
Chapter 4
Energy Demand Forecasting Using Deep
Learning

Bahrudin Hrnjica and Ali Danandeh Mehr

4.1 Introduction to Machine Learning

Systems of intelligent behavior have been the subject of interest for scientists over
the last few decades. They have tried to integrate intelligence through adaption,
learning, autonomy, and solving complex problems. Such research led to the
emergence of a new scientific field that is now called artificial intelligence (AI) [28].
AI can be described as an action performed by a machine that can be characterized
as intelligent, since if a human had to apply the same action, intelligence must be
used to achieve the same goal. When AI is used, it makes possible for machines to
use the experience for learning. Once it collects enough experiences, it is capable
of producing the output for the new set of inputs in the similar way a human does.
AI is a wide scientific field as the intelligence can be applied in various ways. Two
related scientific fields which are closely related to AI are statistics and computer
science. This is obvious, since one needs statistics in order to define and describe
associated algorithms, and computer science is needed to translate the algorithms
into a machine language in order to perform actions. Figure 4.1 shows the position
of AI in relation to computer science and statistics with related applications.

ML is one of the main components of AI. It is a set of learning computer
algorithms by which machines or computers can learn without explicitly being
programmed. Moreover, ML can be defined as the field of AI which provides the
algorithms for machines to automatically learn and improve their actions from a

B. Hrnjica (�)
University of Bihac, Bihac, Bosnia and Herzegovina
e-mail: bahrudin.hrnjica@unbi.ba

A. Danandeh Mehr
Antalya Bilim University, Antalya, Turkey
e-mail: ali.danandeh@antalya.edu.tr

© Springer Nature Switzerland AG 2020
F. Al-Turjman (ed.), Smart Cities Performability, Cognition, & Security,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-14718-1_4

71

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14718-1_4&domain=pdf
mailto:bahrudin.hrnjica@unbi.ba
mailto:ali.danandeh@antalya.edu.tr
https://doi.org/10.1007/978-3-030-14718-1_4

72 B. Hrnjica and A. Danandeh Mehr

MA - mathematics

CS - computer science

AI - artificial intelligence

Statistics
Linear Algebra
Calculus
Tensor
Matrix

Natural Language Processing
Machine Learning

Vision
Speech

Robotics

Programming Languages
Cloud Computing

Database
GPU/CPU Processing

AI

CS

MA

Fig. 4.1 AI as scientific filed in relation with statistics (mathematics) and computer science

given experience. While AI is defined as the ability to acquire and apply knowledge,
ML is defined as the acquisition of knowledge or skill. On the other hand, using AI
one tries to increase the chance of success but not accuracy. However, in ML one
tries to increase the accuracy of the action regardless of the success. Last but not
least, AI can be defined as a smart computer program, while ML is the concept
of how machines use data to learn. As stated previously, ML is a set of computer
algorithms, particularly designed for machines to help them in the learning process.
Usually, an ML process consists of searching the data to recognize hidden patterns
in the data. Once the patterns are recognized, the computer can make predictions for
new or unseen data based on persisted knowledge. Supervised, unsupervised, and
reinforcement learning are basically the three main types of the ML (Fig. 4.2):

In supervised ML, the learning process consists of finding the rule that maps
inputs (features) to outputs (labels). During the learning process, available data can
be divided into two sets. The first set is the training set which is responsible for the
training process. The second set is called validation or testing set and is used by the
learning algorithm to verify the training process.

Unsupervised learning is the process of discovering patterns in data without
defined output (unlabeled dataset). With unsupervised learning, the correct result
cannot be determined because no output variable is defined. Algorithms are left to
their capability to discover as much knowledge as possible from the data. Inasmuch

4 Energy Demand Forecasting Using Deep Learning 73

supervized

reinforcement

machine

learning

unsupervized

Labeled data
Outcome prediction

No labeled data
Find hidden pattern

Decision process
Reward system

Fig. 4.2 Machine learning types

as there is no output variable, there is no need for splitting the data into training and
testing sets. Thus, all the samples are used for training process. This kind of learning
can be applied in image and signal processing, computer vision, etc.

Reinforcement learning is an ML process where a computer interacts with a
dynamic system in which it must achieve a goal (like driving a vehicle or playing
a game). Reinforcement learning provides feedback that consists of information
showing how the last action was treated, was it successful or unsuccessful. Based
on the feedback, the computer can learn and make further decisions.

Supervised ML can be classified by the type of the output as regression or
classification. In regression the output is represented as a continuous number, while
in classification, the output variable is discrete rather than continuous, and consists
of two or more classes.

Regression ML considers finding relations between one or more variables which
are called features, and then compared with a dependent variable called the label.
Figure 4.3 shows how ML can be classified depending on its learning types.

ML-originated regression models are used in different disciplines such as
finance, production, the stock market, and maintenance. The models can later be
used for predicting or forecasting sales, weather temperature for the next day, stock
market prices in the next few hours, energy consumption for a given time period,
etc.

In most cases, a dataset is determined by time so that each dataset value has
a defined timestamp. In this way the history of a dataset value can be monitored,
which can be valuable for future business decisions. This kind of dataset is called
time series data. In one example, a stock price is a set of observed values recorded
in time, so for each time value (minutes, hours, or days) a stock price is calculated.
In a second example daily energy consumption is collected so that at the end of each

74 B. Hrnjica and A. Danandeh Mehr

Neural
Networks

Neural
Networks

Support
Vector

Machines

Logistic
Regression

Genetic
Programming

...

...

...Clustering

Machine

Learning

Supervised

Learning

Neural
Networks k-Means Hierarchical Bayesian

Classification

Regression

Unsupervi-

sed Learning

Linear
Regression

Genetic
Programming

Random
Forests

Fig. 4.3 Different type of ML algorithms

day it can be recorded. Regression type of ML covers broad applications. One of the
most complex types of ML are time series events.

The forecasting of time series events is an important area of ML, since there
are so many forecasting tasks that involve a time component. The time component
adds additional information to the time series data, but it also makes time series
problems more difficult to handle in comparison to many other regression tasks.
Predictions of the time series events are still one of the most difficult tasks, and
are active research subjects of many engineers and scientists. Time series events
can be detected around us, and the prediction of its future states is of tremendous
importance. For example, it is of crucial importance for the world economy to
forecast the price of energy [25], sales [13], or stock prices [17]. Furthermore, time
series events can be used to predict the weather and environmental, hydrological,
and geological events [4, 6, 18]. Smart cities need better and smarter surveillance
cameras [22], digital surveillance systems with different frameworks [23, 32], and
5G-inspired IIoT paradigm in health care [1].

In this chapter, the application of deep learning is used in order to present an
approach of forecasting energy demand that can be part of a smart cities cloud
solution. Since our cities face non-stop growth in population and infrastructures,
handling its resources in an intelligent way may result in multiple cost savings. One
of the resources which is very important for smart cities is electricity, it is of crucial
importance that it is handled in an efficient and intelligent way. The basic role of
the smart energy concept is to optimize its consumption and demand resulting in
decreased energy costs and increased efficiency. Among the variety of benefits, the
smart energy concept mainly enhances the quality of life of the inhabitants of the
cities as well as making the environment cleaner. One of the approaches for the
smart energy concept is to develop prediction models using ML algorithms in order
to forecast energy demand, especially for daily and weekly periods.

