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Abstract. We propose a deep learning tool to localize fish objects in
benthic underwater videos on a frame by frame basis. The deep network
predicts fish object spatial coordinates and simultaneously segments the
corresponding pixels of each fish object. The network follows a state
of the art inception resnet v2 architecture that automatically generates
informative features for object localization and mask segmentation tasks.
Predicted masks are passed to dense Conditional Random Field (CRF)
post-processing for contour and shape refinement. Unlike prior methods
that rely on motion information to segment fish objects, our proposed
method only requires RGB video frames to predict both box coordi-
nates and object pixel masks. Independence from motion information
makes our proposed model more robust to camera movements or jitters,
and makes it more applicable to process underwater videos taken from
unmanned water vehicles. We test the model in actual benthic underwa-
ter video frames taken from ten different sites. The proposed tool can
segment fish objects despite wide camera movements, blurred underwa-
ter resolutions, and is robust to a wide variety of environments and fish
species shapes.
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1 Introduction

1.1 Overview and Motivation

The research of this paper is motivated by the relatively old problem of fish-
counting. The problem of how to accurately count estimate fish populations
is important for scientists and fishermen as it provides the basis for local and
national government decisions as to how much fish can be harvested from the
ocean. [23]. From [5], measuring the distribution and abudance of fish organisms
in marine environments is of fundamental importance in assessing an ecosystem’s
health, since it provides criteria for adjusting fishing quotas. If fish abundance
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counts are left unchecked, it may lead to overfishing which disrupts the natural
dynamics of fish populations.

However, the fish-counting problem involves the sub-routine of Fish object
localization, and localization of fish objects in underwater video frames is non-
trivial due to several challenges unique to underwater videos. [17] mentions that
underwater mediums are characterized by light absorption and scattering caused
by dissolved constituents and suspended particulates that produce marine snow
artifacts. This causes several false positives on fish objects. Other problems
include strong similarities between fish-object colors and background colors -
which are both dominant in the blue channel. In some videos - particularly
those that are taken near the surface - strong illumination changes are preva-
lent, which could distort methods that rely on brightness and motion for fish
localization.

1.2 Related Methods

Earlier methods for fish species localization [21], rely on background-subtraction
methods. This approach usually gathers background information per pixel in
the form of average values in the RGB channels. Pixels that show significant
deviations from the average RGB values are classified as moving objects - which
are usually fish objects. A limitation of this approach is its dependence on fixed-
camera set-ups and static backgrounds. But for videos with dynamically chang-
ing backgrounds - as in cases of sudden illumination caused by turbulent surface
waves, or by moving cameras, background subtraction is no longer useful. Other
methods rely on manually-defined features and thresholding to detect fish objects
such as [11], which relied on CLAHE-thresholded features. These methods how-
ever are limited by the information set by the manually-crafted features and may
not generalize to a wide variety of fish appearances and shapes. In addition, such
methods do not perform in a unified manner since the feature extraction, object
localization and classification methods are separate, and a single frame has to
pass through different methods to predict the desired outputs.

Recent methods based on deep-learning show some promise to address the
limitations of the above approaches. Particularly, deep learning combines both
the feature generation process and the localization process into a unified network
that could be elegantly trained via backpropagation. Since features are learned
from the data, it overrides the limitations caused by manually-defined features.
In addition, several features of deep learning are robust to changes in brightness
or motion since they are edge-based. This overcomes the need to rely on motion-
sensitive background subtractors - which would be applicable to underwater
video applications.

Some prior works that uss deep learning methods for fish detection is by [14]
and [13]. However, both methods perform species classification with bounding-
box estimation, while our method performs pixel-wise instance segmentation
with bounding-box estimation. In addition, the previous works rely on manually-
labeled ground-truth from the FishCLEF database [8]. The work of [12] uses a
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deep learning network (Residual Network) to compute for the semantic seg-
mentation of fish object pixels based on weak labels provided by Gaussian
background-subtraction. However, the deep network model in [12] does not per-
form a bounding-box localization task but limits itself to semantic segmentation.
A box localization sub-routine can be performed on the output of [12]’s network
but it is an external sub-routine that is not embedded on the deep network and
may lead to additional processing delays.

