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Abstract DNA methylation is a key epigenetic mark in the heritable regulation of
gene expression, with important roles in normal development and disease.
Genomewide alterations in DNA methylation patterns are universal feature across
cancers. Studies in the last few years have shown that similar alterations occur during
various normal physiological processes, such as aging. Understanding mechanisms
involved in DNAmethylation alterations is critical for understanding cancer etiology.
In this chapter, we discuss recent work on the nature of the genomic region-specific
DNAmethylation alterations, its functional implications, and the mechanisms under-
lying these alterations.
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1 Introduction

Cancer is an outcome of deviant gene expression programs, which helps hijacking
every normal cellular process to the advantage of cancer cells. This relies on tilting
the balance of oncogenic and tumor suppressive mechanisms by the altered, but
heritable, gene expression programs. Epigenetic processes are central mechanisms
involved in the maintenance of regulated gene expression programs between cell
generations. Aberrant alterations to the epigenetic machinery are universally
observed across cancers, and these alterations have prominent roles in tumorigene-
sis. Recent studies have revealed how epigenetic mechanisms may undergo pertur-
bations as a result of genetic alterations, exposure to environmental agents and
during the normal course of aging. These perturbations lead to changes in gene
expression program that create the permissive state for functioning of cancer driver
mutations. The sum effect of perturbations to epigenetic machinery and the occur-
rence of key cancer driver mutations lead to the uncontrolled growth and dissemi-
nation of cancer cells.

A vast range of epigenetic mechanisms are involved that can cause oncogenic and
tumor suppressor inactivation. These range from a plethora of histone modifications
and DNAmodifications, the end result of which is the fine control of gene expression
by modulating accessibility of protein factors to the chromatin, the higher order
chromatin arrangement and nuclear architecture. Among these, DNA methylation is
one of the foremost important functional epigenetic mark in normal development
and cancers. Recent studies have highlighted other key derivative modifications of
cytosine methylation (example 5-hydroxymethylcytosine), which may play impor-
tant roles. This review will focus on DNA methylation, and chiefly discuss the
generation and functional impact of aberrant DNA modifications in cancers. After a
brief overview on epigenetics, this review will highlight the long-known importance
of DNA methylation abnormalities in cancers. With this as the pivot, and special
emphasis on DNA hypermethylation events, we will discuss its possible origins and
functional implications, and the molecular machinery involved in methylation.

2 Epigenetics Overview

The current definition of epigenetics, i.e. a stable and heritable change in gene
expression without any changes in DNA sequence (Bird 2007), implies that the
molecular determinants of the epigenetic mark be faithfully replicated along with
DNA replication at every round of replicative cell division. Chromatin modifica-
tions, such as histone post-translational modifications (PTMs) methylation, acetyla-
tion (to name a few), and DNA methylation are major constituents of epigenetic
information subject to heritable silencing (Almouzni and Cedar 2016). Historically,
DNA methylation is the first proposed epigenetic mark, which due to its biochemical
properties—namely covalent linkage to DNA and a repertoire of enzymes that
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maintain the methylation at every round of DNA replication (discussed later)—is the
most agreed upon modification that fits the definition of epigenetic information. In
mammals, DNA methylation mainly occurs as a covalent modification of cytosines
in the context of the palindromic 50-CpG-30 dinucleotide (mCpG), and is propagated
on both parent and nascent strands after DNA replication. Further a complex
relationship of DNA methylation with chromatin modifications, involving mutually
exclusive and inclusive interactions (Kouzarides 2007), is proposed to enable
methylation as a stable carrier of epigenetic information. For example, during
development, differentiation and disease, the transcription factor (TF)-network and
associated chromatin modifiers establish the epigenome defined by chromatin mod-
ifications. Once chromatin modifications and ensuing gene expression patterns are
established, DNA methylation could provide a basis for an efficient way to
re-establish this information during subsequent cell division cycles and mediate
heritable transcriptional silencing.

3 DNA Methylation Abnormalities in Cancer

Due to the widespread gene expression changes in cancers, it is not surprising that
the epigenome is highly perturbed compared to normal cells, which help maintain
the altered expression state over the course of cancer initiation and progression.
Thus, all forms of epigenetic information, viz. DNA methylation, histone PTMs,
nucleosomal positioning and higher order chromosomal structure, are altered in
cancers. Aberrant DNA methylation in cancers is an early change showing genomic
region-specific patterns of gains and losses in DNA methylation. Recent advances in
mapping methylation pattern across the whole genome (“methylome”) have pro-
vided deep insights into its normal composition and large-scale alteration in cancers.
In this section we highlight the key regions in the genome that harbor altered DNA
methylation and how these alterations play important roles during tumorigenesis.

3.1 Global Hypomethylation

The earliest reportedDNAmethylation change in cancers is that of methylation losses
at structural elements of genes. Normal human cells have about 70–80% of CpG
residues in the genome methylated, while in cancers this reduces drastically (Ehrlich
and Lacey 2013). It is now well established that gene bodies, inter-genic regions and
various repetitive elements (like LINE-1) undergo hypomethylation in cancers
(Ehrlich and Lacey 2013). In the earlier stages of tumorigenesis, hypomethylation
can cause LOH by inducing genomic instability, but in later stages it suppresses
tumor formation possibly by preventing epigenetic silencing of tumor suppressor
genes (discussed later) (Yamada et al. 2005). Global DNA hypomethylation has been
shown to disrupt various aspects of the normal regulation of the genome—activation
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of oncogenes, altered transcription start sites, loss of imprinting, genomic instability
by heterochromatin loss and reactivation of transposable elements (Chen et al. 1998;
Eden et al. 2003; Ehrlich and Lacey 2013; Gaudet et al. 2003; Holm et al. 2005; Hur
et al. 2014). Each of these abnormalities plays roles in tumorigenesis by altering gene
expression, destabilizing the genome and increasing mutational rates.

