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Abstract This note comprises a synthesis of certain results in the theory of
exact interpolation between Hilbert spaces. In particular, we examine various
characterizations of interpolation spaces and their relations to a number of results in
operator theory and in function theory.
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1 Interpolation Theoretic Notions

1.1 Interpolation Norms

When X, Y are normed spaces, we use the symbol L(X; Y ) to denote the totality of
bounded linear maps T : X → Y with the operator norm

‖ T ‖L(X;Y ) = sup {‖ T x ‖Y ; ‖ x ‖X ≤ 1} .

When X = Y we simply write L(X).
Consider a pair of Hilbert spaces H = (H0,H1) which is regular in the sense

that H0 ∩H1 is dense in H0 as well as in H1. We assume that the pair is compatible,
i.e., both Hi are embedded in some common Hausdorff topological vector space M.
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We define the K-functional1 for the couple H by

K (t, x) = K
(
t, x ; H ) = inf

x=x0+x1
{ ‖ x0 ‖ 2

0 + t ‖ x1 ‖ 2
1 }, t > 0, x ∈ M.

The sum of the spaces H0 and H1 is defined to be the space consisting of all x ∈ M
such that the quantity ‖ x ‖ 2

� := K (1, x) is finite; we denote this space by the
symbols

� = �(H ) = H0 + H1.

We shall soon see that � is a Hilbert space (see Lemma 1.1). The intersection

� = �(H ) = H0 ∩ H1

is a Hilbert space under the norm ‖ x ‖ 2
� := ‖ x ‖ 2

0 + ‖ x ‖ 2
1 .

A map T : �(H ) → �(K ) is called a couple map fromH to K if the restriction
of T to Hi maps Hi boundedly into Ki for i = 0, 1. We use the notations T ∈
L(H ; K ) or T : H → K to denote that T is a couple map. It is easy to check that
L(H ; K ) as a Banach space, when equipped with the norm

‖ T ‖L(H ;K )
:= max

j=0,1
{ ‖T ‖L(Hj ;Kj ) }. (1.1)

If ‖ T ‖L(H ;K )
≤ 1 we speak of a contraction from H to K.

A Banach space X such that � ⊂ X ⊂ � (continuous inclusions) is called
intermediate with respect to the pair H.

Let X, Y be intermediate spaces with respect to couples H, K, respectively. We
say that X, Y are (relative) interpolation spaces if there is a constant C such that
T : H → K implies that T : X → Y and

‖ T ‖L(X;Y ) ≤ C ‖ T ‖L(H;K)
. (1.2)

In the case when C = 1 we speak about exact interpolation. When H = K and
X = Y we simply say that X is an (exact) interpolation space with respect to H.

Let H be a suitable function of two positive variables and X, Y spaces
intermediate to the couples H, K, respectively. We say that the spaces X, Y are
of type H (relative to H, K) if for any positive numbers M0, M1 we have

‖ T ‖L(Hi ;Ki ) ≤ Mi, i = 0, 1 implies ‖ T ‖L(X;Y ) ≤ H(M0,M1).

(1.3)

1More precisely, this is the quadratic version of the classical Peetre K-functional.
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The case H(x, y) = max{x, y} corresponds to exact interpolation, while H(x, y) =
x 1−θy θ corresponds to the convexity estimate

‖ T ‖L(X;Y ) ≤ ‖ T ‖ 1−θ
L(H0;K0)

‖ T ‖ θ
L(H1;K1)

. (1.4)

In the situation of (1.4), one says that the interpolation spaces X, Y are of exponent
θ with respect to the pairs H, K.

1.2 K-Spaces

Given a regular Hilbert couple H and a positive Radon measure � on the compacti-
fied half-line [0,∞] we define an intermediate quadratic norm by

‖ x ‖ 2∗ = ‖ x ‖ 2
� =

∫

[0,∞]

(
1 + t−1

)
K

(
t, x; H )

d�(t). (1.5)

Here the integrand k(t) = (
1 + t−1

)
K(t, x) is defined at the points 0 and ∞ by

k(0) = ‖ x ‖ 2
1 and k(∞) = ‖ x ‖ 2

0 ; we shall write H∗ or H� for the Hilbert space
defined by the norm (1.5).

Let T ∈ L (H;K )
and suppose that ‖ T ‖L(Hi;Ki ) ≤ Mi , then

K
(
t, T x; K ) ≤ M 2

0 K
(
M 2

1 t/M 2
0 , x; H

)
, x ∈ �. (1.6)

In particular, Mi ≤ 1 for i = 0, 1 implies ‖ T x ‖K�
≤ ‖ x ‖H�

for all x ∈ H� . It

follows that the spaces H�, K� are exact interpolation spaces with respect to H, K.

1.2.1 Geometric Interpolation

When the measure � is given by

d�(t) = cθ
t−θ

1 + t
dt, cθ = π

sin θπ
, 0 < θ < 1,

we denote the norm (1.5) by

‖ x ‖ 2
θ := cθ

∫ ∞

0
t−θK (t, x)

dt

t
. (1.7)

The corresponding space Hθ is easily seen to be of exponent θ with respect to H.
In Sect. 3.1, we will recognize Hθ as the geometric interpolation space which has
been studied independently by several authors, see [25, 27, 40].
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1.3 Pick Functions

Let H be a regular Hilbert couple. The squared norm ‖ x ‖ 2
1 is a densely defined

quadratic form in H0, which we represent as

‖ x ‖ 2
1 = 〈 Ax , x 〉0 = ‖A 1/2x ‖ 2

0

where A is a densely defined, positive, injective (perhaps unbounded) operator in
H0. The domain of the positive square-root A1/2 is �.

Lemma 1.1 We have in terms of the functional calculus in H0

K (t, x ) =
〈

tA

1 + tA
x , x

〉

0
, t > 0. (1.8)

In the formula (1.8), we have identified the bounded operator tA
1+tA

with its
extension to H0.

Proof Fix x ∈ �. By a straightforward convexity argument, there is a unique
decomposition x = x0,t + x1,t which is optimal in the sense that

K(t, x) = ∥∥ x0,t

∥∥ 2
0 + t

∥∥ x1,t

∥∥ 2
1 . (1.9)

It follows that xi,t ∈ � for i = 0, 1. Moreover, for all y ∈ � we have

d

dε
{ ∥
∥ x0,t + εy

∥
∥ 2

0 + t
∥
∥ x1,t − εy

∥
∥ 2

1 }|ε=0 = 0,

i.e.,

〈A−1/2x0,t − tA1/2x1,t , A1/2y 〉0 = 0, y ∈ �.

By regularity, we conclude that A−1/2x0,t = tA1/2x1,t , whence

x0,t = tA

1 + tA
x and x1,t = 1

1 + tA
x. (1.10)

(Note that the operators in (1.10) extend to bounded operators on H0.) Inserting the
relations (1.10) into (1.9), one finishes the proof of the lemma. �

Now fix a positive Radon measure � on [0,∞]. The norm in the space H�

(see (1.5)) can be written

‖ x ‖ 2
� = 〈 h(A)x , x 〉0 , (1.11)
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where

h(λ) =
∫

[0,∞]
(1 + t)λ

1 + tλ
d�(t). (1.12)

The class of functions representable in this form for some positive Radon measure
� is the class P ′ of Pick functions, positive and regular on R+.

Notice that for the definition (1.11) to make sense, we just need h to be defined
on σ(A) \ {0}, where σ(A) is the spectrum of A. (The value h(0) is irrelevant since
A is injective).

A calculus exercise shows that for the space Hθ (see (1.7)) we have

‖ x ‖ 2
θ = 〈Aθx , x 〉0. (1.13)

1.4 Quadratic Interpolation Norms

Let H∗ be any quadratic intermediate space relative to H. We write

‖ x ‖ 2∗ = 〈 Bx , x 〉0

where B is a positive injective operator in H0 (the domain of B1/2 is �).
For a map T ∈ L(H) we shall often use the simplified notations

‖ T ‖ = ‖ T ‖L(H0) , ‖ T ‖A = ‖ T ‖L(H1) , ‖ T ‖B = ‖ T ‖L(H∗).

The reader can check the identities

‖ T ‖A = ‖A1/2T A−1/2 ‖ and ‖ T ‖B = ‖B1/2T B−1/2 ‖.

We shall refer to the following lemma as Donoghue’s lemma, cf. [13, Lemma 1].

Lemma 1.2 If H∗ is exact interpolation with respect to H, then B commutes with
every projection which commutes with A and B = h(A) where h is some positive
Borel function on σ(A).

Proof For an orthogonal projection E on H0, the condition ‖E ‖A ≤ 1 is equivalent
to that EAE ≤ A, i.e., that E commutes with A. The hypothesis that H∗ be exact
interpolation thus implies that every spectral projection of A commutes with B. It
now follows from von Neumann’s bicommutator theorem that B = h(A) for some
positive Borel function h on σ(A). �

In view of the lemma, the characterization of the exact quadratic interpolation
norms of a given type H reduces to the characterization of functions h : σ(A) →
R+ such that for all T ∈ L (H )

‖ T ‖ ≤ M0 and ‖ T ‖A ≤ M1 ⇒ ‖ T ‖h(A) ≤ H(M0,M1), (1.14)
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or alternatively,

T ∗T ≤ M 2
0 and T ∗AT ≤ M 2

1 A ⇒ T ∗h(A)T ≤ H(M0,M1)
2 h(A).

(1.15)
The set of functions h : σ(A) → R+ satisfying these equivalent conditions forms a
convex cone CH,A; its elements are called interpolation functions of type H relative
to A. In the case when H(x, y) = max{x, y} we simply write CA for CH,A and
speak of exact interpolation functions relative to A.

1.5 Exact Calderón Pairs and the K-Property

Given two intermediate normed spaces Y , X relative to H, K, we say that they are
(relatively) exact K-monotonic if the conditions

x0 ∈ X and K
(
t, y0; H

)
≤ K

(
t, x0; K

)
, t > 0

imply that

y0 ∈ Y and ‖ y0 ‖Y ≤ ‖ x0 ‖X.

It is easy to see that exact K-monotonicity implies exact interpolation.

Proof of this. If ‖ T ‖L(K;H)
≤ 1, then ∀x, t: K

(
t, T x; H ) ≤ K

(
t, x; K )

whence ‖ T x ‖Y ≤ ‖ x ‖X, by exact K-monotonicity. Hence ‖ T ‖L(X;Y ) ≤ 1. �
Two pairs H, K are called exact relative Calderón pairs if any two exact

interpolation (Banach-) spaces Y , X are exact K-monotonic. Thus, with respect to
exact Calderón pairs, exact interpolation is equivalent to exact K-monotonicity. The
term “Calderón pair” was coined after thorough investigation of Calderón’s study of
the pair (L1, L∞), see [10, 11].

In our present discussion, it is not convenient to work directly with the definition
of exact Calderón pairs. Instead, we shall use the following, closely related notion.

We say that a pair of couples H, K has the relative (exact) K-property if for all
x0 ∈ �(K ) and y0 ∈ �(H ) such that

K
(
t, y0; H

)
≤ K

(
t, x0; K

)
, t > 0, (1.16)

there exists a map T ∈ L(K;H ) such that T x0 = y0 and ‖ T ‖L(K;H)
≤ 1.

Lemma 1.3 If H, K have the relative K-property , then they are exact relative
Calderón pairs.
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Proof Let Y , X be exact interpolation spaces relative to H, K and take x0 ∈ X and
y0 ∈ �(H ) such that (1.16) holds. By the K-property there is T : K → H such
that T x0 = y0 and ‖ T ‖ ≤ 1. Then ‖ T ‖L(X;Y ) ≤ 1, and so ‖ y0 ‖Y = ‖ T x0 ‖Y ≤
‖ x0 ‖X. We have shown that Y , X are exact K-monotonic. �

In the diagonal case H = K, we simply say that H is an exact Calderón couple if
for intermediate spaces Y,X, the property of being exact interpolation is equivalent
to being exact K-monotonic. Likewise, we say that H has the K-property if the pair
of couples H, H has that property.

Remark 1.4 For an operator T : K → H to be a contraction, it is necessary and
sufficient that

K
(
t, T x; H ) ≤ K

(
t, x; K )

, x ∈ �(K ), t > 0. (1.17)

Indeed, the necessity is immediate. To prove the sufficiency it suffices to observe
that letting t → ∞ in (1.17) gives ‖ T x ‖0 ≤ ‖ x ‖0, and dividing (1.17) by t , and
then letting t → 0, gives that ‖ T x ‖1 ≤ ‖ x ‖1.

2 Mapping Properties of Hilbert Couples

2.1 Main Results

We shall elaborate on the following main result from [2].

Theorem I Any pair of regular Hilbert couples H, K has the relative K-property .

Before we come to the proof of Theorem I, we note some consequences of it. We
first have the following corollary, which shows that a strong form of the K-property
is true.

Corollary 2.1 Let H be a regular Hilbert couple and x0, y0 ∈ � elements such
that

K
(
t, y0

)
≤ M 2

0 K
(
M 2

1 t/M 2
0 , x0

)
, t > 0. (2.1)

Then

(i) There exists a map T ∈ L (H )
such that T x0 = y0 and ‖ T ‖L(Hi ) ≤ Mi ,

i = 0, 1.
(ii) If x0 ∈ X where X is an interpolation space of type H , then

‖ y0 ‖X ≤ H (M0,M1 ) ‖ x0 ‖X.
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Proof (i) Introduce a new couple K by letting ‖ x ‖Ki
= Mi‖ x ‖Hi

. The rela-
tion (2.1) then says that

K
(
t, y0;H

)
≤ K

(
t, x0;K

)
, t > 0.

By Theorem I there is a contraction T : K → H such that T x0 = y0. It now suffices
to note that ‖ T ‖L(Hi ) = Mi ‖ T ‖L(Ki;Hi ); (ii) then follows from Lemma 1.3. �

We next mention some equivalent versions of Theorem I, which uses the families
of functionals Kp and Ep defined (for p ≥ 1 and t, s > 0) via

Kp(t) = Kp(t, x) = Kp

(
t, x;H) = inf

x=x0+x1

{ ‖ x0 ‖p

0 + t ‖ x1 ‖p

1

}

Ep(s) = Ep(s, x) = Ep

(
s, x;H) = inf

‖ x0 ‖p
0 ≤s

{ ‖ x − x0 ‖p
1

}
.