For this paper, the deep learning methods that are proposed are networks
that could perform both localization, classification and segmentation tasks, [18],
[3] - since the problem is to both detect and segment a large number of fishes
in each video frame, and differentiate each fish instance. Hence, the proposed
method can perform multiple localization and segmentation tasks all at the
same time - without need to call methods external to the core architecture.
This simplifies the process, and given modern GPU hardware, prediction time is
lessened - enabling fast video processing of thousands of frames. To further refine
prediced masks, we pass the network’s predicted mask to a dense Conditional
Random Field (CRF) [9] for post-processing as is done in several other methods.
Relating our model to the motivation provided in the previous sub-section, the
localization sub-task provides fish-count estimates. The segmentation sub-task
on the other hand provides an easier visual assessment of the fish contours which
could be used for fish size estimation in future works. For our experiment, we use
actual underwater video data that is subject to several underwater illumination
distortions and with large numbers of fish objects per frame. We also rely on
weak-labels to train our algorithm since manufacturing manual ground truth for
our large data is impractical. Models trained with only weak-labels have to be
more powerful to generalize well despite inherent errors in training.

Fig. 1. Network architecture

2 Methodology

The base model of the proposed tool is a convolutional neural network (CNN).
Convolutional neural networks first gained popularity in [10], which won the
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ImageNet classification task [19] by accurately classifying 1000 classes with 90%
accuracy. Recent models extended the classification CNN to localization tasks,
where several objects can be detected per input frame, and the CNN localizer
outputs cartesian box coordinates (x1, y1, x2, y2) per object. CNNs are trained
through the backpropagation algorithm and several iterations are required before
achieving meaningful results. For this paper, the CNN follows an architecture [3]
that can simultaneously perform several tasks. The only required input during
is an RGB video-frame during test-time (of arbitrary size), and the output is a
list of fish-objects, along with their corresponding box coordinates, and instance
masks (where an instance mask pinpoints the corresponding pixels of the fish
object). Our proposed CNN model is subdivided into three parts: (1) the base
trunk, (2) the region-proposal network, (3) the pixel segmentation network, and
(4) the objectness detector and box-coordinate predictor network.

2.1 Base Trunk Subnetwork

In most CNN architectures, the base trunk consists of a very deep network
responsible for generating data-driven features to be fed to object detector and
segmentation networks. As per [18], a deep network can generate meaningful
features starting from basic RGB values through several convolution operators
that generate features from neighboring spatial information. Unlike traditional
neural networks, each layer in a CNN has three dimensions (height, width and
depth), corresponding to a feature-map. Experimental results show that the
first layers of deep networks generate patterns on edges of small regions of the
input frame. Later layers combine several small patterns to form larger and more
meaningful shapes (i.e. fish eyes, fins, mouth).

For this model, we design the base trunk according to the inception-resnet-v2
architecture [22] that consists of more than a hundred layers. It has achieved
state-of-the-art results in the ImageNet challenge. Beginning with the input
layer, the base-trunk passes the input frame through several inception blocks.
As the layers progress, the height, and width of the feature map decrease, while
the depth increases. Following [18], features generated at the very end of the
base-trunk are general enough to be useful for a wide variety of tasks, and can
be combined for both localization and segmentation. To save memory and for
computational efficiency, the base trunk shrinks the original input image to size
H/16 × W/16 × D, where D = 512 as shown in Fig. 1.

Similar to [18], the base trunk network does not have any sub-loss function
on its own. Weights in the base trunk merely receive gradient corrections from
the proposal, segmentation and box coordinate predictor sub-networks.

