
erty that, any row (column, respectively) of fm,n written as a one dimensional
word is a Fibonacci word over either Σ1 or Σ2 (Σ′

1 or Σ′
2, respectively), to decide

whether a given w is a member of F2d. In fact, we breakdown the given w in to
its rows and columns and carry out the algorithm.

We use the sufficient condition given in [21] for a 1D word to be a Fibonacci
word.

Proposition 30. [21] Let {wn}, n ≥ 1, be a sequence of words of Σ+ each of
which contains atleast two different letters of the alphabet Σ(i.e. alph(wn) ≥ 2).
Let us moreover suppose that for all n ≥ 5,

wn = αnβn = γncn

with cn ∈ Σ∗, αn = αR
n , βn = βR

n , γn = γR
n and |αn| = F (n − 1) − 2, |βn| =

F (n − 2) + 2, |γn| = F (n) − 2. If the word wn begin always with the same letter
then wn = fn(n ≥ 5).

Theorem 31. We can check if a given word w ∈ {a, b} of length N starting
with b is a Fibonacci word in O(N) time.

Proof. We use Proposition 30 as a base to check whether a given word is
Fibonacci or not. The algorithm takes input a word over a fixed binary alpha-
bet Σ = {a, b} starting with b. It is a well known fact that a given a number
k is Fibonacci if and only if either 5k2 + 4 or 5k2 − 4 is a perfect square [1].
This property, and the algorithms given in [2] can be used to check if the given
number is Fibonacci.
Algorithm 1. To check whether a given w ∈ Σ+ belongs to Fa,b or not

1 If |w| is a Fibonacci number go to 2 else output NO
2 Find the sub words αn, βn, γn cn with the appropriate lengths mentioned

in the Proposition 30
3 Check whether αn, βn, γn are palindromes. If so output YES else output

NO
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Regarding the computational complexity of Algorithm1, Step 1 is of order
O(ln(N)) where |wn| = N [2]; Step 2 is of order O(N)), as checking a word of
length k for palindrome is of order O(k); so Algorithm 1 is of complexity O(N).

��
Theorem 32. For Σ = {a, b, c, d}, we can check if a given array w ∈ Σ++ of
size (M,N) having (d � c) � (b � a) as a prefix is a Fibonacci array in O(MN)
time.

Proof. We mainly use Theorem 31 to check whether an given array is Fibonacci.

Algorithm 2. To decide whether a given w is in F2d or not
1 Let (M,N) = size(w). If both M and N are Fibonacci numbers go to

Step 2, else output NO
2 Check whether the first column written as a 1D word is a Fibonacci word

over Σ′
2. If so go to Step 3, else output NO

3 for i=1 to M do
4 Mi = the word present in row i
5 If Mi starts with a d go to step 6 and if Mi starts with b go to step 7
6 If Mi is a 1D Fibonacci word over Σ2 then break else output NO
7 If Mi is a 1D Fibonacci word over Σ1 then break else output NO
8 end
9 Output YES

Regarding the computational complexity of Algorithm2, step 1 is of order
O(ln(max(M,N))); step 2 is of order O(M), by Algorithm 1; steps 6 and 7 are
executed M times. Note that step 2 and steps 6,7 are independent. And steps
6,7 call the standalone polynomial time algorithm, Algorithm1, a fixed number
of times, M . Hence, Algorithm 2 is of complexity O(N). The complexity will be
O(M), if we first check the first row for a Fibonacci word and then check all the
columns for Fibonacci words. ��

6 Conclusions and Future Works

In this paper some structural and combinatorial properties of Fibonacci arrays,
a natural extension of 1D Fibonacci words have been studied. Various ways
of decomposing the Fibonacci array fm,n are discussed. Primitive and non-
recognizable characteristics of the set of Fibonacci arrays are proved. A for-
mula to count the number of borders in a given Fibonacci array is also derived.
An algorithm to check whether a randomly given array over an alphabet Σ is
Fibonacci or not is also provided.

In our future works, further properties like balancedness and the number of
squares (in general tandems) in Fibonacci arrays, will be studied. Two dimen-
sional iterated morphisms, generating the Fibonacci arrays will also be analysed.
In [23], the author has constructed a few one dimensional infinite and bi-infinite
words using the geometry of tilings of the hyperbolic plane. In particular, the
one dimensional infinite Fibonacci word is generated and how the construction
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is related to the grossone numeral system [22] is thoroughly explained. In line
with these concepts, we will study and explore the possibilities of geometrically
constructing an infinite Fibonacci array.
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9. Berthé, V., Vuillon, L.: Palindromes and two-dimensional Sturmian sequences. J.
Autom. Lang. Comb. 6(2), 121–138 (2001)

10. Bozapalidis, S., Grammatikopoulou, A.: Picture codes. RAIRO-Theor. Inform.
Appl. 40(4), 537–550 (2006)

11. Carlitz, L.: Fibonacci representations II. Fibonacci Q. 8, 113–134 (1970)
12. Chang, C., Wang, H.: Comparison of two-dimensional string matching algorithms.

In: 2012 International Conference on Computer Science and Electronics Engineer-
ing, vol. 3, pp. 608–611. IEEE (2012)

13. Dallapiccola, R., Gopinath, A., Stellacci, F., Dal, N.L.: Quasi-periodic distribution
of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles. Opt.
Express 16(8), 5544–5555 (2008)

14. Fu, K.S.: Syntactic Methods in Pattern Recognition, vol. 112. Elsevier, Amsterdam
(1974)

15. Gamard, G., Richomme, G., Shallit, J., Smith, T.J.: Periodicity in rectangular
arrays. Inf. Process. Lett. 118, 58–63 (2017)

16. Geizhals, S., Sokol, D.: Finding maximal 2-dimensional palindromes. In: The Pro-
ceedings of the 27th Annual Symposium on Combinatorial Pattern Matching, CPM
2016, vol. 54, no. 19, pp. 1–12. Dagstuhl (2016)

17. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G.,
Salomaa, A. (eds.) Handbook of Formal Languages, pp. 215–267. Springer, Heidel-
berg (1997). https://doi.org/10.1007/978-3-642-59126-6 4

18. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages and Computation, vol. 24. Pearson (2006)

19. Kulkarni, M.S., Mahalingam, K.: Two-dimensional palindromes and their proper-
ties. In: Drewes, F., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2017. LNCS, vol.
10168, pp. 155–167. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
53733-7 11

http://arxiv.org/abs/1803.07199
http://arxiv.org/abs/1803.07199
https://doi.org/10.1007/978-3-642-38771-5_6
https://doi.org/10.1007/978-3-642-59126-6_4
https://doi.org/10.1007/978-3-319-53733-7_11
https://doi.org/10.1007/978-3-319-53733-7_11


466 M. S. Kulkarni et al.

20. Lothaire, M.: Algebraic Combinatorics on Words, vol. 90. Cambridge University
Press, Cambridge (2002)

21. Luca, A.: A combinatorial property of the Fibonacci words. Inf. Process. Lett.
12(4), 193–195 (1981)

22. Margenstern, M.: An application of grossone to the study of a family of tilings of
the hyperbolic plane. Appl. Math. Comput. 218(16), 8005–8018 (2012)

23. Margenstern, M.: Fibonacci words, hyperbolic tilings and grossone. Commun. Non-
linear Sci. Numer. Simul. 21(1–3), 3–11 (2015)

24. Mignosi, F., Restivo, A., Silva, P.V.: On Fine and Wilf’s theorem for bidimensional
words. Theor. Comput. Sci. 292(1), 245–262 (2003)

25. Minsky, M., Papert, S.: Perceptrons. The MIT Press, Cambridge (1969)
26. Pal, D., Masami, I.: Primitive words and palindromes. In: Context-Free Languages

and Primitive Words, pp. 423–435. World Scientific (2014)
27. Yu, S.S., Zhao, Y.K.: Properties of Fibonacci languages. Discret. Math. 224(1–3),

215–223 (2000)



Watson-Crick Jumping Finite Automata

Kalpana Mahalingam , Rama Raghavan(B) , and Ujjwal Kumar Mishra

Department of Mathematics, Indian Institute of Technology Madras,
Chennai 600036, India

{kmahalingam,ramar}@iitm.ac.in, ma16d030@smail.iitm.ac.in

Abstract. In this paper, we introduce a new automata called Watson-
Crick jumping finite automata, working on tapes which are double
stranded sequences of symbols, similar to that of a Watson-Crick
automata. This automata scans the double stranded sequence in a discon-
tinuous manner (i.e.) after reading a double stranded string, the automata
can jump over some subsequence and continue scanning, depending on the
rule.We define some variants of such automata and compare the languages
accepted by these variants with the language classes in Chomsky hierar-
chy. We also investigate some closure properties.

Keywords: Jumping Finite Automata · Watson-Crick automata ·
Watson-Crick jumping finite automata

1 Introduction

DNA Computing is a branch of natural computing. The research in this area
has produced several interesting theoretical aspects of computing [9]. One such
aspect is Watson-Crick automata (or WKA in short).

WKA is introduced as a counter part of the Sticker system [5]. This automata
works on double strand. The symbols on the double strand are related by a
complementary relation. The input strand is called as Watson-Crick tape used
in a FIFO manner. The basic model of WKA scans the two strands separately but
in a correlated manner. Variants of WKA can be seen in [3,4,7]. The variants of
WKA introduced in the literature concentrate on Watson-Crick data structure.
Several interesting studies that have emerged on the concept of WKA can be
seen in [9].

General Jumping Finite Automata (GJFA) is introduced in [8] as a model
that formalizes discontinuous information processing. Another variant of GJFA
is defined in [2], where the read head is set to move only in one direction and in
[10] the author further investigate the properties of GJFA. In order to preserve
the probity of the genome in successive generation, sharp accurate method of
DNA replication is required. In DNA replication, the double stranded molecule is
replicated by replicating continuously the upper or lower strand, while the other
strand in a discontinuous manner. This process is called a semi-continuous pro-
cess. Also rearrangement of genes during molecular evolution often are regarded
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as difficult operation [1]. However, there are simple ways to find such rearrange-
ments. In order to understand the discontinuous reading or rearrangements of
DNA molecules, one requires the computational model that reads the strands
in a discontinuous manner. With this motivation, we define a theoretical model
called Watson-Crick jumping finite automata (or WKJFA in short). We intro-
duce four variants. The variants are compared for their expressibility power.
We also compare the variants with Chomsky hierarchy. For basic definitions of
automata theory the reader is referred to [6].

This paper is divided into five sections. In, Sect. 2, we give the definitions
of GJFA and WKA with examples. Section 3 describes the new definition of
WKJFA and its variants. The model is illustrated with examples. In Sect. 4 we
compare the power of variants with Chomsky hierarchy. Section 5 compares the
power of variants of WKJFA among themselves. We investigate various closure
properties of the languages accepted by these variants in Sect. 6. We end with a
few concluding remarks.

2 Prelimanaries

We now recall the formal definition of GJFA introduced by Meduna et.al. in [8].

Definition 1. A general jumping finite automaton (GJFA) is a quintuple

M = (V,Q, q0, F,R)

where V is the input alphabet (finite set), Q is a finite set of states, V ∩ Q = φ,
q0 ∈ Q is the start state, F ⊆ Q is a set of final states and R ⊆ Q × Σ∗ × Q is
a finite set of rules. A configuration of GJFA M is any string of Σ∗ × Q × Σ∗.
After application of each rule the automaton changes its configuration. Sup-
pose the automaton is in a configuration (x, p, yz), then after application of the
rule (p, y, q) ∈ R to the configuration the automaton goes to a new configura-
tion (x′, q, z′), where xz = x′z′, and deletes the string y from the configuration
(x, p, yz). Let x, z, x′, z′ ∈ V ∗ such that xz = x′z′ and (p, y, r) ∈ R, then M
makes a jump from xpyz to x′qz′, written as:

xpyz � x′qz′.

Let �
+ and �

∗ denote the transitive and the reflexive-transitive closure of �,
respectively. The language accepted by M is defined as:

L(M) = {uv : u, v ∈ Σ∗, uq0v �
∗ f, f ∈ F}.

We say a GJFA is of degree n if | y | ≤ n for all (p, y, q) ∈ R. A degree 1 GJFA
is called jumping finite automaton (JFA).

Example 1. Consider the JFA

M = ({a, b, c}, {q0, q1, q2}, q0, {q0}, R)
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where R = {(q0, a, q1), (q1, b, q2), (q2, c, q0)}.
The language accepted by the automaton is

L(M) = {w ∈ {a, b, c}∗ : | w |a=| w |b=| w |c}
where | w |a denotes the number of occurrences of a in w.

We now recall the concept of Watson-Crick finite automata [9]. This
automata works on tapes which are double stranded sequences of symbols related
by a complementarity relation, similar to that of a DNA molecule. Let V be an
alphabet set and ρ be a symmetric relation, which is also called complemen-

tarity relation, on V . A double strand string is represented as
(

w1

w2

)
over the

set
(

V ∗

V ∗

)
, where

(
w1

w2

)
and

(
V ∗

V ∗

)
are alternate notations of (w1, w2) and

V ∗ × V ∗. We concatenate the elements of
(

V ∗

V ∗

)
component wise that is

(
x1

x2

)(
z1
z2

)
=

(
x1z1
x2z2

)
.

We denote
[

V
V

]
ρ

=
{[

a
b

]
| a, b ∈ V, (a, b) ∈ ρ

}
and WKρ(V ) =

[
V
V

]∗

ρ

. The set

WKρ(V ) is called the Watson-Crick domain associated to V and ρ.

The essential difference between
(

w1

w2

)
and

[
w1

w2

]
is just that

(
w1

w2

)
is an

alternative notation for the pair (w1, w2), whereas
[

w1

w2

]
implies that the strings

w1 and w2 have the same length and the corresponding letters are connected by
the complementarity relation.

Definition 2. A Watson-Crick automaton is a tuple

M = (V, ρ,K, q0, F,R)

where V is a finite alphabet set, ρ is a symmetric relation on V , K is a finite set
of states, V ∩ K = φ, q0 ∈ K is the initial state, F ⊆ K is a set of final states

and R ⊆ K ×
(

V ∗

V ∗

)
× K is a finite set of rules.

We define transition in a Watson -Crick automaton as follows:

For
(

u1

u2

)
,

(
v1
v2

)
,

(
w1

w2

)
∈

(
V ∗

V ∗

)
such that

[
u1v1w1

u2v2w2

]
∈ WKρ(V ) and p, q ∈

Q, we write (
u1

u2

)
p

(
v1
v2

)(
w1

w2

)
⇒

(
u1

u2

)(
v1
v2

)
q

(
w1

w2

)

if and only if (p,

(
v1
v2

)
, q) ∈ R. Let ⇒+ and ⇒∗ denote the transitive and

the reflexive -transitive closure of ⇒, respectively. The language accepted by a
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Watson-Crick automaton is

L(M) = {w1 ∈ V ∗ | q0

[
w1

w2

]
⇒∗

[
w1

w2

]
f, f ∈ F,w2 ∈ V ∗,

[
w1

w2

]
∈ WKρ(V )}.

Example 2. Consider the Watson-Crick automaton

M =
({a, b, c}, ρ, {q0, q1, q2, qf ), q0, {qf}, R

)

where ρ is the identity relation and R is the set of rules
{(

q0,

(
a
λ

)
, q0

)
,

(
q0,

(
b
a

)
, q1

)
,

(
q1,

(
b
a

)
, q1

)
,

(
q1,

(
c
b

)
, q2

)
,

(
q2,

(
c
b

)
, q2

)
,

(
q2,

(
λ
c

)
, qf

)
,

(
qf ,

(
λ
c

)
, qf

)}
.

The language accepted by the automaton is

L(M) = {anbncn : n ≥ 1}.

3 Watson-Crick Jumping Finite Automata

In this section we define a new type of automata called as Watson-Crick jumping
finite automata (WKJFA in short).

Definition 3. A Watson-Crick jumping finite automaton is a tuple

M = (V, ρ,K, q0, F,R)

where V is a finite alphabet set, ρ is a symmetric relation on V , K is a finite set
of states, V ∩ K = φ, q0 ∈ K is the initial state, F ⊆ K is a set of final states

and R ⊆ K ×
(

V ∗

V ∗

)
× K is a finite set of rules.

Let
(

x1

x2

)
,

(
z1
z2

)
,

(
x′
1

x′
2

)
,

(
z′
1

z′
2

)
∈

(
V ∗

V ∗

)
and

(
p,

(
y1
y2

)
, q

) ∈ R be a rule.

Then M makes a jump from
(

x1

x2

)
p

(
y1
y2

) (
z1
z2

)
to

(
x′
1

x′
2

)
q

(
z′
1

z′
2

)
, written as

(
x1

x2

)
p

(
y1
y2

) (
z1
z2

)
�

(
x′
1

x′
2

)
q

(
z′
1

z′
2

)
, where

(
x1z1
x2z2

)
=

(
x′
1z

′
1

x′
2z

′
2

)
.

The language accepted by M is defined as:

L(M) =
{

uv :
(

u
u′

)
q0

(
v
v′

)
�

∗ f, f ∈ F, u, v, u′, v′ ∈ V ∗,
[

uv
u′v′

]
∈

WKρ(V ) and
[

uv
u′v′

]
=

(
u
u′

)(
v
v′

)}
.
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The difference between WKA and WKJFA lies in the parsing of the double
stranded sequence when it is scanned by the automata. In WKA, given any input
double stranded sequence, the sequence is parsed only once (in the beginning)
and the string is scanned using the given set of rules. If the transition reaches
one of the final states, the string is accepted. However, in WKJFA, the sequence
is recombined and parsed after every transition step depending on the available
set of rules. We illustrate with the following example.

Example 3. Consider the Watson-Crick jumping finite automaton

M =
({a, b, c}, ρ, {q0, q1, qf}, q0, {qf}, R

)

where ρ is the identity relation and

R =
{(

q0,

(
ab
λ

)
, q0

)
,

(
q0,

(
λ
bc

)
, q1

)
,

(
q1,

(
λ
bc

)
, q1

)
,

(
q1,

(
c
a

)
, qf

)
,

(
qf ,

(
c
a

)
, qf

)}
.

The acceptance of the word aabbcc is as:
(

a
aabbcc

)
q0

(
ab
λ

) (
bcc
λ

)
�

(
λ

aabbcc

)
q0

(
ab
λ

) (
cc
λ

)

�

(
cc
aab

)
q0

(
λ
bc

)(
λ
c

)

�

(
cc
aa

)
q1

(
λ
bc

)

� q1

(
c
a

) (
c
a

)
� qf

(
c
a

)
� qf .

However, there are many ways to accept the same string, the above given
transition steps is one of them. The language accepted by the automaton is
L(M) = {anbncn | n ≥ 1}+.

Example 4. Consider the Watson-Crick jumping finite automaton

M =
({a, b, c}, ρ, {q0, q1, q2, q3, q4}, q0, {q0, q1, q2, q3, q4}, R

)

where ρ is the identity relation and R is the set of rules{(
q0,

(
a
λ

)
, q1

)
,

(
q1,

(
b
λ

)
, q2

)
,

(
q2,

(
c
λ

)
, q0

)
,

(
q0,

(
λ
a

)
, q3

)
,

(
q3,

(
λ
b

)
, q4

)
,

(
q4,

(
λ
c

)
, q0

)}
.

The language accepted by the automaton is

L(M) = {w ∈ {a, b, c}∗ : |w|a = |w|b = |w|c}.
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Similar to that of the classical case, we also consider several variants of
Watson-Crick jumping finite automata. We say that M = (V, ρ,K, q0, F,R) is

• stateless, if K = F = {q0};
• all − final, if K = F ;

• simple, if all
(
p,

(
x1

x2

)
, q

) ∈ R we have either x1 = λ or x2 = λ;

• 1 − limited, if for all
(
p,

(
x1

x2

)
, q

) ∈ R we have | x1x2 |= 1.

We denote by AWKJFA, NWKJFA, FWKJFA, SWKJFA, 1WKJFA,
the families of languages recognized by Watson-Crick jumping finite automata
which are arbitrary (A), stateless (N , from “no state”), all-final (F ), simple
(S), 1-limited (1) respectively. We also consider combinations of such variants
#1#2WKJFA where #1,#2 ∈ {N, 1, F, S,A}. Thus, NSWKJFA is a ‘No’ state
simple Watson-Crick jumping finite automaton. We now construct a SWKJFA
that accepts the language L = {ab}∗.

Example 5. Consider the SWKJFA

M =
({a, b}, ρ, {q0, q1, qf}, q0, {q0, qf}, R

)
where ρ is the identity relation and

R =
{(

q0,

(
ab
λ

)
, q0

)
,
(
q0,

(
λ
ba

)
, q0

)
,
(
q0,

(
λ
a

)
, q1

)
,
(
q1,

(
λ
b

)
, qf

)}
.

The language accepted by the automaton is L(M) = {ab}∗.

We now compare the families GJFA and JFA with the family WKJFA and
show that GJFA ⊂ SWKJFA and hence JFA ⊆ 1WKJFA.

Proposition 1. GJFA ⊂ SWKJFA.

Proof. Let L ∈ GJFA, then there exists a GJFA M = (Σ,Q, q0, F,R) such that
L = L(M). Without loss of generality, we can assume that in the GJFA there
is no λ transition [8]. Now we construct an equivalent SWKJFA M ′ such that
L = L(M ′). The construction of the SWKJFA is as follows:

M ′ = (V = Σ, ρ,K, q0, F
′ = F,R′).

where ρ is the identity relation on V . Since R is finite, we can enumerate the
elements of R. Corresponding to each rule, numbered, i : (p,w, q), i ≥ 1, we

associate with it two rules in R′ which are
(
p,

(
w
λ

)
, qi

)
,
(
qi,

(
λ
w

)
, q

)
, qi /∈ Q.

Let K be the union of the set of states Q and the newly introduced states qi’s.
It is easy to show L(M) = L(M ′). Hence GJFA ⊆ SWKJFA. It was shown in
[10] that there does not exist a GJFA that accepts the language L = {ab}∗. But
by Example 5, L = {ab}∗ ∈ SWKJFA. Hence GJFA ⊂ SWKJFA.

Corollary 1. JFA ⊆ 1WKJFA.
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Let perm(w) denote the set of all words obtained from taking all permuta-
tions of w and perm(L) =

⋃
w∈L perm(w). We have the following observations.

Proposition 2. If M =
(
V, ρ,K, q0, F,R

)
be a WKJFA with rules

(
p,

(
x
y

)
, q

)
where | x |≤ 1 and | y |≤ 1, then L(M) = perm(L(M)).

Proof. Clearly L(M) ⊆ perm(L(M)). Now let w = a1a2 · · · an ∈ L(M). It is
sufficient to show that perm(w) ⊆ L(M). Since w = a1a2 · · · an ∈ L(M), there
exist w′ = b1b2 · · · bn ∈ V ∗ such that[

w
w′

]
=

[
a1a2 · · · an

b1b2 · · · bn

]
∈ WKρ(V ) and

[
a1

b1

]
,

[
a2

b2

]
, · · · ,

[
an

bn

]
∈

[
V
V

]
ρ

.

Therefore [
ai1

bi1

] [
ai2

bi2

]
· · ·

[
ain

bin

]
=

[
ai1ai2 · · · ain

bi1bi2 · · · bin

]
∈ WKρ(V )

where ai1ai2 · · · ain and bi1bi2 · · · bin are permutations of w and w′, respectively.

Since for any rule
(
p,

(
x
y

)
, q

)
we have | x |≤ 1 and | y |≤ 1, the automaton will

consume either
(

λ
λ

)
or

(
ai

λ

)
or

(
λ
bj

)
or

(
ak

bl

)
at each step of computation in

order to accept w = a1a2 · · · an equivalently in order to consume
[

a1a2 · · · an

b1b2 · · · bn

]
.

Since, after each transition step the remaining strings of upper and lower strands
get regrouped and in the next step we again parse the remaining double strand
and because of jumping nature the automaton will consume

[
ai1ai2 · · · ain

bi1bi2 · · · bin

]

using the rules which were used to accept w. Hence ai1ai2 · · · ain ∈ L(M) and
perm(w) ⊆ L(M).

Corollary 2. If L ∈ 1WKJFA, then L = perm(L).

Corollary 3. There does not exist any 1WKJFA which accept the language
{ab}.

It is not difficult to prove the following useful Lemma.

Lemma 1. There is no WKJFA that accepts a∗b∗.

It is known that ([9]) REG ⊂ AWK, where AWK denotes the family of lan-
guages accepted by an arbitray Watson-Crick automaton and hence the language
a∗b∗ ∈ AWK. But by Lemma 1, a∗b∗ /∈ AWKJFA, hence AWK 	⊆ AWKJFA.
Also {ab}∗ ∈ AWK ∩ AWKJFA, by Example 5 and REG ⊂ AWK. Thus, we
conclude that AWK ∩ AWKJFA 	= φ.
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4 Relations with Well-Known Language Families

In this section we investigate the relationship between the families of languages
accepted by several variants of WKJFA described in the previous section and the
families in the Chomsky hierarchy. The following result can be easily deduced
from the definition of WKJFA, Corollary 3 and Example 4. One can easily verify
that the language accepted in Example 4 is context sensitive and the respective
automaton described is a 1WKJFA as well as SWKJFA.

Lemma 2. The following are true:

1. 1WKJFA and FIN are incomparable.
2. 1WKJFA and REG are incomparable.
3. 1WKJFA and CF are incomparable.

Proof. From Corollary 3, it is clear that FIN, REG, CF 	⊆ 1WKJFA. Also, it
follows from Example 4, that 1WKJFA 	⊆ FIN, or REG or CF. Thus the fam-
ily of languages accepted by a 1-limited Watson-Crick jumping finite automaton
is not comparable with the families of Finite, Regular or Context-free languages
in the Chomsky heirarchy.

As opposed to the previous result, we show that the class of all finite lan-
guages are subsets of the family of languages accepted by SWKJFA.

Lemma 3. FIN ⊂ SWKJFA.

Proof. Let K ∈ FIN. Since K is a finite language there exist an n ≥ 0 such that
K = {w1, w2, . . . , wn}. We construct a SWKJFA as follows:

M = (V, ρ, {q0, q1, · · · , qn, qf}, q0, {qf}, R)

where V = alph(K), ρ is the identity relation on V and

R =
{(

q0,

(
w1

λ

)
, q1

)
,
(
q1,

(
λ
w1

)
, qf

)
, · · · ,

(
q0,

(
wn

λ

)
, qn

)
,
(
qn,

(
λ

wn

)
, qf

)}
.

Clearly L(M) = K. Therefore FIN ⊆ SWKJFA. Also, one can observe from
Example 4 that, SWKJFA \ FIN 	= φ. Hence, FIN ⊂ SWKJFA.

Similarly we can show that FIN ⊂ FWKJFA, by making K = F and ignoring
λ string in the above construction.

In the following we construct a ‘No’ state Watson Crick jumping finite
automata, (i.e.) the automata has exactly one state and all transition rules are
from and to this unique state. Hence, when representing such an automaton, the
presence of the unique state is understood and is not specified.

Example 6. Consider the NWKJFA M =
({a, b, c}, ρ, R

)
, where ρ is the identity

relation and R =
{ (

a
b

)
,

(
b
c

)
,

(
λ
a

)
,

(
c
λ

)}
.

The language accepted is L(M) = {w ∈ {a, b, c}∗ : |w|a = |w|b = |w|c}.
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We discuss the comparability of various language classes in Table 1. The
results represented in the Table 1 can be shown using Lemmas 1, 2, and 3, Exam-
ples 4 and 6 and definition of NWKJFA, as proved in Lemma 2. In the Table 1,

× represents incomparable,

�

represents that FIN ⊂ FWKJFA, SWKJFA.

Table 1. Comparability of various families of languages.

FIN REG CF
NWKJFA × × ×
1WKJFA × × ×
FWKJFA

� × ×
SWKJFA

� × ×

Now we recall some results ([9]) related to Watson-Crick automata:

Lemma 4. ([9]) AWK(u) ⊆ CS.

Lemma 5. ([9]) Every one-letter language in AWK(u) is regular .

We now show that the family of languages accepted by an arbitrary Watson-Crick
jumping finite automaton is a proper subset of the family of context-sensitive
languages.

Lemma 6. AWKJFA ⊂ CS.

Proof. By Lemma 4, we have AWK ⊆ CS. Moreover, jumps of an AWKJFA
can be simulated by context-sensitive grammars, hence AWKJFA ⊆ CS.
Also from Lemma 5, we have every one-letter language in AWK(u) is regular.
However, in languages over one letter alphabet jumping transitions have no
effect and hence AWK = AWKJFA = REG over one letter alphabet. Hence
AWKJFA ⊂ CS.

5 Relations Between Watson-Crick Jumping Finite
Automata Language Families

In this section we investigate the relationship among the families of languages
accepted by several variants of Watson-Crick jumping finite automata described
in Sect. 3. We begin the section by constructing a ‘No’ state Watson-Crick jump-
ing finite automaton that accepts the Dyck language.

Example 7. Consider the NWKJFA

M =
({a, b}, {(a, a), (b, b)},

{ (
ab
λ

)
,

(
λ
ab

) })
.

The language accepted by the automaton is the Dyck language over {a, b}.
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We have the following results.

Proposition 3. N1WKJFA ⊂ NSWKJFA.

Proof. It is clear from the definition that, N1WKJFA ⊆ NSWKJFA. The
Dyck language L in Example 7 is accepted by a NSWKJFA. The language con-
tains ab but it does not contain ba. Hence by Corollary 2, the Dyck language L
cannot be accepted by any N1WKJFA. Thus N1WKJFA ⊂ NSWKJFA.

Using the same argument, we can show that F1WKJFA ⊂ FSWKJFA. Also,
since NWKJFA always accepts infinite language, NSWKJFA ⊂ FSWKJFA.
And hence N1WKJFA ⊂ F1WKJFA and N1WKJFA ⊂ FSWKJFA. By
Lemma 3 and Corollary 3, 1WKJFA ⊂ SWKJFA. We note that, NSWKJFA
and F1WKJFA are incomparable, which can be shown using Example 7 and
Corollary 2.

Proposition 4. SWKJFA = AWKJFA.

Proof. We have, by definition, SWKJFA ⊆ AWKJFA.
Now, let M = (V, ρ,K, q0, F,R) be a AWKJFA. We construct an equivalent
SWKJFA, M ′ = (V, ρ,K ′, q0, F,R′) as follows:

V, ρ, q0, F are same in M and M ′. Each rule of the form
(
p,

(
w
λ

)
, q

)
or

(
r,

(
λ
w′

)
, s

)
or

(
t,

(
λ
λ

)
, u

)
of R are members of R′. All other types of rules of

R are indexed from 1 to k, where k ≤ n and n is the number of rules in R. Let
K ′ = K ∪ {pi | 1 ≤ i ≤ k}.

Consider a rule of R indexed as i :
(
p,

(
a1a2 . . . an

b1b2 . . . bm

)
, q

)
, where m,n ≥ 1. We

construct two rules equivalent to i as follows:

i′ :
(
p,

(
a1a2 . . . an

λ

)
, pi

)
, i′′ :

(
pi,

(
λ

b1b2 . . . bm

)
, q

)
.

Then, R′ consists of rules of R which are of the form
(
p,

(
w
λ

)
, q

)
or

(
r,

(
λ
w′

)
, s

)

or
(
t,

(
λ
λ

)
, u

)
and newly introduced rules which are indexed by i′ and i′′ for

1 ≤ i ≤ k. Cardinality of R′ will be (n + k). Consider a t-step derivation of M .

This derivation may contain applications of t1 rules of the form
(
p,

(
w
λ

)
, q

)

or
(
r,

(
λ
w′

)
, s

)
or

(
t,

(
λ
λ

)
, u

)
, where t1 ≤ t. This t−step derivation can be

simulated by rules in R′ in (2t − t1)-steps, by the above constructed rules of R′.
Note that the strands are regrouped every time after an application of a rule.
Similarly, a (2t − t1)-step derivation of M ′ can be simulated in t−steps by M .
Hence L(M) = L(M ′).
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Fig. 1. Comparability of various classes of languages

The results, related to comparability of various families of languages, pre-
sented in this paper are consolidated in Fig. 1.

Dotted line between two families represents that the families are incompara-
ble, whereas �, � and ↑ represent that one family is strict subset of other and �
represents below family is subset of above.

6 Closure Properties of WKJFA Family

Proposition 5. AWKJFA is closed under union.

Proof. Let M1 = (V1, ρ1,K1, q1, F1, R1) and M2 = (V2, ρ2,K2, q2, F2, R2) be two
AWKJFAs. Without loss of generality, let K1 ∩ K2 = φ and q0 /∈ (K1 ∪ K2).
Define a AWKJFA M = (V1 ∪ V2, ρ1 ∪ ρ2,K1 ∪ K2 ∪ {q0}, q0, F1 ∪ F2, R1 ∪ R2 ∪
{(q0,

(
λ
λ

)
, q1), (q0,

(
λ
λ

)
, q2)}). Clearly, L(M) = L(M1) ∪ L(M2).

Using similar construction to the one defined in the Proposition 5 we can show
the following:

Proposition 6. SWKJFA and FWKJFA are closed under union.

In the following we show that NWKJFA is not closed under union.

Proposition 7. NWKJFA is not closed under union.

Proof. Consider the NWKJFA

M =
({a}, {(a, a)},

{ (
a
λ

)
,

(
λ
a

)})
.
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Clearly, L(M) = a∗.
Hence a∗, b∗ ∈ NWKJFA.
If there exists a NWKJFA accepting a∗ ∪ b∗, then the automaton will accept a
as well as b, and hence accepts ab which does not belong to a∗ ∪ b∗.

Example 8. Consider the AWKJFA M = ({a, b}, ρ, {q0, q1}, {q0, q1}, R)
where ρ is the identity relation and R is the set of rules
{(

q0,

(
ba
λ

)
, q1

)
,
(
q1,

(
a
λ

)
, q1

)
,
(
q1,

(
λ
a

)
, q1

)
,
(
q1,

(
b
λ

)
, q1

)
,
(
q1,

(
λ
b

)
, q1

)}
.

The language accepted by the automaton is

L(M) = {a, b}∗ba{a, b}∗ ∪ {λ}.

Proposition 8. The following are true:

1. AWKJFA is not closed under complement.
2. SWKJFA is not closed under complement.
3. FWKJFA is not closed under complement.

Proof. Complement of the language of Example 8 is a∗b∗ − {λ}.
But by Lemma 1 we know that the complement language cannot be accepted by
any WKJFA. Moreover, the automaton in Example 8 is simple as well as all final.
Hence AWKJFA, SWKJFA and FWKJFA are not closed under complement.

Proposition 9. NWKJFA is not closed under complement.

Proof. Consider the NWKJFA

M =
({a, b}, {(a, a), (b, b)},

{ (
a
b

)
,

(
λ
a

)
,

(
b
λ

)})
.

The language accepted by the automaton is

L(M) = {w ∈ {a, b}∗ | | w |a=| w |b}.

The complement of the language is L(M)c = {w ∈ {a, b}∗ | | w |a 	=| w |b}.
If there exist a NWKJFA M ′ accepting L(M)c, then a, b ∈ L(M ′) implying
that ab ∈ L(M ′). But ab /∈ L(M)c. Hence there does not exist any NWKJFA
accepting L(M)c. Hence NWKJFA is not closed under complement.

Proposition 10. The following are true:

1. AWKJFA is not closed under concatenation.
2. SWKJFA is not closed under concatenation.
3. FWKJFA is not closed under concatenation.

Proof. The languages a∗ and b∗ are accepted by all the above three variants but
by Lemma 1 we know that none of the above variant can accept the language
a∗b∗. Hence none of the above variants are closed under concatenation.
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Proposition 11. NWKJFA is not closed under concatenation.

Proof. The languages a∗ and b∗ are accepted by NWKJFA but the language
a∗b∗ cannot be accepted by any NWKJFA because if there exist a NWKJFA
accepting a∗b∗ then it will accept ab and hence accept abab, using same rules
again. But abab /∈ L(a∗b∗), where L(a∗b∗) is language of a∗b∗. Hence NWKJFA
is not closed under concatenation.

Proposition 12. 1WKJFA is not closed under concatenation.

Proof. Finite languages a and b are accepted by 1WKJFA but ab cannot be
accepted by any 1WKJFA by Corollary 3. Hence 1WKJFA is not closed under
concatenation.

Proposition 13. NWKJFA is closed under Kleene star.

Proof. We will proof this proposition by proving that if L ∈ NWKJFA, then
L = L∗.
Clearly L ⊆ L∗.
Now take w ∈ L∗, then w = w1w2 · · · wn, where wi ∈ L for i = 1, 2 · · · n. Since
wi ∈ L therefore there is at least one way to accept w1w2 · · · wn using the rules
that accept each wi in sequence. Hence L∗ ⊆ L. Thus L = L∗

Proposition 14. 1WKJFA is not closed under Kleene star.

Proof. Finite language L = {ab, ba} is accepted by 1WKJFA but L∗ = {ab, ba}∗

cannot be accepted by any 1WKJFA. If there exist a 1WKJFA accepting L∗,
then it will also accept aabb as abba ∈ L∗ by Corollary 2. But aabb /∈ L∗. Hence
1WKJFA is not closed under Kleene Star.

Proposition 15. The following are true:

1. NWKJFA is not closed under homomorphism.
2. 1WKJFA is not closed under homomorphism.

Proof. Consider a homomorphism h : {a} → {a, b}∗ defined as: h(a) = ab. Now

consider the NWKJFA as well as 1WKJFA M =
({a}, {(a, a),

{ (
a
λ

)
,

(
λ
a

)})
.

The language accepted by the automaton is L(M) = a∗.
But the language h(L(M)) = {ab}∗ cannot be accepted by any NWKJFA. Since
ab ∈ {ab}∗ therefore there will be rules to consume ab. If there exist a NWKJFA
accepting {ab}∗ then it will accept aabb because using the rules, consuming
ab, first it will consume inner ab after that it will consume remaining ab. But
aabb /∈ {ab}∗.
The same language h(L(M)) = {ab}∗ also cannot be accepted by any 1WKJFA
because of the Corollary 2.
Hence NWKJFA and 1WKJFA are not closed under homomorphism.

The results related to the closure properties of WKJFA and its variants are
consolidated in Table 2. � represents that the family is closed, × represents that
the family is not closed whereas ? represents that the results are not known.
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Table 2. Closure properties of WKJFA and its variants.

Union Complement Concatenation Kleene star Homomorphism Intersection

� Arbitrary × Arbitrary × Arbitrary ? Arbitrary ? Arbitrary ? Arbitrary

� Simple × Simple × Simple ? Simple ? Simple ? Simple

� All final × All final × All final ? All final ? All final ? All final

� No state × No state × No state � No state × No state ? No state

� 1-limited ? 1-limited × 1-limited × 1-limited × 1-limited ? 1-limited

7 Conclusion

In this paper a new model called WKJFA is introduced. The existing basic WKA
is now set to process the double strand in a discontinuous manner and hence we
call it WKJFA. Four variants are introduced and compared for their power. We
also compare the variants with Chomsky hierarchy. It will be interesting to look
for simulation of WKJFA with semi-discontinuous process in DNA replication.
It will also be interesting to look in to the descriptional complexity aspects of
WKJFA.
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sider the problem of mobile robot dispersion on graphs. The study of
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1 Introduction

1.1 Background and Motivation

The mobile robots paradigm has been used to study many types of systems,
including those where simple insects cooperate with each other to accomplish
some goal. These robots typically need to work together to solve some common
problem such as shape formation or exploration of the environment or gathering
at some common point. One of the primary motivations of this type of research
is to understand how to use resource-limited robots to achieve some large task
in a distributed manner.

Typically the environment that serves as a backdrop to these problems is a
either a finite plane or a connected graph. However, a graph can just be thought
of as a discretization of the space of a finite plane or in fact three dimensional
space. Thus, using graphs as an environment allows, in some sense, for a more
general study of a given problem.

The problem of dispersion on graphs was recently introduced by Augustine
and Moses Jr. [4]. The initial version of the problem asks that n robots that
are initially arbitrarily placed on a graph should work together to reach a final
configuration such that there is exactly one robot on each node. We study this
problem and the more general version of it where k robots (for any k) are initially
arbitrarily placed and must reach a configurations such that at most �k/n� robots
are present on any given node. The study of dispersion is interesting and has
practical applications to any problem where the cost of several robots sharing the
same resource (node) far outweighs the cost of a robot finding a new resources
(moving on the graph). One such example is when multiple electric cars must
find a recharge station in an area where recharge stations are located close by.
The time to charge the vehicle may be in the order of hours while the time to
find another station would be in the order of minutes. Further, if the vehicles are
“smart” and communicate with each other to exchange information about what
stations are free or not, this problem is exactly modeled as dispersion. The study
of dispersion is also interesting as it relates to the related problems of scattering
on graphs, multi-robot exploration, and load balancing on graphs. Scattering
on graphs asks that k ≤ n spread themselves out in an equidistance manner
on symmetric graphs like rings or grids. This is just dispersion with an extra
constraint of equi-spacing. Multi-robot exploration asks that k robots starting
at the same node work together to visit each node of the graph as quickly as
possible. It is clear that any solution to dispersion solves this problem. Finally,
load balancing on graphs asks that nodes send and receive loads and evenly
distribute these loads among themselves. Dispersion can be seen as flipping this
model by having the loads (i.e., robots) move around and distribute themselves
evenly among the nodes. The techniques used to solve load balancing in graphs
are quite different from those used to solve problems in mobile robots and by
studying dispersion, our hope is to build a bridge between the two areas for
cross-pollination of ideas and techniques.
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As mentioned earlier, one of the key aspects of mobile robots is that we are
solving large tasks in a distributed manner with resource limited mobile robots. In
previous work, the study of memory of robots and time to achieve dispersion was
of great interest. This paper furthers that study and shows that the introduction
of randomness in a novel way allows robots to achieve dispersion using much less
memory than previously shown.

1.2 Our Results

Throughout this paper, we study the trade-off between memory required by
robots and the time it takes to achieve dispersion of n robots on different types
of graphs with n nodes and m edges. We denote the diameter of these graphs by
D and maximum degree of any node of the graph by Δ. We present algorithms for
increasingly general types of graphs that utilize randomness to allow robots, with
typically O(log Δ) bits of memory1, to achieve dispersion. This is a substantial
improvement over past algorithms which, while deterministic, required robots
to have Ω(log n) bits of memory each2. We also show a lower bound on the
memory requirement that any randomized algorithm requires Ω(log Δ) bits to
achieve dispersion, assuming all robots have the same amount of memory.

When we consider a rooted graph of a certain type, it implies that the topology
of the graph is of that type and all robots start at one node, called the root,
of the graph. We initially describe our algorithms for dispersion of n robots on
n node graphs and subsequently generalize them to dispersion of any k robots
on n node graphs. We assume that robots do not know the values of n, m, k,
Δ, or D. However, in several instances, our algorithms require robots to have
memory proportionate to either parameter Δ or D. This means that whatever
memory supplied to the robot should be enough to satisfy the requirement, but
the explicit knowledge of the parameter itself is not needed. Our upper bound
results for dispersion of n robots on n node graphs are summarized in Table 1.

We first describe a primitive, Local-Leader-Election, that can be used by
robots with access to randomness to choose one robot to settle down at a given
node. This allows us to side-step the requirement of Ω(log(k/n)) bits of memory
required by each robot for a unique label if we want robots to deterministically
choose a robot to settle down at each node.

We then proceed to show how a simple algorithm for rooted rings, Rooted-
Ring, that requires robots to have O(log Δ) bits of memory and achieves disper-
sion in O(n) rounds. This serves as a warm-up and allows readers to internalize
the way we use Local-Leader-Election and how these sorts of algorithms (with
reduced memory) need to operate.

We then develop the algorithm Rooted-Tree for rooted trees that requires
robots to have O(log Δ) bits of memory and achieves dispersion in O(n). This
algorithm contains the key ideas for our algorithm on general rooted graphs.
1 Note that all log’s that appear in this paper are to the base 2.
2 Notice that our algorithms require only O(1) bits memory at each robot on paths,

rings, grids and any constant degree graphs, whereas the previous deterministic
algorithms require O(log n) bits.
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We then present two algorithms to achieve dispersion on rooted graphs,
Rooted-Graph-LogDelta-LogD and Rooted-Graph-Delta, which require robots to
have O(max{log Δ, log D}) and O(Δ) bits of memory respectively and both algo-
rithms achieve dispersion in O(m) rounds. Both algorithms are extensions of the
Rooted-Tree algorithm and use different amounts of memory to handle the issue
of dealing with cycles that may arise in the graph. We provide these two algo-
rithms with contrasting memory requirements so that if an algorithm designer
a priori knows which of the two memory requirements is less, they can program
robots to use that algorithm.

Finally, we present an algorithm Arbitrary-Graph, which works on arbitrary
graphs, and allows robots with O(log Δ) bits of memory to achieve dispersion in
the cover time of the graph with high probability. The algorithm is a Las Vegas
type randomized algorithm in that robots will eventually achieve dispersion, but
the exact running time is not fixed and but bounded with high probability. The
“cost” of having robots use less memory is that we require robots to stay active
after they settle down. Namely, each robot runs the algorithm until it settles
down and then must stay active to inform other robots that come to the node
that the node is settled. In this sense, the algorithm is non-terminating. Contrast
this against other algorithms which allow robots to settle down and need not be
active after certain conditions are met.

Table 1. Upper bound results of dispersion of n robots on an n node graph (with Δ
maximum degree and diameter D) for different types of graphs along with the memory
requirement of robot.

Serial no. Type of graph Memory requirement of
each robot

Algorithm
name

Time until
dispersion
achieved

1 Rooted ring O(1) bits Rooted-Ring O(n)
rounds

2 Rooted tree O(log Δ) bits Rooted-Tree O(n)
rounds

3 Rooted graph O(max{log Δ, log D})
bits

Rooted-
Graph-
LogDelta-
LogD

O(m)
rounds

4 Rooted graph O(Δ) bits Rooted-
Graph-Delta

O(m)
rounds

5 Arbitrary graph O(log Δ) bits *Arbitrary-
Graph

Cover time
of graph

*Arbitrary-Graph: In this algorithm, robots do not terminate execution of the algo-
rithm, unlike the other algorithms.
The cover time of a graph lies in the range between Ω(n log n) and O(mn).
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After presenting the above algorithms and analyzing them for dispersion of
n robots on n nodes, we then show how to generalize them to achieve dispersion
of k robots on n nodes, where k can be any positive integer value.

We then present our lower bound of Ω(log Δ) bits of memory needed by each
robot to achieve dispersion when randomness is allowed.

1.3 Related Work

The problem of dispersion of mobile robots on a graph was introduced recently
by Augustine and Moses Jr. [4] and studied in different graph classes. In the
full version [5], the authors rectified and improved some of their dispersion algo-
rithms. Improvements and rectifications were also independently performed by
Kshemkalyani and Ali [21]. Both papers focused on the trade-off between time
complexity and memory requirement of robots to solve dispersion determinis-
tically. Our results improve over the previous works [5,21] in terms of memory
requirement with the help of randomness. In particular, our randomized algo-
rithms reduce the memory requirement from O(log n) bits to O(log Δ) bits and
the time complexity remains same or is faster (in some cases). While the algo-
rithms in [4,5] chiefly rely on a timer to signal termination of the algorithm and
as such require Ω(log n) bits of memory, our algorithms are more event oriented
and robots terminate when the termination condition is triggered.

Dispersion is closely connected to graph exploration by robots; a well-studied
problem in the context of mobile robots. In the graph exploration problem, k
robots are initially located at a node and the goal is to have the robots collectively
visit all nodes in the graph. A number of papers have worked on this problem,
however, most of the works are in specific graph classes, such as rings [14,22],
trees [17,18,25], and grids [6,16]. Several papers consider exploration on general
graphs [9,10,12,15,20]. However, the model assumptions or the goal of these
papers are different from ours and they may produce inefficient solutions to
dispersion. For example, the papers close to our model [12,20,27] only focus on
minimizing memory of the robots and as a result the time complexity of their
exploration algorithms is very high. Fraigniaud et al. [20] shows that a robot
with Θ(D log Δ) bits of memory can explore an anonymous graph, but may take
time O(ΔD+1). Cohen et al. [12] considers the model where the nodes also have
memory. Then with some initial preprocessing, they solve exploration with less
memory bits, but the exploration takes O(Δ10m) time. Further, the exploration
algorithm of Cohen et al. with O(1) bits memory at each node cannot solve
dispersion immediately. Diks et al. [17] shows that exploration in a tree is possible
with O(log2 n) bits of memory. Ambühl et. al. [3] improved this memory bound
to O(log n) bits. Dynia et al. [18] and Ortolf et al. [25] present optimal-time
rooted tree exploration algorithms with k robots, but they assume unlimited
memory of robots. Our paper focuses on the trade-off between running time and
memory requirement to solve dispersion.

Another similar problem to dispersion is scattering or uniform deployment
of k robots k ≤ n on a graph. In the scattering problem on a graph, k robots
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need to uniformly deploy over n nodes in the graph. Several papers studied
the scattering problem on graphs; e.g., on rings [19,28] and on grids [7], but in
different settings.

Most of the above algorithms for graph exploration or scattering on graphs
are deterministic. To the best of our knowledge, our paper is the first presenting
randomized solutions to dispersion and improve the previous results.

A slightly different way of looking at the dispersion problem is as load bal-
ancing in graphs. Load balancing requires nodes to distribute the load over nodes
evenly. Here, if we consider robots as the load, then dispersion of robots is simi-
lar to load balancing, where the power to move load around the graph lies with
the load as opposed to the nodes. Load balancing is a well explored problem, in
particular in graphs [8,13,24,26,29]. Our model is closer to diffusion based load
balancing [13,24,29] with discrete loads [8,26].

1.4 Organization of Paper

The rest of the paper is organized as follows. In Sect. 2, we introduce the tech-
nical preliminaries needed for our results. In Sect. 3, we present an important
primitive, Local-Leader-Election, which we use extensively in our algorithms. In
Sects. 4, 5, and 6, we present our algorithms to achieve dispersion on rooted
rings, rooted trees, and rooted graphs respectively. In Sect. 7, we present a sim-
ple memory optimal algorithm to achieve dispersion on arbitrary graphs. We
show how to extend our algorithms to handle dispersion with an arbitrary num-
ber of robots in Sect. 8. The lower bound on memory per robot is presented in
Sect. 9. Finally, in Sect. 10, we present conclusions and some future work.

2 Technical Preliminaries

We consider a connected undirected graph of n nodes, m edges, diameter D,
and maximum degree of any node Δ. The nodes are anonymous, i.e. they do
not have unique labels. For every edge connected to a node, the node has a
corresponding port number for the edge. The same edge may have different port
number assigned to it at each of its attached nodes. For every node, there exists
a total ordering on the port numbers from that node. A robot with x bits of
memory has access to 2x ports of that node. For a given node with y ports, if
2x ≥ y, then the robot has access to all ports of the node. When 2x < y, the
robot only has access to a subset of the ports, where the exact subset of ports
is chosen arbitrarily by nature.3 Thus, for a given node with Δ ports, any robot
needs at least log Δ bits of memory in order to access all ports.4

3 The robot’s memory restricts it to only use a subset of the available ports when
determining which port to move through. Importantly, the robot does not know
that there are more ports than it is seeing. Thus it cannot purposely choose which
subset of ports to see. We call this lack of control “by nature”.

4 This does not necessarily give a Ω(log Δ) memory lower bound for dispersion. We
discuss this further in the lower bound section (Sect. 9).
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We assume a synchronous system, i.e. time progresses in rounds, and each
robot knows when the current round ends and a new round starts, although
robots may not know the round number. Each round proceeds as follows: (i)
First, robots colocated at the node exchange messages with each other and per-
form local computation. (ii) Second, robots move through a port of current node
and reach a new node. Robots may also choose to stay at the current node.
Note that in step (i) of the round, we consider local computation and message
exchange to be bounded, but free5.

Robots are anonymous, i.e. they do not have unique labels. Each robot has a
limited amount of memory for computation and to store information. The exact
limit depends on the algorithm to be run and is explicitly given in each section
of the paper. Each robot has access to a fair coin that be used to generate an
infinite number of random bits. However, the number of random bits that can
be stored and used for any purpose is limited by the robots memory. When a
robot is present at a node, it can access the port numbers of that node, subject
to memory restrictions as defined earlier. The robot can only view other robots
colocated at the same node as it and cannot see anything beyond its current
node (its “view” of the graph is limited). Robots do not know the value of n,
m, D, or Δ. Note that our algorithms require do not require robots to know the
actual values of D and Δ, but require the robots to have enough memory store
either O(log D), O(log Δ), or O(Δ) bits according to the algorithm in question.
Thus robots may have an upper bound on those values but do not explicitly
know those values.

We characterize the efficiency of solutions to dispersion along two metrics.
First, how many bits of memory is each robot required to have. Second, what is
the running time of the algorithm until dispersion is achieved. For all algorithms,
save the algorithm in Sect. 7, robots execute the dispersion algorithm and then
terminate within the running time we specify for the algorithm. For the algorithm
in Sect. 7, we allow robots to be active indefinitely.

We now present several definitions of terms we use in the paper. We call a
graph a rooted graph if all robots are initially placed at one node of that graph
called its root. A similar definition applies for specific types of graphs such as
rings and trees. We say that a robot settles at a given node if that robot chooses
to stay at that node in the final dispersion configuration. We call a node with
a robot that settles on it a settled node. The algorithm in Sect. 7 is based on
random walks. A simple random walk in an undirected graph is defined as: in
each step, the walk chooses a random adjacent edge from the current node and
moves to that neighbor. The probability of choosing a random neighbor u from
the current node v is 1/d(v), where d(v) is the degree of v. The cover time of a
random walk is defined to be the time required by the random walk to visit all
the nodes in the graph. It is known that the cover time of any graph is bounded
by O(mn) [2]. We refer the reader to the survey [23] for details on random walks
and cover time.

5 This can be considered a realistic assumption when the time taken for a robot to
move through an edge is significantly more than the time taken for either local
message exchange or local computation.
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We now formally define dispersion of k robots on an n node graph. Initially,
k robots are arbitrarily placed on the graph. Dispersion asks that robots move
around the graph to reach a configuration such that at most �k/n� robots are
present at any given node.

3 Local Leader Election

In this section, we describe a procedure which we use throughout the rest of
the paper. The procedure allows any number of k robots co-located at an unset-
tled node to choose exactly one leader (robot) for the node within one round of
an algorithm. Importantly, each robot only requires O(1) bits of memory and
access to a random number generator in order to execute the algorithm. We
first describe the algorithm and prove our claims on it. We subsequently discuss
the applications of the algorithm that immediately arise. In order to differenti-
ate between different instances of communication occurring between robots at a
node within the same round, we refer to each instance of communication among
at most k robots as one sub-round and use that terminology while describing
our algorithm. Note that, as per our model assumptions, any amount of com-
munication is allowed to take place between robots within a single round of the
system, so long as the amount of communication is bounded. As we shall see,
our procedure satisfies that requirement with high probability.

3.1 Algorithm Local-Leader-Election

Each robot starts off as a candidate for leader. In every sub-round, a robot that
is a candidate leader flips a fair coin. If heads, it broadcasts that it is alive to
other robots. If tails (and at least one other robot broadcasts in that sub-round)
it stops being a candidate for leader and doesn’t broadcast anymore. If tails and
no other robot broadcasts in that sub-round, it remains a candidate for leader.
This process is repeated until exactly one robot broadcasts in a given sub-round.
Then all robots know that that robot is the leader, and it is chosen as the robot
which settles down at the given node. Subsequently, all other robots can then
move to other nodes according to a given algorithm. Note that if it occurs that
no robot broadcasts in a given sub-round, that sub-round is ignored and all
robots that were still alive previously broadcast again.

Theorem 1. Local-Leader-Election can be run by multiple robots, each having
O(1) bits of memory and co-located at a node, to select a common leader within
one round of the system.

Proof. We first show that the algorithm can be run by robots and completes
within one round of the system. Then we argue about its memory complexity.

It is easy to that Local-Leader-Election takes O(log n) sub-rounds on expec-
tation for a leader to be chosen. Applying a Chernoff bound, it is also easy to see
that it takes O(log n) sub-rounds with high probability for termination. Thus the
number of sub-rounds is bounded with high probability. Recall that any amount
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of bounded communication between co-located robots is allowed in one round
of the system. Thus the algorithm successfully executes within one round of the
system.

Each robot requires only O(1) bits because a robot needs 1 bit to check if
it’s a candidate leader, 1 bit to check if it’s the leader, and 2 bits to check if it
heard 0, 1, or more than 1 robot broadcast in a given sub-round. ��

3.2 Applications

Local-Leader-Election can be directly applied to past deterministic algorithms
in [4] to replace the use of O(log n) bits to compare multiple robots to decide
which one settles at a node. In addition, if the termination condition is relaxed,
some of the resulting algorithms use dramatically less memory as a result. We
list the improvements to algorithms in [4], as a result of these two modifications,
below:

1. Algorithm Path-Ring-Tree-LogN achieves dispersion of n robots in O(n)
rounds on paths, trees, and rings when robots have O(log Δ) bits of memory
and do not terminate.

2. Algorithm Rooted-Graph-LogN achieves dispersion of n robots in O(m)
rounds on rooted graphs when robots have O(log Δ) bits of memory and
do not terminate.

4 Dispersion on Rooted Rings

In this section, we describe our algorithm to achieve dispersion of n robots on
a rooted ring in O(n) rounds when robots have O(1) bits of memory. This does
not contradict our lower bound because here Δ is a constant so O(log Δ) =
O(1). Recall that for a ring, any algorithm to achieve dispersion takes at least
Ω(n) rounds because the diameter of the graph is n/2. Thus our algorithm is
asymptotically time optimal.

4.1 Algorithm Rooted-Ring

Each robot performs a traversal of the ring in a deterministic manner until it
becomes the leader of the node it is at, as chosen in Local-Leader-Election. Once
it becomes the leader of that node, it settles down and terminates execution of
the algorithm.

The traversal of the ring is done in the following manner. Initially have robots
move through port 0. Subsequently, if the robot enters a node through port i
and it does not become the leader, have it leave through port i + 1 mod 2.

Theorem 2. Algorithm Rooted-Ring can be run by n robots with O(1) bits of
memory each to ensure dispersion occurs in O(n) rounds on rooted rings.
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Proof. It is easy to see that the entire ring is traversed by robots in O(n) rounds.
Further, each robot terminates as soon as it becomes a leader. Finally, each node
has exactly one leader robot assigned to it. Thus dispersion is achieved in O(n)
rounds. The only memory requirement is a bit to remember which port the robot
entered the node through and O(1) bits to execute Local-Leader-Election. Thus
each robot only requires O(1) bits of memory. ��

5 Dispersion on Rooted Trees

In this section, we describe an algorithm to achieve dispersion of n robots on a
rooted tree in O(n) rounds when each robot has O(log Δ) bits of memory.

5.1 Algorithm Rooted-Tree

The algorithm has two phases of execution. In the first phase, the algorithm has
every robot perform a deterministic depth first search (DFS) in order to uniquely
settle down at a node. In the second phase, the final robot to settle down then
backtracks to the root of the tree and performs a second DFS to inform each
robot to terminate execution.

In the first phase, each robot that does not settle down performs a DFS in
the following manner. It remembers the port i that it entered the node through.
It then leaves through port (i + 1) mod δ, where δ is the local degree of the
node. Initially at the root, let the robots move through port 0 (since the robots
did not initially enter the root through any node). At each empty node, a robot
is chosen by Local-Leader-Election to settle down at it. This node remembers
the port it entered the node through and we call the port the parent pointer.

In the second phase, the final robot to settle, x, changes its status to reflect
that phase two has begun and backtracks to the root of the tree and then per-
forms a second DFS until it finally settles down again and terminates. The robots
it comes in contact with terminate when a special condition is met, as defined
below. Consider the set of nodes on the path from the node where the last robot
settled to the root and call it R. Let S represent the set of all nodes in the
graph. For every node u ∈ S \ R, the robot at u terminates execution when x
leaves u through u’s parent pointer. For each node u ∈ R, we have the robot at
u remember the port that x backtracked through to reach the root, i.e. the port
x entered node u through as it backtracked, and we call that port the pointer to
final node.6 Once x passes through the pointer to final node of u, u terminates
execution. Finally, when x reaches its empty node, it settles down and terminates
execution.

Theorem 3. Algorithm Rooted-Tree can be run by n robots with O(log Δ) bits
of memory each to ensure dispersion occurs in O(n) rounds on rooted trees.

6 It is possible for the robot at u to differentiate x from just another robot executing
phase one of the DFS because x has changed its status to reflect that the second
phase has begun.
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Proof. We first prove that the execution of Rooted-Tree results in dispersion
being achieved and all robots terminating within O(n) rounds of the start of the
algorithm. Subsequently, we argue that each robot requires only O(log Δ) bits
of memory. ��

It is clear that the first phase results in robots performing a DFS until an
empty node is found to settle down in. Thus at the end of phase one, there is
exactly one robot on each node. Note that we use notation from the algorithm.
We now show that in phase two, due to the careful way we trigger termination
of the algorithm in robots, all robots will terminate at the end of the DFS of x
and x will end up back at the node it originally settled at. We first show this for
robots at the nodes in the set S \ R and then for the remaining robots.

Lemma 1. For every node u ∈ S \ R, the robot in every node in the subtree
rooted at u terminates execution before the robot in u terminates execution.

Proof. Consider only the subtree rooted at u and let S′ ⊆ S \ R denote the set
of nodes of the subtree including u. Let the maximum depth of any node in this
subtree be d. u is at depth 0 in this subtree. Now, we prove by induction on the
depths of nodes in the subtree that for any node v ∈ S′ at depth d′, the following
hypothesis holds. The robots in all descendant nodes of v have terminated before
the robot in v terminates.

For a node at depth d, i.e. a leaf node, the hypothesis holds trivially because
it has no descendants. Let the hypothesis hold true for all nodes at some depth d′

in the subtree. We now prove that it holds for all nodes at depth d′ −1. Consider
a node w ∈ S′ at depth d′ − 1. Before moving through the parent pointer of
w, x will have explored each child of w and moved through that child’s robot’s
corresponding parent pointer. Thus the robot at each child is triggered to end
termination of the algorithm before the robot at w is triggered to end execution.
Thus the invariant holds true for w. ��

For every node u ∈ R excluding the final node that x settles down at, it
is clear to see that once x passes through u’s pointer to the final node, u will
not be visited again. So the robot at u can terminate without a problem. And
finally, once x reaches its empty node, it will also terminate execution. Thus, we
see that for all nodes in S, after x completes its DFS in phase two, all robots at
those nodes will terminate execution. The time taken to perform two DFS’s on
a tree and have x move to the root from a settled node is O(n) rounds. Thus
the algorithm successfully completes in O(n) rounds.

Regarding the memory requirements of each robot, O(log Δ) bits are required
for a parent pointer and pointer to the final node. O(1) bits are required to
remember which phase the robot is in, to denote whether the robot is in the
root of the tree, to denote whether a robot becomes the exploring robot x, and
to perform Local-Leader-Election. So totally, each robot requires O(log Δ) bits
of memory. ��
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6 Dispersion on Rooted Graphs

In this section we describe two algorithms to achieve dispersion of n robots
on a rooted graph in O(m) rounds. One algorithm requires robots to have
O(max{log Δ, log D}) bits of memory each while the other has a requirement
of O(Δ) bits of memory.

6.1 Algorithm Rooted-Graph-LogDelta-LogD

This algorithm can be thought of as an extension to the algorithm Rooted-
Tree found in Sect. 5.1. Similar to that algorithm, Rooted-Graph-LogDelta-LogD
proceeds in two phases. In the first phase, robots again perform a deterministic
DFS in order to find nodes to settle down at. However, the key difference between
this algorithm and Rooted-Tree lies in how this algorithm deals with cycles in
the graph. In the second phase, again the last settled robot goes to the root and
performs a second DFS, triggering other robots to terminate execution of the
algorithm in the process.

In the first phase, robots again perform a DFS by remembering the port i they
entered the node through and subsequently leaving through port (i+1) mod δ,
where δ is the local degree of the port. For the root node, robots initially move
through port 0. At each empty node along the way, robots perform Local-Leader-
Election to choose one robot to settle down at that node. If a robot is exploring
and comes across a node with a robot already settled on it, the exploring robot
backtracks to its previous node and tries the next port from that node. Finally,
the last robot settles down at the last node, marking the end of phase one. Note
that settled robots maintain a parent pointer which records the port through
which they first entered the given node. For the root, the value of its parent
pointer is null. Also, each robot (both settled and exploring) maintain a counter
indicating its distance from the root with respect to the tree of nodes formed by
the DFS.

In the second phase, the last robot to settle down, x, changes its state info
to indicate that it is in phase two and makes its way to the root of the graph.
From here it performs a DFS, similar to that done in phase one. However, in
this DFS, cycles are detected when the robot moves from a node at distance �
from the root to a node at distance < � from the root. In such a case, the robot
backtracks to its previous node and proceeds through the next available port.
Similar to Rooted-Tree, consider all nodes along the path from the root to the
node that x finally settles at. Call this set R. Let every robot belonging to a
node in R except for x maintain a pointer to the final node, indicating the port
through which x must go to return to the node it must settle at. Once x moves
through this port in the course of the DFS, all robots belonging to nodes in R
save x itself terminate execution. Let the set of all nodes in the graph be S. For
a robot belonging to a node u ∈ S \ R, once x passes from u to u’s parent via
u’s parent pointer, the robot at u terminates execution of the algorithm. Finally,
x completes the DFS, returns to the node it must settle at, and terminates
execution.
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Theorem 4. Algorithm Rooted-Graph-LogDelta-LogD can be run by n robots
with O(max{log Δ, log D}) bits of memory each to ensure dispersion occurs in
O(m) rounds on rooted graphs.

Proof. This proof is very similar to the proof of Theorem3. We first prove that all
robots running Rooted-Graph-LogDelta-LogD achieve dispersion in O(m) rounds.
Then we argue that each robot requires O(max{log Δ, log D}) bits of memory
to execute the algorithm.

To prove our claim on dispersion, we make use of the following Claim. We
omit the proof as the Claim and its proof are very similar to Lemma1 and its
proof. ��
Claim. For every node u ∈ S \ R, the robot in every node in the subtree rooted
at u terminates execution before the robot at u terminates execution.

Note that the proof of Claim 6.1 requires one extra argument in addition
to the argument required in the proof of Lemma1. We must show that x will
immediately backtrack when a cycle is detected and not trigger the termination
condition of a robot out of order of the DFS by accidentally further exploring
through that robot’s parent pointer. Our cycle checking strategy requires robots
to maintain their distance from the root. x can easily identify that it is in a
cycle if it moves from a node at distance � to one at distance < �. Importantly,
in a DFS, cross edges do not exist but only forward and back edges. This means
that x moved to an ancestor of the node. x would not have yet moved through
the parent pointer of the robot attached to the ancestor, and thus would not
have triggered that robot to terminate execution. So, x can communicate with
the robot at the ancestor, discover the distance of the ancestor from the root,
discover that it is in a cycle, and backtrack immediately.

Thus, at the end of phase two, x will successfully complete execution of
the DFS. At the end of the DFS, all robots would be triggered to terminate
execution. Furthermore, we know that a DFS on a graph takes O(m) rounds, so
that is the execution time of the algorithm.

As to the memory requirement of robots. Each robot must use O(log Δ) bits
to store information about parent pointer and pointer to final node. Addition-
ally, O(log D) bits are required to store information about the distance to root.
Finally, O(1) bits are needed to store information about which phase a robot
is in, whether the robot is in the root or not, whether the robot is the explor-
ing robot x or not, and to execute Local-Leader-Election. Therefore, each robot
requires O(max{log Δ, log D}) bits of memory to execute the algorithm. ��

6.2 Algorithm Rooted-Graph-Delta

This algorithm is a variation of Rooted-Graph-LogDelta-LogD that provides a
memory trade-off: instead of needing O(log D) bits of memory, this algorithm
requires O(Δ) bits of memory. This algorithm again runs in two phases, with
the goals of each phase being the same as that of the previous algorithm. We
focus only on the variation between the two algorithms now.
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In the previous algorithm, each settled robot was required to remember its
distance from the root. In this algorithm, instead we require each settled robot
to remember which of its ports lead to forward edges and which do not. This is
done by maintaining a bit string of size at most Δ bits where each bit from LSB
to MSB corresponds to one of the ports leading out of that node. Let us call it
list of forward ports. Initially all bits except parent pointer’s bit are set to one to
indicate that all those ports possibly lead to forward edges. In the course of the
DFS in phase one, if a robot uses a port from a node u and then realizes it is in a
cycle, the robot will backtrack to u, inform the robot at u about the given port,
and then move on with the DFS. The robot at u sets the corresponding bit in
the list of forward ports to zero. Thus at the end of phase one, all settled robots
have an accurate list of forward ports. Now, in phase two, when x performs its
DFS, at a given node it only considers those ports whose corresponding bit in
the list of forward ports is one.

Theorem 5. Algorithm Rooted-Graph-Delta can be run by n robots with O(Δ)
bits of memory each to ensure dispersion occurs in O(m) rounds on rooted graphs.

Proof (Proof Sketch). The proof of this theorem is identical to that of Theorem4,
so we omit details. However, we focus on two things: the proof that x does not
end up in a cycle during the phase two DFS and the memory requirements of
robots.

In phase two of the algorithm, x does not need to traverse an edge to discover
if it is a back edge. Instead, at a given node u, it needs only rely on the list of
forward ports maintained by the robot at u, which will be properly built in phase
one of the algorithm. Therefore, the second DFS will be successful and all robots
will terminate execution of the algorithm in O(m) rounds.

Instead of using O(log D) bits of memory to remember the distance from
root, each robot is required to maintain the list of forward ports, which is a bit
string of size at most Δ. Thus each robot requires O(Δ) bits of memory. ��

7 Dispersion on Arbitrary Graphs (Without Termination)

In this section, we assume that the robots are initially arbitrarily located at
nodes in the graph (i.e., not necessarily at a single node). We describe a sim-
ple randomized algorithm that can be run by robots to achieve dispersion and
requires each robot to have O(log Δ) bits of memory each. The algorithm is a Las
Vegas style randomized algorithm in that the time until dispersion is achieved
is variable and is bounded by the cover time of the graph with high probability.

7.1 Algorithm Arbitrary-Graph

The idea of the algorithm is that each robot performs a simple random walk
on the graph in parallel until it finds an empty node that it can settle at. The
algorithm is described below in more detail. Each robot performs a random walk
on the graph in parallel. During the random walk, if a robot finds an empty node,
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it settles down in that node. If multiple robots are present at an empty node in
the same round, they compute a local leader using the procedure Local-Leader-
Election and the leader settles at that node. Each robot performs the random
walk until it settles down. A settled robot stays active indefinitely since it must
inform other exploring robots about the occupancy of the node.