(2.2)

Note that K = K2 and that Ep(s) = E1
(
s1/p

)p
; the E-functionals are used in

approximation theory. One has that Ep is decreasing and convex on R+ and that

Kp(t) = inf
s>0

{
s + tEp(s)

}
,

which means that Kp is a kind of Legendre transform of Ep. The inverse Legendre
transformation takes the form

Ep(s) = sup
t>0

{
Kp(t)

t
− s

t

}
.

It is now immediate that, for all x ∈ �
(K )

and y ∈ �
(H )

, we have

Kp(t, y) ≤ Kp(t, x), t > 0 ⇔ Ep(s, y) ≤ Ep(s, x), s > 0.

(2.3)

Since moreover Ep(s) = E2
(
s2/p

)p/2
, the conditions in (2.3) are equivalent to that

K(t, y) ≤ K(t, x) for all t > 0. We have shown the following result.

Corollary 2.2 In Theorem I, one can substitute the K-functional for any of the
functionals Kp or Ep.

Define an exact interpolation norm ‖ · ‖�,p relative to H by

‖ x ‖p
�,p =

∫

[0,∞]

(
1 + t−1

)
Kp(t, x) d�(t)

where � is a positive Radon measure on [0,∞]. This norm is non-quadratic when
p �= 2, but is of course equivalent to the quadratic norm corresponding to p = 2.
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2.2 Reduction to the Diagonal Case

It is not hard to reduce the discussion of Theorem I to a diagonal situation.

Lemma 2.3 If the K-property holds for regular Hilbert couples in the diagonal
case H = K, then it holds in general.

Proof Fix elements y0 ∈ �(H ) and x0 ∈ �(K ) such that the inequality (1.16)
holds. We must construct a map T : K → H such that T x0 = y0 and ‖ T ‖ ≤ 1.

To do this, we form the direct sum S = (H0 ⊕ K0,H1 ⊕ K1). It is clear that
S0 + S1 = (H0 + H1) ⊕ (K0 + K1), and that

K
(
t, x ⊕ y;S) = K

(
t, x;H) + K

(
t, y;K)

.

Then

K
(
t, 0 ⊕ y0;S

)
≤ K

(
t, x0 ⊕ 0;S

)
.

Hence assuming that the couple S has the K-property , we can assert the existence
of a map S ∈ L(S ) such that S(x0 ⊕ 0) = 0 ⊕ y0 and ‖ S ‖ ≤ 1. Letting P :
S0 +S1 → K0 +K1 be the orthogonal projection, the assignment T x = PS(x ⊕0)

now defines a map such that T x0 = y0 and ‖ T ‖L(H;K)
≤ 1. �

2.3 The Principal Case

The core content of Theorem I is contained in the following statement.

Theorem 2.4 Suppose that a regular Hilbert couple H is finite dimensional and
that all eigenvalues of the corresponding operator A are of unit multiplicity. Then
H has the K-property .

We shall settle for proving Lemma 2.4 in this section, postponing to Sect. 5 the
general case of Theorem I.

To prepare for the proof, we write the eigenvalues λi of A in the increasing order,

σ(A) = {λi}n1 where 0 < λ1 < · · · < λn.

Let ei be corresponding eigenvectors of unit length for the norm of H0. Then for a
vector x = ∑

xiei we have

‖ x ‖ 2
0 =

n∑

1

|xi| 2 , ‖ x ‖ 2
1 =

n∑

1

λi |xi| 2.

Working in the coordinate system (ei), the couple H becomes identified with the
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n-dimensional weighted 
2 couple


n
2(λ) := (


n
2, 


n
2(λ)

)
,

where we write λ for the sequence (λi)
n
1.

We will henceforth identify a vector x = ∑
xiei with the point x = (xi)

n
1 in C n;

accordingly, the space L (

n

2

)
is identified with the C∗-algebra Mn(C) of complex

n × n matrices.
It will be convenient to reparametrize the K-functional for the couple 
n

2(λ) and
write

kλ(t, x) := K
(

1/t, x; 
n
2(λ)

)
. (2.4)

By Lemma 1.1 we have

kλ(t, x) =
n∑

i=1

λi

t + λi

|xi | 2, x ∈ C n. (2.5)

2.4 Basic Reductions

To prove that the couple 
n
2(λ) has the K-property , we introduce an auxiliary

parameter ρ > 1. The exact value of ρ will change meaning during the course
of the argument, the main point being that it can be chosen arbitrarily close to 1.

Initially, we pick any ρ > 1 such that ρλi < λi+1 for all i; we assume also that
we are given two elements x0, y0 ∈ C n such that

kλ

(
t, y0

)
<

1

ρ
kλ

(
t, x0

)
, t ≥ 0. (2.6)

We must construct a matrix T ∈ Mn(C) such that

T x0 = y0 and kλ (t, T x) ≤ kλ (t, x) , x ∈ C n, t > 0. (2.7)

Define x̃0 = (|x0
i |)n1 and ỹ0 = (|y0

i |)n1 and suppose that

kλ(t, ỹ
0) <

1

ρ
kλ(t, x̃

0), t ≥ 0.

Suppose that we can find an operator T0 ∈ Mn(C) such that T0x̃
0 = ỹ0 and

kλ (t, T0x) < kλ(t, x) for all x ∈ C n and t > 0. Writing x0
k = eiθk x̃0

k and
y0
k = eiϕk ỹ0

k where θk, ϕk ∈ R, we then have T x0 = y0 and kλ (t, T x) < kλ(t, x)

where

T = diag(eiϕk )T0 diag(e−iθk ).
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Replacing x0, y0 by x̃0, ỹ0 we can thus assume that the coordinates x0
i and y0

i are
non-negative; replacing them by small perturbations if necessary, we can assume
that they are strictly positive, at the expense of slightly diminishing the number ρ.

Now put βi = λi and αi = ρλi . Our assumption on ρ means that

0 < β1 < α1 < · · · < βn < αn.

Using the explicit expression for the K-functional, it is plain to check that

kβ(t, x) ≤ kα(t, x) ≤ ρkβ(t, x), x ∈ Cn, t ≥ 0.

Our assumption (2.6) therefore implies that

kα(t, y0) < kβ(t, x0), t ≥ 0. (2.8)

We shall verify the existence of a matrix T = Tρ = Tρ,x0,y0 such that

T x0 = y0 and kα (t, T x) ≤ kβ (t, x) , x ∈ Cn, t > 0. (2.9)

It is clear by compactness that, as ρ ↓ 1, the corresponding matrices Tρ will cluster
at some point T satisfying T x0 = y0 and ‖ T ‖L(H )

≤ 1. (See Remark 1.4.)
In conclusion, the proof of Theorem 2.4 will be complete when we can construct

a matrix T satisfying (2.9) with ρ arbitrarily close to 1.

2.5 Construction of T

Let Pk denote the linear space of complex polynomials of degree at most k. We shall
use the polynomials

Lα(t) =
n∏

1

(t + αi) , Lβ(t) =
n∏

1

(t + βi) ,

and the product L = LαLβ . Notice that

L′(−αi) < 0 , L′(−βi) > 0. (2.10)

Recalling the formula (2.5), it is clear that we can define a real polynomial P ∈
P2n−1 by

P(t)

L(t)
= kβ

(
t, x0

)
− kα

(
t, y0

)
. (2.11)

Clearly P(t) > 0 when t ≥ 0. Moreover, a consideration of the residues at the poles
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of the right-hand member shows that P is uniquely defined by the values

P (−βi) = (x0
i ) 2βiL

′ (−βi) , P (−αi) = −(y0
i ) 2αiL

′ (−αi) . (2.12)

Combining with (2.10), we conclude that

P (−αi) > 0 and P (−βi) > 0. (2.13)

Perturbing the problem slightly, it is clear that we can assume that P has exact
degree 2n − 1, and that all zeros of P have multiplicity 1. (We here diminish the
value of ρ > 1 somewhat, if necessary.)

Now, P has 2n − 1 simple zeros, which we split according to

P−1 ({0}) = {−ri}2m−1
i=1 ∪ {−ci,−c̄i}n−m

i=1 ,

where the ri are positive and the ci are non-real, and chosen to have positive
imaginary parts. The following is the key observation.

Lemma 2.5 We have that

L′ (−βi) P (−βi) > 0 , L′ (−αi) P (−αi) < 0 (2.14)

and there is a splitting {ri}2m−1
i=1 = {δi}mi=1 ∪ {γi}m−1

i=1 such that

L
(−δj

)
P ′ (−δj

)
> 0 , L (−γk) P ′ (−γk) < 0. (2.15)

Proof The inequalities (2.14) follow immediately from (2.13) and (2.10). It remains
to prove (2.15).

Let −h denote the leftmost real zero of the polynomial LP (of degree 4n − 1).
We claim that P(−h) = 0. If this were not the case, we would have h = αn. Since
the degree of P is odd, P(−t) is negative for large values of t , and so P(−αn) < 0
contradicting (2.13). We have shown that P(−h) = 0. Since all zeros of LP have
multiplicity 1, we have (LP)′(−h) �= 0, whence

L(−h)P ′(−h) = (LP)′(−h) > 0.

We write δm = h and put P∗(t) = P(t)/(t + δm). Since t + δm > 0 for t ∈
{−αi,−βi}n1, we have by (2.13) that for all i

P∗(−αi) > 0 and P∗(−βi) > 0.

Denote by {−rj
∗}2m−2

j=1 the real zeros of P∗. Since the degree of LP∗ is even and the

polynomial (LP∗)′ has alternating signs in the set {−αi,−βi}ni=1 ∪ {−ri
∗}2m−2

i=1 , we
can split the zeros of P∗ as {−δi,−γi}m−1

i=1 , where

L(−δi)P
′∗(−δi) > 0 , L(−γi)P

′∗(−γi) < 0. (2.16)
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Since P ′(−rj
∗) = (δm − rj

∗)P ′∗(−rj
∗) and δm > rj

∗, the signs of P ′(−rj
∗) and

P ′∗(−rj
∗) are equal, proving (2.15). �

Recall that {−ci}n−m
1 denote the zeros of P such that Im ci > 0. We put (with

the convention that an empty product equals 1)

Lδ(t) =
m∏

i=1

(t + δi) , Lγ (t) =
m−1∏

i=1

(t + γi) , Lc(t) =
n−m∏

i=1

(t + ci).

We define a linear map F : Cn+m → Cn+m−1 in the following way. First define
a subspace U ⊂ P2n−1 by

U = { Lcq ; q ∈ Pn+m−1 } .

Notice that U has dimension n+m−1 and that P ∈ U ; in fact P = aLcL
∗
c LδLγ

where a is the leading coefficient and the ∗-operation is defined by L ∗(z) = L(z̄).
For a polynomial Q ∈ U we have

|Q(t) | 2

L(t)P (t)
=

n∑

i=1

|xi| 2 βi

t + βi

+
n∑

i=1

|x ′
i| 2 δi

t + δi

−
n∑

i=1

|yi | 2 αi

t + αi

−
m−1∑

i=1

|y ′
i| 2 γi

t + γi

,

(2.17)

where, for definiteness,

xi = Q(−βi)√
βiL′(−βi)P (−βi)

; x ′
j = Q(−δj )√

δjL′(−δj )P (−δj )
(2.18)

yi = Q(−αi)√ −αiL′(−αi)P (−αi)
; y ′

j = Q(−γj )√ −γjL′(−γj )P (−γj )
. (2.19)

The identities in (2.18) give rise to a linear map

M : C n ⊕ Cm → U ; [
x; x ′] �→ Q. (2.20)

We can similarly regard (2.19) as a linear map

N : U → C n ⊕ Cm−1 ; Q �→ [
y; y ′] . (2.21)

Our desired map F is defined as the composite

F = NM : C n ⊕ Cm → C n ⊕ Cm−1 ; [x; x ′] �→ [y; y ′].
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Notice that if Q = M
[
x; x ′] and

[
y; y ′] = F

[
x; x ′] then (2.17) means that

kβ⊕δ

(
t,

[
x; x ′]) − kα⊕γ

(
t, F

[
x; x ′]) = | Q(t) | 2

L(t)P (t)
≥ 0, t ≥ 0.

This implies that F is a contraction from 
n+m
2 (β ⊕ δ) to 
n+m−1

2 (α ⊕ γ ).
We now define T as a “compression” of F . Namely, let E : C n ⊕ Cm−1 → C n

be the projection onto the first n coordinates, and define an operator T on Cn by

T x = EF [x; 0] , x ∈ C n.

Taking Q = P in (2.17) we see that T x0 = y0. Moreover,

kβ (t, x) − kα (t, T x) =
n∑

i=1

|xi | 2 βi

t + βi

−
n∑

i=1

|yi| 2 αi

t + αi

≥
n∑

i=1

|xi| 2 βi

t + βi

−
n∑

i=1

|yi| 2 αi

t + αi

−
m−1∑

j=1

|y ′
i| 2 γi

t + γi

= kβ⊕δ (t, [x; 0]) − kα⊕γ (t, F [x; 0]) = | Q(t) | 2

L(t)P (t)
.

Since the right-hand side is non-negative, we have shown that

kα (t, T x) ≤ kβ(t, x), t > 0, x ∈ Cn,

as desired. The proof of Theorem 2.4 is finished. �

2.6 Real Scalars

Theorem 2.4 holds also in the case of Euclidean spaces over the real scalar field. To
see this, assume without loss of generality that the vectors x0, y0 ∈ Cn have real
entries (still satisfying kλ

(
t, y0

) ≤ kλ

(
t, x0

)
for all t > 0).

