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Preface

This book is dedicated to Serguei Shimorin, eminent mathematician and virtuoso
lensman.

Serguei’s mathematics was forged at one of the preeminent hubs of mathematical
analysis of the twentieth century: St. Petersburg University and the Steklov Institute
of Mathematics at St. Petersburg. He carried over countries and generations the
precious legacy of Havin and Nikolski’s legendary seminar. The choices of research
topics he made, well represented by the articles contained in the present volume,
are the product of years of accumulated skills and quiet introspection. Serguei’s
vast mathematical culture, especially in Function Theory and Functional Analysis,
is held in high esteem by his colleagues and collaborators.

Shimorin was a man of few words, written or spoken. He sought beauty in
simplicity, uncontaminated by the tumult of modern life. For those close to him,
including probably his many undergraduate students at the Royal Institute of
Technology at Stockholm, he emanated pure light—a lasting, invaluable heritage.

Serguei’s mathematical gift was complemented by artistic dispositions. He was
a devout classical music concertgoer (especially on the lavish St. Petersburg scene)
and an accomplished pianist. His religious admiration for nature took many forms
and in particular he distilled the serenity and mystery of landscape into photos. They
speak by themselves about the man we celebrate and mourn in this volume:

http://www.photosight.ru/users/119352/

Some reminiscences from the editors:
Alexandru Aleman: Serguei was a dear friend. I admired his mathematical

work before knowing him and am truly grateful for the beautiful subtle ideas he
exchanged with me.

Dmitry Khavinson: For me personally he has always represented (by now
almost non-existent) legendary Russian, St. Petersburg ‘intelligentsia’, always
firmly guided in life by formidable, non-bending moral humanistic principles.

v

http://www.photosight.ru/users/119352/


vi Preface

Mihai Putinar: On the occasion of his visit to Singapore, where we had
ample professional, social and cultural activities, he was obstinate in declining
our company to discover the city. He wanted to experience alone the wonders of
the luxuriant vegetation, unique architecture and human variety. For Serguei the
freshness of discovery was primordial.

Serguei is survived by his wife Olga Muzhdaba (geographer), daughter Anastasia
Shimorina (linguist) and son Mikhail Shimorin (musician).

We thank Dorothy Mazlum and the team at Birkhäuser Verlag for making
possible this book project.

Lund, Sweden Alexandru Aleman
Stockholm, Sweden Haakan Hedenmalm
Tampa, FL, USA Dmitry Khavinson
Santa Barbara, CA, USA Mihai Putinar

Serguei Shimorin (1965–2016)
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My Recollections of Serguei Shimorin

Haakan Hedenmalm

Abstract The author shares his personal reminiscences of Serguei Shimorin.

Keyword Shimorin theorem

MSC Codes: 01A70

Serguei Shimorin died July 18, 2016, as the result of a hiking accident in the
mountains of Abkhazia, a disputed part of Georgia in the Caucasus. He was hiking
with two friends, Andrei and Roman (who were brothers), and he was about the to
pioneer the crossing of the creek Dzhampal. Unfortunately the attempt ended really
tragically. He was a young man, born in 1965 in Leningrad. His death is a major
loss for Mathematics and Swedish Mathematics in particular. I would now like to
share some of my recollections concerning Serguei and his scientific achievements
in Mathematics, at Lund University and later at KTH.

In the fall semester of 1990 I visited Leningrad through an academic exchange
program, involving KVA (Royal Swedish Academy of Sciences) and the Academy
of Sciences of the USSR. I obtained a nominal stipend in rapidly devaluing roubles,
but, more importantly, I was supplied with a free hotel room during my visit. While
in Leningrad, I encountered several prominent participants of the Analysis Seminar
at LOMI (nowadays POMI), the Steklov Institute located at Fontanka 27. Among
these were Nikolai Nikolski, Nikolai Makarov, Vladimir Peller, Alexei Alexandrov,
to mention a few. This was a difficult time in the USSR, and the country fell
apart just a year later. But there was nothing wrong with the hospitality, and I
remember being invited home to both Peller and Nikolski. At around this time the
factorization methods involving extremal functions in Bergman spaces had already
been developed by myself as well as others (I was influenced by Boris Korenblum
from SUNY Albany) and I made a couple of presentations on this topic during the
fall semester. I did not notice it then, but later I understood that among the attentive

H. Hedenmalm (�)
The Royal Institute of Technology, Department of Mathematics, Stockholm, Sweden
e-mail: haakanh@math.kth.se; https://people.kth.se/~haakanh/engindex.html

© Springer Nature Switzerland AG 2019
A. Aleman et al. (eds.), Analysis of Operators on Function Spaces,
Trends in Mathematics, https://doi.org/10.1007/978-3-030-14640-5_1
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2 H. Hedenmalm

listeners was a shy young man by the name of Serguei Shimorin. He was studying
with Stanislav A. Vinogradov, who himself had studied with Victor P. Havin in
1968 in Leningrad. Apparently my presentations made an impression on Serguei,
as a bit later he sent me a preprint entitled “Factorization of analytic functions in
weighted Bergman spaces” which subsequently appeared in Algebra i Analiz and
in English translation in St. Petersburg Math. J. in 1994. This work (presumably a
part of Serguei’s 1993 thesis) was highly original, especially as he invented a kind
of pseudodifferential operators�α such that the analog of Green’s formula

∫
D

(h2�αh1 − h1�αh2)dAα =
∫
∂D

(h2∂nh1 − h1∂nh2)ds

would hold for an interval in α, where dAα(z) = (1 − |z|2)αdA(z) is weighted
area measure. Later on he developed the theory of these �α further and computed
a related weighted biharmonic Green function and obtained its positivity. The issue
whether biharmonic Green functions are positive is a delicate matter going back to
work of Boggio and Hadamard from around 1900. Another fascinating contribution
is “Single-point extremal functions in weighted Bergman spaces”, where Serguei
developed a new idea connecting between univalence and divisor properties of one-
point divisors (analogs of Blaschke factors).

At some point around 1994–1995 I was invited to the home of Serguei and his
family (wife Olga and children Anastasia and Mikhail) and I recall that I asked
whether he had taken part in any kind of Math Olympiad. That kind of almost
sporty activity was encouraged in the USSR and apparently Serguei had done well in
some local such olympiad, and showed me a diploma. He also mentioned assuming
programming work right after the 1987 diploma before entering the PhD program.

In 1996 I was taking part in a conference in Trondheim organized by Kristian
Seip. There I spoke with Alexander Borichev, with whom I had collaborated
successfully when he was a “forskarassistent” in Uppsala in the 1990s. He had then
left Sweden for France and now that I had moved to Lund fromUppsala, I suggested
he might come to Lund. He declined, but suggested I could be interested in Serguei
whom he found an excellent mathematician. With this strong recommendation
Shimorin was hired as “forskarassistent” in Lund around 1998 with an NFR grant,
after spending a year at Université de Bordeaux. The lectureship which I mentioned
to attract Borichev went instead to Alexandru Aleman.

I got Serguei interested in the project to show that the biharmonic Green function
was positive for a general weight which was reproducing for a point and also
logarithmically subharmonic. This was conjectured, but proved difficult to obtain.
In the end we succeeded, and Serguei had fundamental insight toward the solution.
He derived a property of the corresponding Bergman kernel which together with a
twice applied Hele–Shaw flow led to the conjectured positivity. Also in the work on
Hele–Shawflow on hyperbolic surfaces Serguei supplied key insight. He was always
meticulously careful and sought elegant arguments whenever possible. As a spin-
off he produced the impressive paper “Wold-type decompositions and wandering
subspaces for operators close to isometries” published by Crelle in 2001. Another
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work, “Approximate spectral synthesis in the Bergman space” (DukeMath. J., 2000)
appeared in this productive period. After 2002, Serguei and I moved to KTH and we
continued collaborating on what is known as “Brennan’s conjecture”. Serguei had
an initial insight developed first in IMRN in 2003, and later jointly in Duke Math. J.
in 2005. In 2004, Serguei was honored with the prestigeous Wallenberg prize of the
Swedish Mathematical Society (shared with Julius Borcea).

Serguei was very interested in problems of significance in Operator Theory, such
as related to “Commutant lifting” and “Complete Nevanlinna–Pick kernels”. As I
recall, I heard from US colleagues that one of Serguei’s works was presented at a
seminar in Berkeley, and that supposedly at the end, when the gist of the argument
was put forth, Donald Sarason exclaimed “That was smart!”

As a scientist, Serguei was original with technical ability. But as a person he was
very private and rather shy and humble. He was not career oriented, but rather an
“artist within mathematics”, who from time to timewould find a beautiful flower and
wanted to show it to the world. In our Swedish university system such an individual
does not get the appropriate appreciation, I believe: we tend to have a hierarchic and
career oriented perspective, and you need to grab all the opportunities that come
your way. Serguei invested a lot of effort in his work assignments, especially his
lectures, and the students appreciated him very much. His scientific talent exceeded
that of several full professors, but his shyness made him less visible. It is my opinion
that we should give more room for original individuals like Serguei.

In the later years Serguei took an interest in photography (see photosight.ru,
under the pseudonym “Serge de la Mer”) (Figs. 1, 2 and 3).

Fig. 1 Le soleil levant
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Fig. 2 Summer evening on Khadat

Fig. 3 Morning at artists’ lake



Localization of Zeros in Cauchy–de
Branges Spaces

Evgeny Abakumov, Anton Baranov, and Yurii Belov

Dedicated to the memory of Serguei Shimorin, a brilliant
mathematician and a wonderful person.

Abstract We study the class of discrete measures in the complex plane with the
following property: up to a finite number, all zeros of any Cauchy transform of the
measure (with �2-data) are localized near the support of the measure.We find several
equivalent forms of this property and prove that the parts of the support attracting
zeros of Cauchy transforms are ordered by inclusion modulo finite sets.

Keywords Cauchy transforms · de Branges spaces · Distribution of zeros of
entire functions · Polynomial approximation
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1 Introduction and Main Results

Representations of analytic functions via Cauchy transforms of planar measures
is a classical theme in function theory. Of special interest are expansions of
meromorphic functions as Cauchy transforms of discrete (atomic) measures. A
substantial number of papers deal with the distribution of zeros of such Cauchy
transforms. Note that zeros of Cauchy transforms are equilibrium points of logarith-
mic potentials for the corresponding discrete measures.

Let T = {tn}n∈N be a sequence of distinct complex numbers with |tn| → ∞,
n → ∞. Then, for any sequence a = {an} such that

∑
n |tn|−1|an| < ∞ one can

consider the Cauchy transform

Ca(z) =
∞∑
n=1

an

z− tn
.

Clunie et al. [11] conjectured that the Cauchy transform Ca has infinitely many
zeros if all an are positive. In the general case this conjecture remains open, for
related results see [11, 13, 16]. Clearly, if the coefficients an are not positive, the
corresponding sum can be the inverse to an entire function and, thus, can have no
zeros.

In [1] we studied some phenomena connected with the following heuristic
principle: if the coefficients an are extremely small, then all (except a finite number
of ) zeros of Ca are located near the set T or near its part. We called this localization
property. In [1] only the case T ⊂ R was considered. This enabled us to relate the
problem with the theory of de Branges spaces and the structure of Hamiltonians for
canonical systems. In the present paper we consider the case of general (complex)
tn and extend many of the results from [1] to this setting. One of the motivations for
this study is the role of discrete Cauchy transforms in the functional model for rank
one perturbations of compact normal operators (see [4, 6]).

1.1 The Spaces of Cauchy Transforms and Related Spaces
of Entire Functions

Let μ := ∑
n μnδtn be a positive measure on C such that

∑
n

μn
|tn|2+1 < ∞. With

any such μ we associate the Hilbert spaceH(T , μ) of the Cauchy transforms

H(T , μ) :=
{
f : f (z) =

∑
n

anμ
1/2
n

z− tn
, a = {an} ∈ �2

}

equipped with the norm ‖f ‖H(T ,μ) := ‖a‖�2 . Note that the series in the definition
ofH(T , μ) converges absolutely and uniformly on compact sets separated from T .
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The spaces H(T , μ) consist of meromorphic functions which are analytic in
C \ T . To get rid of the poles, we will usually consider isometrically isomorphic
Hilbert spaces of entire functions. LetA be an entire function which has only simple
zeros and whose zero set ZA coincides with T . With any T , A and μ as above we
associate the spaceH(T ,A,μ) of entire functions,

H(T ,A,μ) :=
{
F : F(z) = A(z)

∑
n

anμ
1/2
n

z− tn
, a = {an} ∈ �2

}
,

where again the norm is given by ‖F‖H(T ,A,μ) := ‖a‖�2 . Clearly, the mapping
f �→ Af is a unitary operator from H(T , μ) to H(T ,A,μ). We will use the term
Cauchy–de Branges spaces for the spaces H(T ,A,μ). This is related to the fact
that the class of the spaces H(T ,A,μ) with T ⊂ R coincides with the class of all
de Branges spaces (see [12]).

The spaces H(T ,A,μ) were introduced in full generality by Belov et al. [8].
They can also be described axiomatically. It is clear that the reproducing kernels
of H(T ,A,μ) at the points tn (which are of the form A′(tn)μn · A(z)z−tn ) form an
orthogonal basis in H(T ,A,μ). Conversely, if H is a reproducing kernel Hilbert
space of entire functions such that

1. H has the division property, that is, f (z)
z−w ∈ H whenever f ∈ H and f (w) = 0,

2. there exists an orthogonal basis of reproducing kernels inH,

then H = H(T ,A,μ) for some choice of the parameters T , A and μ. One can
replace existence of an orthogonal basis by existence of a Riesz basis of normalized
reproducing kernels. In this case H coincides with some space H(T ,A,μ) as sets
with equivalence of norms.

1.2 Localization and Strong Localization

To simplify certain formulas, we will always assume in what follows that

|tn| ≥ 2, tn ∈ T .

Also we will always assume that T is a power separated sequence: there exist
numbers C > 0 and N > 0 such that, for any n,

dist (tn, {tm}m
=n) ≥ C|tn|−N . (1.1)

Note that condition (1.1) implies that for some c, ρ > 0 and for sufficiently large n
we have |tn| ≥ cnρ . We always will chooseA to be an entire function of finite order
with zeros at T . Without loss of generality we may always fix N in (1.1) so large
that

∑
n |tn|−N <∞.
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For an entire function f we denote by Zf the set of all zeros of f . Let D(z, r)
stand for the open disc centered at z of radius r .

Now we introduce the notion of zeros localization.

Definition 1.1 We say that the space H(T ,A,μ) with a power separated sequence
T has the localization property if there exists a sequence of disjoint disks {D(tn, rn)}
with rn → 0 such that for any nonzero f ∈ H(T ,A,μ) the set Zf \ ∪nD(tn, rn)
is finite and each disk D(tn, rn) contains at most one point of Zf for any n except,
possibly, a finite number.

Since the space H(T ,A,μ) has the division property, one can construct a
function from H(T ,A,μ) with zeros at any given finite set. Therefore the notion
of localization of the zeros near T makes sense only up to finite-dimensional sets.

Our first result shows that the localization property in H(T ,A,μ) can be
expressed in several natural ways. For a set E, we denote by #E the number of
elements in E.

Theorem 1.1 Let H(T ,A,μ) be a Cauchy–de Branges space with a power
separated T . The following statements are equivalent:

(i) H(T ,A,μ) has the localization property;
(ii) There exists an unbounded set S ⊂ C such that the set Zf ∩ S is finite for any

nonzero f ∈ H(T ,A,μ);
(iii) For any f ∈H(T ,A,μ)\{0} andM>0 we have #

(
Zf \∪nD(tn, |tn|−M)

)
<∞;

(iv) There is no nonzero f ∈ H(T ,A,μ) with infinite number of multiple zeros.

Similarly to [1] one can introduce the notion of strong localization where the
zeros are localized only near the whole set T . We say that the space H(T ,A,μ)
with a power separated sequence T has the strong localization property if there
exists a sequence of disjoint disks {D(tn, rn)}tn∈T with rn → 0 such that for any
nonzero f ∈ H(T ,A,μ) the set Zf \ ∪nD(tn, rn) is finite and each disk D(tn, rn)
contains exactly one point of Zf for any n except, possibly, a finite number.

As in [1], one can show that the strong localization property is equivalent to the
approximation by polynomials.

Theorem 1.2 The space H(T ,A,μ) has the strong localization property if and
only if the polynomials belong to L2(μ) and are dense there.

Note that polynomials belong to L2(μ) whenever H(T ,A,μ) has the local-
ization property (see Proposition 3.1). Density of polynomials in weighted Lp

spaces is a classical problem in analysis which was studied extensively (see, e.g.,
[3, 9, 10, 15, 17]). All these works treat the case when the measure in question is
supported by the real line. For measures in C, the problem seems to be largely open.
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1.3 Attraction Sets

Let H(T ,A,μ) have the localization property. By the property (iii) from Theo-
rem 1.1, with any nonzero function f ∈ H(T ,A,μ) we may associate a set Tf ⊂ T

such that for some disjoint disks D(tn, rn) all zeros of f except, may be, a finite
number are contained in ∪tn∈TD(tn, rn) and there exists exactly one point of Zf in
each diskD(tn, rn), tn ∈ Tf , except, may be, a finite number of indices n. Thus, the
set Tf is uniquely defined by f up to finite sets. Let us also note that we can always
take rn = |tn|−M for anyM > 0.

Definition 1.2 LetH(T ,A,μ) have the localization property.We will say that S ⊂
T is an attraction set if there exists f ∈ H(T ,A,μ) such that Tf = S up to a finite
set.

Note that f (z) = A(z)
z−t0 ∈ H(T ,A,μ) for any t0 ∈ T , and so T is always an

attraction set.
It turns out that the localization property implies the following ordering theorem

for the attraction sets ofH(T ,A,μ).

Theorem 1.3 LetH(T ,A,μ) be a Cauchy–de Branges space with the localization
property. Then for any two attraction sets S1, S2 either S1 ⊂ S2 or S2 ⊂ S1 up to
finite sets.

This ordering rule has some analogy with the de Branges Ordering Theorem
for the chains of de Branges subspaces. For the case of de Branges spaces (i.e.,
T ⊂ R) the ordering structure of attraction sets was proved in [1, Theorem 1.8]. Two
different proofs were given: one of them used the de Branges Ordering Theorem,
while the other used only a variant of Phragmén–Lindelöf principle due to de
Branges [12, Lemma 7], a deep result which is one of the main steps for the Ordering
Theorem.

These methods are no longer available in the case of nonreal tn. However,
it turned out that one can give a completely elementary proof of Theorem 1.3,
independent of de Branges’ Lemma. Thus, we can essentially simplify the proof
of [1, Theorem 1.8].

1.4 Localization of Type N

We say that the space H(T ,A,μ) has the localization property of type N if there
exist N subsets T1, T2,. . . ,TN of T such that Tj ⊂ Tj+1, 1 ≤ j ≤ N − 1,
#(Tj+1 \ Tj ) = ∞ and for any nonzero f ∈ H(T ,A,μ) we have Tf = Tj for
some j , 1 ≤ j ≤ N , up to finite sets, moreover, N is the smallest integer with this
property. Clearly, in this case TN = T up to a finite set. The strong localization is
the localization of type 1.
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In what follows we say that an entire function F of finite order is in the
generalized Hamburger–Krein class if F has simple zeros {zn},

lim
n→∞ |F

′(zn)|−1|zn|M = 0 for any M > 0, (1.2)

and

1

F(z)
=

∑
n

1

F ′(zn)(z− zn)
. (1.3)

Note that when {zn} is power separated and (1.2) is satisfied, one can replace (1.3)
by the condition that, for anyK > 0, |F(z)| � 1 when z /∈ ∪nD(zn, (|zn| + 1)−K).

Now we state the description of spaces with localization property of type 2;
localization of type N can be described similarly (see [1, Theorem 6.1]).

Theorem 1.4 The space H(T ,A,μ) has the localization property of type 2 if and
only if there exists a partition T = T1 ∪ T2, T1 ∩ T2 = ∅, such that the following
three conditions hold:

(i) There exists an entire function A2 in the generalized Hamburger–Krein class
such that ZA2 = T2;

(ii) The polynomials belong to the space L2(T2, μ|T2) and are not dense there, but
their closure is of finite codimension in L2(T2, μ|T2).

(iii) The polynomials belong to the space L2(T1, μ̃) and are dense there, where
μ̃ =∑

tn∈T1 μn|A2(tn)|2δtn .
Moreover, T1 and T are the attraction sets forH(T ,A,μ).

In Sect. 6 we will give a number of examples of Cauchy–de Branges spaces
having localization property of type 2.

2 Equivalent Forms of Zeros Localization

In this section we will prove Theorem 1.1.
A sequence {zk} ⊂ C will be said to be lacunary if infk |zk+1|/|zk| > 1. A zero

genus canonical product over a lacunary sequence will be said to be a lacunary
canonical product.

For � ⊂ C, we define its upper area density by

D+(�) = lim sup
R→∞

m2(� ∩D(0, R))
πR2 ,

where m2 denotes the area Lebesgue measure in C. If D+(�) = 0 we say that
� is a set of zero area density. We say that a set E ⊂ R has zero linear density
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if |E ∩ (0, R)| = o(R), R → ∞, where |e| denotes one-dimensional Lebesgue
measure of e.

The following result ([2, Theorem 2.6]) will play an important role in what
follows. We will often need to verify that a certain entire function belongs to the
space H(T ,A,μ). In the de Branges space setting a much stronger statement is
given in [12, Theorem 26].

Theorem 2.1 LetH(T ,A,μ) be a Cauchy–de Branges space and let A be of finite
order. Then an entire function f is in H(T ,A,μ) if and only if the following three
conditions hold:

(i)
∑

n

|f (tn)|2
|A′(tn)|2μn <∞;

(ii) there exist a set E ⊂ (0,∞) of zero linear density and N > 0 such that
|f (z)| ≤ |z|N |A(z)|, |z| /∈ E;

(iii) there exists a set� of positive upper area density such that |f (z)| = o(|A(z)|),
|z| → ∞, z ∈ �.

Condition (iii) can be replaced by a stronger conditions that |f (z)| = o(|A(z)|)
as |z| → ∞ outside a set of zero area density. It should be mentioned that (iii) is
a consequence of the following standard fact about planar Cauchy transforms (see,
e.g., [7, Proof of Lemma 4.3]). If ν is a finite complex Borel measure in C, then, for
any ε > 0, there exists a set � of zero area density such that

∣∣∣∣
∫
C

dν(ξ)

z− ξ
− ν(C)

z

∣∣∣∣ < ε

|z| , z ∈ C \�.

We will frequently use the following corollary of this fact: if ν is orthogonal to all
polynomials (meaning that

∫ |ξ |kd|ν|(ξ) < ∞ and
∫
ξkdν(ξ) = 0, k ∈ Z+), then

for anyM > 0 we have

∣∣∣∣
∫
C

dν(ξ)

z − ξ

∣∣∣∣ = o(|z|−M) (2.1)

as |z| → ∞ outside some set of zero area density.

Proof of Theorem 1.1 It is obvious that the localization property implies each of the
conditions (ii) and (iv). We will show that (ii)�⇒(iii), (iii)�⇒(iv), and (iii) & (iv)
�⇒(i).

(ii) �⇒ (iii). Assume that (iii) is not true. Then for some M > 0 there exists a
nonzero function F ∈ H for which there exists an infinite number of zeros z ∈ ZF

with dist(z, T ) ≥ |z|−M .
Let S be an unbounded set which satisfies (ii). Then we can choose two sequences

sk ∈ S and zk ∈ ZF such that 2|zk| ≤ |sk| ≤ |zk+1|/2 and dist(zk, T ) ≥ |zk|−M .
Now put

H(z) = F(z)
∏
k

1− z/sk

1− z/zk
.
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A simple estimate of the lacunary infinite products implies that |H(z)| �
|z|M+1|F(z)| for |z| ≥ 1 and dist(z, {zk}) ≥ |zk|−M/2, in particular, for z ∈ T .
Now dividingH by some polynomial P of degreeM + 1 with ZF ⊂ ZF \ {zk}, we
conclude by Theorem 2.1 that H̃ = H/P is inH. This contradicts (ii) sinceZ

H̃
∩S

is an infinite set.
(iii) �⇒(iv) Assume that (iv) is not true. Then there exist a nonzero function

F ∈ H(T ,A,μ) and a sequence {zn} of its multiple zeros.Without loss of generality
we may assume that the sequence zk is lacunary. By (iii) there exists a sequence nk
such that |zk − tnk | = o(|tnk |−K) for anyK > 0 as k→∞. Now put

F̃ (z) = F(z)
∏
k

(z − tnk − |tnk |−M)(z− tnk )

(z − zk)2

for some sufficiently large M > N , where N is the constant in (1.1). It is easy to
see that |F̃ (z)| � |F(z)| when z /∈ ∪nD(tn, C|tn|−N/2) and so F̃ is in H(T ,A,μ)
by Theorem 2.1.

(iii) & (iv)�⇒ (i). Let F be a nonzero function inH(T ,A,μ). By (iii), all zeros
of F , except a finite number, are localized in the disks D(tn, |tn|−M) for any fixed
M . Assume that an infinite subsequence of disks D(tnk , |tnk |−M) (where tnk is a
lacunary sequence) contains two zeros zk , z̃k of F . Then the function

F̃ (z) = F(z)
∏
k

(z − tnk )
2

(z− zk)(z − z̃k)

is inH(T ,A,μ) by Theorem 2.1, a contradiction with (iv). ��

3 Localization and Polynomial Density

This section is devoted to the proof of Theorem 1.2. In Sect. 3.1 we show that the
polynomial density implies the strong localization property. In Sect. 3.2 we will
prove the converse statement.

First of all we prove that the localization property implies that μn decrease
superpolynomially.

Proposition 3.1 Let H(T ,A,μ) have the localization property. Then for anyM >

0 we have μn � |tn|−M .

Proof Assume the converse. Then there exist M > 0 and an infinite subsequence
{nk} such that μnk ≥ |tnk |−M . Without loss of generality we can assume that {tnk }
is lacunary. Let U be the lacunary product with zeros tn10k . Put

f (z) = A(z)U3(z)
∏
k

(
1− z

tnk

)−1
.
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Then, by simple estimates of lacunary canonical products, we have |f (tnk )| �
|tnk |−K |A′(tnk )| for any fixed K > 0, whence f satisfies condition (i) of
Theorem 2.1. Since A(z)

z−tn1 ∈ H(T ,A,μ) and |U(z)|3 � |z|−K ∏
k |1 − z/tnk | for

any K > 0 and z /∈ ∪kD(tnk , 1), we conclude that f satisfies conditions (ii) and
(iii) of Theorem 2.1 and so f ∈ H(T ,A,μ). This contradicts the property (iv) from
Theorem 1.1. ��

3.1 Polynomial Density �⇒ Strong Localization Property

Let f ∈ H(T ,A,μ) \ {0}. If the polynomials are dense in L2(μ), then it is not
difficult to show that for anyM > 0 there exist L > 0 and R > 0 such that

inf{|z|L|f (z)| : dist(z, T ) ≥ |z|−M, |z| > R} > 0. (3.1)

A simple proof of this fact is given in detail in [1, Section 3.1] and we omit it.
In particular, it follows from (3.1) that for any M > 0 all zeros of f ∈

H(T ,A,μ)\{0} except, may be, a finite number, are in ∪nD(tn, |tn|−M). Therefore
by Theorem 1.1, the spaceH(T ,A,μ) has the localization property, and so any disc
D(tn, |tn|−M) except a finite number contains at most one zero of f .

Now we show that the disk D(tk, |tk|−M) contains exactly one point of Zf if |k|
is sufficiently large. Let

f (z) =
∑
n

dnμ
1/2
n

z− tn
, g(z) =

∑
n
=k

dnμ
1/2
n

z− tn
.

Recall that |f (z)| ≥ c|z|−L for |z− tk| = |tk|−M and sufficiently large k, whereL is

the number from (3.1). Since μk = o(|tk|−L̃), k→∞, for any L̃ > 0, we conclude
that |f (z)− g(z)| < c|z|−L/2 for |z− tk| = |tk|−M , k ≥ k0.

Put F = Af , G = Ag. Then F , G are entire and |F − G| < |G| on |z − tk| =
|tk|−M , k ≥ k0. By the Rouché theorem, F and G have the same number of zeros
in D(tk, |tk|−M), k ≥ k0. Since G(tk) = 0, we conclude that F = Af has a zero in
D(tk, |tk|−M), |k| ≥ k0. The strong localization property is proved.

3.2 Strong Localization �⇒ Polynomial Density

This implication is almost trivial. Let {un} ∈ �2 be a nonzero sequence such that∑
n unt

k
nμ

1/2
n = 0 for any k ∈ N0. Consider the function

F(z) = A(z)
∑
n

unμ
1/2
n

z− tn
.
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Then F belongs to the Cauchy–de Branges space H(T ,A,μ) and since all the
moments of un are zero, it is easy to see that for any K > 0, |F(z)/A(z)| =
o(|z|−K) as |z| → ∞ and z /∈ ∪nD(tn, C|tn|−N/2), where C,N are parameters
from (1.1). On the other hand, since we have the strong localization property, for any
M > 0 all but a finite number of zeros of f lie in ∪nD(tn, rn), where rn = |tn|−M
and #

(
Zf ∩D(tn, rn)

) ≤ 1 for all indices n except, possibly, a finite number.
Let T1 be the set of those tn for which the corresponding disk D(tn, rn) contains

exactly one zero of F (denoted by zn with the same index n) and let A = A1A2 be
the corresponding factorization of A, where A2 is a polynomial with finite zero set
T \ T1. Put

F1(z) = A1(z)
∏
tn∈T1

z− zn

z− tn
.

We can choose M to be so large that the above product converges, and, moreover,
|F1(z)| � |A1(z)| when dist(z, T1) ≥ C|z|−N/2. Then we can write F = F1F2,
and it is easy to see that in this case F2 is at most a polynomial. Thus, for some
L > 0, we have |F(z)|/|A(z)| � |z|−L, as |z| → ∞ and z /∈ ∪nD(tn, C|tn|−N/2),
a contradiction. ��

4 Ordering Theorem for the Zeros of Cauchy Transforms

First we show that in the proof of ordering for attraction sets one can consider only
functions with zeros in T .

Lemma 4.1 Let f ∈ H(T ,A,μ), f 
= 0, and let Tf be defined as in Sect. 1.3.
Then there exists a function Af ∈ H(T ,A,μ) which vanishes exactly on Tf up to
a finite set.

Proof Let zn be a zero of f closest to the point tn ∈ Tf . Since Tf is defined up
to finite sets, we may assume without loss of generality that this is a one-to-one
correspondence between Zf and Tf . Put

Af (z) = f (z)
∏
tn∈Tf

z− tn

z− zn
.

Since we have |zn − tn| ≤ |tn|−M with M much larger than N from the power
separation condition (1.1), it is easy to see that |Af (z)| � |f (z)|, dist (z, T ) ≥
C|tn|−N/2, and |Af (tn)| � |f (tn)|, tn ∈ T \ Tf . Hence, Af ∈ H(T ,A,μ) by
Theorem 2.1. ��
Corollary 4.1 Let H(T ,A,μ) have the localization property and assume that the
zeros of a function f ∈ H(T ,A,μ) are localized near the whole set T up to a
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finite set. Then for any K > 0 there exist c,M > 0 such that for the discs Dk =
D(tk, |tk|−K), tk ∈ T , we have

|f (z)| ≥ c|z|−M |A(z)|, z /∈ ∪kDk. (4.1)

Proof Let Af be a function constructed from f as in Lemma 4.1. Since the zero set
Tf of Af differs from T by a finite set and all functions in H(T ,A,μ) are of finite
order, we can write Af = APQ−1eR, where P,Q,R are some polynomials. Let us
show that R is a constant. Indeed, since A/(z − tn) ∈ H(T ,A,μ) for any tn ∈ T ,
we have

Af − A

z− tn
= A

(
P

Q
eR − 1

z− tn

)
∈ H(T ,A,μ).

If R 
= const , then the function in brackets will have infinitely many zeros, a
contradiction to localization.

As mentioned above, |Af (z)| � |f (z)|, dist (z, T ) ≥ C|tn|−N/2, where C,N
are constants from power separation condition (1.1). This implies (4.1). ��

Now we pass to the proof of Theorem 1.3. By Lemma 4.1 we may assume, in
what follows, that f = A1, g = Ã1, where ZA1,ZÃ1

⊂ T . Thus, we may write

A = A1A2 = Ã1Ã2 for some entire functionsA2 and Ã2.
Let A1 = BA0, Ã1 = B̃A0, where B and B̃ have no common zeros. To prove

Theorem 1.3, we need to show that either B or B̃ has finite number of zeros.
Note that A1 − αÃ1 is in H(T ,A,μ) for any α ∈ C. Therefore, the zeros of

B − αB̃ are localized near T . As we will see, this is a very strong restriction which
cannot hold unless one of the functions B or B̃ has finite number of zeros.

4.1 Key Proposition

The following proposition is the crucial step of the argument. In [1] a similar
statement was proved using a deep result of de Branges [12, Lemma 7]; it was valid
even without localization assumption. This argument is no longer applicable in non-
de Brangean case when tn are nonreal. However, taking into account the localization
property, one can give an elementary proof in the general case.

Proposition 4.1 If the functions B and B̃ defined above have infinitely many zeros,
then there exists M > 0 such that at least one of the following two statements
holds:

(i) there exists a subsequence {tnk } ⊂ ZB such that |B ′(tnk )| ≤ 8|tnk |M |B̃(tnk )|;
(ii) there exists a subsequence {tnk } ⊂ ZB̃ such that |B̃ ′(tnk )| ≤ 8|tnk |M |B(tnk )|.
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Proof We will often use the following obvious observation: if f is a function of
finite order, |z0| > 2 and dist (z0,Zf ) ≥ c|z0|−K , then there exists L > 0
(depending on K and c) such that

|f (z0)|/2 ≤ |f (z)| ≤ 2|f (z0)|, z ∈ D(z0, |z0|−L). (4.2)

This statement follows by standard estimates of canonical products.

Step 1. Assume that neither of the conclusions of the proposition holds. Consider
the case where |B ′(tn)| > 8|tn|M |B̃(tn)| for any M and all n except a finite
number. It follows from (4.2) (applied to B(z)/(z − tn)) that there exists L such
that |B(z)| ≥ |tn|−L|B ′(tn)|/2 and also |B̃(z)| ≤ 2|B̃(tn)| for z ∈ Cn = {|z −
tn| = |tn|−L}. Now if M > L, we have 2|B̃(z)| < |B(z)|. By the Rouché
theorem, we conclude that for any α with 1 ≤ |α| ≤ 2, the function B − αB̃

has exactly one zero in the disc D(tn, |tn|−L), tn ∈ ZB . Similarly, B − αB̃ has
exactly one zero in the discD(tn, |tn|−L), tn ∈ ZB̃ . We conclude that
for any sufficiently large L > 0 and any α with 1 ≤ |α| ≤ 2, the functionB−αB̃
has exactly one zero in each disc D(tn, |tn|−L), tn ∈ ZB ∪ ZB̃ , except a finite
number.

Step 2. Next we prove the following: there exists an infinite set A⊂{1≤ |z| ≤2}
such that for any α ∈ A and any L > 0 the function B − αB̃ has at most finite
number of zeros outside the union of the discsDn = D(tn, |tn|−L), tn ∈ ZB∪ZB̃ .
In view of localization we know that all zeros of B − αB̃ are localized near T .
Thus, we only need to show that for many values of α the function B − αB̃ has
no zeros in a neighborhood of tn ∈ T \ (ZB ∪ ZB̃ ). Put

wn = B(tn)

B̃(tn)
, tn ∈ T \ (ZB ∪ ZB̃ ).