Theorem 6. Suppose n robots are placed arbitrarily over an n node graph. Then
Algorithm Arbitrary-Graph solves dispersion with O(log Δ) bits of memory in
cover time of the graph with high probability. The robots are active indefinitely.

Proof. First of all, a robot can perform a simple random walk with O(log Δ)
bits of memory as there are at most Δ adjacent edges at any node. Hence the
robot can pick a random adjacent edge with O(log Δ) bits of memory (i.e., it
can generate a random number from 1 to Δ with O(log Δ) bits of memory).

Consider a particular robot exploring the graph by performing a random
walk. Since the random walk is independent of all the other robots’ random
walks, the robot visits all the nodes in the graph by the cover time of the graph
with high probability (see the definition of the cover time in Sect. 2). Hence,
with high probability, by at most the cover time of the graph, the robot settles
at some node. Since every robot performs a random walk in parallel (until it
settles down) and independently, every robot will settle down after the cover
time of the graph with high probability. Hence dispersion is achieved in cover
time of the graph with high probability. The cover time of a graph lies in the
range between Ω(n log n) and O(mn) depending on the graph structure.

Whenever a robot settles at some node, the robot has to stay active until all
the robots settle down. This is because the settled robot needs to inform other
exploring robots that the node is already occupied; otherwise multiple robots may
be settled down at a single node and dispersion will not be achieved. Since it takes
cover time of the graph until all robots settle down, and the cover time of any
graph is Ω(n log n) [1,11], a robot cannot maintain a counter to count the rounds
until cover time is achieved with only O(log Δ) bits of memory and hence cannot
terminate after the cover time. Thus, all the settled robots need to stay active for
an indefinite number of rounds in order to achieve dispersion. ��

Note that the random walk based exploration algorithm outperforms the
O(m) time algorithms in several graph classes. For example, consider regular
expander graphs. The cover time of a regular expander graph is Θ(n log n) [11].
However, in dense regular expander graphs, the number of edges is ω(n log n) and
it could be as high as O(n2) (e.g., a complete graph). In fact, the Arbitrary-Graph
algorithm is asymptotically faster than deterministic algorithms with more mem-
ory from [4] in the graphs where m = ω(cover-time). However, the algorithm is
non-terminating. At the same time, Arbitrary-Graph requires robots to only
have O(log Δ) bits of memory. Moreover, since the random walks (correspond-
ing to the robots) are independent of each other, the algorithm also works in an
asynchronous system7.
7 It is required that Local-Leader-Election works without issue in that setting. This is

the case.
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8 Extending Algorithms to Arbitrary k

In this section, we describe how to extend our previous algorithms to work with
an arbitrary number of robots. That is, we want to achieve dispersion of k robots
on n nodes, for any positive integer value of k. There are two difficulties inherent
in extending results to an arbitrary k, depending on whether k < n or k > n.
When k < n, if an algorithm relies on a certain condition to be met before robots
terminate, we must ensure that this condition is still met even with less than n
robots participating. When k > n, we must figure out how to have robots settle
in stages, because we do not want to maintain a counter to allow �k/n� robots
to settle at each node because the memory requirement will be O(log k), which
could be arbitrarily large.

Rooted-Ring works for any arbitrary k. At the end of a given round, one robot
has settled and terminated execution of the algorithm and the remaining robots
are colocated at the next node. It takes one round to settle one robot, and the
ring is settled node by node. Thus, for k robots, we can achieve dispersion with
Rooted-Ring in O(k) rounds where each robot requires O(log Δ) bits of memory.

Rooted-Tree works without any modifications when k < n. This is because
the last robot to settle down initiates phase two of the algorithm. It is easy for
a robot to detect this because no other robot will participate in Local-Leader-
Election with it. Since only k nodes of the graph are explored in phase one or two,
Rooted-Tree only takes O(k) rounds to complete. When k > n, we have robots
perform a second check to see if it is the last robot to settle. In a complete DFS
traversal of a tree, a robot will reach the last node of the traversal when it has
traversed the last port of each node from the root to a leaf node8. Thus, if a robot
performing the DFS maintains a flag that indicates whether the robot traversed
this path, we can detect the final node in the DFS traversal. Specifically, the
robot sets the flag to true when at the root, and changes it to false if it traverses
a port other than the last port of a given node. If the robot reaches a leaf node
and the flag is true, and the robot is selected by Local-Leader-Election to settle
down at the leaf node, then it knows that it is settling down at the last empty
node in the tree. All other robots that got to this node but did not settle down
go to the root node and wait. The last robot to settle down executes phase two
of the algorithm as usual. Meanwhile, the robots waiting at the root node will
execute a new iteration of the algorithm, i.e. start phase one, once the exploring
robot in phase two passes through the final port of the root. This delay in start
time guarantees that the exploring robot will trigger other robots in the tree to
terminate execution in time for the robots executing phase one to re-populate
the tree with settled robots. The above process is repeated 
k/n� times and
takes O(n) rounds for each repetition and with an additional repetition done by
some k −n∗
k/n� robots that takes O(k −n∗
k/n�) rounds, for a total of O(k)
rounds to achieve dispersion of all robots. Thus, for any k, Rooted-Tree achieves
8 Since ports are ordered, each robot can determine which port is last in the order.

Furthermore, this ordering is unique to each node, so different robots will see the
same ordering at each node.
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dispersion in O(k) rounds and requires robots to have O(log Δ) bits of memory
each.

Rooted-Graph-LogDelta-LogD and Rooted-Graph-Delta both work when k <
n without any modifications. When k > n, both work using the extension
described in the previous paragraph on Rooted-Tree. However, since both algo-
rithms take O(m) rounds to settle n robots, the total running times are both
O(mk/n). However, an interesting change to the Rooted-Graph-Delta algorithm
can ensure a running time of O(m + k). The change is to add an extra bit to
each robot that indicates if they are participating in an “even” or “odd” set of
phases of the algorithm. Order the robots in sets of n robots referencing the set
of phases in which they are settled and terminate execution of the algorithm.
If the set is an odd (even) number set in this order, it is called odd (even) set.
Now, for every set of phases a and b where a immediately precedes b in the
order, order of phases is as follows. First, phase one of set a occurs, then phase
one of set b, then phase two of set a, then phase two of set b.9 A node can be
identified as a possible soon to be empty node (in the sense that the settled
robot terminates execution) if only a robot with a different phase (odd vs. even)
robot is settled at it. Thus in phase one of set b, have each settled robot copy the
values of the at most Δ bits of the previous set’s robot at that node indicating
which ports lead to back edges. Thus, only in phase one of the first set of nodes
will the DFS take O(m) rounds, and subsequent DFS’s take only O(n) rounds
each for the remaining O(k/n) sets of nodes (the algorithm is slightly tweaked
so that future sets of robots take advantage of this info). Thus the running time
becomes O(m + k) rounds.

Arbitrary-Graph works without any modifications when k < n. When k > n,
in general the algorithm will not work because robots never terminate execution
of the algorithm. Thus, unlike the previous algorithms, we cannot have robots
work in stages where the first set of robots settles down and terminates, then
the next set, and so on. Instead, we would need a counter of O(�k/n�) bits
to count how many robots have already settled at a node and settle down (if
chosen by Local-Leader-Election) if that counter is < �k/n�. This leads to the
following special case where dispersion is possible. When n < k ≤ Δcn, where c is
a positive constant, we can achieve dispersion using Arbitrary-Graph, modified
with a counter as earlier described, in the cover time of the graph with high
probability where each robot needs O(log Δ) bits of memory.

9 Lower Bound on Memory

In [4], they showed that, assuming all robots have the same memory, a lower
bound of Ω(log n) bits is required for dispersion when considering deterministic
algorithms. The bound resulted from an argument that robots needed enough
bits to uniquely choose a robot from a set of robots at each node. However, as we
9 For 3 sets of phases a, b, and c, sequence is: phase one of a, phase one of b, phase

two of a, phase one of c, phase two of b, phase two of c. This sequence can be easily
seen now for more sets.
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see later in this paper, we are able to circumvent this with the use of randomness.
Now we argue another lower bound in the presence of randomness.

Theorem 7. Consider k robots trying to achieve dispersion on an n node graph.
Assuming all robots have the same amount of memory, robots require Ω(log Δ)
bits of memory each for any randomized algorithm to achieve dispersion on any
graph.

Proof. We first describe a situation where robots containing o(log Δ) bits of
memory will be unable to achieve dispersion. We then show that for all algo-
rithms that attempt to achieve dispersion using o(log Δ) bits of memory, we can
arrive at this situation.

Consider any number of robots present at a given node with degree O(Δ).
If each robot has o(log Δ) bits of memory, it is impossible for any of them to
individually access the entire list of possible ports to move through. Since the
selection of ports by each of these robots is decided by nature, it may then occur
that one particular port is never chosen in any of the subsets of ports. Let us
focus on such a port.

Let this port lead to an edge which acts as a cut between the set of nodes
with robots currently on them and the set of empty nodes. If k < n, additionally
assume that the set of nodes with robots on them is of size ≤ k − 1. Thus,
the robots being unable to traverse that port prevents dispersion from being
achieved. For any given algorithm, we can construct a graph such that there
exists a node with associated cut edge satisfying the above description and all
the robots start on nodes on the side of the cut with the node. Thus, for any
algorithm, dispersion is impossible when robots have o(log Δ) bits of memory
each. ��

10 Conclusion and Future Work

In this paper, we showed how to achieve dispersion on various types of graphs
using less memory than required by other algorithms in the literature so far.
Importantly, we showed how to leverage randomness in a novel way in the form of
the Local-Leader-Election algorithm and utilize this primitive to reduce memory
requirements. There are several interesting lines of research that result from this
paper. We present two open problems of interest below.

Open Problem 1: All algorithms in our paper, save Arbitrary-Graph, work
only for rooted versions of different types of graphs. The trade-off when imple-
menting Arbitrary-Graph is that robots then must stay active indefinitely. Is it
possible to develop algorithms for non-rooted versions of the graphs in question
without requiring robots to stay active indefinitely?

Open Problem 2: Our algorithms for rooted graphs require robots to have
possibly ω(log Δ) bits of memory each, depending on the values of Δ and D. Is
it possible to develop algorithms with tighter upper bounds for rooted graphs?
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Abstract. In this paper, we present a novel intelligent proactive auto-
scaling solution for cloud resource provisioning systems. The solution
composes of an improvement variant of functional-link neural network
and adaptive bacterial foraging optimization with life-cycle and social
learning for proactive resource utilization forecasting as a part of our
auto-scaler module. We also propose several mechanisms for processing
simultaneously different resource metrics for the system. This enables
our auto-scaler to explore hidden relationships between various metrics
and thus help make more realistic for scaling decisions. In our system, a
decision module is developed based on the cloud Service-Level Agreement
(SLA) violation evaluation. We use Google trace dataset to evaluate the
proposed solution well as the decision module introduced in this work.
The gained experiment results demonstrate that our system is feasible
to work in real situations with good performance.

Keywords: Proactive auto-scaling · Functional-link neural network ·
Adaptive bacterial foraging optimization ·
Multivariate time series data · Cloud computing · Google trace dataset

1 Introduction

Cloud technologies bring many benefits for both vendors and users. From the
view of providers, they can maximize physical server utilization via time-sharing
of using resources among multiple customers. Meanwhile, from the view of users,
they do not need to care about infrastructure deployment costs, and only pay
for what they used conforming to the pay-as-you-go model. Consequently, cloud
hosting services are becoming more and more popular today.

One of the main outstanding features of cloud computing is the capability of
elasticizing resources provided for applications. This mechanism thus supports
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to increase the availability as well as Quality of Service (QoS) for those appli-
cations [4]. Usually, the resource elasticity function is offered to users through
an auto-scaling service that operates based on two techniques covering thresh-
old and prediction. While the first already has been used in clouds, the second
technique is still an attractive research problem today because there are barriers
while applying the prediction-based auto-scaling system to clouds in practice.
Firstly, accuracy of the prediction models must reach a certain level while hav-
ing the ability of processing multiple resource metrics at the same time to meet
practical demands. Secondly, the prediction models must be simple to deploy
and operate but keep the effectiveness in forecast. Thirdly, the prediction-based
auto-scaling system also must have a scaling decision mechanism which ensures
QoS defined in Service-Level Agreement (SLA) signed between cloud customers
and vendors.

In this paper, we focus on developing a cloud prediction-based auto-scaler,
which can simultaneously resolve the barriers presented above. In this way, our
auto-scaler use a simple prediction model while still achieving the same level
of accuracy and stability as compared with other complex methods. For the
prediction module of the auto-scaler, we propose a novel variant of functional-
linking neural network (FLNN) using adaptive bacterial foraging optimization
with life-cycle and social learning (in short from here ABFOLS or Adaptive
BFOLS) to train forecast model. Our prediction module also can simultaneously
process multiple resources based on several data preprocessing mechanisms. To
build scaling decision module for the auto-scaler, we exploit SLA-awareness to
make decisions as well as evaluate these scaling actions. Our designed system is
experimented and assessed with a real cluster trace dataset published by Google
in 2011 [18], and [17]. The gained outcomes show that our auto-scaler archives
good performance and can be applied to practice.

The structure of this paper is as follows. In Sect. 2, we classify and analyze
existing studies to highlight our work contributions. Section 3 presents our cloud
auto-scaler proposal (in short from here FLABL) with the intelligent core built
based on the combination of FLNN and ABFOLS. The preprocessing raw data
mechanisms, which helps the prediction module to exploit multiple data metrics
is also described here. In the Sect. 4, we present tests and evaluations for the
proposed auto-scaler to prove its effectiveness. The last Sect. 5 concludes and
defines our future work directions.

2 Related Work

As mentioned in the previous Section, there are two cloud resources scaling
mechanism types, namely reactive (i.e. systems will response to unpredictable
resource consumption changes using usage thresholds) and proactive [7] (i.e.
systems attempt to predict resource requirements to make scaling decisions in
advance). According to that classification, we focus on analyzing related works
in the proactive technique category.
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Resource Consumption Prediction. In [3], several predictive time series
models were proposed and demonstrated for cloud workload forecast problem
such as ARMA (autoregressive-moving average), non-stationary, long memory,
three families of seasonal, multiple input-output, intervention and multivariate
ARMA models. As in [22], the authors used two datasets collected from the Intel
Netbatch logs and Google cluster data center to compare and evaluate prediction
models together, including first-order autoregressive, simple exponential smooth-
ing, double exponential smoothing, ETS, Automated ARIMA, neural network
(NN) autoregression. Although these studies investigate methods for resource
usage prediction, there is still lack of investigation of applying of FLNN variance
in combination with evolutionary optimization in that domain like in [13].

Functional-Link Neural Network (FLNN). Structurally, FLNN has only
single neuron, which was proposed by Pao in [14] for pattern-recognition task.
The network is quite simple but brings a good effective performance in the
aspects of accuracy and training speed. Consequently, this learning model has
been applied to many domains covering stock market prediction [10], and money
exchange rate forecast [8]. In [5], the authors used FLNN for four datasets of
wine sales. The gained results prove that FLNN is more efficient in comparison
with random walk model and feed-forward neural network (FFNN). The authors
of [19] used FLNN with Chebyshev and Legendre polynomials to predict impact
on tall building structure under seismic loads. The experiments presented in that
work shown FLNN yields better outcomes as compared with multi-layer neural
network (MLNN) also in terms of accuracy and computation time. However,
the main disadvantage of FLNN is the use of back-propagation (BP) mechanism
with gradients descent to train the learning model ([5,8,10], and [19]).

Adaptive Bacterial Foraging Optimization (ABFOLS). Recently, a new
evolutionary computing technique called Bacterial Foraging Optimization (BFO)
has been proposed in the work [15]. It is inspired based on principle of bacte-
rial movement (i.e. tumbling, swimming or repositioning) to food-seeking. Their
behavior is achieved through a series of three processes on a population of sim-
ulated cells: “Chemotaxis”, “Reproduction”, and “Elimination-dispersal” [15].
BFO has been applied to several industry applications like PID controller tun-
ing [6], power system [1], stock market [9]. Unfortunately, BFO has certain
shortages e.g., the appropriate time and method for dispersal and reproduc-
tion must be carefully selected, otherwise the stability of population may be
destroyed [23]. Therefore, the authors of [23] proposed an improvement for BFO
including life-cycle of bacteria, social learning and adaptive search step length
(ABFOLS), which offer significant improvements over the original version in
complexity and competitive performances as compared with other algorithms
(e.g. GA) on higher-dimensional problems. At present, there are no works that
deal in optimizing FLNN with ABFOLS algorithm, especially in cloud auto-
scaling issue.

Cloud Resources Provision Under SLA Conditions. In [16], the authors
presented a job scheduling system using machine learning to predict workloads
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and allocate resources complying with SLA. The authors of [20] used SLA to esti-
mate the amount of resources required for making scaling actions. They argued
that their algorithm is able to reduce the number of SLA violations up to 95%
and decrease resource requirements up to 33%. In [21], the authors proposed a
proactive cloud scaling system that enables to estimate SLA violations based on
multiple metric parameters. Although the works [16], and [20] already introduced
SLA evaluation models, they operate based on single workload metric such as
CPU usage, response time, or job execution deadline. Meanwhile, the work [21]
allows processing multiple metrics, SLA violation still is evaluated based on
resource usages (e.g. CPU, and memory usage). Conversely, in this study, we
assess SLA to ensure QoS using the number of provided virtual machines (VMs).
This is scaling unit, which cloud customers often care when making resources
increase or decrease decisions.

In comparison with the existing works analyzed above, the differences and
contributions of our work are as follows.

1. Proposing an improvement (called FLABL) for FLNN, in which the network
is trained by ABFOLS instead of back-propagation mechanism.

2. Proposing an auto-scaler that uses FLABL, which can process multivariate
metric data and predict resource consumptions.

3. Proposing an SLA violation evaluation module that operates based on VM
number rather than resource metrics in order to make scaling decisions for
the proposed auto-scaler.

3 Resource Auto-scaler Using Functional-Link Adaptive
Bacterial Foraging Optimization Neural Network

The designs for our resource auto-scaling module are built based on underlying
Cloud System. The module consists of 3 main phases, including Extraction,
Learning and Scaling. The Scaling has two components namely Forecasting and
Decision.

Raw resource monitoring data is collected from VMs in Cloud system. There
are a lot of available monitoring services (e.g. CloudWatch, IBM cloud monitor-
ing, and Rackspace Monitoring, Nagios, Prometheus and Zabbix and so forth)
that can be used or deployed on cloud infrastructures for monitor problem. Based
on the monitoring services, we gather diverse VM metrics such as CPU, mem-
ory utilization, disk IO, network IO, etc. The detail descriptions of Extraction,
Learning and Scaling phases are described in the following subsections.

3.1 Extraction Phase

There are seven mechanisms deployed in Extraction phase to pre-process raw
data and prepare normalized data for Scaling phase in our system. As shown in
Fig. 1, those mechanisms cover:
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Fig. 1. FLABL data extraction process

1. Using collected raw monitoring data from the underlying Cloud System.
2. Transforming current raw data in the predefined period for model training

into corresponding time series ri(t)(i = 1, 2, ...,M) with time interval ρ.
3. Averaging values of given metrics in the given interval of ρ for each point in

time series ri(t).
4. Normalizing the time series data in the range of [0, 1].
5. Transforming the normalized time series data to supervised data using sliding

technique with window width k, which is the number of used values before
the time t to predict a value at the time t.

6. The supervised data undergoes through an expansion function (e.g. Cheby-
shev or Power series) to enable the ability of catching nonlinear relationship
between inputs and outputs.

7. Finally, the output data is put into a database in form of historical resources
data, which is used to build prediction model in Learning phase. The data also
is provided for Forecasting module in Scaling phase to predict the resource
consumption.

3.2 Learning Phase

Generated data from Extraction phase is divided into three different sets, namely
training, validating, and testing. While the first two sets are employed to learn
and select parameters, the third set is used for validating trained prediction
model. A novel method is proposed in our Learning phase based on FLNN
and trained by ABFOLS algorithm to speed up the convergence and increase
the prediction accuracy. Due to combinations, our learning method is called by
Functional-Link Adaptive Bacterial Foraging Lifecycle Neural Network (called
by FLABL).

The final trained model of Learning is used in Forecasting module that
belongs to Scaling phase. Meanwhile, the real-time monitoring data collected
from cloud VM after preprocessing will be use as Real-time monitoring resource
usage before putting into our Final Model of Forecasting module. The gained
predictive results then will be denormalized to be able to use in the next module.
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Algorithm 1. FLABL Learning phase
Input: S, Ns, Ped, Cs, Ce, Nsplit, Nadapt

Output: The trained model

1: Normalizing all current resource time series of M type of resource consumption:
r1(t), r2(t), ..., ri(t), ..., rM (t)

2: Initializing sliding window with p consecutive points as the inputs
(X1(t), X1(t − 1), ..., X1(t − p + 1)), ..., (XM (t), XM (t − 1), ..., XM (t − p + 1))
and the next observation
X1(t + k), ..., XM (t + k) as the outputs (t = 1, 2, ..., n)

3: Grouping all column inputs data of M type resource into multivariate data
X(t) = [X1(t), X1(t − 1), ..., X1(t − p + 1), ..., XM (t), XM (t − 1), ..., XM (t − p + 1)]

4: Applying expansion functions to multivariate data:

x(t) = [x1
1(t), x

2
1(t), ..., x

5
1(t), x

1
1(t − 1), x2

1(t − 1), ..., x5
1(t − p + 1), ...,

x1
M (t), x2

M (t), ..., x5
M (t), x1

M (t − 1), x2
M (t − 1), ..., x5

M (t − 1), ...,

x1
M (t − p + 1), x2

M (t − p + 1), .., x5
M (t − p + 1)]

(1)

5: Training the constructed FLNN (from step 1 to 4) by ABFOLS (from step 6 to 31)
6: Initialize population Pop = {Cell1, ..., Cells} with S cells (bacterium),

where Celli = (ci1, . . . , cid), cij ∈ [−1, 1] with d-dimensions, d = length(x(t) + 1)
Initialize Nutrient(i) ← 0 for all Celli

7: while (termination conditions are not met) do
8: S ← size(Pop); i ← 0
9: while (i < S) do

10: i ← i + 1; fitLast ← fitCurrent(i)
11: Generate a tumble angle for Celli by Eq. 4
12: Update the position of Celli by Eq. 3
13: Recalculate fitCurrent(i) and Nutrient(i)
14: Update personal best (CellpBest) of ith cell and global best (CellgBest)
15: for m = 1 to Ns do
16: if fitCurrent(i) < fitLast then
17: fitLast ← fitCurrent(i)
18: Run one step using Eq. 3
19: Recalculate fitCurrent(i) and Nutrient(i)
20: Update CellpBest and CellgBest

21: else
22: break
23: if Nutrient(i) > thresholdsplit (Eq. 6 is True) then
24: Split Celli into two cell
25: break
26: if Nutrient(i) < thresholddead (Eq. 7 is True) then
27: Remove Celli from Pop
28: break
29: if Nutrient(i) < 0 and random(0, 1) < Pe then
30: Move Celli to a random position

31: Passing the trained model (CellgBest) to Forecasting module.
32: Repeating step 1 to step 30 in every time period T
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Fig. 2. FLABL learning phase with FLNN and ABFOLS

The details of our proposal FLABL are as follows: Used parameters in Algo-
rithm1 are explained in Table 1. WhileNutrient(i) is the nutrient of ith bac-
terium, fitCurrent(i) is the current fitness value of ith bacterium, fitLast is
the fitness value of the last position of ith bacterium, CellpBest is the past posi-
tion of ith, bacterium which gained the best fitness so far. thresholdsplit and
thresholddead is corresponding to right side of Eqs. 6 and 7.

We use Mean Absolute Error (MAE) for bacterial fitness function according
to the Eq. 2. In chemotactic steps, a bacterium will update its position based on
the direction which created by combination of information of its personal best
position and the population’s global best position in Eqs. 3 and 4. The gain of
nutrients process is updated when bacteria move, so if the new position is better
than the last one (the fitness higher), it is regarded that the bacterium will gain
nutrient from the environment and the nutrient is added by one. Otherwise, it
loses nutrient in the searching process and its nutrient is reduced by one Eq. 5.

In an intelligence optimization algorithm, it is important to balance its explo-
ration ability and exploitation ability. In the early stage, we should enhance the
exploration ability to search all the areas. In the later stage of the algorithm, we
should enhance the exploitation ability to search the good areas intensively. So
in BFO, the step size which bacterium used to move play an important role. We
use the decreasing step length based on bacterium’s fitness (Eq. 8). In the early
stage of BFOLS algorithm, larger step length provides the exploration ability.
And at the later stage, small step length is used to make the algorithm turn to
exploitation. Besides, we also deploy an adaptive search strategy, which change
the step length of each bacteria based on their own nutrient, which calculated
using (Eq. 9). The higher nutrient value, the bacterium’s step length is shortened
further. This is also in accordance with the food searching behaviors in natural.
The higher nutrient value indicates that the bacterium is located in potential
nutrient rich area with a larger probability. So, it is necessary to exploit the area
carefully with smaller step length.

fit = MAE =

∑N
i=1 |forecast(i) − actual(i)|

N
(2)
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θt+1
i = θt

i + C(i) ∗ Δi
√

Δi ∗ ΔT
i

(3)

Δi = (θgBest − θi) + (θi,pBest − θi) (4)

Nutrient(i) =

{
Nutrient(i) + 1, if fitCurrent(i) > fitLast

Nutrient(i) − 1, if fitCurrent(i) < fitLast
(5)

Nutrient(i) > max
(
Nsplit, Nsplit +

Si − S

Nadapt

)
(6)

Nutrient(i) < min
(
0, 0 +

Si − S

Nadapt

)
(7)

C = Cs − (Cs − Ce) ∗ nowFit

totalF it
(8)

C(i) =

⎧
⎨

⎩

C

Nutrition(i)
, if Nutrient(i) > 0

C, if Nutrient(i) ≤ 0
(9)

Table 1. FLABL parameters used for ABFOLS optimization

Name Description

S The number of cells (bacteria) in the population

d d-dimension/problem size

Ns Swimming length after which tumbling of
bacteria will be undertaken in a chemotactic
loop

Ped Probability for eliminate bacteria

Cs, Ce The step size at the beginning and the end of
chemotactic process

Nsplit, Nadapt Parameters used to control and adjust the split
criterion and dead criterion

3.3 Scaling Phase

The Scaling phase contains of Forecasting and Scaling components. The func-
tionalities and collaboration of these two components are based on SLA-violation
auto-scaling strategy as described in Algorithm 2.

Forecasting Module. Forecasting phase uses real-time monitoring data (is
preprocessed by Preprocessing phase) as inputs for the trained model to predict
new values (i.e. resource consumption) in advance. Then, the obtained outputs
are de-normalized into the real values. In every time period T , learning algorithm
is updated with new monitoring data.
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Fig. 3. FLABL scaling phase

Decision Module. Decision module is responsible for calculating the number
of provided VMs according to the predictive resource consumption. In addition,
we develop SLA Violation Evaluation component that operates based on the
number of VMs allocated at previous time and with the VM numbers predicted
in the future to decide the how many VMs will be provisioned as in Eqs. 10, 11,
and 12. Finally, predictive scaling information will be sent to Resource Scaling
Trigger in Cloud System to create appropriate actions. With resource usages
predicted by Forecasting module, we assume that cloud system can provision
unlimited amount of VMs like the systems presented in [12], which has the same
hardware configuration. We also do not consider VM scheduling policies in our
scaling strategy in this work.

In terms of QoS guarantee, the number of predicted VMs will be multiplied by
s (s ≥ 1). The larger s, the more VMs allocated to applications and this reduces
the SLA violations. In this direction, the total number of SLA violations in an
earlier period with length L is used to determine the increases (or decreases) of
allocated VMs.

4 Experiments

To evaluate our proposed auto-scaler, we carry out two experiments, including:

1. Comparing prediction accuracy and the system run time between various
neural network models with our FLABL, involving ANN, MLNN, traditional
FLNN, FL-GANN and FL-BFONN using univariate and multivariate data.

2. Evaluating scaling performance of our proposed auto-scaler under SLA vio-
lation measurement.

4.1 Experimental Setup

Dataset. In our experiment, we use dataset gathered by Google from one of their
production data center clusters. The log records operations of approximate 12000
servers for one month [17,18]. This log thus contains a lot of jobs submitted to
the cluster. Each job is a collection of multiple tasks that are run simultaneously
on many machines. Resource utilization of tasks is measured by several metrics
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Algorithm 2. Auto-scaling strategy based on SLA-violations
1: At each timepoint t, calculate F pred

1 (t + 1), F pred
1 (t + 1), .., F pred

1 (t + 1) by FLABL
then de-normalize results back to get resources consumption at the next timepoint:
rpred1 (t + 1), rpred2 (t + 1), ..., rpredi (t + 1)

2: Calculating the number of VMs predicted at time (t + 1) as

npred
V M (t + 1) = max

{rpred1 (t + 1)

C1
,
rpred2 (t + 1)

C2
, ..,

rpredi (t + 1)

Ci

}
(10)

3: for (z ← t − L + 1) to t calculate the number of VMs violations

nviolation
V M (t) = max

{
0, nactual

V M (t) − nalloc
V M (t)

}
(11)

4: Calculating the number of allocated VMs

nalloc
V M (t + 1) = s ∗ npred

V M (t + 1) +
1

L

t∑

z=t−L+1

nviolation
V M (z) (12)

5: if nalloc
V M (t + 1) > nalloc

V M (t) then
6: Making decision to instantiate nalloc

V M (t + 1) − nalloc
V M (t) VMs

7: else
8: Making decision to destroy nalloc

V M (t) − nalloc
V M (t + 1) VMs

9: Repeating from step 1 to 8 at the next point of time.

such as CPU, and memory usage, disk I/O, and so on with more than 1233
million data items. To evaluate our predictive model as well as the auto-scaling
strategy, we chose a long-running job with ID 6176858948, which consists of
60171 divergent tasks during the 20-day period.

We assume that the cloud system has enough VMs to process the chosen long-
running job. VM capacity is equal to the minimum configuration of a machine
in Google cluster with CCPU = 0.245 and CRAM = 0.03 (normalized values).
We also assume that time required to instantiate a new VM is five minutes.
Therefore, the resource usages in the incoming five minutes are predicted to
make scaling decisions in advance. In this way, average time t is set by 5 min,
forecast horizon k = 1 in all experiments. While, the collected data from 1st to
14th day is used to train the networks, data from 15th to 17th day employed
to validate network’s parameters, and data from 18th to 20th day is used to
test the prediction performance. We select both CPU and memory metric types
(visualization in Fig. 4) in the Google dataset as multivariate data for our pro-
posed system. Before we group CPU and memory data to be multivariate data,
we make sure the data range in the same by normalized step in the Extrac-
tion phrase. The prediction accuracy is assessed by Root Mean Square Error

RMSE =
√∑N

i=1(forecast(i)−actual(i))2

N .

Test Models. Our tested ANN model is cofigured with three layers (one input,
one hidden, and one output), MLNN model is configured with five layers (one
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Fig. 4. CPU (left) and memory (right) from Google trace dataset (Google normalized
data)

input, three hidden and one output). Meanwhile, FLNN, FL-GANN, FL-BFONN
and FLABL have only one input and output layer with structure (x, 1). The
polynomial is set as functional-link for all models. Here, x is the sliding window
value used in the Extraction phase in our system. Activation function used for
our tested networks are Exponential Linear Unit (ELU) [2].

Based on previous research in [13], we use standard GA algorithm for FL-
GANN model. The GA parameters are set as follows. The population size ps =
500, the maximum number of generations gmax = 700, the probability of two
individuals exchanging crossovers pc = 0.95 and the probability of individual
mutation pm = 0.025. For BFO algorithm, the parameters are configured in
the same way as works described in [15] which are set as follows: The length
of the lifetime of the bacteria as measured by the number of chemotactic steps
they take during their life Nc = 50, swimming length after which tumbling of
bacteria will be undertaken in a chemotactic loop Ns = 4, maximum number
of reproduction to be undertaken Nre = 4, the number of elimination-dispersal
steps Ned = 8, probability for eliminate bacteria Pe = 0.25, and Stepsize = 0.1.
Finally, for our ABFOLS algorithm, the parameter settings are similar to [23]
work which are Ns = 4, Pe = 0.25 (same as BFO configurations), Nsplit = 30,
Nadapt = 5, the step size at the beginning of process Cs = 0.1(Ub - Lb), the
step size at the end of the process Ce = 0.00001(Ub - Lb), where Ub and Lb are
referred to the upper and lower bound of the variables.

SLA Evaluation Mechanisms. We use SLAVTP (SLA Violation Time Per-
centage) proposed in [21] to evaluate our proposed VM calculation mechanism
(formula 12) with SLAV TP = Tunder−provisioning

Texecution
, where Tunder−provisioning is

the time when at least one allocation resource causes “under-provisioning” (i.e.
lack of RAM or CPU core), and Texecution is total time of the application running
in cloud system.

To evaluate performance of our auto-scaling strategies, we use ADI (Auto-
scaling Demand Index) measurement [11], which considers the difference between
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actual and desired resource utilization. In other words, the total distance between
ut and [L,U ]. In which ut is the utilization level of the system, L and U
correspond to the lower and upper limits of reasonable resource use, with
0 ≤ L ≤ U ≤ 1.0. The ADI is denoted by the variable σ =

∑
t∈T σt where,

σt = L − ut if ut ≤ L; σt = 0 if L < ut < U ; σt = ut − U if otherwise. For
each time t, according to the ADI formula, the optimization strategy will yield
a minimum of σ.

4.2 FLABL Forecast Accuracy and Runtime

In this test, we evaluate the efficiency of FLABL against FL-BFONN, FL-GANN,
traditional FLNN, MLNN and ANN in forecasting resources consumption. For
each model, we use both univariate (single input metric) and multivariate (mul-
tiple input metrics) data. We also change sliding windows size k from 3 to 5
(k = 3, 4, 5) in the experiment to test effectiveness fluctuation. Our achieved
outcomes are given in Table 2.

Table 2. RMSE comparison between FLABL and other models

Input type Model CPU RAM

k = 3 k = 4 k = 5 k = 3 k = 4 k = 5

Univariate ANN 0.4962 0.4952 0.5054 0.0344 0.0352 0.0354

MLNN 0.4903 0.4930 0.4966 0.0345 0.0349 0.0355

FLNN 0.5171 0.510 0.5253 0.038 0.0356 0.0373

FL-GANN 0.4892 0.4762 0.4877 0.0389 0.0376 0.0375

FL-BFONN 0.4777 0.4872 0.4798 0.0342 0.0431 0.035

FLABL 0.469 0.4726 0.4732 0.0335 0.0338 0.0338

Multivariate ANN 0.4884 0.4863 0.507 0.0343 0.0336 0.0348

MLNN 0.4913 0.4814 0.5026 0.0359 0.0355 0.0356

FLNN 0.4877 0.5179 0.5043 0.0367 0.0365 0.0366

FL-GANN 0.49 0.491 0.488 0.037 0.0361 0.036

FL-BFONN 0.4976 0.4762 0.4963 0.0334 0.0332 0.0337

FLABL 0.4678 0.4705 0.4793 0.0333 0.0337 0.0344

According to the achieved results, there are some observations that can be
made as follows. In almost all cases, RMSE accuracy of FLABL are smaller
than ANN, MLNN, traditional FLNN, FL-GANN and FL-BFONN model with
different sliding window values as well as input types. Concretely, for univariate
data input, FLABL brings the best results as compared with others, also for
multivariate data input except k = 4 and 5 in memory prediction case. However,
the difference is trivial for the test scenarios (0.0337 (FLABL) compares with
0.0332 (FL-BFONN) with k = 4, and 0.0344 (FLABL) compares with 0.0337(FL-
BFONN) with k = 5). This shows the advantage of FLABL in prediction in
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Fig. 5. CPU prediction outcomes of FL-GANN (first), FL-BFONN (second) and
FLABL (third) with multivariate data, sliding window = 5

Fig. 6. Memory prediction outcomes of FL-GANN (first), FL-BFONN (second) and
FLABL (third) with multivariate data, sliding window = 5

comparison with other models. Figures 5 and 6 illustrate the prediction outcomes
of CPU and memory metrics in accuracy comparison tests among experimental
models.

In this test, we compare the speed of those prediction models, which based
on 3 factor includes: te is average time for 1 epoch (second/epoch), tp is time to
predict test data (second) and ts is the total time of all system (preprocessing,
training and testing - second). Because each model has different epoch configu-
ration, so te should be choice instead of the total time of training process. Our
speed comparison are given in Table 3.

4.3 Auto-scaling Strategy

In this test, we evaluate auto-scaling decisions made based on prediction results
and SLA violation assessments as presented in Subsect. 3.3. Figure 7 shows the
number of VMs calculated using the formula 12. An observation can be made
from the obtained outcomes as follows. With s < 1.3, there are still some under-
provision VMs as compared with resource requirements. For s ≥ 1.3, VMs are
allocated sufficiently for the demand usages. It’s also shown in below test when
we consider the lack and over-provision of resources.

In order to assess the lack or over-provision of resources, we use SLAVTP and
ADI measurements. Concretely, Table 4 shows SLAVTP estimations of various
models in VM allocation process with window size p = 3. In general, our pro-
posed model gains smaller SLAVTP values than other models when the scaling
coefficient is changed. For example, when s = 2.0, FLABL univariate model has
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Table 3. System run time (second) comparison between FLABL and other models
with sliding window = 5

Input type Model CPU RAM

te tp ts te tp ts

Univariate ANN 0.0379 0.0319 198.4 0.044 0.0321 220.3

MLNN 0.0583 0.0587 291.58 0.0644 0.0686 322.15

FLNN 0.023 0.0003 114.83 0.0248 0.0003 124.03

FL-GANN 0.3154 0.0004 220.79 0.2612 0.0004 182.89

FL-BFONN 3.473 0.0006 2778.5 3.289 0.0014 2521.5

FLABL 0.1095 0.0004 71.16 0.1229 0.0007 122.89

Multivariate ANN 0.0406 0.0324 202.95 0.0418 0.0325 209.15

MLNN 0.0605 0.0598 302.48 0.054 0.0589 270.25

FLNN 0.0245 0.0021 122.53 0.0263 0.0004 131.45

FL-GANN 0.3944 0.0004 276.15 0.4176 0.0004 292.35

FL-BFONN 3.166 0.0007 2532.6 3.177 0.0034 2541.5

FLABL 0.1708 0.0008 170.82 0.1419 0.0009 141.91

only 0.18% violation, while the multivariate model violates 0.12%. Especially,
when s = 2.5 both of univariate and multivariate model reaches 0% violation.
Of course, in these cases, the number of VMS provisioned is quite large.

Fig. 7. The number of predicted, allocated, used VMs with sliding window = 3, adap-
tation length L = 5, and scaling coefficient s = 1 (left), s = 1.3 (right)

Based on the ADI measurement, Table 5 shows the ADI evaluation of different
predictive models, with the desired utilization [60%, 80%] and window size p =
3. It is easy to observe that ADI of FLABL for both univariate and multivariate
data types is smaller than others. Specifically, in the test, optimal ADI is at 3.7
when s = 1.3. The results demonstrate significant effect of our prediction as well
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Table 4. Violation percentage in comparison among various models with adaptation
length = 5, and sliding window = 3

Input type Model Scaling coefficient

s = 1.0 s = 1.3 s = 1.5 s = 1.7 s = 2.0 s = 2.2 s = 2.5

Univariate ANN 10.3 1.87 1.02 0.54 0.18 0.12 0.06

MLNN 10.24 1.81 0.96 0.6 0.18 0.12 0.06

FLNN 9.28 1.81 0.96 0.54 0.24 0.24 0.12

FL-GANN 11.33 1.69 0.9 0.48 0.24 0.18 0.06

FL-BFONN 11.81 1.75 0.84 0.54 0.24 0.06 0

FLABL 10.3 1.93 1.02 0.54 0.18 0.06 0

Multivariate ANN 15.96 7.59 5.42 4.28 3.13 2.53 1.99

MLNN 10.42 1.69 0.9 0.6 0.18 0.06 0.06

FLNN 11.08 1.75 0.84 0.54 0.12 0.06 0

FL-GANN 10.3 1.69 1.27 0.48 0.24 0.12 0.06

FL-BFONN 9.7 1.81 0.84 0.6 0.18 0.12 0.06

FLABL 9.76 1.69 0.9 0.54 0.12 0.06 0

Table 5. ADI in comparison among various models with adaptation length = 5, and
sliding window = 3

Input type Model Scaling coefficient

s = 1.0 s = 1.3 s = 1.5 s = 1.7 s = 2.0 s = 2.2 s = 2.5

Univariate ANN 154.01 15.41 37.88 112.63 227.11 293.53 372.4

MLNN 176.59 3.81 4.87 78.94 205.75 270.58 353.31

FLNN 184.6 4.41 11.29 82.46 207.8 277.2 357.88

FL-GANN 176.67 3.86 15.9 89.18 214.8 283.6 363.81

FL-BFONN 179.62 5.21 4.42 77.31 202.46 267.21 350.03

FLABL 189.27 3.7 5.54 74.73 199.9 267 349.5

Multivariate ANN 342.11 320.86 356.43 394.72 456.56 491.43 539.16

MLNN 203.73 10.03 7.84 67.19 192.52 254.28 337.38

FLNN 183.2 8.63 14.53 83.34 203.7 271.43 352.82

FL-GANN 195.78 9.79 10.24 74.45 192.43 259.98 341.88

FL-BFONN 219.81 40.24 36.47 93.23 197.92 260.28 340.58

FLABL 192.27 8.22 5.5 72.16 183.9 259.61 342.76

as decision solutions. As mentioned above, when s is increased, SLA violation
decreases but resource over-provision phenomenon occurs.

5 Conclusion and Future Work

In this paper, we presented our designs for a novel cloud proactive auto-scaler
with complete modules from prediction to decision making. Thus, functional-link
neural network is used for the forecast phase. To overcome back-propagation
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drawback, we integrate adaptive bacterial foraging life-cycle and social learning
optimization with the artificial neural network. This improvement brings bet-
ter accuracy for our proposed model. The auto-scaler designed in this paper
also enables the capability of analyzing multiple monitoring metrics at the same
time. This mechanism supports our system to be able to discover the implicit
relationships among metrics types and thus help make scaling decisions more
precisely. For the decision module, we proposed an efficient way to calculate
the number of VMs that are provided for cloud-based applications using SLA
violation measurement. We tested the auto-scaler with a real dataset generated
by Google cluster. The obtained outcomes show that our system can work effi-
ciently as compared with other methods and it can be applied to practice in
clouds. For the future, we would like to implement the auto-scaler in private
cloud middleware like Openstack or OpenNebula. Based on the infrastructures,
we will test the proposal with applications under real conditions.
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Abstract. We discuss the complexity of path enumeration in weighted
temporal graphs. In a weighted temporal graph, each edge has an avail-
ability time, a traversal time and some cost. We introduce two bicriteria
temporal min-cost path problems in which we are interested in the set
of all efficient paths with low costs and short duration or early arrival
times, respectively. Unfortunately, the number of efficient paths can be
exponential in the size of the input. For the case of strictly positive edge
costs, however, we are able to provide algorithms that enumerate the set
of efficient paths with polynomial time delay and polynomial space. If
we are only interested in the set of Pareto-optimal solutions (not in the
paths themselves), then we show that in the case of nonnegative edge
costs these sets can be found in polynomial time. In addition, for each
Pareto-optimal solution, we are able to find an efficient path in polyno-
mial time.

1 Introduction

A weighted temporal graph G = (V,E) consists of a set of vertices and a set of
temporal edges. Each temporal edge e ∈ E is associated with an edge cost and
is only available (for departure) at a specific integral point in time. Traversing
an edge takes a specified amount of traversal time. We can imagine a temporal
graph as a sequence of T ∈ N graphs G1, G2, . . . , GT sharing the common set of
vertices V ; each graph Gi has its own set of edges Ei. Therefore, G can change
its structure over a finite sequence of integral time steps.

Given a directed weighted temporal graph G = (V,E), a source s ∈ V and a
target z1∈ V , we want to find earliest arrival or fastest (s, z)-paths with minimal
costs. A motivation can be found in typical queries in (public) transportation
networks. Here, each vertex represents a bus stop, metro stop or a transfer
point and each edge a connection between two such points. In this model, the
availability time of an edge is the departure time of the bus or metro, the traversal
time is the time a vehicle takes between the two transfer points, and the edge cost
provides the ticket price. Two natural questions are the following: (1) Minimize
the costs and the arrival times, or (2) minimize the costs and the total travel
time.
1 We use t to denote time steps and z for the target vertex.
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In general, there is no path that minimizes both objectives simultaneously,
and therefore we are interested in the set of all efficient paths. A path is called
efficient if there is no other path that is strictly better in one of the criteria and
at least as good concerning both criteria. In other words, a path is efficient iff
its cost vector is Pareto-optimal.

We denote by McfEnum and MceaEnum the enumeration problems, in
which the task is to enumerate the set of all efficient paths w.r.t. cost and dura-
tion or cost and arrival time, respectively. Unfortunately, there can be an expo-
nential number of efficient paths. So we cannot expect to find polynomial time
algorithms for the above mentioned enumeration problems. However, Johnson,
Yannakakis, and Papadimitriou [7] have defined complexity classes for enumer-
ation problems, where the time complexity is expressed not only in terms of the
input size but also in the output size. We use the output complexity model to
analyze the proposed enumeration problems and show that the problems belong
to the class of polynomial time delay with polynomial space (PSDelayP). If we
are only interested in the sets of Pareto-optimal solutions and not in all the paths
themselves, we show that then the problems can be solved in polynomial time
for nonnegative edge weights. In these cases we can also provide an associated
path with each solution.

Contribution – In this paper we show the following:

1. McfEnum and MceaEnum are in PSDelayP for weighted temporal graphs
with strictly positive edge costs.

2. In case of nonnegative edge costs, finding the Pareto-optimal set of cost vec-
tors is possible in polynomial time (thus the set of Pareto-optimal solutions is
polynomially bounded in the size of the input), and for each Pareto-optimal
solution we can find an efficient path in polynomial time.

3. The decision versions that ask if a path is efficient, are in P. Deciding if there
exists an efficient path with given cost and duration or arrival time is possible
in polynomial time.

In the remainder of this section we discuss the related work. In Sect. 2 we pro-
vide all necessary preliminaries. Next, in Sect. 3 structural results are presented.
These are the foundation of the algorithms for McfEnum and MceaEnum
in the following Sects. 4 and 5, respectively. Finally, in Sect. 6 conclusions are
drawn.

Related Work – Temporal graphs and related problems are discussed in sev-
eral recent works. A general overview is provided, e.g., in [1,6,8]. Xuan et al.
[12] discuss communication in dynamic and unstable networks. They introduce
algorithms for finding a fastest path, an earliest arrival path and a path that
uses the least number of edges. Wu et al. [11] further discuss the fastest, short-
est and earliest arrival path problems in temporal graphs and introduce the
latest-departure path problem. Their algorithm for calculating an earliest arrival
(s, v)-path has time complexity O(n + m) and space complexity O(n), where n
denotes the number of vertices and m the number of edges in the given temporal
graph. Furthermore, they present an algorithm that finds a fastest (s, v)-path in
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O(n + m log c) time and O(min{n · S, n + m}) space. Here, S is the number of
distinct availability times of edges leaving vertex s, and c the minimum of S and
the maximal in-degree over all vertices of G. The algorithm uses a label setting
approach to find a fastest (s, v)-path for each v ∈ V . However, Xuan et al. [12]
and Wu et al. [11] do not consider weighted temporal graphs.

Hansen [5] introduces bicriteria path problems in static graphs, and provides
an example for a family of graphs for which the number of efficient paths grows
exponentially with the number of vertices. Meggido shows that deciding if there
is an (s, z)-path that respects an upper bound on both objective functions is
NP-complete (Meggido 1977, private communication with Garey and Johnson
[3]). Martins [9] presents a label setting algorithm based on the well known
Dijkstra algorithm for the bicriteria shortest path problem, that finds the set
of all efficient (s, v)-paths for all v ∈ V . Ehrgott and Gandibleux [2] provide an
overview of the work on bi- and multicriteria shortest path problems. Hamacher
et al. [4] propose an algorithm for the bicriteria time-dependent shortest path
problem in networks in which edges have time dependent costs and traversal
times. The traversal time of an edge is given as a function of the time upon
entering the edge. Moreover, each edge has a two-dimensional time dependent
cost vector. Waiting at a vertex may be penalized by additional bicriteria time
dependent costs. They propose a label setting algorithm that starts from the
target vertex and finds the set of all efficient paths to each possible start vertex.

We are not aware of any work discussing the enumeration of efficient paths
in weighted temporal graphs.

2 Preliminaries

A weighted temporal graph G = (V,E) consists of a set V of n ∈ N vertices
and a set E of m ∈ N weighted and directed temporal edges. A weighted and
directed temporal edge e = (u, v, t, λ, c) ∈ E consists of the starting vertex
u ∈ V , the end vertex v ∈ V (with u �= v), availability time t ∈ N, traversal time
λ ∈ N and cost c ∈ R≥0. Each edge e = (u, v, t, λ, c) ∈ E is only available for
entering at its availability time t and traversing e takes λ time. For T := max{t |
(u, v, t, λ, c) ∈ E}, we can view G as a finite sequence G1, G2, . . . , GT of static
graphs over the common set of vertices V ; each Gi with its own set of edges
Ei := {(u, v, λ, c) | e = (u, v, i, λ, c) ∈ E}. Figure 1 shows an example. We denote
the set of incoming (outgoing) temporal edges of a vertex v ∈ V by δ−(v) (δ+(v)).
Note that in general for temporal graphs the number of edges is not bounded by
a function in the number of vertices, i.e. we may have arbitrarily more temporal
edges than vertices. In the following, we use a stream representation of temporal
graphs. A temporal graph is given as a sequence of the m edges, which is ordered
by the availability time of the edges in increasing order with ties being broken
arbitrarily.
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2.1 Temporal Path Problems

A temporal (u, v)-walk Pu,v is a sequence (e1, . . . , ei = (vi, vi+1, ti, λi, ci), . . . , ek)
of edges with ei ∈ E for 1 ≤ i ≤ k, and with v1 = u, vk+1 = v and ti + λi ≤ ti+1

for 1 ≤ i < k. If a temporal (u, v)-walk visits each v ∈ V at most once, it is
simple and we call it (u, v)-path. We denote by s(Pu,v) := t1 the starting time,
and by a(Pu,v) := tk + λk the arrival time of Pu,v. Furthermore, we define the
duration as d(Pu,v) := a(Pu,v) − s(Pu,v). A path Pu,v is faster than a path Qu,v

if d(Pu,v) < d(Qu,v). The cost of a path P = (e1, . . . , ek) is the sum of the edge
cost, i.e. c(P ) :=

∑k
i=1 ci. Finally, for a path P = (e1, . . . , ei, . . . , ek), we call

(e1, . . . , ei) prefix-path and (ei, . . . , ek) suffix-path of P . In Fig. 1 the (s, z)-path
((s, b, 1, 1, 2), (b, z, 2, 1, 1)) has arrival time 3, duration 2 and cost 3. The (s, z)-
path ((s, z, 3, 1, 3)) also has cost 3, but it has a later arrival time of 4 and is
faster with a duration of only 1.

G : G1 : G2 : G3 :

s a

bz

(1, 1, 1)

(3
,1

,3)

(2
,1

,2)

(1, 1, 2)

(2, 1, 1)

s a

bz

(1, 1, 1)

(1, 1, 2)

s a

bz
(2, 1, 1)

(2
, 1

,2)

s a

bz

(3
,1

,3)

Fig. 1. Example for a weighted temporal graph G. Each edge label (t, λ, c) describes
the time t when the edge is available, its traversal time λ and its cost c. For each time
step t ∈ {1, 2, 3}, layer Gt is shown.

For the discussion of bicriteria path problems, we use the following defini-
tions. Let X be the set of all feasible (s, z)-paths, and let f(P ) be the temporal
value of P , i.e. either arrival time f(P ) := a(P ) or duration f(P ) := d(P ). We
call a path P ∈ X efficient if there is no other path Q ∈ X with c(Q) < c(P ) and
f(Q) ≤ f(P ) or c(Q) ≤ c(P ) and f(Q) < f(P ). We map each P ∈ X to a vector
(f(P ), c(P )) in the two-dimensional objective space which we denote by Y. Com-
plementary to efficiency in the decision space, we have the concept of domination
in the objective space. We say (f(P ), c(P )) ∈ Y dominates (f(Q), c(Q)) ∈ Y if
either c(P ) < c(Q) and f(P ) ≤ f(Q) or c(P ) ≤ c(Q) and f(P ) < f(Q). We call
(f(P ), c(P )) nondominated if and only if P is efficient. We define the bicriteria
enumeration problems McfEnum and MceaEnum as follows.

Min-Cost Fastest Paths Enumeration Problem (McfEnum)
Given: A weighted temporal graph G = (V,E) and s, z ∈ V .
Task: Enumerate all and only (s, z)-paths that are efficient w.r.t. duration and
costs.
Min-Cost Earliest Arrival Paths Enumeration Problem (MceaEnum)
Given: A weighted temporal graph G = (V,E) and s, z ∈ V .
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Task: Enumerate all and only (s, z)-paths that are efficient w.r.t. arrival time
and costs.

We denote by Mcf and Mcea the optimization versions, in which the task
is to find a single efficient (s, z)-path.

2.2 Complexity Classes for Enumeration Problems

Bi- and multicriteria optimization problems are often not easily comparable using
the traditional notion of worst-case complexity, due to their potentially expo-
nential number of efficient solutions. We use the output complexity model as
proposed by Johnson, Yannakakis, and Papadimitriou [7]. Here, the time com-
plexity is stated as a function in the size of the input and the output.

Definition 1. Let E be an enumeration problem. Then E is in

1. DelayP (Polynomial Time Delay) if the time delay until the output of the
first and between the output of any two consecutive solutions is bounded by a
polynomial in the input size.

2. PSDelayP (Polynomial Time Delay with Polynomial Space) if E is in
DelayP and the used space is also bounded by a polynomial in the input
size.

In Sects. 4 and 5 we show that McfEnum and MceaEnum are both in
PSDelayP if the input graph has strictly positive edge costs. We provide algo-
rithms that enumerate the set of all efficient paths in polynomial time delay and
use space bounded by a polynomial in the input size.

3 Structural Results

We show that it is possible to find an efficient (s, z)-path for the Min-Cost
Earliest Arrival Path Problem (Mcea) in a graph G, if we are able to solve
Mcf. We use a transformed graph G′, in which a new source vertex and a
single edge is added. The reduction is from a search problem to another search
problem. We show that it preserves the existence of solutions and we also provide
a mapping between the solutions. This is also known as Levin reduction.

Lemma 1. There is a Levin reduction from Mcea to Mcf.

Proof. Let I = (G = (V,E), s, z) be an instance of Mcea. We construct the Mcf
instance I ′ = (G′ = (V ∪ {s′}, E ∪ {e0 = (s′, s, 0, 0, 0)}), s′, z). Furthermore, let
XI be the sets of all (s, z)-paths for I, and XI′ be the sets of all (s′, z)-paths for
I ′. We define g : XI → XI′ as bijection that prepends edge e0 to the paths in
XI , i.e. g((e1, . . . , ek)) = (e0, e1, . . . , ek). We show that P ∈ XI is efficient (for
Mcea) iff g(P ) ∈ XI′ is efficient (for Mcf).

Let P = (e1, . . . , ek) be an efficient (s, z)-path in G w.r.t. costs and arrival
time. Then Q := g(P ) = (e0, e1, . . . , ek) is an (s′, z)-path in G′ with a(Q) = a(P )
and c(Q) = c(P ). Now, assume Q is not efficient w.r.t. costs and duration in G′.
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Then there is a path Q′ with less costs and at most the duration of Q or with
shorter duration and at most the same costs of Q. Path Q′ also begins with edge
e0, and G contains a path P ′ that uses the same edges as Q′ with exception of
edge e0. Then, at least one of the following two cases holds.

– Case c(Q′) ≤ c(Q) and d(Q′) < d(Q): Since the costs of e0 are 0, it follows
that c(P ′) = c(Q′) ≤ c(Q) = c(P ). Because the paths start at time 0 and for
each path d(P ) = a(P ) − s(P ), it follows d(Q′) = a(Q′) = a(P ′) < a(P ) =
a(Q) = d(Q).

– Case c(Q′) < c(Q) and d(Q′) ≤ d(Q): Analogously, here we have c(P ′) =
c(Q′) < c(Q) = c(P ). And a(P ′) = a(Q′) ≤ a(Q) = a(P ).

Either of these two cases leads to a contradiction to the assumption that P is
efficient.

Let Q = (e0, e1, . . . , ek) and assume it is an efficient (s′, z)-path in G′ w.r.t.
to cost and duration. Then there exists an (s, z)-path P = (e1, . . . , ek) in G
such that g(P ) = Q, a(Q) = a(P ) and c(Q) = c(P ). Now, assume that P is
not efficient. Then there is a path P ′ with less costs and not later arrival time
than P or with earlier arrival time and at most the costs of P . In G′ exists the
path Q′ = g(P ′) that uses the same edges as P ′, and additionally the edge e0 as
prefix-path from s′ to s. We have the cases c(P ′) < c(P ) and a(P ′) ≤ a(P ) or
c(P ′) ≤ c(P ) and a(P ′) < a(P ). Again, either of them leads to a contradiction
to the assumption that Q is efficient. ��

Based on this result, we first present an algorithm for McfEnum in Sect. 4
that we use in a modified version to solve MceaEnum in Sect. 5. In the rest of
this section, we focus on graphs with strictly positive edge costs.

Observation 1. Let G = (V,E) be a weighted temporal graph. If for all edges
e = (u, v, t, λ, c) ∈ E it holds that c > 0, then all efficient walks for MceaEnum
and McfEnum are simple, i.e. are paths.

Similar to the non-temporal static case, it would be possible to delete the edges
of a cycle contained in the non-simple walk. We denote the two special cases
for graphs with strictly positive edge costs by (c>0)-McfEnum and (c>0)-
MceaEnum. Our enumeration algorithms use a label setting technique. A label
l = (b, a, c, p, v, r,Π) at vertex v ∈ V corresponds to a (s, v)-path and consists
of

– the starting time b = s(Ps,v),
– the arrival time a = a(Ps,v),
– the cost c = c(Ps,v),
– the predecessor label p,
– the current vertex v,
– the availability time r of the previous edge and
– a reference to a list of equivalent labels Π.
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Moreover, each label is uniquely identifiable by an additional identifier and has a
reference to the edge that lead to its creation (denoted by l.edge). The proposed
algorithms process the edges in order of their availability time. When processing
an edge e = (u, v, t, λ, ce), all paths that end at vertex u can be extended by
pushing labels over edge e to vertex v. Pushing a label l = (b, a, c, p, u, r,Π) over
e means that we create a new label lnew = (b, t + λ, c + ce, l, v, t, ·) at vertex v.

If we would create and store a label for each efficient path, we possibly would
need exponential space in the size of the input. The reason is that the number
of efficient paths can be exponential in the size of the input.

s v3

v2

x

v4

z

y

v5 . . .

(1
, 1
, 1
)

(1, 2, 2)

(2, 1, 1) (3
, 1
, 1
)

(3, 2, 2)
(4, 1, 1)

(n− 2, 2, 2)

(n
− 2

, 1
, 1
) (n−

1, 1, 1)

Fig. 2. Example for an exponential number of efficient paths for MceaEnum and
McfEnum. All (s, v)-paths for v ∈ V are efficient.

Figure 2 shows an example for McfEnum and MceaEnum, which is similar
to the one provided by Hansen [5], but adapted to the weighted temporal case.
G has m edges and n = 2m

3 + 1 vertices. There are two paths from s to v3,
four paths from s to v5, eight paths from s to v7 and so on. All (s, v)-paths for
v ∈ V are efficient. In total, there are 2�n

2 � efficient (s, z)-paths to be enumerated.
However, the following lemma shows properties of the problems that help us to
achieve polynomial time delay and a linear or polynomial space complexity. Let
YA (YF ) denote the objective space for MceaEnum (McfEnum, respectively).
Moreover, we define S to be the number of distinct availability times of edges
leaving the source vertex s.

Lemma 2. For MceaEnum, the number of nondominated points in YA is in
O(m). For McfEnum, the number of nondominated points in YF is in O(m2).

Proof. Let G = (V,E) be a weighted temporal graph and s, z ∈ V . First we
show that the statement holds for MceaEnum. The possibilities for different
arrival times at vertex z is limited by the number of incoming edges at z. For
each path Ps,z we have

a(Ps,z) ∈ {α | α := te + λe with e = (u, z, te, λe, c) ∈ δ−(z)}.

Consequently, there are at most |δ−(z)| ∈ O(m) different arrival times. For each
arrival time a, there can only be one nondominated point (a, c) ∈ YA that has
the minimum costs of c, and which represents exactly all efficient paths with
arrival time a and costs c.
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Now consider the case for McfEnum. The number of distinct availability
times of edges leaving the source vertex S is bounded by |δ+(s)| ∈ O(m). Because
the duration of any (s, z)-path P equals a(P ) − s(P ), there are at most S ·
|δ−(z)| ∈ O(m2) different durations possible at vertex z. For each duration, there
can only be one nondominated point (d, c) ∈ YF that has minimum costs c. ��

Note that for general bicriteria optimization (path) problems there can be
an exponential number of nondominated points in the objective space. Skriver
and Andersen [10] give an example for a family of graphs with an exponential
number of nondominated points for a bicriteria path problem. The fact that in
our case the number of nondominated points in the objective space is polynomi-
ally bounded, allows us to achieve polynomial time delay and space complexity
for our algorithms. The idea is to consider equivalence classes of labels at each
vertex, such that we only have to proceed with a single representative for each
class. First, we define the following relations between labels.

Definition 2. Let l1 = (b1, a1, c1, p1, v, r1,Π1) and l2 = (b2, a2, c2, p2, v, r2,Π2)
be two labels at vertex v.

1. Label l1 is equivalent to l2 iff c1 = c2 and b1 = b2.
2. Label l1 predominates l2 if l1 and l2 are not equivalent, b1 ≥ b2, a1 ≤ a2 and

c1 ≤ c2 with at least one of the inequalities being strict.
3. Finally, label l1 dominates l2 if a1 − b1 ≤ a2 − b2 and c1 ≤ c2 with at least

one of the inequalities being strict.

For each class of equivalent labels, we have a representative l and a list Πl that
contains all equivalent labels to l. For each vertex v ∈ V , we have a set Rv that
contains all representatives. The algorithms consist of two consecutive phases:

– Phase 1 calculates the set of non-equivalent representatives Rv for every
vertex v ∈ V such that every label in Rv represents a set of equivalent paths
from s to v. For each of the nonequivalent labels l ∈ Rv we store the list Πl

that contains all labels equivalent to l.
– Phase 2 recombines the sets of equivalent labels in a backtracking fashion,

such that we are able to enumerate exactly all efficient (s, z)-paths without
holding the paths in memory.

A label in Πl at vertex v represents all (s, v)-paths that are extension of all paths
represented by its predecessor, and l ∈ Rv is a representative for all labels in
Πl. The representative itself is in Πl and has minimum arrival time among all
labels in Πl.

We have to take into account that a prefix-path Ps,w of an efficient (s, z)-path
may not be an efficient (s, w)-path. Figure 3(a) shows an example for a weighted
temporal graph with a non-optimal prefix-path. Consider the following paths:
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Fig. 3. (a) An example for non-efficient prefix-paths. (b) The vertices are annotated
with labels that describe the starting time, arrival time and costs of the paths starting
at s.

– Ps,z = ((s, w, 2, 3, 2), (w, z, 5, 1, 1)) with arrival time 6 and duration 4
– P 1

s,w = ((s, w, 2, 3, 2)) with arrival time 5 and duration 3
– P 2

s,w = ((s, u, 1, 2, 1), (u,w, 2, 1, 1)) with arrival time 3 and duration 3
– P 3

s,w = ((s, v, 5, 1, 1), (v, w, 6, 1, 1)) with arrival time 7 and duration 2

All (s, z)-paths have cost 3 and all (s, w)-paths have cost 2. Path Ps,z is efficient
for McfEnum and MceaEnum. For MceaEnum the prefix-path P 1

s,w is not
efficient, because P 2

s,w arrives earlier. However, for McfEnum the only efficient
(s, w)-path is P 3

s,w. Consequently, we cannot discard a non-efficient path that
possibly is a prefix-path of an efficient path. We use the predomination relation
to remove labels that do not represent a prefix-path of an efficient path.

Lemma 3. Let l1 = (b1, a1, c1, p1, v, r1,Π1) and l2 = (b2, a2, c2, p2, v, r2,Π2) be
two distinct labels at vertex v ∈ V . If l1 predominates l2, then l2 cannot be a
label representing a prefix-path of any efficient path.

Proof. There are two distinct paths P 1
s,v and P 2

s,v from s to v corresponding to
l1 and l2. Due to the predomination of l1 over l2 it follows that a1 = a(P 1

s,v) ≤
a(P 2

s,v) = a2, b1 = s(P 1
s,v) ≥ s(P 2

s,v) = b2 and c1 = c(P 1
s,v) ≤ c(P 2

s,v) = c2 with at
least one of the later two relations being strict, due to the fact that the labels are
not equivalent. Let Ps,w be a path from s to some w ∈ V such that P 2

s,v is prefix-
path of Ps,w, and assume that Ps,w is efficient. Let P ′

s,w be the path where the
prefix-path P 2

s,v is replaced by P 1
s,v. This is possible because a(P 1

s,v) ≤ a(P 2
s,v).

Now, since s(P 1
s,v) ≥ s(P 2

s,v) and c(P 1
s,v) ≤ c(P 2

s,v) with at least one of the
inequalities being strict, it follows that a(P ′

s,w) − s(P ′
s,w) ≤ a(Ps,w) − s(Ps,w)

and c(P ′
s,w) ≤ c(Ps,w) also with one of the inequalities being strict. Therefore,

P ′
s,w dominates Ps,w, a contradiction to the assumption that Ps,w is efficient. ��

Figure 3(b) shows an example for a non-predominated label of a prefix-path
that we cannot discard. Although path P1 = ((s, u, 5, 5, 5)) dominates path P2 =
((s, u, 1, 6, 6)), we cannot discard P2. The reason is that the arrival time of P1

is later than the availability time of the only edge from u to z. Therefore, P2 is
the prefix-path of the only efficient path ((s, u, 1, 6, 6), (u, z, 8, 1, 1)).
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4 Min-Cost Fastest Path Enumeration Problem

In this section, we present the algorithm for McfEnum. Algorithm 1 expects as
input a weighted temporal graph with strictly positive edge costs in the edge
stream representation, the source vertex s ∈ V and the target vertex z ∈ V .
First, we insert an initial label linit into Rs and Πlinit

. Next, the algorithm
processes successively the m edges in order of their availability time. For each
edge e = (u, v, t, λ, c), we first determine the set S ⊆ Ru of labels with distinct
starting times, minimal costs and an arrival time less or equal to t at vertex u
(line 4). Next, we push each label in S over e. We check for predomination and
equivalence with the other labels in Rv and discard all predominated labels. In
case the new label is predominated, we discard it and continue with the next label
in S. In case that the new label lnew is equivalent to a label l = (a, c, p, v, te,Π) ∈
Rv, we add lnew to Π. If lnew arrives earlier at v than the arrival time of l, we
replace the representative l with lnew in Rv. If the new label is not predominated
and not equivalent to any label in Rv, we insert lnew into Rv and Πlnew

. In this
case, lnew is a new representative and we initialize Πlnew

(which contains only
lnew at this point). For the following discussion, we define the set of all labels at
vertex v ∈ V as Lv :=

⋃

l∈Rv

Πl.

Lemma 4. Let Ps,v be an efficient path and Ps,w a prefix-path of Ps,v. At the
end of Phase 1 of Algorithm1, Rw contains a label representing Ps,w.

Proof. We show that each prefix-path P0, P1, . . . , Pk, with P0 = Ps,s and Pk =
Ps,v is represented by a label at the last vertex of each prefix-path by induction
over the length h. Note that all prefix-paths have the same starting time b =
s(Ps,v). For h = 0 we have P0 = Ps,s and since s does not have any incoming
edges, the initial label linit = l0 representing P0 is in Ls after Phase 1 finishes.
Assume the hypothesis is true for h = i−1 and consider the case for h = i and the
prefix-path Pi = Ps,vi+1 = (e1, . . . , ei = (vi, vi+1, ti, λi, ci)), which consists of the
prefix-path Pi−1 = Ps,vi

= (e1, . . . , ei−1 = (vi−1, vi, ti−1, λi−1, ci−1)) and edge
ei = (vi, vi+1, ti, λi, ci). Due to the induction hypothesis, we conclude that Lvi

contains a label li−1 = (b, ai−1, ci−1, pi−1, vi, ri−1,Πi−1) that represents Pi−1.
Because Pi−1 is a prefix-path of Ps,v the representing label li−1 must have the
minimum cost in Lvi

under all labels with starting time b before edge ei arrives.
Else, it would have been predominated and replaced by a cheaper one (Lemma3).
The set S contains a label that represents li−1, because the representative of
Πi−1 has an arrival time less or equal to ai−1. Therefore, the algorithm pushes
lnew = (b, ti + λi, ci−1 + ci, li−1, vi+1, ti, ·) over edge ei. If Rvi+1 is empty the
label lnew gets inserted into Rvi+1 and Πlnew

. Otherwise we have to check for
predomination and equivalence with every label l′ = (b′, a′, c′, p′, vi+1, r

′,Π ′) ∈
Rvi+1 . There are the following cases:

1. lnew predominates l′: We can remove l′ from Rvi+1 because it will never be
part of an efficient path (Lemma 3). The same is true for each label in Π ′ and
therefore we delete Π ′. However, we keep lnew and continue with the next
label.
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Algorithm 1. for McfEnum

Input: Graph G in edge stream representation, source s ∈ V and target z ∈ V
Output: All efficient (s, z)-paths

Phase 1
1: initialize Rv for each v ∈ V
2: insert label linit = (0, 0, 0, −, s, −, Πlinit) into Rs and Πlinit

3: for each edge e = (u, v, te, λe, ce) do
4: S ← {(b, a, c, p, v, r, ·) ∈ Ru | a ≤ te, c minimal and distinct starting times b}
5: for each l = (b, a, c, p, v, r, ·) ∈ S with a ≤ te do
6: if u = s then
7: lnew ← (te, te + λe, ce, l, s, te, ·)
8: else
9: lnew ← (b, te + λe, c + ce, l, u, te, ·)

10: for each l′ = (b′, a′, c′, p′, v, t′, Π ′) ∈ Rv do
11: if lnew predominates l′ then
12: remove l′ from Rv and delete Π ′

13: else if l′ is equivalent to lnew then
14: insert lnew into Π ′

15: set reference Π ← Π ′

16: if te + λe < a′ then
17: replace l′ in Rv by lnew

18: goto 5
19: else if l′ predominates lnew then
20: delete lnew

21: goto 5

22: insert lnew into Rv and initialize Πlnew with lnew

Phase 2
23: mark nondominated labels in Rz

24: for each marked label l′ = (b, a, c, r, z, p, Π) ∈ Rz do
25: for each label l ∈ Π with minimal arrival time do
26: initialize empty path P
27: call OutputPaths(l, P );

Procedure for outputting paths
28: procedure OutputPaths(label l = (b, a, c, p, cur, r, Π), path P )
29: prepend edge l.edge to P
30: if l has predecessor p = (bp, ap, cp, pp, vp, rp, Πp) then
31: for each label l′ = (bl′ , al′ , cl′ , pl′ , vl′ , rl′ , Πp) in Πp do
32: if al′ ≤ r then
33: call OutputPaths(l′, P , visited)

34: return
35: output path P

2. lnew and l′ are equivalent: We add lnew to Π ′. In this case we represent the
path Pi by the representative of Π ′. Consequently, the path is represented by
a label in Lvi+1 .
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If neither of these two cases apply for any label in Rvi+1 , we add lnew to Rvi+1

and to Πlnew
. The case that a label l is not equivalent to lnew and predominates

lnew cannot be for the following reason. If l predominates lnew, there is a path P ′

from s to vi+1 with less costs or later starting time (because to l and lnew are not
equivalent) and a not later arrival time. Replacing the prefix-path Pi with P ′ in
the path Ps,v would lead to a (s, v)-path with less costs and/or shorter duration.
This contradicts our assumption that Ps,v is efficient. Therefore, after Phase 1
finished, the label lnew representing the prefix-path Pi is in Lvi

. It follows that
if Ps,v = (e1, . . . , ek) is an efficient path, then after Phase 1 the set Rv contains
a label representing Ps,v (possibly, such that a label in Rv represents a list of
equivalent labels, that contains the label representing Ps,v). ��

After all edges have been processed, the algorithm continues with Phase 2.
First, the algorithm marks all nondominated labels in Rz. For each marked label
l the algorithm iterates over the list of equivalent labels Πl and calls the output
procedure for each label in Πl. We show that all and only efficient paths are
enumerated.