By Theorem 2.4 we can find a (complex) contraction T of 
n
2(λ) such that T x0 =

y0. It is clear that the operator T ∗ defined by T ∗x = T (x̄) satisfies those same
conditions. Replacing T by 1

2 (T + T ∗) we obtain a real matrix T ∈ Mn(R), which

is a contraction of 
n
2(λ) and maps x0 to y0. �
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2.7 Explicit Representations

We here deduce an explicit representation for the operator T constructed above.
Let x0 and y0 be two non-negative vectors such that

kλ

(
t, y0

)
≤ kλ

(
t, x0

)
, t > 0.

For small ρ > 0 we perturb x0, y0 slightly to vectors x̃ 0, ỹ0 which satisfy the
conditions imposed on the previous subsections. We can then construct a matrix
T = Tρ such that

T x̃ 0 = ỹ 0 and kα (t, T x) ≤ kβ (t, x) , t > 0, x ∈ C n, (2.22)

where β = λ and α = ρλ. As ρ, x̃0, ỹ 0 approaches 1, x0, respectively y0, it is clear
that any cluster point T of the set of contractions Tρ will satisfy

T x0 = y0 and kλ (t, T x) ≤ kλ (t, x) , t > 0, x ∈ C n.

Theorem 2.6 The matrix T = T� = (τik)
n
i,k=1 where

τik = Re

[
1

αi − βk

x̃0
k

ỹ0
i

βkLδ(−αi)Lc(−αi)Lα(−βk)

αiLδ(−βk)Lc(−βk)L′
α(−αi)

]

(2.23)

satisfies (2.22).

Proof The range of the map C n → U , x �→ M [x; 0] (see 2.20) is precisely the
n-dimensional subspace

V := LδLc · Pn−1 = {LδLcR; R ∈ Pn−1} ⊂ U. (2.24)

We introduce a basis (Qk)
n
k=1 for V by

Qk(t) = Lδ(t)Lc(t)Lβ(t)

t + βk

√
βkL′(−βk)P (−βk)

Lδ(−βk)Lc(−βk)L
′
β(−βk)

.

Then

Qk(−βi)√
βiL′(−βi)P (−βi)

=
{

1 i = k,

0 i �= k.
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Denoting by (ei) the canonical basis in C n and using (2.18), (2.19) we get

τik = (T ek)i = Qk(−αi)√
αiL′(−αi)P (−αi)

= 1

βk − αi

Lδ(−αi)Lc(−αi)Lβ(−αi)

Lδ(−βk)Lc(−βk)L
′
β(−βk)

(
βkL

′(−βk)P (−βk)

−αiL′(−αi)P (−αi)

)1/2

.

Inserting the expressions (2.12) for P(−αi) and P(−βk) and taking real parts (see
the remarks in Sect. 2.6), we obtain the formula (2.23). �
Remark 2.7 It is easy to see that, if we pick all matrix-elements real, some elements
τik of the matrix T in (2.23) will be negative, even while the numbers x0

i and y0
k are

positive. It was proved in [2], Theorem 2.3, that this is necessarily so. Indeed, one

there constructs an example of a five-dimensional couple 
 5
2 (λ) and two vectors

x0, y0 ∈ R5 having non-negative entries such that no contraction T = (τik)
5
i,k=1 on


 5
2 (λ) having all matrix entries τik ≥ 0 can satisfy T x0 = y0. On the other hand, if

one settles for using a matrix with ‖ T ‖ ≤ √
2, then it is possible to find one with

only non-negative matrix entries. Indeed, such a matrix was used by Sedaev [35],
see also [38].

2.8 On Sharpness of the Norm-Bounds

We shall show that if m < n (i.e., if the polynomial P has at least one non-real zero),
then the norm ‖ T ‖L(Hi ) of the contraction T constructed above is very close to 1
for i = 0, 1.

We first claim that ‖ T ‖L(H0) = 1. To see this, we notice that if m < n, then
there is a non-trivial polynomial Q(1) in the space V (see (2.24)) which vanishes
at the points 0, γ1, . . . , γm−1. If x

(1)
i and y

(1)
i are defined by the formulas (2.18)

and (2.19) (while (x
(1)
j )′ = (y

(1)
k )′ = 0), we then have T x(1) = y(1) and

kβ(t, x(1)) − kα(t, y(1)) = | Q(1)(t) | 2

L(t)P (t)
, t > 0.

Choosing t = 0 we conclude that ‖ x(1) ‖ 2

n

2
−‖ T x(1) ‖ 2


n
2

= 0, whence ‖ T ‖L(H0) ≥
1, proving our claim.

Similarly, the condition m < n implies the existence of a polynomial Q(2) ∈ V

of degree at most n + m − 2 vanishing at the points γ1, . . . , γm−1. Constructing
vectors x(2), y(2) via (2.18) and (2.19) we will have T x(2) = y(2) and

kβ(t, x(2)) − kα(t, y(2)) = | Q(2)(t) | 2

L(t)P (t)
, t > 0.
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Multiplying this relation by t and then sending t → ∞, we find that ‖ x(2) ‖ 2

n

2(β)
−

‖ T x(2) ‖ 2

n

2(α)
= 0, which implies ‖ T ‖L(H1) ≥ ρ−1/2.

2.9 A Remark on Weighted �p-Couples

As far as we are aware, if 1 < p < ∞ and p �= 2, it is still an open question whether

the couple 
n
p(λ) =

(

n
p, 
n

p(λ)
)

is an exact Calderón couple or not. (When p = 1

or p = ∞ it is exact Calderón; see [36] for the case p = 1; the case p = ∞ is
essentially just the Hahn–Banach theorem.)

It is well known, and easy to prove, that the Kp-functional (see (2.2)) correspond-
ing to the couple 
n

p(λ) is given by the explicit formula

Kp

(
t, x; 
n

p(λ)
)

=
n∑

i=1

|xi|p tλi

(1 + (tλi)
1

p−1 )p−1
.

It was proved by Sedaev [35] (cf. [38]) that if Kp

(
t, y0; 
n

p(λ)
)

≤Kp

(
t, x0; 
n

p(λ)
)

for all t > 0 then there is T : 
n
p(λ) → 
n

p(λ) of norm at most 21/p′
such that

T x0 = y0. (Here p′ is the exponent conjugate to p.)
Although our present estimates are particular for the case p = 2, our construction

still shows that, if we re-define P(t) to be the polynomial

P(t)

L(t)
=

n∑

1

(x̃0
i ) p βi

t + βi

−
n∑

1

(ỹ0
i ) p αi

t + αi

, (2.25)

then the matrix T defined by

τik = Re

[
1

αi − βk

(x̃0
k )p−1

(ỹ0
i )p−1

βkLδ(−αi)Lc(−αi)Lα(−βk)

αiLδ(−βk)Lc(−βk)L′
α(−αi)

]

(2.26)

will satisfy T x̃0 = ỹ0, at least, provided that P(t) > 0 when t ≥ 0. (Here Lδ and
Lc are constructed from the zeros of P as in the case p = 2.)

The matrix (2.26) differs from those used by Sedaev [35] and Sparr [38]. Indeed
the matrices from [35, 38] have non-negative entries, while this is not so for
the matrices (2.26). It seems to be an interesting problem to estimate the norm
‖ T ‖L(
n

p(λ)) for the matrix (2.26), when p �= 2. The motivation for this type of

question is somewhat elaborated in Sect. 6.7, but we shall not discuss it further
here.
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2.10 A Comparison with Löwner’s Matrix

In this subsection, we briefly explain how our matrix T is related to the matrix used
by Löwner [26] in his original work on monotone matrix functions.2

We shall presently display four kinds of partial isometries; Löwner’s matrix will
be recognized as one of them. In all cases, operators with the required properties
can alternatively be found using the more general construction in Theorem 2.4.

The following discussion was inspired by the earlier work of Sparr [39], who
seems to have been the first to note that Löwner’s matrix could be constructed in a
similar way.

In this subsection, scalars are assumed to be real. In particular, when we write
“
n

2” we mean the (real) Euclidean n-dimensional space.
Suppose that two vectors x0, y0 ∈ Rn satisfy

kλ

(
t, y0

)
≤ kλ

(
t, x0

)
, t > 0.

Let

Lλ(t) =
n∏

1

(t + λi) ,

and let P ∈ Pn−1 be the polynomial fulfilling

P(t)

Lλ(t)
= kλ

(
t, x0

)
− kλ

(
t, y0

)
=

n∑

i=1

λi

t + λi

[
(x0

i ) 2 − (y0
i ) 2

]
.

By assumption, P(t) ≥ 0 for t ≥ 0. Moreover, P is uniquely determined by the n

conditions

P(−λi) = (x0
i ) 2 − (y0

i ) 2

λiL
′
λ(−λi)

.

Let u1, v1, u2, v2, . . . denote the canonical basis of 
n
2 and let


n
2 = O ⊕ E

be the corresponding splitting, i.e.,

O = span {ui} , E = span {vi}.

2By “Löwner’s matrix,” we mean the unitary matrix denoted “V ” in Donoghue’s book [12], on p.
71. A more explicit construction of this matrix is found in [26], where it is called “T .”
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Notice that

dim O = �(n − 1)/2� + 1 , dim E = �(n − 2)/2� + 1,

where �x� is the integer part of a real number x.
We shall construct matrices T ∈ Mn(R) such that

T x0 = y0 and kλ (t, T x) ≤ kλ(t, x), t > 0, x ∈ Rn, (2.27)

in the following special cases:

(1) P(t) = q(t)2 where q ∈ P(n−1)/2(R), x0 ∈ O , and y0 ∈ E,
(2) P(t) = tq(t)2 where q ∈ P(n−2)/2(R), x0 ∈ E, and y0 ∈ O .

Here Px should be interpreted as P�x�.

Remark 2.8 In this connection, it is interesting to recall the well-known fact that any
polynomial P which is non-negative on R+ can be written P(t) = q0(t)

2 + tq1(t)
2

for some real polynomials q0 and q1.

To proceed with the solution, we rename the λi as λi = ξi when i is odd and
λi = ηi when i is even. We also write

Lξ (t) =
∏

i odd

(t + ξi) , Lη(t) =
∏

i even

(t + ηi),

and write L = LξLη. Notice that L′
λ(−ξi) > 0 and L′

λ(−ηi) < 0.

2.10.1 Case 1

Suppose that P(t) = q(t)2, q ∈ P(n−1)/2(R), x0 ∈ O , and y0 ∈ E. Then

q(t)2

Lλ(t)
=

∑

k odd

ξk

t + ξk

(x0
k ) 2 −

∑

i even

ηi

t + ηi

(y0
i ) 2,

where

x0
k = εkq(−ξk)√

ξkL
′
λ(−ξk)

, y0
i = ζiq(−ηi)√

−ηiL
′
λ(−ηi)

(2.28)

for some choice of signs εk, ζi ∈ {±1}.
By (2.28) are defined linear maps

O → P(n−1)/2(R) : x �→ Q ; P(n−1)/2(R) → E : Q �→ y.
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The composition is a linear map

T0 : O → E : x �→ y.

We now define T ∈ Mn(R) by

T : O ⊕ E → O ⊕ E : [x; v] �→ [0; T0x].

Then clearly T x0 = y0 and

kλ (t, [x; v]) − kλ (t, T [x; v])
≥ kξ (t, x) − kη (t, T0x)

= Q(t)2

Lλ(t)
≥ 0, t > 0, x ∈ O, v ∈ E.

(2.29)

We have verified (2.27) in case 1. A computation similar to the one in the proof of
Theorem 2.6 shows that, with respect to the bases uk and vi ,

(T0)ik = εkζi

ξk − ηi

Lξ (−ηi)

L′
ξ (−ξk)

(
ξkL

′
ξ (−ξk)Lη(−ξk)

−ηiLξ (−ηi)L′
η(−ηi)

)1/2

.

Notice that, multiplying (2.29) by t , then letting t → ∞ implies that

∑

k odd

x2
k ξk −

∑

i even

(T0x)2
i ηi = 0.

This means that T is a partial isometry from O to E with respect to the norm of

n

2(λ).

2.10.2 Case 2

Now assume that P(t) = tq(t)2, q ∈ P(n−2)/2(R), x0 ∈ E, and y0 ∈ O . Then

tq(t)2

Lλ(t)
= −

∑

i odd

(y0
i )2 ξi

t + ξi

+
∑

k even

ηk

t + ηk

(x0
k )2,

where

y0
i = ε′

iq(−ξi)
√

L′
λ(−ξi)

, x0
k = −ζ ′

kq(−ηk)
√

−L′
λ(−ηk)

(2.30)

for some ε′
i , ζ

′
k ∈ {±1}.
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By (2.30) are defined linear maps

E → P(n−2)/2(R) : x �→ Q ; P(n−2)/2(R) → O : Q �→ y.

We denote their composite by

T1 : E → O : x �→ y.

Define T ∈ Mn(R) by

T : O ⊕ E → O ⊕ E : [u; x] �→ [T1x; 0] .

We then have

−kλ (t, T [u; x]) + kλ (t, [u; x])
≥ −kξ (t, T1x) + kη(t, x)

= tQ(t)2

Lλ(t)
≥ 0, t > 0, u ∈ O, x ∈ E,

(2.31)

and (2.27) is verified also in case 2.
A computation shows that, with respect to the bases vk and ui ,

(T1)ik = ε′
iζ

′
k

ηk − ξi

Lη(−ξi)

L′
η(−ηk)

(−Lξ (−ηk)L
′
η(−ηk)

L′
ξ (−ξi)Lη(−ξi)

)1/2

.

Inserting t = 0 in (2.31) we find that

−
∑

i odd

(T1x)2
i +

∑

k even

(xk)
2 = 0,

i.e., T is a partial isometry form E to O with respect to the norm of 
n
2.

In the case of even n, the matrix T1 coincides with Löwner’s matrix.

