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Chapter 2
An Insight into Fungal Cellulases 
and Their Industrial Applications

Kavitha Sampathkumar, Valarmathi Kumar, Selvaraju Sivamani, 
and Nallusamy Sivakumar

2.1  �Introduction

Cellulases are not a single enzyme but are a family of three groups of enzymes, 
exoglucanase, endoglucanase, and glucosidase (Adhyaru et al. 2015). Exoglucanase 
or glucan cellobiohydrolase (CBH) or avicelase attacks the ends of the cellulose 
chain and produces the disaccharide, cellobiose, as the resultant product. 
Endoglucanase or glucan glucanohydrolase or carboxymethylcellulase (CMCase or 
EG) acts on the inner part of cellulosic molecules that produces oligosaccharides. 
Glucosidase or cellobiase specifically attacks cellobiose and produces glucose 
(Adsul et  al. 2007). Figure  2.1 depicts the mechanism of cellulolytic action. 
Cellulases have a wide range of applications in agriculture, biotransformation and 
fermentation, detergents and laundry, the pulp and paper industry, textiles, and the 
food industry (Adsul et al. 2009). Figure 2.2 represents the industrial applications of 
cellulases. Structurally, fungal cellulases are simpler than bacterial cellulases. 
Fungal cellulases have two domains: the catalytic domain and the cellulose-binding 
molecule (Ahmed et al. 2009).

The factors that influence the production of cellulases are the type of organism 
(fungi or bacteria or actinomycetes), the fermentation method (submerged or solid), 
the constituents of the production medium (carbon source, nitrogen source, and 
trace elements), and the process parameters (substrate concentration, pH, 
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temperature, time, inoculum size, and stirring rate) (Amir et al. 2011). Solid state 
fermentation is a process used in the production of fuels, food, pharmaceutical, and 
industrial products using microorganisms in a controlled environment. It is used as 
an alternative to submerged fermentation. Fermentation in the solid state takes place 
in the absence of free water. The advantages of solid state fermentation include a 
simpler process that requires less energy; produces higher volumetric productivity, 
similar to the natural environment of certain mushrooms; and makes purification 
easier than submerged fermentation (Anand et al. 2008).

Fig. 2.1  Mechanism of cellulases action
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2.2  �Fungal Cellulases

Although it is known that bacteria, actinomycetes, and fungi produce cellulases, 
fungi play a major role. Of the fungi, the genera Aspergillus, Trichoderma, and 
Penicillium are predominant in the production of cellulases. Aspergillus niger and 
Trichoderma reesei were the most common microorganisms that produce cellulases 
(Anish et al. 2007). Aspergillus has more activity with respect to endoglucanase or 
CMCase (Cx) than exoglucanase or avicelase (C1) and glucosidase or cellobiase, 
whereas Trichoderma has more significant activity of endoglucanase and exogluca-
nase than glucosidase. Penicillium produces more endoglucanase and glucosidase 
(Anita et al. 2009).

Fig. 2.2  Industrial applications of cellulases
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2.2.1  �Cellulases from Aspergillus

Baba et  al. have characterized Aspergillus aculeatus β-glucosidase 1 (AaBGL1), 
which promotes hydrolysis of cellulose by the Trichoderma cellulases system (Baba 
et al. 2015). Current research has also compared certain properties with a commer-
cially available A. niger orthologue (AnBGL) to elucidate the benefits of recombi-
nant AaBGL1 (rAaBGL1) for a synergistic effect on Trichoderma enzymes. 
Steady-state kinetic studies revealed that rAaBGL1 exhibited high catalytic effi-
ciency for β protein-linked glucooligosaccharides. Milala et al. evaluated cellulases 
activity in Aspergillus candidus with rice husks, millet straw, guinea corn stalks, 
and sawdust as substrates (Milala et al. 2009). The substrates were pretreated with 
5% NaOH and autoclaved. Fermentation studies showed that husks of rice, millet 
straw, and guinea corn stalks exhibited maximum cellulases activity of 7.50, 6.88, 
and 5.84 IU, respectively.

