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Preface

Recently “network science” has been bridging various disciplines like mathematics,
physics, biology, chemistry, computer science, ecology, and the social sciences. This
is mainly due to its wide perspective in modeling the structure and dynamics of
complex systems, both natural and man-made, with different, large, or even multiple
scales. Some examples include genetic networks, food web, trade networks, the
World Wide Web (WWW), collaboration networks, power grids, and air traffic
networks.

The primary aim of the workshop series on Dynamics on and of Complex
Networks (DOOCN) is to systematically explore the statistical dynamics “on” and
“of” complex networks that prevail across a large number of scientific disciplines.
Dynamics on networks refers to dynamical processes which evolve on networks
and their evolution, which is impacted by their underlying topology. On the other
hand, dynamics of networks refers to the changes occurring in the topology due
to various interactions. The first DOOCN workshop (DOOCN-I) took place in
Dresden, Germany, 2007, as a satellite workshop of the European Conference
on Complex Systems (ECCS). After the success of DOOCN-I, new editions were
organized as satellites of ECCS/CCS in Jerusalem (2008), Warwick (2009), Lisbon
(2010), Vienna (2011), Barcelona (2013), Lucca (2014), Amsterdam (2016), and
Thessaloniki (2018) and also as satellites of the International School and Con-
ference on Network Science (NetSci) in Zaragoza (2015) and Indianapolis (2017).
Details of the workshop series are available at doocn.org.

Eminent speakers of the workshops in recent years included (alphabetically
ordered) Katharina Zweig (TU Kaiserslautern, Germany), Renaud Lambiotte (Uni-
versity of Oxford, UK), Yamir Moreno (University of Zaragoza, Spain), Sayan
Pathak (Microsoft Research Redmond, USA), Ginestra Bianconi (Queen Mary
University of London, UK), Constantine Dovrolis (Georgia Institute of Technology,
USA), Martin Rosvall (Umea University, Sweden), Frank Schweitzer (ETH Zurich,
Switzerland), Krishna Gummadi (Max Planck Institute for Software Systems,
Germany), Ciro Cattuto (ISI Foundation, Italy), Markus Strohmaier (RWTH Aachen
University, Germany), and Matthieu Latapy (UPMC, Paris).
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vi Preface

Notably, the workshop organizing committee has published two book volumes
from the selected talks of the series (2009: https://goo.gl/tmqPYm) and (2013:
https://goo.gl/GQkfEp). The first volume aimed to show how complex network
theory is being successfully used by researchers to tackle numerous difficult
problems in various domains and included three parts addressing applications of
complex networks in biological, social, and information sciences. The second
volume aimed to put forward burgeoning multidisciplinary research contributions
that combine methods from computer science, statistical physics, econometrics,
and social network theory toward modeling time-varying social, biological, and
information systems. This volume included three parts: (1) online social media,
the Internet, and the WWW, (2) community analysis, and (3) diffusion, spreading,
mobility, and transport.

The third book volume is the present one, edited by the DOOCN 2017 orga-
nizers, and aims to focus on this specific topic: “Machine Learning and Statistical
Physics”. Recently, machine learning (ML) techniques have been used to model
dynamics of massive complex networks generated from big data and various
functionalities resulting from the networks. It has become clear from the past
DOOCN workshop editions that modeling large-scale dynamic networks, such
as mobile adhoc networks and societal opinion networks, has gained enormous
relevance in the landscape today. The advent of big data technologies, which
allow effective acquisition and processing of massive amounts of unstructured data,
further promises to improve the effectiveness and cross-fertilization of ML and
network science. This motivated us to focus on this area of significant recent interest
in our last workshop editions. A key feature of the DOOCN workshops is that each
year, an exciting theme is chosen; some recent themes include “Big Data” (2014),
“Computational Aspects of Big Data” (2015), “Mining and learning for complex
networks” (2016), “Machine learning and statistical physics” (2017), and “Machine
learning for complex networks” (2018). This volume presents a mix of very relevant
reviews of important works in the field and gives the reader an up-to-date picture of
the state of the art. This edition also contains independent research reports.

This book volume consists of three major parts. The contributions in the first part
focus on network structure, with three chapters. In the first chapter “An Empirical
Study of the Effect of Noise Models on Centrality Metrics”, Sarkar et al. conducted
an empirical study of how different noise models affect the network structure,
precisely the ranking of centrality metrics. The analysis presented in this chapter
reveals that the stability of the ranking varies according to the structure of the
network, the noise model used, and the centrality metric to be computed. In the
second chapter “Emergence and Evolution of Hierarchical Structure in Complex
Systems”, Siyari et al. investigated the following key questions in the context of
modeling the emergence and evolution of hierarchical structure in complex systems:
(a) How do key properties of emergent hierarchies, like depth of the network,
centrality of each module, and complexity of intermediate modules, depend on the
evolutionary process that generates the new targets of the system? (b) Under what
conditions do the emergent hierarchies exhibit the so-called hourglass effect? (c) Do
intermediate modules persist during the evolution of hierarchies? In the third chapter
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“Evaluation of Cascading Infrastructure Failures and Optimal Recovery from a
Network Science Perspective”, Warner et al. reviewed the network science literature
in order to create a hypothesis for the recovery of infrastructure systems. They
represented the cascade of infrastructure systems through networks and simulated
perturbations within singular and discussed how these impact multiple layers of an
interconnected network.

Part II of the book volume focuses on network dynamics and it spans over
four chapters. In the fourth chapter “Automatic Discovery of Families of Network
Generative Processes”, Menezes and Roth first reviewed the principles, efforts, and
emerging literature in this direction, which is aligned with the idea of creating artifi-
cial scientists. Next, the authors developed an approach to demonstrate the existence
of families of networks that may be described by similar generative processes. In
the fifth chapter “Modeling User Dynamics in Collaboration Websites”, Kasper
et al. presented several approaches to deepen the understanding of user dynamics
in collaborative websites. Inevitably, these approaches are quite heterogeneous and
range from simple time-series analysis toward the application of dynamical systems
and generative probabilistic methods. In the sixth chapter “Interaction Prediction
Problems in Link Streams”, Arnoux et al. addressed the problem of predicting future
interactions, which is traditionally addressed by merging interactions into a graph
or a series of graphs, called snapshots. However, in this chapter, authors formalized
interactions within the link stream framework, which makes it possible to fully
capture both temporal and structural properties of the data. In the seventh chapter
“The Network Source Location Problem in the Context of Foodborne Disease
Outbreaks”, Horn and Friedrich introduced the source identification problem in the
context of foodborne disease outbreaks based on basic practical knowledge of food
supply networks and the foodborne disease contamination process.

The third part of the book volume focuses on theoretical models and applications
with three chapters. In the eighth chapter “Network Representation Learning using
Local Sharing and Distributed Graph Factorization (LSDGF)”, Pandey proposed
a distributed algorithm for network representation learning (NRL), which learns
matrix factorization of a given network in which a node utilizes only the information
available at its neighboring nodes and connected nodes for exchanging feature
vectors dynamically. The performance of the proposed algorithm is evaluated by
the learning of first-order proximity, spectral distance, and link prediction. In the
ninth chapter “The Anatomy of Reddit: An Overview of Academic Research”,
Medvedev et al. explored one of the most popular social media platforms, Reddit.
They developed a suite of methodologies to extract information from the structure
and dynamics of the Reddit system. In the tenth chapter, “Learning Information
Dynamics in Online Social Media: A Temporal Point Process Perspective”, Samanta
et al. proposed two models: (1) a probabilistic linear framework that unifies
influence of different factors contributing to the popularity of an item and inter-item
competitions and (2) a more generic model, with a deep probabilistic machinery that
unifies the nonlinear generative dynamics of a collection of diffusion processes, and
inter-process competition.
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This cross-disciplinary collection of articles highlights the bridging of a variety
of scientific branches. The chapters are designed to serve as the state of the art
not only for students and new entrants but also for experts who intend to pursue
research in this field. All the chapters have been carefully peer-reviewed in terms
of their scientific content as well as readability and self-consistency. We would like
to thank the authors for their contributions and their careful consideration of the
editorial comments. Moreover, we acknowledge all the reviewers as listed below for
their constructive criticisms, comments, and suggestions, which have significantly
improved the quality of the chapters. Also, we acknowledge Satadal Sengupta for
maintaining the electronic platform for the manuscript submission, management
and monitoring. Finally, we are extremely grateful to the entire support team from
Springer for their help that made the timely publication of this volume possible.

Berlin, Germany Fakhteh Ghanbarnejad
Saarbrücken, Germany Rishiraj Saha Roy
Köln, Germany Fariba Karimi
Louvain-la-Neuve, Belgium Jean-Charles Delvenne
Kharagpur, India Bivas Mitra

List of Reviewers (Alphabetically Ordered by Last Names)

Edmund Barter, Vitaly Belik, Parantapa Bhattacharya, Sanjukta Bhowmick, Tan-
moy Chakraborty, Jean-Charles Delvenne, Mauro Faccin, Saptarshi Ghosh, Martin
Gueuning, Jean-Loup Guillaume, Flavio Iannelli, Lucas Jeub, Suman Kalyan Maity,
Alexey Medvedev, Andrew Mellor, Subrata Nandi, Camille Roth, Koustav Rudra,
Michael Schaub, Sandipan Sikdar, and Simon Walk.



Contents

Part I Network Structure

An Empirical Study of the Effect of Noise Models
on Centrality Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Soumya Sarkar, Abhishek Karn, Animesh Mukherjee,
and Sanjukta Bhowmick

Emergence and Evolution of Hierarchical Structure
in Complex Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Payam Siyari, Bistra Dilkina, and Constantine Dovrolis

Evaluation of Cascading Infrastructure Failures and Optimal
Recovery from a Network Science Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Mary Warner, Bharat Sharma, Udit Bhatia, and Auroop Ganguly

Part II Network Dynamics

Automatic Discovery of Families of Network Generative Processes . . . . . . . . 83
Telmo Menezes and Camille Roth

Modeling User Dynamics in Collaboration Websites . . . . . . . . . . . . . . . . . . . . . . . . 113
Patrick Kasper, Philipp Koncar, Simon Walk, Tiago Santos,
Matthias Wölbitsch, Markus Strohmaier, and Denis Helic

Interaction Prediction Problems in Link Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Thibaud Arnoux, Lionel Tabourier, and Matthieu Latapy

The Network Source Location Problem in the Context of Foodborne
Disease Outbreaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Abigail L. Horn and Hanno Friedrich

ix



x Contents

Part III Theoretical Models and Applications

Network Representation Learning Using Local Sharing
and Distributed Matrix Factorization (LSDMF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Pradumn Kumar Pandey

The Anatomy of Reddit: An Overview of Academic Research . . . . . . . . . . . . . 183
Alexey N. Medvedev, Renaud Lambiotte, and Jean-Charles Delvenne

Learning Information Dynamics in Online Social Media:
A Temporal Point Process Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Bidisha Samanta, Avirup Saha, Niloy Ganguly, Sourangshu Bhattacharya,
and Abir De

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237



Part I
Network Structure



An Empirical Study of the Effect of Noise
Models on Centrality Metrics

Soumya Sarkar, Abhishek Karn, Animesh Mukherjee,
and Sanjukta Bhowmick

Abstract An important yet little studied problem in network analysis is the effect
of the presence of errors in creating the networks. Errors can occur both due to the
limitations of data collection techniques and the implicit bias during modeling the
network. In both cases, they lead to changes in the network in the form of additional
or missing edges, collectively termed as noise. Given that network analysis is used
in many critical applications from criminal identification to targeted drug discovery,
it is important to evaluate by how much the noise affects the analysis results. In
this paper, we present an empirical study of how different types of noise affect real-
world networks. Specifically, we apply four different noise models to a suite of nine
networks, with different levels of perturbations to test how the ranking of the top-k
centrality vertices changes. Our results show that deletion of edges has less effect
on centrality than the addition of edges. Nevertheless, the stability of the ranking
depends on all three parameters: the structure of the network, the type of noise
model used, and the centrality metric to be computed. To the best of our knowledge,
this is one of the first extensive studies to conduct both longitudinal (across different
networks) and horizontal (across different noise models and centrality metrics)
experiments to understand the effect of noise in network analysis.

Keywords Noise models in networks · Centrality metrics · Accuracy of analysis
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1 Introduction

In recent years, network analysis has become an important mathematical tool
for studying the interactions of entities in complex systems. The entities are
represented as the vertices and their dyadic relations are represented as edges. The
structural properties of the network provide insights to the characteristics of the
underlying system. For example, high centrality vertices point to important proteins
in protein–protein interaction networks [5] and groups of tightly connected vertices,
or communities represent groups of friends in social networks [19].

An important yet little studied problem in network analysis is the effect of the
presence of errors in creating the networks. The errors primarily occur at two stages:
First, they occur when collecting real-world data. The measurements of any physical
system inherently include some degree of error, which is propagated to the network
model. Second, the errors occur during the creation of the network model. The inter-
relations (here edges) are often determined based on the subjective evaluation of
the modeler. For example, in a gene correlation network, two vertices (genes) are
connected by an edge only if the correlation between the two genes is higher than a
specified threshold. However, due to the absence of a standard value, this threshold
is decided by the person creating the model.

These errors in data collection and modeling are manifested as structural changes
in the network, in the form of additional or missing edges, collectively termed
as noise. An important question is by how much this noise affects the analysis
results. In particular, since network analysis is used in many critical applications
from criminal identification [12] to targeted drug discovery [3], a drastic change in
the accuracy can lead to serious consequences.

Overview In this paper we present an extensive empirical study of how different
types of noise affect real-world networks. Specifically, we apply four different noise
models. These are random deletion of edges (edge deletion), random addition of
edges (edge addition), swapping the end-points of a pair of edges (edge swap), and
overlaying the network with a random graph such that only the edges present in
either the original or the random network are kept (edge XOR). Each of these noise
models is applied to a suite of nine networks, with different levels of perturbations
to test how the ranking of the top-k centrality vertices changes.

We measure the change in the ranking using the Jaccard index (JI). We test
how the following centrality metrics, degree centrality, betweenness centrality, and
closeness centrality, are affected by these noise models. While there have been
several studies [4, 6, 18] conducted on individual noise models and how they affect
network properties, to the best of our knowledge, this is one of the first studies
to conduct both a longitudinal (across several different networks) and a horizontal
(across noise models and centrality metrics) evaluation of the effect of noise in
networks. Some of the results that we observe through these experiments are:
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• Variations in Noise Models: Edge swap produces the highest average JI, i.e., the
least amount of change in the vertex ranking. This is followed by, in order of
highest to lowest average JI, edge deletion, edge XOR, and finally edge addition.

• Variations in Network Structure: Networks from the technological domain,
particularly the autonomous network AS2 and the peer-to-peer network P2P,
show the most stability, i.e., high JI across all noise models. The network of
the power grid of the Western United States shows the least stability with lowest
JI across all noise models. The other networks show high stability for edge swap
and edges deletion and low stability for the other two models.

• Variations in Centrality Metrics: Of the three centrality metrics, degree centrality
was the most stable, and betweenness centrality was the least stable.

The remainder of this paper is organized as follows: In Sect. 2, we present our
experimental methodology along with the datasets and definitions of the centrality
measures. In Sect. 3, we describe the effect of the noise models and provide a
summary of our observations. In Sect. 4, we discuss related research in this domain.
We conclude in Sect. 5 with an overview of our future research plans.

2 Experimental Setup

In this section we provide a brief description of our experimental setup, including
description of the networks used, the definitions of the centrality metrics, and an
overview of how we conducted the experiments.

2.1 Test Suite of Networks

We consider the following nine networks that were collected from public repos-
itories [8, 13]. We group these networks into three categories: (1) technological
networks that are formed through interconnections of routers or peer-to-peer
networks, (2) social networks that are formed through collaborations, chats, or
linking between blogs, and (3) miscellaneous networks formed from other varied
applications, including biological networks, software networks, and power grids. A
summary of the networks, their descriptions, and sizes is given in Table 1.

2.2 Centrality Metrics

In our experiments we study the stability of the following centrality metrics. Given
a graph G(V,E), with |V | vertices and |E| edges, the metrics are computed as:
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Table 1 Description of the nine networks in the test suite

Network Description Node Edges

Technological networks

AS Network of routers obtained from University of Oregon Route
Views Project

6474 13,895

CA Network of routers obtained from Center for Internet Data
Analysis (CAIDA)

16,493 66,744

P2P Gnutella peer-to-peer file sharing network 26,518 65,369

Social networks

APH Collaboration network of authors of papers posted in arXiv’s
Astrophysics

16,046 121,251

AnyBeat Social network where users connect anonymously 12,645 67,053

Blog Network of front-page hyperlinks between blogs related to the
2004 US election

1224 19,025

Miscellaneous networks

PW Network of power grid of the Western United States 4941 6594

BIO Protein–protein interaction network 7393 25,569

SW Dependency network of classes in JUNG and javax 6120 50,535

From left to right, the columns are: abbreviation of the network name, short description of the
network, the number of vertices, the number of edges, and the global clustering co-efficient

Degree centrality, D(v), of a vertex v measures the number of its neighbors.
Closeness centrality of a vertex v measures its average distance from all other
vertices in the network. It is computed as CC(v) = |V |∑

s �=v∈V

dis(v,s)
, where dis(v, s) is

the length of a shortest path between v and s.
Betweenness centrality of a vertex v is defined as the fraction of the total

number of shortest paths that pass through the vertex. It is computed as BC(v) =∑

s �=v �=t∈V

σst (v)
σst

, where σst is the total number of shortest paths between s and t , and

σst (v) is the total number of shortest paths between s and t that pass through v.

2.3 Methodology

To test the stability of the networks and centrality metrics under different noise
models, we perform the following experiment. We first compute the centrality values
of each network, and rank the vertices from highest to lowest centrality values. There
can be potentially different ranking for each centrality metric. We test the effect
on rank, rather than the value of the centrality, because most applications, such as
information spreading or vaccination, require finding the high ranked vertices and
do not require their exact value. We apply the noise models to the networks over
different levels of perturbations, and compute the centrality, and subsequent ranking
on the perturbed network.
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We then use Jaccard index (JI) to measure how many of the top-k vertices from
the original ranking are retained. The JI of two sets A and B is given by A∩B

A∪B
. The

highest value is 1, when both sets A and B are the same and the lowest value is
0, when the sets A and B do not have any common elements. We test JI for the
top ranked 5, 10, 25, and 50 vertices. Since the noise models are stochastic, test is
repeated 5 times, and the average JI over the five tests is reported for each tuple of
noise model, network types, centrality metric, and perturbation level.

3 Empirical Results

We describe the stability results as per our experiments on the four noise models.
We test one model for only addition of edges, one for only deletion, and two models
that involve both addition and deletion of edges. Addition and deletion are the units
of change in a network, so we study them individually. Variations of the other two
models have been used in [2] and [6]. We present the detailed results for each model
separately in Sects. 3.1–3.4 and summarize our findings from all these experiments
in Table 2.

3.1 Edge Addition

In this noise model we add edges to the network. We select a pair of vertices from
the set V with probability p

|V | . If the edge is not already part of the network we add
it to the network. Figures 1, 2, and 3 show how the top-k centralities change as the
value of p is increased. The values of p ranged from 0.5, 1.5, 2.5, 3.5, and 4.5. As

Table 2 Average across centrality metrics for each noise model for each network

Network Edge deletion Edge addition Edge swap Edge XOR

Technological networks

AS2 0.8 0.59 0.9 1

CA 0.7 0 0.96 0

P2P 0.68 0.61 1 0.80

Social networks

AnyBeat 0.8 0 1 0

APH 0.6 0 1 0

Blog 0.97 0.09 0.93 0.03

Miscellaneous networks

BIO 0.78 0 0.88 0

PW 0.47 0.02 0.34 0.11

SW 0.95 0.13 0.9 0.21
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Fig. 1 Effect of edge addition on technological networks. X-axis: perturbations values; Y-axis:
Jaccard index. Left: degree; middle: betweenness; right: closeness. Top to bottom: AS, CAIDA,
and P2P

can be seen, apart from AS2 and P2P, all the other classes of networks exhibit very
low JI for every perturbation and every value of k. Thus edge addition even at small
levels of perturbation can significantly change the ranking.
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Fig. 2 Effect of edge addition on social networks. X-axis: perturbations values; Y-axis: Jaccard
index. Left: degree; middle: betweenness; right: closeness. Top to bottom: APH, AnyBeat, and
Blog

3.2 Edge Deletion

In this noise model we delete edges from the network. We select an existing edge
from the set E and remove it with a probability of p. In our experiments we set p to
range from 2, 4, 6, 8, and 10% of the edges. Figures 4, 5, and 6 show how the top-k
centralities change as the value of p is increased.

We observe that in contrast to the edge addition model, the JI values for degree
and closeness centralities are generally high for all networks. The behavior of the JI
values of betweenness centrality varies from being 1, i.e., ranking unaffected (Blog)
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Fig. 3 Effect of edge addition on miscellaneous networks. X-axis: perturbations values; Y-axis:
Jaccard index. Left: degree; middle: betweenness; right: closeness. Top to bottom: BIO, PW, and
SW

to gradually decreasing (AnyBeat) to being 0, i.e., ranking completely changed
(APH). We conclude that uniform deletion does not significantly affect the ranking
of degree and closeness centralities.
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Fig. 4 Effect of edge deletion on technological networks. X-axis: perturbations values; Y-axis:
Jaccard index. Left: degree; middle: betweenness; right: closeness. Top to bottom: AS, CAIDA,
and P2P

3.3 Edge Swap

We now consider noise models that include both addition and deletion of edges.
The first example we consider is swapping edges between two pairs of connected
vertices. Let us consider two edges, (a, b) and (c, d), where none of the vertices a

and b are connected to vertices c and d. In the swapping model, we disconnect the
edge between a and b, and between c and d. Then, to maintain the degree of the
vertices, we reconnect a with c and b with d. A version of this noise model was
used in [6] to measure robustness of communities.
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Fig. 5 Effect of edge deletion on social networks. X-axis: perturbations values; Y-axis: Jaccard
index. Left: degree; middle: betweenness; right: closeness. Top to bottom: APH, AnyBeat, and
Blog

Figures 7, 8, and 9 show how the top-k ranking changes as the value of p,
the percentage of edge selected, is increased. Values of p are 2, 4, 6, 8,and 1.
Due to the characteristics of the model, the ranking of degree will remain mostly
unchanged. We see that for most networks and centrality metrics, the JI values are
high indicating that swapping does not significantly perturb the centrality ranking.
The exceptions are the power network, and some cases of betweenness centrality.
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Fig. 6 Effect of edge deletion on miscellaneous networks. X-axis: perturbations values; Y-axis:
Jaccard index. Left: degree; middle: betweenness; right: closeness. Top to bottom: BIO, PW, and
SW

3.4 Edge XOR

In this model, we also consider both addition and deletion of edges. Here we create
a random graph R(n, p) with the same number of vertices, |V | = n as the original
graph G. We perform a perturbation in the form that if an edge (a, b) is present in
both R and G, the edge is deleted from the G. However, if the edge is present in R

but not in G, we add the edge to G. We term this as the XOR perturbation, because
of its similarity to the boolean XOR operation (output is true if exactly one, but
not both conditions are true). A version of this model was used in [1], for testing
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Fig. 7 Effect of edge swapping on technological networks. X-axis: perturbations values; Y-axis:
Jaccard index. Left: degree; middle: betweenness; right: closeness. Top to bottom: AS, CAIDA,
and P2P

robustness of the k-core. Because the networks are sparse, more edges will be added
than deleted in the perturbed network. The probability with which the edges in the
random network were connected is varied from 0.5, 1.5, 2.5, 3.5, and 4.5.

The results in Figs. 10, 11, and 12 show that for all networks, except for AS2
and P2P, the JI value is close to zero for all networks and centrality measures. This
indicates that the XOR model can easily disrupt the ranking of the high centrality
vertices, even for low perturbations.
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Fig. 8 Effect of edge swapping on social networks. X-axis: perturbations values; Y-axis: Jaccard
index. Left: degree; middle: betweenness; right: closeness. Top to bottom: APH, AnyBeat, and
Blog

3.5 Summary of the Results

In this set of experiments, we studied how different noise models affect the ranking
of high centrality vertices. Table 2 summarizes the average JI for each network over
all the centrality metrics, and for each noise model.

From the results it can be clearly seen that the edge deletion and edge swap affect
the ranking of the high centrality vertices far less than the edge addition and edge
XOR. Out of these two, the edge addition model is more disruptive. Note that almost
any new edges has the potential to change the route of the shortest paths, leading
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Fig. 9 Effect of edge swapping on miscellaneous networks. X-axis: perturbations values; Y-axis:
Jaccard index. Left: degree; middle: betweenness; right: closeness. Top to bottom: BIO, PW, and
SW

to significant changes in the betweenness and closeness centrality of the vertices.
However, deletion will only affect the shortest path routes if a key edge that is part
of the shortest path is deleted. We believe that this is the reason why edge addition
has more impact on the centralities of the vertices.

Due to this reason, we have used lower intensity of perturbations on models that
involve more edge addition (edge addition and edge XOR) than the models where
edge deletion is more prominent (edge deletion and edge swap). Note that even
with the higher values of perturbations, edge deletion and edge swap exhibit greater
stability.
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Fig. 10 Effect of XOR edge perturbation on technological networks. X-axis: perturbations values;
Y-axis: Jaccard index. Left: degree; middle: betweenness; right: closeness. Top to bottom: AS,
CAIDA, and P2P

We also observe that the effect of noise also depends on the network. For
example, technological networks such as AS2 and P2P exhibit high JI values and
are even less affected by the edge addition and edge XOR models. On the other
hand, the power network (PW) is disrupted to produce low JI values even by the
relatively safe edge deletion and edge swap models. We have observed in a separate
angle of research [15] that the stability of networks depends on their core periphery
structure. Specifically, a tightly connected inner core can make the network more
stable under perturbations.
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Fig. 11 Effect of XOR edge perturbation on social networks. X-axis: perturbations values; Y-axis:
Jaccard index. Left: degree; middle: betweenness; right: closeness. Top to bottom: APH, AnyBeat,
and P2P

Finally from the figures we see that betweenness centrality is the least stable
of the three centrality metrics. We hypothesize that this is because the value of
betweenness centrality not only depends on the paths passing through a vertex, but
also on other shortest paths. Thus any change in network, even on paths that do not
involve a vertex, can affect the centrality of the vertex.
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Fig. 12 Effect of XOR edge perturbation on miscellaneous networks. X-axis: perturbations
values; Y-axis: Jaccard index. Left: degree; middle: betweenness; right: closeness. Top to bottom:
BIO, PW, and SW

4 Related Research

The issue of noise in networks is gradually gaining prominence. In the recent
years there have been several studies [4, 9, 16, 18] that explored the effect of
noise on different centrality metrics. Borgatti et al. [4] used noise models of node
addition/deletion and edge addition/deletion to test the change in centralities on
Erdos–Renyi random networks. Wang et al. extended the research to also include
false aggregation/disaggregation. False aggregation happens when two or more
nodes are erroneously classified as one node. False disaggregation happens when
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one node is erroneously classified as separate nodes. They analyzed the effect of
different centrality metrics on two real-world networks and a random network.

Segarra et al. [16] modeled noise as random fluctuations on edge weights on the
graph, and theoretically measured for robustness of the centrality measures based on
the noise. They showed that for the given definition of stability, the measures degree,
closeness, and eigenvector are stable, while betweenness is not. This observation
matches with our experimental results as well.

Other work on the effect of noise includes looking at incomplete networks with
missing edges. These include solving the entity resolution problem in incomplete
networks[11, 17]. Researchers [7, 10] have also looked at methods to find missing
links. In [14], the authors study how missing links affect the centrality metrics.

5 Conclusion and Future Work

In this paper, we conducted an empirical study of how different noise models
affect the ranking of the centrality metrics in network analysis. To the best of our
knowledge this is one of the more extensive studies that look into networks from
several applications, and compare against different noise models. Our results show
that the stability of the ranking varies depending on the structure of the network, the
type of noise model used, and the centrality metric to be computed.

Our experiments open up new questions on understanding each of these factors,
which we aim to study in the future. For example, we should investigate what is
the property of the network that leads to it being more resilient under perturbation.
We can also explore the validity of noise models as they occur in real world, and
experiment on other centrality metrics, such as PageRank. In particular, combining
our observations with method of network inference for creating networks from raw
data can lead into more robust and accurate network models. Finally, we also note
that often centrality metrics need not be exactly computed, or even ranked. We aim
to explore developing heuristics of centrality metrics that are more robust under
noise.
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Emergence and Evolution of Hierarchical
Structure in Complex Systems

Payam Siyari, Bistra Dilkina, and Constantine Dovrolis

Abstract It is well known that many complex systems, both in technology and
nature, exhibit hierarchical modularity: smaller modules, each of them providing
a certain function, are used within larger modules that perform more complex
functions. What is not well understood however is how this hierarchical structure
(which is fundamentally a network property) emerges, and how it evolves over time.

We propose a modeling framework, referred to as Evo-Lexis, that provides
insight to some fundamental questions about evolving hierarchical systems. Evo-
Lexis models the most elementary modules of the system as symbols (“sources”)
and the modules at the highest level of the hierarchy as sequences of those symbols
(“targets”). Evo-Lexis computes the optimized adjustment of a given hierarchy
when the set of targets changes over time by additions and removals (a process
referred to as “incremental design”).

In this paper we use computation modeling to show that:

• Low-cost and deep hierarchies emerge when the population of target sequences
evolves through tinkering and mutation.

• Strong selection on the cost of new candidate targets results in reuse of more
complex (longer) nodes in an optimized hierarchy.

• The bias towards reuse of complex nodes results in an “hourglass architecture”
(i.e., few intermediate nodes that cover almost all source–target paths).

• With such bias, the core nodes are conserved for relatively long time periods
although still being vulnerable to major transitions and punctuated equilibria.

• Finally, we analyze the differences in terms of cost and structure between incre-
mentally designed hierarchies and the corresponding “clean-slate” hierarchies
which result when the system is designed from scratch after a change.
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1 Introduction

It is well known that many complex systems, both in technology and nature, exhibit
modularity: independent modules, each of them providing a certain function, are
combined together to perform more complex functions [7]. Additionally, modular
systems are also organized in a hierarchical way: smaller modules are used within
larger modules recursively [28]. Examples of such systems exist in a wide range
of environments: in natural systems, it is believed that hierarchical modularity
enhances evolvability (the ability of the system to adapt to new environments with
minimal changes) and robustness (the ability to maintain the current status in the
presence of internal or external variations) [25, 30]. In the technological world,
hierarchically modular designs are preferred in terms of design and development
cost, easier maintenance and agility (e.g., less effort in producing future versions of
a software), and better abstraction of the system design [27].

There are many hypotheses in the literature regarding the factors that contribute
to either the hierarchy or modularity properties. Local resource constraints in social
networks and ecosystems [26], modularly varying goals [15, 22, 23], selection
for more robust phenotypes [12, 38], and selection for lower connection costs in
a network [25] are some of the mechanisms that have been previously explored
and shown to lead to hierarchically modular systems. The main hypothesis that
we follow in this paper is along the lines of [25], which assumes that systems in
both nature and technology care to minimize the cost of their interconnections or
dependencies between modules.

An additional focus of our work is the hourglass effect in hierarchical systems.
Across many fields, such as in computer networking [1], deep neural networks [19],
embryogenesis [13], metabolism [35], and many others [30], it has been observed
that hierarchically modular systems often exhibit the architecture of an hourglass.
Informally, an hourglass architecture means that the system of interest produces
many outputs from many inputs through a relatively small number of highly central
intermediate modules, referred to as the “waist” of the hourglass (Fig. 1). The waist
of the hourglass (also referred to as “core” in [30] as well as in this paper) includes
critical modules of the system that are also sometimes more conserved during the
evolution of the system compared to other modules [1, 30]. Despite recent research
on the hourglass effect in different types of hierarchical systems [1, 2, 17, 30], one of
the questions that is still open is to identify the conditions under which the hourglass
effect emerges in hierarchies that are produced when the objective is to minimize
the cost of interconnections.

In this paper, we present Evo-Lexis, a modeling framework for the emergence
and evolution of hierarchical structure in complex systems. To develop Evo-Lexis,
we extend a previously proposed optimization framework, called Lexis [33], that
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Fig. 1 A hierarchical system is represented as a directed acyclic graph in which each module is
shown as a node, and the dependencies from more elementary modules to more complex modules
are shown as upward edges. The hourglass effect occurs when the system of interest produces many
outputs from many inputs through a relatively small number of intermediate core modules (here,
highlighted nodes with transparent surroundings) [30]

was designed for structure discovery in sequential data. Lexis models the most
elementary modules of the system as symbols (“sources”) and the modules at the
highest level of the hierarchy as sequences of those symbols (“targets”). Evo-Lexis
is a dynamic or evolving version of Lexis, in the sense that the set of targets changes
over time through additions (births) and removals (deaths) of targets. Evo-Lexis
computes an (approximate) minimum-cost adjustment of a given hierarchy when
the set of targets changes over time (a process we refer to as “incremental design”).
For comparison purposes, Evo-Lexis also computes the (approximate) minimum-
cost hierarchy that generates a given set of targets from a set of sources in a static
(non-evolving) setting (referred to as “clean-slate design”). The premise behind the
incremental design approach is that in practice systems are rarely designed from
scratch—instead, they are incrementally modified over time to accommodate the
changes (e.g., provide new outputs and potentially to support new inputs every time
there is a change).

In general, a system interacts with its environment in a bidirectional manner:
the environment imposes various constraints on the system and the system also
affects its environment. To capture this co-evolutionary setting in Evo-Lexis, we
study how changes in the set of targets affect the resulting hierarchy but also
how the current hierarchy affects the selection of new targets (i.e., whether a new
candidate target is selected or not depends on its fitness or cost—and that depends
on how easily that target can be supported by the given hierarchy). By incorporating
well-known evolutionary mechanisms, such as tinkering (mutation), recombination,
and selection, Evo-Lexis can capture such co-evolutionary dynamics between the
generation of new targets and the hierarchy that supports them.

The questions we focus on are:

1. How do key properties of the emergent hierarchies, e.g., depth of the network,
reuse or centrality of each module, complexity (or sequence length) of interme-
diate modules, etc., depend on the evolutionary process that generates the new
targets of the system?
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2. Under what conditions do the emergent hierarchies exhibit the so-called hour-
glass effect? Why are few intermediate modules reused much more than others?

3. Do intermediate modules persist during the evolution of hierarchies? Or are there
“punctuated equilibria” where the highly reused modules change significantly?

4. Which are the differences in terms of cost and structure between the incremen-
tally designed and the corresponding clean-slate designed hierarchies?

The structure of the paper is as follows: In Sect. 2, we present an overview of
Lexis, the static optimization framework that serves as the main building block in
Evo-Lexis.1 In Sect. 3, we present the components of the Evo-Lexis framework,
along with the metrics that we use for the analysis of evolving hierarchies. In Sect. 4,
we evaluate the evolution of hierarchies under different target generation models
(Fig. 2). Sections 5 and 6 present further analysis regarding the evolvability and
major transitions in hierarchies produced using the most full-fledged (MRS) target
generation model. Finally, Sect. 7 focuses on the comparison between clean-slate
and incremental design in terms of cost and structure. In Sect. 8, we review related
work in the context of Evo-Lexis. Section 9 discusses the results and presents some
future research possibilities.

2 Lexis Background

In this section, we present an overview of Lexis [33], the optimization framework
that we use as the main building block of the Evo-Lexis framework.

2.1 Lexis-DAG

Given an alphabet S and a set of “target” strings T over the alphabet S, we need
to construct a Lexis-DAG. A Lexis-DAG D is a directed acyclic graph D(V,E),
where V is the set of nodes and E the set of edges, that satisfies the following three
constraints2.

First, each node v ∈ V in a Lexis-DAG represents a string S (v) of characters
from the alphabet S. The nodes VS that represent characters of S are referred to as
sources, and they have zero in-degree. The nodes VT that represent target strings
T = {t1, t2, . . . , tm} are referred to as targets, and they have zero out-degree. V also
includes a set of intermediate nodes VM , which represent substrings that appear in
the targets T . So, V = VS ∪ VM ∪ VT .

1The static (i.e., non-evolving) version of the proposed modeling framework is referred to as
“Lexis” and it has been published at the ACM KDD 2016 conference [33].
2To simplify the notation, even though D is a function of S and T , we do not denote it as such.
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L

Fig. 2 Overview of this study. The Evo-Lexis modeling framework captures the process of
incrementally designing optimized hierarchies for a time-varying set of targets. Hierarchies are
modeled as Lexis-DAGs. We focus on key properties of the resulting hierarchies (e.g., cost, depth,
and reuse of intermediate components) and on how these properties depend on the evolutionary
mechanisms that generate new targets. By focusing on well-known evolutionary mechanisms such
as mutations, recombination, and selection, we analyze how each of them affects the structure and
evolution of the resulting hierarchies. Blue, green, and red nodes show source, intermediate, and
target nodes, respectively. Colored dots represent an instance of a source node and are used to show
the extent of diversity among target nodes

Second, each node in VM ∪ VT of a Lexis-DAG represents a string that is the
concatenation of two or more substrings, specified by the incoming edges from other
nodes to that node. Specifically, an edge e ∈ E from node u to node v is a triplet
(u, v, i) such that the string S (u) appears as substring of S (v) at index i (the first
character of a string has index 1). Note that there may be more than one edges from
node u to node v. The number of incoming and outgoing edges for a node v is
denoted by din(v) and dout (v), respectively.

Third, a Lexis-DAG should only include intermediate nodes that have an out-
degree of at least two, ∀v ∈ VM, dout (v) ≥ 2. In other words, every intermediate
node v ∈ VM in a Lexis-DAG should be such that the string S (v) is reused in
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Fig. 3 Illustration of the Lexis-DAG for a single target T = {abbbbbba} and sources S = {a, b}.
Edge-labels indicate the occurrence indices: (a) A valid Lexis-DAG having both minimum number
of concatenations and edges. (b) An invalid Lexis-DAG: two intermediate nodes are reused only
once. (c) An invalid Lexis-DAG: the top-layer string is not equal to the concatenation of its two
in-neighbors (best viewed in color)

at least two concatenation operations. Otherwise, S (v) is either not used in any
concatenation operation or it is used only once and so the outgoing edge from v can
be replaced by rewiring the incoming edges of v straight to the single occurrence
of S (v). In both cases node v can be removed from the Lexis-DAG, resulting in a
more parsimonious hierarchical representation of the targets. Figure 3 illustrates the
concepts introduced in this subsection.

2.2 The Lexis Optimization Problem

The Lexis optimization problem is to construct a minimum-cost Lexis-DAG for the
given alphabet S and target strings T . In other words, the problem is to determine
the set of intermediate nodes VM and all required edges E so that the corresponding
Lexis-DAG D is optimal in terms of a given cost function C(D). This problem can
be formulated as follows:

min(E,VM) C(D)

s.t. D = (V ,E)isaLexis − DAGforSandT
(1)

The selection of an appropriate cost function is somewhat application-specific.
A natural cost function, as investigated in the previous work [33], is the number of
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Fig. 4 Illustration of G-LEXIS algorithm given target T = {aabcaabdaabc} and sources S =
{a, b, c, d}. (a) Initial Lexis-DAG. (b) Substring aab has maximum cost reduction by reducing
the number of edges in the Lexis-DAG from 12 to 9. (c) The substring aabc has maximum cost
reduction. Note how aabc is partially made from the previously added substring aab. In this
example, this would be the last iteration of G-LEXIS

edges in the Lexis-DAG. More general cost formulations, such as a variable edge
cost or a weighted average of a node cost and an edge cost, are interesting but they
are not pursued in this paper. The edge cost to construct a node v ∈ V is defined
as the number of incoming edges required to construct S (v) from its in-neighbors,
which is equal to din(v). The edge cost of source nodes is obviously zero. The edge
cost E (D) of Lexis-DAG D is defined as the edge cost of all nodes, which is equal
to the number of edges in D,

E (D) =
∑

v∈V

din(v) = |E| (2)

With edge cost, the problem in Eq. (1) is NP-hard [33]. This problem is similar to
the smallest grammar problem (SGP) [14] and in fact its NP-hardness is shown by
a reduction from SGP [33].

We solve the Lexis optimization problem in Eq. (1) with a greedy heuristic, called
G-LEXIS. G-LEXIS starts with the trivial flat Lexis-DAG, and at each iteration it
chooses the substring ξ that maximally reduces the edge cost, when it is added
as a new intermediate node to the Lexis-DAG and the corresponding edges are
rewired by its addition. The algorithm terminates when there are no more substrings
that reduce the cost of the Lexis-DAG. An example of application of the G-LEXIS

algorithm is shown in Fig. 4. More details regarding the efficient implementation
and complexity of the algorithm can be found in [33].

2.3 Path Centrality and the Core of a Lexis-DAG

After constructing a Lexis-DAG, an important question is to rank the constructed
intermediate nodes in terms of significance or centrality. In a Lexis-DAG, a path
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that starts from a source and terminates at a target represents a dependency chain
in which each node depends on all previous nodes in that path. Thus, the higher
the number of such source-to-target paths traversing an intermediate node v is, the
more important v is in terms of the number of dependency chains it participates
in. More formally, let PD(v) be the number of source-to-target paths that traverse
node v ∈ VM ; we refer to PD(v) as the path centrality of intermediate node v. Path
centrality can be computed as:

P(v) = PS(v) PT (v) (3)

where PS(v) is the number of paths from any source to v, and PT (v) is the number
of paths from v to any target.3 It is easy to see that PT (v) is equal to the number of
times the string that corresponds to v is used in the set of targets T . Similarly, PS(v)

is equal to the number of times any source node is used in the string of v, which
is simply the length of that string. Hence, the path centrality of a node v is simply
the product of the length of the string of v (proxy for complexity) and its number of
appearances (proxy for generality).

An important follow-up question is to identify the core of a Lexis-DAG, i.e., a
set of intermediate nodes that represent, as a whole, the most important substrings
in that Lexis-DAG. The core set is the representative set of nodes that summarizes
the structure of the targets. Intuitively, we expect that the core should include nodes
of high path centrality, and that almost all source-to-target dependency chains of the
Lexis-DAG should traverse at least one of these core nodes.

More formally, suppose K is a set of intermediate nodes and P−(K) is the set
of source-to-target paths after we remove the nodes in K from D. The core of D is
defined as the minimum-cardinality set of intermediate nodes Core(τ) = K̂ such
that the fraction of remaining source-to-target paths after the removal of K̂ is at
most τ 4:

K̂ = argmin K⊆VM
|K|

s.t. |P−(K)| ≤ τ |P−(∅)|
(4)

where |P−(∅)| is the number of source-to-target paths in the original Lexis-DAG,
without removing any nodes.5 Figure 5 shows an example defining the concepts
regarding the core of a Lexis-DAG.

Note that if τ = 0 the core identification problem in Eq. (4) becomes equivalent
to finding the min-vertex-cut of the given Lexis-DAG. In practice, a Lexis-DAG
often includes some tendril-like source-to-target paths traversing a small number of
intermediate nodes that very few other paths traverse. These paths can cause a large
increase in the size of the core. For this reason, we prefer to consider the case of a
positive, but potentially small, value of the threshold τ .

3A similar metric, called stress centrality of a vertex, is studied in [20].
4To simplify notation, we do not denote the core set as function of D.
5It is easy to see that |P−(∅)| is equal to the cumulative length L of all target strings.
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Fig. 5 (a) Original Lexis-DAG D and its core nodes highlighted (for clarity, the string of each
node is not shown and the nodes are referred to with labels). For τ = 0.9, we have Core(τ) =
{M1,M6}. (b) Df , flat version of D. For same τ = 0.9, we have Coref (τ ) = {T 3, T 4, S1}.
Hence, the H-score is HD(τ) = 1 − 2

3 = 0.33

We solve the core identification problem with a greedy algorithm referred to
as G-CORE. This algorithm adds in each iteration the node with the highest path
centrality value to the core set, updates the Lexis-DAG by removing that node and its
edges, and recomputes the path centralities of the remaining nodes before the next
iteration. The algorithm terminates when the desired fraction of source-to-target
paths is achieved.

2.4 Hourglass Score

Intuitively, a Lexis-DAG exhibits the hourglass effect if it has a small core. To
make this intuition more precise, we compare the size of the core of a Lexis-DAG
with the core size of a derived Lexis-DAG which maintains the source–target paths
of the original Lexis-DAG but that is not presenting the hourglass structure by
construction.

We use a metric, named as hourglass score, or H-score, in our study for
measuring the “hourglass-ness” of a network. This metric was originally presented
in [30].

To calculate the H-score, we create a flat Lexis-DAG Df containing the same
targets as the original Lexis-DAG D. Note that Df preserves the source–target
dependencies of D: each target in Df is constructed based on the same set of
sources as in D. However, the dependency paths in Df are direct, without forming
any intermediate modules that could be reused across different targets. So, by
construction, the flat Lexis-DAG Df cannot have a non-trivial core since it does
not have any intermediate nodes.
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We define the H-score as follows:

HD(τ) = 1 − |Core(τ)|
|Coref (τ )| (5)

where Core(τ) and Coref (τ ) are the core sets of D and Df for a given threshold
τ , respectively. Note that Coref can include a combination of sources and targets,
and it would never be larger than either the set of sources or targets, i.e.,

|Coref (τ )| ≤ min{|S|, |T |} (6)

Clearly, 0 ≤ H(τ) ≤ 1. The H-score of D is approximately one if the core size of
the original Lexis-DAG is negligible compared to the core size of the corresponding
flat Lexis-DAG. Figure 5 illustrates the definition of this metric. An ideal hourglass-
like Lexis-DAG would have a single intermediate node that is traversed by every
single source-to-target path (i.e., Core(1) = 1), and a large number of sources
and targets none of which originates or terminates, respectively, a large fraction of
source-to-target paths (i.e., a large value of Coref (1)). The H-score of this Lexis-
DAG would be approximately equal to one.

3 Evo-Lexis Framework and Metrics

The Evo-Lexis framework includes a number of components that are described
below. A general illustration of the framework is shown in Fig. 6.

• Lexis-DAG: The network that encodes the system’s architecture at a given point
in time. The inputs of the system are the sources of the DAG and the outputs are
the targets.

• Target Generation Model: This model specifies the evolutionary process that
creates new targets. For simplicity, we consider the addition of only new targets,
not new sources. The generation of new targets can be either independent of
the current hierarchy (exogenous target generation) or it can depend on that
hierarchy (endogenous target generation).

• Target Removal Model: Models the removal of older targets. The total number
of targets remains constant during the evolution of the network.

