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Abstract. In the hybrid cellular network with Simultaneous Wireless Informa-
tion and Power Transfer (SWIPT), interference signal is a source of energy. In this
paper, we develop a resource allocation scheme, which jointly optimizes transmit
powers of base station (BS) and received power splitting ratios for energy har-
vesting and information processing at the users. Meeting the user’s minimum
throughput and energy harvesting rate, we performwith two different objectives to
maximize the downlink information rate of small cell users and max-min their
throughput. To solve the non-convex optimization problem, we propose to solve a
series of geometric programming through the approach of successive convex
approximation and devising iterative algorithms based on geometric program-
ming. Numerical results are provided to demonstrate the effectiveness of proposed
algorithm and its ability to improve network performance.

Keywords: Hybrid cellular networks � Resource allocation �
Wireless information and power transfer

1 Introduction

With the rapid growth of mobile data traffic, especially the extensive use of the Internet
of Things, wireless networks are able to take on massive data and huge access
requirement. Hybrid cellular network, a kind of heterogeneous network structure
formed through the overlapping and cooperation of different cellular networks, plays an
important role in meeting the increasing demand of wireless coverage, amount of
access, and high traffic volume [1], which is also the network topology adopted by 5G
to meet access requirements.

Although hybrid cellular networks have a broad prospect for development and
boosting the network capacity, but one of the direct challenges is how to maintain service
quality requirements for users under strong interference from neighbor base station [1, 2].
If different networks are employed in a specific wireless channel, it will lead to inefficient
use of the spectrum, while deployment in the same frequency will generate the co-layer
and cross-layer interference. A lot of research works have been done to address that. In
[3], the authors consider the interference from the macro cell station as white noise.
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A semi-distributed interference management scheme based on joint clustering and
resource allocation for femtocells is also proposed by authors of [4] to deal with man-
agement of both the cross-tier and the co-tier interference. In [5], authors proposed a joint
resource allocation and admission control framework for an orthogonal OFDMA-based
cellular network composed of a macro cell overlaid by small cells.

Meanwhile, in hybrid cellular network, while the distance between the mobile
devices and the BS becomes shorter, the aggregate interference could be a beneficial
energy source. That means mobile devices with limited battery can make use of the
interference as energy by Energy harvesting (EH) technology. As one of EH tech-
nologies, Simultaneous Wireless Information and Power Transfer (SWIPT) is a current
popular research topic. The device needs to be designed to decode the information
while integrating energy collection circuits. Power splitting in time domain or in power
domain is the most realistic current method to achieve cooperation between the two
parts. In the [6], the author compares the efficiency of different energy-receiving
methods and proposes a universal receiver operation, namely dynamic power alloca-
tion. With a similar topology of hybrid cellular network, it is also a good idea to extend
the transmission distance of information and energy through the relay method [7].
Manny resource allocation algorithms have been put forward to maximize throughput
performance, while ensuring a minimum energy collection rate [8].

In SWIPT networks, harvesting energy and mitigating inference are two contra-
dicting requirements. Controlling base station power results in lower interference and
greater throughput, but decreasing the harvested energy from the RF signal, vice versa.
Therefore, it is necessary to analyze the performance of the hybrid cellular network
which applies SWIPT technology. In [9], an optimal downlink power allocation with a
fixed power spilt ratio is devised for the trade-off between information rate and energy
harvesting rate in two-tier cellular networks. However, [9] ignores the noise from the
signal processing circuit, then the optimization problem has changed into a conven-
tional heterogeneous network resource allocation problem.

In this paper we also consider a hybrid cellular network with simultaneous infor-
mation and energy transfer, where there is a macro base station within a number of
small cells and some connecting users of the specific base station. What we do first is to
jointly optimize the downlink power allocation and power split ratio to maximize the
sum of small cell station users’ rate, while the minimum rate requirement is ensured for
all users and the minimum harvested energy for small cell users should also be
guaranteed. Since do not ignore the noise of the signal processing circuit, our opti-
mization model approaches to the fact better. Taking account of fairness between small
cells, we formulate a max-min fairness problem where the throughput of the most
disadvantaged cell is maximized. The simulation result provides a trade-off relationship
between information and energy transfer.

The main contributions can be summarized as follows.