4 Energy Demand Forecasting Using Deep Learning 75

The upcoming chapter describes thoroughly what is behind the deep learning
concept as a subset of ML and how neural networks can be applied for developing
energy prediction models. A specialized version of the RNN, e.g., LSTM, and
unsupervised neural network type called autoencoders are described in detail.
With an autoencoder unsupervised neural network, features are transformed so that
important information is not lost due to high inter-correlation between them. With
LSTM the historical influence of the data has been captured. The LSTM can capture
the long-time dependency with constant error propagation while using backprop-
agation through time BPTT, which outperforms the standard implementation of
the RNN. To build a deep learning model, the computer program ANNdotNET is
introduced. The ANNdotNET is an open source project hosted at https://github.
com/bhrnjica/anndotnet on GitHub, the largest open source repository platform.
The ANNdotNET provides a user-friendly ML framework with the capability of
importing data from the smart grids of a smart city. By design, the ANNdotNET
is a cloud solution program that can be connected with other IoT devices for data
collecting, feeding, and providing efficient models to energy managers for a bigger
smart city cloud solution. As an example, the chapter provides the evolution of daily
and weekly energy demand models for Nicosia, the capital of Northern Cyprus.
Currently, energy demand predictions for the city are not as efficient as expected.
Therefore, the results of this chapter can be used as efficient alternatives for IoT-
based energy prediction models for the city.

Using prediction models based on deep neural network, one might not be able to
answer questions about behavior, seasonality, and trends of a given time series. To
cope with this problem, two state-of-the-art time series decomposition algorithms
are used here in order to analyze and determine the trend and seasonality of energy
demand. Moreover, the prediction model based on time series decomposition called
TSD has been developed and compared with the deep learning model.

4.2 Artificial Neural Network

A number of ML algorithms have been developed over the past few decades that try
to discover knowledge from the data. Which ML algorithm is the best, for a given
problem? Is the algorithm satisfactory? These are the two main questions that were
discussed in the thousands of ML studies. It seems that the former attracted less
attention than the latter. Artificial neural network, ANN, undoubtedly is one of the
most popular ML algorithms that every data scientist has heard about it. It is a part
of supervised ML algorithms that is based on the concept of the biological neural
network. Similarly, as a genetic algorithm GA tries to mimic biological evolution
[15], ANN attempts to simulate the decision process as human neurons do. The
concept of ANN is based on the neuron that can be described as the basic cell of
the human brain. Each neuron consists of a cell, a tubular axon, and dendrites. The
cell processes signals coming from dendrites and sends it to the axon. The axon
forms synaptic connections with other neighboring neurons. The axon consists of

https://github.com/bhrnjica/anndotnet
https://github.com/bhrnjica/anndotnet

76 B. Hrnjica and A. Danandeh Mehr

branched ends which are used as the input for the next neuron cell. Neurons are
linked via a synapse where signals are exchanged from one neuron to another.

Akin to the biological neuron, the artificial neuron is defined as a set of input
parameters xi (i = 1, .. n), which represents the input signals, set of weight factors
wi (i = 1, . . . , n), which represents the synapses, the dot product

∑
w · x of

input and weighted vectors, representing the neuron cell, and activation function
a (.), representing the axon of biological neurons [20]. Figure 4.4 shows the
similarities between the biological and artificial neuron.

The first concept of the artificial neuron is called perceptron which was intro-
duced by Rosenblatt [26]. Let the xn represent the input vector with n components,
the associated weight wn, and bias value b0 and activation function sign. The output
y of the perceptron can be expressed as:

y = f (net) = f (w · x) = sign

(
n∑

i=1

xiwi + b0

)

, (4.1)

where sign represents the activation function defined as:

sign (net) =
{ +1, if net ≥ 0, w · x ≥ 0

−1, if net < 0, w · x < 0
(4.2)

Fig. 4.4 Graphic interpretations of biological and artificial neurons and their similarities

4 Energy Demand Forecasting Using Deep Learning 77

As can be seen the activation function is the last operation in the expression (4.2),
which obviously shows the perceptron produces an output as binary value of 1
and −1.

Besides sign there are many other activation functions which can produce
different kind of outputs, e.g., T anh, ReLU , Sof max, etc. The expression (4.1)
and (4.2) with any combination of the activation functions represents the forward
pass of one neuron. The forward pass calculates the output for a given input and
weights values. In context of a whole ANN, forward pass calculates the output of
each neuron in the network, where the last neuron’s output represents the output of
the network.

Just as millions of biological neurons can be connected, the artificial neurons
can form an ANN which can solve very complex problems. Neurons in ANN are
grouped in layers. Each layer can consist of one or more neurons. Usually, ANN
layers are classified as input, output, and hidden layers. The input layer represents
the layer constructed from the input variables (called features). The number of
neurons in the input layer is always related by the number of features. Similarly,
the output layer is based on the output variable. The number of output variables
(called labels) must be the same as the number of neurons in output layer.

The simplest ANN can be formed from at least one input, one hidden, and one
output layer. This simple network configuration is called the feed forward network,
FFN. The number of neurons of each layer may vary depending on the complexity
of the problem. In the input layer, each neuron corresponds to the input parameters,
while the output layer is related to the output result. In the middle of the input and
the output layer there can be one or more hidden layers with arbitrary numbers of
neurons. Figure 4.5 shows the FFN with four layers, one input, one output, and two
hidden layers.

hidden layer, hn hidden layer, hm

,stupni
x i

bias

output, yk

weights, win weights, wnm

bn
bm bk

Fig. 4.5 FNN with four interconnected layers

78 B. Hrnjica and A. Danandeh Mehr

Since each neuron makes some kind of decisions, one can conclude that one
perceptron cannot do much. In case of the ANN previously described, the ANN can
produce valuable decisions, which can lead to a solution to complex problems. In
all cases the process of producing a better solution depends on the weighted factor
values of each neuron.

4.2.1 Learning Process in ANN

The process of finding suitable weight values is called learning of ANN. Finding
the weight values starts with output calculations of each neuron in the network. The
process begins with output calculations of neurons in the input layer, then the output
of each input neuron becomes the input for the neurons in the first hidden layer, and
so forth. Once the result of the last neuron is calculated in the output layer, the result
becomes the output of the network. The result is calculated for each sample (row)
in the training dataset.

Assume the training dataset is defined with two features and one label. Let
Table 4.1 represent the training dataset with 3 samples (rows). As illustrated in
Fig. 4.6, FFN with a 2-4-1 structure was used and indicates that the input layer

Table 4.1 Sample training
dataset consists of two
features (X1 and X2) and one
label (Y), with three data
samples (rows)

X1 X2 Y

1 1 2

1 2 3

3 1 4

X₁
w₁₁

w₁₁

w₁₂

w₁₂

w₁₃

w₁₃

w₁₄

w₁₄
X₂

h₁

h₂

h₃

y

h₄

b₁
b₂ b₃

b₄
b

Fig. 4.6 FNN with a 2-4-1 structure, FNN(2, 3, 1)

4 Energy Demand Forecasting Using Deep Learning 79

+ =+× ×

1×2

X b₁ b₂ yW₁ W₂

2×4
4×1

1×4 1×1

Fig. 4.7 Matrix multiplication generated from the previously defined FNN (2, 3, 1)

has two neurons, the hidden layer has four neurons, and the output layer has one
neuron. Identity activation function (x = f (x)) at both hidden and output layers
was applied for the sake of simplicity.

Once the training dataset and network configuration are defined, the network
output can be calculated. The ANN output calculation is based on the matrix
calculation. Figure 4.7 shows a matrix representation of the network given in
Fig. 4.6.

