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Single Virion Tracking Microscopy
for the Study of Virus Entry Processes
in Live Cells and Biomimetic Platforms
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Abstract The most widely-used assays for studying viral entry, including infectiv-
ity, cofloatation, and cell-cell fusion assays, yield functional information but provide
low resolution of individual entry steps. Structural characterization provides high-
resolution conformational information, but on its own is unable to address the
functional significance of these conformations. Single virion tracking microscopy
techniques provide more detail on the intermediate entry steps than infection assays
and more functional information than structural methods, bridging the gap between
these methods. In addition, single virion approaches also provide dynamic informa-
tion about the kinetics of entry processes. This chapter reviews single virion tracking
techniques and describes how they can be applied to study specific virus entry steps.
These techniques provide information complementary to traditional ensemble
approaches. Single virion techniques may either probe virion behavior in live cells
or in biomimetic platforms. Synthesizing information from ensemble, structural, and
single virion techniques ultimately yields a more complete understanding of the viral
entry process than can be achieved by any single method alone.
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2.1 Overview of Virus Entry

Viruses can be broadly classified as non-enveloped or enveloped. Non-enveloped
viruses are encapsulated by a protein coat, called a capsid, while enveloped viruses
are encapsulated in a host-derived lipid membrane implanted with viral proteins
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called spikes. The coat protein of non-enveloped viruses and spike proteins of
enveloped viruses facilitate the virus’s entry into the cell. These viral proteins engage
receptors on host cells to promote attachment to the host cell surface, but after that
initial binding event, non-enveloped and enveloped viruses breach host cell mem-
branes through different pathways [1]. Non-enveloped viruses typically enter cells
by endocytosis and then either lyse the intracellular compartment, or release genetic
material through a pore created in the membrane of the intracellular compartment
[2, 3]. Enveloped viruses, on the other hand, must undergo membrane fusion with a
cellular membrane to release their genetic material into the host cell (Fig. 2.1).

Some enveloped viruses, like coronaviruses or human immunodeficiency virus
(HIV), can undergo fusion at the plasma membrane (A), while others, like influenza,
fuse within endosomes (B) [4].

Binding and uncoating of nonenveloped viruses is mediated by the capsid surface
or capsid proteins projecting from it. For enveloped viruses, the fusion or spike
proteins embedded in the envelope are responsible for both receptor binding and
membrane fusion. Membrane fusion proteins can be subdivided into three categories
based on their structure [5]. Class I fusion proteins are primarily α-helical, Class II
fusion proteins contain mainly β-sheets and β-strands, and Class III fusion proteins
contain a mix of both α-helices and β-sheets. Class I and II fusion proteins require a
proteolytic priming event to convert them from a fusion-incompetent state to a fusion-
competent one. Once the fusion protein is in a fusion-competent state, the structural

Fig. 2.1 Overview of the life cycle of an enveloped virus. The entry process begins with the virus
binding to a receptor on the surface of the cell. This binding may result in (a) release of the viral
genome via fusion at the plasma membrane or (b) uptake by endocytosis or macropinocytosis (not
shown) followed by fusion within the endosome. The location and mechanism of fusion can be
impacted by environmental conditions, including pH, ions, protease activity, and lipid composition.
Once the genome has been released into the cytosol, it can access cellular machinery, leading to
replication of the viral genome and synthesis of new viral proteins. Newly synthesized virions can
then exit the cell by budding
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rearrangement necessary for exposure of the fusion peptide and its burial into the
target membrane is often triggered by some change in environmental conditions.
Fusion may be triggered by receptor binding itself, lowering of pH, protease action
[6], or a combination of these [4, 7]. Viruses that fuse at the plasmamembrane may be
triggered by receptor binding or protease activation, while those that fuse within the
endosome generally require low pH and may require other additional cues, such as
changes in other ions than protons, or endosome-specific protease exposure.

Despite the diversity in structure and triggering mechanisms, fusion proteins
typically follow a common pathway for merging the viral envelope with the host
membrane (Fig. 2.2), as described in White et al. [5] and Harrison [8]. After fusion is
triggered, the protein rearranges into a prehairpin intermediate (1) with the fusion
peptide inserted into the host membrane. While the fusion protein may be found as
dimers or trimers on the surface of the virus (2), the prehairpin intermediate consists
of a trimer. It is thought that several prehairpin intermediates cluster together then
fold back on themselves to bring the membranes close to each other (3). As the
prehairpins fold into a six-helix bundle, the membranes are brought close enough
that lipids from their outer leaflets are able to mix, creating a structure often referred
to as a “stalk” (4). This step is known as hemifusion. Lastly, a pore forms (5) enabling
the viral genome to pass through this opening as the fusion proteins form into a
stable trimer of hairpins.

Fig. 2.2 Steps in viral fusion. (i) The viral envelope (bottom) approaches the target membrane
(top). The viral fusion protein consists of a receptor binding domain (rb) and a fusion domain (f). (ii)
The prehairpin structure embeds into the target membrane. (iii) Several prehairpin trimers cluster
together. (iv) The prehairpins begin to fold back to form the prebundle state and bring the
membranes close together. (v) Fusion proteins further fold into a six helix bundle (6HB). Lipids
in the outer leaflets of the viral and target bilayers mix during hemifusion. (vi) A pore opens
between the target membrane and the viral envelope as the fusion proteins become a trimer of
hairpins. Source: White et al. [5], Taylor & Francis Ltd., www.tandfonline.com
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Although all viral fusion proteins studied to date follow this common pathway,
much remains unknown about viral entry itself. For example, the dynamics of these
fusion steps are not fully understood, the fusion trigger of some viruses remains
ambiguous, and developing antivirals to halt virus entry requires further character-
ization of all of the steps between initial viral contact with the host cell and viral
genome release.

Techniques for studying virus entry can be broadly classified as those that
examine the entry of a collective group or ensemble of virions and those that track
individual virion entry. Ensemble methods provide information on the broader
context of entry steps, while single virion imaging provides detailed information
on the dynamics of those steps. Ensemble methods include many of the most well-
established techniques for studying viral entry and may probe overall infection,
receptor binding, fusion, or cargo transfer. Single virion imaging techniques can
provide mechanistic detail and kinetics for steps that are masked in ensemble
methods. In addition, for HIV [9], influenza [10], and Ebola virus [11], most virions
that encounter a cell are not involved in productive entry so the ability of single
virion techniques to distinguish entry-competent particles from non-competent ones
and characterize their individual behavior provides valuable data on heterogeneity in
viral populations and its ultimate impact on infection.