Schmidt et  al. tested whether ochratoxin A (OTA) production of Aspergillus 
niger and A. carbonarius was related to a particular genotype and the identification 
of marker sequences with diagnostic value identifying A. carbonarius concerning 
the production of OTA in food and feed materials (Schmidt et al. 2004). The ability 
of isolates to produce OTA was tested by thin-layer chromatography (TLC). Strains 
were genetically characterized by AFLP fingerprints and compared with each other 
and with reference strains. Gomathi et al. explained the potential for CMCase pro-
duction with the selective species Aspergillus flavus (Gomathi et  al. 2012). The 
expression of CMCase in A. flavus was evaluated under different processing condi-
tions using submerged fermentation (SmF) on various agricultural by-products. A. 
flavus produced high levels of CMCase under optimized culture conditions on the 
third day of incubation at optimal pH 6.0, at a temperature of 30 °C, and at a graft 
size of 4% in Czapek Dox using wheat bran as a substrate for SmF.

Immanuel et  al. studied the production capacity of cellulases enzymes of 
Aspergillus niger and A. fumigatus against lignocellulose waste at pH 5–9 and at 
temperature of 20–50 °C (Immanuel et al. 2007). Enzyme production was analyzed 
separately with dinitrosalicylic acid (DNS) and filter paper (FPA). In the FPA 
method, A. fumigatus (0.292 IU/mL) and pH 6 of A. niger (0.262 IU/mL) resulted 
in a high level of enzyme production when coconut waste and sawdust were used as 
substrates, respectively. Similarly, with varying temperatures, both organisms 
achieved a high level of enzyme production at 40 °C with both substrates. Tao et al. 
purified endoglucanase (EG) from Aspergillus glaucus XC9 developed on 0.3% 
sugarcane bagasse as a carbon source from the culture filtrate using ammonium 
sulfate, a fast-flowing DEAE-Sepharose column and a Sephadex G-100 column, 
with a purge fold of 21.5% and a recovery of 22.3% (Tao et al. 2010).

Anita et al. studied the production of Aspergillus heteromorphus cellulases by 
submerged fermentation using wheat straw as a substrate (Anita et al. 2009). Process 
parameters such as pH, temperature, and time have been optimized for saccharifica-
tion. The maximum reducing sugars were produced on the fifth day at pH 5 and 
30 °C. Under optimal conditions, the activities of the filter paper and the CMCase 
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were, respectively, 3.2 IU/mL and 83 IU/mL. Herculano et al. studied the separation 
and purification of Aspergillus japonicus URM5620 cellulases in aqueous two-
phase systems (ATPS) (Herculano et al. 2012). A factorial model (24) was used to 
determine the influence of the molarity of polyethylene glycol (PEG) (1000 to 
8000 g/mol), its concentration (20.0–24.0% (w/w)), sodium citrate concentration 
(15–20% (w/w)), and pH (6.0–8.0) on the differential distribution and purification 
of the cellulolytic complex consisting of β-glucosidase (βG), endoglucanase 
(CMCase), and total cellulases (FPase). This process ensures an efficient and attrac-
tive increase in the purification factor.

Koseki et al. expressed the recombinant AkCel61, the wild-type enzyme (rAk-
Cel61), and a truncated enzyme consisting of the catalytic domain (rAkCel61ACBM) 
in Pichia pastoris and analyzed their biochemical properties (Koseki et al. 2008). 
The purified rAkCel61 and rAkCel61ACBM migrated on sodium dodecyl sulfate 
polyacrylamide gel electrophoresis (SDS-PAGE), and their apparent molecular 
weights were 81  kDa and 34  kDa, respectively. The rAkCel61 protein bound to 
crystalline cellulose but not to arabinoxylan. The rAkCel61 and rAkCel61ACBM 
proteins produced small amounts of oligosaccharides from soluble carboxymethyl-
cellulose. However, they showed no detectable activity against microcrystalline cel-
lulose, arabinoxylan, and pectin. Lockington et al. characterized two genes encoding 
A. nidulans exo-cellulases and a gene encoding an endo-cellulases that is comple-
mentary to the endo-cellulases coding gene, for example, eglA (Lockington et al. 
2002). The 5′ putative regulatory regions of all genes contain potential binding sites 
for the global carbon and nitrogen regulatory proteins, CreA and AreA. The 5′ eglA 
and eglB sequences contain potential consensus of XlnR-binding sites involved in 
induction in A. niger, but none of the 5′ sequence contains an exact copy of the 
AceII DNA binding consensus sequence involved in induction of Trichoderma 
reesei. Therefore, it is likely that they can be induced by different regulatory pro-
teins specific to a pathway.