Early studies analyzing total methylated CpG content in normal and cancer
tissues have shown that DNA hypomethylation in cancers is prevalent equally across
the repetitive and unique DNA sequence fractions of the genome. In accordance with
the nature of genomic elements that are hypomethylated, genomewide DNA meth-
ylation analyses have confirmed these early observations by showing that
hypomethylation occurs in about 50% of the genome in blocks of contiguous
genomic regions termed partially-methylated domains (PMDs) that are greater
than >100 kb in size (Berman et al. 2011; Hansen et al. 2011). The majority
(70–80%) of the genomic CpG sites are otherwise methylated, thus resulting in
genomic regions containing highly methylated domains (HMDs) interspersed by the
PMDs. Key features of PMDs are that they have low gene density, they are
embedded in the late replicating domains, and their boundaries associate with the
nuclear lamina domain (LAD) and insulator proteins like CTCF (Bergman and
Cedar 2013; Berman et al. 2011; Hansen et al. 2011) (Fig. 1a). PMDs are present
in differentiated primary cells and immortalized cell lines, but not in embryonic stem
cells (Lister et al. 2011). Recent work has determined a DNA sequence signature,
individual units of the sequence “WCGW” (W is adenine or thymine), that is most
prone to hypomethylation. Mapping CpG methylation changes in this signature
sequence throughout the genome has revealed that PMDs are conserved and univer-
sal feature of all normal lineage committed proliferating primary tissues and cells in
culture (Zhou et al. 2018). The degree of the PMD-HMD contrast, driven by the
depth of hypomethylation of the signature sequence, is very pronounced in cancer
cells compared to their normal cell counterparts. The contrasting retention of meth-
ylation in HMD and loss of methylation in PMD indicates that the regulators and
enzyme machinery responsible for epigenetic maintenance have differential activity
in different regions of the genome. Especially it indicates that the methylation
aberrations in cancers are not due to a general global loss or gain in activity of the
DNA methyltransferase (DNMT) enzymes responsible for catalyzing the methyla-
tion of cytosine, but that their local recruitment and activity in defined regions in the
genome is altered.

As mentioned above, detailed analyses of the nature of the PMD domains with
respect to other genomic features have revealed that they correlate best with late
replicating domains in the genome (Fig. 1a). During S-phase when DNA is repli-
cated, the newly replicated, unmethylated daughter strands are re-methylated to copy
the methylation pattern of the parent strand by the DNMT1 enzyme (Jones and Liang
2009). Given the high rate at which DNA is replicated in the replication fork (about
0.03 s per nucleotide) (Jackson and Pombo 1998) and the slow rate of DNA
methylation by recombinant DNMT1 (~73–433 s per methyl group transfer)
(Pradhan et al. 1999), maintenance methylation by DNMT1 at each round of cell
division needs to keep up with the quick rate of DNA synthesis. DNMT1 acts in

30 H. Easwaran and S. B. Baylin



D
N

A
/c

hr
om

at
in

M
et

hy
la

te
d 

Cp
G

U
nm

et
hy

la
te

d 
Cp

G

H
3K

4m
e3

 +
 H

3K
27

m
e3

 re
gi

on

H
3K

27
m

e3
 re

gi
on

N
uc

le
ar

 la
m

in
a

C
TC

F/
Co

he
si

n 
in

su
la

to
r

co
m

pl
ex

H
3K

4m
e3

 re
gi

on

PM
D

H
3K

K9
m

e2
 re

gi
on

Ea
rly

 tu
m

or
 d

ev
el

op
m

en
t

PM
D

H
3K

9m
e2

/3

N
or

m
al

 p
ro

lif
er

at
io

n
Ag

in
g

En
vi

ro
nm

en
ta

l e
xp

os
ur

e

N
uc

le
ar

La
m

in
a

LA
D

C
TC

F/
in

su
la

to
r s

ite
s

(A
)

Tu
m

or
 p

re
di

sp
os

iti
on

“T
SG

” S
ile

nc
in

g

Po
is

ed
 

ex
pr

es
si

on
st

at
e

Si
le

nc
ed

st
at

e

N
or

m
al

in
du

ct
io

n/
re

pr
es

si
on

Pr
og

re
ss

iv
e 

CG
I

m
et

hy
al

tio
n

(B
)

F
ig
.
1

(a
)
R
eg
io
ns

of
D
N
A

sh
ow

in
g
ab
er
ra
nt

m
et
hy

la
tio

n
ch
an
ge
s.
D
N
A
/c
hr
om

at
in

is
no

rm
al
ly

or
ga
ni
ze
d
in

do
m
ai
ns

as
so
ci
at
ed

w
ith

th
e
nu

cl
ea
r
la
m
in
a

(l
am

in
as
so
ci
at
ed

do
m
ai
ns
,L

A
D
),
an
d
ot
he
rr
eg
io
ns

fo
rm

in
g
hi
gh

er
or
de
re
d
lo
op

ed
do

m
ai
ns

in
th
e
nu

cl
ea
ri
nt
er
io
r(
le
ft
pa
ne
l)
.D

ur
in
g
pr
og

re
ss
iv
e
ce
ll
di
vi
si
on

s
(i
n
as
so
ci
at
io
n
w
ith

ag
in
g,
en
vi
ro
nm

en
ta
le
xp

os
ur
e,
in
fl
am

m
at
io
n,
et
c.
),
D
N
A
m
et
hy

la
tio

n
de
cr
ea
se
s
ac
ro
ss

th
e
L
A
D
fo
rm

in
g
th
e
pa
rt
ia
lly

m
et
hy

la
te
d
do

m
ai
ns

(P
M
D
).
S
im

ul
ta
ne
ou

sl
y
lo
ca
lp
ro
m
ot
er
C
G
I(
in
cr
ea
se
d
de
ns
ity

of
re
d
ci
rc
le
s)
ga
in
m
et
hy

la
tio

n,
w
hi
ch

is
as
so
ci
at
ed

w
ith

si
le
nc
in
g.
In
cr
ea
si
ng

D
N
A
m
et
hy

la
tio

n
an
d
de
cr
ea
si
ng

H
3K

4m
e3

an
d
H
3K

27
m
e3

at
C
G
I
pr
om

ot
er
s
m
ay

be
in
vo

lv
ed

in
a
fe
ed
ba
ck

re
gu

la
to
ry

m
ec
ha
ni
sm

ca
us
in
g
pr
og

re
ss
iv
e
ga
in

in
D
N
A

m
et
hy

la
tio

n
an
d
lo
ss

of
th
es
e
hi
st
on

e
m
ar
ks
,
ca
us
in
g
in
cr
ea
se
d
ge
ne

si
le
nc
in
g.

P
ro
gr
es
si
ve

lo
ss

of
C
pG

m
et
hy

la
tio

n
ac
ro
ss

th
e
P
M
D
,
al
on

g
w
ith

ch
an
ge
s
in

ot
he
r
ke
y
he
te
ro
ch
ro
m
at
ic
hi
st
on

e
m
od

ifi
ca
tio

ns
(l
ik
e
lo
ss

of
H
3K

9m
e2
/m

e3
)
is
as
so
ci
at
ed

w
ith

lo
ss

of
la
m
in

as
so
ci
at
io
n,
an
d
gl
ob

al
ge
ne

ex
pr
es
si
on

ch
an
ge
s.

Origin and Mechanisms of DNA Methylation Dynamics in Cancers 31



concert with the replication machinery via being recruited to these sites by combined
interaction with hemi-methylated DNA, PCNA and UHRF1 (Chuang et al. 1997;
Easwaran et al. 2004; Leonhardt et al. 1992; Sharif et al. 2007). At these sites
DNMT1 continues to remain associated with the late-replicated DNA post S-phase
in the G2/M phases (Easwaran et al. 2004, 2005), and its methylation maintenance
function continues even during G2 phase (Schermelleh et al. 2007). The fact that
the hypomethylated PMDs are embedded in late replicating domains most likely
indicates that the maintenance function is not efficient, and as a result the methyl-
ation mark is eroded at every cell cycle. PMDs, which encompasses both unique
(containing genes and regulatory elements) and repetitive regions of the genome
(retroviral elements), could be the central players subject to altered gene expression
and genomic instability during progressive mitotic cycles in normal aging and cancer
cells.