Since B, B̃ are entire functions of finite order whose zeros are power separated
from T \ (ZB ∪ZB̃ ), it follows that for anyM > 0 there exists sufficiently large
L > 0 such that for z ∈ Dn = D(tn, |tn|−L) with tn ∈ T \ (ZB ∪ ZB̃ ),

∣∣∣∣B(z)
B̃(z)

−wn

∣∣∣∣ < |tn|−M, z ∈ Dn. (4.3)

Obviously, the discs D(wn, |tn|−M), tn ∈ T \ (ZB ∪ ZB̃ ) do not cover the
annulus {1 ≤ |z| ≤ 2} if M is sufficiently large. Therefore, (4.3) implies that
we have a continuum of α with 1 ≤ |α| ≤ 2 such that α 
= B(z)/B̃(z) for
z ∈ ∪tn∈T \(ZB∪ZB̃

)Dn, Thus, for such α, all zeros of B − αB̃ up to a finite
number belong to ∪tn∈ZB∪ZB̃

Dn as required.
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Step 3. By Steps 1 and 2, if α ∈ A all zeros of the function B − αB̃ are located
near ZB ∪ ZB̃ . Then we can write

B − αB̃ = BB̃Rαe
Qαα, α(z) =

∏
tn∈ZB∪ZB̃

z− sn

z− tn
,

where sn ∈ Dn are the zeros of B − αB̃ , Rα is some rational function andQα is
a polynomial.

Step 4. Assume that there exist α 
= β such that Qα = Qβ = Q. Then for
B1 = eQB and B̃1 = eQB̃ we have

B1 − αB̃1 = B1B̃1Rαα, B1 − βB̃1 = B1B̃1Rββ.

It follows that

β − α = B1(Rαα −Rββ), α−1 − β−1 = B̃1(α
−1Rαα − β−1Rββ).

Since for any fixed α the zeros sn of B − αB̃ satisfy |sn − tn| < |tn|−K for any
K > 0, it is easy to see thatα admits the expansion

α = 1+
K∑
k=1

ck

zk
+O

(
1

zK+1

)

as |z| → ∞, z /∈ ∪tn∈ZB∪ZB̃
Dn for any fixed L. Therefore, the functionRαα−

Rββ is either equivalent to cz−K for some K ∈ Z or decays faster than any
power when |z| → ∞, z /∈ ∪tn∈ZB∪ZB̃

Dn.
Assume that B1 is not a polynomial. Then |B1| tends to infinity faster than any
power along some sequence of points outside ∪tn∈ZB∪ZB̃

Dn. In view of the form
ofα andβ this implies that for any K > 0 we have

|Rαα − Rββ | = o(|z|−K), |z| → ∞, z /∈ ∪tn∈ZB∪ZB̃
Dn.

Similarly, if B̃1 is not a polynomial, then for any K > 0,

|α−1Rαα − β−1Rββ | = o(|z|−K), |z| → ∞, z /∈ ∪tn∈ZB∪ZB̃
Dn.

Since α 
= β, it follows that Rαα decays faster than any power, a contradiction.
Thus, either B1 or B̃1 is a polynomial.

Step 5. It remains to consider the case whenQα 
= Qβ for any α, β ∈ A, α 
= β.
Without loss of generality we may assume that there exist α0, α1, α2, α3 ∈ A
with Qαj of the same degree m such that the coefficients cαj at z

m are different.
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Dividing by eQα0 we obtain new functions B1 and B̃1 satisfying

α0 − αj = B1(e
Q̃jRαjαj − Rα0α0), j = 1, 2, 3,

where Rα ,α are defined as above and Q̃j = Qαj −Qα0 . Thus,

|B1(z)| � |Rαj (z)|−1e−ReQj (z)

as |z| → ∞ along each ray {z = reiθ } on which limr→∞ ReQj(re
iθ ) = ∞ and

outside the set ∪tn∈ZB∪ZB̃
Dn. Since the real part of a polynomial tends to infinity

approximately on the half of the rays, there exists an angle� of positive size such
that two of the expressions |Rαj (z)|eReQj (z) have the same asymptotics inside
the angle, say, |Rα1(z)|eReQ1(z) � |Rα2(z)|eReQ2(z) as |z| → ∞, z ∈ �. This is
obviously impossible if the leading coefficients ofQ1 andQ2 are different. This
contradiction completes the proof of the proposition. ��

4.2 End of the Proof of Theorem 1.3

The rest of the proof is similar to the proof of [1, Theorem 1.8]. Recall that A =
A1A2 = Ã1Ã2. Since A1 and Ã1 belong to H(T ,A,μ), we have

∑
tn∈T

|A1(tn)|2
μn|A′(tn)|2 =

∑
tn∈ZA2

1

μn|A′2(tn)|2
<∞, (4.4)

and, analogously,

∑
tn∈ZÃ2

1

μn|Ã′2(tn)|2
<∞, (4.5)

Assume that (i) in Proposition 4.1 holds. Dividing if necessaryB by a polynomial
we may assume that |B ′(tnl )| ≤ |B̃(tnl )|. Hence, we may construct a lacunary
canonical product U1 such that ZU1 ⊂ ZB and

|B ′(tn)| ≤ |B̃(tn)|, tn ∈ ZU1 .

Let U2 be another lacunary product with zeros in C\∪tn∈T D(tn, C|tn|−N) such that

|U2(tn)| = o(|U1(tn)|), n→∞, tn ∈ T \ ZU1, (4.6)

|U2(tn)| = o(|U ′1(tn)|), tn ∈ T . (4.7)
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This may be achieved if we choose zeros of U2 to be much sparser than the zeros of
U1. Let us show that in this case

f := A1 · U2

U1
∈ H(T ,A,μ),

which contradicts the localization. Since A1 is in H(T ,A,μ), while U1 and U2 are
lacunary products, it is clear that conditions (ii) and (iii) hold for f . It remains to
show that

∑
tn∈T

|f (tn)|2
|A′(tn)|2μn <∞.

Since f vanishes on ZA1 \ ZU1 , we need to estimate the sums over ZA2 and ZU1 .
By (4.6) and (4.4), we have

∑
tn∈ZA2

|f (tn)|2
|A′(tn)|2μn =

∑
tn∈ZA2

|U2(tn)|2
|U1(tn)|2 ·

1

|A′2(tn)|2μn
<∞

To estimate the sum over ZU1 note first that BA0 divides A = B̃A0Ã2, whence B
divides Ã2. Thus ZU1 ⊂ ZÃ2

. Also, for tn ∈ ZU1 ,

|A′1(tn)| = |B ′(tn)| · |A0(tn)| ≤ |A0(tn)| · |B̃(tn)| = |Ã1(tn)|. (4.8)

Now by (4.7), (4.8), and (4.5) we have

∑
tn∈ZU1

|f (tn)|2
|A′(tn)|2μn =

∑
tn∈ZU1

|U2(tn)|2
|U ′1(tn)|2

· |A′1(tn)|2
|Ã1(tn)|2|Ã′2(tn)|2μn

�
∑

tn∈ZU1

1

|Ã′2(tn)|2μn
<∞.

Thus, f ∈ H(T ,A,μ) and this contradiction completes the proof of Theorem 1.3.
��

5 Localization of Type 2

In this section we prove Theorem 1.4. In what follows we will need the following
property of functions in the generalized Hamburger–Krein class: since 1/F is a
Cauchy transform and |F ′(zn)| decays faster than any power, we have

∑
n

zkn

F ′(zn)
= 0, k ∈ Z+. (5.1)
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Otherwise, by the arguments from Sect. 3.1, 1/F decays at most polynomially away
from the zeros whence F itself is a polynomial. Furthermore, it follows from (5.1)
that for anyK,M > 0

|z|M = o(|F(z)|), |z| → ∞, dist (z, {zn}) ≥ |z|−K. (5.2)

5.1 Proof of Sufficiency in Theorem 1.4

Assume that H(T ,A,μ) satisfies the conditions (i)–(iii). We will show that in this
case H(T ,A,μ) has localization of type 2. Let T = T1 ∪ T2 and let A = A1A2,
whereA2 is the Hamburger–Krein class function from (i). LetH2 be the Cauchy–de
Branges space constructed from T2 and μ|T2 , i.e.,H2 = H(T2, A2, μ|T2).

By the hypothesis, the orthogonal complement L to the polynomials in
L2(T2, μ|T2) is finite-dimensional. If {dn} ∈ L2(T2, μ|T2) \ L, then there exists
a nonzero moment for the sequence {dn}, that is, ∑tn∈T2 μndnt

K
n 
= 0 for some

K ∈ N0. If f (z) = A2(z)
∑

tn∈T2
μndn
z−tn is the corresponding function from H2,

then, for any M > 0, the function f has a zero in D(tn, |tn|−M), tn ∈ T2, when
n is sufficiently large (see Sect. 3.1). Thus, for any function in H2 except some
finite-dimensional subspace, its zeros are localized near the whole set T2.

Now let G be the subspace of the Cauchy–de Branges spaceH2 defined by

G =
{
A2

∑
tn∈T2

μndn

z− tn
: {dn} ∈ L

}
.

This is a finite-dimensional subspace of H2 and it is easy to see that F ∈ G if and
only if F ∈ H2 and, for anyM > 0, |F(z)/A2(z)| = o(|z|−M), as |z| → ∞ outside
a set of zero density (see (2.1) and (3.1)). Thus, G is a finite-dimensional space
of entire functions with the division property and so it consists of the functions of
the form SP where S is some fixed zero-free function and P is any polynomial of
degree less than some fixed number L. Note that if SP ∈ G and so SP/A2 decays
faster than any power away from zeros of A2, then we may conclude that A2/S also
is a function in Hamburger–Krein class. ReplacingA2 byA2/S we may assume that
G consists of polynomials.

We conclude thatH2 has the localization property and for any F ∈ H2 we either
have TF = ∅ (i.e., F is a polynomial) or TF = T2.

Let f ∈ H(T ,A,μ), f (z) = A(z)
∑

tn∈T
cnμ

1/2
n

z−tn . Since by (iii), |A2(tn)|μ1/2
n

tends to zero faster than any power of tn ∈ T1 when |tn| → ∞, we have

A2(z)
∑
tn∈T1

cnμ
1/2
n

z− tn
=

∑
tn∈T1

A2(tn)cnμ
1/2
n

z − tn
+H(z) (5.3)
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for some entire functionH (note that the residues on the left and the right coincide).
Let us show using Theorem 2.1 that H ∈ H2. Indeed, the Cauchy transform on the
left-hand side of (5.3) is bounded on T2 and so

∑
tn∈T2

|H(tn)|2
|A′2(tn)|2μn

<∞.

Conditions (ii) and (iii) of Theorem 2.1 are fulfilled since 1/A2 is a Cauchy
transform whence the same is true for H/A2.

Note also that F(z) := A2(z)
∑

tn∈T2
cnμ

1/2
n

z−tn is by definition inH2. Thus,

f = A1(g +H + F)

where g(z) =∑
tn∈T1

cnA2(tn)μ
1/2
n

z−tn and H + F ∈ H2.
Assume that H + F 
= 0. Then, either H + F is a polynomial or the zeros of

H + F are localized near T2 up to a finite set. In both cases, there exists K > 0
such that the discs D(tk, rk), tk ∈ T , rk = |tk|−K , are pairwise disjoint and, for
sufficiently large k we have

|H(z)+ F(z)| > 1, |z− tk| = rk.

In the case when the zeros of H + F are localized near the whole set T2 up to a
finite set, we use Corollary 4.1 and (5.2) applied to A2. Since |g(z)| → 0 whenever
|z− tk| = rk and k→∞, we conclude by the Rouché theorem that A1(g+H +F)
has exactly one zero in each D(tk, rk), tk ∈ T1, except possibly a finite number.
Also, if H + F is not a polynomial, then f has zeros near the whole set T2 up to
a finite subset (again apply the Rouché theorem to small disks D(tk, rk), tk ∈ T2,
rk = |tk|−K , and use the fact that |H + F | � 1, |z− tk| = rk).

It remains to consider the caseH +F = 0, i.e., f = A1g. Since the polynomials
are dense in L2(T , μ̃), the space H(T1, A1, μ̃) has the strong localization property,
and so Tf = T1 up to a finite set.

5.2 Proof of Necessity in Theorem 1.4

Assume thatH(T ,A,μ) has the localization property of type 2. Let f be a function
from H(T ,A,μ) such that #(T \ Tf ) = ∞. Then, by Lemma 4.1 there exist T1
(T1 = Tf up to a finite set) and a function A1 with simple zeros in T1 such that
A1 ∈ H2. We now may write A = A1A2 for some entire A2 with ZA2 = T2.
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Proof of (i). Since A1 ∈ H(T ,A,μ), we have

1

A2(z)
= A1(z)

A(z)
=

∑
tn∈T

cnμ
1/2
n

z− tn

for some {cn} ∈ �2. It is immediate that cn = 1/A′2(tn), tn ∈ T2, and cn = 0
otherwise. Also we have

∑
tn∈T2

1

|A′2(tn)|2μn
<∞.

Since localization property implies that μn decay faster than any power, we
conclude that A2 belongs to the generalized Hamburger–Krein class.

Proof of (ii). Note that by (5.1) (applied to A2) we have

∑
tn∈T2

tkn

A′2(tn)
= 0, k ∈ Z+,

whence the sequence {(μnA′2(tn))−1}tn∈T2 is orthogonal to all polynomials in
L2(T2, μ|T2).

Now assume that {cn} ∈ �2 and {cnμ−1/2n } is orthogonal to all polynomials in

L2(T2, μ|T2). Consider the function f (z) = A2(z)
∑

tn∈T2
cnμ

1/2
n

z−tn which belongs to
H2 = H(T2, A2, μ|T2). Since A1f ∈ H(T ,A,μ) and H(T ,A,μ) has localization
property of type 2, the zeros {zn} of f either form a finite set or are localized near T2.
However, in the latter case f satisfies (4.1), a contradiction to the fact that, by (2.1),
f/A2 decays faster than any power outside some set of zero area density.

Thus, any function f constructed above is of the form PS where P is a
polynomial and S is some zero-free entire function. It is clear from the localization
property that the function S must be the same for all such f -s (up to multiplication
by a constant), and that A2/S also is a Hamburger–Krein class function. Replacing
A2 by A2/S we may assume that f is a polynomial.

To summarize, for any {cnμ−1/2n } which is orthogonal to all polynomials in
L2(T2, μ|T2), the function f is a polynomial. Since A1f ∈ H(T ,A,μ), it remains
to show that the degrees of polynomials P such that PA1 ∈ H(T ,A,μ) are
uniformly bounded. Let us show that the property that PA1 ∈ H(T ,A,μ) for any
polynomial P contradicts the localization property of type 2. If PA1 ∈ H(T ,A,μ)
for any polynomial P , then the function A1(z)

∑
k≥0 akzk is in H(T ,A,μ) for any

sequence {ak} such that
∑
k≥0
|ak| · ‖zkA1‖H(T ,A,μ) <∞.
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This contradicts the localization property since for nonzero ak decaying sufficiently
rapidly the function A1(z)

∑
k≥0 akzk cannot have all but finite number of zeros

localized near T1 or near T .

Proof of (iii). Assume that (iii) is not satisfied, that is, the polynomials are not dense
in H(T1, μ̃), and so this space does not have the strong localization property. Then

there exists G(z) = A1(z)
∑

tn∈T1
cnA2(tn)μ

1/2
n

z−tn ∈ H(T1, A1, μ̃), {cn}tn∈T1 ∈ �2, with
the property that there exists an infinite sequence of disksD(tnj , |tnj |−M), tnj ∈ T1,
such that #D(tnj , |tnj |−M) ∩ ZG = 0. Now put

H(z) = A2(z)
∑
tn∈T1

cnμ
1/2
n

z − tn
−

∑
tn∈T1

cnA2(tn)μ
1/2
n

z− tn
.

The function H is entire and, as in the proof of sufficiency, H ∈ H2. This means
that H can be written as

H(z) = −A2(z)
∑
tn∈T2

cnμ
1/2
n

z− tn
for some {cn}tn∈T2 ∈ �2.

Now put f (z) =∑
tn∈T

cnμ
1/2
n

z−tn . Then f ∈ H(T ,A,μ) and, by the construction,

f (z) = −A1(z)H(z)+ A1(z)

( ∑
tn∈T1

cnA2(tn)μ
1/2
n

z− tn
+H(z)

)
= G(z).

However, the zeros of g are not localized near the whole T1, a contradiction.

6 Examples of Localization of Type 2

Here we give a series of examples of spaces H(T ,A,μ) with localization of type
2. Clearly, the most subtle part is to satisfy condition (ii) of Theorem 1.4. However,
there exists a standard way to avoid completeness of polynomials with finite defect.
For similar constructions, see [10].

Let A be an entire function with power separated zero set T = {tn} and of the
Hamburger–Krein class. Then, in particular, for any K,M > 0, we have |A(z)| �
|z|M when z /∈ ∪nD(tn, (|tn| + 1)−K). Fix some N ∈ N such that

∑
n |tn|−N <∞,

and put

μn = |tn|2N |A′(tn)|−2. (6.1)
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Then the polynomials belong to the space L2(μ), μ =∑
n μnδtn , but are not dense

there. Indeed, for any k ∈ N0, we have

zk+1

A(z)
=

∑
n

tk+1n

A′(tn)(z − tn)
,

whence
∑

n cnμnt
k
n = 0 (take z = 0). Hence, for cn = (A′(tn)μn)−1 we have

{cn} ∈ L2(T , μ). It remains to show that the polynomials have finite codimension
in L2(T , μ). The following proposition shows that this is often true.

Recall that for a positive increasing function w on R+, its Legendre transform
w# is defined as w#(x) = supt∈R+

(
xt − w(t)

)
. If, moreover, w is convex, then

(w#)# = w. In what follows we will use the following technical condition on w:

w#(x + t)−w#(x) � x−1w(x), x > 1, 0 ≤ t ≤ 1. (6.2)

Also recall that a positive increasing functionM onR+ is said to be a normal weight
if w(t) = logM(et ) is a convex function of t .

Proposition 6.1 Let A be a Hamburger–Krein class function and let μ be defined
by (6.1). Assume that there exist

• a finite set of rays Lj = {eiθj }, j = 1, . . . , J , which divide the plane into a union
of angles of size less than π/ρ, where ρ is the order of A;

• a finite set of positive increasing normal weights Mj on R+ such that the
Legendre transforms of the functions wj(t) = logMj(e

t ) satisfy (6.2),

such that, for some K > 0,

|A(z)| ≤ (|z| + 1)KMj(|z|), z ∈ Lj , (6.3)

and

|A′(tn)| � |tn|−K max
j

Mj (|tn|), tn ∈ T . (6.4)

Then the polynomials have finite (and nonzero) codimension in L2(T , μ).

Example 6.1 The following functionsA satisfy the conditions of Proposition 6.1 (if
not specified,A is assumed to be a zero genus canonical product with zero set T ):

• tn = 2n, n ∈ N;
• tn = nα , n ∈ N, α > 2;
• tn = |n|α signn, n ∈ Z, α > 1;
• A(z) = z−1 sin(πz) sin(πiz), T = Z ∪ iZ;
• A(z) = σ(z), the Weierstrass σ -function, T = Z+ iZ.
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In all the above examples except the first one, one should takewj (t) = eβt for some
β > 0, whence w#(x) = x

β

(
log x

β
− 1

)
. In the first examplew and w# are quadratic

functions. Condition (6.2) is satisfied in all these cases.

Proof of Proposition 6.1 Assume that {cn} is orthogonal to the polynomials in
L2(T , μ) and consider the function

f (z) = A(z)
∑
n

cnμn

z− tn
.

We will show that any such function f is a polynomial whose degrees are uniformly
bounded above. This will prove the proposition.

Note that f ∈ H(T ,A,μ), since {cnμ1/2
n } ∈ �2. It is clear that, for any k ∈ N0,

one has

zkf (z)− A(z)
∑
n

cnμnt
k
n

z− tn
≡ 0.

Since T is power separated, there exists a constant N0 ∈ N such that the discs
Dn = D(tn, |tn|−N0) are pairwise disjoint and, from (6.3), |A(z)| ≤ |z|−KMj(|z|)
for any j when dist (z, Lj ) ≤ 2|z|−N0 and |z| is sufficiently large.

Now fix some ray Lj = L and letM = Mj , w = wj . For z /∈ ∪nDn and for any
k ∈ N0 we have, using (6.1) and (6.4),

|f (z)| ≤ |A(z)||z|k
∑
n

|tn|k|cn|μn
|z− tn| ≤

|A(z)|
|z|k

∑
n

|cn|μ1/2
n |tn|k+N

|A′(tn)| · |z− tn|

� |A(z)||z|k
∑
n

|tn|k+2N+N0+K

|tn|NM(|tn|) � |A(z)||z|k sup
n

|tn|k+2N+N0+K

M(|tn|) .

Put m = 2N +N0 +K . Then

log sup
n

|tn|k+m
M(|tn|) = sup

n

(
(k +m) log |tn| −w(log |tn|)

)
≤ w#(k +m).

Since the estimate for f holds for all k, we now have for z /∈ ∪nDn and
dist (z, Lj ) ≤ 2|z|−N0 ,

log |f (z)| ≤ logM(r)+K log r + inf
k∈N0

(
w#(k +m)− k log r

)
+O(1),

when r = |z| is sufficiently large. It follows from (6.2) that x log r − w#(x) =
y log r − w#(y) + O(log r) whenever |x − y| ≤ 1 and w#(x) ≤ x log r . Then,
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obviously,

inf
k∈N0

(
w#(k +m)− k log r

)
= m log r − sup

k∈N0

(
(k +m) log r − w#(k +m)

)

≤ − sup
x≥0

(x log r − w#(x))+O(log r) = −w(log r)+O(log r),

where the constants involved in O(log r) depend only on m and the constants
from (6.2). We used that w is convex and so (w#)# = w. Since w(log r) = M(r),
we conclude that

|f (z)| � (|z| + 1)N1, z /∈ ∪nDn, dist (z, Lj ) ≤ 2(|z| + 1)−N0 ,

where N1 admits a uniform bound. It follows that |f (z)| � (|z| + 1)N1 on the ray
Lj for any j . Now the standard Phragmén–Lindelöf principle shows that f is a
polynomial of degree at most N1. ��
Remark 6.1 Note that using the same argument one can show that in conditions of
Proposition 6.1 the polynomials are dense in L2(T , μ) whenμn = |tn|−N |A′(tn)|−2
and N is sufficiently large.

Example 6.1 One can easily give examples of localization of type 2 choosing the
measure μ1 on T1 to be sufficiently small. The spaceH(T ,A,μ) has localization of
type 2 in all cases given below

(i) Let T2 = {|n|α signn}n∈Z, α > 1, let A2(z) = ∏
tn∈T2(1 − z/tn), and let

T1 = {ikβ}k≥1, 0 < β < α. Put

μn =
{
|tn|N |A′2(tn)|−2, tn ∈ T2,
e−|tn|γ , tn ∈ T1,

where N > 0 and γ > 1/2 for 0 < β ≤ 1/2, while for β > 2 we assume
γ > 1/β. Density of polynomials in L2(T1, μ̃1), μ̃1 =∑

tn∈T1 |A′2(tn)|2μnδtn ,
follows from [10, Appendix 2].

(ii) Let T2 = Z∪iZ,A(z) = z−1 sin(πz) sin(πiz), and let T1 = eiπ/4(Z∪iZ)\{0}.
ForM,N ∈ N, put

μn =
{
|tn|Me−2π |tn|, tn ∈ T2,
|tn|−Ne−(2

√
2+2)π |tn|, tn ∈ T1.

(iii) Let T2 = Z + iZ, A(z) = σ(z), and let T1 = Z + iZ + 1/2. For N ∈ N and
γ > 2, put

μn =
{
|tn|N |σ ′(tn)|−2, tn ∈ T2,
e−|tn|γ , tn ∈ T1.
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Radially Weighted Besov Spaces
and the Pick Property

Alexandru Aleman, Michael Hartz, John E. McCarthy, and Stefan Richter

Abstract For s ∈ R the weighted Besov space on the unit ball Bd of Cd is defined
by

Bs
ω = {f ∈ Hol(Bd ) :

∫
Bd

|Rsf |2ωdV <∞}.

Here Rs is a power of the radial derivative operator R = ∑d
i=1 zi ∂

∂zi
, V denotes

Lebesgue measure, and ω is a radial weight function not supported on any ball of
radius< 1.

Our results imply that for all such weights ω and ν, every bounded column
multiplication operatorBs

ω → Bt
ν⊗�2 induces a bounded rowmultiplierBs

ω⊗�2 →
Bt
ν . Furthermore we show that if a weight ω satisfies that for some α > −1 the ratio

ω(z)/(1 − |z|2)α is nondecreasing for t0 < |z| < 1, then Bs
ω is a complete Pick

space, whenever s ≥ (α + d)/2.
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1 Introduction

Let d ∈ N. In this paper we will address certain questions about functions and
multipliers in weighted Besov Hilbert spaces of analytic functions in the unit ball
Bd = {z ∈ C

d : |z| < 1}. In particular, we will show that results about multipliers
in standard and Bekollé weighted Besov spaces of [17] and [9] extend to hold for all
radial weights, and we will provide simple, but general conditions on radial weight
functionsω that imply that all results of [4] can be applied to such a weighted Besov
space.

We will use V to denote Lebesgue measure on C
d restricted to Bd , normalized

so that V (Bd ) = 1. A non-negative integrable function ω on Bd is called a radial
weight, if for each 0 < r < 1 the value ω(rz) is independent of z ∈ ∂Bd and the
non-degeneracy condition

∫
|z|>r

ωdV > 0 for each 0 < r < 1 (1.1)

holds. It is easily checked that for radial weights the weighted Bergman space
L2
a(ω) = L2(ωdV ) ∩ Hol(Bd ) is closed in L2(ωdV ), and that point evaluations

f → f (z) are bounded on L2
a(ω) for each z ∈ Bd .

We now fix a radial weight ω. Then we have

‖f ‖2
L2
a(ω)
=

∫
Bd

|f |2ωdV =
∑
n≥0
‖fn‖2L2

a(ω)
,

where f = ∑
n≥0 fn is the decomposition of the analytic function f into a sum of

homogeneous polynomials fn of degree n. We associate a one-parameter family of
weighted Besov spaces {Bs

ω}s∈R with ω as follows:

‖f ‖2Bs
ω
= ‖ω‖L1(V )|f (0)|2 +

∞∑
n=1

n2s‖fn‖2L2
a(ω)

(1.2)

Bs
ω = {f ∈ Hol(Bd ) : ‖f ‖2Bs

ω
<∞}.

Let R =∑d
i=1 zi ∂

∂zi
denote the radial derivative operator, then Rf =∑

n≥1 nfn.
More generally, for each nonzero s ∈ R we may consider the “fractional”
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transformation Rs :∑n≥0 fn →
∑

n≥1 nsfn. It is thus clear that

Bs
ω = {f ∈ Hol(Bd) : Rsf ∈ L2

a(ω)},

‖f ‖2Bs
ω
= ‖ω‖L1(V )|f (0)|2 +

∫
Bd

|Rsf |2ωdV.

One checks that (1.1) implies that each Bs
ω is a Hilbert space, and point evaluations

for all points in Bd are bounded. A spaceH of analytic functions that occurs as one
of the spaces Bs

ω for a radial weight ω and some s ∈ R will be called a weighted
Besov space.

If ω(z) = 1, s ∈ R, and f ∈ Hol(Bd ), then f ∈ Bs
ω if and only if Rsf ∈ L2

a ,
the unweighted Bergman space. Thus, in this case the collection Bs

ω consists of

standard weighted Bergman or Besov spaces. We have Bd/2
1 = H 2

d , the Drury–

Arveson space, B1/2
1 = H 2(∂Bd), the Hardy space of the Ball, and for s < 1/2

we obtain the weighted Bergman spaces Bs
1 = L2

a((1 − |z|2)−2sdV ), where all
equalities are understood to mean equality of spaces with equivalence of norms.
These spaces have been extensively studied in the literature. We refer the reader to
[25], where the Lp-analogues of these spaces were considered as well. If d = 1 and
s = 1, then B1

1 = D, the classical Dirichlet space of the unit disc. More generally,
if d = 1 and s > 1/2, then these spaces are referred to as Dirichlet-type spaces, see
[8].

If ω(z) = (1−|z|2)α for some α > −1, thenω is called a standardweight, and we

obtain the same spaces as for ω0 = 1, but with a shift in indices: Bs
ω = B

s− α
2

1 . This

can be verified by using polar coordinates and the asymptotics
∫ 1
0 t

n(1 − t)αdt =
�(n+1)�(α+1)
�(n+α+2) ≈ n−α−1, which follows, e.g., from Stirling’s formula. We refer the

reader to Sect. 2 of the current paper for more detail on further calculations of this
type.

Observe that for standard weights ω the spaces Bs
ω are weighted Bergman spaces

for all s ≤ 0. More generally, the following will be Theorem 2.4.

Theorem 1.1 Let ω be a radial weight, let s > 0, and for z ∈ Bd define

ωs(z) = 1

d
|z|2−2d

∫
|w|≥|z|

(|w|2 − |z|2)2s−1
�(2s)

ω(w)dV (w).

Then ωs is a weight and Bt
ω = Bt+s

ωs
with equivalence of norms for all t ∈ R. In

particular, L2
a(ωs) = B−sω with equivalence of norms.

One checks that for all s ≤ 0 and all radial weights ω, we haveMult(Bs
ω) = H∞.

Here H∞ denotes the bounded analytic functions on Bd , and

Mult(B) = {ϕ ∈ Hol(Bd ) : ϕf ∈ B for all f ∈ B}

denotes the multiplier algebra of B.
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In this paper we are interested in Mult(Bs
ω) for s > 0. In general in those cases it

turns out that Mult(Bs
ω) is a proper subset of H

∞, but it is worthwhile to note that
there are radial weights ω such that Bs

ω = L2
a(μs) for each s ∈ R for some weight

μs and hence Mult(Bs
ω) = H∞ holds for all s ∈ R. The weight ω(z) = e

−1
1−|z|2 is

an example of a weight where this happens. Indeed, in this case for each positive
integerN the function (1− |z|2)−4Nω(z) is also integrable, and in Example 4.9 we
will show that RNf ∈ L2

a(ω) if and only if

∫
Bd

|f |2(1− |z|2)−4NωdV <∞.

By Theorem 1.1 this implies that Bs
ω is a weighted Bergman space for each s ≤ N ,

and since N was arbitrary it follows that the same is true for all s ∈ R.
IfH ⊆ Hol(Bd ) is a Hilbert function space and if E is an auxiliary Hilbert space,

then the identification of elementary tensors of the type f ⊗ x, f ∈ H, x ∈ E
with E-valued functions f (·)x extends to define a Hilbert space H(E) of E-valued
analytic functions on Bd that is isomorphic to H ⊗ E . If H and K are two
Hilbert spaces of analytic functions on Bd and if E and F are auxiliary Hilbert
spaces, then Mult(H(E),K(F)) will denote the multipliers from H(E) to K(F),
i.e., those functions � : Bd → B(E,F) such that F → M�F, (M�F)(z) =
�(z)F (z) defines a bounded linear transformation from H(E) to K(F). We will
write Mult(H,K) = Mult(H(C),K(C)) for the scalar-valued multipliers.

In the paper [4], an important role was played by the multiplier inclusion
condition. For a weighted Besov space BN

ω , where N ∈ N, this condition means
that

Mult(BN
ω ,B

N
ω (�

2)) ⊆ Mult(BN−1
ω ,BN−1

ω (�2)) ⊆ · · · ⊆ Mult(B0
ω,B

0
ω(�

2))

with continuous inclusions. We established this condition for the Drury–Arveson
space and a few other standard weighted Besov spaces using an elementary method.
It is also possible to use the complex method of interpolation to establish inclusions
of multiplier spaces. Indeed, if s, t, α ∈ R with s ≤ t and α ≥ 0, then it is shown in
[9] that for Bekollé–Bonami weights ω one has

Mult(Bt+α
ω , Bs+α

ω ) ⊆ Mult(Bt
ω, B

s
ω).

Note that for Bekollé–Bonami weights that are not necessarily radial the following
definition is used for the weighted Besov space:

Bs
ω = {f ∈ Hol(Bd ) : RNf ∈ L2

a((1− |z|2)2(N−s)ω(z))},

where N is any non-negative integer ≥ s. For radial weights satisfying a Bekollé–
Bonami condition this coincides with the definition used here since in that case
(1− |z|2)2(N−s)ω ≈ ωN−s , see, e.g., Lemmas 4.2 and 4.7.
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In this paper, we use a third method to establish a general result about inclusions
of multiplier spaces of unitarily invariant Hilbert function spaces on Bd , using
the fact that multiplication operators are triangular with respect to the common
orthogonal basis of monomials. In particular, we obtain the following theorem,
which shows that the multiplier inclusion condition holds whenever ω is a radial
weight. It is proved in Corollary 3.8 (also see Corollary 3.4).

Theorem 1.2 Let ω and ν be radial weights in Bd and let s, t, s′, t ′ ∈ R with t ≤ s

and t ′ − s′ ≤ t − s. Then for any pair E,F of separable Hilbert spaces,

Mult(Bs
ω(E), Bs ′

ν (F)) ⊆ Mult(Bt
ω(E), Bt ′

ν (F))

and the inclusion is contractive.

Given a sequence � = {ϕ1, ϕ2, . . .} ⊆ Mult(H,K) of multipliers, we can
consider the column operator �C : h → (ϕ1h, ϕ2h, . . .)

T and the row operator
�R : (h1, h2, . . .)T →∑

i≥1 ϕihi . Here for ease of writing we have used (h1, . . .)T
to denote the transpose of a row vector. We write MC(H,K) for the set of those
sequences�whose column operator�C is bounded, that is,�C ∈ Mult(H,K(�2)).
Similarly, let MR(H,K) denote all sequences � for which the row operator is
bounded, i.e., �R ∈ Mult(H(�2),K). We will abbreviate the notations to MR(H)
andMC(H), if H = K.

Trent showed that for the Dirichlet space D of the unit disc D ⊆ C one has the
continuous inclusion MC(D) ⊆ MR(D) and the norm of the inclusion is at most√
18, see Lemma 1 of [24]. The results in [4] establish that MC(H) ⊆ MR(H)

for certain standard weighted Besov spaces H including the Drury–Arveson space.
Using Theorem 1.2, we now obtain a more general result, which is Theorem 3.9.

Theorem 1.3 Let ω and ν be radial weights in Bd , and let s, t ∈ R. Then

MC(Bs
ω, B

t
ν) ⊆MR(Bs

ω, B
t
ν)

and the inclusion is continuous.

It is known and easy to verify that MC(L2
a(ω)) = MR(L2

a(ω)) = H∞(�2),
where

H∞(�2) = {(ϕ1, ϕ2, . . .) : ϕj ∈ H∞ and sup
z∈Bd

∑
j

|ϕj(z)|2 <∞}.

One application of Theorem 1.3 is to provide another proof of the characteriza-
tion of interpolating sequences established in [3] in the case of radially weighted
Besov spaces with the complete Pick property. The proof in [3] uses the Marcus–
Spielman–Srivastava theorem [15], but as explained in Remark 3.7 in [3], this
theorem can be avoided for spacesH with the property thatMC(H) ⊆ MR(H).
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A Hilbert function space H is a Hilbert space of complex-valued functions on a
setX such that point evaluations for points inX define continuous linear functionals
on H. Every Hilbert function space H has a reproducing kernel, i.e., a function
k : X × X → C such that f (w) = 〈f, kw〉 for all w ∈ X, where kw(z) = k(z,w).
We say that k is normalized, if there is a z0 ∈ X such that kz0 = 1.