• Hierarchy Design Algorithm: This is how the Lexis-DAG is adjusted whenever
we introduce new targets. This procedure can be as simple as building a Lexis-
DAG from scratch (by running the G-LEXIS algorithm) on the set of existing
targets. We refer to this approach as clean-slate design. On the contrary, the
algorithm can be incremental, starting with the previously constructed hierarchy
and incorporating new targets in a way that minimizes the adjustment cost. We
refer to this algorithm an incremental design, and it is described next.
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Fig. 6 A diagram of the Evo-Lexis framework. In every iteration, the following steps are
performed: (1) A batch of new targets is generated via a target generation model. (2) In
the “expansion phase,” the new targets are added incrementally to the current Lexis-DAG by
minimizing the marginal cost of adding every new target to the existing hierarchy. (3) If the number
of targets that are present in the system has reached a steady-state threshold, we also remove the
batch of oldest targets from the Lexis-DAG. During this “pruning phase,” some intermediate nodes
may also be removed because every intermediate node in a valid Lexis-DAG should have an out-
degree of at least two

3.1 Incremental Design Algorithm

The Evo-Lexis algorithm generates an optimized hierarchy for the given set of
targets in every evolutionary iteration. As mentioned previously, the clean-slate
design approach is to discard the existing hierarchy and redesign from scratch a new
Lexis-DAG for the given set of targets using the G-LEXIS algorithm. Such a design
methodology is not realistic however in either technological or natural evolution.
A more realistic approach is to adjust the existing Lexis-DAG incrementally, as
described below.

In incremental design, given a Lexis-DAG D0 with a set of targets T0, a set of
new targets T+ to be added, and a set of old targets T− to be removed, the problem
is to construct a Lexis-DAG DINC that supports the set of targets {T0 ∪ T+ − T−},
and that minimizes the cost difference with respect to D0:

min
DINC {E

(
DINC

)
− E (D0)}

s.t.DINCisaLexis − DAGfor{T0 ∪ T+ − T−}
(7)
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If D0 = φ (i.e., there is no initial Lexis-DAG), T− = φ, and T+ is the entire
target set, the incremental design problem becomes equivalent to the original Lexis
optimization problem in Eq. (1).

The incremental design problem is NP-hard (as the original Lexis design problem
in which D0 = φ and T− = φ), and so we rely on a heuristic that we refer to as
INC-LEXIS. The algorithm proceeds in two phases: first, in the “expansion phase,”
it adds the set of new targets T+ attempting to reuse as much as possible existing
intermediate nodes. Second, in the “pruning phase,” the algorithm removes the set
of old targets T−, and it also removes any intermediate nodes that are left with zero
or one outgoing edges.

In more detail, the expansion phase of INC-LEXIS consists of two stages: in stage-
1, we reuse intermediate nodes present in D0 to cover T+ with minimum cost. In
stage-2 of the expansion phase, we further optimize the hierarchy that supports the
targets in T+ by building an optimized Lexis-DAG for them using G-LEXIS. The
resulting new intermediate nodes and edges are added in the existing DAG.

Note that stage-1 relates to the well-known optimal parsing problem, which is:
given a set of target strings T , a set of substrings M , and the corresponding alphabet
S, what is the minimum number of substrings and letters that can construct T from
the elements of M∪S? The optimal parsing problem can be formulated as a shortest-
path problem in directed graphs [9]. If the length of the targets is N , it can be
optimally solved in O(N + |M ∪ S|) as the corresponding directed acyclic graph
has N nodes and O(N + |M ∪ S|) unweighted edges.

In the pruning phase, we remove the oldest batch of targets. We also ensure that
there is no redundant node in the Lexis-DAG, as implied by the constraint: ∀v ∈
VM, dout (v) ≥ 2. This ensures that the Lexis-DAG does not include two types of
redundancies: nodes with zero out-degree and nodes that are only reused once.

Figures 7 and 8 give an example of how INC-LEXIS adjusts a hierarchy, given a
set of targets to be added and a set of targets to be removed.

3.2 Target Generation Models

The targets are generated through well-known evolutionary mechanisms, such as
tinkering/mutation, recombination, and selection:

• The generation of new targets from minor changes in earlier targets is similar
to tinkering/mutation. Tinkering is common in technological evolution: small
“upgrades” in a software or hardware artifacts are the most common example
of this process. In biological systems, it is well known that mutation is basically
“the engine of evolution” [18]. In Evo-Lexis, tinkering/mutation is performed by
replacing one character of a given target with a randomly chosen character.

• In the technological world, recombination is known to be one of the central
mechanisms for the creation of new technologies [3]. Technological design is
often considered to be a search over a space of combinatorial possibilities [40].
In fact, many breakthroughs in the history of technology were in fact just a new
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Fig. 7 Illustration of INC-LEXIS. (a) Initial Lexis-DAG D0 with T = {2424143142, 2424143442,
2423143442}, S = {1,2,3,4}, and M = {2424143,442,242,143,42}. (b) The new targets are T+ =
{0424143442,2424143242,2422143442}. In the first stage of INC-LEXIS, the substrings in M ∪
S are reused to construct T+. Red edges show the reuse of substrings in T+. Node labels show
the representation of each node using the extended alphabet formed by intermediate nodes. This
representation is used in the second stage of the expansion phase to run G-LEXIS on T+. (c) The
Lexis-DAG after running G-LEXIS on the set T+ in its extended alphabet form. The green nodes
and edges are the results of this stage (continued in Fig. 8)
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Fig. 8 (Continued from Fig. 7.) Illustration of INC-LEXIS. (a) The target nodes 2424143142 and
2424143442 are removed during the pruning phase. All incoming edges (dashed and shown in
yellow) will also be removed, which leaves the node D = 2424143 with zero out-degree. (b) The
final Lexis-DAG after removal of targets and intermediate nodes with zero and one out-degree

combination of existing modules. A recent example is the first version of the
iPhone in 2007, which was introduced to be “a phone, an internet communicator
and an iPod.” In biology, it is well known that recombination and crossover is
essential as it produces highly diverse genotypes, compared to mutations.

• Selection is an essential mechanism in evolution. In natural systems, selection
determines whether a new genotype can survive the competition with existing
genotypes (i.e., the incumbents) by evaluating the phenotypic fitness of the
former relative to the latter. In the technological world, selection is the process
of evaluating the functionality and cost of a new product, perhaps during an
R&D cycle [31]. In the Evo-Lexis framework, selection is performed to decide
whether a candidate target can be accepted, by evaluating the cost of adding that
target in the current hierarchy. In other words, selection creates an endogenous
target generation process in which the existing hierarchy determines the cost of
the potential new targets and thus, whether each new target is cost-competitive
compared to the targets it evolved from.
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3.2.1 MRS Model

The main target generation model we consider is based on Mutation, Recombination
and Selection, thus called MRS model. The mechanism for this model is illustrated
in Fig. 9. In detail:

1. Two distinct targets ts1 and ts2 (referred to as “seeds”) are chosen randomly from
the existing set of targets. Their cost is denoted by C(ts1) = din(ts1) and C(ts2) =
din(ts2), respectively, and it is equal to the number of incoming edges that form
ts from the intermediate nodes in the current Lexis-DAG.

2. A randomly chosen “crossover index” 1 ≤ i ≤ k − 1 is chosen (recall that k is
the length of the targets) and the following recombinations are generated:

• t∗1 = ts1[1 : i − 1] + c̃ + ts2 [i + 1 : k]
• t∗2 = ts2[1 : i − 1] + c̃ + ts1 [i + 1 : k]
• t∗3 = ts2[i + 1 : k] + c̃ + ts1[1 : i − 1]
• t∗4 = ts1[i + 1 : k] + c̃ + ts2[1 : i − 1]
where the numbers in braces show string indices, and c̃ is a randomly chosen
character that represents the mutated element. In other words, each recombina-
tion also includes a single-character mutation.

3. For each of the four recombinations, we calculate its cost when it is added as
a new target to the current Lexis-DAG. This cost can be seen as the marginal
overhead that t∗x introduces when added to the current hierarchy D0:

C(t∗x ) = E
(
DINC(D0, {t∗x })

)
− E (D0) (8)

where DINC(D0, {t∗x }) is the new hierarchy after adding t∗x to D0 using the INC-
Lexis algorithm.

Fig. 9 Illustration of MRS model
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4. The model selects a newly generated recombination t∗x if it satisfies the following
selection constraint:

• Suppose t∗x is formed by recombining the fragments tx1 (from ts1 ) and tx2

(from ts2 ), where the length of these target fragments is |tx1 | and |tx2 |.
The selection ratio is defined as:

R = C(t∗x )

|tx1 | × C(ts1) + |tx2 | × C(ts2)
(9)

• If R ≤ 1, we definitely accept t∗x .
• If R > 1, we accept t∗x probabilistically with selection probability p =

e−β(R−1).

5. If none of the recombinations passes the previous selection constraint, the target
generation process is repeated. However, if one or more recombinations pass the
selection constraint, the model chooses one of them randomly and adds it as an
accepted target in the batch of new targets.

β determines how strongly the current hierarchy influences the selection of new
targets. The larger the parameter β is, the less likely it becomes that a new target that
is more costly than its seeds (i.e., R > 1) will be selected. For large β, we get strong
selection and refer to the model as MRS-strong. A small β implies weak selection,
and the model is referred to as MRS-weak. We use β = 1 and β = 12 for weak and
strong selection, respectively. Figure 10 shows the difference of the two β values
for typical values of R (when R > 1).

To analyze the effect of each evolutionary mechanism, we also consider target
generation models by removing certain elements from the MRS model—hence the
name “ablation study.”
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Fig. 10 The difference of the new target acceptance probability for weak (β = 1) and strong
(β = 12) selection. R is the ratio between the cost of the new candidate target and the cost of the
targets it evolved from. In MRS-weak, the probability of accepting the new target is high. However,
this probability quickly drops in the MRS-strong model
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3.2.2 MS Model

The MS model is derived from MRS by removing recombination (hence the name
Mutations + Selection model or MS model). The model generates new targets as
follows:

1. A target seed ts is chosen from the existing set of targets. Suppose the cost of ts
is C(ts) = din(ts) in the current Lexis-DAG D0.

2. The seed is mutated (single-character mutation), as in MRS model, to t∗s .
3. We calculate the cost of adding t∗s to the current Lexis-DAG. This cost can be

seen as the marginal overhead that t∗s introduces when it is added to the current
Lexis-DAG:

C(t∗s ) = E
(
DINC(D0, {t∗s })

)
− E (D0) (10)

4. The model will select the newly generated target t∗s if it satisfies the following
constraint:

• R = C(t∗s )

C(ts )

• If R ≤ 1, accept t∗s .
• if R > 1, accept t∗s probabilistically where selection probability p =

e−β(R−1).

Otherwise, the newly generated target is rejected and the target generation
repeats.

3.2.3 M Model

This is derived from the MS model by removing the selection constraint. Note that
with this change the target generation process is not influenced by the current Lexis-
DAG and it operates “exogenously” to the hierarchy. This model is referred to as
Mutation model (or M model) and it generates targets as follows:

1. Among the targets that exist in the current Lexis-DAG, a seed target ts is chosen
randomly.

2. The seed target ts is mutated to t∗s through a random single-character mutation.
3. If the newly generated target t∗s is a duplicate of one of the existing targets, the

new target is rejected and the target generation repeats. If not, the generated target
is added to the batch of new targets.

3.2.4 RND Model

We also consider a random target generation process, referred to as RND, where
tinkering/mutation is removed from Mutation model. In this model, a new target is
randomly generated using k random and independent choices among the sources.
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3.3 Key Metrics

3.3.1 Cost Metrics

Normalized Cost This is the cost of the Lexis-DAG DT (the Lexis-DAG for the
target set T ) normalized by the total length of the targets, LT . We denote the
normalized cost by CN (DT ):

0 ≤ CN (DT ) = E (DT )

LT

≤ 1 (11)

Penalty of Incremental Design (PID) This measure evaluates the cost overhead
of incremental design relative to a clean-slate design:

PIDT = E (DINC
T )

E (DCS
T )

(12)

where DINC
T is the incremental design for the target set T , and DCS

T is the clean-slate
design for the same set of targets. The value of PID is bounded as follows:

1 ≤ PIDT ≤ LT

E (DCS
T )

(13)

because an incremental design cannot be more efficient than a clean-slate design (at
least when the two design problems are optimally solved), and the maximum cost
of incremental design is LT .

3.3.2 Topological Metrics

Average Depth This metric is an indicator of how deep a Lexis-DAG hierarchy is.
For each target t , we calculate the average length of all source–target paths ending
on that target: d(t). The average across all t is defined as the average depth of the
hierarchy:

D(DT ) =
∑

t∈T d(t)

|T | (14)

Core Stability We have already defined the core size and the H-score (Sect. 2).
Here we define an additional metric, related to the stability of the core across time.

We track the stability of the core set by comparing two core sets at two different
times. A direct comparison of the core sets via the Jaccard index leads to poor
results. The reason is that often the strings of the two sets are similar to each other
but not completely identical.
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Thus, we define a generalized version of Jaccard similarity that we call
Levenshtein–Jaccard similarity:

• The Levenshtein distance LD(s, t) between two strings s and t is the number of
deletions, insertions, or substitutions required to transform one string to another.
The higher the number of required operations, the more distant two strings are
from each other [16].

• Suppose we aim to compute the similarity of two sets A and B of strings. We
define the mapping A → B where every element a ∈ A is mapped to the most
similar element b ∈ B. We also define the mapping B → A from every element
b ∈ B to the most similar element a ∈ A:

{
A → B = {(a, b) s.t. a ∈ A & b ∈ B & b = arg maxx∈BSim(a, x)}
B → A = {(b, a) s.t. a ∈ A & b ∈ B & a = arg maxx∈ASim(b, x)}

(15)
where Sim(a, b) is the similarity of a to b and is calculated as:

Sim(a, b) = 1 − LD(a, b)

max(|a|, |b|) (16)

Notice that max(|a|, |b|) is the maximum value of Levenshtein distance between
a and b. This ensures that if a = b then Sim(a, b) = 1, and if a and b have the
maximum distance, then Sim(a, b) = 0.

• Considering both A → B and B → A, we get the union of the two mappings
and define the Levenshtein–Jaccard similarity as follows:

LevJac(A,B) =
∑

(a,b)∈A→B Sim(a, b) + ∑
(b,a)∈B→A Sim(b, a)

(|A| + |B|) (17)

We can see that if A = B (all weights are equal to one) then LevJac(A,B) = 1.
Also if none of the elements in A are similar to B (all the element pairs take zero
similarity value), then LevJac(A,B) = 0.

For example, suppose that A = {abc, cdef, fgh} and B = {abcd, cgef, xyh}.
The similarity of the most similar pairings is shown next:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A → B = {(abc, abcd), (cdef, cgef ), (fgh, xyh)}
where :Sim(abc, abcd) = 3

4 , Sim(cdef, cgef ) = 3
4 , Sim(fgh, xyh) = 1

3

⇒ ∑
(a,b)∈A→B Sim(a, b) = 1.83

B → A = {(abcd, abc), (cgef, cdef ), (xyh, fgh)}
where :Sim(abcd, abc) = 3

4 , Sim(cgef, cdef ) = 3
4 , Sim(xyh, fgh) = 1

3

⇒ ∑
(b,a)∈B→A Sim(b, a) = 1.83

(18)
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Hence, we have:

LevJac(A,B) =
∑

(A → B) + ∑
(B → A)

|A| + |B| = 1.83 + 1.83

3 + 3
= 0.61 (19)

3.3.3 Target Diversity Metric

Suppose we have a set of strings T = {t1, t2, . . . , tn}. The goal is to provide a single
number that quantifies how dissimilar these elements are to each other.

• We first identify the medoid MT within the set T , i.e., the element that has the
lowest average distance from all other elements. We use Levenshtein distance:

MT = arg minm∈T

∑

t∈T

LD(t,m) (20)

• To compute how diverse the elements are with respect to each other, we average
the distance of all elements from the medoid. We call this measure σT , the
diversity of set T . The bigger the diversity metric, the more diverse the set of
strings is (because the distance of each target from the medoid is the number of
single-character operations needed to convert any element within the set to the
medoid):

σT =
∑

t∈T LD [t,MT ]

|T | (21)

4 Computational Results

4.1 Parameter Values and Evolutionary Iteration

We can summarize an evolutionary iteration of the Evo-Lexis framework as
follows:

1. Initially, we start with a small number s of randomly constructed targets. Each
target has the same length k, and the number of possible sources is n. An initial
Lexis-DAG is constructed using the G-LEXIS algorithm.

2. In every evolutionary iteration, the following steps are performed:

(a) A new batch of b targets is generated via a target generation model.
(b) In the incremental design approach, the Evo-Lexis algorithm adjusts the

existing hierarchy minimizing the marginal cost of adding each new target
in the existing hierarchy.

(c) If the total number of targets that are present in the system have reached
a steady state (the number of targets is Ts), we also remove the oldest
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Table 1 Definition and parameter values of Evo-Lexis in the following experiments

Parameter Definition Value

s Number of initial targets 10

n Number of sources 100

k Target length (characters) 200

b Batch size for new targets birth/old targets death 10

Ts Steady-state number of targets present in Lexis-DAG 100

batch of b targets from the Lexis-DAG. This target removal process may
also trigger the removal of intermediate nodes that are not reused by at
least two other nodes in the hierarchy. The total number of targets remains
constant (Ts) because the number of target additions is equal to the number
of removals (b).

(d) The evolutionary process is repeated for a user-specified number of itera-
tions. The parameters n, k, and b do not change during this process. We run
each model ten times for a total of 5000 iterations. We take the mean value
of each metric.

The parameters used in the following experiments are presented in Table 1.

4.2 Results

4.2.1 Emergence of Low-Cost Hierarchies Due to Tinkering/Mutation
and Selection

In Fig. 11a and b, we observe a significant reduction in the normalized cost between
the RND model and all other models. The main reason for this reduction is that
in all other models, we generate targets that are similar to earlier targets and not
randomly constructed. Further, we observe that endogenous models (MS-strong and
MRS-strong) further reduce the cost of the resulting hierarchies. The reason is the
large bias for selecting targets that can be constructed with lower (or comparable)
cost than the seed targets they evolved from. Thus, introducing tinkering/mutation
and selection both contribute to the emergence of more efficient hierarchies in the
Evo-Lexis framework.

4.2.2 Low-Cost Design Resulting in Deeper Hierarchies and Reuse
of More Complex Modules

Having a lower cost hierarchy also means that intermediate nodes are reused
more frequently and/or that those intermediate nodes are more complex (i.e.,
longer strings). We observe this across models in Fig. 11c–f—models with lower
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normalized cost have deeper Lexis-DAGs and higher intermediate node length.
These longer reused nodes further decrease the cost of the hierarchy. Hence,
tinkering/mutation and selection also develop deeper hierarchies with longer inter-
mediate nodes. These two outcomes are ubiquitously observed in both natural and
technological systems. Examples include call-graphs and metabolic networks. For
instance, for the OpenSSH call-graph and the monkey metabolic network, it has
been reported that the underlying dependency networks have an average depth of
10.4 and 8.1, respectively [30].

4.2.3 The Recombination Mechanism Creates Target Diversity

Realistic hierarchies should support a diverse set of requirements or outputs. For
example, in network protocol stacks, many different functionalities at the top
level of the hierarchy (application layer) are supported by the same hierarchical
infrastructure. In our framework, this translates to having a set of targets with high
diversity. In Fig. 11g and h, we show the target diversity across different models.
The RND model produces the highest target diversity as there are no correlations
among the generated targets. In Fig. 11h, we observe that the tinkering/mutation
in the M model results in 50–70% decrease in target diversity. Strong selection in
the MS-strong model further decreases the diversity to the point that the targets
are almost identical, with only minor variations of the same main string. Such low
target diversity is not realistic in natural and technological systems. The reason
that the MS-strong model behaves in this manner is that it generates new targets
only through single-character mutations and only when the resulting mutants can be
constructed using the existing intermediate nodes (otherwise they would have much
higher cost and they would not be selected). Hence, the set of accepted new targets
gets very narrow and quite similar to its seed targets.

In biological systems, the evolution of complex species required recombination
and sexual reproduction (i.e., crossover). Similarly in the Evo-Lexis framework, the
addition of recombination in the MRS model results in increased target diversity
(Fig. 11g) while keeping the earlier properties of the Lexis-DAGs (i.e., low cost,
large depth, and long intermediate nodes).

4.2.4 Reuse of Complex Modules in the Core Set by Strong Selection

Looking at the contents of the core at the 5000th iteration of all models in Fig. 13
shows that in models without selection, or with weak selection, the core includes
only a small number of intermediate nodes. The reason is that random mutations
make the reuse of longer intermediate nodes unlikely. Note that this does not mean
that long intermediate nodes do not exist in Lexis-DAGs under the M & MS-weak
& MRS-weak models—such nodes are less likely however to be reused often. As a
result, shorter nodes and mostly sources are more likely to appear in the new targets,
and end up in the core set.
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(c) (d)

(a) (b)

(e) (f)

(g) (h)

Fig. 11 Normalized cost, (average) hierarchical depth, (average) intermediate node length, and
target diversity of Lexis-DAGs produced by various target generation models (weak selection
models: β = 1, strong selection models: β = 12). (a, b) Normalized cost. (c, d) Average depth.
(e, f) Node length. (g, h) Target diversity. (Continued in Fig. 12)
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On the other hand, models with strong selection (MS and MRS) limit the
locations where the seed(s) can be mutated when generating new targets. This
constraint results in reusing longer intermediate nodes. Thus, selection creates a
bias towards the reuse of longer intermediate nodes. In the long run, this results in
some long nodes dominating the core set in the MS-strong and MRS-strong models
(Fig. 13d and f).

4.2.5 Emergence of Hourglass Architecture Due to the Heavy Reuse of
Complex Intermediate Modules in Models with Strong Selection

Appearance of longer and heavily reused intermediate nodes in the models with
strong selection means that the architecture exhibits the hourglass effect. Indeed, we
observe in Fig. 12a and b that the core size gets significantly smaller in the presence
of strong selection (MS and MRS models). Additionally, Fig. 12c and d shows that
the MS-strong and MRS-strong models also result in higher H-score values (0.4 and
0.65 on average, respectively). Lexis-DAGs with high H-score values have a small
core size with respect to the equivalent flat Lexis-DAG whose core is made up of
sources and targets only.

Overall, the reuse of longer intermediate nodes (Fig. 13) caused by selection
results in hierarchies with an hourglass architecture. This observation is consistent
with a mechanism (known as reuse-preference [30]) that was proposed earlier for
the emergence of the hourglass effect in general dependency networks.

4.2.6 Stability of the Core Set Due to Selection

Selection also promotes the stability of the core set, as shown in Fig. 12h for the MS-
strong model. We see an increase in core stability (i.e., similarity of the core during
evolution) compared to the MS-weak and M models whose cores mostly consist of
sources. Similarly, a stable core is also observed in the MRS-weak and MRS-strong
models in Fig. 12g. We have already seen that long intermediate nodes appear more
often in the core set of models with strong selection. Hence the core stability results
show that selection not only contributes to the emergence of a small core, consisting
of few highly reused intermediate nodes, but it also promotes the conservation of
these core nodes during evolution. This is in agreement with the properties of several
systems in which the waist of the hourglass architecture includes critical modules
of the system that are highly conserved [1, 30]. We return to this point in Sect. 7,
where we further show that this core stability is occasionally interrupted by major
transitions and punctuated equilibria.
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(c) (d)

(a) (b)

(e) (f)

(g) (h)

Fig. 12 (Continued from Fig. 11.). Core size, H-score, robustness to core node removals, and core
stability of Lexis-DAGs produced by various target generation models (weak selection models:
β = 1, strong selection models: β = 12). For core selection, we set τ = 0.85. For core stability, a
sliding window equal to the size of 10 batches is used to track changes in the core set. (a, b) Core
size. (c, d) H-score. (e, f) Robustness analysis. (g, h) Core stability
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Fig. 13 Comparison of node length and path centrality in Lexis-DAGs at the 5000th iteration (for
weak selection model β = 1 and for strong selection model β = 12). For core selection, we set
τ = 0.85. (a) RND model. (b) M model. (c) MS-weak. (d) MS-strong. (e) MRS-weak model. (f)
MRS-strong model

4.2.7 Fragility Caused by Stronger Selection

Figure 12e and f shows how the generated hierarchies perform in terms of
robustness, when we remove the most central nodes in the system, i.e., the members
of the core. Robustness generally relates to the ability to maintain a certain function
even when there are internal or external perturbations [30]. Figure 12f and e shows
how the removal of one or more core nodes, in order of importance, contributes
to cutting source–target paths in each of the Lexis-DAGs produced (at the 5000th
iteration of each model).
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Fig. 14 Visualizing the various properties of the generated hierarchies that emerge from each
model described in Sect. 5 (excluding the RND model). The MRS model produces all properties.
This figure shows an approximate value for each metric at the 5000th iteration of evolution. We
define, Efficiency = 1 − NormalizedCost

In hourglass architectures (MS-strong and MRS-strong model), core nodes
contribute much more significantly to the overall hierarchy by covering many more
source–target paths. Hence, such architectures are fragile if the core nodes are
perturbed. This is similar to the concept of removal of hub nodes in scale-free
network [8]. Weakening selection reduces the H-score (as in Fig. 12c) and hence,
reduces the contribution of core nodes in covering source–target paths.

Figure 14 summarizes the properties of the hierarchies that emerge in the models
we described in this section.

5 Evolvability and the Space of Possible Targets

As shown in the previous section, the MRS-strong model leads to hourglass
hierarchies, maintaining at the same time significant target diversity. In this section,
we further show that hourglass architectures have two important properties. On
the positive side, they are more evolvable in the sense that new targets can be
constructed at a low cost, mostly reusing the intermediate modules in the core of
the hierarchy. On the negative side however, hourglass architectures only accept a
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Fig. 15 (a) CDF of MRS-over-MR per-batch cost-ratio, the ratio between the average cost of
targets per batch in the MRS model (weak or strong selection) over the average cost of targets per
batch in the MR model. (b) CDF of the target acceptance-likelihood, i.e., the number of accepted
targets generated per batch in the MRS model divided by the total number of generated targets per
batch with the same model

small fraction of the candidate new targets, restricting what a biologist would refer
to as the “phenotypic space” of the system. This interplay between evolvability and
the space of feasible system phenotypes or functions is an important issue in both
biological and technological systems (e.g., Internet architecture [29]).

We first look at the cost of targets produced with and without selection. For this
purpose, we compare two models: one is the MRS-strong model that acts as an
“endogenous” target generation process. The other is a variation of MRS without
selection that we call MR model (only mutations and recombination)—this is an
“exogenous” target generation process that does not depend on the current state of
the hierarchy. The MR model allows us to examine how selection affects the cost
and space of acceptable targets with and without the selection constraint.

In Fig. 15, we calculate the ratio between the average cost of accepted targets per
batch in the MRS-strong model over the corresponding cost in the MR model—we
refer to this as MRS-over-MR per-batch cost-ratio. The average and median values
of this ratio are 0.53 and 0.52, respectively. This suggests that the targets generated
under stronger selection are of much lower cost (around half) compared to the
targets generated without selection. So, the presence of strong selection allows the
system to construct new targets at a much lower cost because those selected targets
can be constructed mostly reusing the intermediate nodes present in the hierarchy.

As a result of strong selection, the acceptance-likelihood of new targets generated
by the MRS-strong model is much lower than that with the MR model. Specifically,
the acceptance-likelihood in Fig. 15b is defined as the fraction of accepted targets
generated per batch. The mean and median of this likelihood in the MRS-strong
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model are equal to 0.2. In other words, about 80% of the new targets generated
through mutations and recombination are not selected because their cost, given the
existing architecture, would be prohibitively high.

It should be also noted that the MRS-weak model behaves quite similar to the MR
baseline in terms of both the MRS-over-MR cost ratio and the target acceptance-
likelihood.

Overall, the results in this section show that despite having the benefit of
lower cost new targets, and thus higher evolvability, selection restricts significantly
the phenotypic space of accepted new targets. Given that the MRS-strong model
generates hourglass architectures, we can summarize as follows: hourglass-like
hierarchies under the MRS-strong model allow the construction of new functions
(accepted targets) at a low cost, by mostly reusing core modules, but at the same time
such architectures significantly restrict which of these functions can be supported.
Targets that are quite different than the intermediate modules of the existing
hierarchy would most likely not be selected.

6 Major Transitions

Major transitions have been an important and interesting phenomenon in both
natural and technological evolution. Such transitions create significant shifts in
evolutionary trajectories, ecosystems, and “keystone species” [21]. There are many
examples of such events in natural systems, such as the “invention” of sexual
reproduction and evolution of multicellularity [34]. In technological evolution,
innovations occasionally lead to the emergence of disruptive new technologies,
such as the steam engine in the nineteenth century or air transportation in the
twentieth century. In the context of computing, the evolution of programming
languages has gone through punctuated equilibria, interrupted by new languages
that were developed by tinkering or combining different structural components of
older languages [37].

The results of Fig. 12g suggest that the structure of the core is locally stable, when
comparing core nodes in adjacent iterations. To further investigate the stability of
the core during evolution, we focus on the most central node in the core of the Lexis-
DAGs, i.e., the core node that covers the largest fraction of source–target paths. We
refer to this node of the Lexis-DAG as top-1 core node.

First, we track the variability of this node locally, by comparing its normalized
Levenshtein distance to the top-1 core node in the next iteration. Figure 16 shows
the results of this analysis for both MRS-strong and MRS-weak. In the MRS-strong
model, we observe that in most iterations the top-1 core node does not change
significantly. Even though there are some spikes in which the Levenshtein distance
is larger than 0.2, in 82.6% of the evolutionary iterations the variability of the top-1
core node is less than that. Further, there are several stasis periods in which the top-1
core node is practically the same (Levenshtein distance lower than 0.1 or even 0). In
Fig. 16 we highlight with red vertical lines a small number of stasis periods in which



52 P. Siyari et al.

N
or

m
al

iz
ed

 L
ev

en
sh

te
in

 D
is

ta
nc

e

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0 1000 2000 3000 4000 5000

Evolutionary Iteration

(a)

(b)

N
or

m
al

iz
ed

 L
ev

en
sh

te
in

 D
is

ta
nc

e

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0 1000 2000 3000 4000 5000

Evolutionary Iteration

Fig. 16 Variability across successive iterations of the top-1 core node (measured using the
Levenshtein distance) in the MRS model (both strong and weak selection). The highlighted
iterations illustrate some of the stasis periods, in which the top-1 core node remains identical for
many iterations. (a) MRS-strong model. (b) MRS-weak model

the top-1 core node remains exactly the same for tens of hundreds of iterations. On
the other hand, the MRS-weak model has significantly higher variability in the top-
1 core node, and fewer/shorter stasis periods. This suggests that selection is the
key factor in generating these long periods of stability in the core of the hourglass
architecture.
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(a)

(b)

Fig. 17 Count of stasis periods (lasting at least 100 iterations) for two values of the Levenshtein
distance threshold, μLD , in Fig. 16. Strong selection leads to longer and more frequent stasis
periods. (a) μLD = 0.1. (b) μLD = 0.2

To further quantify this point, we focus on stasis periods that last at least 100
iterations (recall that the entire evolutionary paths in these results consist of 5000
iterations). Figure 17 shows that there are fewer and shorter stasis periods in MRS-
weak model than in MRS-strong. The fraction of iterations that account for stasis
conditions is 478

5000 ∼ 0.095 in MRS-weak, and 2928
5000 ∼ 0.585 in MRS-strong, when

the minimum Levenshtein distance is μLD = 0.1 (also 1049
5000 ∼ 0.209 in MRS-weak

and 4133
5000 ∼ 0.826 in MRS-strong when μLD = 0.2).

The presence of stasis periods under strong selection suggests that the most
central intermediate nodes at the waist (or core) of the hourglass architecture can
be quite stable and time-invariant. What happens however across different stasis
periods? Does that stability persist across different stasis periods, or does the
architecture exhibit major transitions and punctuated equilibria?
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(a) (b)

Fig. 18 Starting from three different stasis periods (with μLD = 0.1), the top-1 and top-2 core
node does not stay the same in subsequent stasis periods. The normalized Levenshtein distance
between the top-1 and top-2 node at the start of each curve and at successive stasis periods is close
to 1, suggesting that these nodes have changed. We observed similar results for other core nodes.
(a) Top-1 core node changes in MRS-strong. (b) Top-2 core node changes in MRS-strong

To answer this question, we focus again on the top-1 core node and measure its
variability across successive stasis periods. In Fig. 18, we consider three different
stasis periods (one curve for each initial stasis period), and calculate the normalized
Levenshtein distance between the top-1 core node in its initial stasis period and
the top-1 core node in subsequent stasis periods. Note that the top-1 core node
changes significantly across stasis periods. In fact, the Levenshtein distance is so
high (often close to 1), suggesting that these are completely different core nodes.
This observation gives more evidence that the top contributors to the core can lose
their importance during evolutionary time scales, causing major transitions in both
the core set and, consequently, in the overall hierarchy. We have confirmed that this
is even more common for lower centrality core nodes too, and it is certainly even
more true under weak selection.

7 Overhead of Incremental Design

In this section, we compare the cost and structural characteristics of incremental
design (INC) relative to clean-slate (CS) design, i.e., the ideal case in which a new
Lexis hierarchy is designed from scratch every time the set of targets is changed.
Of course such clean-slate designs are rare or infeasible in practice, especially in
biological evolution. CS design is still valuable however as a baseline for evaluating
the cost efficiency of INC, and the hierarchy that is produced by the latter.

In the Evo-Lexis framework, a key factor that quantifies the difference between
INC and CS design is the batch size. If the batch size b is equal to the total number
of targets in steady state Ts , INC and CS are equivalent because the set of targets
completely changes in each iteration. At the other extreme, if the batch size is only
one target and Ts � 1, INC performs a minimal adjustment of the hierarchy to
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(a) (b)

(c) (d)
INC CS

Fig. 19 Comparison between incremental (INC) design and clean-slate (CS) design, in terms of
four metrics and for different batch sizes. For each batch size, the MRS-strong model is run for
5000 iterations and an average of each metric is taken over 50 distinct iterations. The considered
batch sizes are: 1, 5, 10, 25. (a) Penalty of incremental design. (b) Core similarity. (c) Average
hierarchy depth. (d) H-score

support the new target while CS still redesigns the complete hierarchy. In other
words, the fraction b/Ts controls the degree of change in each evolutionary iteration.
Both in natural and technological systems, evolution proceeds rather slowly—for
this reason we only consider the lower range of this ratio, between 1/100 and 25/100.

In the following we only consider the MRS-strong model (based on the results
of the earlier sections). Figure 19 compares INC and CS in terms of four key
metrics. The first metric relates to cost: recall that the penalty of incremental design
(PID) is the ratio of the cost of an evolving INC hierarchy over the cost of the
corresponding CS hierarchy for the same set of targets. With the exception of the
minimum possible batch size (b = 1), it is interesting that INC does not lead to much
less efficient hierarchies than CS. The PID metric shows that INC is typically around
30% more costly than CS for a wide range of batch sizes, suggesting that INC is
able to often reuse intermediate nodes in constructing the given targets, despite the
fact that it cannot redesign the complete hierarchy. The PID is substantially higher
when b = 1 however. The reason is that when the INC-Lexis algorithm is given
only one new target in every iteration, it is unlikely to identify segments of that
single target that repeat more than once. This means that, when b = 1, INC rarely
adds new intermediate nodes in the hierarchy even though successive targets can
be quite similar. CS, on the other hand, exploits the similarity of the set of targets
in each iteration constructing more intermediate nodes, and reducing cost through
their reuse.
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Interestingly, even when the INC and CS designs have similar costs, they are
very different in terms of the nodes that form the core. This is shown in Fig. 19b: the
similarity of the two cores according to the Levenshtein-Jaccard similarity is around
0.1. This implies that the two design approaches lead to substantially different
architectures in terms of the actual intermediate nodes they reuse.

Additionally, the average hierarchical depth of CS architectures is larger (see
Fig. 19c) because this design approach is able to identify more and longer inter-
mediate nodes that can be reused to construct the entire set of targets. INC, on the
other hand, is constrained to not adjust the existing portion of the hierarchy, and it
can only form new intermediate nodes when it detects fragments in the set of new
targets that are repeated more than once. So, the INC hierarchies are typically not
as deep as those in CS.

Despite their differences, both design approaches lead to hourglass architectures
when the targets are created with the MRS-strong model. This is shown in Fig. 19d,
and it suggests that even though INC is constrained, as described above, it is still
able to identify few intermediate nodes that can be reused many times to construct
the time-varying set of targets.

8 Discussion and Prior Work

The Evo-Lexis model is primarily related to three research themes: first, the
emergence of modularity and hierarchy in complex systems; second, the hourglass
architecture in hierarchical networks; and lastly, the comparison between offline (or
“clean slate”) design and online (or incremental) design.

8.1 Modularity and Hierarchy

The modeling framework of “modularly varying goals,” by Kashtan and Alon, is
a plausible explanation for the emergence of modularity [22, 23]. By applying
incremental changes in logic circuits and evolving neural networks for pattern
recognition tasks, they show that modularity in the goals (what we refer to as
“targets”) leads to the emergence of modularity in the organization of the system,
whereas randomly varying goals do not lead to modular architectures. Similarly,
Arthur et al. focus on the evolution of technology using a simple model of logic cir-
cuit gates [4]. Each designed element is a combination of simpler existing elements.
Their simulation model results in a modularly organized system, in which complex
functions are only possible by first creating simpler ones as building blocks. These
models are similar to Evo-Lexis in the following way: when the system targets are
not randomly constructed but they are generated through an evolutionary process
that involves mutations, recombination, and selection, the target functions are
computed through deep hierarchies that reuse common intermediate components.
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Clune et al. show that modularity is a key driver for the evolvability of complex
systems [15]. The authors demonstrate that selection mechanisms that minimize
the cost of connections between nodes in a networked system result in a modular
architecture. This is shown by evolving networks that solve pattern recognition tasks
and Boolean logic tasks. The inputs sense the environment (e.g., pixels) and produce
outputs in a feed-forward manner (e.g., the existence of patterns of interest). In other
words, the networks that have evolved for optimizing both performance (accuracy in
recognition) and cost (network connections) are more modular and evolvable (in the
sense of being adaptable to new tasks) than those optimized for performance only.
In a follow-up study by Mengistu et al. in [25], it is shown that the minimization
of the cost of connections also promotes the evolution of hierarchy, the recursive
composition of sub-modules. When not modeling the cost of connections, even for
tasks with hierarchical structure (e.g., a nested Boolean function), a hierarchical
structure does not emerge. These modeling frameworks are similar to Evo-Lexis
because the latter also aims to minimize the number of connections in the resulting
hierarchical network, and it is this cost minimization that provides the incentive for
reuse of intermediate components.

At the empirical side, prior work has established that technology evolves
similarly to biological evolution, through tinkering, new combinations of existing
components, and selection. For instance, a study of USPTO data gives evidence
for the combinatorial evolution of technology [40]. The authors find that the rate
of new technological capabilities is slowing down but a huge number of combina-
tions allows for a “practically infinite space of technological configurations.” By
considering technology as a combinatorial process, Kim et al. [24] uses USPTO
data to investigate the extent of novelty in patents. They propose a likelihood model
for assessing the novelty of combinations of patent codes. Their results show that
patents are becoming more conventional (rather than novel) with occasional novel
combinations.

8.2 Hourglass Architecture

A property of many hierarchical networks is the hourglass effect, which means that
the system receives many inputs and produces many outputs through a relatively
small number of intermediate modules that are critical for the operation of the entire
system [30]. This property is also one of the main themes investigated in our work.

Akhshabi et al. studied the developmental hourglass which is the pattern of
increasing morphological divergence towards earlier and later embryonic develop-
ment [2]. The authors conclude that the main factor that drives the emergence of
the hourglass architecture in that context is that the developmental gene regulatory
networks become increasingly more specific, and thus sparser, as development
progresses. Earlier, the same authors in [1] were inspired by the hourglass-
resemblance of the Internet protocol stack in which the lower and higher layers tend
to see frequent innovations, while the protocols at the waist of the hourglass appear
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to be “ossified.” The authors present an abstract model, called EvoArch, to explain
the survival of popular protocols at the waist of the protocol stack. The protocols
which provide the same functionality in each layer compete with each other and, just
as in [2], the increasing specificity and sparsity is what causes the network to have
an hourglass architecture. The Evo-Lexis model is neither layered nor probabilistic,
and so it is fundamentally different than EvoArch, but it also generates hierarchies
in which the nodes that represent shorter strings (equivalent to lower-layer nodes in
EvoArch) are reused more frequently and so they have a higher out-degree.

Friedlander et al. focus on layered networks that perform a linear input–output
transformation [17] and show that in such systems the hourglass architecture
emerges when that transformation is compressible. In their model, this is interpreted
as rank-deficiency of the input–output matrix that describes the function of the
system. A further requirement is that there should be a goal to reduce the number of
connections in the network, similar to Evo-Lexis. This rank-deficiency in the input–
output matrix resembles the case in which Evo-Lexis targets are not constructed
independently but through an evolutionary process that generates significant corre-
lations between different targets.

The hourglass architecture has been also investigated in general (non-layered)
hierarchical dependency networks, similar to Evo-Lexis, by Sabrin and Dovrolis
[30]. That analysis is based on identifying the core of a dependency network, as
the minimum set of nodes that cover at least a fraction τ of all source-to-target
dependency paths. We have adopted that approach, as well as the hourglass metric
proposed in [30]. Their study shows the presence of the hourglass property in
various technological, natural, and information systems. The authors also present
a model called reuse-preference, capturing the bias of new modules to reuse
intermediate modules of similar complexity instead of connecting directly to sources
or low complexity modules.

Despite this prior work, the interplay between the emergence of hourglass
architectures and cost optimization in hierarchical networks has not been explored
in previous research. Evo-Lexis identifies the conditions under which the hourglass
property emerges in optimized dependency networks.

8.3 Interplay of Design Adaptation and Evolution

A main theme in our study is the interplay between changes in the environment (the
targets that the system has to support) and the internal architecture of the system.

Bakhshi et al. investigate a network topology design scenario in which the goal
is to design a valid communication network between a set of nodes [5]. The authors
formulate and compare the consequences of two different optimization scenarios for
that goal: incremental design in which the modification cost between the two last
snapshots of the design is minimized, and optimized design in which the total cost of
the network is minimized in every increment. Focusing on the case of ring networks,
even though the incremental designs are more costly, the relative cost overhead is
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shown to not increase as the network grows. In a follow-up study, focused on mesh
networks, the same observation is made and further, the incremental design is shown
to be producing larger density, lower average delay, and more robust topologies [6].

Incremental design approaches are also considered in other contexts, such as
in deep neural networks (DNNs). Specifically, an important problem in machine
learning is how to transfer learned features of a deep network from one task to
another [39]. Transfer learning can be considered analogous to the way in which
new targets are added in an Evo-Lexis hierarchy: new targets (output functions)
are incrementally included in the Lexis-DAG (incrementally learned), by reusing
previously constructed intermediate nodes (features of intermediate complexity)
and then optimizing the part of the DAG between those nodes and the new targets
(learning the weights between the existing features and the new outputs).

The incremental design policies that we consider in this paper are studied in
computer science under the umbrella of online algorithms [32]: an online algorithm
finds a sequence of solutions based on the inputs it has seen so far, without knowing
the entire input sequence in advance. The main emphasis of research in online
algorithms is to perform competitive analysis, i.e., to derive worst-case theoretical
bounds between of the quality (or cost) of the solution of an online algorithm
relative to its offline counterpart that knows the entire input sequence [11]. The
incremental design approach in Evo-Lexis is an online algorithm but our focus is
quite different: we compare empirically the cost and topological structure of the
hierarchies produced by incremental design relative to an optimized (“clean-slate”)
algorithm that designs a minimum-cost hierarchy for the input sequence that has
been seen so far.

8.4 From Abstract Modeling to Specific Evolving Systems

The Evo-Lexis model is a quite general and abstract model and it does not attempt
to capture any domain-specific aspects of biological or technological evolution. As
such, it makes several assumptions that can be criticized as unrealistic, such as that
all targets have the same length, their length stays constant, the fitness of a sequence
is strictly based on its hierarchical cost, etc. We believe that such abstract modeling
is still valuable because it can provide insights about the qualitative properties of
the resulting hierarchies under different target generation models. Having said that
however, we also believe that the predictions of the Evo-Lexis model should be
tested using real data from evolving systems in which the outputs can be well
represented by sequences.

One such system is the iGEM synthetic DNAs dataset [36]. The target DNA
sequences in the iGEM dataset are built from standard “BioBrick parts” (more
elementary DNA sequences) that collectively form a library of synthetic DNA
sequences. These sequences are submitted to the Registry of Standard Biological
Parts in the annual iGEM competition. Previous research in [10, 33] has provided
some evidence that these synthetic DNA sequences are designed by reusing existing
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components, and as such, it has a hierarchical organization. In ongoing work, we
investigate how to apply the Evo-Lexis framework in the time series of iGEM
sequences, and whether the resulting iGEM hierarchies exhibit the same qualitative
properties we observed in this study through abstract target generation models.

9 Conclusion

We presented Evo-Lexis, an evolutionary framework for modeling the interde-
pendency between an incrementally designed hierarchy and a time-varying set of
output functions, or targets, constructed by that hierarchy. We leveraged the Lexis
optimization framework, proposed in the earlier work [33], which allows the design
of an optimized hierarchical network for a given set of sequences.

We developed the optimization framework, evolutionary target generation pro-
cesses, and evaluation metrics needed to study the emergence and evolution of
optimized hierarchies. We summarize the results of our study as follows:

1. Tinkering/mutation in the target generation process is found to be a strong
initial force for the emergence of low-cost and deep hierarchies. The presence
of selection, however, intensifies these properties of the emergent hierarchies.

2. Selection is also found to enhance the emergence of more complex intermediate
modules in optimized hierarchies. The bias towards reuse of complex modules
results in an hourglass architecture in which almost all source-to-target depen-
dency paths traverse a small set of intermediate modules.

3. The addition of recombination in the target generation process is essential in
providing target diversity in optimized hierarchies.

4. Hourglass-shaped optimized hierarchies are found to be fragile if the core nodes
(i.e., nodes with highest centrality) are perturbed, similar to the concept of
removal of hub nodes in scale-free networks.

5. We show that an hourglass architecture introduces a trade-off between the cost
of introducing new targets and the diversity between selected targets: hourglass
architectures are evolvable in the sense that they allow the introduction of new
targets at a low cost but they only explore a small part of the “phenotypic space”
of all possible targets. These are targets that can be constructed at a low cost
reusing the larger intermediate modules in the hierarchy.

6. Our results suggest the existence of major transitions and punctuated equilibria
in the evolutionary trajectory of hourglass-shaped hierarchies. The “extinction”
of central modules is found to be the main factor behind this effect.

