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Abstract. This paper presents the use of temporal database features to solve the
Slowly Changing Dimension (SCD) problem of data warehouses. The SCD
problem is presented and existing solutions, together with their limitations are
shown. Temporal database features of SQL are described. Temporal data
retrieval and temporal data manipulations, together with illustrated examples are
demonstrated. The solution to the SCD problem is shown with illustrated
examples. The data warehouse whose dimension tables are validtime state
tables, but the fact table is a conventional fact table without any timestamp or
validtime period, is proposed. The identifier integrity of dimension instances is
preserved. The sample fact table, dimension tables, and the SQL codes which
perform temporal operations to solve the problem are presented. The proposed
solution gives correct results regardless of the number of changes made to the
attribute of the dimension table, thus completely solves the Slowly Changing
Dimension problem.

Keywords: Slowly Changing Dimension � Temporal data warehouse �
Temporal SQL

1 Introduction

A data warehouse is a centralized data source for data analytics and management
information making supports. Typical data warehouses comprises facts and
dimensions.

Data warehouses help ease the data integration issues in organizations that employ
individual special purpose information systems, which are separately developed. Many
organizations deploy such information systems from many vendors or software
developing teams without any prior agreement on data formats and value standards.

For many other organizations, which may not afford the costly centralized database,
or have to deploy ready-to-use information systems from several vendors due to the
deployment time constraint, building data warehouses is the alternative solution. Data
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warehouses employ star schemas or snowflake schemas, which comprise fact and
dimension table schemas. Dimension table schemas are schemas that describe object
types, which are of particular interest to the organization. Each row of the dimension
table represents an object instance, which is uniquely identified by a surrogate key. The
use of surrogate keys ease the join operations between the dimension tables and the fact
tables. A fact table schema comprises surrogate keys from the associated dimension
tables and at least one attribute called the measure. Typically, there is a time dimension.
The smallest time granularity is normally at the day level since a data warehouse
mostly keep summarized data as opposed to detailed transactions. A data warehouse
fact table can also be represented as a cube. Each axis represent a dimension and the
value at a coordinate is a measure value.

2 The Slowly Changing Dimensions Problem

Naturally, attribute values of existing rows of dimension tables may be updated. This
could affect the analytic results. The changes made to an attribute value of a dimension,
in principle, should not affect the past information of the data warehouse. However, if
not handled properly, the changes could yield incorrect analytic results from the data
warehouse. This dimensional attribute’s value change problem is widely known in the
data warehouse area as the Slowly Changing Dimensions (SCD) problem [1, 2]. The
term “slowly” reflects that the values are updated occasionally and infrequently.

A classic example is the case where a sale person changes his team. The person
used to belong to a sale team but later moved to a new team. The team name of this
person is therefore changed at a particular point of time. An ideal data warehouse
should be able to show that the person’s sale amount before the change belongs to the
former team, and the sale amount after the change belongs to the new team. This
problem sounds easy to handle but it is not. Current solutions have limitations.

Solutions have been proposed and referred to as Type 1, Type 2 and Type 3
solutions. They are approaches based on the conventional relational database. All of
them has some limitations. In this paper, we propose an approach to solve the SCD
problem using the temporal relational database, which solves the SCD problem and all
the limitations of the existing solutions.

Kimball [1] a pioneer of data warehousing, and Jensen et al. [2], classify three
typical approaches for the SCD problem handling. They are summarized as follow:

2.1 Type 1 (Overwrite)

The type one approach simply overwrite the value of the changed attribute. The new
value replaces the old value. This is a simple approach to the problem. It does not solve
the problem but it is simple and easy to implement. All related facts, which are referred
to by the dimension instance now refer to the new value. Figure 1 illustrates this
approach. The sale person S1 moves from IT department to Retail department. This
approach simply replaces IT by Retail. All the fact instances of S1 are now refer to the
new department Retail even though they are old facts.
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2.2 Type 2 (Add New Dimension Instance)

The type two approach is an attempt to preserve the history. It creates a new row in the
dimension table for the dimension instance with the newly updated value. The newly
created row with the new column value also has a new surrogate key. The dimension
instance therefor has a new row and a new surrogate key for each change. This simple
approach works but lacks the identification integrity. Each object instance should have
a unique identifier; otherwise, the two instances are interpreted as different object
instances. Figure 2 demonstrates the type two approach.