By a normalized complete Pick kernel we mean a normalized reproducing kernel
of the form kw(z) = 1

1−uw(z) , where uw(z) is positive definite, i.e., whenever n ∈
N, z1, . . . , zn ∈ X, and a1, . . . , an ∈ C we have

∑
i,j aiajuzj (zi) ≥ 0. (Normally

complete Pick kernels are defined intrinsically, but by the McCullough–Quiggin
theorem they are precisely of this form. See [1, 16, 20].)

An important example of such a complete Pick kernel is the Szegő kernel
kw(z) = (1−wz)−1. It is the reproducing kernel for the Hardy spaceH 2 of the unit
discD. Many properties of the Hardy space carry over to other spaces with complete
Pick kernels—see [5] for some examples. We will say that a Hilbert function space
H is a complete Pick space, if there is an equivalent norm on the space such that
the reproducing kernel for that norm is a normalized complete Pick kernel. In [5] it
is proven that complete Pick spaces H are contained in the Smirnov class N+(H)
associated withH, where

N+(H) = {f = ϕ

ψ
: ϕ,ψ ∈ Mult(H), ψ cyclic inH}

and a multiplier ψ is called cyclic if ψH is dense inH.
It is known that for all s ≥ d/2 the spaces Bs

1 are complete Pick spaces (this
can be seen as in Corollary 7.41 of [2]). In particular, for d/2 ≤ s < (d + 1)/2
the space Bs

1 has reproducing kernel 1
(1−〈z,w〉)d+1−2s (up to equivalence of norms),

which can be seen to be a complete Pick kernel by consideration of the binomial
series coefficients. On the other hand, if s < d/2, then Bs

1 is not a complete Pick
space, because Bs

1 � N+(Bs
1). Indeed, in this case Bs

1 has a reproducing kernel of
the type 1

(1−〈z,w〉)γ for some γ > 1. If d = 1, then Bs
1 is a weighted Bergman space,

which will contain functions that are not in the Nevanlinna class, and hence cannot
be ratios of multipliers. The same is true if d > 1. In that case the d = 1 result
implies that there are functions of the form f (z1, 0, . . . , 0) in Bs

1 that are not the
ratio of two bounded functions.

An observation that was shared years ago with us by Serguey Shimorin is that if
the Cauchy dual of a space of functions in the unit disc is a weighted Bergman space,
then the original space is a complete Pick space. An analogue of this observation
holds for functions in Bd ; for radially symmetric spaces, this is Lemma 5.1. For
many radially symmetric weighted Besov spaces, this result leads to a condition
which is easy to check.

Theorem 1.4 Let α > −1, 0 ≤ r0 < 1, and let ω be a radial weight such that
ω(z)

(1−|z|2)α is nondecreasing in |z| for r0 < |z| < 1. Then Bs
ω is a complete Pick space

for all s ≥ α+d
2 .
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This will follow from Theorem 5.2, which holds for weights that satisfy a related,
but weaker condition.

If H and K are two Hilbert function spaces on the same set, then we will write
H = K to mean thatH andK agree as vector spaces and their norms are equivalent,
but not necessarily equal. If ‖ · ‖1 and ‖ · ‖2 are two norms, then we will write
‖f ‖1 ≈ ‖f ‖2 to denote that the norms are equivalent. Similarly, if an, bn ≥ 0, then
an ≈ bn will mean that there are constants c, C > 0 such that can ≤ bn ≤ Can
holds for all n ∈ N.

The remainder of this paper is organized as follows. In Sect. 2, we collect basic
facts about radially weighted Besov spaces and then prove Theorem 1.1. In Sect. 3,
we prove several results about inclusions of multiplier algebras and of multiplier
spaces. In particular, we show Theorems 1.2 and 1.3. Section 4 is devoted to the
study of several finer properties of weights. In particular, we introduce weakly
normal weights, which will be important in the proof of Theorem 1.4. Section 5
then contains the proof of Theorem 1.4. In the final Sect. 6, we use the methods
developed in this paper to establish some additional properties of multipliers of
weighted Besov spaces.

2 Radially Weighted Besov Spaces and Index Shifts

2.1 Basics About Radially Weighted Besov Spaces

Let ω be a radial weight on Bd . We will temporarily write uω(r) = ω(r, 0, . . . , 0)
if r ∈ (0, 1). Let σ be Lebesgue measure on ∂Bd , normalized so that σ(∂Bd ) = 1.
Then for any non-negative measurable function h on Bd we have the change of
variables

∫
Bd

hωdV =
∫ 1

0

(∫
∂Bd

h(rw)dσ(w)

)
uω(r)2dr2d−1dr.

In particular, if f ∈ Hol(Bd ) with homogeneous expansion f =∑∞
n=0 fn, then

∫
Bd

|f |2ωdV =
∞∑
n=0

an(ω)‖fn‖2H 2(∂Bd)
, (2.1)

where

an(ω) = 2d
∫ 1

0
r2n+2d−1uω(r)dr =

∫ 1

0
tnv(t)dt.

Here we used v(t) is the product d · td−1 · uω(√t) and note that v ∈ L1[0, 1]. It is
clear that this process can be reversed and any positive L1[0, 1]-function v can be
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used as above to associate a function ω on Bd . The non-degeneracy condition (1.1)
is equivalent to

∫ 1

t

v(x)dx > 0 for all t < 1. (2.2)

We will say that a non-negative function v ∈ L1[0, 1] is a weight if (2.2) holds.
The following elementary lemma about moments of weights will be useful in

several places.

Lemma 2.1 Let v,w ∈ L1[0, 1] be two non-negative weights such that
limt↗1

v(t)
w(t)
= 1 (with the convention 0/0 = 1). Then

lim
n→∞

∫ 1
0 t

nv(t) dt∫ 1
0 t

nw(t) dt
= 1.

Proof By symmetry, it suffices to show that

lim sup
n→∞

∫ 1
0 t

nv(t) dt∫ 1
0 t

nw(t) dt
≤ 1.

To this end, let r ∈ (0, 1) be such that v(t)
w(t)

is finite for t ∈ [r, 1]. Then
∫ 1

0
tnw(t) dt ≥

∫ 1

r

tnw(t) dt ≥ rn/2
∫ 1

√
r

w(t) dt,

where the last quantity is strictly positive by (2.2). Moreover,

∫ 1

0
tnv(t) dt =

∫ r

0
tnv(t) dt +

∫ 1

r

tnv(t) dt

≤ rn
∫ 1

0
v(t) dt + sup

x∈[r,1]
v(x)

w(x)

∫ 1

r

tnw(t) dt.

Therefore,

∫ 1
0 t

nv(t) dt∫ 1
0 t

nw(t) dt
≤ sup

x∈[r,1]
v(x)

w(x)
+ rn/2

∫ 1
0 v(t) dt∫ 1√
r w(t) dt

,
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so that

lim sup
n→∞

∫ 1
0 t

nv(t) dt∫ 1
0 t

nw(t) dt
≤ sup

x∈[r,1]
v(x)

w(x)
.

This is true for all r sufficiently close to 1. The result now follows by taking the
limit r ↗ 1. �

Let now ω be a radial weight in Bd . We will use the moments an(ω) =∫ 1
0 t

nv(t)dt to express the norm of Bs
ω. For f ∈ Hol(Bd ) we will continue to write

f =∑
fn for its expansion into a sum of homogeneous polynomials.

Let s ∈ R. Comparison of (1.2) and (2.1) shows that

‖f ‖2Bs
ω
= a0(ω)|f (0)|2 +

∞∑
n=1

n2san(ω)‖fn‖2H 2(∂Bd)
. (2.3)

Since RNf = ∑
n≥0 nNfn it is clear that for each s ∈ R we have f ∈ Bs

ω, if and
only if RNf ∈ Bs−N

ω .
We also remark that the reproducing kernel of Bs

ω is of the form

kw(z) =
∞∑
n=0

bn〈z,w〉n,

where for n ≥ 1

bn = ||zn1||−2Bs
ω
= n−2san(ω)−1‖zn1‖−2H 2(∂Bd )

≈ n−2s+d−1an(ω)−1.

It follows from Lemma 2.1 that
∫ 1
0 t

n+1v(t)dt∫ 1
0 t

nv(t)dt
→ 1 as n → ∞ for any weight

v ∈ L1[0, 1]. Hence, limn→1 bn/bn+1 = 1. This condition is frequently useful
in operator theoretic contexts. For instance, it implies that the tuple (Mz1 , . . . ,Mzd )

of multiplication operators by the coordinate functions is essentially normal and has
essential Taylor spectrum ∂Bd , see Theorem 4.5 of [12].

2.2 Index Shift

Recall from the Introduction that Bs
1 = B

s+ α
2

ωα for all s ∈ R and α > −1, where
ωα(z) = (1− |z|2)α is a standard weight. We now introduce a generalization of this
procedure which will allow us to shift the index s of the space Bs

ω for more general
radial weights ω.
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We saw in Sect. 2.1 that by a change to polar coordinates any radial weight ω on
Bd is associated with a non-negative function v ∈ L1[0, 1]. More generally, let μ
be a finite Borel measure on [0, 1]. For x > 0 consider

∫ 1

0

∫
[t,1]

(s − t)x−1dμ(s)dt =
∫
[0,1]

∫ s

0
(s − t)x−1dtdμ(s)

=
∫
[0,1]

sx

x
dμ(s) <∞.

Thus, for all x > 0 we can define a non-negativeL1[0, 1]-function vx by

vx(t) =
∫
[t,1]

(s − t)x−1

�(x)
dμ(s), t ∈ [0, 1).

Here �(x) denotes the Gamma function. It is easy to check that the functions vx
obey the semigroup law (vx)y = vx+y for all x, y > 0. We also remark that if
v1(t) > 0 for all r ∈ (0, 1), then vx satisfies (2.2) for all x > 0.

The following lemma will be used repeatedly. It will allow us to perform the
desired index shift for Bs

ω (see Theorem 2.4 below).

Lemma 2.2 Let μ be a finite positive Borel measure on [0, 1], for x > 0 let vx
be the function associated with μ as above, and assume that v1(t) > 0 for all
0 ≤ t < 1.

Then for each x > 0 we have

lim
n→∞

nx
∫ 1
0 t

nvx(t)dt∫
[0,1] tndμ

= 1.

Proof We start with the observation that for any integer n > 0 we have∫ 1
0 t

n−1 (log(1/t))x−1 dt = n−x�(x). This can easily be verified with the

substitution t = e− u
n (see [14], p. 56). Next we define the auxiliary function

v∗x (t) =
∫
[t,1]

(
log s

t

)x−1
�(x)

dμ(s).

An application of Fubini’s theorem and the earlier observation shows that

nx
∫ 1

0
tn−1v∗x(t)dt =

∫
[0,1]

tndμ(t), n = 1, 2, . . .

So in order to prove the Lemma, it suffices to show that

lim
n→∞

∫ 1
0 t

n−1v∗x (t)dt∫ 1
0 t

nvx(t)dt
= 1.
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Since v1(t) > 0 for all t ∈ (0, 1), the weights vx and v∗x satisfy (2.2), so the last
statement follows from Lemma 2.1 and the observation that limt↗1

vx(t)
v∗x (t) = 1 by

elementary properties of the natural logarithm. �
We will now again restrict attention to absolutely continuous measures dμ =

v(t)dt . In this case, it makes sense to define v0(t) = v(t). We also write

v̂(t) = v1(t) =
∫ 1

t

v(x)dx.

Note that in this case vx+1(t) =
∫ 1
t
vx(s)ds = v̂x(t) is valid for all x ≥ 0, and thus

the functions vx get smoother as x increases. They also decay faster near 1. The
estimate in the following lemma is obvious.

Lemma 2.3 If v ∈ L1[0, 1] is positive, and vx is as above, then for all x, α > 0 we
have vx+α(t) ≤ �(x)

�(x+α)(1− t)αvx(t) for all t ∈ [0, 1).
We now investigate this procedure on the level of radial weights in the ball. Let

ω be a radial weight in Bd . For each x ≥ 0 we define a radial weight ωx by

ωx(z) = 1

d
|z|2−2d

∫
|w|≥|z|

(|w|2 − |z|2)2x−1
�(2x)

ω(w)dV (w).

Then ωx is the radial weight that corresponds to the L1[0, 1]-function v2x that is
associated with v as in Lemma 2.2.

Theorem 2.4 Let ω be a radial weight and let x ≥ 0.
Then ωx is a weight,

‖f ‖2
B−xω
≈

∫
Bd

|f |2ωxdV,

and for each s ∈ R we have Bs
ω = Bs+x

ωx
with equivalence of norms.

Proof Since ω is a radial weight, so is ωx . Lemma 2.2 implies that n2xan(ωx) ≈
an(ω) as n→∞. Now the Theorem follows from (2.3). �
For later reference we note that Lemma 2.3 applies and we conclude that for all
x > 0 and α ≥ 0

ωx+α(z)
(1− |z|2)2α ≤

�(2x)

�(2x + 2α)
ωx(z) for all z ∈ Bd . (2.4)
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3 Multiplier Inclusions

3.1 Inclusion of Multiplier Algebras

Let ω be a radial weight in Bd and let N ∈ N. A crucial condition in [4] is the
multiplier inclusion condition for BN

ω , which demands that

Mult(BN
ω ,B

N
ω (�

2)) ⊆ Mult(BN−1
ω ,BN−1

ω (�2)) ⊆ · · · ⊆ Mult(B0
ω,B

0
ω(�

2))

(3.1)
with continuous inclusions. In this section we will show that all weighted Besov
spaces defined by radial weights satisfy this multiplier inclusion condition. In fact,
we will prove a more general result about inclusion of the multipliers between
spaces of analytic functions on the unit ball with unitarily invariant kernels.

We first recall a few notions from the theory of operator spaces. Let H be a
Hilbert space and let M ⊆ B(H) be a subspace. For n ∈ N, let Mn(M) denote
the space of all n × n matrices with entries in M. The natural identification of
Mn(B(H)) with B(Hn) allows us to endow each space Mn(M) with a norm.
Suppose now that K is another Hilbert space and that � : M → B(K) is a linear
map. Then for each n ∈ N, we obtain an induced linear map

�(n) :Mn(M)→ Mn(B(K)), [mij ] �→ [�(mij )].

In this setting, we say that � is completely contractive if each map �(n) is
contractive.

In Sect. 3.2 we will see that this notion has a natural analogue for operators
between possibly different Hilbert spaces, and then we will mostly be interested in
the case whenM = Mult(H,K) for Hilbert function spaces H and K. In this case,
Mn(Mult(H,K)) can be identified with Mult(H(Cn),K(Cn)), so this approach
allows us to deal with operator-valued multipliers.

We begin with the following result, which is essentially due to Kacnelson [13],
see also [11, Theorem 2.1]. For completeness, we provide a proof. If H is a Hilbert
space with an orthogonal basis (en), let T (K) denote the algebra of all bounded
lower triangular operators on K with respect to (en).

Lemma 3.1 (Kacnelson) LetH be a Hilbert space with orthonormal basis (en), let
(dn) be a nonincreasing sequence of strictly positive numbers and let D denote the
diagonal operator onH with diagonal (dn), and letD−1 be its possibly unbounded
inverse. Then for every T ∈ T (H), the densely defined operatorDTD−1 is bounded
and the homomorphism

T (H)→ T (H), T �→ DTD−1,

is completely contractive.
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Proof If Pn denotes the orthogonal projection onto the linear span of e0, . . . , en,
then Pn commutes with every diagonal operator. Thus, a straightforward approxi-
mation argument shows that it suffices to prove the following assertion: For every
n ∈ N and every nonincreasing sequence of strictly positive numbers d0, . . . , dn,
the map

� : Tn+1 �→ Tn+1, T �→ diag(d0, . . . , dn)T diag(d0, . . . , dn)
−1,

is completely contractive. Here, Tn+1 denotes the algebra of all lower triangular
(n+1)×(n+1)matrices, and diag(d0, . . . , dn) is the diagonal matrix with diagonal
d0, . . . , dn.

To this end, let d0, . . . , dn be nonincreasing strictly positive numbers. By
multiplying the sequence d0, . . . , dn with d−10 , we may assume that d0 = 1. For
j ≥ 1, let αj = dj/dj−1 and α = (α1, . . . , αn). Then dj = α1 . . . αj for j ≥ 1 and
αj ∈ (0, 1] by assumption.

We will use the maximum modulus principle to show that the map � is
completely contractive. For z = (z1, . . . , zn) ∈ (C \ {0})n, define

D(z) = diag(1, z1, z1z2, . . . , z1z2 . . . zn).

In particular, D(α) = diag(d0, . . . , dn). If T = [tij ] ∈ Tn+1 and i ≥ j , then the
(i, j)-entry of D(z)T D(z)−1 is given by

z1z2 . . . zi tij z
−1
1 z−12 . . . z−1j = tij zj+1 . . . zi .

Since T is lower triangular, we therefore conclude that the map z �→ D(z)T D(z)−1
extends to an analyticMn+1-valued map on Cn.

Let [Tij ] ∈ Mr(Tn+1). By the maximum modulus principle,

||[�(Tij )]|| = ||[D(α)TijD(α)−1]|| ≤ sup
z∈Tn
||[D(z)TijD(z)−1]||.

But if z ∈ T
n, thenD(z) is unitary, hence

||[D(z)TijD(z)−1]|| = ||(D(z)⊗ Ir )[Tij ](D(z)⊗ Ir )
−1|| = ||[Tij ||,

which finishes the proof. �
The following corollary is merely a reformulation of Lemma 3.1.

Corollary 3.2 Let K be a Hilbert space with an orthonormal basis (en). Suppose
that H is another Hilbert space such that H ⊆ K as vector spaces, such that (en)
is an orthogonal basis forH and such that the sequence (||en||H) is nondecreasing.
Then T (H) ⊆ T (K), and the inclusion is a complete contraction.
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Proof Observe that every operator in T (H) is at least densely defined on K. Let D
be the diagonal operator onH with diagonal (||en||−1H ). ThenD extends to a unitary
operatorK→ H. Thus, if [Tij ] ∈ Mr(T (H)), then by Lemma 3.1,

||[Tij ]||B(Kr ) = ||[DTijD−1]||B(Hr ) ≤ ||[Tij ]||B(Hr ).

This shows that T (H) ⊆ T (K) completely contractively. �
Let H be a reproducing kernel Hilbert space on D with a reproducing kernel of

the form

kw(z) =
∞∑
n=0

anzw
n,

where an > 0 for all n ∈ N0. Then

||z||2Mult(H) = sup
n∈N0

an

an+1
.

This motivates the condition in the following result.

Proposition 3.3 Let H and K be two reproducing kernel Hilbert spaces on Bd ,
d ∈ N, with reproducing kernels kw(z) = ∑∞

n=0 an〈z,w〉n and �w(z) =∑∞
n=0 bn〈z,w〉n, respectively. Assume that an, bn > 0 for all n ∈ N0. If

bn

bn+1
≤ an

an+1
for all n ∈ N0,

thenMult(H) ⊆ Mult(K), and the inclusion is a complete contraction.

Proof Observe thatH andK each have orthonormal bases consisting of monomials.
If we order the monomials such that their degrees are nondecreasing, then every
multiplication operator onH is lower triangular with respect to such an orthonormal
basis. Moreover, if p is a monomial of degree n with ||p||K = 1, then

||p||H =
√
bn

an
.

The assumption implies that the sequence
√
bn/an is nondecreasing. In particular,

there exists a constant C > 0 such that an ≤ Cbn, so that H is densely contained
in K and every multiplication operator on H is at least densely defined on K. An
application of Corollary 3.2 now shows that every multiplication operator on H is
bounded on K, and hence a bounded multiplication operator, and that the inclusion
Mult(H) ⊆ Mult(K) is a complete contraction. �
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We obtain the following consequence for multiplier algebras of weighted Besov
spaces.

Corollary 3.4 Let ω be a radial weight in Bd and let s, t ∈ R with t ≤ s. Then

Mult(Bs
ω) ⊆ Mult(Bt

ω)

and the inclusion is a complete contraction. In particular,

Mult(Bs
ω, B

s
ω(�2)) ⊆ Mult(Bt

ω, B
t
ω(�2))

and the inclusion is a contraction.

In particular, by taking s = n and t = n − 1 for n = 1, 2.., N we see that
any weighted Besov space H = BN

ω associated with a radial weight satisfies the
multiplier inclusion condition (3.1).

Proof We saw in Sect. 2 that Bs
ω and Bt

ω have reproducing kernels of the form

kw(z) =
∞∑
n=0

an〈z,w〉n and �w(z) =
∞∑
n=0

bn〈z,w〉n,

respectively, where an = ||zn1||−2Bs
ω
and bn = ||zn1 ||−2Bt

ω
. From Eq. (2.3), we deduce that

for n ≥ 1,

an

bn
= n2(t−s)

and a0/b0 = 1. Since t ≤ s, the sequence (an/bn) is nonincreasing, so that the
result is a special case of Proposition 3.3. �

It was shown in [4, Theorem 1.5] that the multiplier inclusion condition (3.1)
for BN

ω implies that every bounded column multiplication operator on BN
ω is also a

bounded row multiplication operator. Moreover, by Theorem 2.4, each Besov space
Bs
ω can also be regarded as a space of the form BN

ω̃ for a suitable radial weight ω̃
and N ∈ N. Thus, we obtain the following consequence.

Corollary 3.5 Let ω be a radial weight in Bd and let s ∈ R. Then

MC(Bs
ω) ⊆MR(Bs

ω)

and the inclusion is continuous.

We do not know if the inclusion in the preceding corollary is contractive, even
in the case of the Drury–Arveson space. Even though Corollary 3.4 shows that the
multiplier inclusion condition (3.1) holds with contractive inclusions, [4, Theorem
1.5] only yields boundedness of the inclusionMC(BN

ω ) ⊆ MR(BN
ω ).
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3.2 Inclusion of Multiplier Spaces

We also require a version of the preceding result for multipliers between different
spaces. Thus, we seek conditions that imply inclusions of the form Mult(H,H′) ⊆
Mult(K,K′). The proofs based on Kacnelson’s lemma (Lemma 3.1) generalize
to this setting. The results in this subsection contain the results of the preceding
subsection as a special case. But for the sake of readability, we chose to treat
inclusions of multiplier algebras first.

We begin with a version of Corollary 3.2 for four Hilbert spaces. First of all,
observe that if H and H′ are Hilbert space, then B(H,H′) can be identified with a
subspace of B(H ⊕H′), hence the notion of a completely contractive map applies
in this setting as well. Equivalently, Mr(B(H,H′)) is normed by means of the
identification with B(Hr , (H′)r ). If H and H′ are Hilbert spaces with orthogonal
bases (en) and (e′n), respectively, let T (H,H′) ⊆ B(H,H′) denote the space of all
operators that are lower triangular with respect to (en) and (e′n). Thus, an operator
T ∈ B(H,H′) belongs to T (H,H′) if and only if

〈T ei, e′j 〉 = 0 whenever j > i.

Corollary 3.6 Let K and K′ be Hilbert spaces with orthonormal bases (en) and
(e′n), respectively. Let H andH′ be another pair of Hilbert spaces such that

• H ⊆ K andH′ ⊆ K′ as vector spaces,
• (en) is an orthogonal basis forH and (e′n) is an orthogonal basis forH′,
• the sequence (||en||H) is nondecreasing, and
• ||en||H ≤ ||e′n||H′ for all n ∈ N.

Then T (H,H′) ⊆ T (K,K′) and the inclusion is completely contractive.

Proof Every operator in T (H,H′) is at least a densely defined operator from K to
K′. Our goal is to show that these operators are bounded.

In the proof, we will require the following diagonal operators. Let D be the
diagonal operator on H with diagonal (||en||−1H ). Similarly, let D′ be the diagonal

operator onH′ with diagonal (||e′n||−1H′ ). Observe thatD extends to a unitary operator
from K to H and D′ extends to a unitary operator from K′ to H′. Moreover, let
U ∈ B(H′,H) be the unique unitary operator with

Ue′n =
||e′n||H′
||en||H en (n ∈ N).

Suppose now that [Tij ] ∈ Mr(T (H,H′)). Then by Lemma 3.1, we find that

‖[Tij ]‖B(Kr ,(K′)r ) = ‖[UD′TijD−1]‖B(Hr ) = ‖[DD−1UD′TijD−1]‖B(Hr )

≤ ‖[D−1UD′Tij ]‖B(Hr ).
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Observe that

D−1UD′e′n = en = USe′n (n ∈ N),

where S is the diagonal operator onH′ with diagonal ( ||en||H||e′n||H′ ). By assumption, this

operator is a contraction. From the estimate above and the identityD−1UD′ = US,
we infer that

‖[Tij ]‖B(Kr ,(K′)r ) ≤ ‖[USTij ]‖B(Hr ) = ‖[STij ]‖B(Hr ,(H′)r )
≤ ||[Tij ]||B(Hr ,(H′)r ),

which finishes the proof. �
The following result is a generalization of Proposition 3.3.

Proposition 3.7 Let d ∈ N and let H,H′,K,K′ be reproducing ker-
nel Hilbert spaces on Bd with respective reproducing kernels kw(z) =∑∞

n=0 an〈z,w〉n, k′w(z) =
∑∞

n=0 a′n〈z,w〉n, �w(z) =
∑∞

n=0 bn〈z,w〉n, and
�′w(z) =

∑∞
n=0 b′n〈z,w〉n. Suppose that for all n ∈ N0, the inequalities

an, a
′
n, bn, b

′
n > 0 and

bn

bn+1
≤ an

an+1

and

bn

an
≤ b′n
a′n

hold. Then

Mult(H,H′) ⊆ Mult(K,K′),

and the inclusion is completely contractive.

Proof This follows as in the proof of Proposition 3.3 from an application of
Corollary 3.6. Indeed, all four spaces have an orthogonal basis of monomials and
if we order the monomials such that their degrees are nondecreasing, then every
operator in Mult(H,H′) is lower triangular. Moreover, if p is a monomial of degree
n, then

||p||2H =
bn

an
||p||2K and ||p||2H′ =

b′n
a′n
||p||2K′,
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from which it readily follows that the last two conditions in Corollary 3.6 hold.

Finally, the assumptions imply that both sequences ( an
bn
) and (

a′n
b′n
) are bounded

above, so thatH ⊆ K andH′ ⊆ K′. �
The last result applies in particular to the spaces Bs

ω.

Corollary 3.8 Let ω and ν be radial weights in Bd and let s, t, s′, t ′ ∈ R with t ≤ s

and t ′ − s′ ≤ t − s. Then

Mult(Bs
ω, B

s ′
ν ) ⊆ Mult(Bt

ω, B
t ′
ν )

and the inclusion is completely contractive. In particular,

Mult(Bs
ω, B

s
ν(�2)) ⊆ Mult(Bt

ω, B
t
ν (�2))

and the inclusion is contractive.

Proof We apply Proposition 3.7 with H = Bs
ω,H′ = Bs ′

ν ,K = Bt
ω, and K′ = Bt ′

ν .
With notation as in that proposition, the argument in the proof of Corollary 3.4
shows that

an

bn
= n2(t−s)

for n ≥ 1 and a0/b0 = 1, so the sequence (an/bn) is nonincreasing as t ≤ s.
Similarly,

a′n
b′n
= n2(t

′−s ′)

for n ≥ 1 and a′0/b′0 = 1. Since t ′ − s′ ≤ t − s, we conclude that a′n/b′n ≤ an/bn
for all n ∈ N0, so the result is a special case of Proposition 3.7. �

We also obtain a multiplier space version of Corollary 3.5.

Theorem 3.9 Let ω and ν be radial weights in Bd , and let s, t ∈ R. Then

MC(Bs
ω, B

t
ν) ⊆MR(Bs

ω, B
t
ν)

and the inclusion is continuous.

Proof LetH = Bs
ω and K = Bt

ν . We will use [4, Theorem 4.2], according to which
the result follows from the multiplier inclusion condition for the pair (H,K). To
establish this property, by definition, we have to show that there are weights ω̃ and
ν̃ and N ∈ N such thatH = BN

ω̃ , K = BN
ν̃ (with equivalent norms) and

Mult(BN
ω̃ , B

N
ν̃ (�

2)) ⊆ Mult(BN−1
ω̃ , BN−1

ν̃ (�2)) ⊆ · · · ⊆ Mult(B0
ω̃, B

0
ν̃ (�

2))

with continuous inclusions.
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To this end, let x, y ≥ 0 be real numbers such that s + x = t + y ∈ N and let
N = s + x = t + y be this common value. Moreover, let ω̃ = ωx and ν̃ = νy . Then
by Theorem 2.4, we have H = BN

ω̃ and K = BN
ν̃ . The continuity of the inclusions

above now follows from Corollary 3.8, which concludes the proof. �

4 Weakly Normal Weights

In this section, we will study several finer properties of L1[0, 1] weights that will
translate to Hilbert space properties of the associated radially weighted Besov
spaces.

4.1 A Doubling Condition

Recall from Sect. 2.2 that if v ∈ L1[0, 1] is non-negative, then we defined for x > 0
a weight vx ∈ L1[0, 1] by

vx(t) =
∫
[t,1]

(s − t)x−1

�(x)
v(s)ds, t ∈ [0, 1)

and we also write v̂ = v1. We will now discuss a class of weights on [0, 1], where
one has an asymptotics of the type vx+α(t) ≈ (1 − t)αvx(t) for all t ∈ [0, 1] at
least when x ≥ 1. As in [19] we define the class D̂ by saying that a non-negative
integrable function v is in D̂ if v̂ is doubling near 1, i.e., if there is a constant c > 0
such that v̂(t) ≤ cv̂( 1+t2 ) for all t ∈ [0, 1). It is clear that if v ∈ D̂ is not identically
equal to 0, then it is a weight. For later reference we record the following elementary
lemma.

Lemma 4.1 If v ∈ L1[0, 1] is a weight, then v ∈ D̂ if and only if there is M > 1
such that

∫ 1

t

v̂(s)ds ≤ (1− t)v̂(t) ≤ M

∫ 1

t

v̂(s)ds.

Proof The inequality on the left is true for all v ≥ 0 since v̂ is nonincreasing. First
suppose that v̂ is doubling. Then there is a C > 0 such that v̂(t) ≤ Cv̂( 1+t2 ) for all
t ∈ [0, 1). Now fix t ∈ [0, 1), then

∫ 1

t

v̂(s)ds ≥
∫ (1+t )/2

t

v̂(s)ds

≥ v̂(
1+ t

2
)
1− t

2
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≥ v̂(t)
1 − t

2C
.

Next suppose that there is M > 1 such that (1 − t)v̂(t) ≤ M
∫ 1
t
v̂(s)ds for all

t ∈ [0, 1). Then one checks by taking a derivative that
∫ 1
t v̂(s)ds

(1−t )M is nondecreasing
and thus

v̂(t)

(1− t)M−1
≤ M

∫ 1
t
v̂(s)ds

(1− t)M

≤ M

∫ 1
1+t
2
v̂(s)ds

(1− 1+t
2 )M

≤ Mv̂(
1+ t

2
)

2M−1

(1− t)M−1
.

It follows that v̂ is doubling. �

Notice that for x > 0 one has v̂x(t) = vx+1(t) =
∫ 1
t

(s−t )x−1
�(x)

v̂(s)ds and with that it

is easy to show that if v ∈ D̂, then vx ∈ D̂ for each x > 0. Then the previous lemma
along with Lemma 2.3 implies that for every v ∈ D̂ we have vx+1(t) ≈ (1− t)vx(t)
for every x ≥ 1. Since v̂ = v1 we inductively obtain vn+1(t) ≈ (1 − t)nv̂(t) for
each n ∈ N. But then we have for 0 ≤ x ≤ n that

1 ≥
∫ 1
t

(
s−t
1−t

)x
v(s)ds

v̂(t)
≥

∫ 1
t

(
s−t
1−t

)n
v(s)ds

v̂(t)
=

∫ 1
t (s − t)nv(s)ds

(1− t)nv̂(t)
≥ Cn.

Thus we have proved the following lemma.

Lemma 4.2 If v ∈ D̂, then for all x ≥ 0 we have vx+1(t) ≈ (1 − t)x v̂(t) =
(1− t)xv1(t).

4.2 Weakly Normal Weights

The following definition goes back to S.N. Bernstein, [7].

Definition 4.3 Let a < b. A function f : [a, b) → [0,∞) is called almost
decreasing if there is some C > 0 such that f (t) ≤ Cf (s), whenever a ≤ s ≤
t < b. Almost increasing is defined similarly.

One reason this definition is useful for weights is the following lemma.
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Lemma 4.4 f : [a, b) → [0,∞) is almost decreasing, if and only if there is a
nonincreasing function g : [a, b)→ R and c, C > 0 such that

cg(t) ≤ f (t) ≤ Cg(t)

for all t ∈ [a, b). If f is continuous, then g can be chosen to be continuous as well.

Proof Suppose that g is nonincreasing such that cg(t) ≤ f (t) ≤ Cg(t) for all
t ∈ [a, b). Then for a ≤ s ≤ t < b we have

f (t) ≤ Cg(t) ≤ Cg(s) ≤ C

c
f (s) = C′f (s).

Conversely, suppose that f is almost decreasing, then for t ∈ [a, b) set

g(t) = inf{f (s) : s ≤ t}.

Note that if f is continuous, then g is continuous. Clearly g is nonincreasing and
g(t) ≤ f (t) for all t ∈ [a, b). Furthermore, the hypothesis on f implies the
existence of C > 0 such that f (t) ≤ Cf (s), whenever a ≤ s ≤ t < b. This
implies f (t) ≤ Cg(t) for all t ∈ [a, b). �
Lemma 4.5 Let v ∈ L1[0, 1] be a weight. If t0 ∈ [0, 1), α ∈ R, and x ≥ 0 such

that (1−t )
α

vx(t)
is almost decreasing in [t0, 1), then so is (1−t )α+y

vx+y(t) for every y ≥ 0.

Proof We consider reciprocals and thus prove a statement about almost increasing
functions. One verifies that vx+y = (vx)y for all x, y ≥ 0. Let t, t ′ ∈ [t0, 1) with
t < t ′, and define λ = 1−t ′

1−t . Then (1− λ)+ λt = t ′ and

vx+y(t) =
∫ 1

t

(s − t)y−1

�(y)

vx(s)

(1− s)α
(1− s)αds

≤ C

∫ 1

t

(s − t)y−1

�(y)

vx((1− λ)+ λs)

λα(1− s)α
(1− s)αds

= Cλ−(α+y)
∫ 1

t ′
(u− t ′)y−1

�(y)
vx(u)du

= Cλ−(α+y)vx+y(t ′).

The Lemma follows. �
Now recall from [23] that a weight function v is called normal, if there are α > β ∈
R such that (1−t )

β

v(t)
is almost increasing in [t0, 1) and (1−t )α

v(t)
is almost decreasing in

[t0, 1) for some 0 ≤ t0 < 1. Actually, Shields and Williams required β > 0 for their
results, and they wanted the limits to be∞ and 0. Furthermore, in the paper [22] the
ratios were assumed to be nondecreasing (resp. nonincreasing), but this definition
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was modified in the later paper [23]. That is a convention that has been used by
many authors since then.

Definition 4.6 Let α ∈ R. We call a weight v weakly normal of order α, if there is
x ≥ 0 such that (1−t )α+x

vx(t)
is almost decreasing in [t0, 1) for some 0 ≤ t0 < 1. The

weight v is called weakly normal, if it is weakly normal of order α for some α ∈ R.

Since vx is nonincreasing for all x ≥ 1, we do not require an assumption
corresponding to the parameter β above.

If a weight is weakly normal of order α, then α > −1. Indeed, if v is weakly

normal of order α, then by Lemma 4.5 we may assume that (1−t )α+x
vx(t)

is almost
decreasing in [t0, 1) for some x ≥ 1 and 0 ≤ t0 < 1. Then for t ∈ [t0, 1) we
have

(1− t)α+x ≤ Cvx(t) ≤ C

�(x)
(1− t)x−1v̂(t).