Theorem 1. Let G = (V,E) be a weighted temporal graph with strictly positive
edge costs and s, z ∈ V an instance of McfEnum. Algorithm1 outputs exactly
the set of all efficient (s, z)-paths.

Proof. Lemma 4 implies that for each efficient path Ps,z there is a corresponding
representative label in Rz after Phase 1 is finished. Note that there might also
be labels in Lz that do not represent efficient paths. First, we mark all non-
dominated labels in Rz. For every marked representative l′ = (b, a, c, p, z, r,Πl′)
in Rz we proceed by calling the output procedure for all labels l ∈ Πl′ with
minimal arrival time. Each such label l represents at least one efficient (s, z)-
path and we call the output procedure with l and the empty path P . Let path
Q = (e1 . . . , ek) be an efficient (s, z)-paths represented by l. We show that the
output procedure successively constructs the suffix-paths Pi = (ek−i+1, . . . , ek)
of Q for i ∈ {1, . . . , k} and finally outputs Q = Pk = (e1, . . . , ek).

We use induction over the length i ≥ 1 of the suffix-path. For i = 1 the state-
ment is true. P1 = (ek) is constructed by the first instruction which prepends
the last edge of Q to the initially empty path P . Now, assume the statement
holds for i = j − 1 < k, i.e. the suffix-path Pj−1 of Q with length j − 1 has
been constructed, by calling the output procedure with Pj−2 and label lj−1 =
(b, a, c, p, vk−j+2, r,Π). The suffix-path Pj = (ek−j+1, . . . , ek) equals Pj−1 with
the additional edge ek−j+1 = (vk−j+1, vk−j+2, t, λ, c) with vk−j+2 being the first
vertex of Pj−1. The predecessor of lj−1 is label p = (b, ap, cp, pp, vk−j+1, rp,Π

′).
We recursively call the output procedure for each label in the list of equivalent
labels Π ′ and verify that the arrival time of each of these labels is less or equal
to t. Due to Lemma 4, we particularly call the output procedure for the label
that represents the beginning of the suffix-path Pj and which has an arrival time
less than t. Consequently, there is a call of the output procedure that constructs
Pj . If Pj does not have a predecessor, we arrived at vertex s and the algorithm
outputs the found path Q = Pk.
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We still have to show that only efficient paths are enumerated. In order to
enumerate a non-efficient (s, z)-path Q′, there has to be a label lq in Lz for
which the output procedure is called and which represents Q′. For Q′ to be non-
efficient there has to be at least one label ld in Lz that dominates lq. In line 23
the algorithm marks all nondominated labels in Rz. This implies that ld and lq
have the same cost and starting times and that they are in the same list, let this
list be Πx for some label x ∈ Rz. Because lq is dominated by ld the arrival time
of ld is strictly earlier than the arrival time of lq. However, we call the output
procedure only for the labels in Πx with the minimal arrival time. Consequently,
it is impossible that the non-efficient path Q′ is enumerated.

Finally, because all edge costs are strictly positive and due to Observation 1
only paths are enumerated. ��

Example: Figure 4 shows an example for Algorithm 1 at the end of Phase 1.
The edges are numbered according to their position in the sequence of the edge
stream. The representative labels at the vertices only show the starting time,
arrival time and cost. The lists Π of equivalent labels are not shown. All of them
contain only the representative, with exception of Πl represented by label l in
Rw. The list Πl contains label l = (3, 7, 4)T representing path ((s, w, 3, 4, 4))
and the equivalent label (3, 8, 4)T representing path ((s, u, 3, 3, 3), (u,w, 6, 1, 1)).
There are three efficient paths. Starting the output procedure from vertex z with
the label (7, 10, 6)T yields path (e5, e8), and starting with label (3, 9, 5)T yields
the two paths (e1, e4, e7) and (e2, e7). Notice that label (7, 9, 2)T in Rw which
dominates label (3, 7, 4)T , is not part of an efficient (s, z)-path, due to its late
arrival time.

Lemma 5. Phase 1 of Algorithm1 has a time complexity of O(S · m2).

Proof. The outer loop iterates over m edges. For each edge e = (u, v, te, λe, ce)
we have to find the set S ⊆ Ru consisting of all labels with minimal cost, distinct
starting times and arrival time less or equal to te (see line 4). This can be done in
O(m) time. For each label in S we have to check for predominance or equivalence
with each label in Rv in O(S · m) total time. Since we have |S| ≤ S, we get a
total time of O(S · m2). ��

The following lemma shows that the number of labels is polynomially
bounded in the size of the input.

Lemma 6. The total number of labels generated and hold at the vertices in
Algorithm1 is less than or equal than S · m + 1.

Proof. We need one initial label linit. For each incoming edge e = (u, v, t, λ, c)
in the edge stream we generate at most |S| ≤ S new labels which we push over
e to vertex v. Therefore, we generate at most S · m + 1 labels in total. ��
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Fig. 4. Example for Algorithm 1. Each vertex is annotated with the representatives
after Phase 1 finished.

Theorem 2. (c>0)-McfEnum ∈ PSDelayP.

Proof. Phase 1 takes only polynomial time in size of the input, i.e. number of
edges (Lemma 5). In Phase 2 of Algorithm 1, we first find and mark all nondom-
inated labels in Rz in O(m2) time. For each nondominated label, we call the
output procedure which visits at most O(m2) labels and outputs at least one
path. It follows that the time between outputting two consecutively processed
paths is also bounded by O(m2). Therefore, (c>0)-McfEnum is in DelayP.
The space complexity is dominated by the number of labels we have to manage
throughout the algorithm. Due to Lemma6, the number of labels is in O(m2).
Consequently, (c>0)-McfEnum is in PSDelayP. ��

The following problems are easy to decide, even if we allow zero weighted
edges.

Theorem 3. Given a weighted temporal graph G = (V,E), s, z ∈ V and

1. an (s, z)-path P , deciding if P is efficient for McfEnum, or
2. c ∈ R≥0 and d ∈ N, deciding if there exists a (s, z)-path P with d(P ) ≤ d and

c(P ) ≤ c is possible in polynomial time.

Proof. We use Phase 1 of Algorithm 1 and calculate the set N ⊆ Y of nondomi-
nated points. Due to the possibility of edges with cost 0, there may be non-simple
paths, i.e. walks, that have zero-weighted cycles. Nonetheless, Phase 1 termi-
nates after processing the m edges. If there exists an efficient (s, z)-walk W with
(c(W ), a(W )), then there also exists a simple and efficient (s, z)-path Q with
the same cost vector. Q is the same path as W but without the zero-weighted
cycles. In order to decide if the given path P is efficient, we first calculate the
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cost vector (c(P ), a(P )), and then validate if (c(P ), a(P )) ∈ N . For 2., we only
need to compare (c, d) to the points in N . The size of N is polynomially bounded
(Lemma 2). Phase 1 and calculating the cost of P takes polynomial time. ��

We can find a maximal set of efficient paths with pairwise different cost
vectors in polynomial time.

Corollary 1. Given a temporal graph G = (V,E) and s, z ∈ V , a maximal set
of efficient (s, z)-paths with pairwise different cost vectors for McfEnum can be
found in O(S · m2).

Proof. We use Phase 1 of Algorithm 1 and calculate the set N ⊆ Y of non-
dominated points in O(S · m2) time. Furthermore, we use a modified output
procedure, that stops after outputting the first path. We call the procedure for
each nondominated label in Rz, and if a walk is found we additionally remove
all zero-weighted cycles. Finding the walk and removing the cycles is possible in
linear time, since the length of a walk is bounded by m. ��

5 Min-Cost Earliest Arrival Path Enumeration Problem

Based on the reduction given in the beginning of Sect. 3, we modify Algorithm 1
to solve (c>0)-MceaEnum. The modified algorithm only needs a linear amount
of space and less time for Phase 1. Let (G = (V,E), s, z) be the instance for
(c>0)-MceaEnum and (G′ = (V ′, E′), s′, z) be the transformed instance in
which all paths start at time 0 at the new source s′. Although edge (s, s′, 0, 0, 0)
has costs 0, because s′ has no incoming edges any efficient walk in the trans-
formed instance is simple, i.e. a path. With all paths starting at 0, there are
the following consequences for the earlier defined relations between labels. First,
consider the equivalence from Definition 2 and let l1 = (0, a1, c1, p1, v, r1,Π1)
and l2 = (0, a2, c2, p2, v, r2,Π2) be two labels at vertex v. Because the starting
time of both labels is 0, the labels are equivalent if c1 = c2. It follows, that label
l1 predominates l2 if a1 ≤ a2 and c1 < c2, hence there is no distinction between
domination and predomination.

Algorithm 2 shows a modified version of Algorithm 1, that sets all starting
times to 0. In line 4 we only need to find a single label with the minimum costs,
instead of the set S. At each vertex v we only have one representative l in Rv

with minimal costs (w.r.t. the other labels in Rv), due to the equivalence of
labels that have the same costs. In Phase 2 we do not need to explicitly find the
nondominated labels in Rz. Because each label l in Rz has a unique cost value,
we consider each represented class Πl and call the output procedure with the
labels that have the minimum arrival time in Πl.

Theorem 4. Algorithm2 outputs exactly all efficient (s, z)-paths w.r.t. arrival
time and costs.

Proof. Lemma 4 implies that for each efficient path Ps,z there is a corresponding
representative label in Rz after Phase 1 is finished. For every representative
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Algorithm 2. for MceaEnum

Input: Graph G in edge stream representation, source s ∈ V and target z ∈ V
Output: All efficient (s, z)-paths

Phase 1
1: initialize Rv for each v ∈ V
2: insert label linit = (0, 0, 0, 0, −, s, Πlinit) into Rs and Πlinit

3: for each edge e = (u, v, te, λe, ce) do
4: l ← (0, a, c, p, u, ·, ·) ∈ Ru with a ≤ te and c minimal
5: lnew ← (0, te + λe, c + ce, l, v, te, Π)
6: for each l′ = (0, a′, c′, p′, v, r′, Π ′) ∈ Rv do
7: if lnew dominates l′ then
8: remove l′ from Rv and delete Π ′

9: else if l′ dominates lnew then
10: delete lnew

11: goto line 4
12: else if l′ is equivalent to lnew then
13: set reference Π ← Π ′

14: insert pnew into Π ′

15: if te + λe < a′ then
16: replace l′ in Rv by lnew

17: goto line 4

18: Π ← Πlnew

19: insert lnew into Rv and u into Πlnew

Phase 2
20: for each label l′ = (0, a, c, p, z, r, Πl′) ∈ Rz do
21: for each label l ∈ Πl′ with minimal arrival time do
22: initialize empty path P
23: call OutputPaths(l, P )

l′ = (0, a, c, p, z, r,Π) in Rz, it holds by construction that all labels in Πl′ have
the same costs. Therefore, we only need to consider the nondominated labels in
Πl′ with minimal arrival time amin := min{a | l = (0, a, c, p, w, r,Π) ∈ Πl′}.
Hence, for each l′ ∈ Rz we call the output procedure for every label in l ∈ Πl′ if
l has minimal arrival time amin. ��

Algorithm 2 uses a linear number of labels.

Lemma 7. The total number of labels generated and hold at the vertices in
Algorithm2 is at most m + 1.

Proof. We need one initial label linit at the source vertex s. For each incoming
edge e = (u, v, t, λ, c) in the edge stream, in line 4 we choose the label l with
minimal costs and arrival time at most t. We only push l and generate at most
one new label lnew at vertex v. Therefore, we generate at most m + 1 labels
in total. ��
Lemma 8. Phase 1 of Algorithm2 has a time complexity of O(m2).
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Proof. The outer loop iterates over m edges. In each iteration we have to find
the representative label l ∈ Ru with minimum costs and arrival time a ≤ te.
This is possible in constant time, since we always keep the label with the earliest
arrival time of each equivalence class as representative in Ru. Next we have to
check the domination and equivalence between lnew and each label l′ ∈ Rv. Each
of the cases takes constant time, and there are O(m) labels in Rv. Altogether, a
time complexity of O(m2) follows. ��

Algorithm 2 lists all efficient paths in polynomial delay and uses only linear
space.

Theorem 5. (c>0)-MceaEnum ∈ PSDelayP. ��
Using Algorithm 2, also the results of Theorem 3 and Corollary 1 can be adapted
for the earliest arrival case.

Theorem 6. Given a weighted temporal graph G = (V,E), s, z ∈ V and

1. an (s, z)-path P , deciding if P is efficient for MceaEnum, or
2. c ∈ R≥0 and a ∈ N, deciding if there exists a (s, z)-path P with a(P ) ≤ a and

c(P ) ≤ c is possible in polynomial time. ��
Corollary 2. Given a temporal graph G = (V,E) and s, z ∈ V , a maximal set
of efficient (s, z)-paths with pairwise different cost vectors for MceaEnum can
be found in time O(m2). ��

6 Conclusion

We discussed the bicriteria optimization problems Min-Cost Earliest
Arrival Paths Enumeration Problem (MceaEnum) and Min-Cost
Fastest Paths Enumeration (McfEnum). We have shown that enumerat-
ing the sets of all efficient paths with low costs and early arrival time or short
duration is possible in polynomial time delay and linear or polynomial space
if the input graph has strictly positive edge costs. In case of nonnegative edge
costs, it is possible to determine a maximal set of efficient paths with pairwise
different cost vectors in O(m2) time or O(S · m2) time, respectively, where S
is the number of distinct availability times of edges leaving the source vertex s.
We can find an efficient path for each nondominated point in polynomial time.

For the cases of zero-weighted or even negative edge weights, we cannot
guarantee polynomial time delay for our algorithms to solve McfEnum or
MceaEnum. However, the proposed algorithms can be used to determine all
efficient (s, z)-walks in polynomial time delay. Because of each edge in a tem-
poral graph can only be used for departure at a certain time, the number of
different walks is finite and the algorithms terminate. So far, we are not aware
of a way to ensure that only simple paths are enumerated without loosing the
property that the delay between the output of two paths stays polynomially
bounded.
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Abstract. String covers are a powerful tool for analyzing the quasi-
periodicity of 1-dimensional data and find applications in automata the-
ory, computational biology, coding and the analysis of transactional data.
A cover of a string T is a string C for which every letter of T lies within
some occurrence of C. String covers have been generalized in many ways,
leading to k-covers, λ-covers, approximate covers and were studied in dif-
ferent contexts such as indeterminate strings.

In this paper we generalize string covers to the context of 2-
dimensional data, such as images. We show how they can be used for the
extraction of textures from images and identification of primitive cells
in lattice data. This has interesting applications in image compression,
procedural terrain generation and crystallography.

1 Motivation

Redundancy is an ubiquitous phenomenon in engineering and computer sci-
ence [18,19]. Periodicity is the most common and useful form of redundancy.
Periodicity is a key phenomenon when analyzing physical data such as an ana-
logue signal. Natural data is very redundant or repetitive and exhibits some
patterns or regularities [11,23,24] which we may assert to be the intended infor-
mation [21] within the data. Periodicity itself has been thoroughly studied in
various fields such as signal processing [22], bioinformatics [8], dynamical sys-
tems [14] and control theory [6], each bringing its own insights.

However, natural data is imperfect. It is highly unlikely that natural data can
ever be periodic. In fact, the data is almost or quasi-periodic [4]. This has been
firstly studied over strings, the most general representation of digital data [17].

For example, assume that we want to send the word aba over a noisy channel
as a digital signal where letters are modulated using amplitude shift keying [17].
Since the simple transmission is unlikely to yield the result due to the imperfect
transmission channel, we add redundancy and thus send the word aba multiple
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T. V. Gopal and J. Watada (Eds.): TAMC 2019, LNCS 11436, pp. 536–549, 2019.
https://doi.org/10.1007/978-3-030-14812-6_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14812-6_33&domain=pdf
https://doi.org/10.1007/978-3-030-14812-6_33


An Output-Sensitive Algorithm for the Minimization of 2-Dimensional 537

times. However, when errors occur, the received signal only partially retains its
periodicity.

2 Our Results

In this paper we study the generalization of the String Cover operator on finite-
dimensional images. First, throughout this paper, given two integers a and b,
a ≤ b, we define a, b = {a, a + 1, . . . , b}. Then a 2-dimensional string (or an
image) is function I : 0,H − 1 × 0,W − 1 → Σ, where Σ is the alphabet. Let
MatH,W be the set of all matrices with H rows and W columns. For a matrix
M we define M i

j to be the element from row i and column j.

Definition 1 (2-dimensional string cover). A cover of a 2D image T is a
2D image C for which every element of T lies within some occurrence of C.

In Sect. 3, we find two alternative ways of formalizing the 2D cover problem,
by using masks and prove their equivalence. We then turn our attention towards
the decision problem:

Problem 1 (Image Cover Decision). Given two images T and C, does one cover
the other?

We give an O (WH) algorithm based upon Bird’s 1977 [7] 2-dimensional
matching algorithm. Then, using this algorithm we study the minimization prob-
lem (Sect. 4).

Problem 2 (Weak Minimal Image Cover). Given an image T ∈ MatH, W (Σ)
and an evaluation function eval : 1, h × 1, w → R, where h ≤ H and w ≤ W ,
which induces an order onto the covers, which is the cover C ∈ Math, w (Σ) of T
minimal with respect to eval (h, w)?

We give an O (
W 2H2

)
Θ (eval) algorithm. Since the minimization problem

is actually Ω (WH) Θ (eval), we aim for a better algorithm. Using sorting of
the input candidates according to eval we obtain O (nWH) Θ (eval) (the bound
does not contain the time necessary for sorting), where the n-th entry in the
vector sorted by eval determines a cover of T . Note that to assume that the
candidates are sorted is not in general realistic, so a more honest complexity
bound is O (WH (n + log (WH) Θ (eval))). However, there is a very important
optimization criterion where the sorting is very cheap, namely the size of an
image.

Problem 3 (Strong Minimal Image Cover). Given an image T ∈ MatH, W (Σ)
which is the cover C ∈ Math, w (Σ) of T minimal with respect to its area (that
is, wh), �1 norm (that is, w + h) and �∞ norm (that is, max (w, h))?

For this problem we augment the general minimization algorithm with a
preprocessing routine, based on the optimal 1-dimensional Minimal String Cover
algorithm [5], which reduces the number of candidate pairs that we have to check
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from Θ (WH) to O (1) on the average case, reducing the complexity to Θ (WH)
on the average case and, particularly, O (W ) in the worst-case for H = 1. We
argue that the use of this routine never hinders performance and offers the same
boost for the general case of an unknown eval function.

We conclude the article with a few very interesting applications of other
generalizations of the Minimal String Cover Problem (Sects. 5 and 6) such as
k-covers [12] and the Approximate String Cover Problem introduced by Amir
et al. [2,3] to lattice unit-cell recognition from generic images, detection of the
unit cells of some quasicrystals [25], extraction of the elementary set of tiles in a
Wang Tiling, recognizing the minimal (quasi)periodic Wang Tile pattern in an
image and the minimal modification required of an image for the existence of a
non-trivial minimal (quasi)periodic Wang Tile pattern.

3 Image Covers

The simplest class of images is that of binary images, i.e. Σ ∼= {0, 1}. Binary
images can be thought of as sets over Z2, as follows: the set contains the position
(i.e., row and column) of the elements of the binary image that have value 1.

Example 1. The set {(1, 2), (2, 2), (3, 3)} corresponds to the image
⎡

⎣
0 1 0
0 1 0
0 0 1

⎤

⎦ .

Given a set S and an element x, the characteristic function of S, denoted by
χS(x) has value 1 if x ∈ S, and 0 otherwise.

Definition 2. A mask of an image T with respect to an image C is a binary
image M which marks the first position of some occurrences of C in T .

Formally if T ∈ MatH, W (Σ) and C ∈ Math, w (Σ) then M ∈ MatH, W

({0, 1}) is a mask of T with respect to C if

∀i ∈ 1, H, j ∈ 1, W , M i
j = 1 ⇒ T i+y−1

j+x−1 = Cy
x , y ∈ 1, h, x ∈ 1, w.

By the correspondence between binary images and sets, there exists a maxi-
mal mask with respect to cardinality and it identifies all occurrences of an image
in another.

Definition 3. The maximal mask of an image T with respect to an image C is
a binary image M∗ which marks the first position of all occurrences of C in T .

Formally if T ∈ MatH, W (Σ) and C ∈ Math, w (Σ) then M∗ ∈ MatH, W

({0, 1}) is the maximal mask of T with respect to C if

∀i ∈ 1, H, j ∈ 1, W ,M∗i
j = 1 ⇐⇒ T i+y−1

j+x−1 = Cy
x , y ∈ 1, h, x ∈ 1, w.
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Extrapolating from the definition of string covers, we can informally define a
cover of an image. A cover of an image T is an image C for which every element
of T lies within some occurrence of C. We can formalize this definition using
masks. We introduce two equivalent definition candidates.

Definition 4 (Weak Image Covers). If T ∈ MatH, W (Σ) and C ∈ Math, w

(Σ), then C covers T if there exists some mask M of T with respect to C such
that:

∀Y ∈ 1, H, X ∈ 1, W ∃i ∈ Y − h + 1, Y , j ∈ X − w + 1, X M i
j = 1.

Equivalently, we may define Image Covers with respect to the maximal mask:

Definition 5 (Strong Image Covers). If T ∈ MatH, W (Σ) and C ∈ Math, w

(Σ), then C covers T if the maximal mask M∗ of T with respect to C is such
that:

∀Y ∈ 1, H, X ∈ 1, W ∃i ∈ Y − h + 1, Y , j ∈ X − w + 1, X M∗i
j = 1

By these definitions a cover C ∈ Math, w (Σ) of an image T ∈ MatH, W (Σ)
can be identified with the (h, w) pair.

The weak definition is a more natural extension of the definition of String
Covers, while the strong definition provides us with a more clear understanding of
the combinatorial properties of Image Covers. For example, the strong definition
suggests that Image Covers are susceptible to dynamic programming, which we
later use to obtain the minimal cover.

Theorem 1. The weak and strong definitions are equivalent.

Proof. Consider the set S = 1, H × 1, W . There exists a bijection between
its power set, P (S), and the W-long, H-tall binary images MatH, W ({0, 1}) as
explained at the beginning of the section. Formally, the bijection f is defined as

P (S) 
 S ↔ f(S) ∈ MatH, W ({0, 1}) : f(S)i
j = χS ((i, j)) ∀i ∈ 1, H, j ∈ 1, W .

However, the image of the Boolean algebra (P (S) , ∪, ∩, .̄, ∅, S) is thus by
f onto MatH, W ({0, 1}). The new structure can be verified to be

(MatH, W ({0, 1}) , max, min, M → 1 − M, 0, 1)

Thus the image of the inclusion order ⊆ is the order ≤ and so, if there exists
a mask M such that

∀Y ∈ 1, H, X ∈ 1, W ∃i ∈ Y − h + 1, Y , j ∈ X − w + 1, X M i
j = 1

then since M ≤ M∗ we also have

∀Y ∈ 1, H, X ∈ 1, W ∃i ∈ Y − h + 1, Y , j ∈ X − w + 1, X M∗i
j = 1

and vice versa: if M∗ satisfies the later, then there exists at least one such mask
M (precisely M∗) which satisfies the former. Thus, the two definitions are indeed
equivalent. ��
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While from a formal standpoint the two definitions are equivalent, from a
computational standpoint it is more convenient for us to work with the strong
definition, since we do not have to consider all masks.

Lemma 1. Given two images T ∈ MatH, W (Σ) and C ∈ Math, w (Σ) the con-
struction of the maximal mask of T with respect to C takes Θ (WH) time.

Proof. Since the size of the output is WH we have the lower bound Ω (WH).
We effectively only have to prove the upper bound of O (WH).

We begin by studying the case H = 1. In this case the maximal mask of T
with respect to C consists of all occurrences of C in T . This can be found in
linear time, for example using the Knuth-Morris-Pratt algorithm (KMP [15]),
with a runtime of O (W + w), which is O (WH) since H = h = 1 and w < W .

For the case H �= 1, we look for a two dimensional generalization of the
Knuth-Morris-Pratt algorithm. One such generalization is Bird’s algorithm [7]
which uses KMP and a generalization of it due to Aho and Corasick [1] to find
the rows and then columns where the pattern occurs.

The output of Bird’s algorithm is the list of occurrences of C in T , i.e.
the pairs (i, j) such that M∗i

j = 1. Consequently, we can recover M∗ by
taking M∗i

j = stage (i + h − 1, j + w − 1). This yields the maximal mask in
O (WH + wh) = O (WH) time. ��
Theorem 2 (Image Cover Decision). Given two images T ∈ MatH, W (Σ)
and C ∈ Math, w (Σ) checking if C is a cover of T takes Θ (WH) time
(Algorithm1).

Proof. We can instantly disqualify images C having h > H or w > W . Other-
wise, since we must at least read T , the decision problem is at least Ω (HW ).
Thus, we prove only the upper bound, O (WH).

By Lemma 1 we compute M∗ in O (WH) time. We now check if M∗ “tiles
up to” T , as per Definition 5. Thus we check that every (x, y) of T belongs
to some occurrence of C, whose north-west corner is located at some point in
D(x, y), where

D (x, y) = {(x − w + 1, y − h + 1) ≤ (x′, y′) ≤ (x, y) |M∗y′
x′ = 1}.

At this point we could simply walk through M∗ and check that every location
is indeed covered. However since there are up to O (WH) occurrences of C in T
the naive approach takes O (

W 2H2
)

time.
For the rest of the proof we show that we can compute whether there exists

some (x, y) for which D (x, y) = ∅ in O (WH). We call points for which D (x, y) �=
0 admissible and points for which D (x, y) = 0 inadmissible. We say that the
points D (x, y) “support” the hypothesis that (x, y) is admissible.

Let ≤lex be the lexicographical order and the function N (x, y) be the closest
(north-west corner of an) occurrence of C form (x, y), i.e.

N (x, y) = arg min
≤lex

{(x − x′, y − y′) | (x′, y′) ∈ D (x, y)},

for which, by definition, N (x, y) = (∞,∞) if and only if D (x, y) = ∅.
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Note that if the minimal support for the western neighbor of a point,
N (x − 1, y), does not support it, then (x, y) is the only point that can sup-
port itself but not its northern neighbor, (x, y − 1), i.e.

N (x − 1, y) �∈D (x, y) ⇒ M∗y′
x′ = 0 ∀x′ ∈ x − w + 1, x − 1, y′ ∈ y − h + 1, y ⇒

⇒ D (x, y) ⊆ D (x, y − 1) ∪ {(x, y)}.

Similarly, if the minimal support for the northern neighbor of a point,
N (x, y − 1), does not support it, then (x, y) is the only point that can sup-
port itself but not its western neighbor, (x − 1, y), i.e.

N (x, y − 1) �∈ D (x, y) ⇒ M∗y′
x = 0 ∀y′ ∈ y − h + 1, y − 1 ⇒

⇒ D (x, y) ⊆ D (x − 1, y) ∪ {(x, y)}.

By the above, if neither minimal support for the western and northern neigh-
bors supports (x, y) then only (x, y) may support itself, i.e.

N (x, y − 1) �∈ D (x, y) , N (x − 1, y) �∈ D (x, y) ⇒
⇒M∗y′

x′ = 0 ∀x′ ∈ x − w + 1, x, y′ ∈ y − h + 1, y, (x′, y′) �= (x, y) ⇒
⇒D (x, y) ⊆ {(x, y)}.

Moreover, if (x1, y1) ≤lex (x2, y2) we have

(x1 − x∗
1, y1 − y∗

1) ≤lex (x1 − x′
1, y1 − y′

1) ⇔
⇔ (x2 − x∗, y2 − y∗) ≤lex (x2 − x′, y2 − y′)

and thus, if (x′, y′) supports both (x, y) and one of its western or northern
neighbors, but is not the minimal support of that neighbor, then it is not the
minimal support of (x, y). We obtain the dynamic programming scheme

N (x, y) ∈ {N (x − 1, y) , N (x, y − 1) , (x, y)}.

This scheme can be implemented in O (WH) time as shown in Algorithm 1.
We have proven that it correctly decides whether the maximal mask does indeed
cover the entire image, i.e. C is a cover of T . We conclude that the complexity
of the decision problem is indeed Θ (WH). ��

4 Minimal Image Covers

Among the family of covers of an image T , our goal is to find a “minimal” one.
To achieve this goal we have to define the optimization criterion. This criterion
takes the form of an evaluation function: eval : 1, W × 1, H → R̄.

Proposition 1. Obtaining the minimal image cover C of T with respect to eval
takes time O (

W 2H2 + WHΘ (eval)
)
.
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Algorithm 1. Image Cover Decision
1: procedure Check(T , w, h)
2: Preprocess T (per Bird’s algorithm)
3: for x ∈ 1, H do
4: for y ∈ 1, W do
5: N (x, y) = (−∞, −∞)
6: if x > 1 and (x − w + 1, y − h + 1) ≤ N (x − 1, y) then
7: N (x, y) = N (x − 1, y)
8: end if
9: if y > 1 and (x − w + 1, y − h + 1) ≤ N (x, y − 1) then

10: if (x, y) − N (x, y − 1) ≤lex N (x, y) − N (x, y − 1) then
11: N (x, y) = N (x, y − 1)
12: end if
13: end if
14: if stage (y, x) (per Bird’s algorithm) then
15: N (x, y) = (x, y)
16: end if
17: if N (x, y) = (−∞, −∞) then
18: return Mismatch: (x, y)
19: end if
20: end for
21: end for
22: return Match
23: end procedure

Proof. A brute force approach checks all possible (w, h) pairs (which are
Θ (WH)) and uses the decision algorithm above. If a cover is found it is evalu-
ated. This yields complexity O (

W 2H2 + WHΘ (eval)
)
.

Moreover, if eval is arbitrary all (w, h) pairs must be checked since eval (.)
can be unbounded (or some large finite value) for all (w, h) except (w∗, h∗) which
shows the bound is tight. ��
Proposition 2. If the minimal C is the n-th candidate according to the order
induced by eval, we can obtain C in O (nWH) if the input is already sorted
according to this order.

Proof. If the ordering induced by the eval function is known, we queue up the
would-be covers in that order (by sorting for example). For instance, if the
n-th candidate is the first cover encountered, the runtime of the minimization
algorithm described above is O (WHΘ(eval) + nWH). This can be achieved via
sorting, yielding a complexity of

O(WHΘ(eval) + WH log(WH) + nWH)

��
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4.1 The Size Criteria

We now study minimality with respect to a natural criterion, namely the size,
as given by the area, �1 norm and �∞ norm.

For the area, the evaluation function is defined as

1, W × 1, H 
 (w, h) → eval (w, h) = wh ∈ R.

Suppose we knew that wh ≤ w0h0. Then we have

h ∈ 1, min (�w0h0/w�, H),

and thus (w, h) is one of the lattice points of the intersection of the rect-
angle ((1, 1) , (1, H) , (W, 1) , (W, H)) with the triangle ((1, 1) , (1, w0h0) ,
(w0h0, 1)).

These contain at most WH and w2
0h

2
0/2 lattice points respectively. Thus, the

optimal (w, h) pair is found after at most n ≈ O (
min

(
w2

0h
2
0, WH

))
attempts

which leads to an upper bound of O (
min

(
w2

0h
2
0, WH

)
WH

)
.

For the �1 norm the evaluation function is

1, W × 1, H 
 (w, h) → eval (w, h) = w + h ∈ R.

Suppose we knew that w + h ≤ w0 + h0. Then we have

h ∈ 1, min (w0 + h0 − w, H),

and thus (w, h) is one of the lattice points of the intersection of the rectan-
gle ((1, 1) , (1, H) , (W, 1) , (W, H)) with the triangle ((1, 1) , (1, w0 + h0 − 1) ,
(w0 + h0 − 1, 1)).

These contain at most WH and (w0 + h0)
2
/2 lattice points respectively.

Thus, the optimal (w, h) pair is found after at most n ≈ O (
min

(
w2

0 + h2
0,

WH)) attempts which leads to an upper bound of O (
min

(
w2

0 + h2
0,

WH) WH).
For the �∞ norm the evaluation function is defined as

1, W × 1, H 
 (w, h) → eval (w, h) = max (w, h) ∈ R.

Suppose we knew that max (w, h) ≤ max (w0, h0). Then we have

h ∈ 1, min (max (w0, h0) , H),

and thus (w, h) is one of the lattice points of the intersection of the rectangle
((1, 1) , (1, H) , (W, 1) , (W, H)) with the square ((1, 1) , (1, max (w0, h0) , ) ,
(max (w0, h0) , 1) , (max (w0, h0) , max (w0, h0))).

These contain at most WH and max (w0, h0)
2 lattice points respectively.

Thus, the optimal (w, h) pair is found after at most n ≈ O (min (max
(w0, h0)

2
, WH

))
attempts which leads to an upper bound of O (min (max

(w, h)2 , WH
)

WH
)
.

Note that we never used w0 or h0 other than for the calculation of the
algorithm runtime. Thus, these calculations remain valid even if we do not know
anything about w0 and h0. Their value is automatically substituted for the width
and height of the minimal cover.
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4.2 Boosting Average Performance by Preprocessing

In many cases, we do not have to verify all candidates. For instance, if the
candidate a (w, h) is a cover, then the first and the last w columns and h rows
are image-covered by T 1, w

1, h
. Based on this criterion we construct a preprocessing

routine.
Suppose we knew that h ≥ h0. This means that C is at least h0-tall. Hence,

T 1, W

1, h0
covers T 1, W

1, H
. Note that M∗i

j = 0∀j ≥ 2 since there is not enough space

to accomodate another tile horizontally. Consequently, T 1,w
i covers T 1,W

i for all
i ≤ h0 or i ≥ H − h0. Thus if Ci are all the covers of T 1,W

i then

w ≥ min
{|c| | c ∈ Ci,∀i ∈ 1, h0 ∪ H − h0,H

}

This bound can be calculated in O (Wh0). Since C is a cover of T if and only
if CT is a cover of TT , if we knew that wC ≥ w0 then hC′ ≥ w0 and hence we
can similarly obtain a lower bound for wC′ = hC in O (Hw0).

Suppose we knew that w ≥ w0 and h ≥ h0. It takes O (Wh0 + w0H) to check
that this first test does not already disprove the eligibility of (w0, h0). Notably,
the covers of T 1,W

i and T i
1,H

can be pre-computed (or cached) such that the
cumulative preprocessing time is O (WH), which is essentially free.

Since we have established that this preprocessing is effectively free we can
do it entirely a priori, i.e. obtain the transitive closure of the preprocessing
function. Let S be the matrix of string covers returned by the optimal Minimal
String Cover algorithm for each line and S′ for columns, i.e. Si

j = 1 if the
first j characters on the i-th line cover the i-th line and S′i

j = 1 if the first i
characters on the j-th column cover the j-th column. The current preprocessing
is equivalent to computing the Hadamard product of the matrices

S1
i
j = min

(
Si

j , S1
i−1
j

)

S′
1
i
j = min

(
S′i

j , S′
1
i
j−1

)

S∗ = min (S1, S′
1) = S1 � S′

1.

Notably, the number of elements that are not pruned is the number of non-
zero elements of S∗. However

S1
i
j =

i∏

i′=1

Si′
j

S′
1
i
j =

j∏

j′=1

S′i
j′

S∗i
j = S1

i
jS

′i
j =

i∏

i′=1

j∏

j′=1

Si′
j S′i

j′

We now check the effectiveness of our preprocesing.
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Proposition 3. Computing the matrix S∗ reduces the number of candidates that
need to be checked to Θ (1) average time for arbitrary H and Θ (1) worst-case
for H = 1.

Proof. Assume that there is a p probability for any tile in Si
j and S′i

j to be 1,
and even the additional condition that Smi

j ≥ Si
j for all m and assuming that

there is no single-character line nor column. Then by the Euler approximation,
the probability that S1

i
j be 1 is pi/ log(i), that S′i

j be 1 is pj/ log(j) and thus the
probability that S∗i

j be 1 is pi/ log(i)+j/ log(j). Thus the expected number of 1s,
considering that Si

W = SH
j = 1, is

(

1 +
H∑

i=2

pi/ log(i)

) ⎛

⎝1 +
W∑

j=2

pj/ log(j)

⎞

⎠ ≤
(

1 +
p

1 − p

)2

=
1

(1 − p)2
.

We conclude that there exists a solution that is linear on the average case,
O (WH) and quadratic in the worst, with the output-sensitive complexity:
O (whWH), but which reduces to O (W ) for the 1-dimensional case.

5 A Connection with Lattices

A lattice [25] is an additive subgroup L of Rn isomorphic to Z
n. By definition,

it is infinite and yet it is generated by n elements. Consider the isomorphism
φ : Z

n → L. The projection of the unit volume {0, 1}n through this isomor-
phism φ ({0, 1}n) is called the primitive cell of the lattice and it can be tiled by
translations to form the entire L. Note that by isomorphism we have:

φ

(
n∑

i=1

λiei

)

=
n∑

i=1

λiφ (ei)

Moreover, if L is a lattice, R is a rotation and S is a scaling matrix i.e. Sj
i =

0 ⇔ i �= j then SRL is isomorphic to L and thus when classifying lattices we
can assume that there exists some φ (ei) = e1. Moreover since Z

n is isomorphic
to itself by the maps ei → eσ(i) for any permutation σ ∈ Sn, we can assume that
φ (e1) = e1. Thus, all 2-dimensional latices can be characterized by the relative
phase and length of the second vector (Figs. 1, 2 and 3).

Given a volume in n-dimensional space and a lattice L ⊆ E
n, we can divide

it according to the lattice i.e. given φ : Zn → L we have

E
n
L = {Cl = conv ({φ (l + v) |v ∈ {0, 1}n}) |l ∈ Z

n}

Note that the translation φ (l) → φ (l′) maps Cl to Cl′ and thus the volume
of any two cells is the same for a given L ⊆ E

n. Thus we can define the quantity
vol (L) = vol (C0) to be the unit volume of a lattice L.
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Fig. 1. A grid lattice
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Fig. 2. A hexagonal row
lattice
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Fig. 3. A mixed tiling which
is actually a grid lattice

Given some volumetric data E
n ⊇ V 
 x → ψ (x) ∈ R we say that a lattice

L is legal with respect to ψ if ψ is also translation invariant i.e.

ψ (φ (x)) = ψ (φ (x + v)) ∀x ∈ Z, v ∈ {0, 1}n, φ (x) ∈ V, x + v ∈ V

Moreover, L is natural with respect to ψ if it is a legal lattice, minimal with
respect to the unit volume.

We would like to obtain the unit cell of the natural lattice given not the
lattice points but instead a tiling of the unit cell that is cropped to a W -long,
H-tall image that contains at least one copy of the unit cell i.e. volumetric 2-
dimensional data.

Once we have found an unit cell, any translation or rotation of it is still an
unit cell which describes the same geometry and thus we have no interest in
selecting any particular one. We accept any unit cell of any natural lattice.

Since a legal lattice is invariant to translations, we may always fix the origin
of one unit cell on T 1

1 . Since it is invariant to rotations we may always fix that
one of its unit vectors is along the T 1 row. However, it may be that the other
axis is not along the T1 column, as is the case for hexagonal lattices. Moreover, it
may be that our image does not end after an integer number of tiles, but instead
a fractional one. In this case, the end fraction has to appear in the cover. We
conclude that the shortest cover may never contain more than the volume of the
box-cover of 4 unit tiles. In fact, it never contains 2 entire unit tiles on any side.
Moreover, it will always contain at least one unit tile or a seed of it.

Note that this approach is especially interesting in the case of quasi-periodic
crystals (which do not admit a Bravais lattice) [25]. This extends the k-covers
problem [12] and asks for the k unit cells which have been used, for example in
a Penrose tiling [9].

6 Applications in Computer Graphics

Consider the task of producing huge, unique maps for games, such as mazes or
dungeons. Without procedural terrain generation this task is anything between
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infeasible and impossible, depending on the desired size and the available time
and budget. Many games use Wang Tiles [10,16] to produce huge maps (an
interesting example is the Infamous game produced by Sucker Punch). They
have recently garnered around them a very large community.

Wang tiles are formal systems visually modeled by square tiles with colors on
each side. Two Wang tiles may only be tiled along an edge if the colors match.
The most popular problems concerning them were: whether a set of Wang tiles
can cover the plane and whether this can be done in a periodic way [13].

σN

σE

σS

σW

σN

σE

σS

σW

A Wang tile can also be represented as a 3-by-3 image. Two such images
may be tiled together either along an edge or a corner. The formal system iso-
morphism is trivial: two 3-by-3 images may be tiled together on an edge if the
respective colors on the Wang tiles match. This is very much like String Covers,
except two such images may never be tiled one alongside another.

Consider the following problems:

Problem 4 (Minimal Wang Cover). Given a tiling of some Wang Tiles check if
there exists a periodic pattern covering it.

Problem 5 (k-Wang Covers). Given a tiling of some Wang Tiles check if there
exist k patterns which, when tiled together cover the image.

Problem 6 (Approximate Wang Cover). Given a tiling of some Wang Tiles find
the minimal number of pixels to be changed for it to be covered by a single
periodic pattern.

When given a 3-tall image the first two collapse to vectorial String Cover
and vectorial k-Covers. For the last one, we must also impose that the black and
gray pixels which we added ourselves are never corrupted. Thus we impose that
the distance between two tilings is infinite if a black or gray pixel is corrupted.
Hence it is equivalent to the Approximate String Cover of Amir et al. with an
almost-Hamming metric.

Problem 7 (Generalization to pseudo-metrics). Given a compression palette
Γ ⊆ Σ and an algorithm that is consistent with respect to the colors it replaces
i.e. A : Σ → Γ and a tiling of some Wang Tiles, check if the solutions to the
above problems change.

The last problem is not important from a computational perspective; in fact
it is quite trivial, but it gives substance to the pseudo-metric variations of String
Cover problems.
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Given computationally efficient algorithms that solve Problem7, there are
several interesting applications in computer aided design (see e.g. [10]). One use
of Wang tiles is procedure terrain generation in video games. If a player knows
that the game he is playing uses Wang tiles, he can use an image cover algorithm
to predict the next challenge. Another application is image compression: we can
use these algorithms on images produced by designers in order to extract textures
or motifs.

Consider a game with hexagonal tiles that wants to make use of Perlin
noise [20]. It is unnatural that it be used purely, since the rectangular lattice
is not actually legal. On the other hand, since we can obtain L, we by default
have a mapping φ−1 : L → Z

n. In this domain, our lattice is indeed rectangular.
Thus, it is here that we should apply our Perlin noise.

Definition 6. Given a lattice Z
n φ→ L ⊆ E

n and a noise-function appropriate
for rectangular latices P : Zn → R, we can lift it to L:

L 
 x → PL (x) = P (
φ−1 (x)

) ∈ R

Thus we can define the Perlin noise appropriate for a given Wang system.
Note that the magnitude of Perlin noise is an input parameter. Thus, without
changing the game or inducing unnatural patterns, as a game developer we can
easily add a diversity grade for games using Wang tiles for terrain generation.
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Abstract. In order to select correlated and relevant features in a fea-
ture selection, several filter methods adopt a symmetric uncertainty as
one of the feature ranking measures. In this paper, we introduce a fluc-
tuation into the increasing order of the symmetric uncertainty for the
consistency-based feature selection algorithms. Here, the fluctuation is
an operation of transforming the sorted sequence of features to a new
sequence of features. Then, we compare the selected features by the algo-
rithms with a fluctuation with those without fluctuations.

Keywords: Fluctuation · Symmetric uncertainty ·
Consistency-based feature selection algorithm · Feature selection

1 Introduction

A feature selection [3] is well-known as one of the research fields of machine
learning. In particular, a consistency-based feature selection [4,16] is the feature
selection based on the filter evaluating the worth of a subset of features by the
level of consistency in the class values. Hence, it is classified to filter methods [2,
3] in the feature selection.

On the other hand, a symmetric uncertainty , which is originally introduced
by [8], is adopted as one of the feature ranking measures [5] in several filter
methods in the feature selection. Note that the symmetric uncertainty is for-
mulated as the normalizing values of the information gain [6], or, alternatively,
mutual information [9], which are familiar measures for machine learning. The
symmetric uncertainty can measure the relevancy between features based on the
value computed from just a single feature.
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As the filter methods in the feature selection, Hall [5] has introduced a
correlation-based feature selection, where one of the correlation is formulated by
using the symmetric uncertainty. Yu and Liu [15] have developed the correlation-
based feature selection as a fast correlation-based filter and combined it with
several feature selection algorithms such as FOCUS [1] and ReliefF [7].

Furthermore, the consistency-based feature selection algorithms such as
INTERACT [16], LCC [10,12,13] and CWC [11–13] first sort features by the
increasing order of the symmetric uncertainty. For every feature selected in this
order, if the set of features after eliminating the feature is still consistent, then
the algorithms update the set of features as the eliminated set.

It is known that the symmetric uncertainty is a heuristic to measure cor-
relation between features and succeeds to select correlated features empiri-
cally [5,15]. On the other hand, we cannot guarantee that such a correlation
is always correct, for example, every pair of correlated features is always sorted
as a pair of adjacent features in the increasing order of the symmetric uncer-
tainty.

In order to verify such an effect in the consistency-based feature selection
algorithms empirically, in this paper, we introduce a fluctuation into the increas-
ing order of the symmetric uncertainty for the algorithms of LCC and CWC.
Here, the fluctuation is an operation of transforming the sorted sequence of fea-
tures to a new sequence of features. Then, we formulate the following four kinds
of the fluctuations, that is, (1) the sort of blocks, (2) the move of the initial
segment , (3) the move of the initial segment before the selected features and (4)
the collection of the selected features and the sort of features.

The sort of blocks is an operation of transforming to a sequence obtained
by sorting every block by the decreasing order after dividing some blocks to the
sorted sequence of features. The move of the initial segment is an operation of
transforming to a sequence obtained by moving the initial segment with a fixed
ratio to the last of the sorted sequence of features.

The remained fluctuations assume to be selected features by applying the
algorithms of LCC and CWC. Then, the move of the initial segment before the
selected features is an operation of transforming to a sequence obtained by mov-
ing the initial segment whose symmetric uncertainty is smaller than that of every
selected feature to the last of the sorted sequence of features. The collection of
the selected features and the sort of features is an operation of transforming a
sequence obtained by collecting the selected features, moving them to the initial
of the sorted sequence of features and then sorting the collected features and the
remained features by the increasing or the decreasing order, respectively.

Finally, we give experimental results to evaluate the influence of the fluc-
tuation in the algorithms of LCC and CWC, by using artificial data, real
data and nucleotide sequences. We generate artificial data by varying the num-
ber of features, the number of class labels, the number of instances and the
number of feature values. As real data, we adopt DEXTER1, DOROTHEA

1 NIPS 2003 Workshop on Feature Extraction and Feature Selection Challenge.
http://clopinet.com/isabelle/Projects/NIPS2003/#challenge.

http://clopinet.com/isabelle/Projects/NIPS2003/#challenge
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(see footnote 1), GISETTE (see footnote 1), HIVA2, NOVA (see footnote 2)
and SYLVA (see footnote 2). As nucleotide sequences, we adopt 8 RNA seg-
ments of influenza A (H1N1) viruses provided from NCBI3. Then, by measuring
the ratio of different numbers of selected features, the similarity of selected fea-
tures and the difference of accuracy under fluctuations, we compare the selected
features by the algorithms with a fluctuation with those without fluctuations.

2 Consistency-Based Feature Selection Algorithms

We call an m × (n + 1) matrix on N a data set and denote it by D = [vij ].
Also we call every row vi = [vi1, . . . , vin, vi(n+1)] in D an instance of D and the
(n + 1)-th element vi(n+1) in vi a class label of vi . We denote the set of all the
class labels in D by C. In the following, we omit the subscript i. Then, we denote
that v is an instance of D by v ∈ D and the class label of v by vc.

Let F = {1, . . . , n}, which we call a total feature set , and v = vi ∈ D an
instance. Then, we denote [vi1, . . . , vin] by vF . For a subset X = {j1, . . . , jk} ⊆
F , which we call a feature set , we denote [vij1 , . . . , vijk ] by vX . For a data set D
and a feature set X ⊆ F , we denote the data set consisting of the j-th column
for every j ∈ X ∪ {n + 1}, that is, the collection of rows [vX ,vc] for v ∈ D by
DX .

Let v ∈ D be an instance, X ⊆ F a feature set such that |X| = k and C the
set of all class labels. Then, for x ∈ Nk and y ∈ C, we denote the probability
that vX is x by P (X = x) and the probability that vc is y by P (C = y). Then,
the entropy H(X) of X and the entropy H(C) of C are defined as follows.

H(X) = −
∑

x∈Nk

P (X = x) log P (X = x),

H(C) = −
∑

y∈C

P (C = y) log P (C = y).

Also the conditional entropy H(C|X) of C after observing X is defined as follows.

H(C|X) = −
∑

x∈Nk

P (X = x)
∑

y∈C

P (C = y|X = x) log P (C = y|X = x)

= −
∑

x∈Nk

∑

y∈C

P (X = x, C = y) log
P (X = x, C = y)

P (X = x)
.

Hence, the information gain [6] IG(C|X) (or the mutual information [9])
of C provided by X, that is, the amount by which the entropy of C decreases
reflects additional information about C provided by X, is defined as follows.

2 WCCI 2004 Performance Prediction Challenge.
http://clopinet.com/isabelle/Projects/modelselect/datasets/.

3 NCBI, National Center for Biotechnology Information.
http://www.ncbi.gov/genome/FLU/.

http://clopinet.com/isabelle/Projects/modelselect/datasets/
http://www.ncbi.gov/genome/FLU/


Introducing Fluctuation into Increasing Order of Symmetric Uncertainty 553

IG(C|X) = H(C) − H(C|X) = H(X) − H(X|C).

The symmetry of the information gain is a desired property for a measure of cor-
relations between features [5,15]. We can derive the following alternative formula
(cf. [14]):

IG(C|X) =
∑

x∈Nk

∑

y∈C

P (X = x, C = y)
P (X = x, C = y)

P (X = x)P (C = y)
.

Furthermore, the symmetric uncertainty [8] SU (C,X) is defined as follows.

SU (C,X) =
2 · IG(C|X)

H(X) + H(C)
.

Note that we use the symmetric uncertainty as the form of SU (C, {i}) for every
feature i ∈ F , in order to measure the relevancy between features in F by using
the value computed from just a single feature i.

In this paper, we deal with two consistency measures, a Bayesian risk [10]
and a binary consistency [11–13]. For X ⊆ F , the Bayesian risk BR(X) of X is
defined as follows:

BR(X) = 1 −
∑

x∈Nk

max
y∈C

P (X = x, C = y).

On the other hand, the binary consistency BC (X) supports:

BC (X) =
{

0, ∀u,v ∈ D (uX = vX ⇒ uc = vc),
1, otherwise.

Let μ ∈ {BR,BC} be a consistency measure and δ a threshold (0 ≤ δ < 1).
Then, we say that X is consistent with respect to D under μ and δ if μ(X) ≤ δ;
inconsistent otherwise. Note here that δ is not necessary when μ = BC .

Let D be a data set, X ⊆ F a feature set, μ ∈ {BR,BC} a consistency
measure and δ a threshold. Then, we call the set of instances by eliminating
all the inconsistent instances of D for X under μ and δ from D the set of
explanatory instances of D for X and denote it by eμ,δ(D,X). It is obvious that
X is consistent with eμ,δ(D,X) under μ and δ.

Then, as a general framework, we formulate a consistency-based feature selec-
tion problem as follows.

Definition 1. Let D be a data set, F a total feature set, μ a consistency measure
and δ a threshold. Then, the consistency-based feature selection problem is to find
a feature set X ⊆ F such that |X| is minimum when |eμ,δ(D,X)| is maximum.

In order to solve the consistency-based feature selection problem heuristi-
cally and efficiently, Shin et al. have introduced the algorithms LCC (Linear
Consistency-Constrained) [10,12,13] and CWC (Combination of Weakest Com-
ponents) [11–13] illustrated in Algorithm 1. Here, the procedure sort in lines
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1 and 7 sorts a total feature set F as {i1, . . . in} by the increasing order of the
symmetric uncertainty SU (C, {i}) for every i ∈ F and the procedure denoise
in line 6 removes presumable noise examples from D.

Furthermore, we can regard that the algorithms LCC and CWC solve the
relaxed version of the consistency-based feature selection problem with maxi-
mizing

∑

x∈X

|eμ,δ(D,x)| with sorting by the symmetric uncertainty, instead of

maximizing |eμ,δ(D,X)| directly.

procedure LCCδ(D, F )
/* D: data set, F : total feature set, δ: threshold */
sort F as {i1, . . . in} under the symmetric uncertainty;1

S ← {i1, . . . , in};2

for j = 1 to n do3

if BR(S \ {ij}) ≤ δ then S ← S \ {ij};4

output S;5

procedure CWC(D, F )
/* D: data set, F : total feature set */
denoise D;6

sort F as {i1, . . . in} under the symmetric uncertainty;7

S ← {i1, . . . , in};8

for j = 1 to n do9

if BC (S \ {ij}) = 0 then S ← S \ {ij};10

output S;11

Algorithm 1. LCC and CWC.

3 Fluctuation for Order of Symmetric Uncertainty

In this section, we introduce the fluctuations into the increasing order of the
symmetric uncertainty. We assume that a total feature set F is sorted by the
increasing order of the symmetric uncertainty, so F is regarded as a sequence.

Let X,X1,X2 ⊆ F be the sets (regarded as the sequences) of features such
that X1∩X2 = ∅. Then, Xi (resp., Xd) denotes the sequence obtained by sorting
X by the increasing (resp., decreasing) order of the symmetric uncertainty. Also,
X1 ◦X2 denotes the concatenation of X1 to X2, that is, X2 occurs after X1, and
F \ X denotes the sequence obtained by deleting X from F with preserving the
order of F .

Then, we formulate the following four kinds of the fluctuations, that is, (1)
the sort of blocks, (2) the move of the initial segment , (3) the move of the initial
segment before the selected features and (4) the collection of the selected features
and the sort of features, as the operations of transforming a total feature set F
to a new sequence of features.
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Definition 2 (Fluctuation). Let F be a total feature set {i1, . . . , in}, r a
constant such that 0 < r ≤ 1 and l = �1/r� − 1. Then, let Bk (0 ≤ k ≤ l) be the
set {ikrn+1, . . . , i(k+1)rn} of features.

1. The sort of blocks, denoted by Sortr, is an operation of transforming F to
Bd

0 ◦ . . . ◦ Bd
l .

2. The move of the initial segment , denoted by Mover, is an operation of trans-
forming F to (F \ B0) ◦ B0.

In the following, let S ⊆ F be the selected features by applying the algorithm
A ∈ {CWC,LCC}.

3. Let ij = argmin{SU (C, {i}) | i ∈ S} and B the set {i1, . . . , ij−1}. Then, the
move of the initial segment before the selected features, denoted by MoveA,
is an operation of transforming F to (F \ B) ◦ B.

4. The collection of the selected features and the sort of features is an operation
of transforming F to one of Si ◦ (F \ S)i, Si ◦ (F \ S)d, Sd ◦ (F \ S)i and
Sd ◦ (F \ S)d. We denote them by CSort ii

A, CSort id
A , CSortdi

A and CSortdd
A ,

respectively.

Example 1. Let F = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} be a total feature set sorted by the
increasing order of the symmetric uncertainty. Also let c = 0.2. Furthermore,
suppose that the algorithms CWC and LCC select the features {4, 5, 7} and
{5, 7, 8}, respectively. Then, we obtain the following fluctuations.

1. The fluctuation Sort0.2 transforms F to {2, 1, 4, 3, 6, 5, 8, 7, 10, 9}.
2. The fluctuation Move0.2 transforms F to {3, 4, 5, 6, 7, 8, 9, 10, 1, 2}.
3. The fluctuation MoveLCC transforms F to {5, 6, 7, 8, 9, 10, 1, 2, 3, 4} and the

fluctuation MoveCWC transforms F to {4, 5, 6, 7, 8, 9, 10, 1, 2, 3}.
4. For the fluctuations CSort∗�

LCC and CSort∗�
CWC (∗, � ∈ {i, d}):

(a) The fluctuation CSort ii
CWC transforms F to {4, 5, 7, 1, 2, 3, 6, 8, 9, 10} and

the fluctuation CSort ii
LCC transforms F to {5, 7, 8, 1, 2, 3, 4, 6, 9, 10}.

(b) The fluctuation CSort id
CWC transforms F to {4, 5, 7, 10, 9, 8, 6, 3, 2, 1} and

the fluctuation CSort id
LCC transforms F to {5, 7, 8, 10, 9, 6, 4, 3, 2, 1}.

(c) The fluctuation CSortdi
CWC transforms F to {7, 5, 4, 1, 2, 3, 6, 8, 9, 10} and

the fluctuation CSortdi
LCC transforms F to {8, 7, 5, 1, 2, 3, 4, 6, 9, 10}.

(d) The fluctuation CSortdd
CWC transforms F to {7, 5, 4, 10, 9, 8, 6, 3, 2, 1} and

the fluctuation CSortdd
LCC transforms F to {8, 7, 5, 10, 9, 6, 4, 3, 2, 1}.

4 Experimental Results

In this section, we evaluate the the influence from the fluctuation for the number
of selected features and the accuracy of them, by using both artificial data and
real data. In the following, we refer the number of features, the number of class
labels, the number of instances and the number of different integers to n, c, m
and d, respectively.
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4.1 Data Set, Experimental Setting and Evaluation Method

For artificial data, we set n = 1, 000, c = 20, m = 800 and d = 4 as initial
parameters. First, we randomly generate 5 data sets with the initial parameters.
Next, by selecting every parameter just once, we randomly generate 5 data sets
such that the selected parameter is increased in five steps and the other param-
eters are fixed. Here, n is increased by 1, 000 from 2, 000 to 6, 000, c is by 10
from 30 to 70, m is by 100 from 900 to 1, 300 and d is by one from 5 to 9 in
every step. As a result, we obtain 100 data sets. We refer the data set obtained
by increasing a parameter n (resp., c, m and d) and fixing the other parameters
by ADn (resp., ADc, ADm and ADd).

On the other hand, we adopt DEXTER (see footnote 1), DOROTHEA (see
footnote 1), GISETTE (see footnote 1), HIVA (see footnote 2), NOVA (see
footnote 2) and SYLVA (see footnote 2) as real data. Here, the parameters of n,
c, m and d are summarized in Table 1.

Table 1. Summary of parameters in real data.

Data n c m d Data n c m d

DEXTER 20,000 2 299 6,261 HIVA 1,617 2 3,845 2

DOROTHEA 100,000 2 800 2 NOVA 16,969 2 1,754 2

GISETTE 5,000 2 6,000 10 SYLVA 216 2 13,086 331

Furthermore, as nucleotide sequences, we adopt 8 RNA segments, consisting
of PB2, PB1, PA, HA, NP, NA, MP and NS, of influenza A(H1N1) viruses
provided from NCBI (see footnote 3). Since we deal with nucleotide sequences
consisting of four nucleotides of A, U, G and C and an additional missing value,
the parameter d is 5. The other parameters of n, c and m are summarized in
Table 2. Here, the number (n) of features is the length of a nucleotide sequence
and the class label is the name of the recorded country.

Table 2. Summary of parameters in nucleotide sequences.

Data n c m data n c m

PB2 2,725 80 12,357 NP 1,636 86 12,690

PB1 2,650 84 12,251 NA 1,775 111 24,827

PA 3,817 81 12,263 MP 1,223 88 17,889

HA 2,358 126 31,908 NS 992 79 12,958

As an experimental setting, by increasing the value of r by 0.2 from 0.2 to
1 and 0.8, we deal with 5 fluctuations of Sortr and 4 fluctuations of Mover,
respectively. We fix a threshold δ in LCC for every data. Then, we deal with 2
fluctuations of MoveLCC and MoveCWC, 4 fluctuations of CSort ii

CWC, CSort id
CWC,



Introducing Fluctuation into Increasing Order of Symmetric Uncertainty 557

CSortdi
CWC and CSortdd

CWC for CWC and 4 fluctuations of CSort ii
LCC, CSort id

LCC,
CSortdi

LCC and CSortdd
LCC for LCC.

As an evaluation method, we evaluate the number of selected features, the
similarity of selected features and the accuracy of selected features by LCC and
CWC with or without fluctuations.

Let F be a a fluctuation and A ∈ {CWC,LCC} an algorithm. Also we denote
the set of features selected by A under the fluctuation F to sort features under
the symmetric uncertainty (in lines 1 and 7 in Algorithm 1) by SF (F,A). Here,
we refer to ε as F if we adopt no fluctuations and we omit the subscripts of CWC
and LCC in fluctuations. Furthermore, let α(F,A) be the accuracy obtained by
applying 10-fold cross validations in LIBSVM4 to DSF(F,A) (possibly F = ε).

Then, we introduce the following three measures to evaluate fluctuations
without difference between data.

Definition 3 (Evaluation measures for fluctuations). Let F be a fluctu-
ation and A ∈ {CWC,LCC} an algorithm.

1. The ratio of different numbers of selected features under F by A, denoted by
diff num(F,A), is defined as follows:

diff num(F,A) =
|SF (ε,A)| − |SF (F,A)|

n
,

where n is the cardinality of a total feature set.
2. The similarity of selected features under F by A, denoted by sim(F,A), is

defined as follows:

sim(F,A) =
|SF (F,A) ∩ SF (ε,A)|
|SF (F,A) ∪ SF (ε,A)| ,

i.e., the Jaccard similarity coefficient between SF (ε,A) and SF (F,A).
3. The difference of accuracy under F by A, denoted by diff acc(F,A), is defined

as follows:

diff acc(F,A) = α(F,A) − α(ε,A).

The value of diff num(F,A) is positive if the number of selected features by
A with the fluctuation F is smaller than that without F . The value of sim(F,A)
is near to 1 (resp., 0) if the set of selected features by A with the fluctuation F
is similar (resp., not similar) as that without F . The value of diff acc(F,A) is
positive if the accuracy of DSF(F ,A) is larger than that of DSF(ε,A).

4.2 Results

Let F ∈ {Sortr,Mover,MoveA,CSort∗�
A }, A ∈ {CWC,LCC} and ∗, � ∈ {i, d}.

In the following, we discuss experimental results for artificial data, real data and

4 LIBSVM: A Library for Support Vector Machine:
https://www.csie.ntu.edu.tw/∼cjlin/libsvm/.

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Table 3. The running time (msec.) of the algorithms CWC and LCC without fluc-
tuations (ε) and the maximum, the minimum and the average (ave.) running time of
those with fluctuations for the real data.

DEXTER DOROTHEA GISETTE HIVA NOVA SYLVA

CWC Time CWC Time CWC Time CWC Time CWC Time CWC Time

ε 272 ε 2,521 ε 3,611 ε 592 ε 279 ε 675

Sort1 583 Sort0.5 41,242 Sort0.1 3,912 Move0.4 738 Sort0.5 1,092 Move0.9 787

Move0.3 125 CSortid 2,180 CSortii 3,413 Sort0.5 503 CSortid 271 CSortii 589

ave. 295 ave. 16,303 ave. 3,636 ave. 569 ave. 590 ave. 656

DEXTER DOROTHEA GISETTE HIVA NOVA SYLVA

LCC Time LCC Time LCC Time LCC Time LCC Time LCC Time

ε 326 ε 2,858 ε 4,282 ε 544 ε 362 ε 671

Sort0.1 651 Sort0.2 63,549 Sort0.2 3,878 Move0.3 743 Sort0.1 1,484 CSortdd 749

CSortdi 123 CSortdi 2,348 CSortid 3,431 CSortid 517 CSortid 287 Sort0.6 611

ave. 335 ave. 25,341 ave. 3,677 ave. 577 ave. 764 ave. 643

nucleotide sequences by using the algorithm CWC and those for real data by
using the algorithm LCC. Note that the results for artificial data by LCC are
same as those by CWC. Also, we set the threshold δ to 0.01 for DEXTER, 0.005
for DOROTHEA, GISETTE, HIVA and NOVA and 0.001 for SYLVA.

First of all, we give the results of the running time. Table 3 illustrates the
running time of the algorithms CWC and LCC without fluctuations and the
maximum, the minimum and the average running time of those with fluctuations
for the real data of DEXTER, DOROTHEA, GISETTE, HIVA, NOVA and
SYLVA.

Table 3 shows that, for the data of DOROTHEA, the running time of both
algorithms with fluctuations tends to be much larger than that without fluctu-
ations. Note that, there exist some fluctuations such that the running time of
the algorithms with the fluctuation is smaller than that without fluctuations, for
example, CSort∗� (∗, � ∈ {i, d}), shown as the minimum running time. On the
other hand, for the data of GISETTE, the running time of the algorithm LCC
with fluctuations is always smaller than that without fluctuations. The running
time of both algorithms for the data of DOROTHEA and GISETTE is much
larger than that of other data.

In considering the data with smaller running time, for the data of HIVA, the
average running time of the algorithm CWC with fluctuations is smaller than
that without fluctuations. Also, for the data of SYLVA, the average running time
of both algorithms with fluctuations is smaller than that without fluctuations.

In the remainder of this section, by using the measures in Definition 3, we
evaluate the selected features with fluctuations by comparing with those without
fluctuations.

Figures 1, 2 and 3 illustrate the values of diff num(F,CWC) for artificial
data of ADn, ADc, ADm and ADd, real data of DEXTER, DOROTHEA,
GISETTE, HIVA, NOVA and SYLVA, and nucleotide sequences for 8 RNA seg-
ments of PB2, PB1, PA, HA, NP, NA, MP and NS, respectively, and the values
of diff num(F,LCC) for real data.
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Fig. 1. diff num(F, CWC) for ADn, ADc, ADm and ADd.

For artificial data, the x-axis in Fig. 1 denotes the value of the parameter
n, c, m and d in ADn, ADc, ADm and ADn, respectively. Also, for real data,
since the values of diff num for DEXTER, NOVA and SYLVA are much larger
than those of DOROTHEA, GISETTE and HIVA, we group the former and the
latter in Fig. 2.

Figures 1, 2 and 3 show that the values of diff num for artificial data is
much smaller than those for both real data and nucleotide sequences. On the
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Fig. 2. diff num(F, CWC) (1st and 2nd rows) and diff num(F, LCC) (3rd and 4th
rows) for the groups of DEXTER, NOVA and SYLVA and those of DOROTHEA,
GISETTE and HIVA.

other hand, while the values of diff num for nucleotide sequences are almost
negative in Fig. 3, those for artificial data and real data are either positive or
negative in Figs. 1 and 2.

Figure 1 shows that, for every threshold r in fluctuations Sortr and Mover,
there exist many cases such that the values of diff num are just positive or just
negative. For ADn, diff num tends to be increasing when n is increasing. For
ADc, diff num has the maximum value when c = 30 (the minimum value of c)
and 70 (the maximum value of c). For ADd, diff num is always negative when
d = 9 (the maximum value of d).
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Fig. 3. diff num(F, CWC) for nucleotide sequences of PB2, PB1, PA, HA, NP, NA,
MP and NS.

Figure 2 shows that, for the algorithm CWC, in many cases for the data of
HIVA, introducing fluctuations implies the positive values of diff num (but the
value is less than 1) and the values of diff num for the data of DEXTER and
DOROTHEA are always negative. On the other hand, for the algorithm LCC,
the values of diff num for the data of DEXTER, DOROTHEA and GISETTE
are always negative.

Furthermore, for the data of SYLVA, the fluctuations of Sort0.6 and Sort0.8

give the maximum and the second maximum values and Move0.4 gives the third
maximum value of diff num in the real data, by using both CWC and LCC. On
the other hand, the fluctuations MoveA and CSort∗�

A for A ∈ {CWC,LCC} gives
negative values of diff num(F,A) and one of them gives the minimum value in
the real data.

Table 4 illustrates the distribution of the values of sim(F,A) for every fluctu-
ation. Here, the number of artificial data, real data and nucleotide sequences is
100, 6 and 8, respectively. Note that sim(Sortr, A) and sim(Mover, A) are same
even if r is varied, so we represent them as one column.

Table 4 shows that the selected features by the algorithms of CWC and LCC
with fluctuations from artificial and real data are not similar as those without

Table 4. The distribution of the values of sim(F, A).