Coral et al. prepared a CMCase from a wild Aspergillus niger Z10 strain (Coral 
et al. 2002). Analyses of the enzyme preparation by SDS-PAGE revealed two pro-
tein bands with cellulolytic activity. The molecular weight of these bands has been 
estimated at about 83 kDa and 50 kDa. The optimum temperature of the enzyme was 
observed at about 40 °C. It was found that the activity of the enzyme had a broad pH 
range between 3 and 9 and that 41.2% of the initial activity was preserved after heat 
treatment at 90 °C for 15 minutes. Immanuel et al. also investigated the ability to 
produce cellulases enzymes from Aspergillus niger and A. fumigatus using lignocel-
lulose wastes at pH 5–9 and at temperature of 20–50 °C (Immanuel et al. 2007).

Hui et al. studied the direct microbial conversion of wheat straw to lipid via a 
cellulolytic fungus of Aspergillus oryzae A-4 in solid state fermentation (SSF) (Hui 
et al. 2010). A. oryzae A-4 gave a lipid of 36.6 mg/g dry substrate (DS) and a cel-
lulases activity of 1.82 FPU/g DS, with 25.25% of the holocellulose use in the 
substrates was detected. e Silva et al. studied the production of cellulolytic enzymes 
by the fungus Aspergillus phoenicis (e Silva et al. 2009). Grape waste from the wine 
industry has been selected as a growth substrate between various agro-industrial 
by-products. A centralized design was carried out with the quantity of grape and 
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peptone waste as independent variables. The fungus was cultured in a submerged 
fermentation at 120 °C and 120 rpm, and the activities of total cellulases, endoglu-
canases, and β-glucosidases were measured. The optimal production of the three 
cellulolytic activities was observed at values ​​close to the central point. A. phoenicis 
has the potential to produce cellulases using grape waste as a growth substrate.

Gao et al. studied the production of extracellular cellulases by the thermoacido-
philic fungus Aspergillus terreus M11 on lignocellulosic materials in solid state 
fermentation (SSF) (Gao et al. 2008). The results showed that the high-level cellu-
lases activities of 581, 243, and 128 U/g of carbon source were obtained for endo-
glucanase, FPase, and β-glucosidase at 45 °C, pH 3, and 80% of moisture with corn 
straw and 0.8% yeast extract as sources of carbon and nitrogen. Adhyaru et  al. 
investigated xylanase and cellulases activity using A. tubingensis FDHN1 and agri-
cultural residues such as foundry waste, sugarcane bagasse, wood shavings, wheat 
straw, corn straw, peanut shell rice, and barley straw by solid state fermentation 
(Adhyaru et al. 2015). Wood chips showed maximum cellulases activity of 2.81 U/g 
with A. tubingensis.

In addition to the literature mentioned above, A. ellipticus (Hu et al. 2011), A. 
flavus (Obruca et  al. 2012; Ojumu et  al. 2003), A. heteromorphus (Singh et  al. 
2009a; b), A. japonicas (Herculano et al. 2011), A. niger (Mrudula and Murugammal 
2011; Omojasola and Jilani 2008), A. oryzae (Kotaka et al. 2008), A. terreus (Narra 
et al. 2012), A. tubingensis (Decker et al. 2001), and other Aspergillus species were 
also found to produce cellulases.

2.2.2  �Cellulases from Trichoderma

Kovacs et al. improved the cellulases production process and developed more effi-
cient enzymes for lignocellulose degradation to reduce the costs of the enzymes 
required for the biomass to bioethanol process (Kovacs et al. 2009). Lignocellulolytic 
enzymatic complexes were produced by the mutant Trichoderma atroviride TUB 
F-1663 on three different pretreated lignocellulosic substrates, namely, fir, wheat 
straw, and sugarcane bagasse. The filter paper activities of the enzymes produced on 
the three materials were very similar, while β-glucosidase and hemicellulases activi-
ties were more dependent on the nature of the substrate. Ahmed et al. produced and 
partially purified cellulases complex using T. harzianum with carbon sources such 
as glucose, carboxymethylcellulose (CMC), corncobs, birch xylan, and wheat bran 
(Ahmed et  al. 2009). Between cellulases complexes, exoglucanase showed more 
activity than endoglucanase and glucosidase. T. harzianum showed maximum cel-
lulases activity with 1% CMC at 120 °C and pH 5.5 for 120 hours. Under optimal 
conditions, the enzymes were partially purified by ammonium sulfate precipitation 
and then by chromatography on Sephadex G-200 and Sephadex G-50 gel. Specific 
activities were found to be 49.22, 0.63, and 0.35 U/mg, respectively.