But we have v̂(t)→ 0 as t → 1. We see that this is only possible if α > −1.
Obviously v(t) = (1− t)α is weakly normal of order α, whenever α > −1. It is

also clear from the identity vx+y = (vx)y and Lemma 4.5 that v is weakly normal,
if and only if vx is weakly normal for each x ≥ 0, and this happens if and only if vx
is weakly normal for some x ≥ 0. In the following Lemma we have summarized the
relationship of the weakly normal weights with the class D̂ and with another class of
weights that has been considered in the literature. For η > −1 the Bekollé–Bonami
class B2(η) is defined by

v(t)

(1− t)η
∈ B2(η) ⇐⇒

∫ 1

t

v(s)ds

∫ 1

t

(1− s)2η

v(s)
ds ≈ (1− t)2η+2.

This is the radial weight version of a more general definition that characterizes
the weights ω on Bd such that a corresponding Bergman projection is bounded on
L2(ω), see, e.g., [6].

Lemma 4.7 Let v ∈ L1[0, 1] be a weight.
(a) If η > −1 and v(t)

(1−t )η ∈ B2(η), then v is weakly normal of order 2η + 1.

(b) Let v ∈ L1[0, 1] be non-negative. Then the following are equivalent:
(i) v is weakly normal,
(ii) there are x ≥ 0 and η > −1 such that vx(t)

(1−t )η ∈ B2(η),

(iii) there is x ≥ 0 such that vx ∈ D̂.

Proof

(a) Let η > −1 and suppose v(t)
(1−t )η ∈ B2(η), then g(t) = ∫ 1

t
(1−s)2η
v(s)

ds is
nonincreasing and the hypothesis implies that

g(t) ≈ (1− t)2η+2

v1(t)
.
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Thus Lemma 4.4 implies that (1−t )
2η+2

v1(t)
is almost decreasing, i.e., v satisfies the

definition of weakly normal of order 2η + 1 with x = 1.
(b) (ii)⇒ (i) follows from (a) and the earlier observation that v is weakly normal

if and only if vx is weakly normal for some x ≥ 0.

(iii) ⇒ (ii) By Lemma 4.1 vx ∈ D̂ if and only if there is a C > 1 such that
(1−t)vx+1(t) ≤ Cvx+2(t). By use of a first derivative one sees that this is equivalent
to (1−t )C

vx+2(t) being nonincreasing. Hence

∫ 1

t

vx+2(s)ds
∫ 1

t

(1− s)C

vx+2(s)
ds ≤ vx+2(t)(1 − t)

(1− t)C

vx+2(t)
(1− t) = (1− t)C+2.

Thus vx+2(t)
(1−t )C/2 ∈ B2(C/2).

(i) ⇒ (iii) If v is weakly normal, then there are x ≥ 1 and α > −1 such that
(1−t )α+x
vx(t)

is almost decreasing. Then one easily checks directly that vx ∈ D̂. �

Weights of the type (1− t)α
(
1
t
log 1

1−t
)β

for α > −1, β ≥ 0 are weakly normal

of order α. If β < 0, then such a weight would be weakly normal of order γ for each

γ > α. This also holds when α = −1, although for β < −1 the weight

(
1
t log

1
1−t

)β
1−t

is not a Bekollé weight.
Part (b) of the previous lemma could be paraphrased by saying that the weakly

normal weights could also have been called “weakly doubling” or “weak Bekollé
weights.” For us the viewpoint of weakly normal is important, because the order of
a weakly normal weight determines the cut-off for a weighted Besov space to have
the Pick property, see Theorem 5.2. The following theorem is instrumental for the
proof.

Theorem 4.8 Let v ∈ L1[0, 1] be a weight. If v is weakly normal of order α > −1,
then there is a positive Borel measure μ on [0, 1] such that

∫ 1

0
tnv(t)dt

∫
[0,1]

tndμ(t) ≈ n−α−1 as n→∞.

Proof By Lemma 2.2 it will suffice to show that for some x ≥ 0 there is a measure
μ with

∫ 1

0
tnvx(t)dt

∫
[0,1]

tndμ(t) ≈ n−α−x−1 as n→∞.

Note that vx is continuous for all x ≥ 1. Thus, by the hypothesis and Lemmas 4.5
and 4.4 there is x ≥ 1 and a nonincreasing continuous function g on [0, 1) such that
g(t) ≈ (1−t )α+x

vx(t)
for t ∈ [t0, 1).
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By Lemmas 4.5 and 4.7 we may assume that x ≥ 1, vx−1 ∈ D̂, and hence that
vx is nonincreasing.

We set g(1) = limt→1 g(t). Then there is a Borel measure μ on [0, 1] such that
g(t) = μ([t, 1]). Note that g ∈ L1[0, 1],

ĝ(t) =
∫ 1

t

g(s)ds ≈
∫ 1

t

(1− s)α+x

vx(s)
ds ≤

∫ 1

t

(1− s)α+x

vx(
1+s
2 )

ds, t ∈ [t0, 1).

Hence

ĝ(t) � 2α+x+1
∫ 1

1+t
2

(1− u)α+x

vx(u)
du ≈ ĝ(

1+ t

2
).

This implies that g ∈ D̂.
Since vx−1 ∈ D̂ we also have vx ∈ D̂. Thus Lemma A of [19] with vx, g ∈

D̂ implies that
∫ 1
0 t

ng(t)dt ≈ ∫ 1
1− 1

n
g(t)dt and

∫ 1
0 t

nvx(t)dt ≈
∫ 1
1− 1

n
vx(t)dt .

Furthermore, by Lemma 4.1 applied with vx−1 we have
∫ 1
t vx(s)ds ≈ (1− t)vx(t).

Also noting that Lemma 2.2 implies that
∫ 1
0 t

ndμ ≈ n
∫ 1
0 t

ng(t)dt we obtain

∫ 1

0
tnvx(t)dt

∫
[0,1]

tndμ(t) ≈ vx(1− 1

n
)

∫ 1

1− 1
n

(1− s)α+x

vx(s)
ds. (4.1)

Since vx is nonincreasing we immediately obtain

∫ 1

0
tnvx(t)dt

∫
[0,1]

tndμ(t) ≥ c

∫ 1

1− 1
n

(1− s)α+xds ≈ n−α−x−1.

By the hypothesis the ratio vx(t)
(1−t )α+x is almost increasing, hence there is C > 0

such that for s ≥ 1− 1
n

vx(1− 1

n
) ≤ Cn−α−x

vx(s)

(1− s)α+x
.

Thus we may substitute this inequality into (4.1), and this concludes the proof of the
theorem. �

We will say that a radial weight ω on Bd is weakly normal (of order α > −1), if
the associated L1[0, 1]-function v (see Sect. 2) is weakly normal (of order α > −1).
For weakly normal radial weights Lemmas 4.2 and 4.7 imply that there is x0 ≥ 0
such that ωx+x0 ≈ (1− |z|2)2xωx0 for all x ≥ 0.

Example 4.9 Examples of weights that are not weakly normal are ω(z) = (1 −
|z|2)βe

−1
1−|z|2 , β ∈ R. One checks with Lemma 4.4 that such a weight would be
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weakly normal, if and only if v(t) = (1− t)βe
−1
1−t is weakly normal. We calculate

(1− t)2v(t) = −
∫ 1

t

d

ds
(1− s)β+2e

−1
1−s ds

=
∫ 1

t

(1+ (β + 2)(1− s))v(s)ds

≈
∫ 1

t

v(s)ds = v̂(t)

Iteration of this shows that for each positive integer N we have (1 − t)2Nv(t) ≈
vN(t) and hence ωN ≈ (1− |z|2)4Nω. For more on such weights, see [18].

5 Radial Weights and Complete Pick Spaces

Our result on radially weighted Besov spaces that are complete Pick spaces is based
on the following lemma.

Lemma 5.1 Let μ be a probability measure on [0, 1]. Then there are cn ≥ 0 such
that

∫
[0,1]

1

1− tz
dμ(t) = 1

1−∑∞
n=1 cnzn

for all |z| < 1.

It follows that kw(z) =
∫
[0,1]

1
1−t〈z,w〉dμ(t) defines a normalized Pick kernel in Bd .

Proof Let F(s) = ∫
[0,1] tsdμ(t) be the moment generating function for this setup.

It is well known that logF(s) defines a convex function on [0,∞). In fact, it easily
follows from Hölder’s inequality that F(λs1 + (1− λ)s2) ≤ F(s1)

λF (s2)
1−λ for all

s1, s2 ∈ [0,∞) and 0 < λ < 1. The logarithmic convexity of F follows from this.
Thus for each n ≥ 0 we have

logF(n+ 1)− logF(n) ≤ logF(n+ 2)− logF(n+ 1),

which is equivalent to F(n+1)
F (n)

being nondecreasing in n. Now the conclusion
of the lemma follows from Kaluza’s lemma (see, e.g., [2], Lemma 7.38) since∫
[0,1]

1
1−tzdμ(t) =

∑∞
n=0 F(n)zn. �

Theorem 5.2 If ω is a weakly normal radial weight of order α > −1, then Bs
ω is a

complete Pick space for all s ≥ α+d
2 .
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Proof Let v be the L1[0, 1]-function associated with ω and set α′ = 2s − d ≥ α.
Then v is a weakly normal weight of order α′.

For n ∈ N0 let an = an(ω) =
∫ 1
0 t

nv(t)dt , and choose a probability measure μ

such that bn =
∫
[0,1] t

ndμ ≈
(
nα
′+1an

)−1 = (
n2s−d+1an

)−1
. This can be done by

Theorem 4.8. Define

kw(z) =
∫
[0,1]

1

1− t〈z,w〉dμ(t).

Then kw(z) =∑∞
n=0 bn〈z,w〉n is a normalized complete Pick kernel by Lemma 5.1.

Let H be the reproducing kernel Hilbert space with kernel k, and let ‖f ‖H 2
d
denote

the Drury–Arveson norm of a function f = ∑
n fn. It is easy to check and well

known that ‖f ‖2H =
∑∞

n=0 1
bn
‖fn‖2

H 2
d

. Recall that for homogeneous polynomials

fn of degree n we have

‖fn‖2H 2
d

= cn‖fn‖2H 2(∂Bd )
, where cn ≈ (n+ 1)d−1,

see, for example, formula (2.2) of [21]. We now apply the above and the definition
of the Bs

ω-norm to obtain

‖f ‖2Bs
ω
= |f (0)|2 +

∞∑
n=1

n2san‖fn‖2H 2(∂Bd)

≈ |f (0)|2 +
∞∑
n=1

n2s−d+1an‖fn‖2H 2
d

≈ |f (0)|2 +
∞∑
n=1

1

bn
‖fn‖2H 2

d

= ‖f ‖2H.

�
Corollary 5.3 If ω is a weakly normal radial weight of order α > −1, then for
every s0 ≥ (α + d)/2, there is a positive nonincreasing continuous function g ∈ D̂
such that for every x, y ≥ 0

kw(z) =
∫ 1

0

(1− t)x

(1− t〈z,w〉)x+3+2y ĝ(t)dt

is a reproducing kernel for Bs0−y
ω .
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By this we mean that there is an alternate norm on Bs0−y
ω which is equivalent to the

natural norm and such that kw(z) is the reproducing kernel for the space under the
alternate norm.

Proof Since s0 ≥ (α + d)/2 Theorem 5.2 implies that the space Bs0
ω is a complete

Pick space. Furthermore, the proof of Theorem 5.2 shows that

ks0w (z) =
∫ 1

0

1

1− t〈z,w〉dμ(t) =
∑
n=0
〈z,w〉n

∫
[0,1]

tndμ(t)

is a reproducing kernel for Bs0
ω . The existence of the measure μ was established by

means of Theorem 4.8, whose proof shows that μ can be chosen so that g(t) =
μ([t, 1]) is continuous and satisfies g ∈ D̂. For x ≥ 0 let wx be the L1[0, 1]-
function associated with μ as in Lemma 2.2, then w1 = g, w2 = ĝ, and Lemma 4.2
implies that wx+2(t) ≈ (1− t)x ĝ(t). Now consider the power series

kw(z) =
∫ 1

0

(1− t)x

(1− t〈z,w〉)x+3+2y ĝ(t)dt =
∞∑
n=0

an〈z,w〉n,

where

an ≈ (n+ 1)x+2+2y
∫ 1

0
tn(1− t)x ĝ(t)dt

≈ (n+ 1)x+2+2y
∫ 1

0
tnwx+2(t)dt

≈ (n+ 1)2y
∫
[0,1]

tndμ(t)

by Lemma 2.2. It is easy to see that if ks0w (z) is a reproducing kernel for Bs0
ω , then

kw(z) is a reproducing kernel for B
s0−y
ω . �

Corollary 5.4 Let ω be a weakly normal radial weight on Bd . For s ∈ R let ksw(z)
be the reproducing kernel for Bs

ω.

Then for each s ≤ t there is c > 0 such that ksz(z) ≤ c
ktz(z)

(1−|z|2)2(t−s) for all z ∈ Bd .

Proof If v is weakly normal of order α > −1, then choose s0 ≥ max(t, (α+ d)/2).
Then by the previous corollary with x = 0 we have

ksz(z) ≈
∫ 1

0

ĝ(u)

(1− u|z|2)3+2(s0−s) du
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and

ktz(z) ≈
∫ 1

0

ĝ(u)

(1− u|z|2)3+2(s0−t ) du.

The corollary follows from this. �

6 Further Results About Multipliers of Bs
ω

Some of the main results from the previous sections are about bounded column
operators on weighted Besov spaces with radial weights. In this section we collect
more facts about such operators.

Let α ≥ 0 be a real parameter. We will need to use the growth space A−α(�2)
defined by

A−α(�2) = {� = (ϕ1, ϕ2, . . .), ϕi ∈ Hol(Bd ), ‖�‖A−α(�2) <∞},

where

‖�‖2A−α(�2) = sup
z∈Bd

(1− |z|2)2α
∞∑
i=1
|ϕi(z)|2.

If α = 0, then we just obtain the bounded analytic functions and we observe
H∞(C, �2) = A0(�2) and ‖�‖∞ = ‖�‖A0(�2)

.
The following lemma is well known.

Lemma 6.1 Let γ > 0, n ∈ N. Then there is a c > 0 such that for all sequences of
analytic functions� = (ϕ1, ϕ2, . . .) on Bd we have

1

c
‖�‖A−γ (�2) ≤ ‖�(0)‖�2 + ‖Rn�‖A−γ−n(�2) ≤ c‖�‖A−γ (�2).

and hence� ∈ A−γ (�2) if and only if Rn� ∈ A−γ−n(�2) and �(0) ∈ �2.
Furthermore, if � ∈ H∞(C, �2), then Rn� ∈ A−n(�2) and

‖Rn�‖A−n(�2) ≤ c‖�‖H∞ .

Proof By induction it follows that it suffices to prove the case where n = 1.
Furthermore, that case follows easily from the formulas ϕ(z) = ϕ(0)+∫ 1

0 Rϕ(tz)
dt
t

and Rϕ(z) = 1
2πi

∫
|λ−1|=r

ϕ(λz)

(λ−1)2 dλ, r = (1− |z|)/2. �

Theorem 6.2 Let ω be a radial weight, let s, t ∈ R with t ≤ s, and let � ∈
A−(s−t )(�2).
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Then the following are equivalent:

(a) � ∈ Mult(Bs
ω, B

t
ω(�2)),

(b) there exists n ∈ N0 such that Rn� ∈ Mult(Bs
ω, B

t
ωn
(�2)),

(c) for all n ∈ N0 we have Rn� ∈ Mult(Bs
ω, B

t
ωn
(�2)).

In fact, for each n ∈ N we have

‖�‖A−(s−t)(�2) + ‖�‖Mult(Bs
ω,B

t
ω(�2))

≈ ‖�‖A−(s−t)(�2) + ‖Rn�‖Mult(Bs
ω,B

t
ωn
(�2)).

Proof Let n ∈ N0. The equivalence of the three conditions and the equivalence
of norms will follow from an obvious inductive argument once we show the two
inequalities

‖Rn+1�‖Mult(Bs
ω,B

t
ωn+1 (�2))

� ‖Rn�‖Mult(Bs
ω,B

t
ωn
(�2)) (6.1)

‖Rn�‖Mult(Bs
ω,B

t
ωn
(�2)) � ‖�‖A−(s−t)(�2) + ‖Rn+1�‖Mult(Bs

ω,B
t
ωn+1 (�2))

. (6.2)

Let Rn� ∈ Mult(Bs
ω, B

t
ωn
(�2)). It follows from Corollary 3.8 that

‖Rn�‖Mult(Bs−1
ω ,Bt−1

ωn (�2))
≤ ‖Rn�‖Mult(Bs

ω,B
t
ωn
(�2)).

Since Bs−1
ω = Bs

ω1
and Bt−1

ωn
= Bt

ωn+1 with equivalence of norms by
Theorem 2.4, we conclude that for h ∈ Bs

ω

‖(Rn+1�)h‖Bt
ωn+1 (�2)

≤‖R((Rn�)h)‖Bt
ωn+1 (�2)

+ ‖(Rn�)Rh‖Bt
ωn+1 (�2)

�‖(Rn�)h‖Bt
ωn
(�2) + ‖Rn�‖Mult(Bs

ω1
,Bt

ωn+1 (�2))
‖Rh‖Bs

ω1

�2‖Rn�‖Mult(Bs
ω,B

t
ωn
(�2))‖h‖Bs

ω
.

Thus (6.1) holds and Rn+1� ∈ Mult(Bs
ω, B

t
ωn+1 (�2)).

Next we assume that Rn+1� ∈ Mult(Bs
ω, B

t
ωn+1(�2)), we write

Mn+1(�) = ‖Rn+1�‖Mult(Bs
ω,B

t
ωn+1 (�2))

+ ‖(Rn�)(0)‖�2

and we choose an integer N ≥ s. Let k be an integer with 0 ≤ k ≤ N . Since
Bs
ωk
= Bs−k

ω andBt
ωn+1+k = Bt−k

ωn+1 with equivalence of norms, Corollary 3.8 applied

to the function Rn+1� implies that

‖Rn+1�‖Mult(Bs
ωk
,Bt

ωn+1+k (�2))
≤Mn+1(�).
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Then for all h ∈ Bs
ω we have

‖(Rn�)h‖Bt
ωn
(�2)

�‖(Rn�)(0)h(0)‖�2 + ‖R((Rn�)h)‖Bt
ωn+1 (�2)

�Mn+1(�)‖h‖Bs
ω
+ ‖(Rn+1�)h‖Bt

ωn+1 (�2)
+ ‖(Rn�)Rh‖Bt

ωn+1 (�2)

�2Mn+1(�)‖h‖Bs
ω
+ ‖R((Rn�)Rh)‖Bt

ωn+2 (�2)

�2Mn+1(�)‖h‖Bs
ω
+ ‖(Rn+1�)Rh‖Bt

ωn+2 (�2)
+ ‖(Rn�)R2h‖Bt

ωn+2 (�2)

�2Mn+1(�)‖h‖Bs
ω
+Mn+1(�)‖Rh‖Bs

ω1
+ ‖(Rn�)R2h‖Bt

ωn+2 (�2)

�3Mn+1(�)‖h‖Bs
ω
+ ‖(Rn�)R2h‖Bt

ωn+2 (�2)
.

Thus iteration of this argument shows that

‖(Rn�)h‖Bt
ωn
(�2) � (N + 1)Mn+1(�)‖h‖Bs

ω
+ ‖(Rn�)RNh‖Bt

ωn+N (�2)
.

SinceMn+1(�) is dominated by the right-hand side of (6.2), it remains to estimate
the second summand. Note that as n+N ≥ t we haveBt

ωn+N (�2) = L2
a(ωn+N−t , �2)

with equivalence of norms. The growth hypothesis on� and Lemma 6.1 imply that
Rn� ∈ A−(s−t+n)(�2) with ‖Rn�‖A−(s−t+n) � ‖�‖A−(s−t) , so using (2.4), we see
that

‖(Rn�)RNh‖2Bt
ωn+N (�2)

≈
∫
Bd

‖(Rn�)(z)RNh(z)‖2�2 ωn+N−t dV

� ‖Rn�‖2
A−(s−t+n)

∫
Bd

|RNh(z)|2 ωn+N−t
(1− |z|2)2(s−t+n) dV

� ‖Rn�‖2
A−(s−t+n)

∫
Bd

|RNh(z)|2ωN−sdV

� ‖�‖2
A−(s−t)(�2)‖R

Nh‖2
L2
a(ωN−s )

� ‖�‖2
A−(s−t)(�2)‖h‖

2
Bs
ω
.

Thus (6.2) holds and this concludes the proof. �
Since the multipliers of a space into itself are always bounded we obtain an

immediate consequence.

Theorem 6.3 Let ω be a radial weight in Bd , and let s ∈ R, N ∈ N0. Then

Mult(Bs
ω, B

s
ω(�2)) = {� ∈ H∞(C, �2) : RN� ∈ Mult(Bs

ω, B
s−N
ω (�2))
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and ‖�‖Mult(Bs
ω,B

s
ω(�2))

≈ ‖RN�‖Mult(Bs
ω,B

s−N
ω (�2))

+ ‖�‖∞.
Note that if N ≥ s, then Bs−N

ω = L2
a(ωN−s ) is a weighted Bergman space and the

condition in the Corollary says that the higher order derivatives of multipliers satisfy
a Carleson measure condition that is appropriate for the space Bs

ω (see [10]): There
exists a c > 0 such that

∫
Bd

|f (z)|2‖RN�(z)‖2�2ωN−s (z)dV ≤ c‖f ‖2Bs
ω

for all f ∈ Bs
ω.

For the standard weights ω(z) = (1 − |z|2)η, η > −1 the scalar case of this
theorem is due to Fabrega and Ortega and [17], also see [10]. For general Bekollé–
Bonami weights (not necessarily radial) it is in [9]. We note that in those contexts
the Lp-case was treated as well.

We don’t know whether the equivalence of (b) and (c) of Theorem 6.2 for n ≥ 1
remains true without the hypothesis that � ∈ A−(s−t )(�2). For general Bekollé–
Bonami weights that is the case, see [9]. We will now see that it also holds for all
weakly normal radial weights.

Lemma 6.4 Let ω be a weakly normal radial weight, and let s, α ∈ R with α ≥ 0.
Then

Mult(Bs
ω, B

s−α
ω (�2)) ⊆ A−α(�2).

Proof Let � = {ϕ1, . . .} ∈ Mult(Bs
ω, B

s−α
ω (�2)). Then for each z ∈ Bd we have

∑
n≥1
|ϕn(z)|2 =

∑
n≥1

|〈ϕnksz, ks−αz 〉|2
|ksz(z)|2

≤
‖�‖2

Mult(Bs
ω,B

s−α
ω (�2))

‖ksz‖2‖ks−αz ‖2
|ksz(z)|2

= ‖�‖2
Mult(Bs

ω,B
s−α
ω (�2))

‖ks−αz ‖2
‖ksz‖2

≤ c‖�‖2
Mult(Bs

ω,B
s−α
ω (�2))

(1− |z|2)−2α by Corollary 5.4.

�
Corollary 6.5 Let ω be a weakly normal radial weight, and let s, t ∈ R with t < s.
Then the following are equivalent:

(a) � ∈ Mult(Bs
ω, B

t
ω(�2)),

(b) there exists n ∈ N0 such that Rn� ∈ Mult(Bs
ω, B

t
ωn
(�2)),

(c) for all n ∈ N0 we have Rn� ∈ Mult(Bs
ω, B

t
ωn
(�2)).
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Proof This follows from Theorem 6.2, because by Lemmas 6.4 and 6.1 each of the
cases (a), (b), or (c) automatically implies the required growth hypothesis. �

In particular, applying this to R� and t = s − 1, we conclude that for weakly
normal radial weights we have R� ∈ Mult(Bs

ω, B
s−1
ω (�2)) if and only if there is

n ∈ N such that Rn� ∈ Mult(Bs
ω, B

s−n
ω (�2)).
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Interpolation Between Hilbert Spaces

Yacin Ameur

Abstract This note comprises a synthesis of certain results in the theory of
exact interpolation between Hilbert spaces. In particular, we examine various
characterizations of interpolation spaces and their relations to a number of results in
operator theory and in function theory.

Keywords Interpolation · Hilbert space · Calderón pair · Pick function · Matrix
monotonicity
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1 Interpolation Theoretic Notions

1.1 Interpolation Norms

When X, Y are normed spaces, we use the symbol L(X; Y ) to denote the totality of
bounded linear maps T : X→ Y with the operator norm

‖ T ‖L(X;Y ) = sup {‖ T x ‖Y ; ‖ x ‖X ≤ 1} .

When X = Y we simply write L(X).
Consider a pair of Hilbert spaces H = (H0,H1) which is regular in the sense

thatH0∩H1 is dense inH0 as well as inH1. We assume that the pair is compatible,
i.e., bothHi are embedded in some commonHausdorff topological vector spaceM.
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We define the K-functional1 for the coupleH by

K (t, x) = K
(
t, x ; H ) = inf

x=x0+x1
{ ‖ x0 ‖ 20 + t ‖ x1 ‖ 21 }, t > 0, x ∈M.

The sum of the spacesH0 andH1 is defined to be the space consisting of all x ∈M
such that the quantity ‖ x ‖ 2� := K (1, x) is finite; we denote this space by the
symbols

� = �(H ) = H0 +H1.

We shall soon see that � is a Hilbert space (see Lemma 1.1). The intersection

� = �(H ) = H0 ∩H1

is a Hilbert space under the norm ‖ x ‖ 2� := ‖ x ‖ 20 + ‖ x ‖ 21 .
A map T : �(H )→ �(K ) is called a couple map fromH toK if the restriction

of T to Hi maps Hi boundedly into Ki for i = 0, 1. We use the notations T ∈
L(H ; K ) or T : H→ K to denote that T is a couple map. It is easy to check that
L(H ; K ) as a Banach space, when equipped with the norm

‖ T ‖L(H ;K )
:= max

j=0,1
{ ‖T ‖L(Hj ;Kj ) }. (1.1)

If ‖ T ‖L(H ;K )
≤ 1 we speak of a contraction fromH to K.

A Banach space X such that � ⊂ X ⊂ � (continuous inclusions) is called
intermediate with respect to the pairH.

Let X, Y be intermediate spaces with respect to couples H, K, respectively. We
say that X, Y are (relative) interpolation spaces if there is a constant C such that
T : H→ K implies that T : X→ Y and

‖ T ‖L(X;Y ) ≤ C ‖ T ‖L(H;K) . (1.2)

In the case when C = 1 we speak about exact interpolation. When H = K and
X = Y we simply say that X is an (exact) interpolation space with respect to H.

Let H be a suitable function of two positive variables and X, Y spaces
intermediate to the couples H, K, respectively. We say that the spaces X, Y are
of type H (relative toH, K) if for any positive numbersM0,M1 we have

‖ T ‖L(Hi ;Ki ) ≤ Mi, i = 0, 1 implies ‖ T ‖L(X;Y ) ≤ H(M0,M1).

(1.3)

1More precisely, this is the quadratic version of the classical Peetre K-functional.
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The caseH(x, y) = max{x, y} corresponds to exact interpolation, whileH(x, y) =
x 1−θy θ corresponds to the convexity estimate

‖ T ‖L(X;Y ) ≤ ‖ T ‖ 1−θ
L(H0;K0)

‖ T ‖ θL(H1;K1)
. (1.4)

In the situation of (1.4), one says that the interpolation spaces X, Y are of exponent
θ with respect to the pairsH, K.

1.2 K-Spaces

Given a regular Hilbert coupleH and a positive Radon measure � on the compacti-
fied half-line [0,∞] we define an intermediate quadratic norm by

‖ x ‖ 2∗ = ‖ x ‖ 2� =
∫
[0,∞]

(
1+ t−1

)
K

(
t, x; H )

d�(t). (1.5)

Here the integrand k(t) = (
1+ t−1

)
K(t, x) is defined at the points 0 and ∞ by

k(0) = ‖ x ‖ 21 and k(∞) = ‖ x ‖ 20 ; we shall write H∗ or H� for the Hilbert space
defined by the norm (1.5).

Let T ∈ L
(
H;K )

and suppose that ‖ T ‖L(Hi;Ki ) ≤Mi , then

K
(
t, T x; K ) ≤ M 2

0 K
(
M 2

1 t/M
2
0 , x; H

)
, x ∈ �. (1.6)

In particular,Mi ≤ 1 for i = 0, 1 implies ‖ T x ‖K�
≤ ‖ x ‖H�

for all x ∈ H� . It

follows that the spaces H�, K� are exact interpolation spaces with respect to H, K.

1.2.1 Geometric Interpolation

When the measure � is given by

d�(t) = cθ
t−θ

1+ t
dt, cθ = π

sin θπ
, 0 < θ < 1,

we denote the norm (1.5) by

‖ x ‖ 2θ := cθ

∫ ∞
0

t−θK (t, x)
dt

t
. (1.7)

The corresponding space Hθ is easily seen to be of exponent θ with respect to H.
In Sect. 3.1, we will recognize Hθ as the geometric interpolation space which has
been studied independently by several authors, see [25, 27, 40].
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1.3 Pick Functions

Let H be a regular Hilbert couple. The squared norm ‖ x ‖ 21 is a densely defined
quadratic form inH0, which we represent as

‖ x ‖ 21 = 〈Ax , x 〉0 = ‖A 1/2x ‖ 20
where A is a densely defined, positive, injective (perhaps unbounded) operator in
H0. The domain of the positive square-rootA1/2 is �.

Lemma 1.1 We have in terms of the functional calculus inH0

K (t, x ) =
〈

tA

1+ tA
x , x

〉
0
, t > 0. (1.8)

In the formula (1.8), we have identified the bounded operator tA
1+tA with its

extension toH0.

Proof Fix x ∈ �. By a straightforward convexity argument, there is a unique
decomposition x = x0,t + x1,t which is optimal in the sense that

K(t, x) = ∥∥ x0,t ∥∥ 2
0 + t

∥∥ x1,t ∥∥ 2
1 . (1.9)

It follows that xi,t ∈ � for i = 0, 1. Moreover, for all y ∈ � we have

d

dε
{ ∥∥ x0,t + εy

∥∥ 2
0 + t

∥∥ x1,t − εy
∥∥ 2
1 }|ε=0 = 0,

i.e.,

〈A−1/2x0,t − tA1/2x1,t , A
1/2y 〉0 = 0, y ∈ �.

By regularity, we conclude that A−1/2x0,t = tA1/2x1,t , whence

x0,t = tA

1+ tA
x and x1,t = 1

1+ tA
x. (1.10)

(Note that the operators in (1.10) extend to bounded operators onH0.) Inserting the
relations (1.10) into (1.9), one finishes the proof of the lemma. ��

Now fix a positive Radon measure � on [0,∞]. The norm in the space H�

(see (1.5)) can be written

‖ x ‖ 2� = 〈 h(A)x , x 〉0 , (1.11)
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where

h(λ) =
∫
[0,∞]

(1+ t)λ

1+ tλ
d�(t). (1.12)

The class of functions representable in this form for some positive Radon measure
� is the class P ′ of Pick functions, positive and regular on R+.

Notice that for the definition (1.11) to make sense, we just need h to be defined
on σ(A) \ {0}, where σ(A) is the spectrum of A. (The value h(0) is irrelevant since
A is injective).

A calculus exercise shows that for the space Hθ (see (1.7)) we have

‖ x ‖ 2θ = 〈Aθx , x 〉0. (1.13)

1.4 Quadratic Interpolation Norms

LetH∗ be any quadratic intermediate space relative to H. We write

‖ x ‖ 2∗ = 〈Bx , x 〉0
where B is a positive injective operator in H0 (the domain of B1/2 is �).

For a map T ∈ L(H) we shall often use the simplified notations

‖ T ‖ = ‖ T ‖L(H0) , ‖ T ‖A = ‖ T ‖L(H1) , ‖ T ‖B = ‖ T ‖L(H∗).
The reader can check the identities

‖ T ‖A = ‖A1/2TA−1/2 ‖ and ‖ T ‖B = ‖B1/2TB−1/2 ‖.

We shall refer to the following lemma as Donoghue’s lemma, cf. [13, Lemma 1].

Lemma 1.2 If H∗ is exact interpolation with respect to H, then B commutes with
every projection which commutes with A and B = h(A) where h is some positive
Borel function on σ(A).

Proof For an orthogonal projectionE onH0, the condition ‖E ‖A ≤ 1 is equivalent
to that EAE ≤ A, i.e., that E commutes with A. The hypothesis that H∗ be exact
interpolation thus implies that every spectral projection of A commutes with B. It
now follows from von Neumann’s bicommutator theorem that B = h(A) for some
positive Borel function h on σ(A). ��

In view of the lemma, the characterization of the exact quadratic interpolation
norms of a given type H reduces to the characterization of functions h : σ(A) →
R+ such that for all T ∈ L

(
H

)

‖ T ‖ ≤ M0 and ‖ T ‖A ≤M1 ⇒ ‖ T ‖h(A) ≤ H(M0,M1), (1.14)
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or alternatively,

T ∗T ≤ M 2
0 and T ∗AT ≤ M 2

1 A ⇒ T ∗h(A)T ≤ H(M0,M1)
2 h(A).

(1.15)
The set of functions h : σ(A)→ R+ satisfying these equivalent conditions forms a
convex coneCH,A; its elements are called interpolation functions of typeH relative
to A. In the case when H(x, y) = max{x, y} we simply write CA for CH,A and
speak of exact interpolation functions relative to A.

1.5 Exact Calderón Pairs and the K-Property

Given two intermediate normed spaces Y , X relative to H, K, we say that they are
(relatively) exact K-monotonic if the conditions

x0 ∈ X and K
(
t, y0; H

)
≤ K

(
t, x0; K

)
, t > 0

imply that

y0 ∈ Y and ‖ y0 ‖Y ≤ ‖ x0 ‖X.

It is easy to see that exact K-monotonicity implies exact interpolation.

Proof of this. If ‖ T ‖L(K;H)
≤ 1, then ∀x, t: K (

t, T x; H ) ≤ K
(
t, x; K )

whence ‖ T x ‖Y ≤ ‖ x ‖X, by exactK-monotonicity. Hence ‖ T ‖L(X;Y ) ≤ 1. ��
Two pairs H, K are called exact relative Calderón pairs if any two exact

interpolation (Banach-) spaces Y , X are exact K-monotonic. Thus, with respect to
exact Calderón pairs, exact interpolation is equivalent to exactK-monotonicity. The
term “Calderón pair” was coined after thorough investigation of Calderón’s study of
the pair (L1, L∞), see [10, 11].

In our present discussion, it is not convenient to work directly with the definition
of exact Calderón pairs. Instead, we shall use the following, closely related notion.

We say that a pair of couples H, K has the relative (exact) K-property if for all
x0 ∈ �(K ) and y0 ∈ �(H ) such that

K
(
t, y0; H

)
≤ K

(
t, x0; K

)
, t > 0, (1.16)

there exists a map T ∈ L(K;H ) such that T x0 = y0 and ‖ T ‖L(K;H)
≤ 1.

Lemma 1.3 If H, K have the relative K-property , then they are exact relative
Calderón pairs.



Interpolation Between Hilbert Spaces 69

Proof Let Y , X be exact interpolation spaces relative to H, K and take x0 ∈ X and
y0 ∈ �(H ) such that (1.16) holds. By the K-property there is T : K → H such
that T x0 = y0 and ‖ T ‖ ≤ 1. Then ‖ T ‖L(X;Y ) ≤ 1, and so ‖ y0 ‖Y = ‖ T x0 ‖Y ≤
‖ x0 ‖X. We have shown that Y , X are exact K-monotonic. ��

In the diagonal caseH = K, we simply say thatH is an exact Calderón couple if
for intermediate spaces Y,X, the property of being exact interpolation is equivalent
to being exactK-monotonic. Likewise, we say thatH has theK-property if the pair
of couplesH, H has that property.