Based on Fig. 4.7, and the training dataset given in Table 4.1, the output is
calculated for each row of the datasets, but first, the initial values of the weights and
biases must be defined. This is usually a random process. Assume that the following
values are assigned to the matrices W1 and W2, and biases b1 and b2.

W1 =
[

0.5 0.5 0.5 0.5
0.6 0.6 0.6 0.6

]

; W2 = [
1.8 0.4 0.4 0.4

]
(4.3)

b1 =

⎡

⎢
⎢
⎣

0.1
0.12
0.10
0.11

⎤

⎥
⎥
⎦ ; b2 = [

0.1
]

(4.4)

Now, the network output can be calculated as:

[X · W1 + b1] · [W2 + b2] = [
ŷ
]
, (4.5)

Using the data from Table 4.1, the outputs are calculated for each row:

• Row 1:

ŷ1 =

⎡

⎢
⎢
⎣
[
1 1

]
[

0.5 0.5 0.5 0.5
0.6 0.6 0.6 0.6

]

+

⎡

⎢
⎢
⎣

0.5
0.5
0.5
0.5

⎤

⎥
⎥
⎦

⎤

⎥
⎥
⎦ · [[

1.8 0.4 0.4 0.4
]+ [

0.4
]] = 2.26.

(4.6)

80 B. Hrnjica and A. Danandeh Mehr

• Row 2:

ŷ2=

⎡

⎢
⎢
⎣
[
1 2

]
[

0.5 0.5 0.5 0.5
0.6 0.6 0.6 0.6

]

+

⎡

⎢
⎢
⎣

0.5
0.5
0.5
0.5

⎤

⎥
⎥
⎦

⎤

⎥
⎥
⎦ · [[

1.8 0.4 0.4 0.4
]+[

0.4
]]=3.34.

(4.7)
• Row 3:

ŷ3 =

⎡

⎢
⎢
⎣
[
3 1

]
[

0.5 0.5 0.5 0.5
0.6 0.6 0.6 0.6

]

+

⎡

⎢
⎢
⎣

0.5
0.5
0.5
0.5

⎤

⎥
⎥
⎦

⎤

⎥
⎥
⎦ · [[

1.8 0.4 0.4 0.4
]+ [

0.4
]] = 4.06.

(4.8)

Based on the expressions (4.6), (4.7), and (4.8) the predicted value represents the
column vector of three elements:

ŷ =
⎡

⎣
2.26
3.34
4.06

⎤

⎦ . (4.9)

On the other hand, the actual outputs from Table 4.1 can be represented by the
column vector as:

y =
⎡

⎣
2
3
4

⎤

⎦ . (4.10)

The residual vector e, which is the deference between the actual and predicted
values, is given as:

e =
⎡

⎣
2 − 2.26
3 − 3.34
4 − 4.06

⎤

⎦ =
⎡

⎣
−0.26
−0.34
−0.06

⎤

⎦ . (4.11)

The learning process is based on defining the cost function C which can be of
various types depending on the problem at hand. In most cases, it is the squared
error between the actual and predicted results [27]:

C = 1

2

n∑

i=1

e2
i , (4.12)

4 Energy Demand Forecasting Using Deep Learning 81

where:

• e is the residual values,
• n is the number of data samples for the training,
• y is the actual values,
• ŷ - is the calculated values.

In case of the previous example, the cost function produces the following error
value:

C = 1

2

3∑

i=1

(yi − ŷi)
2 = 1

2

(
(−0.26)2 + (−0.34)2 + (−0.06)2

)
= 0.0934.

(4.13)
Minimizing the error value is the central part of training process with an ANN

and might result in satisfactory predictions. One common way is to apply the
backpropagation algorithm that is the iterative process of correcting weights and
biases based on the partial derivative of the cost function.

For instance, at each neuron k, the weight value wk
i at the iteration i will have

the new value wk
i+1 in the next iteration i + 1, for the gradient of the cost function

with respect to the wk multiplied with the learning rate factor η:

�wk = η
∂C

∂wk

. (4.14)

The new value of the weight, wk , in the i+1 iteration is expressed as:

wk
i+1 = wk

i + �wk. (4.15)

For the calculation of the cost function, the gradient starts from the last (output)
layer and is propagated backwards to the input layer using the chain derivative rule.

The entire learning process can be described in two stages for each iteration.
Once the iteration starts, the output is calculated by starting from the input layer,
and for each weight and each input variable, the output is calculated for each
neuron. Once the output of the network is calculated, the second process is started
by calculating the gradient from the output layer to the input layer in the backwards
order. For each weight value, the gradient is calculated and added to the previous
values as shown in Eq. (4.15). Training of the FFN can be a complex task, since
not all ANN models can solve the problem accurately. Since an ANN model can be
built with one or more hidden layers, and each hidden layer can contain an arbitrary
number of neurons, the learning process may provide unexpected results. In the case
of small number of neurons in the hidden layer, the model may be too rigid, and the
learning process very slow, which leads to the fact that the number of neurons in
the ANN is not sufficient to adapt to the data. On the other hand, a large number
of neurons in the hidden layer may lead the ANN model to fit the data perfectly,

82 B. Hrnjica and A. Danandeh Mehr

but due to the complex nature of the problem the model is trying to predict, the
prediction for the unseen data may give unsatisfactory results [3].

4.2.2 Deep ANN

Previous studies indicate that FFNs are not powerful enough for most of today’s
problems. For instance, FFNs were not found suitable for the natural language
processing, social network filtering, speech and audio recognition, machine trans-
lation, medical image analysis, bioinformatics, drug design, stochastic time series
forecasting, etc. In order to solve such problems, the network configuration must
be extended and made more robust. To achieve a more robust network, one may
increase the number of hidden layers. In this situation, the multiple hidden layers
with a nonlinear activation function can produce nonlinear processing which is more
efficient for solving complex problems. Simply by increasing the number of hidden
layers produces a very complex system of network configurations that need to be
learned. In most cases more than one hidden layer in the network cannot be learned
in the same way described previously, due to the vanishing and exploding gradients
phenomenon [2]. This changes the approach of looking at ANNs and revolutionized
the learning process for multiple layer networks.

As stated previously the keyword “deep” in “deep ANN” refers to the number
of hidden layers. One can define the credit assignment path (CAP) depth as the
transformation chain from the input to output of the neural network [30]. In the case
of FNN, the depth of the CAP indicates the number of hidden layers plus one for
the output layer, since it is parametrized in the same way as the hidden layer. For
RNN where the input features can be propagated through a layer more than once
per iteration, the CAP depth is potentially undetermined. So, to make a measurable
difference between deep learning and learning requires a CAP depth to be greater
than 2. The process of learning complex networks configuration, such as deep neural
networks, deep belief networks, and RNN, is called deep learning, DL, a subset of
the wider ML field. How DL is specific to the ML field can be depicted graphically
as in Fig. 4.8. The learning process of a DL specific networks is a very complex
task, it is still based on the backpropagation error concept with a specific way of
error propagation and optimization techniques.