3 Quadratic Interpolation Spaces

3.1 A Classification of Quadratic Interpolation Spaces

Recall that an intermediate space X with respect to H is said to be of type H if
‖ T ‖L(Hi ) ≤ Mi for i = 0, 1 implies that ‖ T ‖L(X) ≤ H (M0,M1). We shall
henceforth make a mild restriction, and assume that H be homogeneous of degree
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one. This means that we can write

H(s, t) 2 = s 2 H(t 2/s 2) (3.1)

for some function H of one positive variable. In this situation, we will say that X

is of type H. The definition is chosen so that the estimates ‖ T ‖ 2
L(Hi )

≤ Mi for

i = 0, 1 imply ‖ T ‖ 2
L(X)

≤ M0 H (M1/M0).
In the following we will make the standing assumptions: H is an increasing,

continuous, and positive function on R+ with H(1) = 1 and H(t) ≤ max{1, t}.
Notice that our assumptions imply that all spaces of type H are exact interpola-

tion. Note also that H(t) = t θ corresponds to geometric interpolation of exponent θ .
Suppose now that H is a regular Hilbert couple and that H∗ is an exact

interpolation space with corresponding operator B. By Donoghue’s lemma, we have
that B = h(A) for some positive Borel function h on σ(A).

The statement that H∗ is intermediate relative to H is equivalent to that

c1
A

1 + A
≤ B ≤ c2(1 + A) (3.2)

for some positive numbers c1 and c2.
Let us momentarily assume that H0 be separable. (This restriction is removed in

Remark 3.1.) We can then define the scalar-valued spectral measure of A,

νA(ω) =
∑

2−k 〈E(ω)ek, ek〉0

where E is the spectral measure of A, {ek; k = 1, 2, . . .} is an orthonormal basis
for H0, and ω is a Borel set. Then, for Borel functions h0, h1 on σ(A), one has that
h1 = h2 almost everywhere with respect to νA if and only if h1(A) = h2(A).

Note that the regularity of H means that νA({0}) = 0.

Theorem II If H∗ is of type H with respect to H, then B = h(A) where the function
h can be modified on a null-set with respect to νA so that

h(λ)/h(μ) ≤ H (λ/μ) , λ,μ ∈ σ(A) \ {0}. (3.3)

Proof Fix a (large) compact subset K ⊂ σ(A) ∩ R+ and put H′
0 = H′

1 = EK(H0)

where E is the spectral measure of A, and the norms are defined by restriction,

‖ x ‖H′
i
= ‖ x ‖Hi

, ‖ x ‖H′∗ = ‖ x ‖H∗ , x ∈ EK (H0) .

It is clear that the operator A′ corresponding to H′ is the compression of A to
H′

0 and likewise the operator B ′ corresponding to H′∗ is the compression of B to
H′

0. Moreover, H′∗ is of interpolation type H with respect to H′ and the operator
B ′ = (h|K) (A′). For this reason, and since the compact set K is arbitrary, it clearly
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suffices to prove the statement with H replaced by H′. Then A is bounded above
and below. Moreover, by (3.2), also B is bounded above and below.

Let c < 1 be a positive number such that σ(A) ⊂ (
c, c−1

)
. For a fixed ε > 0

with ε < c/2 we set

Eλ = σ(A) ∩ (λ − ε, λ + ε)

and consider the functions

mε(λ) = ess inf Eλ h, Mε(λ) = ess sup Eλ
h,

the essential inf and sup being taken with respect to νA.
Now fix a small positive number ε′ and two unit vectors eλ, eμ supported by

Eλ,Eμ, respectively, such that

‖ eλ ‖ 2∗ ≥ Mε(λ) − ε′,
∥
∥ eμ

∥
∥ 2

∗ ≤ mε(μ) + ε′.

Now fix λ,μ ∈ σ(A) and let T x = 〈
x, eμ

〉
0 eλ. Then

‖ T x ‖ 2
1 = ∣

∣〈x, eμ

〉
0

∣
∣ 2 ‖ eλ ‖ 2

1 ≤ 1

(μ − ε) 2

∣
∣〈x, eμ

〉
1

∣
∣ 2

(λ + ε)

≤ (μ + ε)(λ + ε)

(μ − ε)2
‖ x ‖ 2

1 .

Likewise,

‖ T x ‖ 2
0 ≤ ∣

∣〈x, eμ

〉
0

∣
∣ 2 ≤ ‖ x ‖ 2

0 ,

so ‖ T ‖ ≤ 1 and ‖ T ‖ 2
A ≤ αμ,λ,ε where αμ,λ,ε = (μ+ε)(λ+ε)

(μ−ε)2 .
Since H∗ is of type H, we conclude that

‖ T ‖ 2
B ≤ H

(
αμ,λ,ε

)
,

whence

Mε(λ) − ε′ ≤ ‖ eλ ‖ 2∗ = ∥
∥ T eμ

∥
∥ 2

∗ ≤ H
(
αμ,λ,ε

) ∥
∥ eμ

∥
∥ 2

∗
≤ H

(
αμ,λ,ε

) (
mε(μ) + ε′) .

(3.4)

In particular, since ε′ was arbitrary, and mε(λ) ≤ ‖ eλ ‖ 2∗ ≤ ‖B ‖, we find that

Mε(λ) − mε(λ) ≤ [
H

(
αμ,λ,ε

) − 1
] ‖B ‖ .
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By assumption, H is continuous and H(1) = 1. Hence, as ε ↓ 0, the functions
Mε(λ) diminish monotonically, converging uniformly to a function h∗(λ) which is
also the uniform limit of the family mε(λ). It is clear that h∗ is continuous, and
since mε ≤ h∗ ≤ Mε , we have h∗ = h almost everywhere with respect to νA. The
relation (3.3) now follows for h = h∗ by letting ε and ε′ tend to zero in (3.4). �

A partial converse to Theorem II is found below, see Theorem 6.3.

Remark 3.1 (The Non-Separable Case) Now consider the case when H0 is non-
separable. (By regularity this means that also H1 and H∗ are non-separable.)

First assume that the operator A is bounded. Let H′
0 be a separable reducing

subspace for A such that the restriction A′ of A to H′
0 has the same spectrum as A.

The space H′
0 reduces B by Donoghue’s lemma; by Theorem II the restriction B ′ of

B to H′
0 satisfies B ′ = h′(A′) for some continuous function h′ satisfying (3.3) on

σ(A). Let H′′
0 be any other separable reducing subspace, where (as before) B ′′ =

h′′(A′′). Then H′
0 ⊕ H′′

0 is a separable reducing subspace on which B = h(A) for
some third continuous function h on σ(A). Then h(A′)⊕h(A′′) = h′(A′)⊕h′′(A′′)
and by continuity we must have h = h′ = h′′ on σ(A). The function h thus satisfies
B = h(A) as well as the estimate (3.3).

If A is unbounded, we replace A by its compression to PnH0 where Pn is the
spectral projection of A corresponding to the spectral set [0, n]∩σ(A), n = 1, 2, . . ..
The same reasoning as above shows that B appears as a continuous function of A

on σ(A) ∩ [0, n]. Since n is arbitrary, we find that B = h(A) for a function h

satisfying (3.3).

3.2 Geometric Interpolation

Now consider the particular case when H∗ is of exponent θ , viz. of type H(t) = t θ

with respect to H. We write B = h(A) where h is the continuous function provided
by Theorem II (and Remark 3.1 in the non-separable case).

Fix a point λ0 ∈ σ(A) and let C = h(λ0)λ
−θ
0 . The estimate (3.3) then implies

that h(λ) ≤ Cλθ and h(μ) ≥ Cμθ for all λ,μ ∈ σ(A). We have proved the
following theorem.

Theorem 3.2 ([27, 40]) If H∗ is an exact interpolation Hilbert space of exponent
θ relative to H, then B = h(A) where h(λ) = Cλθ for some positive constant C.

Theorem 3.2 says that H∗ = Hθ up to a constant multiple of the norm, where
Hθ is the space defined in (1.7). In the guise of operator inequalities: for any fixed
positive operators A and B, the condition

T ∗T ≤ M0 , T ∗AT ≤ M1A ⇒ T ∗BT ≤ M 1−θ
0 M θ

1 B

is equivalent to that B = Aθ .
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It was observed in [27] that Hθ also equals to the complex interpolation space
Cθ(H ). For the sake of completeness, we supply a short proof of this fact in the
appendix.

Remark 3.3 An exact quadratic interpolation method, the geometric mean was
introduced earlier by Pusz and Woronowicz [33] (it corresponds to the C1/2-
method). In [40], Uhlmann generalized that method to a method (the quadratic
mean) denoted QIt where 0 < t < 1; this method is quadratic and of exponent
t .

In view of Theorem 3.2 and the preceding remarks we can conclude that
QIθ (H ) = Cθ (H ) = Hθ for any regular Hilbert couple H. We refer to [40] for
several physically relevant applications of this type of interpolation.

Finally, we want to mention that in [32] Peetre introduces the “Riesz method of
interpolation”; in Section 5 he also defines a related method “QM” which comes
close to the complex C1/2-method.

3.3 Donoghue’s Theorem

The exact quadratic interpolation spaces relative to a Hilbert couple were character-
ized by Donoghue in the paper [14]. We shall here prove the following equivalent
version of Donoghue’s result (see [2, 3]).

Theorem III An intermediate Hilbert space H∗ relative to H is an exact interpo-
lation space if and only if there is a positive radon measure � on [0,∞] such that

‖ x ‖ 2∗ =
∫

[0,∞]

(
1 + t−1

)
K

(
t, x; H )

d�(t).

Equivalently,H∗ is exact interpolation relative to H if and only if the corresponding
operator B can be represented as B = h(A) for some function h ∈ P ′.

The statements that all norms of the given form are exact quadratic interpolation
norms have already been shown (see Sect. 1.2). There remains to prove that there
are no others.

Donoghue’s original formulation of the result, as well as other equivalent forms
of the theorem, is found in Sect. 6 below. Our present approach follows [2] and is
based on K-monotonicity.

Remark 3.4 The condition that H∗ be exact interpolation with respect to H means
that H∗ is of type H where H(t) = max{1, t}. In view of Theorem II (and
Remark 3.1), this means that we can represent B = h(A) where h is quasi-concave
on σ(A) \ {0},

h(λ) ≤ h(μ) max {1, λ/μ} , λ, μ ∈ σ(A) \ {0}. (3.5)

In particular, h is locally Lipschitzian on σ(A) ∩ R+.
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Remark 3.5 A related result concerning non-exact quadratic interpolation was
proved by Ovchinnikov [30] using Donoghue’s theorem. Cf. also [4].

3.4 The Proof for Simple Finite-Dimensional Couples

Similar to our approach to Calderón’s problem, our strategy is to reduce Theorem III
to a case of “simple couples.”

Theorem 3.6 Assume that H0 = H0 = C n as sets and that all eigenvalues (λi)
n
1

of the corresponding operator A are of unit multiplicity. Consider a third Hermitian
norm ‖x‖ 2∗ = 〈Bx, x〉0 on C n. Then H∗ is exact interpolation with respect to H if
and only if B = h(A) where h ∈ P ′.

Remark 3.7 The lemma says that the class of functions h on σ(A) satisfying

T ∗T ≤ 1 , T ∗AT ≤ A ⇒ T ∗h(A)T ≤ h(A), (T ∈ Mn(C))

(3.6)

is precisely the set P ′|σ(A) of restrictions of P ′-functions to σ(A). In this way, the
condition (3.6) provides an operator-theoretic solution to the interpolation problem
by positive Pick functions on a finite subset of R+.

Proof of Theorem 3.6 We already know that the spaces H∗ of the asserted form are
exact interpolation relative to H (see Sects. 1.2 and 1.3).

Now let H∗ be any exact quadratic interpolation space. By Donoghue’s lemma
and the argument in Sect. 2.3, we can for an appropriate positive sequence λ = (λi)

n
1

identifyH = 
n
2(λ), A = diag(λi), and B = h(A) where h is some positive function

defined on σ(A) = {λi}n1.
Our assumption is that 
n

2 (h(λ)) is exact interpolation relative to 
n
2(λ). We must

prove that h ∈ P ′|σ(A). To this end, write

kλi (t) = (1 + t)λi

1 + tλi

,

and recall that (see Lemma 1.1)

K
(
t, x; 
n

2(λ)
)

=
(

1 + t−1
)−1 n∑

1

|xi | 2 kλi (t).

Let us denote by C the algebra of continuous complex functions on [0,∞] with the
supremum norm ‖u ‖∞ = supt>0 | u(t) |. Let V ⊂ C be the linear span of the kλi
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for i = 1, . . . , n. We define a positive functional φ on V by

φ(

n∑

1

aikλi ) =
n∑

1

ai h(λi).

We claim that φ is a positive functional, i.e., if u ∈ V and u(t) ≥ 0 for all t > 0,
then φ(u) ≥ 0.

To prove this let u = ∑n
1 aikλi be non-negative on R+ and write ai = |xi| 2 −

|yi| 2 for some x, y ∈ Cn. The condition that u ≥ 0 means that

(
1 + t−1

)
K

(
t, x; 
n

2(λ)
)

=
n∑

i=1

|xi| 2 kλi (t)

≥
n∑

i=1

|yi| 2 kλi (t)

=
(

1 + t−1
)

K
(
t, y; 
n

2(λ)
)

, t > 0.

(3.7)

Since 
n
2(λ) is an exact Calderón couple (by Theorem 2.4), the space 
n

2(h(λ)) is
exact K-monotonic. In other words, (3.7) implies that

‖ x ‖
n
2(h(λ)) ≥ ‖ y ‖
n

2(h(λ)) ,

i.e.,

φ(u) =
n∑

1

(
|xi | 2 − |yi | 2

)
h(λi) ≥ 0.

The asserted positivity of φ is thereby proved.
Replacing λi by cλi for a suitable positive constant c we can without losing

generality assume that 1 ∈ σ(A), i.e., that the unit 1(x) ≡ 1 of the C∗-algebra C

belongs to V . The positivity of φ then ensures that

‖φ ‖ = sup
u∈V ; ‖u‖∞≤1

|φ(u)| = φ(1).

Let � be a Hahn–Banach extension of φ to C and note that

‖ � ‖ = ‖φ ‖ = φ(1) = �(1).