Remark 1.4 For an operator T : K → H to be a contraction, it is necessary and
sufficient that

K
(
t, T x; H ) ≤ K

(
t, x; K )

, x ∈ �(K ), t > 0. (1.17)

Indeed, the necessity is immediate. To prove the sufficiency it suffices to observe
that letting t → ∞ in (1.17) gives ‖ T x ‖0 ≤ ‖ x ‖0, and dividing (1.17) by t , and
then letting t → 0, gives that ‖ T x ‖1 ≤ ‖ x ‖1.

2 Mapping Properties of Hilbert Couples

2.1 Main Results

We shall elaborate on the following main result from [2].

Theorem I Any pair of regular Hilbert couplesH, K has the relative K-property .

Before we come to the proof of Theorem I, we note some consequences of it. We
first have the following corollary, which shows that a strong form of theK-property
is true.

Corollary 2.1 Let H be a regular Hilbert couple and x0, y0 ∈ � elements such
that

K
(
t, y0

)
≤ M 2

0 K
(
M 2

1 t/M
2
0 , x

0
)
, t > 0. (2.1)

Then

(i) There exists a map T ∈ L
(
H

)
such that T x0 = y0 and ‖ T ‖L(Hi ) ≤ Mi ,

i = 0, 1.
(ii) If x0 ∈ X where X is an interpolation space of type H , then

‖ y0 ‖X ≤ H (M0,M1 ) ‖ x0 ‖X.
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Proof (i) Introduce a new couple K by letting ‖ x ‖Ki
= Mi‖ x ‖Hi

. The rela-
tion (2.1) then says that

K
(
t, y0;H

)
≤ K

(
t, x0;K

)
, t > 0.

By Theorem I there is a contraction T : K→ H such that T x0 = y0. It now suffices
to note that ‖ T ‖L(Hi ) = Mi ‖ T ‖L(Ki;Hi ); (ii) then follows from Lemma 1.3. ��

We next mention some equivalent versions of Theorem I, which uses the families
of functionalsKp and Ep defined (for p ≥ 1 and t, s > 0) via

Kp(t) = Kp(t, x) = Kp

(
t, x;H) = inf

x=x0+x1
{ ‖ x0 ‖p0 + t ‖ x1 ‖p1

}

Ep(s) = Ep(s, x) = Ep

(
s, x;H) = inf

‖ x0 ‖p0 ≤s
{ ‖ x − x0 ‖p1

}
.

(2.2)

Note that K = K2 and that Ep(s) = E1
(
s1/p

)p
; the E-functionals are used in

approximation theory. One has that Ep is decreasing and convex on R+ and that

Kp(t) = inf
s>0

{
s + tEp(s)

}
,

which means that Kp is a kind of Legendre transform of Ep. The inverse Legendre
transformation takes the form

Ep(s) = sup
t>0

{
Kp(t)

t
− s

t

}
.

It is now immediate that, for all x ∈ � (
K

)
and y ∈ � (

H
)
, we have

Kp(t, y) ≤ Kp(t, x), t > 0 ⇔ Ep(s, y) ≤ Ep(s, x), s > 0.
(2.3)

Since moreoverEp(s) = E2
(
s2/p

)p/2
, the conditions in (2.3) are equivalent to that

K(t, y) ≤ K(t, x) for all t > 0. We have shown the following result.

Corollary 2.2 In Theorem I, one can substitute the K-functional for any of the
functionalsKp or Ep.

Define an exact interpolation norm ‖ · ‖�,p relative toH by

‖ x ‖p�,p =
∫
[0,∞]

(
1+ t−1

)
Kp(t, x) d�(t)

where � is a positive Radon measure on [0,∞]. This norm is non-quadratic when
p 
= 2, but is of course equivalent to the quadratic norm corresponding to p = 2.



Interpolation Between Hilbert Spaces 71

2.2 Reduction to the Diagonal Case

It is not hard to reduce the discussion of Theorem I to a diagonal situation.

Lemma 2.3 If the K-property holds for regular Hilbert couples in the diagonal
caseH = K, then it holds in general.

Proof Fix elements y0 ∈ �(H ) and x0 ∈ �(K ) such that the inequality (1.16)
holds. We must construct a map T : K→ H such that T x0 = y0 and ‖ T ‖ ≤ 1.

To do this, we form the direct sum S = (H0 ⊕K0,H1 ⊕K1). It is clear that
S0 + S1 = (H0 +H1)⊕ (K0 +K1), and that

K
(
t, x ⊕ y;S) = K

(
t, x;H)+K

(
t, y;K)

.

Then

K
(
t, 0⊕ y0;S

)
≤ K

(
t, x0 ⊕ 0;S

)
.

Hence assuming that the couple S has the K-property , we can assert the existence
of a map S ∈ L(S ) such that S(x0 ⊕ 0) = 0 ⊕ y0 and ‖ S ‖ ≤ 1. Letting P :
S0+S1 → K0+K1 be the orthogonal projection, the assignment T x = PS(x⊕0)
now defines a map such that T x0 = y0 and ‖ T ‖L(H;K) ≤ 1. ��

2.3 The Principal Case

The core content of Theorem I is contained in the following statement.

Theorem 2.4 Suppose that a regular Hilbert couple H is finite dimensional and
that all eigenvalues of the corresponding operator A are of unit multiplicity. Then
H has the K-property .

We shall settle for proving Lemma 2.4 in this section, postponing to Sect. 5 the
general case of Theorem I.

To prepare for the proof, we write the eigenvalues λi ofA in the increasing order,

σ(A) = {λi}n1 where 0 < λ1 < · · · < λn.

Let ei be corresponding eigenvectors of unit length for the norm of H0. Then for a
vector x =∑

xiei we have

‖ x ‖ 20 =
n∑
1

|xi| 2 , ‖ x ‖ 21 =
n∑
1

λi |xi| 2.

Working in the coordinate system (ei), the couple H becomes identified with the



72 Y. Ameur

n-dimensional weighted �2 couple

�n2(λ) :=
(
�n2, �

n
2(λ)

)
,

where we write λ for the sequence (λi)n1.
We will henceforth identify a vector x =∑

xiei with the point x = (xi)
n
1 in C n;

accordingly, the space L
(
�n2

)
is identified with the C∗-algebra Mn(C) of complex

n× n matrices.
It will be convenient to reparametrize the K-functional for the couple �n2(λ) and

write

kλ(t, x) := K
(
1/t, x; �n2(λ)

)
. (2.4)

By Lemma 1.1 we have

kλ(t, x) =
n∑
i=1

λi

t + λi
|xi | 2, x ∈ C n. (2.5)

2.4 Basic Reductions

To prove that the couple �n2(λ) has the K-property , we introduce an auxiliary
parameter ρ > 1. The exact value of ρ will change meaning during the course
of the argument, the main point being that it can be chosen arbitrarily close to 1.

Initially, we pick any ρ > 1 such that ρλi < λi+1 for all i; we assume also that
we are given two elements x0, y0 ∈ C n such that

kλ

(
t, y0

)
<

1

ρ
kλ

(
t, x0

)
, t ≥ 0. (2.6)

We must construct a matrix T ∈ Mn(C) such that

T x0 = y0 and kλ (t, T x) ≤ kλ (t, x) , x ∈ C n, t > 0. (2.7)

Define x̃0 = (|x0i |)n1 and ỹ0 = (|y0i |)n1 and suppose that

kλ(t, ỹ
0) <

1

ρ
kλ(t, x̃

0), t ≥ 0.

Suppose that we can find an operator T0 ∈ Mn(C) such that T0x̃0 = ỹ0 and
kλ (t, T0x) < kλ(t, x) for all x ∈ C n and t > 0. Writing x0k = eiθk x̃0k and
y0k = eiϕk ỹ0k where θk, ϕk ∈ R, we then have T x0 = y0 and kλ (t, T x) < kλ(t, x)

where

T = diag(eiϕk )T0 diag(e−iθk ).
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Replacing x0, y0 by x̃0, ỹ0 we can thus assume that the coordinates x0i and y0i are
non-negative; replacing them by small perturbations if necessary, we can assume
that they are strictly positive, at the expense of slightly diminishing the number ρ.

Now put βi = λi and αi = ρλi . Our assumption on ρ means that

0 < β1 < α1 < · · · < βn < αn.

Using the explicit expression for the K-functional, it is plain to check that

kβ(t, x) ≤ kα(t, x) ≤ ρkβ(t, x), x ∈ Cn, t ≥ 0.

Our assumption (2.6) therefore implies that

kα(t, y
0) < kβ(t, x

0), t ≥ 0. (2.8)

We shall verify the existence of a matrix T = Tρ = Tρ,x0,y0 such that

T x0 = y0 and kα (t, T x) ≤ kβ (t, x) , x ∈ Cn, t > 0. (2.9)

It is clear by compactness that, as ρ ↓ 1, the corresponding matrices Tρ will cluster
at some point T satisfying T x0 = y0 and ‖ T ‖L(H )

≤ 1. (See Remark 1.4.)
In conclusion, the proof of Theorem 2.4 will be complete when we can construct

a matrix T satisfying (2.9) with ρ arbitrarily close to 1.

2.5 Construction of T

LetPk denote the linear space of complex polynomials of degree at most k. We shall
use the polynomials

Lα(t) =
n∏
1

(t + αi) , Lβ(t) =
n∏
1

(t + βi) ,

and the product L = LαLβ . Notice that

L′(−αi) < 0 , L′(−βi) > 0. (2.10)

Recalling the formula (2.5), it is clear that we can define a real polynomial P ∈
P2n−1 by

P(t)

L(t)
= kβ

(
t, x0

)
− kα

(
t, y0

)
. (2.11)

Clearly P(t) > 0 when t ≥ 0. Moreover, a consideration of the residues at the poles
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of the right-hand member shows that P is uniquely defined by the values

P (−βi) = (x0i )
2βiL

′ (−βi) , P (−αi) = −(y0i ) 2αiL′ (−αi) . (2.12)

Combining with (2.10), we conclude that

P (−αi) > 0 and P (−βi) > 0. (2.13)

Perturbing the problem slightly, it is clear that we can assume that P has exact
degree 2n − 1, and that all zeros of P have multiplicity 1. (We here diminish the
value of ρ > 1 somewhat, if necessary.)

Now, P has 2n− 1 simple zeros, which we split according to

P−1 ({0}) = {−ri}2m−1i=1 ∪ {−ci,−c̄i}n−mi=1 ,

where the ri are positive and the ci are non-real, and chosen to have positive
imaginary parts. The following is the key observation.

Lemma 2.5 We have that

L′ (−βi) P (−βi) > 0 , L′ (−αi) P (−αi) < 0 (2.14)

and there is a splitting {ri}2m−1i=1 = {δi}mi=1 ∪ {γi}m−1i=1 such that

L
(−δj )P ′ (−δj) > 0 , L (−γk) P ′ (−γk) < 0. (2.15)

Proof The inequalities (2.14) follow immediately from (2.13) and (2.10). It remains
to prove (2.15).

Let −h denote the leftmost real zero of the polynomial LP (of degree 4n − 1).
We claim that P(−h) = 0. If this were not the case, we would have h = αn. Since
the degree of P is odd, P(−t) is negative for large values of t , and so P(−αn) < 0
contradicting (2.13). We have shown that P(−h) = 0. Since all zeros of LP have
multiplicity 1, we have (LP)′(−h) 
= 0, whence

L(−h)P ′(−h) = (LP)′(−h) > 0.

We write δm = h and put P∗(t) = P(t)/(t + δm). Since t + δm > 0 for t ∈
{−αi,−βi}n1, we have by (2.13) that for all i

P∗(−αi) > 0 and P∗(−βi) > 0.

Denote by {−rj ∗}2m−2j=1 the real zeros of P∗. Since the degree of LP∗ is even and the
polynomial (LP∗)′ has alternating signs in the set {−αi,−βi}ni=1 ∪ {−ri∗}2m−2i=1 , we
can split the zeros of P∗ as {−δi,−γi}m−1i=1 , where

L(−δi)P ′∗(−δi) > 0 , L(−γi)P ′∗(−γi) < 0. (2.16)
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Since P ′(−rj ∗) = (δm − rj
∗)P ′∗(−rj ∗) and δm > rj

∗, the signs of P ′(−rj ∗) and
P ′∗(−rj ∗) are equal, proving (2.15). ��

Recall that {−ci}n−m1 denote the zeros of P such that Im ci > 0. We put (with
the convention that an empty product equals 1)

Lδ(t) =
m∏
i=1

(t + δi) , Lγ (t) =
m−1∏
i=1

(t + γi) , Lc(t) =
n−m∏
i=1

(t + ci).

We define a linear map F : Cn+m → Cn+m−1 in the following way. First define
a subspace U ⊂ P2n−1 by

U = {Lcq ; q ∈ Pn+m−1 } .

Notice thatU has dimension n+m−1 and that P ∈ U ; in fact P = aLcL
∗
c LδLγ

where a is the leading coefficient and the ∗-operation is defined by L ∗(z) = L(z̄).
For a polynomialQ ∈ U we have

|Q(t) | 2
L(t)P (t)

=
n∑
i=1
|xi| 2 βi

t + βi
+

n∑
i=1
|x ′i| 2

δi

t + δi

−
n∑
i=1
|yi | 2 αi

t + αi
−

m−1∑
i=1
|y ′i| 2

γi

t + γi
,

(2.17)

where, for definiteness,

xi = Q(−βi)√
βiL′(−βi)P (−βi) ; x ′j =

Q(−δj )√
δjL′(−δj )P (−δj )

(2.18)

yi = Q(−αi)√−αiL′(−αi)P (−αi) ; y ′j =
Q(−γj )√−γjL′(−γj )P (−γj ) . (2.19)

The identities in (2.18) give rise to a linear map

M : C n ⊕ Cm→ U ; [
x; x ′] �→ Q. (2.20)

We can similarly regard (2.19) as a linear map

N : U → C n ⊕ Cm−1 ; Q �→ [
y; y ′] . (2.21)

Our desired map F is defined as the composite

F = NM : C n ⊕ Cm→ C n ⊕ Cm−1 ; [x; x ′] �→ [y; y ′].
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Notice that if Q = M
[
x; x ′] and [

y; y ′] = F
[
x; x ′] then (2.17) means that

kβ⊕δ
(
t,
[
x; x ′])− kα⊕γ

(
t, F

[
x; x ′]) = |Q(t) | 2

L(t)P (t)
≥ 0, t ≥ 0.

This implies that F is a contraction from �n+m2 (β ⊕ δ) to �n+m−12 (α ⊕ γ ).
We now define T as a “compression” of F . Namely, let E : C n ⊕ Cm−1 → C n

be the projection onto the first n coordinates, and define an operator T on Cn by

T x = EF [x; 0] , x ∈ C n.

TakingQ = P in (2.17) we see that T x0 = y0. Moreover,

kβ (t, x)− kα (t, T x) =
n∑
i=1
|xi | 2 βi

t + βi
−

n∑
i=1
|yi| 2 αi

t + αi

≥
n∑
i=1
|xi| 2 βi

t + βi
−

n∑
i=1
|yi| 2 αi

t + αi
−

m−1∑
j=1
|y ′i| 2

γi

t + γi

= kβ⊕δ (t, [x; 0])− kα⊕γ (t, F [x; 0]) = |Q(t) |
2

L(t)P (t)
.

Since the right-hand side is non-negative, we have shown that

kα (t, T x) ≤ kβ(t, x), t > 0, x ∈ Cn,

as desired. The proof of Theorem 2.4 is finished. ��

2.6 Real Scalars

Theorem 2.4 holds also in the case of Euclidean spaces over the real scalar field. To
see this, assume without loss of generality that the vectors x0, y0 ∈ Cn have real
entries (still satisfying kλ

(
t, y0

) ≤ kλ
(
t, x0

)
for all t > 0).

By Theorem 2.4 we can find a (complex) contraction T of �n2(λ) such that T x
0 =

y0. It is clear that the operator T ∗ defined by T ∗x = T (x̄) satisfies those same
conditions. Replacing T by 1

2 (T + T ∗) we obtain a real matrix T ∈ Mn(R), which
is a contraction of �n2(λ) and maps x0 to y0. ��
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2.7 Explicit Representations

We here deduce an explicit representation for the operator T constructed above.
Let x0 and y0 be two non-negative vectors such that

kλ

(
t, y0

)
≤ kλ

(
t, x0

)
, t > 0.

For small ρ > 0 we perturb x0, y0 slightly to vectors x̃ 0, ỹ0 which satisfy the
conditions imposed on the previous subsections. We can then construct a matrix
T = Tρ such that

T x̃ 0 = ỹ 0 and kα (t, T x) ≤ kβ (t, x) , t > 0, x ∈ C n, (2.22)

where β = λ and α = ρλ. As ρ, x̃0, ỹ 0 approaches 1, x0, respectively y0, it is clear
that any cluster point T of the set of contractions Tρ will satisfy

T x0 = y0 and kλ (t, T x) ≤ kλ (t, x) , t > 0, x ∈ C n.

Theorem 2.6 The matrix T = T� = (τik)
n
i,k=1 where

τik = Re

[
1

αi − βk

x̃0k

ỹ0i

βkLδ(−αi)Lc(−αi)Lα(−βk)
αiLδ(−βk)Lc(−βk)L′α(−αi)

]
(2.23)

satisfies (2.22).

Proof The range of the map C n → U , x �→ M [x; 0] (see 2.20) is precisely the
n-dimensional subspace

V := LδLc · Pn−1 = {LδLcR; R ∈ Pn−1} ⊂ U. (2.24)

We introduce a basis (Qk)
n
k=1 for V by

Qk(t) = Lδ(t)Lc(t)Lβ(t)

t + βk

√
βkL′(−βk)P (−βk)

Lδ(−βk)Lc(−βk)L′β(−βk)
.

Then

Qk(−βi)√
βiL′(−βi)P (−βi) =

{
1 i = k,

0 i 
= k.
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Denoting by (ei) the canonical basis in C n and using (2.18), (2.19) we get

τik = (T ek)i = Qk(−αi)√
αiL′(−αi)P (−αi)

= 1

βk − αi

Lδ(−αi)Lc(−αi)Lβ(−αi)
Lδ(−βk)Lc(−βk)L′β(−βk)

(
βkL

′(−βk)P (−βk)
−αiL′(−αi)P (−αi)

)1/2

.

Inserting the expressions (2.12) for P(−αi) and P(−βk) and taking real parts (see
the remarks in Sect. 2.6), we obtain the formula (2.23). ��
Remark 2.7 It is easy to see that, if we pick all matrix-elements real, some elements
τik of the matrix T in (2.23) will be negative, even while the numbers x0i and y

0
k are

positive. It was proved in [2], Theorem 2.3, that this is necessarily so. Indeed, one

there constructs an example of a five-dimensional couple � 52 (λ) and two vectors
x0, y0 ∈ R5 having non-negative entries such that no contraction T = (τik)

5
i,k=1 on

� 52 (λ) having all matrix entries τik ≥ 0 can satisfy T x0 = y0. On the other hand, if
one settles for using a matrix with ‖ T ‖ ≤ √2, then it is possible to find one with
only non-negative matrix entries. Indeed, such a matrix was used by Sedaev [35],
see also [38].

2.8 On Sharpness of the Norm-Bounds

We shall show that ifm < n (i.e., if the polynomialP has at least one non-real zero),
then the norm ‖ T ‖L(Hi ) of the contraction T constructed above is very close to 1
for i = 0, 1.

We first claim that ‖ T ‖L(H0) = 1. To see this, we notice that if m < n, then
there is a non-trivial polynomial Q(1) in the space V (see (2.24)) which vanishes
at the points 0, γ1, . . . , γm−1. If x(1)i and y(1)i are defined by the formulas (2.18)

and (2.19) (while (x(1)j )′ = (y
(1)
k )′ = 0), we then have T x(1) = y(1) and

kβ(t, x
(1))− kα(t, y

(1)) = |Q
(1)(t) | 2

L(t)P (t)
, t > 0.

Choosing t = 0 we conclude that ‖ x(1) ‖ 2
�n2
−‖ T x(1) ‖ 2

�n2
= 0, whence ‖ T ‖L(H0) ≥

1, proving our claim.
Similarly, the condition m < n implies the existence of a polynomialQ(2) ∈ V

of degree at most n + m − 2 vanishing at the points γ1, . . . , γm−1. Constructing
vectors x(2), y(2) via (2.18) and (2.19) we will have T x(2) = y(2) and

kβ(t, x
(2))− kα(t, y

(2)) = |Q
(2)(t) | 2

L(t)P (t)
, t > 0.
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Multiplying this relation by t and then sending t →∞, we find that ‖ x(2) ‖ 2
�n2(β)
−

‖ T x(2) ‖ 2
�n2(α)

= 0, which implies ‖ T ‖L(H1) ≥ ρ−1/2.

2.9 A Remark on Weighted �p-Couples

As far as we are aware, if 1 < p <∞ and p 
= 2, it is still an open question whether

the couple �np(λ) =
(
�np, �

n
p(λ)

)
is an exact Calderón couple or not. (When p = 1

or p = ∞ it is exact Calderón; see [36] for the case p = 1; the case p = ∞ is
essentially just the Hahn–Banach theorem.)

It is well known, and easy to prove, that theKp-functional (see (2.2)) correspond-
ing to the couple �np(λ) is given by the explicit formula

Kp

(
t, x; �np(λ)

)
=

n∑
i=1
|xi|p tλi

(1+ (tλi)
1

p−1 )p−1
.

It was proved by Sedaev [35] (cf. [38]) that ifKp

(
t, y0; �np(λ)

)
≤Kp

(
t, x0; �np(λ)

)

for all t > 0 then there is T : �np(λ) → �np(λ) of norm at most 21/p
′
such that

T x0 = y0. (Here p′ is the exponent conjugate to p.)
Although our present estimates are particular for the case p = 2, our construction

still shows that, if we re-define P(t) to be the polynomial

P(t)

L(t)
=

n∑
1

(x̃0i )
p βi

t + βi
−

n∑
1

(ỹ0i )
p αi

t + αi
, (2.25)

then the matrix T defined by

τik = Re

[
1

αi − βk

(x̃0k )
p−1

(ỹ0i )
p−1

βkLδ(−αi)Lc(−αi)Lα(−βk)
αiLδ(−βk)Lc(−βk)L′α(−αi)

]
(2.26)

will satisfy T x̃0 = ỹ0, at least, provided that P(t) > 0 when t ≥ 0. (Here Lδ and
Lc are constructed from the zeros of P as in the case p = 2.)

The matrix (2.26) differs from those used by Sedaev [35] and Sparr [38]. Indeed
the matrices from [35, 38] have non-negative entries, while this is not so for
the matrices (2.26). It seems to be an interesting problem to estimate the norm
‖ T ‖L(�np(λ)) for the matrix (2.26), when p 
= 2. The motivation for this type of

question is somewhat elaborated in Sect. 6.7, but we shall not discuss it further
here.
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2.10 A Comparison with Löwner’s Matrix

In this subsection, we briefly explain how our matrix T is related to the matrix used
by Löwner [26] in his original work on monotone matrix functions.2

We shall presently display four kinds of partial isometries; Löwner’s matrix will
be recognized as one of them. In all cases, operators with the required properties
can alternatively be found using the more general construction in Theorem 2.4.

The following discussion was inspired by the earlier work of Sparr [39], who
seems to have been the first to note that Löwner’s matrix could be constructed in a
similar way.

In this subsection, scalars are assumed to be real. In particular, when we write
“�n2” we mean the (real) Euclidean n-dimensional space.

Suppose that two vectors x0, y0 ∈ Rn satisfy

kλ

(
t, y0

)
≤ kλ

(
t, x0

)
, t > 0.

Let

Lλ(t) =
n∏
1

(t + λi) ,

and let P ∈ Pn−1 be the polynomial fulfilling

P(t)

Lλ(t)
= kλ

(
t, x0

)
− kλ

(
t, y0

)
=

n∑
i=1

λi

t + λi

[
(x0i )

2 − (y0i )
2
]
.

By assumption, P(t) ≥ 0 for t ≥ 0. Moreover, P is uniquely determined by the n
conditions

P(−λi) = (x0i )
2 − (y0i )

2

λiL
′
λ(−λi)

.

Let u1, v1, u2, v2, . . . denote the canonical basis of �n2 and let

�n2 = O ⊕ E

be the corresponding splitting, i.e.,

O = span {ui} , E = span {vi}.

2By “Löwner’s matrix,” we mean the unitary matrix denoted “V ” in Donoghue’s book [12], on p.
71. A more explicit construction of this matrix is found in [26], where it is called “T .”
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Notice that

dimO = $(n− 1)/2% + 1 , dimE = $(n− 2)/2% + 1,

where $x% is the integer part of a real number x.
We shall construct matrices T ∈ Mn(R) such that

T x0 = y0 and kλ (t, T x) ≤ kλ(t, x), t > 0, x ∈ Rn, (2.27)

in the following special cases:

(1) P(t) = q(t)2 where q ∈ P(n−1)/2(R), x0 ∈ O , and y0 ∈ E,
(2) P(t) = tq(t)2 where q ∈ P(n−2)/2(R), x0 ∈ E, and y0 ∈ O .

Here Px should be interpreted as P$x%.

Remark 2.8 In this connection, it is interesting to recall the well-known fact that any
polynomial P which is non-negative on R+ can be written P(t) = q0(t)

2 + tq1(t)2
for some real polynomials q0 and q1.

To proceed with the solution, we rename the λi as λi = ξi when i is odd and
λi = ηi when i is even. We also write

Lξ (t) =
∏
i odd

(t + ξi) , Lη(t) =
∏
i even

(t + ηi),

and write L = LξLη. Notice that L′λ(−ξi) > 0 and L′λ(−ηi) < 0.

2.10.1 Case 1

Suppose that P(t) = q(t)2, q ∈ P(n−1)/2(R), x0 ∈ O , and y0 ∈ E. Then

q(t)2

Lλ(t)
=

∑
k odd

ξk

t + ξk
(x0k )

2 −
∑
i even

ηi

t + ηi
(y0i )

2,

where

x0k =
εkq(−ξk)√
ξkL
′
λ(−ξk)

, y0i =
ζiq(−ηi)√
−ηiL′λ(−ηi)

(2.28)

for some choice of signs εk, ζi ∈ {±1}.
By (2.28) are defined linear maps

O → P(n−1)/2(R) : x �→ Q ; P(n−1)/2(R)→ E : Q �→ y.
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The composition is a linear map

T0 : O → E : x �→ y.

We now define T ∈ Mn(R) by

T : O ⊕ E→ O ⊕ E : [x; v] �→ [0; T0x].

Then clearly T x0 = y0 and

kλ (t, [x; v])− kλ (t, T [x; v])
≥ kξ (t, x)− kη (t, T0x)

= Q(t)2

Lλ(t)
≥ 0, t > 0, x ∈ O, v ∈ E.

(2.29)

We have verified (2.27) in case 1. A computation similar to the one in the proof of
Theorem 2.6 shows that, with respect to the bases uk and vi ,

(T0)ik = εkζi

ξk − ηi

Lξ (−ηi)
L′ξ (−ξk)

(
ξkL
′
ξ (−ξk)Lη(−ξk)

−ηiLξ (−ηi)L′η(−ηi)

)1/2

.

Notice that, multiplying (2.29) by t , then letting t →∞ implies that

∑
k odd

x2k ξk −
∑
i even

(T0x)
2
i ηi = 0.

This means that T is a partial isometry from O to E with respect to the norm of
�n2(λ).

2.10.2 Case 2

Now assume that P(t) = tq(t)2, q ∈ P(n−2)/2(R), x0 ∈ E, and y0 ∈ O . Then

tq(t)2

Lλ(t)
= −

∑
i odd

(y0i )
2 ξi

t + ξi
+

∑
k even

ηk

t + ηk
(x0k )

2,

where

y0i =
ε′iq(−ξi)√
L′λ(−ξi)

, x0k =
−ζ ′kq(−ηk)√
−L′λ(−ηk)

(2.30)

for some ε′i , ζ ′k ∈ {±1}.
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By (2.30) are defined linear maps

E→ P(n−2)/2(R) : x �→ Q ; P(n−2)/2(R)→ O : Q �→ y.

We denote their composite by

T1 : E→ O : x �→ y.

Define T ∈ Mn(R) by

T : O ⊕ E→ O ⊕ E : [u; x] �→ [T1x; 0] .

We then have

−kλ (t, T [u; x])+ kλ (t, [u; x])
≥ −kξ (t, T1x)+ kη(t, x)

= tQ(t)2

Lλ(t)
≥ 0, t > 0, u ∈ O, x ∈ E,

(2.31)

and (2.27) is verified also in case 2.
A computation shows that, with respect to the bases vk and ui ,

(T1)ik = ε′iζ ′k
ηk − ξi

Lη(−ξi)
L′η(−ηk)

(−Lξ (−ηk)L′η(−ηk)
L′ξ (−ξi)Lη(−ξi)

)1/2

.

Inserting t = 0 in (2.31) we find that

−
∑
i odd

(T1x)
2
i +

∑
k even

(xk)
2 = 0,

i.e., T is a partial isometry form E to O with respect to the norm of �n2.
In the case of even n, the matrix T1 coincides with Löwner’s matrix.

3 Quadratic Interpolation Spaces

3.1 A Classification of Quadratic Interpolation Spaces

Recall that an intermediate space X with respect to H is said to be of type H if
‖ T ‖L(Hi ) ≤ Mi for i = 0, 1 implies that ‖ T ‖L(X) ≤ H (M0,M1). We shall
henceforth make a mild restriction, and assume that H be homogeneous of degree
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one. This means that we can write

H(s, t) 2 = s 2 H(t 2/s 2) (3.1)

for some function H of one positive variable. In this situation, we will say that X
is of type H. The definition is chosen so that the estimates ‖ T ‖ 2L(Hi )

≤ Mi for

i = 0, 1 imply ‖ T ‖ 2L(X) ≤ M0 H (M1/M0).
In the following we will make the standing assumptions: H is an increasing,

continuous, and positive function on R+ with H(1) = 1 and H(t) ≤ max{1, t}.
Notice that our assumptions imply that all spaces of type H are exact interpola-

tion. Note also that H(t) = t θ corresponds to geometric interpolation of exponent θ .
Suppose now that H is a regular Hilbert couple and that H∗ is an exact

interpolation space with corresponding operatorB. By Donoghue’s lemma, we have
that B = h(A) for some positive Borel function h on σ(A).

The statement that H∗ is intermediate relative toH is equivalent to that

c1
A

1+ A
≤ B ≤ c2(1+ A) (3.2)

for some positive numbers c1 and c2.
Let us momentarily assume thatH0 be separable. (This restriction is removed in

Remark 3.1.) We can then define the scalar-valued spectral measure of A,

νA(ω) =
∑

2−k 〈E(ω)ek, ek〉0

where E is the spectral measure of A, {ek; k = 1, 2, . . .} is an orthonormal basis
forH0, and ω is a Borel set. Then, for Borel functions h0, h1 on σ(A), one has that
h1 = h2 almost everywhere with respect to νA if and only if h1(A) = h2(A).

Note that the regularity ofH means that νA({0}) = 0.

Theorem II IfH∗ is of type H with respect toH, thenB = h(A)where the function
h can be modified on a null-set with respect to νA so that

h(λ)/h(μ) ≤ H (λ/μ) , λ,μ ∈ σ(A) \ {0}. (3.3)

Proof Fix a (large) compact subset K ⊂ σ(A) ∩ R+ and putH′0 = H′1 = EK(H0)

where E is the spectral measure of A, and the norms are defined by restriction,

‖ x ‖H′i = ‖ x ‖Hi
, ‖ x ‖H′∗ = ‖ x ‖H∗ , x ∈ EK (H0) .

It is clear that the operator A′ corresponding to H′ is the compression of A to
H′0 and likewise the operator B ′ corresponding to H′∗ is the compression of B to
H′0. Moreover, H′∗ is of interpolation type H with respect to H′ and the operator
B ′ = (h|K) (A′). For this reason, and since the compact set K is arbitrary, it clearly
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suffices to prove the statement with H replaced by H′. Then A is bounded above
and below. Moreover, by (3.2), also B is bounded above and below.

Let c < 1 be a positive number such that σ(A) ⊂ (
c, c−1

)
. For a fixed ε > 0

with ε < c/2 we set

Eλ = σ(A) ∩ (λ− ε, λ+ ε)

and consider the functions

mε(λ) = ess inf Eλ h, Mε(λ) = ess supEλ h,

the essential inf and sup being taken with respect to νA.
Now fix a small positive number ε′ and two unit vectors eλ, eμ supported by

Eλ,Eμ, respectively, such that

‖ eλ ‖ 2∗ ≥ Mε(λ)− ε′,
∥∥ eμ ∥∥ 2

∗ ≤ mε(μ)+ ε′.

Now fix λ,μ ∈ σ(A) and let T x = 〈
x, eμ

〉
0 eλ. Then

‖ T x ‖ 21 =
∣∣〈x, eμ〉0

∣∣ 2 ‖ eλ ‖ 21 ≤ 1

(μ− ε) 2

∣∣〈x, eμ〉1
∣∣ 2 (λ+ ε)

≤ (μ+ ε)(λ+ ε)

(μ− ε)2
‖ x ‖ 21 .

Likewise,

‖ T x ‖ 20 ≤
∣∣〈x, eμ〉0

∣∣ 2 ≤ ‖ x ‖ 20 ,
so ‖ T ‖ ≤ 1 and ‖ T ‖ 2A ≤ αμ,λ,ε where αμ,λ,ε = (μ+ε)(λ+ε)

(μ−ε)2 .
Since H∗ is of type H, we conclude that

‖ T ‖ 2B ≤ H
(
αμ,λ,ε

)
,

whence

Mε(λ)− ε′ ≤ ‖ eλ ‖ 2∗ =
∥∥ T eμ ∥∥ 2

∗ ≤ H
(
αμ,λ,ε

) ∥∥ eμ ∥∥ 2
∗

≤ H
(
αμ,λ,ε

) (
mε(μ)+ ε′

)
.

(3.4)

In particular, since ε′ was arbitrary, and mε(λ) ≤ ‖ eλ ‖ 2∗ ≤ ‖B ‖, we find that

Mε(λ)−mε(λ) ≤
[
H

(
αμ,λ,ε

)− 1
] ‖B ‖ .
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By assumption, H is continuous and H(1) = 1. Hence, as ε ↓ 0, the functions
Mε(λ) diminish monotonically, converging uniformly to a function h∗(λ) which is
also the uniform limit of the family mε(λ). It is clear that h∗ is continuous, and
since mε ≤ h∗ ≤ Mε , we have h∗ = h almost everywhere with respect to νA. The
relation (3.3) now follows for h = h∗ by letting ε and ε′ tend to zero in (3.4). ��

A partial converse to Theorem II is found below, see Theorem 6.3.

Remark 3.1 (The Non-Separable Case) Now consider the case when H0 is non-
separable. (By regularity this means that also H1 andH∗ are non-separable.)

First assume that the operator A is bounded. Let H′0 be a separable reducing
subspace for A such that the restriction A′ of A to H′0 has the same spectrum as A.
The spaceH′0 reduces B by Donoghue’s lemma; by Theorem II the restriction B ′ of
B to H′0 satisfies B ′ = h′(A′) for some continuous function h′ satisfying (3.3) on
σ(A). Let H′′0 be any other separable reducing subspace, where (as before) B ′′ =
h′′(A′′). Then H′0 ⊕ H′′0 is a separable reducing subspace on which B = h(A) for
some third continuous function h on σ(A). Then h(A′)⊕h(A′′) = h′(A′)⊕h′′(A′′)
and by continuity we must have h = h′ = h′′ on σ(A). The function h thus satisfies
B = h(A) as well as the estimate (3.3).