Beyond the promiscuous nature of methylation maintenance at the PMDs,
whether or not other mechanisms involving the epigenetic machinery may actively
regulate these regions remains to be studied. In somatic cells, maintenance of DNA
methylation relies on the combined activity of the three major DNA
methyltransferases, DNMT1, DNMT3A and B (Jones and Liang 2009), and the
demethylation activities of TET enzymes (Wu and Zhang 2014). Whether or not
activity of these enzymes, or the multitude of epigenetic regulators mutated in
cancers (Dawson 2017), may accentuate hypomethylation in PMDs needs to be
determined. Interestingly the PMDs are enriched for genes that undergo focal CpG
island (CGI) promoter hypermethylation (discussed in next section). In the normal
scenario, PMDs form during differentiation (Lister et al. 2011), but without focal
CGI-hypermethylation (Berman et al. 2011). Mechanistically it is pertinent to
explore if the global hypomethylation and focal hypermethylation are coupled
processes occurring during aging and cancer. Further, since current studies suggest
that the hypomethylation at PMDs are generated due to methylation erosion during
successive cell division cycles, it is suggested that the degree of hypomethylation in
PMD could indicate the mitotic history of a cell (Zhou et al. 2018). Highly prolif-
erative tumors will thus have deeper PMD-HMD domains. The utility of using PMD
as a “mitotic clock” is an exciting possibility to track history and rate of cell division
in tumors at primary tumor and metastatic sites.

Fig. 1 (continued) Methylation of boundary insulator elements cause inhibition of CTCF binding
resulting in further large-scale structural changes. (b) Promoter CGI methylation. Majority CGI
promoters methylated in cancers are usually marked with H3K4me3 (green) and H3K27me3 (red)
(bivalent state) in normal stem progenitor cells, representing a poised expression state. During
normal cellular homeostasis (normal differentiation, exposure to stress, etc.) these genes are subject
to regulated induction and repression. Progressive promoter CGI methylation accumulation causes
promoter silencing and non-responsiveness to induction. Promoter silencing by CGI methylation is
also associated with heterochromatic H3K9me2/3 marks (blue). A “continuum” model of “TSG”
silencing wherein progressive silencing of important developmental and differentiation regulators
(shown in the bottom) will lead to a gradient of expression states that will accordingly be associated
with increasing predisposition to tumorigenesis
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3.2 Gene Promoter CpG-Hypermethylation/Hypomethylation

About 60% of mammalian gene promoters have more than the expected occurrence
of the palindromic CpG dinucleotide sequence in narrow contiguous regions around
the transcription start site (TSS), termed CpG islands (CGI) (Suzuki and Bird 2008).
The concept of CGI was derived from early observations that the methylation-
sensitive restriction enzyme HpaII recognizing and cleaving CCGG sequence gen-
erates unexpectedly small fragments in the mouse genome (HpaII-tiny fragments,
HTF) indicating that these sites are concentrated in certain regions of the genome
(Illingworth and Bird 2009). These regions, termed “islands” are distinct from the
rest of the genome in that they: (1) are unique sequences ranging in size ~1kb;
(2) contain tenfold higher HpaII sites; (3) are GC-rich without depletion of
CpG-dinucleotide sequence (which otherwise is depleted in the vertebrate genome);
(4) are unmethylated in all normal tissues (except inactive-X chromosome, imprinted
and germline genes); (5) are generally present in the 50-promoter region of genes. A
more formal and practical definition of CGI based on genomic sequencing is that
these are regions around gene promoters devoid of Alu-repetitive elements, which
are greater than 500 bp, with a GC content greater than 55% and observed
CpG/expected CpG ratio above 0.65 (Takai and Jones 2002). CGI in their
unmethylated state are subject to regulated gene expression, while in their methyl-
ated state are subject to permanent silencing (Baylin and Jones 2016). Thus whereas
most protein-coding genes are in a transcriptionally permissive chromatin state
harboring active chromatin marks (like H3K4me3 and H3K9, 14Ac) with productive
transcriptional initiation by RNA Pol II, methylated genes are distinctly devoid of
the active marks (Sen et al. 2016) and RNA Pol II indicating a non-permissive
chromatin state (Deaton and Bird 2011).

Absence/loss of methylation of CpGs in promoters is associated with gene
activation, while presence/gain of methylation is associated with gene silencing
(Fig. 1b). This inverse relation is better correlated for genes with CGI (Baylin and
Jones 2016). Although also observed for non-CGI genes (Han et al. 2011; Hartung
et al. 2012), in somatic cells methylation of non-CGI promoters does not rule out
gene expression (Weber et al. 2007). Thus it appears that the role of methylation in
non-CGI promoters, vis-à-vis the role of histone modifications, is less relevant, and
needs further studies. Methylation of the CpGs in the CGI and in the sequences
around TSS promoter region alters chromatin structure, which inhibits binding of the
transcription machinery (Baubec et al. 2013; Baylin and Jones 2016; Deaton and
Bird 2011). The most well studied methylation changes in cancers are CGI-promoter
alterations because ~98% of the CGI promoters are unmethylated in normal somatic
cells, and because of the established inverse correlation between expression and CGI
methylation. Both aberrant hypomethylation and hypermethylation of the CGI
promoter genes are observed in cancers. Hypomethylation of certain CGI promoters
in cancers is associated with activation of growth-promoting cell cycle regulators
(Mazor et al. 2015) and genes otherwise expressed specifically in the germline,
whose expression in tumors may be associated with proto-oncogenic functions (Van
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Tongelen et al. 2017). On the other hand, larger numbers of genes in cancers harbor
promoter CGI hypermethylation causing de novo gene silencing, or for many genes
that are already silenced, CGI methylation will result in blocking of induction of
these genes in response to normal differentiation cues (Fig. 1b).