2.2 Region Proposal Subnetwork

The region proposal network (RPN) is responsible for generating hundreds of
region proposals per input frame. A region proposal is a box-coordinate set
[x1, y1, x2, y2] corresponding to a sub-region in the input frame, that is likely to
contain a fish-object. Some region proposal methods rely on external superpixel
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proposal algorithms [6], [20]. But the Faster R-CNN work of [18], incorporates
the proposal stage as a subnetwork task in the overall CNN architecture. The
RPN in Faster R-CNN relies on “anchors”, which are spaced evenly every 16
pixels. Each anchor location is assigned with 9 boxes of different sizes and aspect
ratios. The RPN operates by finding those anchor-boxes that have the highest
intersection over union (or IoU) over ground-truth bounding boxes, as well as
those that have an IoU above 70%. Each anchor-box outputs a regressed box
coordinate set [x1, y1, x2, y2] that roughly approximates the actual coordinates
of the object it overlaps. But these coordinates are usually not accurate, and
[18] resorts to a secondary coordinate refinement procedure through the R-CNN
sub-network that is connected with the RPN.

RPNs are trained using a loss function formed from a linear combination
of objectness classification losses and smooth L1 loss functions [6]. Formally, let
F (Θ) denote the shareable feature map received from the base trunk subnetwork
of size of H/16×W/16, and where Θ denotes all network parameters. Similar to
the Faster R-CNN RPN architecture, the RPN passes a 3 × 3 convolution over
F (Θ), followed by two 1 × 1 convolutions to produce pa

i (Θ) and tai (Θ), where
i denotes an anchor location. The RPN’s compound loss function Lrpn

i for a
certain anchor location i is as follows:

Lrpn
i = lcls(pa

i (Θ)) + lreg(tai (Θ)) (1)

where pa
i (Θ) is an 18-d vector of object probabilities for anchor i’s 9 scale and

aspect ratios. tanchor
i (Θ) is a 36-d vector of bounding box parameter adjust-

ments. lcls is softmax, while lreg is the smoothL1 loss function. Both pa
i (Θ) and

tanchor
i (Θ) involve two inputs relating to ground-truth inputs and network pre-

diction outputs. The details over tanchor
i (Θ) are a bit involved but are all written

in [6] and [18]. The loss function in Eq. 1 is summed up over all i anchor boxes,
which reaches an average of 12, 000 boxes, followed by averaging. We let A define
the set of all anchor box locations such that for each anchor i ∈ A. The RPN
loss function is then:

Lrpn =
1

|A|
∑

i

Lrpn
i (2)

Bounding box parameter adjustments tai (Θ) can be transformed to bound-
ing box coordinates [x1, y1, x2, y2] using a box-inversion function shown in
[6]. For each anchor i, the corresponding regressed bounding box coordinates
[x1, y1, x2, y2] are used by the R-CNN in [18] to extract sub-feature maps from
F (Θ). This procedure is described in more detail in the following subsections.

2.3 Segmentation Subnetwork

The segmentation task consists of labeling each pixel in the input frame as either
belonging to a fish-object or not. The expected output is a binary mask where
pixels of fish objects are correspondingly labeled as 1 (or foreground), and all
other pixels are labeled as 0 (or background). For this model, segmentation is
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first performed in the entire frame through a fully-convolutional network (or
FCN) [16]. Segmentation could be performed on a local per-region basis as has
been done in [3] or [7]. But we prefer to perform global segmentation through
an FCN subnetwork since it is able to benefit from a combination of both global
and local information. From [16] FCN takes features generated at the very last
feature map of the base trunk (with H/16 × W/16 dimensions) and estimates a
foreground-background per-pixel probability map with the original H ×W input
size. Estimation of the foreground-background probability map is performed
through a series of bilinear-interpolation and mini inception blocks. Bilinear-
interpolation is responsible for restoring the small H/16 × W/16 base trunk
end-feature map to the original H × W input size.