7. The comparison between incremental design and clean-slate shows that although
the former is much more constrained, it has similar cost and it also exhibits
the hourglass effect under the proposed evolutionary scenarios. Despite these
similarities, each of these design policies results in a very different set of core
modules.
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Evaluation of Cascading Infrastructure
Failures and Optimal Recovery
from a Network Science Perspective

Mary Warner, Bharat Sharma, Udit Bhatia, and Auroop Ganguly

Abstract This chapter reviews the network science literature in order to create
a hypothesis for the recovery of infrastructure systems. We depict the cascade
of infrastructure systems through networks and simulate perturbations within a
singular topology and discuss how those impact multiple layers of an intercon-
nected network. The simulation compares and contrasts the proposed recovery
methods in the literature alongside true-to-life recovery, based upon case studies
throughout the United States. We explore the limitations of imposing a recovery
algorithm at various points in time during infrastructure failure. This chapter
aims to provide resources that account for a quantitative approach to cascading
infrastructure failures, as well as accounting for human nature, politics, perceptions,
and communication that may prove to be hurdles to optimizing recovery.

Keywords Critical Infrastructure · Infrastructure · Climate Science · Hazards ·
Resilience · Recovery · Network Science

1 Introduction

Network science has emerged as a way to study networks and better understand
the world around us. With the rise of resiliency literature and a transition away
from risk-based assessments alone, network science is proving to be a tool that
has great potential for understanding resilience. It is uniquely positioned due to
the differences that have arisen between traditional risk approaches versus risk
coupled with recovery to determine resilience. Although the field of network science
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is relatively new as compared to many other scientific fields and tools, several
approaches have emerged by which network science can be used. Infrastructure
and the interdependency that critical infrastructure systems have with one another
are critical areas of observation. Many communities heavily rely on critical infras-
tructure, which makes the resilience of infrastructure vital to their day-to-day
functioning. Network science is one tool that can be used to inform decision makers
on optimal strategies for increasing the resilience of specific infrastructure as well
as infrastructure systems.

2 Risk and Resiliency

2.1 Assessing Risk

Traditionally, engineers and scientists have aimed to mitigate risk, which has led
to a variety of approaches and frameworks to both understand and mitigate risk.
A traditional approach, often referred to as probabilistic risk analysis (PRA), has
been widely used as a tool to quantitatively analyze risk in industry practice and
policy. One of the first studies to examine PRA came from Kaplan and Garrick [1],
who chose to define risk in the form of triplets. These triplets differ throughout
the literature and academic fields. However, they are consistently chosen to be
three metrics for which a probability can be assessed; the intersection of these
probabilities determines the level of threat [1].

The International Panel on Climate Change (IPCC) has developed a risk frame-
work in which the intersection of three calculable metrics determines the level of
threat and the resulting actions to be taken. These actions can be classified into
two separate categories: (1) the calculation of risk, which is determined by the
combination of vulnerability, exposure, and hazards; and (2) the resulting actions
to be taken, which can be classified as adaption and/or mitigation [2]. Although the
precise calculations of each input and output may be measured differently depending
on the evaluator and the scope of the analysis, there are traditional ways in which
these calculations are performed. Hazards are typically measured as the probability
of any given hazard occurring, such as the probability of a 500-year flood hitting any
given region or the probability of an earthquake of a certain magnitude hitting that
same region. Vulnerability is measured in terms of value that could be lost, which
may be in the form of the number of human lives lost, ecosystem pricing, or the
cost of infrastructure. This particular evaluation metric is one of the most difficult
because it is both great in scope but simultaneously often results in assigning a
cost value in terms of dollars, which lends itself to some controversy as to whether
these value assignments accurately reflect true societal values [3]. Finally, exposure
is measured in terms of the probability of damage given a threat. If many exposed
assets exist and a hazard event is predicted to come, these assets are not vulnerable
if they will not be in the path of the hazard event, nor will they be vulnerable if they
are properly secured and reinforced.
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When there is a high probability of a hazard, many valuable assets, and a high
probability of damage as a result of the hazard, this results in severe risk [2]. The
IPCC has laid out two definitions of risk: key and emergent. This definition is
typically been associated with risks related to climate hazards, but it can be broadly
interpreted as well. Key risks and emergent risks are distinguished as those that are
extremely time sensitive and pressing due to imminent severity (key) as opposed
to those that develop over time and gradually pose an increased risk (emergent)
[2]. Although time-sensitive and pressing risks are important to immediately tackle,
emergent risks pose some of the greater possibilities for action and therefore must
not be ignored.

Once risk is determined, actionable items usually take the form of mitigation
and/or adaptation. Mitigation includes actions that defer risk or in some way
help to reduce risk. Mitigation is usually in the form of deflecting the hazard
event from occurring. Adaptation is the action of learning how to change the
system so that it can withstand the hazard itself. The IPCC Risk Framework
illustrates adaptation and mitigation separately but in conjunction with governance
and socioeconomic pathways [2]. Policies and economic incentives are often used
to reach the mitigation or adaptive goal, such as through cap and trade programs
to reduce extreme climatic change or stricter airport screening policies to reduce
manmade terror threats [2].

2.2 Gaps in the Risk Literature

The IPCC Risk Framework focuses primarily on climatic or natural events, with
a particular emphasis on climate change, but it has been widely adapted as a
standard for many scientists to best quantify inherent risk and response strategies
[2]. However, there are still many unresolved problems that come with evaluating
risk and creating responses to risk assessments, which include but are not limited to
the following: risk is done through a component-wise analysis, risk is threat-specific,
and risk is system-specific. Essentially, risk is confined to assessing particular areas
and particular activity within those areas and emphasizes pre-event preparation.

Throughout the world in which we live, we can witness the inherent intercon-
nectedness of most of our critical infrastructure systems. The U.S. Department of
Homeland Security has identified 16 categories of critical infrastructure, ranging
from the transportation sector to the food and agricultural sector, with an attempt to
capture all infrastructure on which we rely [4]. When performing a risk analysis
as outlined by the IPCC and others, the choice must be made between limiting
interconnectedness or including all connections but thus having an overly grandiose
scope in which specific implications are difficult to attribute and computational
time is high. For this reason, risk analysis has a tendency to require a specific
location and specific threat, and the calculations are performed component-wise in
the aforementioned style of the triplets [1].
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Fig. 1 A risk assessment framework that describes quantifiable ways to determine and calculate
the risk of climatic changes [2]

However, this approach is problematic for several reasons. First and foremost,
limiting location has action implications that may result in disjointed efforts to
mitigate or adapt. For example, the probability of a hazard and its degree of
impacts to Long Island, New York would also likely have impacts on downtown
Manhattan (New York) due to both geographic proximity as well as shared resources
and commuters between the two locations. Therefore, conducting a risk analysis
and developing unique plans of action should not happen in silos. This location
limitation can be scaled to greater or smaller location sizes due to the interconnected
nature of all communities. There appears to be no universal solution as to where and
how to draw geographic boundaries when disasters extend beyond any one confined
area. Additionally, by limiting an analysis to a specific threat or hazard event, it par-
ticularly skews the public preparedness and infrastructure reinforcement. A building
on the U.S. West Coast might be well-prepared for an earthquake because it is a
reoccurring phenomenon, but that does not mean this same building is well-prepared
for a fire, hurricane, terror attack, or cyber-attack. Each separate threat must be
analyzed and acted upon separately according to a standard risk analysis (Fig. 1).

2.3 Moving Towards Resilience

Due, in part, to the growing recognition of the limitations of risk analysis, the field
and concept of building and designing for resiliency has emerged. Resiliency takes
the components of risk analysis and couples those results for preventative measures
alongside a response to unpredictable, unforeseen, or cascading impacts. Due to the
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interconnectedness of our resources, infrastructure, and geographical boundaries,
the theory states that it is therefore nearly impossible to accurately predict and
appropriately respond to any and all risks.

Resiliency has taken on many different definitions in different contexts and
particularly in different fields, with one purported estimate of 70 unique definitions
[5]. The consistent underlying message is the ability to be strong and adaptive.
Therefore, for the purpose of agreement and consistency, this chapter has adapted
and applied resilience theory based on the definition of the National Academy
of Sciences: “the ability to prepare and plan for, absorb, recover from, and more
successfully adapt to adverse events” [6]. Through this definition, a risk analysis
can be determined or conducted prior to an event with the intention of mitigating or
adapting, as well as actively recovering when risk analysis fails to be preventative.

Nonetheless, events that have been deemed “black swan” or “grey swan” events
will always exist in the literature [7]. Black swan events are extremely unlikely but
cannot be said to have no probability of occurring; however, their slim likeliness
makes them very unpredictable. Grey swan events are very rare but still somewhat
predictable. In both such events, the impact of the hazard would be catastrophic
[8]. Take, for example, the terror attacks in the United States on September 11,
2001. This was a devastating event in which little information was known or could
be drawn upon to know the exact plans, timing, and approach to catastrophe. The
event was essentially unpredictable. Conversely, a 500-year flood—or a series of
500-year floods—is very rare, but data do exist by which we could have some
predictable power. In both scenarios, the small likelihood does not negate the large
impacts. Conducting a risk analysis and determining there is low risk because of
the extremely small probability does not help when such an event does occur.
The definition of resilience focuses on this addendum to the standard risk analysis
and measures a system or system-of-systems ability to recover once a catastrophic
event has occurred. This was best illustrated by Linkov et al. [9], who illustrated
perturbation impacts and optimal recovery through a curve in which functionality
changes over time (Fig. 2).

A resilient system is one with very limited, or perhaps no, boundaries [9]. When
conducting a risk analysis, as previously mentioned, specific areas and threats
are studied and the impacts are analyzed for each component, such as a specific
industry or specific infrastructure. Resiliency assumes that interconnections and
interdependencies are inherent and cannot be removed. Therefore, all must be
considered and any given perturbation—whether it be a natural disaster or manmade
attack—should have a minimal effect on the system’s ability to respond.

3 Network Science as a Tool

Because the definition of resiliency is very broad, there must be a tool to study such
a broad subject area. Although many tools do exist and have been proposed, the
emergence of network science has provided some of the greatest and far-reaching
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Fig. 2 A visualization of the
resilience curve that
highlights the loss and gain of
functionality over time [9]

effects. Rooted in graph theory and mathematical proofs, network science is a
fairly recent area of study [10, 11]. Network science, through the use of nodes and
links, takes a more abstract approach to understanding resiliency: a node can have
different mathematical attributes; however, to see node failure and cascading failures
throughout the network, no granular detail is needed. Details are captured through
mathematical applications, such as assigning weights or evaluating fitness. Impacts
to any given node, as well as impacts to the system, can be analyzed in this way
[10, 12].

The use of nodes and links allow for the theoretical approach to resiliency to be
explored. In addition, it provides an opportunity to create multi-layer networks that
represent the varying interplays between different systems. For example, although
the functionality of a transportation network—such as an airline network—is reliant
on the functionality of the infrastructure at each airport, it is also reliant on the
communication network and communication towers. If communication were to
be disabled, it would not solely impact that network but would cascade to other
networks that rely upon on it [13].

Through the use of network science, various disasters can be simulated using
real or hypothetical datasets. Nodes can be targeted at random, simulated terror
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attacks can occur, or nodes can be targeted for a certain feature. This allows the
system to be threat agnostic, and a simulation of its attack can be run. Additionally,
a simulation of real-time versus optimal recovery strategies can be run using
network science. When system-wide prioritizations are studied and made, optimal
recovery is possible because the interactions and dependencies amongst all nodes
are considered.

There are also many ways in which network science can be used as a tool
to understand the resiliency of critical infrastructure systems. Two common
approaches are a structural approach accompanied by a dynamic approach. These
two separate approaches rely on network science to evaluate resilience; however,
one approach focuses on low-dimensional models to capture a relatively static (non-
evolving) network, whereas the other uses system dynamics to define an inherent
assigned resiliency for any given complex network. Although each approach is
valuable, this chapter analyzes two case studies of seminal papers in each field to
highlight, compare, and contrast the approaches [14, 15].

4 Case Studies

4.1 Studying Resilience Curves

These case studies use the methodologies and work as outlined by Bhatia et al. and
Gao et al. [14, 15]. These two methodological approaches were selected because
they use the theory of network science to analyze similar infrastructure systems; in
addition, they serve as foundations for future work. The inherent goal and use of
network science for these approaches was to make the infrastructure systems more
resilient and analyze their robustness. Similarly, both papers defined resilience such
that the networks are able to recover after perturbations, which is in line with the
definition selected for the purpose of this chapter [14, 15].

The methodology and results from each study are described and compared using
open-source data. Although neither approach in itself is uniquely superior to the
other, each comes with its own caveats and contentions. As a result, we suggest
different applications and uses for each approach depending upon the desired
results, computational time, and data availability.

4.2 Data

For the purpose of comparison, the same data and network were used for each
approach to resilience. The data for this case study were gathered from the
University of Washington’s “IEEE 118 Bus Test Case,” which represents a portion
of the American Electric Power System in the Midwestern United States per records
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dated December 1962. The data were saved in the IEEE Common Data Format by
Rich Christie at the University of Washington in 1993. Figure 3 shows a diagram of
the IEEE 118 Bus Test Case.

4.3 Limitations of the Data

As outlined by Kinney et al. [16], there are limitations to studying a power grid
from a complex network analytical perspective due to the simplification of a nodes-
link network in which not all essential nodes serve the same function. If all nodes
necessary for functionality in the power grid are considered, then the network would
have to be able to distinguish between various node functions, such as the distinction
between substations and generators. In addition, the supply and flow of electricity
through the system constantly varies depending on user demand and the generator
from which the electricity is derived.

There are additional considerations, such as underground and above-ground
systems in which unique vulnerabilities exist. The network itself is functionally and
conceptually similar; however, an in-depth understanding of each node and each
classification and vulnerability incurred by a node must be considered. Therefore,
these data and the following model serve as a simplified proof-of-concept in order
to depict the general schema of the network [16].

4.4 Network Analysis of IEEE Bus Test Case

For this analysis, it was assumed that the nodes are independent of each other
and that each node serves the same function as the others. This assumption is a
simplification of the network topology, but nonetheless provides general insights
into the interconnectedness and interdependencies at play within the system.
Figure 3 shows the network graph of the IEEE Bus Test Case [19]. The analysis
was done using the NetworkX library for Python.1 The graph has a total of 118
nodes and 179 links or edges, with the nodes representing the busses and the links
representing the connections and reliance amongst them. The average degree of the
graph is 3.03. The diameter—or the maximum number of link lengths from one bus
to another—of the graph is 14.

Figure 4 shows a histogram of the degrees of nodes. The important insight here
is that the maximum degree of the graph is 8, but the network as a whole is largely
dominated by nodes of degree 2, which results in the average degree of the nodes
being 3.03. This also indicates that the nodes with 7 or 8 degrees are much more

1https://networkx.github.io/.

https://networkx.github.io/
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Fig. 3 The network graph

Fig. 4 Histogram of degrees
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connected and potentially important to the system as a whole. This hypothesis is
tested through network robustness and recovery.

4.5 Network Robustness

To check the robustness of the network, the different centralities were calculated.
The centrality of the network is a measure of the importance of the nodes, such as
how popular you are and/or how many people you know. Each node is assigned
a centrality metric for which robustness can be determined, such that targeted or
non-targeted attacks can be simulated. For example, see the following table from
Newman [17]:

Centralities Formula Importance

Degree centrality, CD CD(i) = ki

N−1 – How popular you are
– How many people you know

Betweenness
centrality, CB

CB(i) = ∑

j<k

djk(i)

djk
– Ability to be broken between groups
– Likelihood that information

originating anywhere in the network
reaches you

Closeness
centrality, CC

CC(i) =
[

N∑

j=1
d (i, j)

]−1

– Being close to all nodes

Here, N is the total number of nodes, ki is the degree of ith node, djk is the number of shortest paths
between j and k, djk(i) is the number of shortest paths between j and k that go through i, and d(i,j)
is the distance between i and j.

Based on the different measures of centrality, the nodes were removed in the
decreasing order of importance to simulate a targeted attack. This is based on the
assumption that a targeted attack would aim to disable the network as quickly and
effectively as possible while gaining the most attention. For example, a terror attack
that targets a node that is isolated or of very little importance will not gain much
attention, nor will it have a great impact on the network as a whole. The random
removal of a node, therefore, represents a non-targeted attack or one in which a
natural disaster or an unintentional failure occurred [18].

At every time step after a node was removed, the number of nodes in the
largest connected component (referred as the giant component) was measured. For
example, after the first targeted attack, everything connected to the removed node
would split off into several different large interconnected components. The new
giant component is the one in which the most number of nodes are still connected
[18].

From the graph depicted in Fig. 5, it is clear that removal of the first few important
nodes (under a targeted attack) impacts the robustness of the graph substantially.
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Fig. 5 Robustness graph for the IEEE Bus Test Case 118

It can be seen that an attack based on the betweenness centrality and closeness
centrality affects the network the most; in this case, the targeting of the most
connected node (highest degree) has slightly less impact. This procedure helps to
identify the most critical nodes and how their removal affects the functionality of
the network. Additionally, this process serves as a way in which decision makers
can aim to strengthen the resilience of the system as a whole by knowing which
nodes are of greatest threat to disabling the system.

4.6 Network Recovery

After any attack, whether it be targeted or random, it is of critical importance
to restore the functionality of the system. Figure 6 shows a case of the random
failure (left) that results in a complete loss of system functionality, followed by the
recovery path (right) to restore the network’s functionality after failure. To generate
the resilience profile of the IEEE Bus Test case, the recovery algorithms from the
Recovery-Master git repository2 were used [14].

This approach has been outlined and proposed elsewhere [14]. It assumes that
the network remains relatively static and the dynamics of the network do not
change throughout the analysis. This assumption can be challenged, but it is also

2https://github.com/udit1408/Recovery_algorithm.

https://github.com/udit1408/Recovery_algorithm
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Fig. 6 IEEE Bus Test Case resilience curves

important to consider the time period over which loss of functionality occurs. Loss
of functionality in the electricity grid network during an unprecedented storm may
be very swift, with little action that is able to be taken until the storm passes.
However, if the same analysis was conducted for the loss of biodiversity over the
course of hundreds of years, then there is ample time for the structure of the network
to change and adapt. For the purpose of this failure and recovery system, it remains
logical to maintain the underlying assumptions.

Additionally, the conclusions from this methodology indicate to decision makers
the best way in which to respond to the failure of a system. When all nodes
are disjointed, no longer connected, and therefore no longer able to provide any
functionality, the way in which the system recovers is important in order to return
it most efficiently to full functionality. If many different operators attempt to return
each individual node in the network to functionality without a targeted plan for
resource allocation, then more time will be wasted. In this scenario, as outlined in
Fig. 6, it is optimal to prioritize and allocate resources first towards nodes with
the highest betweenness centrality, because this results in the quickest return to
functionality.

4.7 Universal Resilience Curves [15]

The research done by Gao et al. [15] is unique from that of Bhatia et al. [14] in
two major ways. First and foremost, Gao et al. [15] had a goal of determining how
resilient any given network is, whereas the purpose of the research from Bhatia
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et al. [14] was to determine how best to recover a system after failure. Both studies
lend insights to one another and are not mutually exclusive from one another.
Additionally, the inputs and results from Gao et al. [15] take the dynamics of the
system into consideration, as opposed to performing an analysis primarily on the
basis of a singular topology. This requires more inputs, such as various equations
regarding how to calculate the resilience, as well as a thorough understanding of the
way in which the observed network acts, changes, and adapts.

The following research was conducted through the Gao et al. [15] study on
measuring universal resilience; the processes and a brief understanding of the inputs
are described. The authors were able to provide several equations and dynamics
of the data, which produced results that demonstrated how any given network
could respond to perturbation. These equations are highlighted and described as
follows:

• Transmission lines have a characteristic admittance, Y. To calculate current (I)
through each bus using Y and voltage at bus, V:

Ii = YiiVi −
N∑

k = 1
k �= i

YikVk, (1)

• To calculate load at each bus, S:

S∗
i = V ∗

i Ii , (2)

• To obtain a measure of system resilience, substitute Eq. (1) into Eq. (2), then
multiply both sides of equation by the complex conjugate and the quadratic
equation for voltage on each bus:

|Vi |4 −

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 Re (SiYii)

|Yii |2
+

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1

Yii

∑

k = 1
k �= i

YikVk

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

|Vi |2 + |Si |2
|Yii |2

= 0 (3)

Therefore, Gao et al. [15] concluded that if there is a real solution for Vi2, the
system is functioning. If not, then the only possible outcome is blackout state with
zero voltage and zero load. A nonzero solution exists if the discriminant is greater
than zero:
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√
|Yii |2

|Si | |Yii | − Re (SiYii)

∣
∣
∣
∣
∣
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∣
∣

1

Yii

∑

k = 1
k �= i

YikVk

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

− √
2 > 0, (4)

To obtain the simulations of the IEEE Bus Test Case, the network has to satisfy
Eq. (4), then apply perturbation (λ) at a single node (m), such that load at node m is
increased:

Sm → (1 + λ) Sm.

Then, new activity is calculated at each node. λ is increased iteratively until the
system fails at the critical perturbation, λc.

The simulation output is as follows:

1. For each load bus, a 5×M matrix is used, with M being the number of steps to
λc.

2. Variables returned are voltage amplitude, β effective, lambda, x effective, and
gamma.

The variable β was defined by Gao et al. [15] as representing the changing
environmental conditions and x effective represents the most effective state of the
system. Therefore, β effective is the conditions under which we create x effective.

In power systems, λc is highly dependent on the selection of the perturbed node
m. For some nodes, a load increase of λ ∼ 1 leads to collapse, whereas for others
the system maintains its resilience even up to λ ∼ 102—a discrepancy of two orders
of magnitude. This diversity exposes the difficulty in predicting a power system
breakdown [15].

Figures 7 and 8 were derived from running the data, equations, and code provided
by the study via open source documentation. Figure 7 shows the performance of
the power supply network under increasing demand. λ was increased until the
system reached collapse. λc is highly unpredictable. Figure 8 shows that mapping to
β-space led to much more predictable behavior, exposing the universality in power
system resilience and showing that β effective captures the natural control parameter
also for power supply systems. Both of the figures were created using the NuRsE
git repository.3

3https://github.com/jianxigao/NuRsE.

https://github.com/jianxigao/NuRsE
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Fig. 7 Performance of the
IEEE Bus Test Case under
increasing demand

Fig. 8 Predictable behavior
when mapping to β-space

4.8 Insights and Conclusions

Based upon these two approaches, it is evident that network science serves as a
valuable tool to inform the recovery of a system. Although traditional approaches
have focused on risk assessment and methods to avoid collapse, these risk analyses
do not typically serve to fully protect a system from failure when faced with extreme
or catastrophic events. In addition, through this research, it is clear that failure of
even one node can quickly cascade through the system.

We are unable to predict all events; therefore, even the best protections and risk
analyses cannot and do not ensure no-failure. Bhatia et al. [14] focused on a way
to most efficiently recover a system once it has failed. Although there are many
underlying assumptions in this case study, including the data and network structure,
the fundamental assumption is that the need for dynamic responses and shifts in the
system is unnecessary in this scenario. There is reason to believe that this analysis
also works well for similar infrastructure systems, particularly those faced with
relatively immediate threats and destruction.
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Although there is potential for degradation and dynamic shifts in infrastructure
that may allow for gradual adaptation, this chapter focuses on the risks that have
small probabilities of occurrence but large-scale impacts. These large impacts imply
that failure would quickly cascade, although this is not inherently true.

Simultaneously, every system has hidden universal patterns of resilience [15].
These dynamics could and should be considered for an optimal understanding of a
system’s ability to adapt and respond to perturbation. The origin of this universality
is the initial separation of the system’s dynamics and topology. Gao et al. [15]
also suggested potential intervention strategies to avoid the loss of resilience or
design principles for optimal resilience in systems that would be able to cope with
perturbations. This unique approach requires more computational time due to the
necessity of knowing the dynamics of the system to be studied, and the β effective
must be calculable. Although the dynamics and intricacies of many networks are
known, this does not hold true for all networks. Finding the unique input values
would require more data than is required by the approach in Bhatia et al. [14].

Therefore, it is safe to conclude that both approaches are of value. However, the
way in which each can be used depends on the desired outcome and the inputs that
would be required. Additionally, this recovery strategy [14] can be coupled with the
universal resilience patterns results [15] to observe the resilience parameters of any
given system, and then to study how to recover the system if it were to fail. One
approach indicates how to recover, with the end results providing insight into the
resilience of the network [14], whereas the other approach indicates the resilience
of the network, with the end results providing insight into how to recover. These two
approaches are therefore not mutually exclusive and can be coupled. The research
here highlights failures in a power grid network, but it can be applied to many other
networks within critical infrastructure and beyond.
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Network Dynamics



Automatic Discovery of Families
of Network Generative Processes
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Abstract Designing plausible network models typically requires scholars to form
a priori intuitions on the key drivers of network formation. Oftentimes, these
intuitions are supported by the statistical estimation of a selection of network
evolution processes which will form the basis of the model to be developed.
Machine learning techniques have lately been introduced to assist the automatic
discovery of generative models. These approaches may more broadly be described
as “symbolic regression,” where fundamental network dynamic functions, rather
than just parameters, are evolved through genetic programming. This chapter first
aims at reviewing the principles, efforts, and the emerging literature in this direction,
which is very much aligned with the idea of creating artificial scientists. Our
contribution then aims more specifically at building upon an approach recently
developed by us (Menezes and Roth, Sci Rep 4:6284, 2014) in order to demonstrate
the existence of families of networks that may be described by similar generative
processes. In other words, symbolic regression may be used to group networks
according to their inferred genotype (in terms of generative processes) rather than
their observed phenotype (in terms of statistical/topological features). Our empirical
case is based on an original dataset of 238 anonymized ego-centered networks of
Facebook friends, further yielding insights on the formation of sociability networks.
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1 Introduction

Networks have become over the last decades a key notion for modeling systems in
a wide variety of fields. This is especially so in social sciences where networks are
being introduced in an increasing number of contexts. On one hand, they are a type
of abstraction that lends itself very naturally to the representation of a great variety
of social structures and interactions. On the other hand, the information technology
revolution has been making networks both more explicitly present—for example,
due to the popularity of online social media—and easy to retrieve by researchers.

Being practitioners in the field of computational social sciences, we have been
concerning ourselves for some years with the challenge of deriving explanatory
models from such complex empirical data. Networks are typically generated by
phenomena that are non-linear in nature. The complex interactions between actors
and the emergent environment they create—represented by the network itself—
make it difficult to employ divide-and-conquer approaches, where the problem can
be divided into smaller parts that become tractable for human researchers to reason
about. In other words, it is not easy to intuit network formation principles which
translate into simple yet successful generative models. Our belief that it makes
sense to recruit computational intelligence to overcome this challenge led us to
develop a method to automatically propose plausible and understandable network
generators—mathematical expressions that describe how new links are formed in
the network, using only local variables (e.g., the current degrees of the pair of nodes
in a candidate connection). This is akin to a multi-agent system, sufficiently abstract
to lend itself to the description of a variety of phenomena. In the article where we
proposed the full method for the first time [73], we showed that it could be used to
discover plausible and simple generators for not only social, but also biological and
man-made networks.

In the last years, machine learning has been gaining popularity as a scientific tool
among many fields, partly because of the recent successes in deep learning. We use
a different approach, coming from the artificial intelligence branch usually known
as evolutionary computation. More specifically, we use a genetic programming
approach, given that we are evolving computer programs. There are two main
reasons for this choice: the nature of the problem and the goal of understandability.

Many machine learning approaches, including the training of neural networks
through back-propagation, require that an optimization criterion can be represented
as a convex function, for which an optimum can be found through some form of
gradient descent. The space of possible network generators appears too complex for
such a convex function to be defined. In this kind of situation, evolutionary computa-
tion provides a stochastic and heuristic-driven approach to find viable solutions. The
term “evolutionary” comes from its inspiration in Darwinian evolution. The simple
principle of preference for the propagation of the most promising individuals with
random mutations unleashes a type of intelligence that, although not human-like, is
distinctly creative. To illustrate this, we show in Fig. 1 an antenna created by NASA
that was designed by an evolutionary computation algorithm, aiming at optimizing
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Fig. 1 This unconventional
antenna design was generated
by NASA using evolutionary
computation to optimize its
radiation pattern [55]. It was
used in the ST5 spacecraft
(Image in the public domain)

its radiation pattern. We were interested in this ability to effectively explore a
complex search space while being able to entertain counter-intuitive solutions.

Another problem with many approaches such as neural networks is that they
tend to be black boxes. Even solving the convexity problem, they might produce
good results in replicating network morphogenesis, yet they do not lend themselves
to creating interpretable processes. We defined our genetic programs in a simple
way, and included in our method a preference for simpler programs. As we will see,
they can be translated into human-readable mathematical expressions. Our results
are thus comparable with classical models of network morphogenesis, for which
(human) scientists are, however, usually in charge of proposing plausible formation
processes.

In this chapter we provide a wider view of our work, and also share new results. In
the next section we discuss the last decades of research on the modeling of network
morphogenesis, while providing a systematization that aims to help situate our work
within it. We pay special attention to the recent history of evolutionary models, of
which we were not the only pioneers.

In Sect. 3 we provide a synthetic description of our method of symbolic
regression of network generators. For all the details, we invite the reader to refer
to our original article.

In Sect. 4 we present the results of novel research, aiming at finding families
of generators within a dataset of networks of the same nature—in this case, ego-
centered friendship networks extracted from Facebook. We were interested in
finding if symbolic regression would lead to sets of similar explanations. In other
words, while network families are traditionally based on phenotypical resemblance
[see, e.g., 12, 31, 35, 47, 75, 79], we show here that our approach can yield families
of generative processes at the level of genotype resemblance. We propose a new
way to measure generator similarity, allowing us to project all the generators into
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a two-dimensional embedding, where generators with similar behaviors tend to be
closer. With the help of this embedding, we were able to identify general patterns
that many of the generator expressions conform to. From a sociological perspective,
we thus also shed light on a variety of plausible mechanisms of formation of ego-
centered friendship networks. More broadly, the existence of generator families
further validates the behaviors embedded in the general mathematical expression
characterizing a given family since it is able to efficiently reproduce the shape of
several empirical networks.

2 Network Morphogenesis

To illustrate the complexity of the task of intuiting efficient generative principles, we
shall first review the existing efforts in this area. We thereby intend to show better
where our approach may fit in and benefit this state of the art. This will enable us
to emphasize the interface position occupied by our work, which aims at inferring
formation processes from the network while at the same time reconstructing it, using
evolutionary modeling to avoid positing prior assumptions on the shape of these
processes.

The modeling of network morphogenesis has generated a substantial literature
over the last decades, especially after the early 2000s when most real-world
networks were shown to exhibit peculiar connectivity and modular features. The
corresponding state of the art may essentially be organized according to two
key dichotomies: the first one relates to the target of models, the second one to
their foundations. More precisely, (1) models aim at reconstructing either network
evolution processes or morphology; and to that end, (2) they rely on assumptions, or
input, related either to processes or to morphology. This yields the straightforward
double dichotomy shown in Table 1, which includes a few canonical examples. Let
us start by reviewing each category of that dichotomy.

Table 1 Double dichotomy of canonical network modeling approaches, which generally aim at
reconstructing either evolution processes or network structure, and do so by relying either on
evolution processes or network structure

Reconstructing

Using Processes Structure

Processes Preferential attachment estimation,
link prediction, classifiers, scoring
methods, etc.

Preferential attachment-based generative
models, rewiring, cost optimization, social
simulation, agent-based models (ABMs),
etc.

Structure Exponential Random Graph Models
(ERGMs), p1, p∗, Markov graphs,
stochastic actor-oriented models
(SAOMs), etc.

Prescribed structure, subgraph-based
constraints, Kronecker graphs, edge swaps,
etc.



Automatic Discovery of Families of Network Generative Processes 87

2.1 Reconstructing Processes

We first focus on the understanding of the generative processes at the lowest level,
i.e., the rules governing the appearance or disappearance of nodes, and/or the
formation or disruption of links.

2.1.1 Using Micro-Level Processes

One of the most straightforward approaches to derive these rules consists in using,
precisely, data describing these very dynamics at the node and link level. In this
category, we find simple counting methods aimed at appraising the propensity of
links to form preferentially more towards nodes possessing certain properties—this
is the archetypal notion of “preferential attachment” (PA). In its most restrictive
yet most widespread acceptation, PA relates to the ubiquitous observation that
links tend to attach to nodes proportionally to their degree. Following [32], this
acceptation essentially stems from [16] and [56]. Several authors extended this
notion beyond degrees to deal with a variety of both structural and non-structural
features, including spatial distance [101], common acquaintances or topological
distance [59], similarity [61, 70, 86], or a combination thereof [28]. A more recent
stream of research took this approach the other way around by proposing normative
growth process and comparing them with empirical link formation. For one, [80]
introduced a model of link creation based on a concept of geometric optimization:
nodes are placed in a plane and new nodes may connect to a subset of existing nodes
by minimizing a geometric quantity. The model thereby reproduces connection
probabilities observed in a selection of real networks, rather than observing real
data to infer connection probabilities.

Approaches inspired by machine learning have also been proposed to abstract
processes by observing processes. They principally aim at predicting the appearance
of links by generalizing from past link creation. This stream is rather geared
towards prediction success rather than behavior estimation, i.e., efficiently guessing
which links will appear rather than providing explicit link formation rules [see 99,
for a discussion of the relative performance of these methods]. Scoring methods
are among the simplest of these approaches: [65] first introduced a predictor
function based on some dyadic feature (such as the number of common neighbors,
Jaccard coefficients, and Katz’ distance). This function produces a ranking on non-
connected dyads from the observation of an empirical network formed over the
learning period [t0, t]. The prediction task then consists in going through the dyad
list in descending order and comparing it with the links that empirically appeared
during a test period [t, t ′].

A large array of more sophisticated techniques have been used in this field, by
involving, inter alia, SVM classifiers [e.g., as proposed by 2], or more broadly
supervised learning methods [5], as well as matrix and tensor factorization [1] (see
[67] and [6] for introductory reviews of this type of endeavors). Some authors
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divide the network into modules, or blocks, in order to estimate a simple (and
local) probability of link formation within and between these modules, e.g., [45]
who define modules through stochastic blockmodeling [8], or [27] who use a
dendrogram to both build the module partition and compute the inter-module
connection probabilities. Overall, there has been an increasing attention to the
time-related and spatial variability of the prediction task by considering the local
neighborhood of nodes, both in a topological and temporal manner [89] and in
a semantic fashion (e.g., by enriching the set of prediction features with content
[88] or so-called sentiment analysis [102]). Also of note is the recent addition of
evolutionary algorithms to this toolbox: for instance, [19] evolve a weight matrix
describing the relative contributions of various similarity measures in predicting
new connections.

2.1.2 Using Macro-Level Structure

Link formation principles may also be inferred from the observed network topology.
The most common approach in this stream comes to econometric techniques aimed
at fitting a model whose parameters are associated with specific link formation
effects and which takes the whole network as an input.

Exponential Random Graph Models (ERGMs) famously belong to this class.
In all generality, they rely on the assumption that the observed network has been
randomly drawn from a distribution of graphs. The probability of appearance of
a given graph is construed as a parameterization on a choice of typical network
formation processes: be they structural (such as transitivity, reciprocity, and balance)
or non-structural (such as gender dissimilarity and homophily). The aim is generally
to find parameters maximizing the likelihood of the observed network. Each
parameter then describes the likely contribution of the corresponding category of
link formation process (e.g., strong transitivity, weak reciprocity). ERGMs have
been introduced by [52] through the so-called p1 model describing the probability
of graph G as p1(G) ∼ exp(

∑
i λivi(G)) = Πi exp(λivi(G)) where vi(G) denotes

a value related to the i-th process (e.g., transitivity) and the λi are the above-
evoked parameters. p1 assumes independence between dyads, which limits the
model to simple dyad-centric observables: principally, degree and reciprocity. It can
nonetheless be applied to a partition of the network into subgroups [37] or stochastic
blockmodels [8, 53], which posits a block structure, i.e., the fact that distinct groups
of actors, or “blocks,” exhibit distinct connection behaviors; parameters are thus a
function of blocks. [39] later introduced “Markov graphs,” which takes into account
dependences between edges and thus triads and simple star structures, and which
was subsequently extended as the p∗ model [9, 85, 97]. Further generalizations to
more complex graph structures have lately been proposed, e.g., for the so-called
multi-level networks [23, 95], which are essentially graphs with two types of nodes
and three possible types of links (two intra-type and one inter-type).

When longitudinal data is available, network evolution may be construed as a
stochastic process. Holland and Leinhardt [51] then Wasserman [96] proposed to
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appraise network dynamics as a (continuous-time) Markov chain. They assumed
that the probability of link appearance or disappearance depends on a limited set of
(static) parameters representing the contribution of various structural effects, such
as, again, reciprocity, degree. Networks observed at different points in time are
used to fit these parameters. Albeit not directly affiliated with this framework, the
approach of [82] proceeds in a similar fashion to determine the key factors guiding
attachment of firms in a biotech sector. Stochastic actor-oriented models (SAOMs)
further extend these ideas by introducing an actor-level viewpoint whereby actors
establish link to optimize some objective function [91]. Again, the parameters of
this function denote effects deemed important for link formation (or destruction).
These models also accommodate for some form of dyadic dependence, and take into
account non-structural features (including gender). They may include behavioral
observables [92] or rely further on machine learning techniques, e.g., by extending
SAOMs to a Bayesian inference scheme [58]. In practice, SAOMs may be used to
study non-structural effects linked to gender, racial, socioeconomic, or geographical
homophily, as demonstrated, for instance, in an online context on Facebook
friendship [64]. ERGMs and SAOMs assuredly share several traits, and it is also
possible to develop ERGMs in a longitudinal framework as temporal ERGMs (or
TERGMs), where the estimation for a graph at time t depends on the graph at t − 1
[48]. For a more detailed comparison between SAOMs and ERGMs, see [20, 21].

On the whole, the advantage of these approaches over the previous process-
based methods lies in the joint and concurrent appraisal of a variety of effects (each
statistical model may consider an arbitrary number of variables to explain the shape
of the observed network), with the drawback of reducing the contribution of each
effect to a scalar quantity.

2.2 Reconstructing Structure

The second part of the double dichotomy (right-side in Table 1) relates to under-
standing the morphogenesis of the network itself. It may again be roughly divided
into two broad categories, depending on whether approaches are based on a given
growth process or on the topology of the network itself.

2.2.1 Using Processes

A myriad of models have been proposed to reconstruct network structure from
normative assumptions. This is perhaps the most well-known and natural approach
in statistical physics. At the core of these approaches lies generally a master equation
or a master process featuring a certain number of key and oftentimes stylized
ingredients. These ingredients correspond to an ideally small subset of canonical
growth processes, defining the essential rules for adding—and, rarely, removing—
nodes, links, and most importantly towards which types of nodes. The goal often
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consists in reproducing the observed connectivity (such as degree distributions),
cohesiveness (such as clustering coefficients), or connectedness (such as component
size distributions).

One of the earliest successful attempts at summarizing network morphogenesis
with utterly simple processes consisted again in analytically solving simple PA
based on node degree [15]. Models based on a general notion of PA have been
extended in various directions: taking into account the age of nodes [33], their
Euclidean distance [44, 101], their intrinsic fitness [25], their rank [38], or their
activity [81]; formalizing a notion of competition between nodes to attract new links
[17, 34, 36]; copying links from “prototype” nodes [60] or using random walks [94];
introducing preferences for transitive closure [54] or for specific groups of nodes
(based on an a priori taxonomy [62] or an affiliation network [103]); or mixing
structural PA with semantic PA (e.g., [70] who introduces the so-called degree-
similarity model after observing that connected web pages are rather more similar,
or [87] who mixes group-based PA and semantic PA). Group-based PA may also be
found in models which describe the addition of groups rather than dyadic links, such
as [46]: the network evolves through the iterative addition of teams and thus links
between all their members, assuming a certain propensity to introduce newcomers
and repeat past interactions.

Another class of models is based on link rewiring. One of the simplest versions
was introduced by [98], who start with a ring lattice of fixed degree and reconnect
links with a given probability p. This led to a discussion of the resulting structure
in terms of low path length and high clustering coefficient, or “small-world.” [29]
later reproduced these two statistical features by adopting a distinct approach based
on a rewiring process aimed at optimizing a global cost function, in a way inspired
by [36].

Finally, a broad class of network models, especially in the social realm, falls
into the category of agent-based models as soon as they rely on a relatively
rich combination of processes. They generally aim at a specific application field
which, in turn, requires detailed assumptions: as such, they typically offer a good
combination of realism (they benefit from a stronger sociological grounding) and
tractability (their study generally requires to resort to simulation). Examples of
sophisticated models have been abundant in the social simulation literature from
early on and are now present in a wide array of works at the interface with statistical
physics and computational social science. It is way beyond the scope of this paper
to attempt an overview of the wide diversity of agent-based network models. Let
us nonetheless casually mention [40], who models the heterogeneous distribution of
papers authored by scientists in a given field, and further reproduces the clustering
of nodes in a semantic space, based on simple copying rules and the notion of
quanta of knowledge called “kenes,” by analogy with genes; [83], who build various
social exchange network shapes by combining various agent decision heuristics
and cognitive constraints; and [42] who reproduce blogger posting behavior and
citation networks through a combination of random-walk-based generators and
post-selection rules.
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2.2.2 Using Structure

Reproducing graph structure directly from graph structure essentially means show-
ing that some structural constraints entail the presence of other structural features—
for instance, by demonstrating that a certain number of connected components
or a strong proportion of some sort of triads follows from a given degree or
subgraph distribution. Early attempts precisely focused on prescribing a power-
law degree sequence [4] and, shortly thereafter, any degree sequence [77]. Several
methods have later been proposed in the case of more sophisticated constraints,
such as prescribed degree correlations [68], subgraph distributions [57], or recursive
structures [63].

A typical challenge consists in being able to sample the space of graphs induced
by a given set of constraints. Some approaches manage to provide a closed-form
expression of several average statistical properties of the induced graph space,
as has been done for the typical path length or average clustering coefficient by
[78]. When this is not possible, an alternative consists in sampling the graph space
through iterative exploration: the initial empirical graph is typically transformed
by swapping pairs of edges while respecting the original constraint [41, 84]. This
corresponds to a navigation in a meta-graph gathering all graphs of the target
space. Beyond simple constraints, exhaustive navigation is usually impossible. [93]
practically address this issue with an empirical sampling method denoted as “k-edge
switching,” iteratively swapping groups of k links in order to cover an increasingly
large portion of a given graph space.

2.3 Combining Both: Evolutionary Models

In all four positions of the double dichotomy, the challenge generally consists in
proposing one or several processes or constraints which will be key to explain
network formation—be it transitivity, centrality, homophily, etc. The importance
of such and such mechanism may be either assumed a priori, by looking at its
effect on the network evolution, or verified a posteriori, by confirming its existence
and appraising its shape during the network evolution. In all cases, intuition plays
a key role. Yet, creating these models requires insights that may sometimes be
unconventional.

To alleviate this dependence, evolutionary algorithms were recently used to
automatically propose sets of mechanisms inferred from the observed structure. It
differs from the above-mentioned methods in that it jointly uses the structure to
reconstruct processes and the processes to reconstruct the structure. More precisely,
network structure is used to devise link formation processes and, in turn and
iteratively, these discovered processes are precisely used to reconstruct the structure.

Some of the earlier approaches introduced template models based on sets of
possible specific actions (e.g., creating a link, rewire an edge, connecting to a
random node, etc.). Actions have been organized in various manners: first as
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a fixed chart, resembling the typical structure of agent-based models [71], as
a sequential list of variable size [13, 14, 49, 50] or, very recently, as a matrix
whose weights describe the relative contribution of each action [10, 11]. In all
these works, the evolutionary process aims at automatically (1) filling the template
model with actions and (2) fitting the corresponding parameters. As is typical
in evolutionary programming, it involves a fitness function which evaluates the
resemblance between the empirical network and networks produced by the evolved
model. Fitness functions rely on classical structural features (degree distributions,
motifs, distance profiles, etc.). Models are iteratively evolved along increasing
fitness values.

In parallel, we further proposed an original approach based on genetic pro-
gramming and aimed at inferring arbitrarily complex combinations of elementary
processes, construed as laws [72, 73].1 We first introduced a generic vocabulary
making it possible to describe network evolution in a unified framework, as an
iterative process based on the likelihood of appearance of a link between two nodes,
construed as a function on node properties in the currently evolving network (i.e., a
form of generalized preferential attachment)—relying on structural features such as
distance, connectivity, as well as non-structural characteristics. Representing these
functions as trees enabled us to apply genetic programming techniques to evolve
rules which are then used to generate network morphologies increasingly similar to
the target, empirical network.

This technique may be denoted as “symbolic regression,” for the goal is to use
genetic programming to evolve free-form symbolic expressions rather than fitting
parameters associated with fixed symbolic expressions: we automatically evolve
realistic morphogenetic rules from a given instance of an empirical network, thereby
symbolically regressing it. This strategy is inspired by the work of [90] who extract
free-form scientific laws from experimental data. We first applied our method
on kinship networks [72] which led to the publication of a much more general
manuscript [73]. One remarkable result consists of the ability to systematically and
exactly discover the laws of an Erdős–Rényi or Barabási–Albert generative process
from a given stochastic instance. Distinct, realistic, and compact laws for a variety
of social, physical, and biological networks could also be found.

We now describe in detail the core of the symbolic regression approach.

3 Symbolic Regression of Network Generators

We construe network generation as a stochastic process where edges are added
iteratively, following some probability-based preference. Our approach is embedded

1In terms of potential applications, this approach has been evoked in the context of human
connectome modeling [3, 18], as an alternative to conventional social simulation models [7] or
to appraise matrimonial preferences from genealogical networks [74].
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in a generalized preferential attachment framework centered around the notion of
generator which is a scoring function providing a way to prefer some link over the
others. A generator thus assigns a score sij to all edges (i, j). At each step of the
network construction, a random sample S of candidate edges is drawn, among which
a new edge is stochastically selected with a probability Pij proportional to sij such
that:

Pij = sij
∑

i′,j ′∈S

si′j ′
(1)

In practice, we forbid negative values and replace them with 0; in the special case
where all weights are zero, they are all set to 1 for mathematical consistency.