The effects of CGI hypomethylation and hypermethylation at promoters in
cancers parallel those of genetic alterations, namely the “gain-of-function” onco-
genic activation and “loss-of-function” tumor suppressor gene (TSG) inactivation,
respectively. Since CGI hypermethylation is a predominant epigenetic change in
cancers, affecting promoters of about 5–10% of CGI containing genes, the mecha-
nisms underlying their methylation and their roles in tumorigenesis are of great
interest and studied extensively. In this regard, a key question is whether a given
hypermethylated gene is a “driver” of the cancer phenotype. Importantly, in this
regard, DNA methylation has been observed in almost every genetically identified
TSG (Herman and Baylin 2003). In the context of classic TSG’s, these harbor
truncating genetic alterations, such as mutations, insertions and deletions,
completely inactivating the genes. Since deposition of DNA methylation marks at
regulatory elements mainly causes gene silencing, this constitutes a key alternative
mechanism to inactivate tumor suppressor genes, wherein one copy of the TSG is
inactivated by genetic alteration and the second hit is an epigenetic alteration. A
strict definition of TSG requires that these genes oppose mechanisms involved in
promoting tumorigenesis and that both copies of the genes should be inactivated in a
“two-hit” model of tumor initiation (Knudson 2001). Since deposition of DNA
methylation mark at regulatory elements mainly causes gene silencing, in many
cancer cases it constitutes a key alternative mechanism to inactivate tumor suppres-
sor genes, wherein one copy of the TSG is inactivated by genetic alteration and the
second hit is an epigenetic alteration (Herman and Baylin 2003). Importantly, DNA
methylation has been observed in almost every genetically identified TSG. Often
important driver genes, such as CDKN2A andMLH1, are inactivated by methylation
than mutation, and far more number of genes than that are genetically altered are
epigenetically altered (Gao and Teschendorff 2017; Schuebel et al. 2007).

In addition to the above classic TSG’s, many more promoter hypermethylated
genes are seldom mutated in cancer raising the driver versus passenger question
more poignantly than for the above discussed genes. Many of the affected genes
identified belong to important cancer processes. Important insight for the importance
of the bulk of hypermethylated genes comes from examining their potential rele-
vance in tumor signaling pathways. In the case of genetic mutations, extensive
characterization has indicated that about 2–8 mutations typically represent driver
genes in any given tumor, which play key roles in tumor initiation and stepwise
progression (Vogelstein et al. 2013). Importantly, more genes in key cancer related
pathways are inactivated by epigenetic silencing than by mutations (Schuebel et al.
2007). How many of the methylated genes and what roles they exactly play in the
context of the cancer driver events is largely unknown. A compelling case for
epigenetic changes playing important roles in tumor development are pediatric
cancers which have lower mutational load (Lawrence et al. 2013; McKenna and
Roberts 2009), particularly the ependymomas, which are childhood brain tumors
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that lack genetic alterations but show extensive DNA methylation changes of
differentiation genes (Mack et al. 2014). Although these studies show the indisput-
able role for epigenetic changes in cancers, a lot needs to be learnt about the roles of
the affected genes, especially during the course of tumor development.

To understand the function of CGI-promoter hypermethylated genes, it is impor-
tant to consider that many of these genes do not fit the classic definition of TSG
proposed in “Knudson’s two-hit” model, in that its complete inactivation might not
be the central driver of tumor development. A refined definition of TSG by Knudson
and colleagues may help define the extent of the role of epigenetic silencing of such
genes in tumorigenesis (Berger et al. 2011). In the revised definition, TSG is viewed
as a concept wherein full inactivation of involved genes is not required, but rather a
“continuum” of partial silenced states may play critical roles in tumorigenesis. This
view of the role of epigenetic modulation of gene silencing is especially relevant
when considering the multitude of promoter CGI hypermethylated genes without
direct roles in cell cycle and DNA repair checkpoints (classic tumor suppression),
but those that are involved in developmental pathways (Easwaran et al. 2012; Ohm
et al. 2007; Schlesinger et al. 2007; Widschwendter et al. 2007) and other key
processes such as immune checkpoint mechanisms (Wrangle et al. 2013). In this
regard, it is interesting to note that 60–70% of the de novo CGI-promoter methylated
genes in cancer cells are differentiation and developmental regulators marked by
PcG-associated silencing in normal embryonic stem cells and adult progenitor cells
(Easwaran et al. 2012). By the combined actions of trithorax (responsible for the
activating H3K4me3 modification) and polycomb (PcG, responsible for the activat-
ing H3K27me3 modification) mediated bivalent chromatin marks (simultaneous
presence of both H3K4me3 and H3K27me3 in the same nucleosome) in embryonic
and adult stem cells, these genes are maintained at poised expression state amenable
to repression or activation upon normal differentiation cues (Bernstein et al. 2006)
(Fig. 1b). Thus many of the genes that are methylated in cancers are already in silent/
low-expression state in the corresponding normal cells (Easwaran et al. 2012). This
observation has called into question the actual benefit of promoter CGI methylation
in cancer development (O’Donnell et al. 2014). However, as mentioned above, it is
very important to recognize that many of the cancer-specific, promoter CGI meth-
ylated genes are regulators of development and differentiation, and expressed in
response to normal differentiation cues (Mikkelsen et al. 2007; Squazzo et al. 2006).
The preponderance of promoter DNA methylation in such genes for which low but
inducible expression is important for the balance between stem cell maintenance and
differentiation is an important class of TSGs which does not fit the classic TSG
definition but fits the above mentioned refined “continuum” model of TSGs. When
silenced by DNA methylation, these genes may not be appropriately reactivated and
thus hamper proper differentiation (Fig. 1b). Their silencing by promoter
methylation-mediated non-inducible, low expression state may help in the stem-
like state of cancers. Key examples of such genes are the developmental and
differentiation regulators, such as SFRPs and SOX17, that are almost never mutated
but are hypermethylated in many cancers and may act as TSGs by antagonizing
Wnt-signaling. We recently showed that silencing these genes by themselves are not
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the driver events, but their inactivation causes the necessary and sufficient defects in
differentiation that creates a permissive state for tumorigenesis by cancer driver
mutations, such as oncogenic BRAF (Tao et al. 2019). Increased stem cell mainte-
nance and decreased or abnormal differentiation potential of cancers is thus an
important outcome of such abnormal epigenetic silencing. Detailed characterization
of the function of CGI methylated genes during tumorigenesis will provide insights
into early tumorigenesis and potential of using these as early biomarkers of cancer
promoting defects in normal differentiation. A key challenge in understanding the
various roles of these genes in tumor development will be to use an array of
experimental approaches, involving in vitro, ex vivo and mouse models to charac-
terize the roles of these genes. Further, DNA methylation alterations track with the
type of driver mutation in a cancer, indicating that roles of these genes should be
analyzed in the context of the key driver mutations and the tumor signaling pathways
involved.