The segmentation sub-network has its own set of loss functions. We let
F fcn(Θ) describe the FCN output tensor of size H × W × 2 that is normal-
ized to form a probability defined over foreground and background classes (2
channels). To make the notation simple, we let |F fcn(Θ)| denote the number of
pixels corresponding to F fcn(Θ). The loss function is then:

Fig. 2. Large frame fish detection and instance segmentation

Lseg =
1

|F fcn(Θ)|
∑

|F fcn(Θ)|
log(F fcn(Θ))I[fg] (3)

From Eq. 3, Lseg is the cross entropy of the F fcn(Θ) foreground/background
probability predictions per pixel with the true label I[fg] which takes the value
of 1 if foreground and 0 o.w. The resulting foreground-background per-pixel
probability map provides the probability that a certain pixel in the input frame
belongs to a foreground fish object (or not). However, the FCN output map does
not yet differentiate whether a certain pixel belongs to a certain fish object or to
another. In other words, the predictions are instance-insensitive. To assign fore-
ground pixels among the various fish objects detected is the role of the objectness
detector and box-coordinate predictor network.
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2.4 Dense Conditional Random Field Post-processing and Fish
Object Instance Differentiation

Before combining the mask and box-coordinate outputs from the segmentation
and box-coordinate subnetworks respectively, we first perform an additional
mask refinement scheme. Specifically, after the FCN subnetwork produces a
2-channel foreground/background probability mask for all pixels in the input
frame, the mask is passed through a dense conditional random field (CRF) for
post-processing [9]. This has been performed as a mask segmenter refinement
procedure in [2]. The dense CRF associates the foreground/background per-
pixel probabilities to the RGB color-space of the input frame to come up with
more refined contours and shapes of fish objects. Unary potentials in the dense
CRF are the log outputs of the FCN segmentation sub-network log(F fcn(Θ)).
Pairwise potentials consist of euclidian distances between pixels in the RGB
space following the sample from [9]. By using RGB values, learning dense CRF
pairwise potentials is greatly simplified, and inference can be done linearly using
convolutional filters following from [9] in a transformed permutahedronal space.
After dense CRF post-processing, each pixel is assigned to its corresponding
fish object using the box coordinates produced by the box coordinate predictor
sub-network (BCPS). This creates an instance-sensitive classification of the pixel
mask.

2.5 Objectness Detector and Box Coordinate Predictor
Subnetwork

The box coordinate predictor subnetwork (BCPS) follows the refinement pro-
cess in Faster R-CNN [18], but with additional cascades that perform stepwise
corrections on box predictions. The BCPS subnetwork begins with extraction
of sub-feature maps from the shareable feature map F (Θ). For each predicted
anchor location pa

i (Θ) with ≥70% objectness probability, the BCPS subnetwork
uses RoI-Cropping [3] to extract a set of sub feature maps f(Θ) from F (Θ). The
initial dimensions of f(Θ) are dependent on the regressed anchor box coordi-
nates [x1, y1, x2, y2] from the RPN, but RoI-cropping bilinearly interpolates all
f(Θ) to a uniform h × w - following the R-CNN structure in [18].

We model the BCPS subnetwork to follow a 4-cascade process [3] for better
accuracy. The first cascade predicts preliminary box-coordinates of fish objects
along with their objectness information, where high objectness scores represent
a region-of-interest with a high probability of containing a fish species. The next
three cascades serve to refine the box-coordinates predicted in the previous step.
For increased accuracy, each subnetwork incorporates local mask information
as well following the architecture described in [3]. In mathematical notation,
we let tc(fc(Θ)) denote the bounding box parameter adjustments for cascade
c. Using the inversion function shown in [6], these bounding box adjustments
are transformed to bounding box coordinates [x1, y1, x2, y2]. Using these coor-
dinates, the next cascade c + 1 re-extracts sub-feature maps fc+1(Θ) and passes
them on to the next cascade sub-network for another regression that outputs the
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next bounding box adjustments tc+1(fc+1(Θ)). Following the cascade algorithm
in [3], bounding box adjustments in tc+1(fc+1(Θ)) should contain a tighter box
around the fish object.