Artificial data Real data Real data Nucleotide sequences

CWC CWC LCC CWC

F 0 0.1 0.2 0.3 F 0 0.1 0.2 F 0 0.1 F 0.6 0.7 0.8 0.9 1

Sortr 0 87 13 0 Sortr 2 4 0 Sortr 4 2 Sortr 0 0 3 2 3

Mover 0 27 72 1 Mover 2 2 2 Mover 3 3 Mover 0 0 0 2 6

Move 17 72 11 0 Move 4 2 0 Move 6 0 Move 0 0 0 0 8

CSortii 17 72 11 0 CSortii 4 2 0 CSortii 6 0 CSortii 1 2 0 3 2

CSortid 14 69 17 0 CSortid 4 2 0 CSortid 6 0 CSortid 2 1 0 3 2

CSortdi 17 71 12 0 CSortdi 4 2 0 CSortdi 6 0 CSortdi 1 2 0 3 2

CSortdd 14 69 17 0 CSortdd 4 2 0 CSortdd 6 0 CSortdd 1 2 0 3 2
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fluctuations, while the selected features by the algorithm of CWC with fluctua-
tions from nucleotide sequences are similar as those without fluctuations.

Figure 4 illustrates the values of diff acc(F,CWC) (%) for artificial data of
ADc, which is the most accurate results for other artificial data, the real data of
DOROTHEA, GISETTE, HIVA and NOVA and the nucleotide sequences of 8
RNA segments, and the values of diff acc(F,LCC) (%) for the above real data.
Here, we omit real data of DEXTER and SYLVA because the value is 0.

Figure 4 shows that the values of diff acc(F,CWC) are almost same as those
of diff acc(F,LCC) for every fluctuation F , which are always negative. On the
other hand, for the artificial data of ADc, diff acc tends to be positive and
large if c is small (c = 30, 40) but negative otherwise (c = 50, 60, 70). For the
nucleotide sequences, the values of diff acc for PB2 and NA tend to be positive
but those for PB1, PA, HA and NP are always negative.

4.3 Discussion

For the real data of SYLVA, the values of diff acc(F,A) is always 0 for every
fluctuation F but there exists an r (0.2 ≤ r ≤ 1) such that diff num(Sortr, A)
and diff num(Mover, A) are positive in Fig. 2. Also, for the real data HIVA, the
values of diff acc(F,A) is negative but near to 0 (that is, about −0.03%) for
every fluctuation F in Fig. 4 but almost values of diff num(F,A) are positive in
Fig. 2. In both cases, sim(F,A) is near to 0 in Table 4.

These results imply the existence of a fluctuation such that the accuracy of
a data set constructed from the selected features by the algorithm with it is
same or similar as that without it, the number of selected features with it is
smaller than that without it, and the selected features with it is different from
that without it, which we call the successful case (1).

For the nucleotide sequences of PB2 and NA, diff acc(F,CWC) is positive
in Fig. 4, diff num(F,CWC) is negative in Fig. 3 and sim(F,CWC) is near to 1
in Table 4 for every F ∈ {Sortr,MoveCWC,CSort∗�

CWC}.
This result implies the existence of a fluctuation such that the accuracy of a

data set constructed from the selected features by the algorithm with it is larger
than that without it, the number of selected features with it is larger than that
without it, and the selected features with it is similar as that without it, which
we call the successful case (2).

Table 5 illustrates the values of |SF (F,A)|, α(F,A) and sim(F,A), by com-
paring them without fluctuations, for the real data of SYLVA and HIVA and the
nucleotide sequences of PB2 and NA. Here, we represent the case that |SF (F,A)|
is minimum for SYLVA and HIVA and the case that α(F,A) is maximum for
PB2 and NA.

For the real data of SYLVA and HIVA, Table 5 shows the successful case
(1) whose number of features is smaller and whose accuracy is slightly smaller
than the case without fluctuations and whose features are different from the case
for the algorithm CWC. On the other hand, for the algorithm LCC, while the
number of features is much smaller than the case without fluctuations and for
the algorithm CWC, the accuracy is much smaller.
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real data of DOROTHEA, GISETTE, HIVA and NOVA (CWC)
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real data of DOROTHEA, GISETTE, HIVA and NOVA (LCC)
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nucleotide sequences of 8 RNA segments
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Fig. 4. diff acc(F, CWC) for artificial data, real data and nucleotide sequences and
diff acc(F, LCC) for real data.

For the nucleotide sequences of PB2 and HA, Table 5 shows the successful
case (2) whose accuracy is larger and whose number of features is slightly larger
than the case without fluctuations and whose features are similar as the case.
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Table 5. The values of |SF (F, A)|, α(F, A) and sim(F, A) for SYLVA, HIVA, PB2
and HA.

SYLVA, CWC SYLVA, LCC

F |SF (F, A)| α(F, A) sim(F, A) F |SF (F, A)| α(F, A) sim(F, A)

∅ 14 0.938484 – ∅ 17 0.904789 –

Sort0.5 10 0.938484 0 Sort0.5 8 0.715507 0

Move0.3 10 0.938484 0 Move0.3 8 0.715507 0

HIVA, CWC HIVA, LCC

F |SF (F, A)| α(F, A) sim(F, A) F |SF (F, A)| α(F, A) sim(F, A)

∅ 48 0.965670 – ∅ 54 0.945883 –

Sort0.6 38 0.964889 0.036145 Move0.3 37 0.715507 0

PB2, CWC HA, CWC

F |SF (F, A)| α(F, A) sim(F, A) F |SF (F, A)| α(F, A) sim(F, A)

∅ 545 0.592943 – ∅ 688 0.639863 –

Sort0.2 551 0.605972 0.826667 Sort0.8 694 0.645184 0.906207

5 Conclusion and Future Works

In this paper, we have formulated several fluctuations as operations of trans-
forming a sorted sequence of features to a new sequence of features. Then,
we have introduced the fluctuations into the increasing order of the symmet-
ric uncertainty, which is the first step in the consistency-based feature selection
algorithms of LCC and CWC. Finally, we have evaluated the influence of the
introduction of the fluctuations by using artificial data, real data and nucleotide
sequences.

As a result, by introducing fluctuations, we have obtained the successful
cases, comparing with the case without fluctuations, (1) whose number of fea-
tures is smaller, whose accuracy is same or slightly smaller and whose features are
different and (2) whose accuracy is larger, whose number of features is slightly
larger and whose features are similar.

As stated in Sect. 4.3, for the real data of SYLVA and HIVA, the introduction
of fluctuations in the algorithm LCC gives smaller number of features but much
smaller accuracy than that in the algorithm CWC. Also, in comparison of the
real data with the nucleotide sequences of PB2 and HA and additionally ADc

in Fig. 4, larger number of classes tends to imply smaller accuracy. Then, it is
a future work to analyze which of parameters influences the results introducing
fluctuations.

It remains open how to select fluctuations and whether a more appropriate
fluctuation exists, in order to select better features. It is also a future work to
introduce a measure to evaluate the selected features instead of accuracy.
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Abstract. It is known that secure computation can be done by using a
deck of physical cards; card-based cryptography makes people understand
the correctness and security of secure computation, even for people who
are not familiar with mathematics. In this paper, we propose a new
type of cards, layered polygon cards, based on the use of invisible ink.
A deck of cards with invisible ink naturally hides the contents of cards
and allows to open some pieces of contents, which we referred to it as
partial opening. Based on them, we construct novel protocols for various
interesting functions such as carry of addition, equality, and greater-than.

1 Introduction

Secure computation enables a set of parties each having inputs to jointly compute
a predetermined function of their inputs without revealing their inputs beyond
the output. Card-based cryptography (ex. [3,4,10]) is secure computation that
can be done by using a deck of physical cards, instead of computer devices. This
makes people understand the correctness and security of secure computation,
even for people who are not familiar with mathematics. Indeed, it is applied to
educational situations; some universities (e.g., Cornell University [7], University
of Waterloo [2], and Tohoku University [8]) adopt card-based cryptography as a
teaching material for beginner students.

While most of all existing works [1–3,5,6,9–12,15] are mainly focused on
binary computation only, a lot of secure computation that arises in everyday
and classroom situations needs to take multi-valued inputs. For instance, secure
computation of the average score, which takes a number of scores and outputs the
average of them, is such a canonical example. In order to compute multi-valued
functions efficiently, Shinagawa et al. [14] proposed a deck of regular polygon
cards, whose shape is a regular n-sided polygon for the base number n. They
proposed a two-card addition protocol that outputs x+y mod n given two cards
having x, y ∈ {0, 1, · · · , n − 1}.

Does a deck of regular polygon cards realize sufficiently efficient secure com-
putation for multi-valued functions? Up until now, there exist efficient protocols
only for a very restrictive class of functions such as addition and subtraction,
however, it requires a large number of cards for computing a function in the out-
side of the class (in general, it requires O(nk) cards for k inputs). Unfortunately,
c© Springer Nature Switzerland AG 2019
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Table 1. Comparison between our protocols and previous protocols: “RPC”, and
“LPC” denote regular polygon cards and layered polygon cards, respectively.

Type of cards Number of cards Number of shuffles

◦ Addition and subtraction

Shinagawa et al. [14] RPC 2 1

Ours LPC 2 1

◦ Carry: the predicate “x + y ≥ n”

Shinagawa et al. [14] RPC n2 + n + 2 2

Ours LPC 2 5

◦ Equality with zero: the predicate “x = 0”

Shinagawa et al. [14] RPC 2n + 1 1

Ours LPC 2 4

◦ Equality: the predicate “x = y”

Shinagawa et al. [14] RPC n2 + n + 2 2

Ours LPC 2 6

◦ Greater than: the predicate “x ≥ y”

Shinagawa et al. [14] RPC n2 + n + 2 2

Ours LPC 2 5

there are no efficient protocols even for very simple functions such as addition
with carry, where given two integers x, y ∈ {0, 1, · · · , n − 1}, it outputs a carry
of addition, the predicate “x+y ≥ n”. To compute a carry of addition efficiently
is one of the open problems in this area. In this paper, we solve it by designing
a new type of cards.

1.1 Our Contribution

In this paper, we apply invisible ink to the area of card-based cryptography for
the first time. The use of invisible ink makes it easier to design a new types
of cards and allows a partial opening, which partially reveals the contents of
cards. Then, we design a new type of cards, layered polygon cards, and an encod-
ing rule that is compatible with partial opening: it reveals either a value part
x ∈ {0, 1, · · · , n − 1} of information or a sign part s ∈ {0, 1} of information. In
Sect. 3.3, we propose a conversion protocol that takes a card with a sign s ∈ {0, 1}
and outputs a card with a value s ∈ {0, 1}. Using the conversion protocol, we
construct an efficient protocol for computing a carry of addition, the predicate
“x + y ≥ n”. This can be also applied to other interesting predicates (equality
with zero “x = 0”, equality “x = y”, and greater than “x ≥ y”). Table 1 shows a
comparison between our protocols and the previous protocols [14] with regular
polygon cards (RPC). Somewhat surprisingly, our protocols with layered poly-
gon cards (LPC) for these predicates requires only two cards while RPC-based
protocols needs poly(n) number of cards for the same predicates.
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1.2 Related Work

Binary Cards. A deck of binary cards is the first proposed type of card, where
the front sides are either ♣ or ♥ , and the back sides are the same pattern ? .
In order to encode a binary value, the following encoding rule is used:

♣ ♥ = 0, ♥ ♣ = 1.

Regular Polygon Cards. Shinagawa et al. [14] proposed a deck of regular
n-sided polygon cards, n ≥ 3, whose shape is a regular n-sided polygon, in order
to efficiently compute a function over Z/nZ = {0, 1, 2, · · · , n − 1}. Its front side
has an arrow and back side has nothing. For example, a regular 4-sided polygon
card has a square shape and an arrow in its front side. In order to encode a value
in Z/4Z, the following encoding rule is used:

↑ = 0, ↑ = 1, ↑ = 2, ↑ = 3.

Triangle Cards. Shinagawa and Mizuki [13] proposed a deck of triangle cards,
whose shape is a regular triangle. Its front and back sides are indistinguishable
while a regular 3-sided polygon card has distinguishable front/back sides.

�♠ = 0, �♠ = 1, �♠ = 2.

In order to hide the contents of the cards, both faces of a card can be hidden by
placing seals as follows: �© .

We note that the use of invisible ink makes it easier to make triangle cards.
Indeed, our work is inspired by triangle cards.

1.3 Notation

For any integer n > 0, we use “[n]” to denote the set Z/nZ = {0, 1, · · · , n − 1}.
We use “p(·)” to denote predicates, which is a function outputting either 0 (as
false symbol) or 1 (as true symbol). For example, p(x = y) is a function that
takes x, y as input and outputs 1 if x = y and 0 otherwise. Throughout of this
paper, we use radian to denote the angle of rotation.

2 Layered Polygon Cards

In this section, we propose a new type of cards, layered polygon cards, using
invisible ink. Thanks to the invisibility of invisible ink, it naturally hides the
contents of cards and allows a partial opening. In Sect. 2.1, we newly design a deck
of layered polygon cards using invisible ink. In Sects. 2.2 and 2.3, we introduce
partial openings and shuffles, which are the most important operations in our
protocols. In Sect. 2.4, we remark on complexity measure.



Card-Based Cryptography with Invisible Ink 569

Fig. 1. A layered polygon card (n = 4): the left (right) card turns into the right (left)
card by rotating π rad with the X-axis.

Fig. 2. The encoding for layered polygon card when n = 4

2.1 Layered Polygon Cards

Invisible Ink. Invisible ink is used for writing, which is invisible but can be
made visible with illuminating a black light. It can be used for steganography,
which hides the existence of plain text while cryptography hides the contents of
plain text. Our idea is to use invisible ink for designing cards. Card with invisible
ink has nice properties: (1) it naturally hides the contents of cards, (2) it allows
to do “partial opening” (see Sect. 2.2), and (3) thanks to partial opening, it is
meaningful to put lots of information on a single card.

Layered Polygon Cards. For the base number n ≥ 2, a layered polygon card
has a regular 2n-sided polygon. Figure 1 shows an example of a layered polygon
card when n = 4. Each vertex under the X-axis has a symbol “•” written by
invisible ink on both of front and back sides, and the center of the card has a
single “⇔” written by invisible ink. Thus, by rotating π rad with the X-axis, the
left (resp. right) card (having all “•”s under the X-axis) turns into the right (resp.
left) card (having all “•”s over the X-axis). Note that although this rotation,
which flips with the X-axis, seems equivalent to the rotation π rad around the
center point in the plane, they are not the same in general.

Encoding Rule. In order to encode a value, we use the angle of rotation. We
denote a card with an angle of X·π

n rad by [[X]] as in Fig. 2. We usually pick
X from an element of [2n] = {0, 1, · · · , 2n − 1} but sometimes from outside of
it. For instance, a card [[12 ]] has an angle of π

2n . It is easily observed that for a
layered polygon card [[X]], add A ∈ [2n] (resp. subtract A) to [[X]] is done with
rotating it by A·π

n rad (resp. −A·π
n rad), without revealing X. We can observe

that by rotating π rad with the X-axis, a card [[X]] turns into [[n−X]], especially,
[[0]] turns into [[n]]. We will use these properties in our construction.
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Fig. 3. How to perform a value opening. (In this example, the opened value is 1.)

Canonical Representation. For a card [[X]], X ∈ [2n], we sometimes represent
it as [[x + sn]], where x ∈ [n] and s ∈ {0, 1}. The number x is called a value of
the card and the bit s is called a sign of the card. Hereafter, we mainly use the
above representation. The important observation is that sign of a card is 0 if
and only if the vertex whose angle is − π

2n rad, just under the X-axis, has “•”.

2.2 Partial Opening

Opening is an important operation, which reveals contents of cards. While the
standard opening reveals all pieces of information in a card, our opening reveals
some pieces of information (partial opening). In particular, we define two types
of opening, value opening and sign opening : for a layered polygon card [[x+ sn]],
the former reveals the value x ∈ [n] and the latter reveals the sign s ∈ {0, 1}.

Value Opening. Recall that a value of a card is encoded at the inside area of
the card by angle of the arrow. Figure 3 shows an example of how to proceeds
a value opening. It is done by using a doughnut-shaped cover that hides the
outside area of the card. Then, by illuminating with black light, the arrow is
popped up; then, we obtain the value, i.e., if the angle of the arrow is v·π

n rad,
the opened value is v ∈ [n].

Sign Opening. Recall that a sign of a card is encoded at the vertex whose
angle is − π

2n rad. Figure 4 shows an example of how to proceed a sign opening.
It is done by using a wrench-shaped cover that hides the other area of the card
as follows: Then, by illuminating with black light, we can obtain the sign, i.e.,
if “•” is popped up, the sign is 0, otherwise, the sign is 1.

2.3 Shuffle

Shuffle is as important operation as opening in card-based cryptography. It is a
probabilistic transformation from a sequence of cards to a sequence of cards. The
important request for achieving security is that nobody can guess which possible
sequence is chosen by the shuffle. In this paper, we use four types of shuffles,
which are implementable physically with helping objects like clips, rubber bands,
and wooden boards.

Rotation Shuffle. It takes a number of cards ([[X1]], [[X2]], · · · , [[Xk]]) as input
and outputs ([[X1 + R]], [[X2 + R]], · · · , [[Xk + R]]), where R ∈ [2n] is a uniformly
random number and hidden from all parties. In order to implement a rotation
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Fig. 4. How to perform a sign opening. (In this example, the opened value is 0.)

Fig. 5. Implementations of a rotation shuffle, (a) and (b), and a two-sided rotation
shuffle (c), using clips and a rubber band.

shuffle, all cards are stacked and fixed either by 2n clips as (a) in Fig. 5 or by a
rubber band as (b) in Fig. 5; and then, it is randomly rotated like a frisbee or a
roulette until nobody can guess the angle of rotation.

Two-Sided Rotation Shuffle. It takes a number of cards ([[X1]], [[X2]], · · · ,
[[Xk]]) as input and outputs ([[X1+rn]], [[X2+rn]], · · · , [[Xk+rn]]), where r ∈ {0, 1}
is a uniformly random bit and hidden from all parties. In order to implement
a two-sided rotation shuffle, all cards are stacked and fixed by 2 clips as (c) in
Fig. 5; and then, it is randomly rotated like a frisbee or a roulette until nobody
can guess the angle of rotation.

Flipping Shuffle. It takes a number of cards ([[X1]], [[X2]], · · · , [[Xk]]) as input
and outputs ([[(−1)rX1 + rn]], [[(−1)rX2 + rn]], · · · , [[(−1)rXn + rn]]), where r ∈
{0, 1} is a uniformly random bit and hidden from all parties. It is used in the
conversion protocol (Sect. 3.3). In order to implement a flipping shuffle, all cards
are placed in a single line and fixed by two wooden boards as in Fig. 6; and then,
it is randomly rotated with the X-axis until nobody can guess which sequence
is chosen.

Perfect Randomization. It takes a card [[X]] as input and outputs a random
card [[R]], where R ∈ [2n] is a uniformly random number and hidden from all
parties. In order to implement a perfect randomization, just throwing it in the
air like a coin tossing.
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Fig. 6. An implementation of a flipping shuffle using two wooden boards.

2.4 Complexity Measure

We associate two complexity measures, the number of cards and the number
of shuffles. The former corresponds to the space complexity and the latter cor-
responds to the time complexity. The reason why we choose the number of
“shuffles” instead of “steps” is that shuffles are the most heaviest operations in
executions of card-based protocols.

3 Basic Protocols

In this section, we design secure computation protocols for basic functionality. In
Sect. 3.1, we adopt the addition/subtraction protocols of regular polygon cards
[14] to layered polygon cards. In Sect. 3.2, we construct a sign normalization
protocol, which enforces a sign of the input card to 0 without revealing the
original sign. In Sect. 3.3, we construct a conversion protocol, which converts a
sign of the input into a value of the output.

3.1 Addition Protocol

It takes two cards [[X]] and [[Y ]], X,Y ∈ [2n], as input and outputs a card [[X+Y ]]
without revealing the inputs. For simplicity, we use double representation instead
of canonical representation. It proceeds as follows:

1. Place two cards in a single line as ([[X]], [[Y ]]).
2. Flip the second card with the X-axis; then, we obtain a new sequence:

([[X]], [[−Y ]]).

3. Apply a rotation shuffle to them; then, for a random value R ∈ [2n], we obtain
a new sequence:

([[X + R]], [[−Y + R]]).

4. Flip the second card with the X-axis; then, we obtain a new sequence:

([[X + R]], [[Y − R]]).

5. Open the second card by value opening and sign opening; and then, rotate
the first card by V ·π

2n rad, where V = Y − R is the opened value. The current
sequence is:

([[X + Y ]], [[Y − R]]).
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6. Apply a perfect randomization to the second card, open it by value opening
and sign opening, and rotate it so as to be [[0]]; then, we obtains the result
sequence:

([[X + Y ]], [[0]]).

Subtraction Protocol. The above addition protocol can be converted into a
subtraction protocol with two modifications: (1) skip Step 2 and (2) rotate the
first card by −V ·π

2n instead of V ·π
2n . Then, it outputs ([[X − Y ]], [[0]]).

Complexity. It requires two cards and a single shuffle.

3.2 Sign Normalization Protocol

Sign normalization protocol converts a card with unknown sign into a card with
a fixed sign without revealing the sign. Specifically, it takes a single card [[x+sn]],
x ∈ [n] and s ∈ {0, 1}, as input and outputs a card [[x]] without revealing x and
s. It proceeds as follows:

1. Apply a two-sided rotation shuffle to the input card; then, we obtain a new
card [[x + (s + r)n]] for a uniformly random value r ∈ {0, 1}.

2. Open the sign of the card; and then, rotate it by π rad if the sign is 1. Then,
we obtain the result card [[x]].

Complexity. It requires a single card and a single shuffle.

3.3 Conversion Protocol

It plays an important role to securely compute interesting predicates in Sect. 4.
We use two types of conversion: positive conversion and negative conversion.
Both of them takes a single card [[x + sn]] as input and outputs a card [[s]] if
it is positive and [[1 − s]] if it is negative. Let type ∈ {positive, negative} be a
conversion type of the protocol. It proceeds as follows:

1. Place two cards as follows:

([[x + sn]], [[0]]).

2. Apply a two-sided rotation shuffle to them; then, for r ∈ {0, 1}, we obtain a
new sequence:

([[x + (s + r)n]], [[rn]]).

3. Open the sign of the first card; if it is 1, then rotate the second card by π
rad. Then, we obtain a new sequence:

([[x + (s + r)n]], [[sn]]).

4. Randomize the first card; and then, make a card [[0]] by applying opening and
rotation. Then, we obtain a new sequence ([[0]], [[sn]]).
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5. Rotate the first card by − π
2n if type = positive and by π

2n if type = negative;
then, we obtain a new sequence:{

[[−(1/2)]], [[sn]]) if type = positive

[[1/2]], [[sn]]) if type = negative.
(1)

6. Apply a flipping shuffle to them; then, we obtain a new sequence:{
([[(−1)1+t(1/2) + tn]], [[(s + t)n]]) if type = positive

([[(−1)t(1/2) + tn]], [[(s + t)n]]) if type = negative.

7. Open the sign of the second card; if it is 1, then flip the first card with the
X-axis and rotate the second card by π rad. Then, we obtain a new sequence:{

([[(−1)1+s(1/2) + sn]], [[0]]) if type = positive

([[(−1)s(1/2) + sn]], [[0]]) if type = negative.

8. Rotate the first card by π
2n if type = positive and by − π

2n if type = negative;
then, we obtain a new sequence:{

([[s + sn]], [[0]]) if type = positive

([[1 − s + sn]], [[0]]) if type = negative.

9. Apply the sign normalization protocol in Sect. 3.2 to the first card; then, we
obtain the result sequence:{

([[s]], [[0]]) if type = positive

([[1 − s]], [[0]]) if type = negative.

Complexity. It requires two cards and four shuffles (in Steps 2, 4, 6, and 9).

Optimization. Step 9 can be skipped if we do not care about the sign of the
output card. Then, the number of shuffles is reduced to three.

4 Application: Protocols for Interesting Predicates

In this section, we design secure computation protocols for interesting predicates.
In Sect. 4.1, we construct a carry protocol for the predicate “x + y ≥ n”. This
is used for addition with carry: for two integers x, y ∈ [n], addition with carry
outputs a tuple of integers (x + y ≥ n), x + y mod n). In Sects. 4.2 and 4.3,
we construct equality protocols for the predicates of p(x = 0) and p(x = y),
respectively. In Sect. 4.4, we construct a greater-than protocol for the predicate
p(x ≥ y). We note that there are no efficient solutions for them by using regular
polygon cards.
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4.1 Carry Protocol

It takes two cards [[x]], [[y]] as input and outputs a card [[p(x+y ≥ n)]]. It proceeds
as follows:

1. Place two cards as follows:
([[x]], [[y]]).

2. Apply the addition protocol in Sect. 3.1 to the sequence; then, we obtain a
new sequence:

([[x + y]], [[0]]).

3. Apply the positive conversion protocol in Sect. 3.3; and then, we obtain the
result sequence:

([[p(x + y ≥ n)]], [[0]]).

(Note that the sign of [[x + y]] is 1 only if x + y ≥ n.)

Complexity. It requires two cards and five shuffles.

4.2 Equality with Zero Protocol

It takes a single card [[x]] as input and outputs a card [[p(x = 0)]]. It proceeds as
follows:

1. Place two cards as follows:
([[x]], [[0]]).

2. Flip the first card; and then, rotate it by −π rad. The current sequence is:

([[−x]], [[0]]).

3. Apply the negative conversion protocol in Sect. 3.3; and then, we obtain the
result sequence:

([[p(x = 0)]], [[0]]).

(Note that the sign of [[−x]] is 0 only if x = 0.)

Complexity. It requires two cards and four shuffles.

4.3 Equality Protocol

It takes two cards [[x]], [[y]] as input and outputs a card [[p(x = y)]]. It proceeds
as follows:

1. Place two cards as follows:
([[x]], [[y]]).
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2. Apply the subtraction protocol in Sect. 3.1 to the sequence; then, we obtain
a new sequence:

([[x − y]], [[0]]).

3. Apply the sign normalization protocol in Sect. 3.2 to the first card; then, we
obtain a new sequence:

([[|x − y|]], [[0]]).

(This step is for the equality with zero protocol that takes a card with sign 0
as input.)

4. Apply the equality with zero protocol in Sect. 4.2; then, we obtain the result
sequence:

([[p(|x − y| = 0)]], [[0]]).

Complexity. It requires two cards and six shuffles.

4.4 Greater-Than Protocol

It takes two cards [[x]], [[y]] as input and outputs a card [[p(x ≥ y)]]. It proceeds
as follows:

1. Place two cards as follows:
([[x]], [[y]]).

2. Apply the subtraction protocol in Sect. 3.1 to the sequence; then, we obtain
a new sequence:

([[x − y]], [[0]]).

3. Apply the negative conversion protocol in Sect. 3.3; and then, we obtain the
result sequence:

([[p(x ≥ y)]], [[0]]).

(Note that the sign of [[x − y]] is 0 only if x ≥ y.)

Complexity. It requires two cards and five shuffles.

5 Conclusion and Future Work

In this paper, we designed a new type of cards, layered polygon cards, with
invisible ink, and constructed efficient protocols for various interesting predi-
cates. We believe that the use of invisible ink makes it easier to design a new
type of cards that enable to construct efficient secure computation protocols. An
interesting research direction is to find such a new type of cards and objects,
e.g., polyhedron.

Acknowledgments. This work was supported in part by JSPS KAKENHI Grant
Number 17J01169.
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Abstract. In this paper, we discuss the design and analysis of a poly-
nomial time algorithm for a problem associated with a linearly infeasi-
ble system of Unit Two Variable Per Inequality (UTVPI) constraints,
viz., the read-once refutation (ROR) problem. Recall that a UTVPI con-
straint is a linear relationship of the form: ai · xi + aj · xj ≤ bij ,
where ai, aj ∈ {0, 1, −1}. A conjunction of such constraints is called a
UTVPI constraint system (UCS) and can be represented in matrix form
as: A · x ≤ c. These constraint find applications in a host of domains
including but not limited to operations research and program verification.
For the linear system A · x ≤ b, a refutation is a collection of m variables
y = [y1, y2, . . . , ym]T ∈ R

m
+ , such that y · A = 0, y · b < 0. Such a refuta-

tion is guaranteed to exist for any infeasible linear program, as per Farkas’
lemma. The refutation is said to be read-once, if each yi ∈ {0, 1}. Read-
once refutations are incomplete in that their existence is not guaran-
teed for infeasible linear programs, in general. Indeed they are not com-
plete, even for UCSs. Hence, the question of whether an arbitrary UCS has
an ROR is both interesting and non-trivial. In this paper, we reduce this
problem to the problem of computing a minimum weight perfect matching
(MWPM) in an undirected graph. This results in an algorithm that runs
in time polynomial in the size of the input UCS.

1 Introduction

This paper is concerned with the design and analysis of a polynomial time algo-
rithm for the problem of checking if a linearly infeasible system of UTVPI con-
straints has a read-once refutation (ROR). A linear relationship of the form:
ai ·xi+aj ·xj ≤ bij is called a UTVPI constraint, if ai, aj ∈ {0, 1,−1}. A conjunc-
tion of such constraints is called a UTVPI constraint system (UCS). Observe that
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a UCS is a specialized linear program and hence can be represented in matrix
form as: U : A · x ≤ b. Accordingly, as per Farkas’ lemma, if U is empty, then
there must exist a non-negative m-vector y, such that y · A = 0, y · b < 0. This
vector y is called a refutation of U, since it serves as a “certificate” for the
emptiness of U. We are concerned with a specialized refutation called read-once
refutation. The refutation y is said to be read-once, if each yi ∈ {0, 1}.

Read-once refutations are the simplest form of refutations, since they corre-
spond to summing a subset of the constraints of U to derive a contradiction. It
follows that users would prefer to receive such refutations of infeasibility. Unfor-
tunately, read-once refutations are incomplete, in that there exist infeasible
linear programs which do not have read-once refutations. Indeed, such is the
case for UTVPI constraints systems (see Sect. 2). Consequently, the question of
whether an arbitrary UCS has a read-once refutation is an interesting one. In
this paper, we reduce this problem to the problem of finding a minimum weight
perfect matching (MWPM) in an undirected graph. This results in an algorithm
that runs in time polynomial in the size of the input UCS.

UTVPI constraints find applications in a number of domains such as program
verification [18] and abstract interpretation [19]. Providing easily checkable, short
certificates of infeasibility is therefore a practically significant endeavor.

The rest of the paper is organized as follows: Sect. 2 formally describes the
ROR problem in UTVPI constraints. An enumeration of our contributions is also
provided in this section. The motivation for our work and related approaches in
the literature are described in Sect. 3. In Sect. 4, we detail the new polynomial
time algorithm for the ROR existence problem. We conclude in Sect. 5 by sum-
marizing our contributions and identifying avenues for future research.

2 Statement of Problems

In this section, we formally specify the problems under consideration and define
the terms that will be used in the rest of the paper.

System (1) denotes a system of linear inequalities (or linear program).

A · x ≤ b (1)

We assume without loss of generality that A has dimensions m×n and that
b is an integral m-vector.

Definition 1. A constraint of the form ai·xi ≤ bi is called an absolute constraint
if ai ∈ {1,−1}.
Definition 2. A constraint of the form ai ·xi+aj ·xj ≤ bij is called a difference
constraint, if ai, aj ∈ {1,−1} and ai = −aj.

A conjunction of difference constraints and absolute constraints is called a
difference constraint system (DCS).
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Definition 3. A constraint of the form ai · xi + aj · xj ≤ bij is called a Unit
Two Variable per Constraint (UTVPI), if ai, aj ∈ {0, 1,−1}, and ai and aj are
not both 0.

A conjunction of UTVPI constraints is called a UTVPI constraint system
(UCS).

In the above definitions, bij is called the defining constant of the constraint.
For the constraint systems studied in this paper, we require that bij ∈ Z.

For instance, x1 ≤ 5 is an absolute constraint, x1−x2 ≤ 4 is a difference con-
straint, and x1+x2 ≤ 4 is a UTVPI constraints. Note that difference constraints
are also UTVPI constraints.

In a UTVPI constraint, each variable xi can appear as either xi or −xi.
These are referred to as literals.

We are interested in certificates of infeasibility; in particular, we are inter-
ested in resolution refutations. In linear programs (systems of linear inequalities),
we use the following rule, which plays the role that resolution does in clausal
formulas:

∑n
i=1 ai · xi ≤ b1 ∧ ∑n

i=1 a
′
i · xi ≤ b2∑n

i=1(ai + a′
i) · xi ≤ b1 + b2

(2)

We refer to Rule (2) as the Addition rule. It is easy to see that Rule (2) is
sound in that any assignment satisfying the hypotheses must satisfy the conse-
quent. Furthermore, the rule is complete in that if System (1) is unsatisfiable,
then repeated application of Rule (2) will result in a contradiction of the form:
0 ≤ −a, a > 0. The completeness of the Addition rule was established by Farkas
[7], in a lemma that is famously known as Farkas’ Lemma for systems of linear
inequalities [22]:

Lemma 1. Let A · x ≤ b denote a system of m linear constraints over n
variables.

Then, either ∃x A · x ≤ b or (mutually exclusively), ∃y ∈ R
m
+ y · A = 0,

y · b < 0.

The above lemma along with the fact that linear programs must have basic
feasible solutions establishes that the linear programming problem is in the com-
plexity class NP ∩ coNP. Farkas’ lemma is one of several lemmata that consider
pairs of linear systems in which exactly one element of the pair is feasible. These
lemmata are collectively referred to as “Theorems of the Alternative” [20]. The y
variables are called the Farkas’ variables corresponding to the system A · x ≤ b
and they serve as a witness that certifies the infeasibility of this system. In
general, the Farkas variables can assume any real value for a given constraint
system. In this paper, we are interested only in cases where the Farkas’ variables
are restricted, as discussed below (see Sect. 2.1).

In case of UTVPI constraints, Rule (2) can be restricted to the following
rule:

ai · xi + aj · xj ≤ bij ∧ −aj · xj + ak · xk ≤ bjk
ai · xi + ak · xk ≤ bij + bjk

(3)
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Rule (3) is known as the transitive inference rule. Although it is a restricted
version of the addition rule, it is both sound and complete for linear feasibility
in UTPVI constraint systems [18]. This rule will be used in the reductions in
Sect. 4.

It is well-known that a system of difference constraints can be represented as a
constraint network (directed weighted graph) [3]. It follows from Farkas’ lemma
that the system of difference constraints is infeasible if and only if the corre-
sponding constraint network contains a negative cost cycle. Similar constraint
networks have been developed for UTVPI constraints [18,19,21,26]. These con-
straint networks have been used in the design of graph-based algorithms for
linear and integer feasibility testing in UTVPI constraints.

2.1 The Read-Once Refutation (ROR) Problem

Definition 4. A refutation is said to be read-once, if each input constraint is
used at most once in the derivation of a contradiction.

We are interested in the problem of determining if a UCS has a read-once
refutation or not. Accordingly, we have:

The Read-once Refutation (ROR) problem: Given a UCS U,
does U have a read-once refutation.

Example 1. Note that not every system of constraints has a read-once refutation.
Consider the following UCS:

l1 : x1 − x2 ≤ −3 l2 : −x1 + x4 ≤ 1 l3 : −x1 − x4 ≤ 1
l4 : x2 + x3 ≤ 1 l5 : x2 − x3 ≤ 1 (4)

First observe that l1 is the only constraint with a negative defining constant;
hence, it must be included in any refutation.

In order to eliminate x1, we must include both l2 and l3 in the refutation;
otherwise, x4 is not eliminated. Similarly, to eliminate −x2, we must include
both l4 and l5; otherwise, x3 is not eliminated.

It follows that all the constraints in System (4) must be included in any
refutation. However, the sum of the five constraints yields the constraint l6 :
−x1 +x2 ≤ 1. The only way to arrive at a contradiction is to include l1 a second
time. In other words, System (4) lacks an ROR.

On the other hand, every infeasible UTVPI system has a refutation in which
each constraint is used at most twice [26].

Given an unsatisfiable linear system, specified as in System (1), the ROR
problem is to determine if there exists a read-once refutation. In other words,
we wish to find a subset of constraints from System (1) whose sum produces a
contradiction of the form 0 < −a, a > 0.
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Using Farkas’ Lemma, the ROR problem is easily modeled as the following
integer program:

∃y y · A = 0 (5)
y · b ≤ −1

y ∈ {0, 1}m

Proposition 1. Let R be a read-once refutation of a UCS U. If we add the
constraints in R, we get a contradiction of the form: 0 ≤ b, b < 0.

Proof. Follows immediately from System (5). ��
The principal contribution of this paper is designing a polynomial time algo-

rithm for the ROR problem in UTVPI constraint systems.

2.2 The Minimum Weight Perfect Matching (MWPM) Problem

In this subsection, we briefly discuss the problem of finding the minimum weight
perfect matching (MWPM) in an undirected, weighted graph. This digression is
necessitated by the fact that Sect. 4 involves reduction to the MWPM problem.

Let G = 〈V,E, c〉 denote an undirected graph, with vertex set V, edge set
E and edge cost function c. Let n = |V| and let m = |E|. A matching is any
collection of vertex-disjoint edges. A perfect matching is a matching in which
each vertex v ∈ V is matched. Without loss of generality, we assume that n is
even, since G cannot have a perfect matching, otherwise.

The MWPM problem is one of the classical problems in combinatorial opti-
mization [17]. Over the years, there has been a steady stream of papers docu-
menting improvements in algorithms for this problem [5,6,8].

The fastest combinatorial algorithm for the MWPM problem runs in time
O(m · n + n2 · log n) [9]. It is this bound that we shall be using in our paper.

3 Motivation and Related Work

The problem of finding short refutations is one of the principal problems in proof
complexity [2]. Research proceeds along the lines of finding lower bounds on
the lengths of refutations for propositional tautologies (contradictions) in proof
systems of increasing complexity, with a view towards separating the complexity
class NP from the class coNP [27]. Resolution is one of the weakest proof
systems, but even in this proof system it was difficult to obtain exponential lower
bounds on the length of proofs. The first non-trivial lower bound on the length of
resolution proofs is due to Haken [11], who showed that any resolution proof for
the pigeonhole principle required exponentially many steps. In [13], it was shown
that the problem of finding the shortest resolution proofs in arbitrary 3CNF
formulas is NP-complete. A stronger result was obtained in [1]; they showed
that the problem of finding the shortest resolution proof in Horn formulas is
not linearly approximable, unless P=NP. This result is interesting because it
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is easy to see that every unsatisfiable Horn formula has a resolution refutation
that is quadratic in the number of clauses.

On the read-once refutation side, [14] showed that the problem of checking if
an arbitrary CNF has an ROR is NP-complete. This result was strengthened
in [16], which showed that the problem of checking whether a CNF formula has a
read-once unit resolution refutation is NP-complete. In [15], it was shown that
the problem of checking if a 2CNF formula has a read-once refutation is NP-
complete. In this paper, we examine this problem on continuous (as opposed
to discrete) variables.

As we can see, much of the work in finding short refutations focused on
discrete domains (CNF formulas). In a departure from existing work, [24] con-
sidered difference constraint systems from the perspective of determining the
optimal length resolution refutations. That paper shows that short refutations
exist for difference constraints and also shows that the optimal length refuta-
tion can be determined in polynomial time. The algorithm therein is based on
dynamic programming and runs in time O(n3 · log n) on DCSs with n variables.
In [25], a different dynamic program was used to achieve a time of O(m · n · k),
where m is the number of constraints and k is the length of the shortest refuta-
tion. It is worth noting that in DCSs, linear and integer feasibility coincide and
therefore, the departure is not strict. Furthermore, as pointed out in [24], every
minimal refutation (i.e., a refutation without redundant constraints) is necessar-
ily read-once, since every minimal refutation corresponds to a simple negative
cost cycle in the corresponding constraint network [3]. In this paper though, we
consider the problem of read-once refutations in UCSs. Unlike DCSs, linear fea-
sibility does not imply integer feasibility in UCSs [26]. UTVPI constraints occur
in a number of problem domains including but not limited to program verifica-
tion [18], abstract interpretation [4,19], real-time scheduling [10] and operations
research [12].

To the best of our knowledge, this is the first paper to study read-once
refutations for linear infeasibility in UCSs.

4 The ROR Problem in UTVPI Constraints

In this section, we show that read-once refutations in systems of UTVPI con-
straints (if they exist) can be found in polynomial time.

4.1 Construction

We convert the UCS U : A · x ≤ b into an undirected graph G′ = 〈V′,E′, c′〉
as follows:

1. For each variable xi in U, add the vertices x+
i , x′

i
+, x−

i , and x′
i
− to V′.

Additionally, add the edges x−
i

0
x+
i and x′

i
− 0

x′
i
+ to E′.

2. Add the vertices x+
0 and x−

0 to V′. Additionally, add the edge x−
0

0
x+
0

to E′.
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3. For each constraint lk of U, add the vertices lk and l′k to V′ and the edge

lk
0

l′k to E′. Additionally:

(a) If lk is xi + xj ≤ bk, add the edges x+
i

bk
2

lk, x′
i
+

bk
2

lk, x+
j

bk
2

l′k, and

x′
j
+

bk
2

l′k to E′.

(b) If lk is xi − xj ≤ bk, add the edges x+
i

bk
2

lk, x′
i
+

bk
2

lk, x−
j

bk
2

l′k, and

x′
j
−

bk
2

l′k to E′.

(c) If lk is −xi +xj ≤ bk, add the edges x−
i

bk
2

lk, x′
i
−

bk
2

lk, x+
j

bk
2

l′k, and

x′
j
+

bk
2

l′k to E′.

(d) If lk is −xi −xj ≤ bk, add the edges x−
i

bk
2

lk, x′
i
−

bk
2

lk, x−
j

bk
2

l′k, and

x′
j
−

bk
2

l′k to E′.

(e) If lk is xi ≤ bk, add the edges x+
i

bk
2

lk, x′
i
+

bk
2

lk, x+
0

bk
2

l′k, and

x−
0

bk
2

l′k to E′.

(f) If lk is −xi ≤ bk, add the edges x−
i

bk
2

lk, x′
i
−

bk
2

lk, x+
0

bk
2

l′k, and

x−
0

bk
2

l′k to E′.

In this construction, each variable is represented by a pair of 0-weight edges.
As we shall see, this permits each vertex can be used twice by a read-once
refutation. However, we still only have one 0-weight edge for each constraint,
which prevents a read-once refutation from reusing edges.

Note that if U has m constraints over n variables, then G′ has (4·n+2·m+2)
vertices and (2 · n + 5 · m + 1) edges. In other words, G′ has O(m + n) vertices
and O(m + n) edges.

Example 2. Let us consider the UCS represented by System (6).

l1 : x1 + x2 ≤ −2 l2 : x1 + x3 ≤ −2 l3 : −x1 − x4 ≤ −2
l4 : −x1 − x5 ≤ −2 l5 : −x2 − x3 ≤ 2 l6 : x4 + x5 ≤ 2 (6)

The undirected graph corresponding to UCS (6) is shown in Fig. 1.

The minimum weight perfect matching in this graph is x+
1

−1
l2, l′2

−1
x+
3 ,

x−
3

1
l′5, l5

1
x−
2 , x+

2

−1
l′1, l1

−1
x′
1
+, x′

1
− −1

l3, l′3
−1

x−
4 , x+

4

1
l6,

l′6
1

x+
5 , x−

5

−1
l′4, l4

−1
x−
1 , x′

2
+ 0

x′
2
−, x′

3
+ 0

x′
3
−, x′

4
+ 0

x′
4
−, and

x′
5
+ 0

x′
5
−. This matching has weight −4 and corresponds to the read-once

refutation obtained by summing all six constraints (see Theorem 1).
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x+
0x−

0

x+
1

x′
1
+

l1

l′1 x+
2

x′
2
+
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2

x′
2
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l′5

x−
3

x′
3

−
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3
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1

x′
1
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4
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Fig. 1. Undirected graph

4.2 Correctness

We now proceed to argue the correctness of the above construction.
We first establish some structural properties of certain read-once refutations

in a UCS (see Lemmas 2 and 4). These properties will be used in Theorem 1.
Let R be a read-once refutation of U which uses the fewest number of con-

straints, i.e., a shortest read-once refutation. Let xi be a variable used by R.
Let |R|i be the number of constraints in R that use the literal xi. Since R is a
refutation, |R|i is also the number of constraints that use the literal −xi.

We will first show that we can assume without loss of generality, that R has
zero or two absolute constraints.

Lemma 2. Let U : A · x ≤ b denote a UCS. If U has a read-once refutation
using absolute constraints, then U has a read-once refutation using zero or two
absolute constraints.

Proof. Let R be a read-once refutation of U with the minimum number of
absolute constraints, and let |R|a represent the number of absolute constraints
in R.

If R has an odd number of absolute constraints, then the total number of
literals in R would also be odd. Thus, summing the constraints in R would not
result in a constraint of the form 0 ≤ b where b < 0, which is a requirement of a
read-once refutation (see Proposition 1). Thus, R must have an even number of
absolute constraints.

Assume that |R|a > 2. Let l0 : ai · xi ≤ b0 be an absolute constraint in R.
Since R is a refutation, there must be a constraint l1 with the term −ai · xi.

If l1 is an absolute constraint, then the sum of l0 and l1 is a constraint of
the form 0 ≤ b. If b < 0, then the constraints l0 and l1 form a refutation using
fewer absolute constraints than R. If b ≥ 0, then the remaining constraints form
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a read-once refutation using fewer absolute constraints than R. Both cases con-
tradict the assumption that R is a read-once refutation with the fewest absolute
constraints.

If l1 is not an absolute constraint, then the sum of l0 and l1 is a constraint
of the form aj · xj ≤ b. Thus, we can continue this process, always eliminating
the only variable in the derived constraint, until either:

1. No constraints remaining in R can eliminate the variable. In this case, the
sum of the constraints in R is not of the form 0 ≤ b < 0. Thus R is not a
refutation.

2. An absolute constraint is encountered. In this case we again derive a con-
straint of the form 0 ≤ b. As before, this contradicts the assumption that R
is a read-once refutation with the fewest absolute constraints.

All possible cases lead to a contradiction, thus we must have that |R|a ≤ 2.
Since |R|a is even, this means that |R|a ∈ {0, 2}. ��

Assume that |R|i ≥ 3. By Lemma 2, we can assume without loss of generality
that R has at most 2 absolute constraints. Thus R must have a non-absolute
constraint that uses xi. Let l0 : xi + aj · xj ≤ bij be one such non-absolute
constraint in R. l0 is called the current constraint. In what follows, we will pro-
ceed through a sequence of stages eliminating the non-xi variable in the current
constraint, until eventually xi itself is eliminated or a contradiction results.

Algorithm 4.1 represents our approach.

Lemma 3. Process-Refutation(R, l0) cannot return any value.

Proof. Recall that R is a shortest read-once refutation of U and that |R|i ≥ 3.
Assume that Process-Refutation(R, l0) returns a value of u. We will show
that every value of u results in a contradiction.

1. u = −1 - In this case, there is a non-xi literal that cannot be canceled by any
of the the remaining constraints in R′. Thus, the sum of the constraints in R
is not of the form 0 ≤ b < 0. Thus R is not a read-once refutation.

2. u = −2 - In this case,
∑

lh∈sum lh is a constraint of the form 0 ≤ b. Note that
the literal xi is used only once by the constraints in sum. Thus, sum ⊂ R. If
b < 0, then the constraints in sum form a read-once refutation of U. If b ≥ 0,
then the constraints in R \ sum form a read-once refutation of U. Thus R is
not the shortest read-once refutation of U.

3. u = −3 - In this case,
∑

lh∈sum lh is a constraint of the form −xi − xi ≤
b and

∑
lh∈sum′ lh is a constraint of the form xi + xi ≤ b′, we have that∑

lh∈sum∪sum′ lh is a constraint of the form 0 ≤ b + b′.
Note that sum contains no constraints that use xi and that sum′ contains
two constraints that use xi. Thus, sum ∪ sum′ ⊂ R. If b < 0, then the
constraints in sum ∪ sum′ form a read-once refutation of U. If b ≥ 0, then
the constraints in R \ (sum ∪ sum′) form a read-once refutation of U. Thus
R is not the shortest read-once refutation of U.
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1: procedure Process-Refutation(R, l0)
2: sum := {l0}. � The set of constraints processed thus far.
3: R′ := R \ {l0}. � The set of constraints not yet processed.
4: numi := 1.
5: while (R′ �= ∅) do
6: Let ls ∈ R′ be a constraint which cancels the non-xi variable in

∑
lh∈sum lh.

7: if (ls does not exist) then
8: return(−1).
9: end if

10: R′ := R′ \ {ls}.
11: sum := sum ∪ {ls}.
12: if (ls is an absolute constraint) then
13: Let ls be the remaining absolute constraint in R.
14: R′ := R′ \ {ls}.
15: sum := sum ∪ {ls}.
16: end if
17: if (ls uses the literal −xi) then
18: if (numi = 1) then
19: return(−2).
20: else
21: return(−3).
22: end if
23: end if
24: if (ls uses the literal xi) then
25: if (numi = 1) then
26: numi := 2.
27: Let ls ∈ R be a non-absolute constraint with the literal −xi.
28: R′ := R′ \ {ls}.
29: sum′ := sum.
30: sum := {ls}.
31: else
32: return(−2).
33: end if
34: end if
35: end while
36: return(−4).
37: end procedure

Algorithm 4.1. Shortest refutation property

4. u = −4 - In this case, we have processed every constraint in R. Thus, we
have processed every constraint in R that uses the literal xi. Let l1, l2 ∈ R be
the first two such constraints processed. Since |R|i ≥ 3, these constraints are
guaranteed to exist.
When processing l1, we have that numi = 1. Thus, when constraint l1 triggers
the if statement on line 24, Algorithm 4.1 sets numi to 2. This meant that,
when constraint l2 triggers the if statement on line 24, Algorithm 4.1 returns
−2. Thus u = −2. ��
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Lemma 4. Let U : A · x ≤ b denote an infeasible UCS. If U has a read-once
refutation, then it has a read-once refutation, in which each literal is used at
most twice.

Proof. Let R be the shortest read-once refutation of U. Assume that |R|i ≥ 3
for some literal xi. Recall that R must have a non-absolute constraint l0 of the
form xi − aj · xj ≤ bij .

From Lemma 3, Process-Refutation(R,L0) cannot return any value.
However, R is finite. Thus, Process-Refutation(R,L0) must eventually halt
and return a value. This is a contradiction. Thus, we must have that |R|i ≤ 2
for every literal xi. ��
Theorem 1. Let U : A · x ≤ b denote a UCS and let G′ = 〈V′,E′, c′〉 denote
the graph constructed from U, as described in Subsect. 4.1.

Then, U has a read-once refutation if and only if G′ has a negative weight
perfect matching.

Proof. First assume that U has a read-once refutation R. As argued in Lemma 4,
we can assume that each literal in U occurs in R at most twice.

We construct a negative weight perfect matching P of G′ as follows:

1. For each variable xi in U:
(a) If R does not use the literal xi, add the edges x+

i

0
x−
i and x′

i
+ 0

x′
i
−

to P .
(b) If R uses the literal xi only once, add the edge x′

i
+ 0

x′
i
− to P .

(c) If R uses the literal xi twice, do not add any edges to P .
2. Assume that the constraints in U are assigned an arbitrary order. For con-

straint lk in U:
(a) If lk �∈ R, add the edge lk

0
l′k to P .

(b) If lk ∈ R is of the form ai · xi + aj · xj ≤ bk such that ai, aj �= 0:

i. If lk is the first edge to use the literal xi, add the edge x+
i

bk
2

lk to

P . If it is the second, add the edge x′
i
+

bk
2

lk.

ii. If lk is the first edge to use the literal −xi, add the edge x−
i

bk
2

lk to

P . If it is the second, add the edge x′
i
−

bk
2

lk.

iii. If lk is the first edge to use the literal xj , add the edge x+
j

bk
2

l′k to

P . If it is the second, add the edge x′
j
+

bk
2

l′k.

iv. If lk is the first edge to use the literal −xj , add the edge x−
j

bk
2

l′k to

P . If it is the second, add the edge x′
j
+

bk
2

l′k.
(c) If lk ∈ R is of the form ai · xi ≤ bk:
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i. If lk is the first edge to use the literal xi, add the edge x+
i

bk
2

lk to

P . If it is the second, add the edge x′
i
+

bk
2

lk.

ii. If lk is the first edge to use the literal −xi, add the edge x−
i

bk
2

lk to

P . If it is the second, add the edge x′
i
−

bk
2

lk.

iii. If lk is the first absolute constraint, then add the edge x+
0

bk
2

l′k to
P .

iv. If lk is the second absolute constraint, then add the edge x−
0

bk
2

l′k
to P . From Lemma 2, we can assume without loss of generality that
there are at most two absolute constraints in R.

(d) If R has no absolute constraints, then add the edge x+
0

0
x−
0 to P .

We now make the following observations:

1. For each variable xi:
(a) If the literal xi is not used by R, then the verticies x+

i , x−
i , x′

i
+, and x′

i
−

are the end points of the edges x+
i

0
x−
i and x′

i
+ 0

x′
i
− which are the

only such edges in P .
(b) If the literal xi is used in only one constraint lk ∈ R, then the literal xi

must also be used by only one constraint lk′ ∈ R. Otherwise R would not
be a read-once refutation. Thus the vertices x+

i , x−
i , x′

i
+, and x′

i
− are the

end points of the edges x′
i
+ 0

x′
i
−, x+

i

bk
2

lk, and x−
i

b
k′
2

lk′ which are
the only such edges in P .

(c) If the literal xi is used two constraint lk1 , lk2 ∈ R, then the literal xi must
also be used by two constraints lk′

1
, lk′

2
∈ R. Otherwise R would not be a

read-once refutation. Thus the vertices x+
i , x−

i , x′
i
+, and x′

i
− are the end

points of the edges x+
i

bk1
2

lk1 , x
−
i

b
k′
1

2
lk′

1
, x′

i
+

bk2
2

lk2 , x
′
i
−

b
k′
2

2
lk′

2
which

are the only such edges in P .
2. For each constraint lk:

(a) If lk ∈ R, then, by construction, P contains two edges of weight bk
2 one

with end point lk and one with endpoint l′k. Thus both lk and l′k are the
endpoints of exactly one edge in P .

(b) If lk �∈ R, then, by construction, P contains the edge lk
0

l′k and none
of the weight bk

2 edges. Thus both lk and l′k are the endpoints of exactly
one edge in P .

3. By Lemma 2, we can assume without loss of generality that R contains 0 or
2 absolute constraints. Thus:
(a) If R contains no absolute constraints, then the vertices x+

0 and x−
0 are

the endpoints of the edge x+
0

0
x−
0 which is the only such edge in P .
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(b) If R contains two absolute constraints lk1 and lk2 , then the vertices x+
0

and x−
0 are the endpoints of the edges x+

0

bk1
2

l′k1
and x−

0

bk2
2

l′k2
which

are the only such edges in P .

Thus, every vertex in G′ is an endpoint of exactly one edge in P . It follows
that P is a perfect matching. Additionally, for each constraint lk ∈ R, P has two
edges of weight bk

2 and all other edge in P have weight 0. Thus,

∑

e∈P

c′(e) =
∑

lk∈R

(
bk
2

+
bk
2

)

=
∑

lk∈R

bk < 0.

This means that P has negative weight.
Now assume that G′ has a negative weight perfect matching P . We construct

a read-once refutation R as follows:
For each constraint lj in U, if P does not use the edge lj

0
l′j , then add

the constraint lj to R.
P is a perfect matching. Thus, for each variable xi, we have the following:

1. If a constraint lj ∈ R uses the literal xi, then either:

(a) One of the edges lj
bj
2

x+
i or l′j

bj
2

x+
i is in P . Thus, the edge x+

i

0
x−
i

is not in P . This means that for some k, one of the edges lk

bk
2

x−
i or

l′k
bk
2

x−
i is in P . Thus, the literal xi is used by the constraint lk ∈ R.

(b) One of the edges lj

bj
2

x′
i
+ or l′j

bj
2

x′
i
+ is in P . Thus, the edge

x′
i
+ 0

x′
i
− is not in P . This means that for some k, one of the edges

lk

bk
2

x′
i
− or l′k

bk
2

x′
i
− is in P . Thus, the literal xi is used by the con-

straint lk ∈ R.
Note that if there are two constraints in R that use the literal xi, then each
one corresponds to a constraint in R that uses the literal −xi.

2. Similarly, if one or two constraints in R use the literal −xi, then the same
number of constraints in R use the literal xi.

Thus, the literal xi appears in the same number of constraints in R as the
literal −xi.

If a constraint lk ∈ R, then the edge lk
0

l′k is not in P . Thus, P contains two
edges of weight bk

2 one with end point lk and one with endpoint l′k. Conversely,

if the constraint lk �∈ R, then the edge lk
0

l′k is in P . It follows that none of
the edges of weight bj

2 from lj and l′j are in P . Thus, for each constraint lk ∈ R,
P has two edges of weight bk

2 and all other edge in P have weight 0.
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Thus, summing the constraints in R yields

0 ≤
∑

lj∈R

bj =
∑

lj∈R

(
bj
2

+
bj
2

)

=
∑

e∈P

c′(e) < 0.

By construction, each constraint appears at most once in R. Thus, R is a
read-once refutation of U. ��

4.3 Resource Analysis

To construct G′, we need to process each variable and each constraint in U.
Each variable and each constraint can be processed in constant time. Thus the
reduction can be performed in O(m + n) time. The minimum weight perfect
matching of G′ can be found in O(|E′| · |V′| + |V′|2 · log |V′|) time [9]. As
discussed in Subsect. 4.1, G′ has O(m + n) vertices and O(m + n) edges. Thus,
by using this reduction, the ROR problem for UTVPI constraints can be solved
in O((m + n)2 · log(m + n)) time.

5 Conclusion

In this paper, we investigated the problems of checking whether a UTVPI con-
straint system has a read-once refutation. Unlike difference constraints, a UCS
may not have an ROR. Therefore, a sophisticated search is called for. We reduced
the ROR problem in UTVPI constraints to the problem of finding a minimum
weight perfect matching (MWPM) in an undirected graph. One of the advantages
of our reduction-based algorithm is that we can leverage improvements in algo-
rithms for the MWPM problem to improvements in our algorithm for the ROR
problem [5]. UTVPI constraints are an important class of linear constraints that
find applications in abstract interpretation and program verification. It follows
that certificates of infeasibility for UTVPI constraint systems are of enormous
practical significance. Read-once certificates are particularly useful in applica-
tions, since they are “short” by definition.

An important extension of this research is to implement in our algorithm
within the framework of an SMT solver such as Yices [23].
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Abstract. Congestion games provide a model of human’s behavior of
choosing an optimal strategy while avoiding congestion. In the past
decade, matroid congestion games have been actively studied and their
good properties have been revealed. In most of the previous work, the
cost functions are assumed to be univariate or bivariate. In this paper,
we discuss generalizations of matroid congestion games in which the cost
functions are n-variate, where n is the number of players. First, we prove
the existence of pure Nash equilibria in matroid congestion games with
monotone cost functions, which extends that for weighted matroid con-
gestion games by Ackermann, Röglin, and Vöcking (2009). Second, we
prove the existence of pure Nash equilibria in matroid resource buying
games with submodular cost functions, which extends that for matroid
resource buying games with marginally nonincreasing cost functions by
Harks and Peis (2014). Finally, motivated from polymatroid congestion
games with M�-convex cost functions, we conduct sensitivity analysis for
separable M�-convex optimization, which extends that for separable con-
vex optimization over base polyhedra by Harks, Klimm, and Peis (2018).

Keywords: Pure Nash equilibrium · Matroid congestion game ·
Monotone set function · Resource buying game ·
Submodular function · Polymatroid congestion game ·
Sensitivity analysis · M�-convex function

1 Introduction

Congestion games, introduced by Rosenthal [19], provides a model of human’s
behavior of choosing an optimal strategy while avoiding congestion. A congestion
game consists of a set N of players and a set E of resources. Each player i ∈ N has
a family of resource subsets Bi ⊆ 2E , which represents the possible strategies of i.
Each resource e ∈ E is associated with a nondecreasing cost function ce : R → R.
The cost function means that, if the number of players using e is xe, then each of
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those xe players should pay ce(xe) to use e. Thus, if a player i chooses a strategy
Bi ∈ Bi, then the total cost paid by i is equal to

∑
e∈Bi

ce(xe).
Rosenthal [19] proved that every congestion game is a potential game, and

thus has a pure Nash equilibrium. Up to the present date, a number of generalized
or focused models of congestion games have been considered, and pure Nash
equilibria of those models have been intensively analyzed.

Network congestion games (or routing games) form a typical class of conges-
tion games, in which the resources are the edges in a network and the strategies
of a player i are the routes (or flows) between two nodes si and ti. Examples of
recent work on network congestion games appear in [3,4,12].

There is another class of congestion games showing successful results, matroid
congestion games, in which the strategies of each player are the bases of
a matroid. Ackermann, Röglin, and Vöcking [2] proved that every weighted
matroid congestion game, in which the cost ce for using a resource e ∈ E is
determined by the sum of the weights of the players using e, and every matroid
congestion games with player-specific cost functions have pure Nash equilibria.
Since weighted congestion games and congestion games with player-specific cost
functions do not necessarily have pure Nash equilibria, this result demonstrates
a good structure of matroid congestion games. Recently, Harks, Klimm, and Peis
[8] discussed polymatroid congestion games, in which the strategies of each player
are the integer points in a base polyhedron of a polymatroid. In their model,
the cost functions are player-specific and bivariate. That is, for a player i ∈ N
and resource e ∈ E, the cost function ci,e : R2 → R has two variables xi,e and
x−i,e =

∑
j∈N\{i} xj,e, where xj,e represents the multiplicity of the usage of e by

a player j ∈ N . Harks, Klimm, and Peis [8] proved that polymatroid congestion
games have pure Nash equilibria if the cost functions are discrete convex and
regular. The proof is based on a sensitivity analysis for separable discrete con-
vex optimization over base polyhedra: the deviation of an optimal strategy of a
player i when the strategies of the other players change by a unit vector. Special
classes of this model include matroid congestion games with player-specific costs
[2] and singleton integer-splittable congestion games by Tran-Thanh et al. [21].
Other results on matroid congestion games appear, e.g., in [1,11].

A variant of congestion games is resource buying games, introduced by Harks
and Peis [9,10]. A distinctive feature of resource buying games is that, if a
resource e is used by xe players, then it is required that the sum of the payment
by those xe players for using e is at least ce(xe). This is in contrast to the usual
models of congestion games in which every player using e should pay ce(xe)
for using e. Harks and Peis [9,10] proved that matroid resource buying games
have pure Nash equilibria if the cost functions are marginally nonincreasing, and
that resource buying games have pure Nash equilibria if the cost functions are
marginally nondecreasing.

Now the purpose of this paper is to provide a new direction of generalizing
matroid congestion games: matroid congestion games with n-variate cost func-
tions, where n denotes the number of players. As mentioned above, in most of
matroid congestion games, the cost functions are univariate (xe) or bivariate
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(xi,e and x−i,e). We generalize this point so that each cost function has vari-
ables x1,e, . . . , xn,e: a nondecreasing cost function is generalized to a monotone
set function; a marginally nonincreasing cost function is generalized to a sub-
modular function; and a bivariate discrete convex function is generalized to an
M�-convex function. These generalizations enable us to establish more elaborate
models in which the cost for using a resource e is not determined by the sum of
the weights of the players using e, but by the set of players using e.

For this purpose, we often make use of the theory of discrete convex analysis
[15]. The importance of M�-convex and L�-convex functions in game theory has
been well appreciated [16]. For instance, one relation between network congestion
games and M-convex function minimization is revealed by Fujishige et al. [6].

Our contribution consists of three extensions of the aforementioned results.
First, we discuss matroid congestion games in which the cost functions are mono-
tone set functions. This class generalizes that of weighted matroid congestion
games. By applying the arguments for weighted matroid congestion games by
Ackermann, Röglin, and Vöcking [2], we prove that every matroid congestion
game with monotone cost functions has a pure Nash equilibrium.

Second, we consider matroid resource buying games in which the cost func-
tions are monotone and submodular. This class generalizes that of matroid
resource buying games with marginally nonincreasing cost functions. By extend-
ing the proof by Harks and Peis [9,10], we show that every matroid resource
buying game with monotone submodular cost functions has a pure Nash equi-
librium.

It is a kind of interest that submodular functions together with matroidal
domain have a good structure. In the context of discrete convex analysis [15],
polymatroids form the domain of M�-convex functions (M�-convex set), while
submodular functions form a special class of L�-convex functions. It is a basic
fact in discrete convex analysis that M�-convex functions and L�-convex functions
have a duality relation. Thus, it is of interest that L�-convex functions with
domain defined from M�-convex sets have a good property.

Finally, for a polymatroid congestion game with n-variate M�-convex cost
functions, we analyze the deviation of an optimal strategy of a player when the
strategies of the other players change by a unit vector. As Harks, Klimm, and
Peis [8] proved the existence of pure Nash equilibria in polymatroid congestion
games with bivariate cost functions based on the sensitivity analysis for convex
optimization over base polyhedra, we anticipate that our sensitivity result will
find an application in the analysis of polymatroid congestion games with M�-
convex cost functions.

We remark that our sensitivity result differs from that for minimization of a
potential function over polymatroids by Fujishige et al. [7]. Fujishige et al. [7]
discuss the deviation of the optimal value, whereas we consider the deviation
of the optimal solution. Another related topic is proximity results for M-convex
optimization [13,18], which deal with the behavior of minimizers of an M-convex
function when the function is extended to a continuous function.
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The rest of the paper is organized as follows. In Sect. 2, we review basic
facts on matroids, submodular functions, and M�-convex functions. In Sects. 3.1
and 3.2, we prove the existence of pure Nash equilibria in matroid congestion
games with monotone cost functions, and in matroid resource buying games with
monotone submodular cost functions, respectively. Finally, in Sect. 4, we show
the sensitivity result for separable M�-convex minimization.

2 Preliminaries

In this section, we review definitions and some basic facts on matroids, sub-
modular functions, and M�-convex functions, which will be used in the following
sections. For more details, the readers are referred to [5,15,20].

2.1 Matroids and Submodular Functions

In this paper, we define matroids by their base families. Let E be a finite set
and B ⊆ 2E . Now (E,B) is called a matroid if it satisfies the following axioms:

1. B �= ∅; and
2. if B,B′ ∈ B and e ∈ B \ B′, there exists f ∈ B′ \ B with (B \ {e}) ∪ {f} ∈ B.

Let w : E → R be a weight function. For B ⊆ E, let w(B) =
∑

e∈B w(e).
In this paper, we are mainly concerned with minimum-weight bases, that is,
a base B∗ ∈ B such that w(B∗) ≤ w(B) for each B ∈ B. For minimization,
matroid bases have a good structure: the global optimality is assured by some
local optimality, which is described below and will often appear in this paper.

Lemma 1 (see, e.g., [15,20]). Let (E,B) be a matroid and w : E → R be a
weight function. Then, for a base B∗ ∈ B, it holds that w(B∗) ≤ w(B) for each
B ∈ B if and only if w(B∗) ≤ w((B∗\{e})∪{f}) for every e ∈ B∗ and f ∈ E\B∗

such that (B∗ \ {e} ∪ {f} ∈ B.

Let N be a finite set. A set function c : 2N → R is called submodular if

c(X ∪ {i}) − c(X) ≥ c(Y ∪ {i}) − c(Y ) if X ⊆ Y ⊆ N and i ∈ N \ Y.

It is recognized that submodular functions provide a good model of economies
of scale. For instance, submodular functions generalize marginally nonincreasing
function. A function φ : Z → R is called marginally nonincreasing if

φ(x + δ) − φ(x) ≥ φ(y + δ) − φ(y) (x, y, δ ∈ Z, x ≤ y).

It is straightforward to see that a submodular function c : 2N → R such that
c(X) = c(X ′) if |X| = |X ′| is essentially a marginally nonincreasing function.
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2.2 M-convex Functions and M�-convex Functions

Let N be a finite set. For i ∈ N , define a vector χi ∈ {0, 1}N by

χi
j =

{
1 (j = i),
0 (j ∈ N \ {i}).

For a vector x ∈ Z
N , define supp+(x), supp−(x) ⊆ N respectively by

supp+(x) = {i ∈ N | xi > 0}, supp−(x) = {i ∈ N | xi < 0}.

Let R denote R ∪ {+∞}. For a function c : ZN → R, its effective domain
dom c is defined as {x | c(x) < +∞}. Now a function c : ZN → R with dom c �= ∅
is an M�-convex function [15,17] if it satisfies the following exchange axiom:

For x,y ∈ dom c and i ∈ supp+(x − y), it holds that

c(x) + c(y) ≥ c(x − χi) + c(y + χi)

or there exists j ∈ supp−(x − y) such that

c(x) + c(y) ≥ c(x − χi + χj) + c(y + χi − χj).

A set B ⊆ Z
N is called an M�-convex set if its indicator function δB : ZN → R

defined by

δB(x) =

{
0 (x ∈ B),
+∞ (x ∈ Z

N \ B)

is an M�-convex function.
We remark that, if |N | = 1, i.e., c is a univariate function, M�-convexity

coincides with discrete convexity in [8], which is defined as

c(x) − c(x − 1) ≤ c(x + 1) − c(x) for every x ∈ Z. (1)

Also, the following property, which is an immediate consequence of the exchange
axiom, is also useful: if y = x + χi for some i ∈ N , then

c(x) − c(x − χj) ≤ c(y) − c(y − χj) for each j ∈ N. (2)

The class of M�-convex functions are closed under the following operations.

Lemma 2 (see [15]). Let c : ZN → R be an M�-convex function.

1. For a ∈ Z
N , c(x − a) is an M�-convex function.

2. For N ′ ⊆ N , the function cN ′ : ZN ′ → R defined by

cN ′(x′) = c(x′,0N\N ′) (x′ ∈ Z
N ′

)

is an M�-convex function, provided dom cN ′ �= ∅
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3. The direct sum of two M�-convex functions is an M�-convex function.

We next define M-convex functions, which form a special, but essentially
equivalent class of M�-convex functions. A function c : ZN → Z with dom c �= ∅
is called an M-convex function [14,15] if it satisfies the following exchange axiom:

For x,y ∈ dom c and i ∈ supp+(x − y), there exists j ∈ supp−(x − y)
such that

c(x) + c(y) ≥ c(x − χi + χj) + c(y + χi − χj).

A set B ⊆ Z
N is called an M-convex set if its indicator function δB : ZN → R

is an M-convex function. We remark that an M-convex set is a generalization
of the base family of a matroid, and consists of the integer points in a base
polyhedron of a polymatroid.

For M-convex functions, the following optimality criterion, which extends
Lemma 1, is established.

Lemma 3 ([14,15]). Let c : ZN → R be an M-convex function. A vector x ∈ Z
N

is a minimizer of c if and only if

c(x) ≤ c(x − χk + χl) for each k, l ∈ N.