3.3 Structurally Ordered Genomic Domains and Distal
Regulatory Elements

The human genome is organized into modular domains called “topologically asso-
ciating domains” (TADs) delineated by discrete boundaries of insulator elements.
TADs, which range in the megabase-scale, are observed with specialized techniques
like HiC that map proximity of stretches of distant genomic elements, thus providing
a spatial organization of chromatin in the nucleus (Dixon et al. 2016). Through
structured organization of chromatin, distal regulatory elements (enhancers) in the
genome interact in a specific and regulated manner to orchestrate regulation of gene
expression. Specialized proteins bind to the boundaries (insulator elements) of the
TADs and help maintain the discreteness of these domains by acting as borders to
limit spreading of chromatin factors and histone modifications. The organization of
chromosomes into TADs facilitates physical proximity of chromatin elements that
otherwise are localized over considerable distances on the linear DNA. Chromosome
looping within the TADs brings promoters and distal regulatory elements in close
proximity and their interaction is mediated by transcription factors such as the
mediator complex, cohesins and CTCF. Looping itself is governed by insulator
binding proteins such as CTCF (Rao et al. 2014). Such 3D-dimensional organization
of the chromatin plays important roles in regulating gene expression during differ-
entiation and development as indicated by the fact that tissue-specific genes are
frequently in association with distal enhancers in a cell-type specific manner.
CRISPR-mediated re-engineering in mice of a chromosomal rearrangement, which
in human patient families disrupts a TAD locus associated with limb malformations,
severely phenocopies the human condition in mice (Lupianez et al. 2015). Thus the
mere disruption of TADs results in profound alteration of gene expression. The
underlying DNA sequence in insulator elements at the boundaries of TADs are
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subject to DNA methylation, which has profound implications on their activity via
altering the binding of proteins, such as CTCF, which are essential for maintaining
TADs. In cancers, given the genome wide alterations of DNA methylation that can
be linked to genome instability and rearrangements, there are profound implications
resulting from disruption of TADs, and thereby the regulatory elements, as is being
discovered and appreciated in recent years and discussed below.

An important class of the distal regulatory elements is the enhancers making up
~10% of the human genome, which are cell type specific genomic sequences that
regulate transcriptional activity of genes that are thousands to million bases away
(Jin et al. 2013; Li et al. 2012; Rao et al. 2014). Although enhancers are mainly
regulated at the level of TF binding, chromatin composition and histone modifica-
tions, and some of these features distinguishes them from gene promoters,
(Heintzman et al. 2007; Kim and Shiekhattar 2015; Shlyueva et al. 2014), there is
increasing evidence that activity of enhancers is linked to, and may also be regulated
by, DNA methylation (Jones 2012). Activity of enhancers is tissue type specific, and
importantly CpG methylation in enhancers is also observed to be tissue type specific.
In genomewide analyses of tissue type specific methylation patterns, about 26% of
the cell type specific DNA methylation sites overlap with putative enhancers, and
another 40% of such sites overlap with DNAse I hypersensitive sites which are
features of regulatory elements (Ziller et al. 2013). About 90% of hypomethylated
regions in colon cancer compared to normal colon contain enhancers (Berman et al.
2011). Importantly, DNA methylation changes at enhancers are better correlated to
expression changes of target genes than promoter-CGI methylation (Aran et al.
2013; Leadem et al. 2018). This latter observation is due to the fact that CGI
methylation is rare in normal non-neural somatic cells, wherein expression of
genes is regulated by chromatin modifications at the CGI promoters and rarely by
methylation alteration of promoter CGI (Baylin and Jones 2016; Suzuki and Bird
2008). Majority of enhancers have low density of CpG dinucelotides, which when
methylated are associated with absence of the active enhancer histone mark
(H3K4me1). Thus it is suggested that DNA methylation state of enhancer can also
direct histone modifications (Fig. 2), and play deterministic roles in the activity of
enhancers. Unmethylated or partially methylated enhancers can recruit a class of
histone methyltransferases that catalyze the H3K4me1 mark, thus marking enhancer
regions for poised or active state (Sharifi-Zarchi et al. 2017). Alternately, methyla-
tion of CTCF sites in insulator elements can alter chromatin looping, allowing
interaction of enhancer elements with target gene promoters (Fig. 2). These studies
highlight the importance of understanding DNA methylation alterations in
enhancers, in addition to the promoter methylation changes, to understand epigenetic
deregulation of gene expression in tumor development.

Since enhancer regions are enriched for transcription factor (TF) binding sites,
and are regulated by the TFs, DNA methylation alterations will interfere with TF
binding and alter regulation of target genes. In concordance with the global
hypomethylation in cancers, large-scale analysis of enhancers across multiple
tumor types showed that majority of enhancers undergo hypomethylation in cancers.
Analyses of array based DNA methylation data, which limits analysis to only a
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subset of all putative enhancers for which probes are available, showed ~6000 and
1200 enhancers undergo hypo- or hypermethylation, respectively, impacting thou-
sands of genes across various tumors (Yao et al. 2015). As would be expected,
hypomethylation of an enhancer is correlated with upregulation of the potential
target genes while hypermethylation is associated with downregulation. Interest-
ingly, known tumor suppressor genes (like CDKN1A, SPRY2) were downregulated
in association with the corresponding enhancer methylation while various oncogenes
(like MYC, TERT) were upregulated in association with hypomethylated enhancers.
In the context of the PMDs described earlier, enhancer deregulation due to DNA
hypomethylation might be pervasive during successive rounds of cell divisions in
cancer cells, as well as normal aging cells.

As with enhancers, CTCF sites that mark insulator elements controlling chromo-
somal looping are under tight regulation by DNA methylation. CTCF binding sites

Inactive
enhancer

Active
enhancer

Active
enhancer

Active
enhancer

CTCF/Cohesin
complex

Fig. 2 Distal regulatory elements are subject to regulation by DNA methylation. Methylation
alterations in non-promoter regions, aberrant hypermethylation or hypomethylation of enhancers,
can cause deregulated activation or inactivation of genes. Top panel: Methylation of CpG dinucle-
otides in enhancer elements causes inactivation of enhancers and prevents activation of target genes,
which may be in poised expression state. Hypomethylation of enhancer causes recruitment of DNA
binding factors and activating histone modifications, which allows target gene activation. Bottom
panel: Methylation of CpG sites in insulator regions bound by CTCF/cohesin complexes prevents
trans-activation of target gene by enhancers. Altered methylation of the CpG sites at the insulator
elements causes interaction of distal enhancers and genes, causing activation of genes
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contain CpG-sites that when methylated abrogate binding of CTCF. Thus, consid-
ering the genomewide changes in DNA methylation in cancers, it then only remains
a matter of exploration of these regions to understand the extent of their disruption,
the effect on the TADs and the ensuing gene expression changes. A key study
showed how in IDH mutant cases of gliomas, which are associated with increased
CpG-methylation, a CTCF-binding site gets aberrantly methylated disrupting bind-
ing of CTCF resulting in abrogation of the tight insulator function. As a result, the
oncogene PDGFRA is able to interact with an enhancer located ~900 kb away in a
neighboring TAD resulting in increased PDGFRA expression. Importantly, this
enhancer otherwise does not interact with PDGFRA in normal and gliomas without
the IDH mutation (Flavahan et al. 2016). Such abnormal activation of oncogenes,
and silencing of tumor suppressor genes, will probably prove to be a theme across
various cancer types because of the large-scale DNA methylation deregulation.