This means that � is a positive functional on C (cf. [29], §3.3). By the Riesz
representation theorem there is thus a positive Radon measure � on [0,∞] such
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that

�(u) =
∫

[0,∞]
u(t) d�(t), u ∈ C.

In particular

h(λi) = φ
(
kλi

) = �
(
kλi

) =
∫

[0,∞]
(1 + t)λi

1 + tλi

d�(t), i = 1, . . . , n.

We have shown that h is the restriction to σ(A) of a function of class P ′. �

3.5 The Proof of Donoghue’s Theorem

We here prove Theorem III in full generality.
We remind the reader that if S ⊂ R+ is a subset, we write P ′|S for the convex

cone of restrictions of P ′-functions to S. We first collect some simple facts about
this cone.

Lemma 3.8

(i) The class P ′|S is closed under pointwise convergence.
(ii) If S is finite and if λ = (λi)

n
i=1 is an enumeration of the points of S, then h

belongs to P ′|S if and only if 
n
2(h(λ)) is exact interpolation with respect to

the pair 
n
2(λ).

(iii) If S is infinite, then a continuous function h on S belongs to P ′|S if and only if
h ∈ P ′|� for every finite subset � ⊂ S.

Proof

(i) Let hn be a sequence in P ′ converging pointwise on S and fix λ ∈ S. It is clear
that the boundedness of the numbers hn(λ) is equivalent to boundedness of the
total masses of the corresponding measures �n on the compact set [0,∞]. It
now suffices to apply Helly’s selection theorem.

(ii) This is Theorem 3.6.
(iii) Let �n be an increasing sequence of finite subsets of S whose union is dense.

Let hn = h|�n where h is continuous on S. If hn ∈ P ′|�n for all n, then
the sequence hn converges pointwise on ∪�n to h. By part (i) we then have
h ∈ P ′|σ(A).

�
We can now finish the proof of Donoghue’s theorem (Theorem III).
Let H∗ be exact interpolation with respect to H and represent the corresponding

operator as B = h(A) where h satisfies (3.3). By the remarks after Theorem III, the
function h is locally Lipschitzian.
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In view of Lemma 3.8 we shall be done when we have proved that 
n
2(h(λ)) is

exact interpolation with respect to 
n
2(λ) for all sequences λ = (λi)

n
1 ⊂ σ(A) of

distinct points. Let us arrange the sequences in the increasing order: 0 < λ1 <

· · · < λn.
Fix ε > 0, ε < min{c, λ1, 1/λn} and let Ei = [λi −ε, λi +ε]∩σ(A); we assume

that ε is sufficiently small that the Ei be disjoint. Let M = ∪n
1Ei . We can assume

that h has Lipschitz constant at most 1 on M .
Let M be the reducing subspace of H0 corresponding to the spectral set M , and

let Ã be the compression of A to M. We define a function g on M by g(λ) = λi on
Ei . Then |g(λ) − λ| < ε on σ(Ã), so

‖ Ã − g(Ã) ‖ ≤ ε , ‖h(Ã) − h(g(Ã)) ‖ ≤ ε. (3.8)

Lemma 3.9 Suppose that A′, A′′ ∈ L (M) satisfy A′, A′′ ≥ δ > 0 and∥
∥ A′ − A′′ ∥∥ ≤ ε. Then ‖ T ‖A′′ ≤ √

1 + 2ε/δ max{‖ T ‖ , ‖ T ‖A′ } for all T ∈
L (M).

Proof By definition, ‖ T ‖A′ is the smallest number C ≥ 0 such that T ∗A′T ≤
C 2A′. Thus

T ∗A′′T = T ∗(A′′ − A′)T + T ∗A′T

≤ ‖ T ‖ 2 ε + ‖ T ‖ 2
A′

(
A′′ + (

A′ − A′′))

≤ 2ε max{‖ T ‖ 2 , ‖ T ‖ 2
A′ } + ‖ T ‖ 2

A′ A′′

≤ max{‖T ‖ 2 , ‖ T ‖ 2
A′ } (1 + 2ε/δ)A′′.

�
We can find δ > 0 such that the operators Ã, g(Ã), h(Ã), and h(g(Ã)) are ≥ δ.

Then by repeated use of Lemma 3.9,

‖ T ‖
h
(
g
(
Ã

)) ≤ √
1 + 2ε/δ max{‖ T ‖ , ‖ T ‖

h
(
Ã

)}

≤ √
1 + 2ε/δ max

{‖ T ‖ , ‖ T ‖
Ã

}

≤ (1 + 2ε/δ) max{‖ T ‖ , ‖ T ‖
g
(
Ã

)}, T ∈ L(M).

Let ei be a unit vector supported by the spectral set Ei and define a space V ⊂ M to
be the n-dimensional space spanned by the ei . Let A0 be the compression of g(Ã)

to V , then

‖ T ‖h(A0) ≤ (1 + 2ε/δ) max
{‖ T ‖ , ‖ T ‖A0

}
, T ∈ L (V) . (3.9)
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Identifying V with 
n
2 and A0 with the matrix diag(λi), we see that (3.9) is

independent of ε. Letting ε diminish to 0 in (3.9) now gives that 
n
2(h(λ)) is exact

interpolation with respect to 
n
2(λ). In view of Lemma 3.8, this finishes the proof of

Theorem III. �

4 Classes of Matrix Functions

In this section, we discuss the basic properties of interpolation functions: in
particular, the relation to the well-known classes of monotone matrix functions. We
refer to the books [12] and [34] for further reading on the latter classes.

4.1 Interpolation and Matrix Monotone Functions

Let A1 and A2 be positive operators in 
n
2 (n = ∞ is admitted). Suppose that A1 ≤

A2 and form the following operators on 
n
2 ⊕ 
n

2:

T0 =
(

0 0
1 0

)
, A =

(
A2 0
0 A1

)
.

It is then easy to see that T0
∗T0 ≤ 1 and that T0

∗AT0 =
(

A1 0
0 0

)
≤ A.

Now assume that a function h on σ(A) belongs to the class CA defined in
Sect. 1.4, i.e., that h satisfies

T ∗T ≤ 1 , T ∗AT ≤ A ⇒ T ∗h(A)T ≤ h(A), (4.1)

where T denotes an operator on 
2n
2 .

We then have T0
∗h(A)T0 ≤ h(A), or

(
h(A1) 0

0 0

)
≤

(
h(A2) 0

0 h(A1)

)
.

In particular, we find that h(A1) ≤ h(A2). We have shown that (under the
assumptions above)

A1 ≤ A2 ⇒ h (A1) ≤ h (A2) . (4.2)

We now change our point of view slightly. Given a positive integer n, we let Cn

denote the convex of positive functions h on R+ such that (4.1) holds for all positive
operators A on 
n

2 and all T ∈ L (

n

2

)
.
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Similarly, we let P ′
n denote the class of all positive functions h on R+ such that

h(A1) ≤ h(A2) whenever A1, A2 are positive operators on 
n
2 such that A1 ≤ A2.

We refer to P ′
n as the cone of positive functions monotone of order n on R+.

We have shown above that C2n ⊂ P ′
n.

In the other direction, assume that h ∈ P ′
2n. Let A, T be bounded operators on 
n

2
with A > 0, T ∗T ≤ 1 and T ∗AT ≤ A. Assume also that h be continuous. We will
use the following lemma due to Hansen [19]. We recall the proof for completeness.

Lemma 4.1 ([19]) T ∗h(A)T ≤ h(T ∗AT ).

Proof Put S = (1 − T T ∗)1/2 and R = (1 − T ∗T )1/2 and consider the 2n × 2n

matrix

U =
(

T S

R −T ∗
)

, X =
(

A 0
0 0

)
.

It is well known, and easy to check, that U is unitary and that

U∗XU =
(

T ∗AT T ∗AS

SAT SAS

)
.

Next fix a number ε > 0, a constant λ > 0 (to be fixed), and form the matrix

Y =
(

T ∗AT + ε 0
0 2λ

)

which, provided that we choose λ ≥ ‖SAS‖, satisfies

Y − U∗XU =
(

ε −T ∗AS

−SAT 2λ − SAS

)
≥

(
ε D

D∗ λ

)
,

where we have written D = −T ∗AS.
If we now also choose λ so that λ ≥ ‖D‖2/ε, then we obtain for all ξ, η ∈ Cn

that
〈(

ε D

D∗ λ

) (
ξ

η

)
,

(
ξ

η

)〉
= ε‖ξ‖2 + 〈Dη, ξ〉 + 〈D∗ξ, η〉 + λ‖η‖2

≥ ε‖ξ‖2 − 2‖D‖‖ξ‖‖η‖ + λ‖η‖2 ≥ 0.

Hence U∗XU ≤ Y and as a consequence U∗h(X)U = h(U∗XU) ≤ h(Y ), since h

is matrix monotone of order 2n. The last inequality means that

(
T ∗h(A)T T ∗h(A)S

Sh(A)T Sh(A)S

)
≤

(
h(T ∗AT + ε) 0

0 h(2λ)

)
,

so in particular T ∗h(A)T ≤ h(T ∗AT + ε). Since ε > 0 was arbitrary, and since h

is assumed to be continuous, we conclude the lemma. �
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We now continue our discussion. Assuming that T ∗T ≤ 1 and T ∗AT ≤ A,
and that h ∈ P ′

2n is continuous, we have h(T ∗AT ) ≤ h(A) [since h ∈ P ′
n], so

T ∗h(A)T ≤ h(A) by Lemma 4.1. We conclude that h ∈ Cn.
To prove that P ′

2n ⊂ Cn, we need to remove the continuity assumption on
h made above. This is completely standard: let ϕ be a smooth positive function
on R+ such that

∫ ∞
0 ϕ(t) dt/t = 1, and define a sequence hk by hk(λ) =

k−1
∫ ∞

0 ϕ
(
λk/tk

)
h(t) dt/t . The class P ′

2n is a convex cone, closed under pointwise
convergence [12], so the functions h1, h2, . . . are of class P ′

2n. They are furthermore
continuous, so by the argument above, they are of class Cn. By Lemma 3.8, the cone
Cn is also closed under pointwise convergence, so h = lim hn ∈ Cn.

To summarize, we have the inclusions C2n ⊂ P ′
n, P ′

2n ⊂ Cn, and also Cn+1 ⊂
Cn, P ′

n+1 ⊂ P ′
n. In view of Theorem III, we have the identity ∩∞

1 Cn = P ′. The
inclusions above now imply the following result, sometimes known as “Löwner’s
theorem on matrix monotone functions.”

Theorem 4.2 We have ∩∞
1 P ′

n = ∩∞
1 Cn = P ′.

The identity ∩∞
1 P ′

n = P ′ says that a positive function h is monotone of all finite
orders if and only if it is of class P ′. The somewhat less precise fact that P ′∞ = P ′
is interpreted as that the class of operator monotone functions coincides with P ′.

The identity C∞ = P ′ is, except for notation, contained in the work of Foiaş and
Lions, from [16]. See Sect. 6.4.

Note that the inclusion P ′
2n ⊂ Cn shows that a matrix monotone functions of

order 2n can be interpolated by a positive Pick function at n points. Results of a
similar nature, where it is shown, in addition, that an interpolating Pick function
can be taken rational of a certain degree, are discussed, for example, in Donoghue’s
book [14, Chapter XIII] or (more relevant in the present connection) in the paper
[13].

It seems somewhat inaccurate to refer to the identity ∩∞
1 P ′

n = P ′ as “Löwner’s
theorem,” since Löwner discusses more subtle results concerning matrix monotone
functions of a given finite order n. In spite of this, it is common nowadays to let
“Löwner’s theorem” refer to this identity.

4.2 More on the Cone CA

We can now give an short proof of the following result due to Donoghue [13].

Theorem 4.3 For a positive function h on σ(A) we define two positive functions h̃

and h∗ on σ
(
A−1

)
by h̃(λ) = λh (1/λ) and h∗(λ) = 1/h (1/λ). Then the following

conditions are equivalent:

(i) h ∈ CA,
(ii) h̃ ∈ CA−1 ,

(iii) h∗ ∈ CA−1 .
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Proof Let H∗ be a quadratic intermediate space relative to a regular Hilbert couple
H; let B = h(A) be the corresponding operator. It is clear that H∗ is exact
interpolation relative to H if and only if H∗ is exact interpolation relative to the
reverse couple H(r) = (H1,H0). The latter couple has corresponding operator
A−1 and it is clear that the identity ‖ x ‖ 2∗ = 〈h(A)x, x〉0 is equivalent to that

‖ x ‖ 2∗ =
〈
A−1h̃

(
A−1

)
x, x

〉

1
. We have shown the equivalence of (i) and (ii).

Next let H∗ = (H0
∗,H1

∗) be the dual couple, where we identify H0
∗ =

H0. With this identification, H1
∗ becomes associated with the norm ‖ x ‖ 2

H ∗
1

=
〈
A−1x, x

〉
0, and H∗ ∗ is associated with ‖ x ‖ 2

H ∗∗
= 〈

B−1x, x
〉
0. It remains to note

that H∗ is exact interpolation relative to H if and only if H∗ ∗ is exact interpolation
relative to H∗, proving the equivalence of (i) and (iii). �

Combining with Theorem III, one obtains alternative proofs of the interpolation
theorems for P ′-functions discussed by Donoghue in the paper [13].

Remark 4.4 The exact quadratic interpolation spaces which are fixed by the duality,
i.e., which satisfy H∗ ∗ = H∗, correspond precisely to the class of P ′-functions
which are self-dual: h∗ = h. This class was characterized by Hansen in the paper
[20].

4.3 Matrix Concavity

A function h on R+ is called matrix concave of order n if we have Jensen’s
inequality

λh (A1) + (1 − λ)h (A2) ≤ h (λA1 + (1 − λ)A2)

for all positive n × n matrices A1, A2, and all numbers λ ∈ [0, 1]. Let us denote by
�n the convex cone of positive concave functions of order n on R+. The fact that
∩n�n = P ′ follows from the theorem of Kraus [23]. Following [2] we now give an
alternative proof of this fact.