In other words, generators implement an (arbitrarily complex) form of PA
restricted to a random subset of links. Our core aim thus consists in designing a
process able to automatically discover score computation functions s which yield
networks comparable to a target empirical network. We construe generators as tree-
based computer programs which represent mathematical expressions. Tree nodes
are operators while leaves are variables and constants. Operators include classical
arithmetic operations {+, −, ∗, /}, general-purpose mathematical functions: {xy ,
ex , log, abs, min, max}, conditional expressions: {>,<,=,= 0}, and an affinity
function (ψ, which we will further describe below). Variables are classical monadic
or dyadic network measures which apply to the two nodes participating in the edge
(i, j) to be scored: centrality degrees of each vertex (ki and kj ), topological distance
between the two vertices (d),2 and their sequential identifiers (i and j , whose role we
also discuss later on). We limit here the presentation of our approach to undirected
networks with a fixed set of nodes, which fits our empirical material of Facebook
ego-centered friendship networks. Nonetheless, it can straightforwardly be extended
to directed networks (as in our original work) and the regular arrival of nodes.

This simple setting provides a language for describing generators and expressions
which model and produce non-linear and non-centralized growth mechanisms. We
now need a way to measure the similarity between the target network and generator-
produced networks. This will provide the basis for defining the fitness function of
our genetic approach. To this end, we first use a combination of distributions related
to various topological aspects of the network, such as degree and PageRank [24]
centralities, distance distributions, and triadic profiles [75]. We then compute
dissimilarities between the respective distributions: for centralities, we apply the
Earth mover’s distance (EMD) [66], for the other distributions, we simply use ratio-
based dissimilarity metrics. Of course, other metrics and dissimilarity measures

2To compute distances we use an heuristic based on a random walk, for (1) the exact computation
is computationally intensive and, what is more, (2) new connections are also likely guided by a
hop-by-hop navigation mechanism instead of an omniscient knowledge of the exact number of
hops separating two given nodes.
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may be used; we made these choices as a simple and intuitive trade-off between
tractability and topological realism, which happens to work well.

By minimizing these dissimilarity measures, we get closer to the target network.
This corresponds to a multi-objective optimization problem where some dissimilar-
ities have to be minimized to the possible expense of others. We adopt a simple
strategy by considering all dissimilarities in regard to the improvement over a
random network. In other words, we divide the dissimilarity between the target
network and a generated network by the dissimilarity between the target network
and the average of 30 Erdős–Rényi (ER) random networks of the same size (same
number of nodes and edges as the target). For a given metric, this means that if
the dissimilarity between the target network and the ER average is, say, 5 and the
distance from the target network to the generated network is 3, the ratio is 3/5.
The smaller the ratio, the better the improvement—a ratio of 1 corresponds to no
improvement. The evolutionary algorithm then aims at improving generators by
minimizing the highest of these ratios. This defines our fitness function: the lower
its value, the better the fitness.3

Our framework relies on a further feature: we allow node heterogeneity, i.e.,
we assume that not all nodes are (and thus behave) the same, irrespective of
their structural position. Some actors of a social network may, for example, be
intrinsically more likely to form ties with a specific class of actors. Here, we
simply take heterogeneity into account through the sequential index of the node
i ∈ {1, .., n}. These indices, considered as identifiers, may be used as a variable by
a generator, and may thus introduce a priori distinctions in actor types. As we shall
see, this element is key in the case of friendship networks where social circles play
an essential structuring role.

Consider, for instance, the generator s(i, j) = 1
i
. It induces a probability of

edge creation entirely determined by the identifier of one of its extremities. Nodes
have distinct a priori propensities to originate connections, distributed following a
hyperbolic curve. While integer identifiers may appear to introduce heterogeneity
in very simplistic way, they can be combined with the other building blocks in an
infinity of manners—and our results below show that indices were indeed used in
sometimes creative ways.

Furthermore, index-based heterogeneity may be leveraged to define generators
where certain vertices have natural affinity for each other. This brings us to the
affinity function ψ , which uses the modulo operation to partition the identifier space
into a certain number of groups. It relies on three operands: a constant, g, the number
of groups, and two expressions, a and b, which are conditional outputs. If target and
origin nodes i and j are equal modulo g, and thus belong to the same group (i.e., in
case of “affinity”), the function returns a and b otherwise:

3ER is admittedly a basic null model. Yet, opting for a richer model is likely to induce bias: for
instance, a fitness function based on a comparison with a configuration model would precisely
incorporate target network degree distributions, making it impossible to directly approximate them.
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ψg(i, j, a, b) =
{

a, if(i mod g) ≡ (j mod g)

b, otherwise,
(2)

From now on, we consider i and j as implicit variables and denote the function
as: ψg(a, b).

Combining all these elements into an evolutionary loop makes it possible
to generate plausible models for network generators, as summarized in Fig. 2.
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Fig. 2 Evolutionary loop including the synthetic network generation process. The outer part of
this figure describes evolution at the generator population level, while the framed part on the right
describes the evolution of a network for a given generator



96 T. Menezes and C. Roth

Several runs with the same target network may generate different models—although
they appear experimentally to converge onto similar behaviors. This leaves it
to practitioners to select among the various options, conceivably by involving
domain knowledge. A more objective consideration pertains to a trade-off between
simplicity and precision. Since generators are essentially programs, complexity may
be simply appraised through program length, an upper bound on the Kolmogorov
complexity [76]. We thus apply a quantified version of Occam’s Razor: all other
things being equal, we also keep the model with the lowest program length that is
within 10% of the best fitness.

4 Families of Network Generators

This approach provides the equivalent of an artificial scientist proposing plausible
network models, replacing the intuition of the modeler. Using a biological analogy,
it also makes it possible to discuss networks in terms of their plausible genotype
(i.e., generator equations) rather than phenotypes (i.e., a series of topological traits).

Phenotypical traits assuredly provide the basis for appraising the quality of struc-
tural reconstruction and, by extension, for defining fitness functions attentive to such
and such topological property [for an early yet already comprehensive review on
the possible properties, see 31]. They also provide a good foundation for comparing
networks with one another: a series of studies has indeed been devoted to defining
network families by relying on triadic profiles [75], canonical analysis of various
measures [31, section 19], adjacency matrix spectrum [35], blockmodeling [47],
community structure [79], hierarchical structure [30], communication efficiency
[43], and graphlets [100]. Note that this last method has been precisely used by
[26] to phenotypically categorize the empirically networks we are dealing with here.
Phenotypical traits have also been the target of evolutionary algorithms in [69], who
symbolically regress formulas describing the phenotype of the network, e.g., finding
an explicit expression for the diameter of various classes of networks as a function
of the number of nodes, links, or some eigenvalues of the adjacency matrix.

By contrast, symbolic regression enables the comparison and categorization
of networks based on their plausible underlying morphogenesis rules—as such a
genotypic categorization. The core of the present contribution consists in applying
our approach on a collection of networks of the same nature, unlike [73] which
addresses a limited number of networks of different natures—biological, social, and
man-made, both directed and undirected.

Here, we will exhibit families of generators, both in terms of their function
and in terms of their expression. Their existence further suggests that a single
mathematical expression and thus explanation may apply to a number of distinct
empirical networks. In turn, it is thus even likely to correspond to a widespread
class of actual generative behaviors.
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4.1 Protocol

We use 238 anonymized ego-centered networks of Facebook friends which were
randomly sampled from about 10,000 such networks collected in a large-scale
online survey organized within a collaborative project called “Algopol” (consenting
participants accepted to give access to their publication and network constitution
history). Unlike other social networks such as Twitter, with concepts of “following”
and “being followed,” Facebook friend relationships are reciprocal and thus undi-
rected. Furthermore, in ego networks, ego is by definition connected to every other
node, so its presence would likely lead to more complex generators without any
added explanatory power. We thus discard ego and all of their links.

For each network, we performed five evolutionary search runs. We then selected
the generator discovered by the run that attained the highest fitness. This is a simple
strategy to avoid low-quality local optima.

4.2 A Measure of Generator Dissimilarity

To identify families of generators and to visualize how similar they are in relation
to each other, we start by introducing a measure of dissimilarity between pairs
of generators. We understand the generator expression as the genotype and the
network created using the generator as the phenotype. As in biology, different
phenotypes can correspond to the same genotype. In our case, and beyond the
intrinsic stochasticity of the generative process, this is trivially true because we
can use the same generator to create networks of different sizes—both in numbers
of nodes and edges. It is also true that different genotypes can create similar
phenotypes. Notions of dissimilarity could be imagined on both the genotype
and phenotype sides. On the genotype side, this could be a measure of program
dissimilarity, for example, something akin to an edit distance. On the phenotype
side, it could be a comparison of generated networks. We opted for the latter: we
look for collections of generators that produce similar networks, and then check
these groups to see if they contain regularities or competing explanations. In the end
we propose a qualitative–quantitative analysis of families of generators.

Comparing networks is not a trivial task, and it becomes even harder for networks
that do not have the same number of nodes and edges. With our generators, we are
in a position to control this latter aspect. We use the generators to create synthetic
networks that do not have the varied topologies of the ones they were derived
from, but instead have a predetermined number of nodes and edges, facilitating
subsequent comparison. We chose to generate networks of 1000 nodes and 10,000
edges, deemed to be large and dense enough for comparisons to be meaningful, and
yet not so large that the task of comparing all pairs would become computationally
intractable.
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For the comparison itself, we employ a modified version of the fitness function
that was used during the generator discovery process. The fitness function for
undirected networks uses four distribution distance measures: kd for degree; PRd

for PageRank; dd for distance, and τd for the triadic profile. In that case, these
measures are used to compare a synthetic network against the target network. Here,
we will use them to compare pairs of synthetic networks created by the discovered
generators. Being n = 238 the number of generators we consider four n×n matrices
of pairwise distances, one for each measure: Dk , DPR , Dd , and Dτ . To make these
measures directly comparable, we produce normalized versions of each of these
metrics in the following way:

D′
i,j = Di,j − mini′(Di′,j )

maxi′(Di′,j ) − mini′(Di′,j )
(3)

The global dissimilarity function δ(i, j) is then simply the sum of the four
normalized distances between two generated networks:

δ(i, j) = D′
ki,j

+ D′
PRi,j

+ D′
di,j

+ D′
τi,j

(4)

Notice that the above normalization process can lead to different estimations of
the several distances depending on the direction because the normalization process
is not symmetrical. We therefore finally use a symmetrized dissimilarity function σ ′
defined as σ ′(i, j) = σ(i, j) + σ(j, i).

4.3 Two-Dimensional Embedding and Families

To produce a visualization of the landscape of generators according to the above
dissimilarity measure, we model these dissimilarities as distances in geometric
space. We apply a metric multi-dimensional scaling [22] algorithm4 (MDS) to map
them into a two-dimensional space. Distances between pairs of points are set to
match dissimilarity values as closely as possible.

We present the result of this two-dimensional embedding in Fig. 3.
We also performed a manual analysis, looking for patterns of similar generators

in mathematical terms, i.e., at the level of the explicit formula. We identified 11 such
strong patterns, and labeled every generator that conforms to one of them. We refer
to sets of generators that conform to such patterns as families (n′ = 91). The other
ones are described as unclassified (n′′ = 147).

4We used the metric MDS manifold embedding provided by the scikit-learn Python module.
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Fig. 3 Network generators mapped into a two-dimensional layout according to their pairwise
distances. Different colors and shapes indicate families of generators that were manually identified
as semantically similar. The legend shows the pattern that identifies each family



100 T. Menezes and C. Roth

This manual classification is presented in Table 2, along with the actual genera-
tors assigned to each family.5

The legend of Fig. 3 shows names that we gave to each family in Table 2,
based on their main common primary mathematical features (we detail the meaning
of these names below). A first interesting observation of this result is that the
families are distributed in spatial clusters. Visual inspection makes it quite clear that
mathematically close generators appear in similar regions of the 2D plane, some
being much more spread than others. Another interesting point is that, although
many generators are left unclassified, families are spread across most of the extent
of the overall spatial distribution.

In the middle-right region of Fig. 3 we can find two families that correspond
to well-known network models. The first is family ER, of the generators that
are defined by some constant value c. They assign the same probability to every
potential edge, and thus correspond to Erdős–Rényi random graphs. The second is
family PA, of the generators that are defined by the degree variable k. They assign to
each potential edge a probability that is proportional to the degree of either the origin
or the target, and thus correspond to pure preferential attachment networks. It is
interesting to observe that these two quintessential network formation explanations
show up in our generator set, albeit in a small quantity. Further, they are relatively
close to each other in respect to many other, more complex explanations. A third
family of very simple generators (family ID) is the one where the probability of
a potential edge is proportional to the sequential identifier of either the origin or
the target. These generators are defined by the expression i. These are the simplest
possible generators that take into account non-topological or exogenous features of
nodes. This family is situated between the ER and PA families. Two other families
exhibit expressions which roughly appear to be exponential versions of ID and
PA. We named them ID′ and PA′: they nonetheless behave very distinctly as the
exponential induces a strong winner-takes-all effect on the highest value of the main
variable (i or k). They are also situated in parts of the space distinct of their linear
counterparts.

Notice that for these simple cases, although many of the generators are exactly
the same, their positions do not coincide precisely in the spatial embedding. This is
due to the fact that the generative process is stochastic, and some random variation
is to be expected.

The first five families are very simple. The other eight have a very strong resem-
blance with one another: they all use the affinity function, based on some constant
number of affinity groups. This means that link dynamics is strongly influenced
by the existence of a certain number of classes of nodes which likely matches
underlying social circles; we denote this family as SC. A simple interpretation for
this is indeed that ego networks are a sample of social groups that ego belongs to.

5Given the undirected nature of these networks, we simplify the notation for generators that use
only variables from either the origin side or target side. Suppose we have the generator 3·ki + d;
here, this is equivalent to 3·kj + d, so we simply write 3·k + d.
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For example: school friends, family, work colleagues, and so on. It makes sense that
these groups are much more densely connected within themselves than between
them, as they correspond to separate social spheres. The affinity function provides
a very straightforward way of generating this type of linking behavior. The constant
number of groups present in the first parameter of affinity functions represents an
estimation of the number of social groups that ego belongs to. In our previous
work [73] we included one Facebook ego network in the diverse set of networks
used, and the generator found for it was also based on an affinity function. In fact,
under the typology we present here, it would be classified as an SC-ε generator.
From the biological, social, and technological networks analyzed in that work, the
Facebook ego network was the only one based on an affinity function with a constant
number of groups. This presents us with additional empirical evidence that this is in
fact a characteristic signature of ego-centered social networks.

To illustrate further these families, we provide a few visual examples of network
generators in Table 3. For each selected generator of a given family, we put along
the original empirical network and its reconstruction using the same number of
nodes. Spatialization follows a force-directed layout. The number of social circles
parameterized on ψ may be seen to be faithful to the original number of clusters in
the real network.

SC families differ in the linking behavior for nodes deemed to belong to the same
group. Some of them are purely based on topological factors (families α, β, γ , and
θ ), one only on exogenous factors (family δ), and some on a combination of both
(families ε, ζ , and η).

Table 3 Visual representation of some empirical ego networks (top row) with their reconstruction
(bottom row), for a selection of evoked families

ER 〈198〉 PA 〈190〉 ID 〈109〉 SC-g 〈97〉 SC-d 〈181〉 SC-h 〈128〉

(Real)

(Synthetic)

ER, PA, and ID are featured; each of the three main subfamilies of SC are also present (generators
97, 181, and 128 are all based on an affinity function of parameters 3, 2, and 5, respectively). Note
that three of the empirical networks (109, 128, 181) feature very small disconnected components,
gathering no more than a handful of nodes which have not been drawn here for clarity purposes
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The largest family is ε, which assigns probability of in-group links as a linear
combination of current degree (k) and exogenous factors (i). The second largest
family by number of generators found is family γ , and it is also the one that is the
most spread in the spatial embedding. In this family, the probability of in-group
connections is purely driven by topology, as an exponential of the current degree
of one of the nodes. We can think of it as a form of super-preferential attachment
within social circles—current popularity within the group is highly rewarded. For
most cases, the probability of connection between groups is given by a relatively
small constant, and for a few it is zero.

Some questions remain. Why are some generators so simple, and why are more
than half of the generators so diverse that they cannot be classified into families? In
an attempt to attain a better understanding, we created boxplots of the distributions
of node and edge counts for the underlying networks per family, as well as for all
generators, and for classified and unclassified generators. These plots are presented
in Fig. 4, as well as a stacked plot of family ratio per percentile of network density.
Some interesting facts are revealed.

Fig. 4 Top panel and bottom-left: Boxplots of numbers of nodes, edges, and densities for the
underlying networks of the various families, as well as all, unclassified and classified. Horizontal
dashed line indicates overall median. Bottom-right: Stacked plot of family ratio per percentile of
network density
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The families of simpler generators (ER, ID, ID′, PA, and PA′) have both
node and edge counts well below the median. This could indicate that these
simple generators correspond to cases where there is not enough data to form a
more complex theory. The simplest underlying behavior is captured, corresponding
precisely to the simple archetypal explanations of preferential attachment and
random behavior. Maybe these networks are small because the corresponding user
is not very active, or does not have many social connections, or maybe because
they joined recently and the networks are at their initial stages of growth. When the
latter case is true, our results seem to indicate that they may be assignable to a more
complex family when they develop more. Under this assumption, families SC paint
here the more relevant part of the picture of network growth dynamics.

The unclassified set corresponds to networks that are slightly larger than the
mean, both in numbers of nodes and edges. From this observation we formulate
two hypotheses. The first one is that the unclassified set really does correspond to a
complex variety of behaviors. It could be that, given one or two orders of magnitude
more ego networks, more families would be found. The second one is that it is more
difficult for evolutionary search to find simple generators for these larger networks,
but that given more runs, they would emerge.

In an attempt to test the second hypothesis, in Fig. 5 we plot the best fitnesses
achieved for the underlying networks, again per family, all generators, classified
and unclassified. Here we find that generators of the SC family attain slightly
better fitness (both for the median and worst cases) than generators of unclassified
networks. This lends some credence to the second hypothesis. Furthermore, we

Fig. 5 Boxplots of best
fitnesses achieved (lower is
better) for the underlying
networks of the various
families, as well as all,
unclassified and classified.
Horizontal dashed line
indicates overall median
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observed that for the entire SC family, the generator with a simple pattern was
only found once, and it always had the best fitness of the five runs. It seems thus
likely that, given more evolutionary search runs per generator, at least part of the
unclassified networks would fall into a family.

It is not possible to know if the families are exhaustive or the simplest that could
be found. Investing more computational power on this problem could always yield
simpler yet harder to find explanations, both for the classified and unclassified cases.
It could also show unclassified networks to belong to a known family, or to a new
family. As with many heuristic methods, the best we can do is trust some stability
criteria (e.g., stop at a certain number of runs without anything new being found).

5 Final Remarks

We believe that several interesting explorations can stem from the symbolic
regression of network generators. After the research work presented in this chapter,
we are left encouraged by the potential of a genotype-based approach in describing
families of generators. To move to a larger scale, it is necessary to go further in the
methods to identify similar generators at the semantic, i.e., mathematical level. This
is a hard but exciting computer science problem.

It would also be interesting to map the space of possible generators by searching
not for generators that target specific networks, but instead that attempt to generate
networks as divergent as possible from those already known. Combining this
exploration with family identification could lead to insights related to the families of
generators found in different scientific fields and types of phenomena, as well as to
families that do not correspond to networks found in any empirical data. This could
reveal potentially interesting network designs, as was the case with the evolved radio
antennas.

Our current method assumes homogeneous behavior across the network. Hybrid
methods combining community detection with symbolic regression could lead, in
certain cases, to more powerful explanations with different generator expressions
per sub-network.

Another important challenge is that of targeting dynamic networks. This will
require a fitness function that takes into account different stages of growth of a
target network, and that leads to generators that can be validated to produce not
only a plausible state of the network at a certain stage, but a plausible growth process
overall.
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Modeling User Dynamics in
Collaboration Websites

Patrick Kasper, Philipp Koncar, Simon Walk, Tiago Santos,
Matthias Wölbitsch, Markus Strohmaier, and Denis Helic

Abstract Numerous collaboration websites struggle to achieve self-sustainability—
a level of user activity preventing a transition to a non-active state. We know only
a little about the factors which separate sustainable and successful collaboration
websites from those that are inactive or have a declining activity. We argue that
modeling and understanding various aspects of the evolution of user activity
in such systems is of crucial importance for our ability to predict and support
success of collaboration websites. Modeling user activity is not a trivial task to
accomplish due to the inherent complexity of user dynamics in such systems. In this
chapter, we present several approaches that we applied to deepen our understanding
of user dynamics in collaborative websites. Inevitably, our approaches are quite
heterogeneous and range from simple time-series analysis, towards the application
of dynamical systems, and generative probabilistic methods. Following some of
our initial results, we argue that the selection of methods to study user dynamics
strongly depends on the type of collaboration systems under investigation as well as
on the research questions that we ask about those systems. More specifically, in this
chapter we show our results of (1) the analysis of nonlinearity of user activity time-
series, (2) the application of classical dynamical systems to model user motivation
and peer influence, (3) a range of scenarios modeling unwanted user behavior
and how that behavior influences the evolution of the dynamical systems, (4) a
model of growing activity networks with explicit models of activity potential and
peer influence. Summarizing, our results indicate that intrinsic user motivation to
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participate in a collaborative system and peer influence are of primary importance
and should be included in the models of the user activity dynamics.

Keywords Nonlinear dynamics · Activity dynamics · Peer influence ·
Dynamical systems · Collaboration network · Network analysis · Opinion
dynamics

1 Introduction

New collaboration websites continuously emerge on the Web. Users of such
communities work together towards a defined goal (e.g., building a knowledge
base), which sets collaboration websites apart from more common social networks.
Whereas some collaboration websites reach a sufficient level of user-activity to
sustain themselves, preventing a transition towards inactivity, many websites perish
over time or fail to establish an active community at all. The Q&A platform
StackOverflow1 is a successful example of such a collaboration website. Users
can ask questions on programming related topics or share their knowledge by
answering questions from other members of the community. The explicit goal of
the website states With your help, we’re working together to build a library of
detailed answers to every question about programming.2 A declining community
may struggle to meet this ambitious goal in an ever-growing subject field such as
programming. Thus, the success of the StackOverflow website relies heavily on
the active community collaborating to answer any open questions. However, we as
research community still do not fully understand the factors that drive the users to
participate and contribute to such websites. This understanding would allow us to
support the website operators in their efforts to build a successful website around a
flourishing user community.

Initial work in this field frequently concentrated on interactions between users on
websites, or how information spreads through the community [1–13]. Nevertheless,
to predict success and potentially support websites in their efforts to reach self-
sustainability, we argue that understanding as well as modeling the various aspects
of user dynamics that go beyond information spreading is of crucial importance.

One of the major problems faced by both new and existing collaboration
websites—such as Wikipedia or StackOverflow—revolves around efficiently identi-
fying and motivating the appropriate users to contribute new content. In an optimal
scenario, any newly contributed content provides enough incentive on its own,
triggering further actions and contributions. Once such a self-reinforced state of
increased activity is reached, the system becomes self-sustaining, meaning that
sufficiently high levels of activity are reached, which will keep the system active

1https://stackoverflow.com/.
2https://stackoverflow.com/tour.

https://stackoverflow.com/
https://stackoverflow.com/tour
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without further external impulses. StackOverflow is an example for a highly active
collaboration website that has already become self-sustained (in terms of activity),
evident in the steadily growing number of supporters and overall activity.

However, these self-sustaining states [14–17] are neither easy to reach nor
guaranteed to last. For example, Suh et al. [18] showed that the growth of Wikipedia
is slowing down, indicating a loss in momentum and perhaps even first evidence of
a collapse. Moreover, we generally lack the tools to properly analyze these trends
in activity dynamics and thus, cannot even perform tasks such as detecting these
self-sustaining system states. Therefore, we argue that new tools and techniques are
needed to model, monitor, and simulate the dynamics in collaboration websites.

In this chapter, we set out to shed further light on the complex user dynamics
in collaboration websites. More specifically, to investigate the success and failure
of collaboration websites, we are interested in the factors that govern growth and
decline of the activity in such communities. Moreover, we also aim at evaluating the
robustness and stability of collaborative websites.

Approach To this end, we present a diversified range of approaches, each tackling
different aspects of user dynamics in collaboration websites. We use empiric data
originating from various types of collaboration websites, such as StackExchange
instances and Semantic MediaWikis to report our findings.

We argue that there are two factors that influence the activity of any single
user in collaboration websites. First, the activity or rate of contributions of a
user is influenced by their intrinsic motivation to participate in a collaborative
community. This motivation may decay over time in a mechanism called activity
decay. A previously active user may lose interest in the community and contribute
less and less over time unless stimulated through other means. This behavior has
been observed in many different websites [17–19]. In another scenario the intrinsic
motivation of a user may remain constant or even increase with time. We summarize
this phenomenon as activity potential. Second, peer influence is a mechanism in
which users influence other members of the community. For example, when users
post a question to StackExchange and receive helpful answers from other users,
they may want to help others in the same way by answering other open questions.
Note, contributions by peers are not necessarily always positive. Internet trolls may
attempt to disrupt the community by adding detrimental content [20].

We discuss these influential forces and their interactions by (1) applying several
tests for nonlinearity on the activity time series of various StackExchange instances
to reveal complex user behavior. Thereafter, we (2) apply a dynamical systems
model to investigate the long-term activity decay (users losing interest over time)
and how this decay is countered by the peer influence from the other users.
Iterating upon this idea of peer influence we (3) conduct experiments investigating
the influence of trolls who spread negative activity through peer influence by
adding detrimental content to the websites, and lastly, we (4) present a generative
probabilistic model to create synthetic activity networks and study the emergence of
clustering in the underlying user networks.
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Contribution This chapter provides an overview of several methods and ideas
concerning dynamics in collaboration websites. Further, we shed light on some
factors contributing to their eventual success or failure. We summarize our main
findings as follows. Models incorporating the user-centered concepts of user
motivation and peer influence can capture crucial aspects regarding activity in
collaboration websites, such as system robustness and stability. Further, depending
on a particular community that we investigate the technical approaches and models
need to be carefully chosen.

2 Related Work

Analysis of Online Communities We know that, at some point in time, well-
established collaboration websites, such as StackOverflow, have become self-
sustained. There, sufficiently high levels of activity are reached, which will keep
the system active without further external impulses. However, many websites never
reach this state and those that do are not guaranteed to remain there indefinitely [14–
17]. With the continuous growth in the number of such websites, many researchers
have investigated these communities to better understand the dynamics governing
growth and decline. For example, Schoberth et al. [21] and Crandall et al. [22]
analyzed time-series data of websites to investigate the communication activities
and social influences of their users. Analyzing the roles different types of users play,
researchers characterized the users to infer properties about their communities as a
whole [23–26]. Using methods related to the work by Zhang et al. [27], multiple
authors studied the evolution-dynamics of Web communities and their underlying
networks [28–33]. These networks often serve as a basis for dynamical systems
models of the communities.

Nonlinear Time Series Analysis To obtain a better understanding of the properties
in high-dimensional dynamical systems, researchers have utilized nonlinear time
series analysis. Bradley and Kantz [34] provided a thorough overview of applied
nonlinear time series analysis. The works by Eckmann et al. [35] and Marwan et
al. [36] described the use of recurrence plots to visually analyze complex systems.
Zbilut and Webber [37, 38] further extended these visualizations with a method
called recurrence quantification analysis (RQA). These tools provided means to, for
example, investigate the chaotic behavior in stock markets [39, 40] or predict the
outcome of casino games, such as a roulette wheel [41].

Here, we present work employing various tests for nonlinearity to reveal latent
nonlinear behavior in collaborative websites and their communities.

Dynamical Systems and Activity Dynamics Dynamical systems in a non-network
context are a well-studied scientific and engineering field. Strogatz [42] and Barrat
et al. [43] provided an in-depth introduction to dynamical systems. Within the con-
textual scope of online communities, researchers primarily used dynamical systems
to analyze and understand the diffusion of information in online social-networks
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for purposes such as viral marketing [9–13]. Recently, in the context of activity
dynamics, Ribeiro [31] conducted an analysis of the daily number of active users
who visit specific websites, fitting a model that allows predicting if a website has
reached self-sustainability, defined by the shape of the curve of the daily number of
active users over time.

In this chapter, we present a model to simulate activity as a dynamical system
on online collaboration networks. Here, two forces, decay of motivation and peer
influence govern the activity-potential of users. Moreover, we describe work on how
these concepts facilitate the generation of synthetic networks. Online communities
becoming increasingly accostable to their users does not always lead to higher
overall activity. Internet trolls, for example, generate unwanted content [20, 44–48],
creating additional strain for others who attempt to keep the community healthy.

Thus, we present an extension to the previous model incorporating the idea of
trolls emitting negative peer influence and discuss how such negative activity can
impact the user dynamics in collaboration websites.

3 Datasets

The Web offers a multitude of ways in which people can communicate and
collaborate in a group. To capture some of this diversity, we utilize empirical
datasets stemming from different types of collaboration websites. Here, we provide
a general overview of the empiric datasets in our experiments, and how we extract
the user networks from the raw data.

StackExchange instances StackExchange is a network of currently 172 Ques-
tion and Answer communities. Here, users can post questions and other members
of the community can provide and discuss answers. Some of the most popular
instances are StackOverflow3 and the English StackExchange.4 We extract the
network by representing each user with a node and draw an edge whenever user
A replies to a post by user B. The full dataset from which we draw our networks
is publicly available.5 We denote these datasets with an SE suffix. For example,
we call the network extracted from the English StackExchange as englishSE.

Semantic MediaWikis The Semantic MediaWiki6 is an extension to the Media-
Wiki software and allows for storing and querying structured data within the
Wiki. We build the community network by representing each contributor with a
node and draw an edge whenever two users work on the same page. We collected
the data we use in our experiments from the live MediaWiki API, which is now
unavailable. However, a comprehensive dump of the Semantic MediaWiki is

3https://stackoverflow.com/.
4https://english.stackexchange.com/.
5https://archive.org/details/stackexchange.
6https://www.semantic-mediawiki.org.

https://stackoverflow.com/
https://english.stackexchange.com/
https://archive.org/details/stackexchange
https://www.semantic-mediawiki.org
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publicly available.7 We denote these datasets with an MW suffix. For example,
we call the network extracted from the Neurolex Semantic MediaWiki as
neurolexMW.

SubReddits A SubReddit is a community within Reddit for a specific topic.
While some of these communities act as recommendation platforms or Q&A sites
akin to StackExchange, others aim to facilitate a platform for open discussion of
various topics. We extract a network from a SubReddit by representing each user
with a node and draw an edge when one user replies to a post by another user.
These dumps from Reddit are publicly available.8 We denote these datasets with
an SR suffix. For example, we call the network extracted from the Star Wars
Subreddit as starwarsSR.

4 Complex User Behavior in Collaboration Websites

As a first step towards the goal of identifying factors indicating successful or
failing collaboration websites, we set out to identify complex (nonlinear) user
behavior present in the data. To reveal and characterize any hidden nonlinear
patterns, we construct the activity time series from the datasets of 16 randomly
selected StackExchange instances and conduct a set of nine established tests for
nonlinearity on them. This information allows for a decision on whether a standard
time-series model such as the autoregressive integrated moving average (ARIMA)
is sufficient to capture and predict activity or more complex approaches (e.g.,
dynamical systems) should be employed.

Activity Time Series We construct the activity time series from a dataset by first
measuring the activity—the number of questions, answers, and comments—per day.
To remove outliers in the data we smooth the time series with a rolling mean over a
7-day period. Finally, we calculate the sum of the smoothed activity over all users
per week, yielding a time series with one entry per week representing the activity in
the corresponding community.

Experiments and Results To reveal hidden nonlinear patterns in our activity time
series, we apply the following tests for nonlinearity on each dataset and report
the results: (i) Broock, Dechert, and Scheinkman test [49]; (ii) Teraesvirta neural
network test [50]; (iii) White neural network test [51]; (iv) Keenan one-degree test
for nonlinearity [52]; (v) McLeod–Li test [53]; (vi) Tsay test for nonlinearity [54];
(vii) Likelihood ratio test for threshold nonlinearity [55]; (viii) Wald–Wolfowitz runs
test [55, 56]; (ix) Surrogate test–time asymmetry [57].

We apply these tests without configuration changes, except for the Broock,
Dechert, and Scheinkman and Wald–Wolfowitz runs tests. As described in Zivot and

7https://archive.org/details/wiki-neurolexorg_w.
8https://files.pushshift.io/reddit/.

https://archive.org/details/wiki-neurolexorg_w
https://files.pushshift.io/reddit/
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Wang [58, p. 652], we compute the test statistic of Broock, Dechert, and Scheinkman
on the residuals of an ARIMA model, to check for nonlinearity not captured by
ARIMA. For the Wald–Wolfowitz runs test, since a run represents a series of similar
responses, we define a positive run as the number of times the time series value was
greater than the previous one [59].

To validate the plausibility of this categorization we compare the forecast
performance from three standard time series models, namely ARIMA, exponential
smoothing models (ETS), and linear regression models, with nonlinear models,
reconstructed from the observed activity time series.

Table 1 lists test results on the 16 StackExchange instances. Our results reveal
that on the one hand, there are StackExchange communities with mostly linear
behavior, such as englishSE and unixSE as only two tests suggest nonlinearity. On
the other, we see that for the communities bicycleSE, bitcoinSE, and mathSE the
majority of tests suggest nonlinearity.

A higher number of tests suggesting nonlinearity for a community indicates
a better fit for models based on nonlinear time-series analysis. The prediction
experiments and the Friedman test ranks [60] on datasets with mostly negative test
results (less than five) indicate that for these communities ARIMA and ETS models
result in the best fit. For the other datasets (more than four positive tests), nonlinear
models yield the lowest error.

The nonlinearity tests by Lee et al. [51] and Teräsvirta et al. [50] utilize neural
networks and appear to be more sensitive to the presence of nonlinear dynamics than
the other tests, since they test positive for nonlinearity four times more often in the
dataset group with five or more tests indicating nonlinearity than in the other dataset
group. We attribute the usefulness of these two tests to the well-studied ability of
neural networks to model nonlinear behavior.

In a second experiment, we use with recurrence plots [36] to analyze the
nonlinear properties for two exemplary StackExchange instances bitcoinSE and
mathSE. Both websites have a high number of positive nonlinearity tests.

Figure 1 illustrates the results for these two instances. Despite having the
same number of positive tests for nonlinearity, these visualizations depict different
patterns in their activity. In particular, Fig. 1b shows a higher density of recurrence
points in the upper left corner, gradually diminishing towards the lower right corner.
This structure reveals a drift pattern which is present even after linear detrending.

Findings We find that we can model activity on collaboration websites through
reconstruction of their underlying, dynamical systems, with some communities
showing more signs of nonlinear behavior than others. In particular, the knowledge
of any drift- or periodicity patterns in the data provides information on which
approach may yield the best accuracy.

For a more detailed discussion of the topic, refer to Santos et al. [61].
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Fig. 1 Recurrence plots (RP) for activity time series
This figure illustrates the recurrence plots of the (a) bitcoinSE and (b) mathSE websites. Figure (b)
shows a higher density of recurrence points in the upper left corner, gradually diminishing towards
the lower right; this is a sign of a drift in the activity time series, still present after removing the
linear trend. Both examples hint at non-stationary transitions in the activity time series

5 Activity Decay and Peer Influence

On collaboration websites contributing users tend to lose interest over time.
Wikipedia is a prominent example of such a website with a declining user-base [19].
To address this problem, we present a model based on dynamical systems where
the motivation of a user decays over time (intrinsic activity decay). Danescu-
Niculescu-Mizil et al. [25] were able to observe this behavior across different
online communities. However, in our proposed model, users also gain activity from
their neighbors through peer-influence to compensate for the intrinsic decay, which
builds upon the notion that people tend to copy their friends and peers [62–64].
This activity dynamics model is capable of capturing and simulating activity in
collaboration websites. We fit this model to a number of StackExchange instances
and Semantic MediaWikis to simulate trends in activity dynamics. Further, we
utilize the model to calculate a threshold indicating self-sustainability. Being able to
monitor and measure the stability of a website with regard to user activity indicates
how susceptible a system is to fluctuating members. For example, in a volatile
website, a small number of highly active users (emitting a lot of peer influence)
leaving could result in activity decreasing to the point of total inactivity.

Dynamical Systems The proposed model utilizes the formalism of dynamical
systems—meaning that activity is modeled by a system of coupled nonlinear
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differential equations. Each user in the system is represented by a single quantity
(the current activity), and the collaborative ties between users define the coupling of
variables.

The model builds on two mechanisms which postulate that with time users lose
interest to contribute and that, on the other hand, users are influenced by the actions
taken by their peers.

Modeling Activity We model activity dynamics in an online collaboration network
as a dynamical system on a network. Hereby, the nodes of a network represent users
of the system and links represent the fact that the users have collaborated in the past.
We represent the network with an n × n adjacency matrix A, where n is the number
of nodes (users) in the network. We set Aij = 1 if nodes i and j are connected by a
link and Aij = 0 otherwise. Since collaboration links are undirected, the matrix A

is symmetric, thus Aij = Aji , for all i and j .
We model activity as a continuous real-valued dimensionless variable xi (repre-

senting ratio of the current activity of user i over some critical activity threshold)
evolving on node i of the network in continuous dimensionless time τ . We write the
time evolution equation as follows:

dxi

dτ
= − λ

μ
xi +

∑

j

Aij

xj
√

1 + x2
j

. (1)

There is only one parameter in our dynamics equation, namely the ratio λ/μ.
This is a dimensionless ratio of two rates: (1) The Activity Decay Rate λ, which is
the rate at which a user loses activity (or motivation), and (2) the Peer Influence
Growth Rate μ, which is the rate at which a user gains activity due to the influence
of a single neighbor.

The ratio between those two rates is the ratio of how much faster users lose
activity due to the decay of motivation than they can gain due to positive peer
influence of a single neighbor. For example, a ratio of λ/μ = 100 would mean
that the users intrinsically lose activity 100 times faster than they potentially can get
back from one of their neighbors.

The master stability equation for our activity dynamics model is

κ1 <
λ

μ
, (2)

where κ1 is the largest positive eigenvalue of the graph adjacency matrix. Note
that this inequality separates the network structure (κ1) from the activity dynamics
(λ/μ). If this stability condition is satisfied, the fixed point x∗ = 0, in which there
is no activity at all (“inactive” system), represents a stable fixed point. This also
means that small changes in activity only cause the system to momentarily leave the
(attracting) fixed point until it becomes inactive again.
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Fig. 2 Activity simulation
The figure depicts the results of our activity dynamics simulation for the StackExchange datasets
and Semantic MediaWikis. In all our analyzed datasets, the simulated activity dynamics exhibit a
notable resemblance to the empirical activity. (a) bitcoinSE. (b) englishSE. (c) neurolexMW

Experiments and Results To estimate λ/μ for the empirical datasets we employ
an output-error estimation method. First, we formulate the estimation of the model
parameter as an optimization problem. As objective function, we use a least-squares
cost function. Second, we solve the optimization problem numerically, using the
method of gradient descent in combination with the Newton–Raphson method [65]
to speed up the calculations. Finally, we evaluate the accuracy of the ratio estimate
by calculating prediction errors on unseen data.

This prediction serves as a demonstration that our assumptions regarding the
Activity Decay Rate and the Peer Influence Growth Rate hold and allow us to
simulate trends in activity dynamics for given and real values. The simplifications,
such as the static network structure and average model parameters over weeks and
users, entail that any results cannot be used for an accurate prediction of the activity
in the system, and naturally limit the accuracy of our results. These limitations
are particularly visible whenever there are large and sudden increases in activity
in the collaboration websites. Figure 2 depicts the results of the activity dynamics
simulation. Overall, the results gathered from the activity dynamics simulation
exhibit notable resemblance to the real activities of the corresponding datasets. Note
how in some cases our simulation yields a higher activity increase than the real
data (e.g., Fig. 2c). A possible cause for this behavior is the static network structure
where users might be influenced by peers who actually join the network at a later
point in time.

Figure 3 depicts the value of the calculated ratios λ/μ (y-axis) for each week (x-
axis) of our activity dynamics simulation. If the ratio is higher than κ1, our master
stability equation holds, and the system converges towards zero activity (over time).
The amount of activity that is lost per iteration—and hence the speed of activity
loss—is proportional to the value of the ratio and the activity already present in the
network. In general, a higher ratio results in a higher and faster loss of activity.

If the ratio is smaller than κ1, the master stability equation has been invalidated
and the system will converge towards a new fixed point of immanent activity (cf.
Eq. 2). Robust systems are lively and high levels of activity, which are able to
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Fig. 3 Evolution of ratios λ/μ

The evolution of the ratios λ/μ (y-axes) over τ (in weeks; x-axes) for the StackExchange datasets
and for the Semantic MediaWikis. The smaller the ratio, the higher the levels of activity in Fig. 2.
Small variances in λ/μ over time indicate that activities of the systems are less influenced by the
activity of single individuals than they are by peer influence. (a) bitcoinSE. (b) englishSE. (c)
neurolexMW

keep that activity even in the cases of small unfavorable changes in the dynamical
parameters.

Note that one advantage of our model over other existing approaches, such as
autoregression, is the interpretability of the ratio λ/μ. For example, a ratio of
4 means that users intrinsically lose activity four times faster than they can get
back from one of their peers, while the coefficients of the autoregression lack such
interpretable characteristics. Further, using the concept of dynamical systems we
can represent the underlying mechanisms in a closed form. This allows for further
detailed analytical inspections, such as a linear stability analysis, which is much
harder, if not impossible, to conduct for other models (e.g., agent-based models,
autoregression or more complex models based on dynamical systems).

Practical Implications Using our proposed model, we can characterize networks
based on their susceptibility to changes in activity (referred to as Activity Momen-
tum in [32]). Hence, community managers could use the proposed model as
indicator for the robustness of their collaboration website with regard to its activity
dynamics.

Further, we can characterize the potential of a collaboration network to become
self-sustaining by comparing the calculated ratios of λ/μ with the corresponding κ1
and the susceptibility to changes in user activity of the collaboration network. If the
ratio is below κ1, our master stability equation is invalidated, pushing the system
towards a new fixed point where the forces of the Activity Decay Rate and the Peer
Influence Growth Rate reach an equilibrium so that the network converges towards a
state of immanent and lasting activity. If such a state is reached combined with a low
susceptibility to changes in user activity, the corresponding collaboration network
has reached critical mass of activity and has become self-sustaining; no external
impulses are required to keep the network active.

Of course, in real-world scenarios, activity will not last forever without providing
additional incentives (e.g., user profile badges displaying support or expertise),
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as interest (and thus activity) in a system potentially decays over time. As a
consequence, this would first result in an increase of μ and inevitably, with a
sufficiently large μ, the collaboration network would return to its stable fixed
point, once our master stability equation holds again, and activity would once more
converge towards zero.

Findings Using our proposed model to simulate activity dynamics, we show that
the overall activity in collaboration websites appears to be a composite of the
Activity Decay Rate and the Peer Influence Growth Rate. A first analysis of the
model suggests that activity dynamics in collaboration networks have an obvious
and natural fixed point—the point of complete inactivity—where all contributions
of the users have seized. However, by slightly manipulating the parameters in our
model we show that it is possible to destabilize the fixed point, resulting in a
potential increase in activity.

For a more detailed presentation and discussion of factors such as system mass
and Activity Momentum, see Walk et al. [32].

6 Negative Activity in Collaboration Websites

While most users in collaboration networks contribute by adding helpful content—
in the case of StackExchange by asking questions or providing helpful answers—
Internet Trolls post unwanted content for their own amusement [20]. We investigate
such unwanted users and how they affect collaboration websites by adapting the
activity dynamics model presented in Sect. 5. Thus far, we considered peer influence
as a purely positive force. In this proposed modification, introduced trolls emit
negative activity to their neighbors. As an example, a troll may post a nonsensical
question on StackExchange, or deliberately post wrong answers. Other users now
have to spend time to either report or remove the unwanted post. We argue that
this consumes the time these users could have potentially used to answer an open
question. Understanding how trolls can disrupt the activity in collaboration websites
can be used to derive strategies to prevent or minimize their impact.

Modeling Troll-Users We model the impact of disruptive content in the form
of negative activity. A troll-user emits negative activity to their connected users
and simultaneously receive productive positive activity as their neighbors try to
compensate for it. Further, we argue that trolls commit to their cause and therefore
do not lose motivation on their own. Thus, we disable the motivation decay for these
users. Within a network, we define the total number of normal users as N and the
number of trolls as T . Thus, N remains constant regardless of how many trolls enter
the network.

Whenever a troll enters a network at the beginning of our experiments, they
connect to a number of existing users (α). We define two methods for this process;
First, with the random strategy the troll connects to other users uniformly at random
(P = α

N
). To achieve this, the troll may extract a list of all users within the network
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Fig. 4 Effects of trolls on total system activity
This figure depicts the impact trolls have for the first weeks after their introduction to the network.
When trolls connect to highly active users (informed strategy) the effect on the systems activity
is minimal, whereas with the random connection strategy we observe a noticeable impact on the
activity in the network. (a) englishSE. (b) neurolexMW. (c) starwarsSR

and then perform a random selection. Second, with the informed strategy the troll
specifically targets and connects to highest degree users. Here the troll observes the
collaboration website for some time before selecting their targets according to this
strategy.

The negative activity of a troll absorbs the positive activity spread via peer
influence. Note that, when a normal user receives enough negative activity, their
own activity can become negative for some time. Whenever the incoming peer
influence received by a troll exceeds their outgoing activity, the troll is defeated,
and we remove their corresponding node from the network.

Experiments & Results In this experiment, we aim to determine how trolls affect
the overall activity in networks. For the initial 39 weeks we calculate the activity
within a network unaltered (akin to the model in Sect. 5). After this point, we
introduce the troll-users and observe their impact. For each troll, we set their starting
activity at week 40 to −5 and conduct each experiment twice. Once, with trolls
following the random strategy, and once with informed connection strategy. Further,
we fix the parameter α (number of connections per troll) to be equal to the mean
degree of all existing users. In total, we add trolls equal to the amount of 0.25%,
0.50%, and 1.00% of existing users (N ) and investigate their initial impact.

Figure 4 illustrates the simulated system activity for the first 3 weeks after we
add the trolls to the networks. Our results suggest that trolls connecting to highly
active users do not affect the overall activity in the network. We attribute this to the
peer influence emitted by the troll being comparably insignificant. However, when
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we connect the trolls at random, users are more heavily influenced. A sporadic
contributor may lose interest upon exposure to trolls. Small, but well-connected
networks may lack a sizable body of casual users. Figure 4b illustrates such a
network (neurolexMW). Due to this strong structure, newly introduced trolls fail
to disrupt the system regardless of their connection strategy.

Findings Up to a threshold, highly active users can compensate for the negative
activity trolls emit, whereas random users can be more susceptible and may even
temporarily spread negative content on their own further reducing the activity
in a network. Below this threshold, the negative activity is nullified over time.
However, once enough trolls connect to the highly active users within a network
and overwhelm their positive activity, the networks collapse rapidly, ending all
productive contribution.