4 Origin of Cancer Methylation Changes from Normal
Physiological Processes

The global methylation changes described above in cancers are observed in multiple
normal physiological processes involving continued mitotic cycling of somatic cells,
such as during tissue regeneration associated with aging, and other processes like
inflammation, immortalization and senescence. Continuous cycling of cells during
aging involves both global hypomethylation and promoter hypermethylation (Issa
2014). One of the earliest observations in the field is that de novo promoter
methylation of ER and IGF2 genes occurs in the colonic mucosa of aged individuals,
and methylation of these progressively increased in cancers (Issa 2014). Thereon,
multiple gene promoters methylated in cancers have been shown to be also methyl-
ated in aging. Global analyses in multiple tissues in mice and human have demon-
strated profound genome-wide changes in the DNA methylation levels during aging
(Christensen et al. 2009; Hannum et al. 2013; Heyn et al. 2012; Maegawa et al. 2010,
2014, 2017; Rakyan et al. 2010; Teschendorff et al. 2010). Since promoter methyl-
ation events in cancers are very early and frequent events, similar methylation
patterns observed during aging have suggested a potential for transition of aged
cells with altered methylation patterns to tumor initiating cells (Fig. 3). Multiple
aspects of age-related methylation, beyond the genes that are specifically affected,
compels understanding age-related methylation important for understanding the
etiology of cancer. Comparison of methylation alterations occurring during in vitro
immortalization and transformation of cells by serial expression of hTERT, SV40
large T and HRAS in relation to cells undergoing senescence showed that the
transformation-associated methylation arise stochastically, while senescence-
associated methylation arise in a defined and programmatic manner. Importantly,
genes that get stochastically methylated during transformation, compared to those
specifically methylated during senescence, are more likely to be also methylated in
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aging tissues, suggesting that the methylation changes observed in cancers most
likely derive from normally dividing, aging cells (Xie et al. 2018).

Since stem-cells are the long-lived components of aging tissues, alterations in
maintenance of DNA methylation are expected to be fixed, and further evolve in the
stem cells during continuous prolonged divisions during tissue replenishment and
aging (Fig. 3). Compelling evidence for the origin of age-related methylation alter-
ations arising in long-lived continuously dividing stem cells is the contrasting
age-related methylation changes in the continuously dividing colon stem cell popu-
lation vs. the rarely dividing stem cells in the hair follicles (Shibata 2009). Whereas
age-related progressive methylation changes are observed in the colonic stem cells,
hair follicle stem cells show no such changes during the lifetime of an individual. The
observation that many of the genes methylated during aging belong to the PcG targets
also methylated in cancer (Rakyan et al. 2010; Teschendorff et al. 2010) may
innocuously suggest that such methylation changes in both cancer and aging is just
a mere consequence of an inherent bias for these genes to be methylated during
multiple mitotic divisions. Although this could be true for many genes by nature of
them being PcG marked, the same sets of genes epigenetically altered in aging and
cancers, potentially impacting tumor suppressors and stem cell pathways (Easwaran
et al. 2012; West et al. 2013), additionally suggest that age-related methylation of
these genes may increase cell fitness allowing for clonal expansion and neoplasms to
develop (Fig. 3). In regard to this, methylation of CpG residues is highly polymorphic
in multiple primary tissues, which increase in tumors and in primary cells in culture
(Landan et al. 2012). The diversity in methylation patterns arising from polymorphic
methylation is suggested to provide the necessary variation for Darwinian selection of
fitter clones (Hansen et al. 2011) (Fig. 3). For example, DNA methylation occurs at
key colorectal cancer (CRC) and adenoma related control genes, such as APC,
AXIN2, DKK1, HPP1, N33, CDKN2A/p16, SFRP1, SFRP2 and SFRP4, during
ageing (Belshaw et al. 2008). Some of these genes are otherwise mutated, a key

** ** **
*

1 1 1 1 1

2

Epigenetic alterations acquired during age-related physiological processes

(I) (II) (III) (IV) (V)

Fig. 3 Progressive epigenetic changes during aging provide permissive state for oncogenic driver
effect of pre-existing or acquired mutations. The figure shows schematic of regions in tissues/cell
subpopulations harbor related DNA methylation patterns (colored polygons), which diverge with
aging. Most likely this methylation heterogeneity is maintained in different long-living stem cells
that will give rise to subclonal populations carrying similar epigenetic marks. Oncogenic mutations
(region 1) is initially not tumorigenic (I, II) unless a permissive epigenetic state is achieved (III).
Mutations occurring in cells with non-permissive epigenetic background (region 2, III) are not
transformative and lost. Epigenetic states keep diverging further, and continue to evolve in the
tumor cells (IV, V)
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example being CDKN2A/p16, which is a critical gene that prevents oncogene-
induced transformation. Preexisting epigenetic silencing of multiple such genes in
the same cell, whichmay occur due to stochastically arising polymorphicmethylation
patterns during aging, will sufficiently block cell cycle checkpoint and activate stem-
cell pathways allowing oncogenic-driver effects. Recently we showed that simulta-
neous inactivation of genes subject to epigenetic silencing in colon cancers, namely
CDX2, SFRP4, SOX17 and CDKN2A, sufficiently creates the permissive state for
oncogenic-BRAF induced transformation of colon derived organoid cultures
(Tao et al. 2019).

How cancer-related methylation changes come about to be is tightly linked to
understanding tumor initiation. Various age-related physiological processes, like
chronic inflammation and carcinogen induced genomic stress, acutely trigger epige-
netic changes observed in cancers (Asada et al. 2015; Blanco et al. 2007; Hahn et al.
2008; Niwa and Ushijima 2010; O’Hagan et al. 2011; Vaz et al. 2017). As discussed
above, age-related methylation of CGI promoters and other genomic elements (both
hypo- and hypermethylation) will help in the initial stages of tumorigenesis, and these
methylation patterns may get selected and further expanded during continuous cell
divisions (Fig. 3). In the context of the current framework of oncogenesis, sequential
occurrence of mutations allow expansion of fitter cells by both neutral evolution and
selection causing genetically heterogeneous tumors (McGranahan and Swanton
2017). Undoubtedly random somatic mutations that accumulate during aging are
central drivers in this framework of tumorigenesis. However, substantial numbers of
somatic mutations in mice occur during the growth phases early in life, and the rate of
mutation accumulation slows down once stem cell divisions decrease and as organs
enter maintenance mode (Vijg et al. 2005) [discussed in Rozhok and DeGregori
(2016)]. Importantly cancer mutations precede tumor incidence by years to decades
(Brucher and Jamall 2016; Desai et al. 2018; Forsberg et al. 2013; Mori et al. 2002;
Vogelstein et al. 2013), whereas the latter increases exponentially with age. This is
contrasted for methylation alterations that continue to deviate and accumulate during
aging (Fraga et al. 2005; Hannum et al. 2013). Thus in the current framework of
oncogenesis, a key question regarding the age-related cancer risk is what non-genetic
factors allow the impact of drivermutations to unfold as a function of age. Progressive
age associated epigenetic modifications may be one of the key factors in this (Fig 3),
and for most age-related cancer incidences, methylation patterns observed in cancers
may thus originate from subpopulations of aging cells that carry epigenetic alterations
that creates a permissive state for tumor initiation (Fig. 3).