For the loss function of BCPS, we let f denote the set of sub-feature maps
extracted by the BCPS sub-network where fc(Θ) ∈ f for all cascades c = 1...4.
The sub loss function of the BCPS sub-network is a summation of losses con-
tributed by each subfeature map, with a total of 4|f | sub-feature maps (given 4
cascades). Similar to the RPN, the losses are composed of a smooth L1 regres-
sion loss lcreg(tc(fc(Θ))) and a softmax cross-entropy loss lccls(pc(fc(Θ))). The
sub-loss function of the BCPS sub-network is as follows:

Lbcps =
1

4|f |
4∑

c=1

∑

f

[
lcreg(tc(fc(Θ))) + lccls(pc(fc(Θ)))

]
(4)

Where c defines the position of the cascade, which in this case begins from
1 to 4. As per [3], incorporating more cascades in the box coordinate regression
process should provide more accuracy gains.

2.6 Total Loss Function

During training of the network, the overall loss function supervises gradient
corrections for all network parameters Θ, using losses formed in a linear combi-
nation of the sub-loss functions (Eq. 5). We train the network using stochastic
gradient descent (SGD) with learning rate 0.001 and Nesterov Momentum with
0.9 momentum parameter.

Lall = Lrpn + Lseg + Lbcps (5)

2.7 Prediction Outputs

After training, the network outputs a set of results during prediction (test) time
as listed below. The 1st and 2nd outputs are from the BCPS subnetwork (as
the RPN subnetwork outputs are merely intermediate outputs for generating
proposals). The 3rd output uses the FCN global mask and takes only those
pixels that are identified to be within a box coordinate set [x1, y1, x2, y2].

1. Coordinates [x1, y1, x2, y2] of pixels with high probabilities of containing fish
objects (≥70%)

2. Probability of fish objectness given each coordinate set [x1, y1, x2, y2]
3. Per pixel foreground-background probability for each coordinate set [x1, y1,

x2, y2], following FCN and dense CRF post-processing.

2.8 Data Sources and Training Details

The network is trained with benthic underwater video frames taken from ten (10)
different sites in central Philippines. Each video frame has different background,
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underwater illumination, and hues. Some video frames have static camera set-
ups while some video frames experience rapid camera movement. In some sites,
only a few fish species can be visually detected, but other sites have more than 20
fish objects per frame. To train the proposed model, the needed information are
the box coordinates of fish objects per frame (to train the object and coordinate
predictor subnetwork) along with the corresponding ground truth binary mask
per frame (to train the fully convolutional segmentation sub-network).

The usual method to train a deep learning model is through manually-labeled
ground-truth. However, given the large number of frames that have to be pro-
cessed, it is impractical and time-consuming to manufacture manually-labeled
ground truth. We settled for training the model with weakly-labeled data derived
from motion-based background subtraction tools. We first extract motion masks
from an adaptive Gaussian background subtractor implemented in OpenCV [1],
and then refine it using a 152-layer fully convolutional network [15]. Afterwards,
we pass the refined motion masks to a contour detector to extract fish blobs. The
detected fish blobs are then passed to a deep network classifier for prediction of
the true fish blobs.

We select 1,600 weakly-labeled training frames for the training pool, where
each site has at least 10 frames included. Training of the network is done with
a 12 GB Titan X GPU, with tensorflow deep learning computer code. Training
time took around four (4) days, since the network went over the entire training
set 80 times.

3 Results and Discussion

Figure 2 depicts a sample frame taken from one of the sites, where fish objects
are simultaneously enclosed in bounding boxes and segmented pixel-wise. For
testing the model, we collected 30 frames randomly sampled from the different
sites and calculated their precision and recall values in terms of bounding box-
localization. We consider a detected fish object as a true positive (TP) if the
bounding box visually covers more than 50% of the fish’s pixel area. If two
bounding boxes cover the same fish, only one is counted as a true positive, while
the duplicate box is penalized as a false positive. These rules are similar to the
standard PASCAL VOC localization challenge [4]. We manually as many fish
objects as we could find in the 30 test-frames, but some fish objects that are
very small and blurry are no longer counted as they already lie very far from the
camera center (Table 1).