The remaining part of the chapter will focus on single particle tracking micros-
copy techniques compatible with dynamic/temporal data acquisition, their salient
features, and how the data generated complement ensemble methods for studying
viral entry processes and their intermediate steps and mechanisms.

2.2 Single Virion Tracking Techniques

2.2.1 Enabling Technologies

Over the past 30 years, microscopy optics, fluorescent labeling strategies, computing
power and image processing have enabled the dynamic tracking of individual virions
throughout the entry process and the decomposition of their intermediate steps. For
some examples, see the following references: [12–18]. In particular, charge coupled
device (CCD) cameras combined with advanced microscopy enable single particle
resolution [19]. The frame rates of today’s cameras dictate temporal resolution of
dynamic studies, which can range from a few to hundreds of milliseconds
[20, 21]. In the following sections, the main advances enabling single virion tracking
techniques are summarized.

2.2.1.1 Microscope Configurations

Three microscopy configurations are commonly employed in virology research:
epifluorescence, total internal reflection fluorescence (TIRF), and confocal
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microscopy [22, 23] as illustrated in Fig. 2.3. The epifluorescence configuration
(Fig. 2.3a, d) illuminates everything within the field of view. So, unbound virions in
the bulk phase or cells with high background autofluorescence result in high noise
that obscures signals from individual virions. As a result, epifluorescence is not
typically used for single virion tracking.

In the TIRF configuration (Fig. 2.3b, e), only particles within a shallow field are
illuminated, eliminating noise from the bulk solution and thereby enhancing the
signal-to-noise. This configuration is achieved by setting the incidence angle of the
laser to be higher than the critical angle for total internal reflection of the laser light at
the glass/water or glass/cell interface, resulting in an exponentially decaying eva-
nescent field that penetrates roughly 100 nm into the sample [24, 25]. The advantage
with this configuration is that a two-dimensional plane can be monitored precisely,
enabling the distinction between binding and fusion events of the virions, with
appropriate virion labeling (described next). However, no three dimensional tracking
information can be obtained; data collection is confined to the interfacial region of

Fig. 2.3 Microscope configurations for viewing virus interactions with cells and biomimetic
membrane surfaces. Green color denotes excitation light and red denotes emission light. (a) The
epifluorescence configuration illuminates an entire light path through the cell and excites any
fluorophores within it, making it impossible to track virions in live cells this way due to the overall
background signal. (b) TIRF microscopy illuminates a thin layer near the interface between the
glass microscope slide and buffer solution. Cell membranes residing in this zone with fluorescently
labeled virions can be visualized as individuals, provided they are far enough apart from each other.
(c) Confocal microscopy with a pinhole arrangement can examine specific Z-planes within the cell
and block out nearly all background signals from the surrounding media excited by out-of-plane
light. Here, the green dashed line denotes the focal plane of excitation, the green gradient denotes
out-of-plane light, and the red star and its dashed line arrow indicate only the emission from this
fluorophore travel to the camera. (d) Epifluorescence illumination in the biomimetic membrane
platform suffers the same poor background issue as whole cells when fluorescently labeled virions
are in the bulk. (e) TIRF microscopy enables individual virion visualization bound to the membrane
surface without exciting those in the bulk above it
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interest. This configuration is most suitable for examination of virus behavior at
biomimetic surfaces like supported lipid bilayers or live cell plasma membranes
close to the glass surface.

In the confocal microscopy configuration (Fig. 2.3c), a pinhole optic assists in
filtering out background noise while scanning across a sample one Z-plane at a time.
Cross sections may be stacked to yield a three-dimensional image, making this
configuration suitable for imaging live or fixed cells and observing trafficking of
viruses in the cytosol. The disadvantage of this configuration is the difficulty in
temporally tracking phenomena in real-time, while simultaneously scanning across
slices of the sample and reconstructing the image. Furthermore, exposure to strong
light can be toxic to living cells [26]. As technology advances, these drawbacks
should subside.

2.2.1.2 Virion Labeling

In all of these microscopy techniques, virions must be labeled to visualize them. Virions
are commonly labeled by attaching fluorescent proteins to viral proteins, by incorpo-
rating chemical dyes into the virion, or by incorporating quantum dots [27–29]. Here,
we focus on fluorescent and chemical labels; for a review of quantum dot techniques we
refer the reader to Liu et al. [28]. Both fluorescent proteins and chemical labels have
been used to label viral coatings as well as contents. Fluorescent viral protein constructs
can be prepared for enveloped [30] or non-enveloped viruses [31, 32] and virions
are labeled as they are synthesized. Chemical labels, including Alexa dyes,
octadecylrhodamine B (R18), and carbocyanine perchlorates (DiD, DiI, or DiO) may
be added during virion synthesis or post-production. Some chemical labels, like
lipophilic dyes, are only suitable for labeling enveloped viruses while others, like
amino-reactive dyes, may be employed with either enveloped or non-enveloped
virions [22].

Membrane hemifusion is typically monitored with lipophilic dyes that undergo
dequenching when the virion fuses with the target membrane, while pore formation
is typically tracked with a dye that can partition into the capsid and then dissipate
upon release from the virion [33, 34]. It is also possible to incorporate pH sensors
into the envelope of virions to measure the pH of the fusion environment [35]. In all
cases, care must be taken to ensure that labeling does not adversely impact viral
infectivity. This can be easily assessed by conducting cell infectivity assays with
labeled virions. In general, these labeling approaches can be optimized to mitigate
any significant negative impact.