5 Molecular Mechanisms of Methylation Patterning

Establishment and maintenance of DNA methylation relies on combined action of
the three major DNA methyltransferase, DNMT1, DNMT3A and B. The latter two
enzymes have been proposed to mainly play roles in de novo DNA methylation.
During embryonic development in mice, Dnmt3a is implicated in establishing
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methylation at imprinted genes discriminating genes by parent of origin (Kaneda
et al. 2004; Okano et al. 1999) while Dnmt3b is involved in methylation of
pericentromric repeats (Okano et al. 1999; Xu et al. 1999). The de novo methylation
activity of Dnmt3 enzymes is directed to defined chromatin regions by specialized
protein sequences in its N-terminal domain. DNMT3A, and possibly DNMT3B too,
exist in an auto-inhibitory inactive state that specifically is activated by direct
interaction with H3 histone tail unmethylated at lysine-4 (H3K4me0) (Guo et al.
2015). Various active chromatin modifications, including H3K4me3, inhibit inter-
action of DNMT3 with the H3-tail. In CGI promoters, the H3K4me3 mark is
enriched by targeting the H3K4 methyltransferase SET1 complex (MLL1/2) via
specific binding of the CXXC-domain containing CFP1 to unmethylated CpGs
(Baubec and Schubeler 2014; Clouaire et al. 2014; Thomson et al. 2010). Hence
the underlying CpG density of CGI promoters itself attracts H3K4me3 marks, which
in turn antagonizes methylation by the DNMT3 enzymes, thus maintaining CGI
promoters in an unmethylated state. In contrast to the DNMT3-chromatin interac-
tions ensuring methylation free zone at CGI, the PWWP domain of DNMT3 directs
the enzyme to H3K36me2/3 regions of the chromatin, which corresponds to gene
bodies and heterochromatin (Dhayalan et al. 2010; Zhang et al. 2010). Further,
DNMT3A/B interaction with HP1 and G9A recruits it to H3K9me3 residues in
pericentric heterochromatin (Lehnertz et al. 2003) and gene promoters (Epsztejn-
Litman et al. 2008) respectively. Additional control of the DNMT3 activity towards
unmethylated DNA is imposed by secluding DNMT3 to the methylated
DNA/chromatin in heterochromatic fraction, and degradation of free-floating
enzymes (Jeong et al. 2009; Sharma et al. 2011). In somatic cells, where the
expression of DNMT3 is markedly reduced, via the above mechanisms of recruit-
ment to non-H3K4me3-containing, CpG methylated chromatin, the activity of
DNMT3 enzymes is restrained to already methylated regions where they cooperate
with DNMT1 in maintaining the methylation patterns (Jeltsch and Jurkowska 2014;
Jones and Liang 2009; Sharma et al. 2011). The inherent ability of DNMT3 enzymes
to read the ‘histone code’ thus seems to be a prominent mechanism in establishing
methylation patterns during development. The established methylation patterns are
then maintained during successive rounds of replication mainly by DNMT1, but also
by the DNMT3 enzymes by virtue of their affinity for methylated CpG containing
nucleosomes (Jones and Liang 2009).

In line with the above paradigm for establishment of CpG methylation patterns by
the histone code, the underlying DNA sequence has an important role in determining
if regions of the genome will or will not be methylated (Lienert et al. 2011; Stadler
et al. 2011). This role of the DNA sequence may precede or work in parallel with the
histone code. For example, cis-acting sequences (~700–1000 bp) that have affinity to
DNA binding transcription factors protect DNA from methylation independent of
transcriptional activity or CpG density (Lienert et al. 2011). Importantly, the
cis-acting sequences containing TF binding sites can protect exogenous DNA
from CpG methylation, as well as can cause demethylation of exogenously intro-
duced methylated DNA. In this model, TF binding per se may sterically hinder
access of DNA methyltransferases to DNA, or more likely the TF could mediate
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recruitment of the MLL class of histone methyltransferases leading to H3K4me3,
which as described above will prevent de novo CpG methylation (Demers et al.
2007; Rao and Dou 2015). Further, as described earlier, silencing of CGI promoters
during normal development and differentiation is mediated by H3K27me3 mark,
which is regulated by the polycomb repressive complex (PRC) 1 and 2. Presence of
the H3K27me3 mark is normally anti-correlated with DNA methylation in normal
and cancer cells (Easwaran et al. 2012; Kouzarides 2007; Sen et al. 2016). Accord-
ingly the polycomb mark has been linked to preventing DNA from methylation. A
component of the PRC1 complex, FBXL10/KDM2B, containing the CXXC domain
that can bind to unmethylated CpG-rich sequence, plays the primary role in this anti-
correlation between DNA methylation and H3K27me3. Specifically, in ES cells
FBXL10/KDM2B occupies ~90% of all promoter-associated CGI, and an equal
proportion of CGI promoters that are silenced by PRC1/2 complexes (Farcas et al.
2012; He et al. 2013; Wu et al. 2013). FBXL10 prevents CpG methylation by
binding to the PRC regulated CGI promoters, as loss of FBXL10 results in rapid
methylation of only those promoters that are polycomb regulated (Boulard et al.
2015). It is important to note that, as introduced earlier, polycomb-regulated genes
are more often methylated in cancers. Deregulation of FBXL10 mechanics in
cancers, for example it is mutated in diffuse B-cell lymphomas (Pasqualucci et al.
2011), may cause aberrant promoter CGI methylation for some of the genes during
aging and tumorigenesis.

In summary, the cellular transcription program established during development
and differentiation, as defined by the expressed repertoire of transcription and DNA
binding factors, sufficiently is able to establish and maintain the DNA methylation
epigenetic program (Burger et al. 2013; Stadler et al. 2011). In this model, absence of
DNA binding factors to cis-elements may trigger DNA methylation, and presence
will protect from DNA methylation. The specific molecular details of the dynamics
of TF binding, histone modifications and recruitment of DNMTs in mediating
methylation patterns still needs elucidation. A noteworthy aspect from the above
discussion is that modes of both gene activation and silencing of promoter CGIs, viz.
by H3K4me3 and H3K27me3 respectively have central roles in keeping DNA
methylation at bay. And the evidence points that there is a concerted role of
underlying DNA sequence (TF binding sites and unmethylated CpG dense regions)
directed histone code in establishing the methylation patterns. Although mechanics
of the CpG methylation patterning is better worked out for the CGI promoters, the
remainder of genome may permit CpG methylation due to lack of such DNA
sequences and the specific activating histone marks.