Upon test-time, we gathered a precision of 93.77% and a recall of 48.51%,
where the average number of fish objects detected per frame number up to
12 fishes per frame. We would like to note however, that the 48.51% recall
measure includes fishes of all sizes. However, this measure includes fish objects
that are already located far from the camera, and have pixel sizes that are already
≤30 × 30. If the experiment’s scope is limited to fishes that are within a certain
perimeter radius from the camera, i.e. a 5-meter box perimiter radius, then the
recall of fish objects should be much higher, and we have a conservative estimate
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Fig. 3. Sample fish detections with simultaneous bounding box and pixel instance
segmentation. The figures above depict sample detections produced by the model.
The model simultaneously estimates both the fish object’s bounding box (green box
outline) and segments the pixels belonging to the fish object within the bounding box.
The results above include Dense CRF post-processing which facilitate more accurate
segmentation. Segmentation is robust whether the fish object is located in the water
column or along the seabed with coral background (i.e. the bottom left picture) (Color
figure online)
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Fig. 4. Sample detection with moving camera. Since our model predicts on a frame-
by-frame basis, it does not need temporal information to localize and segment fish
objects

Table 1. Set A includes fishes of all sizes discernable by a human observer. Several of
the fishes in set A however are very small with pixel sizes ≤30×30. Set B only includes
fishes that have pixel sizes that are roughly ≥100 × 100 and are seen within a 5-meter
volume radius from the camera viewpoint. Given this constraint, recall increases to 60%
estimate. We consider an object to be correctly detected if the predicted bounding box
is 50% the area of the ground-truth box, following PASCAL VOC.

Test set Precision Recall

Set A 93.77 48.51

Set B 93.77 60 (est.)

of more than 60% recall. This recall includes most of the larger fishes of pixel
sizes ≥100 × 100.

From our experiments on test-set frames, several of the detected fish objects
lie along the middle portion of the frame’s y-axis. This section is where the con-
trast between the fish objects and the water column are easier to detect. Several
of the missed fish objects lie along the frame’s base, where most of the corals
are located. Several of these missed fish objects are hard to detect even from a
human observer. Most of the large and noticeable fishes however are adequately
detected and segmented by the model as shown in Fig. 3. The results here include
dense CRF post-processing, which greatly increases segmentation precision. If we
compare our model with segmentation results pre CRF post-processing, the seg-
mentation with CRF post-processing has more noticeable edges and very finely
outlines the fish’s contour relative to either a water column or seabed back-
ground. Our model is generally high in precision and 93.77% of the bounding
boxes are able to cover the fish object by more than 50% - analogously matching
the PASCAL VOC requirement for a true-positive in terms of box area coverage.

We tested the model in another set of test frames with rapid camera move-
ment, and in a completely different site. Our model is able to localize and seg-
ment the fishes. A sample is in Fig. 4, where individual fishes were segmented.
Recall and precision are lower however than the original test set since the frames
are from completely different environments. But it is notable that the model is
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able to operate despite camera movements which shows its independence from
motion-based information. Independence from camera movements, shows that
our network model can have applications to videos taken from unmanned water
vehicles, where jittery camera movements are expected.

4 Conclusion

In this paper, we proposed a deep network model that is able to simultane-
ously localize fish objects, estimate their bounding boxes and segment their
corresponding pixels using a unified multi-task convolutional neural network.
Estimation is independent of motion-based information and processing can be
performed on a frame-by-frame basis. The model can detect a wide variety of
fish object shapes and sizes against different backgrounds. Our proposed model
provides a solution for the problem of fish counting in marine environments
through its localization feature, which allows automated counting of fish organ-
isms represented by their bounding boxes. Precision is high at 93.77%, with a
60% estimated recall for fish within a 5-meter volume radius. In addition, the
added segmentation feature of our model provides a visual description of fish
object contours - which would be useful in aiding the visual verification of a
human expert or for future work related to fish size estimation.
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