2.3 Type 3 (Add a New Attribute for Each Version)

The Type 3 approach add a new attribute to the dimension instance row. Each instance
has only one row and one unique identifier. The identification integrity is preserved.
However, this approach can handle only limited number of changes. Figure 3
demonstrates the Type 3 approach. Here only two versions of the department value can
be accommodated.

There are other attempts to solve the SCD problems. Snapshot tables [3] are used to
represent a dimension instance row at a point of time. The separation of a historical
table from the current table is also suggested [4]. However, the instances from the two
tables use different surrogate keys.

Surrogate key-based temporal data warehouse [5], another interesting approach, is
an attempt to use the validtime concept of temporal database to show the validity of the
changed value. However, different surrogate keys are still used for different version of
the changed dimension instance. This simple approach works but still lacks the iden-
tification integrity.

Fig. 1. The overwrite approach to the SCD problem

Fig. 2. The ‘add new dimension instance’ approach to the SCD problem

Fig. 3. The ‘add new attribute’ approach to the SCD problem
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Versioning tables [6, 7] are extensions to the surrogate key-based temporal data
warehouse approach. A current flag is introduced to ease programming tasks and can be
viewed according to applications’ requirements. Different surrogate keys are still used
for different versions of the changed dimension instance.

In this paper, we present an approach to the Slowly Changing Dimension problem.
This approach completely solves the problem without any previous limitations. We do
not replace the old value by the new value and lost track of the old one likes the Type 1
approach. We do not use different surrogate keys to refer to the same object instance
likes the Type 2 approach. This identification integrity problem of the Type 2 approach
obviously lead to the inability to track information of the same object instance over
different periods since different identifiers are used to identify the same dimensional
object instance. We do not have the limitation on number of versions of the changes
that the Type 3 solution has.

Our approach does not use different surrogate key value for different changed
versions. The unique identifier of each dimension instance remains unchanged. This is
feasible due to the deployment of temporal database technology in modern relational
database systems and the temporal features of the SQL language as described in the
following section.

3 Temporal Database Operations

The handling of the SCD problem without the well-known limitations, and still
maintain the identification integrity so that tuples which refer to the same object
instance, but have different attribute values due to the changes, and still use the same
identifier is a big challenge in the data warehouse area. In this paper, we propose the
use of temporal database technology to handle the problems. In order to understand our
proposed solution, temporal database operations must be well understood first. This
section gives a brief summary of temporal database operations in SQL.

In conventional database systems, only facts that are currently true are stored. In
reality, facts in the databases change from time to time. Previously true facts are also
considered important and might be referred to by applications. The database should
contain not only the current information of an employee but also previous versions of
the information as well. Validtime denotes the time when a fact is true in reality.
Relational database tables that support validtime is called validtime state tables.
Nowadays several commercially available relational database systems support valid-
time state tables and their SQL languages support temporal aspects of validtime state
tables.

Validtime state tables keep time varying facts and the time that the fact is valid. For
each time varying fact type, there are validtime start and validtime end, in the closed-
open format. Each validtime interval is closed at its lower bound, and open at its upper
bound to facilitate the continuity checking. Facts which are currently valid, have the
upper bound valid, to-date, set to either null or ‘infinity’, which is the maximum date
31/12/9999. Removed facts, are not actually deleted but instead are marked as invalid
facts. Figure 4 shows the validtime state table used to present the sale person dimen-
sion of a data warehouse. The validtime is in the close-open format. The two rows of
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each sale person with sales_id S1 and S3 are the rows before and after the changes of
their department. The previous department value was RETAIL and the current one is
IT. A new row is inserted for each modification. The row with the old value is marked
as valid up to the day the update took place and a new row with the new value is
inserted. The end date of the new row is set to 31/12/9999 to show that the row is the
current one.