6 Road to Cancer Methylome

A key question is how the normal mechanics of DNA methylation establishment and
maintenance are perturbed in cancers, and its precursor aging cells. Above discus-
sions indicate that there are layers of molecular deregulation in response to external
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stimuli (exposure to carcinogenic genotoxic stressors), microenvironmental chemo-
kine changes (inflammation, aging), cell intrinsic pathway alterations (oncogenic
and epigenetic modifier mutations), that in conjunction with selection of methylation
profiles lead to the ultimate methylation landscape in cancers. Individual layers in
this regulation are as follows (Fig. 4):

(a) DNA damage causes genomewide chromatin changes involving altered recruit-
ment of DNMTs, SIRT1, PRC components, CHD4 (NuRD silencing complex
component) to damaged CGI promoters, which helps maintain repressed chro-
matin at CGI promoters. At the same time, DNMTs and SIRT1 is released from
the remainder of the genome, potentially causing hypomethylation. Thus con-
tinuous DNA damage caused due to cell intrinsic ROS levels, environmental
chemical exposure, inflammatory microenvironment and oncogenic stress will
lead to gradual genomewide aberrations in DNA methylation (O’Hagan et al.
2011; Vaz et al. 2017). Particularly, these processes can be key drivers of
stochastic methylation changes during aging and inflammation.

(b) Direct loss- and gain-of-function mutations in chromatin regulator proteins will
impact the methylome. In this regard, mutations of chromatin proteins are the
most common class of cancer mutations, and are observed across various cancers

Silencing
complexes

Constant DNA damage induced redistribution of silencing complexes

Mutations in chromatin regulator proteins

Loss of H3K4me3 and FBXL10 mediated antagonism of DNMTs

Silencing
complexes

TF

Activation of oncogenic signalling pathways

CGI Gene body/intergenic

DNA damage

Methylated CpG

Unethylated CpG

H3K4me3

H3K27me3, FBXL10

Fig. 4 Molecular basis for altered methylation in cancers. Multiple layers of deregulation of
chromatin proteins mediate methylation alterations during aging and tumorigenesis. These alter-
ations in general result in changes in recruitment of silencing complexes to CGI promoters, and their
simultaneous loss from gene body and intergenic regions
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(Dawson 2017; Shen and Laird 2013). For majority of these mutations, their roles
in modulating the methylome need to be investigated. Leading examples of
mutations that directly impact methylation are the IDH and TET enzymes.
IDH1 and 2 are metabolic enzymes that are not directly involved in chromatin
modulation, but their mutation in cancers causes neomorphic enzyme activity that
converts α-ketoglutarate (α-KG) to D-2-hydroxyglutarate (D-2-HG). The latter is
an oncometabolite that inhibits various Fe(II)/2-oxoglutarate-dependent
dioxygenases (Dang et al. 2009; Xu et al. 2011). These include various histone
demethylases that protect against DNA methylation by diminishing chromatin
marks that attract DNAmethylation, and the TET family of enzymes that catalyze
DNA demethylation by oxidation of 5-methylcytosine (5mC) to
5-hydroxymethylcytosine (5hmC). This has directly been implicated in increased
DNA methylation phenotype, called the CpG-island methylator phenotype, in
acute myeloid leukemia (AML) (Figueroa et al. 2010) and gliomas (Noushmehr
et al. 2010; Turcan et al. 2012). On the other hand, enzymes involved in DNA
demethylation discussed earlier, like TET2, are also mutated in various cancers,
especially prominent in the hematological malignancies (Scourzic et al. 2015).
TET2 mutations majorly cause methylation of distal regulatory enhancer ele-
ments (Rasmussen et al. 2015).

(c) Cancers involve significant expression changes in transcription factor repertoire,
a striking example being the almost universally overexpressed MYC factor in
various cancers (Dang 2012). This will alter occupancy of TFs at CGI promoters
and distal regulatory elements. Altered presence or absence of TFs will cause
changes to the histone code thereby causing changes to DNA methylation
patterns (Gebhard et al. 2010). Redistribution of DNA binding factors can be
directly linked to oncogenic mutations, such as the frequent MEK-ERK pathway
activating mutations in RAS/RAF. In ES cells, inhibition of MEK, has been
shown to reduce global DNA methylation by reducing DNMT3 enzymes and
activating TET1 (Sim et al. 2017). Similarly, growth-factor signalling pathways,
such as FGF and Wnt that are activated in many epithelial cancers, have been
proposed to induce PRC2-dependent CGI methylation. These latter implications
have been made from investigations on the methylation dynamics occurring in
extraembryonic tissue of the trophoectoderm lineage, which has revealed de
novo promoter CGI methylation of the same developmental regulator genes
methylated in cancers (Smith et al. 2017). In these studies, signalling by FGF
and WNT increases the promoter CGI methylation. This conservation of CGI
methylation patterns in the extraembryonic ectoderm and human cancers indi-
cate strong parallels in activation of oncogenic signalling pathways and
PRC-dependent CGI methylation. In concordance with these latter studies, we
showed recently that continued culturing, over several months, of colon derived
organoids in Wnt-enriched medium used for organoid growth results in an
aging-like accumulation of DNA methylation at key developmental regulator
promoters, which is necessary for oncogenic-BRAF induced transformation
(Tao et al. 2019).
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(d) The observations that PcG-regulated promoters are most prone to get methylated
indicate a role for the PcG components in mediating recruitment of DNMTs. A
key finding supporting this is that loss of FBXL10/KDM2B causes methylation
of only those promoters associated with PRC1/2 (Boulard et al. 2015). Whether,
and how, loss of FBXL10 from some PcG occupied promoters occurs during
tumor development remains to be studied. In this regard, how PRC-mediated
recruitment of DNMTs occurs in the context of H3K4me3 and H3K27me3
marked bivalent chromatin promoters is important to understand. Presence of
active or stalled RNA Pol II, which occur with H3K4me3, is associated with
protection from CGI methylation while presence of H3K27me3 predisposes to
CGI methylation (Takeshima et al. 2009). Thus, a sequential step may involve
removal of transcriptionally poised state to a PcG regulated promoter, which
subsequently may acquire methylation by altered activity of FBXL10.

7 Conclusions and Future Directions

Accumulation of DNA methylation alterations occurs during various normal pro-
cesses, importantly during aging. Increasing evidence suggests that these alterations
have a role in predisposing to tumorigenesis. How all the mechanisms suggested
above interlace to produce the epigenetic drift during aging, and in cancer, is
important to understand the specific means by which various cancer predisposition
factors work through modulating the epigenome. Equally important is to understand
the role of the epigenetically modified genes during the early steps of tumorigenesis.
We predict that development of appropriate markers that can differentiate epigenet-
ically altered cell populations, in response to intrinsic (such as inflammation) and
extrinsic (such as environmental exposures) factors, carrying aberrant methylation of
functionally relevant genes holds promise in identifying cancer risk states.
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