Proposition 4.5 For all n we have the inclusion C3n ⊂ �n ⊂ P ′
n. In particular

∩∞
1 �n = P ′.

Proof Assume first that h ∈ C3n and pick two positive matrices A1 and A2. Define
A3 = (1 − λ)A1 + λA2 where λ ∈ [0, 1] is given, and define matrices A and T of
order 3n by

A =
⎛

⎝
A3 0 0
0 A1 0
0 0 A2

⎞

⎠ , T =
⎛

⎝
0 0 0√

1 − λ 0 0√
λ 0 0

⎞

⎠ .
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It is clear that T ∗T ≤ 1 and

T ∗AT =
⎛

⎝
A3 0 0
0 0 0
0 0 0

⎞

⎠ ≤ A,

so, since h ∈ C3n, we have T ∗h(A)T ≤ h(A), or

⎛

⎝
(1 − λ)h(A1) + λh(A2) 0 0

0 0 0
0 0 0

⎞

⎠ ≤
⎛

⎝
h(A3) 0 0

0 h(A1) 0
0 0 h(A2)

⎞

⎠ .

Comparing the matrices in the upper left corners, we find that h ∈ �n.
Assume now that h ∈ �n, and take positive definite matrices A1, A2 of order

n with A1 ≤ A2. Also pick λ ∈ (0, 1). Then λA2 = λA1 + (1 − λ)A3 where
A3 = λ(1 − λ)−1(A2 − A1). By matrix concavity, we then have

h(λA2) ≥ λh(A1) + (1 − λ)h(A3) ≥ λh(A1),

where we used non-negativity to deduce the last inequality. Being concave, h is
certainly continuous. Letting λ ↑ 1 one thus finds that h(A1) ≤ h(A2). We have
shown that h ∈ P ′

n. �
For a further discussion of classes of convex matrix functions and their relations

to monotonicity, we refer to the paper [21].

4.4 Interpolation Functions of Two Variables

In this section, we briefly discuss a class of interpolation functions of two matrix
variables. We shall not completely characterize the class of such generalized
interpolation functions here, but we hope that the following discussion will be of
some use for a future investigation.

Let H1 and H2 be Hilbert spaces. We turn H1 ⊗ H2 into a Hilbert space
by defining the inner product on elementary tensors via

〈
x1 ⊗ x2, x

′
1 ⊗ x ′

2

〉 :=〈
x1, x1

′〉
1 · 〈

x2, x2
′〉

2 (then extend via sesqui-linearity). Similarly, if Ti are oper-
ators on Hi , the tensor product T1 ⊗ T2 is defined on elementary tensors via
(T1 ⊗ T2) (x1 ⊗ x2) = T1x1 ⊗ T2x2. It is then easy to see that if Ai are positive
operators on Hi for i = 1, 2, then A1 ⊗A2 ≥ 0 as an operator on the tensor product.
Furthermore, we have A1 ⊗ A2 ≤ A′

1 ⊗ A′
2 if Ai ≤ A′

i for i = 1, 2.
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Given two positive definite matrices Ai of orders ni and a function h on σ(A1)×
σ(A2), we define a matrix h(A1, A2) by

h(A1, A2) =
∑

(λ1,λ2)∈σ(A1)×σ(A2)

h (λ1, λ2) E1
λ1

⊗ E2
λ2

where Ej is the spectral resolution of the matrix Aj .
We shall say that h gives rise to exact interpolation relative to (A1, A2), and write

h ∈ CA1,A2 , if the condition

Tj
∗Tj ≤ 1 , Tj

∗AjTj ≤ Aj , j = 1, 2 (4.3)

implies

h(A1, A2) + (T1 ⊗ T2)
∗h(A1, A2)(T1 ⊗ T2)

− (T1 ⊗ 1)∗h(A1, A2)(T1 ⊗ 1) − (1 ⊗ T2)
∗h(A1, A2)(1 ⊗ T2) ≥ 0.

(4.4)

Taking T1 = T2 = 0 we see that h ≥ 0 for all h ∈ CA1,A2 . It is also clear that CA1,A2

is a convex cone closed under pointwise convergence on the finite set σ(A1) ×
σ(A2).

If h = h1 ⊗ h2 is an elementary tensor where hj ∈ CAj is a function
of one variable, then (4.3) implies Tj

∗hj (Aj)Tj ≤ hj (Aj ), whence (h1(A1) −
T1

∗h1(A1)T1)⊗(h2(A2)−T2
∗h2(A2)T2) ≥ 0, which implies (4.4). We have shown

that CA1 ⊗ CA2 ⊂ CA1,A2 .
Since for each t ≥ 0 the P ′-function λ �→ (1+t )λ

1+tλ
is of class CAj , we infer that

every function representable in the form

h(λ1, λ2) =
∫∫

[0,∞] 2

(1 + t1)λ1

1 + t1λ1

(1 + t2)λ2

1 + t2λ2
d�(t1, t2) (4.5)

with some positive Radon measure � on [0,∞] 2 is in the class CA1,A2 .
We shall say that a function h on σ(A1) × σ(A2) has the separate interpolation-

property if for each fixed b ∈ σ(A2) the function λ1 �→ h(λ1, b) is of class CA1 ,
and a similar statement holds for all functions λ2 �→ h(a, λ2).

Lemma 4.6 Each function of class CA1,A2 has the separate interpolation-property.

Proof Let T2 = 0 and take an arbitrary T1 with T1
∗T1 ≤ 1 and T1

∗A1T1 ≤ A1. By
hypothesis,

(T1 ⊗ 1)∗h(A1, A2)(T1 ⊗ 1) ≤ h(A1, A2).
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Fix an eigenvalue b of A2 and let y be a corresponding normalized eigenvector.
Then for all x ∈ H1 we have 〈h(A1, A2)x ⊗ y, x ⊗ y〉 = 〈h(A1, b)x, x〉H1

and
〈(T1 ⊗ 1)∗h(A1, A2)(T1 ⊗ 1)x ⊗ y, x ⊗ y〉 = 〈

T1
∗h(A1, b)T1x, x

〉
H1

so

〈
T1

∗h(A1, b)T1x, x
〉
H1

≤ 〈h(A1, b)x, x〉H1
.

The functions h(a, λ2) can be treated similarly. �
Example The function h(λ1, λ2) = (λ1 + λ2)

1/2 clearly has the separate
interpolation-property for all A1, A2. However, it is not representable in the
form (4.5). Indeed, Re{h(i, i) − h(−i, i)} = 1 while it is easy to check that
Re{h(λ1, λ2)−h(λ̄1, λ2)} ≤ 0 whenever Im λ1, Im λ2 > 0 and h is of the form (4.5).

Let us say that a function h(λ1, λ2) defined on R+ × R+ is an interpolation
function (of two variables) if h ∈ CA1,A2 for all A1, A2. Lemma 4.6 implies that
interpolation functions are separately real-analytic in R+×R+ and that the functions
h(a, ·) and h(·, b) are of class P ′ (cf. Theorem III).

The above notion of interpolation function is close to Korányi’s definition of
monotone matrix function of two variables: f (λ1, λ2) is matrix monotone in a
rectangle I = I1 × I2 (I1, I2 intervals in R) if A1 ≤ A′

1 (with spectra in I1) and
A2 ≤ A′

2 (with spectra in I2) implies

f (A′
1, A

′
2) − f (A′

1, A2) − f (A1, A
′
2) + f (A1, A2) ≥ 0.

Lemma 4.7 Each interpolation function is matrix monotone in R+ × R+.

Proof Let 0 < Ai ≤ A′
i and put Ãi =

(
A′

i 0
0 Ai

)
, Ti =

(
0 0
1 0

)
. Since Ti

∗ÃiTi ≤
Ãi , an interpolation function h will satisfy the interpolation inequality (4.4) with Ai

replaced by Ãi . Applying this inequality to vectors of the form

(
x1

0

)
⊗

(
x2

0

)
we

readily obtain

〈
h(A′

1, A
′
2)x1 ⊗ x2, x1 ⊗ x2

〉 − 〈
h(A1, A

′
2)x1 ⊗ x2, x1 ⊗ x2

〉

− 〈
h(A′

1, A2)x1 ⊗ x2, x1 ⊗ x2
〉 + 〈h(A1, A2)x1 ⊗ x2, x1 ⊗ x2〉 ≥ 0.

The same result obtains with x1 ⊗ x2 replaced by a sum x1 ⊗ x2 + x ′
1 ⊗ x ′

2 + . . .,
i.e., h is matrix monotone. �
Remark 4.8 Assume that f is of the form f (λ1, λ2) = g1(λ1) + g2(λ2). Then f

is matrix monotone for all g1, g2 and f is an interpolation function if and only if
g1, g2 ∈ P ′. In order to disregard “trivial” monotone functions of the above type,
Korányi [22] imposed the normalizing assumption (a) f (λ1, 0) = f (0, λ2) = 0 for
all λ1, λ2.
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It follows from Lemma 4.7 and the proof of [22, Theorem 4] that if h is a C2-
smooth interpolation function, then the function

k(x1, x2; y1, y2) = h(x1, x2) − h(x1, y2) − h(y1, x2) + h(y1, y2)

(x1 − y1)(x2 − y2)

is positive definite in the sense that
∑

m

∑
n k(xm, ym; xn, yn)αmᾱn ≥ 0 for all finite

sequences of positive numbers xj , yk and all complex numbers αl . (The proof uses
Löwner’s matrix.) Korányi uses essentially this positive definiteness condition (and
condition (a) in the remark above) to deduce an integral representation formula for
h as an integral of products of Pick functions. See Theorem 3 in [22]. However,
in contrast to our situation, Korányi considers functions monotone on the rectangle
(−1, 1)×(−1, 1), so this last result cannot be immediately applied. (It easily implies
local representation formulas, valid in finite rectangles, but these representations do
not appear to be very natural from our point of view.)

This is not the right place to attempt to extend Korányi’s methods to functions
on R+ ×R+; it would seem more appropriate to give a more direct characterization
of the classes CA1,A2 or of the class of interpolation functions. At present, we do
not know if there is an interpolation function which is not representable in the
form (4.5).

5 Proof of the K-Property

In this section we extend the result of Theorem 2.4 to obtain the full proof of
Theorem I. The discussion is in principle not hard, but it does require some care
to keep track of both norms when reducing to a finite-dimensional case.

Recall first that, by Lemma 2.3, it suffices to consider the diagonal case H = K.
To prove Theorem I we fix a regular Hilbert couple H; we must prove that it

has the K-property (see Sect. 1.5). By Theorem 2.4, we know that this is true if
H is finite dimensional and the associated operator only has eigenvalues of unit
multiplicity.

We shall use a weak* type compactness result ([2]). To formulate it, let L1(H )

be the unit ball in the space L(H ). Moreover, let �t be the sum H0 +H1 normed by
‖ x ‖ 2

�t
:= K(t, x). Note that ‖ · ‖�t is an equivalent norm on � and that � 1 = �

isometrically. We denote by L1 ( � t ) the unit ball in the space L ( � t ).
In view of Remark 1.4, one has the identity

L1(H ) =
⋂

t∈R+
L1 ( � t ) . (5.1)

We shall use this to define a compact topology on L1(H ).
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Lemma 5.1 The subset L1
(H ) ⊂ L1 ( � ) is compact relative to the weak

operator topology inherited from L ( � ).

Recall that the weak operator topology on L ( H ) is the weakest topology such
that a net Ti converges to the limit T if the inner product 〈Tix, y〉H converges to
〈T x, y〉H for all x, y ∈ H .

Proof of Lemma 5.1 The weak operator topology coincides on the unit ball L1 (� )

with the weak*-topology, which is compact, due to Alaoglu’s theorem (see [29],
Chap. 4 for details). It is clear that for a fixed t > 0, the subset L1 ( � ) ∩ L1 ( � t )

is weak operator closed in L1 ( � ); hence it is also compact. In view of (5.1), the set
L1

(H )
is an intersection of compact sets. Hence the set L1

(H )
is itself compact,

provided that we endow it with the subspace topology inherited from L1 ( � ). �
Denote by Pn the projections Pn = Eσ(A)∩[n−1,n] on H0 where E is the spectral

resolution of A and n = 1, 2, 3, . . .. Consider the couple

H(n) = (Pn (H0) , Pn (H1)),

the associated operator of which is the compression An of A to the subspace
Pn (H0). Note that the norms in the couple H(n) are equivalent, i.e., the associated
operator An is bounded above and below.

We shall need two lemmas.

Lemma 5.2 If H(n) has the K-property for all n, then so does H.

Proof Note that ‖Pn ‖L(H)
= 1 for all n, and that Pn → 1 as n → ∞ relative to

the strong operator topology on L (�). Suppose that x0, y0 ∈ � are elements such
that, for some ρ > 1,

K
(
t, y0

)
<

1

ρ
K

(
t, x0

)
, t > 0. (5.2)

Then K
(
t, Pny

0
) ≤ K

(
t, y0

)
< ρ−1K

(
t, x0

)
. Moreover, the identity

K
(
t, Pny

0
) =

〈
tAn

1+tAn
Pny

0, Pny0
〉

0
shows that we have an estimate of the form

K(t, Pny
0) ≤ Cn min{1, t} for t > 0 and large enough Cn (this follows since An is

bounded above and below).
The functions K

(
t, Pmx0

)
increase monotonically, converging uniformly on

compact subsets of R+ to K
(
t, x0

)
when m → ∞. By concavity of the function

t �→ K
(
t, Pmx0

)
we will then have

K
(
t, Pny

0
)

<
1

ρ̃
K

(
t, Pmx0

)
, t ∈ R+, (5.3)

provided that m is sufficiently large, where ρ̃ is any number in the interval 1 <

ρ̃ < ρ.
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Indeed, let A = limt→∞ K
(
t, Pny

0
)

and B = limt→0 K
(
t, Pny

0
)
/t . Take

points t0 < t1 such that K(t, Pny
0) ≥ A/ρ′ when t ≥ t1 and K(t, Pny

0)/t ≤ Bρ′
when t ≤ t0. Here ρ′ is some number in the interval 1 < ρ′ < ρ.