• In hybrid cellular network with EH-enabled user’s devices, we formulate two
resource optimization problems, namely, sum-rate maximization and minimum-
throughput maximization. Considering that noise can not be ignored in actual
communication, our formula contains the user’s demodulation noise, and the out-
come is more reasonable.
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• The objective is to jointly optimize the transmit powers at the BSs and the optimal
power splitting ratio at user’s devices. Our formulations target the multi-cell
interference, while meeting users’ requirements for energy harvesting and
throughput at the same time. The formulated problems are not convex due to
interference and many nonlinear multiplying terms of the optimization variables.
Then, we jointly adopt successive convex approximation (SCA) and geometric
programming (GP) method to obtain the solutions.

• Simulation results confirm that our joint optimization solutions significantly out-
perform those where the radio resource parameters are individually optimized.

The rest of this paper is organized as follows. Section 2 presents the system model
and formulates the joint resource optimization problems. Section 3 proposes the GP-
based SCA solutions for nonconvex resource allocation problems. In Sect. 4, numerical
results confirm the advantages of our proposed algorithms. Finally, Sect. 5 concludes
the paper.

2 System Model and Problem Formulations

Downlink transmission of a hybrid cellular Network is considered, which consist of
one macro base station (MBS) at the center of the macro-cell overlaid by N small cells
as shown in Fig. 1. Each small base station (SBS) has only one scheduled small cell
user equipment (SUE) randomly distributed in the cell. We assume there is a microcell
user equipment (MUE) randomly located in the macro-cell and all BSs use same
frequency band.

The SUEs can harvesting energy from the microwave while receiving information by
using power splitting. We consider a power split ratio a, the fraction of the total received

Fig. 1. Hybrid cellular network
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power is used for information decoding and remaining fraction 1� a is used for energy
harvesting. Energy harvesting capability particularly exists in SUEs for the short distance
away from the SBS. Harvested energy can make a significant contribution to its uplink
transmission. Uplink transmission and analysis is not considered in our paper.

Due to the capability of harvesting energy from the received microwave, there is a
tradeoff between energy harvested and information received, not only in terms of power
splitting ratio but also in terms of power allocation. For example, when the power of
the macro base station becomes high, the SINR of the SUEs increases, which leads to
the information rate decreasing. However, because of the increase of the total input
power at this moment, the energy harvest rate improves. Needless to say, power
splitting ratio a directly determines the energy allocation of the SUE. Therefore, we
have implemented a joint optimal power allocation in two different cases.

Let hi and hM be the channel gains from i-th SBS and MBS to their scheduled users
respectively. Similarly hi;M and hM;i be the channel gains from i-th SBS and MBS to the
users in other cells respectively. If pi is the transmit power of SBS and pM is the transmit
power of MBS then their signal-to-interference-plus-noise ratio (SINR) can be written as

SINRM ¼ pMhM
PN

i¼1
pihi;M þ nx þ nsp

ð1Þ

SINRi ¼ aipihi

aiðpMhM;i þ
PN

j 6¼i
pjhj;i þ nxÞþ nsp

; 8i ð2Þ

nx and nsp represent the Additive White Gaussian Noise (AWGN) and signal
processing noise at the receiver. It should be noted that the signal processing noise
remains unaffected by power splitting in SINR of SUEs. The information rate of MUE
and SUE in each small cell are respectively given by

RM ¼ log2ð1þ SINRMÞ ð3Þ

Ri ¼ log2ð1þ SINRiÞ;8i ð4Þ

SUE harvests energy from the signals of all BS, therefore the energy harvesting rate
of each SUE is given by (in Joules per second [Jps])

Ei ¼ gð1� aiÞð
XN

j¼1

pjhj;i; þ pMhM;i þ nxÞ; 8i ð5Þ

Where g 2 ð0; 1Þ is the efficiency of energy conversion of the SUE. We see that the
information rate and energy harvesting rate are greatly affected by cross-layer inter-
ference. Information rate of SUE decreases with the increase of interference, but the
energy collection rate increases with the increase of interference.
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In this paper, we aim to devise an optimal tradeoff of three parameters, the transmit
power pM of MBS, transmit power P ¼ ½p1; p2; . . .; pN � at SBSs and power splitting
factor a at SUEs to maximize the performance of the hybrid cellular network under
consideration. Specifically, we will study the following problems which jointly opti-
mize ðpm;P; aÞ for two different design objectives.