Omojasola et al. used sweet orange scrap as a substrate for cellulases production 
(Omojasola and Jilani 2008). The skin, the fruit wall, and the pulp were treated with 
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alkali and steam. Next, the pretreated materials were hydrolyzed by cellulolytic 
enzymes. The cellulases activities of Trichoderma longi, Aspergillus niger, and 
Saccharomyces cerevisiae were expressed in terms of reducing sugar concentrations 
and were found to be 3.86, 2.94, and 2.30 mg/mL, respectively. Leghlimi et al. iso-
lated the native cellulolytic fungus Trichoderma longibrachiatum (GHL) from the 
soil near an Algerian hot spring and used it for the production of cellulases by sub-
merged fermentation on Mandel’s medium with Avicel cellulose (1%) as single 
source of carbon (Leghlimi et al. 2013). The endoglucanase and filter paper activities 
of the wild-type Trichoderma strain were compared to hypercellulolytically mutated 
Trichoderma reesei Rut C-30 in shake flask cultures at 35 °C. After 7 fermentation 
days, T. longibrachiatum has activities equivalent to T. reesei (10.61 IU/mL endoglu-
canase (CMCase) and 2.04 IU/mL filter paper activity (FPA)). On the other hand, the 
β-glucosidase activity of Trichoderma GHL was twice as great as that of T. reesei.

Boer et  al. tested the heterologous expression of T. reesei cellobiohydrolase 
Cel7A in methylotrophic yeast Pichia pastoris, both under the P. pastoris alcohol 
oxidase (AOX1) promoter and glyceraldehyde-3-phosphate dehydrogenase (GAP) 
in a fermenter (Boer et al. 2000). The production of Cel7A with the AOX1 promoter 
gave a better yield. The kcat and Km values ​​for the purified protein on soluble sub-
strates are comparable to the values ​​found for native Trichoderma Cel7A. The opti-
mum pH measured also closely resembles that of purified T. reesei Cel7A. Circular 
dichroism (CD) measurements indicate that the formation of disulfide bridges is an 
important step in the correct folding of Cel7A. Van Wyk and Mohulatsi treated dif-
ferent waste materials with the enzyme Trichoderma viride cellulases, which con-
vert their cellulosic component into fermentable sugars (Van Wyk and Mohulatsi 
2003). All the materials exhibited different susceptibilities for cellulases as well as 
for the production of non-similar sugar release cartridges as increasing amounts of 
paper were treated with a solid enzyme concentration. A general decrease in hydro-
lytic efficiency was observed when sugar concentrations were increased during the 
biodegradation of all wastes.

In addition to the above scientific literature, T. atroviride (Kovács et al. 2008; 
Kovács et al. 2009), T. harzianum (da Silva Delabona et al. 2012; El-Katatny et al. 
2001; Maeda et al. 2011), T. reesei (Kovács et al. 2009; Krishna et al. 2000; Lee and 
Koo 2001; Rocky-Salimi and Hamidi-Esfahani 2010; Singhania et al. 2006; Turner 
et al. 2003), and other Trichoderma species have also proved to produce cellulases.

2.2.3  �Cellulases from Penicillium

Adsul et al. improved the strain of Penicillium janthinellum by mutation with ethyl 
methyl sulfonate for 24 hours and then by UV irradiation for 3 minutes (EMS-UV8) 
(Adsul et al. 2007). Subsequent mutation and selection led to the isolation of two 
promising mutants, one selected on the basis of Avicel hydrolysis (EU1) and the 
other based on the hydrolysis of Walseth cellulose in the presence of 2-deoxy-D-
glucose (EU2D-21). All of these mutants produced twice as much FPase and 
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CMCase activity as the parental strain. Enzymatic preparation derived from Avicel 
hydrolyzed mutant EU1 to a greater extent. Adsul et  al. produced high levels of 
CMCase and glucosidase from one of the P. janthinellum (EU2D-21) mutants on 
wheat bran (4 g) and wheat bran (3 g) with steam-exploded cane bagasse (2 g) as 
substrates by fermentation in the solid state (Adsul et al. 2009). The stability of the 
cellulases prepared from one of the mutants (EMS-UV8) was studied in one of the 
ionic liquids, 1-butyl-3-methylimidazolium chloride ([bmim] Cl), and revealed that 
all the enzymes exhibited significant activity at a concentration of 20% ionic liquid.