If A is unbounded, we replace A by its compression to PnH0 where Pn is the
spectral projection ofA corresponding to the spectral set [0, n]∩σ(A), n = 1, 2, . . ..
The same reasoning as above shows that B appears as a continuous function of A
on σ(A) ∩ [0, n]. Since n is arbitrary, we find that B = h(A) for a function h
satisfying (3.3).

3.2 Geometric Interpolation

Now consider the particular case whenH∗ is of exponent θ , viz. of type H(t) = t θ

with respect toH. We write B = h(A) where h is the continuous function provided
by Theorem II (and Remark 3.1 in the non-separable case).

Fix a point λ0 ∈ σ(A) and let C = h(λ0)λ
−θ
0 . The estimate (3.3) then implies

that h(λ) ≤ Cλθ and h(μ) ≥ Cμθ for all λ,μ ∈ σ(A). We have proved the
following theorem.

Theorem 3.2 ([27, 40]) If H∗ is an exact interpolation Hilbert space of exponent
θ relative toH, then B = h(A) where h(λ) = Cλθ for some positive constant C.

Theorem 3.2 says that H∗ = Hθ up to a constant multiple of the norm, where
Hθ is the space defined in (1.7). In the guise of operator inequalities: for any fixed
positive operators A and B, the condition

T ∗T ≤ M0 , T ∗AT ≤ M1A ⇒ T ∗BT ≤M 1−θ
0 M θ

1 B

is equivalent to that B = Aθ .
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It was observed in [27] that Hθ also equals to the complex interpolation space
Cθ(H ). For the sake of completeness, we supply a short proof of this fact in the
appendix.

Remark 3.3 An exact quadratic interpolation method, the geometric mean was
introduced earlier by Pusz and Woronowicz [33] (it corresponds to the C1/2-
method). In [40], Uhlmann generalized that method to a method (the quadratic
mean) denoted QIt where 0 < t < 1; this method is quadratic and of exponent
t .

In view of Theorem 3.2 and the preceding remarks we can conclude that
QIθ (H ) = Cθ (H ) = Hθ for any regular Hilbert couple H. We refer to [40] for
several physically relevant applications of this type of interpolation.

Finally, we want to mention that in [32] Peetre introduces the “Riesz method of
interpolation”; in Section 5 he also defines a related method “QM” which comes
close to the complex C1/2-method.

3.3 Donoghue’s Theorem

The exact quadratic interpolation spaces relative to a Hilbert couple were character-
ized by Donoghue in the paper [14]. We shall here prove the following equivalent
version of Donoghue’s result (see [2, 3]).

Theorem III An intermediate Hilbert space H∗ relative to H is an exact interpo-
lation space if and only if there is a positive radon measure � on [0,∞] such that

‖ x ‖ 2∗ =
∫
[0,∞]

(
1+ t−1

)
K

(
t, x; H )

d�(t).

Equivalently,H∗ is exact interpolation relative toH if and only if the corresponding
operator B can be represented as B = h(A) for some function h ∈ P ′.

The statements that all norms of the given form are exact quadratic interpolation
norms have already been shown (see Sect. 1.2). There remains to prove that there
are no others.

Donoghue’s original formulation of the result, as well as other equivalent forms
of the theorem, is found in Sect. 6 below. Our present approach follows [2] and is
based onK-monotonicity.

Remark 3.4 The condition that H∗ be exact interpolation with respect to H means
that H∗ is of type H where H(t) = max{1, t}. In view of Theorem II (and
Remark 3.1), this means that we can represent B = h(A) where h is quasi-concave
on σ(A) \ {0},

h(λ) ≤ h(μ)max {1, λ/μ} , λ, μ ∈ σ(A) \ {0}. (3.5)

In particular, h is locally Lipschitzian on σ(A) ∩ R+.
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Remark 3.5 A related result concerning non-exact quadratic interpolation was
proved by Ovchinnikov [30] using Donoghue’s theorem. Cf. also [4].

3.4 The Proof for Simple Finite-Dimensional Couples

Similar to our approach to Calderón’s problem, our strategy is to reduce Theorem III
to a case of “simple couples.”

Theorem 3.6 Assume that H0 = H0 = C n as sets and that all eigenvalues (λi)n1
of the corresponding operatorA are of unit multiplicity. Consider a third Hermitian
norm ‖x‖ 2∗ = 〈Bx, x〉0 on C n. Then H∗ is exact interpolation with respect to H if
and only if B = h(A) where h ∈ P ′.
Remark 3.7 The lemma says that the class of functions h on σ(A) satisfying

T ∗T ≤ 1 , T ∗AT ≤ A ⇒ T ∗h(A)T ≤ h(A), (T ∈ Mn(C))
(3.6)

is precisely the set P ′|σ(A) of restrictions of P ′-functions to σ(A). In this way, the
condition (3.6) provides an operator-theoretic solution to the interpolation problem
by positive Pick functions on a finite subset of R+.

Proof of Theorem 3.6 We already know that the spacesH∗ of the asserted form are
exact interpolation relative toH (see Sects. 1.2 and 1.3).

Now let H∗ be any exact quadratic interpolation space. By Donoghue’s lemma
and the argument in Sect. 2.3, we can for an appropriate positive sequence λ = (λi)

n
1

identifyH = �n2(λ),A = diag(λi), andB = h(A)where h is some positive function
defined on σ(A) = {λi}n1.

Our assumption is that �n2 (h(λ)) is exact interpolation relative to �
n
2(λ). We must

prove that h ∈ P ′|σ(A). To this end, write

kλi (t) =
(1+ t)λi

1+ tλi
,

and recall that (see Lemma 1.1)

K
(
t, x; �n2(λ)

)
=

(
1+ t−1

)−1 n∑
1

|xi | 2 kλi (t).

Let us denote by C the algebra of continuous complex functions on [0,∞] with the
supremum norm ‖u ‖∞ = supt>0 | u(t) |. Let V ⊂ C be the linear span of the kλi
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for i = 1, . . . , n. We define a positive functional φ on V by

φ(

n∑
1

aikλi ) =
n∑
1

ai h(λi).

We claim that φ is a positive functional, i.e., if u ∈ V and u(t) ≥ 0 for all t > 0,
then φ(u) ≥ 0.

To prove this let u = ∑n
1 aikλi be non-negative on R+ and write ai = |xi| 2 −

|yi| 2 for some x, y ∈ Cn. The condition that u ≥ 0 means that

(
1+ t−1

)
K

(
t, x; �n2(λ)

)
=

n∑
i=1
|xi| 2 kλi (t)

≥
n∑
i=1
|yi| 2 kλi (t)

=
(
1+ t−1

)
K

(
t, y; �n2(λ)

)
, t > 0.

(3.7)

Since �n2(λ) is an exact Calderón couple (by Theorem 2.4), the space �n2(h(λ)) is
exact K-monotonic. In other words, (3.7) implies that

‖ x ‖�n2(h(λ)) ≥ ‖ y ‖�n2(h(λ)) ,

i.e.,

φ(u) =
n∑
1

(
|xi | 2 − |yi | 2

)
h(λi) ≥ 0.

The asserted positivity of φ is thereby proved.
Replacing λi by cλi for a suitable positive constant c we can without losing

generality assume that 1 ∈ σ(A), i.e., that the unit 1(x) ≡ 1 of the C∗-algebra C
belongs to V . The positivity of φ then ensures that

‖φ ‖ = sup
u∈V ; ‖u‖∞≤1

|φ(u)| = φ(1).

Let � be a Hahn–Banach extension of φ to C and note that

‖� ‖ = ‖φ ‖ = φ(1) = �(1).

This means that � is a positive functional on C (cf. [29], §3.3). By the Riesz
representation theorem there is thus a positive Radon measure � on [0,∞] such
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that

�(u) =
∫
[0,∞]

u(t) d�(t), u ∈ C.

In particular

h(λi) = φ
(
kλi

) = �
(
kλi

) =
∫
[0,∞]

(1+ t)λi

1+ tλi
d�(t), i = 1, . . . , n.

We have shown that h is the restriction to σ(A) of a function of class P ′. ��

3.5 The Proof of Donoghue’s Theorem

We here prove Theorem III in full generality.
We remind the reader that if S ⊂ R+ is a subset, we write P ′|S for the convex

cone of restrictions of P ′-functions to S. We first collect some simple facts about
this cone.

Lemma 3.8

(i) The class P ′|S is closed under pointwise convergence.
(ii) If S is finite and if λ = (λi)

n
i=1 is an enumeration of the points of S, then h

belongs to P ′|S if and only if �n2(h(λ)) is exact interpolation with respect to

the pair �n2(λ).
(iii) If S is infinite, then a continuous function h on S belongs to P ′|S if and only if

h ∈ P ′|� for every finite subset � ⊂ S.

Proof

(i) Let hn be a sequence in P ′ converging pointwise on S and fix λ ∈ S. It is clear
that the boundedness of the numbers hn(λ) is equivalent to boundedness of the
total masses of the corresponding measures �n on the compact set [0,∞]. It
now suffices to apply Helly’s selection theorem.

(ii) This is Theorem 3.6.
(iii) Let �n be an increasing sequence of finite subsets of S whose union is dense.

Let hn = h|�n where h is continuous on S. If hn ∈ P ′|�n for all n, then
the sequence hn converges pointwise on ∪�n to h. By part (i) we then have
h ∈ P ′|σ(A).

��
We can now finish the proof of Donoghue’s theorem (Theorem III).
Let H∗ be exact interpolation with respect toH and represent the corresponding

operator as B = h(A) where h satisfies (3.3). By the remarks after Theorem III, the
function h is locally Lipschitzian.
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In view of Lemma 3.8 we shall be done when we have proved that �n2(h(λ)) is
exact interpolation with respect to �n2(λ) for all sequences λ = (λi)

n
1 ⊂ σ(A) of

distinct points. Let us arrange the sequences in the increasing order: 0 < λ1 <

· · · < λn.
Fix ε > 0, ε < min{c, λ1, 1/λn} and let Ei = [λi−ε, λi+ε]∩σ(A); we assume

that ε is sufficiently small that the Ei be disjoint. Let M = ∪n1Ei . We can assume
that h has Lipschitz constant at most 1 onM .

Let M be the reducing subspace ofH0 corresponding to the spectral setM , and
let Ã be the compression of A toM. We define a function g onM by g(λ) = λi on
Ei . Then |g(λ)− λ| < ε on σ(Ã), so

‖ Ã− g(Ã) ‖ ≤ ε , ‖h(Ã)− h(g(Ã)) ‖ ≤ ε. (3.8)

Lemma 3.9 Suppose that A′, A′′ ∈ L (M) satisfy A′, A′′ ≥ δ > 0 and∥∥A′ − A′′
∥∥ ≤ ε. Then ‖ T ‖A′′ ≤

√
1+ 2ε/δ max{‖ T ‖ , ‖ T ‖A′ } for all T ∈

L (M).

Proof By definition, ‖ T ‖A′ is the smallest number C ≥ 0 such that T ∗A′T ≤
C 2A′. Thus

T ∗A′′T = T ∗(A′′ − A′)T + T ∗A′T

≤ ‖ T ‖ 2 ε + ‖ T ‖ 2A′
(
A′′ + (

A′ − A′′
))

≤ 2εmax{‖ T ‖ 2 , ‖ T ‖ 2A′ } + ‖ T ‖ 2A′ A′′

≤ max{‖T ‖ 2 , ‖ T ‖ 2A′ } (1+ 2ε/δ)A′′.

��
We can find δ > 0 such that the operators Ã, g(Ã), h(Ã), and h(g(Ã)) are ≥ δ.

Then by repeated use of Lemma 3.9,

‖ T ‖
h
(
g
(
Ã
)) ≤ √

1+ 2ε/δ max{‖ T ‖ , ‖ T ‖
h
(
Ã
)}

≤ √
1+ 2ε/δ max

{‖ T ‖ , ‖ T ‖Ã
}

≤ (1+ 2ε/δ)max{‖ T ‖ , ‖ T ‖
g
(
Ã
)}, T ∈ L(M).

Let ei be a unit vector supported by the spectral set Ei and define a space V ⊂M to
be the n-dimensional space spanned by the ei . Let A0 be the compression of g(Ã)
to V , then

‖ T ‖h(A0) ≤ (1+ 2ε/δ)max
{‖ T ‖ , ‖ T ‖A0

}
, T ∈ L (V) . (3.9)
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Identifying V with �n2 and A0 with the matrix diag(λi), we see that (3.9) is
independent of ε. Letting ε diminish to 0 in (3.9) now gives that �n2(h(λ)) is exact
interpolation with respect to �n2(λ). In view of Lemma 3.8, this finishes the proof of
Theorem III. ��

4 Classes of Matrix Functions

In this section, we discuss the basic properties of interpolation functions: in
particular, the relation to the well-known classes of monotone matrix functions. We
refer to the books [12] and [34] for further reading on the latter classes.

4.1 Interpolation and Matrix Monotone Functions

Let A1 and A2 be positive operators in �n2 (n = ∞ is admitted). Suppose that A1 ≤
A2 and form the following operators on �n2 ⊕ �n2:

T0 =
(
0 0
1 0

)
, A =

(
A2 0
0 A1

)
.

It is then easy to see that T0∗T0 ≤ 1 and that T0∗AT0 =
(
A1 0
0 0

)
≤ A.

Now assume that a function h on σ(A) belongs to the class CA defined in
Sect. 1.4, i.e., that h satisfies

T ∗T ≤ 1 , T ∗AT ≤ A ⇒ T ∗h(A)T ≤ h(A), (4.1)

where T denotes an operator on �2n2 .
We then have T0∗h(A)T0 ≤ h(A), or

(
h(A1) 0
0 0

)
≤

(
h(A2) 0
0 h(A1)

)
.

In particular, we find that h(A1) ≤ h(A2). We have shown that (under the
assumptions above)

A1 ≤ A2 ⇒ h (A1) ≤ h (A2) . (4.2)

We now change our point of view slightly. Given a positive integer n, we let Cn
denote the convex of positive functions h on R+ such that (4.1) holds for all positive
operatorsA on �n2 and all T ∈ L

(
�n2

)
.
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Similarly, we let P ′n denote the class of all positive functions h on R+ such that
h(A1) ≤ h(A2) whenever A1, A2 are positive operators on �n2 such that A1 ≤ A2.
We refer to P ′n as the cone of positive functionsmonotone of order n on R+.

We have shown above that C2n ⊂ P ′n.
In the other direction, assume that h ∈ P ′2n. LetA, T be bounded operators on �n2

with A > 0, T ∗T ≤ 1 and T ∗AT ≤ A. Assume also that h be continuous. We will
use the following lemma due to Hansen [19]. We recall the proof for completeness.

Lemma 4.1 ([19]) T ∗h(A)T ≤ h(T ∗AT ).

Proof Put S = (1 − T T ∗)1/2 and R = (1 − T ∗T )1/2 and consider the 2n × 2n
matrix

U =
(
T S

R −T ∗
)

, X =
(
A 0
0 0

)
.

It is well known, and easy to check, that U is unitary and that

U∗XU =
(
T ∗AT T ∗AS
SAT SAS

)
.

Next fix a number ε > 0, a constant λ > 0 (to be fixed), and form the matrix

Y =
(
T ∗AT + ε 0

0 2λ

)

which, provided that we choose λ ≥ ‖SAS‖, satisfies

Y − U∗XU =
(

ε −T ∗AS
−SAT 2λ− SAS

)
≥

(
ε D

D∗ λ

)
,

where we have written D = −T ∗AS.
If we now also choose λ so that λ ≥ ‖D‖2/ε, then we obtain for all ξ, η ∈ Cn

that
〈(

ε D

D∗ λ

)(
ξ

η

)
,

(
ξ

η

)〉
= ε‖ξ‖2 + 〈Dη, ξ〉 + 〈D∗ξ, η〉 + λ‖η‖2

≥ ε‖ξ‖2 − 2‖D‖‖ξ‖‖η‖ + λ‖η‖2 ≥ 0.

Hence U∗XU ≤ Y and as a consequence U∗h(X)U = h(U∗XU) ≤ h(Y ), since h
is matrix monotone of order 2n. The last inequality means that

(
T ∗h(A)T T ∗h(A)S
Sh(A)T Sh(A)S

)
≤

(
h(T ∗AT + ε) 0

0 h(2λ)

)
,

so in particular T ∗h(A)T ≤ h(T ∗AT + ε). Since ε > 0 was arbitrary, and since h
is assumed to be continuous, we conclude the lemma. ��
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We now continue our discussion. Assuming that T ∗T ≤ 1 and T ∗AT ≤ A,
and that h ∈ P ′2n is continuous, we have h(T ∗AT ) ≤ h(A) [since h ∈ P ′n], so
T ∗h(A)T ≤ h(A) by Lemma 4.1. We conclude that h ∈ Cn.

To prove that P ′2n ⊂ Cn, we need to remove the continuity assumption on
h made above. This is completely standard: let ϕ be a smooth positive function
on R+ such that

∫∞
0 ϕ(t) dt/t = 1, and define a sequence hk by hk(λ) =

k−1
∫∞
0 ϕ

(
λk/tk

)
h(t) dt/t . The class P ′2n is a convex cone, closed under pointwise

convergence [12], so the functions h1, h2, . . . are of class P ′2n. They are furthermore
continuous, so by the argument above, they are of class Cn. By Lemma 3.8, the cone
Cn is also closed under pointwise convergence, so h = lim hn ∈ Cn.

To summarize, we have the inclusions C2n ⊂ P ′n, P ′2n ⊂ Cn, and also Cn+1 ⊂
Cn, P ′n+1 ⊂ P ′n. In view of Theorem III, we have the identity ∩∞1 Cn = P ′. The
inclusions above now imply the following result, sometimes known as “Löwner’s
theorem on matrix monotone functions.”

Theorem 4.2 We have ∩∞1 P ′n = ∩∞1 Cn = P ′.

The identity ∩∞1 P ′n = P ′ says that a positive function h is monotone of all finite
orders if and only if it is of class P ′. The somewhat less precise fact that P ′∞ = P ′
is interpreted as that the class of operator monotone functions coincides with P ′.

The identity C∞ = P ′ is, except for notation, contained in the work of Foiaş and
Lions, from [16]. See Sect. 6.4.

Note that the inclusion P ′2n ⊂ Cn shows that a matrix monotone functions of
order 2n can be interpolated by a positive Pick function at n points. Results of a
similar nature, where it is shown, in addition, that an interpolating Pick function
can be taken rational of a certain degree, are discussed, for example, in Donoghue’s
book [14, Chapter XIII] or (more relevant in the present connection) in the paper
[13].

It seems somewhat inaccurate to refer to the identity ∩∞1 P ′n = P ′ as “Löwner’s
theorem,” since Löwner discusses more subtle results concerning matrix monotone
functions of a given finite order n. In spite of this, it is common nowadays to let
“Löwner’s theorem” refer to this identity.

4.2 More on the Cone CA

We can now give an short proof of the following result due to Donoghue [13].

Theorem 4.3 For a positive function h on σ(A) we define two positive functions h̃
and h∗ on σ

(
A−1

)
by h̃(λ) = λh (1/λ) and h∗(λ) = 1/h (1/λ). Then the following

conditions are equivalent:

(i) h ∈ CA,
(ii) h̃ ∈ CA−1 ,
(iii) h∗ ∈ CA−1 .
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Proof Let H∗ be a quadratic intermediate space relative to a regular Hilbert couple
H; let B = h(A) be the corresponding operator. It is clear that H∗ is exact
interpolation relative to H if and only if H∗ is exact interpolation relative to the
reverse couple H(r) = (H1,H0). The latter couple has corresponding operator
A−1 and it is clear that the identity ‖ x ‖ 2∗ = 〈h(A)x, x〉0 is equivalent to that

‖ x ‖ 2∗ =
〈
A−1h̃

(
A−1

)
x, x

〉
1
. We have shown the equivalence of (i) and (ii).

Next let H∗ = (
H0
∗,H1

∗) be the dual couple, where we identify H0
∗ =

H0. With this identification, H1
∗ becomes associated with the norm ‖ x ‖ 2H ∗1 =〈

A−1x, x
〉
0, and H∗ ∗ is associated with ‖ x ‖ 2H ∗∗ =

〈
B−1x, x

〉
0. It remains to note

that H∗ is exact interpolation relative to H if and only if H∗ ∗ is exact interpolation
relative to H∗, proving the equivalence of (i) and (iii). ��

Combining with Theorem III, one obtains alternative proofs of the interpolation
theorems for P ′-functions discussed by Donoghue in the paper [13].

Remark 4.4 The exact quadratic interpolation spaces which are fixed by the duality,
i.e., which satisfy H∗ ∗ = H∗, correspond precisely to the class of P ′-functions
which are self-dual: h∗ = h. This class was characterized by Hansen in the paper
[20].

4.3 Matrix Concavity

A function h on R+ is called matrix concave of order n if we have Jensen’s
inequality

λh (A1)+ (1− λ)h (A2) ≤ h (λA1 + (1− λ)A2)

for all positive n× n matrices A1, A2, and all numbers λ ∈ [0, 1]. Let us denote by
�n the convex cone of positive concave functions of order n on R+. The fact that
∩n�n = P ′ follows from the theorem of Kraus [23]. Following [2] we now give an
alternative proof of this fact.

Proposition 4.5 For all n we have the inclusion C3n ⊂ �n ⊂ P ′n. In particular
∩∞1 �n = P ′.

Proof Assume first that h ∈ C3n and pick two positive matrices A1 and A2. Define
A3 = (1 − λ)A1 + λA2 where λ ∈ [0, 1] is given, and define matrices A and T of
order 3n by

A =
⎛
⎝A3 0 0

0 A1 0
0 0 A2

⎞
⎠ , T =

⎛
⎝ 0 0 0√

1− λ 0 0√
λ 0 0

⎞
⎠ .
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It is clear that T ∗T ≤ 1 and

T ∗AT =
⎛
⎝A3 0 0

0 0 0
0 0 0

⎞
⎠ ≤ A,

so, since h ∈ C3n, we have T ∗h(A)T ≤ h(A), or

⎛
⎝(1− λ)h(A1)+ λh(A2) 0 0

0 0 0
0 0 0

⎞
⎠ ≤

⎛
⎝h(A3) 0 0

0 h(A1) 0
0 0 h(A2)

⎞
⎠ .

Comparing the matrices in the upper left corners, we find that h ∈ �n.
Assume now that h ∈ �n, and take positive definite matrices A1, A2 of order

n with A1 ≤ A2. Also pick λ ∈ (0, 1). Then λA2 = λA1 + (1 − λ)A3 where
A3 = λ(1− λ)−1(A2 − A1). By matrix concavity, we then have

h(λA2) ≥ λh(A1)+ (1− λ)h(A3) ≥ λh(A1),

where we used non-negativity to deduce the last inequality. Being concave, h is
certainly continuous. Letting λ ↑ 1 one thus finds that h(A1) ≤ h(A2). We have
shown that h ∈ P ′n. ��

For a further discussion of classes of convex matrix functions and their relations
to monotonicity, we refer to the paper [21].

4.4 Interpolation Functions of Two Variables

In this section, we briefly discuss a class of interpolation functions of two matrix
variables. We shall not completely characterize the class of such generalized
interpolation functions here, but we hope that the following discussion will be of
some use for a future investigation.

Let H1 and H2 be Hilbert spaces. We turn H1 ⊗ H2 into a Hilbert space
by defining the inner product on elementary tensors via

〈
x1 ⊗ x2, x

′
1 ⊗ x ′2

〉 :=〈
x1, x1

′〉
1 ·

〈
x2, x2

′〉
2 (then extend via sesqui-linearity). Similarly, if Ti are oper-

ators on Hi , the tensor product T1 ⊗ T2 is defined on elementary tensors via
(T1 ⊗ T2) (x1 ⊗ x2) = T1x1 ⊗ T2x2. It is then easy to see that if Ai are positive
operators onHi for i = 1, 2, thenA1⊗A2 ≥ 0 as an operator on the tensor product.
Furthermore, we have A1 ⊗ A2 ≤ A′1 ⊗ A′2 if Ai ≤ A′i for i = 1, 2.
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Given two positive definite matricesAi of orders ni and a function h on σ(A1)×
σ(A2), we define a matrix h(A1, A2) by

h(A1, A2) =
∑

(λ1,λ2)∈σ(A1)×σ(A2)

h (λ1, λ2) E
1
λ1
⊗ E2

λ2

where Ej is the spectral resolution of the matrix Aj .
We shall say that h gives rise to exact interpolation relative to (A1, A2), and write

h ∈ CA1,A2 , if the condition

Tj
∗Tj ≤ 1 , Tj

∗AjTj ≤ Aj , j = 1, 2 (4.3)

implies

h(A1, A2)+ (T1 ⊗ T2)
∗h(A1, A2)(T1 ⊗ T2)

− (T1 ⊗ 1)∗h(A1, A2)(T1 ⊗ 1)− (1⊗ T2)
∗h(A1, A2)(1⊗ T2) ≥ 0.

(4.4)

Taking T1 = T2 = 0 we see that h ≥ 0 for all h ∈ CA1,A2 . It is also clear thatCA1,A2

is a convex cone closed under pointwise convergence on the finite set σ(A1) ×
σ(A2).

If h = h1 ⊗ h2 is an elementary tensor where hj ∈ CAj is a function
of one variable, then (4.3) implies Tj ∗hj (Aj)Tj ≤ hj (Aj ), whence (h1(A1) −
T1
∗h1(A1)T1)⊗(h2(A2)−T2∗h2(A2)T2) ≥ 0, which implies (4.4). We have shown

that CA1 ⊗ CA2 ⊂ CA1,A2 .
Since for each t ≥ 0 the P ′-function λ �→ (1+t )λ

1+tλ is of class CAj , we infer that
every function representable in the form

h(λ1, λ2) =
∫∫
[0,∞] 2

(1+ t1)λ1

1+ t1λ1

(1+ t2)λ2

1+ t2λ2
d�(t1, t2) (4.5)

with some positive Radon measure � on [0,∞] 2 is in the class CA1,A2 .
We shall say that a function h on σ(A1)× σ(A2) has the separate interpolation-

property if for each fixed b ∈ σ(A2) the function λ1 �→ h(λ1, b) is of class CA1 ,
and a similar statement holds for all functions λ2 �→ h(a, λ2).

Lemma 4.6 Each function of class CA1,A2 has the separate interpolation-property.

Proof Let T2 = 0 and take an arbitrary T1 with T1∗T1 ≤ 1 and T1∗A1T1 ≤ A1. By
hypothesis,

(T1 ⊗ 1)∗h(A1, A2)(T1 ⊗ 1) ≤ h(A1, A2).
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Fix an eigenvalue b of A2 and let y be a corresponding normalized eigenvector.
Then for all x ∈ H1 we have 〈h(A1, A2)x ⊗ y, x ⊗ y〉 = 〈h(A1, b)x, x〉H1

and
〈(T1 ⊗ 1)∗h(A1, A2)(T1 ⊗ 1)x ⊗ y, x ⊗ y〉 = 〈

T1
∗h(A1, b)T1x, x

〉
H1

so

〈
T1
∗h(A1, b)T1x, x

〉
H1
≤ 〈h(A1, b)x, x〉H1

.

The functions h(a, λ2) can be treated similarly. ��
Example The function h(λ1, λ2) = (λ1 + λ2)

1/2 clearly has the separate
interpolation-property for all A1, A2. However, it is not representable in the
form (4.5). Indeed, Re{h(i, i) − h(−i, i)} = 1 while it is easy to check that
Re{h(λ1, λ2)−h(λ̄1, λ2)} ≤ 0 whenever Imλ1, Im λ2 > 0 and h is of the form (4.5).

Let us say that a function h(λ1, λ2) defined on R+ × R+ is an interpolation
function (of two variables) if h ∈ CA1,A2 for all A1, A2. Lemma 4.6 implies that
interpolation functions are separately real-analytic in R+×R+ and that the functions
h(a, ·) and h(·, b) are of class P ′ (cf. Theorem III).

The above notion of interpolation function is close to Korányi’s definition of
monotone matrix function of two variables: f (λ1, λ2) is matrix monotone in a
rectangle I = I1 × I2 (I1, I2 intervals in R) if A1 ≤ A′1 (with spectra in I1) and
A2 ≤ A′2 (with spectra in I2) implies

f (A′1, A′2)− f (A′1, A2)− f (A1, A
′
2)+ f (A1, A2) ≥ 0.

Lemma 4.7 Each interpolation function is matrix monotone in R+ ×R+.

Proof Let 0 < Ai ≤ A′i and put Ãi =
(
A′i 0
0 Ai

)
, Ti =

(
0 0
1 0

)
. Since Ti∗ÃiTi ≤

Ãi , an interpolation function h will satisfy the interpolation inequality (4.4) with Ai

replaced by Ãi . Applying this inequality to vectors of the form

(
x1

0

)
⊗

(
x2

0

)
we

readily obtain

〈
h(A′1, A′2)x1 ⊗ x2, x1 ⊗ x2

〉− 〈
h(A1, A

′
2)x1 ⊗ x2, x1 ⊗ x2

〉
− 〈

h(A′1, A2)x1 ⊗ x2, x1 ⊗ x2
〉+ 〈h(A1, A2)x1 ⊗ x2, x1 ⊗ x2〉 ≥ 0.

The same result obtains with x1 ⊗ x2 replaced by a sum x1 ⊗ x2 + x ′1 ⊗ x ′2 + . . .,
i.e., h is matrix monotone. ��
Remark 4.8 Assume that f is of the form f (λ1, λ2) = g1(λ1) + g2(λ2). Then f
is matrix monotone for all g1, g2 and f is an interpolation function if and only if
g1, g2 ∈ P ′. In order to disregard “trivial” monotone functions of the above type,
Korányi [22] imposed the normalizing assumption (a) f (λ1, 0) = f (0, λ2) = 0 for
all λ1, λ2.
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It follows from Lemma 4.7 and the proof of [22, Theorem 4] that if h is a C2-
smooth interpolation function, then the function

k(x1, x2; y1, y2) = h(x1, x2)− h(x1, y2)− h(y1, x2)+ h(y1, y2)

(x1 − y1)(x2 − y2)

is positive definite in the sense that
∑

m

∑
n k(xm, ym; xn, yn)αmᾱn ≥ 0 for all finite

sequences of positive numbers xj , yk and all complex numbers αl . (The proof uses
Löwner’s matrix.) Korányi uses essentially this positive definiteness condition (and
condition (a) in the remark above) to deduce an integral representation formula for
h as an integral of products of Pick functions. See Theorem 3 in [22]. However,
in contrast to our situation, Korányi considers functions monotone on the rectangle
(−1, 1)×(−1, 1), so this last result cannot be immediately applied. (It easily implies
local representation formulas, valid in finite rectangles, but these representations do
not appear to be very natural from our point of view.)

This is not the right place to attempt to extend Korányi’s methods to functions
on R+ ×R+; it would seem more appropriate to give a more direct characterization
of the classes CA1,A2 or of the class of interpolation functions. At present, we do
not know if there is an interpolation function which is not representable in the
form (4.5).

5 Proof of the K-Property

In this section we extend the result of Theorem 2.4 to obtain the full proof of
Theorem I. The discussion is in principle not hard, but it does require some care
to keep track of both norms when reducing to a finite-dimensional case.

Recall first that, by Lemma 2.3, it suffices to consider the diagonal case H = K.
To prove Theorem I we fix a regular Hilbert couple H; we must prove that it

has the K-property (see Sect. 1.5). By Theorem 2.4, we know that this is true if
H is finite dimensional and the associated operator only has eigenvalues of unit
multiplicity.

We shall use a weak* type compactness result ([2]). To formulate it, let L1(H )

be the unit ball in the spaceL(H ). Moreover, let�t be the sumH0+H1 normed by
‖ x ‖ 2�t

:= K(t, x). Note that ‖ · ‖�t is an equivalent norm on � and that � 1 = �

isometrically. We denote by L1 (� t ) the unit ball in the space L (� t ).
In view of Remark 1.4, one has the identity

L1(H ) =
⋂
t∈R+

L1 (� t ) . (5.1)

We shall use this to define a compact topology on L1(H ).
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Lemma 5.1 The subset L1
(
H

) ⊂ L1 (� ) is compact relative to the weak
operator topology inherited from L (� ).

Recall that the weak operator topology on L (H ) is the weakest topology such
that a net Ti converges to the limit T if the inner product 〈Tix, y〉H converges to
〈T x, y〉H for all x, y ∈ H .

Proof of Lemma 5.1 The weak operator topology coincides on the unit ball L1 (� )

with the weak*-topology, which is compact, due to Alaoglu’s theorem (see [29],
Chap. 4 for details). It is clear that for a fixed t > 0, the subset L1 (� ) ∩ L1 (� t )

is weak operator closed in L1 (� ); hence it is also compact. In view of (5.1), the set
L1

(
H

)
is an intersection of compact sets. Hence the set L1

(
H

)
is itself compact,

provided that we endow it with the subspace topology inherited from L1 (� ). ��
Denote by Pn the projections Pn = Eσ(A)∩[n−1,n] onH0 where E is the spectral

resolution of A and n = 1, 2, 3, . . .. Consider the couple

H(n) = (Pn (H0) , Pn (H1)),

the associated operator of which is the compression An of A to the subspace
Pn (H0). Note that the norms in the couple H(n) are equivalent, i.e., the associated
operator An is bounded above and below.

We shall need two lemmas.

Lemma 5.2 If H(n) has the K-property for all n, then so doesH.

Proof Note that ‖Pn ‖L(H)
= 1 for all n, and that Pn → 1 as n → ∞ relative to

the strong operator topology on L (�). Suppose that x0, y0 ∈ � are elements such
that, for some ρ > 1,

K
(
t, y0

)
<

1

ρ
K

(
t, x0

)
, t > 0. (5.2)

Then K
(
t, Pny

0
) ≤ K

(
t, y0

)
< ρ−1K

(
t, x0

)
. Moreover, the identity

K
(
t, Pny

0
) = 〈

tAn

1+tAn
Pny

0, Pny
0
〉
0
shows that we have an estimate of the form

K(t, Pny
0) ≤ Cnmin{1, t} for t > 0 and large enough Cn (this follows since An is

bounded above and below).
The functions K

(
t, Pmx

0
)
increase monotonically, converging uniformly on

compact subsets of R+ to K
(
t, x0

)
when m → ∞. By concavity of the function

t �→ K
(
t, Pmx

0
)
we will then have

K
(
t, Pny

0
)
<

1

ρ̃
K

(
t, Pmx

0
)
, t ∈ R+, (5.3)

provided that m is sufficiently large, where ρ̃ is any number in the interval 1 <

ρ̃ < ρ.
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Indeed, let A = limt→∞K
(
t, Pny

0
)
and B = limt→0K

(
t, Pny

0
)
/t . Take

points t0 < t1 such that K(t, Pny0) ≥ A/ρ′ when t ≥ t1 and K(t, Pny0)/t ≤ Bρ′
when t ≤ t0. Here ρ′ is some number in the interval 1 < ρ′ < ρ.

Next use (5.2) to choose m large enough that K(t, Pmx0) > ρK(t, Pny
0) for all

t ∈ [t0, t1]. Then K(t, Pmx0) > (ρ/ρ′)K(t, Pny0) for t = t1, hence for all t ≥ t1,
and K(t, Pmx0)/t > (ρ/ρ′)K(t, Pny0)/t for t = t0 and hence also when t ≤ t0.
Choosing ρ′ = ρ/ρ̃ now establishes (5.3).