2.2.1.3 Image Processing

Once the microscopy configuration and virion labeling method have been chosen,
image processing assists in extracting information from the images. Today’s fast
computers and image processing algorithms assist in noise filtering, virion tracking,
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and trajectory mapping, as described in the references that follow. In single virion
imaging, noise is always a primary concern, regardless of the microscope configu-
ration. To combat this, several particle detection and image restoration techniques
have been developed specifically for single virion tracking [36, 37]. Coordinates of
the particles are obtained by scanning filtered images for areas of fluorescence
intensity that exceed a certain threshold or fit a particular intensity profile
[38, 39]. The next challenge is obtaining accurate virion tracking from one frame
to the next (temporal trajectories). Particle trajectories can be calculated from
nearest-neighbor associations [21, 40]. Measurements of virion movement and
mean squared displacements are then used to determine whether the virions exhibit
directed, normal, or anomalous diffusion [41]. The diffusion type can indicate the
type of interactions the virion is having with the surface of the cell or extracellular
environment. Tracking frame-to-frame is important in measuring binding residence
times as well, and by extension, binding strength characteristics [37]. Once bound,
the progression of membrane fusion can be tracked from frame-to-frame using
strategies like fluorescence dequenching, where the evolution of the fluorescence
signal reports on the merging of membranes, the rate of membrane mixing, and the
release of viral genome. Finally, obtaining good statistical data from virion tracking
experiments requires collecting data on hundreds of individual virions.

2.2.2 Experimental Approach

Single virion tracking may follow virions through the infection process in live cells
using confocal microscopy or within an in vitro biomimetic platform using TIRF
microscopy. Cell-based virion imaging techniques enable direct visualization of the
viral entry pathway and interactions between virions and host cell machinery within
the native complexity of the cellular environment. On the other hand, biomimetic
platforms utilizing the TIRF configuration enable observation of membrane surface
phenomena and can be integrated with tools like microfluidics that allow the user to
define and test a tightly controlled environment. This control enables decoupling of
factors that may be hard to detangle in vivo. Sections 2.2.2.1 and 2.2.2.2 provide
overviews of these two approaches while Sect. 2.3 provides examples of specific
implementations of single virion tracking to the investigation of viral entry and
contrasts them with ensemble approaches.

2.2.2.1 Live Cell Imaging

In current cell-based fluorescence assays, both virions and cellular components are
fluorescently labeled so their interactions can be tracked with multicolor real-time
microscopy. Live cell virion tracking can be used to observe cell-cell spread,
receptor binding, intracellular trafficking and membrane fusion. Virions may be
labeled with fluorescent proteins, chemical dyes, or quantum dots while intracellular
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components are typically labeled using fluorescent proteins. Epifluorescence, TIRF,
and confocal microscopy have all been used in live cell single virion tracking.
Virions may be tracked in two or three dimensions depending on the microscope
configuration, as described above. Certain cell types may be easier to image due to
autofluorescence of cellular components [11].

As early as the 1980s, fusion of individual virions at the plasma membrane
surface was observed. Virions were labeled with R18, which self-quenches at high
concentrations, and dequenching of the R18 upon fusion of the virion with a
membrane was detected by a simple fluorescence microscope. Early assays moni-
tored fusion at the plasma membrane of erythrocytes, where fusion of influenza
could be triggered by lowering the pH [42, 43].

An important aspect of live cell approaches is that it is possible to inhibit cellular
machinery by drug treatment or gene knockout. Such cells can be used in combina-
tion with live cell imaging to identify key cellular components that are necessary for
virus entry. A review of implementations and insights gained from live cell single
virion imaging will be provided in Sect. 2.3. We also recommend the reviews by
Brandenburg and Zhuang [14], Ewers and Schelhaas [20], Otterstrom and Van Oijen
[22], Sun et al. [23], and Wang et al. [29].

2.2.2.2 Biomimetic Platforms

In early work, perhaps the first, observations of membrane fusion of individual
virions to biomimetic membranes was monitored with video fluorescence micros-
copy [44, 45]. In this work, planar bilayers were suspended over a small hole in a
Teflon sheet, a so-called black lipid membrane (BLM), to serve as the host cell
membrane mimic. However, BLMs are fragile and prone to rupture and continued
progress using this approach was slow. In recent years, supported lipid bilayers,
which are more robust than BLMs, have become more widely used in in vitro single
virion tracking experiments. Because these SLB platforms are becoming the back-
bone of many types of single virion tracking experiments, it is worth describing them
in some detail here.

A supported lipid bilayer is a planar, single bilayer, typically self-assembled by
rupturing liposomes at the surface of hydrophilic silica surfaces like glass micro-
scope slides. For reviews of supported lipid bilayer technologies, we encourage the
reader to consult Sackmann [46], Tanaka and Sackmann [47], and Castellana and
Cremer [48]. These supported lipid bilayers act as mimics for cellular membranes
and the compatibility of these bilayers with flat glass surfaces makes them ideal for
coupling to microscopy techniques. Additionally, supported bilayers may be assem-
bled within a flow cell or microfluidic device, which enables the exchange of buffers
and, consequently, the precise control over the binding and fusion environment
during single virion tracking microscopy. The composition of these bilayers is
highly tunable, ranging from the simplest lipid components, to recapitulating the
complexity of the plasma cell membrane of specific cell types (Fig. 2.4).
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Initial studies employed purely lipid bilayers with glycolipid viral receptors
[12, 33, 34, 49]. More recent work has used reconstituted proteoliposomes that
contain protein receptors [50]. There has also been progress in using composite
membranes made from cell-derived membrane components mixed with PEGylated
liposomes to engender the SLB with both biologically relevant material (receptors,
etc.) and a built-in cushion to maintain constituent mobility [51, 52]. Other work has
demonstrated the ability to form bilayers from cell plasma membrane blebs as a way
to incorporate transmembrane proteinaceous receptors and complete native cell
materials into planar geometries [13, 53, 54]. The incorporation of transmembrane
proteins greatly expands the range of viruses that can be studied with single virions
tracking techniques [13].

Notably, the simplest lipid-only bilayer on glass is roughly 4 nm thick and sits
above a thin layer of water on the order of a nanometer thick [55, 56]. This feature
enables the two-dimensional mobility of lipids within the bilayer necessary for
membrane fusion, but mobility is also a key property for allowing receptors to
rearrange to permit multivalent binding interactions, as they do in live cell mem-
branes. Mobility of protein receptors, particularly those with transmembrane
domains, can be a challenge in these platforms if the water gap is insufficient for
limiting interaction between the protein and the glass support. To overcome this
challenge, various cushions, such as polyethylene glycol (PEG) [52], bovine serum
albumin, dextran [33, 57], or polyelectrolyte brushes [54], have been placed between
the bilayer and the supporting surface to improve protein mobility [58].

It is also possible to form supported lipid bilayers that mimic the viral membrane
instead of the host membrane and conduct experiments in the opposite configuration.
Here, binding and fusion is studied by monitoring liposomes decorated with host cell
receptors interacting with the planar virus-like bilayer containing embedded viral
proteins [59–61]. Such an arrangement could be used for screening applications of
antivirals that target entry processes, without the need for live virus or pseudotyped
particles.