We use the Oracle Workspace Manager [8] to demonstrate relevant temporal
database operations. The temporal features in this section are used to implement our
approach to solve the SCD problem.

3.1 Validtime State Table Creation

The concept of validtime state table enables temporal queries; as well as temporal
insert, delete and update operations. These temporal database operations are tedious to
implement using conventional relational database technology [9]. The validtime period,
if handled by conventional relational systems, needs long SQL codes to manipulate and
queries. Instead, if the validtime period is handled by the temporal feature of the
supported DBMS, the SQL codes are much more concise. The following commands as
shown in Fig. 11 create the validtime state table sales_dimension which is to be used as
our temporal dimension table for the SCD problem handling. The EXECUTE
DBMS_WM.EnableVersioning command enables validtime versioning.

The attribute WM_VALID is automatically created and handled by the DBMS. It
comprises the validtime attributes (WM_VALID.VALIDFROM) and (WM_VALID.
VALIDTILL).

For each temporal operation, a validtime period, the period of applicability, needs
to be specified. The EXECUTE DBMS_WM.SetValidTime (START_DATE, END_
DATE) command therefore needs to be issued before each temporal operation. In the
Fig. 5, sales_id is the apparent primary key of the validtime state table. The actual
primary key, according to the conventional relational database model, is the combi-
nation of the apparent primary key sales_id and the validtime period WM_VALID.
This actual primary key is handled by the temporal feature of the DBMS (the Oracle
Workspace Manager).

Fig. 4. A validtime state table SALES_DIMENSION shows sale persons change departments
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3.2 Temporal Query Features

Since our proposed solution to the SCD problem needs the temporal query features to
handle the problem, dimension tables are created as validtime state tables. Temporal
queries on them are now possible. Temporal operators comparable to the Allen’s
Interval Algebra [10] are available. Oracle’s WM_OVERLAPS is Alllen’s P1 overlaps
P2. WM_CONTAINS is P1 contains P2. WM_MEETS is P1 Meets P2. WM_EQ-
UALS is P1 equals P2.

Figure 6 demonstrates the WM_OVERLAPS operation. The SQL select statement
retrieves rows of the validtime state table SALES_DIMENSION from Fig. 5 where the
valid period overlaps 01/02/2018 and 31/05/2018 (the close-open format excludes
01/06/2018). The result shows two rows which belong to the sale person S01. The first
row is his current row where he belongs to the IT department since 01/05/2018 until
now (31/12/9999). The second row shows his previous appointment at the RETAIL
department between 01/01/2018 and 30/04/2018 (01/05/2018).

Figure 7 demonstrates the join of the SALES_DIMENSION validtime state table to
itself with the WM_CONTAINS condition. The query gives a list of sale persons who
work during the same period of time for the same department. Temporal join operations
are required to join the dimension tables with valid time and the fact tables of our
proposed temporal data warehouse.

Fig. 5. The SQL command for validtime state table creation and the table with some rows

Fig. 6. An SQL command that demonstrates the WM_OVERLAPS operation
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3.3 Temporal Data Manipulations

Insertion of new rows to the validtime state table is a straight forward operation. A period
of validity needs to be declared before the insert operation. Update and delete operations
on validtime state tables, however, are complicated and require careful considerations [9].
Period of applicability needs to be declared and considered when update or delete oper-
ations are issued. It is then checked against the period of validity of existing data. There
could be several overlap patterns between the two periods. The temporal database feature
of the DBMS handles them automatically. In this section, the update of attribute value is
demonstrated. It will be used tomodify attributes of dimension tables which are validtime
state tables, thus leads to the solving of the SCD problem.