2.1 Problem (P1): Sum-Rate Maximization

We formulate maximize the sum information rate of all SUEs as follows.

max
ps;P;a

PN

i¼1
Ri

subject to :
C1 : Ri �RminðiÞ; 8i; C2 : RM �RminðMÞ;
C3 : Ei �Emin; 8i; C4 : pM � pmaxðMÞ;
C5 : pi � pmaxðiÞ; 8i; C6 : pi; pM � 0; 8i;
C7 : 0� ai � 1; 8i;

ð6Þ

Where C1 and C3 ensure that the throughput and energy harvesting rate of SUEs
can satisfy their minimum rate constraint for each one in the worst case. C2 is the
minimum information rate constraint for MUE. C4 and C5 are maximum transmit
power constraints of each MBS and SBS, respectively. C6 is the non-negativity con-
straint on power variables. C7 is the constraints for the power splitting factors for all
SUEs.

2.2 Problem (P2): Max-Min Throughput Fairness

In Problem (P1), the network total rate is maximized regardless of the actual throughput
achieved by the individual users. Max-min fairness can sufficiently improve the per-
formance of users in the worst case and thus lead to a high level of fairness. Achieving
the max-min fairness, we focus on solving the problem given in (7).

max
pM ;P;a

min
i2N

Ri

s:t C1 � C7:
ð7Þ

Problems (P1) and (P2) are nonconvex in ðpm;P; aÞ because the throughput Ri in
(4) is nonconvex in those variables. Then, SCA and GP method will be adopted to
solve Problems (P1) and (P2) as described in Algorithm 1. The main idea of SCA is to
approximate a non-convex problem into a series of solvable problems, to obtain the
solution satisfying KKT conditions of the original problem [10]. GP can be used to
solve a special-form non-convex problem, which can be reduced to a convex opti-
mization problem through a logarithmic change of variables [11–13].

236 J. Yang et al.



3 Power and Splitting Factor Allocation Scheme

3.1 SCA and GP-Based Solution for Problem (P1)

First, we express the objective function in (6) as

max
pM ;Pi;a

XN

i¼1

Ri ¼ max
pM ;Pi;a

log2
YN

i¼1

ð1þ SINRiÞ

� min
pM ;Pi;a

YN

i¼1

1
1þ SINRi

;

ð8Þ

Where

1
1þ SINRi

¼
aiðpMhM;i þ

PN

j 6¼i
pjhj;i þ nxÞþ nsp

aiðpMhM;i þ
PN

j¼1
pjhj;i þ nxÞþ nsp

: ð9Þ

We get function (8) since log2ð�Þ is monotonically increasing function. For the sake
of brevity, let us define,

uiðxÞ, aiðpMhM;i þ
XN

j6¼i

pjhj;i þ nxÞþ nsp; ð10Þ

viðxÞ, aiðpMhM;i þ
XN

j¼1

pjhj;i þ nxÞþ nsp ð11Þ

where x ¼ ½pM ;P; a�T 2 R
2Nþ 1
þ , the objective function in (8) can be expressed as

min
pM ;P;a

YN

i¼1

uiðxÞ
viðxÞ: ð12Þ

To transform Problem (P1) into a GP, we would like the objective function (12) to
be a posynomial. We resort to SCA to approximate it into a series of problems in the
following.

Based on Jensen’s inequality, namely, the arithmetic mean is greater than or equal
to the geometric mean for any set of positives [12], given the value of x½k�1� at the kth

iteration, we have
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viðxÞ� ðviðx
½k�1�ÞaipMÞ

a½k�1�
i p½k�1�

M

Þ
a
½k�1�
i

p
½k�1�
M

hM;i

viðx½k�1�Þ �
YN

j¼1

ðviðx
½k�1�ÞaipjÞ

a½k�1�
i p½k�1�

j

Þ
a
½k�1�
i

p
½k�1�
j

hj;i

viðx½k�1�Þ

� ðviðx
½k�1�ÞaiÞ
a½k�1�
i

Þ
a
½k�1�
i

Nx

viðx½k�1�Þ � viðx½k�1�Þ
Nsp

viðx½k�1� Þ:

ð13Þ

For brevity, we define

~viðxÞ, ðviðx
½k�1�ÞaipMÞ

a½k�1�
i p½k�1�

M

Þ
a
½k�1�
i

p
½k�1�
M

hM;i

viðx½k�1�Þ �
YN

j¼1

ðviðx
½k�1�ÞaipjÞ

a½k�1�
i p½k�1�

j

Þ
a
½k�1�
i

p
½k�1�
j

hj;i

viðx½k�1� Þ

� ðviðx
½k�1�ÞaiÞ
a½k�1�
i

Þ
a
½k�1�
i

Nx

viðx½k�1� Þ � viðx½k�1�Þ
Nsp

viðx½k�1� Þ:

ð14Þ

According to [13], using ~viðxÞ to approximate viðxÞ satisfies the conditions of SCA.
Hence, the objective function uiðxÞ=viðxÞ in (12) is approximated by uiðxÞ=~viðxÞ. The
latter formula is a posynomial because ~viðxÞ is a monomial and the ratio of a posyn-
omial to a monomial is a posynomial.