Fig. 2.4 Supported lipid bilayers (SLBs) and their increasing complexity and features. (a) A simple
SLB with glycolipid receptors. (b) A SLB made from reconstituted lipids and protein receptors. (c)
Cushioned SLB to enhance protein receptor mobility. (d) Mixed liposome and cell-derived SLB
containing polyethylene glycol cushions. (e) Plasma membrane-derived SLB on polymer cushion
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In summary, biomimetic platforms enable a level of environmental control that
cannot be attained in live cell particle tracking techniques. First, there is a degree of
control over the host cell membrane mimic’s composition that is difficult to alter in
live cells. Second, in these platforms, the buffers in contact with the virus can have a
defined composition and the experimenter controls the timing and order of exposure
to proteases, pH, or any other component of interest to the virus. But perhaps the
most salient feature of this experimental approach is that these platforms allow
detailed examination of the binding and membrane fusion process and gathering
of dynamic data from these processes. However, the two-dimensional, in vitro nature
of these platforms make them unsuitable for measuring cytoskeletal involvement in
entry. Thus, to obtain the most complete information about the infection process,
combining data from complementary approaches using live cells and biomimetic
platforms is an excellent strategy.

2.3 Applications of Single Virion Tracking
and Complementary Ensemble Approaches

In the following sections we describe how single virion tracking has been applied to
investigate different steps in virus entry. We also include overviews of a selection of
ensemble methods to appreciate the synergy between the data collected by the
different techniques in providing a complete description of virus entry. Table 2.1
provides a quick reference of techniques and the data that can be obtained in each
approach for each entry stage.

2.3.1 Tracking Extracellular Movement of Virions

There are two scales of transport to be observed during virus spread and infection.
On the larger scale is the transport and spread of virions between neighboring cells.
Also of interest is the smaller-scale tracking of an individual virion on a cell plasma
surface before it is internalized by that particular cell. In the following sections,
experiments at each scale will be described with selected examples and references.

2.3.1.1 Tracking Virion Movement Between Cells

Tracking virion movement in the in vivo environment has revealed various avenues
of virus spread to surrounding cells. The predominant transport mechanisms of virus
spread between cells are: (1) virions freely diffusing through the extracellular
environment to neighboring cell surfaces, or (2) spreading to neighboring cells
through direct transmission across adjoining membranes. For the first mechanism,
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the mean-squared displacement of virions over time is used to classify their motion
as diffusive or sub-diffusive through the extracellular environment. For example,
live cell single virion tracking of adeno-associated viruses [17] and simian virus
40 virus-like particles [62] indicates that particles undergo normal diffusion in the
extracellular environment. Adeno-associated viruses slow down when in the vicinity
of a cell, and touch the cell membrane multiple times before penetrating the cell
[17]. In contrast, HIV follows the second mechanism and preferentially transmits
directly from one neighboring cell to another through virological synapses rather
than transmission by extracellular diffusion [63–65] Some viruses exploit cytoskel-
etal components to facilitate transport from one cell to another. Vaccinia virus, for

Table 2.1 Comparison of single virion and ensemble methods for studying particular viral entry
steps, including key features of each method

Virus entry
step

Single virion tracking Ensemble
methodsLive cell Biomimetic

Extracellular
transport

• Direct cell-cell spread
• Extracellular diffusion

• Movement through
mucosa

Cell-surface
trafficking

• Cytoskeletal interaction
• Movement toward entry site

• Diffusion, rolling, and
rocking along surface
• Bilayer composition
• Bilayer fluidity

Binding • Colocalization with receptor • Attachment/detach-
ment rates
• Bilayer composition
• Bilayer fluidity
• Receptor mobility
• Adhesion-
strengthening

QCMD
Coflotation
ELISA
SPR
TEM

Internalization • Clathrin dependence/indepen-
dence
• Internalization timescale
• Cytoskeletal interaction

n/a IFA
TEM

Fusion • Differentiate plasma membrane
fusion from endosomal fusion
• Escape from early vs. late
endosomes

• Bilayer composition
• Bilayer fluidity
• Viral fusion environ-
ment
• Timing/sequence of
fusion triggers
• Hemifusion and pore
formation rate constants
• Number of rate-
limiting fusion steps
• Acid stability

TEM
Syncytia for-
mation
Bulk solution
fluorescence
Infectivity
BlaM release

Intracellular
trafficking

• Cytoskeletal interaction
• Extra- and intra-nuclear
movement

n/a IFA

Acronyms: QCMD Quartz crystal microbalance with dissipation, ELISA Enzyme-linked immuno-
sorbent assay, SPR Surface plasmon resonance, TEM Transmission electron microscopy, IFA
immunofluoresence assay, BlaM Beta lactamase
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example, induces the formation of actin protrusions from the cell surface and is
transported along these to spread from cell to cell [66]. Looking at viral transport
over a longer distance scale, single virion imaging has shown that pseudorabies virus
is able to spread from the site of infection to the peripheral nervous system ganglia
for replication then back along axons to reseed the initial infection site [67]. In vitro
experiments have been used to study how respiratory mucosa hinders the ability of
pseudorabies virus to cross into the epithelium, revealing that both size and charge
interactions are important [68].

2.3.1.2 Tracking Virion Movement on Live Cell Plasma Membranes

There are multiple strategies for observing lateral viral movement along the plasma
membrane of a live cell. One method is labeling the core of virions and cellular actin
(to delineate the border of cells) and track virion movement along the periphery of
the cell [69]. Another method is to label the viral membrane and look at diffusion on
top of membrane until the virion overlaps with an endocytosis site [70]. A few
examples of virion movement that have been studied this way are as follows. Simian
virus 40 undergoes actin independent diffusive movement on the cell membrane
until it reaches caveolae [71]. Dengue virus similarly freely diffuses on the mem-
brane until it reaches an existing clathrin-coated pit [70]. Murine polyoma virus-like
particles also freely diffuse at first, then become confined and follow actin-directed
trajectories afterwards [72]. Vaccinia bound to filopodia have been observed to
move towards the cell body along the plasma membrane [73].