The commands in Fig. 8 demonstrate the department change of the sale person S05
to the MECHANIC department from 01/01/2018 to 30/12/2018. Note the close-open
format, 31/12/2018 is not included in the period. The left table shows the sale

Fig. 7. An SQL query which demonstrates the join of the SALES_DIMENSION validtime state
table to itself with the WM_CONTAINS condition

Fig. 8. The temporal update operation that moves S05 to the MECHANIC department for a year
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dimension table before the update. S05 was in the IT department since 01/01/2017. The
update result on the right table shows three rows of S05. The END_DATE of row
number 8 is updated to 01/01/2018 and two new rows are inserted.

4 Data Warehouses with Temporal Dimensions

Based on the temporal database technology, we propose the data warehouse with
temporal dimensions. The dimension tables whose attributes’ values can be modified
and referred to when queried, are validtime state tables. SQL queries on them only
consider the apparent primary keys. Temporal operators can be employed. The fact
table is a conventional fact table without the validtime.

Figure 9 shows the star schema whose dimension SALES_DIMENSION is a
validtime state table to accommodate the department changes. SALES_ID is the sale
person key. It is the apparent primary key, which is unique for each dimension
instance. Unlike other related works in the literatures, the primary key value will not be
changed after updates on the temporal attribute. The data warehouse that employs such
validtime dimension tables, can now be referred to as a temporal data warehouse. Note
that there are no such validtime periods in dimension tables of other conventional data
warehouses.

Figure 10 shows the time dimension table TIME_DIM. Note that the surrogate key
DATE_KEY is used instead of the actual date. This is a common practice in data
warehousing. The attribute FULL_DATE is the actual date. When the SCD problem is
detected, this date will be used to check validity of the corresponding fact instances.
Figure 11 shows the sale persons dimension SALES_DIM, which is a validtime state
table. The item dimension table ITEM_DIM is a conventional dimension table. Fig-
ure 12 is the fact table SALES_FACT together with its fact instances of S01. The fact
table does not have a validtime but it is possible to include one here. Note also the use
of surrogate keys for easy references.

Fig. 9. A star schema whose dimension SALES_DIMENSION is a validtime state table
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5 Slowly Changing Dimension Handling

In this section, we present the use of temporal database features to solve the Slowly
Changing Dimension (SCD) problem. We propose that the dimension tables, whose
attributes are significant enough so that their changes are to be tracked and shown as
output attributes of the data warehouse, be validtime state tables. The surrogate keys of
such dimension tables are the apparent primary keys. Each entity instance has the
surrogate primary key, which does not changed with time. Attribute value updates and
the validtime, are handled by the temporal feature of the DBMS as described in the
previous section.

The key idea is to relate each row of the fact table to the correct row of the
dimension table whose attribute values have been changed. In our approach, since the
apparent primary key remains the same regardless of the number of changes made to an
attribute value, and the number of attribute value versions, simple joining of common
surrogate keys of the fact table and the corresponding dimension table is not enough.
The join must be a temporal join with time overlap or contain checking.

The next issue is the time validity of the fact instance rows of the fact table. In
principle, a row of a fact table refers to the time key of the time dimension. This time
key represents a point of time, not a period of time, and is a surrogate key. The SCD
dimension table, on the other hand, has a validtime period. A possible representation is
to attach a time period for the day to each fact instance row, thus complicate the Extract

Fig. 10. The Time dimension table TIME_DIM

SALES_DIM ITEM_DIM

Fig. 11. Rows of S01 from the dimension tables SALES_DIM, and rows of ITEM_DIM

Fig. 12. Rows of the fact table SALES_FACT which show fact instances of S01
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Transfer Load (ETL) task of the data warehouse. This validtime on the fact table would
also lead to the wrong interpretation that each fact instance is only valid for the day,
which is not true. We therefore keep the fact table as a conventional relational database
table.