To make the problem fit into the GP standard form [13], the other constraints
should also be transformed into GP standard type.

~C1 :

~RminðiÞðaiðpMhM;i þ
PN
j6¼i

pihj;i þ nxÞþ nspÞ

aipihi
� 1; 8i;

~C2 :

~RminðMÞð
PN
i¼1

pihi;M þ nx þ nspÞ
pMhM

� 1;
~C4 :

1
pmaxðMÞ

pM � 1;
~C5 :

1
pmaxðiÞ

pi � 1; 8i ~C7 : ai � 1; 8i;

ð15Þ

where ~RminðiÞ ¼ 2RminðiÞ � 1 and ~RminðMÞ ¼ 2RminðMÞ � 1.
We will approximate constraint C3 by a posynomial to fit into the GP framework.

We lower bound posynomial gð1� asÞð
PS

i¼1
Pihi;us þPmhm;us þNxÞ: by a monomial.

After replacing 1� a by an auxiliary variable t, we have,

wið�xÞ, gtið
XN

j¼1

pjhj;i þ pMhM;i þ nxÞ; ð16Þ
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wið�xÞ� ~wið�xÞ, gti
QN

i¼1
ðwið�x½k�1�Þpj

p½k�1�
j

Þ
p
½k�1�
j

hj;i

wið�x½k�1�Þ

� ðwið�x½k�1�ÞpM
p½K�1�
M

Þ
p
½K�1�
M

hM;i

wið�x½k�1�Þ � wið�x½k�1�Þ
Nx

wið�x½k�1� Þ;

ð17Þ

where �x ¼ ½pM ;P; a; t�T 2 R
3Nþ 1
þ . wið�xÞ can be used to get the relaxed constraint

replacing C3. The approximated subproblem can be formulated at the m-th iteration for
Problem P1 as follows.

min
pM ;P;a;t

QN

i¼1

uið�xÞ
~við�xÞ

s:t Emin
~wið�xÞ � 1; 8i;
ti � 1; 8i; ti þ ai � 1; 8i;
~C1; ~C2; ~C4; ~C5; ~C6; ~C7:

ð18Þ

We see that (18) is the form of a geometric program. Since the approximation from
(12) to (18) satisfies the conditions of SCA, we can conclude that the optimal solution
of (18) converges to the solution satisfying the KKT conditions of (12) [10].

3.2 SCA and GP-Based Solution for Problem (P2)

By introduce an auxiliary variable s, (7) can be regarded as the problem of maximizing
a common throughput,

max
pM ;P;a

s

s:t Ri � s� 0; 8i 2 N;
C1 � C7:

ð19Þ

After carrying out simple algebraic manipulations, the first constraint of (19) can be
rewritten as.

es ln 2

1þ SINRi
� 1; 8i 2 N; and s� 0; ð20Þ

By introducing the auxiliary variable t and uiðxÞ, viðxÞ and ~wið�xÞ defined in (10),
(11) and (17), problem (P2) is approximate to the following GP problem with the
similar approach in Sect. 3 – A.

max
pM ;P;a;t

s

s:t uið�xÞes ln 2
~við�xÞ � 1; 8i 2 N;

Emin
~wið�xÞ � 1; 8i;
ti � 1; 8s;
ti þ ai � 1; 8i;
~C1; ~C2; ~C4; ~C5; ~C6; ~C7:

ð21Þ
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3.3 Based on SCA and GP Algorithm for Joint Resource Allocation

GP problems (18) and (21) are the approximations of the original Problems (P1) and
(P2), respectively. In Algorithm 1, we propose an SCA algorithm in which a GP is
optimally solved at each iteration.