Put N = max{m,n}. If H(N) has the K-property , we can find a map Tnm ∈
L1(H ) such that TnmPmx0 = Pny

0. (Define Tmn = 0 on the orthogonal
complement of PN (H0) in �.) In view of Lemma 5.1, the maps Tnm must cluster
at some point T ∈ L1(H ). It is clear that T x0 = y0. Since ρ > 1 was arbitrary, we
have shown thatH has the K-property . ��
Lemma 5.3 Given x0, y0 ∈ H(n)

0 and a number ε > 0 there exists a positive integer

n and a finite-dimensional couple V ⊂ H(n) such that x0, y0 ∈ V0 + V1 and

(1− ε)K
(
t, x;H) ≤ K

(
t, x;V) ≤ (1+ ε)K

(
t, x;H)

, t > 0, x ∈ V0 + V1.

(5.4)

Moreover, V can be chosen so that all eigenvalues of the associated operator AV
are of unit multiplicity.

Proof Let An be the operator associated with the coupleH(n); thus 1/n ≤ An ≤ n.
Take η > 0 and let {λi}N1 be a finite subset of σ (An) such that σ (An) ⊂ ∪N1 Ei

whereEi = (λi −η/2, λi+η/2). We define a Borel functionw : σ (An)→ σ (An)

by w(λ) = λi on Ei ∩ σ (An), then ‖w (An)− An ‖L(H0) ≤ η.
Let kt (λ) = tλ

1+tλ . It is easy to check that the Lipschitz constant of the restriction
kt

∣∣ σ (An) is bounded above by C1 min{1, t} where C1 = C1(n) is independent of
t . Hence

‖ kt (w (An))− kt (An) ‖L(H0) ≤ C1ηmin {1, t} .
It follows readily that

∣∣〈(kt (w (An))− kt (An)) x, x〉0
∣∣ ≤ C1ηmin{1, t} ‖ x ‖ 20 , x ∈ Pn (H0) .

Now let c > 0 be such that A ≥ c. The elementary inequality kt (c) ≥
(1/2)min{1, ct} shows that

〈kt (An) x, x〉0 ≥ C2 min{1, t} ‖ x ‖ 20 , x ∈ Pn (H0) ,

where C2 = (1/2)min{1, c}. Combining these estimates, we deduce that

∣∣〈kt (w (An)) x, x〉0 − 〈kt (An) x, x〉0
∣∣ ≤ C3η 〈kt (An) x, x〉0 , x ∈ Pn (H0)

(5.5)
for some suitable constant C3 = C3(n).
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Now pick unit vectors ei, fi supported by the spectral sets Ei ∩ σ(An) such that
x0 and y0 belong to the space W spanned by {ei, fi}N1 . Put W0 = W1 = W and
define norms on those spaces by

‖ x ‖W0
= ‖ x ‖H0

, ‖ x ‖ 2W1
= 〈w (A) x, x〉H0

.

The operator associated withW is then the compression of w(An) toW0, i.e.,

‖ x ‖ 2W1
= 〈

AW x, x
〉
W0
= 〈w(An)x, x〉H0

, x ∈W .

Let ε = 2C3η and observe that, by (5.5)

∣∣K (
t, x;W)−K

(
t, x;H) ∣∣ ≤ (ε/2)K

(
t, x;H)

, f ∈W . (5.6)

The eigenvalues of AW typically have multiplicity 2. To obtain unit multiplicity,
we perturb AW slightly to a positive matrix AV such that

∥∥AW − AV
∥∥L(H0)

<

ε/2C3. Let V be the couple associated with AV , i.e., put Vi =W for i = 0, 1 and

‖ x ‖V0
= ‖ x ‖W0

and ‖ x ‖ 2W1
= 〈

AV x, x
〉
V0
.

It is then straightforward to check that

∣∣K (
t, f ;W)−K

(
t, f ;V) ∣∣ ≤ (ε/2)K

(
t, f ;H)

, f ∈W .

Combining this with the estimate (5.6), one finishes the proof of the lemma. ��
Proof of Theorem I Given two elements x0, y0 ∈ � as in (5.2) we write xn =
Pn

(
x0

)
and yn = Pn

(
y0

)
. By the proof of Lemma 5.2 we then have K (t, yn) ≤

ρ̃−1K (t, xn) for large enough n, where ρ̃ is any given number in the interval (1, ρ).
We then use Lemma 5.3 to choose a finite-dimensional sub-couple V ⊂ H(n)

such that

K
(
t, yn;V) ≤ (1+ ε)K

(
t, yn;H)

< ρ̃−1K
(
t, xn;V)+ ε

(
K

(
t, xn;H)+K

(
t, yn;H))

.

Here ε > 0 is at our disposal.
Choosing ε sufficiently small, we can arrange that

K
(
t, yn;V) ≤ K(t, xn;V), t > 0. (5.7)

By Theorem 2.4, the condition (5.7) implies the existence of an operator T ′ ∈
L1

(
V
)
such that T ′xn = yn. Considering the canonical inclusion and projection

I : � (V)→ � (H) and  : � (H)→ � (V) ,
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we have, by virtue of Lemma 5.3,

‖ I ‖ 2L(V;H)
≤ (1− ε)−1 and ‖ ‖ 2L(H;V) ≤ 1+ ε.

Now let T = Tε := IT ′ ∈ L(H(n) ). Then ‖ T ‖ 2 ≤ 1+ε
1−ε and T xn = yn. As

ε ↓ 0 the operators Tε will cluster at some point T ∈ L1(H(n) ) such that T xn = yn

(cf. Lemma 5.1).
We have shown thatH(n) has theK-property . In view of Lemma 5.2, this implies

thatH has the same property. The proof of Theorem I is therefore complete. ��

6 Representations of Interpolation Functions

6.1 Quadratic Interpolation Methods

Let us say that an interpolation method defined on regular Hilbert couples taking
values in Hilbert spaces is a quadratic interpolation method. (Donoghue [14] used
the same phrase in a somewhat wider sense, allowing the methods to be defined on
non-regular Hilbert couples as well.)

If F is an exact quadratic interpolation method, and H a Hilbert couple, then
by Donoghue’s theorem III there exists a positive Radon measure � on [0,∞] such
that F

(
H

) = H�, where the latter space is defined by the familiar norm ‖x‖ 2� =∫
[0,∞]

(
1+ t−1

)
K(t, x) d�(t).

A priori, the measure � could depend not only on F but also on the particular
H. That � is independent of H can be realized in the following way. Let H′ be a
regular Hilbert couple such that every positive rational number is an eigenvalue of
the associated operator. Let B ′ be the operator associated with the exact quadratic

interpolation space F
(
H′

)
. There is then clearly a unique P ′-function h on σ

(
A′

)
such that B ′ = h

(
A′

)
, viz. there is a unique positive Radon measure � on [0,∞]

such that F
(
H′

)
= H′ρ (see Sect. 1.2 for the notation).

If H is any regular Hilbert couple, we can form the direct sum S = H′ ⊕ H.
Denote by Ã the corresponding operator and let B̃ = h̃(Ã) be the operator
corresponding to the exact quadratic interpolation space F

(
S
)
. Then h̃(Ã) =

h̃(A′) ⊕ h̃ (A) = h
(
A′

) ⊕ h̃(A). This means that h̃
(
A′

) = h
(
A′

)
, i.e., h̃ = h.

In particular, the operator B corresponding to the exact interpolation space F(H )

is equal to h (A). We have shown that F(H ) = H�. We emphasize our conclusion
with the following theorem.

Theorem 6.1 There is a one-to-one correspondence � �→ F between positive
Radon measures and exact quadratic interpolation methods.
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We will shortly see that Theorem 6.1 is equivalent to the theorem of Foiaş and
Lions [16]. As we remarked above, a more general version of the theorem, admitting
for non-regular Hilbert couples, is found in Donoghue’s paper [14].

6.2 Interpolation Type and Reiteration

In this subsection, we prove some general facts concerning quadratic interpolation
methods; we shall mostly follow Fan [15].

Fix a function h ∈ P ′ of the form

h(λ) =
∫
[0,∞]

(1+ t)λ

1+ tλ
d�(t).

It will be convenient to write Hh for the corresponding exact interpolation space
H�. Thus, we shall denote

‖x‖ 2h = 〈h(A)x, x〉0 =
∫
[0,∞]

(
1+ t−1

)
K (t, x) d�(t).

More generally, we shall use the same notation when h is any quasi-concave
function onR+, thenHh is a quadratic interpolation space, but not necessarily exact.

Recall that, given a function H of one variable, we say thatH∗ is of type H with
respect toH if ‖ T ‖ 2L(Hi )

≤ Mi implies ‖ T ‖ 2L(H∗) ≤M0 H (M1/M0).

We shall say that a quasi-concave function h on R+ is of type H ifHh is of type H
relative to any regular Hilbert coupleH. The following result somewhat generalizes
Theorem 3.2. The class of functions of type H clearly forms a convex cone.

Theorem 6.2 Let h be of type H, where (i) H(1) = 1 and H(t) ≤ max{1, t}, and
(ii) H has left and right derivatives θ± = H ′(1±) at the point 1, where θ− ≤ θ+.
Then for any positive constant c,

min
{
λθ−, λθ+

} ≤ h(cλ)

h(c)
≤ max

{
λθ−, λθ+

}
, λ ∈ R+. (6.1)

In particular, if H(t) is differentiable at t = 1 and H′(1) = θ , then h(λ) = λθ ,
λ ∈ R+.

Proof Replacing A by cA, it is easy to see that if h is of type H, then so is
hc(t) = h(ct)/h(c). Fix μ > 0 and consider the function h0(t) = hc(μt)/hc(μ).
By Theorem II, we have h0(t) ≤ H(t) for all t . Furthermore h0(1) = H(1) = 1 by
(i). Since h0 is differentiable, the assumption (ii) now gives θ− ≤ h′0(1) ≤ θ+, or

θ− ≤ μh′c(μ)
hc(μ)

≤ θ+.
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Dividing through by μ and integrating over the interval [1, λ], one now verifies the
inequalities in (6.1). ��

The following result provides a partial converse to Theorem II.

Theorem 6.3 ([15]) Let h ∈ P ′ and set H(t) = sups>0 h(st)/h(s). Then h is of
type H.

Proof Let T ∈ L(H) be a non-zero operator; put Mj = ‖ T ‖ 2L(Hj )
and M =

M1/M0. We then have (by Lemma 1.1)

‖ T x ‖ 2h =
∫
[0,∞]

(
1+ t−1

)
K (t, T x) d�(t)

≤ M0

∫
[0,∞]

(
1+ t−1

)
K (tM, x) d�(t)

= M0

∫
[0,∞]

〈
(1+ t)MA

1+ tMA
x, x

〉
0
d�(t)

= M0 〈h (MA) x, x〉0 .

Letting E be the spectral resolution of A, we have

〈h (MA) x, x〉0 =
∫ ∞
0

h (Mλ) d 〈Eλx, x〉0 .

Since h (Mλ) /h(λ) ≤ H (M), we conclude that

‖ T x ‖ 2h ≤M0H (M)

∫ ∞
0

h (λ) d 〈Eλx, x〉0 = M0H (M) ‖ x ‖ 2h ,

which finishes the proof. ��
Given a function h of a positive variable, we define a new function h̃ by

h̃(s, t) = s h (t/s) .

The following reiteration theorem is due to Fan.

Theorem 6.4 ([15]) Let h, h0, h1 ∈ P ′, and ϕ(λ) = h̃ (h0(λ), h1(λ)). Then
Hϕ = (Hh0 ,Hh1)h with equal norms. Moreover,Hϕ is an exact interpolation space
relative toH.

Proof Let H′ denote the couple (Hh0 ,Hh1). The corresponding operator A′ then
obeys

‖ x ‖Hh1
= ‖ (A′)1/2x ‖H′0 = ‖ϕ0(A)1/2(A′)1/2x ‖0, x ∈ �(H′ ).
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On the other hand, ‖ x ‖Hh1
= ∥∥ ϕ1(A)1/2x ∥∥

0, so

(A′)1/2x = ϕ0(A)
−1/2ϕ1(A)1/2x, x ∈ �

(
H′

)
.

We have shown that A′ = ϕ0(A)
−1ϕ1(A), whence (by Lemma 1.1)

K
(
t, x;H′

)
=

〈
tϕ0(A)

−1ϕ1(A)
1+ tϕ0(A)−1ϕ1(A)

x, x

〉
H′0

=
〈

tϕ1(A)

1+ tϕ0(A)−1ϕ1(A)
x, x

〉
H′0

.

(6.2)

Now let the function h ∈ P ′ be given by

h(λ) =
∫
[0,∞]

(1+ t)λ

1+ tλ
d�(t),

and note that the function ϕ = h̃ (h0, h1) is given by

ϕ(λ) =
∫
[0,∞]

(1+ t)h1(λ)

1+ th1(λ)/h0(λ)
d�(t).

Combining with (6.2), we find that

‖ x ‖ 2H′h =
∫
[0,∞]

(
1+ t−1

)
K

(
t, x;H′

)
d�(t)

=
∫ ∞
0

[∫
[0,∞]

(1+ t)h1(λ)

1+ th1(λ)/h0(λ)
d�(t)

]
d 〈Eλx, x〉0 = ‖ x ‖ 2Hϕ

.

This finishes the proof of the theorem. ��
Combining with Donoghue’s theorem III, one obtains the following, purely

function-theoretic corollary. Curiously, we are not aware of a proof which does not
use interpolation theory.

Corollary 6.5 ([15]) Suppose that h ∈ P ′ and that h0, h1 ∈ P ′|F , where F is
some closed subset of R+. Then the function ϕ = h̃(h0, h1) is also of class P ′|F .

6.3 Donoghue’s Representation

LetH be a regular Hilbert couple. In Donoghue’s setting, the principal object is the
space � = H0 ∩ H1 normed by ‖ x ‖ 2� = ‖ x ‖ 20 + ‖ x ‖ 21 . In the following, all
involutions are understood to be taken with respect to the norm of �.
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We express the norms in the spaces Hi as

‖ x ‖ 20 = 〈Hx, x〉� and ‖ x ‖ 21 = 〈(1−H)x, x〉� ,

where H is a bounded positive operator on �, 0 ≤ H ≤ 1. The regularity of H
means that neither 0 nor 1 is an eigenvalue of H .

To an arbitrary quadratic intermediate space H∗ there corresponds a bounded
positive injective operatorK on� such that

‖ x ‖ 2∗ = 〈Kx, x〉� .

It is then easy to see that H∗ is exact interpolation if and only if, for bounded
operators T on �, the conditions T ∗HT ≤ H and T ∗(1 − H)T ≤ 1 − H imply
T ∗KT ≤ K . It is straightforward to check that the relations between H , K and the
operatorsA, B used in the previous sections are

H = 1

1+ A
, A = 1−H

H
, K = B

1+ A
, B = K

H
. (6.3)

(It follows from the proof of Lemma 1.2 that H andK commute.)
By Theorem III we know that H∗ is an exact interpolation space if and only if

B = h(A) for some h ∈ P ′. By (6.3), this is equivalent to that K = k(H) where

k(H) = h(A)

1+ A
= H h

(
1−H

H

)
.

In its turn, this means that

k(λ) = λ

∫
[0,∞]

(1+ t)(1− λ)/λ

1+ t (1− λ)/λ
d�(t)

=
∫
[0,∞]

(1+ t)λ(1 − λ)

λ+ t (1− λ)
d�(t), λ ∈ σ(H),

where � is a suitable Radon measure. Applying the change of variables s = 1/(1+t)
and defining a positive Radon measure μ on [0, 1] by dμ(s) = d�(t), we arrive at
the expression

k(λ) =
∫ 1

0

λ(1− λ)

(1− s)(1− λ)+ sλ
dμ(s), λ ∈ σ(H), (6.4)

which gives the representation exact quadratic interpolation spaces originally used
by Donoghue in [14].
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6.4 J -Methods and the Foiaş-Lions Theorem

We define the (quadratic) J -functional relative to a regular Hilbert coupleH by

J (t, x) = J
(
t, x;H) = ‖ x ‖ 20 + t ‖ x ‖ 21 , t > 0, x ∈ �(H ).

Note that J (t, x)1/2 is an equivalent norm on � and that J (1, x) = ‖ x ‖ 2�.
Given a positive Radon measure ν on [0,∞], we define a Hilbert space Jν(H )

as the set of all elements x ∈ �(H ) such that there exists a measurable function
u : [0,∞] → � such that

x =
∫
[0,∞]

u(t) dν(t) (convergence in�) (6.5)

and
∫
[0,∞]

J (t, u(t))

1+ t
dν(t) <∞. (6.6)

The norm in the space Jν(H) is defined by

‖ x ‖ 2Jν = inf
u

∫
[0,∞]

J (t, u(t))

1+ t
dν(t) (6.7)

over all u satisfying (6.5) and (6.6).
The space (6.7) was (with different notation) introduced by Foiaş and Lions in

the paper [16], where it was shown that there is a unique minimizer u(t) of the
problem (6.7), namely

u(t) = ϕt(A)x where ϕt(λ) = 1+ t

1+ tλ

(∫
[0,∞]

1+ s

1+ sλ
dν(s)

)−1
.

(6.8)
Inserting this expression for u into (6.7), one finds that

‖ x ‖ 2Jν = 〈h(A)x, x〉0
where

h(λ)−1 =
∫
[0,∞]

1+ t

1+ tλ
dν(t). (6.9)

It is easy to verify that the class of functions representable in the form (6.9) for some
positive Radon measure ν coincides with the class P ′. We have thus arrived at the
following result.
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Theorem 6.6 Every exact quadratic interpolation space H∗ can be represented
isometrically in the form H∗ = Jν(H) for some positive Radon measure ν on
[0,∞]. Conversely, any space of this form is an exact quadratic interpolation space.

In the original paper [16], Foiaş and Lions proved the less precise statement that
each exact quadratic interpolation method F can be represented as F = Jν for some
positive Radon measure ν.

6.5 The Relation Between the K- and J -Representations

The assignment K� = Jν gives rise to a non-trivial bijection � �→ ν of the set of
positive Radon measures on [0,∞]. In this bijection, � and ν are in correspondence
if and only if

∫
[0,∞]

(1+ t)λ

1+ tλ
d�(t) =

(∫
[0,∞]

1+ t

1+ tλ
dν(t)

)−1
.

As an example, let us consider the geometric interpolation space (where cθ =
π/ sin(πθ))

‖ x ‖ 2θ =
〈
Aθx, x

〉
0 = cθ

∫ ∞
0

t−θK(t, x)
dt

t
.

The measure � corresponding to this method is d�θ (t) = cθ t
−θ

1+t dt . On the other
hand, it is easy to check that

λθ =
(∫ ∞

0

1+ t

1+ tλ
dνθ (t)

)−1
where dνθ (t) = cθ t

θ

1+ t

dt

t
.

We leave it to the reader to check that the norm in Hθ is the infimum of the
expression

cθ

∫ ∞
0

tθ J (t, u(t))
dt

t

over all representations

x =
∫ ∞
0

u(t)
dt

t
.

We have arrived at the Hilbert space version of Peetre’s J -method of exponent θ .
The identity Jνθ = K�θ can now be recognized as a sharp (isometric) Hilbert space
version of the equivalence theorem of Peetre, which says that the standard Kθ and
Jθ -methods give rise to equivalent norms on the category of Banach couples (see
[7]).
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The problem of determining the pairs �, ν having the property that the K� and
Jν methods give equivalent norms was studied by Fan in [15, Section 3].

6.6 Other Representations

As we have seen in the preceding subsections, using the space H0 to express
all involutions and inner products leads to a description of the exact quadratic
interpolation spaces in terms of the class P ′. If we instead use the space � as
the basic object, we get Donoghue’s representation for interpolation functions.
Similarly, one can proceed from any fixed interpolation space H∗ to obtain a
different representation of interpolation functions.

6.7 On Interpolation Methods of Power p

Fix a number p, 1 < p < ∞. We shall write Lp = Lp (X,A, μ) for the usual
Lp-space associated with an arbitrary but fixed (σ -finite) measure μ on a measure
space (X,A). Given a positive measurable weight function w, we write Lp(w) for
the space normed by

‖ f ‖pLp(w) =
∫
X

|f (x)|p w(x) dμ(x).

We shall write Lp(w) =
(
Lp,Lp(w)

)
for the corresponding weighted Lp couple.

Note that the conditions imposed mean precisely that Lp(w) be separable and
regular.

Let us say that an exact interpolation functor F defined on the totality of
separable, regular weighted Lp-couples and taking values in the class of weighted
Lp-spaces is of power p.

Define, for a positive Radon measure � on [0,∞], an exact interpolation functor
F = K�(p) by the definition

‖ f ‖p
F(Lp(w))

:=
∫
[0,∞]

(1+ t
− 1

p−1 ) p−1Kp

(
t, f ;Lp(w)

)
d�(t).

We contend that F is of power p.
Indeed, it is easy to verify that

Kp

(
t, f ;Lp(w)

) =
∫
X

|f (x)|p tw(x)

(1+ (tw(x))
1

p−1 ) p−1
dμ(x),
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so Fubini’s theorem gives that

‖ f ‖p
F(Lp(w))

=
∫
X

|f (x)|p h(w(x)) dμ(x),

where

h(λ) =
∫
[0,∞]

(1+ t
1

p−1 ) p−1λ

(1+ (tλ)
1

p−1 ) p−1
d�(t), λ ∈ w(X). (6.10)

We have shown that F(Lp(w)) = Lp(h(w)), so F is indeed of power p.
Let us denote by K(p) the totality of positive functions h on R+ representable in

the form (6.10) for some positive Radon measure � on [0,∞].
Further, let I(p) denote the class of all (exact) interpolation functions of power

p, i.e., those positive functions h on R+ having the property that for each weighted
Lp couple Lp(w) and each bounded operator T on Lp(w), it holds that T is
bounded on Lp(h(w)) and

‖ T ‖L(Lp(h(w))) ≤ ‖ T ‖L(Lp(w)) .

The class I(p) is in a sense the natural candidate for the class of “operatormonotone
functions on Lp-spaces.” The class I(p) clearly forms a convex cone; it was shown
by Peetre [31] that this cone is contained in the class of concave positive functions
on R+ (with equality if p = 1).

We have shown that K(p) ⊂ I(p). By Theorem 6.1, we know that equality
holds when p = 2. For other values of p it does not seem to be known whether the
class K(p) exhausts the class I(p), but one can show that we would have K(p) =
I(p) provided that each finite-dimensional Lp-couple �np(λ) has the Kp-property
(or equivalently, the K-property , see (2.2)). Naturally, the latter problem (about
the Kp-property) also seems to be open, but some comments on it are found in
Remark 2.9.

Let ν be a positive Radon measure on [0,∞]. In [16], Foiaş and Lions introduced
a method, which we will denote by F = Jν(p) in the following way. Define the Jp-
functional by

Jp
(
t, f ;Lp(λ)

) = ‖ f ‖p0 + t ‖ f ‖p1 , f ∈ �, t > 0.

We then define an intermediate norm by

‖ f ‖p
F(Lp(λ))

:= inf
∫
[0,∞]

(1+ t)
− 1

p−1 Jp
(
t, u(t);Lp(λ)

)
dν(t),
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where the infimum is taken over all representations

f =
∫
[0,∞]

u(t) dν(t)

with convergence in �. It is straightforward to see that the method F so defined is
exact; in [16] it is moreover shown that it is of power p. More precisely, it is there
proved that

‖ f ‖p
F(Lp(λ))

=
∫
X

|f (x)|p h(w(x)) dμ(x),

where

h(λ)
− 1

p−1 =
∫
[0,∞]

(1+ t)
1

p−1

(1+ tλ)
1

p−1
dν(t), λ ∈ w(X). (6.11)

Let us denote by J (p) the totality of functions h representable in the form (6.11).
We thus have thatJ (p) ⊂ I(p). In view of our preceding remarks, we conclude that
if all weighted Lp-couples have the Kp property, then necessarily J (p) ⊂ K(p).
Note that J (2) = K(2) by Theorem 6.6.

Appendix: The Complex Method is Quadratic

Let S = {z ∈ C; 0 ≤ Re z ≤ 1}. Fix a Hilbert couple H and let F be the set of
functions S → � which are bounded and continuous in S, analytic in the interior of
S, and which maps the line j + iR into Hj for j = 0, 1. Fix 0 < θ < 1. The norm
in the complex interpolation space Cθ

(
H

)
is defined by

‖ x ‖
Cθ

(
H

) = inf
{‖ f ‖F ; f (θ) = x

}
. (*)

Let P denote the set of polynomials f =∑N
1 aiz

i where ai ∈ �. We endow P
with the inner product

〈f, g〉Mθ
=

∑
j=0,1

∫
R
〈f (j + it), g(j + it)〉j Pj (θ, t) dt,

where {P0, P1} is the Poisson kernel for S,

Pj (θ, t) = e−πt sin θπ
sin2 θπ + (cos θπ − (−1)j e−πt )2 .
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Let Mθ be the completion of P with this inner product. It is easy to see that the
elements ofMθ are analytic in the interior of S, and that evaluation map f �→ f (θ)

is continuous on Mθ . Let Nθ be the kernel of this functional and define a Hilbert
spaceHθ by

Hθ =Mθ/Nθ .

We denote the norm in Hθ by ‖ · ‖θ .
Proposition A.1 Cθ

(
H

) = Hθ with equality of norms.

Proof Let f ∈ F . By the Calderón lemma in [7, Lemma 4.3.2], we have the
estimate

log ‖ f (θ) ‖
Cθ(H )

≤
∑
j=0,1

∫
R
log ‖f (j + it)‖jPj (θ, t) dt.

Applying Jensen’s inequality, this gives that

‖ f (θ) ‖
Cθ (H )

≤ (
∑
j=0,1

∫
R
‖ f (j + it) ‖2j Pj (θ, t) dt)1/2 = ‖ f ‖Mθ

.

HenceHθ ⊂ Cθ(H ) and ‖·‖
Cθ (H )

≤ ‖ · ‖θ . On the other hand, for f ∈ P one has
the estimates

‖ f (θ) ‖θ ≤ ‖ f ‖Mθ
≤ sup{‖ f (j + it) ‖j ; t ∈ R, j = 0, 1} = ‖ f ‖F ,

whence Cθ (H ) ⊂ Hθ and ‖·‖Cθ(H )
≥ ‖·‖θ . ��

It is well known that the method Cθ is of exponent θ (see, e.g., [7]). We have
shown that Cθ is an exact quadratic interpolation method of exponent θ .

Complex Interpolation with Derivatives

In [15, pp. 421–422], Fan considers the more general complex interpolation method
Cθ(n) for the n:th derivative. This means that in (*), one consider representations x =
1
n!f

(n)(θ) where f ∈ F ; the complex method Cθ is thus the special case Cθ(0). It is
shown in [15] that, for n ≥ 1, the Cθ(n)-method is represented, up to equivalence of
norms, by the quasi-power function h(λ) = λθ/(1+ θ(1−θ)

n
| logλ |) n. The complex

method with derivatives was introduced by Schechter [37]; for more details on that
method, we refer to the list of references in [15].

.
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A Panorama of Positivity. I: Dimension
Free

Alexander Belton, Dominique Guillot, Apoorva Khare, and Mihai Putinar
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Abstract This survey contains a selection of topics unified by the concept of posi-
tive semidefiniteness (of matrices or kernels), reflecting natural constraints imposed
on discrete data (graphs or networks) or continuous objects (probability or mass
distributions). We put emphasis on entrywise operations which preserve positivity,
in a variety of guises. Techniques from harmonic analysis, function theory, operator
theory, statistics, combinatorics, and group representations are invoked. Some
partially forgotten classical roots in metric geometry and distance transforms are
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presented with comments and full bibliographical references. Modern applications
to high-dimensional covariance estimation and regularization are included.

Keywords Metric geometry · Positive semidefinite matrix · Toeplitz matrix ·
Hankel matrix · Positive definite function · Completely monotone functions ·
Absolutely monotonic functions · Entrywise calculus · Generalized Vandermonde
matrix · Schur polynomials · Symmetric function identities · Totally positive
matrices · Totally non-negative matrices · Totally positive completion problem ·
Sample covariance · Covariance estimation · Hard/soft thresholding · Sparsity
pattern · Critical exponent of a graph · Chordal graph · Loewner monotonicity ·
Convexity · Super-additivity

2010 Mathematics Subject Classification 15-02, 26-02, 15B48, 51F99, 15B05,
05E05, 44A60, 15A24, 15A15, 15A45, 15A83, 47B35, 05C50, 30E05, 62J10

This is the first part of a two-part survey; we include on p. 165 the table of
contents for the second part [10]. The survey in its unified formmay be found online;
see [9]. The abstract, keywords, MSC codes, and introduction are the same for both
parts.

1 Introduction

Matrix positivity, or positive semidefiniteness, is one of the most wide-reaching
concepts in mathematics, old and new. Positivity of a matrix is as natural as
positivity of mass in statics or positivity of a probability distribution. It is a notion
which has attracted the attention of many great minds. Yet, after at least two
centuries of research, positive matrices still hide enigmas and raise challenges for
the working mathematician.

The vitality of matrix positivity comes from its breadth, having many theoretical
facets and also deep links to mathematical modelling. It is not our aim here to
pay homage to matrix positivity in the large. Rather, the present survey, split for
technical reasons into two parts, has a limited but carefully chosen scope.

Our panorama focuses on entrywise transforms of matrices which preserve their
positive character. In itself, this is a rather bold departure from the dogma that
canonical transformations of matrices are not those that operate entry by entry. Still,
this apparently esoteric topic reveals a fascinating history, abundant characteristic
phenomena, and numerous open problems. Each class of positivematrices or kernels
(regarding the latter as continuous matrices) carries a specific toolbox of internal
transforms. Positive Hankel forms or Toeplitz kernels, totally positive matrices, and
group-invariant positive definite functions all possess specific positivity preservers.
As we see below, these have been thoroughly studied for at least a century.

One conclusion of our survey is that the classification of positivity preservers
is accessible in the dimension-free setting, that is, when the sizes of matrices
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are unconstrained. In stark contrast, precise descriptions of positivity preservers
in fixed dimension are elusive, if not unattainable with the techniques of modern
mathematics. Furthermore, the world of applications cares much more about
matrices of fixed size than in the free case. The accessibility of the latter was by
no means a sequence of isolated, simple observations. Rather, it grew organically
out of distance geometry, and spread rapidly through harmonic analysis on groups,
special functions, and probability theory. The more recent and highly challenging
path through fixed dimensions requires novel methods of algebraic combinatorics
and symmetric functions, group representations, and function theory.

As well as its beautiful theoretical aspects, our interest in these topics is also
motivated by the statistics of big data. In this setting, functions are often applied
entrywise to covariance matrices, in order to induce sparsity and improve the
quality of statistical estimators (see [45, 46, 75]). Entrywise techniques have recently
increased in popularity in this area, largely because of their low computational
complexity, which makes them ideal to handle the ultra high-dimensional datasets
arising in modern applications. In this context, the dimensions of the matrices are
fixed, and correspond to the number of underlying random variables. Ensuring
that positivity is preserved by these entrywise methods is critical, as covariance
matrices must be positive semidefinite. Thus, there is a clear need to produce
characterizations of entrywise preservers, so that these techniques are widely
applicable and mathematically justified. We elaborate further on this in the second
part of the survey [10].

We conclude by remarking that, while we have tried to be comprehensive in our
coverage of the field of matrix positivity and the entrywise calculus, our panorama
is far from being complete. We apologize for any omissions.

2 From Metric Geometry to Matrix Positivity

2.1 Distance Geometry

During the first decade of the twentieth century, the concept of a metric space
emerged from the works of Fréchet and Hausdorff, each having different and
well-anchored roots, in function spaces and in set theory and measure theory. We
cannot think today of modern mathematics and physics without referring to metric
spaces, which touch areas as diverse as economics, statistics, and computer science.
Distance geometry is one of the early and ever-lasting by-products of metric-space
theory.One of the key figures of the Vienna Circle, Karl Menger, started a systematic
study in the 1920s of the geometric and topological features of spaces that are
intrinsic solely to the distance they carry. Menger published his findings in a series
of articles having the generic name “Untersuchungen über allgemeine Metrik,” the
first one being [63]; see also his synthesis [64]. His work was very influential in the
decades to come [16], and by a surprising and fortunate stroke not often encountered
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in mathematics, Menger’s distance geometry has been resurrected in recent times by
practitioners of convex optimization and network analysis [26, 60].

Let (X, ρ) be a metric space. One of the naive, yet unavoidable, questions arising
from the very beginning concerns the nature of operations φ(ρ) which may be
performed on the metric and which enhance various properties of the topological
space X. We all know that ρ/(ρ + 1) and ργ , if γ ∈ (0, 1), also satisfy the axioms
of a metric, with the former making it bounded. Less well known is an observation
due to Blumenthal, that the new metric space (X, ργ ) has the four-point property
if γ ∈ (0, 1/2]: every four-point subset of X can be embedded isometrically into
Euclidean space [16, Section 49].

Metric spaces which can be embedded isometrically into Euclidean space, or
into infinite-dimensional Hilbert space, are, of course, distinguished and desirable
for many reasons. We owe to Menger a definitive characterization of this class of
metric spaces. The core of Menger’s theorem, stated in terms of certain matrices
built from the distance function (known as Cayley–Menger matrices) was slightly
reformulated by Fréchet and cast in the following simple form by Schoenberg.

Theorem 2.1 (Schoenberg [81]) Let d ≥ 1 be an integer and let (X, ρ) be a metric
space. An (n+ 1)-tuple of points x0, x1, . . . , xn in X can be isometrically embedded
into Euclidean space Rd , but not into Rd−1, if and only if the matrix

[ρ(x0, xj )2 + ρ(x0, xk)
2 − ρ(xj , xk)

2]nj,k=1,

is positive semidefinite with rank equal to d .

Proof This is surprisingly simple. Necessity is immediate, since the Euclidean norm
and scalar product in R

d give that

ρ(x0, xj )
2 + ρ(x0, xk)

2 − ρ(xj , xk)
2

= ‖x0 − xj‖2 + ‖x0 − xk‖2 − ‖(x0 − xj )− (x0 − xk)‖2
= 2〈x0 − xj , x0 − xk〉,

and the latter are the entries of a positive semidefinite Gram matrix of rank less than
or equal to d .

For the other implication, we consider first a full-rank d × d matrix associated
with a (d + 1)-tuple. The corresponding quadratic form

Q(λ) = 1

2

d∑
j,k=1

(ρ(x0, xj )
2 + ρ(x0, xk)

2 − ρ(xj , xk)
2)λjλk

is positive definite. Hence there exists a linear change of variables

λk =
d∑

j=1
ajkμj (1 ≤ j ≤ d)
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such that

Q(λ) = μ2
1 + μ2

2 + · · · + μ2
d .

Interpreting (μ1, μ2, . . . , μd) as coordinates in R
d , the standard simplex with

vertices

e0 = (0, . . . , 0), e1 = (1, 0, . . . , 0), . . . , ed = (0, . . . , 0, 1)

has the corresponding quadratic form (of distances) equal to μ2
1 + μ2

2 + · · · + μ2
d .

Now we perform the coordinate change μj �→ λj . Specifically, set P0 = 0 and let
Pj ∈ R

d be the point with coordinates λj = 1 and λk = 0 if k 
= j . Then one
identifies distances:

‖P0 − Pj‖ = ρ(x0, xj ) (0 ≤ j ≤ d)

and ‖Pj − Pk‖ = ρ(xj , xk) (1 ≤ j, k ≤ d).