Belghith et al. studied the thermal stability of Penicillium occitanis cellulases 
(Po16) by spray drying and the effect of additives (Belghith et  al. 2001a). The 
results showed that the CMCase activity assures a good stability at 50 °C, even after 
60 hours of incubation. In addition, β-glucosidase activity was more sensitive and 
showed a 50% loss and reacted to total cellulases activity (FPU). The addition of 
hydrophilic agents such as ethylene glycol and polyethylene glycol (PEG6000) 
increased the enzyme activity. The effect of PEG and maltodextrin, another agent 
reducing the activity of water, was then tested during spray drying of Pol6 cellu-
lases. The presence of 1% PEG provided the best recovery but had a negative effect 
on the stability of the enzyme, whereas 1% maltodextrin had a negative effect on the 
recovery of the enzyme but a positive effect on the recovery of the enzyme and its 
stability. Belghith et  al. cultured the mutant Penicillium occitanis (Po16), which 
separated a large amount of cellulases into a fermenter using local paper pulp as an 
inducing substrate (Belghith et al. 2001b). High extracellular cellulases activity was 
obtained after batch treatment: 23 IU/mL filter paper, 21 IU/mL CMCase activity 
(endoglucanase units), and 25  mg/mL protein. This cellulases preparation was 
applied in a biodegradation process on an industrial scale. The abrasive effect of P. 
occitanis cellulases was very uniform and with comparable efficiency to that 
obtained commercially.

Camassola and Dillon treated bagasse with sugarcane containing the white rot 
fungus Pleurotus sajor-caju PS 2001 and were then used for the production of cel-
lulases and xylanases by the fungus Penicillium echinulatum for saccharification 
(Camassola and Dillon 2009). Despite the environmental benefits offered by this 
type of pretreatment, the enzymatic activity obtained with the pretreated sugarcane 
bagasse (PSCB) was lower than that of the control treatments. Although the enzy-
matic activities of the culture with PSCB are inferior to those of cultures made with 
untreated sugarcane bagasse, it should be noted that the production of enzymes 
from the cellulases and hemicellulases complex after the production of mushrooms 
is another way to add value to this agricultural residue.

Camassola and Dillon studied the production of cellulases and xylanases from 
Penicillium echinulatum 9A02S1 by solid state fermentation (SSF) with different 
mass ratios of sugarcane bagasse (SCB) and wheat bran (WB) (Camassola and 
Dillon 2010). The largest FPase obtained was 45.82 ± 1.88 U/g DS in a culture 
containing 6 SCB/4 WB on the third day. The most important β-glucosidase activi-
ties were 40.13 ± 5.10 U/g DS obtained on the third day for culture at 0 SCB/10 
WB. For endoglucanase, the highest activity was 290.47 ± 43.57 U/g DSF for cul-
ture 6 SCB/4 WB on the fourth day of culture.
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Camassola and Dillon evaluated the production of cellulases and hemicellulases 
by Penicillium echinulatum 9A02S1 of cellulases and hemicellulases with different 
concentrations of pretreated cane bagasse (PSCB) and wheat bran (WB) (Camassola 
and Dillon 2007). The highest activities of FPase, β-glucosidase, and endogluca-
nases were measured at 32.89 ± 1.90, 58.95 ± 2.58, and 282.36 ± 1.23 U/g DS. The 
inclusion of inexpensive sources in lignocellulosic enzyme production media would 
help reduce the cost of producing enzyme complexes capable of hydrolyzing ligno-
cellulose residues for the formation of fermented syrups, thereby contributing to the 
economic production of bioethanol. Camassola et  al. characterized Penicillium 
echinulatum cellulases for their FPase and β-glucosidase activities (Camassola et al. 
2004). Both activities showed maximum values ​​between pH 4 and 5. The activities 
were slightly higher in citrate buffer than in acetate buffer with the same pH. The 
thermal stability of both activities was good at 55  °C.  FPase was significantly 
reduced at higher temperature.