Some viruses employ a mix of two mechanisms, free diffusion and directed
motion. Some examples of this type of movement are as follows. After binding to
filopodia, murine leukemia virus, avian leucosis virus, vesicular stomatitis virus, and
rabies virus appear to “surf” on top of the membrane via actin and myosin II driven
transport towards entry sites [69, 74]. Similarly, adenovirus binds its receptor
then drifts along the cell surface with the assistance of actin and myosin II
[75, 76]. Coxsackievirus has been shown to bind on the apical surface of epithelia,
which then triggers cytoskeletal rearrangement that transports the virus to the site of
viral entry, the tight junctions [77]. Finally, influenza virus appears to undergo actin-
directed motion in the area near its initial binding site on the cell surface [10, 78].

2.3.1.3 Tracking Virion Movement on Biomimetic Cell Surfaces

In the in vitro environment of supported lipid bilayer platforms, virions diffusing
along the bilayer follow a continuous trajectory, whereas those that bind, detach, and
rebind elsewhere on the surface “appear” and “disappear” under TIRF microscopy.
These modes of transport are easily distinguished from each other using this
microscopy approach [79]. Supported lipid bilayers have an advantage over live
cells for certain types of studies because of the ability to tightly control composition,
receptor density and mobility, and surface geometry and heterogeneity. For example,
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supported lipid bilayers have been used to observe sliding and tumbling of quantum
dot–labeled simian virus 40 virus-like particles on bilayers containing low concen-
trations of GM1 and back-and-forth rocking at high receptor concentrations
[36]. However, because lipid bilayers do not contain the full cytoskeletal network
of cells, it is possible that virion motion in these platforms could be different from
their motion in vivo.

2.3.2 Binding

Studies of virus binding kinetics and determination of binding strength are often
carried out in in vitro assays, either by monitoring many single virion events or
following ensemble behavior of a population. In this section, we describe these
approaches and highlight some selected studies that illustrate their utility.

2.3.2.1 Single Virion Tracking of Binding

Direct observation of many individual virion interactions with supported lipid
bilayers can be used to measure receptor binding and detachment rates, multivalent
avidity characteristics, and equilibrium binding constants. TIRF microscopy is the
most common method used in monitoring individual virions binding to biomimetic
membranes because it clearly distinguishes labeled virions that are bound to the lipid
bilayer from unbound virions in the bulk solution (Fig. 2.5). In this experimental
approach, the residence time of bound virions can be collected for each individual

Fig. 2.5 TIRF microscopy visualizes virions bound on the membrane surface (gray) within a
100 nm deep evanescent wave (green). Fluorophores in unbound virions are not excited by the
evanescent wave, while virions bound to the bilayer are illuminated, denoted here by the bright red
color in the center cartoon. Residence times can be determined by the number of frames the virion
remains observable, as shown in the images below the cartoons, before the virion unbinds
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virion. As experimental conditions change, shifts in residence times can be moni-
tored. From this data, binding characteristics can be quantified.

Initial work monitoring nanoparticle binding to supported bilayers and surface-
tethered vesicles demonstrated the advantage of using TIRF microscopy in this
application. Here, a useful approach, equilibrium-fluctuation-analysis, was devel-
oped to quantify apparent kinetic rate constants of carbohydrate-bearing particles
with carbohydrate presenting SLBs [80]. This analysis was then extended to studies
of virus-like particles [49, 81] and live virions [81] interacting with glycosylated
bilayers to provide new insight into virus attachment to cell surfaces and applications
in biosensing [82]. The kinetics of particle detachment [83] can also be studied in
these platforms, as can multivalent binding behavior [62, 84]. Such studies can
reveal changes in binding behavior that promote viral attachment. For example, both
influenza and canine parvovirus undergo “adhesion-strengthening” where the longer
a virion is bound, the more strongly it adheres to the bilayer [37, 85]. Overall, these
platforms are convenient for gathering insight on this critical virus entry step and
how it depends on the host cell surface.

One advantage of this platform is the tunability of the bilayer compositions and
heterogeneity. For example, single particle binding studies have revealed the impor-
tance of microdomains in binding of norovirus-like particles, which preferentially
bind the edges of glycosphingolipid-enriched domains [49]. Later it was also shown
that HIV particles prefer to bind at the edges of cholesterol-rich lipid domains that
were reconstituted in supported bilayers [86, 87]; however, observing this preference
in live cells due to the small scale and dynamism of lipid rafts is difficult, illustrating
the power of using an in vitro system for such studies. Focusing further on
the receptors themselves, TIRF microscopy has also been used to measure the
affinity of HIV glycoprotein 120 for the glycosphingolipids galactosyl ceramide,
glucosylceramide, lactosylceramide and α-hydroxy glucosylceramide in SLBs
[88, 89]. The affinity of glycoprotein 120 for these lipids is roughly 5 times lower
than its affinity for CD4 [90].

The importance of studying the binding step is that the tropism of a virus is
strongly tied to its ability to bind various receptors. A nice example, illustrating the
power of combining single virion binding measurements with cell infectivity studies,
clearly showed that a single mutation in the canine parvovirus capsid is able to alter
binding to dog and raccoon transferrin receptors and completely change the tropism
of the virus [85].

2.3.2.2 Ensemble-Based Approaches for Studying Virion Binding

Binding can be monitored using ensemble approaches that monitor the overall
change in an aggregate signal from many virions interacting with a target surface.
The simplest manner to measure virion binding to a particular host cell receptor is the
cofloatation assay. In these assays, viral particles or purified fusion proteins are
labeled with a probe and mixed with liposomes containing the receptor for the virus.
After the virus has bound, the mixture can then be added to a sucrose gradient and
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fractionated. The fractions are analyzed with PAGE or Western Blot to determine
under which conditions the virus and liposomes comigrate or cofloat [91, 92]. Alter-
ing the composition of the liposomes can be used to determine what lipids and
proteins the virus binds to. This assay is able to probe virus-receptor interactions but
does not provide information on binding kinetics. An additional limitation is that it
may be difficult to purify or prepare liposomes containing the receptor, particularly if
it is a transmembrane protein.

Some ensemble viral binding assays, like enzyme-linked immunosorbent assay
(ELISA) or glycan arrays, immobilize proteins, carbohydrates, or glycans on a rigid
surface. These arrays do not preserve the structure, complexity, or two-dimensional
fluidity of cellular membranes, which may limit accurate assessment of binding
avidity. However, they can be useful for rapidly identifying binding partners in
screening, for example, potential tropism changes [93].