Based on these findings, website administrators may entrust highly active users
to moderate their communities. These moderators would be instructed on how to
deal properly with occurring trolls, making them less susceptible for distractions
(unproductive activity). Additionally, moderators could support peripheral users
targeted by trolls and handle other detrimental factors, such as spam bots or
illegal content. Offering incentives, such as additional functionality on their website
or even money, could help motivating users to become moderators. A different
approach would be to use machine learning techniques to automatically detect
occurring trolls, for example, by identifying fake profiles [66] or by inspecting
textual contents of comments [67, 68].

For further discussion of this subject and experiments on how trolls affect and
infect users, see Koncar et al. [69].

7 Peer Influence in Temporal Networks

Thus far, we have represented the collaboration websites and their user networks in
a static form. However, in the real world, new users frequently join the communities,
while other members leave after a while. We approach this dynamic user-base
by presenting a generative model to create synthetic networks. Existing network
generators incorporating the concept of activity often solely consider the intrinsic
activity potentials as sources of activity [70, 71]. But, we have shown in the previous
sections that interaction between users is an important factor to consider. Thus, we
present a generative model that incorporates peer influence (similar to Sect. 5) and
tie strength (how frequent two users interact) as explicit mechanics. With this model
for generating synthetic networks we are able to explore new ideas and conduct
experiments before verifying them on empiric networks.

Generating Activity Networks We model the influence that a node receives from
their neighbors in each time step (iteration t) as the increase in the activity potential
according to the number of active neighbors in the previous iteration (t − 1) and the
tie strengths.
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Fig. 5 Illustrative model example
The highlighted node in (a) becomes active and interacts with the second highlighted node in (b),
reinforcing the tie between them. The outlines in (c) depict the additional peer-influenced activation
probability in the next iteration

The equation for the peer influence for a node vi is:

pi(t) = αi(t) q
√

α2
i (t) + θ2

, (3)

where αi(t) is the weighted fraction of active neighbors and q is the parameter
for the maximum peer influence. Further, (θ > 0) denotes a critical threshold,
determining the required fraction of active neighbors to set the peer influence
probability close to this maximum.

Any node can become active based on either their own intrinsic activity or on the
peer influence. When they do they select a new node as the partner for the interaction
and either create or reinforce the tie between them.

The resulting network exhibits structures seen in real-world networks, due to the
partner selection, which follows a set of rules. First, a memory effect as described
by Karsai et al. [72] (depending on the number of currently existing ties for the
node and the memory strength parameter c) defines the probability to reinforce
an existing tie. More precisely, this probability is equal to c

ki+c
, where ki is the

number of current neighbors. Second, if a node wants to form a new tie, it tries to
perform a cyclic closure [73]—by interacting with a randomly selected neighbor
of a neighbor—with the probability p�, or a focal closure [74], which emulates
homophily (i.e., similar users connect to each other). The latter is performed with a
probability of 1 − p�, or if there are no suitable candidates for a cyclical closure.
This is, for example, the case if a node becomes active for the first time.

Figure 5 illustrates these mechanics. Figure 5a describes the network at iteration
step t = x, where the numbers along the edges represent the tie strengths and the
site of the nodes indicates their intrinsic activity potential. In this example, the
highlighted node (top left) becomes active. It selects the newly highlighted node
(left) in Fig. 5b as the partner, which becomes active as due to this interaction. As
a result, they reinforce the tie between them. At the start of the next iteration, the
nodes receive peer influence from their neighbors active in the last iteration (outlines
in Fig. 5b). Note how the node in the top right corner receives a high amount of peer
influence due to its strong ties.
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Fig. 6 Average clustering coefficient (C(t)) evolution
This figure depicts the average clustering coefficient (y-axis) at each iteration step (x-axis) over
various values for the maximum peer influence (q). Higher values for q result in stronger peer
influence effects. Note that the value of q also affects the time until convergence. Figure (b)
illustrates the timespan where the C(t) is maximal. (a) Visualizes the full simulation whereas
(b) is a cutout where C(t) is maximal

To prevent the network from becoming fully connected after a sufficient amount
of iterations, every node has a probability to be removed. In this case, we delete the
node from the network and introduce a new node (without any existing ties). As a
result, the total number of nodes in the network remains constant.

Experiments and Results We generate synthetic networks with 5000 nodes over
75,000 iterations with varying values for the maximum peer influence parameter
(q). To ensure the formation of adequate community structures in the network we
set p� = 0.9 and the probability for node-deletion to pd = 5 ∗ 10−5. Further, we
fix the parameter for memory strength to favor new ties (c = 1) and fix the critical
peer influence threshold to θ = 0.1 to reflect the intuition that a small number of
active neighbors is sufficient to affect the activity of a node to a large extent. Finally,
we run each configuration 40 times to account for statistical fluctuations and report
average results.

Figure 6 illustrates these results. For the first few hundred iterations, the
clustering coefficient (C(t)) is low but rapidly increases until it reaches its maximum
between iteration t = 3000 and t = 5000. After this peak, it slowly declines until the
network eventually reaches a stable state. Further, higher values for q increase the
speed at which the maximum is reached but also result in a lower average clustering
coefficient once the network is stable. As the peer influence mechanism increases
the activity in the network, especially in already formed communities, increases and
active nodes motivate their neighbors to become more active.

Findings Peer influence is an effective mechanism for the creation of synthetic
activity networks. We present a model creating networks that exhibit similar
community structures to real-world networks, such as triadic closures (three users all
connected with each other) [70]. Further, we show that during the first few iterations
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the average clustering coefficient increases, indicating that during the early stages of
a network, activity is concentrated on a core of highly active users. After reaching a
peak activity starts to spread out more evenly throughout the system, indicated by a
slow and steady decline of the average clustering coefficient.

For further details and an analysis of inter-event time distributions (burstiness),
see the full paper on the topic by Wölbitsch et al. [75].

8 Conclusions

In this chapter, we asked the overarching question what factors govern growth and
decline of activity in collaboration websites and how to evaluate their robustness
and stability.

To this end, we presented and discussed various approaches to investigate a range
of aspects influencing the user dynamics in collaboration websites. First, we used
tests to assess the presence of complex user behavior by analyzing the nonlinearity
of activity time series. Second, we presented a model based on dynamical systems,
incorporating the concepts of loss of motivation (activity decay) and users affecting
their neighbors (peer influence) to model and simulate activity in a collaboration
website. Third, we introduced a modification to this model to simulate the impact
of trolls (spreading negative peer influence). Fourth, we utilized activity potentials
and peer influence in a generative model to create synthetic activity networks.
Collectively, we summarize our key findings as follows.

Complex user behavior Our results suggest that user activity varies across
different collaboration websites with some communities exhibiting more signs
of nonlinear behavior than others.

Activity Decay and Peer influence We find that intrinsic activity decay and
peer influence serve as viable mechanics to capture and simulate activity in
collaboration websites. Further, we can employ this peer influence to investigate
the impact of troll-users on a system.

Activity Potentials Lastly, we can extend the concept of user motivation through
the mechanism of activity potentials and utilize this concept in combination with
peer influence to generate synthetic activity networks that exhibit structures also
present in their real-world counterparts.

The work we present in this chapter extends the body of existing research on
dynamics in collaboration websites and may serve as a base for further research to
predict the eventual success or failure of a collaboration website at an early stage.
Finally, we demonstrated how the viability of an approach to analyze user dynamics
in collaboration websites depends on the investigated aspect and the information
available in the data.
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Interaction Prediction Problems in Link
Streams

Thibaud Arnoux, Lionel Tabourier, and Matthieu Latapy

Abstract The problems of link prediction and recovery have been the focus of
much work during the last 10 years. This is due to the fact that these questions
have a large number of practical implications ranging from detecting spam emails,
to predicting which item is selected by which user in a recommendation system.
However, considering the highly dynamical aspect of complex networks, there is a
rising interest not only for knowing who will interact with whom, but also when.
For example, when trying to control the spreading of a virus in a population, it is
important to know whether an individual is bound to have a lot of new contacts
before or after being infected. In that sense, this question is located at the crossroad
of link prediction and another family of problems which has been widely dealt
with in the literature, that is, time-series prediction. We name it the interaction
prediction problem in link streams. It calls for the definition of specific features,
strategies, and evaluation methods to capture both the structural and temporal
aspects of the interactions. In this chapter, we propose a general formulation of
the problem, consistent with the link stream formalism, which formally represents
the streaming sequence of interactions between the elements of the system. Using
this framework, we discuss the formulation of the interaction prediction problem
and propose possible strategies to address it.

Keywords Link stream · Interaction prediction · Link prediction · Time-series
prediction

1 Introduction

Analyzing interactions over time plays a key role in many contexts: recom-
mender systems (who buys which product and when), contacts between individuals
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(message exchanges, physical proximity, or phone calls, for instance), and transac-
tion analysis (like money or data transfers) are typical examples. As a consequence,
much effort is devoted to the analysis of such data with approaches like temporal
networks, time-varying graphs, or link streams [2, 4, 6].

Predicting future interactions is a crucial question in all these contexts, but the
problem is traditionally addressed by merging interactions into a graph or series of
graphs, called snapshots [7, 9, 12]. This has the key advantage of building a bridge
with the powerful formalism and tools of graph theory, but at the cost of important
information losses. More importantly, we argue that this approach misses interesting
variants of the problem itself.

The goal of this chapter is to deepen our understanding of these interaction
prediction problems. To do so, we formalize them within the link stream framework,
which makes it possible to fully capture both the temporal and structural nature of
data. This leads to several meaningful problem definitions that raise quite different
challenges, as well as relations between them and classical approaches.

We focus here on problem definitions and comparisons; resolving some of them
has already received attention [1, 3, 5] but unifying them into the same framework
leads to a better understanding of the whole and the identification of new variants of
interest. We also show that this helps to identify general approaches to tackle them.

Throughout this chapter, we assume a standard approach for solving prediction
problems. First, one designs a model in order to make a prediction based on
the fundamental assumption that future behaviors can be predicted from past
observations. Then, parameters of the model are learned from past data, using an
optimization process which aims at maximizing the prediction quality. Therefore,
each prediction problem demands several ingredients, among which a quality
estimator, features to describe past data, and a model to combine these features.

We first introduce the data modeling with link streams, which is the framework
that we choose to address the interaction prediction problems. Afterward we present
the prediction problems themselves, classified with respect to their ambition in the
prediction task and we also discuss the subtle question of prediction evaluation.
Finally, we propose a general direction for solving these problems using what we
call pairwise likeliness functions.

2 Link Stream Modeling of Interactions

We use here the instantaneous link stream formalism presented in [6], which is a
special case of stream graphs where nodes are always present and links have no
duration. Such a link stream L is defined as a triplet (T , V,E), where T = [α,ω] ⊆
R is a time interval, V is the set of nodes under concern, and E ⊆ T × V ⊗ V is a
set of links: (t, uv) ∈ E means that u and v interacted at time t . We consider here
undirected interactions between pairs of distinct nodes u and v, which we denote by
uv ∈ V ⊗ V . We assume that E is finite: it contains a finite number of interactions,
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Fig. 1 An example of
undirected instantaneous link
stream like the ones
considered in this chapter:
L = (T , V ,E) with
T = [0, 8], V = {a, b, c, d},
and E = {(0, ab), (1, bd),

(2, ac), (3, bc), (5, ac),

(5, cd), (7, bd), (8, ab)} a
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each occurring between two distinct nodes at a specific time instant. We illustrate
this modeling in Fig. 1. Extending our work to more general cases is left for future
work.

Such a link stream L = (T , V,E) naturally induces a graph G = (V ,E′) defined
by E′ = {uv : ∃t, (t, uv) ∈ E}: it is the graph in which two nodes of V are linked
together if they interacted at some time in T . Dually, the link stream induces a time
series (�t )t∈T defined by �t = |{uv : (t, uv) ∈ E}|: �t is the number of interactions
occurring at time t .

In this context, the classical link prediction problem in graphs consists in
predicting from G the links that will appear in the future, and the classical
time-series prediction problem consists in predicting from (�t )t∈T the number of
interactions that will appear in the future. Our aim here is to draw benefit from
L to predict richer information on future interactions. Depending on the targeted
information, this leads to several, quite different problems that we detail in the next
section.

3 Prediction Problems and Evaluation

Throughout the rest of this chapter, we assume that the set of nodes V remains
unchanged, in other words nodes do not appear nor disappear. All the prediction
problems that we consider start with an input stream Li = (Ti, V ,Ei) with Ti =
[αi, ωi] and Ei ⊆ Ti × V ⊗ V . A prediction is related to an output stream Lo =
(To, V ,Eo) with To = [αo, ωo] and Eo ⊆ To ×V ⊗V . The time interval To is called
the prediction period. Interactions actually occur during this period; we model them
as the actual stream La = (Ta, V ,Ea) with Ta = To and Ea ⊆ Ta × V ⊗ V .
In addition, we always assume here that ωi ≤ αo; in other words, we focus on
predicting future interactions. Within this framework, the prediction is considered
as good if the properties of Lo are similar to those of La .
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3.1 Predicting All Interactions

3.1.1 Description

Predicting all interactions of all pairs in the actual stream may be the most ambitious
formulation of the problem. It means that we aim at predicting each appearing link,
i.e., predicting the stream La . We represent in Fig. 2 the situation corresponding to
a given prediction.

3.1.2 Quality Evaluation

To evaluate the quality of such a prediction, a measurement of the distance between
La and Lo is necessary. For a given pair of nodes, the series of actual or predicted
interactions between them comes down to a set of points in Ta = To. Consequently,
one may use a distance between two sets of points to evaluate the distance between
the streams, and thus the prediction quality.

Among possible choices, let us mention the nearest point distance: the distance
from a point x ∈ X to the set Y is the distance from x to the closest point in Y , and
the distance from X to Y is the sum of the distances of each x ∈ X to Y . Though
simple, this measurement is not formally a distance as it is not symmetric. Therefore,

Fig. 2 Top: schematic
representation of the input
stream Li and the
corresponding actual stream
La . Bottom: schematic
representation of the input
stream Li and the
corresponding output stream
Lo. The problem of
predicting each interaction
leads to comparing La to Lo
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Fig. 3 Minimal cost
transformation of a set of
time points X into another Y :
the first step is deleting a
point from X (cost = fixed
penalty), and the other steps
consist in translating points
along the time axis (cost =
translation time distance)
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we may use instead the spike train distance proposed by Victor and Purpura [14],
which was originally designed to evaluate how different two neuronal impulse trains
are. We suggest to define the distance between link streams as

D(Lo,La) =
∑

uv∈V ⊗V

Duv(Lo, La),

where Duv(Lo, La) is the spike train distance between the points representing the
interactions between u and v in Lo and La . Duv(Lo, La) is defined as the minimal
cost to transform one set of points into the other with elementary steps: either
deleting, adding, or moving points along the time axis. Finally, D(Lo,La) can be
understood as the minimal cost to transform Lo into La with these elementary steps.
When attributing a fixed cost to the addition and deletion steps, it is a metric distance
(see [14] for more details). To give the reader a more precise idea of the meaning of
this distance without diving in too much technical details, we represent in Fig. 3 an
example of minimal cost transformation of a set of time points into another.

3.2 Predicting the Next Interaction for Each Pair of Nodes

3.2.1 Description

A less constrained version of the former prediction task consists in predicting only
the next interaction for each pair of nodes (if it exists). Indeed, in many contexts an
experimenter is mostly interested in the moment when the next interaction occurs,
as represented in Fig. 4. For example, when predicting interactions in order to spread
an information through a network, the experimenter is interested in knowing when
the next interaction happens to spread the message as soon as possible. This task
has the advantage to circumvent the difficult prediction of the number of links per
pair of nodes.

In this case, the output of the prediction is not a stream, but the next occurrence
time for each pair uv ∈ V ⊗ V . In order to include the case where there is no
interaction between u and v during the time interval of prediction To, a legitimate
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Fig. 4 Top: schematic
representation of the input
stream Li and the
corresponding actual set of
next occurrence times
{tuv

a }uv . Bottom: schematic
representation of the input
stream Li and the
corresponding output set of
next occurrence times
{tuv

o }uv . The problem of
predicting the next interaction
for each pair of nodes leads to
comparing {tuv

a }uv to {tuv
o }uv
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definition for the object predicted is the set {tuv
o }uv∈V ⊗V , with tuv

o ∈ [αo, ωo]∪{∞},
with tuv

o = ∞ meaning that we predict no interaction for uv.

3.2.2 Quality Evaluation

In terms of quality evaluation, we should quantify the difference between the sets
To = {tuv

o }uv∈V ⊗V predicted and Ta = {tuv
a }uv∈V ⊗V actually occurring. Point set

distances such as the ones proposed in the previous task can be used here too, and
they are simpler with this prediction task, considering the fact that we take into
account at most one interaction for each link uv.

We denote d a distance function between two points in time. Then a possible
distance which can be seen as an equivalent of the spike train distance in this simpler
case is

D(Ta,To) =
∑

uv∈V ⊗V

d(tuv
a , tuv

o ) =
∑

uv∈V ⊗V

min(|tuv
a − tuv

o |, p).

Using d(tuv
a , tuv

o ) = min(|tuv
a −tuv

o |, p) means that the distance between tuv
a and tuv

o

is either the delay between these interaction times or a predefined penalty p if there
is no interaction between u and v in La and we predicted one in Lo (and vice versa).
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Fig. 5 Representation of the
level of similarity between a
predicted and an actual link,
and its interpretation in terms
of true and false positive
prediction. In the situation
represented, the interaction is
predicted at instant to, which
occurs before the actual
interaction at ta , and the
prediction is thus both a true
positive and a false positive to
a certain extent. This extent is
computed by a sigmoid-like
similarity function
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Thus it is similar to the addition/deletion cost of the spike train distance mentioned
in Sect. 3.1. Here again, this quality evaluation is a simple and natural choice from
our point of view, but other choices are available.

With this evaluation, the distance depends linearly on the time gap between a
predicted link and a link observed in the actual stream. However, a user might
consider that a linear dependence is not appropriate to describe the problem
accurately and that other functions might be more relevant. In Fig. 5, we represent
the case of a sigmoid-like distance function of the time gap. This distance function
is complementary to a similarity function s(x, y) such that d(x, y) = 1 − s(x, y)

with y < x, which is represented on the figure.
According to the evaluation method described above, we interpret the quality

of the prediction using a notion of temporal distance between two events. Another
possible interpretation of this evaluation method consists in using the vocabulary of
classification tasks, as what is done in the case of link prediction problems. Indeed,
if a link uv is observed in the actual stream at instant tuv

a while it is not predicted yet,
it can be interpreted as an equivalent of a false negative. Conversely, a link which is
predicted while it is not observed yet is a false positive.

Of course, a link almost never occurs at the exact time when it has been predicted.
Consequently, it is desirable not to use a 0/1 notion of false positive or false negative,
but rather a score in the interval [0, 1] which accounts for how close or how far we
are from an exact prediction. That is what the similarity function s defined above
does. To describe in more details the parallel between the classification-based to the
distance-based interpretations, s(tuv

a , tuv
o ) with tuv

a > tuv
o quantifies the similarity,

i.e., the degree of correctness of the prediction, while 1 − s(tuv
a , tuv

o ) represents the
degree of error as a false positive FP does. If tuv

o > tuv
a , 1 − s(tuv

o , tuv
a ) rather

represents the degree of error as a false negative FN prediction does. The degree
of correctness can be mapped to the notion of true positive TP, which is consistent
with the fact that s(tuv

a , tuv
o ) = 1 when the link has been predicted exactly at the

right time. Using this framework of interpretation, an unpredicted link is equivalent
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to a link predicted at tuv
o = ∞, and similarly a non-occurring link is equivalent to a

link occurring at tuv
a = ∞.

It should be noted that TP, FP, and FN are usually boolean values which are
defined unambiguously, while here the result depends on the choice of the distance
function d. Besides that, true negative (TN) predictions do not have any obvious
equivalent using temporal distances. However, it is enlightening to interpret the
prediction with both the vocabulary of classification and temporal distances.

3.3 Predicting the Number of Interactions for Each Pair
of Nodes

3.3.1 Description

Rather than predicting if and when each pair interacts, another relevant task consists
in predicting how many times each pair interacts in a given period. It is less
ambitious than the previous tasks, in the sense that we do not request to predict the
exact time of links occurrence. In this case, the temporal precision of the prediction
only depends on the duration of the output stream, and as it can be adjusted in
the prediction protocol, we can tune how precise the prediction is in regards to the
temporal dimension.

To formalize more precisely the prediction task, we define the notion of activity
of a pair of nodes uv in the stream L = (T , V,E) as A uv = |{(t, uv) ∈ E}|.
In this context, our goal is that for any uv ∈ V ⊗ V , A uv

o = A uv
a . Note that the

activity quantifies the multiplicity of interactions between two nodes, so it is often
represented by the weight of a link in the graph formalism.

3.3.2 Quality Evaluation and Relation to the Link Prediction Problem

In this case, distance measures such as the spike train distance cannot be used
directly, as we do not predict interaction times. This task is actually closer to a
more usual link prediction task on a graph snapshot, where the snapshot length
corresponds to the duration of the actual stream, and we can draw advantage from
that. We design quality estimators in the same spirit as what has been done in
Sect. 3.2.2, by defining equivalents to TP, FN, or FP predictions.

As FP correspond to events that do not happen but are predicted, it is legitimate
to translate this idea as the difference between the number of predicted links and
the number of actual links if the former is larger than the latter. Similarly, FN
correspond to events which occur but are not predicted, so it translates to the
opposite difference if there are more actual links than there are predicted links.
TP are the events which occur and are predicted so it is equivalent to the minimum
between these two activities. Formally:
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Fig. 6 Illustrations of the three possible cases (A uv
a > A uv

o , A uv
a = A uv

o , and A uv
a < A uv

o ) of
the interpretations of TP, FN, or FP in the context of the prediction of the number of interactions
for each pair of nodes

⎧
⎨

⎩

|T P uv| = min(A uv
a ,A uv

o )

|FP uv| = max(A uv
o − A uv

a , 0)

|FNuv| = max(A uv
a − A uv

o , 0).

These definitions are illustrated in Fig. 6.
The definitions of true positive, false positive, and false negative proposed here

satisfy usual relationships concerning these indicators: |T P uv| + |FP uv| is the
number of predicted interactions, and |T P uv|+|FNuv| is the number of interactions
between u and v in the actual stream.

Then, we denote |T P | (resp. |FN |, |FP |) the total number of true positive (resp.
false negative, false positive) in the stream:

⎧
⎨

⎩

|T P | = ∑
uv∈V ⊗V |T P uv|

|FN | = ∑
uv∈V ⊗V |FNuv|

|FP | = ∑
uv∈V ⊗V |FP uv|.

We can thus define accordingly useful quantities to evaluate the quality of a
prediction:

– precision: |T P |
|T P |+|FP | , which represents the fraction of good predictions among

the total number of predictions,
– recall: |T P |

|T P |+|FN | , which represents the fraction of events detected among the
total number of events which can be detected, and

– F1-score, which is the harmonic mean of the precision and recall, that is, to say
F1 = 2 · precision·recall

precision+recall
.

Using this interpretation, a good prediction can be considered, for example, as
a prediction that maximizes the F1-score, as it reflects a compromise between
precision and recall. Nevertheless, we do not define any equivalent to a true negative
prediction and to the total number of negative predictions in general. It makes us
unable to define equivalents of other classification estimators (fall-out, specificity,
ROC curve, etc.).
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As stated previously, this problem relates to the weighted link prediction
problem: given a weighted graph representing the number of interactions between
each pair of nodes, predict the future weight. Related problems exist in the link
prediction literature. For instance, some authors have proposed to divide links into
two families: new links and recurring links, and then make two separate predictions
for each family [13]. Besides that, our task can also be related to the matrix
completion problem, which is usually considered with boolean adjacency matrices
in the context of link prediction (see, for example, [10]) but can be generalized to
matrices with positive values. Powerful as they may be, these approaches leave in
the shadow the fundamentally temporal nature of the data, which our formulation of
the problem tries to grasp.

3.4 Predicting the Existence of Interaction(s) for Each Pair
of Nodes

Finally, a natural problem is predicting if a pair interacts at least once in the actual
stream. Another way of formulating this task using the activity defined in Sect. 3.3
could be to predict for all pairs of nodes if they reach an activity of 1 during the
prediction period. An interesting point concerning this prediction task is that it is
actually similar to the classical link prediction problem: the prediction task comes
to predicting the structure of the actual graph Ga = (V ,E′

a) aggregated from La ,
where uv is in E′

a if there is at least one (t, uv) in La . The main difference is that the
link stream formalism stresses the fact that both structural and temporal information
can be used as features to improve the prediction quality. Such information has
already been used in the literature in order to achieve link prediction tasks, but in a
more classical framework (see, e.g., [8, 9]).

In terms of evaluation, link prediction tasks have been widely studied as binary
classification tasks, and thus one makes use of the evaluators usually employed for
such issues (precision, recall, F-scores, ROC curve, etc.).

4 Pairwise Likeliness Functions for Prediction Tasks

From now on, we suppose that the prediction problem and its evaluation method are
set, and we focus on the prediction model. We present in this section a possible
way to address these prediction problems taking into account the fact that the
data contains structural and temporal information. Consequently, the features of the
stream that we use for prediction should be described in a way that can reflect both
structural and temporal properties.

The overall approach is the following. First, we compute pairwise likeliness
functions using properties of the input stream Li . Pairwise likeliness functions are
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designed to reflect when we expect a pair of nodes to interact during the period
To. The prediction model relies on these pairwise likeliness functions: one would
train the parameters of the model by maximizing the quality of the prediction on
a learning stream, La , using the vocabulary defined in Sect. 3. After this learning
phase, the model can be used for prediction.

4.1 Pairwise Likeliness Functions

In order to represent a feature of the input stream on which the prediction is based,
we use a function f uv(t) which represents the likeliness for a link uv to occur at time
t . An interesting aspect of this approach is that it gathers in a same formalism both
temporal and structural (and potentially hybrid) features. We call such functions
pairwise likeliness functions.

4.1.1 Illustration

To set the reader’s mind, we illustrate this notion using three examples. Let us
consider the following features:

1. a structural feature often used in link prediction problems: the number of common
neighbors shared by two nodes,

2. a temporal feature based on the assumption that there is some regularity in the
temporal patterns of interaction between two nodes that we call regularity,

3. another temporal feature which is used to reflect the fact that there are episodes
of bursty activity of interactions, the burstiness.

For these examples, we suggest possible definitions of the corresponding pair-
wise likeliness functions. These definitions are based on common sense, but other
possibilities would make sense. Our goal here is to show that this formalism is
versatile.

1. Concerning the number of common neighbors, the pairwise likeliness function
is a constant (independent from time), which is simply the number of common
neighbors itself

f uv
CN(t) = |{w : ∃ (t1, uw), (t2, wv) ∈ Ei}|

2. Regularity is defined using the interaction times between u and v during the input
stream. Supposing that the links are approximately regularly spaced, a consistent
shape for the likeliness function could be a sinusoidal function, as sketched in
Fig. 7. The corresponding definition is
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Fig. 7 Representation of a sinusoidal regularity-based likeliness function. Bottom: input stream.
Top: corresponding regularity-based likeliness function computed from the input
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δ

Fig. 8 Representation of a rectangular burstiness-based likeliness function. Bottom: input stream.
Top: corresponding burstiness-based likeliness function computed from the input

f uv
reg(t) = 1

2
+ 1

2
cos

(
2π(t − t�)

〈τ 〉
)

.

where t� denotes the last interaction time of uv in Li and 〈τ 〉 the average
interaction time during Ti .

3. Finally concerning burstiness, we consider that if a train of interactions (that is
to say more than two interactions) has begun less than a time δ ago, then there is
an increased probability of interaction during the next δ duration, as represented
in Fig. 8. The corresponding definition is

f uv
burst (t) =

{
1 if t ∈ [0; δ] and | {(t, uv) ∈ Ei with t ∈ [−δ; 0]} |> 2
0 else.

4.1.2 Combining Pairwise Likeliness Functions

In order to achieve the prediction itself, we now define a prediction model based
on pairwise likeliness functions. We combine these functions into F uv(t), the
combined pairwise likeliness function. Again, there are many possible ways to
achieve this combination, we propose to use a linear combination as an illustration
of the approach:
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Fig. 9 Illustration of a
combined pairwise likeliness
function for a pair of nodes
uv, based on the linear
combination of fCN , freg ,
and fburst

uvf

f uv

f uv
CN

burst

reg
uv

F uv(t) = aCN · f uv
CN(t) + areg · f uv

reg(t) + aburst · f uv
burst (t).

In this framework, the coefficients represent the weight given to the different
features in the combination. On the examples of the three pairwise functions
previously defined, the combination for one pair uv is represented graphically in
Fig. 9.

4.2 Combined Pairwise Likeliness Functions for Prediction
Tasks

Now that, for each pair of nodes, we have a function representing the likeliness of an
interaction during the prediction period, we discuss how this function can be used
to achieve the prediction tasks formerly presented.

We have seen in Sect. 3 that there are two different kinds of tasks: On the one
hand, predicting the appearance of one or several links, that is, to say predicting
precisely the triplets (t, uv) (tasks 1 and 2); on the other hand, predicting the number
of links which occur during a given period of time (tasks 3 and 4). We discuss these
two families of prediction tasks separately.

4.2.1 Predicting One or Several Link Occurrences

Given a pair of nodes, the goal is to predict what are the occurrence times—if any—
of interactions between these nodes. A natural way could be to detect the local
maximum of the combined likeliness function. In this case, the problem seems to
map to detecting peaks in a function equivalent to a time series. A given point of
a time series is said to be a peak if the associated value is larger than a specified
threshold. Peak detection is an active area of research, and techniques could be
derived from this field (see, for example, [11]). A problem is that such methods
aim at identifying points which stand out from their neighbors in the time series,
while here a user would rather consider that a long plateau should correspond to
the existence of one or even several interactions. In other words, the problem is not
exactly equivalent to the intuition of a peak detection method. It may be closer to the
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uv

t

Fig. 10 Illustration of a criterion to select significant peaks: the areas colored are the area under
F uv centered on a local maximum and of width 2δ. Areas in blue are larger than a threshold Θ ,
while areas in brown are smaller than Θ

burst detection problem (e.g., [15]): one looks for a time window during which the
aggregated signal is larger than a user-specified threshold. However, burst detection
usually focuses on locating a period of high activity, rather than a precise point in
time. Both tasks are thus not identical in that case too.

In any case, there should be additional criteria to consider if a peak is significant
enough to justify the prediction of an interaction. One way of doing so is to define
an area under the curve around the peak, and the peak is considered significant
if this area is larger than a threshold, as schematically represented in Fig. 10.
Formally, if a peak has been detected at time τ , the criterion of significance would
be

∫ τ+δ

τ−δ
F uv(t) dt ≥ Θ , where Θ is the significance threshold of the area around

the peak, and δ characterizes the width defining the area under the curve around the
peak. The choices of δ and Θ are obviously critical for the prediction task, as it will
largely influence the number of links in the predicted stream. The parameters of any
method should thus be carefully chosen based on the input stream.

Note that predicting only the next interaction does not alleviate the problem of
peak significance mentioned above and also calls for non-trivial choices to decide if
a peak is significant enough to justify the existence of an interaction.

Another issue should be mentioned when several link occurrences are predicted.
Interactions are not independent from each other, meaning that if an interaction is
predicted at time t , it should affect the probability for an interaction to occur at
any time t ′ > t . This issue is simply ignored when the problem is managed as a
peak detection problem, which is another limitation to this technique. To address
the issue, it is possible to predict interactions sequentially, first considering the
next occurrence, then assuming it does happen in order to predict the next one,
etc. However, other difficulties appear when tackling the problem along these lines,
one of which being the accumulation of prediction errors throughout the process.

4.2.2 Predicting the Number of Interactions Over a Given Period

When considering the prediction of a number of links during a given period, one
would certainly use the likeliness functions differently. As we no longer predict the
interaction occurrence times, it is not necessary to detect the peaks of the likeliness
function.
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The area under the likeliness function curve represents the likeliness for a link to
appear over the whole prediction period. Therefore, one could consider that this area
should be related to the number of interactions actually occurring during that period.
So, supposing that we are able to predict efficiently the total number of interactions
in the prediction stream, it is possible to predict the number of links for any pair uv

by allocating links to pairs of nodes proportionally to the area under the likeliness
function curve. In short, a relevant relation for predicting the activity of a pair uv

over the prediction period To = Ta = [αo, ωo] is to consider that

A uv
o = C ·

∫ ωo

αo

F uv(t) dt,

where C is a constant fixed by the total number of interactions in the output stream.
As predicting this number is a classical time-series prediction task, we have in our
hands the tools to achieve the prediction of the number of links for any pair of nodes
in the stream during a given period.

5 Conclusion

In this chapter, we have formulated the problem of predicting interactions in a link
stream, which can be seen as a generalization of the link prediction problem in a
network when the temporal dimension of the data is taken into account, or dually, as
the generalization of a time-series prediction, when there is a network-like structure
supporting the various time series.

We have seen that the most general problems, predicting exactly the moments
when two nodes in the stream will interact with each other, is certainly a difficult
task to achieve—as could be expected. But we have also proposed different, more
humble tasks, which seem simpler to address as they are closer to more classical
prediction problems, namely, the link prediction task in a graph. Precisely, the task
of predicting the number of links which appear during a given period of time seems
promising. Indeed, it allows to use evaluation metrics which can be interpreted to
a certain extent using the vocabulary of classification tasks, and we presented a
possible way to tackle this prediction using features of the input stream that would
account for its structural and temporal characteristics.

We do not develop in this chapter the details of the technical implementation of
this method. However, an interested reader can refer [1] for a more comprehensive
view of an implementation on contact networks, which suggests that there are indeed
good prospects (and still a lot to do) on these prediction tasks.
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The Network Source Location Problem
in the Context of Foodborne Disease
Outbreaks

Abigail L. Horn and Hanno Friedrich

Abstract In today’s globally interconnected food system, outbreaks of foodborne
disease can spread widely and cause considerable impact on public health. Food
distribution is a complex system that can be seen as a network of trade flows
connecting supply chain actors. Identifying the source of an outbreak of foodborne
disease distributed across this network can be solved by considering this network
structure and the dimensions of information it contains. The literature on the
network source identification problem has grown widely in recent years covering
problems in many different contexts, from contagious disease infecting a human
population, to computer viruses spreading through the Internet, to rumors or trends
diffusing through a social network. Much of this work has focused on studying
this problem in analytically tractable frameworks, designing approaches to work
on trees and extending to general network structures in an ad hoc manner. These
simplified frameworks lack many features of real-world networks and problem
contexts that can dramatically impact transmission dynamics, and therefore, back-
wards inference of the transmission process. Moreover, the features that distinguish
foodborne disease in the context of source identification have not previously been
studied or identified. In this article we identify these features, then provide a
review of existing work on the network source identification problem, categorizing
approaches according to these features. We conclude that much of the existing
work cannot be implemented in the foodborne disease problem because it makes
assumptions about the transmission process that are unrealistic in the context of food
supply networks—that is, identifying the source of an epidemic contagion whereas
foodborne contamination spreads through a transport network-mediated diffusion
process, or because it requires data that is not available—complete observations of
the contamination status of all nodes in the network.
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1 Introduction

An important problem for many networked systems involving spreading processes
is identifying the source of the spreading agent; if the contaminated food source,
patient zero, or the rumor originator is identified efficiently, damage can be
prevented or reduced [7, 10, 13, 25].

Over the past couple decades there has been significant effort devoted to
studying the dynamics of outbreaks on networks [5, 17, 19, 23, 24, 26, 31]; for a
comprehensive review of epidemic spreading on complex networks, see [27]; for
a review of information diffusion on complex networks including a comparative
evaluation of available models and algorithms, see [36]. Most of this work has
focused on the forward problem of understanding and forecasting the diffusion
process and its dependence on the structure of the underlying network. However
in recent years much work has emerged on the inverse problem of identifying the
source of an outbreak spread in a network. This work covers problems in different
contexts, including contagious disease infecting a human population; rumors or
information diffusing through a social network; adoption of an idea, behavior
change, or product in an organizational network; the spread of viruses on the
internet; and the transport-mediated diffusion of contaminated individuals between
cities. These contexts represent different spreading scenarios that require different
modeling approaches for forward dynamics and inverse solutions.

Most studies of spreading processes in networks have been done in the context of
epidemiology, modeling the spread of diseases or viruses through a host population.
Network disease propagation models are based on the stages of disease as it infects
individuals and spreads across contact links in a host population. Initially the
entire population is susceptible to the disease; once any individual is exposed to
an infectious contact they become infected and can infect others; from this point
they can recover, be removed, become immune, or other variants. These models
are referred to as compartmental models due to the disease compartments that
individuals move between in illness progression: S—susceptible, I—infected, R—
recovered or removed, etc.

Compartmental disease spreading models represent a simple contagion process,
because only one direct contact with an infected neighbor is required for the
contagion to be transmitted. Along with disease, information spread through a
network has been shown to follow a simple contagion process. On the other hand,
behavior change has been shown to spread as a complex contagion that requires
multiple sources of exposure or reinforcement for the new behavior to be adopted.
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A typical quantity that is studied in relation to network epidemic models is the
epidemic threshold, or the set of conditions under which the disease will either
proliferate or die out in the network. Unlike classical diseases or viruses spread
through social contact networks, computer viruses have been shown to have an
epidemic threshold of 0, meaning that the infectivity rate can be vanishingly small
for the epidemic to happen. This is due to the scale-free structure of computer
networks, which are extremely heterogeneous with a few nodes having an extremely
high number of connections. The spread of computer viruses therefore diverges from
classical diseases not due to the contagion model—both are simple contagion—
but due to the heterogeneity of the network substrate over which computer viruses
spread.

Another type of epidemic model is the metapopulation reaction–diffusion pro-
cess, which in addition to contagion dynamics accounts for the role of movement
or transport in diffusing a contamination in space. In this type of model, nodes
represent subpopulations, such as cities, and links represent the movement of
individuals between subpopulations. Individuals interact in each subpopulation
according to assumptions of equal mixing or a local social network structure
and disease spreads between these individuals according to a contagion model;
this is the reaction process. The movement of individuals between subpopulations
is the spatial diffusion process, often modeled over a network as a Markov
transition process. Metapopulation models therefore depend both on the local social
network structure at each node and on the spatial structure of the environment,
transport infrastructures, traffic networks, and other movement patterns over which
individuals diffuse.

Approaches to the source detection problem are developed in the context of one
of these forward spreading processes. Most approaches have been devised in the
context of simple contagion processes including infectious disease outbreaks in
human contact networks or rumors spreading in social networks [1–3, 20, 33, 37,
38]. Another stream of work has focused on identifying the source of processes in
which network-mediated spatial diffusion is the main vector of spread. This includes
contagious diseases spread through drift in water systems [28] or spreading between
cities by global air travel [6], and foodborne disease contamination spread through
food distribution networks [14].

This article focuses on foodborne disease. The features that distinguish food-
borne disease in the context of source identification have not previously been studied
or identified. In this work we identify these features and conclude that most of the
existing approaches to source detection cannot be implemented in the foodborne
disease problem because they make assumptions about the transmission process
that are unrealistic in the context of food supply networks—that is, identifying
the source of an epidemic contagion [1–3, 20, 33, 37, 38] whereas foodborne
contamination spreads through a transport network-mediated network diffusion
process, or because it requires data that is not available—complete observations of
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the contamination status of all nodes in the network [8, 11, 30, 34] or timed network
data [1–3, 15, 20, 21, 28, 33, 35]. We begin by first providing relevant background
on outbreaks of foodborne disease and the contamination diffusion process.

1.1 Large-Scale Outbreaks of Foodborne Disease

The complexity and globalization of food production have made foodborne disease
a widespread public health problem worldwide. A small but worrisome minority of
outbreaks are generated by a contamination originating at the site of production or
processing, generating a widespread diffusion of contamination through the supply
chain and affecting a potentially great number of people across geographically
distributed locations. As recent trends continue, including large-scale production
practices and distribution over ever-larger distances, both the frequency and the
severity of consequences of large-scale outbreaks are increasing. In the USA, the
number of large-scale (i.e., multi-state) outbreaks increased by 135% in the years
1995–2004 to the years 2005–2014. These large-scale outbreaks accounted for 3%
of total outbreaks, which includes localized, non-distributed incidents, but were
responsible for 34% of hospitalizations and 56% of deaths [9].

During a large-scale outbreak of foodborne disease, rapidly identifying the
source, including both the food vector carrying the contamination and the location
source in the supply chain, is essential to minimizing impact on public health and
industry. However, tracing an outbreak to its origin is a challenging problem due
to the complexity of the food supply system. Furthermore, current investigation
methods represent a missed opportunity to utilize valuable information to solve the
source localization problem.

Food distribution is a complex system that can be seen as a network of trade
flows connecting supply network actors. Identifying the source of an outbreak of
contamination distributed across a network can best be solved by considering this
network structure and the dimensions of information it contains. Together with
reports of illness, this network information can be used to solve the problem of
identifying the source of large-scale outbreaks.

To formulate the problem of source detection on a network, assumptions must
be made regarding (1) the network and observation data available for source
identification, and (2) the transmission process that led to the observations. Based
on basic practical knowledge of food supply networks and the foodborne disease
contamination process, in this article we introduce the source identification problem
in the context of foodborne disease outbreaks and outline six features that distin-
guish this problem from source detection in other network contexts due to either
practical data limitations or differences in transmission process mechanics. We then
use the six features to categorize the existing literature on the network-based source
detection problem according to relevance to the foodborne disease context.
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2 Background and Definitions

2.1 Network-Based Source Identification

To solve the source detection problem in the context of foodborne disease, a network
model of the supply of a specific food commodity is assumed as a given input. A
probabilistic model of the transmission process of contamination spreading through
this network is then postulated. In the following, we assume that a foodborne disease
outbreak will originate from a single contamination source. This source sends out
contaminated products that travel through the network according to the transmission
model, resulting in observations of illness at a set of network nodes. The source
identification objective is to minimize the error between the model-derived estimate
of the location of the source and the true location of the source in the network, given
the nodes associated with the observations of illness.

2.2 Food Supply Networks and Foodborne Disease
Transmission

Food supply systems can be represented by a directed network structure consisting
of multiple stages of production, distribution, storage, and consumption. Flows
through the network are generally structured such that product is distributed in
a forward direction along a path, or a collection of directed edges connecting
supply nodes from origination to point of sale. A large-scale outbreak occurs when
contaminated food departs from some source in an early stage of the network that
is able to reach downstream nodes in geographically distributed locations. The
contamination will eventually make its way to consumers, who develop illness some
time after consuming the contaminated food. Case reports of illness are associated
with the supply network node at which the offending product was purchased and
exits the supply network, e.g. a retailer or restaurant; these nodes can be considered
infected.

The network in Fig. 1 represents a supply network in which contamination at
a food producer has spread through the supply network, leading to reports of
illness at three different retailers. With this structure mapped, it is straightforward
to utilize all case data (i.e., evidence) available during an event to identify the set of
feasible sources of contamination, that is, the set of nodes that connect to all known
contaminated nodes. Network structural information thus provides a first cut into
the source identification problem by enabling the identification of feasible sources.
To differentiate between the feasible sources, further dimensions of information
available within the network can be leveraged. Each edge contains information
about the volume of goods traded between supply network actors. Volume-weighted
information is a source of heterogeneity that can be thought of as the relative
propagation potential of a given edge, providing insight into the paths along which
contaminated product is likely to have traveled.
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Producers

Processors

Distributors

Retailers

Fig. 1 Illustration of a food distribution network with three reported cases of illness (at the shaded
nodes) linked to retailer nodes. Figure source: [8]

3 Distinguishing Features of Foodborne Disease
Transmission

3.1 A Transport, Not Epidemiological, Transmission Process

Many network-based source detection methods are designed to identify the source of
an infectious contagion. These methods often assume some variant of the epidemi-
ological model of contagion transmission, including the widely used susceptible-
infected (SI) or susceptible-infected-recovered (SIR) models. However the transmis-
sion of contamination through the food supply to people is different from the disease
contagion process from people to people. Contamination spreads as contaminated
(solid, perishable) food moves through the supply network after being inoculated by
the pathogen at the source. As the food is transported through the supply network,
the pathogenic quantity will generally remain conserved, meaning it will neither
spread to other food items nor decay significantly in infectivity [18, 29]. The former
is due to a number of factors including the lack of contact between packaged items,
the lack of interaction or mixing between unpackaged items, and the biological
insusceptibility of contamination to transmission and decay, i.e. low infectivity and
recovery rates.

Due to this conservation of contamination, the spreading process in the context
of foodborne disease primarily involves the contaminated food being spatially
distributed along the network without decaying (i.e., recovery) or growing (i.e.,
infection) the contamination along the way. Contaminated food items cause infec-
tion in people when the food is consumed, but this process does not represent
a classical infection dynamics because the contamination is directional (food to
human) and largely does not spread between people. Contagion processes represent
a different dynamics; if these are applied to the foodborne disease situation, the
extremely low infection rate would mean that when individual food items come into
contact, the infection will not be transmitted and will die out. The diffusion along the
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network is the mechanism that moves the contamination forward through the supply
chain. To reflect these diffusion dynamics, the foodborne disease contamination
spreading process has therefore been modeled as a simple Markov transmission
process [14].

It would be possible to model the foodborne disease spreading process using
a metapopulation reaction–diffusion process, as discussed in Sect. 1, where nodes
represent locations in the supply chain containing a constant “subpopulation”
of food items, and links represent the transport of food items between supply
chain locations. However because contagious transmission is largely not occurring
between food items, a metapopulation model would add more complexity (by
incorporating the inactivated local contagion process along with the diffusion
process) without incorporating more of the dynamics of the spread of contamination
by food through the supply chain. Therefore in the following, we will refer to the
foodborne disease contamination process as a diffusion-type process by which we
mean exclusively network-mediated diffusion and not contagion.

Finally, the observation data available for source identification occurs on the
human level and not on the food item level, and only via infection status, (I) in
the SI/R model. Observations of contamination occur when people report illness.
Each illness is linked to a supply network node at which the contaminated food
was purchased. Data regarding the contamination status of individual food items
is not normally available during an investigation. Furthermore, it is not possible
to establish from the illness reports whether a supply node has ever received
contaminated food and is thus susceptible (S), as it may have led to illnesses that
went unreported. Methods that rely on observations of susceptible status or that
assume nodes not reporting infection are contamination-free (also called “negative
information”) are thus non-applicable in this setting.