Penicillium brasilianum (Jørgensen and Olsson 2006; Jørgensen et  al. 2003; 
Jung et al. 2015; Krogh et al. 2010; Panagiotou et al. 2006), P. citrinum (Dutta et al. 
2008; Ng et  al. 2010), P. echinulatum (Dillon et  al. 2011; Martins et  al. 2008; 
Sehnem et  al. 2006), P. funiculosum (de Castro et  al. 2010), P. janthinellum 
(Singhania et al. 2014), P. purpurogenum (Davies et al. 2000; Lee and Koo 2001), 
and other Penicillium species also produce cellulases.

2.2.4  �Cellulases from Other Genera

In addition to Aspergillus, Trichoderma, and Penicillium, the following organisms 
have also been considered to produce cellulases:

Amir et al. optimized the pH (3–9), the time (1–7 days), and the temperature 
(25–40 °C) for maximal enzymatic activity with Alternaria alternata with the corn-
cob as a source of carbon by fermentation in the solid state (Amir et al. 2011). A. 
alternata exhibited a maximum cellulases activity of 31.24 μg/mL with 5 g corn at 
35 °C and a pH of 6 for 96 hours. Anand et al. produced more cellulolytic enzymes, 
namely, Cl and Cx in vitro, virulent isolates of Colletotrichum capsici, and Alternaria 
alternata and that the activity of these enzymes increased with increasing age of 
culture (Anand et al. 2008). Anish et al. used an alkali-stable endoglucanase from 
the alkalothermophilic society Thermomonospora sp. (T-EC) for denim biofinish-
ing (Anish et  al. 2007). The current study has shown that the use of acidic and 
neutral cellulases causes staining back of the indigo dye on the tissue. T-EG is effec-
tive at removing hair with negligible weight loss and soft tissue. Higher abrasion 
activity with lower background staining was a preferred feature for denim 
biofinishing presented by T-EG. The enzyme was also effective under non-swab 
conditions, which is an added advantage for use in the textile industry. An enzy-
matic finishing mechanism of the cotton fabric is presented based on the unique 
properties of T-EG.
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Baba et al. cloned two cDNAs homologous to the rce1 gene of Rhizopus oryzae, 
called mce1 and mce2 cDNAs, from Mucor circinelloides, a member of the 
Zygomycota subdivision (Baba et al. 2005). The mcel cDNA encoded an endogluca-
nase (family 45 glycoside hydrolase) with a carbohydrate-binding module (CBM), 
called mce1, and the mce2 cDNA encoded the same endoglucanase with two repli-
cate tandem CBMs, called mce2. The specific activity of CMCase of mce2 was 
almost identical to that of mce1, whereas the specific activity of avicelase of mce2 
was twice as high as that of mce1. In addition, mce2, of which two tandem CBMs 
would be more effective for the degradation of crystalline cellulose than CBM, was 
excreted only in an early culture phase in which crystalline cellulose was abundant.

Baldrian and Gabriel studied the activities of cellulolytic (endo-1,4-L-glucanase, 
exo-1,4-L-glucanase, 1,4-L-glucosidase), hemicellulolytic (endo-1,4-L-xylanase, 
1,4-L-xylosidase, and 1,4-L-mannosidase), and ligninolytic (Mn-peroxidase and 
laccase) during growth of Pleurotus ostreatus on wheat straw in the presence and 
absence of cadmium (Baldrian and Gabriel 2003). The activities of endo-1,4-L-
glucanase, 1,4-L-glucosidase, and laccase were increased in the presence of cad-
mium. Boisset et  al. examined the digestion of bacterial cellulosic tapes with 
mixtures of ternary enzymes consisting of recombinant cellulases (two cellobiohy-
drolases, Cel6A and Cel7A, and the endoglucanase Cel45A) from Humicola inso-
lens over a wide range of mixture compositions (Boisset et al. 2001). The degree of 
digestion was followed by saccharification analysis and transmission electron 
microscopy (TEM) observations. It has been found that the addition of very small 
amounts of Cel45A induces a dramatic increase in the saccharification of the sub-
strate with Cel7A or the mixture of Cel6A and Cel7A. But only moderate sacchari-
fication resulted from mixing Cel45A and Cel6A.