4.2.3 Recurrent Neural Network

FFN models are usually built on the fact that data do not have any order when
entering into the network. So, the output of ANN depends only on the input features.
In case of specific data when the order is important, usually when data is recorded in
time or when dealing with sequences of data, simple FFN cannot manage it as one
can expect because the previous state cannot be incorporated [24]. When the output

4 Energy Demand Forecasting Using Deep Learning 83

AI
machines with ability to learn
and reason similar as human

ML
algoriths with ability to learn

without being explicetly programmed

DL
specialized architecture of ANN

with many hidden layers,trained with
vast amount of data

Fig. 4.8 DL as a subset of ML and AI

is determined by both the inputs and the previous states, the FNN must be extended
to support the previous states. A well-known solution for this kind of problem is to
develop the RNN, which was first introduced by Hopfield [12], and later popularized
when the backpropagation algorithm was improved [24]. The concept of the RNN is
depicted in Fig. 4.9. As seen, the RNN contains cycles showing that the current state
of the network relies on current data, but also on the data produced by the previous
outputs of the network. So, in the case of the RNN, two kinds of inputs are provided:
the output of the previous time, hi−1, and the current input xi. Due to its nature, the
RNN has a special kind of internal memory which can hold long-term information
history [29].

Figure 4.9 shows two kinds of representations of the RNN. On the left side,
the RNN is presented in classic feed forward like mode, where the three layers
are presented: input, hidden, and output layer. Around the hidden layer we can see
cycling which indicates the recursion. The RNN can be shown in an unrolled state in
time t . The RNN is presented with t interconnected FFN, where t indicates the past
steps, thus far. The concept of the RNN is promising and very challenging, but there
are problems with applications, mainly when dealing with complex time dependent
models [2]. Most of the obstacles of the RNN can be summarized in two categories
[2]: the vanishing and exploding gradient. The learning process of the RNN is
mostly based on the backpropagation algorithm, the so-called backpropagation

84 B. Hrnjica and A. Danandeh Mehr

Fig. 4.9 Schematic representation of the RNN

through time or BPTT. The BPTT algorithm stores the activation of the units while
going forward in time, while in the backwards phase takes those activations for
the gradient calculation [27]. In the vanishing gradient problem of learning RNN,
updates of weights are proportional to the gradient of the error calculated in the
previously described manner. In most cases, the gradient value is negligibly small,
which results in the fact that the corresponding weight is constant and stops the
network from further training. The exploding gradient problem refers to the opposite
behavior, where the updates of weights (gradient of the cost function) become
larger in each backpropagation step. This problem is caused by the explosion of
the long-term components in the RNN. In both cases the error propagation through
the network is not constant, which causes one of the mentioned problems.

The solution to the abovementioned problems is found in the specific design of
the RNN, called long short-term memory, LSTM [11]. LSTM is a special RNN
which can provide a constant error flow. The constant error propagation through
the network involves a special network design. LSTM consists of memory blocks
with self-connection defined in the hidden layer, which has the ability to store the
temporal state of the network. Besides memorization, an LSTM cell has special
multiplicative units called gates, which control the information flow. Each memory
block consists of the input gate that controls the flow of the input activations into the
memory cell, and the output gate controls the output flow of the cell activation. In
addition, an LSTM cell also contains the forget gate, which filters the information
from the input and previous output and decides which one should be remembered
or forgotten and dropped. With such selective information filtering, the forget gate
scales an LSTM cell’s internal state, which is self-recurrently connected by previous
cell states [8]. Besides gating units, the LSTM cell consists of a self-connected linear
unit called constant error carousel, CEC, whose activation is called the cell state. The
cell state allows for constant error flow, previously mentioned as the problem of the
vanishing or exploding gradient, of the backpropagation error in time. The gates of
the LSTM are adaptive, since each time the content of the cell is out of date, the
forget gate learns to reset the cell state, so the input and the output gates control the
input and the output, respectively. Figure 4.10 shows an LSTM cell with activation
layers: input, output, forget gates, and the cell. Each layer contains the activation
function before passing through.

4 Energy Demand Forecasting Using Deep Learning 85

xt

xt

ft

ft
it

it

ct-1

ct

ct
ht-1

ot ot

ht

ht

ht

th
ct ct

forget gate
input gate
cell update
cell state
output gate
output

input
Legend:

th

Fig. 4.10 LSTM cell with its internal structure

As can be seen, an LSTM network can be expressed as an ANN where the
input vector x = (x1, x2, x3, . . . xt) in time t maps to the output vector y =
(y1, y2, . . . , ym), through the calculation of the following layers:

• the forget gate sigmoid layer for the time t , ft is calculated by the previous output
ht−1, the input vector xt , and the matrix of weights from the forget layer Wf with
an addition of bias bf :

ft = σ
(
Wf · [ht−1, xt] + bf

) ; (4.16)

• the input gate sigmoid layer for the time t , it is calculated by the previous output
ht−1, the input vector xt , and the matrix of weights from the input layer Wi with
an addition of bias bi :

it = σ (Wi · [ht−1, xt] + bi) ; (4.17)

• the cell state in time t , Ct , is calculated from the forget gate ft and the previous
cell state Ct−1 by multiplicative operation ⊗. The result is applied as the first
argument of the additive operation ⊕ and the input gate it , which is then applied
as the first argument of the multiplicative operation of the cell update state c̃t

which is a tanh layer calculated by the previous output ht−1, input vector xt , and
the weight matrix for the cell with an addition of bias bC :

Ct = ft ⊗ Ct−1 ⊕ it ⊗ tanh (WC · [ht−1, xt] + bC); (4.18)

• the output gate sigmoid layer for the time t , ot is calculated by the previous
output ht−1, the input vector xt , and the matrix of weights from the output layer
Wf with an addition of bias bo:

ot = σ (W0 · [ht−1, xt] + b0) . (4.19)

86 B. Hrnjica and A. Danandeh Mehr

The final stage of the LSTM cell is the output calculation of the current time
ht . The current output ht is calculated with the multiplicative operation ⊗ between
output gate layer and tanh layer of the current cell state Ct .

ht = ot ⊗ tanh (Ct). (4.20)

The current output, ht , has passed through the network as the previous state
for the next LSTM cell, or as the input for an ANN output layer. The operation
connections ⊗ and ⊕, which correspond to multiplication and addition connections,
allow the gates to process the information based on the previous cell output, as well
as the previous cell state. The previous LSTM cell description represents one of the
several variants which can be found in the literature [19].

4.2.4 Deep LSTM RNN

Deep ANN has proved to be very effective in solving complex problems. Similarly,
deep LSTM RNN can be defined as more than one LSTM layer in the ANN. The
fact is that an unrolled LSTM cell in time represents a deep FFN, which indicates
the complex network architecture. Deep LSTM RNN can be defined with more than
one LSTM layer. The LSTM layers are stacked vertically, with the output sequence
of one layer forming the input sequence of the next one (Fig. 4.11).

Fig. 4.11 Schematic representation of the deep LSTM RNN

4 Energy Demand Forecasting Using Deep Learning 87

The deep LSTM RNN has proved to be very effective and outperforms the
standard implementation of the LSTM [9]. Deep LSTM RNN has the ability to
learn at different time scales over the input [10]. In addition, deep LSTM is more
efficient than standard LSTM, since parameter distribution over the space through
multiple layers is handled with less memory [29].

4.3 Modeling Time Series Events

As previously mentioned, ML methods generally extract the knowledge from the
data in two phases. The first phase is training the network configuration in order to
get the best possible weights so that the model can predict the future values with
minimum error. The second phase is model validation, where the trained model is
validated against the validation dataset. Such dataset contains the data which are not
used during the training phase. In both of the phases, the data is a crucial part of the
ML solution. With noisy or inappropriate datasets, regardless of the implemented
ML algorithm, a reliable prediction model would not be created. Therefore, the
most important component of the ML solution is to prepare high quality datasets
prior to the training phase.