3.2 Observations are Sparse

Though the contamination will travel through multiple network nodes on its journey
through the supply network, it is only observed when illness is reported in connec-
tion with the exiting or absorbing node at which contaminated food was purchased.
The contamination status of transient nodes involved in the production, processing,
or storage of food, though closer to the source in number of network edges, will
remain hidden to investigators unless further investigations are performed (normally
during later stages of an investigation). Furthermore, even at the consumption level,
the overwhelming majority of foodborne illness cases are either not identified or
logged by authorities, with official estimates of underreporting varying from 10
to 75 times for different pathogens [32]. A trivial implication of the sparsity of
observations is that it is unrealistic to assume, as some source detection methods do,
that the contamination status of all nodes in the network is known.
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3.3 Observations will Always be Spaced Far from the Source

The placement of observations only at absorbing nodes also means that there will
be a large network distance between the source and each observation, increasing the
number of possible paths that could have been traveled and in turn the uncertainty
in the structure of the diffusion trajectory. At the same time, the differing volume-
weights along the edges of the supply network provide valuable information for
inference. Given the large uncertainty in the diffusion structure, approaches to
source detection that consider network structure alone will be inferior to those that
consider this weighted information.

3.4 Similar Path Lengths

Due to the staged structure of the food supply network, paths through the network
from source to observation will be close to the same length in terms of number of
network edges. This is common for supply chain networks of all types, and can
be observed in models of food supply networks across all product groups [4, 12].
Many existing source detection methods simplify the inference process by assuming
that the contamination traveled across the shortest path from the source to each
observation, or otherwise by leveraging shortest path properties of graphs. These
approximations will apply poorly in the food supply network context where most
paths will be indistinguishable in length.

3.5 Multiple Candidate Paths

Between any possible source and observation in a food supply network, there exist
multiple paths of travel of similar weight or likelihood. This is due to the lack of
monopolies in food production, trade, and retailing markets: any given food type
will be distributed through multiple larger retailers or wholesalers, each dealing
with similarly large volumes of product [4, 12]. Certain source detection methods
make the simplifying assumption that the contamination travels across the single
highest-probability path between a source and observation. These methods will be
inaccurate in the food supply network setting where transmission dynamics are not
necessarily dominated by a small percentage of connections.

3.6 Data on Times Through the Network are Lacking

In theory, there should be a signal for source detection from the timed reports of
illnesses combined with a model of the time it takes to transmit the contamination.
Each collection of edges in a network path encodes information about the time
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delay that a contaminated product could have taken to travel these steps. These
delays will be distributed differently according to parameters like the distance
and speed of travel and supply network logistics encountered. However, there is
significant temporal uncertainty in the contamination transmission process. The
time the contamination may spend in storage, both at various nodes along the supply
network (e.g., warehouses) and with the consumer after purchase, as well as during
the incubation period, can be significant and vary widely—and potentially much
more so than the time spent in travel. Furthermore, while the times of infection are
available to some degree of accuracy (recorded according to patient recalled time
of illness onset), data on storage times through the network are unavailable with
the exception of a few case-specific customer or retailer survey studies [18, 29].
Therefore, while time can be an important aspect in some foodborne disease source
detection applications, time-based methods are not currently implementable in the
foodborne disease context given available data.

4 Categorization of Literature

Many approaches to the network source detection problem have been developed
in recent years, though none of these methods have specifically considered the
context of outbreaks of foodborne disease. We now review the major themes in the
existing work, using the features described above to guide the discussion in terms
of relevance to the problem on food supply networks. The categorization of existing
work in terms of these features is summarized in Table 1.

The earliest approaches to source detection are based on complete observations,
relying on knowing the contamination status (SI/R) of each node in the network at a
fixed point in time [8, 11, 30, 34]. These methods do not incorporate information
about differing weights along edges but are based solely on graph structure by
employing notions of network centrality, the intuition being that the node most
“central” to the observed contamination process is the source. The seminal work by
Shah and Zaman [34] introduces the measure of rumor centrality, which considers
the number of linear extensions between each source and the infected nodes. The
method and analytical results concerning detection probability are derived for trees
or tree-like graphs; to apply to general networks, a Breadth-First-Search (BFS)
heuristic that assumes the contamination traveled across the shortest paths to the
observations must be used. Other methods based on betweenness centrality [8]
and eigenvector centrality [11, 30] apply to general networks without employing a
shortest path heuristic, although the calculation of betweenness is based on shortest
path properties. These methods were important for establishing foundational results
on the network source detection problem but are impractical for real network-
outbreak scenarios due to the complete observation assumption.

Many methods have since been developed for the more realistic setting that only
a subset of the contaminated nodes are observable, i.e. partial observations. These
can be categorized into temporal methods—approaches designed to make use of
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the information from the timed reports of illness and times through the network,
and non-temporal methods—approaches that rely only on the node location where
contamination has been reported. The temporal category includes methods assuming
discrete-time epidemic (SI/R) contagion models based on dynamic message-passing
[20], Bayesian belief propagation, [2], analytic combinatoric approaches [3]. The
analytic-combinatoric method [3] builds on the approach of [20] and [2] by
removing the node-independence assumption of [20] and the tree-like contact
network assumption that both [20] and [2] are predicated on to compute the exact
source probability distribution for general contact network structures. Because the
analytical calculations increase exponentially for non-tree-like networks, a compu-
tationally feasible Monte Carlo estimation approach is provided and demonstrated
empirically to provide comparable results with the analytic method. The approach
of [3] applies both to static and temporally evolving networks.

A separate approach involves continuous-time Gaussian transmission models
[21, 28]. While a continuous-time transmission model is a better approximation
for realistic settings, the approach in [21, 28] is limited by being designed for
trees and extended to general graphs via a BFS (shortest-path) heuristic. Other
temporal methods have been proposed that observe the contamination status of a
subset of sensor nodes at user-controlled intervals invoking a Four-Metric approach
[33], Monte Carlo methods [1], or analytical methods for time-varying networks
[15]. A separate approach is based on time-reversal backward spreading, where
link weights are set equal to travel time and not spreading propensity [35]. These
methods are impractical for the foodborne disease context given the lack of temporal
data on times through the network available for solving the problem, as discussed
in Sect. 3.6.

Fewer approaches to source detection exist within the category of non-temporal
approaches based on partial observations. A line of work based on the notion of
Jordan centrality has led to multiple variants of a technique that chooses the source
node with the shortest maximum path length over all observations, that is, the
Jordan center [37]. While this method has been extended to incorporate weights
along the edges1 [38], it relies on path lengths to discriminate between sources.
Furthermore, the technique is designed for tree-like networks; for application
to general topologies an alternate procedure based on closeness centrality (i.e.,
counting the sum of the shortest path to each observation) is proposed.

In addition, many of the methods based on partial observations in both the tempo-
ral and non-temporal categories are developed in the context of contagion spreading
models [1–3, 20, 33, 37, 38], and are therefore inapplicable in the case of the supply
network-mediated diffusion process of foodborne disease spread. As explained in
Sect. 3.2, network-based diffusion is the mechanism moving contamination forward
through the supply chain, which represents a different dynamics than contaminated
individuals changing infection state and growing the infection. If contamination

1In the contagious disease context, normalized weights can be interpreted as heterogeneous
infection probabilities.
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models are applied to foodborne disease spread, the extremely low infectivity rate
and recovery rates would mean that the disease would die out, and the forward
diffusion of already-contaminated items would not be accounted for.

Another line of work in the category of non-temporal approaches involves a
measure of Effective Distance on a network [6]. The Effective Distance method
is developed for identifying the source of infectious disease outbreaks spreading
through global mobility networks and is therefore devised in the framework of
metapopulation reaction–diffusion models. However, it does not depend explicitly
on the infection quantities, but only on flow transitions between nodes. It is therefore
applicable to network-diffusion-only type processes such as foodborne disease and
has been evaluated in application to the 2011 outbreak of EHEC in sprouts [22].

The method is based on the concept that the trajectory of a particle diffusing
through a network will primarily follow the shortest, highest probability path to
any other node. The true source of an outbreak should therefore be the node that
exhibits the set of shortest, highest probability paths to the outbreak node set. Based
on this logic, the authors introduce a metric for the Effective Distance deff (i, j)

between two connected nodes i and j , defined such that the likelier the connection,
the shorter the Effective Distance. This is given as

deff (i, j) = 1 − log pij , (1)

where pij is the probability of transiting from i to j . The effective length of a given
path γso between source node s and observation node o is then defined to be the sum
total of the Effective Distances of each edge (i, j) ∈ γso. As discussed, the concept
of [6, 22] is to focus on the shortest Effective Distance path over all possible paths
γso ∈ �so from s to o. The Effective Distance between s and o is then defined as

Deff (s, o) = min
γso∈�so

∑

(i,j)∈γso

1 − log pij

= min
γso∈�so

[|γso| − log P(γso|s)]. (2)

The Effective Distance of a path therefore results from a multifactorial objective
function that penalizes topologically long path lengths (the |γso| term in the
minimization) while rewarding high path probabilities (the − log P(γso|s) term).
To identify the source of an outbreak, the single shortest Effective Distance path to
each observation is identified. The source is then chosen as the node that minimizes
the average and variance of the shortest Effective Distance path to each observation.

As mentioned above, the Effective Distance method was designed for application
to infectious disease outbreaks spreading over global mobility networks. These
networks are characterized by great heterogeneity in path lengths and probabilities,
meaning that spreading processes on these networks will be dominated by a small
percentage of the shortest, highest probability transport connections. As expected,
the Effective Distance method performs well in settings involving outbreaks of
infectious disease (e.g., SARS, H1N1) spreading through global air travel networks
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[6]. Nonetheless, it is a heuristic approach that considers only a single path to each
observation. While this type of approximation may be justified in certain network
contexts such as the global air mobility networks the method was designed for, it
is not adapted for the structure of food supply networks which are characterized
by homogeneity in path lengths and the existence of multiple paths of similar
probability (see Sect. 3). When the method is applied to the 2011 EHEC (foodborne
disease) outbreak, source identification results are less accurate and more unstable
than the infectious disease case examples [6, 22].

Two recent works have addressed the single path limitation. First, Ianelli et al.
[16] have developed a generalization of the Effective Distance approach to include
multiple transmission routes in estimating disease arrival times. This work leverages
random walk theory to analytically demonstrate that the single path approach is
an approximation of more general logarithmic network-based measures. While
both methods are developed in the framework of metapopulation reaction–diffusion
models, only the multiple paths approach depends explicitly on the dynamical
quantities of the SIR model. This generalized effective distance approach for
estimating (forward) disease propagation arrival times is therefore a departure point
for an improved and analytical approach to the (inverse) source detection problem
for metapopulation propagation processes like infectious diseases spreading through
global air traffic networks.

More recently, the source detection problem for network-diffusion-only type
processes such as foodborne disease has been solved using a similar analytical
approach to account for all trajectories between source and observation. The work
of Horn and Friedrich [14] formulates a probabilistic model of the contamination
diffusion process as a random walk on a network and derives the maximum
likelihood estimator for the source location. By modeling the transmission process
as a random walk, this work develops a novel, computationally tractable solution
to the inverse problem that accounts for all possible paths of travel through the
network. Improvements in accuracy and stability are demonstrated in comparison
with the single paths approach of [6, 22], when both methods are applied to different
network topologies including stylized models of food supply network structure as
well as the 2011 EHEC outbreak in Germany.

5 Summary

Many existing approaches to the source detection problem cannot be implemented
in the foodborne disease context because they are designed for a different purpose—
identifying the source of an epidemic contagion [1–3, 20, 33, 37, 38] whereas
foodborne disease is spread according to a network-mediated diffusion process,
or because they require data that is not realistically available—complete observa-
tions of the contamination status of all nodes in the network [8, 11, 30, 34] or
timed network data [1–3, 15, 20, 21, 28, 33, 35]. Those that are implementable
are limited by unrealistic assumptions regarding the transmission process. These
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methods apply tree-like approximations to deal with general graphs, assuming
contamination always travels from source to observations along the shortest, highest
probability paths [6, 22]. While this type of approximation is justified in certain
network contexts, food supply networks are not well approximated by tree structure.
Moreover, these methods are by definition approximations that do not explore the
full set of trajectories between each source and observation.

To address this limitation, recent work has developed a source detection approach
based on a random walk transmission model that presents a computationally
tractable approach to calculate the total probability of traveling between a source
and each observation along all possible paths of all possible lengths [14]. The
resulting approach is not only relevant for solving the source identification problem
in food supply networks but also represents a methodological improvement for
source identification in diffusion processes more generally.
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Network Representation Learning Using
Local Sharing and Distributed Matrix
Factorization (LSDMF)

Pradumn Kumar Pandey

Abstract Vector embedding over a real network is considered as feature learning
of nodes of the network which is utilized in many downstream machine learning
applications such as link prediction. A network of size n can be represented as a
collection of n vectors (feature vectors) of dimension d (� n) which have encoded
structural and spectral information of the associated network. These feature vectors
can be used in two ways: first, in the extraction of existing links and other higher
order structural or functional relations among the nodes of the network and second,
in the prediction of the structural evolution of the network in near future. It is
observed that matrix factorization based vector embedding algorithms are able to
learn more informative feature vectors but scalability is a major bottleneck due to
memory and computationally intensive task.

In this paper, we present a novel distributed algorithm to learn feature vectors. It
is considered that a node stores one feature vector of one of its neighbours known as
shared vector, along with its own feature vector. And the learning of feature vector of
a node includes only feature vectors and shared vectors stored in its neighbourhood
only. Feature vectors get updated during the learning, so is shared vectors. Hence,
a local sharing phenomenon leads to sharing of global information dynamically.
The proposed distributed algorithm learns matrix factorization of a given network
in which a node only utilizes the information available at its neighbouring nodes
and connected nodes exchange feature vectors dynamically. Thus, the proposed
algorithm doesn’t have the limitation on its scalability. The performance of the pro-
posed distributed algorithm for network representation learning (NRL) is evaluated
for the learning of first-order proximity, spectral distance, and link prediction. The
proposed network representation learning algorithm outperforms the existing state-
of-the-art NRL algorithms such as node2vec, deep walk, and edge-based matrix
factorization.
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1 Introduction

Networks are ubiquitous in real world which are the graphical representations
of the complex systems such as biological systems, transportation, Internet, and
social systems [15, 19, 26]. Network representation of a complex system is known
to facilitate useful information that can be utilized for the better control and
understanding of the system [11, 15]. Classification of nodes, link prediction,
and recommendation are commonly studied problems in network science and
machine learning which have a wide range of applications [5]. Recently low-
dimensional vector embedding methods are used extensively to learn feature vectors
corresponding to nodes of a network and the learned feature vectors are utilized in
classification and link prediction tasks [14].

The aim of the network embedding in low-dimensional subspace is to provide
a meaningful representation of each node in the form of vectors keeping the
original network structure obtainable with high accuracy [14]. Due to the utility of
low-dimensional graph embedding which is also known as network representation
learning (NRL), in practical applications such as classification of nodes and
link prediction, recently many attempts have been made which can be broadly
characterized in two classes [14]: one is based on matrix factorization and the other
is based on random walks which utilize the linear sequence learning methods from
Natural-Language-Processing (NLP) [18]. In matrix factorization methods, there are
two branches in which first considers the methods based on the factorization of the
matrix of the low-level structure of the underlying network such as adjacency matrix
and Graph-Laplacian [3], second branch deals with the methods which utilize the
factorization of matrices obtained by higher order of adjacency matrix [21].

Multiple issues of existing NRL algorithms such as scalability, preservation of
higher order structure and proximity have been already reported in the literature,
still, these methods provide a fundamental foundation to NRL. It is accepted that
matrix factorization based vector embedding algorithms are able to learn more
informative features but scalability is a major bottleneck due to memory and
computationally intensive task [29].

In this paper, we adopt the framework of networked multi-agent systems in which
local dynamics leads to the collective behaviour of the whole networked system. We
develop an algorithm which can be deployed in the form of a distributed system and
have low space-and-computation complexity. The key to the proposed algorithm is
the flow of feature vectors during the leaning processes which makes the learning
of zeros of the adjacency matrix easier under the local access. The performance of
the proposed algorithm is tested for the link extraction, spectral distance, and link
prediction over some real networks and computer generated networks which are
obtained under different models. The obtained feature vectors under the proposed
NRL algorithm outperform the state-of-the-art NRL algorithms such as node2vec
(n2v) [12], Deepwalk (DW) [25], and Gaussian matrix factorization algorithm
(MF) [1].
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The organization of the rest of the paper is as follows: The next section discusses
the timeline development of the network representation learning methods. Section 3
is dedicated to explaining our approach to achieve meaningful and more effective
feature learning or graph embedding over the considered networks. In Sect. 4, we
provide a numerical analysis of the proposed learning algorithm and performance
comparison with the other considered leading algorithms of NRL. In Sect. 5, we
test the applicability of the proposed NRL learning algorithm in link prediction and
finally conclude in Sect. 6 including potential future directions.

2 Related Work

Network representation learning can be viewed as feature learning and dimension
reduction because the learning process is based on encoding and decoding which
preserves the structure of the networks and embedded in low-dimensional space.
Several theories of matrix algebra, statistics, random walk, and NLP have been
utilized to develop NRL algorithms with specific utilities such as classification,
higher order proximity preservation, and link prediction.

Matrix factorization based NRL algorithms utilize adjacency matrix or its
derivatives such as Laplacian, and similarity matrices to learn vector embeddings
corresponding to the considered network [1, 21]. In [21], similarity matrix M =
β(I − βA)−1A is considered for matrix factorization using singular vector decom-
position (SVD) with the claim that it is able to preserve higher order proximity
in NRL. In [8], series of Ak are used for the same as we know that in Ak ij th
entry represents the number of walks of length k. But as we include the higher
order of A, the complexity of the algorithm increases and reduces the scalability
and applicability of the learning process.

In other direction, SkipGram model for language learning is used for NRL
with the combination of random walk. A random walk is a connected sequence of
vertices which is assumed as a sentence and SkipGram is applied over it. Unbiased
random walk (deep walk) and biased random walk are considered in [25] and [12],
respectively, for NRL with the claim that the performance of the biased random walk
is better as compared to deep walk which is an unbiased random walk. In random
walk based learning algorithms, learner tries to learn the association between nodes
of higher order proximity. There is an indirect big intersection between the two
considered classes of NRL algorithms, most of them utilize a higher order of
proximity among nodes to learn feature vectors. For more information and literature
review, see [29].
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3 Local Sharing and Distributed Matrix Factorization

Consider a network G(V,E) of |V | = n nodes and |E| = m edges, where V is the
node set and E ⊆ V × V is the edge set of the network. A is the adjacency matrix
associated with the network G. Let S ∈ R

d×n be the desired subspace to be learned
such that vi ∈ S is the learned vector corresponding to the node i.

Here, we first do an analysis of the existing [1] regularized Gaussian matrix-
factorization (MF) which is based on learning over edge set only, considering
objective function f (S,E, α) given as

f (S,E, α) = 1

2

∑

(i,j)∈E

(vT
i vj − 1)2 + α

2

∑

i

||vi ||2. (1)

∂f

∂vi

=
∑

j∈Ni

(vT
i vj − 1)vj + αvi, (2)

where Ni is the set of neighbouring nodes of node i, and α is a constant. The
complexity of the matrix factorization proposed in [1] is of O(n) but exclusion of
zeros in the learning leads to information loss. Here, we propose a more informative
and efficient matrix factorization algorithm having order of complexity similar to
the algorithm MF.

We include learning of zeros as well to get more informative feature vectors
and the explanation is motivated by the concept of vector space and its null-space.
The proposed algorithm to learn feature vectors through matrix factorization is
distributed and efficient in its running cast which makes it scalable and improves
its applicability.

Here, we provide the details of our proposed feature learning process (NRL) for a
node and each node follows the same. Let Si be the set of vectors which is formed by
the vectors vj corresponding to direct neighbours of node i and called as the vector
space of node i and Ni is another set of vectors obtained by S\{Si ∪ vi} which is
called as null-space of node i. We consider vT

i vj as decoder for the learning process
which implies that vT

i vj should be 1 if nodes i and j are connected otherwise 0. It
provides that for each node i, vi should be within or close to Si and perpendicular or
close to orthogonal to Ni . The whole process for each node is all about learning two
subspaces which are almost perpendicular. The learning of perpendicular subspaces
provides more accurate collective learning. Now one may ask why not perfect
perpendicular? because the network is connected so it is impossible to get perfect
perpendicular subspaces for low-dimensional graph embedding.

The objective function to learn feature vector corresponding to node i according
to the above-explained learning process is defined as

Ei = 1

2|Si |
∑

j∈Ni

(vT
i vj − 1)2 + 1

2|Ni |
∑

j /∈Ni

(vT
i vj )

2, (3)
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where set Ni contains direct neighbours of node i. |Si | = di is the size of vector
space which is equal to the degree of node i and |Ni | = n − di − 1 is the size of
null-space which increases the space-and-computational complexity of the learning
process and makes the matrix factorization infeasible for large networks. To tackle
this issue, instead of considering the whole null-space Ni , we consider a subset of
null-vectors (⊂ Ni) and the size of the selected subset of null-vectors is the size of
the corresponding vector space Si . The detail of the selection of null-vectors is given
later in this section. This way the runtime complexity of the proposed algorithm
would be of the order of the algorithm presented in [1] with more informative feature
learning.

Note Here the meaning of the size of null-space or vector subspace is in the context
of the number of column vectors in Ni (N ) or Si (S), respectively.

Gradient descent method is adopted for the learning of vector subspace S . In
each iteration of the learning, a vector vi changes with the rate δ in the direction of
the vector ∇Ei which is given by

∇Ei = 1

|Si |
∑

j∈Ni

(vT
i vj − 1)vj + 1

|Ni |
∑

j /∈Ni

(vT
i vj )vj , (4)

Now the question is that how to get access to the null-space of a given node,
effectively?

3.1 Execution of Local Sharing Distributed Matrix
Factorization (LSDMF)

In this algorithm, a node i stores two vectors vi and xi ∈ Si . Similarly node j stores
two vectors vj and xj ∈ Sj . When node i gets access to its neighbourhood for
vectors vj s and xj s, it learns its complete subspace Si and partial null-space (⊂ Ni),
(xj = vk in Fig. 1). Here, the size of the partial null-space is fixed but its orientation
is not. Why? After gets updated in each step, node i shares its updated vector vi

to one of its neighbours, selected randomly each time, let’s say node j in Fig. 1.
Now xj = vi which can be used to learn null-space of node k in coming iteration
of the learning. Each node follows these steps in each iteration. The philosophy of
the proposed learning process is as follows: A node learns its feature vector vi and
shares it with one of its neighbours (xj , if (i, j) ∈ E). Hence, xj = vi , which would
be a vector of the null-space of the second neighbours of node i, let’s say k, and
they would be able to learn partial null-space during the corresponding iterations
of the proposed algorithm. The process of sharing the updated vector is random.
So, partial null-space gets changed in each iteration but remains within the null-
space of the node i. This way all the nodes in the network share null-space locally.
Here, access of null-space under dynamic local sharing is similar to sample the
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Fig. 1 Pictorial
representation of local
sharing of feature vectors

i

j

k

vector xj at random from the neighbours of node j that are not also neighbours of
node i during the learning at i. And dynamic sharing also helps in avoiding over-
fitting due to the existence of the local clustering. Hence, each node needs to access
its direct neighbourhood only and the proposed algorithm works in a distributed
manner. Now, the direction vector to update the feature vector vi for the proposed
local sharing distributed matrix factorization algorithm would be

∇E ′
i = 1

di

⎛

⎝
∑

j∈Ni

(vT
i vj − 1)vj +

∑

j∈Ni

(vT
i xj )xj

⎞

⎠ , (5)

and the pseudo code of the algorithm is given in Algorithm 1.

Algorithm 1 LSDMF
Input: A, d.
Output: S.
1: procedure SUBSPACE LEARNING

2: Initialize X ∈ R
d×n,S ∈ R

d×n.

3: xi ← X(:,i)
||X(:,i)|| , vi ← S(:,i)

||S(:,i)|| .
4:
5: for t = 1 : T do � Learning time (iteration number).
6: for i = 1 : n do
7: vi ← vi − δ × ∇E ′

i , � δ is learning rate.
8: j ∈ Ni � Randomly selected from direct neighbours.
9: xj ← vi , � Local sharing.

10: Local sharing: In each iteration of the node i, node j is selected randomly from the direct
neighbours of the node.

S(:, i) ← vi .
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4 Experiments and Results

In this section, we provide a numerical analysis of the proposed LSDMF over
diverse data sets.

Datasets We consider nine different networks including biological network,
power-grid network, social networks, and collaboration networks to evaluate the
novelty and performance of the proposed subspace learning algorithm, LSDMF.
We include different data sets of real networks of various sizes including Zachary’s
karate club network (Karate) [20], the network of interactions between major
characters in the novel Les Miserables (Lesmis) [20] by Victor Hugo, Football
network [28], Email network [13], Protein–Protein Interaction network (PPI) [6],
largest component of a network of collaborations between physicists who conduct
research on networks (CbN) [17], Power-Grid network (PGN) [27], citation network
(Ca-HepTh) [17], PGP network [4], Facebook and AstroPH [12]. All the considered
data sets are publicly available [16]. The details of the data sets are given in
Table 1.

We also include synthetic networks obtained under the models CDPAM with
parameter value (β = 0.6) [22], BA [2], WS with rewiring probability p = 0.01
[27], NRM with parameters (β = 0.1 and p = 0.3) [23], and FFM with parameter
value of forward burning probability = 0.3, and the backward burning ratio r =
0.35 [17] to evaluate the applicability and superiority of the proposed LSDMF
for the learning of graph embeddings under different graph generation scenarios.

Table 1 Characteristics of
the networks used for
validation

Network/dataset n m Q

Karate [20] 34 78 0.4188

Lesmis [20] 77 254 0.5556

Football [28] 115 613 0.6046

Email [13] 1133 5451 0.5406

PPI [6] 2361 6646 0.5894

CbN [17] 4158 13,425 0.8191

PGN [27] 4941 6594 0.7701

Ca-HepTh [17] 8638 24817 0.7240

PGP [4] 10,680 24,316 0.8459

Facebook [17] 4039 88,234 0.7774

AstroPH [17] 18,533 396,160 0.8123

CDPAM [22] 5000 20,000 0.1821

BA model [2] 5000 20,000 0.2133

WS Model [27] 5000 25,000 0.2764

NRM [23] 5000 19,133 0.7342

FFM [17] 5000 15,583 0.7783

n number of nodes, m number of edges, and Q

modularity of the network
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These models include random networks which exhibit scale-free degree distribution
(CDPAM, BA, NRM, and FFM) and binomial degree distribution (WS). CDPAM,
BA, and WS are the models without community structure, and NRM and FFM have
non-vanishing local clustering.

Metrics We use two metrics for measuring the performance of different NRL
algorithms by quantifying the distance between two networks, the original network
and the reconstructed network. First is the well-known spectral distance [7]. Let A

and C be the adjacency matrices of original and reconstructed networks, both having
n nodes. Also, let λ = [λ1,≥ λ2,≥, . . . ,≥ λn] and μ = [μ1,≥ μ2,≥, . . . ,≥ μn]
be the sorted list of eigenvalues of A and C, respectively. The spectral distance
between A and C is defined as:

d(A,C) =
n∑

i=1

|λi − μi |

Second distance metric used is the fraction of wrongly reconstructed edges between
original adjacency matrix A and its reconstruction C [24], which is given by

ΔE = 1

2

1T abs(A − C)1

1T A1
,

where [abs(A)]ij = |Aij | and 1 is all-one vector of length n.

4.1 Simulation

We consider 3 NRL algorithms in which two are based on random walk node2vec
(n2v) [12] and Deepwalk (DW) [25], and an edge-based matrix factorization, to
compare the performance of our proposed LSDMF. Matrix factorization algorithm,
noted as MF, proposed in [1] is considered as a baseline matrix factorization algo-
rithm which considers only edge set for learning purpose. Performance deference
between MF and LSDMF (see columns 4 and 5 in Table 2) directly makes us
notice the importance of the consideration of null-space. LSDMF exhibits better
performance as compared to n2v, DW, and MF, see Table 2. In simulations, we
consider the integer value of

√
n as the dimension d, where n is the size of the

considered network. In case of n2v, DW, we set the length of random walk 80,
window size 10, number of walks per node 10. These are the values of common
parameters for DW and n2v. The considered hyper-parameters are p = q = 1 in
case of DW and p = 1, q = 0.5 in case of n2v. For more details of the selection of
parameters of DW and n2v, see [25] and [12], respectively.

Effect of Dimension d We also investigate the effect of the dimension, d, of the
learned feature vectors. Error in link extraction is considered to evaluate it. For
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Table 2 Comparison of
reconstruction errors for
various algorithms

Method n2v DW MF LSDMF

Precision (1−Δ E)

Real networks

Karate 0.19 0.21 0.37 0.64
Lesmis 0.26 0.22 0.45 0.65
Football 0.54 0.58 0.33 0.95
Email 0.31 0.27 0.12 0.84
PPI 0.12 0.09 0.14 0.65
CbN 0.34 0.29 0.19 0.80
PGN 0.33 0.37 0.13 0.88
Ca-HepTh 0.35 0.32 0.20 0.84
PGP 0.27 0.24 0.11 0.53
Synthetic networks

CDPAM 0.42 0.43 0.16 0.75
BA model 0.46 0.42 0.25 0.86
WS model 0.52 0.55 0.18 0.72
NRM 0.33 0.37 0.19 0.94
FFM 0.54 0.49 0.13 0.89
Spectral distance: d(A,C)

Real networks

Karate 23.3 21.7 19.2 13.6
Lesmis 39.2 37.3 56.7 28.4
Football 151.1 78.5 75.3 11.2
Email 634.6 661.2 578.7 355.3
PPI 2504.8 2689.1 1424.0 757.4
CbN 2949.0 2734.4 3735.0 823.2
PGN 2948.4 2853.1 4928.2 652.3
Ca-HepTh 7173.4 4972.1 7253.7 1808.3
PGP 7826.4 7536.0 8972.7 1782.3
Synthetic networks

CDPAM 3852.2 3922.8 4271.2 1721.6
BA model 1281.7 982.2 1342.2 365.0
WS model 723.5 1329.1 942.2 120.0
NRM 4283.2 3826.2 2312.5 258.1
FFM 3293.8 2836.3 2783.2 657.9

The values in bold are corresponding to the best
performing algorithm among the considered NRL
algorithms

different values of d, we calculate the wrongly identified links (ΔE) for the network
Email. Accuracy of the network reconstruction (1 − ΔE) is plotted in Fig. 2 from
which it is observed that our proposed algorithm for NRL exhibits superiority as
compared to n2v, DW, and MF. The same observation is valid for other considered
networks also.
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Fig. 2 Performance of
different NRL algorithms at
different dimensions of
learned graph embeddings for
email network
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Fig. 3 Convergence of
LSDMF in Email network.
Horizontal axis represents
iteration number and vertical
axis represents accuracy in
network reconstruction
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Convergence Learning of feature vectors under considered NRL algorithms, n2v,
DW uses standard machine learning function Softmax and MF uses stochastic
gradient descent method over links for learning. We also utilize the stochastic
gradient descent considering links and randomly selected non-links. LSDMF selects
non-links randomly in each iteration of learning and utilizes defined local sharing
scheme. Convergence of the proposed LSDMF is shown in Fig. 3. Accuracy of the
reconstruction of the underlying network (1 − ΔE) is plotted for different values of
learning time t in Fig. 3. We get similar results for other data sets also.
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5 Application: Link Prediction

In this section, we perform link prediction task utilizing the obtained feature vectors
under the different considered NRL algorithms. The task of link prediction is eval-
uated over the variety of data sets considered in this paper including Facebook and
AstroPH which are used for the same in [12]. We follow the standard experimental
setup, outlined in [10], evaluate the performance of the learning quality of the
proposed NRL algorithm and other state-of-the-art methods. In our experiments,
30% links are selected randomly and deleted from the input real network. After
deletion of links, the remaining network is used for learning the graph embedding
or feature vectors. Next, standard literature [10] is followed for link prediction
problem. From the earlier deleted set of links, 20% random links are selected as
positive examples and the equal number of negative examples (non-links) which
are also selected randomly to train the logistic regression model for link prediction.
Remaining 10% of deleted links and the equal number of random non-links are
used for testing the performance of the trained model. We calculate F1-score which
is reported in Table 3. All the reported numbers are averaged over 10 random runs of
the above experiment. Here, learned graph embedding is not directly used as input
to the logistic regression model. Two vectors can be close to each other either due to
angular distance or due to Euclidean distance. Let vi and vj be the vectors learned
corresponding to nodes i and j , respectively. We consider dot product (vT

i vj ) which
resembles angular distance and 2-norm of difference vector (||vi − vj ||2) which is
the Euclidean distance between the concerned vectors. These two distances between
any two learned vectors in the network are used as input features for training and
testing the logistic regression based predictor.

Numerical results of link prediction are reported in Table 3 from which we
observe that feature vectors learned under our proposed algorithm are more
informative and have better performance in the link prediction as compared to
the other considered graph embeddings obtained under n2v, DW and MF. The
performance of the proposed NLR algorithm over diverse data sets justifies the wide
applicability of LSDMF.

Table 3 F1 values for link
prediction using logistic
regression utilizing node
embedding by different NRL
algorithms

Networks/methods n2v DW MF LSDMF

Football 0.69 0.65 0.58 0.78
Email 0.53 0.46 0.61 0.76
PPI 0.45 0.42 0.59 0.73
CbN 0.57 0.61 0.65 0.85
ca-HepTh 0.57 0.49 0.61 0.81
PGP 0.58 0.55 0.51 0.72
Facebook 0.61 0.65 0.71 0.91
AstroPH 0.41 0.45 0.76 0.85

The values in bold are corresponding to the best
performing algorithm among the considered NRL algo-
rithms
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6 Conclusion and Future Work

In this paper, a novel algorithm for efficient matrix factorization is proposed which
utilizes a local sharing of graph embedding or feature vectors during the learning
process and does not require the complete visibility of the network. Only local
sharing of feature vectors and locally implemented objective function leads to
collective learning over the network. The proposed algorithm is able to learn more
informative graph embedding which outperforms the state-of-the-art algorithms
such as node2vec and Deepwalk in link prediction task, and first-order proximity
preservation. The proposed matrix factorization is more informative and accurate
as compared to the edge-based matrix factorization without increasing the order of
computation complexity.

Apart from link prediction, there are other complex problems in which NRL can
provide better and effective solutions. Few of them are listed below:

Clique Finding Higher order proximity preservation in networks is highly desir-
able [21] for many applications such as maximal clique finding in biological
networks. We can get a number of applications of maximal clique finding problem
in literature [9]. Clique, motif, dense sub-graphs, and communities are higher
level structures present in real networks. Minimum perturbation of the higher level
structures is a prime requirement of graph embedding in low-dimensional subspace
while decoding of a network from its learned vector subspace.

Diffusion or Search Path Learning Real networks are so large that it is difficult to
get access to the whole network in a single sight. In such conditions, searching and
controlling the network becomes difficult. As we observe that only local learning
is sufficient to learn the global structure of a node (links and non-links). Learning
effective search paths in a large network is a potential problem to control diffusion
processes and it can be learned using NRL.

Community Finding Community finding under NRL can be considered as a
clustering problem. Learned feature vectors are simple data points and learning
strategy based on Euclidean or angular distances learns feature vectors in such a
way that densely connected group of nodes have close feature vectors.
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Abstract Online forums provide rich environments where users may post questions
and comments about different topics. Understanding how people behave in online
forums may shed light on the fundamental mechanisms by which collective thinking
emerges in a group of individuals, but it has also important practical applications,
for instance, to improve user experience, increase engagement or automatically
identify bullying. Importantly, the datasets generated by the activity of the users
are often openly available for researchers, in contrast to other sources of data in
computational social science. In this survey, we map the main research directions
that arose in recent years and focus primarily on the most popular platform, Reddit.
We distinguish and categorize research depending on their focus on the posts or on
the users and point to different types of methodologies to extract information from
the structure and dynamics of the system. We emphasize the diversity and richness
of the research in terms of questions and methods and suggest future avenues of
research.
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1 Introduction

Understanding the dynamics and structure of human communication is a central
research theme in computational social science. The increasing availability of
digital traces of human interactions has allowed to quantify, at a large scale, a
variety of phenomena. For instance, phone call logs led to the identification of the
burstiness of human communication, typically organized into “periods” of short
intensive communication followed by long periods of silence [32]; Facebook and
email data helped to confirm the smallness of the world, i.e. the typical network
distance between people is disproportionally small as compared to its size [4];
tweet messages led to studies to uncover the mechanisms leading to information
cascades [65]; etc. If early works initially focused on one-to-one communication,
the emergence of new communication channels, such as Twitter or online forums,
has opened the possibility to study collective discussions [2].

Collective discussions have not been invented by new media. As such, they have
been and remain a major way for exchanging opinions and for producing collective
decisions. Online forums provide a venue where Internet-goers post questions or
comments, which may, or may not, trigger discussions from other members of
the community. Understanding how people behave in online forums has important
theoretical implications, to improve our understanding of collective thinking, but
also practical applications, to improve user experience, increase engagement or
facilitate the democratic process [1]. The purpose of this chapter is to provide an
overview of the academic research on online discussion platforms, or online forums,
and to bring together the variety of research questions considered in the literature.
Most of our attention is dedicated to the self-proclaimed “front page of the Internet”
[50]—the website Reddit (REDDIT.COM)—which is the largest online discussion
forum in the world as of today. Note that several other online discussion platforms
have a similar architecture and have also been studied, for instance, in comparative
studies; they include Digg, Hacker News, Slashdot, Epinions, Meneame, Barrapunto
and even Wikipedia.

The rest of this chapter is organized as follows: Section 2 presents the datasets
that can be extracted from Reddit and have been widely used by researchers.
Academic studies are then divided according to their primary focus on the post
or the users and are presented in Sects. 3 and 4, respectively. We conclude with a
discussion and perspectives for future research.

2 The Reddit Dataset

Reddit (launched in 2005) is a social news aggregation, web content rating and
discussion website, ranked as #6 most visited website in the world with 234 million
unique users (as of February 2018).1 A schematic structure of Reddit is illustrated

1https://en.wikipedia.org/wiki/Reddit.

https://en.wikipedia.org/wiki/Reddit
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Fig. 1 The schematic structure of the Reddit platform. The entry point is the top page of Reddit,
which is feed of posts from the subreddits followed by a registered user (or from all subreddits, for
an anonymous user) and ranked according to votes and posts’ age. The user may further proceed
to the top page of a specific subreddit, where the feed narrows down to only posts from a chosen
subreddit. Each post can be upvoted or downvoted and has an attached section of comments. The
comments are structured as a rooted tree by the reply-to relation to other comments or the post
itself

in Fig. 1. Registered users submit posts that contain a title, an external link or a self-
written piece of content, which immediately become available to the whole audience
of Reddit for voting and commenting. The voting system permits only registered
users to upvote (give a positive +1 vote) or to downvote (give a negative −1 vote)
on posts and comments. Comments form a discussion tree, which can be described
as a rooted tree, where the root is a designated node representing the post itself and
each other node represents a comment. There is a link between two nodes if there is
a “reply-to” relation between them.

The huge posting space of Reddit is divided into subreddits—self-created
communities of users, united by a certain topic. Every submitted post has subreddit
name as an intangible attribute. Each subreddit and Reddit itself has a so-called “top
page”—the feed where post titles with voting and commenting links are delivered to
users. Two factors influence the post’s ranking position there: (1) time and (2) voting
score, or otherwise called karma, which is basically the difference between upvotes
and downvotes. High score posts have a higher chance of appearing at the top page.
However with time, newer information replaces the older in the feed. Users can
follow subreddits, but not other users, which constitutes the main distinction with
social network platforms, like Facebook or Twitter, where users follow a person
and not a content. Other platforms have a similar structure. For example, Slashdot
(launched in 1997) is made of news stories, together with comments moderated
by selected users, but not by an open voting system.2 Only a fixed number of
topic-based subsections is available. Hacker News (launched in 2007) is an online
community very similar to Reddit but with only two pre-made topic subsections

2https://en.wikipedia.org/wiki/Slashdot.

https://en.wikipedia.org/wiki/Slashdot
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(subreddits).3 Digg (launched in 2004) acts currently as a news aggregator, but it
formerly was a socially curated platform with a post submission, commenting and
voting system like Reddit.4 Meneame is a Spanish analogue of Digg, and Barrapunto
is also a Spanish version of Slashdot [19].

We chose to dedicate our attention to Reddit because of the variety of ways
the system is self-organized. As it is mentioned later in the chapter, such self-
organization provides place for free movement, social herding, organized attacks,
trolling, etc. Subreddits as topically self-identified entities create real communities
in virtual space, with their own rules, language features, intrinsic rules, jokes,
etc. Such annotated text corpus becomes valuable for training machine learning
algorithms [60]. General availability of information brings in different dynamics
of information spread in comparison to direct followers social media (e.g. Twitter),
the volume of information poses the problem of missed content, or the posts that
potentially could gain comments or votes, but was missed in the avalanche of other
posts. Reddit allows sharing a wide variety of content. One may use Reddit data to
uncover the relationships between different Internet services.

Reddit has gained a central place in the scientific literature thanks to the
openness, richness and quality of its data, which allows to perform longitudinal
studies of the whole system and, critically, to ensure reproducibility of the results.
Jason Baumgartner, under the Reddit name Stuck_In_The_Matrix, did a tremendous
amount of work when attempted to collect a full dataset of posts and comments,
going back to the creation of the site [54]. The figures of this chapter have all been
prepared from this dataset. For instance, basic numbers on the growth of the site and
the total sizes of discussions are found in Fig. 2. His data repository also contains
the data from the platform Hacker News [53].

Fig. 2 The evolution of Reddit from Jan 2008 till Jan 2018: (a) monthly counts of posts and
comments, (b) distribution of discussion sizes. One may notice an exponential increase in the
activity counts, but the discussion size distribution follows a similar shape, close to the power-law
with exponent α ranging from around 1.7 for early years to 1.9 for later

3https://en.wikipedia.org/wiki/Hacker_News.
4https://en.wikipedia.org/wiki/Digg.

https://en.wikipedia.org/wiki/Hacker_News
https://en.wikipedia.org/wiki/Digg
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Despite its recognized quality, one should be careful while using the dataset for
research purposes. Gaffney and Matias [14] report several inconsistencies in the
data. Their approach is based on the fact that a post or comment id is essentially
an integer number in base36 format; thus, allegedly, all the continuous range of
numbers must be present in the dataset. For example, comment and post data before
2008 appears to be hugely corrupted, having around 80% of posts missing, as well
as 90% posts information from a few months data at the interface between 2009 and
2010. In total, across the time interval Jan 2006 and Feb 2016, the authors report
0.043% missing comments and 0.65% missing posts.

The risks of missampled data obviously cause commenting/posting rate distor-
tions, missing information in user time series and possible inability to reconstruct
certain discussion trees. Nevertheless the data from Jan 2008 and later is fairly
consistent for detailed look and especially in large-scale studies the inconsistencies
may be safely disregarded due to their smallness. The system has sustained
exponential growth [50]; thus, data volume in early years is negligibly small
compared to today’s numbers. The proposed approach to measure missing data also
raises a question of applicability, since the gaps in consecutive numbering may be
due to inner technical features of the website. This may be supported by the fact
that a newly published rescraped data contains the same missing values found in the
data before [55]. One may use directly the Reddit API for consistency checks.5

Although missing data causes reasonable inconsistencies, the present data has
a few important peculiarities to consider. There exist posts and comments from
authors, whose accounts were deleted and the author name of the comment turns to
default name “[deleted]”. According to the letter appendix to [14] such comments
comprise around 25% of the data. This fact imposes a greater obstacle on studies
of user participation in discussions and reply networks. Another problem comes
with posts or comments that were deleted by user and removed due to moderation.
In the current version of the API the text body of such comments and posts
is correspondingly marked as “deleted” and “removed”, but it is not clear what
happened in early years.

3 From the Perspective of Posts

Posts are at the heart of the platform structure and dynamics. Once posted, they may
gain attention and receive feedback in the form of votes and comments, thereby
obtaining a good ranking and even more attention. They may also go quickly
unnoticed in the avalanche of newer posts. The next subsection is dedicated to
the topic of popularity prediction in online platforms. This longstanding problem
has been studied in various online systems. As first step, we thus provide a quick
overview of research on the wide spectrum of online systems before concentrating
on Reddit specifically.

5https://praw.readthedocs.io/en/latest.

https://praw.readthedocs.io/en/latest
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A standard ingredient in predictive models is the incorporation of quantitative
features that tends to correlate with the popularity of posts. Features can be
structural, dynamical, textual and even associated with the author of the post. Initial
works proposed simple statistical models based on regression, Poisson or Cox
processes, but with the developments of machine learning, more elaborate methods
based on neural networks have emerged.

Popularity Prediction Anyone who has ever used online social networks is
familiar with the concept of “likes” and “dislikes”—the way of expressing attitude
towards a piece of content on a binary scale. If “page views” have long been the
dominant measure of the success of a content, more and more platforms have moved
to voting systems where the number of positive votes is the measure of popularity.
Discussion platforms use systems of upvotes and downvotes for different purposes,
ranging from the automatic discovery of appreciated items and its delivery to a
wider audience, to the moderation of discussions to protect from spam or malicious
content. For these reasons, good models of popularity prediction are of interest for
both content creators and platform curators.

In general, the problem of popularity prediction has been considered in various
online social systems. Early studies, e.g. in YouTube and Digg, found a direct
relation between content’s initial popularity (in terms of views and upvotes) and its
future counts [56], but more sophisticated models have been proposed since then.
For instance, Lee et al. [36] have modelled the lifetime of discussions on Myspace
with the Cox proportional hazard regression model. They selected the number of
“risk” factors, fitted from the data for each thread, which were further used as a
predictor of threads hitting a threshold number of comments. Mishne and Glance
[40] analysed the corpus of comments in weblogs and the relation between weblog
popularity and commenting patterns in it. Tsagkias et al. [59] analyse the corpus of
comments under news stories in regional Internet news agents. The authors propose
a model that predicts the commenting popularity prior to article publication in two
cases: first, if there is a potential to receive comments and second, if the article
receives “low” or “high” comment volume. Bandari et al. [5] also investigated if
popularity of news articles can be estimated even before their posting online.