Bhatti et  al. produced β-glucosidase from Fusarium solani with agricultural 
waste using solid state fermentation (SSF) (Bhatti et  al. 2013). The optimal 
β-glucosidase activity of 3206 U/g DS was obtained with a rice husk at pH 5, a 60% 
moisture content, 65 °C, and a 72-hour fermentation period with the supplemented 
medium in lactose. Then, the enzyme was partially purified with ammonium sulfate 
precipitation to give a specific activity of 97.5  U/mg. It was observed that 
β-glucosidase was thermally stable at 65 °C. β-Glucosidase was subjected to kinetic 
studies. The Km and Vmax values ​​were 1 mM and 55.6 μmol/min, respectively. Mg2+ 
ions increased enzymatic activity. These characteristics suggest that β-glucosidase 
isolated from F. solani can be used in various applications such as textile, paper, 
biofuel, starch, animal feed, and fruit industries.

Agaricus arvensis (Jeya et al. 2010b), Alternaria alternate (Eshel et al. 2002), 
Brassica napus (Mølhøj et al. 2001), Chaetomium thermophilum (Li et al. 2003), 
Clostridium cellulolyticum (Desvaux 2005; Guedon et  al. 2002; Higashide et  al. 
2011), Colletotrichum capsici (Anand et  al. 2008), Coniophora puteana (Kajisa 
et al. 2009; Kajisa et al. 2004), Coriolopsis caperata (Deswal et al. 2014), Fomitopsis 
palustris (Deswal et al. 2011; Shimokawa et al. 2008), Fusarium solani (Obruca 
et al. 2012), Fusarium oxysporum (Panagiotou et al. 2005; Panagiotou et al. 2003; 
Ramanathan et al. 2010), Fusarium chlamydosporum (Qin et al. 2010), Gloeophyllum 
trabeum (Cohen et al. 2005; Deswal et al. 2014; Niemenmaa et al. 2008), Humicola 
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insolens (Davies et al. 2000; Mariyam 2011), Humicola grisea (Nascimento et al. 
2010; Takashima et al. 2007), Kluyveromyces marxianus (Ballesteros et al. 2004; 
Pessani et al. 2011; Suryawati et al. 2009; Tomás-Pejó et al. 2009), Melanocarpus 
albomyces (Haakana et  al. 2004; Hirvonen and Papageorgiou 2003; Miettinen-
Oinonen et al. 2004; Parkkinen et al. 2008; Szijártó et al. 2008), Mucor circinelloi-
des (Saha 2004), Mucor indicus (Karimi et al. 2006), Neurospora crassa (Dogaris 
et al. 2009; Phillips et al. 2011; Tian et al. 2009), Paecilomyces inflatus (Kluczek-
Turpeinen et  al. 2005), Phanerochaete chrysosporium (Martinez et  al. 2004; Shi 
et  al. 2008), Phlebia gigantea (Niranjane et  al. 2007), Piptoporus betulinus 
(Valášková and Baldrian 2006), Pleurotus ostreatus (Obodai et  al. 2003; Reddy 
et al. 2003; Taniguchi et al. 2005; Valášková and Baldrian 2006), Pleurotus florida 
(Deswal et  al. 2014), Pleurotus sajor-caju (Reddy et  al. 2003), Poria placenta 
(Highley et al. 2007; Niemenmaa et al. 2008), Rhizopus oryzae (Karimi et al. 2006; 
Murashima et  al. 2002; Park et  al. 2004), Saccharomyces cerevisiae (Den Haan 
et al. 2007; Karimi et al. 2006; Omojasola and Jilani 2008), Sporotrichum thermo-
phile (Dimarogona et al. 2012; Kaur and Satyanarayana 2004), Thermoascus auran-
tiacus (Kalogeris et  al. 2003), Trametes hirsuta (Jeya et  al. 2009), Trametes 
versicolor (Valášková and Baldrian 2006), and other fungi are also reported to pro-
duce cellulases.

2.3  �Conclusion

Cellulases and cellulolytic microorganisms constitute one of the most important 
groups of enzymes for industrial applications, as emphasized in this review. They 
exhibit good catalytic properties which make them versatile. Based on the progress 
in recent research on fungal cellulases, their applications have been broadened to 
reduce the costs. There are still many limitations to overcome. One of the problems 
is the practical feasibility of commercial cellulases. Their complex nature and the 
downstream processing stages result in the low yield of cellulases. The utilization of 
residues from agro-industrial residues as substrates can improve their applications. 
Also, various microorganisms used to produce fungal cellulases, mechanism of cel-
lulolytic action, cheap substrates used for enzyme production, and the industrial 
applications were emphasized.
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