Undoubtedly, modeling time series data is one of the most challenging tasks
of ML. A time series represents a sequential set of data samples recorded over
successive times. It can also be defined as a set of vectors x (t), t = 1, 2, 3, . . .,
where t is the time. The time series data is always arranged in chronological order.
Data usually contains a single variable, which represents the univariate time series.
In case more than one variable is used, it is termed as a multivariate time series.

For better understanding time series events, the associated data can be decom-
posed into several components so that each component represents an important
property of the event. Decomposition of the time series is usually based on rates of
change. With this in mind, time series can be decomposed into three components:
trend, seasonal, and random components [16]. As an underlying component, trend
represents tendency of time series data to increase, decrease, or stagnate over a
long period of time. It can be also described as long-term movement. The seasonal
component represents the fluctuation within a year. The seasonal variation of time
series is an important component specially in business related time series data,
where the detection of a seasonal time interval can increase business values. The
third component, the random component, represents everything else. It usually
represents the randomness of the time series.

The time series components can be determined in two ways: as additive or as
multiplicative models. In case of the additive model, the time series data can be
expressed as:

y (t) = S (t) + T (t) + R (t) (4.21)

88 B. Hrnjica and A. Danandeh Mehr

where y (t) is the data, T (t) is the trend component, S (t) is the seasonal component,
and the R (t) is the random component at time t .

The multiplicative model of time series can be expressed as:

y (t) = S (t) × T (t) × R (t) (4.22)

In case when the seasonal variation is relatively constant over time, additive
decomposition is recommended. On the other hand, the multiplicative decomposi-
tion is recommended when the seasonal component is proportional to the level of the
time series [16], or when the seasonal variation increases over time. However, the
multiplicative model can be expressed as additive, if the time series is transformed
by a log transformation. In this case, using a log transformation any multiplicative
decomposition can be expressed as additive:

y (t) = S (t) × T (t) × R (t) ⇔ Ln (y (t))

= Ln (S (t)) + Ln (T (t)) + Ln (R (t)) . (4.23)

In order to decompose time series data into its components several methods have
been developed. One of the most popular methods is seasonal-trend decomposition
based on Loess [5], which has been proven to be very effective for longer time
series. There is a more recent seasonal-trend decomposition based on regression
decomposition [7], which is more generic, and it allows for multiple seasonal and
cyclic components, as well as multiple linear regressors with a constant. It also
provides flexible, seasonal, and cyclic influences. Recently, Facebook has released a
times series decomposition and forecasting tool called Prophet. The company used
this tool for times series data analytics and forecasting [31]. All the mentioned
decomposition methods are implemented in well-known statistical packages, e.g.,
R or Python languages.

4.3.1 Time Series Decomposition Procedure

In order to decompose the time series, the first step is the selection of a decom-
position method. Once the decomposition method has been selected, the trend is
the first component which should be estimated. De-trending the time series is the
second step. In case of an additive model, the trend component is subtracted from
the time series data. For the multiplicative model, time series data is divided by the
estimated trend component.

The seasonal component is estimated from the de-trended part of the time series.
Since the seasonal component is based on the underlying periodicity of the events,
it can be weekly, monthly, yearly, or any customized seasonal length. One of the

4 Energy Demand Forecasting Using Deep Learning 89

simplest methods to estimate, the seasonal component is to average the de-trended
values for the specific season. For example, to get a seasonal effect for January, one
can average the de-trended values for each January in the series. The seasonal value
has to be adjusted depending of the decomposition type, zero for additive, and one
for a multiplicative model.

The final step of the decomposition is to estimate the random component. The
random component is simply estimated when the trend and season are subtracted
from the data series. In case of the multiplicative decomposition, the random
component is estimated by dividing the multiplication of trend and seasonal
components by the time series data.

The following expressions for the random component can be stated as:

R (t) = y (t) − [S (t) − T (t)] − for additive decomposition, (4.24)

R (t) = y (t)

S (t) × T (t)
− for multiplicative decomposition, (4.25)

Time series decomposition with its components is very often graphed, since it
provides a clear picture for the data behavior.

4.3.2 Energy Demand Analysis by Time Series Decomposition

Reliable electricity prediction models lead to a sustainable power supply and
provide clear details about the health of a power system in a smart city setup. In
this section, we demonstrate how a decomposed time series of energy consumption
data can be used to develop accurate electricity demand prediction models. As
an example, the daily series of electricity consumption in the northern part of
Nicosia during the 2011–2016 period has been considered. Nicosia, the capital city
of Cyprus, has a typical Mediterranean climate with an annual average electricity
consumption about 4000 MWh in its northern part and about 6000 MWh in the
southern part. The overall image of the electricity consumption time series is
shown in Fig. 4.12. Based upon observations, the rapidly increasing trend has
been observed since 2013. The figure also represents seasonal behavior, since the
sinusoidal shape of the data can be visually recognized. The statistical properties of
the electricity consumption series are shown in Table 4.2.

Quantile values indicate that the data is skewed to the left since the median has a
lower value than the mean.

The decomposition of the dataset was performed by using the STL R package
[5]. In order to get the best possible decomposition with maximum amplitude values
of the seasonal component, the decomposition was performed for wide range of
argument values. The best possible decomposition was estimated for the argument
value of f = 365, which indicates yearly periodic behaviors of the dataset.
Figure 4.13 shows the decomposition of the energy demand time series.

90 B. Hrnjica and A. Danandeh Mehr

Fig. 4.12 Energy demand time series at northern part of Nicosia

Table 4.2 Summary of electricity consumption 2011–2016

Min 1st quarter Median Mean 3rd quarter Max

2433 3311 3664 3879 4284 7032

Figure 4.13 also indicates that the random component has significant influence
on the energy demand dataset. From Table 4.3, one can see that the basic statistical
indicators show that the minimum value is less than −900 MWh, while the
maximum value is greater than 1700 MWh. This implies that the forecasting model
may produce 50% of the relative error.

The seasonal component can be described as a periodic function with two
minimum and one maximum points. The first minimum point is reached in 122
days, the second week in May, while the second minimum point is reached in the
first week of November. The maximum energy demand is reached in the first week
of August. The maximum point of seasonal change is expected in the beginning of
August because of high electricity demand due to high temperatures and increased
tourisms. The trend component of the energy demand dataset shows growth in the
last 4 years. This indicates that energy demand increases every year. The reason
for the increasing trend can be found in the constant growth of infrastructure and
population on the island.

From the previous decomposition time series, over the last years, one can
conclude that energy demand has constant growth. Over a period of a year, the

4 Energy Demand Forecasting Using Deep Learning 91

Fig. 4.13 Energy demand time series components

Table 4.3 Summary of random component of energy demand time series in MWh

Min 1st quarter Median Mean 3rd quarter Max

−928.684 −201.329 −21.750 2.466 152.537 1776.062

92 B. Hrnjica and A. Danandeh Mehr

energy demand reaches two minimum levels: one in the spring and one in the fall.
The maximum energy demand is reached during the first days of August, due to
maximum temperatures. Seasonal and random components have similar ranges that
indicate the energy demand has strong stochastic behavior.

In order to get deeper into seasonal changes, one should see how demand
changes weekly, monthly, and quarterly. In order to display different seasons, the
Prophet R package is used [31]. Figure 4.14 shows the trend and four different
seasonal components: weekly, monthly, quarterly, and yearly. The yearly component
in Fig. 4.14 clearly shows two minimum and one maximum point, which were
previously described. Weekly seasonal changes indicate that the energy demand is
higher on work days rather than on the weekend. The monthly seasonal changes
do not clearly show increasing or decreasing demand, but it roughly indicates
that energy demand is on the highest level in the middle of the month. Similarly,
quarterly seasonal changes are increased at the start and the end of the quarter, while
the first month of the quarter shows gradual decreased demand.