To check that the date on the fact instance row corresponds with the validtime
period of a corresponding dimension row, we extract the full date of the fact instance
row by using a join with the time dimension table via the time surrogate key. Once the
full date of the fact instance is obtained, it can be checked if the date and the date plus
one (due to the close-open format) contains in a validtime period of a dimension
instance row with the same dimension surrogate key.

An illustrated example in Fig. 11 shows that the sale person S01 John was with the
RETAIL department from 01/01/2018 to 30/04/2018. He then moved to the IT
department from 01/01/2018 until now. Figure 10 shows some rows of the time
dimension table TIME_DIM. The surrogate key, DATE_KEY, is used instead of the
actual date timestamp. This is a typical data warehouse identification. Date keys 5, 21,
81, 110 represent the days when the sale person S01 was with the RETAIL department.
The rest of the date keys, 121 to 352 are the days when S01 belongs to the IT
department.

The fact table SALE_FACT in Fig. 12 shows sale fact instances some of which
belong to S01 when he was with RETAIL and some when he was with IT. The first
four rows of the fact table shows the sale records on the days 5, 21, 81, and 110, which
are the days when S01 was with RETAIL. The other rows show the sale records on the
days 121, 192, and 229 when he was already moved to IT. Notice that all these sales
fact instances refer to the person as S01. The facts that he belongs to different
departments during different periods of time are in the dimension table SALES_DIM
which is a validtime state table.

The Slowly Changing Dimension (SCD) problem, according to the above sample
data, is the case when the supplier S01 changed his department and the system cannot
keep track of the changes, thus gives incorrect total values of his sales amount for each
department. Figure 13 shows the correct result obtained from our data warehouse with
temporal dimensions. The total sales amount of S01 when he was with the RETAIL
department is 2,320 units. The first fiscal quarter of 2018 is 1,320 units and the second
quarter of 2018 is 1,000 units. The total sales amount of S01 when he was with the IT
department is 540 units. The first fiscal quarter of 2018 is 40 units and the second
quarter of 2018 is 500 units. The fiscal quarter information is obtained from the time
dimension table TIME_DIM. The SQL query, which employs the WM_CONTAINS to
check fact instance and dimension instance periods of validity, is shown in Fig. 14.

Fig. 13. The query result demonstrates that the SCD problem is solved.
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To illustrate the consequence of a further update to the attribute, suppose the sale
person S01 changes his department once again. This time he moved from IT to
MECHANIC department since 01/09/2018. The temporal SQL update statement marks
the END_DATE of the IT row to be 01/09/2018. The sale persons dimension table
SALES_DIM now has a new row as shown in Fig. 15.

The sale person makes more sales and corresponding new fact instance rows are
shown in the fact table SALES_FACT as shown in Fig. 16. The date 265, 282, 352 are
actually 22/09/2018, 09/10/2018, and 18/12/2018 respectively. By applying the SQL
query with temporal feature from Fig. 14, the query result which shows sales by
department and fiscal quarter of S01 is correctly shown in Fig. 17.

Fig. 14. The SQL query which produces correct result despite the change in the dimension.

Fig. 15. Rows of S01 from the dimension table SALES_DIM after S01 moved to MECHANIC

Fig. 16. New fact rows of S01 after moving to MECHANIC department
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6 Conclusions

This paper presents the use of temporal database technology to solve the Slowly
Changing Dimension problem. A temporal data warehouse, which has validtime
dimension tables is proposed. The identifier integrity of dimension instances is pre-
served. The same surrogate key identifier is used to identify the same object instance
even after a dimension attribute value is changed. The dimension attribute value can be
changed several times without any limitations. The query results are always correct
regardless of the number of changes made, thus completely solves the Slowly
Changing Dimension problem. All limitations of the previously well-known solutions
of the problem are lifted. Our implementation is based on the Oracle Workspace
Manager. However, relational DBMSs that adhere to the SQL standards since 2011
have the temporal SQL features as presented in the paper and therefore can be used to
implement the proposed solution.
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