Next use (5.2) to choose m large enough that K(t, Pmx0) > ρK(t, Pny
0) for all

t ∈ [t0, t1]. Then K(t, Pmx0) > (ρ/ρ′)K(t, Pny
0) for t = t1, hence for all t ≥ t1,

and K(t, Pmx0)/t > (ρ/ρ′)K(t, Pny
0)/t for t = t0 and hence also when t ≤ t0.

Choosing ρ′ = ρ/ρ̃ now establishes (5.3).
Put N = max{m,n}. If H(N) has the K-property , we can find a map Tnm ∈

L1(H ) such that TnmPmx0 = Pny
0. (Define Tmn = 0 on the orthogonal

complement of PN (H0) in �.) In view of Lemma 5.1, the maps Tnm must cluster
at some point T ∈ L1(H ). It is clear that T x0 = y0. Since ρ > 1 was arbitrary, we
have shown that H has the K-property . �
Lemma 5.3 Given x0, y0 ∈ H(n)

0 and a number ε > 0 there exists a positive integer

n and a finite-dimensional couple V ⊂ H(n) such that x0, y0 ∈ V0 + V1 and

(1 − ε)K
(
t, x;H) ≤ K

(
t, x;V) ≤ (1 + ε)K

(
t, x;H)

, t > 0, x ∈ V0 + V1.

(5.4)

Moreover, V can be chosen so that all eigenvalues of the associated operator AV
are of unit multiplicity.

Proof Let An be the operator associated with the couple H(n); thus 1/n ≤ An ≤ n.
Take η > 0 and let {λi}N1 be a finite subset of σ (An) such that σ (An) ⊂ ∪N

1 Ei

where Ei = (λi −η/2, λi +η/2). We define a Borel function w : σ (An) → σ (An)

by w(λ) = λi on Ei ∩ σ (An), then ‖ w (An) − An ‖L(H0) ≤ η.
Let kt (λ) = tλ

1+tλ
. It is easy to check that the Lipschitz constant of the restriction

kt

∣
∣ σ (An) is bounded above by C1 min{1, t} where C1 = C1(n) is independent of

t . Hence

‖ kt (w (An)) − kt (An) ‖L(H0) ≤ C1η min {1, t} .

It follows readily that

∣
∣〈(kt (w (An)) − kt (An)) x, x〉0

∣
∣ ≤ C1η min{1, t} ‖ x ‖ 2

0 , x ∈ Pn (H0) .

Now let c > 0 be such that A ≥ c. The elementary inequality kt (c) ≥
(1/2) min{1, ct} shows that

〈kt (An) x, x〉0 ≥ C2 min{1, t} ‖ x ‖ 2
0 , x ∈ Pn (H0) ,

where C2 = (1/2) min{1, c}. Combining these estimates, we deduce that

∣∣〈kt (w (An)) x, x〉0 − 〈kt (An) x, x〉0
∣∣ ≤ C3η 〈kt (An) x, x〉0 , x ∈ Pn (H0)

(5.5)
for some suitable constant C3 = C3(n).
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Now pick unit vectors ei, fi supported by the spectral sets Ei ∩ σ(An) such that
x0 and y0 belong to the space W spanned by {ei, fi}N1 . Put W0 = W1 = W and
define norms on those spaces by

‖ x ‖W0
= ‖ x ‖H0

, ‖ x ‖ 2
W1

= 〈w (A) x, x〉H0
.

The operator associated with W is then the compression of w(An) to W0, i.e.,

‖ x ‖ 2
W1

= 〈
AW x, x

〉
W0

= 〈w(An)x, x〉H0
, x ∈ W .

Let ε = 2C3η and observe that, by (5.5)

∣
∣ K

(
t, x;W) − K

(
t, x;H) ∣

∣ ≤ (ε/2)K
(
t, x;H)

, f ∈ W . (5.6)

The eigenvalues of AW typically have multiplicity 2. To obtain unit multiplicity,
we perturb AW slightly to a positive matrix AV such that

∥
∥ AW − AV

∥
∥L(H0)

<

ε/2C3. Let V be the couple associated with AV , i.e., put Vi = W for i = 0, 1 and

‖ x ‖V0
= ‖ x ‖W0

and ‖ x ‖ 2
W1

= 〈
AV x, x

〉
V0

.

It is then straightforward to check that

∣∣ K
(
t, f ;W) − K

(
t, f ;V) ∣∣ ≤ (ε/2)K

(
t, f ;H)

, f ∈ W .

Combining this with the estimate (5.6), one finishes the proof of the lemma. �
Proof of Theorem I Given two elements x0, y0 ∈ � as in (5.2) we write xn =
Pn

(
x0

)
and yn = Pn

(
y0

)
. By the proof of Lemma 5.2 we then have K (t, yn) ≤

ρ̃−1K (t, xn) for large enough n, where ρ̃ is any given number in the interval (1, ρ).
We then use Lemma 5.3 to choose a finite-dimensional sub-couple V ⊂ H(n)

such that

K
(
t, yn;V) ≤ (1 + ε)K

(
t, yn;H)

< ρ̃−1K
(
t, xn;V) + ε

(
K

(
t, xn;H) + K

(
t, yn;H))

.

Here ε > 0 is at our disposal.
Choosing ε sufficiently small, we can arrange that

K
(
t, yn;V) ≤ K(t, xn;V), t > 0. (5.7)

By Theorem 2.4, the condition (5.7) implies the existence of an operator T ′ ∈
L1

(V )
such that T ′xn = yn. Considering the canonical inclusion and projection

I : � (V) → � (H) and � : � (H) → � (V) ,
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we have, by virtue of Lemma 5.3,

‖ I ‖ 2
L(V;H)

≤ (1 − ε)−1 and ‖ � ‖ 2
L(H;V)

≤ 1 + ε.

Now let T = Tε := IT ′� ∈ L(H(n) ). Then ‖ T ‖ 2 ≤ 1+ε
1−ε

and T xn = yn. As

ε ↓ 0 the operators Tε will cluster at some point T ∈ L1(H(n) ) such that T xn = yn

(cf. Lemma 5.1).
We have shown that H(n) has the K-property . In view of Lemma 5.2, this implies

that H has the same property. The proof of Theorem I is therefore complete. �

6 Representations of Interpolation Functions

6.1 Quadratic Interpolation Methods

Let us say that an interpolation method defined on regular Hilbert couples taking
values in Hilbert spaces is a quadratic interpolation method. (Donoghue [14] used
the same phrase in a somewhat wider sense, allowing the methods to be defined on
non-regular Hilbert couples as well.)

If F is an exact quadratic interpolation method, and H a Hilbert couple, then
by Donoghue’s theorem III there exists a positive Radon measure � on [0,∞] such
that F

(H ) = H�, where the latter space is defined by the familiar norm ‖x‖ 2
� =

∫
[0,∞]

(
1 + t−1

)
K(t, x) d�(t).

A priori, the measure � could depend not only on F but also on the particular
H. That � is independent of H can be realized in the following way. Let H′ be a
regular Hilbert couple such that every positive rational number is an eigenvalue of
the associated operator. Let B ′ be the operator associated with the exact quadratic

interpolation space F
(
H′

)
. There is then clearly a unique P ′-function h on σ

(
A′)

such that B ′ = h
(
A′), viz. there is a unique positive Radon measure � on [0,∞]

such that F
(
H′

)
= H′

ρ (see Sect. 1.2 for the notation).

If H is any regular Hilbert couple, we can form the direct sum S = H′ ⊕ H.
Denote by Ã the corresponding operator and let B̃ = h̃(Ã) be the operator
corresponding to the exact quadratic interpolation space F

(S )
. Then h̃(Ã) =

h̃(A′) ⊕ h̃ (A) = h
(
A′) ⊕ h̃(A). This means that h̃

(
A′) = h

(
A′), i.e., h̃ = h.

In particular, the operator B corresponding to the exact interpolation space F(H )

is equal to h (A). We have shown that F(H ) = H�. We emphasize our conclusion
with the following theorem.

Theorem 6.1 There is a one-to-one correspondence � �→ F between positive
Radon measures and exact quadratic interpolation methods.



104 Y. Ameur

We will shortly see that Theorem 6.1 is equivalent to the theorem of Foiaş and
Lions [16]. As we remarked above, a more general version of the theorem, admitting
for non-regular Hilbert couples, is found in Donoghue’s paper [14].

6.2 Interpolation Type and Reiteration

In this subsection, we prove some general facts concerning quadratic interpolation
methods; we shall mostly follow Fan [15].

Fix a function h ∈ P ′ of the form

h(λ) =
∫

[0,∞]
(1 + t)λ

1 + tλ
d�(t).

It will be convenient to write Hh for the corresponding exact interpolation space
H�. Thus, we shall denote

‖x‖ 2
h = 〈h(A)x, x〉0 =

∫

[0,∞]

(
1 + t−1

)
K (t, x) d�(t).

More generally, we shall use the same notation when h is any quasi-concave
function onR+, thenHh is a quadratic interpolation space, but not necessarily exact.

Recall that, given a function H of one variable, we say that H∗ is of type H with
respect to H if ‖ T ‖ 2

L(Hi )
≤ Mi implies ‖ T ‖ 2

L(H∗) ≤ M0 H (M1/M0).

We shall say that a quasi-concave function h on R+ is of type H if Hh is of type H
relative to any regular Hilbert couple H. The following result somewhat generalizes
Theorem 3.2. The class of functions of type H clearly forms a convex cone.

Theorem 6.2 Let h be of type H, where (i) H(1) = 1 and H(t) ≤ max{1, t}, and
(ii) H has left and right derivatives θ± = H ′(1±) at the point 1, where θ− ≤ θ+.
Then for any positive constant c,

min
{
λθ−, λθ+} ≤ h(cλ)

h(c)
≤ max

{
λθ−, λθ+}

, λ ∈ R+. (6.1)

In particular, if H(t) is differentiable at t = 1 and H′(1) = θ , then h(λ) = λθ ,
λ ∈ R+.

Proof Replacing A by cA, it is easy to see that if h is of type H, then so is
hc(t) = h(ct)/h(c). Fix μ > 0 and consider the function h0(t) = hc(μt)/hc(μ).
By Theorem II, we have h0(t) ≤ H(t) for all t . Furthermore h0(1) = H(1) = 1 by
(i). Since h0 is differentiable, the assumption (ii) now gives θ− ≤ h′

0(1) ≤ θ+, or

θ− ≤ μh′
c(μ)

hc(μ)
≤ θ+.
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Dividing through by μ and integrating over the interval [1, λ], one now verifies the
inequalities in (6.1). �

The following result provides a partial converse to Theorem II.

Theorem 6.3 ([15]) Let h ∈ P ′ and set H(t) = sups>0 h(st)/h(s). Then h is of
type H.

Proof Let T ∈ L(H) be a non-zero operator; put Mj = ‖ T ‖ 2
L(Hj )

and M =
M1/M0. We then have (by Lemma 1.1)

‖ T x ‖ 2
h =

∫

[0,∞]

(
1 + t−1

)
K (t, T x) d�(t)

≤ M0

∫

[0,∞]

(
1 + t−1

)
K (tM, x) d�(t)

= M0

∫

[0,∞]

〈
(1 + t)MA

1 + tMA
x, x

〉

0
d�(t)

= M0 〈h (MA) x, x〉0 .

Letting E be the spectral resolution of A, we have

〈h (MA) x, x〉0 =
∫ ∞

0
h (Mλ) d 〈Eλx, x〉0 .

Since h (Mλ) /h(λ) ≤ H (M), we conclude that

‖ T x ‖ 2
h ≤ M0H (M)

∫ ∞

0
h (λ) d 〈Eλx, x〉0 = M0H (M) ‖ x ‖ 2

h ,

which finishes the proof. �
Given a function h of a positive variable, we define a new function h̃ by

h̃(s, t) = s h (t/s) .

The following reiteration theorem is due to Fan.

Theorem 6.4 ([15]) Let h, h0, h1 ∈ P ′, and ϕ(λ) = h̃ (h0(λ), h1(λ)). Then
Hϕ = (Hh0 ,Hh1)h with equal norms. Moreover, Hϕ is an exact interpolation space
relative to H.

Proof Let H′ denote the couple (Hh0 ,Hh1). The corresponding operator A′ then
obeys

‖ x ‖Hh1
= ‖ (A′)1/2x ‖H′

0
= ‖ϕ0(A)1/2(A′)1/2x ‖0, x ∈ �(H′ ).
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On the other hand, ‖ x ‖Hh1
= ∥

∥ ϕ1(A)1/2x
∥
∥

0, so

(A′)1/2x = ϕ0(A)−1/2ϕ1(A)1/2x, x ∈ �
(
H′

)
.

We have shown that A′ = ϕ0(A)−1ϕ1(A), whence (by Lemma 1.1)

K
(
t, x;H′

)
=

〈
tϕ0(A)−1ϕ1(A)

1 + tϕ0(A)−1ϕ1(A)
x, x

〉

H′
0

=
〈

tϕ1(A)

1 + tϕ0(A)−1ϕ1(A)
x, x

〉

H′
0

.

(6.2)

Now let the function h ∈ P ′ be given by

h(λ) =
∫

[0,∞]
(1 + t)λ

1 + tλ
d�(t),

and note that the function ϕ = h̃ (h0, h1) is given by

ϕ(λ) =
∫

[0,∞]
(1 + t)h1(λ)

1 + th1(λ)/h0(λ)
d�(t).

Combining with (6.2), we find that

‖ x ‖ 2
H′

h
=

∫

[0,∞]

(
1 + t−1

)
K

(
t, x;H′

)
d�(t)

=
∫ ∞

0

[∫

[0,∞]
(1 + t)h1(λ)

1 + th1(λ)/h0(λ)
d�(t)

]
d 〈Eλx, x〉0 = ‖ x ‖ 2

Hϕ
.

This finishes the proof of the theorem. �
Combining with Donoghue’s theorem III, one obtains the following, purely

function-theoretic corollary. Curiously, we are not aware of a proof which does not
use interpolation theory.