4.3.3 Energy Demand Forecasting Using Decomposed Series

In the previous section, the energy demand time series was analyzed by decompos-
ing it into three main components: trend, seasonal, and random. Moreover, different
types of seasonality were considered in order to get a deeper knowledge of the
energy demand data. Based on the previous analysis in this section, forecasting
will be performed in order to see how energy demand is propagated in the future.
The forecasting procedure was performed using the additive model where nonlinear
trends are fit with yearly, weekly, and monthly seasonality. Since the seasonal
components have significant impact on the time series data, the prophet forecasting
package is used. The package combines many different forecasting methods (e.g.,
ARIMA, exponential smoothing, etc.) in order to get the best possible model. The
forecasting is based on using a flexible regression model or curve-fitting model
instead of a traditional time series model that leads to better and more accurate
forecasting. The time series decomposition, TSD, model is built on the energy
demand dataset from January 2011 to September 2015. From October 2015 to
December 2016 the dataset is defined as the validation and testing dataset.

Figure 4.15 shows the TSD model of the energy demand time series data. The
black dots are actual values of the daily energy demand, whereas the blue (dark
gray) line shows predicted values. Besides prediction values, the image also shows
the confidence interval of the prediction.

4 Energy Demand Forecasting Using Deep Learning 93

Fig. 4.14 Different seasonal component types of energy demand time series data

94 B. Hrnjica and A. Danandeh Mehr

Fig. 4.15 TDS model of energy demand for period 2011–2016

4.4 LSTM Deep Learning Model for Energy Demand
Prediction

Using a deep learning technique for modeling time series events seems natural due
to the complex nature of such events. In this section, a deep learning model has been
developed in order to predict energy demand. Since the energy demand represents
a typical time series non-stationary dataset, the LSTM RNN was used. In order to
transform the time series into a data frame, 15 days of time lags were used. Once
the data frame was created, the three datasets were created to configure the ML
workflow. In order to transform the data, configure the neural network, train and
evaluate the model, the ANNdotNET [14]—deep learning tool on .NET platform
was used. The ANNdotNET is a deep learning tool that implements the ML Engine
that is based on the Microsoft Cognitive Toolkit, CNTK [34]. The ML Engine is
responsible for training and evaluating deep learning models. Besides the GUI tool
that is used for handling data transformation and model training, the ANNdotNET
provides a set of APIs which could be integrated into a bigger smart cities cloud
solution, SCCL.

The previous section is correlated for data analysis, where the time series data
were decomposed and analyzed. The time series is represented with only one
variable (energy demand) which is the example of a univariate time series. In order
to prepare it for deep learning, it must be transformed into a data frame-based set,

4 Energy Demand Forecasting Using Deep Learning 95

Fig. 4.16 Time series transformation into a 15 features data frame

with features (input) and label (output). The features are generated by the previous
values, so-called time lag values, while the label is the time series value at the current
time step. Figure 4.16 shows how a univariate time series can be transformed into
a data frame with 15 features and one label. In this way, the time series data is
transformed so that historical changes have an influence on the current value. For
the deep learning that is studied in this chapter, 15 past values are used for the feature
generation.

Once the preparation process has been completed, the next step in a deep learning
model development is the configuration of the neural network. In order to create
a suitable neural network, several different network configurations are prepared.
Recently, a special version of the RNN, the LSTM has been providing great results
in many engineering fields. However, modeling complex time series events using
LSTM is still a challenging task. In order to provide a more accurate network, the
LSTM network is combined with additional neural network types.

The time series dataset used for the training network model contains features
generated from the same variable. In such conditions, the features have a very
strong inter-correlation, often causing overfitting and less reliable results. To
avoid overfitting, the features need to be transformed be less inter-correlated, and

96 B. Hrnjica and A. Danandeh Mehr

more independent from each other. There are several techniques to overcome this
phenomenon, but one of the most popular is to use autoencoders [33].

4.4.1 Autoencoder Deep Neural Network

Autoencoders are neural networks that can achieve unsupervised learning. Simply
said, it uses backpropagation for learning, by setting the target value the same as
the input. In other words, it tries to learn features from features, or approximate
an identity function. In the neural network context, autoencoders are a set of fully
connected layers, that the input and output dimensions of the autoencoder network
are the same. Hidden layers always have less neurons than the input/output layer.
Figure 4.17 shows an autoencoder neural network used for the energy demand
network configuration. As can be seen, the autoencoder is built with fully connected
layers, where the first layer starts with the same number of neurons as the input
dimension. Then, the neurons in the second layer are reduced by 50%, and the
middle-hidden layer is defined with only four neurons. This is called a bottle neck.
After the bottle neck, the dimension of the hidden layers is increased, first to 8, and
then to 15.

h₁

₁h₁h

h₁

h₂
₂h₂h

h₂

h₂

h₂

h₂

h₃
₃h₃h

h₃
h₃

h₄

₄h₄h

h₄

tupnI
snorue

N 51

15 8 4 8 15

O
utput

15 N
eurons

Fig. 4.17 15-8-4-8-15 autoencoder neural network architecture

4 Energy Demand Forecasting Using Deep Learning 97

4.4.2 Training Process of LSTM Deep Learning Model

In order to configure and define the DL model for energy demand, the ANNdotNET
tool is used. Once the data preparation has been performed, the network config-
uration is set up by adding the LSTM layer with a 100 LSTM cell dimension.
The LSTM cell is placed after the autoencoder network layer. As a next layer,
a DroupOut layer with 30% of dropped values was added. The last layer in the
network is the output layer with one neuron. Figure 4.18 shows a schematic deep
learning model for energy demand.

The defined model is trained and validated on a 15 features dataset, created from
January 2011 to November 2016. The first 80% of the dataset belongs to the training
set and the remaining 20% to the validation set. The December 2016 values are
used as a test set for comparison analysis between a deep learning model and the
TDS model described in the previous section. The training network configuration
has been performed using the Adam learner, with the squared error, SE as the loss
function, and the root mean square error, RMSE, as the evaluation function. The
final model is trained after 5000 epochs.

Fig. 4.18 LSTM deep
learning model for energy
demand

98 B. Hrnjica and A. Danandeh Mehr

4.4.3 Evaluation Process of the LSTM Deep Learning Model

In order to provide the model evaluation, several performance parameters were
calculated against a training and validation set and presented in Table 4.4. A
description of each of the performance parameters is given in the literature [15].

From Table 4.4, one can conclude that the model has a high performance for both
datasets. The RMSE and R values are roughly equal for both the training and the
validation sets. Moreover, the rest of the performance parameters except SE show
the same behavior. This is an indication that the model is well trained with a high
percentage of accuracy. Figure 4.19 graphically shows the model prediction for the
validation set with respect to actual values. The chart series are drawn in different
colors (shades) that can be easily seen how prediction values are close to actual
values.