The Reddit dataset shows a proportional relation between the score of a post and
the size of its discussion tree on average, as shown in Fig. 3. This may shed some
light on general aspects of the posts’ popularity; however, in each particular case,
it is more important to make a more tailored estimation of submissions’ score. A
number of works has been dedicated to the prediction of scores on Reddit. Horne
et al. [29] found a number of textual and temporal features of high score comments
by considering the discussion threads from 11 popular subreddits appearing in
a 6 month period of 2013. The authors proposed a machine learning model for
predicting comments’ score and pointed the differences in users’ preferences in
subreddits. In particular, they claimed that timing of the comment, its relevancy and
novelty have positive impact, but stale memes or high user ranking (overall number
of positive comments in a user’s history) does not affect or even pushes down the
average comment score. It was observed that moderation does not always impact
proper behaviour in the community and may shorten the life of a discussion thread.
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Fig. 3 Average posts’ score versus discussion size (left figure) and number of direct replies to a
post versus discussion size (right figure) in Reddit. The data shows that average values may be
fitted with a linear trend up until a certain value. Dots represent average counts, and bars show
standard deviation. The figures are based on data from year 2009, but other years show similar
results

Recurrent neural networks (RNNs) have also been employed to measure commu-
nity endorsement. Fang et al. [13] constructed an RNN trained to predict comment
scores. Instead of controlling for the submission context, the model learns latent
modes of submission context and examines how the context relates to different
levels of community endorsement. On a dataset of three popular subreddits, they
achieve a good performance, on average, and show that high score comments
are usually harder to predict than lower ones. High-scoring comments tend to be
submitted early in the discussion and the number of direct replies is not smaller than
the height of its hanging discussion subtree. Low and medium score comments have
a number of direct replies less than the height of a discussion subtree, indicating
the presence of a further discussion. Low score comments tend to come later in
the discussion overall, but also later in terms of the group of responses to a parent
comment.

While structural features have been shown to be good predictors, researchers
have started working on extracting textual linguistic features in order to gain pre-
dictive power. In this direction, Jaech et al. [30] have reported general improvement
of machine learning classifiers in the problem of ranking comments that appear in a
fixed time window in a discussion thread. Note, however, that the gain was reported
to be marginal. Later, Zayats and Ostendorf [63] constructed a specific type of RNN
called LSTM (long short term memory) for the same purpose of predicting comment
scores. The proposed model uses structural and temporal comment features, as
well as textual linguistic features of the comments. The authors achieved a slightly
better performance (increase in average F1 score from 50 to 54 on average) on a
dataset of three subreddits studied earlier in [13]. They found that controversial
comments (that further generate a wide discussion in terms of a discussion tree)
tend to be overpredicted (with a lower score than predicted) and jokes and funny
comments, on the contrary, were mostly underpredicted (with a higher score than
predicted). Linguistic context was found to be helpful in prediction tasks and
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words of underpredicted comments were aligned with comments of positive score,
but words associated with overpredicted comments did not show any significant
correlation. In another work, Hessel et al. [26] considered pairs of posts, submitted
within a very short time interval into the same communities (to exclude timing bias)
and predicted the more popular posts in those pairs. Six primarily image-sharing
subreddits were selected for the study, with a set of features including textual
and temporal information, but also image features assessed by the deep neural
networks. The authors concluded that user-centric characteristics, e.g. previous
popular submissions, and content-specific features, e.g. more complicated images
and simpler titles, make a good predictor of popularity of the submission. The
authors also reported an accuracy comparable to that of human classification.

The content popularity is influenced by various factors and public endorsement
may not properly reflect its inherent quality [49]. This phenomenon has been studied
by Stoddard [52] by means of a Poisson regression model that infers the intrinsic
quality of posts from voting activity of the users. The author collected a unique
dataset of users’ voting time series by tracking a number of top posts on the
front pages of five subreddits and the front page of Hacker News, and used data
to predict final score of posts. A variable of quality was then introduced in the
model parameters and was shown to correlate with the total post scores, although
there were several situations when similar quality posts had different scores and
vice versa. Amongst others, the mechanism of making popular more visible than
less popular ones leads to a multiplicative process that increases the variance of
popularity, with the effect of making a substantial fraction of the posts ignored.
According to Gilbert [15], Reddit overlooks 52% of the most popular links the
first time they were submitted. Lakkaraju et al. [34] explored this idea and showed
that resubmissions of the same piece of content may gain more popularity than an
original submission. The authors collected a dataset of image submissions between
2008 and 2013, where each image was resubmitted roughly 7.9 times.6 Same
pictures can in principle be resubmitted to different subreddits; thus, the authors
employed a success metric compared to the average post score in the community.
The authors also proposed a statistical model that predicts the expected score of a
resubmitted picture. The model parameters include the inherent content popularity,
penalties from previous success and previous submissions to other communities or
to the same community twice. Overall, the study supports the hypothesis that a high
quality content “speaks for itself” and determines its score. The choice of subreddit
plays an important role—the model shows that the content, resubmitted to the same
subreddit, in general was unlikely to be popular, as well as whether the content was
previously highly rated in a popular subreddit (with a high number of visitors or
subscribers). This effect gradually disappears with time, indicating forgetfulness of
the audience. Titles of resubmissions were also found indicative: if the title is novel,
written using subreddit-specific words and sentiment orientation, the submission

6The authors used karmadecay.com—the reverse image search tool specifically designed for
Reddit.

www.karmadecay.com
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Fig. 4 Sample discussion tree of a post on Reddit with a histogram of comment arrival. Central
large red node depicts the post, and comments depicted in black. The histogram presents hourly
aggregation of comments arrival

has higher chances to receive positive feedback. Similarly, Glenski et al. [16, 17]
found that users mostly vote on posts only after glancing at the title, without proper
reading of the content or the discussion. The authors of [34] also performed an in
situ experiment: they manually chose and resubmitted 85 images from the dataset,
select a “good” and a “bad” title according to the model for each picture and post
them in two different subreddits. The post scores, gathered after 1 day, show that
submissions with a “good” title generated scores three times higher than the “bad”
ones.

Generative Models for Discussion Trees As mentioned above, comments under
the post form a rooted tree. Such trees have dynamic nature and their temporal
growth reveals the dynamic of attention to the post (see an example of a tree and
a histogram of comment arrival in Fig. 4). Generative models for discussion trees
mostly question the tree structure of a discussion while disregarding the comments’
or posts’ textual features and exact timings. The reader may refer to the extensive
review on generative models given by Aragón et al. [2], and here we give only a
brief overview of the representative contributions.

Gomez et al. [19] considered discussion trees in four large Internet boards
(Slashdot, Barrapunto, Meneame and Wikipedia) and proposed a generating model
based on preferential attachment mechanism (PA model) with respect to the
comment degree and the root bias. Later Gomez et al. [20] enriched this model
by incorporating a notion of novelty of comments, which is represented by an
exponentially decaying function of attractiveness. The model showed better results
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in likelihood of representing the tree structure and reproduced well the width/depth
relation for discussion trees. Lumbreras et al. [37] proposed to enrich the PA model
with the notion of roles, which are latent functions of community members. The
PA model defines a set of parameters that regulate the place of attachment of a new
comment. The authors suggest that this set of parameters is different for different
users and propose to group them into the role sets, which are inferred accordingly.
Despite this extra natural assumption, the gain in model likelihood is marginal.

Aragón et al. [3] considered the social system Meneame, where the change in
discussion representation happened in 2015 from a plain list to a structured threaded
view. This change was observed to have an impact on the structure of discussion
trees and the authors further enrich the PA model, with a reciprocity term that
captures the tendency of posting authors to reply back in the discussion. It was
observed that change of the platform interface had a positive effect on reciprocity,
as well as on other parameters in general.

The above mentioned models focus exclusively on the structure of discussion
trees while leaving out the continuous time dynamics of the comment attraction
process. Kaltenbrunner et al. [31] found that comment arrival time in Slashdot
discussions fits well by double lognormal distribution, although the fitting quality
depends on a circadian rhythm of the site. Based on this finding, the authors propose
the prediction model that predicts the total number of comments in a discussion
thread. The dynamical aspect of tree generation was first studied by Wang et al.
[61], where the authors introduce a merely theoretical model for the structural and
temporal evolution of discussions. The temporal evolution was described as a Lévy
process with power-law interevent time distribution, when newly arriving comments
were assumed to attach to the existing tree under the simple PA rule. The model was
inspired by empirical observations of such discussion boards, like Reddit, Digg and
Epinions; however, the mean-field nature of it limits its calibration with real-world
datasets. Medvedev et al. [39] used a Hawkes process along with its branching tree
interpretation to jointly model structure and dynamics of discussion trees in Reddit.
The model was further used for prediction of the discussion flow, performing better
than contemporary models of cascade dynamics.

The discussion trees in Reddit exhibit interesting peculiarities in their structure.
For instance, the trees exhibit the so-called “root bias”, which means that regardless
of the tree size the degree of a root is on average larger and more broadly distributed
than the degree of a comment. This may arise from the fact that the direct comment
is induced by the post itself, not the subsequent discussion, and that such discussion
is only shown after opening a specific link under the post. Root bias is not a
unique feature of Reddit, other platforms like Slashdot, Barrapunto, Meneame and
Wikipedia also own it [19, 20]. Analysis of political discussion trees [21] and reply
trees in Twitter [46] suggests considering the width/depth relation for the trees.
For example, reply trees in Twitter were shown to have a duality of being either
long chain-like trees (low width, large depth) or star-like trees (vice versa). It is
a commonly known fact that critical branching trees of size n have depth d and
width w proportional to

√
n [38], which turns out to be the case for the Reddit

discussion trees, where the scaled value of d/
√

n is well-centred (see Fig. 5). This
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Fig. 5 Average scaled discussion tree depth d/
√

n versus discussion tree width w/
√

n, where n

denotes scaling by tree size (left figure) and scaled depth distribution (right figure) in Reddit. Large
red dots on the left figure denote political and news subreddit. The figures are based on data from
year 2008

is also supported by the fact that the branching tree model reproduced the trees
better than the PA model [39], which apparently has not more than logarithmic depth
[9, 12]. Political discussion trees on Slashdot were shown to have larger depth and
width in comparison to other trees. Discussions in political subreddits also show
large depth and width, but apparently this is mainly due to the fact that on average
it has larger participation rate, which is clear from the mean scaled width and depth
values for different subreddits in Fig. 5.

Other Zannettou et al. [62] perform a study of meme evolution and propagation
across different platforms, e.g. Twitter, Reddit, 4chan and Gab, where the last two
are image boards structurally similar to Reddit. The authors’ analysis helps to reveal
the influential actors in meme ecosystem, both in terms of creation and propagation,
the authors build clusters of similar memes and make an analysis of reciprocal
influence between the observed communities using Hawkes processes.

The results highlighted in this section are summarized in Table 1.

4 From the Perspective of Users

So far we emphasized the posts as the central pieces of information driving the
dynamics of the platform. We now focus on the person who hides behind each
post, comment, like or dislike, and review studies on the behavioural features of
users. The main approaches in this section are observational and data-oriented.
Statistical methods are employed in order to analyse the users track records and
their community organization is uncovered by analyzing the network of relations
between actors.
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Table 1 Short summary of the articles with studies on Reddit, presented in Sect. 3

Article Task Dataset Methods

Horne et al. [29] Predict high-scoring
comments, assess the
impact of thread
moderation

Reddit dataset [54],
11 top subreddits

Linear regression,
sentiment analysis

Fang et al. [13] Predict final score of
comments

Reddit, three chosen
subreddits

Recurrent neural
networks (RNN)

Zayats and Ostendorf [63] Predict final score of
comments

Reddit, three chosen
subreddits

RNN with long short
term memory
(LSTM)

Hessel et al. [26] Given a pair of
submissions, predict
the one with higher
final score

Reddit dataset [54],
six image-sharing
subreddits

Image description
(convolutional neural
networks), LSTM

Stoddard [52] Determine inherent
quality of posts and
to predict
high-scoring posts

Hacker News;
Reddit dataset [54],
five top subreddits

Poisson processes

Lakkaraju et al. [34] Predict popularity of
resubmitted content

Reddit, unique
dataset of
resubmitted images

Poisson regression

Aragón et al. [3] Review of the
models of discussion
trees

Reddit, Slashdot,
Meneame,
Barrapunto, etc.

Review

Medvedev et al. [39] Model structure and
predict dynamics of
discussion trees

Reddit, dataset [54] Stochastic Hawkes
processes

Activity Patterns Observing the actions of users on a website can lead to
interesting conclusions. Glenski et al. [16, 17] have studied a dataset with all
recorded activity of 309 Reddit users within 1 year. The activity log included
the information on all clicks, pageloads and votes made within the REDDIT.COM

domain. As expected, the majority of users prefer passive browsing and rarely
interact with the content (only 16% of users produce more than 50% of interactions).
Users mostly vote on posts on average after only browsing the title (73% of posts),
although a non-negligible fraction (17%) of participants follow the link of the post
and browse the section of comments before giving a vote. It was noted that users’
probability of interaction with a given post decreases with the ranking of the post
on the top page of Reddit as well as on subreddits. Text analysis of post titles
shows that the probability of interaction increases with the reading ease of the
title, i.e. as they use shorter words, and smaller sentences. The authors used the
concept of activity sessions, which are the periods of user activity starting from an
interaction and finishing after 1 h without consecutive interactions. This terminology
and a 1 h threshold were adopted from Halfhaker et al. [22] and Singer et al. [51].
The authors reported a mean session length of 53 min. However, most participants
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Fig. 6 Distribution of the number of subscribers of subreddits. The largest subreddits in the rising
tail of this distribution are shown along in the table

had much shorter sessions prevailing (>3 min). Singer et al. [51] also studied
performance deterioration within sessions of active commenting on Reddit, where
sessions of increasing intensity, i.e. how many posts users produced during sessions,
are associated with the production of shorter, progressively less complex comments,
which receive declining score. In this work, the authors found a similar prevalence
of short sessions and sessions and presented a daily circadian rhythms.

Community Loyalty While some of the previous results also applied to other
online platforms, this section is devoted specifically to Reddit, a platform where
the content is by default submitted to thematic communities, or subreddits. These
subreddits are in principle open to anyone, but users can follow particular subreddits
of their interest in order to customize their feed. Interestingly, subreddit sizes are
close to have heavy-tailed distribution and there exists a fraction of subreddits-
outliers with a huge number of subscribers, Fig. 6. Looking closer at those we find
that many of these “top” subreddits are those which are proposed to sign up for by
default at the registration of a new user.

Tan and Lee [58] studied the posts of users across the subreddits and found
that users on average tend to explore and continuously post in new communities;
moreover, they tend over time to share their activity evenly between a small number
of communities with diverse interests. Differences in posting patterns of users may
be used for prediction of the users’ future settlement status in a community. Vagrant
users, on average, post to more similar communities in comparison with the settling
users, they use different language patterns from those existing in a community and
their posts receive less attention in terms of score. Score of the first post may
generally act as a predictor of further postings. The posting activity rate alone
showed to be a bad predictor of the future settlement status in a community. An
interesting finding is that the very same users tend to use different vocabulary when
posting in different communities, therefore adapting to the community language.
Hamilton et al. [23] defined loyal communities as the ones that retain their loyal
users over time and find that such communities have smaller, but denser user
interaction networks—with users as nodes, connected if there is a reply-to comment
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between them. These networks were found to be less assortative and less clustered,
and thus show less fragmentation into groups. The authors then predicted whether
a user will be loyal to the community, using a machine learning classifier with
linguistic features of user’s posts and comments, and achieve on average 63.6%
classification accuracy.

Reddit allows users to self-organize into interest communities, which leads to
interesting dynamics of communities. Hessel et al. [25] focused on communities
sharing name affixes, for example, affix “ask” (science, askscience), “true” (atheism,
trueatheism), “help” (tech, techhelp), etc. A curious finding is that when such a
highly related community is created, users engaging in the newer community tend
to be more active than in their original one. However, in a prevailing number of
cases, newer related subreddits do not detach out of their old partners (in terms
of the user base), but in about 25% of the cases, the newer subreddit overtakes its
counterpart in participation rate. Some reasons for this behaviour may include the
absence of moderation in the new community, a more general scope, or simply a
more appealing name spelling. The authors note an interesting result that users who
explore the newer created communities generally become relatively more active in
their home communities instead of being distracted (Table 2).

Users may also migrate under external pressure. In 2015, a series of external
events triggered closure of several popular subreddits. Newell et al. [45] studied the
history of this unrest period and observed that users migrating to new subreddits
increase their level of participation with respect to their previous community.
The authors followed users when they migrated to other discussion platforms and
observed that although alternative platforms deliver a space for a broad audience,
Reddit users value its advantage of hosting niche communities. In a similar vein,
Zhang et al. [64] created a scalable framework for typing subreddits along the
“niche” and “volatile” dimensions and used these types to understand the user
retention and assimilation in subreddits. Finally, Muchnik et al. [44] performed
a large-scale experiment on a Reddit-like platform to study the herding effect of
social influence and how the system reacts to the manipulation of comment scores.
They observed that users tend to correct artificially downvoted comments. However,
comments that are artificially upvoted received an enhanced number of positive
votes, thereby increasing the initial bias. Similar herding effects were found in other
social systems as well [24, 48]. Das and Lavoie [10] also used a self-collected Reddit
dataset of users posts and comments to train a reinforcement-learning model for how
users select subreddits to post in reaction to community feedback.

Trolling and Hate Speech Chandrasekharan et al. [7] studied the ban of several
hate speech subreddits and the consequences that this measure brought to the
website. As one could expect the users of the banned subreddits would redistribute
themselves over other subreddits and proceed producing hate speech there, but the
authors show that did not happen—the level of hate speech did not increase in other
subreddits and, moreover, the majority of users just left the website. Same topic
was studied in [47], where the authors note that many counter-actions taken by the
users of banned subreddits were short-lived and promptly neutralized by both Reddit
moderators.
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Table 2 Short summary of the articles with studies on Reddit, presented in Sect. 4

Article Task Dataset Methods

Glenski et al. [16, 17] Collect and assess the
dataset of tracks of
user actions

Reddit, unique
dataset of user
interactions

Statistical analysis

Singer et al. [51] Assess user
performance
deterioration during
activity sessions

Reddit, all comments
made in April 2015

Statistical analysis,
negative binomial
and Poisson
regression

Tan and Lee [58] Study explorers and
exploring phenomena
of new communities

Reddit, dataset [54] Statistical analysis,
regression, linear
classification

Hamilton et al. [23] Loyalty prediction
for newcoming users,
patterns of loyal
communities

Reddit, all comments
made in 2014

User interaction
networks, random
forest classifiers

Hessel et al. [25] Study the dynamic of
arise of highly related
communities

Reddit, dataset [54] Statistical analysis

Newell et al. [45] Study the user
migration across
platforms during
externally caused
unrest period

Reddit, dataset [54] Statistical analysis

Zhang et al. [64] Classify subreddits
along “niche” and
“volatile”
dimensions, study
user retention

Reddit, dataset [54] Statistical analysis

Das and Lavoie [10] Model users posting
strategies with
respect to community
feedback

Self-collected Reddit
dataset

Machine learning,
reinforcement
learning, hierarchical
Dirichlet process

Kumar et al. [33] Mobilization and
attacks between
communities

Reddit, dataset [54] Reply networks,
lexical analysis,
LSTM, mechanical
turk

Tan [57] Genealogy of
subreddits

Reddit, dataset [54] Relational networks

In [8] Chandrasekharan et al. studied community norms and their violations. The
method comprised continuous scraping of comments and checking their presence
in the system 24 h later, which finally gave more than four millions comments
deleted by moderators within a 10-month period. Using state-of-the-art text analysis
libraries and principle component analysis the common and particular language
norms were inferred, for example, hate speech, racism and homophobia were
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established to be common norms across the whole Reddit and expressing “thanks”,
mocking religion and nationality were only particular norms, valuable only for a
part of subreddits.

Another phenomenon which frequently happens in online discussions is
trolling—provocative, offensive or menacing messaging [6]. Mojica [41] collected
and studied an annotated dataset of trolling comments in discussions on Reddit
using a variety of language features.

Inherent Networks of Communities Kumar et al. [33] considered interactions
between communities in the form of mobilization by users of a community (the
source of the “attack”) for hateful comments on posts from another community (the
target of the attack). Such mobilization happens when a user in source community
posts a link to a post in a target community and titles it with the intention of
mobilizing a subset of users, who further write hateful comments on the target post.
Such interactions may cause users of a target community to leave. By analyzing
reply networks in target discussions, the authors found the effect of echo chambers,
i.e. attackers preferentially interact with other attackers and defenders with other
defenders. When a direct interaction happens, the attackers “gang-up” on defenders
and only a small part of the defenders is involved into interactions with the attackers.
The authors propose an LSTM neural network model that uses textual and social
features in order to identify whether a given cross-linked post will produce a
mobilization.

Gomez et al. [18] constructed and analysed the inherent social network of
Slashdot, generated by replies in the discussion threads. The network exhibits
neutral mixing by degree, almost identical in and out degree distributions, only
moderated reciprocity and an absence of a community structure. The authors
conjectured that users are more inclined to be linked to people who express different
points of view, and that the network may help to identify users with a high diversity
in opinions. The authors also proposed a measure for the controversy of a discussion,
based on the h-index [27].

Tan [57] considered the genealogy of communities in Reddit. The author builds
a weighted directed network of communities, where community A is linked to a
community B if a substantial fraction of first 100 posting users in B had their
posts in A. The weight of a link (A,B) is simply the fraction of posting users. The
network shows user migration across the communities and is useful for predicting
growth of communities. One finds that the diverse portfolio of memberships is the
most important characteristic of early adopters, whereas community feedback and
language similarity does not seem to matter.

Other Discussion platforms are tested for a broad spectrum of possible research
questions. In addition to the topics covered above, we give now some other
research directions. Derczynski and Rowe [11] used Reddit comments to create
an annotated corpus of named entities—proper nouns representing a person, place
or an organization. Horne and Adali [28] studied how posting news articles on
subreddit /r/worldnews influences their popularity and concluded that changing the
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article titles results in greater popularity comparing to leaving the original one. In a
similar way, Moyer et al. [43] studied how posts on the subreddit /r/todayilearned
influenced the pageviews of Wikipedia.

The results highlighted in this section are summarized in Table 2.

5 Discussion

This survey does not aim at providing a comprehensive listing of all Reddit-related
works, but rather at providing a representative sampling that illustrates the richness
of datasets related to online discussion platforms, with Reddit as a dominant
example. The richness is clear in terms of quantity as well as quality—in principle
the entire dataset can be harvested, while other platforms, e.g. Facebook, may offer
exhaustivity only at the cost of selecting a small sample of volunteers [35] and
studies of Twitter are known to be limited by the volume and bias of their API [42].
The richness also arises from the diversity of the data, featuring an inherent social
network between users, texts constitutive of posts and comments, social appreciation
(score), tree structure of posts and comments, all that unfolding in time for years.

Different platforms may exhibit different type of properties, for instance, in the
structure of discussion trees, even if they are organized by the same principle.
Our discussion on Reddit has shown a broad distribution in size, with a vast
majority of trees negligibly small. We also observed root bias, as in other discussion
platforms; however, their structure was better modelled as a branching tree with
almost uniform branching, rather than preferential attachment networks, due to their
specific depth/width profile.

The richness of the data translates in a variety of topics of investigation. On the
theoretical level, it allows to observe an ecosystem of users discussing, agreeing or
not, and organizing in communities. Besides fundamental sociological questions,
it also allows to investigate a range of Internet-specific questions, such as trolling,
echo chambers, polarization, social manipulation, etc. The data also offers material
to shape solutions for applied questions. From a platform designer viewpoint, it
could help to improve the experience of a user, but also to design more efficient
algorithms for the identification of high-quality posts. The design of the commenting
system is also expected to affect the dynamics and structure of conversations. In
this direction, important problems include the detection and automatic removal of
trolling or attacks, as well as ways to stimulate the activity of a forum.

The richness of the data and problems calls for a range of computational methods,
which may be explicit statistical models or black-box machine learning tools, in
order to classify or predict the behaviours of users, posts and communities. Overall
we observe that the structure of discussion trees is relatively well understood.
However, mixing the dynamics and structure with textual features is an important
step that has only been studied by means of black-box machine learning, such as
neural networks techniques, showing a good performance in predicting community
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appreciation. A challenge remains the fact that many basic statistics of the data
(activity of users, popularity of communities, success of a post, etc.) exhibit heavy
tails, which may introduce sampling issues as, for instance, a random sampling may
fail to observe extreme points (e.g. high activity users) while they carry a large
influence in the structure and dynamics of the system. This caveat must be kept in
mind when using techniques such as neural networks.

This review is a testimony of the richness and dynamism of academic research on
social platforms, in general, and Reddit, in particular. Despite the many progresses
overviewed above, we would like to conclude with a list of what we believe
to be promising research directions. In our opinion, fruitful avenues of research
include:

• A more detailed study of the activity patterns of users. Collected browsing
patterns of users already uncover particular voting behaviour, when many users
vote after glancing over the title of a post, and browsing patterns, when feed page
breaks create an abrupt obstacle for users attention [16, 17]. Activity patterns may
first of all be of use to platform designers and to study the influence of platform
structure on user experience.

• It is true that discussion platforms like Reddit do not have an a priori built
social network, in comparison with Twitter or Facebook. Nevertheless, one
may reconstruct inherent networks of communities [57], users (as in [18]) or
submitted information, and exploit these networks to improve prediction of the
future state or dynamics of the system. Such studies may be of use for platform
users, as well as for platform curators.

• Study growth or resilience of online communities over time. To be more precise,
the dynamics of posting and commenting shape define the life of a community.
The two processes are coupled, but not necessarily proportional, as can be seen in
Fig. 7. Important questions include the identification of dynamical and structural
features that ensure the growth or resilience of online communities over time.
Dynamical and evolving graph models would be of help in this direction.

• The dynamics of discussions is another interesting, yet mostly unexplored,
aspect of research, especially the possible relation between the structure and the
dynamics of discussion trees. This question could be explored by means of neural
networks, which showed to be a working approach in prediction models.

• Finally, the huge volume of new posts and comments makes the design of
efficient ranking and recommendation algorithms vital, in order to allow users
to identify relevant information and improve their online experience. As it
was shown, platform structure has direct influence on user experience and
participation [3]; thus, both platform designers and users would benefit from such
studies.
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Fig. 7 Daily counts of submission of posts and comments in three selected subreddits. Three
possible scenarios of participation dynamics are shown: (1) increase in comment rate exceeds
posting rate (top figure); (2) rates are similar (middle figure); and (3) comments eventually
disappear, while the number of posts increases
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Learning Information Dynamics in
Online Social Media: A Temporal Point
Process Perspective

Bidisha Samanta, Avirup Saha, Niloy Ganguly, Sourangshu Bhattacharya,
and Abir De

Abstract Accurate modeling of information dynamics of online media across time
has a wide variety of applications. For example, in Twitter, we can predict which
hashtag may go viral against others; also in an e-commerce site like Amazon,
reviews of a product over the time can help to identify which product will
be preferred over others in future. The information dynamics follow a complex
diffusion process and many factors reinforce each other. There are clearly two types
of factors: (a) intra-item factors and (b) inter-item factors. Visibility indicates the
ability of a piece of information to attract the attention of the users, against the
background information. Therefore, apart from the individual information diffusion
processes, the information visibility dynamics also involves a competition process,
where each information diffusion process competes against others to draw the
attention of users. Despite the fact that models of the individual information
diffusion process abound in literature, modeling the competition process is left
unaddressed. Here, we propose two models: (1) LMPP: a probabilistic linear
framework that unifies influence of different factors contributing to popularity of
an item and inter-item (product or hashtag) competitions and (2) CRPP: a more
generic model, a probabilistic deep machinery that unifies the nonlinear generative
dynamics of a collection of diffusion processes, and inter-process competition—
the two ingredients of visibility dynamics. Though LMPP is a novel probabilistic
lightweight framework that models the dynamics of item popularity by unifying
the intra- and inter-influence in a principled way, it assumes a linear diffusion
process which makes it restrictive in some cases. CRPP overcomes this issue. To
design this model, we rely on a recurrent neural network (RNN) guided generative
framework, where the recurrent unit captures the joint temporal dynamics of a group
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of processes. This is aided by a discriminative model which captures the underlying
competition process by discriminating among the various processes using several
ranking functions. On ten diverse datasets crawled from Amazon and Twitter, CRPP
and LMPP offer a substantial performance boost in predicting product visibility
against several baselines, thereby achieving significant accuracy in predicting both
the collective diffusion mechanism and the underlying competition processes.

Keywords Information diffusion · Social network · Machine learning

1 Introduction

With the explosion of information spread in several online forums, fuelled by
the enormous activities by their users, the user-attention has become a scarce yet
valuable commodity [4]. Consequently, among a myriad of information, only a few
can steal a good part of it, while the rest go unnoticed. For example, in Twitter, a
small number of hashtags attract a frenetic level of retweets, while the others quickly
ebb; in e-commerce sites like Amazon, Alibaba, etc., only a few popular products
are swamped with reviews, and the rest remain confined in small coteries. Such
a trait is called visibility which refers to the relative ability of a particular piece of
information to draw the attention of the users, against the rest. We quantify visibility
of a piece of information by the number of instances where it is cited by users, e.g.,
by the number of (re)tweets bearing a hashtag. In general, the popularity of a piece
of information depends on one more factor other than visibility and competition—
that is intra-item reinforcement. Every hashtag has an intrinsic attractiveness, and
similarly the tweets bearing the hashtag also have their own appeal. In one of our
works [27], we showed that hashtags and tweets often reinforce each other. For
example a not-so-popular tweet may become popular later on due to the popularity
of the hashtag it is bearing. Since traditional temporal approaches bank on modeling
only tweet-propagation, simply extending these prediction-frameworks to hashtags
would not produce accurate results (our experimental results also emphatically
establish that). However, considering only the hashtag-tweet reinforcement process
still leaves a paucity in the realistic modeling of hashtag-flow, that demands a careful
consideration of the inter-hashtag competitions.

Therefore, at the very outset, the information dynamics that involves a com-
plex, collective information diffusion process is also propelled by a competition
mechanism among several pieces of information, where one is pitted against the
others for drawing a significant share of user attention [14, 29, 33]. Principled
modeling of information visibility can potentially have immense impact, on a broad
application spectrum ranging from trending hashtag selection to news broadcasting,
from information spread to product purchase prediction, etc. In this paper, our goal
is to accurately model such visibility dynamics by unifying the joint generative
diffusion mechanism of a group of information, and the competitive interaction
between them, in a principled way.
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Limitations of Prior Work
Research on online information diffusion that was based on the discrete time
cascade models during the last decade [2, 3, 15, 16, 24] recently got a fresh lease
with the advent of temporal point process—a stochastic process—which naturally
captures the asynchronous arrival of information in online media [1, 6, 8, 10, 17,
22, 23, 30, 34]. While such techniques have shown a great finesse in predicting
the popularity of individual information, their “as-it-is” deployment to model
the visibility dynamics is precluded mainly by two limitations. (1) They do not
explicitly capture the competition between two active pieces of information. Such a
competition between information pieces is also a complex dynamical process, where
the popularity rankings of the competing information pieces continuously fluctuate
with time. (2) The existing works focus on generative modeling for individual
information flows. By doing so, they skirt several fine-grained traits involving
competing dynamics of information, e.g., relative popularity variation, sudden trend
change, etc. Consequently, they are largely unable to replicate any microscopic
features in information diffusion. While a few works [30] indeed coin the issue of
competition in the context of product adoption, they adopt a brittle linear model
for information diffusion that renders their approach practically restrictive. Our
experimental results establish this fact (Sect. 3).

Present Work
We first describe Large Margin Point Process (LMPP), a novel probabilistic
framework that models the information dynamics by unifying the intra-item factor
and inter-item competition. LMPP aims to capture item-process reinforcement
using a generalized triggering kernel. Furthermore, LMPP aims to incorporate
competition among the items and their impact on information dynamics. In order to
do that, we probe into the variations in the popularity rankings of the concurrent and
related items. Therefore, to capture such signals, we suitably curate the parameter
space of LMPP that ensures correct ordering of popularity across several time
intervals. Such a formulation intuitively articulates the competition process, without
drastically changing the model-setting. In fact, this additional trait helps to properly
train the model, which in turn enables it to detect sudden drifts in popularity
rankings of the competing items.

However, LMPP adopts a linear model for information diffusion that renders
their approach practically restrictive. To ameliorate the above limitations, in this
paper, we develop Competing Recurrent Point Process (CRPP) for modeling
information visibility dynamics. CRPP unifies its two key ingredients: (1) a dis-
criminative competition framework to tap the relative popularity variation between
several competing diffusion processes, which in turn are modeled using a family
of coupled (multivariate) nonlinear temporal point processes; and (2) a multivariate
nonlinear generative module to probe the dependent dynamics of these processes.
More in detail, CRPP is equipped with a family of learning-to-rank templates that
embed the associated events into real valued vectors using multiple deep recurrent
neural networks. These learning-to-rank templates are specifically designed to
probe the relative variations in the popularity order of the concurrent processes,
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and feed these signals into suitable ranking losses. Such an approach bridges the
rich literature on learning-to-rank [11–13] with temporal point process, where the
ranking losses operate over a complex dynamics of interdependent samples and
optimizes a diverse set of visibility measures. Moreover, by doing so, our model
also captures the complex generative dynamics of concurrent information diffusion
processes by means of the multivariate RNN modules, thereby developing the
inchoate ideas of univariate point-process modeling [6, 23] into a complete, generic,
multivariate design.

On ten diverse datasets, six obtained from Amazon reviews and four crawled
from Twitter, our proposal offers substantial (up to ∼18%) accuracy gains in pre-
dicting visibility dynamics, against several strong competitors. More importantly,
by adequately learning the competition process, it can reasonably detect an abrupt
visibility change of an item, i.e., a hashtag or a product, a challenging task that
many baselines cannot trace. Such a strong predictive power enables our model
to learn to rank products on fly, which is a considerably difficult task yet with a
wide spectrum of applications. By accurately considering the competition process,
it can successfully model the ranking dynamics over time, of the correlated hashtags
or products, which none of the existing baselines can even consistently trace.
Consequently, it can reasonably forecast the abrupt popularity changes of these
items, which, in general, is considered a difficult phenomenon to reproduce.

Contributions
Apart from designing a novel model for visibility dynamics in the context of
information propagation, in this paper, we make the following contributions:

1. Both the models employ a wide variety of learning-to-rank templates, where they
minimize a set of ranking losses over the variation of popularity order observed
in the data. Despite the complex temporal-dependencies between competing
information-streams, the presence of such a learning machinery in our approach
helps to connect the rich concepts of learning-to-rank methods to temporal point
process—which is a key contribution of our paper.

2. In a marked departure from the existing diffusion models having fixed functional
forms, CRPP eschews such impositions and rather learns the complexity of the
nonlinear visibility dynamics. Furthermore, our model generalizes the basic ideas
of deep learning of univariate point processes to design a complete multivariate
deep point process framework.

2 Proposed Model

In this section we will describe two models, starting from the linear large margin
point process based model LMPP and then we will describe the more generic
nonlinear framework CRPP. Throughout the rest of this paper we will use the term
item diffusion and process interchangeably.
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2.1 Large Margin Point Process (LMPP)

2.1.1 Overview

Terminology We define a Diffusion Process as the set of events. In case of Twitter
the diffusion process of a hashtag can be defined as the collection of tweet posting
events. In case of the scenario of the products at Amazon, a user review corresponds
to a product use event, and the diffusion process is nothing but product popularity
dynamics.

Given a process I, events {e} we define the history before t as:

HI(t) = ∪e∈I{e and t (e) < t},

where t (.) defines the time when the corresponding event occurred. Thus, the history
of a process until the time t is the set of events generated by the process before the
time t .

Computation of Item Popularity In a similar spirit to [34], we measure the
popularity of an item by the total number of its constituent events. To do so, we
propose LMPP, that models the temporal dynamics of the constituent events in
terms of post-rate. While modeling such a post-rate, LMPP combines the role of
event-process reinforcement that is, the popular event would influence the dynamics
more than a not-so-popular event and item competitions in the overall popularity
dynamics.

Basic Generative Process for an Item I At the outset, we represent the posting
times of the events as a point-process model. In particular, given an item I, we
define the counting variable as NI(t), where NI(t) ∈ {0} ∪ Z

+ counts the number
of events posted until and excluding time t . Then, we characterize the conditional
probability of observing an event in infinitesimal time interval [t, t + dt) as

P(An event triggers in [t, t + dt)|HI(t)) = λI(t) dt (1)

i.e.,EdNI(t)∼{0,1}[dNI(t)|HI(t)] = λI(t)dt. (2)

Here dNI(t) indicates the number of events in the infinitesimal time-window [t, t +
dt) and λI(t) stands for the associated hashtag intensities, which further depends
on the history HI(t).

Based on the above definition of conditional probability, We may quantitatively
define the visibility of an item I in an interval [ts , tf ) as NI [ts , tf ) = ∫ tf

ts
λI(t)dt

and the overall visibility of the item in the whole time period [0, T ) as NI(t) =∫ t

0 λI(t)dt

The functional form of λI(t) is chosen to capture the phenomenon of interests
that possibly encompass process-competitions, self-exciting dynamics, or event-
process interactions. In the following, we present a specific characterization of λI(t)

that captures the self-exciting nature of a process dynamics.
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Self-Exciting Dynamics To capture the mutual excitation between posting events,
we rely on the Hawkes process [5, 7]. It is a particular type of functional form used
in the growing literature on social activity modeling using point processes [7, 30]:

λI(t) = λI,0 + β
∑

ti∈HI (t)

e−ω0(t−ti )

= λI,0 + β(κ(t) � dNI(t)). (3)

Here, λI,0 � 0 models the initial post-rate of (re)tweets, and the second term,
with β � 0, assigns weight to the influence of the publication of earlier events.
κ(t) = e−ω0t is an exponential triggering kernel indicating the decay of influence
of the past events over time, and � denotes the convolution operation.

2.1.2 LMPP: Modeling Event-Process Reinforcement and Inter-Process
Competitions

Apart from the inherent popularity dynamics, our proposed framework CRPP
considers two more crucial factors in modeling the popularity dynamics of an
item: (1) the mutual reinforcement process between item and process, and (2) the
competitions among processes.

We observe that, it is the intensity kernel κ(t) (in Eq. (3)) that accounts for the
self-exciting mechanism for the Hawkes process. Therefore, we aim to construct
a suitable κ(t) which should, along with the self-exciting reinforcement process
of the individual tweets, capture the hashtag-tweet reinforcement factor. Therefore,
the event-process reinforcement factor should vary across the popularity distribution
of the event. Thus, the kernel should be further parameterized by event-popularity
index k (defined in Sect. 2.1.3), to have κk(t). Particularly, κk(t) should be chosen
in such a way that:

• Given a process, when a popular event occurs, i.e., when k goes high, the inherent
attractiveness of the item heavily influences its propagation process. That is, κk(t)

pushes λI(t) more towards a Hawkes process, in the sense that the occurrence of
an event stimulates a large increase in the probability of events in the immediate
future (which then dies down eventually). This is referred to as “self-exciting”
dynamics. Therefore, the overall resulting dynamics become more and more
bursty, i.e., the distribution of process exhibits several high peaks (and deviates
from a uniform distribution). In the case of Twitter, κk(t) can be looked upon as
a normalized measure (Ni/

∑
j Nj ) of the number of retweets of the tweet i in

the time interval [0, t). Such a term encourages “hashtag-tweet reinforcement,”
where a popular tweet drives the flow of the underlying hashtag, rather than a
not-so-popular tweet. In case of the scenario of the products at Amazon, where a
user review corresponds to a product use event, k would denote the rating of the
review, which is on a scale of 1–5 stars. κk(t) can therefore be looked upon as
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a normalized measure k/5. In this case, the event magnitude models what may
be analogously called “product-review reinforcement,” where a review with a
higher star rating boosts the popularity of the product, leading to higher sales and
correspondingly more product use events.

• For non-popular events, the effect of the resultant influence of the process is
very low on its propagation process. Thus, a low value of κk(t) should fare in a
relatively small λI(t).

Considering the above points, we take κk(t) as

κk(t) = κ∞(t)e− ωt
k . (4)

κk(t) has two factors. κ∞(t) indicates the self-exciting process, while e− ωt
k stands

for the event-process influence. Furthermore, we try to approximate κ∞(t) as a
more generalized intensity kernel κ∞(t) = ∑M

j=1 βj e
−ωj t , where M is a large

integer. The higher the value of M , the more flexible the model. Thus, a high
value of M can be used if the available dataset is large and lower values give a
poor fit. However, very large values of M can lead to overfitting. Thus, we need to
empirically determine the optimum value of M for a dataset. The values used in the
experiments are of the order of 104.

Then, the arrival rate of tweets can be written as

λI(t; kt ) = λI,0e
−εt +

M∑

j=1

β
j

I
∑

ti∈HI (t)

e
−(ωj + ω

kti
)(t−ti )

. (5)

Here, k(ti) is the popularity of an event posted at time ti , and kt := {kti |ti ∈ HI(t)}.
For compactness, we denote ωωω = [ω1, ω2, . . . .ωM ]. Here, an additional decay factor
e−εt is incorporated to diminish the effect of the initial condition, which we found
to work well in practice. The value of ε is chosen empirically. It is the same for all
hashtags.

2.1.3 Popularity Distribution

We observe that given a hashtag, the distribution of the popularity indices of
individual tweets follows a power-law (figures omitted for brevity), which means
that the tweets getting very high retweets are very small in number, whereas plenty
of tweets are having small number of retweets. The distribution is captured as below:

p(k) = ck−α with c = α − 1. (6)

where k is the popularity of a tweet-chain.
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Hence, the expected arrival rate of the process having tweet-chains with random
popularity can be formulated as:

λ̃I(t) = Ek[λI(t; k(t))] =
∫ ∞

1
λI(t; k(t))ck−αdk, (7)

where c is a constant given by Eq. (6).
For product review this can be calculated from the dataset as:

λ̃I(t) = Ek[λI(t; k(t))] =
5∑

i=1

λI(t; k(t))p(k = i), (8)

where k ∈ {1, 2, 3, 4, 5}, and assuming a uniform distribution of ratings, p(k =
i) = 1

5∀i = 1(1)5.

2.1.4 Popularity Ranking in Hashtag Competition

In a diffusion process, concurrent processes often compete with each other for
user’s attention. Such scenarios are usually pronounced through the variations of
popularity rankings of the competing items over time. To model it, one may specify
λI(t), so that it detects the variation in their popularity rankings across time. In
particular, we say

NI1 [ts , tf ) > NI2 [ts , tf ) =⇒
∫ tf

ts

λI1(t)dt ≥
∫ tf

ts

λI2(t)dt + 1 ∀I1, I2 and ts < tf , (9)

where NI [ts , tf ) denotes the number of (re)tweets of hashtag I posted in the interval
[ts , tf ). The “+1” has been included to incorporate a large margin in the constraints.
Because the counting process is discrete, the margin must be an integer, and the
least value is 1.

2.2 Parameter Estimation

Given a set of n processes I = {Il |1 ≤ l ≤ n}, we record a collection of posts
HIl

(T ) = {τi} for each process Il during a time period [0, T ). Using these posts,
we attempt to find the optimal parameters λI,0 and βI = [β1

I , β2
I , . . . , βm

I ] for each
process I ∈ H by solving a maximum likelihood estimation (MLE) problem. To do
so, it is easy to show that the resulting log-likelihood function is
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log[L(λI,0,B|ε,ωωω,ω)]

=
∑

I∈I

∑

ti∈HI (T )

log λI(τi) −
∑

I∈I

∫ T

0
λI(t)dt. (10)

where λI,0 := [λI1,0, λI2,0, . . . , λIn,0] and B ∈ R
n×m with B l,i = βi

Il
are the

variables to be estimated.
To incorporate the effect of competing processes, we further restrict λI(t)

following Eq. (9), by first splitting the interval [0, T ), into L sets of small, equal,
and disjoint subintervals [0, σ ), [σ, 2σ), . . . , [(L − 1)σ, σ ), where σ = T/L, and
then imposing the following constraints, where Ti = iσ :

Whenever,NI [Ti, Ti+1) ≥ NI ′ [Ti, Ti+1),

∫ Ti+1

Ti

(λI(t) − λI ′(t))dt ≥ 1; I, I ′ ∈ I, 0 ≤ i ≤ L − 1.

Similar to SVM [31], such a hard-margin approach often may lead to an infeasible
solution. Therefore, we introduce slack variables

ζ i
I,I ′ = max(0, 1 − yi

I,I ′

∫ Ti+1

Ti

[
λI(t) − λI ′(t)

]
dt) (11)

with

yi
I,I ′ = sign

(
NI [Ti, Ti+1) − NI ′ [Ti, Ti+1)

)
(12)

and cast the problem as

max
λH,0, B

log[L(λH,0,B|ε,ωωω,ω)] − C

L−1∑

i=0

∑

I,I ′∈H
ζ i
I,I ′

yi
I,I ′

∫ Ti+1

Ti

(
λI(t) − λI ′(t)

)
dt ≥ 1 − ζ i

I,I ′ (13)

∀I, I ′ ∈ H and 0 ≤ i ≤ L − 1.

Note that the above problem is convex and thus can be solved efficiently.
We call this framework, Large-Margin self-exciting Point Process (LMPP), since
it incorporates the variations in ranking by increasing the popularity-margins of
competing hashtags while maximizing the corresponding log-likelihood.
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2.2.1 Popularity Forecasting

Our goal here is to develop efficient methods that leverage our model to forecast
a hashtag’s popularity at a given time t . In the context of our model, we aim to
compute N∗

I(t) = EHI (t)[NI(t)], the expected value of total retweet counts of all
tweets for a given hashtag I as:

N∗
I(t) = EHI (t)[NI(t)] = EHI(t)

[ ∫ t

0
λ̃I(t)dt

]
.

2.3 Competing Recurrent Point Process (CRPP)

Here, we formulate CRPP, the proposed model (see Fig. 1) for visibility dynamics
in information diffusion. In this section, we describe them in detail, beginning with
a brief review of temporal point process that characterizes the information diffusion
dynamics considered in this paper.