Measurements of real-time binding and desorption can be assessed using tech-
niques like surface plasmon resonance (SPR) [94] and quartz crystal microbalance
with dissipation (QCM-D) [49, 95]. SPR uses changes in refractive index to report
the binding behavior, while QCM-D uses a shift in resonance frequency to report
virus interaction. In both approaches, biomimetic membranes can be used to pre-
serve many properties of the host cell surface, including integration of the receptor.
Kinetic analysis of binding with these techniques requires two experimental phases
to decouple binding and unbinding of virions. In the first phase, virions are added to
a biomimetic surface and bind to the receptors. In this way, an “on” rate can be
obtained. In the second phase, a virus-free buffer is added and the dissociation of the
virus from the receptor is monitored. In this arrangement, an “off” rate can be
obtained.

It should be noted that averaged data from many single virion tracking binding/
unbinding events should match the ensemble results generated with SPR or QCM-D.
However, direct imaging with single virion tracking allows collection of a richer set
of data for on and off rates simultaneously because each particle trajectory is
captured [37]. Furthermore, by having the signature of each individual virion’s
binding behavior, heterogeneities in the virus population or membrane surface can
be identified, which can then be compared to infection trends to understand how
population dispersity impacts infection [96].

2.3.3 Internalization

Internalization, or the uptake of the virus particle into the cytosol, can be assessed
either with live cell imaging or in fixed cells through immunofluorescence imaging.
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2.3.3.1 Live Cell Imaging

In live cell virion tracking, cellular components, like clathrin and caveolin, can be
fluorescently labeled and colocalization of these components with virions enables
determination of whether the primary means of viral entry is through clathrin-dependent
endocytosis, caveolin-dependent endocytosis, or a clathrin/caveolin independent uptake
mechanism. When tracking labeled virions on live cells, rapid unidirectional motion
indicates that particles have been internalized [70, 78, 97].

Live-cell tracking has revealed myriad information about virus internalization,
including identifying viral dependence on clathrin or caveolin for uptake as well as
the ability of viruses to promote their own uptake. For example, Reovirus induces the
formation of clathrin-coated pits for uptake [97]. Simian virus 40 has the ability to
induce actin rearrangement to further promote its own internalization whereas echo-
virus 1 does not [71, 98]. Clathrin-mediated endocytosis is utilized for the uptake of
many viruses including Australian bat lyssavirus [99], HIV [100], infectious hemato-
poietic necrosis virus [101], and rabiesvirus [74]. Other viruses are caveolin-
independent or use macropinocytosis. For example, mouse polyomavirus is also
delivered to early endosomes by a caveolin independent pathway [102]. Adenovirus
2 enters the cell viaboth clathrin dependent and independent endocytosis and triggers
macropinocytosis [103–106]. Still other viruses have been shown to be agile in their
internalization route, for example, in the absence of caveolin, simian virus 40 can
exploit a clathrin/caveolin independent pathway [107]. Studies have shown that bound
influenza virions have the ability to induce the formation of clathrin-coated pits, but
can also enter in a clathrin/caveolin independent manner [78]. Influenza is then
preferentially sorted into a population of early endosomes that quickly matures [108].

2.3.3.2 Immunofluorescence Imaging

To monitor virus entry without live cell particle tracking, infected cells can be fixed
and imaged with an immunofluorescence assay. Permeablized cells can be probed
with antibodies against viral proteins, and cytoskeletal elements, or endocytosis
markers. Colocalization of viral particles and cellular components can then reveal
the general entry pathway of the virus [109–111]. Cells can be fixed at various time
points after infection to determine the general time course of entry [112, 113]. This
method provides snapshots of the viral entry process because the cells are fixed
before imaging, but it requires less specialized microscopes and cameras than live-
cell imaging.
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2.3.4 Intracellular Trafficking

For viruses that are internalized, live-cell fluorescent imaging can provide insight
into how viruses use cellular machinery, such as the cytoskeleton or microtubules, to
propel their movement within the cell. One common approach to determining if
cytoskeletal elements are involved is to compare the speed and shape of virion
trajectories in the presence and absence of cytoskeletal inhibitors such as
nocodazole, and cytochalasin D [114]. This strategy has been employed to determine
that reovirus movement after endocytosis is microtubule-directed [114]. Microtu-
bules are involved in the cytosolic movement of Adeno-associated virus type
2 [115], HIV [30, 116] infectious hematopoietic necrosis virus [101], rabies virus
[74], In contrast, polio movement inside cells is actin dependent, but microtubule
independent [117]. Adenovirus interacts with minus-end dynein and a plus-end
directed factor to traffic along cytoplasmic microtubules [118]. Influenza in
endosomes undergoes unidirectional dynein-directed translocation to the perinuclear
region followed by intermittent back-and-forth microtubule-dependent motion
within the perinuclear region prior to virion fusion with endosomes [10].

In addition to investigating movement towards the nucleus, live-cell single virion
tracking has been used to monitor movement within the nuclear region. Adenovirus
utilizes microtubules for movement within the cell, but detaches from them when the
virions reach close proximity to the nucleus [119]. HIV cores move toward the
nucleus with a microtuble- and actin-dependent motion; within the nucleus, the
motion is slow and diffuse [100, 116, 120]. HIV RNA alone moves through the
cytoplasm by diffusion [121]. After reaching the nucleus, HIV pre-integration
complexes target areas of decondensed chromatin [122]. For influenza, genes are
transported to and within the nucleus by diffusion [123].

Intracellular movement of virions is not necessarily mediated by spike or capsid
proteins alone; for herpes simplex virus, the inner tegument proteins promote
movement along microtubules and are necessary for movement away from the cell
body along axons [124–126]. An alternative method is to use immunofluorescence
assays of fixed cells to obtain snapshots of intracellular virion trafficking, including
what cytoskeletal components are involved [127, 128]. These do not allow for the
tracking of individual virion trajectories and are more limited in temporal resolution
than live cell virion tracking, but require less specialized equipment.

2.3.5 Fusion

Membrane enveloped viruses must fuse their membrane with the host membrane to
deliver their genome to the cytosol for replication. Fusion can occur either at the
plasma membrane surface or in endosomes after the virion is internalized. Fusion
can be monitored in both live cells and in in vitro platforms. Each approach has
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advantages and disadvantages, and some examples of how these experiments are
conducted follow next.