Table 4.4 Performance values for the LSTM deep learning model for the training and validation
datasets

SEa RMSEb NSEc PBd Re R2f

Train. set 1.20459 0.02648 0.94370 0.035758 0.97363 0.94795

Valid. set 0.27896 0.02550 0.93856 0.03350 0.97096 0.94277
aSquared error
bRoot mean squared error
cNash–Sutcliffe efficiency
dPercentage bias
ePearson’s coefficient
fDetermination coefficient

Fig. 4.19 Predicted values calculated by the deep learning model for the validation set

4 Energy Demand Forecasting Using Deep Learning 99

The conclusion that can be established from the model evaluation is that the deep
learning model can accurately predict the time period defined by the validation set.

4.4.4 Testing Process of the LSTM Deep Learning Model

Deep learning provides models which can predict future values. Data used for
training the deep learning model were not decomposed. In contrast to the TDS
model prediction, the data were decomposed, and the trend and random components
were included in the modeling. Once the model is calculated, the seasonality
component was added, and the prediction (see Fig. 4.15) was calculated. The time
series decomposition gives answers for the question as to how data behave in
different time periods (seasons), what is the trend of the data in those time periods
(seasons)? Deep learning is a black box which trains the model to predict the
future values with no additional answers. For this reason, time series decomposition
is important in order to prepare and transform the dataset prior to starting deep
learning, and also as a comparison analysis between the model predictions.

In order to show how much the deep learning model is accurate, a comparison
analysis is performed between the LSTM deep learning and TSD models, using the
same dataset. The testing set is represented by the energy demand from December
2016. Table 4.5 summarizes the comparison results.

From Table 4.5 it can be seen that the LSTM deep learning model is significantly
better than the TSD model because it is closer to the observed series. However, the
comparison chart shown in Fig. 4.20 also shows that the TSD model follows the
weekly peaks, but those values are lower than actual values. It can also be noticed
that as the prediction period gets longer, the TSD model predicts the values with
higher error, while the deep learning model predicts values with a much lower error.
The LSTM deep learning model has better RMSE values in all prediction periods:
5 days, 15 days, and monthly. The TSD model has a higher Pearson coefficient,
for 5 and 15 days of the prediction, while for the 1 month prediction, the Pearson
coefficient is higher for the LSTM deep learning model. The reason why the Pearson
coefficient is better for 5 and 15 days for the TDS model may be ignored due to the
small dataset, and the RMSE parameter in such a case is more relevant.

Table 4.5 Performance analysis between LSMT and TSD models

1–5 December 2016 1–15 December 2016 December 2016

LSTM TSD LSTM TSD LSTM TSD

RMSE 198 353 320 386 281 720

R 0.489 0.923 0.659 0.808 0.829 0.760

100 B. Hrnjica and A. Danandeh Mehr

Fig. 4.20 Energy demand prediction for December 2016

Energy demand predictions for December 2016, using the LSTM deep learning
model, and the TDS model, with respect to actual values are illustrated in Fig. 4.20.
It can be clearly seen that the dashed curve which represents the LSTM deep
learning model is much closer to red line, than the TDS model marked with the
blue color.

In general, one can say that deep learning model provides a better prediction than
the TSD model in all aspects of the analysis.

4.4.5 Deep Learning Model as a Cloud Solution for Smart
Cities

In order to prepare, train, and evaluate the deep learning model, the ANNdotNET
deep learning tool was developed and used in this study. By using the ANNdotNET,
it is possible to incorporate ML tasks into a cloud solution, so that the complete ML
process can be automatized and defined into one workflow using cloud services.
Once the ML task is incorporated as a cloud solution, it can be part of the
bigger smart cities project. In this section details of the possible cloud solution are
presented.

4 Energy Demand Forecasting Using Deep Learning 101

Fig. 4.21 Training module of ANNdotNET deep learning tool

It is very common that an ML solution is split into three phases:

• Data preparation
• Training ML model
• Model Deployment

The first phase consists of a set of data related tasks responsible for the transfor-
mation of raw data into a machine ready (mlready) dataset. This phase may include
data transformation, outliers identification, features selection, features engineering,
cross validation analysis, etc. Once the data is transformed into an mlready dataset,
the next phase starts by defining the input and output layers of the deep neural
network that is based on the mlready dataset. The input dimension defines the
input dimension for the next layer in the network. The network configuration is
initialized by providing the mlconfig file [14] that holds information about the
network configuration, learning and training parameters.

Once the model configuration is loaded using the mlconfig file, the training
process can be started by defining the number of epochs, or by defining the early
stopping criteria. The training process can be monitored by reading the training
progress information. The information helps the user to decide the training process
converging at the expected speed, or when to stop the training process in order to
prevent model overfitting. The training module that shows training history is shown
in Fig. 4.21. The model deployment is the last phase of the ML cloud solution, and
defines several options that can be used for different scenarios. The most common
option is to generate a simple web service that contains the implementation of

102 B. Hrnjica and A. Danandeh Mehr

Blob

raw data
mlready
data sets

train,
validation set

meta data

Blob TriggerTrigger

Data

Transformation

Deep

Learning

Blob

DB DBDB

mlconfig
file

mlconfig
file

description
file

model file deployment

Fig. 4.22 Architecture of an ML cloud solution

the model evaluation. The web service returns the model output in an appropriate
format. The model can also be deployed in Excel, to allow the model to behave as
an Excel formula. Excel deployment is achieved by implementing additional Excel
add-in. The deployment ML model in Excel is usually suitable when dealing with
the input data which is relatively easy to represent in Excel.

The complete cloud ML solution is depicted in Fig. 4.22. To implement such
a cloud solution, Microsoft Azure Cloud [21] platform can be used. By using
the ANNdotNET open source computer program, it is possible to transform data
and prepare it for training. Moreover, ANNdotNET provides components for
training, evaluation, testing, and deploying deep learning models. Its components
can be used in similar cloud solutions depicted in Fig. 4.22, particularly for “data
transformation” and “deep learning” cloud solution components.

References

1. Al-Turjman, F., & Alturjman, S. (2018). Context-sensitive access in industrial internet of things
(IIoT) healthcare applications. IEEE Transactions on Industrial Informatics, 14(6), 2736–
2744. https://doi.org/10.1109/TII.2018.2808190

2. Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient
descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157–166. https://doi.org/10.
1109/72.279181

3. Bonissone, P. P. (2015). Springer handbook of computational intelligence. https://doi.org/10.
1007/978-3-662-43505-2

4. Cao, Q., Ewing, B.T., & Thompson, M.A. (2012). Forecasting wind speed with recurrent
neural networks. European Journal of Operational Research, 221(1), 148–154. https://doi.org/
10.1016/j.ejor.2012.02.042

5. Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. (1990). STL: A seasonal-
trend decomposition procedure based on loess. Journal of Official Statistics. https://doi.org/
citeulike-article-id:1435502

https://doi.org/10.1109/TII.2018.2808190
https://doi.org/10.1109/72.279181
https://doi.org/10.1109/72.279181
https://doi.org/10.1007/978-3-662-43505-2
https://doi.org/10.1007/978-3-662-43505-2
https://doi.org/10.1016/j.ejor.2012.02.042
https://doi.org/10.1016/j.ejor.2012.02.042
https://doi.org/citeulike-article-id:1435502
https://doi.org/citeulike-article-id:1435502

4 Energy Demand Forecasting Using Deep Learning 103

6. Danandeh Mehr, A. (2018). An improved gene expression programming model for streamflow
forecasting in intermittent streams. Journal of Hydrology, 563, 669–678.

7. Dokumentov, A., & Hyndman, R. J. (2015). STR: A seasonal-trend decomposition procedure
based on regression, Department of Econometrics and Business Statistics, Monash University.