3 Generalizations of Weighted Matroid Congestion
Games

In this section, we prove the existence of pure Nash equilibria in matroid con-
gestion games with monotone cost functions (Sect. 3.1), and in matroid resource
buying games with monotone submodular cost functions (Sect. 3.2).

3.1 Matroid Congestion Games with Monotone Cost Functions

Our model of a matroid congestion game is represented by a tuple
(N,E, (Bi)i∈N , (ce)e∈E). Here, N denotes the set of players, and E denotes the
set of resources. Let n denote the number of players and let N = {1, . . . , n}.
Each player i ∈ N has a family of resource subsets Bi ⊆ 2E , called configura-
tions. In matroid congestion games, Bi is the base family of some matroid on
E for each i ∈ N . Finally, each resource e ∈ E has a nonnegative cost function
ce : 2N → R+. We assume that ce is monotone and normalized for each resource
e ∈ E, i.e., ce(X) ≤ ce(Y ) if X ⊆ Y and ce(∅) = 0.

A state is a collection B = (B1, . . . , Bn) of configurations of all players. Let B
be a state. For a player i ∈ N , let B−i denote a collection of the configurations of
the other players under the state B, that is, B−i = (B1, . . . , Bi−1, Bi+1, . . . , Bn).
For a resource e ∈ E, let Ne(B) ⊆ N denote the set of players using e, that
is, Ne(B) = {i ∈ N | e ∈ Bi}. The cost for using a resource e ∈ E is
described as ce(Ne(B)). Thus, the cost paid by a player i ∈ N under a state
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B is
∑

e∈Bi
ce(Ne(B)). Now a state B is called a pure Nash equilibrium if no

player has an incentive to change the configuration to have less cost, i.e.,
∑

e∈Bi

ce(Ne(B)) ≤
∑

e∈B′
i

ce(Ne((B′
i, B−i))) for each B′

i ∈ Bi.

It is straightforward to see that the above model of matroid congestion games
generalizes weighted matroid congestion games [2], which is defined as follows.
In weighted matroid congestion games, each player i ∈ N has a positive weight
wi ∈ Z+, and each resource e ∈ E is associated with a univariate cost function
ce : Z+ → R+. The cost for using e in a state B is defined by ce(w(Ne(B))).

Ackermann, Röglin, and Vöcking [2] proved that every weighted matroid
congestion game has a pure Nash equilibrium. They also showed that a pure
Nash equilibrium is attained by a finite number of locally best responses. Under
a state B, a locally best response of a player i is to choose a configuration B∗

i =
(Bi \ {e∗}) ∪ {f∗} for some e∗ ∈ Bi and f∗ ∈ E \ Bi satisfying

∑

e∈B∗
i

ce(Ne(B∗
i , B−i)) ≤

∑

e∈B′
i

ce(Ne(B′
i, B−i))

for each B′
i ∈ Bi with B′

i = (Bi \ {e′}) ∪ {f ′} for some e′ ∈ Bi and f ′ ∈ E \ Bi.
Note that B∗

i may not be a global minimizer, i.e., a configuration B◦
i minimizing∑

e∈Bi
ce(Ne(Bi, B−i)) among all strategies Bi ∈ Bi.

The following theorem extends these results to matroid congestion games
with monotone cost functions. The proof below is a straightforward extension of
that for weighted matroid congestion games [2].

Theorem 1. Every matroid congestion game with monotone cost functions has
a pure Nash equilibrium. Moreover, a pure Nash equilibrium is attained after a
finite number of locally best responses.

Proof. Let B be a state. For each resource e ∈ E, associate a pair γe(B) =
(ce(Ne(B)), |Ne(B)|). For two resources e, f ∈ E, we define that γe(B) ≤ γf (B)
if either ce(Ne(B)) < cf (Nf (B)) or ce(Ne(B)) = cf (Nf (B)) and |Nf (B)| ≤
|Nf (B)| holds. Now let Γ (B) be a sequence of γe(B) for every e ∈ E in
nondecreasing order. For two states B,B′, we denote the lexicographic order
of Γ (B) and Γ (B′) by <lex. That is, for Γ (B) = (γe1(B), . . . , γem

(B)) and
Γ (B′) = (γf1(B

′), . . . , γfm
(B′)), we denote Γ (B) <lex Γ (B′) if there exists an

integer l with 1 ≤ l ≤ m such that γek
(B) = γfk

(B′) for every k < l and
γel

(B) < γfl
(B′).

If a state B is not a pure Nash equilibrium, there exists a player i ∈ N who
can decrease the cost when the other players’ configurations B−i is fixed. If i
chooses a configuration B′

i ∈ Bi, the cost paid by i is
∑

e∈B′
i

ce(Ne(B−i) ∪ {i}).
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By defining a weight function w : E → R by

w(e) = ce(Ne(B−i) ∪ {i}) (e ∈ E),

the cost paid by i is described as w(B′
i). We remark that the weight function

w is independent of the configuration of i, and thus minimizing the cost paid
by i amounts to choosing a minimum-weight base in Bi with respect to w. This
means that the current configuration Bi is not a minimum-weight base, and it
follows from Lemma 1 that there exists resources e ∈ Bi and f ∈ N \ Bi such
that B∗

i = (Bi \ {e∗}) ∪ {f∗} ∈ Bi satisfies w(B∗
i ) < w(Bi), i.e.,

cf∗(Nf∗(B−i) ∪ {i}) < ce∗(Ne∗(B−i) ∪ {i}). (3)

Note that such B∗
i can be obtained by a locally best response.

Now consider a state B∗ = (B∗
i , B−i). In what follows, we will show that

Γ (B∗) <lex Γ (B). Since the number of the states is finite, this strict inequality
implies that after a finite number of iteration of locally best responses we reach
a state in which no player can improve her cost, a pure Nash equilibrium.

First, it is immediate from (3) that

cf∗(Nf∗(B∗)) = cf∗(Nf∗(B−i) ∪ {i}) < ce∗(Ne∗(B−i) ∪ {i}) = ce∗(Ne∗(B)).

Next, by the monotonicity of ce, we have that

ce∗(Ne∗(B∗)) = ce∗(Ne∗(B) \ {i}) ≤ ce∗(Ne∗(B)).

Finally, it is obvious that

|Ne∗(B∗)| = |Ne∗(B)| − 1 < |Ne∗(B)|.

The above three inequalities imply that γf∗(B∗) < γe∗(B) and γe∗(B∗) <
γe∗(B). Since γe(B∗) = γe(B) for each e ∈ E \ {e∗, f∗}, we conclude that
Γ (B∗) <lex Γ (B), which completes the proof. ��

3.2 Matroid Resource Buying Games with Submodular Cost
Functions

A matroid resource buying game is represented by a tuple (N,E, (Bi)i∈N ,
(ce)e∈E), which is the same as that in Sect. 3.1. Recall that each ce is mono-
tone and normalized. A distinguishing feature of resource buying games is that
the players using a resource e ∈ E should buy the resource e by cooperatively
paying the cost for e, which is formally described in the following way.

Let pi,e ∈ R+ be the payment of a player i for a resource e. The vec-
tor (pi,e)i∈N,e∈E ∈ R

N×E
+ is called the payment vector. For a payment vector

p and a player i, let p−i denote a restriction of p to R
(N\{i})×E
+ , i.e., p−i =

(pj,e)j∈N\{i},e∈E . A strategy profile is a tuple (B, p) of a state B = (B1, . . . , Bn)
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and a payment vector p ∈ R
N×E
+ . Under a strategy profile (B, p), a resource

e ∈ E is bought if
∑

i∈N

pi,e ≥ ce(Ne(B)),

and the private cost πi of a player i ∈ N is defined by

πi(B, p) =

⎧
⎨

⎩

∑

e∈E

pi,e if every resource in Bi is bought,

+∞ otherwise.

Now a strategy profile (B, p) is a pure Nash equilibrium if, for each player i ∈ N ,
it holds that

πi(B, p) ≤ πi(B′, p′)

for an arbitrary strategy profile (B′, p′) satisfying B′
−i = B−i and p′

−i = p−i.
That is, a pure Nash equilibrium is a strategy profile under which every player
i ∈ N cannot strictly decrease her private cost πi if the configurations and
payments of the other players do not change.

The above model generalizes resource buying games with univariate cost
functions introduced by Harks and Peis [9,10]. In their model, each player i ∈ N
is associated with a weight wi ∈ Z+, and the cost for a resource e under a state
B is determined as ce(w(Ne(B))) by a univariate function ce : Z+ → R+ for each
e ∈ E. Harks and Peis [9,10] proved that matroid resource buying games have
pure Nash equilibria if each cost function ce is marginally nonincreasing.

Now we prove that every matroid resource buying game with monotone sub-
modular cost functions has a pure Nash equilibrium. Indeed, the arguments
by Harks and Peis [9,10] can be extended to our model straightforwardly, by
replacing the marginally nonincreasing property of the cost functions by sub-
modularity. Below we exhibit the extended argument, with some refinement of
propositions in [9,10].

First, it is straightforward to see that the following condition is necessary for
a strategy profile (B, p) to be a pure Nash equilibrium:

pi,e = 0 for each i ∈ N and e ∈ E \ Bi,
equivalently, for each e ∈ E and i ∈ N \ Ne(B),(4)

∑

i∈N

pi,e = ce(Ne(B)) for each resource e ∈ E. (5)

Here we make this condition sufficient as well, by adding one more constraint.

Lemma 4. In a matroid resource buying game with monotone cost functions, a
strategy profile (B, p) is a pure Nash equilibrium if and only if it satisfies (4),
(5), and

pi,e ≤ cf (Nf (B) ∪ {i}) − cf (Nf (B))
(i ∈ N, e ∈ Bi, f ∈ N \ Bi, (Bi \ {e}) ∪ {f} ∈ Bi). (6)
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Proof. We first show necessity. As mentioned above, (4) and (5) are obviously
necessary for a pure Nash equilibrium (B, p). Suppose to the contrary that (6)
does not hold for i ∈ N , e ∈ Bi, and f ∈ N \ Bi satisfying (Bi \ {e}) ∪ {f} ∈ Bi,
that is,

pi,e > cf (Nf (B) ∪ {i}) − cf (Nf (B)). (7)

Then, the player i can change the configuration and payments in the following
manner:

B′
i := (Bi \ {e}) ∪ {f}, p′

i,e := 0, p′
i,f := cf (Nf (B) ∪ {i}) − cf (Nf (B)).

After the change, the resource f remains bought, as well as the other resources in
B′

i. Thus, the private cost πi changes by −pi,e +(cf (Nf (B)∪{i})− cf (Nf (B))),
which is negative by (7). This contradicts to the fact that (B, p) is a pure Nash
equilibrium.

We next prove sufficiency. Take a player i ∈ N , and fix B−i and p−i. We
show that (Bi, pi) yields the minimum private cost πi for i if (4), (5), and (6)
hold.

If i chooses a configuration B′
i ∈ Bi, then her payments p′

i,e achieving the
minimum private cost πi(B′

i) is

p′
i,e =

⎧
⎪⎪⎨

⎪⎪⎩

max

⎧
⎨

⎩
ce(Ne(B−i) ∪ {i}) −

∑

j∈N\{i}
pj,e, 0

⎫
⎬

⎭
(e ∈ B′

i),

0 (e ∈ E \ B′
i).

Here, if e ∈ Bi, then

ce(Ne(B−i) ∪ {i}) −
∑

j∈N\{i}
pj,e = ce(Ne(B)) −

∑

j∈N\{i}
pj,e = pi,e ≥ 0,

where the last equality follows from (5). If e �∈ Bi, then

ce(Ne(B−i) ∪ {i}) −
∑

j∈N\{i}
pj,e = ce(Ne(B) ∪ {i}) −

∑

j∈N\{i}
pj,e ≥ 0,

where the inequality follows from the monotonicity of ce and (5). We thus obtain

p′
i,e =

⎧
⎪⎨

⎪⎩

ce(Ne(B−i) ∪ {i}) −
∑

j∈N\{i}
pj,e (e ∈ B′

i),

0 (e ∈ E \ B′
i),

πi(B′
i) =

∑

e∈B′
i

⎛

⎝ce(Ne(B−i) ∪ {i}) −
∑

j∈N\{i}
pj,e

⎞

⎠ .

Note that (Bi, pi) satisfies the above condition by (4) and (5). Thus, it suffices to
prove that Bi attains the minimum private cost πi(B′

i) among the configurations
B′

i ∈ Bi.



604 K. Takazawa

Now define a weight function w : E → R by

w(e) = ce(Ne(B−i) ∪ {i}) −
∑

j∈N\{i}
pj,e (e ∈ E).

Note that w is independent of the configuration of i. Thus, a configuration
Bi ∈ Bi attaining the minimum private cost πi is a minimum-weight base with
respect to w. It then follows from Lemma 1 that

w(Bi) ≤ w((Bi \ {e}) ∪ {f}) (8)

for every e ∈ Bi and f ∈ E \ Bi such that (Bi \ {e}) ∪ {f} ∈ Bi. It is derived
from (5) that (8) is equivalent to

w(e) ≤ w(f)

⇐⇒ ce(Ne(B−i) ∪ {i}) −
∑

j∈N\{i}
pj,e ≤ cf (Nf (B−i) ∪ {i}) −

∑

j∈N\{i}
pj,f

⇐⇒ ce(Ne(B)) −
∑

j∈N\{i}
pj,e ≤ cf (Nf (B) ∪ {i}) −

∑

j∈N\{i}
pj,f

⇐⇒ pi,e ≤ cf (Nf (B) ∪ {i}) − cf (Nf (B)).

Since (6) holds, we have proved that Bi is a minimum-weight base in Bi with
respect to w, and thus (Bi, pi) yields the minimum private cost πi. ��

Let B = (B1, . . . , Bn) be a state. For i ∈ N , define Fi ⊆ E by

Fi = {e ∈ E | e ∈ B′
i for each B′

i ∈ Bi}.

It is obvious that Fi ⊆ Bi for each i ∈ N . It is also straightforward to see that,
for each e ∈ Bi \ Fi, there exists f ∈ E \ Bi such that (Bi \ {e}) ∪ {f} ∈ Bi. For
a player i ∈ N and a resource e ∈ Bi, define Δi,e(B) ∈ R by

Δi,e(B) ={
min{cf (Nf (B) ∪ {i}) − cf (Nf (B)) | f ∈ N \ Bi, (Bi \ {e}) ∪ {f} ∈ Bi} (e ∈ Bi \ Fi),

+∞ (e ∈ Fi).

Theorem 2. In a matroid resource buying game with monotone cost functions,
a state B = (B1, . . . , Bn) has a payment vector p ∈ R

N×E such that (B, p) is a
pure Nash equilibrium if and only if

ce(Ne(B)) ≤
∑

i∈Ne(B)

Δi,e(B) for each resource e ∈ E. (9)

Proof. We first show necessity. If (B, p) is a pure Nash equilibrium, then it
follows from Lemma 4 that

ce(Ne(B)) =
∑

i∈Ne(B)

pi,e ≤
∑

i∈Ne(B)

Δi,e(B),
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where the equality follows from (4) and (5), and the inequality follows from (6)
and the definition of Δi,e(B).

We next prove sufficiency. Define p ∈ R
N×E in the following manner. If

e ∈ Fi∗ for some player i∗ ∈ N , define

pi,e =

{
ce(Ne(B)) (i = i∗),
0 (i ∈ N \ {i∗}).

Otherwise, define

pi,e =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Δi,e(B)
∑

j∈Ne(B)

Δj,e(B)
ce(Ne(B)) (i ∈ Ne(B)),

0 (i ∈ N \ Ne(B)).

Then, it is not difficult to see that (4) and (5) hold. Moreover, it follows from
(9) that pi,e ≤ Δi,e(B), and thus (6) holds. Therefore, by Lemma 4, we conclude
that (B, p) is a pure Nash equilibrium. ��
Theorem 3. In a matroid resource buying game with monotone submodular cost
functions, a state B = (B1, . . . , Bn) minimizing

∑
e∈E ce(Ne(B)) has a payment

vector p ∈ R
N×E such that (B, p) is a pure Nash equilibrium.

Proof. Let B be a state minimizing
∑

e∈E ce(Ne(B)). By Theorem 2, it suffices to
show (9). Suppose to the contrary that there exists a resource e∗ ∈ E satisfying

ce∗(Ne∗(B)) >
∑

i∈Ne∗ (B)

Δi,e∗(B). (10)

Without loss of generality, let Ne∗(B) = {1, . . . , k}. For each i ∈ {1, . . . , k}, it is
derived from (10) that e �∈ Fi, and denote the resource attaining Δi,e∗(B) by f∗

i

and let B̂i = (Bi \ {e∗}) ∪ {f∗
i }, that is,

Δi,e∗(B) = cf∗
i
(Nf∗

i
(B) ∪ {i}) − cf∗

i
(Nf∗

i
(B)) and

B̂i = (Bi \ {e∗}) ∪ {f∗
i } ∈ Bi.

Then, define states B(0), B(1), . . . B(k) by

B(0) = B,

B(i) =
(
B̂i, B

(i−1)
−i

)
= (B̂1, . . . , B̂i, Bi+1, . . . , Bk) (i = 1, . . . , k).

Now for every i = 1, . . . , k, it is straightforward to see that Nf∗
i
(B(i)) ⊇ Nf∗

i
(B),

and hence

cf∗
i
(Nf∗

i
(B(i))) − cf∗

i
(Nf∗

i
(B(i−1))) = cf∗

i
(Nf∗

i
(B(i−1) ∪ {i})) − cf∗

i
(Nf∗

i
(B(i−1)))

≤ cf∗
i
(Nf∗

i
(B ∪ {i})) − cf∗

i
(Nf∗

i
(B))

= Δi,e∗(B),
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where the inequality follows from the submodularity of cf∗
i
. Thus,

∑
e∈E

ce(Ne(B
(k))) −

∑
e∈E

ce(Ne(B))

=
k∑

i=1

⎛
⎝∑

e∈E

ce(Ne(B
(i))) −

∑
e∈E

ce(Ne(B
(i−1)))

⎞
⎠

=

k∑
i=1

((
cf∗

i
(Nf∗

i
(B(i))) + ce∗ (Ne∗ (B(i)))

)
−

(
cf∗

i
(Nf∗

i
(B(i−1))) + ce∗ (Ne∗ (B(i−1)))

))

≤ ce∗ (Ne∗ (B(k))) − ce∗ (Ne∗ (B(0))) +

k∑
i=1

Δi,e∗ (B)

= − ce∗ (Ne∗ (B)) +

k∑
i=1

Δi,e∗ (B)

< 0.

This contradicts that the state B minimizes
∑

e∈E ce(Ne(B)). Therefore, we
have shown that (9) holds, and thus by Theorem2 we conclude that B has a
payment vector p such that (B, p) is a pure Nash equilibrium. ��

4 Sensitivity Analysis for M�-convex Minimization

In this section, we present sensitivity analysis for an optimization problem arising
from the following generalization of weighted matroid congestion games [2] and
polymatroid congestion games [8].

Again, let N denote the set of players, and E denote the set of resources.
In this generalization, there are two main differences from the models in the
previous section. The first difference is that a configuration of a player i ∈ N is
described by a nonnegative integer vector xi ∈ Z

E
+, and accordingly a state is

represented by a vector x ∈ Z
N×E
+ . This means that the usage of a resource e by

each player i is not identical, and its multiplicity is represented by a nonnegative
integer xi,e. Thus, the models in the previous section amounts to special cases
of this model where the configurations belong to {0, 1}E .

The second difference is that the cost functions are player-specific: the costs
are represented by functions ci,e : ZN

+ → R+ for each i ∈ N and e ∈ E. For a
state x ∈ Z

N×E
+ and a resource e ∈ E, let xe be the restriction of the vector

x ∈ Z
N×E
+ to Z

N×{e}
+ . Then, the cost paid by i ∈ N for using e is ci,e(xe), and

the total cost paid by i is
∑

e∈E ci,e(xe).
Now, as a generalization of matroid congestion games, each player i ∈ N

is associated with an M�-convex set Bi ⊆ Z
E
+ and a demand di ∈ Z+. These

impose that a configuration of a player i should belong to Bi, and the number
of resources used by i, including the multiplicities, is equal to di. Thus, the set
of configurations Bi(di) ⊆ Z

E
+ is described as

Bi(di) = {xi ∈ Z
E
+ | xi ∈ Bi,xi(E) = di}.
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We remark that Bi(di) is an M-convex set (or the set of the integer points in a
base polyhedron of a polymatroid), and thus a generalization of the base family
of a matroid.

For the ease of notation, we often abbreviate di as d, when the player i is
clear from the context. Given the configurations x−i ∈ Z

(N\{i})×E
+ of the other

players, a player i determines her configuration as an optimal solution for the
following minimization problem P(x−i, d) in variable xi ∈ Z

E
+:

Minimize
∑

e∈E

ci,e(xi,e,x−i,e)

subject to xi ∈ Bi(d).

From now on, we assume that the cost function ci,e is M�-convex for each
i ∈ N and e ∈ E, and present a sensitivity analysis for P(x−i, d). That is, we
analyze the deviation of an optimal solution x∗

i when the parameters x−i and d
change by a unit vector.

First, the deviation of x∗
i in the change of d is immediately derived from

the theory of M�-convex minimization. It follows from Assertion 3 in Lemma 2
that

∑
e∈E ci,e(xe) is an M�-convex function in variable x ∈ Z

N×E . Then, by
fixing the variable in Z

(N\{i})×E to be x−i, we obtain
∑

e∈E ci,e(xi,e,x−i,e) in
variable xi ∈ Z

E , which is M�-convex by Assertions 1 and 2 in Lemma 2. Thus,
the following theorem immediately follows from [17, Theorem 3.2].

Theorem 4. Define d, d ∈ Z+ by d = min{xi(E) | xi ∈ Bi} and d =
max{xi(E) | xi ∈ Bi}, respectively. Let x−i ∈ B1 × · · · Bi−1 × Bi+1 × · · · Bn,
d ∈ Z+ satisfy d ≤ d ≤ d, and x∗

i ∈ Z
E
+ be an optimal solution for P (x−i, d).

1. If d < d, there exists e ∈ E such that x∗
i + χe is an optimal solution for

P(x−i, d + 1).
2. If d > d, there exists e ∈ E such that x∗

i − χe is an optimal solution for
P(x−i, d − 1).

In the following, we discuss the deviation of x∗
i when x−i changes by χj,e for

some j ∈ N \{i} and e ∈ E. For this analysis, we assume that each cost function
ci,e is i-regular, defined as follows.

Definition 1 (i-regular function). For i ∈ N , a function c : ZN
+ → Z is an

i-regular function if

c(xi + 2,x−i) − c(xi + 1,x−i) ≥ c(xi + 1,x−i + χj) − c(xi,x−i + χj)

for every x ∈ Z
N
+ and every j ∈ N \ {i}.

The fact that the cost function ci,e is i-regular means that the forward dif-
ference ci,e(xi,e + 1,x−i,e) − ci,e(xi,e,x−i,e) becomes larger in the case when
the usage xi,e of i increases by one, than the case when the usage xj,e of
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another player j increases by one. We remark that i-regularity does not imply
M�-convexity, and vice versa.

We also remark that i-regular functions generalize regular functions[8], which
are defined for bivariate functions. Harks, Klimm, and Peis [8] presented a sen-
sitivity result for the case where the functions ci,e are bivariate, discrete convex,
and regular. Now our main result in this section is a sensitivity analysis extended
to the case where the functions ci,e are n-variate, M�-convex, and i-regular.

Theorem 5. Let i ∈ N , x−i ∈ Z
(N\{i})×E
+ , and d ∈ Z+. Suppose that P(x−i, d)

is feasible and let x∗
i ∈ Z

E
+ be its optimal solution. Then, for each j ∈ N \ {i}

and e ∈ E, the problem P(x−i + χj,e, d) is feasible and there exists f ∈ E such
that x∗

i − χe + χf is its optimal solution.

Proof. The feasibility of P(x−i + χj,e, d) is clear: both of the feasible regions of
P(x−i, d) and P(x−i + χj,e, d) are Bi(d), and hence P(x−i + χj,e, d) is feasible
when P(x−i, d) is feasible.

We then prove that P(x−i +χj,e, d) has an optimal solution x∗
i +χe −χf for

some f ∈ E. We will denote
∑

e∈E ci,e(xe) by ci(x). Let f ∈ E satisfy

ci(x∗
i − χe + χf ,x−i + χj,e) ≤ ci(x∗

i − χe + χe′
,x−i + χj,e) (∀e′ ∈ E), (11)

and let
x′

i = x∗
i − χe + χf .

Note that there always exists f ∈ E such that x′
i ∈ Bi(d), since x∗

i − χe + χe =
x∗

i ∈ Bi(d). Our goal is to prove that x′
i is an optimal solution for P(x−i+χj,e, d).

Since the restriction of an M�-convex function on Z
E to a hyperplane∑

e∈E xi(e) = d is an M-convex function, we can apply Lemma3 to show the
optimality of x′

i. Let k, l ∈ E and

x′′
i = x′

i − χk + χl.

We will prove that

ci(x′
i,x−i + χj,e) ≤ ci(x′′

i ,x−i + χj,e) for every k, l ∈ E. (12)

Hereafter we assume k �= l, since k = l directly implies (12).
We have two cases: e �= f (Case 1); and e = f , i.e., x′

i = x∗
i (Case 2). We

first discuss Case 1.
Case 1.1 (k = e and l = f). Suppose that k = e and l = f , i.e., x′′

i =
x′

i −χe +χf . Let x◦
i = x′

i −χe = x′′
i −χf . To prove (12), it suffices to show that

ci(x′
i,x−i + χj,e) − ci(x◦

i ,x−i + χj,e)

≤ ci(x′′
i ,x−i + χj,e) − ci(x◦

i ,x−i + χj,e). (13)

The LHS of (13) is equal to

ci(x′
i,x−i + χj,e) − ci(x′

i − χe,x−i + χj,e)

= ci,e(x′
i(e), (x−i + χj,e)e) − ci,e(x′

i(e) − 1, (x−i + χj,e)e)

= ci,e(x∗
i (e) − 1,x−i,e + χj) − ci,e(x∗

i (e) − 2,x−i,e + χj). (14)
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The RHS of (13) is equal to

ci(x′′
i ,x−i + χj,e) − ci(x′′

i − χf ,x−i + χj,e)

= ci,f (x′′
i,f , (x−i + χj,e)f ) − ci,l(x′′

i,f − 1, (x−i + χj,e)f )

= ci,f (x′
i,f + 1,x−i,f ) − ci,f (x′

i,f ,x−i,f ). (15)

Let x•
i = x∗

i − χe = x′
i − χf . Since x∗ is an optimal solution for P(x−i, d),

it follows that

ci(x∗
i ,x−i) − ci(x•

i ,x−i) ≤ ci(x′
i,x−i) − ci(x•

i ,x−i)
⇐⇒ ci,e(x∗

i,e,x−i,e) − ci,e(x∗
i,e − 1,x−i,e)

≤ ci,f (x′
i,f ,x−i,f ) − ci,f (x′

i,f − 1,x−i,f ). (16)

By Assertions 1 and 2 in Lemma 2, we have that ci,f (·,x−i,f ) is a univariate
M�-convex function in variable xi,f ∈ Z. Then the convexity (1) of ci,f (·,x−i,f )
implies that (15) is at least the RHS of (16). On the other hand, it follows from
the i-regularity of ci,e that the LHS of (16) is at least (14). We thus obtain (14)
≤ (15), which implies (13).

Case 1.2 (k = e and l ∈ E \ {e, f}). Suppose that k = e and l ∈ E \ {e, f}.
In this case x′′

i = x′
i − χe + χl.

Again let x◦
i = x′

i − χe = x′′
i − χl and x•

i = x∗
i − χe = x′

i − χf . Note that
x•

i = x′′
i + χe − χf − χl. To prove (12), it suffices to show that

ci(x′
i,x−i + χj,e) − ci(x◦

i ,x−i + χj,e)

≤ ci(x′′
i ,x−i + χj,e) − ci(x◦

i ,x−i + χj,e). (17)

For the LHS of (17), it holds that

ci(x′
i,x−i + χj,e) − ci(x◦

i ,x−i + χj,e)

= ci,e(x′
i,e,x−i,e + χj,e) − ci,e(x′

i,e − 1,x−i,e + χj,e)

≤ ci,e(x′
i,e + 1,x−i,e) − ci,e(x′

i,e,x−i,e)

= ci,e(x∗
i,e,x−i,e) − ci,e(x∗

i,e − 1,x−i,e), (18)

where the inequality follows from the i-regularity of ci,e. Since x∗ is an optimal
solution for P(x−i, d), it follows that

ci(x∗
i ,x−i) − ci(x•

i ,x−i) ≤ ci(x′
i,x−i) − ci(x•

i ,x−i)
⇐⇒ ci,e(x∗

i,e,x−i,e) − ci,e(x∗
i,e − 1,x−i,e)

≤ ci,f (x′
i,f ,x−i,f ) − ci,f (x′

i,f − 1,x−i,f ). (19)

The RHS of (17) is equal to

ci,l(x′′
i,l,x−i,l) − ci,l(x′′

i,l − 1,x−i,l) = ci,l(x•
i,l + 1,x−i,l) − ci,f (x•

i,l,x−i,l). (20)
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By the choice (11) of f , we have that

ci(x′
i,x−i + χj,e) ≤ ci(x∗

i − χe + χl,x−i + χj,e)

⇐⇒ ci(x′
i,x−i + χj,e) − ci(x•

i ,x−i + χj,e)

≤ ci(x•
i + χl,x−i + χj,e) − ci(x•

i ,x−i + χj,e)
⇐⇒ ci,f (x′

i,f ,x−i,f ) − ci,f (x′
i,f − 1,x−i,f )

≤ ci,l(x•
i,l + 1,x−i,l) − ci,l(x•

i,l,x−i,l) (21)

From (18)–(21), we obtain (17).
Case 1.3 (k = f and l ∈ E \ {f}). Suppose that k = e and l ∈ E \ {f}. In

this case, we have that x′′
i = x∗

i − χe + χl, and thus (12) follows from (11).
Case 1.4 (k ∈ E \ {e, f} and l = e). Suppose that k ∈ E \ {e, f} and

l = e. In this case x′′
i = x∗

i − χk + χf . Let x◦ = x∗
i − χk = x′′

i − χf and
x•

i = x∗
i − χe = x′

i − χf . To prove (12), it suffices to show that

ci,k(x′
i,k, (x−i + χj,e)k) − ci,k(x′

i,k − 1, (x−i + χj,e)k)

≤ ci,e(x′′
i,e, (x−i + χj,e)e) − ci,e(x′′

i,e − 1, (x−i + χj,e)e). (22)

Firstly, the LHS of (22) is equal to

ci,k(x′
i,k,x−i,k) − ci,k(x′

i,k − 1,x−i,k)

= ci,k(x∗
i,k,x−i,k) − ci,k(x◦

i,k,x−i,k). (23)

Secondly, since x∗ is an optimal solution for P(x−i, d), it follows that

ci(x∗
i ,x−i) − ci(x◦

i ,x−i) ≤ ci(x′′
i ,x−i) − ci(x◦

i ,x−i)
⇐⇒ ci,k(x∗

i,k,x−i,k) − ci,k(x◦
i,k,x−i,k) ≤ ci,f (x′′

i,f ,x−i,f ) − ci,f (x◦
i,f ,x−i,f )

⇐⇒ ci,k(x∗
i,k,x−i,k) − ci,k(x◦

i,k,x−i,k)

≤ ci,f (x′
i,f ,x−i,f ) − ci,f (x•

i,f ,x−i,f ). (24)

Finally, it follows from (11) that

ci(x′
i,x−i + χj,e) ≤ ci(x∗

i ,x−i + χj,e)

⇐⇒ ci(x′
i,x−i + χj,e) − ci(x•

i ,x−i + χj,e)

≤ ci(x∗
i ,x−i + χj,e) − ci(x•

i ,x−i + χj,e)
⇐⇒ ci,f (x′

i,f ,x−i,f ) − ci,f (x•
i,f ,x−i,f )

≤ ci,e(x∗
i,e,x−i,e + χj) − ci,e(x•

i,e,x−i + χj)

⇐⇒ ci,f (x′
i,f ,x−i,f ) − ci,f (x•

i,f ,x−i,f )

≤ ci,e(x′′
i,e,x−i,e + χj) − ci,e(x′′

i,e − 1,x−i + χj). (25)

Therefore, from (23)–(25), we obtain (22).
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Case 1.5 (k ∈ E \ {e, f} and l = f). In this case, it holds that x′′
i =

x∗
i − χe − χk + 2 · χf . To prove (12), it suffices to prove

ci,k(x′
i,k, (x−i + χj,e)k) + ci,f (x′

i,f , (x−i + χj,e)f )

≤ ci,k(x′′
i,k, (x−i + χj,e)k) + ci,f (x′′

i,f , (x−i + χj,e)f )

⇐⇒ ci,k(x′
i,k,x−i,k) − ci,k(x′

i,k − 1,x−i,k)

≤ ci,f (x′′
i,f ,x−i,f ) − ci,f (x′′

i,f − 1,x−i,f ). (26)

Let x◦
i = x∗

i − χk + χf = x′′
i − χf + χe and x•

i = x∗
i − χk = x◦

i − χf . Since
x∗ is an optimal solution for P(x−i, d), we have that

ci(x∗
i ,x−i) − ci(x•

i ,x−i) ≤ ci(x◦
i ,x−i) − ci(x•

i ,x−i)
⇐⇒ ci,k(x∗

i,k,x−i,k) − ci,k(x∗
i,k − 1,x−i,k)

≤ ci,f (x◦
i,f ,x−i,f ) − ci,f (x◦

i,f − 1,x−i,f ). (27)

By the M�-convexity (1) of ci,f (·,x−i,f ), it holds that

ci,f (x◦
i,f ,x−i,f ) − ci,f (x◦

i,f − 1,x−i,f )

= ci,f (x′′
i,f − 1,x−i,f ) − ci,f (x′′

i,f − 2,x−i,f )

≤ ci,f (x′′
i,f ,x−i,f ) − ci,f (x′′

i,f − 1,x−i,f ). (28)

Now (26) follows from (27) and (28).
Case 1.6 (k, l ∈ E \ {e, f}). In this case x′′

i = x∗
i − χe − χk + χf + χl.

Observe that

ci(x′
i,x−i + χj,e) − ci(x′

i,x−i) = ci,e(x′
i,e,x−i,e + χj,e) − ci,e(x′

i,e,x−i,e)

= ci,e(x′′
i,e,x−i,e + χj,e) − ci,e(x′′

i,e,x−i,e)

= ci(x′′
i ,x−i + χj,e) − ci(x′′

i ,x−i),

and thus (12) is equivalent to

ci(x′
i,x−i) ≤ ci(x′′

i ,x−i). (29)

Let x◦
i = x∗

i − χe + χl = x′
i − χf + χl. Now consider an M-convex func-

tion ci(·,x−i) with variable xi on the hyperplane xi(E) = d. By applying the
exchange axiom for M-convex functions in which x, y and i are replaced with
x∗

i , x′′
i and e, we have that at least one of the following inequalities holds:

ci(x∗
i ,x−i) + ci(x′′

i ,x−i) ≥ ci(x∗
i − χe + χf ,x−i) + ci(x′′

i + χe − χf ,x−i)

= ci(x′
i,x−i) + ci(x′′

i + χe − χf ,x−i) (30)

or

ci(x∗
i ,x−i) + ci(x′′

i ,x−i) ≥ ci(x∗
i − χe + χl,x−i) + ci(x′′

i + χe − χl,x−i)

= ci(x◦
i ,x−i) + ci(x′′

i + χe − χl,x−i). (31)
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If (30) holds, then (29) follows from the optimality of x∗
i for P(x−i, d):

ci(x∗
i ,x−i) ≤ ci(x′′

i + χe − χf ,x−i).
Suppose that (31) holds. We have

ci(x′
i,x−i) ≤ ci(x◦

i ,x−i), (32)

because

ci(x′
i,x−i + χj,e) − ci(x′

i,x−i) = ci,e(x′
i,e,x−i,e + χj,e) − ci,e(x′

i,e,x−i,e)

= ci,e(x◦
i,e,x−i,e + χj,e) − ci,e(x◦

i,e,x−i,e)

= ci(x◦
i ,x−i + χj,e) − ci(x◦

i ,x−i),

and ci(x′
i,x−i + χj,e) ≤ ci(x◦

i ,x−i + χj,e) by (11). Meanwhile, from (31) and
the optimality of x∗

i for P(x−i, d), i.e., ci(x∗
i ,x−i) ≤ ci(x′′

i + χe − χl,x−i), we
obtain

ci(x◦
i ,x−i) ≤ ci(x′′

i ,x−i). (33)

By (32) and (33), we conclude that (29) holds.
We next deal with Case 2: e = f , i.e., x′

i = x∗
i .

Case 2.1 (k = e and l ∈ E \ {e}). In this case, (12) directly follows
from (11).

Case 2.2 (k = E \ {e} and l = e). We have that

ci(x
′′
i , x−i + χj,e) − ci(x

′′
i , x−i) = ci,e(x

′′
i,e, x−i,e + χj,e) − ci,e(x

′′
i,e, x−i,e)

= ci,e(x
∗
i,e + 1, x−i,e + χj,e) − ci,e(x

∗
i,e + 1, x−i,e)

≥ ci,e(x
∗
i,e, x−i,e + χj,e) − ci,e(x

∗
i,e, x−i,e)

= ci(x
∗
i , x−i + χj,e) − ci(x

∗
i , x−i),

where the inequality follows from the M�-convexity (2) of ci,e. Then,
ci(x∗

i ,x−i) ≤ ci(x′′
i ,x−i) implies ci(x∗

i ,x−i + χj,e) ≤ ci(x′′
i ,x−i + χj,e), and

thus (12) holds.
Case 2.3 (k, l ∈ E \ {e}). We have that

ci(x′′
i ,x−i + χj,e) − ci(x′′

i ,x−i) = ci,e(x′′
i,e,x−i,e + χj,e) − ci,e(x′′

i,e,x−i,e)

= ci,e(x∗
i,e,x−i,e + χj,e) − ci,e(x∗

i,e,x−i,e)

= ci(x∗
i ,x−i + χj,e) − ci(x∗

i ,x−i),

Then, ci(x∗
i ,x−i) ≤ ci(x′′

i ,x−i) implies ci(x∗
i ,x−i + χj,e) ≤ ci(x′′

i ,x−i + χj,e),
and thus (12) holds. ��

We remark that the following form of Theorem5 is also true:

For each j ∈ N \{i} and e ∈ E, P(x−i −χj,e, d) is feasible and there exists
f ∈ E such that x∗

i + χe − χf is its optimal solution.
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This implies the following corollary.

Corollary 1. Let x∗
i be an optimal solution for P(x−i, d), and x′

−i satisfy
‖x′

−i − x−i‖1 = 1. Then, there exists an optimal solution x′
i for P(x−i, d) such

that ‖x′
i − x∗

i ‖1 ≤ 2.

By Theorem 4 and Corollary 1, we obtain the following sensitivity theorem.

Theorem 6. Let d, d′ ∈ Z+ and x−i,x
′
−i ∈ Z

N\{i}
+ satisfy that P(x−i, d) and

P(x′
−i, d

′) are feasible. Then, for an optimal solution x∗
i for P(x−i, d), there

exists an optimal solution x◦
−i for P(x′

−i, d
′) such that ‖x◦

i − x∗
i ‖1 ≤ 2‖x′

−i −
x−i‖1 + |d′ − d|.
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Abstract. Synthesis for a type of Petri nets is the problem of finding,
for a given transition system A, a Petri net N of this type having a state
graph that is isomorphic to A, if such a net exists. This paper studies
the computational complexity of synthesis for 43 boolean types of Petri
nets. It turns out that for 36 of these types synthesis can be done in
polynomial time while for the other seven it is NP-hard.

1 Introduction

Synthesis for a type of Petri nets τ , that is, the task of finding a Petri net N
of type τ that implements a given transition system A, was originally invented
for the type of elementary net systems by Ehrenfeucht and Rozenberg [8]. As
recently presented by Badouel, Bernardinello and Darondeau [4], synthesis has
also been studied for many other types of Petri nets.

Synthesis for types of Petri nets yields implementations which are correct by
design and can be used to extract concurrency and distributability data from
sequential specifications like transition systems or languages [5]. It is applied in
the field of process mining to reconstruct a model from its execution traces [1].
Also, it has applications for the synthesis of speed independent circuits [7].

This paper deals with the computational complexity aspect of synthesis.
Research in this area has been conducted for several different Petri net types.
In [2], it has been shown that the problem can be solved in polynomial time for
the type of bounded P/T-nets. This is also true for pure bounded P/T-nets [4].
We like to point out that, although both of these types are bounded, that is,
there exists a bound b ∈ N

+ on the number of tokens that places will ever
receive, these bounds are rather implicit than chosen a priori.

In contrast, for the type of pure 1-bounded P/T-nets the limit b = 1 is
chosen a priori. Interestingly, [3] shows here that synthesis is NP-hard. Results
from [17,19] reveal that this remains true even for remarkable input restrictions.
Hence, the kind of bound in the considered Petri net type has a noticeable impact
on the complexity of synthesis. Then again, Schmitt [14] extends pure 1-bounded
P/T-nets by the so-called swap-interaction which results in the type of flip-flop
nets. Here, synthesis becomes tractable, again. Thus, the interactions admitted
by the Petri net type influence the complexity, too.
c© Springer Nature Switzerland AG 2019
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The types of pure 1-bounded P/T-nets and flip-flop nets both belong to
the family of boolean types of Petri nets [4]. The Petri net types of this family
stand out by their a priori bound b = 1 on the number of tokens per place and
they are distinguished by the set of admitted interactions. Until now, research
has explicitly defined seven boolean net types. Beyond the two types mentioned
above, there are contextual nets [11], event/condition nets [16], inhibitor nets [13],
set nets [10] and trace nets [6]. Our elaborate case study [18] shows that synthesis
for the latter five and 71 further boolean types is NP-hard. The corresponding
presentation, however, is extensive and not in the scope of this paper.

In this paper, we study the computational complexity of synthesis for 43
further boolean types of Petri nets. This is a considerable step towards a full
characterization of the computational complexity of synthesis for all possible
256 boolean Petri net types. For 36 of the 43 types, synthesis can be done in
polynomial time: Firstly, we present a new polynomial time algorithm that works
for 16 of these 36 types. Secondly, we show that synthesis for another 16 types
is solvable by a generalization of Schmitt’s algorithm [14]. Finally, we argue for
the remaining four types that their synthesis is a rather trivial problem.

For seven of the 43 types, we demonstrate that synthesis is NP-hard by turn-
ing to the decision version of the synthesis problem, also known as feasibility.
Here, we ask for a given transition system A whether there exists a Petri net
of the particular type, with a state graph isomorphic to A. To prove the NP-
completeness of feasibility, we use the well known equivalent formulation of the
problem by the so-called event state separation property (ESSP) and state sep-
aration property (SSP). As a matter of fact, a transition system A is feasible
with respect to a Petri net type if and only if it has the type related ESSP and
SSP [4].

2 Preliminaries

This section provides short formal definitions and preliminary notions used in
the paper and applies them for a running example. A transition system (TS, for
short) A = (S,E, δ) consists of finite disjoint sets S of states and E of events
and a partial transition function δ : S × E → S. Usually, we think of A as an
edge-labeled directed graph with node set S where every triple δ(s, e) = s′ is
interpreted as an e-labeled edge s e s′ called transition. We say that an event
e occurs at state s if δ(s, e) = s′ for some state s′ and abbreviate this with s e .
This notation is extended to words in E∗ by allowing s ε s on the empty word
ε for all s ∈ S and by inductively leading back s w s′ to the satisfaction of

s w′
s′′ and s′′ e s′ for any word w = w′e with e ∈ E,w′ ∈ E∗ and states

s, s′, s′′ ∈ S. By s w , we state for s,∈ S,w ∈ E∗ the existence of a state s′ ∈ S

such that s w s′. An initialized TS A = (S,E, δ, s0) is a TS with an initial
state s0 ∈ S reaching all states, that is, there is a word w ∈ E∗ with s0

w s
for all states s ∈ S. If not explicitly stated otherwise, we assume all TSs in the
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sequel of this paper to be initialized. We consistently refer to the components of
a TS A by SA, EA, δA, and optionally s0,A.

The following notion of type of nets has been developed in [4]. It allows
us to uniformly capture all 43 boolean Petri net types in one general scheme.
This means, every boolean Petri net type can be seen as an instantiation of
this scheme. In this spirit, we describe a type of nets τ as a (non-initialized)
TS τ = (Sτ , Eτ , δτ ). A Petri net N = (P, T, f,M0) of type τ (τ -net, for short)
is given by finite and disjoint sets P of places and T of transitions, an initial
marking M0 : P −→ Sτ , and a flow function f : P ×T → Eτ . The meaning of a τ -
net is its dynamic behavior realized by cascades of firing transitions. In particular,
a transition t ∈ T can fire in a marking M : P −→ Sτ and thereby produces

the marking M ′ : P −→ Sτ if for all p ∈ P the transition M(p) f(p, t) M ′(p) is
present in τ . The firing of t and the corresponding marking transfer is shortly

denoted by M t M ′. This notation is again extended to words σ ∈ T ∗ and,
based on that, the set of all reachable markings of N is defined by RS(N) =
{M | ∃σ ∈ T ∗ : M0

σ M}. Thus, given a τ -net N = (P, T, f,M0), its behavior
is captured by the transition system AN = (RS(N), T, δ,M0), called the state
graph of N , where for every reachable marking M of N and transition t ∈ T

with M t M ′ the transition function δ of AN is defined by δ(M, t) = M ′.
In this paper, we deal with boolean Petri net types τ characterized by Sτ =

{0, 1}. For boolean type of nets τ , fixing any e ∈ Eτ , thus, reduces δτ to the
partial function e : {0, 1} → {0, 1} with e(s) = δτ (s, e). There exist only nine
functions of this signature including the entirely undefined function ⊥. The table
below lists the other eight possible functions nop, inp, out, set, res, swap, used,
and free:

s nop(s) inp(s) out(s) set(s) res(s) swap(s) used(s) free(s)
0 0 1 1 0 1 0
1 1 0 1 0 0 1

Consequently, as two different events of Eτ must represent different partial func-
tions, the event set of any boolean type of Petri nets has to be a subset of
these nine events. In fact, we would also like to rule out ⊥ ∈ Eτ . The reason is
that every τ -net N having a place p ∈ PN and a transition t ∈ TN such that
fN (p, t) = ⊥ would make transition t unable to ever fire and, thus, irrelevant for
the behavior of N . Therefore, t could be discarded from N making ⊥ useless in
the first place.

Altogether, this justifies to define every boolean Petri net type τ by arranging
Eτ as a subset of the interactions I = {nop, inp, out, set, res, swap, used, free}.
Figure 1 depicts a visualization for every element of I. Notice that there have to
be exactly 256 boolean types of nets, one for every subset of I. In the following,
we often refer to a type of nets τ simply via Eτ .

The subsequent notion of τ -regions allows us, on the one hand, to define the
type related ESSP, respectively SSP and, on the other hand, to discover in which
way we are able to obtain a τ -net N for a given TS A if it exists. Figure 2 shows
an example for all introduced notions.
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Fig. 1. The interactions I as transitions in a type of nets.

If τ is a type of nets then a τ -region (sup, sig) of a TS A is a pair of mappings
(sup, sig), where sup : SA −→ Sτ and sig : EA −→ Eτ , such that, for every

transition s e s′ of A, the transition sup(s) sig(e) sup(s′) is present in τ . As
this paper studies boolean types of nets τ where Sτ = {0, 1}, every τ -region
(sup, sig) and state s ∈ SA implies sup(s) ∈ {0, 1}. For the sake of simplicity, we
also write s ∈ sup (s �∈ sup) if sup(s) = 1 (sup(s) = 0) and S ⊆ sup for a subset
S ⊆ SA that satisfies sup(s) = 1 for all s ∈ S.

Any pair of distinct states s, s′ ∈ SA defines an SSP atom (s, s′). The atom
is said to be τ -solvable if there is a τ -region (sup, sig) of A such that sup(s) �=
sup(s′). Any event e ∈ EA and state s ∈ SA define an ESSP atom (e, s) if e does
not occur at s, that is ¬s e . This atom is said to be τ -solvable if there is a

τ -region (sup, sig) of A such that ¬sup(s) sig(e). Any τ -region solving an ESSP,
respectively an SSP, atom (x, y) is called a witness for the τ -solvability of (x, y).
If (x, y) is a τ -solvable ESSP, respectively SSP, atom then x and y are said to
be τ -separable. If all ESSP, respectively all SSP, atoms of A are τ -solvable then
A is said to have the τ -ESSP, respectively the τ -SSP. We define a TS A to be
τ -feasible if it has the τ -ESSP and the τ -SSP.

It is noteworthy, that, by definition, a TS A has at most |SA|2 SSP atoms
and at most |SA| · |EA| ESSP atoms. Hence, a valid non-deterministic guess
containing a τ -solving region for every atom is verifiable in polynomial time.
This puts τ -feasibility into NP for every of the 256 boolean types of nets.

The following fact is well known from [4]: A set R of τ -regions of A contains
a witness for all ESSP and SSP atoms if and only if the so-called synthesized τ -
net NR

A = (R, EA, f,M0) with flow function f((sup, sig), e) = sig(e) and initial
marking M0((sup, sig)) = sup(s0,A) for all (sup, sig) ∈ R, e ∈ EA has a state
graph that is isomorphic to A. Notice that the regions of A in R become places
and the events of Eτ become transitions of NR

A . Hence, for a τ -feasible TS A
where R is known we can easily synthesize a net N with state graph isomorphic
to A by constructing NR

A .

Types of nets τ and τ̃ have an isomorphism φ if s i s′ is a transition of τ

if and only if φ(s) φ(i) φ(s′) is one of τ̃ . This paper benefits from isomorphisms
using the following lemma:

Lemma 1 (Without proof). If τ and τ̃ are isomorphic types of nets then a
TS A has the (E)SSP for τ if and only if A has the (E)SSP for τ̃ .
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Fig. 2. Upper left: our running example TS A borrowed from [4]. Bottom: τ1-regions
R1 = {R1, R2, R3, R4} for type of nets Eτ1 = {nop, inp, res, free} where Ri = (supi, sigi)
for i ∈ {1, . . . , 4}. At the same time, the set of all possible non-trivial τ2-regions
R2 = {R1, R2, R3} for Eτ2 = {nop, inp}. While R1 τ1-solves all ESSP and SSP atoms
of A, R2 fails to τ2-solve atom (c, 0). Upper middle: the state graph A

N
R1
A

of the

synthesized τ1-net NR1
A = (R1, {a, b, c}, f1, R1) with flow function f1(Ri, e) = sigi(e)

for i ∈ {1, . . . , 4}, e ∈ {a, b, c}. Every state in A
N

R1
A

is a marking of NR1
A , thus, a

subset of the regions R1, R2, R3, R4 denoted as a 4-tuple. As expected, A
N

R1
A

is iso-

morphic to A. Upper right: the state graph A
N

R2
A

of the synthesized τ2-net NR2
A =

(R2, {a, b, c}, f2, R2) with flow function f2(Ri, e) = sigi(e) for i ∈ {1, 2, 3}, e ∈ {a, b, c}.
By A’s lack of τ2-ESSP there is no τ2-net with isomorphic state graph and, thus, A

N
R2
A

is not isomorphic to A, either.

3 Polynomial Time Net Synthesis

Theorem 1. There is a polynomial time algorithm, that, on input TS A, syn-
thesizes a τ -net N with state graph isomorphic to A or rejects A if N does not
exist, for every τ where

1. τ = {nop, res} ∪ ω with ω ⊆ {inp, used, free},
2. τ = {nop, set} ∪ ω with ω ⊆ {out, used, free},
3. τ = {nop, swap} ∪ ω with ω ⊆ {inp, out, used, free},
4. τ = {nop} ∪ ω with ω ⊆ {used, free}.

The remainder of this section is dedicated to prove every item of Theorem1.

3.1 Proof of Theorems 1.1 and 1.2

As a first step, we introduce an algorithm for τ as defined in Theorem 1.1 to
compute a corresponding τ -region set R solving all (E)SSP atoms of a given
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TS A, if such a set exists. The core subroutine of this method is Algorithm1.
According to Lemma 2, Algorithm 1 accepts a given set of states Q ⊆ SA and
returns a minimal superset sup ⊇ Q that, together with a matching signature,
forms a τ -region of A. Later, in Lemma 3, we show that the τ -regions R derived
from Algorithm 1 solve all (E)SSP atoms of A if and only if the TS is τ -feasible.
Using that R is small enough and that the state graph of NR

A is isomorphic to
A leads to an efficient synthesis method for τ -nets. The tractability of synthesis
for τ as defined in Theorem 1.2 follows from type isomorphisms.

Input: TS A and set of states Q ⊆ SA

Output: A support sup ⊇ Q for a region of A.

while ∃ s ∈ Q, s′ �∈ Q, e ∈ EA : (s′ e
s)∨ (s

e
s′ ∧ z

e
z′ for z, z′ ∈ Q) do

Q = Q ∪ {s′};
end
return sup = Q;

Algorithm 1. Given Q ⊆ SA, the algorithm minimally extends Q to the
support of a τ -region (sup, sig) of A for all types of nets τ = {nop, res} ∪ ω
extended with ω ⊆ {inp, used, free}.

Lemma 2. If τ = {nop, res} ∪ ω is a type of nets with ω ⊆ {inp, used, free} and
A is a TS and Q ⊆ SA then the result sup of Algorithm1 started on Q forms a
τ -region (sup, sig) of A with

sig(e) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

used, if used ∈ τ and {s, s′ | s e s′} ⊆ sup,

free, if free ∈ τ and {s, s′ | s e s′} ∩ sup = ∅,

inp, if inp ∈ τ and for all s e s′ : s ∈ sup, s′ �∈ sup,

res, if inp �∈ τ and for all s e s′ : s ∈ sup, s′ �∈ sup,

res, if for at least one but not all s e s′ : s ∈ sup, s′ �∈ sup,

nop, otherwise,

for all e ∈ EA. Moreover, for all τ -regions (sup′, sig′) of A with Q ⊆ sup′ it is
true that even sup ⊆ sup′. Algorithm1 terminates after O(|EA| · |SA|5) time.

Proof. That the algorithm terminates is trivial as every iteration extends Q. This
is possible for at most |SA| times. After termination, sup obviously contains
input Q. Moreover, there are no events e ∈ EA participating in a transition
s′ e s with sup(s) = 1, sup(s′) = 0. On the other hand, if there is a transition
s e s′ with s ∈ sup, s′ �∈ sup then no other transition z e z′ satisfies the
condition z, z′ ∈ sup. Hence, that case implies for all transition s e s′ that
δτ (sup(s), res) = sup(s′) is present in τ . If, additionally, s ∈ sup, s′ �∈ sup for
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every transition z e z′ and inp is available then δτ (sup(s), inp) = sup(s′) is
always defined in τ for all transition s e s′. Otherwise, if all transitions of
s e s′ satisfy that s, s′ ∈ sup or s, s′ �∈ sup then δτ (sup(s), nop) = sup(s′) is
present in τ . If e’s transitions s e s′ consistently satisfy s, s′ ∈ sup, respectively
s, s′ �∈ sup, then even δτ (sup(s), used) = sup(s′), respectively δτ (sup(s), free) =
sup(s′), is defined in τ , given that used, respectively free, belongs to Eτ . Hence,
(sup, sig) is a τ -region of A in every case.

Now let (sup′, sig′) be any τ -region of A with Q ⊆ sup′. We show inductively
that the set Qi that results from i while-iterations of Algorithm1 fulfills Qi ⊆
sup′. For a start, Q0 = Q ⊆ sup′. Assume that Qi ⊆ sup′ and Qi+1 �⊆ sup′ and
let {s′} = Qi+1\Qi which, thus, fulfills s′ �∈ sup′. As s′ is added to Qi+1, there are
s ∈ Qi ⊆ sup′ and e ∈ EA such that either s′ e s or s e s′ and z e z′ with
z, z′ ∈ Qi ⊆ sig′. But then sig′(e) �∈ {nop, res, inp, used, free}, a contradiction.
When the while loop terminates after n iterations, then sup becomes Qn and,
thus, fulfills sup = Qn ⊆ sup′.

As there are at most |SA| while-iterations and as checking the condition takes
O(|EA| · |SA|4) time, Algorithm 1 runs in O(|EA| · |SA|5) time. �

Lemma 2 proposes a way to reliably produce τ -regions for the net types of
interest. We argue that they are either sufficient to solve all (E)SSP atoms or
otherwise, that A is not τ -feasible.

Lemma 3. If τ = {nop, res} ∪ ω with ω ⊆ {inp, used, free} and A is a TS then
an ESSP atom (e, s) of A is τ -solvable if and only if

1. inp ∈ τ and the region (sup, sig) returned by Algorithm1 on input Q = {z |
z e } satisfies sig(e) = inp and sup(s) = 0, or

2. used ∈ τ and the region (sup, sig) returned by Algorithm1 on input Q =
{z, z′ | z e z′} satisfies sig(e) = used and sup(s) = 0, or

3. free ∈ τ and the region (sup, sig) returned by Algorithm1 on input Q = {s}
satisfies sig(e) = free.

Two states s, s′ ∈ SA are τ -separable if and only if the region (sup, sig) returned
by Algorithm1 for Q = {s} fulfills sup(s′) = 0 or sup(s) = 0 for Q = {s′}.
Proof. The if-direction for an ESSP atom (e, s) is trivial, as (e, s) is solved by
the pair (sup, sig) from Algorithm 1, a τ -region according to Lemma 2.

For the only-if-direction let (sup′, sig′) be a τ -region that solves (e, s). This
implies that δτ (sup′(s), sig′(e)) is not defined and, hence, sig′(e) �∈ {nop, res}.
Let X = {x | x e }, Y = {y | e y}, and Z = {z, z′ | z e z′}. If sig′(e) = inp
then sup′(s) = 0 and sup′ ∩Y = ∅. Otherwise, if sig′(e) = used then sup′(s) = 0
and Z ⊆ sup′. Eventually, if sig′(e) = free then sup′(s) = 1 and Z ∩ sup′ = ∅.

If sig′(e) = inp then we define Q = X. If sig′(e) = used then we take Q = Z
and if sig′(e) = free then we define Q = {s}. Let sup be the result of Algorithm 1
on input Q. The returned support satisfies Q ⊆ sup ⊆ sup′. Moreover, if Q = X
then sup(s) = 0, sup ∩ Y = ∅ and sig(e) = inp and if Q = Z then sup(s) = 0,
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Z ⊆ sup, sig(e) = used and if Q = {s} then sup(s) = 1, Z∩sup = ∅, sig(e) = free.
Consequently, (sup, sig) τ -solves (e, s).

The if-direction for the SSP atom (s, s) is trivial, again, as the τ -region of
Algorithm 1 separates s, s′. For the only-if-direction let s, s′ be separated by a τ -
region (sup′, sig′) where, without loss of generality, sup′(s) = 1 and sup′(s′) = 0.
The result (sup, sig) of Algorithm 1 on Q = {s} is a τ -region by Lemma 2 that
fulfills Q ⊆ sup ⊆ sup′. Hence, sup(s) = 1 and sup(s′) = 0, too. �

By the required versatility of the regions from Algorithm1, we can now assem-
ble a full synthesis algorithm for the examined types of τ -nets.

Corollary 1. If τ = {nop, res} ∪ ω is a type of nets with ω ⊆ {inp, used, free}
or τ = {nop, set} ∪ ω′ with ω′ ⊆ {out, used, free} then a given TS A can be
synthesized into a τ -net N with state graph AN isomorphic to A, respectively
rejected if N does not exist, in O(|EA| · |SA|6 · max{|EA|, |SA|}) time.

Proof. Let S = SA and E = EA and, for a start, let τ = {nop, res} ∪ ω with
ω ⊆ {inp, used, free}. The idea is to firstly produce a τ -region set R that solves all
(E)SSP atoms of A. If we cannot find R, then we reject A. There are O(|E| · |S|)
ESSP atoms (e, s). Depending on the availability of inp, used, free in τ , we have
to test the τ -solvability of (e, s) by up to three calls of Algorithm1 with inputs
Qinp = {z | z e }, Qused = {z, z′ | z e z′}, and Qfree = {s}. In every case,
the method’s running time of O(|E| · |S|5) heavily dominates the time for the
creation of the input. If for all ESSP atoms at least one of the available tests
succeeds, then we have picked up enough regions to τ -solve all ESSP atoms. This
takes O(|E|2 · |S|6) time. Otherwise, Lemma 3 allows us to reject A. Notice that,
in case of τ = {nop, res} there must not be any ESSP atoms. The reason is that
nop and res cannot be used to τ -solve ESSP atoms. In this case, we reject A if
there is an event e ∈ E and a state s ∈ S with ¬(s e ).

Next, there are O(|S|2) SSP atoms (s, s′). By Lemma 3, we have to call
Algorithm 1 with Qs = {s} and Qs′ = {s′} to decide the τ -separability of s, s′.
After O(|E| · |S|7) time, either R τ -solves all SSP atoms or we can reject A.

Hence, using O(|E| · |S|6 · max{|E|, |S|}) time in total, we decide the τ -
feasibility of A and, in the positive case, get R. Computing NR

A consumes
O(|R|·|E|) = O(|E|·|S|·max{|E|, |S|}) time, which is dominated by the previous
costs.

If τ = {nop, set}∪ω′ with ω′ ⊆ {out, used, free} our approach is to synthesize
a net N ′ for the isomorphic type τ ′ that replaces set with res, out with inp, used
with free, and free with used. In order to obtain a τ -net N , we simply revert the
interaction replacement in the flow function fN ′ . Obviously, AN is isomorphic
to AN ′ , which is isomorphic to A. �

For an example of our method, we use our the TS A in the upper left of
Fig. 2 and demonstrate how to synthesize a τ1-net with isomorphic state graph
for the type of nets Eτ1 = {nop, inp, res, free}. We first solve all ESSP atoms
and start with (a, 3). As inp ∈ Eτ , Lemma 3 tells us to start Algorithm 1 on
Qa

inp = {0, 1, 2}. But Qa
inp does not satisfy any condition of the while-loop and
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Algorithm 1 immediately terminates and returns sup = {0, 1, 2}. According to
Lemma 2, this results in the region R1 presented in the bottom of Fig. 2. As
all other ESSP atoms (a, ·) with event a are automatically τ1-solved by R1, we
do not bother Algorithm1 for them. Secondly, for (b, 1) we start the algorithm
on input Qb

inp = {0, 5, 6} and, again without further iterations, obtain R2 from
Fig. 2, which also τ1-solves all atoms (b, ·) involving b. For the third step, we solve
(c, 2) by running Algorithm1 on Qc

inp = {1, 3, 5}. Since 1 ∈ Qc
inp, 0 �∈ Qc

inp, b ∈ EA

and δA(0, b) = 1 satisfies the while-condition, Qc
inp is updated and becomes Q =

{0, 1, 3, 5}, which does not satisfy the the while-conditions, anymore. Thus, we
obtain R3 from Fig. 2 which τ1-solves (c, s) with s ∈ {2, 4, 6} and only leaves (c, 0).
We next try input Qc

free = {0}. This does not satisfy any while-condition and
immediately leads to R4 from Fig. 2. Altogether, R1, . . . , R4 are sufficient to τ1-
solve all (E)SSP atoms of A. Hence, as discussed in the proof of Corollary 1, the
synthesized net NR

A , defined by R = {R1, . . . , R4}, has a state graph isomorphic
to A, namely A

N
R1
A

depicted in the upper middle of Fig. 2.

3.2 Proof of Theorem1.3

The types covered in this subsection are relatives of flip-flop nets. Therefore, we
attack them by a generalization of Schmitt’s algorithm [14], which was originally
invented for the type τ = {nop, inp, out, swap} of flip-flop nets. The fundamental
idea is to reduce ESSP and SSP to systems of linear equations over the additive
group Z2 of integers modulo 2. To this end, let τ ′ be a type of nets as defined
in Theorem 1.3. Moreover, in order to rule out trivial cases, we assume A to be
a TS with |SA| ≥ 2. Also, we enumerate the events and let EA = {e1, . . . , en}.
The equations presented in the following have to be considered modulo 2.

Before we start, we have to introduce some further definitions that, eventually,
allow us to interpret regions as solutions of equation systems over Z2. We start by
reformulating τ ′ into a corresponding Z2-interpretation τ as follows: The type of
nets τ = ({0, 1}, Eτ , δτ ) is defined by Eτ = (Eτ ′ \{nop, swap})∪{0, 1} and, for all
s ∈ {0, 1}, we define δτ (s, e) = δτ ′(s, e) for all e ∈ Eτ ′ \{nop, swap} and δτ (s, 1) =
δτ ′(s, swap) and δτ (s, 0) = δτ ′(s, nop). Observe, that τ ′ and τ are isomorphic. In
fact, Fig. 3 demonstrates that the 0-labeled transitions, respectively 1-labeled
transitions, of τ mimic nop and swap of τ ′. Hence, by Lemma 1, we can analyze
τ instead of τ ′.

Fig. 3. Upper left: nop-labeled transitions of τ ′. Upper right: 0-labeled transitions
of τ mimicing nop. Lower left: swap-labeled transitions of τ ′. Lower right: 1-labeled
transitions of τ mimicing swap.
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Next, the notion of abstract regions allows us to translate the τ -solvability of
ESSP, respectively SSP, atoms into the solvability of linear equation systems: A
τ -region (sup, abs) of A is called an abstract τ -region if abs : EA −→ {0, 1}. We
call abs an abstract signature. One easily verifies that sup, abs : {0, 1} −→ {0, 1}
define an abstract τ -region if and only if sup(s′) = sup(s) + abs(e) for every
transition s e s′ of A. Using induction, we obtain that this is equivalent to the
condition that for every word p ∈ E∗

A with s0,A
p s the so-called path equation

holds: sup(s) = sup(s0,A) + abs(e′
1) + · · · + abs(e′

m) where p = e′
1 . . . e′

m. We say
that ψp = (#p

e1
, . . . ,#p

en
) ∈ Z

n
2 is the Parikh-vector of p, counting the number of

occurrences #p
ei

of every event ei ∈ EA in the word p modulo 2. Then we identify
the abstract signature abs with the element abs = (abs(e1), . . . , abs(en)) ∈ Z

n
2 .

For two elements v, w ∈ Z
n
2 , we define v · w = v1w1 + · · · + vnwn. Hence, con-

sidering p and abs as elements of Zn
2 allows us to reformulate the path equation

to sup(s) = sup(s0,A) + ψp · abs. In particular, if p, p′ are two different words

with s0,A
p s and s0,A

p′
s then ψp · abs = ψp′ · abs. This makes the support

sup fully determined by sup(s0,A) and abs. By the validity of the path equation,
every abstract signature abs implies two different abstract τ -regions of A, one
for sup(s0,A) = 1 and one for sup(s0,A) = 0.

We proceed by showing how the notion of abstract regions translates the
τ -solvability for every (E)SSP atom (x, y) of A into the solvability of a system of
linear equations Ma·abs = ca with Ma ∈ Z

m×n
2 , ca ∈ Z

m
2 by an abstract signature

abs ∈ Z
n
2 . In particular, the system Ma · abs = ca implements a basic and an

extended part. The basic part is built from equations describing the properties of
abstract signatures abs by their possible solutions. The extended part depends on
(x, y) and includes additional equations to make sure that solutions abs actually
τ -solve the atom.

The equations of the basic part are build on any spanning tree A′ of A. More
precisely, a spanning tree A′ is a sub-transition system A′ = (SA, EA, δA′ , s0,A)
of A with the same states and events but a restricted transition function δA′

such that, firstly, δA′(s, e) = s′ entails δA(s, e) = s and, secondly, for every
s ∈ SA′ there is exactly one word p ∈ E∗

A with s0,A
p s in A′. In other words,

the underlying undirected graph of A′ is a directed labeled tree in the common
graph-theoretical sense. A transition s e s′ of A that is not in A′ is called
a chord (of A′). The chords of A′ are exactly the edges that would introduce
cycles into the graph underlying A′. This gives raise to the following notion of
fundamental cycles. For ei ∈ EA we define 1i = (x1, . . . , xn) ∈ Z

n
2 , where every

xj = 1 if j = i and, else xj = 0. If t = s ei s′ is a chord of A′ then there are

unique words p, p′ with s0,A
p s and s0,A

p′
s′ in A′ such that t corresponds

to the unique element ψt = ψp +1i +ψp′ ∈ Z
n
2 , called the fundamental cycle of t.

As δA is a function, A has at most |E| · |SA|2 transitions. This makes com-
puting a spanning tree A′ doable in O(|E| · |SA|3) time [15]. Then A′ contains
|SA| − 1 transitions and, thus, has at most |E| · |SA|2 − |SA| + 1 ≤ |E| · |SA|2 − 1
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chords (taking |SA| ≥ 2 into consideration). The next lemma shows how to use
the chords to generate abstract signatures:

Lemma 4. If A′ is a spanning tree of a TS A with chords t1, . . . , tk then
abs ∈ Z

n
2 is an abstract signature of A if and only if ψti

· abs = 0 for all
i ∈ {1, . . . , k}. Two different spanning trees A′

1 and A′
2 of A provide equivalent

systems of equations.

Proof. We start with the first statement. If : Let abs ∈ Z
n
2 such that ψti

·abs = 0
for all i ∈ {1, . . . , k} and sup(s0,A) ∈ {0, 1}. For every s ∈ SA there is a unique
word p with s0,A

p s in A′. Defining sup(s) = sup(s0,A)+ψp ·abs we inductively
obtain that every transition s e s′ of A′ satisfies sup(s′) = sup(s) + abs(e). It
remains to prove that this definition can be made consistent with the remaining
transitions of A, that is, the chords of A′. Let t = s ei s′ be a chord of A′ and

let p, p′ be the unique words with s0,A
p s and s0,A

p′
s′ in A′. By sup(s) =

sup(s0,A)+ψp·abs and sup(s′) = sup(s0,A)+ψp′ ·abs we have that 0 = ψt·abs ⇐⇒
0 = (ψp′ + 1i + ψp) · abs ⇐⇒ 0 = ψp′ · abs + abs(e) + ψp · abs ⇐⇒ ψp′ · abs =
abs(e) + ψp · abs ⇐⇒ sup(s0,A) + ψp′ · abs = sup(s0,A) + ψp · abs + abs(e) ⇐⇒
sup(s′) = sup(s) + abs(e) where 0 = ψt · abs is true by assumption. Hence,
abs is an abstract signature of A and the proof also describes how to get a
corresponding abstract region (sup, abs) for A.