Corollary 6.5 ([15]) Suppose that h ∈ P ′ and that h0, h1 ∈ P ′|F , where F is
some closed subset of R+. Then the function ϕ = h̃(h0, h1) is also of class P ′|F .

6.3 Donoghue’s Representation

Let H be a regular Hilbert couple. In Donoghue’s setting, the principal object is the
space � = H0 ∩ H1 normed by ‖ x ‖ 2

� = ‖ x ‖ 2
0 + ‖ x ‖ 2

1 . In the following, all
involutions are understood to be taken with respect to the norm of �.
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We express the norms in the spaces Hi as

‖ x ‖ 2
0 = 〈Hx, x〉� and ‖ x ‖ 2

1 = 〈(1 − H)x, x〉� ,

where H is a bounded positive operator on �, 0 ≤ H ≤ 1. The regularity of H
means that neither 0 nor 1 is an eigenvalue of H .

To an arbitrary quadratic intermediate space H∗ there corresponds a bounded
positive injective operator K on � such that

‖ x ‖ 2∗ = 〈Kx, x〉� .

It is then easy to see that H∗ is exact interpolation if and only if, for bounded
operators T on �, the conditions T ∗HT ≤ H and T ∗(1 − H)T ≤ 1 − H imply
T ∗KT ≤ K . It is straightforward to check that the relations between H , K and the
operators A, B used in the previous sections are

H = 1

1 + A
, A = 1 − H

H
, K = B

1 + A
, B = K

H
. (6.3)

(It follows from the proof of Lemma 1.2 that H and K commute.)
By Theorem III we know that H∗ is an exact interpolation space if and only if

B = h(A) for some h ∈ P ′. By (6.3), this is equivalent to that K = k(H) where

k(H) = h(A)

1 + A
= H h

(
1 − H

H

)
.

In its turn, this means that

k(λ) = λ

∫

[0,∞]
(1 + t)(1 − λ)/λ

1 + t (1 − λ)/λ
d�(t)

=
∫

[0,∞]
(1 + t)λ(1 − λ)

λ + t (1 − λ)
d�(t), λ ∈ σ(H),

where � is a suitable Radon measure. Applying the change of variables s = 1/(1+t)

and defining a positive Radon measure μ on [0, 1] by dμ(s) = d�(t), we arrive at
the expression

k(λ) =
∫ 1

0

λ(1 − λ)

(1 − s)(1 − λ) + sλ
dμ(s), λ ∈ σ(H), (6.4)

which gives the representation exact quadratic interpolation spaces originally used
by Donoghue in [14].
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6.4 J -Methods and the Foiaş-Lions Theorem

We define the (quadratic) J -functional relative to a regular Hilbert couple H by

J (t, x) = J
(
t, x;H) = ‖ x ‖ 2

0 + t ‖ x ‖ 2
1 , t > 0, x ∈ �(H ).

Note that J (t, x)1/2 is an equivalent norm on � and that J (1, x) = ‖ x ‖ 2
�.

Given a positive Radon measure ν on [0,∞], we define a Hilbert space Jν(H )

as the set of all elements x ∈ �(H ) such that there exists a measurable function
u : [0,∞] → � such that

x =
∫

[0,∞]
u(t) dν(t) (convergence in �) (6.5)

and
∫

[0,∞]
J (t, u(t))

1 + t
dν(t) < ∞. (6.6)

The norm in the space Jν(H) is defined by

‖ x ‖ 2
Jν

= inf
u

∫

[0,∞]
J (t, u(t))

1 + t
dν(t) (6.7)

over all u satisfying (6.5) and (6.6).
The space (6.7) was (with different notation) introduced by Foiaş and Lions in

the paper [16], where it was shown that there is a unique minimizer u(t) of the
problem (6.7), namely

u(t) = ϕt(A)x where ϕt(λ) = 1 + t

1 + tλ

(∫

[0,∞]
1 + s

1 + sλ
dν(s)

)−1

.

(6.8)
Inserting this expression for u into (6.7), one finds that

‖ x ‖ 2
Jν

= 〈h(A)x, x〉0

where

h(λ)−1 =
∫

[0,∞]
1 + t

1 + tλ
dν(t). (6.9)

It is easy to verify that the class of functions representable in the form (6.9) for some
positive Radon measure ν coincides with the class P ′. We have thus arrived at the
following result.
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Theorem 6.6 Every exact quadratic interpolation space H∗ can be represented
isometrically in the form H∗ = Jν(H) for some positive Radon measure ν on
[0,∞]. Conversely, any space of this form is an exact quadratic interpolation space.

In the original paper [16], Foiaş and Lions proved the less precise statement that
each exact quadratic interpolation method F can be represented as F = Jν for some
positive Radon measure ν.

6.5 The Relation Between the K- and J -Representations

The assignment K� = Jν gives rise to a non-trivial bijection � �→ ν of the set of
positive Radon measures on [0,∞]. In this bijection, � and ν are in correspondence
if and only if

∫

[0,∞]
(1 + t)λ

1 + tλ
d�(t) =

(∫

[0,∞]
1 + t

1 + tλ
dν(t)

)−1

.

As an example, let us consider the geometric interpolation space (where cθ =
π/ sin(πθ))

‖ x ‖ 2
θ = 〈

Aθx, x
〉
0 = cθ

∫ ∞

0
t−θK(t, x)

dt

t
.

The measure � corresponding to this method is d�θ (t) = cθ t−θ

1+t
dt . On the other

hand, it is easy to check that

λθ =
(∫ ∞

0

1 + t

1 + tλ
dνθ (t)

)−1

where dνθ (t) = cθ t
θ

1 + t

dt

t
.

We leave it to the reader to check that the norm in Hθ is the infimum of the
expression

cθ

∫ ∞

0
tθ J (t, u(t))

dt

t

over all representations

x =
∫ ∞

0
u(t)

dt

t
.

We have arrived at the Hilbert space version of Peetre’s J -method of exponent θ .
The identity Jνθ = K�θ can now be recognized as a sharp (isometric) Hilbert space
version of the equivalence theorem of Peetre, which says that the standard Kθ and
Jθ -methods give rise to equivalent norms on the category of Banach couples (see
[7]).
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The problem of determining the pairs �, ν having the property that the K� and
Jν methods give equivalent norms was studied by Fan in [15, Section 3].

6.6 Other Representations

As we have seen in the preceding subsections, using the space H0 to express
all involutions and inner products leads to a description of the exact quadratic
interpolation spaces in terms of the class P ′. If we instead use the space � as
the basic object, we get Donoghue’s representation for interpolation functions.
Similarly, one can proceed from any fixed interpolation space H∗ to obtain a
different representation of interpolation functions.

6.7 On Interpolation Methods of Power p

Fix a number p, 1 < p < ∞. We shall write Lp = Lp (X,A, μ) for the usual
Lp-space associated with an arbitrary but fixed (σ -finite) measure μ on a measure
space (X,A). Given a positive measurable weight function w, we write Lp(w) for
the space normed by

‖ f ‖p

Lp(w) =
∫

X

|f (x)|p w(x) dμ(x).

We shall write Lp(w) = (
Lp,Lp(w)

)
for the corresponding weighted Lp couple.

Note that the conditions imposed mean precisely that Lp(w) be separable and
regular.

Let us say that an exact interpolation functor F defined on the totality of
separable, regular weighted Lp-couples and taking values in the class of weighted
Lp-spaces is of power p.

Define, for a positive Radon measure � on [0,∞], an exact interpolation functor
F = K�(p) by the definition

‖ f ‖p

F(Lp(w))
:=

∫

[0,∞]
(1 + t

− 1
p−1 ) p−1Kp

(
t, f ; Lp(w)

)
d�(t).

We contend that F is of power p.
Indeed, it is easy to verify that

Kp

(
t, f ; Lp(w)

) =
∫

X

|f (x)|p tw(x)

(1 + (tw(x))
1

p−1 ) p−1
dμ(x),
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so Fubini’s theorem gives that

‖ f ‖p

F(Lp(w))
=

∫

X

|f (x)|p h(w(x)) dμ(x),

where

h(λ) =
∫

[0,∞]
(1 + t

1
p−1 ) p−1λ

(1 + (tλ)
1

p−1 ) p−1
d�(t), λ ∈ w(X). (6.10)

We have shown that F(Lp(w)) = Lp(h(w)), so F is indeed of power p.
Let us denote by K(p) the totality of positive functions h on R+ representable in

the form (6.10) for some positive Radon measure � on [0,∞].
Further, let I(p) denote the class of all (exact) interpolation functions of power

p, i.e., those positive functions h on R+ having the property that for each weighted
Lp couple Lp(w) and each bounded operator T on Lp(w), it holds that T is
bounded on Lp(h(w)) and

‖ T ‖L(Lp(h(w))) ≤ ‖ T ‖L(Lp(w)) .

The class I(p) is in a sense the natural candidate for the class of “operator monotone
functions on Lp-spaces.” The class I(p) clearly forms a convex cone; it was shown
by Peetre [31] that this cone is contained in the class of concave positive functions
on R+ (with equality if p = 1).

We have shown that K(p) ⊂ I(p). By Theorem 6.1, we know that equality
holds when p = 2. For other values of p it does not seem to be known whether the
class K(p) exhausts the class I(p), but one can show that we would have K(p) =
I(p) provided that each finite-dimensional Lp-couple 
n

p(λ) has the Kp-property
(or equivalently, the K-property , see (2.2)). Naturally, the latter problem (about
the Kp-property) also seems to be open, but some comments on it are found in
Remark 2.9.

Let ν be a positive Radon measure on [0,∞]. In [16], Foiaş and Lions introduced
a method, which we will denote by F = Jν(p) in the following way. Define the Jp-
functional by

Jp

(
t, f ; Lp(λ)

) = ‖ f ‖p
0 + t ‖ f ‖p

1 , f ∈ �, t > 0.

We then define an intermediate norm by

‖ f ‖p

F(Lp(λ))
:= inf

∫

[0,∞]
(1 + t)

− 1
p−1 Jp

(
t, u(t); Lp(λ)

)
dν(t),
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where the infimum is taken over all representations

f =
∫

[0,∞]
u(t) dν(t)

with convergence in �. It is straightforward to see that the method F so defined is
exact; in [16] it is moreover shown that it is of power p. More precisely, it is there
proved that

‖ f ‖p

F(Lp(λ))
=

∫

X

|f (x)|p h(w(x)) dμ(x),

where

h(λ)
− 1

p−1 =
∫

[0,∞]
(1 + t)

1
p−1

(1 + tλ)
1

p−1

dν(t), λ ∈ w(X). (6.11)

Let us denote by J (p) the totality of functions h representable in the form (6.11).
We thus have thatJ (p) ⊂ I(p). In view of our preceding remarks, we conclude that
if all weighted Lp-couples have the Kp property, then necessarily J (p) ⊂ K(p).
Note that J (2) = K(2) by Theorem 6.6.

Appendix: The Complex Method is Quadratic

Let S = {z ∈ C; 0 ≤ Re z ≤ 1}. Fix a Hilbert couple H and let F be the set of
functions S → � which are bounded and continuous in S, analytic in the interior of
S, and which maps the line j + iR into Hj for j = 0, 1. Fix 0 < θ < 1. The norm
in the complex interpolation space Cθ

(H )
is defined by

‖ x ‖
Cθ

(
H

) = inf
{‖ f ‖F ; f (θ) = x

}
. (*)

Let P denote the set of polynomials f = ∑N
1 aiz

i where ai ∈ �. We endow P
with the inner product

〈f, g〉Mθ
=

∑

j=0,1

∫

R
〈f (j + it), g(j + it)〉j Pj (θ, t) dt,

where {P0, P1} is the Poisson kernel for S,

Pj (θ, t) = e−πt sin θπ

sin2 θπ + (cos θπ − (−1)j e−πt )2
.
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Let Mθ be the completion of P with this inner product. It is easy to see that the
elements of Mθ are analytic in the interior of S, and that evaluation map f �→ f (θ)

is continuous on Mθ . Let Nθ be the kernel of this functional and define a Hilbert
space Hθ by

Hθ = Mθ/Nθ .

We denote the norm in Hθ by ‖ · ‖θ .

Proposition A.1 Cθ

(H ) = Hθ with equality of norms.

Proof Let f ∈ F . By the Calderón lemma in [7, Lemma 4.3.2], we have the
estimate

log ‖ f (θ) ‖
Cθ(H )

≤
∑

j=0,1

∫

R
log ‖f (j + it)‖jPj (θ, t) dt.

Applying Jensen’s inequality, this gives that

‖ f (θ) ‖
Cθ (H )

≤ (
∑

j=0,1

∫

R
‖ f (j + it) ‖2

j Pj (θ, t) dt)1/2 = ‖ f ‖Mθ
.

Hence Hθ ⊂ Cθ(H ) and ‖·‖
Cθ (H )

≤ ‖ · ‖θ . On the other hand, for f ∈ P one has
the estimates

‖ f (θ) ‖θ ≤ ‖ f ‖Mθ
≤ sup{‖ f (j + it) ‖j ; t ∈ R, j = 0, 1} = ‖ f ‖F ,

whence Cθ (H ) ⊂ Hθ and ‖·‖
Cθ(H )

≥ ‖·‖θ . �
It is well known that the method Cθ is of exponent θ (see, e.g., [7]). We have

shown that Cθ is an exact quadratic interpolation method of exponent θ .

Complex Interpolation with Derivatives

In [15, pp. 421–422], Fan considers the more general complex interpolation method
Cθ(n) for the n:th derivative. This means that in (*), one consider representations x =
1
n!f

(n)(θ) where f ∈ F ; the complex method Cθ is thus the special case Cθ(0). It is
shown in [15] that, for n ≥ 1, the Cθ(n)-method is represented, up to equivalence of
norms, by the quasi-power function h(λ) = λθ/(1+ θ(1−θ)

n
| log λ |) n. The complex

method with derivatives was introduced by Schechter [37]; for more details on that
method, we refer to the list of references in [15].

.
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