2.3.5.1 Tracking Fusion in Live Cells

Viral fusion at the plasma membrane can be differentiated from fusion within
endosomes in live cells. To do so, the viral contents can be labeled with a diffusible
content marker while the envelope is labeled with an acid-stable lipophilic dye. If
fusion occurs at the plasma membrane, both fluorescent markers will seem to
disappear because they will be diluted into the plasma membrane and cytosol. If
fusion occurs within an endosome, the viral content marker will disappear as it is
released into the cytosol and diluted, but the lipid marker will continue to appear
bright as the dye mixes into the relatively small endosomal membrane [129]. This
approach has been used to show that HIV can undergo full fusion inside endosomes
while fusion at plasma membrane is halted at the lipid mixing step. However, this
may be cell-type dependent; HIV content release from plasma membrane fusion was
observed for U87 cells but not JC5.3 or HOS cells [130]. The ability to detect viral
fusion in live cells within the endocytic pathway often relies on labeling virions with
quenched amounts of dye. Colocalization of dequenching virions with labeled
cellular components, such as clathrin or Rab proteins, can reveal whether fusion
occurs in early or late stage endosomes. This approach has been employed in the
study of influenza virus, which fuses in early endosomes, revealing that the virus is
able to enter a clathrin-dependent manner as well as a clathrin and caveolin inde-
pendent fashion, and viral fusion can occur in both pathways [78]. In macrophages,
HIV undergoes fusion in Rab5A positive endosomes [100]. Fusion of Dengue virus
[70] and Ebola virus [11] colocalizes with Rab7, a marker of late stage endosomes.
Alternatively, endosomal fusion may be mimicked by binding virions to the plasma
membrane then lowering the extracellular pH. This method of acid-induced
endosomal bypass has been employed to characterize avian sarcoma and leukosis
virus fusion behavior [131].

Viral fusion can also be monitored by observing the release of fluorescent viral
cargo. Avian sarcoma and leukosis virions labeled with fluorescent cargo and an
envelope pH sensor showed little correlation between endosomal pH and fusion lag
time [132]. However fusion lag time and pore size did vary with surface receptor and
endosome type, indicating that endosomal composition may modulate fusion
[35, 132, 133]. In the case of vesicular stomatitis virus, cytoplasmic nucleocapsid
release does not necessarily immediately follow fusion. VSV has been shown to
undergo fusion between the early and late endosome stage [134].

2.3.5.2 Tracking Fusion in Biomimetic Platforms

With the lipid bilayer platform, hemifusion and pore formation can be observed
within the same particle by dual-labeling the viral envelope and contents with
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different colors (Fig. 2.6). By using a flow cell or microfluidic device, this platform
also enables control over the timing of fusion trigger(s) or other environmental
changes within the viral environment.

A common fusion trigger is a drop in pH. To trigger fusion, acidic buffer can be
passed over the bilayer inside a microfluidic device. Incorporation of pH sensitive
dye into the bilayer enables detection of the time at which bound virions encounter
the acid [33]. Alternatively, ultraviolet light can be used to “uncage” protons from o-
nitrobenzaldehyde in solution to rapidly acidify the bilayer and virions [12]. Both of
these methods enable measurement of the lag time between exposure to a fusion
trigger and the onset of hemifusion. By analyzing this lag time for hundreds of
individual fusion events, the rate constants of hemifusion can be calculated. Pore
formation can be monitored by particles also containing internal capsid dyes.
Monitoring the drop in signal of this co-localized fluorophore reports the opening
of the fusion pore.

If there is a single rate liming step, the distribution of lag times will follow a
simple exponential decay, with the decay constant corresponding to the rate constant
of that limiting step. If there are multiple rate liming steps, the lag time distribution
will rise and decay [135]. A simple approach to quantifying the kinetics of
hemifusion and pore formation is fitting the cumulative distribution of fusion events
to a convolution of Poisson processes with the equation:

P ¼
Z t

0

kNtN�1

Γ tð Þ e�ktdt

Fig. 2.6 Fusion and intermediate steps can be tracked by a dual-labeling approach. Virions first
bind their receptor within the supported lipid bilayer (gray) in the evanescent wave (not shown here)
of TIRF. After a trigger (such as a pH drop shown here at t ¼ 0) membrane fusion occurs between
the virion membrane, labeled with a green fluorophore, and the unlabeled supported bilayer.
Fluorescence dequenching during fusion indicates hemifusion. Finally, a fusion pore is formed
and the internal capsid fluorophores (red) are expelled across the supported bilayer. The plot to the
far right shows the intensity change for the virion highlighted by the arrows in the images to the left
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where P is the probability of a virion being in that state (hemifused or pore forming)
at time t after the fusion trigger has been added and Γ(t) is the gamma distribution
function. This fit yields k, the rate constant of that step, and N, the number of
stochastic rate limiting events governing the kinetics of that step [33]. If there is
only one rate-limiting step (N ¼ 1), the above equation simplifies to a single
exponential decay. As the number of rate-limiting steps increases, more events
must be observed to accurately calculate N. For processes with three steps or
fewer, 50 events is sufficient to calculate N with a standard deviation of
1 [15]. There are other more complex methods for fitting lag time distributions
that may capture more of the details of hemifusion [136].

Viruses with Class I, Class II and Class III fusion proteins have been studied at
the single virion level with SLBs. The kinetic analysis described here has indicated
that influenza virus hemifusion is controlled by three rate-limiting steps while the
kinetics of pore formation is governed by a single step [33]. Chikungunya virus also
has three-rate limiting steps governing hemifusion [137]. For West Nile virus,
hemifusion has one or two rate-limiting steps, depending on the pH [138]. Vesicular
stomatitis virus hemifusion also has multiple rate-limiting steps at higher pH and a
single rate-limiting step at low pH [139].