8. Gers, F. A., Schraudolph, N. N., & Schmidhuber, J. (2002). Learning precise timing with LSTM
recurrent networks. Journal of Machine Learning Research, 3(1), 115–143. https://doi.org/10.
1162/153244303768966139

9. Graves, A., Mohamed, A., & Hinton, G. (2013). Speech recognition with deep recurrent neural
networks. In IEEE International Conference on Acoustics, Speech and Signal Processing (Vol.
3, pp. 6645–6649). https://doi.org/10.1109/ICASSP.2013.6638947

10. Hermans, M., & Schrauwen, B. (2013). Training and analyzing deep recurrent neural networks.
NIPS 2013.

11. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8),
1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

12. Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences, 79(8), 2554–2558.
https://doi.org/10.1073/pnas.79.8.2554

13. Hoptroff, R. G. (1993). The principles and practice of time series forecasting and business
modelling using neural nets. Neural Computing Applications, 1(1), 59–66. https://doi.org/10.
1007/BF01411375

14. Hrnjica, B. (2018). ANNdotNET- deep learning tool on .Net platform https://doi.org/10.5281/
ZENODO.1756095

15. Hrnjica, B., & Danandeh Mehr, A. (2018). Optimized genetic programming applications. IGI
Global. https://doi.org/10.4018/978-1-5225-6005-0

16. Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and practice (2nd ed.).
Melbourne: OTexts. http://OTexts.com/fpp2. Accessed 1 Feb 2019.

17. Kaastra, I., & Boyd, M. (1996). Designing a neural network for forecasting financial
and economic time series. Neurocomputing, 10(3), 215–236. https://doi.org/10.1016/0925-
2312(95)00039-9

18. Lee, T. L. (2008). Back-propagation neural network for the prediction of the short-term storm
surge in Taichung harbor, Taiwan. Engineering Applications of Artificial Intelligence, 21(1),
63–72. https://doi.org/10.1016/j.engappai.2007.03.002

19. Lu, Y., & Salem, F. M. (2017). Simplified gating in long short-term memory (LSTM) recurrent
neural networks. CoRR, abs/1701.0, 5. https://doi.org/10.1109/MWSCAS.2017.8053244

20. Mehrotra, K., Mohan, C. K., & Ranka, S. (1997). Elements of artificial neural networks, A
Bradford Book (The MIT Press, Cambridge)

21. Microsoft. (2015). Microsoft azure. https://doi.org/10.1007/978-1-4842-1043-7
22. Muhammad, K., Ahmad, J., Lv, Z., Bellavista, P., Yang, P., & Baik, S. W. (2018). Efficient

deep CNN-based fire detection and localization in video surveillance applications. IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 1–16. https://doi.org/10.1109/
TSMC.2018.2830099

23. Muhammad, K., Hussain, T., & Baik, S. W. (2018). Efficient CNN based summarization of
surveillance videos for resource-constrained devices. Pattern Recognition Letters. https://doi.
org/10.1016/J.PATREC.2018.08.003

24. Pineda, F. J. (1987). Generalization of back-propagation to recurrent neural networks. Physical
Review Letters, 59(19), 2229–2232. https://doi.org/10.1103/PhysRevLett.59.2229

25. Rodriguez, C. P., & Anders, G. J. (2004). Energy price forecasting in the Ontario competitive
power system market. IEEE Transactions on Power Systems, 19(1), 366–374. https://doi.org/
10.1109/TPWRS.2003.821470

26. Rosenblatt, F. (1960). Perceptron simulation experiments. Proceedings of the IRE, 48(3), 301–
309. https://doi.org/10.1109/JRPROC.1960.287598

27. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-
propagating errors. Nature, 323(6088), 533–536. https://doi.org/10.1038/323533a0

https://doi.org/10.1162/153244303768966139
https://doi.org/10.1162/153244303768966139
https://doi.org/10.1109/ICASSP.2013.6638947
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1007/BF01411375
https://doi.org/10.1007/BF01411375
https://doi.org/10.5281/ZENODO.1756095
https://doi.org/10.5281/ZENODO.1756095
https://doi.org/10.4018/978-1-5225-6005-0
http://OTexts.com/fpp2
https://doi.org/10.1016/0925-2312(95)00039-9
https://doi.org/10.1016/0925-2312(95)00039-9
https://doi.org/10.1016/j.engappai.2007.03.002
https://doi.org/10.1109/MWSCAS.2017.8053244
https://doi.org/10.1007/978-1-4842-1043-7
https://doi.org/10.1109/TSMC.2018.2830099
https://doi.org/10.1109/TSMC.2018.2830099
https://doi.org/10.1016/J.PATREC.2018.08.003
https://doi.org/10.1016/J.PATREC.2018.08.003
https://doi.org/10.1103/PhysRevLett.59.2229
https://doi.org/10.1109/TPWRS.2003.821470
https://doi.org/10.1109/TPWRS.2003.821470
https://doi.org/10.1109/JRPROC.1960.287598
https://doi.org/10.1038/323533a0

104 B. Hrnjica and A. Danandeh Mehr

28. Russell, S., & Norvig, P. (2015). Artificial intelligence a modern approach (3rd edn.). London:
Pearson Education.

29. Sak, H., Senior, A., & Beaufays, F. (2014). Long short-term memory recurrent neural network
architectures for large scale acoustic modeling. Interspeech 2014, (September), pp. 338–342.
https://doi.org/arXiv:1402.1128

30. Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61,
85–117. https://doi.org/10.1016/j.neunet.2014.09.003

31. Taylor, S. J., & Letham, B. (2018). Forecasting at Scale. American Statistician, 72, 37–45.
https://doi.org/10.1080/00031305.2017.1380080

32. Ullah, A., Muhammad, K., Del Ser, J., Baik, S. W., & Albuquerque, V. (2018). Activity
recognition using temporal optical flow convolutional features and multi-layer LSTM. IEEE
Transactions on Industrial Electronics. https://doi.org/10.1109/TIE.2018.2881943

33. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P.-A. (2010). Stacked denoising
autoencoders: Learning useful representations in a deep network with a local denoising
criterion. Journal of Machine Learning Research. https://doi.org/10.1111/1467-8535.00290

34. Yu, D., Eversole, A., Seltzer, M., Yao, K., Kuchaiev, O., Zhang, et al. (2014). An introduction
to computational networks and the computational network toolkit. Microsoft Research.

https://doi.org/arXiv:1402.1128
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1080/00031305.2017.1380080
https://doi.org/10.1109/TIE.2018.2881943
https://doi.org/10.1111/1467-8535.00290

	4 Energy Demand Forecasting Using Deep Learning
	4.1 Introduction to Machine Learning
	4.2 Artificial Neural Network
	4.2.1 Learning Process in ANN
	4.2.2 Deep ANN
	4.2.3 Recurrent Neural Network
	4.2.4 Deep LSTM RNN

	4.3 Modeling Time Series Events
	4.3.1 Time Series Decomposition Procedure
	4.3.2 Energy Demand Analysis by Time Series Decomposition
	4.3.3 Energy Demand Forecasting Using Decomposed Series

	4.4 LSTM Deep Learning Model for Energy Demand Prediction
	4.4.1 Autoencoder Deep Neural Network
	4.4.2 Training Process of LSTM Deep Learning Model
	4.4.3 Evaluation Process of the LSTM Deep Learning Model
	4.4.4 Testing Process of the LSTM Deep Learning Model
	4.4.5 Deep Learning Model as a Cloud Solution for Smart Cities

	References