Only-if : If abs is an abstract region of A then we have sup(s′) = sup(s) +
abs(e) for every transition in A. Hence, if t = s e s′ is a chord of the spanning
tree A′ then working backwards through the equalities above proves ψt ·abs = 0.

The second statement is implied by the first: If A′
1 and A′

2 are two spanning
trees of A with fundamental cycles ψ

A′
1

t1 , . . . , ψ
A′

1
tk

and ψ
A′

2
t′
1

, . . . , ψ
A′

2
t′
k

, respectively,

then we have for abs ∈ Z
n
2 that ψ

A′
1

ti
· abs = 0, i ∈ {1, . . . , k} if and only if abs is

an abstract signature of A if and only if ψ
A′

2
t′
i

· abs = 0, i ∈ {1, . . . , k}. �

Justified by Lemma 4, we let A′ be any fixed spanning tree of A with chords
t1, . . . , tk. For s ∈ SA we abridge the Parikh-vector ψp of the unique word p ∈
E∗

A with s0,A
p s by ψs. The next lemma, borrowed from [9], is the crucial

ingredient of our polynomial time estimations:

Lemma 5 ([9]). If M ∈ Z
k×n
2 and c ∈ Z

k
2 then deciding if there is an element

x ∈ Z
n
2 such that Mx = c is doable in O(nk max{n, k}) time.

Given an (E)SSP atom of A, the following two lemmas clarify how to obtain
the extended part of Ma·abs = ca and, altogether, show how τ -feasibility, τ -ESSP
and τ -SSP become decidable in polynomial time.

Lemma 6. An SSP atom (s, s′) of A is τ -solvable if and only if there is an
abstract signature abs of A with ψs · abs �= ψs′ · abs. Deciding whether A has the
τ -SSP can be done in O(|EA|3 · |SA|6) time.
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Proof. If : Setting sup(s0,A) = 0 implies a τ -region (sup, abs) solving (s, s′).
Only-if : For a τ -region (sup, sig) separating s, s′ and every transition z e z′ of
A we define abs(e) = x ∈ Z2 if and only if sup(z) x sup(z′) ∈ τ . Consequently,
sup(s0,A) + ψs · abs = sup(s) �= sup(s′) = sup(s0,A) + ψs′ · abs implies ψs · abs �=
ψs′ · abs.

The basic part of Ma ·abs = ca provides at most |E| · |SA|2 −1 equations, for
(s, s′) and we add one more equation to extend Ma, namely (ψs − ψs′) · abs = 1.
Thus, we have to solve a linear systems with at most |EA| · |SA|2 equations with
|EA| unknown. By |EA||SA|2 ≥ |EA| and Lemma 5, this is doable in O(|EA|3 ·
|SA|4) time. As at most |SA|2 different SSP atoms exist, we can decide τ -SSP in
O(|EA|3 · |SA|6) time. �
Lemma 7. A ESSP atom (e, s) of A is τ -solvable if and only if there is an
abstract signature abs of A satisfying (ψs′ −ψs′′) ·abs = 0 and (ψs′ −ψs) ·abs = 1
for all pairs of states s′, s′′ where e occurs (that is, s′ e and s′′ e and one of
the following conditions is true:

1. Eτ ∩ {inp, out} �= ∅ and abs(e) = 1,
2. Eτ ∩ {used, free} �= ∅ and abs(e) = 0.

Deciding if A has the τ -ESSP is doable in O(|EA|4 · |SA|5) time.

Proof. Let s1
e s′

1, . . . , sm
e s′

m be the transitions of A labeled with event e.
If : If inp ∈ Eτ and abs(e) = 1 or if used ∈ Eτ and abs(e) = 0 then we define

sup(s0,A) = 0 if ψs1 · abs = 1 and, otherwise, if ψs1 · abs = 0 then sup(s0,A) = 1.
By (ψsi

− ψsj
) · abs = 0 and (ψs1 − ψs) · abs = 1, this makes sure that sup(si) =

sup(s0,A)+ψsi
·abs = 1 �= sup(s) = sup(s0,A)+ψs ·abs, for i, j ∈ {0, . . . , m}. The

latter inequality implies sup(s) = 0. By abs(e) = 1, respectively by abs(e) = 0,
we have that δτ (sup(si), inp) = sup(s′

i), respectively δτ (sup(si), used) = sup(s′
i),

is present in τ . Hence, we obtain a τ -region (sup, sig) τ -solving (e, s) by defining
sup(s0,A) as described above and setting for e′ ∈ EA: sig(e′) = inp, respectively
sig(e′) = used, if e′ = e and sig(e′) = abs(e′), otherwise.

If out ∈ Eτ and abs(e) = 1 or if free ∈ Eτ and abs(e) = 0 then we work
complementary to the previous case and define sup(s0,A) = 0 if ψs1 · abs = 0
and sup(s0,A) = 1 if ψs1 · abs = 1. Similarly to the discussion above, this yields
a solution τ -region (sup, sig) with sig(e′) = out, respectively sig(e′) = free, if
e′ = e and sig(e′) = abs(e′), otherwise, for all e′ ∈ EA.

Only-if : Defining for z e′
z′ ∈ A that abs(e′) = x ∈ {0, 1} if and only if

sup(z) x sup(z′) is present in τ yields an abstract signature of A. As e occurs
at s1, . . . , sm, we obtain sup(s0) + ψsi

· abs = sup(s0) + ψsj
· abs for all i, j ∈

{1, . . . , m}. This implies the equation (ψsi
−ψsj

) ·abs = 0. By sup(s1) �= sup(s),
we have (ψs1 − ψs) · abs = 1.

To estimate the given computational complexity we observe the following:
The basic part of the system defined by the chords of A′ has at most |EA| · |SA|2
equations. Moreover, e occurs at most at |SA| − 1 states, which brings at most
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|SA|2 additional equations that ensure that the source states of e all have the
same support. One further equation is to added for the condition (ψs1−ψs)·abs =
1. Hence, the system has at most 2 · |EA| · |SA|2 equations. For a single atom
(s, e), we have to solve at most 2 systems of equations, namely one for each fixed
value abs(e) ∈ {0, 1}. By Lemma 5, this takes O(|EA|3 · |SA|4) time. Since, we
have at most |SA| · |EA| ESSP atoms, deciding if A has the τ -ESSP can be done
in O(|EA|4 · |SA|5) time. �
Corollary 2. If τ ′ is a type of nets as defined in Theorem1.3 then a τ ′-net N
with a state graph isomorphic to a given TS A, if it exists, can be computed in
O(|EA · |3|SA|5 · max{|EA|, |SA|}) time.

Proof. If τ is the Z2-interpretation of τ ′ and if R is a set of τ -regions containing
a witness for all (E)SSP atoms of A then, by Lemma 1, R corresponds directly
to a set R′ of τ ′-regions proving the τ ′-feasibility of A. The τ ′-net NR′

A has a
state graph isomorphic to A and, from here, the corollary is a direct implication
of Lemmas 1, 6, and 7. �

3.3 Proof of Theorem1.4

It remains to prove the trivial synthesis for the types of nets from Theorem1.4.
A related polynomial time algorithm is established in the following lemma.

Lemma 8. If τ = {nop} ∪ ω is a type of nets with ω ⊆ {used, free} then τ -
feasibility of a given TS A can be decided in O(1) time. A τ -feasible TS A can
be synthesized into a τ -net N with state graph AN isomorphic to A in O(|EA|)
time.

Proof. Let s0
e s1 be any transition of A with s0 �= s1. To separate these states,

we require a τ -region (sup, sig) with sup(s0) �= sup(s1). However, sig(e) ∈ τ
implies that sup(s0) = sup(s1). Hence, s0 and s1 are not τ -separable. As all
states have to be reachable, this implies that input TSs with more than one
state cannot be τ -feasible and, thus, are discarded after a constant time check.

As A = ({s}, E, {s e s | e ∈ E}, s}) is the only single-state TS with a given
event set E, the net N = ({p}, EA, {(p, e, nop) | e ∈ EA}, {p}), which has a state
graph isomorphic to A, can be written to the output in O(|EA|) time. �

4 NP-Hard Net Synthesis

Second corner stone of this paper is the following Theorem revealing 7 boolean
types of nets with an NP-complete feasibility problem.

Theorem 2. Deciding for input TSs A if there is a τ -net N with state graph
isomorphic to A is NP-complete if

1. τ = {nop, inp, free} or τ = {nop, inp, used, free},
2. τ = {nop, out, used} or τ = {nop, out, used, free}, and
3. τ = {nop, set, res} ∪ ω with non-empty ω ⊆ {used, free}.
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The remainder of this section proves Theorem 2. In particular, we present
polynomial time reductions of the NP-complete cubic monotone one-in-three
3-SAT problem [12] to the τ -feasibility of net types τ from Theorem 2.1 and
Theorem 2.3. Our reductions make sure for every TS Aτ

ϕ, being constructed from
a given cubic monotone 3-CNF ϕ, that the τ -ESSP implies the τ -SSP for the
considered type of nets τ . Hence, with respect to the created TSs, τ -feasibility
and τ -ESSP are the same problem. This justifies the reduction from monotone
one-in-three 3-SAT to the respective τ -ESSP rather than to actual τ -feasibility.
The proof for Theorem 2.1 and Lemma 1 imply hardness for Theorem2.2 as the
respective types are isomorphic.

Input to our reductions is a monotone set ϕ = {C0, . . . , Cm−1} of negation
free 3-clauses Ci = {Xi,0,Xi,1,Xi,2} where every variable occurs in exactly three
clauses. Finding a one-in-three model for ϕ, that is, a subset M ⊆ V (ϕ) of
the variables in ϕ that covers every clause exactly once, |M ∩ Ci| = 1, i ∈
{0, . . . , m − 1}, is known to be NP-complete from [12]. For every considered
type of nets τ , the result is a TS Aτ

ϕ which is τ -feasible if and only if ϕ has a
one-in-three model. The idea is always to install a key event k and a key state
q in Aτ

ϕ such that the so called key atom (k, q) is τ -solvable by a key τ -region
(sup, sig) if and only if M exists. More precisely, we use the variables V (ϕ) as
events in Aτ

ϕ and their key signature sig tells us how to find M and vice versa.
The other ESSP atoms, and even more all SSP atoms, are secondary as they
become τ -solvable as soon as the key atom (k, q) is τ -solved.

This idea is put into practice by creating six directed labeled paths per clause
Ci = {Xi,0,Xi,1,Xi,2} that commonly start at state ti,0, terminate at ti,5 and
consist of three transitions permuting the events Xi,0,Xi,1,Xi,2. The TS Aτ

ϕ

fulfills the following conditions:

1. For every i ∈ {0, . . . , m−1} and every permutation (α, β, γ) of {0, 1, 2} there

is a path ti,0
Xi,α t Xi,β t′ Xi,γ ti,5 in Aτ

ϕ.
2. If (sup, sig) is a key τ -region of Aτ

ϕ, that is, one that solves (k, q), then
sup(t0,0) = · · · = sup(tm−1,0) �= sup(t0,5) = · · · = sup(tm−1,5).

3. If i ∈ {0, . . . , m − 1} and (sup, sig) is a key τ -region of Aτ
ϕ then exactly one

of sig(Xi,α), sig(Xi,β), sig(Xi,γ) is different from nop. Hence, the signature
tells us how to build M = {X ∈ V (ϕ) | sig(X) �= nop}, a one-in-three model
of ϕ.

4. If ϕ has a one-in-three model then (k, q) is τ -solvable.
5. If (k, q) is τ -solvable, then Aτ

ϕ has the τ -ESSP and the τ -SSP.

Clearly, having these conditions proves that there is a one-in-three model for ϕ
if and only if Aτ

ϕ has the τ -ESSP and the τ -SSP.
Next, we define how Aτ

ϕ is constructed from ϕ. See Fig. 4 for a visualization
of the following concepts. Firstly, we call Aϕ the basic TS with states S =
{s0, s1, q} ∪ {ti,0, . . . , ti,8 | 0 ≤ i ≤ m − 1} and events E = {k, h} ∪ {hi, ri | 0 ≤
i ≤ m − 1} ∪ V (ϕ). To omit a lengthy and complex definition of the transitions



The Complexity of Synthesis for 43 Boolean Petri Net Types 629

in Aϕ, we use Fig. 4, which depicts δ(s, e) with solid black edges for all states
s ∈ {s0, s1, q, ti,0, . . . , ti,8} and all events e ∈ {k, h, hi, ri,Xi,0,Xi,1,Xi,2}. If
τ = {nop, res, free} or τ = {nop, res, used, free} then we simply use the basic TS,
that is, Aτ

ϕ = Aϕ.
If τ is one of {set, res, used}, {set, res, free}, or {set, res, used, free}, the con-

struction of Aτ
ϕ is more complex. We first require the extended TS A+

ϕ with
extended states SA+

ϕ
= SAϕ

∪ {m0, . . . ,m4} ∪ {pi,0, . . . , pi,3 | 0 ≤ i < m}
and extended events EA+

ϕ
= EAϕ

∪ {a, c, u, v} ∪ {ai, bi, xi | 0 ≤ i < m}. The
transitions of A+

ϕ are also an extension in the way that δA+
ϕ
(s, e) = δAϕ

(s, e)
for basic states s ∈ SAϕ

and basic events e ∈ EAϕ
where δAϕ

(s, e) is defined.
Thus, the solid black arcs in Fig. 4 illustrate one part of the extended transi-
tions. Aside from this, the solid brown arcs present the remaining transition
function δA+

ϕ
(s, e) for all s ∈ {s0, ti,0, . . . , ti,8,m0, . . . ,m4, pi,0, . . . , pi,3} and all

e ∈ {k, h, hi, a, c, u, v, ai, bi, xi,0, xi,1, xi,2}.
While still being depictable, A+

ϕ is not yet a complete TS Aτ
ϕ for the type

of nets defined by Theorem 2.3. This requires the loop-enhancement A×
ϕ of A+

ϕ

on the same states SA×
ϕ

= SA+
ϕ

and events EA×
ϕ

= EA+
ϕ

but with loop-enhanced
transitions, that is, for all s, s′ ∈ SA+

ϕ
and e ∈ EA+

ϕ
where δA+

ϕ
(s, e) = s′ we have

δA×
ϕ
(s, e) = s′ and δA×

ϕ
(s′, e) = s′. Now, Aτ

ϕ = A×
ϕ . However, for understanding

it is mostly better to deal with A+
ϕ instead of the complicated A×

ϕ . Therefore,
Fig. 4 desists from showing all the loops.

At this point, we are ready to provide the main piece of our proof. The next
lemma shows the equivalence between the one-in-three satisfiability of ϕ and the
τ -solvability of (k, q):

Lemma 9. If τ ∈ {{nop, inp, free}, {nop, inp, used, free}, {nop, set, res} ∪ ω},
where ω ∈ {used, free}, then the key atom (k, q) is τ -solvable in Aτ

ϕ if and only
if ϕ is one-in-three satisfiable.

Proof. Only-if : Let (sup, sig) be a τ -region solving (k, q) in Aτ
ϕ. We show for

every clause Ci that there is exactly one variable event X ∈ {Xi,0,Xi,1,Xi,2}
with sig(X) ∈ {inp, used, free} while the other two have nop-signature. Conse-
quently, the set M = {X ∈ V (ϕ) | sig(X) �= nop} will be a one-in-three model
of ϕ.

For a start, τ = {nop, inp, free} or τ = {nop, inp, used, free}. As (k, q) is τ -
solved, assume first that sig(k) = free and sup(q) = 1. By sig(k) = free, it is
sup(s0) = sup(s1) = 0 which means that sig(h) �∈ τ . Hence, sig(k) ∈ {inp, used}
and sup(q) = 0. This implies sup(ti,0) = 1 and sig(hi) ∈ {nop, free} and, thus,
sup(ti,5) = 0. By this, we get sig(Xi,0), sig(Xi,1), sig(Xi,2) ∈ {nop, inp, free}. In

Aτ
ϕ, there is a path ti,0

Xi,α t1
Xi,β t2

Xi,γ ti,5 for every permutation (α, β, γ) of
{0, 1, 2}. As all variable events of the clause occur exactly once on each of these
six paths, there has to be exactly one X ∈ {Xi,0,Xi,1,Xi,2} with sig(X) = inp.
Moreover, for every j ∈ {0, 1, 2} there are both, a path that starts with Xi,j and
another that ends on Xi,j . Consequently, for Y ∈ {Xi,0,Xi,1,Xi,2} \ X there
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Fig. 4. The black arcs in isolation illustrate Aϕ. Aside from the static center on states
s0, s1, q, TS Aϕ contains a compartment of states ti,0, . . . , ti,8 for every clause Ci of ϕ.
Together with the brown arcs, we get A+

ϕ which adds one compartment on m0, . . . , m4

and one on pi,0, . . . , pi,3 for every clause Ci. Restricted to the presented parts of Aϕ,
respectively A+

ϕ , the blue areas, respectively red areas, mark the support of the τ -region
that solves (k, q) defined in Lemma 9. (Color figure online)

are transitions s Y s′ and z Y z′ with sup(s) = sup(s′) �= sup(z) = sup(z′)
implying sig(Y ) = nop.

Next, let τ = {nop, set, res} ∪ ω with non-empty ω ∈ {used, free}. Assume
sig(k) = used and sup(q) = 0, which implies sup(s0) = sup(m0) = sup(ti,0) = 1
and sig(h) = res and, thus, sup(m4) = 0. We immediately get sig(u) = res
implying sup(p0,3) = 0 and sig(hi) ∈ {nop, res, free} and, thus, sup(ti,5) = 0. For

every j ∈ {0, 1, 2}, we have sig(Xi,j) ∈ {nop, res, free} by Xi,j ti,5. Accordingly,
xi,j ti,0 leads to sig(xi,j) ∈ {nop, set, used}. As sup(ti,0) �= sup(ti,5), there must

be at least one event in Xi,0,Xi,1,Xi,2, respectively xi,0, xi,1, xi,2, with signature
not in {nop, free}, respectively {nop, used}. We show that there must be exactly
one j with sig(Xi,j) = res and sig(xi,j) = set, while the other four events
have nop-signature. For example, if sig(Xi,2) = res then sup(ti,3) = 0 and,
thus, sig(xi,0) = sig(xi,1) = nop and sig(xi,2) = set. This implies sup(ti,1) =
sup(ti,2) = 1, sup(ti,4) = 0 and, consequently, sig(Xi,0) = sig(Xi,1) = nop.
Notice that none of the events can get used or free. A similar explanation works
for j ∈ {0, 1}.

The case sig(e) = free and sup(q) = 1, follows by the same argumentation
by inverting the support and interchanging set with res and used with free.
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If : Let M ⊆ V (ϕ) be a one-in-three model of ϕ and, for a start, let τ =
{nop, inp, free} or τ = {nop, inp, used, free}. We define a τ -region (sup, sig) of

Aτ
ϕ that solves (k, q) by sup = {s0} ∪ {s | s X : X ∈ M} and sig(k) = inp,

sig(X) = inp for all X ∈ M and sig(e) = nop for all other events e in EAτ
ϕ
.

If τ contains, beside {nop, set, res}, the interaction used then we let M ′ =
{xi | Xi ∈ M} and create a τ -region (sup′, sig′) of Aτ

ϕ to solve (k, q) by sup′ =
sup ∪ {s1, t0,8, . . . , tm−1,8,m0, . . . ,m3} and sig′(k) = used, sig′(X) = res for all
X ∈ M , sig′(x) = set for all x ∈ M ′ and sig′(e) = nop for all other events e
in EAτ

ϕ
. If used is not in τ then free is and we get a τ -region by inverting the

support and interchanging set with res and used with free. �
Using Lemma 1, we have also covered the type of nets defined by Theorem 2.2.

Using the same lemma, we can finish our proof for Theorem2 by the following
lemma:

Lemma 10. If τ = {nop, inp, free} or τ = {nop, inp, used, free} or, otherwise, if
τ = {nop, set, res} ∪ ω with non-empty ω ∈ {used, free} and the key atom (k, q)
is τ -solvable in Aτ

ϕ then Aτ
ϕ has the τ -ESSP and the τ -SSP.

Proof. We present for each event e ∈ EAτ
ϕ
, respectively states s, s′ ∈ SAτ

ϕ
, a

corresponding set of τ -regions which τ -solves every valid atom (e, s), respectively
(s, s′), in Aτ

ϕ.
Assume that τ = {nop, inp, free} or τ = {nop, inp, used, free}. For brevity,

we use the following scheme to define sig(e) based on a given support sup: If
sup(s) = 1 and sup(s′) = 0 for all s e s′ then sig(e) = inp, if sup(s) =
sup(s′) = 0 for all s e s′ then sig(e) = free and, otherwise, sig(e) = nop.
Using this, we can define a region simply by defining sup.

The τ -solvability of (k, q) and (h, s1) already follows from Lemma 9. Fur-
thermore, if (sup, sig) τ -solves (k, q) then the τ -region sup ∪ {q} solves (ri, s1)

for i ∈ {0, . . . , m − 1}. For X ∈ V (ϕ) let supX = {s | s k } ∪ {s |
s X } ∪ {q} ∪ {tn,0, . . . , tn,7 | 0 ≤ n < m,X �∈ Cn}. The τ -region supX solves
(X, s) for all s ∈ SX = {tn,1, . . . , tn,8 | 0 ≤ n < m,X ∈ Cn}. Moreover,
sup′

X = SAτ
ϕ

\ SX τ -solves (X, s) for the states s ∈ sup′
X , where the signa-

ture of X is free. The τ -regions supX0 , . . . , supXm
also complete the τ -solvability

of (k, s) for every state s in question as for every t ∈ {ti,1, . . . , ti,8} there is

X ∈ {Xi,0,Xi,1,Xi,2} with ¬(t X ). The τ -regions {s0, s1} and {s0, s1, q} com-
plete the τ -solvability of (e, s) for every e ∈ {h, r0, . . . , rm−1} and every remain-
ing state in question.

The τ -solution of (k, q) separates s0 and s1 and the region {s0, s1} sepa-
rates s0, s1 from all the other states. The τ -region {s0, s1, s2} completes the τ -
separation of q. The τ -regions supXi,0 , supXi,1 , supXi,2 complete the τ -separation
of ti,0, . . . , ti,8.

Now assume τ = {nop, set, res} ∪ ω with non-empty ω ∈ {used, free}. For the
τ -ESSP of A×

ϕ , it is sufficient to prove the τ -solvability of (e, s) for e ∈ EA+
ϕ

and
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s ∈ SA+
ϕ

where ¬s e and ¬ e s. By definition, if e s in A+
ϕ then s e s in

A×
ϕ and (e, s) is not a valid ESSP atom. We proceed like in the previous case

and use the following scheme to define a signature sig(e) for given support sup:
If sup(s) = sup(s′) = 1 for all s e s′ then sig(e) = used, if sup(s) = 1 and
sup(s′) = 0 for all s e s′ then sig(e) = res, if sup(s) = 0 and sup(s′) = 1 then
sig(e) = set and, otherwise, sig(e) = nop.

The τ -solution of (k, s) where s ∈ {q,m4, t0,5, t1,5, . . . , tm−1,5, p0,0, . . . ,
pm−1,3} is done by the key region of Lemma 9. For X ∈ V (ϕ) let supX =

{s, s′ | s k s′} ∪ {s | s X } ∪ {q,m4} ∪ {tn,0, . . . , tn,7 | 0 ≤ n < m,X �∈ Cn}.
The τ -regions supX0 , . . . , supXm−1 solve every remaining ESSP atom (k, ·) in
Aτ

ϕ because for every state t ∈ {ti,1, . . . , ti,7, ti,8} there is an event X ∈
{Xi,0,Xi,1,Xi,2} such that ¬(t X ). Moreover, they prove (ri, s) to be τ -solvable
for all i ∈ {0, . . . , m − 1} and all states s ∈ SAτ

ϕ
except for s ∈ {m0, . . . ,m3}.

For X ∈ {Xi,0,Xi,1,Xi,2} (x ∈ {xi,0, xi,1, xi,2}) and t ∈ {ti,0, . . . , ti,7}
with ¬t X (¬t x ) we have X t ( x t). Hence, for X ∈ V (ϕ) the τ -regions

sup1X,x = {tn,0, . . . , tn,7 | 0 ≤ n < m,X ∈ Cn} ∪ {pn,0, . . . , pn,3 | X s hn } and
sup2X,x = SAτ

ϕ
\ {m0, . . . ,m4, p0,0, . . . , pm−1,3} τ -solve every valid atom (X, ·)

and every valid atom (x, ·) of its corresponding event x in Aτ
ϕ. Moreover, sup2X,x

τ -solves (ri, s) for i ∈ {0, . . . ,m − 1} and s ∈ {m0, . . . ,m4} τ -solving all atoms

(ri, ·), too. The τ -regions sup1h = SAτ
ϕ

\ ({m0,m1,m2} ∪ {s | k s}) and sup2h =
{s0, s1, q,m0, . . . ,m4, } solve every atom (h, ·). The τ -region sup1bn

= SAτ
ϕ

\
{m3,m4, p0,0, p0,3, . . . , pm−1,0, pm−1,3} and the τ -region sup1bn

= {pn,0, . . . , pn,3}
solve every (bn, ·). Furthermore, the τ -region {s0, pn,0} solves every (an, ·). The
τ -regions sup1u = {s0, q,m0,m4} ∪ {tn,0, . . . , tn,7, pi,2, pn,3 | 0 ≤ n < m} and
sup2u = {pn,0, . . . , pn,3 | 0 ≤ n < m} settle that every possible atom (u, ·) is

τ -solvable. The τ -regions sup1v = {m1,m2} ∪ {s | k s} ∪ {pi,0, . . . , pn,3 | 0 ≤
n < m} and sup2v = {m0, . . . ,m4} ∪ {pn,0, . . . , pn,1 | 0 ≤ n < m} prove all
atoms (v, ·) to be τ -solvable. Finally, the τ -region supc = {m0,m3}, respectively
supa = {s0,m0}, τ -solves every atom (c, ·), respectively every atom (a, ·).

It is easy to see that the state separating τ -regions defined above for the types
of Theorem 2.1 can be used here for the types of Theorem 2.3 to separate the same
states simply by replacing inp by res. Moreover, the states SAϕ

are clearly sepa-
rable from the states SA×

ϕ
\SAϕ

as SAϕ
is itself a τ -support. The remaining SSP-

atoms are τ -solved by {m0}, {m0,m1}, {m0,m3}, {m0,m3,m4}, {m0,m3,m4}
and by {pi,0}, {pi,0, pi,1}, {pi,0, pi,1, pi,2} for i ∈ {0, . . . ,m − 1}. If used is not
available, then free is and we can modify all τ -regions accordingly by inverting
the support and interchanging set with res and used with free. �

5 Conclusion

In this paper, we take the first step towards a full characterization of the com-
putational complexity of synthesis for all 256 boolean types of nets. Beyond
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the only two previously known cases of elementary net systems [3] and flip-flop
nets [14], we present the synthesis complexity for 42 new classes. It turns out
that for 36 of these types synthesis can be done in polynomial time while it is
NP-hard for the remaining 7 types.

It is noteworthy that, in particular the polynomial time results of Theorem1
may also be exploitable for the synthesis of other types of nets discussed in
literature and practice. For example, the type τ ′ of trace nets is defined by τ ′ =
{nop, res, inp, set, out, used, free} [4,6] and we already know from another analyses
that τ ′-synthesis is NP-hard [18]. Nevertheless, by Theorem 1.1, synthesis for the
type τ = {nop, res, inp, used, free} is doable in polynomial time and, moreover, we
have that Eτ ⊂ Eτ ′ . Consequently, every τ -region of a TS A is a τ ′-region, too.
Hence, to solve the τ ′-synthesis for A, one may previously use Algorithm1 as
part of a preprocessing method to solve as many of A’s atoms as possible by
τ -regions. This might significantly simplify the synthesis process or, as to be
seen for our running example in Fig. 2, even solve τ ′-synthesis completely.
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Abstract. This work concerns with proving space lower bounds for
graph problems in streaming model. It is known that the single source
shortest path problem in streaming model requires Ω(n) space, where
|V | = n. In the first part of the paper we try find whether the same
lower bound hold for a similar problem defined on trees. We prove lower
bounds for single and multi pass version of the problem.

We then apply the ideas used in above lower bound results to prove
space lower bounds (single and multipass) for other graph problems like
finding min s-t cut, detecting negative weight cycle and finding whether
two nodes lie in the same strongly connected component.

1 Introduction

Streaming model is a computation model in which data arrives in the form of
a stream. Unlike the RAM model, random access of input is not allowed in
this model. This study concerns with space lower bounds for streaming prob-
lems which take graphs as input. Graph streaming algorithms find their use in
applications where the size of input graph is too large to be stored in a single
machine or where the data naturally arrives in an order for example, network
packets arriving in a router. They can also be used when the input graph is
dynamic. Studying graph streaming algorithms also yields insights into com-
plexity of stream computation [3].

Communication complexity is a concept from information theory that is used
as a tool in many space lower bound results for problems in streaming model
[1,2,5]. Such lower bound proofs rely on capturing the underlying information
exchange/communication happening during the stream computation.

Communication problems like Index problem, set disjointness problem,
pointer chasing have been used to produce many known lower bounds for stream-
ing problems [1,2,5]. In this study we use known communication complexity
lower bound results to prove space lower bounds for graph streaming problems.
For some of our lower bound results, we use a technique that does not rely on
communication complexity.

In Sect. 2, we define all the communication problems and their known lower
bound results that are used in this work. Most of our multipass space lower
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bound proofs use the communication complexity lower bound results proved
in [2].

In Sect. 3, we prove single and multi pass space lower bounds for the problem
of finding depth of a node in a tree being streamed. The motivation to study this
problem is that it is a simpler version of the general shortest path problem in
graphs and study of this problem can yield insights into the latter problem. We
prove a Ω(n. log n) lower bound for the single pass version of the problem which
also applies to the shortest path problem. To the best of author’s knowledge,
such a bound is not known for the shortest path problem in streaming model.

In Sects. 4 and 5, we use the ideas used in the above proofs to obtain single
and multi pass lower bounds for the problem of finding min s-t cuts in a graph
and detecting negative weight cycles.

2 Preliminaries

2.1 Streaming Model and Communication Complexity

In the streaming model the data is presented in the form of a stream i.e. data
arrives in an order and random access on the input is not permitted. The space
available for the algorithm is also limited. This model is useful in modelling
scenarios in big data processing and cloud computing.

A p-pass (or multi pass) streaming algorithm refers to an algorithm to which
input is streamed p times (or many number of times). If the input is streamed
only once, the streaming algorithm is called single pass.

Communication complexity is a concept from Information theory that has
been used to prove space lower bounds for many problems in streaming model.

Communication complexity of a function f is defined as the worst case com-
munication (over all inputs) required by the best communication protocol for
the following communication problem - the input of the function f is divided
amongst different entities which can communicate only through a channel and
the goal is to compute the value of the function f using minimum communication
[1,5]. Next subsection describes a specific communication complexity model.

Yao’s Communication Model. This model consists of two players Alice and
Bob (can be n players in the general case). Alice and bob can communicate to
each other via a channel. Alice has a binary string x ∈ {0, 1}n and Bob has a
binary string y ∈ {0, 1}n such that both the players are unaware of the other
person’s string.

Both of them are interested in computing the value f(x, y) where f is function
of strings of both the players [5]. Both of them can apriori agree on a commu-
nication protocol which they will use in order to compute the value f(x, y). A
trivial protocol could be that Alice sends her input x to Bob via the communi-
cation channel and Bob upon receiving x computes f(x, y) which he then passes
on to Alice. Both the players Alice and Bob are assumed to be computationally
unbounded.
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Communication complexity of a function f(x, y), CC(f) is the minimum
amount of bits required to be transferred through the channel by any commu-
nication protocol (for computing f(x, y)) in the worst case. The communication
complexity of a function is in general difficult to compute because the first quan-
tifier in it’s definition is over all possible protocols.

CC(f) = min
∀ protocols P

max
∀x,y

(bits communicated to compute f(x, y) using P )

Most space lower bound proof involving communication complexity use the
following idea:

– For a given streaming problem S identify a underlying communication prob-
lem C i.e. a communication problem that can be reduced to the given stream-
ing problem. Which means that using an algorithm A for S one should be
able to construct a protocol for the communication problem C.

– Prove a communication complexity lower bound for the communication prob-
lem C.

– Translate the communication complexity lower bound for C to space lower
bound for streaming problem P. This step is based on the construction of the
reduction.

The above idea is central to most space lower bounds results for streaming
algorithms [1,2,4–6]. The following communication problems and their known
communication complexity lower bounds are used in this work.

2.2 Index Problem

In this problem there are two players Alice and Bob. Alice has an array A,
A ∈ {0, 1}n and Bob has i ∈ [n] (where [n] represents {0, 1}n). Both Alice
and Bob are not aware of the other player’s input and one way communication
from Alice to Bob is allowed through a channel. However, Bob is not allowed to
communicate to Alice. Bob wants to find out the value stored at the ith position
of Alice’s string, Ai. It is known that the one way communication complexity of
the index problem is Ω(n) [5].

Pointer and Set Chasing. A (p, r)-communication problem is defined as a
communication problem which consists of p players P1, P2 . . . Pp. Players com-
municate for r rounds and are constrained to speak in the order P1 → P2 → . . .
to Pp → P1 → P2 and so on. In the last round the player Pp has to output the
required value to be computed.

If f : [n] → 2[n] be a function mapping the set [n] = {1, 2, 3 . . . n} to 2[n]

(power set of [n]), then a function f ′ : 2[n] → 2[n] can be defined using f as
follows [2]:

f ′(S) =
⋃

i∈s

f(i)
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Pointer Chasing. Pointer chasing problem PCn,p for positive integers n and
p, is defined as a (p, p − 1)-communication problem where ∀i ∈ [p] player Pi

has a function fi : [n] → [n]. They are interested in computing the value
f1(f2(f3(. . . fp(1)))) [2,4].

Theorem 1. Any randomized communication protocol that solves the pointer
chasing problem PCn,p with error probability at most 1/10 must require at least
Ω(n/p4 − p2 log(n)) bits of communication [4].

Set Chasing Intersection Problem. The set chasing problem SCn,p is
defined similarly, as a (p, p − 1)-communication problem where the ith player
Pi has a function fi : [n] → 2[n] and they are interested in computing the value
f ′

1(f ′
2(f ′

3 . . . f ′
p({1}))).

For pointer chasing and set chasing problem become easy once the number of
rounds are increased from p−1 to p or if the order of communication is inverted.
The set chasing intersection problem INTERSECT (SCn,p) is a (2p, p − 1)-
communication problem in which the first p players have one instance of the
set chasing problem and the other p players have another instance of the set
chasing problem. In all the p − 1 rounds they can communicate only in the
order P1 → P2 → P3 → P4 · · · → P2p → P1 and so on. Finally the goal is to
check whether f ′

1(f ′
2(f ′

3 . . . f ′
p({1})))∩f ′

p+1(f ′
p+2(f ′

p+3 . . . f ′
2p({1}))) = φ?,

in other words they are interested in knowing whether the output of the two set
chasing instances intersect or not [2].

The following communication complexity lower bound on the set intersection
problem has been proved.

Theorem 2. For some positive constant p such that 1 < p ≤
log(n)/(log(log(n))), any randomized communication protocol that solves the
INTERSECT (SCn,p) problem with a probability greater than 9/10 requires
Ω

(
n1+1/2(p+1)/(p16. log3/2 n)

)
[2].

Using this result, space lower bounds for multi pass streaming algorithm for
the problems like finding perfect matching, checking if there exists a directed
path between two vertices has been proved in [2].

3 Finding Depth of a Node in a Tree

The problem that is considered here is is the following - Let T be a rooted tree
whose root is denoted by a known symbol r and u is some node in the tree.
Given a stream σ consisting of the node u followed by edges of the tree T , the
problem is to compute the depth of the node u in T .

This problem is a simpler version of the general problem of finding distance
between two nodes in a graph.
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3.1 Multipass Lower Bound

Using the communication complexity lower bound of the pointer chasing problem
we prove the following multi pass space lower bound for the mentioned problem.

Claim 1. Any randomized p-pass streaming algorithm that computes the depth
of a given node in a rooted tree with error probability at most 1/10 must require
at least Ω((n/p7) − log(n/p)) space.

Proof. Given a p-pass streaming algorithm A for finding the depth of a node in
a rooted tree that uses s bits of space we design a communication protocol that
solves the pointer chasing problem PCn,p+1 using s.Θ(p2) bits of communication
(through channel between players).

The construction of the communication protocol is based on the idea of visu-
alizing the computation performed in the pointer chasing problem as a graph.
The function fi of each player Pi, ∀i ∈ [p + 1] can be visualized as bipartite
graphs. As a result, the composition of the functions fi can be viewed as side
by side concatenation of these bipartite graphs as shown in Fig. 1. In this view,
the goal of the pointer chasing problem is to find the node to which the bold
edges emerging from the node n1 lead. The node to which the bold edges lead
corresponds to the value f1(f2(f3(. . . fp+1(1)))).

Given the algorithm A in each of the p rounds all the p+1 players will stream
the edges of the bipartite graph (corresponding to their function fi) to A and
then they will pass the memory transcript of A to the next player according to
the communication order defined in pointer chasing problem. At the end of each
round player Pp+1 will stream the edges shown in blue (see Fig. 1) in addition
to the edges corresponding to fp+1. All the edges that are streamed to A can be
viewed as a tree rooted at node N (see Lemma 1 below). This means that after
p round of communication, the value of f1(f2(f3(. . . fp+1(1)))) can be found out
by finding the depth of the node n1 (see Fig. 3) in the computation graph/tree.
Let d(v) denote the depth of a node v and x be the node corresponding to
.f1(f2(f3(. . . fp+1(1)))). Then, d(x) = d(n1)−1−p. The depth of node n1 is the
output algorithm A gives at the end of the last round. Hence by knowing the
value of d(n1) we can determined d(x) thereby determining the node x itself.
This is because each of the rightmost node (Fig. 1) has different depth with
respect to root N .

The communication complexity of this protocol is s.Θ(p2) as the size of the
memory transcript is s and order of the total messages sent between players is
Θ(p2) (Θ(p) messages in p rounds). According to the communication complexity
lower bound of the pointer chasing problem

s.Θ(p2) = Ω
( (n/p)

p4
− p2 log(n/p)

)

s = Ω
(
n/p7 − log(n/p)

)

Where n is the total number of nodes in the computation graph and n/p repre-
sents the domain of functions fi.
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Fig. 1. Computation graph G for PCn,p+1, with blue edges added for node depth lower
bound (Color figure online)

Lemma 1. The computation graph G for the pointer chasing problem is a tree.

Proof. Let’s assume that G has a cycle C. Each edge of the cycle C can be
classified into either a blue edge of an edge corresponding to some function fi,
∀i ∈ [p + 1]. Also, the cycle cannot be completely composed of blue edges. Due
to this, we can find the minimum i, such that edge corresponding to fi is in C.
Call this i′. Since C is a cycle, there will be two edges corresponding to function
fi′ , which is a contradiction since fi′ is a function. Hence no cycle can exist.

This result also shows that any one pass streaming algorithm must require at
least Ω(n) space to compute the depth of a given node in a tree being streamed
(for p = 1). In the next section we prove a stronger Ω(n. log(n)) lower bound for
the single pass version of the problem.

3.2 Stronger Bound for the Single Pass

In this section we prove a stronger space lower bound for the single pass version of
the problem. The given lower bound proof does not follow the standard reduction
procedure that is used to prove most space lower bound results in streaming
model.

Claim 2. Any one pass streaming algorithm that computes the depth of a given
node in a rooted tree must require Ω(n.log(n)) space.
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Proof. To establish this result we first choose a particular input instance and
then we prove a lower bound on the space required by the best algorithm for
that instance, this value according to yao’s minimax principle serves as a space
lower bound for the problem.

The input instance we consider is the instance in which the node v (whose
depth is to be calculated) is a leaf node and the edge connecting v to its parent
in the tree (v, p(v)) arrives as the last edge of the stream. The idea here is that
the essential information required to compute the depth of the node v i.e. the
location of the node v in the tree is deferred in the input stream.

Let A be some algorithm that computes the depth of a given node. Now
consider the memory transcript M of the algorithm A when it has processed all
the edges except the last edge (v, p(v)) of the constructed input instance. Now
we claim that |M| = Ω(n. log(n)), proving this is sufficient to prove the claim.

To prove |M| = Ω(n. log(n)) we argue that given the memory transcript M
and the algorithm A one can recover the depths of all nodes in V \ {v} using
2|M| space. Given M and A one can run the algorithm n − 1 times, each time
continuing the computation on M and streaming the edge (v, u) ∀u ∈ V \ {v}.
From all of these runs we can recover the depths of all the nodes in the set
V \ {v}, as depth of node u is one less than depth of node v and u ∈ V \ {v}. To
complete the proof we show that the depth information of all the nodes of a tree
requires Θ(n. log(n)) bits to store which implies that |M| = Ω(n. log(n)). Let D
denote the number of different functions d : V → Z

+ such that d(v) represents
the depth of the node u ∈ V \ {v}.

Let Di denote the number of different functions d : V → Z
+ such that d(v)

represents the depth of the node and maxv∈V d(v) = i and S(n, k) is stirling
number of second kind.

|M| = Ω(log2(D))

|M| = Ω(log2(
∑

i∈[n−2]

Di))

|M| = Ω(log2(
∑

i∈[n−2]

n.S(n − 1, i)))

|M| = Ω(log2(n.
∑

i∈[n−2]

in−i))

|M| = Ω(log2(n.(n/2)n/2))

|M| = Ω(n. log2(n))

Corollary 1. Any streaming one pass algorithm that computes the distance
between two nodes in a graph requires at least Ω(n. log2(n)) space.

This above corollary is applicable even for the shortest path problem, that
is any streaming algorithm that finds the distance between two given vertices of
a graph must require Ω(n. log n) space.

Using the same idea of deferring the essential input in the stream, we prove
a space lower bound for the problem of min s-t cut in weighted graph.
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4 Min s − t Cut Problem

To prove this lower bound we use the following known lower bound for the
unweighted min cut problem.

4.1 Single Pass Lower Bound

Theorem 3. Any one pass streaming algorithm that computes the min cut of a
unweighted graph requires at least Ω(n2) memory [6].

The input for this problem is a weighted graph stream i.e. the individual
tokens of the stream are weighted edges of the form ((u, v), w) where w is the
weight of the edge (u, v).

Claim 3. Any one pass streaming algorithm that computes the min s-t cut value
for given pair of nodes s and t in a weighted graph must require at least Ω(n2)
space.

Proof. Let A be any streaming algorithm for the weighted min s-t cut problem
and the space required by the algorithm be s. Now we use this algorithm A to
construct a streaming algorithm As for solving the unweighted min cut problem
that uses Θ(s) space. Since As requires Θ(s) space, using Theorem 3 implies that
s = Ω(n2), which completes the proof.

Let G = (V,E) be the graph whose min cut is to be calculated, then we
construct another weighted graph G′ = (V ∪ {u, v}, E ∪ {(u, x), (v, y)}), for
x, y ∈ V such that weight of the edges (u, x) and (v, y) is n and every other edge
weighs one. These weights ensure that the edges (u, x) and (v, y) never lie in the
min u-v cut of G′. This implies that min u-v cut of graph G′ is same as the min
x-y cut of graph G, G being an unweighted graph.

Now to compute the min cut for G, the instance G′ is streamed to the algo-
rithm A multiple times, one for each y ∈ V \ {x}, for a fixed value of x. The
graph G′ is streamed in such a way that the edge (v, y) arrives as the last edge
of the stream. The min cut value of graph G is calculated by taking the min
value of the all the min u-v cut values calculated for the graph G′ (same as min
x-y cut for G).

All the n−1 min cut values (corresponding to y ∈ V \{x}) that are required
to be computed can be computed using 2s space as the memory transcript M of
the algorithm A - after it has processed all the edges E ∪{(u, x)}, can be reused
to compute all the min u-v (x-y) cuts ∀y ∈ V \ {x}.

To calculate the value of min x-y′ cut for some y′ ∈ V \ {x}, the memory
transcript M is used along with the algorithm A and the edge (y′, v) is streamed
to A, then the value computed by the algorithm A is the min u-v cut for G′ (or
min x-y′ cut for G). The memory transcript can be copied and used similarly
n − 1 times for each y′ ∈ V \ {x}, using 2s space.

This leads to a 2s space streaming algorithm that computes min cut of a
unweighted graph being streamed, it implies that s = Ω(n2). Which means that
for all possible algorithms A, the space required must be Ω(n2).
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In the next section, using the known communication complexity lower bound
for the set chasing intersection problem we prove a multi pass space lower bound
for the unweighted min cut problem.

Fig. 2. Computation graph for INTERSECT (SCn,p+1), directions are used to indi-

cated paths emerging and leading to nodes n1 and n
′
1. All the edges corresponding to

functions f ′
i are not shown for clarity.

4.2 Multi Pass Lower Bound

Claim 4. Any p pass streaming algorithm that computes the min s-t cut of a
unweighted graph must require Ω

(
n1+1/2(p+1)/(p19. log3/2 n)

)
bits of space.

Proof. Suppose there exists such an algorithm A that uses at most s bits of
memory. Then we can use this algorithm to design a protocol for the set chasing
intersection problem INTERSECT (SCn,p+1) that uses s.Θ(p2) bits of commu-
nication.

The computation performed in the set chasing intersection problem can be
visualized as a computation graph, shown in Fig. 2. For all the 2(p + 1) players
their functions f ′

i can be viewed as bipartite graphs.
We use the algorithm A to compute the min n1-n′

1 cut of the computa-
tion graph G (shown in Fig. 2). This is done as follows. Each player Pi uses
the algorithm A and streams the edges corresponding to their function fi

into the algorithm (as the individual functions can be visualized as a bipar-
tite graph) and passes the memory transcript to the next player according to
the communication order constraint. In this view, any path going from node
n1 to n′

1 would represent an element in the set f ′
1(f ′

2(f ′
3 . . . f ′

p+1({1}))) ∩
f ′

p+2(f ′
p+3(f ′

p+4 . . . f ′
2p+2({1}))). Now we can claim that by knowing the value

of min n1-n′
1 cut we can find out whether the two instances of set chasing inter-

sect. This is because if the two instance of set chasing do not intersect then the
size of min n1-n′

1 cut would be zero as there is not path from the vertex n1 to n′
1.

If on the other hand the outputs of the two set chasing instances intersect then
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the min cut value would be greater than zero as the intersection would yield a
path from n1 to n′

1. Hence by checking whether the min cut value is zero or not
one can solve the set chasing intersection problem. Using the communication
complexity lower bound:

s.Θ(p2) = Ω
( (n/p)1+Θ(1/p)

p16. log3/2 n

)

s = Ω
( n1+Θ(1/p)

p19. log3/2 n

)

Where s.Θ(p2) is the total communication required during the protocol.

In the next section we study the problem of detecting negative weight cycles
in a graph stream. We prove single and multipass lower bounds for the problem
using reductions from index problem and set chasing problem respectively.

5 Detecting Negative Weight Cycle

5.1 Single Pass Lower Bound

Using the known communication complexity lower bound for the index problem
we first prove a single pass space lower bound for detecting negative weight cycle.

Claim 5. Any streaming algorithm that can detect the presence of a negative
weight cycle in a weighted graph stream must use at least Ω(n2) space.

Proof. Let C be a streaming algorithm that detects the presence of a negative
weight cycle using s space. Then C can be used to design a communication
protocol for the index protocol as follows.

Let (A, i) be an instance of index problem in which A is of the size Θ(n2),
then the binary string A can be interpreted as a graph on n vertices. Alice can
stream the edges of this graph to the algorithm C associating with each edge a
weight of positive one unit. Then she can send the memory transcript obtained
(of size s) to Bob.

Let (a, b) be the edge corresponding to Bob’s input i. After receiving the
memory transcript Bob streams the edges (a, v) and (b, v) to the streaming
algorithm associating with each edge a weight of negative one.

Bob can now find the ith bit of Alice’s string by knowing whether a negative
weight cycle is present or not. This is due to the fact that if edge (a, b) is present
in the graph, the vertices a, b and v form a cycle of weight negative one. If the
edge (a, b) is not present in the graph then the minimum length of the cycle
containing the negative weight edges is 4 which means that it’s weight will be
non negative, hence negative weight cycle will not exist. Negative weight cycle
exists if and only if edge (a, b) is present in the graph i.e. when Ai = 1.

This leads to a s bit one way communication protocol that solves the index
problem. It means that according to the lower bound result of Index problem,
s = Ω(n2).
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Fig. 3. Computation graph for INTERSECT (SCn,p+1), blue edge is added by the
player P2p in every round. (Color figure online)

5.2 Multi Pass Lower Bound

A multi pass lower bound for the same problem can be proved using the com-
munication complexity lower bound for the set chasing intersection problem.

Claim 6. Any p pass streaming algorithm that detects the presence of a neg-
ative weight cycle in a weighted graph being streamed must require at least
Ω

(
n1+1/2(p+1)/(p19. log3/2 n)

)
bits of space.

Proof. Suppose there exists a p-pass streaming algorithm A for the problem of
detecting a negative weight cycle which uses at most s bits of space. Then such
an algorithm can be used to design a protocol for the set chasing intersection
problem INTERSECT (SCn,p+1) as follows:

In each of the p rounds all the 2(p + 1) players stream edges the edges corre-
sponding to their function (as shown in Fig. 3) and pass the resultant memory
transcript of the algorithm to the next player. The weight of one is assigned to
every edge being streamed. The player P2(p+1) also adds the edge shown in blue
(see Fig. 3) having weight −2(p + 1) − 1 in every round.

After the completion of p rounds, the set chasing problem can be solved by
asking whether the graph that is streamed to algorithm A has a negative weight
cycle or not. This is because there exists a negative weight cycle in the graph if
and only if the output sets intersect in the set chasing problem. As if the output
set does not intersect, there is no path from node n1 to n′

1 which means no
negative weight cycle. If the output sets intersect, we have a cycle of weigh −1,
consisting of the blue edge (weight −2(p + 1) − 1) and a path of 2(p + 1) edges
(from n1 to n′

1) of weight 1 each.
Since the size of the memory transcript is s bits and in each of the p rounds

the memory transcript is transferred Θ(p) times, the total communication done
by the protocol is s.Θ(p2) which according to the lower bound on communication
complexity of the set chasing intersection problem means that:



646 P. Verma

s.Θ(p2) = Ω
( (n/p)1+Θ(1/p)

p16. log3/2 n

)

s = Ω
( n1+Θ(1/p)

p19. log3/2 n

)

since pΘ(1/p) = O(1).

The exact same proof can also be extended to prove same lower bound result
for the problem of finding whether two nodes lie in the same strongly connected
component or not in a directed graph being streamed.
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Abstract. The notion of bounded-jump operator, A†, was proposed by
Anderson and Csima in paper [1], where they tried to find an appropriate
jump operator on weak-truth-table (wtt for short) degrees. For a set A,
the bounded-jump of A is defined as the set A† = {e ∈ N : ∃i ≤ e[ϕi(e) ↓
& Φ

A�ϕi(e)
e (e) ↓]}. In [1], Anderson and Csima pointed out this bounded-

jump operator † behaves likes Turing jump ′, like (1) ∅† and ∅′ are 1-
equivalent, (2) for any set A, A <wtt A†, and (3) for any sets A, B, if
A ≤wtt B, then A† ≤wtt B†. A set A is bounded-low, if A† ≤wtt ∅†,
and a set B ≤wtt ∅† is bounded-high if ∅†† ≤wtt B†. Anderson, Csima
and Lange constructed in [2] a high bounded-low set and a low bounded-
high set, showing that the bounded jump and Turing jump can behave
very different. In this paper, we will answer several questions raised by
Anderson, Csima and Lange in their paper [2] and show that:
(1) there is a bounded-low c.e. set which is low, but not superlow;
(2) 0′ contains a bounded-low c.e. set;
(3) there are bounded-low c.e. sets which are high, but not superhigh;
(4) there are bounded-high sets which are high, but not superhigh.
In particular, we will develop new pseudo-jump inversion theorems via
bounded-low sets and bounded-high sets respectively.
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1 Introduction

The notion of bounded-jump operator, A†, was proposed by Anderson and Csima
in paper [1], where they tried to find an appropriate jump operator on weak-
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as the set A† = {e ∈ N : ∃n ≤ e[ϕn(e) ↓ & Φ
A�ϕn(e)
e (e) ↓]}, where A �z= {x ∈

A : x ≤ z}. Note that A† ≤T A ⊕ ∅′. In [1], Anderson and Csima pointed out
that this bounded-jump operator † behaves like the Turing jump ′ does, i.e., (1)
∅† and ∅′ are 1-equivalent, (2) for any set A, A <wtt A†, and (3) for any sets
A,B, if A ≤wtt B, then A† ≤wtt B†. (2) implies that A† ≡T A when A ≥T ∅′. In
the same paper, Anderson and Csima proved an analogue of Shoenfield’s jump
inversion theorem for the bounded-jump operator †.

Say that a set A is bounded-low if A† ≤wtt ∅†, and bounded-high if A ≤wtt ∅†

and ∅†† ≤wtt A†. It is easy to see that A is bounded-low if and only if A† is
ω-c.e. Thus, all superlow sets are bounded-low, because for all superlow sets
A, A† ≤1 A′ ≤tt ∅′ ≡1 ∅†. Also note that ∅′ ≡1 ∅† is bounded-high, because
∅†† ≤wtt (∅′)†.

Anderson, Csima and Lange considered in [2] the interaction between the
bounded-jump operator and the Turing jump, and constructed a high bounded-
low set, and asked whether bounded-lowness and superlowness agree with each
other on low c.e. sets. In this paper, we will give a negative answer to this
question by showing the existence of bounded-low c.e. sets, which are low, but
not superlow.

Theorem 1. There are low c.e. sets which are bounded-low but not superlow.

After showing that superlow sets are always bounded-low, Anderson, Csima
and Lange [2] asked whether superhigh sets are also bounded-high. Our second
result in this paper will provide a negative answer to this question. That is, we
show the existence of bounded-low c.e. sets which are superhigh.

Theorem 2. 0′ contains a bounded-low c.e. set.

Note that ∅′ is a bounded-high set, and it is well-known that ∅′ is also
superhigh. In [2], Anderson, Csima and Lange further asked whether there are
bounded-high sets which are high but not superhigh. Similarly, based on Theo-
rem 2, we can also ask whether there are bounded-low sets which are high but
not superhigh.

One way to obtain high, but not superhigh c.e. sets is through the pseudo-
jump inversion theorem of Jockusch and Shore [3], which was used by Mohrherr
in her paper [4]. Let We be a c.e. operator, the corresponding pseudo-jump
operator Ve is defined as V A

e = A ⊕ WA
e for a given set A. The pseudo-jump

inversion theorem of Jockusch and Shore says that for any c.e. operator We,
there is a c.e. set C such that V C

e ≡T ∅′.
The procedure of obtaining high but not superhigh c.e. sets are as follows:

(1) Through the construction of low but not superlow c.e. sets, one can obtain
a c.e. operator W such that for any set A, A ⊕ WA is low over A, but not
superlow over A, i.e., (A ⊕ WA)′ ≤T A′, but (A ⊕ WA)′ �tt A′;

(2) By applying the pseudo-jump inversion theorem to this operator W , there
exists a c.e. set C such that C ⊕ WC ≡T ∅′.
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Then ∅′′ ≡1 (C ⊕ WC)′ ≤T C ′ (hence, C is high), and ∅′′ ≡1 (C ⊕ WC)′ �tt C ′

(hence, C is not superhigh).
In this paper, we will provide two strengthened versions of Jockusch and

Shore’s pseudo-jump inversion theorem.

Theorem 3. For any c.e. operator W ,

(1) there is a bounded-low c.e. set C such that C ⊕ WC ≡T ∅′;
(2) there is a bounded-high set C such that C ⊕ WC ≡T ∅′.

We have the following consequence immediately:

Corollary 1. There are bounded-low c.e. sets which are high but not superhigh,
and there are bounded-high sets which are high but not superhigh.

Proof. Let W be the c.e. operator such that for any set A, A⊕WA is low but not
superlow over A, then any C satisfying C ⊕WC ≡T ∅′ is high but not superhigh.
By Theorem 3, there are bounded-low c.e. set C1 and bounded-high set C2 such
that C1 ⊕ WC1 ≡T ∅′ and C2 ⊕ WC2 ≡T ∅′. Thus C1 is a bounded-low c.e. set
which is high but not superhigh, while C2 is a bounded-high set which is high
but not superhigh.

The organization of this paper is as follows. We will give a proof of Theorem1
in Sect. 2, and a proof of Theorem2 in Sect. 3. We will provide basic idea for
proving Theorem 3, two strengthened versions of Jockusch and Shore’s pseudo-
jump inversion theorem, in Sect. 4.

2 A Bounded-Low c.e. Set which is Low, But not
Superlow

To prove Theorem 1, we will construct a low c.e. set A such that A† is ω-c.e. (so
A is bounded-low), and A′ is not ω-c.e. (so A is not superlow). One approach of
constructing a set low, but not superlow, is to apply Sacks splitting theorem, to
split ∅′ into two low c.e. sets A and B. Both A and B cannot be superlow, as if
A is superlow, then ∅′ is wtt-reducible to B, by a theorem of Bickford and Mills
[5]. In [5], Bickford and Mills also pointed out that there are superlow c.e. sets
A and B such that A⊕B computes ∅′. Most of the results in [5] can be found in
Nies’ book [6]. One feature of Sacks splitting is that there is no effective bound
on the number of injuries from a strategy with higher priority, and hence we
cannot have a recursive bound on the number of changes of A′(e) in advance. It
also turns out to be an obstacle for us to obtain a bounded-low c.e. set which
is low, but not superlow, by using Sacks splitting. Instead, we will construct a
low, but not superlow, c.e. set directly.
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2.1 Requirements and Strategies

By the definition of A†, for each e, A†(e) has the following computable approx-
imations at stage s:

A†(e)[s] :=
{

1, if ∃n ≤ e[ϕn(e)[s] ↓ & Φ
A�ϕn(e)
e (e)[s] ↓];

0, otherwise.

To make A† ω-c.e., we ensure that the number of changes of A† at e is bounded
by 2(e + 1)2. That is, |{s ∈ N : A†(e)[s] 
= A†(e)[s + 1]}| ≤ 2(e + 1)2.

We will construct a c.e. set A meeting the following requirements:

Le: If there are infinitely many stages s such that ΦA
e (e)[s] ↓, then ΦA

e (e) ↓.
Re: |{s ∈ N : A†(e)[s] 
= A†(e)[s + 1]}| ≤ 2(e + 1)2.
P〈i,j〉: If ϕi and ϕ2

j are both total, then there is some x such that either

A′(x) 
= lim
t→∞ϕ2

j (x, t)

or
|{t ∈ N : ϕ2

j (x, t) 
= ϕ2
j (x, t + 1)}| ≥ ϕi(x).

Here {ϕi : i ∈ N} and {ϕ2
j : j ∈ N} are standard enumerations of all partial

computable functions in one variable and two variables respectively, {Φe : e ∈ N}
is a standard enumeration of all partial computable functionals, and 〈·, ·〉 is an
effective bijection between N2 and N.

We assign the priority of requirements in our finite injury construction as

L0 ≺ R0 ≺ P0 ≺ L1 ≺ R1 ≺ P1 ≺ · · · ≺ Le ≺ Re ≺ Pe ≺ · · ·
If all the L-requirements are satisfied, then A is low. If all the R-requirements
are satisfied, then the whole construction will ensure that A† is ω-c.e., which
ensures that A is bounded-low. If all the P-requirements are satisfied, then A′

is not ω-c.e., and hence A is not superlow.
The strategy of satisfying one Le is standard, i.e., we will set restraints to

preserve the desired computations we have seen and this strategy can only be
injured by P-strategies with higher priority, which will happen at most finitely
many times. Thus, after a stage large enough, after which no P-strategies with
higher priority act, if the strategy sets restraints to preserve computations, these
computations will be preserved forever, and Le is satisfied.

The strategy for satisfying one Re is also to set restraints to preserve compu-
tations. At each stage s, when we see that ϕn(e) converges, where n ≤ e, we set
a restraint to protect A � ϕn(e). Note that P-strategy with higher priority can
injure Re by enumerating small numbers x into A, but as ϕn(e) will be fixed, and
hence, once P enumerates x into A, P selects a new number x′ say, bigger than
ϕn(e), and the further enumeration of x′ will not injure Re, as this enumeration
will not affect the computation Φ

A�ϕn(e)
e (e), if Φ

A�ϕn(e)
e (e) converges. Note that

there are at most e+1 many such restraints A � ϕn(e), and each P-strategy with
higher priority can enumerate numbers less than ϕn(e) at most once, the total
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number of such enumerations is at most (e + 1)2, as one such an enumeration
entails at most two changes of A†(e), the number of changes of A†(e) is bounded
by 2(e + 1)2.

We now describe how to satisfy a P〈i,j〉-requirement. As in [6] for the con-
struction of nonsuperlow sets, we will apply the recursion theorem for the con-
struction. That is, our construction will be uniform in parameters, r say, and in
the r-th construction, we will build a partial computable functional Γr, a c.e. set
of axioms 〈σ, n,m〉, where 〈σ, n,m〉 is enumerated into Γr at stage s, ΓA

r (n)[s]
is defined as m with use As �γA

r (n)[s]= σ. From Γr, if Γr = Wr, we can have a
computable function pr such that

∀X∀x[ΓX
r (x) � ΦX

pr(x)
(pr(x))].

This will ensure that ΓA
r (x) ↓⇐⇒ pr(x) ∈ A′, and hence, by controlling ΓA

r , we
can defeat ϕ2

j being an approximation of A′ with number of changes bounded by
ϕi. More specifically, when ϕ2

j (pr(x), ·) is a current approximation of A′(pr(x)),
then either it has a current limit 1 which means that pr(x) goes into A′ or it has
a current limit 0 which means that pr(x) moves out of A′. In the former case, we
will start convergence modules and force pr(x) to leave out A′ by enumerating
γX

r (x) into A provided that it is defined currently, while in the latter case, we
will start divergence modules and force pr(x) to enumerate into A′ by defining
ΓX

r (x) provided that it is undefined currently.
Convergence modules and divergence modules actually switch to each other,

and ϕ2
j (pr(x), ·) will change at least once after each switch. So to make

ϕ2
j (pr(x), ·) change at least ϕi(pr(x)) times, we can keep ϕi(pr(x)) + 1 many

convergence modules as well as ϕi(pr(x)) + 1 many divergence modules. During
the following P〈i,j〉-strategy, we use C(n) and D(n) to denote the n-th conver-
gence module and the n-th divergence module respectively. We also define a
number �(n) with �(−1) = 0 such that ϕ2

j (pr(x), �(n − 1)) 
= ϕ2
j (pr(x), �(n)).

Intuitively, �(n) records the n-th change of ϕ2
j (pr(x), ·) in the sense that when

ϕ2
j (pr(x), ·) is total, then

|{q < �(n) : ϕ2
j (pr(x), q) 
= ϕ2

j (pr(x), q + 1)}| ≥ n.

Since the construction is uniform in r, there is a computable function g such
that Γr = Wg(r). By Recursion Theorem, there is a r0 such that Wg(r0) = Wr0 ,
i.e., Γr0 = Wr0 . In the following, we assume we are in the r0-th construction,
and fix the computable function pr0 in advance.

A P〈i,j〉-strategy proceeds as follows:

1. Choose a fresh witness x, let z = pr0(x).
2. Wait for ϕi(z) ↓ at some stage s.

(If we wait at (2) forever, then ϕi(z) ↑, and ϕi is partial and P〈i,j〉 is satisfied.)
3. Set N = ϕi(z) + 1, and run the following modules C(n) and D(n) for n ≤

N . We start with C(0) in which case ϕ2
j (z, 0) ↓= 1 or D(0) in which case

ϕ2
j (z, 0) ↓= 0, and let �(−1) = 0. We will end when reaching C(N) or D(N),
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because this shows that ϕi(z) cannot bound the number of changes of ϕ2
j (z, q),

showing that P〈i,j〉 is satisfied.

C(n): There is a q1 > �(n − 1) such that ϕ2
j converges (at stage s) to 1 on all

(z, q) with �(n − 1) < q ≤ q1, and for those q2 with q1 < q2 ≤ s, if ϕ2
j (z, q2)

converges at stage s, then ϕ2
j (z, q2) = 1.

If such a q1 does not exist, then do nothing.
• If this is because of the fact that ϕ2

j (z, �(n−1)+1) never converges, then
ϕ2

j is partial and P〈i,j〉 is satisfied.
• If it is because of the existence of q2 with ϕ2

j (z, q2) = 0, then wait for a
bigger stage at which ϕ2

j (z, q) converges for all q ≤ q2, leave C(n) with
no actions and switch to D(n + 1) with �(n) = q2.
(Again, if ϕ2

j (z, q) never converges for some q < q2, then ϕ2
j is partial and

P〈i,j〉 is satisfied.)

That is, at stage s, we guess that ϕ2
j (z, q) has limit 1, and we should not keep

such a guess if we see ϕ2
j (z, q) converges to 0 after �(n − 1).

Action for C(n): If ΓA
r0

(x) has definition at stage s−1, then enumerate γr0(x)
into A, to undefine ΓA

r0
(x). Otherwise, do nothing.

• Wait for a stage t > s such that ΦA
z (z)[t] diverges.

(For r0-th construction, such a stage t exists, because otherwise, we would
have ΓA

r0
(x) diverges, but ΦA

z (z) converges.)
• Wait for a bigger stage at which we see that ϕ2

j (z, q3) converges to 0,
where q3 ≥ q1, and ϕ2

j (z, q) converges for all q ≤ q3. Let �(n) = q3 and
switch to D(n + 1).
(Again, if ϕ2

j (z, q) never converges for some q < q3, then ϕ2
j is partial

and P〈i,j〉 is satisfied. Or, if ϕ2
j (z, q) converges to 1 for all q ≥ q1, then

lim
x→∞ϕ2

j (z, q) = 1, while z 
∈ A′, meaning that lim
x→∞ϕ2

j (z, q) is not the

characteristic function of A′, and P〈i,j〉 is satisfied.)

D(n): There is a q1 > �(n − 1) such that ϕ2
j converges (at stage s) to 0 on all

(z, q) with �(n − 1) < q ≤ q1, and for those q2 with q1 < q2 ≤ s, if ϕ2
j (z, q2)

converges at stage s, then ϕ2
j (z, q2) = 0.

If there is no such a q1, then do nothing.

• If this is because of the fact that ϕ2
j (z, �(n−1)+1) never converges, then

ϕ2
j is partial and P〈i,j〉 is satisfied.

• If it is because of the existence of q2 with ϕ2
j (z, q2) = 1, then wait for a

bigger stage at which ϕ2
j (z, q) converges for all q ≤ q2, leave D(n) with no

actions and switch to C(n + 1) with �(n) = q2. (Again, if ϕ2
j (z, q) never

converges for some q < q2, then ϕ2
j is partial and P〈i,j〉 is satisfied.)

That is, at stage s, we guess that ϕ2
j (z, q) has limit 0, and we should not keep

such a guess if we see ϕ2
j (z, q) converges to 1 after �(n − 1).

Action for D(n): If ΓA
r0

(x) has no definition at stage s−1, define ΓA
r0

(x) with
use γr0(x) big.
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• Wait for a stage t > s such that ΦA
z (z)[t] converges.

(For the r0-th construction, such a stage t exists, because otherwise, we
would have ΓA

r0
(x) converges, but ΦA

z (z) diverges.)
• Wait for a bigger stage at which we see that ϕ2

j (z, q3) converges to 1,
where q3 ≥ q1, and ϕ2

j (z, q) converges for all q ≤ q3. Let �(n) = q3 and
switch to C(n + 1).
(Again, if ϕ2

j (z, q) never converges for some q < q3, then ϕ2
j is partial

and P〈i,j〉 is satisfied. Or, if ϕ2
j (z, q) converges to 0 for all q ≥ q1, then

lim
x→∞ϕ2

j (z, q) = 0, while z ∈ A′, meaning that lim
q→∞ϕ2

j (z, q) is not the

characteristic function of A′, and P〈i,j〉 is satisfied.)

Thus, a P〈i,j〉-strategy either waits at some C(n) or D(n) for some n < N ,
or reaches C(N) or D(N), both of which will show that P〈i,j〉 is satisfied, as
explained above. Thus, in the construction, a P〈i,j〉-strategy can injure those
strategies with lower priority at most finitely often.

2.2 Construction and Verification

Construction of A.
Stage 0: Let A0 = ∅, and initialize all strategies.
Stage s > 0: Find a requirement with the highest priority, Q say, among

L0 ≺ R0 ≺ P0 ≺ · · · Ls ≺ Rs ≺ Ps

that requires attention at stage s, and act accordingly.
Say that Le requires attention at stage s if ΦA

e (e)[s − 1] ↑ and ΦA
e (e)[s] ↓.

Say Re requires attention at stage s if there is a n ≤ e ≤ s such that ϕn(e) ↓ at
stage s and Re has not set A-restraint ϕn(e) yet.

For both cases, we act as follows:
Action: Set A-restraint as s, and initialize all strategies with lower priority.

Say that P〈i,j〉 requires attention at stage s if one of the following applies:

1. P〈i,j〉 has no witness currently.

Action: Pick a fresh number x as a witness for P〈i,j〉.
2. x is selected, pr0(x) converges to z, ϕi(z)[s] ↓ and N is not defined yet.

Action: Definite N as ϕi(z) + 1.
3. N is defined, P〈i,j〉 is not in C(n) or D(n) for any n ≤ N , and ϕ2

j (z, 0)[s]
converges.

Action: Let P〈i,j〉 start by running C(0), if ϕ2
j (z, 0)[s] ↓= 1, or D(0), if

ϕ2
j (z, 0)[s] ↓= 0. Here we let �(−1) = 0.

4. P〈i,j〉 switches from C(n) to D(n + 1), where n + 1 < N .

Action: If ΓA(x) has no definition at stage s − 1, then define ΓA(x)[s] = 0
with use γ(x)[s] larger than all numbers used before.
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5. P〈i,j〉 switches from D(n) to C(n + 1), where n + 1 < N .

Action: If ΓA(x) has definition at stage s − 1, then enumerate γ(x) into A,
undefining ΓA(x).

6. P〈i,j〉 switches from C(N − 1) to D(N) or from D(N − 1) to C(N).

Action: Declare that ϕi(z) cannot bound the number of changes of ϕ2
j (z, q),

and that P〈i,j〉 is satisfied.

If P〈i,j〉 acts as above, then all strategies with lower priority are initialized.
This ends the construction of A at stage s.

Lemma 1. For each requirement, Q say,

(1) Q can be initialized at most finitely often;
(2) Q acts at most finitely often and is satisfied;
(3) The restraint set by Q is finite, and Q can initialize all strategies with lower

priority finitely often.