While it cannot be assumed that the kinetics obtained from this method reflect the
actual reaction rates within a cell, comparison of these rates under different condi-
tions, such as different bilayer compositions, pH, or viral strains, can yield valuable
insight. The ability to manipulate the composition of supported lipid bilayers has
been used to determine that anionic lipids are essential for vesicular stomatitis virus
fusion and that the lag between hemifusion and pore formation is shortened in the
presence of bis(monoacylglycero)phosphate, a lipid found in late endosomes
[57]. Precisely controlling the triggering pH has revealed that influenza virus
requires a lower pH to trigger fusion than Sindbis virus [34], suggesting that it
fuses later in the endocytic pathway. While the rate of influenza X-31 virus
hemifusion increases at lower pH [33], the rate of Brisbane is much less pH
dependent [140]. The rate of pore formation for influenza virus is pH independent.
Multiple influenza hemagglutinin trimers are involved in fusion [141], although not
all are active participants [142, 143]. This platform is able to detect differences in the
acid stability and fusion behavior of different strains and reassortants of influenza,
which is tied to their tropism [140, 144]. This platform can also be used to measure
the number of antibodies required to neutralize fusion of a single virion [145].
Figure 2.7 provides a summary of the flexibility, the biomimetic fusion assay
and the kinds of insight that has been gained from these tunable assays. With
the advances in supported bilayer complexity and fabrication, these platforms can
also be used to study viruses that bind proteinaceous receptors, such as feline
coronavirus [13].

Finally, given the highly-defined nature of these platforms, viruses that do not
have a known fusion trigger or receptor might be difficult to study, because each
component must be intentionally added to the platform. However, because SLBs can
be formed in a microfluidic device, it should be possible to formulate a high-
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throughput screen for possible fusion triggers or binding partners with this
configuration.

2.3.5.3 Ensemble Approaches for Studies of Fusion

A common method to study fusion behavior is cell-cell fusion assays, where fusion
between target cells expressing the receptor for the virus and effector cells
expressing the viral fusion protein is monitored. When the viral fusion protein is
triggered, for example by lowering the pH, the cells fuse to each other, leading to
clusters of multiple nuclei surrounded by a single cell membrane [146]. These
clusters are known as syncytia. Lipophilic and aqueous dyes can be used to label
the membrane and contents of the effector cell, providing readouts for lipid mixing
or pore formation. To isolate the hemifusion step, fusion can be triggered then
arrested by quickly cooling the cells to 4 �C [147, 148]. This rapid-cooling approach
has been used to determine that hemifusion of avian sarcoma and leukosis virus
requires low pH, but expansion of the fusion pore does not [148]. As an alternative to
monitoring pore formation by observing the transfer of intracellular fluorescent
cargo from effector cells to target cells [149], whole cell patch-clamp electrical
measurements can be used [150]. In this configuration, a pipette connected to an
electrode and amplifier pierces the membrane of the effector cell. The voltage across
the membrane can be manipulated and the resulting current measured. During cell-
cell fusion, the cell surface area increases as the membranes merge, resulting in an
increase in membrane capacitance. Such measurements can also allow for estimation
of fusion pore size [151].

While syncytia assays do not require viral particles or specialized equipment,
making them easy to carry out, there are some limitations. Syncytia form over the
course of hours, so this technique is not suitable for obtaining kinetic data

Fig. 2.7 Features that can be easily controlled in biomimetic fusion assays. In combination with a
high throughput approach, these conditions (left) can be evaluated to provide new insight into virus
fusion. (Right) Examples of the kinds of insight that can be gained with a biomimetic assay that
isolates the fusion reaction from other virus entry steps
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[152]. Furthermore, the extracellular environment can differ substantially from the
endosomal environment, which may create artifacts when using this technique to
study viruses that typically fuse within the endocytic pathway. In this approach, any
impact of the virion size or shape on fusion is not captured.

In bulk fusion assays, viral particles are fluorescently labeled, then they are mixed
with liposomes in a cuvette and the fluorescent signal of the solution is measured by
fluorimetry as fusion triggers are added. In one labeling approach, particles and/or
liposome membranes can be labeled with fluorescence energy resonance transfer
(FRET) pairs. If fusion occurs, FRET will stop as the pairs become separated, and
the fluorescence signal will change accordingly [153]. In the second labeling
approach, particle membranes are labeled with a single quenched fluorescent marker
[154]. Upon fusion with a liposome, the quenched fluorophores will become diluted
and dequench, causing a marked increase in fluorescence.

In a third approach, the release of viral cargo can be detected by measuring
β-lactamase (BlaM) activity. In this type of assay, target cells are loaded with a dye
containing a β-lactam ring and a FRET pair. Chimeras of viral core proteins and
BlaM are incorporated into virions. If virions are able to release their cargo during
infection, BlaM will cleave the lactam ring, interrupting FRET and causing the cells
to fluoresce a different color [155]. Infected and uninfected cells can then be sorted
by flow cytometry for further analysis. This technique requires the ability to make
chimeric proteins but otherwise does not require specialized equipment. BlaM
activity assays have been combined with single virion imaging to indicate that
HIV releases cargo by fusion inside endosomes and not fusion at the plasma
membrane surface [156].

Bulk fusion provides information on the kinetics of the fusion of the overall
population in the solution, including the lag time between when the viruses are
exposed to a fusion trigger and when dequenching begins, with a resolution of less
than a second [157]. Varying the composition of the liposomes can reveal how lipids
impact viral fusion [158]. However, liposomes containing the viral receptor may be
hard to prepare if the receptor is a transmembrane protein. These assays cannot
resolve intermediate steps like hemifusion, or resolve fusion of individual virions,
but can be used to determine conditions interesting for further investigation with
single virion tracking with SLBs [137].

It is worth noting that single virion fusion tracking experiments agree with data
obtained from bulk fusion experiments. In a study directly comparing the two
methods a combination of bulk fusion and single virion tracking showed that
cholesterol enhances the extent of Sindbis virus fusion, but increases the lag between
binding and fusion at pH less than 5, revealing a complicated relationship between
lipids and viral fusion proteins in binding and fusion [34].
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2.4 Conclusion

Methods for studying viral entry vary widely in functional characterization, and
structural and temporal resolution. No single technique is sufficient to determine all
the steps or details of viral entry. Single virion tracking techniques can bridge the gap
between detailed structural information and overall infection measurements to
inform our understanding of the structure-function relationship of viral fusion pro-
teins. The development of single virion tracking techniques has been dependent on
advances in viral labeling, microscopy, and image analysis. These single virion
techniques can be applied to study the progression of infection in live cells as well
as used in a tightly-controlled biomimetic platform. Top-down cell culture
approaches where inhibition or knockout of cellular components reveals their role
in viral entry complement bottom-up biomimetic methods where components of
interest are methodically added to the experimental platform. Combining informa-
tion from these different techniques illuminates the framework of steps involved in
viral entry and clarifies the mechanisms underlying each step.
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