History embeddingHistory embeddingi

bI,I′

hI
i → hI

i+1

aI,I′

ξ

λI(t)

Model
Discriminative

RNNI

λI′(t) ∀I ′

(ti, I ′) ∀I ′

Output layer

Hidden layer

D•(t)

θI
i

Input layer

(ti, I ′) ∀I ′

Fig. 1 The neural network architecture of CRPP for an process I. At a high level, it shows the
generator modeled as RNN and its interaction with discriminator. The current event (ti ) for an
process I ′ is fed to the generator. It undergoes multiple transformations in the input layer and
generates embedded signals θI

i , which are fed into the hidden layer where the states are computed
recursively to learn the proper representation to capture the appropriate nonlinear influences of past
events. The computed state II

i is fed to the output layer which computes the conditional intensity
λI(t) at time t . The output intensities along with input timestamps further go as inputs to the
discriminative module which captures the ranking dynamics of the process
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Temporal Point Process At the very outset, any online information diffusion
process consists of asynchronous arrival of events (messages and reviews) which
contain the posting times and the content of the event. Then we represent these
event times as a temporal point process which is a stochastic process consisting of
a sequence of discrete events localized in time. Formally, given a set of information
diffusion processes I , we define HI(t), also called as the history of I until time
t , as the sequence of corresponding events for the process I until time t , i.e.,
HI(t) := {tj < t |an event in I occurs at time tj }. It can also be realized by a
counting process NI(t) ∈ {0} ∪ Z

+ that counts the number of events in I during
[0, t), i.e., NI(t) = |HI(t)|. {0} ∪ Z

+ is used as the domain instead of Z since
NI(t) is a count which is either zero or a positive integer, whereas Z is the set of
all integers (positive, negative, and zero). Then, we characterize the event rate for
I using the conditional intensity function λI(t) that in turn is also associated with
the conditional probability of observing an event in the infinitesimal time interval
[t, t + dt), given the history H(t) of use events from all the processes until time t :

P(An event in I occurs in [t, t + dt)|HI(t)) = λI(t) dt

i.e.,E[dN(t)|H(t)] = λI(t)dt. (14)

Here, dNI(t) gives the number of product use events in the infinitesimal time-
window [t, t + dt) and λI(t) gives the instantaneous event intensity. Therefore, the
generative modeling of the event diffusion process, i.e., modeling the generation of
ti’s, essentially boils down to an appropriate formulation of λI(t). However, most of
the existing approaches consider λI(t) having a fixed parametric form with linear
dynamics, e.g., Poisson process, Hawkes process [1, 10, 17, 34], etc. In contrast
to these works, in this paper, we seek to learn the functional form without any
restrictive imposition that in turn provides a predictive prowess to our model.

2.3.1 CRPP: Competing Recurrent Point Process

The visibility dynamics of a process has two major components: (1) the dynamics
of collective flow of product/hashtag use events, and (2) the variation of popularity
ranking during competition, which are detailed hereinafter, and also sketched in
Fig. 1.

CRPPGen, the Generative Module for CRPP Given a set of processes I , and the
histories HI(t), I ∈ I , the generic form of joint generative dynamics is given by

λI(t) = f I(∪I∈IHI(t)), (15)

where f can be any arbitrary nonlinear function, as opposed to the restrictive forms.
In this work, we aim to model this function using recurrent neural network (RNN).
RNNs are a family of feedforward neural architectures with some auxiliary edges,
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called recurrent edges, that connect the current signals from hidden state to the
network as the future inputs at the very next time-step. This recursive structure
creates an inbuilt memory, and therefore captures the complex influence of memory
from the previous events, which in turn helps to accurately model a temporal point
process [6].

At a very high level, our model assigns one RNN (RNNI ) per each product
I, which takes previous posting times ti ∈ ∪I∈IHI(t) as inputs, and outputs the
intensity λI(t) for the next event as shown in Fig. 1. In this process, the hidden states
of RNNI capture the history HI(t) using the embeddings hI

k which are recursively
computed from the previous embedding vectors hIk−1 as well as the signals derived
from current input timings. In the following, we elaborate more on our architecture
which has three layers: (1) input layer, (2) hidden layer, and (3) output layer.

Input Layer For each process I, the input layer takes the use event arrival times
ti ∈ HI as inputs and turns them into suitable signals, thereby preparing the stage
for functioning of the hidden layer. That said, upon arrival of an event of I ′ at time
ti , the input layer converts it into a signal θIi = aI,I ′ ti + bI,I ′ . Here aI,I ′ and
bI,I ′ offer a direct measure of influence of I ′ on I. In a marked departure from the
existing works [30] assuming independent dynamics for concurrent processes, our
model enforces a dependence structure in event flow.

Hidden Layer The computed vectors θIi , as well as the timings ti , are fed into the
recurrent unit where the hidden state computes hI

i using the previous embedding
hI

i−1 in the following way:

hI
i = gw

(
lIhI

i−1 + βIe
− ωti

ki

︸ ︷︷ ︸
influence of event

magnitude

+γ T
I θIi

)
. (16)

Here gw is a nonlinear function realized by the neural network with parameters
w. The second term in Eq. (16) contains ki which is the popularity index of event
occurring at time ti . This term acts as a reinforcement factor for influence from
previous events. For example, if ki is high (low) the effect of e−ωti/ki becomes high
(low). In other words, the popular process would influence another process more
than a not-so-popular process. In the case of the Twitter, ki can be looked upon as
a normalized measure of (Ni/

∑
j Nj ) the number of retweets of the tweet i in the

whole interval [0, T ). Such a term encourages “hashtag-tweet reinforcement” (using
the term coined by Samanta et al. [26]), where a popular tweet drives the flow of
the underlying hashtag, rather than a not-so-popular tweet. In case of the scenario
of the products at Amazon, where a user review corresponds to a product use event,
ki would denote the rating of the review, which is on a scale of 1–5 stars. In this
case, the event magnitude models what may be analogously called “product-review
reinforcement,” where a review with a higher star rating boosts the popularity of the
product, leading to higher sales and correspondingly more product use events. To
this end, an event, either a popular or a non-popular tweet or a review with a high
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or low rating, with a high or small value of ki , boosts or trims the values of hI
i that

later on increases or reduces the message intensity λI(t) which is generated in the
output layer.

Output Layer It computes the intensity for each process I as:

λI(t) = exp(ξ(ωT hI
i + b(t − ti ) + c)), (17)

where ti is the time of the last observed event prior to t , b is a weight parameter,
and c is a bias parameter. Such an exponential ensures a positive value of λI(t)

which may be violated otherwise during training process. Here, ξ is also realized
using a neural network. It may be noted that this form of the conditional intensity
is heavily inspired by Du et al. [6], which also takes account of the influence of the
last observed event.

CRPPDiscrim, the Discriminative Module of CRPP Competition between two
processes manifests relative variation in their popularity rankings over time. To
model this ranking dynamics, we first split the interval [0, T ), into L sets of
small, equal, and disjoint subintervals [0, Ts), [Ts, 2Ts), . . . , [(L − 1)Ts, T ), where
Ts = T/L. Then, we define

yi
I,I ′ = I(NI [iTs, (i + 1)Ts) > NI ′ [iTs, (i + 1)Ts)),

i
I,I ′ =

∫ (i+1)Ts

iTs

(λI(t) − λI ′(t))dt. (18)

Here I[x] is the indicator function which is equal to 1 (0) if x is true (false).
Furthermore, yi

I,I ′ = 1 (0) indicates that the observed popularity of I is greater

(less) than that of I ′ during [iTs, (i + 1)Ts). On the other hand, i
I,I ′ estimates the

difference in popularity between I and I ′. Now, for each interval [iTs, (i+1)Ts), we
employ several ranking loss functions to capture the ranking variations of processes
(i.e., variations of yi

I,I ′ across 0 ≤ i < L). These loss functions are often used in
learning to rank in the context of information retrieval [12].

Unbiased Ranking Model A simple unbiased ranking function may be derived
following a large margin approach. Suppose we are given two processes I1, I2 ∈ I
and time instances ts and tf (ts < tf )

NI1 [ts , tf ) ≥ NI2 [ts , tf ) =⇒
∫ tf

ts

λI1(t)dt ≥
∫ tf

ts

λI2(t)dt.

Here, NI [ts , tf ) indicates the number of use events of process I occurring in the
interval [ts , tf ). In words, if the popularity (number of use events) of I1 is more
than I2, so are their estimates

∫ tf
ts

λ∗(t)dt . There are several ways to capture such
scenarios. The easiest way is to plug them as constraints while estimating the
parameters using the likelihood function. Another plausible direction is to follow the
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probabilistic approach that we adopt in our proposed model. We wish to minimize
the number of instances, where yi

I,I ′ and i
I,I ′ are not in agreement. That is, we

maximize
∏

I,I ′∈I
(
1 − yi

I,I ′I[i
I,I ′ < 0] − (1 − yi

I,I ′)I[i
I,I ′ > 0)

)
which,

however, is not differentiable. By approximating it using sigmoids we define the
discriminative ranking loss function as:

Dunbiased(i) :=
∏

I,I ′∈I

(
1 − yi

I,I ′σ [W ;−i
I,I ′ ] − (1 − yi

I,I ′)σ [W ;i
I,I ′ ]).

(19)

An unbiased ranking model is useful when the variation of visibility across I is
uniform, i.e., when for a randomly chosen process I, the numbers of more visible
and less visible processes remain nearly same. For a skewed visibility dynamics
where there are only few visible products, we employ more complex ranking losses,
e.g., precision, recall, area under ROC curve (AUC), etc., that are more reliable
measures in ranking imbalanced data.

Precision Precision measures how accurately the estimated rank of a process
indicates its actual visibility. Given a process I, Precision(I, i) is defined as the
probability that it is actually more visible than a randomly selected process I ′, given
that I is estimated to be more visible than I ′, during the interval [iTs, (i + 1)Ts).
Formally, it can be written as:

Precision(I, i) :=
∑

I ′ yi
I,I ′I[i

I,I ′ > 0]
∑

I ′ I[i
I,I ′ > 0] (20)

which again is a non-smooth ranking function that can be approximated using
sigmoid, and the corresponding discriminative loss DPrecision(I, i) becomes

DPrecision(I, i) = 1 −
∑

I ′ yi
I,I ′σ (W ;i

I,I ′)
∑

I ′ σ (W ;i
I,I ′)

. (21)

Recall Given a process I, Recall(I) is defined as the probability that it is estimated
to have a higher rank than I ′, given that it actually ranks higher than I ′, during the
time interval [iTs, (i + 1)Ts). Formally, it can be written as:

Recall(I, i) := P(i
I,I ′ > 0|yi

I,I ′ > 0), (22)

which is turned into a differentiable discriminative loss

DRecall(I, i) := 1 −
∑

I ′ yi
I,I ′σ (W ;i

I,I ′)
∑

I ′ yi
I,I ′

. (23)
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AUC Before going to AUC, we first connect the idea of ROC (receiver operating
characteristics) in the context of product (hashtag) visibility. Suppose, we obtain
a ranked list of I ∈ I according to the value of

∫ (i+1)Ts

iTs
λI(t)dt . Then at each

position k ∈ {1, . . . , |I|}, we compute the true positive rate TPRk := Pk(
i
I,I ′ >

0, yi
I,I ′ ,> 0) for two randomly selected products (hashtags) I and I ′ within rank k,

as well as the corresponding false positive rate FPRk := Pk(
i
I,I ′ < 0, yi

I,I ′ > 0).
The variation of TPRk (Y axis) with FPRk (X axis) provides the ROC curve in our
context. The area under the ROC curve offers an important measure in the context
of any ranking paradigm. In fact, it is well known [12] that AUC during the interval
[iTs, (i + 1)Ts) is the same as

AUC(i) = 1 −
∑

I,I ′ yi
I,I ′I[i

I,I ′ < 0]
|I|2 . (24)

Hence the underlying discriminative loss becomes

DAUC(i) =
∑

I,I ′ yi
I,I ′σ (W ;−i

I,I ′)

|I|2 . (25)

When the nature of the ground truth is unknown, then we recommend using AUC as
the discriminative loss a priori since it is considered to be a more reliable measure
than precision or recall [12].

2.3.2 Inference

Consider a set of processes I = {I}, associated with a collection of use events
HI(T ) = {ti} for each process I during a time period [0, T ). Using these
timestamps, we attempt to infer the underlying generative process, as well as
the parameters of the discriminative ranking model. To learn the parameters, we
maximize the log-likelihood for the recorded events ∪I∈IHI(T ) combined with
the ranking losses. Here, the log-likelihood function is

log[L(a•,•, b•,•,w, ξ , l•,β•, γ •,ω•, b, c)]

=
∑

I∈I

∑

ti∈HI (T )

log λI(ti) −
∑

I∈I

∫ T

0
λI(t)dt. (26)

All the variables in the arguments of L(.) are the parameters of the neural networks
in the generative model. To incorporate the effect of competing products, we
again split the interval [0, T ), into L sets of small, equal, and disjoint subintervals
[0, Ts), [Ts, 2Ts), . . . , [(L−1)Ts, T ), where Ts = T/L, where for each interval, we
have a corresponding discriminative loss DMeasure(I, i), for Measure ∈ {Precision,
Recall}, or DMeasure(i) where Measure ∈ {Unbiased, AUC}. Finally, we compute
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the parameters by minimizing the generative loss (negative log-likelihood) simulta-
neously with the discriminative loss in the following way:

min
W ,G

− log L(∪I∈I |G) +
L∑

i=1

∑

I∈I
log(DMeasure(I, i)).

Here G is given by the neural parameters of the generative model. In the above
optimization problem, the discriminative model D reinforces and corrects the
generative model G, until the parameters are learned in such a way that the intensity
functions respect the observed ranking dynamics across time.

3 Experiments

In this section, we provide a comprehensive evaluation of LMPP and CRPP
across a diverse type of real-world datasets gathered from Twitter and Amazon.
More specifically, we test the utility of our proposed models by investigating
how accurately (1) they can model the underlying competition mechanism and (2)
they can forecast the dynamics of the individual information diffusion process. To
elaborate them further, in the following, we first give a brief descriptions of the
datasets used, the evaluation protocol, the baseline methods, and then provide a
detailed comparative analysis of LMPP and CRPP against several baselines.

3.1 Datasets

We evaluate our proposed models on four datasets collected from Twitter and
six datasets collected from Amazon, as described below and also summarized in
Table 1. All these datasets are publicly available.

Twitter Datasets Out of the four datasets used for our evaluation, one dataset
Halloween was gleaned from a parent dataset consisting of tweets posted in
November 2012, which was used in [20, 21] and the rest Nepal-Earthquake, Dem-
Primary, and BBD were used in [28]. All of these datasets comprise messages
collected from a diverse type of events, e.g., sports, entertainment, movies, etc.,
during 2–3 weeks around the corresponding event. The hashtags selected from these
messages respect two criteria: (1) They have a significant number of concurrent and
related hashtags with a large number of tweets. (2) They show substantial deviations
in popularity ranking across the timeline. In this context, we measure rank diversity
of a hashtag, defined as the fraction of times its rank has changed. If out of a total
of I time-windows, a hashtag H ∈ H has changed its rank k times, then rank
diversity(H )= k/I . The mean rank diversity of a dataset provides a measure of
aggregated rank fluctuations of the underlying hashtags (see Table 1). Within the
same dataset, different diffusion processes correspond to the reviews of different
hashtags that are competing with each other.
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Amazon We used the raw product-review data of Amazon used in [9, 19]. In
particular, we gathered the unix review timestamps of products of well-known
brands, with at least 100 reviews each, belonging to several highly specific product
categories of high value and long life-expectancy, e.g., laptops, refrigerators,
washing machines, etc., which we modeled as a temporal process. It leads to six
different datasets corresponding to six product categories: Smartphones (Amazon-
SP), Laptops (Amazon-LAP), Refrigerators (Amazon-REF), Washing Machines
(Amazon-WM), Air Conditioners (Amazon-AC), and Televisions (Amazon-TV).
Within the same product category, different diffusion processes correspond to the
reviews of different products that are competing with each other, probably due to
brand contest between products.

3.2 Evaluation Protocol

Training and Testing At the very outset, given a set of I processes, i.e., I sets of
event-streams, we split the entire set of events into training and test set, where train-
ing comprises of first 80% of events. More specifically, suppose the total window of
observation is (0, T ]. Then, we divide it into training and test sets as (0, Ttrain] and
(Ttrain, T ], respectively, so that |HI(Ttrain)| = 0.8|HI(T )|. In addition, to probe
the variation in ranking, we divide the entire training window (0, Ttrain] in a total of
100 equally spanned time intervals to obtain the popularity ranked lists as ground
truths. That said, in the line of Eq. (18), we define Ts = T/100 so that the ith
such interval would be [iTs, (i + 1)Ts). The popularity of a diffusion process I
(i.e., the popularity of a hashtag) in this interval is given by INTERVALPOP(I, i) =
NI [iTs, (i + 1)Ts). When we say that an item I is more popular than an item
I ′ in [iTs, (i + 1)Ts), we mean that INTERVALPOP(I, i) > INTERVALPOP(I ′, i).
In case INTERVALPOP(I, i) = INTERVALPOP(I ′, i), their ranks would be equal.
However, when duplicate ranks are not allowed, ties can be broken arbitrarily. Thus,
the processes I ∈ I can be ranked according to interval popularity in this manner
to produce a ranked list RI ([iTs, (i + 1)Ts)) for each interval [iTs, (i + 1)Ts).
Using the observations in the training window (0, Ttrain], as well as the ranked list
RI ([iTs, (i + 1)Ts)) in each interval [iTs, (i + 1)Ts), we train our model CRPP
and estimate all the parameters (a•,•, b•,•,w, ξ , l•,β•, γ •,ω•, b, c). Finally, we
use these parameters to predict the events in the test set. In this context, we used
Ogata’s thinning algorithm [25] to sample from the intensity function.

We evaluate our proposed methods from the following two perspectives—that in
turn test the two key modeling machineries of LMPP and CRPP.

Forecasting Performance Here, we aim to measure how effectively LMPP and
CRPP predict the dynamics of the diffusion process in future. To do that, we first
predict future popularity of processes by computing the estimated number of events.
Apart from that, we also try to predict the timestamps of the next event.
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Rank Prediction of the Competing Processes To measure how accurately our
models are able to capture the competition between the diffusion processes, we try
to predict the ranks of the individual processes in the subintervals of the test set.

Evaluation Metrics We measure the efficacy of our models using the following
metrics. The first set of metrics, i.e., MAPEN and MAPEt , measures the forecasting
ability of the algorithms, while the rest, i.e., SRCC, and precision and recall, indicate
how accurately our model captures the competition between the diffusion processes.

MAPE N We report mean absolute percentage error (MAPEN ) to measure the
popularity prediction errors defined as below (where N̂I is the predicted count and
NI is the actual count)

MAPEN(I) = 1

MI

∑

ti∈HI (Ttrain,T ]

∣
∣
∣
∣
∣

N̂I(ti) − NI(ti)

NI(ti)

∣
∣
∣
∣
∣
. (27)

MAPE t MAPEt reports the mean deviation of the estimated timestamps of the next
future events, from their actual times. Formally, if t̂i is the predicted time and ti is
the actual time

MAPEt (I) = 1

MI

∑

ti∈HI (Ttrain,T ]

∣
∣
∣
∣
t̂i − ti

ti

∣
∣
∣
∣ . (28)

In the above two metrics, MI is the number of events of I in test set. Finally for
each dataset, we report MAPEN and MAPEt which are calculated as averages of all
MAPEN(I) and MAPEt (I) over all possible I ∈ I .

SRCC To measure how accurately we capture the ranks of the processes, we
measure Spearman’s rank correlation coefficient (SRCC) for predicted ranklist R̂I
with the ground truth list RI as below:

ρ(R̂I , RI) = Cov(R̂I , RI)
√

Var(R̂I)Var(RI)

. (29)

Average Precision and Recall We also measure the ability of the models to
predict the instances where a particular diffusion process suddenly gains popularity
(is significantly promoted in rank) or suddenly loses popularity (is significantly
demoted in rank). Formally, in two consecutive intervals, if the change in the
rank of an item is more than half of total no. of items, we call it a jump. That
is, given the rank of a hashtag I ∈ I be ρI,[ti ,ti+1) at time interval [ti , ti+1), if
|ρI,[ti ,ti+1) − ρI,[ti−1,ti )| ≥ |I|/2, it is considered a jump. This jump value is an
average value, between the maximum jump, i.e., |I|, and minimum jump, i.e., 0. It
was chosen to provide an average-case analysis. Recall measures the proportion of
real jumps which are correctly identified by an algorithm, while precision measures
the fraction of cases where the jump predicted by an algorithm is actually observed
in real data.
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3.3 Baselines

Our second proposal, CRPP, which contains a discriminative model apart from a
generator, operates over a variety of ranking functions, i.e., unbiased ranking loss,
precision, recall, and AUC. We call the corresponding derivatives of our model
CRPPUnbiased, CRPPPrecision, CRPPRecall, and CRPPAUC respectively. We compare
LMPP and CRPP (all its variants) with several state-of-the-art baselines, viz.1

(i) Wasserstein GAN Temporal Point Process (WGANTPP) [32]: It is a deep
generative model for temporal point process, where the deep neural network is
constructed using a Wasserstein generative adversarial setting.

(ii) Reinforcement Poisson Process (RPP)[10]: RPP computes the popularity of
a diffusion process as the following:

cd(t) = (m + nd)eλ∗
d (Fd(t;θd∗)−Fd(T ;θ∗

d )) − m,

where m = |I| , nd = ∑
I |HI(T )| is the entire number of events, λd(t) indi-

cates an intrinsic attractiveness of the processes, Fd(t; θd) = ∫ t

0 fd(t; θd)dt

with fd(t; θd) as a relaxation function, and id(t) is a reinforcement factor. All
these parameters are learned using the training data.

(iii) Hawkes Process[1]: Hawkes process which is considered as the workhorse of
any temporal point process based diffusion models is given by

λ(t) = μ + α

∫ t

0
exp(−βt)dN(t).

Here β is the decay factor and μ and α are trainable parameters. A simple
Hawkes process offers analytical solution for the predicted time t̂i as well as
the predicted count N̂ , thereby giving accurate forecasting formulas for future
events.

(iv) SEISMIC [34]: SEISMIC only estimates the final size of an information
cascade in the context of networked diffusion process. It is derived using
Hawkes process, which characterizes the events by the re-share probability.
The prediction function is defined as

R̂∞(t) = Rt + αt

p̂t (Nt − Ne
t )

1 − γt p̂tn∗
, 0 < αt , γt < 1, (30)

where pt is the infectiousness, Ne
t —effective cumulative degree of re-sharers

by time t , and Nt—cumulative degree of re-sharers by time t .
(v) SpikeM [18]: SpikeM characterizes the empirical observations of temporal

behavior of popularity in social media. It models the user behavior as:

1Viz. stands for videlicet, a Latin word meaning “namely.”
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�B(n + 1) = p(n + 1)(U(n)

n∑

t=nb

(�B(t) + S(t)).f (n + 1 − t) + ε̂)

B(n) and U(n) give the number of infected (who have tweeted on an event) and
uninfected (who have not tweeted on an event) users at time tn, respectively.
At any time, SpikeM aims to predict the number of infected users who have
tweeted on an event.

Finally, to evaluate the performance of CRPP in the absence of the discriminator,
we also consider as a baseline (vi) CRPPGen, which is our model of CRPP trained
only to maximize the log-likelihood without any discriminator feedback. Since
(vii) RMTPP (recurrent marked temporal point process) [6] is closely related to
CRPPGen, we consider it separately from the other existing models so that we may
use it as a baseline specifically to evaluate the performance of CRPPGen.

Further, in order to make a more fair comparison with CRPP, we tuned all
baselines (except RMTPP) by applying an appropriate discriminative model to each
while measuring performance on each metric, where we additionally minimize a
ranking loss in addition to the existing MLE-based systems. In particular, while
measuring MAPEN , SRCC, and MAPEt , the baselines were augmented with
Dunbiased (Eq. (19)), DPrecision (Eq. (21)), and DRecall (Eq. (23)). While doing so, we
made sure that the unique characteristics of the baselines were minimally disturbed.
However, it must be noted that these models are not nearly as amenable to the
discriminator as CRPP is naturally, and therefore are unable to take full advantage
of it while predicting ranking dynamics.

3.4 Performance Comparison

We first compare the performance between the two proposed models, CRPP
and LMPP and the baselines, taking the best-performing variant of CRPP as its
representative. Thereafter we present a comparison among the individual variants
of CRPP.

Performance in Popularity Forecasting Table 2 dissects a comparative analysis
of different methods in terms of MAPEN across all the datasets. It shows that CRPP
performs best against all its competitors (including LMPP), by achieving the lowest
MAPEN . We observe that the performances of RPP, Hawkes, SEISMIC, and spikeM
are substantially poor. This is because, these methods employ fixed parametric func-
tional forms to model the dynamics of product use event propagation, which barely
capture the complexity of the process. Moreover, they ideally operate only over
individual events, not even on individual processes or a set of events. Consequently,
they cannot capture the dynamics of information flow, as well as the competition
between the concurrent processes. So, their predictive power turns out to be very
poor, and more importantly, they perform inconsistently across the datasets. The
second position among the models is shared by LMPP and WGANTPP. Despite
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Table 2 MAPEN (%) of the proposed and baseline algorithms on all datasets with 20% held-out
test set

MAPEN (%)

Datasets CRPP LMPP WGANTPP RPP Hawkes SEISMIC SpikeM

Halloween 12.45 (18.09%) 15.20 15.90 21.21 16.43 21.39 24.41

Nepal-earthquake 6.70 (2.6%) 7.50 6.88 22.43 15.85 13.73 17.95

Dem-primary 7.83 (6.00%) 8.33 8.35 11.52 11.96 26.09 19.12

BBD 14.62 (5.06%) 15.40 15.45 19.45 16.23 18.03 20.89

Amazon-SP 4.70 (17.69%) 6.10 5.71 13.23 18.35 12.83 22.15

Amazon-LAP 4.21 (19.81%) 5.25 5.34 8.72 14.51 18.09 26.35

Amazon-REF 4.85 (7.09%) 5.22 5.45 8.32 14.34 19.09 18.21

Amazon-WM 4.79 (11.46%) 5.89 5.41 7.96 15.34 20.22 23.44

Amazon-AC 4.82 (7.48%) 5.21 5.85 8.56 14.33 18.23 21.85

Amazon-TV 4.53 (4.83%) 4.76 5.12 8.35 9.31 8.52 21.13

Bold (italics) indicate the best (second best) predictor. Here CRPP reports the performance of
the best among the variants of our proposal. Numbers in bracket in the CRPP cells indicate the
percentage improvement from the second best predictor

Fig. 2 Variation of popularity forecasting and rank prediction performance with time across all
datasets for all variants of CRPP along with LMPP and the baselines

being a linear model, LMPP still models the product competition. On the contrary,
WGANTPP can uncover the complexity of the nonlinear diffusion process, but it
does not capture the ranking fluctuations well, despite being augmented with a
ranking loss. CRPP, on the other hand suitably combines the diffusion dynamics
as well as the competition in a unified way. As a result it performs consistently
better than others.

We also plot the variation in forecasting performance (with respect to MAPEN )
with time in the test window for our models as well as the baselines in Fig. 2.
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Table 3 MAPEt (%) of the best-performing variant of CRPP along with LMPP and the baselines
on all datasets with 20% held-out test set

MAPEt

Datasets CRPP LMPP WGANTPP RPP Hawkes

Halloween2012 5.43 (6.70%) 6.45 5.82 7.15 6.35

Nepal-earthquake 6.41 (6.29%) 7.61 6.84 21.45 15.62

Dem-primary 7.41 (12.31%) 8.45 8.56 11.32 11.77

BBD 14.34 (5.72%) 15.21 15.36 19.35 16.65

Amazon-SP 4.70 (14.39%) 6.16 5.49 6.21 6.35

Amazon-LAP 4.31 (19.29%) 5.73 5.34 5.87 5.91

Amazon-REF 4.83 (17.44%) 6.86 5.85 7.13 7.89

Amazon-WM 4.79 (11.46%) 5.82 5.41 5.91 5.62

Amazon-AC 4.62 (19.65%) 5.83 5.75 6.67 5.91

Amazon-TV 4.53 (18.52%) 6.18 5.56 6.63 6.41

Bold (italics) indicate the best (second best) predictor. Numbers in bracket indicate the percentage
improvement from the second best predictor

We observe that the prediction performance of all our models exhibits a graceful
degradation as we move further into the test time (away from the last observed
training instance). Whereas all the models show a general decline in performance
with time, CRPP, LMPP, and WGANTPP are more robust to this effect.

Performance in Next-Event Prediction Table 3 reports MAPEt -s for a compari-
son among our first model, LMPP, the best-performing variant of our second model,
CRPP, and the baselines. We observe that among the baselines WGANTPP performs
the best. We also observe that the general pattern of relative performance across the
datasets for various models is similar to that observed in case of the metric MAPEN .
This may be quite natural since a higher MAPEN indicates a stronger event
forecasting ability, which translates into accurate predictions for the event times.

Performance in Rank Prediction Table 4 depicts a comparative sketch of the
predictive powers of different models in terms of SRCC. It reflects the ability of
the algorithms to probe variations in popularity rankings during the competition
process. We observe that CRPP performs substantially better than LMPP and all
the baselines across all the datasets. Similar to MAPEN , in this case too, both
WGANTPP and LMPP perform reasonably well and second CRPP. We observe
that, due to the sophisticated modeling machinery, WGANTPP can predict the
ranking fluctuations to some extent, thereby achieving significant performance
boost in terms of SRCC, in most of the datasets. However, when the ranking
fluctuations are quite high, for instance, in datasets with high rank diversity, like
Nepal-Earthquake and Dem-Primary, WGANTPP fails to second CRPP, despite its
strong predictive power. On the other hand, LMPP exploits the presence of such
signals and performs best among the baselines. We also plot the variation in rank
prediction performance (with respect to SRCC) with time in the test window for
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Table 4 SRCC of the proposed and baseline algorithms on all datasets with 20% held-out test set

SRCC

Datasets CRPP LMPP WGANTPP RPP Hawkes SEISMIC SpikeM

Halloween 0.94 (6.82%) 0.87 0.88 0.75 0.51 0.12 0.77

Nepal-Earthquake 0.97 (6.59%) 0.91 0.90 0.60 0.29 0.63 0.75

Dem-Primary 0.93 (8.14%) 0.86 0.85 0.76 0.47 0.10 0.73

BBD 0.99 (4.21%) 0.95 0.94 0.86 0.88 0.43 0.79

Amazon-SP 0.96 (4.35%) 0.92 0.91 0.57 0.49 0.54 0.79

Amazon-LAP 0.92 (4.54%) 0.88 0.84 0.76 0.54 0.71 0.81

Amazon-REF 0.91 (4.60%) 0.87 0.81 0.72 0.52 0.43 0.78

Amazon-WM 0.96 (3.22%) 0.92 0.93 0.74 0.81 0.43 0.75

Amazon-AC 0.95 (2.15%) 0.93 0.91 0.82 0.87 0.45 0.78

Amazon-TV 0.92 (5.75%) 0.84 0.87 0.75 0.82 0.52 0.74

Bold (italics) indicate the best (second best) predictor. Here CRPP reports the performance of
the best among the variants of our proposal. Numbers in bracket in the CRPP cells indicate the
percentage improvement from the second best predictor

Table 5 Average precision in jump detection for the proposed models and baselines

Average precision

Datasets CRPP LMPP WGANTPP RPP Hawkes SEISMIC SpikeM

Halloween 0.85 (14.86%) 0.74 0.65 0.54 0.36 0.32 0.35

Nepal-earthquake 0.88 (44.26%) 0.61 0.54 0.34 0.23 0.40 0.44

Dem-primary 0.91 (31.88%) 0.69 0.52 0.45 0.29 0.45 0.34

BBD 0.92 (39.39%) 0.66 0.58 0.30 0.52 0.31 0.43

Amazon-SP 0.88 (23.94%) 0.71 0.59 0.43 0.29 0.31 0.30

Amazon-LAP 0.87 (24.28%) 0.70 0.64 0.35 0.26 0.41 0.43

Amazon-REF 0.85 (16.44%) 0.73 0.62 0.41 0.31 0.42 0.37

Amazon-WM 0.89 (23.61%) 0.72 0.67 0.32 0.44 0.33 0.41

Amazon-AC 0.92 (21.05%) 0.76 0.63 0.37 0.53 0.38 0.31

Amazon-TV 0.93 (25.68%) 0.74 0.65 0.43 0.59 0.31 0.45

Bold (italics) indicate the best (second best) predictor. Here CRPP reports the performance of
the best among the variants of our proposal. Numbers in bracket in the CRPP cells indicate the
percentage improvement from the second best predictor

our models as well as the baselines in Fig. 2. The observations here are the same as
those for the MAPEN plot in the same figure.

Performance in Jump Detection Tables 5 and 6 report the average precision and
recall of jump detection for LMPP, CRPP (best-performing variant), and baselines
across all the datasets on the 20% held-out test set. We note that LMPP outperforms
the baselines in terms of both precision and recall, followed by WGANTPP. This is
because LMPP explicitly models the product-competitions, whereas WGANTPP
does not. The stellar performance of CRPP in jump detection is expected since
the underlying discriminator is especially geared towards capturing inter-product
interactions. Since the loss functions used by all variants of CRPP deal with pairwise
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Table 6 Average recall in jump detection for the proposed models and baselines

Average recall

Datasets CRPP LMPP WGANTPP RPP Hawkes SEISMIC SpikeM

Halloween 0.87 (16.00%) 0.75 0.66 0.32 0.35 0.34 0.37

Nepal-earthquake 0.90 (28.57%) 0.70 0.63 0.33 0.30 0.52 0.57

Dem-primary 0.93 (29.17%) 0.72 0.57 0.44 0.27 0.57 0.36

BBD 0.94 (40.30%) 0.67 0.51 0.29 0.61 0.28 0.40

Amazon-SP 0.86 (17.81%) 0.73 0.51 0.27 0.31 0.34 0.35

Amazon-LAP 0.89 (25.35%) 0.71 0.63 0.33 0.30 0.32 0.37

Amazon-REF 0.92 (22.67%) 0.75 0.67 0.41 0.29 0.47 0.35

Amazon-WM 0.86 (19.44%) 0.72 0.61 0.31 0.52 0.31 0.36

Amazon-AC 0.87 (14.47%) 0.76 0.58 0.43 0.54 0.36 0.41

Amazon-TV 0.88 (18.92%) 0.74 0.62 0.41 0.28 0.32 0.46

Bold (italics) indicate the best (second best) predictor. Here CRPP reports the performance of
the best among the variants of our proposal. Numbers in bracket in the CRPP cells indicate the
percentage improvement from the second best predictor

Table 7 A comparison of MAPEt (%) between several variants of CRPP along with RMTPP as a
baseline for CRPPGen on all datasets with 20% held-out test set

MAPEt

Datasets CRPPUnbiased CRPPPrecision CRPPRecall CRPPAUC CRPPGen RMTPP

Halloween 5.47 5.43 5.51 5.45 5.93 6.52

Nepal-earthquake 6.53 6.41 6.57 6.48 7.30 7.67

Dem-primary 7.56 7.41 7.58 7.47 8.21 8.89

BBD 14.65 14.45 14.34 14.40 15.21 15.86

Amazon-SP 4.85 4.70 4.82 4.84 5.63 5.95

Amazon-LAP 4.75 4.83 4.31 4.91 5.45 5.77

Amazon-REF 4.86 4.85 4.83 5.19 5.93 6.46

Amazon-WM 4.84 4.79 4.82 4.81 5.95 6.78

Amazon-AC 4.83 4.67 4.62 4.65 5.89 6.52

Amazon-TV 4.63 4.53 4.88 4.54 5.63 6.33

Bold (italics) indicate the best (second best) predictor. Numbers in bracket indicate the percentage
improvement from the second best predictor

interactions between products, they can more accurately predict when a product is
going to be significantly promoted or demoted in rank relative to the other hashtags
or products.

Performance Comparison Across the Variants of CRPP To have a better
understanding about the workings of CRPP, we perform a comparative study among
the performances of several variants of CRPP with different discriminative losses.
We also consider the performance of CRPPGen, the generative-only version of CRPP
in the context of RMTPP which serves a baseline for CRPPGen. This is illustrated
in Tables 7, 8, 9, and 10. From Tables 7 and 8 we observe that precision and
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Table 8 MAPEN (%) of several variants of CRPP along with RMTPP (used as a baseline for
CRPPGen) on all datasets with 20% held-out test set

MAPEN (%)
Datasets CRPPUnbiased CRPPPrecision CRPPRecall CRPPAUC CRPPGen RMTPP

Halloween2012 13.15 12.145 13.05 12.84 13.23 13.65

Nepal-earthquake 6.76 6.70 6.82 6.84 7.83 8.21

Dem-primary 7.86 7.85 7.83 7.89 8.93 9.45

BBD 14.83 14.67 14.62 14.65 16.89 17.42

Amazon-SP 4.76 4.70 4.72 4.81 4.85 4.93

Amazon-LAP 4.34 4.93 4.21 4.91 5.25 5.63

Amazon-REF 5.86 5.25 4.85 5.89 5.93 6.15

Amazon-WM 4.91 4.79 4.87 4.81 4.93 5.11

Amazon-AC 5.84 5.72 4.82 5.65 5.89 6.12

Amazon-TV 4.65 4.53 4.71 4.57 4.94 5.23

Bold (italics) indicate the best (second best) predictor

Table 9 SRCC of several variants of CRPP along with RMTPP (used as a baseline for CRPPGen)
on all datasets with 20% held-out test set

SRCC

Datasets CRPPUnbiased CRPPPrecision CRPPRecall CRPPAUC CRPPGen RMTPP

Halloween2012 0.87 0.92 0.93 0.94 0.74 0.71

Nepal-earthquake 0.93 0.97 0.83 0.85 0.75 0.71

Dem-primary 0.88 0.91 0.92 0.93 0.72 0.67

BBD 0.96 0.99 0.98 0.96 0.81 0.74

Amazon-SP 0.92 0.96 0.84 0.87 0.79 0.73

Amazon-LAP 0.87 0.89 0.92 0.91 0.78 0.72

Amazon-REF 0.84 0.87 0.89 0.91 0.73 0.66

Amazon-WM 0.89 0.91 0.92 0.96 0.84 0.78

Amazon-AC 0.81 0.95 0.91 0.86 0.82 0.75

Amazon-TV 0.87 0.91 0.89 0.92 0.85 0.74

Bold (italics) indicate the best (second best) predictor

recall turn out to be the best discriminative measures, when the performance is
compared in terms of MAPEN as well as MAPEt . However, from Table 9 we find
that, in case of SRCC, AUC performs significantly better against all other ranking
measures. This is because, AUC is a more powerful ranking measure than both
precision and recall [12], and as a result it facilitates CRPP to capture the ranking
dynamics more effectively than others. We also observe that CRPPUnbiased usually
fares poorly due to its inability to capture the skewed ranking distribution present
in most of the cases. CRPPGen does not capture the product competition process
at all, which severely affects its performance in terms of MAPEN , MAPEt , and
SRCC. However, we can see that it consistently performs better than RMTPP in all
cases, thereby justifying its incorporation as a component of CRPP in preference to
using RMTPP [6] itself as a generator. From Table 10, we observe that CRPPPrecision
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Table 10 Average precision and recall in jump detection for all variants of CRPP

Average precision (average recall)

Datasets CRPPUnbiased CRPPPrecision CRPPRecall CRPPAUC

Halloween2012 0.76 (0.78) 0.85 (0.81) 0.73 (0.87) 0.82 (0.81)

Nepal-earthquake 0.79 (0.78) 0.88 (0.82) 0.81 (0.90) 0.84 (0.86)

Dem-primary 0.75 (0.74) 0.91 (0.83) 0.82 (0.93) 0.86 (0.85)

BBD 0.73 (0.78) 0.92 (0.82) 0.83 (0.94) 0.87 (0.88)

Amazon-SP 0.72 (0.68) 0.88 (0.73) 0.74 (0.86) 0.83 (0.82)

Amazon-LAP 0.74 (0.76) 0.87 (0.75) 0.71 (0.89) 0.82 (0.81)

Amazon-REF 0.73 (0.72) 0.85 (0.74) 0.79 (0.92) 0.82 (0.82)

Amazon-WM 0.74 (0.73) 0.89 (0.77) 0.75 (0.86) 0.84 (0.82)

Amazon-AC 0.76 (0.73) 0.92 (0.76) 0.78 (0.87) 0.85 (0.83)

Amazon-TV 0.74 (0.72) 0.93 (0.78) 0.76 (0.88) 0.86 (0.85)

Bold (italics) indicates best (second best) predictor

Table 11 Effect of competition: % improvement of MAPEN upon augmentation of learning-to-
rank models

% Improvement in MAPEN

Datasets CRPP WGANTPP RPP Hawkes SEISMIC SpikeM

Halloween 5.89 7.60 12.89 5.25 8.35 12.48

Nepal-Earthquake 14.43 7.65 7.88 2.58 11.13 3.29

Dem-Primary 12.32 12.66 8.28 3.78 6.45 11.23

BBD 13.43 7.21 9.79 6.40 5.35 8.22

Amazon-SP 3.09 16.88 9.69 5.65 5.38 9.81

Amazon-LAP 19.81 10.70 11.83 4.22 6.46 7.67

Amazon-REF 18.21 7.47 8.77 7.18 10.58 5.84

Amazon-WM 2.84 9.08 7.98 8.36 5.73 9.01

Amazon-AC 18.17 13.08 5.62 6.77 7.84 7.26

Amazon-TV 8.30 18.99 10.79 10.91 8.78 6.34

Bold indicates the best performer. The deep neural models provide the maximum boosts upon such
augmentation, w.r.t. the other baselines

reports the highest precision in all datasets, while CRPPRecall reports the highest
recall across all datasets. It is interesting to note that CRPPAUC always reports the
second-highest precision and recall.

Effect of Competition Tables 11, 12, and 13 compare the effect of augmenting dis-
criminative learning-to-rank templates across all the algorithms except LMPP and
RMTPP. More specifically these tables report the improvement of the corresponding
metrics for each generative model, on using the discriminative counter-parts.
Table 11 shows that, upon the addition of such ranking losses, the deep neural
models give a substantial accuracy boost in terms of MAPEN , against the parametric
counter-parts. This is because, upon addition of the discriminative modules, the
deep models forecast the future events more accurately which is reflected in a
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Table 12 Effect of competition: % improvement of SRCC upon augmentation of learning-to-rank
models

% Improvement in SRCC

Datasets CRPP WGANTPP RPP Hawkes SEISMIC SpikeM

Halloween 27.03 6.02 11.94 18.60 33.33 18.46

Nepal-Earthquake 29.33 9.75 17.65 26.09 16.67 27.12

Dem-Primary 29.17 8.97 13.43 9.30 42.86 12.31

BBD 22.22 5.62 4.65 5.68 10.26 8.22

Amazon-SP 21.52 5.81 26.67 19.51 14.89 6.76

Amazon-LAP 17.95 6.33 13.43 25.58 10.94 6.58

Amazon-REF 24.66 6.58 7.46 20.93 10.26 16.42

Amazon-WM 14.28 4.49 4.22 8.00 13.16 17.19
Amazon-AC 15.85 7.06 10.81 14.47 21.62 16.42

Amazon-TV 8.23 11.54 15.38 12.33 20.93 19.35

Bold indicates the best performer. No algorithm consistently perfroms best across all the datasets

Table 13 Effect of competition: % improvement of average precision upon augmentation of
learning-to-rank models

% Improvement in average precision

Datasets CRPP WGANTPP RPP Hawkes SEISMIC SpikeM

Halloween2012 30.77 14.03 20.00 13.89 14.28 34.61
Nepal-Earthquake 50.77 19.14 6.25 35.29 25.00 29.41

Dem-Primary 40.00 15.55 21.62 38.09 28.57 30.77

BBD 41.54 23.40 20.00 23.81 19.23 26.47

Amazon-SP 35.38 23.40 19.44 38.10 34.78 15.38‘

Amazon-LAP 33.85 16.36 25.00 36.84 28.12 22.86

Amazon-REF 30.77 10.71 32.25 29.17 20.00 76.19

Amazon-WM 36.92 19.64 33.33 37.5 43.48 24.24

Amazon-AC 41.54 16.67 48.00 17.78 65.22 24.00

Amazon-TV 43.08 44.44 20.59 31.11 19.23 18.42

Bold indicates the best performer. No algorithm consistently performs best across all the datasets

smaller forecasting error. However, in terms of improvement of ranking losses, i.e.,
SRCC and average. precision, the best performer is not consistent across datasets
(Tables 12 and 13). This is because, here we predict ranking fluctuations, by
augmenting same discriminative module, as compared to Table 11 which measures
the forecasting performance of models with different predictive principles.

Scalability We measured the time taken by the variants of CRPP to converge
during training for (1) increasing number of competing products and (2) increasing
number of training intervals (Fig. 3). We observe that the training times required
by the variants of CRPP scale roughly sublinearly in both cases. Note that in
practical situations, the number of competing products hardly goes beyond a couple
of dozens. Also we observe that the number of training intervals is kept less than
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Fig. 3 Scalability plot for all CRPP variants showing time to converge with no. of products and
no. of training intervals

Fig. 4 Variation in performance of all variants of CRPP with respect to the MAPEN and SRCC
metrics for different train-test splits across all datasets

300, to obtain significant rank fluctuations in individual intervals. Note that once the
model is trained, which may be done offline, the time required to run it in a real-time
production environment is insignificant.

Stability w.r.t. Training Set Size In addition to the above experiments we also
studied the variation in performance of the variants of CRPP with respect to the
MAPEN (forecasting) and SRCC (rank prediction) metrics with varying train-test
splits (Fig. 4). The proportion of the training set in the available data was varied
from 40% to 80% (our standard) in steps of 10% for all datasets. We observe that
the performance of all variants of CRPP degrades roughly linearly with decreasing
training set size, thus showing that CRPP is able to perform reasonably well in
situations with limited training data.
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4 Conclusion

In this paper, we propose LMPP, a novel point process driven framework, that
unifies several realistic factors to model information dynamics. Such a unified
approach does not only efficiently estimate hashtag popularity for which it is
designed, but also gives an accurate prediction of the relative ranking of concurrent
and competing items. Our second model, CRPP, is a novel probabilistic modeling
framework for information visibility dynamics. Our approach unifies two major
factors controlling information propagation—the competition between concurrent
processes and their coupled nonlinear diffusion process. At the heart of our model
lies an RNN guided generative framework, modeled in a discriminative adversarial
setting. While the RNNs aim to model the complexity of the joint hashtag diffusion
process, the discriminative system models the hashtag competition process. Such
a model allows CRPP to accurately predict not only collective information flow
but also the fluctuations in popularity ranking. Extensive experiments over several
real datasets show that CRPP cements the baselines in predicting hashtag visibility
dynamics. Our work opens many interesting avenues for research. For example, our
current work does not explicitly capture any network structure in Twitter. Note that,
in contrast to the traditional diffusion models—that only capture individual diffusion
dynamics, our model aims to capture the coupled dynamics of information flow
where each piece of information competes with others. The resulting social network
is extremely sparse, disconnected and therefore our model as well as the competitors
cannot extract any meaningful network signal from the data. However, if one is able
to do so, it would help us to capture the visibility dynamics more accurately than our
current model. Apart from this, it would be interesting to estimate the reputation of
different brands using our model, which, we believe, is still a fertile area of research
in the area of e-commerce, recommendation, etc.
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Erdős–Rényi/Barabási–Albert generative

process, 92
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