Proof. We will show that for each e, (1)–(3) are true for all Le,Re,P〈i,j〉, where
〈i, j〉 = e. We prove it by induction.

When e = 0, L0 can never be initialized, due to its highest priority. (1)
holds. L0 acts and sets a restraint only when ΦA

0 (0) converges, and once we set
such a restraint, ΦA

0 (0) converges at any further stage, and (2) holds. In the
construction, L0 sets a restraint only when ΦA

0 (0) converges, and after it acts, it
will never act again. (3) holds.

Note that R0 can be initialized by L0 at most once. (1) holds for R0. Note
that R0 acts only when ϕ0(0) converges, and after this, if Φ

A�ϕ0(0)
0 (0) converges,

then it will converge forever, as no P can enumerate numbers less than ϕ0(0)
into A, so if Φ

A�ϕ0(0)
0 (0) converges again, then it converges forever, which means

that R0 is satisfied. (2) holds. The restraint set by R0 is ϕ0(0), if it converges,
and after it acts, it will never act again. (3) holds.

For P〈0,0〉, it can be initialized by L0 and R0, so P〈0,0〉 can be initialized by
L0 and R0 at most three times. (1) holds. Let s0 be the least stage after which
P〈0,0〉 can not be initialized again, and suppose that P〈0,0〉 selects a witness x
as a big number at stage s1 > s0. Then x cannot be canceled later. Then after
stage s1, P〈0,0〉 acts only when

1. it selects N ; or
2. it starts module C(0) or D(0); or
3. it switches from C(n − 1) to D(n), or from D(n − 1) to C(n); or
4. it reaches C(N) or D(N),

which can happen at most N + 2 many times. If it reaches C(N) or D(N),
then ϕ0(z) cannot be a bound of the number of changes of ϕ2

0(z, q), and P〈0,0〉
is satisfied. If it never selects N , then ϕ0(z) never converges (recall that pr0 is
assumed to be total, by the relativized sm

n -theorem). Here z = pr0(x). If it never
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starts module C(0) or D(0), then ϕ2
0(z, 0) diverges. If it stays at some module

C(n) or D(n) forever, then either ϕ2
0(z, q) diverges for some q, or we will have

lim
q→∞ϕ2

0(z, q) 
= A′(z). P〈0,0〉 is satisfied for all cases. (2) holds for P〈0,0〉. Thus,

after a stage s3 large enough, P〈0,0〉 will have no actions, and hence the restraint
set by P〈0,0〉 is finite, and it will not initialize strategies with lower priority. (3)
holds.

For e > 0, we assume that the lemma is true for e′ < e. The proof that the
lemma is true for e is very similar to the proof for the basic case, i.e. e = 0,
and we will assume that after a stage s big enough, no strategies Le′ , Re′ , and
Pe′ can act. Then we can show that after stage s, Le, Re, and Pe will behave
exactly like L0, R0, and P0 above, and hence the lemma is true for e.

This completes the proof of Lemma 1.

By Lemma 1, A is low but not superlow. Lemma 2 below shows that A is
bounded-low.

Lemma 2. A† is ω-c.e., and hence A is bounded-low.

Proof. To show that A† is ω-c.e., we need to show that there is a computable
function bounding the changes of e in A† for all e.

Fix e, and n ≤ e. Then in the construction, whenever we see ϕn(e) converges,
at stage s say, Re acts and initializes all strategies with lower priority. Thus, no
strategy with lower priority can put a number less that ϕn(e) into A later. So
if Φ

A�ϕn(e)
e converges later (e enters A†), this computation can only be changed

by Pe′ -strategies (where e′ < e, which have higher priority) by enumerating
γA

r0
(y)[t] into A. After this, if γA

r0
(y) is defined later, then it will be defined as

a number bigger than ϕn(e). Thus, because of this, Φ
A�ϕn(e)
e is injured at most

e + 1 many times, then A†(e) can change at most 2(e + 1) many times, for this
particular n. Thus, in total, A†(e) can change at most 2(e+1)2 many times, and
A† is ω-c.e.

This completes the proof of Theorem 1.

3 A Bounded-Low Set with Turing Degree 0′

In this section, we give a sketchy proof of Theorem 2. That is, we will construct
a bounded-low c.e. set A Turing computing ∅′. We have seen how to construct
a bounded-low c.e. set in the proof of Theorem1, so to prove Theorem 2, we
only need to show how to make A Turing complete. We will construct a partial
computable functional Γ such that ∅′ = ΓA. Of course, the construction of Γ
will be consistent with the R-strategies of making A bounded-low.

For the construction of Γ , we will make sure that for each e, ΓA(e) is defined
and computes ∅′(e) correctly. The idea of constructing Γ is quite standard. That
is, in the construction, at stage s, we find the least x with ΓA(x) not defined
and define ΓA(x)[s] = ∅′(x)[s] with use γ(x) big, like s. If later, at stage t > s,
x enters ∅′, then at this stage, we enumerate γ(x) into A, undefining ΓA(x). In
general, the construction of Γ satisfies the following rules:
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1. For any x1, x2 with x1 < x2, if ΓA(x2) has definition at stage s, then ΓA(x1)
also has definition at this stage, with uses γ(x1) < γ(x2).

2. For any x1, x2 with x1 < x2, if ΓA(x1) is undefined at stage s, then ΓA(x2)
is also undefined at this stage, due to a number less than γ(x1) enters A.

3. For any x, if ΓA(x) has definition at stage s1 and s2, then γ(x)[s1] ≤ γ(x)[s2],
and if γ(x)[s1] < γ(x)[s2], ΓA(x) must have been undefined between these
two stages.

4. For any x, ΓA(x) can be undefined at most finitely often during the construc-
tion.

5. For any x, ΓA(x) = ∅′(x).

We now show how to modify an Re-strategy in the proof of Theorem1 so
that it is consistent with the rules above. Recall that the Re-strategy can act
finitely many times, and each time when it acts, because of ϕi(e) ↓ for some
i ≤ e, it initializes all strategies with lower priority. To make it consistent with
the construction of Γ , it needs to have an additional action: enumerate γ(e)[s]
into A. This enumeration undefines ΓA(e), so when it is defined again, the use
will be defined as a big number, which is bigger than the value ϕi(e). Thus, for a
fixed e, the membership of e in A† can be changed by Re′ -strategies with e′ ≤ e,
i.e., by further enumerations of the γ-uses, or by rectifying ΓA(x) = 1 when
some x < e enumerating into ∅′, then A†(e) changes at most 2(e + 1)2 many
times, which guarantees that A† is ω-c.e.

We will skip the construction and verification parts, due to the fact that the
construction is an easy finite injury argument.

4 Basic Idea of Proving Theorem3

Fix a c.e. operator W . To prove the first part of Theorem3, we need to build a
bounded-low c.e. set C (i.e., C† is ω-c.e.) such that C ⊕ WC ≡T ∅′. As C will
be c.e., C† has the following natural computable approximations:

fC†(x, s) :=
{

1, if ∃n ≤ x[ϕn(x)[s] ↓ & Φ
C�ϕn(x)
x (x)[s] ↓];

0, otherwise.

Besides the requirements for the standard pseudo-jump inversion theorem, C
will also satisfy the following negative requirements:

Ne : |{s : fC†(e, s) 
= fC†(e, s + 1)}| ≤ 2(e + 1)2 + 1,

and we will call these requirements as bounded-low requirements.
We will build functional Γ such that ΓC⊕W C

= ∅′. If e enters into ∅′, we
will rectify ΓC⊕W C

(e) = 1 by enumerating use γC⊕W C

(e) into C. To make
WC ≤T ∅′ (i.e., WC is Δ0

2), as usual, we will preserve e ∈ WC by setting a
C-restraint ψC(e) if ΨC(e) ↓. As in the standard pseudo-jump inversion theo-
rem, the definition of ΓC⊕W C

(e) is compatible with preserving WC(e). For the
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bounded-low requirement Ne, in order to preserve C†(e), at each stage s, we set
a C-restraint by

rN (e, s) = max{ϕn(e)[s] : n ≤ e & ϕn(e)[s] ↓}.
If ΓC⊕W C

(e)[s] ↓ with use γC⊕W C

(e)[s] ≤ rN (e, s), Ne will put γC⊕W C

(e)[s]
into C, thus making ΓC⊕W C

(e) undefined, and ΓC⊕W C

(e) will be defined with
new use > rN (e, s). Since rN (e, s) can move up at most e + 1 times, Ne will
enumerate at most e + 1 many such uses.

Now computations of the form Φ
C�ϕn(e)
e (e)[s] ↓ (of course, ϕn(e)[s] ↓) for

some n ≤ e are injured at stage s + 1 only if there is some i ≤ e such that
γC⊕W C

(i)[s] ≤ ϕn(e) is enumerated into Cs+1. If ΓC⊕W C

(i) is not defined cur-
rently, it will be defined with a use > ϕn(e). So the enumeration of γC⊕W C

(i)
at a later stage will not injure a new computation of the form Φ

C�ϕn(e)
e (e), which

implies that for fixed i ≤ e and n ≤ e, the enumeration of γC⊕W C

(i)-uses can
injure Φ

C�ϕn(e)
e (e) at most once. Thus, for a fixed n, Φ

C�ϕn(e)
e (e) is injured at

most e + 1 times, as a consequence, the approximations of C†(e) can be injured
at most (e + 1)2 many times. Note that each injury like this entails at most two
changes of fC†(e, s), and hence |{s : fC†(e, s) 
= fC†(e, s + 1)}| ≤ 2(e + 1)2 + 1.
Hence, C† is ω-c.e., i.e., C is bounded-low.

For the second part, we need to build a bounded-high set C (i.e., ∅†† ≤wtt C†)
such that C is ω-c.e., and C ⊕ WC ≡T ∅′. C will be constructed to satisfy the
following requirements:

Pe: ∅′(e) = ΓC⊕W C

(e), where Γ is a partial computable functional built by us.
Qe: ∅††(e) = ΔC†�g(e)(e), where Δ is a partial computable functional built by us

and g is a computable function such that for all e, the use δC†
(e) ≤ g(e).

Re: If there are infinitely many stages s with e ∈ WC [s], then e ∈ WC .

The construction of C is a combination of the bounded-high strategy devel-
oped by Anderson, Csima and Lange in [2] and the proof of Jockusch and Shore’s
pseudo-jump inversion theorem.

For the Pe-strategy, when e enters ∅′, we rectify ΓC⊕W C

(e) = 1 by enumer-
ating the use γC⊕W C

(e) into C. To meet Re, we preserve C �ψC(e)[s] if e enters
WC at stage s, i.e., ΨC(e)[s] ↓ and ΨC(e)[s − 1] ↑. Set a C-restraint

r(e, s) = max{ψC(e)[s′] : s′ ≤ s ∧ ΨC(e)[s′] ↓}.
When r(e, s) increases to a higher level, as in pseudo-jump inversion theorem,
ΓC⊕W C

(j) ↑ for all j ≥ e; we also undefine ΔC†�g(e)(e)-computations by enu-
merating or exacting numbers into C† (we apply recursion theorem here). So
Re can only be injured by Pj ,Qj with j < e. Moreover, due to the feature of
Pj ,Qj-strategies, the number of injuries to Re is recursively bounded.

Now consider the Qe-strategy. ∅†† is ω2-c.e. under the standard notation for
ω2. Then there is a partial computable function χ : ω × ω2 → {0, 1} such that
for each e, there is a least ordinal βe < ω2 such that χ(e, βe) ↓= ∅††(e), and we
also have computable approximations for βe and χ(e, βe). That is,
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– for each e, there is a first stage se and a least ordinal βe,se
= ω · ise

+ jse
< ω2

such that χ(e, βe,se
)[se] ↓; and

– for each e and stage s ≥ se, there is a least ordinal βe,s = ω · ie,s + je,s such
that χ(e, βe,s)[s] ↓.

For convenience, we also choose χ such that:

– for each e and stage s ≥ se, if βe,s 
= βe,s+1, then χ(e, βe,s+1) 
= χ(e, βe,s).
In this case, βe,s+1 < βe,s, that is, either ie,s+1 < ie,s, or ie,s+1 = ie,s with
je,s+1 < je,s.

As χ is partial computable, ise
and jse

are computable functions on e; ie,s and
je,s are computable functions on e, s.

Now βe = lim
s→∞βe,s, and ∅††(e) = lim

s→∞χ(e, βe,s). Based on the approximation

∅††(e)[s] = χ(e, βe,s), we define ΔC†�g(e)(e)[s′] = χ(e, βe,s′). If there is a least
stage s > s′ such that βe,s < βe,s−1 (i.e., ie,s+1 < ie,s, or ie,s+1 = ie,s) or
Qe is injured by higher R-strategies at stage s, then we need to rectify ΔC†

(e)
at stage s by enumerating numbers into C† or extracting numbers out of C†.
We will ensure that the number that ΔC†

(e) will be undefined is recursively
bounded, and then the use δC†

(e) can be bounded by some computable function
g. This shows that ∅†† ≤wtt C†, and hence, C is bounded-high.
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Abstract. We focus our attention onto polynomial-time sub-linear-
space computation for decision problems, which are parameterized by
size parameters m(x), where the informal term “sub linear” means a
function of the form m(x)ε · polylog(|x|) on input instances x for a cer-
tain absolute constant ε ∈ (0, 1) and a certain polylogarithmic func-
tion polylog(n). The parameterized complexity class PsubLIN consists
of all parameterized decision problems solvable simultaneously in poly-
nomial time using sub-linear space. This complexity class is associated
with the linear space hypothesis. There is no known inclusion relation-
ships between PsubLIN and para-NL, where the prefix “para-” indicates
the natural parameterization of a given complexity class. Toward cir-
cumstantial evidences for the inclusions and separations of the asso-
ciated complexity classes, we seek their relativizations. However, the
standard relativization of Turing machines is known to violate the rela-
tionships of L ⊆ NL = co-NL ⊆ DSPACE[O(log2 n)] ∩ P. We instead
consider special oracles, called NL-supportive oracles, which guarantee
these relationships in the corresponding relativized worlds. This paper
vigorously constructs such NL-supportive oracles that generate rela-
tivized worlds where, for example, para-L �= para-NL � PsubLIN and
para-L �= para-NL ⊆ PsubLIN.

Keywords: Supportive oracle · Parameterized decision problem ·
Relativization · Sub-linear space computation · Log-space computation

1 Prelude: Quick Overview

1.1 Size Parameters and Parameterized Decision Problems

Among decision problems computable in polynomial time, nondeterministic
logarithmic-space (or log-space, for short) computable problems are of special
interest, partly because these problems contain practical problems, such as the
directed s-t connectivity problem (DSTCON) and the 2-CNF Boolean formula
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satisfiability problem (2SAT). These problems form a complexity class known as
NL (nondeterministic log-space class).

For many problems, their computational complexity have been discussed,
from a more practical aspect, according to the “size” of particular items of
each given instance. As a concrete example of such a “size”, let us consider an
efficient algorithm of Barnes, Buss, Ruzzo, and Schieber [2] that solves DSTCON
on input graphs of n vertices and m edges simultaneously using (m+n)O(1) time
and n1−c/

√
log n space for an appropriately chosen constant c > 0. In this case,

the number of vertices and the number of edges in a directed graph G are treated
as the “size” or the “basis unit” of measuring the computational complexity of
DSTCON. For an input CNF Boolean formula, in contrast, we can take the
number of variables and the number of clauses as the “size” of the Boolean
formula. In a more general fashion, we denote the “size” of instance x by m(x)
and we call this function m a size parameter of a decision problem L. A decision
problem L together with a size parameter m naturally forms a parameterized
decision problem and we use a special notation (L,m) to describe it.

Throughout this paper, we intend to study the properties of parameterized
decision problems and their collections. Such collections are distinctively called
parameterized complexity classes. To distinguish such parameterized complexity
classes from standard binary-size complexity classes, we often append the term
“para-” as in para-NL and para-L, which are respectively the parameterizations
of NL and L (see Sect. 2 for their formal definitions).

The aforementioned parameterized decision problems (DSTCON,mver) and
(2SAT,mvbl), where mver(·) and mvbl(·) respectively indicate the number of ver-
tices and the number of variables, fall into para-NL [11]. It is, however, unclear
whether we can improve the performance of the aforementioned algorithm of
Barnes et al. to run using only O(mver(x)ε�(|x|)) space for a certain absolute
constant ε ∈ [0, 1) and a certain polylogarithmic (or polylog, for short) function
�. Given a size parameter m(·), the informal term “sub linear” generally refers
to a function of the form m(x)ε · �(|x|) for a certain constant ε ∈ [0, 1) and a
certain polylog function �. We denote by PsubLIN the collection of all parameter-
ized decision problems solved by deterministic Turing machines running simul-
taneously in (|x|m(x))O(1) (polynomial) time using O(m(x)εpolylog(|x|)) (sub-
linear) space [11]. It follows that para-L ⊆ PsubLIN ⊆ para-P. Various sub-linear
reducibilities were further studied in [10] in association with PsubLIN. The linear
space hypothesis (LSH), which is a practical working hypothesis proposed in [11],
asserts that (2SAT3,mvbl) cannot belong to PsubLIN, where 2SAT3 is a variant
of 2SAT with an extra restriction that every 2-CNF Boolean formula given as
an instance must have each variable appearing at most 3 times in the form of
literals. We do not know whether LSH is true or even para-NL � PsubLIN. A
characterization of LSH was given in [12] in connection to state complexity of
finite automata.
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1.2 Relativizations of L, NL, P, and PsubLIN

The current knowledge seems not good enough to determine the exact com-
plexity of PsubLIN in comparison with para-L, para-NL, and para-P. This fact
makes us look for relativizations of these classes by way of forcing underlying
Turing machines to make queries to appropriately chosen oracles. The notion of
relativization in computational complexity theory dates back to an early work of
Baker, Gill, and Solovay [1], who constructed various relativized worlds in which
numerous inclusion and separation relationships among P, NP, and co-NP are
possible. Generally speaking, relativization is a methodology by which we can
argue that a certain mathematical property holds or does not hold in the presence
of external information source, called an oracle. The use of an oracle A creates
a desired relativized world where certain desired conditions, such as PA �= NPA

together with NPA = co-NPA, hold. In a similar vein, we want to discuss the
possibility/impossibility of the inclusion of para-NL in PsubLIN by considering
relativized worlds where various conflicting relationships between para-NL and
PsubLIN hold.

Unlike P and NP, it has been known that there is a glitch in defining the
relativization of NL. Ladner and Lynch [5] first considered relativization of NL
in a way similar to that of Baker, Gill, and Solovay [1]. Despite our knowledge
regarding basic relationships among NL, co-NL, and P, this relativization leads
to the existence of oracles A and B such that NLA � PA and NLB �= co-NLB

although co-NL = NL ⊆ P holds in the unrelativized world. Quite different from
time-bounded oracle Turing machines, there have been several suggested models
for space-bounded oracle Turing machines. Ladner-Lynch relativization does not
always guarantee both relationships NLA ⊆ PA and NLB = co-NLB since certain
oracles A,B refute those relations. This looks like contradicting the fact that,
in the un-relativised world, L ⊆ NL ⊆ P, NL = co-NL, and NL ⊆ LOG2SPACE
hold [3,6,8,9], where LOG2SPACE = DSPACE[O(log2 n)].

Another, more restrictive relativization model was proposed in 1984 by
Ruzzo, Simon, and Tompa [7], where an oracle machine behaves deterministi-
cally while writing a query word on its query tape. More precisely, after a query
tape becomes blank, if the oracle machine starts writing the first symbol of a
query word, then the machine must make deterministic moves until the query
word is completed and an oracle is called. After the oracle answers, the query
tape is automatically erased to be blank again and a tape head instantly jumps
back to the initial tape cell. This restrictive model can guarantee the inclusions
LA ⊆ NLA ⊆ PA for any oracle A; however, it is too restrictive because it leads
to the conclusion that L = NL iff LA = NLA for any oracle A [4].

In this paper, we expect our relativization of an underlying machine to
guarantee that all log-space nondeterministic oracle Turing machines can be
simulated by polynomial-time deterministic Turing machines, yielding three
relationships that para-NLA ⊆ para-PA, para-NLA = co-para-NLA, and
para-NLA ⊆ para-LOG2SPACEA, where para-LOG2SPACE is the parameteri-
zation of LOG2SPACE and co-para-NL is the collection of all (L,m) for which
(L,m) belongs to para-NL.
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In spite of an amount of criticism, relativization remains an important
research subject to pursue. Returning to parameterized complexity classes,
nonetheless, it is possible to consider “conditional” relativizations that support
the aforementioned three relations. To distinguish such relativization from the
ones we have discussed so far, we need a new type of relativization, which we
will explain in the next subsection. In Sect. 5, we will return to a discussion on
the usefulness (and the vindication) of this new relativization.

1.3 Main Contributions

We use the notation PsubLINA to denote the collection of all parameterized
decision problems solvable by oracle Turing machines with adaptive access to
oracle A simultaneously using (|x|m(x))O(1) time and O(m(x)ε�(|x|)) space on
all inputs x for a certain constant ε ∈ [0, 1) and a certain polylog function �.

A key concept of our subsequent discussion is “supportive oracles”. Instead of
restricting the way of accessing oracles (such as non-adaptive queries and limited
number of queries), we use the most natural query mechanism but we force
the oracles to support certain known inclusion relationships among complexity
classes. In this way, an oracle A is said to be NL-supportive if the following
three relations hold: (1) para-LA ⊆ para-NLA ⊆ para-PA, (2) para-NLA =
co-para-NLA, and (3) para-NLA ⊆ para-LOG2SPACEA. Note that Condition
(1) is always satisfied for any oracle A.

We first claim the existence of recursive NL-supportive oracles generating
various relativized worlds where three classes para-L, PsubLIN, and para-P have
specific computational power. Notice that para-LA ⊆ PsubLINA ⊆ para-PA

holds for all oracles A.

Theorem 1. There exist recursive NL-supportive oracles A, B, C, and D
satisfying the following conditions.

1. para-LA = PsubLINA = para-PA.
2. para-LB � PsubLINB � para-PB.
3. para-LC = PsubLINC � para-PC .
4. para-LD � PsubLIND = para-PD.

The difficulty in proving each claim in Theorem1 lies in the fact that we need
to (i) deal with the fluctuations of the values of size parameters of parameterized
decision problems (notice that the standard binary length of inputs is monoton-
ically increasing) and to (ii) satisfy three or four conditions simultaneously for
parameterized complexity classes by avoiding any conflict occurring during the
construction of the desired oracles.

We can prove other relationships among para-L, para-NL, and PsubLIN.
Concerning a question of whether or not para-NL ⊆ PsubLIN, we can present
four different relativized worlds in which para-NL ⊆ PsubLIN and para-NL �
PsubLIN separately hold between para-NL and PsubLIN in relation to para-L.

Theorem 2. There exist recursive NL-supportive oracles A, B, C, and D sat-
isfying the following conditions.



Supportive Oracles for Parameterized Polynomial-Time Sub-Linear-Space 663

1. para-LA = para-NLA = PsubLINA.
2. para-LB = para-NLB � PsubLINB.
3. para-LC �= para-NLC � PsubLINC .
4. para-LD �= para-NLD ⊆ PsubLIND.

The relationships given in Theorems 1 and 2 suggest that any relativizable
proof is not sufficient to separate para-L, para-NL, PsubLIN, and para-P.

2 Preliminaries

We briefly explain basic terminology necessary for the later sections. We use N
to denote the set of all natural numbers (i.e., nonnegative integers) and we set
N+ = N−{0}. Given a number n ∈ N+, [n] expresses the set {1, 2, . . . , n}. In this
paper, all polynomials have nonnegative integer coefficients and all logarithms
are taken to the base 2. We define log∗ n as follows. First, we set log(0) n = n
and log(i+1) n = log(log(i) n) for each index i ∈ N. Finally, we set log∗ n to be
the minimal number k ∈ N satisfying log(k) n ≤ 1.

An alphabet Σ is a nonempty finite set and a string over Σ is a finite sequence
of elements of Σ. A language over Σ is a subset of Σ∗. We freely identify a
decision problem with its associated language over Σ. The length (or size) of a
string x is the total number of symbols in x and is denoted |x|. We write L for
the set Σ∗ −L when Σ is clear from the context. A function f : Σ∗ → Σ∗ (resp.,
f : Σ∗ → N) is polynomially bounded if there exists a polynomial p satisfying
|f(x)| ≤ p(|x|) (resp., f(x) ≤ p(|x|)) for all x ∈ Σ∗.

We use deterministic Turing machines (DTMs) and nondeterministic Turing
machines (NTMs), each of which has a read-only input tape and a rewritable
work tape. If necessary, we also attach a write-only1 output tape. All tapes have
the left endmarker |c and stretch to the right. Additionally, an input tape has the
right endmarker $. When a DTM begins with an initial state and, whenever it
enters a halting state (either an accepting state or a rejecting state), it halts. We
say that a DTM M accepts (resp., rejects) input x if M starts with x written
on an input tape (surrounded by the two endmarkers) and eventually enters an
accepting (resp., a rejecting) state. Similarly, an NTM accepts x if there exists
a series of nondeterministic choices that lead the NTM to an accepting state.
Otherwise, the NTM rejects x. A machine M is said to recognize a language L
if, for all x ∈ L, M accepts x, and for all x ∈ Σ∗ − L, M rejects x.

The notation L (resp., NL) refers to the class of all languages recognized by
DTMs (resp., NTMs) using space O(log n), where “n” is a symbolic input size.
Moreover, P stands for the class of languages recognized by DTMs in time nO(1).
It is known that L ⊆ NL = co-NL ⊆ LOG2SPACE ∩ P [3,6,8,9].

An oracle is an external device that provides useful information to an under-
lying Turing machine, which is known as an oracle Turing machine. In this
paper, oracles are simply languages over a certain alphabet. An oracle Turing
1 A tape is write only if a tape head must move to the right whenever it writes any
non-blank symbol.
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machine M is equipped with an extra query tape, on which the machine writes a
query word, say, w and enters a query state qquery that triggers an oracle query.
We demand that any query tape should be write only because, otherwise, the
query tape can be used as an extra work tape composed of polynomially many
tape cells. Triggered by an oracle query, an oracle X responds by modifying the
machine’s inner state from qquery to either qyes or qno, depending on w ∈ X or
w /∈ X, respectively. Simultaneously, the query tape becomes empty and its tape
head is returned to |c. Given an oracle Turing machine M and an oracle A, the
notation L(M,A) expresses the set of all strings accepted by M relative to A.

A size parameter is a function from Σ∗ to N+ for a certain alphabet Σ. A
log-space size parameter m : Σ∗ → N is a size parameter for which there exists
a DTM M equipped with a write-only output tape that takes a string x ∈ Σ∗

and produces 1m(x) on the output tape using O(log |x|) space. As a special size
parameter, we write “||” to denote the size parameter m defined by m(x) = |x| for
any x. The notation LSP indicates the set of all log-space size parameters. Given
a size parameter m and any index n ∈ N, we set Σn = {x ∈ Σ∗ | m(x) = n}.
Note that Σi ∩ Σj = Ø for any distinct pair i, j ∈ N and that Σ∗ =

⋃
n∈N

Σn.
A pair (L,m) with a decision problem (equivalently, a language) L and a size
parameter m is called a parameterized decision problem and any collection of
parameterized decision problems is called a parameterized complexity class. We
informally use the term “parameterization” for underlying decision problems and
complexity classes if we supplement size parameters to their instances.

As noted in Sect. 1.1, the prefix “para-” is used to distinguish parameter-
ized complexity classes from standard complexity classes. With this conven-
tion, for two functions s and t, the notation para-DTIME,SPACE(t(|x|,m(x)),
s(|x|,m(x))), where “m(x)” in “log m(x)” indicates a symbolic size parameter
m with a symbolic input x, denotes the collection of all parameterized decision
problems with log-space size parameters, each (L,m) of which is solved (or recog-
nized) by a certain DTM M in time O(t(|x|,m(x))) using space O(s(|x|,m(x))).
Its nondeterministic variant is denoted by para-NTIME,SPACE(t(|x|,m(x)),
s(|x|,m(x))). We set para-NL to be

⋃
c∈N

para-NTIME,SPACE((|x|m(x))c,
log |x|m(x)) and para-L to be

⋃
c∈N

DTIME,SPACE((|x|m(x))c, log |x|m(x)).
Moreover, we set para-LOG2SPACE to be para-DTIME,SPACE(|x|log |x|

m(x)log m(x), log2 |x| + log2 m(x)). When we take m(x) = |x|, those param-
eterized complexity classes coincide with the corresponding “standard” com-
plexity classes. In addition, we define PsubLIN as

⋃
c,k∈N,ε∈[0,1) DTIME,SPACE

((|x|m(x))c,m(x)ε logk |x|). Given a parameterized complexity class para-C, its
complement class co-para-C is composed of all parameterized decision problems
(L,m) for which (L,m) belongs to para-C. The relativization of para-NL with
an oracle A is denoted by para-NLA and is obtained by replacing underlying
Turing machines for para-NL with oracle Turing machines. In a similar fashion,
we define para-LA, para-PA, and PsubLINA.

Formally, we introduce the notion of NL-supportive oracles.
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Definition 3. An oracle A is said to be NL-supportive if the following three
conditions hold: (1) para-LA ⊆ para-NLA ⊆ para-PA, (2) para-NLA =
co-para-NLA, and (3) para-NLA ⊆ para-LOG2SPACEA.

Although Condition (1) holds for all oracles A, we include it for a clarity
reason.

In the subsequence sections, we will provide the proofs of Theorems 1 and 2.

3 Proofs of Theorem1

We will give necessary proofs that verify our main theorems. We begin with
proving Theorem 1.

Our goal is to construct oracles A, B, C, and D that satisfy Theorem 1(1)–
(4). Here, we start with the first claim of Theorem 1.

Proof of (1). Note that, if para-LA = para-PA, then A is NL-supportive
because we obtain para-NLA = co-para-NLA = para-LA ⊆ para-LOG2SPACE.
Let A be any P-complete problem (via log-space many-one reductions). We first
claim that para-PA ⊆ para-LA. Since A ∈ P, we obtain para-PA ⊆ para-P. Since
A is P-complete, it follows that para-P ⊆ para-LA, as requested. �	

In the proofs of Theorem1(2)–(4) that will follow shortly, we need several
effective enumerations of pairs consisting of machines and size parameters. First,
let {(Mi,mi)}i∈N+ be an effective enumeration of all such pairs satisfying that,
for each index i ∈ N+, mi is in LSP and Mi is a DTM running in time at most
(|x|mi(x))ci + ci using space at most mi(x)εi logki |x|+ ci on all inputs x and for
all oracles for appropriately chosen constants ki, ei > 0 and εi ∈ [0, 1). Moreover,
let {(Di,mi)}i∈N+ denote an effective enumeration of pairs for which each mi

belongs to LSP and each Di is a DTM running in time at most (|x|mi(x))ai +ai

using space at most ai log |x|mi(x) + ai on all inputs x and for all oracles for a
certain constant ai > 0. Next, we use an effective enumeration {(Pi,mi)}i∈N+ ,
where each mi is in LSP and each DTMs Pi runs in time at most (|x|mi(x))bi+bi

on all inputs x and for all oracles, where bi is an absolute positive constant. We
also assume an effective enumeration {(Ni,mi)}i∈N+ such that, for each i ∈ N+,
mi is in LSP and Ni is an NTM running in time at most (|x|mi(x))ei + ei

using space at most ei log |x|mi(x) + ei on all inputs x and for all oracles for
a certain absolute constant ei > 0. For notational simplicity, we write M to
express an oracle machine obtained from M by exchanging between Qacc and
Qrej . With this notation, each N i relative to oracle A together with mi induces
a parameterized decision problem in co-para-NLA.

Since every log-space size parameter is computed by a certain log-space DTM
equipped with an output tape, we can enumerate all log-space size parameters by
listing all such DTMs as (K1,K2, . . .). For each index i ∈ N+, we write mj for the
size parameter computed by Kj as long as it is obvious from the context. Since
mj is polynomially bounded, it is possible to assume that mj(x) ≤ |x|gj + gj for
all j and x, where gj is an absolute positive constant.
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Our construction of the desired oracles will proceed by stages. To prepare
such stages, for a given finite set Θ ⊆ N+, let us define an index set Λ = {(n, l) |
l ∈ Θ,n ∈ N+} ∪ {0} together with an appropriate effective enumeration of all
elements in Λ defined by the following linear order < on Λ: (1) 0 < t holds for
all t ∈ Λ − {0} and (2) (n′, l′) > (n, l) iff either n′ > n or n′ = n ∧ l′ > l. Given
a number n ∈ N+, let Sn = {(x, i) | x ∈ Σn, i ∈ [log∗ n]} with Σ = {0, 1}. Note
that |Sn| = 2n log∗ n. We also define a linear ordering < on Sn with respect
to {ei}i∈N+ in the following way: letting kx,i = (|x|mi(x))ei + ei, (x, i) < (y, j)
iff one of the following conditions hold: kx,i < ky,j , kx,i = ky,j ∧ i < j, and
kx,i = ky,j ∧ i = j ∧ x < y (lexicographically). According to this ordering <, we
choose all elements of Sn one by one in the increasing order.

Proof of (2). We wish to construct an oracle D that meets the following
four conditions: (i) PsubLINB � para-LB , (ii) para-PB � PsubLINB , (iii)
para-NLB ⊆ para-LOG2SPACEB, and (iv) co-para-NLB ⊆ para-NLB . These
conditions obviously ensure the desired claim of para-LB � PsubLINB �
para-PB .

We want to introduce two example languages for (i) and (ii). First, we set
yj = 10rx−j1j and uj = B(101ix#0yj) for all j ∈ [rx], where rx = �√|x|. We
write u for u1u2 · · · urx

and set LB
1 = {101ix | 101ix#1u ∈ B}. It is not difficult

to show that (LB
1 , ||) belongs to PsubLINB for any oracle B by running the

following algorithm: first produce all words 101ix#0yj one by one, query them
to obtain u from B, remember all answer bits uj , and finally query 101ix#1u.
Similarly, we define y′

j = 10|x|−j1j and uj = B(1201ix#0y′
j) for each j ∈ [|x|]

and set LB
2 = {1201ix | 1201ix#1u′ ∈ B}, where u′ = u1u2 · · · un. Note that

(LB
2 , ||) ∈ para-PB for any oracle B. Through our oracle construction, we will

define two sequences {ns1}s1∈N+ and {n′
s2

}s2∈N+ . For readability, we set kx,i =
(|x|mi(x))ai + ai, k′

x,i = (|x|mi(x))ci + ci, and k′′
x,i = (|x|mi(x))ei + ei for any

x ∈ Σ∗ and i ∈ N+.
In this proof, we set Θ = {1, 2, 3} and define Λ as stated before. For each

t ∈ Λ, we want to construct two sets Bt and Rt. At Stage 0, we set B0 = R0 = Ø
and n0 = n′

0 = 1. Moreover, we set two counters s1 and s2 to 1. In what follows,
we deal with Stage t = (n, l) ∈ Λ and the values of s1 and s2. By induction
hypothesis, we assume that, for all t′ < t, Bt′ and Rt′ have been already defined.
Moreover, we assume that, for all e1 < s1 and e2 < s2, ne1 and n′

e2
have been

appropriately defined. For simplicity, let B′ =
⋃

t′<t Bt′ and R′ =
⋃

t′<t Rt′ .
During the construction process of B, the value of kx,i may fluctuate, depend-

ing on (x, i), and this fact may make many words reserved, leaving no room for
inserting extra strings to define B in (c)–(d). To avoid such a situation, we will
use Sn and its linear ordering < with respect to {ci}i∈N+ . For our convenience, let
Z

(3)
x,n = {1301ix#0k′′

x,iz | |z| = �2 log log n} and Z
(4)
x,n = {1401ix#z | |z| = k′′

x,i}.
(a) Case l = 1. Our target is Condition (i). Consider the size parameter

m(x) = |x|. If n < max{ns1 , n
′
s2

}, then we skip this case and move to Case
l = 2. Now, let us assume otherwise. We try to find a room for diagonalization by
avoiding all the reserved words defined in the previous stages. For this purpose,
we first check whether there exist a number ñ ∈ N+ and a string x ∈ Σñ
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satisfying that (*) maxi∈[log∗ n]{4n2aigi + ai} < ñ ≤ 2n and, for any j ∈ {3, 4},
|R′ ∩Z

(j)
x,ñ|+ |x̃|2ai +ai +rx +1 < ñlog ñ, where x̃ = 101ix. The latter condition is

to make enough room for LB
1 as well as the constructions in (c)–(d). If (*) is not

satisfied for all ñ and x, then we skip this case. Assuming that (*) is satisfied
for certain ñ and x, we fix such a pair (ñ, x) for the subsequent argument.

Take the machine Di and the input x̃ = 101ix. Recall that Di runs in time
at most |x̃|2ai + ai using space at most 2ai log |x̃| + ai. Let R̃t = {101ix#0yj |
j ∈ [rx]}. Although Di may possibly query all words of the form 101ix#0yj

for j ∈ [rx], it cannot remember all oracle answers uj , because the work tape
space of Di is smaller than rx. From this fact and also by (*), there is a set
Bt ⊆ R̃t ∪ {101ix#1u | u = u1 · · · urx

, uj = B′(101ix#0yj), j ∈ [rx]} − R′ for
which DB′∪Bt

i (x̃) �= LB′∪Bt
1 (x̃). We define Rt to include R̃t ∪ Bt, all queried

words of Di on x̃ relative to B′ ∪ Bt, and 101ix#1u, where u = u1 · · · urx
and

uj = B′(101ix#0yj) for all j ∈ [rx]. Note that |R′ ∩ Rt| < ñlog ñ. Before leaving
this case, we set ns1+1 to be ñ and then increment the counter from s1 to s1 +1.

(b) Case l = 2. Hereafter, we try to satisfy Condition (ii). For this purpose,
let us assume that B′ and R′ have been updated. We will make an argument
similar to (a) using LB

2 instead of LB
1 . We skip this case and move to Case l = 3

if n < max{ns1 , n
′
s2

}. Otherwise, we check if there are a number ñ and a string
x ∈ Σñ satisfying that (*) maxi∈[log∗ n]{4n2cigi + ci} < ñ ≤ 2n and |R′ ∩ Z

(j)
x,ñ| +

|x̃|2ci + ciñ + 1 < ñlog ñ for any index j ∈ {3, 4}, where x̃ = 1201ix. If no pair
(ñ, x) satisfies (*), then we skip this case as well. Next, we assume (*) for certain
ñ and x. We consider the machine Mi and feed the input x̃ = 1201ix to Mi. We
then choose a set Bt ⊆ R̃t∪{101ix#1u | u = u1 · · · uñ, uj = B′(1201ix#0yj), j ∈
[ñ]} − R′, where yj = 1ñ−j0j , satisfying MB′∪Bt

i (x̃) �= LB′∪Bt
2 (x̃). Note that Mi

cannot remember all values uj for any j ∈ [ñ] using its work tape because the
work tape space is bounded by |x̃|εi logki |x̃| + ci < ñ. Let Rt be composed of
R̃t, all queried words of Mi on x̃ relative to B′ ∪ Bt, and 1201ix#1u, where
u = u1 · · · uñ and uj = B′(1201ix#0yj) for all j ∈ [ñ]. Finally, we set n′

s2+1 = ñ
and increment the counter from s2 to s2 + 1.

(c) Case l = 3. We target Condition (iii). Consider Sn and its linear ordering
< with respect to {ei}i∈N+ . We inductively choose all pairs (x, i) in Sn one by
one in the increasing order. For each element (x, i), let us consider Ni with x
and B′. For convenience, we write Bt,<(x,i) to denote the union of all Bt,(y,j) for
any (y, j) ∈ Sn with (y, j) < (x, i). Similarly, we write Rt,<(x,i). In this case, we
need to find an appropriate query word deterministically to simulate Ni on x.
Since mi(x) ≤ |x|gi + gi, it follows that k′′

x,i = (|x|mi(x))ei + ei ≤ 4|x|eigi + ei.
We set Wx,i = {1301ix#0k′′

x,iy | |y| = �2 log log |x|}.
Here, we define a new machine Hi as follows. On input w, query all words of

the form 1301iw#0k′′
w,iy for any y of length �2 log log |w|. Note that the number

of different y’s is 2�2 log log |w|	, which is at most 2 log2 |w|. Collect all answers
from an oracle. Let u be the sequence of oracle answers in order. Finally, make a
query of 1301iw#1k′′

w,iu. If the oracle answers YES, accept w; otherwise, reject
w. Take strings of the form 1301ix#0k′′

x,iy in Wx,i so that, for the string u
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obtained from B′ ∪ Bt,<(x,i), 1301ix#1k′′
x,iu is not in R′ ∪ Rt,<(x,i). We include

all those strings into Bt,(x,i). It follows that x ∈ L(Ni, B
′ ∪ Bt,<(x,i) ∪ Bt,(x,i))

iff x ∈ L(Hi, B
′ ∪ Bt,<(x,i) ∪ Bt,(x,i)). Next, we define Rt,(x,i) to include all

queried strings of Ni, {1301ix#0k′′
x,iy | |y| = �2 log log |x|}, and 1301ix#1k′′

x,iu,
where u is the word determined by the query answers. In the end, we set Bt =⋃

(x,i)∈Sn
Bt,(x,i) and Rt =

⋃
(x,i)∈Sn

Rt,(x,i).
(d) Case l = 4. We aim at Condition (iv). Consider Sn and its linear ordering

< with respect to {ci}i∈N+ . Choose all pairs (x, i) ∈ Sn one by one and define
two sets Bt,(x,i) and Rt,(x,i). We run N i on the input x with the oracle C ′. Note
that N i runs in time at most k′′

x,i using space at most ci log |x|mi(x) + ci for all
oracles. Note that k′′

x,i ≤ 4|x|2cigi + ci since mi(x) ≤ |x|gi + gi. Let us consider
the set Vt = {1401ix#z | |z| = k′′

x,i}. Note that the runtime bound of Ni makes it
impossible for N i to query any string in Vt. A new machine Gi is defined to work
as follows: on input w, nondeterministically generate 1401iw#z for all strings
z ∈ Σk′′

w,i and query it. If an oracle answers YES, then accept w; otherwise, reject
w. If (x, i) is the smallest element in Sn, then we set Bt,<(x,i) = Rt,<(x,i) = Ø;
otherwise, we define Rt,<(x,i) =

⋃
(y,j)<(x,i) Rt,(y,j).

We define Bt,(x,i) as follows: if N i accepts x relative to B′, then we set
Bt,(x,i) = {1401ix#zx,i}, where zx,i = min{z ∈ Σk′′

x,i | 1401ix#z /∈ R′ ∪
Rt,<(x,i)}; otherwise, we set Ct,(x,i) = Ø. We define Rt,(x,i) = R′ ∪ {w |
w is queried by N i on x}. It follows by the definition that x ∈ L(N i, B

′ ∪
Bt,<(x,i) ∪ Bt,(x,i)) iff x /∈ L(Gi, B

′ ∪ Bt,<(x,i) ∪ Bt,(x,i)). Before leaving this
case, we set Bt =

⋃
(x,i)∈Sn

Bt,(x,i) and Rt =
⋃

(x,i)∈Sn
Rt,(x,i).

Finally, we define B =
⋃

t∈Λ Bt. By the construction of B, Conditions (i)–(iv)
are all satisfied. �	

The third claim of Theorem1 is proven below.

Proof of (3). To verify the target claim (3), it suffices for us to construct a
set C for which (i) para-PC � PsubLINC , (ii) para-NLC ⊆ para-LC , and (iii)
PsubLINC ⊆ para-LC .

Similar to the proof of (2), we prepare Λ, Sn, Ct, and Rt with a counter s,
starting at s = 1. Let us assume that we reach Stage t = (n, l) ∈ Λ and the
counter has advanced to s. Initially, we set C ′ =

⋃
t′<t Ct′ and R′ =

⋃
t′<t Rt′ .

Case l = 1, which targets Condition (i), is similar to that in the proof of (2).
In what follows, we discuss only Cases l ∈ {2, 3}. For simplicity, we set kx,i =
(|x|mi(x))ei + ei and k′

x,i = (|x|mi(x))ci + ci for any x and i.
(a) Case l = 2. We aim at fulfilling Condition (ii). After treating Case l = 1,

we assume that C ′ and R′ have been properly updated. Using a linear ordering
< on Sn with respect to {ei}i∈N+ , we choose all pairs (x, i) in Sn one by one
in the increasing order. Consider the computation of Ni on the input x in time
at most kx,i using space at most ei log |x|mi(x) + ei. Let Rt,(x,i) denote the set
of all query words of Ni on x relative to C ′ ∪ Ct,<(x,i). Here, we introduce a
new DTM Ei that works as follows. On input w, we make a query of the form
1201iw#0kw,i and accepts (resp., rejects) w if its oracle answer is YES (resp.,
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NO). Define Ct,(x,i) = {1201ix#0kx,i} if Ni accepts x relative to B′ ∪ Ct,<(x,i),
and Ct,(x,i) = Ø otherwise. Since Ni cannot query 120ix#0kx,i , it follows that
x ∈ L(Ni, B

′ ∪ Ct,<(x,i) ∪ Ct,(x,i)) iff x ∈ L(Ei, C
′ ∪ Ct,<(x,i) ∪ Ct,(x,i)).

(b) Case l = 3. Our goal is to meet Condition (iii). Here, we use a linear
ordering < on Sn with respect to {ci}i∈N+ . Similarly to (a), we assume that
B′ and R′ have been properly updated after Case l = 2. Consider Mi and pick
up all pairs (x, i) ∈ Sn one by one in the increasing order according to <. Let
us assume that we have already defined Bt,<(x,i) and Rt,<(x,i). Let Rt,(x,i) be
composed of all query words of Mi on x relative to C ′ ∪ Ct,<(x,i). Since Mi runs
in time at most k′

x,i, we define Ct,(x,i) = {1301ix#0k′
x,i} if Mi accepts x relative

to C ′ ∪ Ct,<(x,i), and Ct,(x,i) = Ø otherwise. Consider a new DTM Fi defined
as follows. On input w, compute k′

w,i, query 131iw#0k′
w,i , accept (resp., reject)

w if the oracle answers YES (resp., NO). We then obtain a relationship that
x ∈ L(Mi, C

′ ∪ Ct,<(x,i) ∪ Ct,(x,i)) iff x ∈ L(Fi, C
′ ∪ Ct,<(x,i) ∪ Ct,(x,i)). Notice

that Fi uses only space O(log k′
x,i).

Finally, we set C =
⋃

t∈Λ Ct. Clearly, Conditions (i)–(iii) are satisfied by this
oracle C. �	

Next, we want to prove Theorem 1(4).

Proof of (4). Our goal of this proof is to construct an oracle D such that
(i) PsubLIND � para-LD, (ii) para-PD ⊆ PsubLIND, (iii) para-NLD ⊆
para-LOG2SPACED, and (iv) co-para-NLD ⊆ para-NLD. A basic idea of con-
structing D is similar to the one used in Theorem 1(2). Cases l ∈ {1, 3, 4}, which
target Conditions (i) and (iii)–(iv), are similar to (2). From Condition (i), it fol-
lows that para-PD � para-LD. At Stage t = (l, i), assume that D′ =

⋃
t′<t Dt′

and R′ =
⋃

t′<t Rt′ have been already defined. Let rx = �√|x|.
(a) Case l = 2. This case is meant to satisfy Condition (ii). We consider Sn

together with a linear ordering < with respect to {bi}i∈N+ , as defined before.
Take all pairs (x, i) one by one. Let kx,i = (|x|mi(x))bi + bi and consider the
machine Pi, which runs on any input x in time at most kx,i. To simulate Pi,
we use the following DTM Hi. On input w, Hi makes queries of the form
1401iw#0kw,iyj with yj = 10rw−j1j for all j ∈ [rw] and collect their oracle
answers uj = D′(1401iw#0kw,iyj). Letting u = u1u2 · · · urw

, Hi then queries the
word 1401iw#1kw,iu to an oracle. If the oracle answers YES, then we accept w;
otherwise, we reject w. This machine Hi is indeed an oracle PsubLIN-machine.

If x is the first string in Σn, then we set Dt,<(x,i) = Rt,<(x,i) = Ø.
If x is not the first element, then we set Dt,<(x,i) as

⋃
y<(x,i) Dt,y and set

Rt,<(x,i) as
⋃

y<(x,i) Rt,y. Let R̃t,x,i = {1401ix#1kx,iyj | j ∈ [rx]}. Since there
is enough room for Dt,(x,i) by Case l = 1, we can choose a set Dt,(x,i) ⊆
R̃t,x,i∪{1401ix#1kx,iu}−R′∪Rt,<(x,i) so that x ∈ L(Pi,D

′∪Dt,<(x,i)∪Dt,(x,i)) iff
x ∈ L(Hi,D

′∪Dt,<(x,i)∪Dt,(x,i)). Finally, we define Rt to include R̃t,x,i∪Dt,(x,i)

and all query words of Pi as well as Hi on x relative to D′ ∪Dt,<(x,i) for all pairs
(x, i) ∈ Sn.

It is not difficult to show that Condition (iv) is satisfied. �	
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Combining all the proofs for (1)–(4), we now complete the proof of Theorem1.

4 Proof of Theorem2

We will verify Theorem 2. In Theorem 1, we utilize the fact that the inclusion rela-
tionship of para-LA ⊆ PsubLINA ⊆ para-PA holds for any oracle A. Unlike this
case, we cannot expect a similar inclusion relationships for para-LA, para-NLA,
and PsubLINA. Since the proof of Theorem2 requires effective enumerations of
various oracle machines, we need to recall from Sect. 3 the effective enumerations
{(Mi,mi)}i∈N+ , {(Di,mi)}i∈N+ , {(Ni,mi)}i∈N+ , and (K1,K2, . . .). Moreover, we
recall two index sets Λ with Θ and Sn with its linear ordering < from Sect. 3.

Proof of (1)–(2). (1) This follows directly from Theorem1(1).
(2) We require the following two conditions: (i) PsubLINB � para-LB and

(ii) para-NLB ⊆ para-LB . Note that Condition (ii) implies that para-NLB =
co-para-NLC = para-LB ⊆ para-LOG2SPACEB. Condition (i) can be dealt with
in a way similar to the proof of Theorem1(2). Condition (ii) is also similar to
the proof of Theorem1(3). �	

Next, we prove the third claim of Theorem2.

Proof of (3). Since para-LC ⊆ PsubLINC holds for any C, para-NLC �
PsubLINC implies that para-LC �= para-NLC . Hence, we demand that the
desired oracle C should satisfy that (i) para-NLC � PsubLINC , (ii) para-NLC ⊆
para-LOG2SPACEC , and (iii) co-para-NLC ⊆ para-NLC . In this proof, we use
an example language LC = {101ix | ∃z ∈ Σ|x|[101ix#z ∈ C]} for an oracle C.
Note that (LC , ||) ∈ para-NLC for any C.

In what follows, we want to construct the desired oracle C by stages. For the
construction of C, we use Θ = {1, 2, 3} and define an index set Λ as done before.
At each stage, we want to define Ct and also define a set Rt of reserved words.
We will define a series {ns}s∈N+ of numbers by stages.

At Stage 0, we set n0 = 0, C0 = R0 = Ø and n0 = 1. We also prepare a
counter s, starting at s = 1. Let us consider Stage t = (n, l) in Λ with a counter
s. We assume that, for all elements t in Λ satisfying t < (n, l), the sets Ct and Rt

have been already defined. Moreover, we have already defined all ne for e < s.
For brevity, let C ′ =

⋃
t<(n,l) Ct and R′ =

⋃
t<(n,l) Rt. We will describe how to

define Ct and Rt depending on the values of l and ns. Cases l ∈ {2, 3}, which
target Conditions (ii)–(iii), are similar to Theorem1(2). Here, we explain only
Case l = 1. Assume that s and ns have been already defined.

(a) Case l = 1. In this case, we will target Condition (i). Take a simple size
parameter m defined by m(x) = |x| for all x. Whenever n < ns, we skip this
case. Next, we assume that n = ns. Let Vx,n = {101ix#z | z ∈ Σn}. Letting
kx,i = (|x|mi(x))ei + ei, we define Z

(2)
x,n = {1201ix#0kx,iz | |z| = �2 log log n}

and Z
(3)
x,n = {1301ix#z | |z| = kx,i}. Check whether there exist a number ñ and

a string x ∈ Σñ such that (*) maxi∈[log∗ n]{4n2cigi + ci} < ñ ≤ 2ns and, for any
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j ∈ {2, 3}, |R′ ∩Z
(j)
x,i |+ |x̃|2ei +ei < ñlog ñ, where x̃ = 101ix. If (*) is not satisfied

for all ñ and x, then we skip this case. Hereafter, we assume that (*) holds for
certain ñ and x ∈ Σñ. take such a pair (x, ñ). We consider Mi, which on input x̃
runs in time at most |x̃|2ei + ei using space at most |x̃|εi logki |x| + ei. Note that
Mi cannot query all strings in Vx,ñ − R′. Our goal is to construct Ct (as well
as Rt) such that x̃ ∈ L(Mi, C

′ ∪ Ct) iff x̃ /∈ LC′∪Ct , where x̃ = 101ix. For this
purpose, we define R̃t to be the set of all queried words of Mi on x̃ relative to C ′.
We also define Ct = {101ix#zx,ñ} with zx,ñ = min{z ∈ Σñ | 101sx#z /∈ R′∪R̃t}
if Mi rejects x̃, and Ct = Ø otherwise. Define Rt = R̃t ∪ Ct. Before leaving this
case, we define ns+1 to be ñ and then increment the counter from s to s + 1.

By the construction of C, Conditions (i)–(iii) are all satisfied. �	
To close the proof of Theorem 2, we will verify the fourth claim of the

theorem.

Proof of (4). Hereafter, we want to show that, for a certain recursive ora-
cle D, (i) para-NLD � para-LD, (ii) para-NLD ⊆ para-LOG2SPACED, (iii)
co-para-NLD ⊆ para-NLD, and (iv) para-NLD ⊆ PsubLIND.

Stage by stage, we will construct the desired oracle D. We use the index set
Λ. Cases l ∈ {2, 3}, which respectively correspond to Conditions (ii)–(iii), are
similar to the ones in the proof of Theorem1(2). Hence, we will target Conditions
(i) and (iv). We will define {ns}s∈N+ , {Dt}t∈Λ, and {Rt}t∈Λ by stages. At Stage
t = (l, i), we assume that all stages t′ < (n, l) have already been processed.
Let D′ =

⋃
t′<t Dt′ and R′ =

⋃
t′<t Rt′ . Let kx,i = (|x|mi(x))ei + ei. We use

LD = {101ix | ∃z ∈ Σ|x|[101ix#z ∈ D]} as an example language. We define
Z

(2)
x,n = {1201ix#0kx,iz | |z| = �2 log log n}, Z

(3)
x,n = {1301ix#z | |z| = kx,i},

Z
(4)
x,n = {1401ix#kx,iyj | yj = 10rx−j1j , j ∈ [rx]}, where rx = �√|x|.

(a) Case l = 1. This case corresponds to Condition (i) and it can be handled
in a way similar to (a) of the proof of (3). Let s be the value of a counter. If n < ns

holds, then we skip this case and move to Case l = 2. Let us assume that n = ns.
Check if there is a pair of ñ and x ∈ Σñ satisfying that (*) maxi∈[log∗ n]{4ncigi +
ci} < ñ ≤ 2ns and, for any index j ∈ {2, 3, 4}, |R′ ∩ Z

(j)
x,ñ| + |x̃|2ai + ai < 2

√
ñ.

Let Vx,ñ = {101ix#z | z ∈ Σñ}. If (*) is not satisfied for all pairs (ñ, x), then
we skip this case and advance to Case l = 2. Next, we assume that (*) holds for
a certain pair (ñ, x). Fix such a pair (x, ñ). Let us consider LD and Mi running
on the input x̃. Let R̃t be composed of all query words of Di on x̃ relative to D′.
It follows that |R̃t| ≤ |x̃|2ai + ai because of the runtime of Mi. We choose the
lexicographically smallest string zx,i in Σ|x̃| satisfying 101ix#z /∈ R′ ∪ R̃t and
define Dt = {101ix#zx,i} if Di rejects x̃, and Dt = Ø otherwise. Finally, we set
Rt = R̃t ∪ Vx,ñ. We also set ns+1 = ñ and update the counter from s to s + 1.

(b) Case l = 4. We aim at Condition (iv). Assume that D′ and R′ have
been already updated. Recall an oracle PsubLIN-machine Hi from the proof of
Theorem 1(4). Here, we use Sn and its linear ordering < with respect to {ei}i∈N+ .
We pick up all pairs (x, i) in Sn one by one in order and assume that Dt,<(x,i) and
Rt,<(x,i) have been defined. The machine Hi in the proof of Theorem1(4) makes
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queries of the form 1401ix#0kx,iyj with yj = 10rx−j1j for all j ∈ [rx], where
rx = �√|x|. Collect their oracle answers uj = D′(1401ix#0yj). Finally, query
the word 1401ix#1kx,iu, where u = u1u2 · · · urx

. If its oracle answer is YES,
then accept x; otherwise, reject x. We define Dt,(x,i) as follows. If Ni rejects
x relative to D′ ∪ Dt,<(x,i), then we choose a set Dt,(x,i) ⊆ {1401ix#0kx,iyj |
j ∈ [rx]} ∪ {1401ix#1kx,iu} − R′ ∪ Rt,<(x,i), where u = u1u2 · · · urx

and uj =
D′(1401ix#0kx,iyj) for all j ∈ [rx], such that x ∈ L(Ni,D

′ ∪ Dt,<(x,i) ∪ Dt,(x,i))
iff x ∈ L(Hi,D

′ ∪ Dt,<(x,i) ∪ Dt,(x,i)). Otherwise, we set Dt,(x,i) = Ø. Since
|R′ ∩{1401ix#z | z ∈ Σ∗}| ≤ |x̃|2ai +ai < 2

√
n by (a), Dt,(x,i) must exist. Before

leaving this case, we set Rt,(x,i) to be the set of all query words of Ni and Hi

on x.
Therefore, Conditions (i)–(iv) are satisfied. �	

5 A Brief Discussion on Supportive Oracles

We have introduced the notion of “NL-supportive oracle” to guarantee the known
inclusion relationships associated with para-NL and thus make the relativization
of para-NL keep its validity and meaningfulness of providing good information
on the structural similarities and differences between para-NL and other param-
eterized complexity classes. With this notion, we have been able to demonstrate
the existence of various relativized worlds in which different inclusion and sepa-
ration relationships occur among four parameterized complexity classes: para-L,
para-NL, PsubLIN, and para-P.

The usefulness of “supportive oracles” can be justified by the following argu-
ment. Take a quick look at a longstanding open problem: the P =?NP problem.
There are known recursive oracles A and B for which PA = NPA and PB �= NPB

[1]. Once either P = NP or P �= NP is proven in the unrelativized world, the cur-
rently known relativization methodology produces a contradicting result against
either P = NP or P �= NP. Therefore, we no longer use the current relativiza-
tion of P and NP for a further study on relativized worlds associated with P
and NP. However, if we consider “NP-supportive oracles”, which supports the
correct relativized relationship of either PA = NPA or PA �= NPA, depending on
either P = NP or P �= NP, then we can avoid any conflicting relativized world
and it thus remains worth investigating the relativization of complexity classes
in relation to P and NP.

We strongly hope that the notion of supportive oracle will prove its impor-
tance in computational complexity.
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Abstract. A dynamic portfolio optimization model with average value-
at-risks is discussed for drastic declines of asset prices. Analytical solu-
tions for the optimization at each time are obtained by mathematical
programming. By dynamic programming, an optimality equation for
optimal average value-at-risks over time is derived. The optimal port-
folios and the corresponding average value-at-risks are given as solutions
of the optimality equation. A numerical example is given to understand
the solutions and the results.

1 Introduction

In financial management, portfolio allocation is important technique to hedge
risks and it is useful to make asset management stable. Markowitz’s mean-
variance model in classical portfolio theory is studied by many researchers, and
the variance, i.e., volatility, is strongly related to risks in portfolio allocation
[6,8,10,11]. Recently, value-at-risk (VaR) is used widely in financial manage-
ment to estimate the risk of worst-scenarios. VaR is a risk-sensitive criterion
based on percentiles, and it is one of the standard criteria in practical asset man-
agement [5,7,13,14]. VaR detects drastic declines of asset prices and it is useful
to get rid of bad scenarios in investment, however it does not have coherency.
Coherent risk measures have been studied to improve the criterion of risks with
worst scenarios [1], and several improved risk measures based on value-at-risks
are proposed: For example, conditional value-at-risk, expected shortfall, entropic
value-at-risk, exponential type spectral measure [3,4,9,12]. Average value-at-risk
(AVaR), which is defined by VaR, is a coherent risk measure and it has good
properties [1].

In this paper, we deal with a dynamic portfolio optimization problem with
AVaR as a risk measure. To discuss worst-scenarios, at each time drastic declines
of asset prices are estimated using AVaR and their total estimation, which is
different from [13,14,16], is defined from worst values of AVaRs over time. Port-
folio optimization at each time is solved by mathematical programming, and we
obtain analytical solutions. Introducing AVaR based on conditional probabil-
ity, dynamic optimization is discussed by dynamic programming, and we derive
c© Springer Nature Switzerland AG 2019
T. V. Gopal and J. Watada (Eds.): TAMC 2019, LNCS 11436, pp. 674–683, 2019.
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the optimality equation and the optimal solution for the proposed problem. A
numerical example is given to understand the obtained results.

2 A Dynamic Portfolio Model

Let R = (−∞,∞) and let (Ω,M, P ) be a probability space, where M is a σ-field
and P is a non-atomic probability on a sample space Ω. Let X be the set of all
integrable M-adapted real-valued random variables X on Ω with a continuous
distribution function x �→ FX(x) = P (X < x) for which there exists a non-empty
open interval I such that FX(·) : I → (0, 1) is strictly increasing and onto. Then
there exists a strictly increasing and continuous inverse function F−1

X : (0, 1) → I.
Value-at-risk (VaR) at a positive probability p is given by the percentile of the
distribution function FX , i.e. VaRp(X) = sup{x ∈ I | FX(x) ≤ p} for p ∈ (0, 1)
and VaR1(X) = sup I. Hence we have VaRp(X) = F−1

X (p) for p ∈ (0, 1). Then
average value-at-risk (AVaR) at a positive probability p is given by

AVaRp(X) =
1
p

∫ p

0

VaRq(X) dq. (1)

The following lemma is easily checked from [1,15].

Lemma 1. Let a probability p ∈ (0, 1] and let random variables X,Y ∈ X . Then
the average value-at-risk AVaRp has the following properties:

(i) If X ≤ Y , then AVaRp(X) ≤ AVaRp(Y ). (monotonicity)
(ii) AVaRp(cX) = cAVaRp(X) for c > 0. (positive homogeneity)
(iii) AVaRp(X + c) = AVaRp(X) + c for c ∈ R. (translation invariance)
(iv) AVaRp(X + Y ) ≥ AVaRp(X) + AVaRp(Y ). (super-additivity)

It is known that −AVaRp is a coherent risk measure but−VaRp is not coherent
[1] because VaRp does not have super-additivity in Lemma1. To discuss the
dynamics, we introduce AVaR based on conditional expectations. Let G be a
sub-σ-field of M and let E( · | G) be the conditional expectation. Define a map
x �→ FX(x | G) = P (X < x | G) = E(1{X<x} | G), where 1Γ denotes the
characteristic function of a M-measurable set Γ . Then we define VaR of X(∈ X )
under condition G by VaRp(X | G) = sup{x ∈ I | FX(x | G) ≤ p} for a
probability p ∈ (0, 1) and VaR1(X | G) = sup I. Further AVaR under condition
G is also given by AVaRp(X | G) = 1

p

∫ p

0
VaRq(X | G) dq for p ∈ (0, 1], and then

we can easily check VaRp(X | G) and AVaRp(X | G) are G-measurable random
variables. Here the following lemma holds from [14].

Lemma 2. Let p ∈ (0, 1] and let G be a sub-σ-field generated by Z and assume
Y and G are independent. Then AVaRp(· | G) has the following properties:

(i) AVaRp(Y | G) = AVaRp(Y ).
(ii) AVaRp(Z | G) = Z.
(iii) AVaRp(ZX | G) = ZAVaRp(X | G) if Z ≥ 0.
(iv) AVaRp(X + Z | G) = AVaRp(X | G) + Z.
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3 A Dynamic AVaR Allocation for Worst Scenarios

We deal with a portfolio optimization model with n risky assets and an expiration
date T , where n and T are positive integers. For an asset i = 1, 2, · · · , n, an
asset price process {Si

t}T
t=0 is given by the rate of return Ri

t(∈ X ) which satisfies
1 + Ri

t ≥ 0 and
Si

t = Si
t−1(1 + Ri

t) (2)

for t = 1, 2, · · · , T . Let Mt be a σ-field generated by random variables Si
s (s =

1, 2, · · · , t; i = 1, 2, · · · , n) for t ≥ 1 and let M0 = {∅, Ω}. We assume Ri
t is inde-

pendent of the past information Mt−1 for t = 1, 2, . . . , T and i = 1, 2, · · · , n.
Let a set of vectors W = {(w1, w2, . . . , wn) ∈ Rn | ∑n

i=1 wi = 1 and wi ≥
0 (i = 1, 2, · · · , n)}. Trading strategies are given by portfolio weight vectors
(w1, w2, · · · , wn) ∈ W. Let time t = 1, 2, . . . , T . Then the rate of return with a
portfolio (w1

t , w2
t , · · · , wn

t ) ∈ W is given by

Rt =
n∑

i=1

wi
tR

i
t, (3)

and we give the asset price with portfolio (w1
t , w2

t , · · · , wn
t ) ∈ W as follows

St = St−1

n∑
i=1

wi
t(1 + Ri

t) = St−1(1 + Rt), (4)

where the initial asset price is given by S0 = 1 for simplicity. This paper
discusses drastic declines of asset prices in stock markets. Let a portfolio
(w1

t , w2
t , · · · , wn

t ) ∈ W. The theoretical bankruptcy at time t occurs on scenarios
ω satisfying St−1(ω) > 0 and St(ω) ≤ 0, i.e. it follows 1 + Rt(ω) ≤ 0 from (4).
Similarly, for a constant δ ∈ [0, 1], a set of sample paths {ω ∈ Ω | 1 + Rt(ω) ≤
1 − δ} = {ω ∈ Ω | Rt(ω) ≤ −δ} is the scenarios where the asset price St will fall
to lower than 100(1−δ)% of the current price St−1, i.e. the rate is 100 δ %-falling.
The parameter δ is called the rate of falling. Then the probability of falling is

p = P (Rt ≤ −δ). (5)

For example, p denotes the probability of the falling below par value if ‘δ = 0’
and it indicates the probability of the bankruptcy if ‘δ = 1’. From (5), for a
probability p, the rate of falling is

δ = −VaRp(Rt) (6)

since P is non-atomic. This paper discusses the minimization of the rate of
falling (6), i.e. the maximization of AVaR. In this paper, we deal with a case
where VaRp(Rt) in (6) has the following representation.

(VaR) = (the mean) − (a positive constant κ(p))
× (the standard deviation), (7)
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where the positive constant κ(p) is given corresponding to probability p. Equa-
tion (7) holds if the rates of return Ri

t have normal distributions [2,7]. Estimat-
ing the total risks over time, we discuss the following dynamic portfolio problem
regarding AVaR under information {Mt−1}T

t=1. Let a discount rate β be a pos-
itive constant.

Problem 1. Maximize the total AVaR

T∧
t=1

βt−1E(AVaRp(St | Mt−1)) (8)

with portfolio weights (w1
t , w2

t , · · · , wn
t ) ∈ W (t = 1, 2, · · · , T ), where

∧T
t=1 =

minT
t=1.

This term implies the total risk of worst scenarios which occur on the tran-
sition from time t − 1 to time t. In (4), portfolio weights (w1

t , w2
t , · · · , wn

t ) ∈ W
are decided sequentially and predictably, and then 1 + Rt = 1 +

∑n
i=1 wi

tR
i
t is

nonnegative and independent of the past information Mt−1 for t = 1, 2, · · · .T .
By applying (4) and Lemma 2 to (8), we can easily check (8) follows

T∧
t=1

βt−1
t−1∏
s=1

(1 + E(Rs)) · (1 + AVaRp(Rt)). (9)

Because 1 + E(Rt) = 1 +
∑n

i=1 wi
tE(Ri

t) ≥ 0 for t = 1, 2, · · · , T , by dynamic
programming we obtain the following equations from (9).

Theorem 1. Let {vt} be a sequence defined inductively by the following back-
ward optimality equations:

vt = max
(w1

t ,··· ,wn
t )∈W

min

{
1 + AVaRp

(
n∑

i=1

wi
tR

i
t

)
,

(
1 +

n∑
i=1

wi
tE(Ri

t)

)
βvt+1

} (10)

for t = 1, 2, · · · , T − 1, and

vT = max
(w1

T ,··· ,wn
T )∈W

(
1 + AVaRp

(
n∑

i=1

wi
T Ri

T

))
. (11)

Then v1 is the optimal total AVaR in Problem 1.

4 Optimal Portfolios for AVaR at Each Time

We estimate the rate of return with portfolios based on fundamental results in
[13,14], which have investigated quite different criteria from Problem1. Let the
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mean and the covariance of the rate of return Ri
t respectively by μi

t = E(Ri
t)

and σij
t = E((Ri

t − μi
t)(R

j
t − μj

t )) for i, j = 1, 2, · · · , n. Let vectors, matrix and
real numbers

μt =

⎡
⎢⎢⎢⎣

μ1
t

μ2
t
...

μn
t

⎤
⎥⎥⎥⎦ , Σt =

⎡
⎢⎢⎢⎣

σ11
t σ12

t · · · σ1n
t

σ21
t σ22

t · · · σ2n
t

...
...

. . .
...

σn1
t σn2

t · · · σnn
t

⎤
⎥⎥⎥⎦ ,1 =

⎡
⎢⎢⎢⎣

1
1
...
1

⎤
⎥⎥⎥⎦ ,

At = 1TΣ−1
t 1, Bt = 1TΣ−1

t μt, Ct = μT
tΣ

−1
t μt and Δt = AtCt − B2

t , where
T denotes the transpose of a vector. We assume the determinant of variance-
covariance matrix Σt is not zero and then there exists its inverse positive
definite matrix Σ−1

t and we have At > 0 and Δt > 0. This assumption
is natural since they can be realized easily by taking care of the combina-
tions of assets. For a portfolio (w1

t , w2
t , · · · , wn

t ) ∈ W, the expectation and
the variance of the rate of return Rt =

∑n
i=1 wi

tR
i
t with the portfolio are

calculated respectively as follows: E(Rt) =
∑n

i=1 wi
tE(Ri

t) =
∑n

i=1 wi
tμ

i
t and

E((Rt − E(Rt))2) =
∑n

i=1

∑n
j=1 wi

tw
j
t σ

ij
t . Therefore, from (1) and (7), AVaR of

the rate of return Rt is evaluated as

AVaRp(Rt) =
n∑

i=1

wi
tμ

i
t − κ

√√√√ n∑
i=1

n∑
j=1

wi
tw

j
t σ

ij
t (12)

for p ∈ (0, 1] with a positive constant κ = 1
p

∫ p

0
κ(q) dq. Now step by step we

discuss a portfolio problem to minimize the risk values. For a constant γ ∈ R,
first we deal with the following quadratic program.