4 Performance Evaluation

In this section, we present simulation results of the proposed power and split ratio
allocation models in a hybrid cellular network. A hybrid cellular network consists of
one MBS at the origin and four indoor SBSs on the coordinate axis. The distances of
those SBSs from the MBS are 27 m, 80 m, 90 m, and 50 m. SUEs are all in the room.
The MUE could move anywhere within the macro cell. For universal reasons, we
design two scenarios. Scenario 1: the MUE is in the room and close to the first indoor
SUE, e.g. coordinate value is (27, −5); Scenario 2: the MUE is away from four SBSs,
e.g. coordinate value is (17, 25). The channel model comes from [14]. Detailed
parameter value in the simulation is summarized in the table below. The default
parameter means that this part of the parameter may be used as an argument in a later
but is set by default if not specified. If microwave pass through the wall Lw is added to
the channel gain (Table 1).

Table 1. Simulation parameter value

pmaxðMÞ 43 dBm pmaxðiÞ 30 dBm RminðiÞ 1 bps/Hz

Lw 10 g 1 Default RminðMÞ 1 bps/Hz

Nx −130 dBm Nsp −67 dBm Default Emin −40 dBm
The antenna gain of
MBS

18 dBi The antenna gain of SBS 5 dBi
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Figures 2 and 3 show the numerical convergence results of GP-based algorithm 1
under scenarios 2 with different. In the simulation, each iteration is to solve a GP
problem in the algorithm by CVX. It’s clear that this algorithm can converge within 4
iterations and then achieve the sub-optimal throughput from Figs. 2 and 3. These prove
the feasibility of the algorithm.

Next, we plot the sum of information against the minimum energy requirement and
the minimum information requirement of MUEs, Emin and RminðMÞ, respectively in
Figs. 4 and 5. The sum rates of SUEs all decrease as the independent variables
increases. When the minimum energy harvesting rate Emin is very low, more power can
be assigned to information processing and the sum information rate of SUEs can be
larger. When RminðMÞ increases, pM has to increase to satisfied the minimum infor-
mation demand. The larger pM means that SUEs can harvest more energy and get more
noise which may reduce the information rate. However, this part can be compensated
by the power split ratio of the SUE. Another interesting phenomenon is that as the
MUE is farther away from a small base station, the rate usually is higher. If the MUE is
relatively far away from small cell station, that means the most influential small cell
station’s ability to cause interference to the MUE is reduced and transmit the power of
micro station can be increased to achieve a higher rate. In contrast, curves with fixed
a ¼ 0:5 were also drawn. Obviously, the information rates with fixed a are much lower
than that of the optimal solution, which shows the necessity of our algorithm.

Finally we simulate max-min throughput fairness problem. The lowest information
rate among SUEs in problem P1 is the comparison. Figure 6 precisely compare the
numerical solution of problem P2 with the smallest rate of the SUE in problem P1

Fig. 2. Convergence of the algorithms in a problem (P1)
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under different scenarios. Numerical results confirm the effectiveness of our proposed
algorithm. The optimal solution in problem P2 is higher than the lowest rate of SUE in
problem P1, which means that the fairness between users is guaranteed. It should be

Fig. 3. Convergence of the algorithms in a problem (P2)

Fig. 4. Sum information rate vs Emin
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noted that in scenario 2, the two curves almost coincide. Due to the long distance far
from the small station plus the significant fading caused by walls, the channel gain from
MUE to SBS is very low. Each SBS only has a small impact on the MUE, which is
almost negligible in value. It means that the MUE and the SBSs are in an independent

Fig. 5. Sum information rate vs RminðMÞ

Fig. 6. The minimum rate of SUE in a problem (p1) and (P2) vs Emin
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state at this moment. And we can solve the problem P1 to get the approximate solution
to the problem P2 in this scenario.

5 Conclusion

In this paper, we have taken the problem for joint optimization of the downlink transmit
power and power splitting ratio into consideration in the hybrid cellular network. The
signal sent by the MBS will become cross-layer noise for other devices, affecting its
information rate. In addition, it will also become the source of energy for wireless
devices to harvest. Considering maximum sum-throughput and max-min throughput of
SUEs, joint optimization of the downlink power and the power split ratio is performed.
In the maximum sum-throughput problem, the outperformance for joint optimization is
confirmed with the comparison of fixed a. On the other hand, a trade-off between
information and energy transmission capabilities is observed, which means the
achievable information rate demand is limited by the energy harvesting rate demand.
Moreover, the effectiveness of fairness algorithm is also proved in the simulation.
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