Problem 2. Minimize the variance
n∑

i=1

n∑
j=1

wiwjσij
t

with respect to portfolios (w1
t , w2

t , · · · , wn
t )∈W under a condition

∑n
i=1 wi

tμ
i
t = γ.

Problem 2 has the following solutions [14].

Lemma 3. The minimum variance for Problem2 is

Atγ
2 − 2Btγ + Ct

Δt

with an optimal portfolio

wt = ξtΣ
−1
t 1 + ηtΣ

−1
t μt,

where ξt = Ct−Btγ
Δt

and ηt = Atγ−Bt

Δt
.
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Next we discuss the following risk-sensitive portfolio problem.

Problem 3. Maximize the average value-at-risks of the rate of return

AVaRp(Rt) =
n∑

i=1

wi
tμ

i
t − κ

√√√√ n∑
i=1

n∑
j=1

wi
tw

j
t σ

ij
t

with respect to portfolios (w1
t , w2

t , · · · , wn
t )∈W under a condition

∑n
i=1 wi

tμ
i
t = γ.

Then the following lemma holds from Lemma3.

Lemma 4. Let κ satisfy κ2 > Δt/At. The optimal average value-at-risk for
Problem 3 is

sup
wt∈W:

∑n
i=1 wi

tμ
i
t=γ

AVaRp(Rt) = γ − κ

√
Atγ2 − 2Btγ + Ct

Δt
. (13)

Hence we can easily check the following lemma for (13) [13,14].

Lemma 5. If κ satisfies κ2 > Δt/At, then a function

γ(∈ R) �→ γ − κ

√
Atγ2 − 2Btγ + Ct

Δt

is concave and it has the maximum

Bt − √
Atκ2 − Δt

At

at
γ =

Bt

At
+

Δt

At

√
Atκ2 − Δt

.

Finally we discuss the following problem.

Problem 4. Maximize the average value-at-risks of the rate of return

AVaRp(Rt) =
n∑

i=1

wi
tμ

i
t − κ

√√√√ n∑
i=1

n∑
j=1

wi
tw

j
t σ

ij
t

with portfolio weights (w1
t , w2

t , · · · , wn
t ) ∈ W.

Since we have

sup
w∈W

(12) = sup
γ

( inf
w∈W:

∑n
i=1 wi

tμ
i
t=γ

(12)) = sup
γ

(13),

by Lemmas 3, 4 and 5 we arrive at the following analytical solutions for Prob-
lem 4.



680 Y. Yoshida and S. Kumamoto

Lemma 6. Let κ satisfy κ2 > Δt/At. Then the optimal average value-at-risk
for Problem 4 is

Bt − √
Atκ2 − Δt

At
(14)

at the expected rate of return

γ◦
t =

Bt

At
+

Δt

At

√
Atκ2 − Δt

. (15)

The corresponding optimal portfolio is given by

w◦
t = ξ◦

t Σ−1
t 1 + η◦

t Σ−1
t μt, (16)

where ξ◦
t = Ct−Btγ

◦
t

Δt
and η◦

t = Atγ
◦
t −Bt

Δt
.

5 Dynamic Optimal Portfolio Optimization with AVaRs

From (12), Theorem 1 is written as the followings.

Theorem 2. Let {vt} be a sequence defined inductively by the following back-
ward optimality equations:

vt = max
(w1

t ,··· ,wn
t )∈W

min

{
1 +

n∑
i=1

wi
tμ

i
t

−κ

√√√√ n∑
i=1

n∑
j=1

wi
tw

j
t σ

ij
t ,

(
1 +

n∑
i=1

wi
tμ

i
t

)
βvt+1

⎫⎬
⎭

(17)

for t = 1, 2, . . . , T − 1, and

vT = max
(w1

T ,··· ,wn
T )∈W

⎧⎨
⎩1 +

n∑
i=1

wi
T μi

T − κ

√√√√ n∑
i=1

n∑
j=1

wi
T wj

T σij
T

⎫⎬
⎭. (18)

Then v1 is the optimal total AVaR in Problem 1.

In Theorem 2, we have the optimal solution for (18) from Lemma 6 and we
can obtain the optimal solution for (17) with a condition

∑n
i=1 wi

tμ
i
t = γ in a

similar way to Lemma 5. Then Theorem 2 is represented as follows.

Theorem 3. Assume At > 0, Bt > 0, Δt > 0 and κ2 > Δt/At for t =
1, 2, · · · , T . Let {γ∗

t } and {vt} be sequences defined inductively by the following
backward optimality equations:

γ∗
t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bt

At
+ Δt

At

√
Atκ2−Δt

if At + 2Bt + Ct ≤ κ2

(1−βvt+1)2

max
l=1,2

Bt+Γt+(−1)l
√

(At+2Bt+Ct)Γt−Δt

At−Γt

if At + 2Bt + Ct > κ2

(1−βvt+1)2
and At 
= Γt

Ct−At

2(At+Bt)

if At + 2Bt + Ct > κ2

(1−βvt+1)2
and At = Γt,

(19)
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vt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

At+Bt−
√

Atκ2−Δt

At

if At + 2Bt + Ct ≤ κ2

(1−βvt+1)2

(1 + γ∗
t ) βvt+1

otherwise

(20)

for t = 1, 2, · · · , T − 1, and

vT = 1 +
BT − √

AT κ2 − ΔT

AT
, (21)

where Γt = Δt(1−βvt+1)
2

κ2 for t = 1, 2, · · · , T . Then v1 is the optimal AVaR for
Problem 1.

Corollary 1. The optimal portfolio in Theorem3 is given by

w∗
t = ξ∗

t Σ−1
t 1 + η∗

t Σ−1
t μt (22)

for t = 1, 2, · · · , T , where γ∗
t is the expected rate of return (19), ξ∗

t = Ct−Btγ
∗
t

Δt

and η∗
t = Atγ

∗
t −Bt

Δt
.

Table 1. Expected returns μt and variance-covariance matrix Σt

μi
t σij

t j = 1 j = 2 j = 3 j = 4

i = 1 0.07 i = 1 0.35 0.06 0.08 −0.07

i = 2 0.06 i = 2 0.06 0.37 −0.09 0.08

i = 3 0.09 i = 3 0.08 −0.09 0.34 −0.05

i = 4 0.08 i = 4 −0.07 0.08 −0.05 0.38

0 5 10 15 20

0.2

0.4

0.6

0.8

1.0

0 t

Fig. 1. Dynamic minimum average value-at-risks vt
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6 A Numerical Example

In this section, we give a numerical example for the previous sections. We assume
Ri

t obeys the following distributions, and then the constant κ = 1
p

∫ p

0
κ(q) dq in

(12) is given by κ(p) = Φ−1(p) for p ∈ (0, 1), where Φ is the cumulative function
of the standard normal distribution function

Φ(x) =
1√
2π

∫ x

−∞
e− z2

2 dz (23)

for x ∈ R. We discuss a case of less than 3% part of the normal distribu-
tion, i.e. p = 0.03, and then κ = 2.26807. We deal with 4 assets, i.e. n = 4,
and we give a vector of expected rates of return μt = [μi

t] and a variance-
covariance matrix Σ = [σij

t ] by Table 1. At time t the constants At, Bt, Ct,Δt

are calculated as follows: At = 1TΣ−1
t 1 = 11.2675, Bt = 1TΣ−1

t μt = 0.863449,
Ct = μT

tΣ
−1
t μt = 0.0674479 and Δt = AtCt − B2

t = 0.0144207. By Lemma 6, we
easily obtain the optimal portfolio w◦ = (0.193092, 0.222821, 0.318765, 0.265323)
for Problem4, and the corresponding average value-at-risk (14) = −0.598968,
which implies average rate of falling is 59.8968%, and the expected rate of return
γ◦

t = 0.0768003.
Next we investigate dynamic solutions for Problem1. Let a discount rate

β = 0.95, and let a terminal time T = 20. In dynamic case, vt is the minimum
regarding average value-at-risk between current time t and the terminal time
T . By Theorem 3 we observe dynamic movement of {vt} in Fig. 1 and we get
v1 = 0.243751 for Problem1.
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Abstract. Translating formulas of Linear Temporal Logic (ltl) over
finite traces, or ltlf , to symbolic Deterministic Finite Automata (DFA)
plays an important role not only in ltlf synthesis, but also in synthe-
sis for Safety ltl formulas. The translation is enabled by using MONA,
a powerful tool for symbolic, BDD-based, DFA construction from logic
specifications. Recent works used a first-order encoding of ltlf formulas
to translate ltlf to First Order Logic (fol), which is then fed to MONA
to get the symbolic DFA. This encoding was shown to perform well, but
other encodings have not been studied. Specifically, the natural ques-
tion of whether second-order encoding, which has significantly simpler
quantificational structure, can outperform first-order encoding remained
open.

In this paper we address this challenge and study second-order encod-
ings for ltlf formulas. We first introduce a specific mso encoding that
captures the semantics of ltlf in a natural way and prove its correct-
ness. We then explore is a Compact mso encoding, which benefits from
automata-theoretic minimization, thus suggesting a possible practical
advantage. To that end, we propose a formalization of symbolic DFA in
second-order logic, thus developing a novel connection between BDDs
and mso. We then show by empirical evaluations that the first-order
encoding does perform better than both second-order encodings. The
conclusion is that first-order encoding is a better choice than second-
order encoding in ltlf -to-Automata translation.

1 Introduction

Synthesis from temporal specifications [23] is a fundamental problem in Artificial
Intelligence and Computer Science [8]. A popular specification is Linear Tempo-
ral Logic (ltl) [24]. The standard approach to solving ltl synthesis requires,
however, determinization of automata on infinite words and solving parity games,
both challenging algorithmic problems [17]. Thus a major barrier of temporal
synthesis has been algorithmic difficulty. One approach to combating this dif-
ficulty is to focus on using fragments of ltl, such as the GR(1) fragment, for
which temporal synthesis has lower computational complexity [1].

A new logic for temporal synthesis, called ltlf , was proposed recently
in [6,8]. The focus there is not on limiting the syntax of ltl, but on inter-
preting it semantically on finite traces, rather than infinite traces as in [24].
c© Springer Nature Switzerland AG 2019
T. V. Gopal and J. Watada (Eds.): TAMC 2019, LNCS 11436, pp. 684–705, 2019.
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Such interpretation allows the executions being arbitrarily long, but not infi-
nite, and is adequate for finite-horizon planning problems. While limiting the
semantics to finite traces does not change the computational complexity of tem-
poral synthesis (2EXPTIME), the algorithms for ltlf are much simpler. The
reason is that those algorithms require determinization of automata on finite
words (rather than infinite words), and solving reachability games (rather than
parity games) [8]. Another application, as shown in [30], is that temporal syn-
thesis of Safety ltl formulas, a syntactic fragment of ltl expressing safety
properties, can be reduced to reasoning about finite words (see also [18,19]).
This approach has been implemented in [31] for ltlf synthesis and in [30] for
synthesis of Safety ltl formulas, and has been shown to outperform existing
temporal-synthesis tools such as Acacia+ [2].

The key algorithmic building block in these approaches is a translation of
ltlf to symbolic Deterministic Finite Automata (DFA) [30,31]. In fact, translat-
ing ltlf formula to DFA has other algorithmic applications as well. For example,
in dealing with safety properties, which are arguably the most used temporal
specifications in real-world systems [18]. As shown in [28], model checking of
safety properties can benefit from using deterministic rather than nondetermin-
isic automata. Moreover, in runtime verification for safety properties, we need to
generate monitors, a type of which are, in essence, deterministic automata [29].
In [28,29], the translation to deterministic automata is explicit, but symbolic
DFAs can be useful also in model checking and monitor generation, because
they can be much more compact than explicit DFAs, cf. [31].

The method used in [30,31] for the translation of ltlf to symbolic DFA used
an encoding of ltlf to First-Order Logic (fol) that captures directly the seman-
tics of temporal connectives, and MONA [13], a powerful tool, for symbolic DFA
construction from logical specifications. This approach was shown to outperform
explicit tools such as SPOT [12], but encodings other than the first-order one have
not yet been studied. This leads us here to study second-order translations of
ltlf , where we use Monadic Second Order (mso) logic of one successor over finite
words (called M2L-STR in [16]). Indeed, one possible advantage of using mso is
the simpler quantificational structure that the second-order encoding requires,
which is a sequence of existential monadic second-order quantifiers followed by
a single universal first-order quantifier. Moreover, instead of the syntax-driven
translation of first-order encoding of ltlf to fol, the second-order encoding
employs a semantics-driven translation, which allows more space for optimiza-
tion. The natural question arises whether second-order encoding outperforms
first-order encoding.

To answer this question, we study here second-order encodings of ltlf formu-
las. We start by introducing a specific second-order encoding called mso encod-
ing that relies on having a second-order variable for each temporal operator
appearing in the ltlf formula and proving the correctness. Such mso encod-
ing captures the semantics of ltlf in a natural way and is linear in the size of
the formula. We then introduce a so called Compact mso encoding, which cap-
tures the tight connection between ltlf and DFAs. We leverage the fact that
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while the translation from ltlf to DFA is doubly exponential [18], there is an
exponential translation from Past ltlf to DFA (a consequence of [5,6]). Given
an ltlf formula φ, we first construct a DFA that accepts exactly the reverse
language satisfying models(φ) via Past ltlf . We then encode this DFA using
second-order logic and “invert” it to get a second-order formulation for the orig-
inal ltlf formula. Applying this approach directly, however, would yield an mso
formula with an exponential (in terms of the original ltlf formula) number of
quantified monadic predicates. To get a more compact formulation we can ben-
efit from the fact that the DFA obtained by MONA from the Past ltlf formula
is symbolic, expressed by binary decision diagrams (BDDs) [14]. We show how
we can obtain a Compact mso encoding directly from these BDDs. In addition,
we present in this paper the first evaluation of the spectrum of encodings for
ltlf -to-automata from first-order to second-order.

To perform an empirical evaluation of the comparison between first-order
encoding and second-order encoding of ltlf , we first provide a broad investi-
gation of different optimizations of both encodings. Due to the syntax-driven
translation of fol encoding, there is limit potential for optimization such that
we are only able to apply different normal forms to ltlf formulas, which are
Boolean Normal Form (bnf) and Negation Normal Form (nnf). The semantics-
driven translation of second-order encoding, however, enables more potential
for optimization than the fol encoding. In particular, we study the following
optimizations introduced in [21,22]: in the variable form, where a Lean encoding
introduces fewer variables than the standard Full encoding; and in the constraint
form, where a Sloppy encoding allows less tight constraints than the standard
Fussy encoding. The main result of our empirical evaluations is the superiority
of the first-order encoding as a way to get MONA to generate a symbolic DFA,
which answers the question of whether second-order outperforms first-order for
ltlf -to-automata translation.

The paper is organized as follows. In Sect. 2 we provide preliminaries
and notations. Section 3 introduces mso encoding and proves the correctness.
Section 4 describes a more compact second-order encoding, called Compact mso
encoding and proves the correctness. Empirical evaluation results of different
encodings and different optimizations are presented in Sect. 5. Finally, Sect. 6
offers concluding remarks.

2 Preliminaries

2.1 LTLf Basics

Linear Temporal Logic over finite traces (ltlf ) has the same syntax as ltl [6].
Given a set P of propositions, the syntax of ltlf formulas is as follows:

φ ::= � | ⊥ | p | ¬φ | φ1 ∧ φ2 | Xφ | φ1Uφ2

where p ∈ P. We use � and ⊥ to denote true and false respectively. X (Next) and
U (Until) are temporal operators, whose dual operators are N (Weak Next) and
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R (Release) respectively, defined as Nφ ≡ ¬X¬φ and φ1Rφ2 ≡ ¬(¬φ1U¬φ2).
The abbreviations (Eventually) Fφ ≡ �Uφ and (Globally) Gφ ≡ ⊥Rφ are
defined as usual. Finally, we have standard boolean abbreviations, such as ∨
(or) and → (implies).

Elements p ∈ P are atoms. A literal l can be an atom or the negation of
an atom. A trace ρ = ρ[0], ρ[1], . . . is a sequence of propositional assignments,
where ρ[x] ∈ 2P (x ≥ 0) is the x-th point of ρ. Intuitively, ρ[x] is the set of
propositions that are true at instant x. Additionally, |ρ| represents the length
of ρ. The trace ρ is an infinite trace if |ρ| = ∞ and ρ ∈ (2P)ω; otherwise ρ is
finite, and ρ ∈ (2P)∗. ltlf formulas are interpreted over finite traces. Given a
finite trace ρ and an ltlf formula φ, we inductively define when φ is true for ρ
at point x (0 ≤ x < |ρ|), written ρ, x |= φ, as follows:

– ρ, x |= � and ρ, x �|= ⊥;
– ρ, x |= p iff p ∈ ρ[x];
– ρ, x |= ¬φ iff ρ, x �|= φ;
– ρ, x |= φ1 ∧ φ2, iff ρ, x |= φ1 and ρ, x |= φ2;
– ρ, x |= Xφ, iff x + 1 < |ρ| and ρ, x + 1 |= φ;
– ρ, x |= φ1Uφ2, iff there exists y such that x ≤ y < |ρ| and ρ, y |= φ2, and for

all z, x ≤ z < y, we have ρ, z |= φ1.

An ltlf formula φ is true in ρ, denoted by ρ |= φ, when ρ, 0 |= φ. Every
ltlf formula can be written in Boolean Normal Form (bnf) or Negation Normal
Form (nnf) [27]. bnf rewrites the input formula using only ¬, ∧, ∨, X, and U .
nnf pushes negations inwards, introducing the dual temporal operators N and
R, until negation is applied only to atoms.

2.2 Symbolic DFA and MONA

We start by defining the concept of symbolic automaton [31], where a boolean
formula is used to represent the transition function of a Deterministic Finite
Automaton (DFA). A symbolic deterministic finite automaton (Symbolic DFA)
F = (P,X ,X0, η, f) corresponding to an explicit DFA D = (2P , S, s0, δ, F ) is
defined as follows:

– P is the set of atoms;
– X is a set of state variables where |X | = log2 |S|�;
– X0 ∈ 2X is the initial state corresponding to s0;
– η : 2X × 2P → 2X is a boolean transition function corresponding to δ;
– f is the acceptance condition expressed as a boolean formula over X such that

f is satisfied by an assignment X iff X corresponds to a final state s ∈ F .

We can represent the symbolic transition function η by an indexed family
ηq : 2X × 2P → {0, 1} for xq ∈ X , which means that ηq can be represented by a
binary decision diagram (BDD) [14] over X ∪ P. Therefore, the symbolic DFA
can be represented by a sequence of BDDs, each of which corresponding to a
state variable.
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The MONA tool [13] is an efficient implementation for translating fol and
mso formulas over finite words into minimized symbolic deterministic automata.
MONA represents symbolic deterministic automata by means of Shared Multi-
terminal BDDs (ShMTBDDs) [3,20]. The symbolic ltlf synthesis framework of
[31] requires standard BDD representation by means of symbolic DFAs as defined
above. The transformation from ShMTBDD to BDD is described in [31].

2.3 FOL Encoding of LTLf

First Order Logic (fol) encoding of ltlf translates ltlf into fol over finite lin-
ear order with monadic predicates. In this paper, we utilize the fol encoding pro-
posed in [6]. We first restrict our interest to monadic structure. Consider a finite
trace ρ = ρ[0]ρ[1] · · · ρ[e], the corresponding monadic structure Iρ = (ΔI , <, ·I)
describes ρ as follows. ΔI = {0, 1, 2, · · · , last}, where last = e indicating the
last point along the trace. The linear order < is defined over ΔI in the standard
way [16]. The notation ·I indicates the set of monadic predicates that describe
the atoms of P, where the interpretation of each p ∈ P is Qp = {x : p ∈ ρ[x]}.
Intuitively, Qp is interpreted as the set of positions where p is true in ρ. In the
translation below, fol(θ, x), where θ is an ltlf formula and x is a variable, is an
fol formula asserting the truth of θ at point x of the linear order. The trans-
lation uses the successor function +1, and the variable last that represents the
maximal point in the linear order.

– fol(p, x) = (Qp(x))
– fol(¬φ, x) = (¬fol(φ, x))
– fol(φ1 ∧ φ2, x) = (fol(φ1, x) ∧ fol(φ2, x))
– fol(φ1 ∨ φ2, x) = (fol(φ1, x) ∨ fol(φ2, x))
– fol(Xφ, x) = ((∃y)((y = x + 1) ∧ fol(φ, y)))
– fol(Nφ, x) = ((x = last) ∨ ((∃y)((y = x + 1) ∧ fol(φ, y))))
– fol(φ1Uφ2, x) = ((∃y)((x ≤ y ≤ last) ∧ fol(φ2, y) ∧ (∀z)((x ≤ z < y) →
fol(φ1, z))))

– fol(φ1Rφ2, x) = (((∃y)((x ≤ y ≤ last) ∧ fol(φ1, y) ∧ (∀z)((x ≤ z ≤ y) →
fol(φ2, z)))) ∨ ((∀z)((x ≤ z ≤ last) → fol(φ2, z))))

For fol variables, MONA provides a built-in operator +1 for successor com-
putation. Moreover, we can use built-in procedures in MONA to represent the
variable last. Given a finite trace ρ, we denote the corresponding finite linear
ordered fol interpretation of ρ by Iρ. The following theorem guarantees the
correctness of fol encoding of ltlf .

Theorem 1 ([15]). Let φ be an ltlf formula and ρ be a finite trace. Then
ρ |= φ iff Iρ |= fol(φ, 0).

3 MSO Encoding

First-order encoding was shown to perform well in the context of ltlf -to-
automata translation [30], but other encodings have not been studied. Specifi-
cally, the natural question of whether second-order (mso) outperforms first-order
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in the same context remained open. mso is an extension of fol that allows quan-
tification over monadic predicates [16]. By applying a semantics-driven transla-
tion to ltlf , we obtain an mso encoding that has significantly simpler quan-
tificational structure. This encoding essentially captures in mso the standard
encoding of temporal connectives, cf. [4]. Intuitively speaking, mso encoding
deals with ltlf formula by interpreting every operator with corresponding sub-
formulas following the semantics of the operator. We now present mso encoding
that translates ltlf formula φ to mso, which is then fed to MONA to produce
a symbolic DFA.

For an ltlf formula φ over a set P of atoms, let cl(φ) denote the set of sub-
formulas of φ. We define atomic formulas as atoms p ∈ P. For every subformula
in cl(φ) we introduce monadic predicate symbols as follows: for each atomic sub-
formula p ∈ P, we have a monadic predicate symbol Qp; for each non-atomic
subformula θi ∈ {θ1, . . . , θm}, we have Qθi

. Intuitively speaking, each monadic
predicate indicates the positions where the corresponding subformula is true
along the linear order.

Let mso(φ) be the translation function that given an ltlf formula φ returns
a corresponding mso formula asserting the truth of φ at position 0. We define
mso(φ) as following: mso(φ) = (∃Qθ1) · · · (∃Qθm

)(Qφ(0) ∧ (∀x)(
∧m

i=1 t(θi, x)),
where x indicates the position along the finite linear order. Here t(θi, x) asserts
that the truth of every non-atomic subformula θi of φ at position x relies on
the truth of corresponding subformulas at x such that following the semantics
of ltlf . Therefore, t(θi, x) is defined as follows:

– If θi = (¬θj), then t(θi, x) = (Qθi
(x) ↔ ¬Qθj

(x))
– If θi = (θj ∧ θk), then t(θi, x) = (Qθi

(x) ↔ (Qθj
(x) ∧ Qθk

(x)))
– If θi = (θj ∨ θk), then t(θi, x) = (Qθi

(x) ↔ (Qθj
(x) ∨ Qθk

(x)))
– If θi = (Xθj), then t(θi, x) = (Qθi

(x) ↔ ((x �= last) ∧ Qθj
(x + 1)))

– If θi = (Nθj), then t(θi, x) = (Qθi
(x) ↔ ((x = last) ∨ Qθj

(x + 1)))
– If θi = (θjUθk), then t(θi, x) = (Qθi

(x) ↔ (Qθk
(x) ∨ ((x �= last) ∧ Qθj

(x) ∧
Qθi

(x + 1))))
– If θi = (θjRθk), then t(θi, x) = (Qθi

(x) ↔ (Qθk
(x) ∧ ((x = last) ∨ Qθj

(x) ∨
Qθi

(x + 1))))

Consider a finite trace ρ, the corresponding interpretation Iρ of ρ is defined as
in Sect. 2.3. The following theorem asserts the correctness of the mso encoding.

Theorem 2. Let φ be an ltlf formula, ρ be a finite trace. Then ρ |= φ iff
Iρ |= mso(φ).

Proof. If φ is a propositional atom p, then mso(φ) = Qp(0). It is true that ρ |= φ
iff Iρ |= mso(φ). If φ is an nonatomic formula, we prove this theorem in two
directions.

Suppose first that ρ satisfies φ. We expand the monadic structure Iρ with
interpretations for the existentially quantified monadic predicate symbols by
setting Qθi

, the interpretation of subformula θi in Iρ, as the set collecting all
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points of ρ satisfying θi, that is Qθi
= {x : ρ, x |= θi}. We also have Qp =

{x : ρ, x |= p} and denote the expanded structure by Imso
ρ . By assumption,

Qφ(0) holds in Imso
ρ . It remains to prove that Imso

ρ |= ∀x.t(θi, x), for each
nonatomic subformula θi ∈ cl(φ), which we prove via structural induction over θi.

– If θi = (¬θj), then t(θi, x) = (Qθi
(x) ↔ (¬Qθj

(x))). This holds, since
Q(¬θj) = {x : ρ, x �|= θj} and Qθj

= {x : ρ, x |= θj}.
– If θi = (θj ∧ θk), then t(θi, x) = (Qθi

(x) ↔ (Qθj
(x) ∧ Qθk

(x))). This holds,
since Q(θj∧θk) = {x : ρ, x |= θj and ρ, x |= θk}, Qθj

= {x : ρ, x |= θj}
and Qθk

= {x : ρ, x |= θk}.
– If θi = (θj ∨ θk), then t(θi, x) = (Qθi

(x) ↔ (Qθj
(x) ∨ Qθk

(x))). This holds,
since Q(θj∨θk) = {x : ρ, x |= θj or ρ, x |= θk}, Qθj

= {x : ρ, x |= θj} and
Qθk

= {x : ρ, x |= θk}.
– If θi = (Xθj), then t(θi, x) = (Qθi

(x) ↔ ((x �= last)∧Qθj
(x+1))). This holds,

since Q(Xθj) = {x : ρ, x |= (Xθj)} = {x : x �= last and ρ, x + 1 |= θj},
and Qθj

= {x : ρ, x |= θj}.
– If θi = (Nθj), then t(θi, x) = (Qθi

(x) ↔ ((x = last)∨Qθj
(x+1))). This holds,

since Q(Nθj) = {x : ρ, x |= (Nθj)} = {x : x = last or ρ, x + 1 |= θj}, and
Qθj

= {x : ρ, x |= θj}.
– If θi = (θjUθk), then t(θi, x) = (Qθi

(x) ↔ (Qθk
(x) ∨ ((x �= last) ∧ Qθj

(x) ∧
Qθi

(x + 1)))). This holds, since Q(θjUθk) = {x : ρ, x |= θjUθk} =
{x : ρ, x |= θk or x �= last with ρ, x |= θj also ρ, x + 1 |= θi}, Qθj

=
{x : ρ, x |= θj}, and Qθk

= {x : ρ, x |= θk};
– If θi = (θjRθk), then t(θi, x) = (Qθi

(x) ↔ (Qθk
(x) ∧ ((x = last) ∨ Qθj

(x) ∨
Qθi

(x + 1)))). This holds, since Q(θjRθk) = {x : ρ, x |= θjRθk} =
{x : ρ, x |= θk with x = last or ρ, x |= θj or ρ, x + 1 |= θi}, Qθj

=
{x : ρ, x |= θj}, and Qθk

= {x : ρ, x |= θk}.

Assume now that Iρ |= mso(φ). This means that there is an expansion of
Iρ with monadic interpretations Qθi

for each nonatomic subformula θi ∈ cl(φ)
such that this expanded structure Imso

ρ |= (Qφ(0) ∧ ((∀x)
∧m

i=1 t(θi, x))). We
now prove by induction on φ that if x ∈ Qφ, then ρ, x |= φ such that Qφ(0)
indicates that ρ, 0 |= φ.

– If φ = (¬θj), then t(φ, x) = (Qφ(x) ↔ (x /∈ Qθj
)). Since t(φ) holds at every

point x of Imso
ρ , it holds that x ∈ Qφ iff x �∈ Qθj

. It follows by induction that
ρ, x �|= θj . Thus, ρ, x |= φ.

– If φ = (θj ∧θk), then t(φ, x) = (Qφ(x) ↔ (Qθj
(x)∧Qθk

(x))). Since t(φ) holds
at every point x of Imso

ρ , it follows that x ∈ Qφ iff x ∈ Qθj
and x ∈ Qθk

. It
follows by induction that ρ, x |= θj and ρ, x |= θk. Thus, ρ, x |= φ.

– If φ = (θj ∨θk), then t(φ, x) = (Qφ(x) ↔ (Qθj
(x)∨Qθk

(x))). Since t(φ) holds
at every point x of Imso

ρ , it follows that x ∈ Qφ iff x ∈ Qθj
or x ∈ Qθk

. It
follows by induction that ρ, x |= θj or ρ, x |= θk. Thus, ρ, x |= φ.

– If φ = (Xθj), then t(φ, x) = (Qφ(x) ↔ ((x �= last) ∧ Qθj
(x + 1))). Since

t(φ) holds at every point x of Imso
ρ , it follows that x ∈ Qφ iff x �= last and

x + 1 ∈ Qθj
. It follows by induction that x �= last and ρ, x |= θj . Thus,

ρ, x |= φ.
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– If φ = (Nθj), then t(φ, x) = (Qφ(x) ↔ ((x = last) ∨ Qθj
(x + 1))). Since

t(φ) holds at every point x of Imso
ρ , it follows that x ∈ Qφ iff x = last

or x + 1 ∈ Qθj
. It follows by induction that x = last or ρ, x |= θj . Thus,

ρ, x |= φ.
– If φ = (θjUθk), then t(φ, x) = (Qφ(x) ↔ (Qθk

(x) ∨ ((x �= last) ∧ Qθj
(x) ∧

Qφ(x+1)))). Since t(φ) holds at every point x of Imso
ρ , it follows that x ∈ Qφ

iff x ∈ Qθk
or x �= last with x ∈ Qθj

also x + 1 ∈ Qφ. Thus, ρ, x |= φ.
– If φ = (θjRθk), then t(φ, x) = (Qφ(x) ↔ (Qθk

(x) ∧ ((x = last) ∨ Qθj
(x) ∨

Qφ(x+1)))). Since t(φ) holds at every point x of Imso
ρ , it follows that x ∈ Qφ

iff x ∈ Qθk
with x = last or x ∈ Qθj

or x + 1 ∈ Qφ. Thus, ρ, x |= φ. ��

4 Compact MSO Encoding

The mso encoding described in Sect. 3 is closely related to the translation of
ltlf to alternating automata [6], with each automaton state corresponding to
a monadic predicate. The construction, however, is subject only to syntactic
minimization. Can we optimize this encoding using automata-theoretic mini-
mization? In fact, MONA itself applies automata-theoretic minimization. Can
we use MONA to produce a more efficient encoding for MONA?

The key observation is that MONA can produce a compact symbolic rep-
resentation of a non-deterministic automaton (NFA) representing a given ltlf

formula, and we can use this symbolic NFA to create a more compact mso encod-
ing for ltlf . This is based on the observation that while the translation from
ltlf to DFA is 2-EXP [18], the translation from past ltlf to DFA is 1-EXP, as
explained below. We proceed as follows: (1) Reverse a given ltlf formula φ to
Past ltlf formula φR; (2) Use MONA to construct the DFA of φR, the reverse of
which is an NFA, that accepts exactly the reverse language of the words satisfy-
ing models(φ); (3) Express this symbolic DFA in second-order logic and “invert”
it to get Dφ, the corresponding DFA of φ.

The crux of this approach, which follows from [5,6], is that the DFA corre-
sponding to the reverse language of an ltlf formula φ of length n has only 2n

states. The reverse of this latter DFA is an NFA for φ. We now elaborate on
these steps.

4.1 LTLf to PLTLf

Past Linear Temporal Logic over finite traces, i.e. pltlf , has the same syntax
as pltl over infinite traces introduced in [24]. Given a set of propositions P, the
grammar of pltlf is given by:
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ψ ::= � | ⊥ | p | ¬ψ | ψ1 ∧ ψ2 | Y ψ | ψ1Sψ2

Given a finite trace ρ and a pltlf formula ψ, we inductively define when ψ is
true for ρ at step x (0 ≤ x < |ρ|), written by ρ, x |= ψ, as follows:

– ρ, x |= � and ρ, x �|= ⊥;
– ρ, x |= p iff p ∈ ρ[x];
– ρ, x |= ¬ψ iff ρ, x �|= ψ;
– ρ, x |= ψ1 ∧ ψ2, iff ρ, x |= ψ1 and ρ, x |= ψ2;
– ρ, x |= Y ψ, iff x − 1 ≥ 0 and ρ, x − 1 |= ψ;
– ρ, x |= ψ1Sψ2, iff there exists y such that 0 ≤ y ≤ x and ρ, y |= ψ2, and for

all z, y < z ≤ x, we have ρ, z |= ψ1.

A pltlf formula ψ is true in ρ, denoted by ρ |= ψ, if and only if ρ, |ρ|−1 |= ψ.
To reverse an ltlf formula φ, we replace each temporal operator in φ with the
corresponding past operator of pltlf thus getting φR. X(Next) and U(Until)
correspond to Y (Before) and S(Since) respectively.

We define ρR = ρ[|ρ| − 1], ρ[|ρ| − 2], . . . , ρ[1], ρ[0] to be the reverse of ρ.
Moreover, given language L, we denote the reverse of L by LR such that LR

collects all reversed sequences in L. Formally speaking, LR = {ρR : ρ ∈ L}.
The following theorem shows that pltlf formula φR accepts exactly the reverse
language satisfying φ.

Theorem 3. Let L(φ) be the language of ltlf formula φ and LR(φ) be the
reverse language, then L(φR) = LR(φ).

Proof. L(φR) = LR(φ) iff for an arbitrary sequence ρ ∈ L(φ) such that ρ |= φ, it
is true that ρR |= φR. We prove the theorem by the induction over the structure
of φ. last is used to denote the last instance such that last = |ρ| − 1.

– Basically, if φ = p is an atom, then φR = p, ρ |= φ iff p ∈ ρ[0] such that
p ∈ ρR[last]. Therefore, ρR |= φR;

– If φ = ¬φ1, then φR = ¬φR
1 , ρ |= ¬φ1 iff ρ � φ1, such that by induction

hypothesis ρR
� φR

1 holds, therefore ρR |= φR is true;
– If φ = φ1 ∧ φ2, then φR = φR

1 ∧ φR
2 , ρ |= φ iff ρ satisfies both φ1 and φ2. By

induction hypothesis ρR |= φR
1 and ρR |= φR

2 hold, therefore ρR |= φR is
true;

– If φ = Xφ1, φR = Y φR
1 , ρ |= φ iff suffix ρ′ is sequenceρ[1], ρ[2], . . . , ρ[last]

and ρ′ |= φ1. By induction hypothesis, ρ′R |= φR
1 holds, in which case

ρR, last − 1 |= φR
1 is true, therefore ρR |= φR holds.

– If φ = φ1Uφ2, ρ |= φ iff there exists y such that y (0 ≤ y ≤ last), suffix
ρ′ = ρ[y], ρ[y + 1], . . . , ρ[last] satisfies φ2. Also for all z such that z (0 ≤
z < y), ρ′′ = ρ[z], ρ[z + 1], . . . , ρ[last] satisfies φ1. By induction hypothesis,
ρ′R |= φR

1 and ρ′′R |= φR
2 hold, therefore we have ρR, last − y |= φR

2 and
∀z.last − y < z ≤ last, ρR, z |= φR

1 hold such that ρR |= φR. The proof is
done. ��
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4.2 PLTLf to DFA

The DFA construction from pltlf formulas relies on MONA as well. Given pltlf

formula ψ, we are able to translate ψ to fol formula as input of MONA, which
returns the DFA. For pltlf formula ψ over P, we construct the corresponding
fol formula with respect to point x by a function folp(ψ, x) asserting the truth
of ψ at x. Detailed translation of pltlf to fol is defined below. The translation
uses the predecessor function −1, and the predicate last referring to the last
point along the finite trace.

– folp(p, x) = (Qp(x))
– folp(¬ψ, x) = (¬folp(ψ, x))
– folp(ψ1 ∧ ψ2, x) = (folp(ψ1, x) ∧ folp(ψ2, x))
– folp(Y ψ, x) = ((∃y)((y = x − 1) ∧ (y ≥ 0) ∧ folp(ψ, y)))
– folp(ψ1Sψ2, x) = ((∃y)((0 ≤ y ≤ x) ∧ folp(ψ2, y) ∧ (∀z)((y < z ≤ x) →
folp(ψ1, z))))

Consider a finite trace ρ, the corresponding interpretation Iρ is defined as in
Sect. 2.3. The following theorem guarantees the correctness of the above trans-
lation.

Theorem 4. [15] Let ψ be a pltlf formula, ρ be a finite trace. Then ρ |= ψ
iff Iρ |= folp(ψ, last), where last = |ρ| − 1.

Proof. We prove the theorem by the induction over the structure of ψ.

– Basically, if ψ = p is an atom, ρ |= ψ iff p ∈ ρ[last]. By the definition of I,
we have that last ∈ Qp. Therefore, ρ |= ψ iff Iρ |= folp(p, last) holds;

– If ψ = ¬ψ, ρ |= ¬ψ iff ρ � ψ. By induction hypothesis it is true that
Iρ � folp(ψ, last), therefore Iρ |= folp(¬ψ, last) holds;

– If ψ = ψ1∧ψ2, ρ |= ψ iff ρ satisfies both ψ1 and ψ2. By induction hypothesis,
it is true that Iρ |= folp(ψ1, last) and Iρ |= folp(ψ2, last). Therefore Iρ |=
folp(ψ1, last) ∧ folp(ψ2, last) holds;

– If ψ = Y ψ1, ρ |= ψ iff prefix ρ′ = ρ[0], ρ[1], . . . , ρ[last − 1] of ρ satisfies
ρ′ |= ψ1. Let I ′

ρ be the corresponding interpretation of ρ′, thus for every atom
p ∈ P, x ∈ Q′

p iff x ∈ Qp where Q′
p is the corresponding monadic predicate

of p in I ′
ρ. By induction hypothesis it is true that I ′

ρ |= folp(ψ1, last − 1),
therefore Iρ |= folp(Y ψ1, last) holds.

– If ψ = ψ1Sψ2, ρ |= ψ iff there exists y such that 0 ≤ y ≤ last and prefix
ρ′ = ρ[0], ρ[1], . . . , ρ[y] of ρ satisfies ψ2 and for all z such that y < z ≤
last, ρ′′ = ρ[0], ρ[1], . . . , ρ[z] satisfies ψ1. Let I ′

ρ and I ′′
ρ be the corresponding

interpretations of ρ′ and ρ′′. Thus for every atom p ∈ P it is true that x ∈ Q′
p

iff x ∈ Qp, x ∈ Q′′
p iff x ∈ Qp, where Q′

p and Q′′
p correspond to the monadic

predicates of p in I ′
ρ and I ′′

ρ respectively. By induction hypothesis it is true
that I ′

ρ |= folp(ψ2, last − y) and I ′′
ρ |= folp(ψ1, last − z) hold, therefore

Iρ |= folp(ψ1Sψ2, last). ��
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4.3 Reversing DFA via Second-Order Logic

For simplification, from now we use ψ to denote the corresponding pltlf for-
mula φR of ltlf formula φ. We first describe how BDDs represent a symbolic
DFA. Then we introduce the Compact mso encoding that inverts the DFA by
formulating such BDD representation into a second-order formula. The connec-
tion between BDD representation and second-order encoding is novel, to the
best of our knowledge.

As defined in Sect. 2.2, given a symbolic DFA Fψ = (P,X ,X0, η, f) rep-
resented by a sequence B = 〈B0, B1, . . . , Bk−1〉 of BDDs, where there are
k variables in X , a run of such DFA on a word ρ = ρ[0], ρ[1], . . . , ρ[e − 1]
involves a sequence of states ξ = X0,X1, . . . , Xe of length e + 1. For the
moment if we omit the last state reached on an input of length e, we have
a sequence of states ξ′ = X0,X1, . . . , Xe−1 of length e. Thus we can think
of the run ξ′ as a labeling of the positions of the word with states, which
is (ρ[0],X0), (ρ[1],X1), . . . , (ρ[e − 1],Xe−1). At each position with given word
and state, the transition moving forward involves a computation over every Bq

(0 ≤ q ≤ k − 1). To perform such computation, take the high branch in every
node labeled by variable v ∈ {X ∪ P} if v is assigned 1 and the low branch
otherwise.

The goal here is to write a formula Rev(Fψ) such that there is an accepting
run over Fψ of a given word ρ iff ρR is accepted by Rev(Fψ). To do this, we
introduce one second-order variable Vq for each xq ∈ X with 0 ≤ q ≤ k − 1,
and one second-order variable Nα for every nonterminal node α in BDDs, u
nonterminal nodes in total. The Vq variables collect the positions where xq holds,
and the Nα variables indicate the positions where the node α is visited, when
computing the transition. To collect all transitions moving towards accepting
states, we have BDD B′

f = f(η(X ,P)).
Here are some notations. Let α be a nonterminal node, c be a terminal node

in Bq such that c ∈ {0, 1} and d ∈ {0, 1} be the value of v. For nonterminal node
α, we define:

Pre(α) = {(β, v, d) : there is an edge from β to α labelled by v = d}
Post(α) = {(β, v, d) : there is an edge from α to β labelled by v = d}

For every terminal node c in BDD Bq, we define:

PreT(Bq, c) = {(β, v, d) : there is an edge from β to c labelled by v = d in BDD Bq}

Also, we use ∈d to denote ∈ when d = 1 and /∈ when d = 0. For each BDD Bq,
root(Bq) indicates the root node of Bq.

We use these notations to encode the following statements:

(1) At the last position, state X0 should hold since ξ′ is being inverted and X0

is the starting point;

Rinit = (x = last) →
(∧

0≤q≤k−1,X0(xq)=d
x ∈d Vq

)

;
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(2) At position x, if the current computation is at nonterminal node α labeled
by v, then (2.a) the current computation must come from a predecessor
labeled by v′ following the value of v′, and (2.b) the next step is moving to
the corresponding successor following the value of v;

node =
∧

1≤α≤u
( PreCon ∧ PostCon ); where

PreCon =

⎛

⎝x ∈ Nα → (
∨

(β,v′,d)∈Pre(α)

[x ∈ Nβ ∧ x ∈d v′])

⎞

⎠

PostCon =

⎛

⎝
∧

(β,v,d)∈Post(α)

[x ∈ Nα ∧ x ∈d v → x ∈ Nβ ]

⎞

⎠ .

(3) At position x such that x > 0, if the current computation node α moves to
a terminal node c of Bq, then the value of xq at position x-1 is given by the
value of c. Such computations of all Bq(0 ≤ q ≤ k − 1) finish one transition;

Rterminal =
∧

0≤q≤k−1

⎛

⎝
∧

(β,v,d)∈PreT(Bq ,c)

[(x > 0 ∧ x ∈ Nβ ∧ x ∈d v) → (x − 1 ∈c Vq)]

⎞

⎠ ;

(4) At the first position, the current computation on B′
f has to surely move to

terminal 1, therefore terminating the running trace of ξ.

Racc = (x = 0) →
⎛

⎝
∨

(β,v,d)∈PreT(B′
f ,1)

[x ∈ Nβ ∧ x ∈d v]

⎞

⎠ .

To get all computations over BDDs start from the root at each position, we
have

roots =
∧

0≤x≤last

∧

0≤q≤k−1
x ∈ root(Bq)

Rev(Fψ) has to take a conjunction of all requirements above such that

Rev(Fψ) = (∃V0)(∃V1) . . . (∃Vk−1)(∃N1)(∃N2) . . . (∃Nu)(∀x)(Rinit ∧ node
∧Rterminal ∧ Racc ∧ roots).

Therefore, let Cmso(φ) be the translation function that given an ltlf for-
mula φ returns a corresponding second-order formula applying the Compact mso
encoding, we define Cmso(φ) = Rev(Fψ) asserting the truth of φ at position 0,
where ψ is the corresponding pltlf formula of φ, and Fψ is the symbolic DFA of
ψ. The following theorem asserts the correctness of the Compact mso encoding.

Theorem 5. The models of formula Cmso(φ) are exactly the words satisfying φ.
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Proof. We first have that L(φ) = LR(ψ) = LR(Fψ) holds since ψ is the
corresponding pltlf formula of φ and Fψ collects exactly the words sat-
isfying ψ. Moreover, L(Rev(Fψ)) = LR(Fψ) is true following the construc-
tion rules of Rev(Fψ) described above and Cmso(φ) = Rev(Fψ). Therefore,
L(φ) = L(Cmso(φ)) holds, in which case the models of formula Cmso(φ) are
exactly the words satisfying φ. ��

Notice that the size of Cmso(φ) is in linear on the size of the BDDs, which low-
ers the logical complexity comparing to the mso encoding in Sect. 3. Moreover,
in the Compact mso encoding, the number of existential second-order symbols
for state variables are nevertheless possibly less than that in mso encoding, but
new second-order symbols for nonterminal BDD nodes are introduced. BDDs
provide a compact representation, in which redundant nodes are reduced. Such
advantages allow Compact mso encoding to use as few second-order symbols for
BDD nodes as possible.

5 Experimental Evaluation

We implemented proposed second-order encodings in different parsers for ltlf

formulas using C++. Each parser is able to generate a second-order formula
corresponding to the input ltlf formula, which is then fed to MONA [13] for
subsequent symbolic DFA construction. Moreover, we employed Syft ’s [31] code
to translate ltlf formula into first-order logic (fol), which adopts the first-order
encoding described in Sect. 2.3.

Benchmarks. We conducted the comparison of first-order encoding with
second-order encoding in the context of ltlf -to-DFA, thus only satisfiable but
not valid formulas are interesting. Therefore, we first ran an ltlf satisfiability
checker on ltlf formulas and their negations to filter the valid or unsatisfiable
formulas. We collected 5690 formulas, which consist of two classes of benchmarks:
765 ltlf -specific benchmarks, of which 700 are scalable ltlf pattern formulas
from [10] and 65 are randomly conjuncted common ltlf formulas from [7,11,25]
; and 4925 ltl-as-ltlf formulas from [26,27], since ltl formulas share the same
syntax as ltlf .

Experimental Setup. To explore the comparison between first-order and
second-order for ltlf -to-DFA translation, we ran each formula for every encod-
ing on a node within a high performance cluster. These nodes contain 12 proces-
sor cores at 2.2 GHz each with 8 GB of RAM per core. Time out was set to be
1000 s. Cases that cannot generate the DFA within 1000 s generally fail even if
the time limit is extended, since in these cases, MONA typically cannot handle
the large BDD.

5.1 Optimizations of Second-Order Encoding

Before diving into the optimizations of second-order encoding, we first study the
potential optimization space of the first-order encoding that translates ltlf to
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fol. Due to the syntax-driven translation of fol encoding, we are only able to
apply different normal forms, Boolean Norma Form (bnf) and Negation Normal
Form (nnf). We compared the impact on performance of fol encoding with two
ltlf normal forms. It turns out that the normal form does not have a measurable
impact on the performance of the first-order encoding. Since fol-bnf encoding
performs slightly better than fol-nnf, the best fol encoding refers to fol-bnf.

To explore the potential optimization space of the second-order encodings
proposed in this paper, we hope to conduct experiments with different opti-
mizations. We name second-order encoding with different optimizations vari-
ations. We first show optimizations of the mso encoding described in Sect. 3,
then describe variations of the Compact mso encoding shown in Sect. 4 in the
following.

The basic mso encoding defined in Sect. 3 translates ltlf to mso in a natural
way, in the sense that introducing a second-order predicate for each non-atomic
subformula and employing the ↔ constraint. Inspired by [22,27], we define in
this section several optimizations to simplify such encoding thus benefiting sym-
bolic DFA construction. These variations indicating different optimizations are
combinations of three independent components: (1) the Normal Form (choose
between bnf or nnf); (2) the Constraint Form (choose between Fussy or Sloppy);
(3) the Variable Form (choose between Full or Lean). In each component one can
choose either of two options to make. Thus for example, the variation described
in Sect. 3 is bnf-Fussy-Full. Note that bnf-Sloppy are incompatible, as described
below, and so there are 23 − 2 = 6 viable combinations of the three components
above. We next describe the variations in details.

Constraint Form. We call the translation described in Sect. 3 the Fussy vari-
ation, in which we translate φ to mso formula mso(φ) by employing an iff con-
straint (see Sect. 3). For example:

t(θi, x) = (Qθi
(x) ↔ (Qθj

(x) ∧ Qθk
(x))) if θi = (θj ∧ θk) (1)

We now introduce Sloppy variation, inspired by [27], which allows less tight
constraints that still hold correctness guarantees thus may speed up the symbolic
DFA construction. To better reason the incompatible combination bnf-Sloppy,
we specify the description for different normal forms, nnf and bnf separately.

For ltlf formulas in nnf, the Sloppy variation requires only a single implica-
tion constraint →. Specifically the Sloppy variation msos(φ) for nnf returns mso
formula (∃Qθ1) · · · (∃Qθm

) (Qφ(0) ∧ (∀x)(
∧m

i=1 ts(θi, x))), where ts(θi) is defined
just like t(θi), replacing the ↔ by →. For example translation (1) under the
Sloppy translation for nnf is ts(θi, x) = (Qθi

(x) → (Qθj
(x) ∧ Qθk

(x))).
The Sloppy variation cannot be applied to ltlf formulas in bnf since the ↔

constraint defined in function t(θi) is needed only to handle negation correctly.
bnf requires a general handling of negation. For ltlf formulas in nnf, negation
is applied only to atomic formulas such that handled implicitly by the base case
ρ, x |= p ↔ ρ, x � ¬p. Therefore, translating ltlf formulas in nnf does not
require the ↔ constraint. For example, consider ltlf formula φ = ¬Fa (in
bnf), where a is an atom. The corresponding bnf-Sloppy variation gives mso
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formula (∃Q¬Fa)(∃QFa)(Q¬Fa(0) ∧ ((∀x)((Q¬Fa(x) → ¬QFa(x)) ∧ (QFa(x) →
(Qa(x) ∨ ((x �= last) ∧ QFa(x + 1))))))) via msos(φ). Consider finite trace ρ =
(a = 0), (a = 1), ρ |= φ iff ρ |= msos(φ) does not hold since ρ � ¬Fa. This
happens because ¬Fa requires (Q¬Fa(x) ↔ ¬QFa(x)) as Fa is an non-atomic
subformula. Therefore, Sloppy variation can only be applied to ltlf formulas in
nnf.

The following theorem asserts the correctness of the Sloppy variation.

Theorem 6. Let φ be an ltlf formula in nnf and ρ be a finite trance. Then
ρ |= φ iff Iρ |= msos(φ).

The proof here is analogous to that of Theorem2. The crux here is that the ↔
in t(θi) is needed only to handle negation correctly. Sloppy encoding, however, is
applied only to ltlf formulas in nnf, so negation can be applied only to atomic
propositions, which is handled by the base case (¬Qp(x)).

Variable Form. In all the variations of the mso encoding we can get above,
we introduced a monadic predicate for each non-atomic subformula in cl(φ),
this is the Full variation. We now introduce Lean variation, a new variable
form, aiming at decreasing the number of quantified monadic predicates. Fewer
quantifiers on monadic predicates could benefit symbolic DFA construction a
lot since quantifier elimination in MONA takes heavy cost. The key idea of Lean
variation is introducing monadic predicates only for atomic subformulas and non-
atomic subformulas of the form φjUθk or φjRθk (named as U - or R-subformula
respectively).

For non-atomic subformulas that are not U - or R- subformulas, we can con-
struct second-order terms using already defined monadic predicates to capture
the semantics of them. Function lean(θi) is defined to get such second-order
terms. Intuitively speaking, lean(θi) indicates the same positions where θi is
true as Qθi

does, instead of having Qθi
explicitly. We use built-in second-order

operators in MONA to simplify the definition of lean(θi). ALIVE is defined using
built-in procedures in MONA to collect all instances along the finite trace. MONA
also allows to apply set union, intersection, and difference for second-order terms,
as well as the −1 operation (which shifts a monadic predicate backwards by one
position). lean(θi) is defined over the structure of θi as following:

– If θi = (¬θj), then lean(θi) = (ALIVE\lean(θj))
– If θi = (θj ∧ θk), then lean(θi) = (lean(θj) inter lean(θk))
– If θi = (θj ∨ θk), then lean(θi) = (lean(θj) union lean(θk))
– If θi = (Xθj), then lean(θi) = ((lean(θj) − 1)\{last})
– If θi = (Nθj), then lean(θi) = ((lean(θj) − 1) union {last})
– If θi = (θjUθk) or θi = (θjRθk), then lean(θi) = Qθa

, where Qθa
is the

corresponding monadic predicate.

The following lemma ensures that lean(θi) keeps the interpretation of each
non-atomic subformula θi ∈ cl(φ).

Lemma 1. Let φ be an ltlf formula, ρ be a finite trace. Then ρ, x |= θi iff
lean(θi)(x) holds, where x is the position in ρ.
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Proof. Suppose first that ρ, x |= θi. We prove this inductively on the structure
of θi.

– If θi = ¬θj , then lean(θi) = (ALIVE\lean(θj)). lean(θi)(x) holds since
lean(θi) = {x : x /∈ lean(θj)} and lean(θj) = {x : ρ, x |= θj}.

– If θi = θj ∧θk, then lean(θi) = (lean(θj) inter lean(θk)). lean(θi)(x) holds since
lean(θi) = {x : x ∈ lean(θj) and x ∈ lean(θk)}, lean(θj) = {x : ρ, x |= θj}
and lean(θk) = {x : ρ, x |= θk}.

– If θi = θj∨θk, then lean(θi) = (lean(θj) union lean(θk)). lean(θi)(x) holds since
lean(θi) = {x : x ∈ lean(θj) or x ∈ lean(θk)}, lean(θj) = {x : ρ, x |= θj}
and lean(θk) = {x : ρ, x |= θk}.

– If θi = Xθj , then lean(θi) = ((lean(θj) − 1)\{last}). lean(θi)(x) holds since
lean(θi) = {x : x �= last and x + 1 ∈ lean(θj)}, lean(θj) = {x : ρ, x |= θj}.

– If θi = Nθj , then lean(θi) = ((lean(θj) − 1) union {last}). lean(θi)(x) holds
since lean(θi) = {x : x = last or x+1 ∈ lean(θj)}, lean(θj)={x : ρ, x |= θj}.

– If θi = θjUθk or θi = θjRθk, then lean(θi) = Qθa
. lean(θi)(x) holds since

lean(θi) = Qθa
= {x : ρ, x |= θa}, where Qθa

is the corresponding second-
order predicate for formula θi.

Assume now that Imso
ρ |= lean(θi)(x) with given interpretations of second-

order predicates. We now prove ρ, x |= θi by induction over the structure on θi.

– If θi = ¬θj , then lean(θi) = (ALIVE\lean(θj)). Since lean(θi)(x) holds, we also
have that x ∈ lean(θi) iff x /∈ lean(θj). It follows by induction that ρ, x |= θi.

– If θi = θj ∧ θk, then lean(θi) = (lean(θj) inter lean(θk)). Since lean(θi)(x)
holds, we also have that x ∈ lean(θi) iff x ∈ lean(θj) and x ∈ lean(θk). It
follows by induction that ρ, x |= θi.

– If θi = θj ∨ θk, then lean(θi) = (lean(θj) union lean(θk)). Since lean(θi)(x)
holds, we also have that x ∈ lean(θi) iff x ∈ lean(θj) or x ∈ lean(θk). It follows
by induction that ρ, x |= θi.

– If θi = Xθj , then lean(θi) = ((lean(θj) − 1)\{last}). Since lean(θi)(x) holds,
we also have that x �= last and x + 1 ∈ lean(θj). It follows by induction that
ρ, x |= θi.

– If θi = Nθj , then lean(θi) = ((lean(θj) − 1) union {last}). Since lean(θi)(x)
holds, we also have that x = last or x + 1 ∈ lean(θj). It follows by induction
that ρ, x |= θi.

– If θi = θjUθk or θi = θjRθk, then lean(θi) = Qθa
, where Qθa

is the corre-
sponding second-order predicate. It follows by induction that ρ, x |= θi.

��
Finally, we define Lean variation based on function lean(φ). Lean

variation msoλ(φ) returns mso formula (∃Qθ1) . . . (∃Qθn
) (lean(φ)(0) ∧

((∀x)(
∧n

a=1 tλ(θa, x)))), where n is the number of U - and R- subformulas
θa ∈ cl(φ), and tλ(θa, x) is defined as follows: if θa = (θjUθk), then tλ(θa, x) =
(Qθa

(x) ↔ (lean(θk)(x)∨((x �= last)∧lean(θj)(x)∧Qθa
(x+1)))); if θa = (θjRθk),

then tλ(θa, x) = (Qθa
(x) ↔ (lean(θk)(x)∧((x = last)∨lean(θj)(x)∨Qθa

(x+1)))).
The following theorem guarantees the correctness of Lean variation.
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Theorem 7. Let φ be an ltlf formula, ρ be a finite trace. Then ρ |= φ iff
Iρ |= msoλ(φ).

Proof. If φ is a propositional atom p, then msoλ(φ) = Qp(0). It is true that
ρ |= φ iff Iρ |= msoλ(φ). If φ is an nonatomic formula, we prove this theorem
in two directions.

Suppose first that ρ satisfies φ. We expand the monadic structure Iρ with
interpretations for Qθ1 , Qθ2 , . . . , Qθn

by setting Qθa
= {x : ρ, x |= θa}. Let

the expanded structure be Imso
ρ . By assumption, lean(φ)(0) holds in Imso

ρ . It
remains to prove that Imso

ρ |= (∀x)(
∧n

a=1 tλ(θa, x)), for each U or R subformula
θa ∈ cl(φ).

– If θa = (θjUθk), then tλ(θa, x) = (lean(θa)(x) ↔ (lean(θk)(x) ∨ ((x �= last) ∧
lean(θj)(x)∧ lean(θa)(x+1)))). This holds, since lean((θjUθk)) = {x : ρ, x |=
θjUθk} = {x : ρ, x |= θk or x �= last with ρ, x |= θj also ρ, x + 1 |= θa},
lean(θj) = {x : ρ, x |= θj}, and lean(θk) = {x : ρ, x |= θk} with Lemma 1;

– If θa = (θjRθk), then tλ(θa, x) = (lean(θa)(x) ↔ (lean(θk)(x) ∧ ((x = last) ∨
lean(θj)(x)∨ lean(θa)(x+1)))). This holds, since lean((θjRθk)) = {x : ρ, x |=
θjRθk} = {x : ρ, x |= θk with x = last or ρ, x |= θj or ρ, x + 1 |= θa},
lean(θj) = {x : ρ, x |= θj}, and lean(θk) = {x : ρ, x |= θk} with Lemma 1.

Assume now that Iρ |= msoλ(φ). This means that there is an expansion
of Iρ with monadic interpretations Qθa

for each element θa of U or R sub-
formulas in cl(φ) such that this expanded structure Imso

ρ |= (lean(φ)(0)) ∧
((∀x)(

∧n
a=1 tλ(θa, x))). If φ is not an R or U subformula, then it has been proven

by Lemma 1 that if x ∈ lean(φ), then ρ, x |= φ. We now prove by induction on
φ that if x ∈ Qθa

, then ρ, x |= φ. Since Imso
ρ |= (lean(φ)(0)), it follows that

ρ, 0 |= φ.

– If φ = (θjUθk), then tλ(φ, x) = (lean(φ)(x) ↔ (lean(θk)(x) ∨ ((x �= last) ∧
lean(θj)(x) ∧ lean(φ)(x + 1)))). Since tλ(φ) holds at every point x of Imso

ρ , it
follows that x ∈ lean(φ) iff x ∈ lean(θk) or x �= last with x ∈ lean(θj) also x+
1 ∈ lean(φ). Moreover, lean(φ) = Qθa

, where Qθa
is the corresponding second-

order predicate. Thus, by induction hypothesis ρ, x |= φ.
– If φ = (θjRθk), then tλ(φ, x) = (lean(φ)(x) ↔ (lean(θk)(x) ∧ ((x = last) ∨
lean(θj)(x) ∨ lean(φ)(x + 1)))). Since tλ(φ) holds at every point x of Imso

ρ , it
follows that x ∈ lean(φ) iff x ∈ lean(θk) with x = last or x ∈ lean(θj) or x +
1 ∈ lean(φ). Moreover, lean(φ) = Qθa

, where Qθa
is the corresponding second-

order predicate. Thus, by induction hypothesis ρ, x |= φ. ��
Having defined different variations of the mso encoding, we now provide

variations of the Compact mso encoding described in Sect. 4.

Sloppy Formulation. The formulation described in Sect. 4 strictly tracks the
computation over each BDD Bq, which we refer to Fussy formulation. That is, for
each nonterminal node α, both the forward computation and previous computa-
tion must be tracked. This causes a high logical complexity in the formulation.
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An alteration to diminish the logical complexity is to utilize a Sloppy Formu-
lation, analogous to the Sloppy variation described above, that only tracks the
forward computation. Since the previous computations are not tracked, none of
the computations leading to terminal node 0 of the BDD B′

f enable an accepting
condition.

To define the accepting condition of Sloppy Formulation, we have

Raccs =

⎛

⎝
∨

(β,v,d)∈PreT(B′
f ,0)

[x ∈ Nβ ∧ x ∈d v]

⎞

⎠ → (x �= 0).

Moreover, nodes only requires PostCon of node. Therefore, we have

nodes =
∧

1≤α≤u

PostCon.

The second-order formula Revs(Fψ) of Sloppy Formulation is defined as
following:

Revs(Fψ) = (∃V0) . . . (∃Vk−1)(∃N1) . . . (∃Nu)(∀x)(Rinit ∧ nodes
∧Rterminal ∧ Raccs ∧ roots),

where Rinit,Rterminal and roots are defined as in Sect. 4. Therefore, let Cmsos(φ)
be the Sloppy Formulation of the Compact mso encoding, we define Cmsos(φ) =
Revs(Fψ) asserting the truth of φ at position 0, where ψ is the corresponding
pltlf formula of φ, and Fψ is the symbolic DFA of ψ. The following theorem
asserts the correctness of the Sloppy Formulation.

Theorem 8. The models of formula Cmsos(φ) are exactly the words satisfying φ.

The proof here is analogous to that of the Fussy Formulation, where the crux
is that we define the computation trace on a BDD as a sequence of sets of BDD
nodes, instead of just a specific sequence of BDD nodes, see the definition of
nodes. Such definition still keeps unambiguous formulation of the symbolic DFA
since we have stronger constraints on the accepting condition, as shown in the
definition of Raccs.

5.2 Experimental Results

Having presented different optimizations, we now have 6 variations of the mso
encoding corresponding to specific optimizations, which are bnf-Fussy-Full, bnf-
Fussy-Lean, nnf-Fussy-Full, nnf-Fussy-Full, nnf-Sloppy-Full and nnf-Sloppy-
Lean. Moreover, we have two variations of the Compact mso encoding, which are
Fussy and Sloppy. The experiments were divided into two parts and resulted in
two major findings. First we explored the benefits of the various optimizations
of mso encoding and showed that the most effective one is that of Lean. Second,
we aimed to answer the question whether second-order outperforms first-order
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in the context of ltlf -to-automata translation. To do so, we compared the best
performing mso encoding and Compact mso encoding against the fol encoding
and showed the superiority of first-order.

Correctness. The correctness of the implementation of different encodings was
evaluated by comparing the DFAs in terms of the number of states and transi-
tions generated from each encoding. No inconsistencies were discovered.

Fig. 1. Comparison over 6 variations of mso encoding

Fig. 2. Overall comparison of fol, mso and Compact mso encodings

Lean Constraint Form Is More Effective in MSO Encodings. Fig. 1
presents the number of converted instances of each variation of mso encod-
ing, where the upper three are all for Lean variations and the lower ones are
for Full variations. The choice of bnf vs nnf did not have a major impact, and
neither did the choice of Fussy vs Sloppy. The one optimization that was partic-
ularly effective was that of Lean variation. The best-performing mso encoding
was bnf-Fussy-Lean. While in the Compact mso encoding, the Fussy variation
highly outperforms that of Sloppy, as shown in Fig. 2.
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First-OrderLogicDominatesSecond-OrderLogic for LTLf-to-Automata
Translation. As presented in Fig. 2, fol encoding shows its superiority over
second-order encodings performance-wise, which are mso encoding and Compact
mso encoding. Thus, the use of second-order logic, even under sophisticated opti-
mization, did not prove its value in terms of performance. This suggests that never-
theless second-order encoding indicates a much simpler quantificational structure
which theoretically leads to more potential space to optimize, it would be useful to
have first-order as a better way in the context of ltlf -to-automata translation in
practice.

6 Concluding Remarks

In this paper, we revisited the translation from ltlf to automata and presented
new second-order encodings, mso encoding and Compact mso encoding with
various optimizations. Instead of the syntax-driven translation in fol encoding,
mso encoding provides a semantics-driven translation. Moreover, mso encod-
ing allows a significantly simpler quantificational structure, which requires only
a block of existential second-order quantifiers, followed by a single universal
first-order quantifier, while fol encoding involves an arbitrary alternation of
quantifiers. The Compact mso encoding simplifies further the syntax of the
encoding, by introducing more second-order variables. Nevertheless, empirical
evaluation showed that first-order encoding, in general, outperforms the second-
order encodings. This finding suggests first-order encoding as a better way for
ltlf -to-automata translation.

To obtain a better understanding of the performance of second-order encod-
ing of ltlf , we looked more into MONA. An interesting observation is that
MONA is an “aggressive minimizer”: after each quantifier elimination, MONA
re-minimizes the DFA under construction. Thus, the fact that the second-order
encoding starts with a block of existential second-order quantifiers offers no
computational advantage, as MONA eliminates the second-order quantifiers one
by one, performing computationally heavy minimization after each quantifier.
Therefore, a possible improvement to MONA would enable it to eliminate a whole
block of quantifiers of the same type (existential or universal) in one operation,
involving only one minimization. Currently, the quantifier-elimination strategy of
one quantifier at a time is deeply hardwired in MONA, so the suggested improve-
ment would require a major rewrite of the tool. We conjecture that, with such
an extension of MONA, the second-order encodings would have a better perfor-
mance, but this is left to future work.

Beyond the unrealized possibility of performance gained via second-order
encodings, another motivation for studying such encodings is their greater
expressivity. The fact that ltlf is equivalent to fol [15] shows limited expres-
siveness of ltlf . For this reason it is advocated in [6] to use Linear Dynamic
Logic (ldlf ) to specify ongoing behavior. ldlf is expressively equivalent to
mso, which is more expressive than fol. Thus, automata-theoretic reasoning for
ldlf , for example, reactive synthesis [8], cannot be done via first-order encoding
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and requires second-order encoding. Similarly, synthesis of ltlf with incomplete
information requires the usage of second-order encoding [9]. We leave this too
to future research.

Acknowledgments. Work supported in part by China HGJ Project No. 2017ZX0103
8102-002, NSFC Projects No. 61572197, No. 61632005 and No. 61532019, NSF grants
IIS-1527668, IIS-1830549, and by NSF Expeditions in Computing project “ExCAPE:
Expeditions in Computer Augmented Program Engineering”. Special thanks to Jeffrey
M. Dudek and Dror Fried for useful discussions.

References

1. Bloem, R., Galler, S.J., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:
Interactive pesentation: automatic hardware synthesis from specifications: a case
study. In: DATE, pp. 1188–1193 (2007)

2. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.-F.: Acacia+, a tool for LTL
synthesis. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
652–657. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-
7 45

3. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-decision dia-
grams. ACM Comput. Surv. 24(3), 293–318 (1992)

4. Burch, J., Clarke, E., McMillan, K., Dill, D., Hwang, L.: Symbolic model checking:
1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992)

5. Chandra, A., Kozen, D., Stockmeyer, L.: Alternation. J. ACM 28(1), 114–133
(1981)

6. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: IJCAI, pp. 854–860 (2013)

7. De Giacomo, G., De Masellis, R., Montali, M.: Reasoning on LTL on finite traces:
insensitivity to infiniteness. In: AAAI, pp. 1027–1033 (2014)

8. De Giacomo, G., Vardi, M.Y.: Synthesis for LTL and LDL on finite traces. In:
IJCAI, pp. 1558–1564 (2015)

9. De Giacomo, G., Vardi, M.Y.: LTLf and LDLf synthesis under partial observabil-
ity. In: IJCAI, pp. 1044–1050 (2016)

10. Di Ciccio, C., Maggi, F.M., Mendling, J.: Efficient discovery of target-branched
declare constraints. Inf. Syst. 56, 258–283 (2016)

11. Ciccio, C.D., Mecella, M.: On the discovery of declarative control flows for artful
processes. ACM Trans. Manag. Inf. Syst. 5(4), 24:1–24:37 (2015)

12. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E., Xu, L.:
Spot 2.0 – a framework for LTL and ω-automata manipulation. In: ATVA, pp.
122–129 (2016)

13. Henriksen, J.G., et al.: Mona: monadic second-order logic in practice. In: Brinksma,
E., Cleaveland, W.R., Larsen, K.G., Margaria, T., Steffen, B. (eds.) TACAS 1995.
LNCS, vol. 1019, pp. 89–110. Springer, Heidelberg (1995). https://doi.org/10.1007/
3-540-60630-0 5

14. Akers Jr., S.B.: Binary decision diagrams. IEEE Trans. Comput. 27(6), 509–516
(1978)

15. Kamp, J.: Tense logic and the theory of order. Ph.D. thesis, UCLA (1968)
16. Klarlund, N., Møller, A., Schwartzbach, M.I.: MONA implementation secrets. In:
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