The remaining case with n > d can be analyzed in a similar way, after taking an
appropriate projection. ��

In the conditions of the theorem, fixing a “frame” of d points and letting the
(d + 1)-th point float, one obtains an embedding of the full metric space (X, ρ)
into R

d . This idea goes back to Menger, and it led, with Schoenberg’s touch, to the
following definitive statement. Here and below, all Hilbert spaces are assumed to be
separable.

Corollary 2.2 (Schoenberg [81], following Menger) A separable metric space
(X, ρ) can be isometrically embedded into Hilbert space if and only if, for every
(n+ 1)-tuple of points (x0, x1, . . . , xn) in X, where n ≥ 2, the matrix

[ρ(x0, xj )2 + ρ(x0, xk)
2 − ρ(xj , xk)

2]nj,k=1
is positive semidefinite.

The notable aspect of the two previous results is the interplay between purely
geometric concepts and matrix positivity. This will be a recurrent theme of our
survey.

2.2 Spherical Distance Geometry

One can specialize the embedding question discussed in the previous section to
submanifolds of Euclidean space. A natural choice is the sphere.
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For two points x and y on the unit sphere Sd−1 ⊂ R
d , the rotationally invariant

distance between them is

ρ(x, y) = �(x, y) = arccos〈x, y〉,

where the angle between the two vectors is measured on a great circle and is always
less than or equal to π .

A straightforward application of the simple, but central, Theorem 2.1 yields the
following result.

Theorem 2.3 (Schoenberg [81]) Let (X, ρ) be a metric space and let (x1, . . . , xn)
be an n-tuple of points in X. For any integer d ≥ 2, there exists an isometric
embedding of (x1, . . . , xn) into Sd−1 endowed with the geodesic distance but not
Sd−2 if and only if

ρ(xj , xk) ≤ π (1 ≤ j, k ≤ n)

and the matrix
[
cosρ(xj , xk)

]n
j,k=1 is positive semidefinite of rank d .

Indeed, the necessity is assured by choosing x0 to be the origin in R
d . In this

case,

ρ(x0, xj )
2 + ρ(x0, xk)

2 − ρ(xj , xk)
2 = ‖xj‖2 + ‖xk‖2 − ‖xj − xk‖2
= 2〈xj , xk〉
= 2 cosρ(xj , xk).

The condition is also sufficient, by possibly adding an external point x0 to the
metric space, subject to the constraints that ρ(x0, xj ) = 1 for all j . The details can
be found in [81].1

2.3 Distance Transforms

A notable step forward in the study of the existence of isometric embeddings of a
metric space into Euclidean or Hilbert space was made by Schoenberg. In a series
of articles [82, 84, 85, 94], he changed the set-theoretic lens of Menger, by initiating
a harmonic-analysis interpretation of this embedding problem. This was a major
turning point, with long-lasting, unifying, and unexpected consequences.

1An alternate proof of sufficiency is to note that A := [cos ρ(xj , xk)]nj,k=1 is a Gram matrix of

rank r , hence equal to BT B for some r × n matrix B with unit columns. Denoting these columns
by b1, . . . , bn ∈ Sr−1, the map xj �→ bj is an isometry since ρ(xj , xk) and �(yj , yk) ∈ [0, π].
Moreover, since A has rank r , the bj cannot all lie in a smaller-dimensional sphere.
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We return to a separable metric space (X, ρ) and seek distance-function trans-
forms ρ �→ φ(ρ) which enhance the geometry of X, to the extent that the
new metric space

(
X,φ(ρ)

)
is isometrically equivalent to a subspace of Hilbert

space. Schoenberg launched this whole new chapter from the observation that the
Euclidean norm is such that the matrix

[exp(−‖xj − xk‖2
)]Nj,k=1

is positive semidefinite for any choice of points x1, . . . , xN in the ambient space.
Once again, we see the presence of matrix positivity. While this claim may not
be obvious at first sight, it is accessible once we recall a key property of Fourier
transforms.

An even function f : Rd → C is said to be positive definite if the complex matrix
[f (xj − xk)]Nj,k=1 is positive semidefinite for any N ≥ 1 and any choice of points

x1, . . . , xN ∈ R
d . We will call f (x − y) a positive semidefinite kernel on R

d × R
d

in this case.
Bochner’s theorem [18] characterizes positive definite functions onRd as Fourier

transforms of even positive measures of finite mass:

f (ξ) =
∫
e−ix·ξ dμ(x).

Indeed,

f (ξ − η) =
∫
e−ix·ξ eix·η dμ(x)

is a positive semidefinite kernel because it is the average over μ of the positive
kernel (ξ, η) �→ e−ix·ξeix·η. Since the Gaussian e−x2 is the Fourier transform of
itself (modulo constants), it turns out that it is a positive definite function on R,
whence exp(−‖x‖2) has the same property as a function on R

d . Taking one step
further, the function x �→ exp(−‖x‖2) is positive definite on any Hilbert space.

With this preparation we are ready for a second characterization of metric
subspaces of Hilbert space.

Theorem 2.4 (Schoenberg [84]) A separable metric space (X, ρ) can be embed-
ded isometrically into Hilbert space if and only if the kernel

X ×X→ (0,∞); (x, y) �→ exp(−λ2ρ(x, y)2)

is positive semidefinite for all λ ∈ R.

Proof Necessity follows from the positive definiteness of the Gaussian discussed
above. (We also provide an elementary proof below; see Lemma 4.7 and the
subsequent discussion). To prove sufficiency, we recall the Menger–Schoenberg
characterization of isometric subspaces of Hilbert space. We have to derive, from
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the positivity assumption, the positivity of the matrix

[ρ(x0, xj )2 + ρ(x0, xk)
2 − ρ(xj , xk)

2]nj,k=1.

Elementary algebra transforms this constraint into the requirement that

n∑
j,k=0

ρ(xj , xk)
2cj ck ≤ 0 whenever

n∑
j=0

cj = 0.

By expanding exp(−λ2ρ(xj , xk)2) as a power series in λ2, and invoking the
positivity of the exponential kernel, we see that

0 ≤ −λ2
n∑

j,k=0
ρ(xj , xk)

2cj ck + λ4

2

n∑
j,k=0

ρ(xj , xk)
4cj ck − · · ·

for all λ > 0. Hence the coefficient of −λ2 is non-positive. ��
The flexibility of the Fourier-transform approach is illustrated by the following

application, also due to Schoenberg [84].

Corollary 2.5 Let H be a Hilbert space with norm ‖ · ‖. For every δ ∈ (0, 1), the
metric space (H, ‖ · ‖δ) is isometric to a subspace of a Hilbert space.
Proof Note first the identity

ξα = cα

∫ ∞
0

(1− e−s2ξ2)s−1−α ds (ξ > 0, 0 < α < 2),

where cα is a normalization constant. Consequently,

‖x − y‖α = cα

∫ ∞
0

(1− e−s2‖x−y‖2)s−1−α ds.

Let δ = α/2. For points x0, x1, . . . , xn in H and weights c0, c1, . . . , cn satisfying

c0 + c1 + · · · + cn = 0,

it holds that

n∑
j,k=0

‖xj − xk‖2δcj ck = −cα
∫ ∞
0

n∑
j,k=0

cj ck e
−s2‖xj−xk‖2s−1−α ds ≤ 0,

and the proof is complete. ��
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Several similar consequences of the Fourier-transform approach are within reach.
For instance, Schoenberg observed in the same article that if the Lp norm is raised
to the power γ , where 0 < γ ≤ p/2 and 1 ≤ p ≤ 2, then Lp(0, 1) is isometrically
embeddable into Hilbert space.

2.4 Altering Euclidean Distance

By specializing the theme of the previous section to Euclidean space, Schoenberg
and von Neumann discovered an arsenal of powerful tools from harmonic analysis
that were able to settle the question of whether Euclidean space equipped with the
altered distance φ

(‖x − y‖) may be isometrically embedded into Hilbert space [83,
94]. The key ingredients are characterizations of Laplace and Fourier transforms
of positive measures, that is, Bernstein’s completely monotone functions [14] and
Bochner’s positive definite functions [18].

Here we present some highlights of the Schoenberg–von Neumann framework.
First, we focus on an auxiliary class of distance transforms. A real continuous
function φ is called positive definite in Euclidean space Rd if the kernel

(x, y) �→ φ
(‖x − y‖)

is positive semidefinite. Bochner’s theorem and the rotation-invariance of this kernel
prove that such a function φ is characterized by the representation

φ(t) =
∫ ∞
0

�d(tu) dμ(u),

where μ is a positive measure and

�d

(‖x‖) =
∫
‖ξ‖=1

eix·ξ dσ(ξ),

with σ the normalized area measure on the unit sphere in R
d ; see [83, Theorem 1].

By letting d tend to infinity, one finds that positive definite functions on infinite-
dimensional Hilbert space are precisely of the form

φ(t) =
∫ ∞
0

e−t2u2 dμ(u),

with μ a positive measure on the semi-axis. Notice that positive definite functions in
R
d are not necessarily differentiable more than (d − 1)/2 times, while those which

are positive definite in Hilbert space are smooth and even complex analytic in the
sector | arg t| < π/4.
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The class of functions f which are continuous on R+ := [0,∞), smooth on the
open semi-axis (0,∞), and such that

(−1)nf (n)(t) ≥ 0 for all t > 0

was studied by Bernstein, who proved that they coincide with Laplace transforms
of positive measures on R+:

f (t) =
∫ ∞
0

e−tu dμ(u). (2.1)

Such functions are called completely monotonic and have proved highly relevant
for probability theory and approximation theory; see [14] for the foundational
reference. Thus we have obtained a valuable equivalence.

Theorem 2.6 (Schoenberg) A function f is completely monotone if and only if
t �→ f (t2) is positive definite on Hilbert space.

The direct consequences of this apparently innocent observation are quite deep.
For example, the isometric-embedding question for altered Euclidean distances is
completely answered via this route. The following results are from [83] and [94].

Theorem 2.7 (Schoenberg–von Neumann) Let H be a separable Hilbert space
with norm ‖ · ‖.
(1) For any integers n ≥ d > 1, the metric space (Rd, φ

(‖·‖))may be isometrically
embedded into (Rn, ‖ · ‖) if and only if φ(t) = ct for some c > 0.

(2) The metric space (Rd, φ
(‖ · ‖)) may be isometrically embedded into H if and

only if

φ(t)2 =
∫ ∞
0

1−�d(tu)

u2
dμ(u),

where μ is a positive measure on the semi-axis such that

∫ ∞
1

1

u2
dμ(u) <∞.

(3) The metric space (H, φ
(‖ · ‖)) may be isometrically embedded into H if and

only if

φ(t)2 =
∫ ∞
0

1− e−t2u

u
dμ(u),

where μ is a positive measure on the semi-axis such that

∫ ∞
1

1

u
dμ(u) <∞.
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In von Neumann and Schoenberg’s article [94], special attention is paid to the
case of embedding a modified distance on the line into Hilbert space. This amounts
to characterizing all screw lines in a Hilbert space H : the continuous functions

f : R→ H ; t �→ ft

with the translation-invariance property

‖fs − ft‖ = ‖fs+r − ft+r‖ for all s, r, t ∈ R.

In this case, the gauge function φ is such that φ(t − s) = ‖fs − ft‖ and t �→ ft
provides the isometric embedding of (R, φ

(| · |)) into H . Von Neumann seized the
opportunity to use Stone’s theorem on one-parameter unitary groups, together with
the spectral decomposition of their unbounded self-adjoint generators, to produce a
purely operator-theoretic proof of the following result.

Corollary 2.8 The metric space (R, φ
(| · |)) isometrically embeds into Hilbert

space if and only if

φ(t)2 =
∫ ∞
0

sin2(tu)

u2
dμ(u) (t ∈ R),

where μ is a positive measure on R+ satisfying

∫ ∞
1

1

u2
dμ(u) <∞.

Moreover, in the conditions of the corollary, the space (R, φ
(| · |)) embeds

isometrically into R
d if and only if the measure μ consists of finitely many

point masses, whose number is roughly d/2; see [94, Theorem 2] for the precise
statement. To give a simple example, consider the function

φ : R→ R+; t �→
√
t2 + sin2 t .

This is indeed a screw function, because

φ(t − s)2 = (t − s)2 + sin2(t − s)

= (t − s)2 + 1

4

(
cos(2t)− cos(2s)

)2 + 1

4

(
sin(2t)− cos(2s)

)2
.

Note that a screw line is periodic if and only if it is not injective. Furthermore,
one may identify screw lines with period τ > 0 by the geometry of the support of
the representing measure: this support must be contained in the lattice (π/τ)Z+,
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where Z+ := Z ∩ R+ = {0, 1, 2, . . . }. Consequently, all periodic screw lines in
Hilbert space have a gauge function φ such that

φ(t)2 =
∞∑
k=1

ck sin2(kπt/τ ), (2.2)

where ck ≥ 0 and
∑∞

k=1 ck <∞; see [94, Theorem 5].

2.5 Positive Definite Functions on Homogeneous Spaces

Having resolved the question of isometrically embedding Euclidean space into
Hilbert space, a natural desire was to extend the analysis to other special man-
ifolds with symmetry. This was done almost simultaneously by Schoenberg on
spheres [86] and by Bochner on compact homogeneous spaces [19].

Let X be a compact space endowed with a transitive action of a groupG and an
invariant measure. We seek G-invariant distance functions, and particularly those
which identify X with a subspace of a Hilbert space. To simplify terminology, we
call the latter Hilbert distances.

The first observation of Bochner is that a G-invariant symmetric kernel f : X ×
X→ R satisfies the Hilbert-space embeddability condition,

n∑
k=0

ck = 0 �⇒
n∑

j,k=0
f (xj , xk)cj ck ≥ 0,

for all choices of weights cj and points xj ∈ X, if and only if f is of the form

f (x, y) = h(x, y)− h(x0, x0) (x, y ∈ X),

where h is a G-invariant positive definite kernel and x0 is a point of X. One
implication is clear. For the other, we start with a G-invariant function f subject
to the above constraint and prove, using G-invariance and integration over X, the
existence of a constant c such that h(x, y) = f (x, y)+ c is a positive semidefinite
kernel. This gives the following result.

Theorem 2.9 (Bochner [19]) Let X be a compact homogeneous space. A continu-
ous invariant function ρ on X × X is a Hilbert distance if and only if there exists
a continuous, real-valued, invariant, positive definite kernel h on X and a point
x0 ∈ X, such that

ρ(x, y) = √
h(x0, x0)− h(x, y) (x, y ∈ X).
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Privileged orthonormal bases ofG-invariant functions, in theL2 space associated
with the invariant measure, provide a canonical decompositions of positive definite
kernels. These generalized spherical harmonics were already studied by Cartan,
Weyl, and von Neumann; see, for instance [96]. We elaborate on two important
particular cases.

Let X = T = {eiθ : θ ∈ R} be the unit torus, endowed with the invariant arc-
length measure. A continuous positive definite function h : T × T → R admits a
Fourier decomposition

h(eix, eiy) =
∑
j,k∈Z

ajke
ijxe−iky.

If h is further required to be rotation invariant, we find that

h(eix, eiy) =
∑
k∈Z

ake
ik(x−y),

where ak ≥ 0 for all k ∈ Z and ak = a−k because h takes real values. Moreover, the
series is Abel summable:

∑∞
k=0 ak = h(1, 1) < ∞. Therefore, a rotation-invariant

Hilbert distance ρ on the torus has the expression (after taking its square):

ρ(eix, eiy)2 = h(1, 1)− h(eix, eiy) =
∞∑
k=1

ak(2− eik(x−y) − e−ik(x−y))

= 2
∞∑
k=1

ak(1− cos k(x − y))

= 4
∞∑
k=1

ak sin2(k(x − y)/2).

These are the periodic screw lines (2.2) already investigated by von Neumann and
Schoenberg.

As a second example, we follow Bochner in examining a separable, compact
group G. A real-valued, continuous, positive definite, and G-invariant kernel h
admits the decomposition

h(x, y) =
∑
k∈Z

ckχk(yx
−1),

where ck ≥ 0 for all k ∈ Z,
∑

k∈Z ck < ∞ and χk denote the characters of
irreducible representations ofG. In conclusion, an invariant Hilbert distance ρ onG
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is characterized by the formula

ρ(x, y)2 =
∑
k∈Z

ck
(
1− χk(yx

−1)+ χk(xy
−1)

2χk(1)

)
,

where ck ≥ 0 and
∑

k∈Z ck <∞.
For details and an analysis of similar decompositions on more general homoge-

neous spaces, we refer the reader to [19].
The above analysis of positive definite functions on homogeneous spaces was

carried out separately by Schoenberg in [86]. First, he remarks that a continuous,
real-valued, rotationally invariant, and positive definite kernel f on the sphere Sd−1
has a distinguished Fourier-series decomposition with non-negative coefficients.
Specifically,

f (cos θ) =
∞∑
k=0

ckP
(λ)
k (cos θ) (2.3)

where λ = (d − 2)/2, P (λ)
k are the ultraspherical orthogonal polynomials, ck ≥ 0

for all k ≥ 0 and
∑∞

k=0 ck < ∞. This decomposition is in accord with Bochner’s
general framework, with the difference lying in Schoenberg’s elementary proof,
based on induction on dimension. As with all our formulas concerning the sphere, θ
represents the geodesic distance (arc length along a great circle) between two points.

To convince the reader that expressions in the cosine of the geodesic distance are
positive definite, let us consider points x1, . . . , xn ∈ Sd−1. The Gram matrix with
entries

〈xj , xk〉 = cos θ(xj , xk)

is obviously positive semidefinite, with constant diagonal elements equal to 1.
According to the Schur product theorem [90], all functions of the form cosk θ , where
k is a non-negative integer, are therefore positive definite on the sphere.

At this stage, Schoenberg makes a leap forward and studies invariant positive
definite kernels on S∞, that is, functions f (cos θ) which admit representations as
above for all d ≥ 2. His conclusion is remarkable in its simplicity.

Theorem 2.10 (Schoenberg [86]) A real-valued function f (cos θ) is positive defi-
nite on all spheres, independent of their dimension, if and only if

f (cos θ) =
∞∑
k=0

ck cosk θ, (2.4)

where ck ≥ 0 for all k ≥ 0 and
∑∞

k=0 ck <∞.
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This provides a return to the dominant theme, of isometric embedding into
Hilbert space.

Corollary 2.11 The function ρ(θ) is a Hilbert distance on S∞ if and only if

ρ(θ)2 =
∞∑
k=0

ck(1− cosk θ),

where ck ≥ 0 for all k ≥ 0 and
∑∞

k=0 ck <∞.

However, there is much more to derive from Schoenberg’s theorem, once it is
freed from the spherical context.

Theorem 2.12 (Schoenberg [86]) Let f : [−1, 1] → R be a continuous function.
If the matrix [f (ajk)]nj,k=1 is positive semidefinite for all n ≥ 1 and all positive
semidefinite matrices [ajk]nj,k=1 with entries in [−1, 1], then, and only then,

f (x) =
∞∑
k=0

ckx
k (x ∈ [−1, 1]),

where ck ≥ 0 for all k ≥ 0 and
∑∞

k=0 ck <∞.

Proof One implication follows from the Schur product theorem [90], which says
that if the n×nmatricesA and B are positive semidefinite, then so is their entrywise
productA ◦B := [ajkbjk]nj,k=1. Indeed, inductively setting B = A◦k = A ◦ · · · ◦A,
the k-fold entrywise power shows that every monomial xk preserves positivity when
applied entrywise. That the same property holds for functions f (x) = ∑

k≥0 ckxk ,
with all ck ≥ 0, now follows from the fact that the set of positive semidefinite n× n
matrices forms a closed convex cone, for all n ≥ 1.

For the non-trivial, reverse implication we restrict the test matrices to those with
leading diagonal terms all equal to 1. By interpreting such a matrix A as a Gram
matrix, we identify n points on the sphere x1, . . . , xn ∈ Sn−1 satisfying

ajk = 〈xj , xk〉 = cos θ(xj , xk) (1 ≤ j, k ≤ n).

Then we infer from Schoenberg’s theorem that f admits a uniformly convergent
Taylor series with non-negative coefficients. ��

We conclude this section by mentioning some recent avenues of research that
start from Bochner’s theorem (and its generalization in 1940, by Weil, Povzner,
and Raikov, to all locally compact abelian groups) and Schoenberg’s classifica-
tion of positive definite functions on spheres. On the theoretical side, there has
been a profusion of recent mathematical activity on classifying positive definite
functions (and strictly positive definite functions) in numerous settings, mostly
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related to spheres [4, 5, 23, 98–100], two-point homogeneous spaces2 [2, 3, 21],
locally compact abelian groups and homogeneous spaces [28, 41], and products of
these [11, 13, 40, 42–44].

Moreover, this line of work directly impacts applied fields. For instance, in
climate science and geospatial statistics, one uses positive definite kernels and
Schoenberg’s results (and their sequels) to study trends in climate behavior on the
Earth, since it can be modelled by a sphere, and positive definite functions on S2×R
characterize space-time covariance functions on it. See [39, 65, 71] for more details
on these applications. Other applied fields include genomics and finance, through
high-dimensional covariance estimation. We elaborate on this in the second part of
the survey: see [10] or the full version [9, Chapter 7].

There are several other applications of Schoenberg’s work on positive definite
functions on spheres (his paper [86] has more than 160 citations) and we mention
here just a few of them. Schoenberg’s results were used by Musin [66] to compute
the kissing number in four dimensions, by an extension of Delsarte’s linear-
programming method. Moreover, the results also apply to obtain new bounds on
spherical codes [67], with further applications to sphere packing [25]. There are
also applications to approximating functions and interpolating data on spheres,
pseudodifferential equations with radial basis functions, and Gaussian random
fields.

Remark 2.13 Anothermodern-day use of Schoenberg’s results in [86] is in Machine
Learning; see [91, 92], for example. Given a real inner-product space H and a
function f : R→ R, an alternative notion of f being positive definite is as follows:
for any finite set of vectors x1, . . . , xn ∈ H , the matrix

[f (〈xj , xk〉)]nj,k=1
is positive semidefinite. This is in contrast to the notion promoted by Bochner, Weil,
Schoenberg, Pólya, and others, which concerns positivity of the matrix with entries
f (〈xj − xk, xj − xk〉1/2). It turns out that every positive definite kernel on H , given
by

(x, y) �→ f (〈x, y〉)

for a function f which is positive definite in this alternate sense, gives rise to a
reproducing-kernel Hilbert space, which is a central concept in Machine Learning.
We restrict ourselves here to mentioning that, in this setting, it is desirable for the
kernel to be strictly positive definite; see [68] for further clarification and theoretical
results along these lines.

2Recall [95] that a metric space (X, ρ) is n-point homogeneous if, given finite sets X1, X2 ⊂ X

of equal size no more than n, every isometry from X1 to X2 extends to a self-isometry of X. This
property was first considered by Birkhoff [15], and of course differs from the more common usage
of the terminology of a homogeneous space G/H , whose study by Bochner was mentioned above.
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2.6 Connections to Harmonic Analysis

Positivity and sharp continuity bounds for linear transformations between specific
normed function spaces go hand in hand, especially when focusing on the kernels
of integral transforms. The end of 1950s marked a fortunate condensation of
observations, leading to a quasi-complete classification of preservers of positive or
bounded convolution transforms acting on spaces of functions on locally compact
abelian groups. In particular, these results can be interpreted as Schoenberg-type
theorems for Toeplitz matrices or Toeplitz kernels. We briefly recount the main
developments.

A groundbreaking theorem of the 1930s attributed to Wiener and Levy asserts
that the pointwise inverse of a non-vanishing Fourier series with coefficients in L1

exhibits the same summability behavior of the coefficient sequence. To be more
precise, if φ is never zero and has the representation

φ(θ) =
∞∑

n=−∞
cne

inθ , where
∞∑

n=−∞
|cn| <∞,

then its reciprocal has a representation of the same form:

(1/φ)(θ) =
∞∑

n=−∞
dne

inθ , where
∞∑

n=−∞
|dn| <∞.

It was Gelfand [38] who in 1941 cast this permanence phenomenon in the general
framework of commutative Banach algebras. Gelfand’s theory applied to theWiener

algebra W := L̂1(Z) of Fourier transforms of L1 functions on the dual of the unit
torus proves the following theorem.

Theorem 2.14 (Gelfand [38]) Let φ ∈ W and let f (z) be an analytic function
defined in a neighborhood of φ(T). Then f (φ) ∈ W .

The natural inverse question of deriving smoothness properties of inner trans-
formations of Lebesgue spaces of Fourier transforms was tackled almost simul-
taneously by several analysts. For example, Rudin proved in 1956 [76] that a

coefficient-wise transformation cn �→ f (cn) mapping the space ̂L1(T) into itself
implies the analyticity of f in a neighborhood of zero. In a similar vein, Rudin
and Kahane proved in 1958 [53] that a coefficient-wise transformation cn �→ f (cn)

which preserves the space of Fourier transforms M̂(T) of finite measures on the
torus implies that f is an entire function. In the same year, Kahane [52] showed
that no quasi-analytic function (in the sense of Denjoy–Carleman) preserves the

space L̂1(Z) and Katznelson [56] refined an inverse to Gelfand’s theorem above, by

showing the semi-local analyticity of transformers of elements of L̂1(Z) subject to
some support conditions.
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Soon after, the complete picture emerged in full clarity. It was unveiled by
Helson, Kahane, Katznelson, and Rudin in an Acta Mathematica article [48]. Given
a function f defined on a subset E of the complex plane, we say that f operates on
the function algebra A, if f (φ) ∈ A for every φ ∈ A with range contained in E.
The following metatheorem is proved in the cited article.

Theorem 2.15 (Helson–Kahane–Katznelson–Rudin [48]) Let G be a locally
compact abelian group and let � denote its dual, and suppose both are endowed
with their respective Haar measures. Let f : [−1, 1] → C be a function satisfying
f (0) = 0.

(1) If � is discrete and f operates on L̂1(G), then f is analytic in some
neighborhood of the origin.

(2) If � is not discrete and f operates on L̂1(G), then f is analytic in [−1, 1].
(3) If � is not compact and f operates on M̂(G), then f can be extended to an

entire function.

Rudin refined the above results to apply in the case of variousLp norms [78, 79],
by stressing the lack of continuity assumption for the transformer f in all results
(similar in nature to the statements in the above theorem). From Rudin’s work we
extract a highly relevant observation, à la Schoenberg’s theorem, aligned to the spirit
of the present survey.

Theorem 2.16 (Rudin [77]) Suppose f : (−1, 1) → R maps every positive
semidefinite Toeplitz kernel with elements in (−1, 1) into a positive semidefinite
kernel:

[aj−k]∞j,k=−∞ ≥ 0 �⇒ [f (aj−k)]∞j,k=−∞ ≥ 0.

Then f is absolutely monotonic, that is analytic on (−1, 1) with a Taylor series
having non-negative coefficients:

f (x) =
∞∑
n=0

ckx
k, where ck ≥ 0 for all k ≥ 0.

The converse is obviously true by the Schur product theorem. The elementary
proof, quite independent of the derivation of the metatheorem stated above, is con-
tained in [77]. Notice again the lack of a continuity assumption in the hypotheses.

In fact, Rudin proves more, by restricting the test domain of positive semidefinite
Toeplitz kernels to the two-parameter family

an = α + β cos(nθ) (n ∈ Z) (2.5)

with θ fixed so that θ/π is irrational and α, β ≥ 0 such that α+β < 1. Rudin’s proof
commences with a mollifier argument to deduce the continuity of the transformer,



Dimension-Free Positivity 135

then uses a development in spherical harmonics very similar to the original argument
of Schoenberg. We will resume this topic in Sect. 3.3, setting it in a wider context.

With the advances in abstract duality theory for locally convex spaces, it is not
surprising that proofs of Schoenberg-type theorems should be accessible with the aid
of such versatile tools. We will confine ourselves here to mentioning one pertinent
convexity-theoretic proof of Schoenberg’s theorem, due to Christensen and Ressel
[24].

Skipping freely over the details, the main observation of these two authors is
that the multiplicatively closed convex cone of positivity preservers of positive
semidefinite matrices of any size, with entries in [−1, 1], is closed in the product
topology of R[−1,1], with a compact baseK defined by the normalization f (1) = 1.
The set of extreme points of K is readily seen to be closed, and an elementary
argument identifies it as the set of all monomials xn, where n ≥ 0, plus the
characteristic functions χ1 ± χ−1. An application of Choquet’s representation
theorem now provides a proof of a generalization of Schoenberg’s theorem, by
removing the continuity assumption in the statement.

3 Entrywise Functions Preserving Positivity in All
Dimensions

3.1 History

With the above history to place the present survey in context, we move to its
dominant theme: entrywise positivity preservers. In analysis and in applications in
the broader mathematical sciences, one is familiar with applying functions to the
spectrum of diagonalizable matrices: A = UDU∗ then f (A) = Uf (D)U∗. More
formally, one uses the Riesz–Dunford holomorphic functional calculus to define
f (A) for classes of matrices A and functions f .

Our focus in this survey will be on the parallel philosophy of entrywise calculus.
To differentiate this from the functional calculus, we use the notation f [A].
Definition 3.1 Fix a domain I ⊂ C and integers m, n ≥ 1. Let Pn(I) denote the
set of n× n Hermitian positive semidefinite matrices with all entries in I .

A function f : I → C acts entrywise on a matrix

A = [ajk]1≤j≤m, 1≤k≤n ∈ Im×n

by setting

f [A] := [f (ajk)]1≤j≤m, 1≤k≤n ∈ C
m×n.

Below, we allow the dimensionsm and n to vary, while keeping the uniform notation
f [−].
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We also let 1m×n denote them×nmatrix with each entry equal to one. Note that
1n×n ∈ Pn(R).

In this survey, we explore the following overarching question in several different
settings.

Which functions preserve positive semidefiniteness when applied entrywise to a
class of positive matrices?

This question was first asked by Pólya and Szegö in their well-known book [70].
The authors observed that Schur’s product theorem, together with the fact that the
positive matrices form a closed convex cone, has the following consequence: if
f (x) is any power series with non-negative Maclaurin coefficients that converges
on a domain I ⊂ R, then f preserves positivity (that is, preserves positive
semidefiniteness) when applied entrywise to positive semidefinite matrices with
entries in I . Pólya and Szegö then asked if there are any other functions that
possess this property. As discussed above, Schoenberg’s theorem 2.12 provides
a definitive answer to their question (together with the improvements by Rudin
or Christensen–Ressel to remove the continuity hypothesis). Thanks to Pólya and
Szegö’s observation, Schoenberg’s result may be considered as a rather challenging
converse to the Schur product theorem.

In a similar vein, Rudin [77] observed that if one moves to the complex setting,
then the conjugation map also preserves positivity when applied entrywise to
positive semidefinite complex matrices. Therefore the maps

z �→ zj zk (j, k ≥ 0)

preserve positivity when applied entrywise to complex matrices of all dimensions,
again by the Schur product theorem. The same property is now satisfied by
non-negative linear combinations of these functions. In [77], Rudin made this
observation and conjectured, à la Pólya–Szegö, that these are all of the preservers.
This was proved by Herz in 1963.

Theorem 3.2 (Herz [49]) Let D(0, 1) denote the open unit disc in C, and suppose
f : D(0, 1)→ C. The entrywise map f [−] preserves positivity on Pn

(
D(0, 1)

)
for

all n ≥ 1, if and only if

f (z) =
∑
j,k≥0

cjkz
j zk for all z ∈ D(0, 1),

where cjk ≥ 0 for all j , k ≥ 0.

Akin to the above results by Schoenberg, Rudin, Christensen and Ressel,
and Herz, we mention one more Schoenberg-type theorem, for matrices with
positive entries. The following result again demonstrates the rigid principle that
analyticity and absolute monotonicity follow from the preservation of positivity in
all dimensions.



Dimension-Free Positivity 137

Theorem 3.3 (Vasudeva [93]) Let f : (0,∞) → R. Then f [−] preserves
positivity on Pn

(
(0,∞)

)
for all n ≥ 1, if and only if f (x) =∑∞

k=0 ckxk on (0,∞),
where ck ≥ 0 for all k ≥ 0.

3.2 The Horn–Loewner Necessary Condition in Fixed
Dimension

The previous section contains several variants of a “dimension-free” result: namely,
the classification of entrywise maps that preserve positivity on test sets of matrices
of all sizes. In the next section, we discuss a dimension-free result that parallels
Rudin’s work in [77], by approaching the problem via preservers of moment
sequences for positive measures on the real line. In other words, we will work with
Hankel instead of Toeplitz matrices.

In the later part of this survey, we focus on entrywise functions that preserve
positivity when the test set consists of matrices of a fixed size. For both of these
settings, the starting point is an important result found in the PhD thesis of Roger
Horn, which he attributes to his advisor, Charles Loewner.

Theorem 3.4 ([50]) Let f : (0,∞) → R be continuous. Fix a positive integer n
and suppose f [−] preserves positivity on Pn

(
(0,∞)

)
. Then f ∈ Cn−3(I),

f (k)(x) ≥ 0 whenever x ∈ (0,∞) and 0 ≤ k ≤ n− 3,

and f (n−3) is a convex non-decreasing function on (0,∞). Furthermore, if f ∈
Cn−1((0,∞)

)
, then f (k)(x) ≥ 0 whenever x ∈ (0,∞) and 0 ≤ k ≤ n− 1.

This result and its variations are the focus of the present section.
Theorem 3.4 is remarkable for several reasons.

(1) Modulo variations, it remains to this day the only known criterion for a general
entrywise function to preserve positivity in a fixed dimension. Later on, we
will see more precise conclusions drawn when f is a polynomial or a power
function, but for a general function there are essentially no other known results.

(2) While Theorem 3.4 is a fixed-dimension result, it can be used to prove some
of the aforementioned dimension-free characterizations. For instance, if f [−]
preserves positivity on Pn

(
(0,∞)

)
for all n ≥ 1, then, by Theorem 3.4, the

function f is absolutely monotonic on (0,∞). A classical result of Bernstein
on absolutely monotonic functions now implies that f is necessarily given by
a power series with non-negative coefficients, which is precisely Vasudeva’s
Theorem 3.3.

In the next section, we will outline an approach to prove a stronger version of
Schoenberg’s Theorem 2.12 (in the spirit of Theorem 2.16 by Rudin), starting
from Theorem 3.3.
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(3) Theorem 3.4 is also significant because there is a sense in which it is sharp. We
elaborate on this when studying polynomial and power-function preservers; this
is discussed in the second part of the survey: see [10] or [9, Chapters 4 and 6].

Remark 3.5 There are other, rather unexpected consequences of Theorem 3.4 as
well. It was recently shown that the key determinant computation underlying
Theorem 3.4 can be generalized to yield a new class of symmetric function identities
for any formal power series. The only such identities previously known were for the
case f (x) = 1−cx

1−x . This is discussed in the second part of this survey [10] and the
full version [9, Section 4.6].

We next explain the steps behind the proof of the Horn–Loewner Theorem 3.4.
These also help in proving certain strengthenings of Theorem 3.4, which are
mentioned below. In turn, these strengthenings additionally serve to clarify the
nature of the Horn–Loewner necessary condition.

Proof of Theorem 3.4 The proof by Loewner is in two steps. First he assumes f
to be smooth and shows the result by induction on n. The base case of n = 1 is
immediate, and for the induction step one proceeds as follows. Fix a > 0, choose
any vector u = (u1, . . . , un)

T ∈ R
n with distinct coordinates, and define

�(t) := det[f (a + tuj uk)]nj,k=1 = det f [a1n×n + uuT ] (0 < t ) 1).

Then Loewner shows that

�(0) = �′(0) = · · · = �(
n
2)−1(0) = 0,

�(
n
2)(0) = cf (a)f ′(a) · · ·f (n−1)(a) for some c > 0.

(3.1)

(See Remark 3.5 above.)
Returning to the proof of Theorem 3.4 for smooth functions: apply the above

treatment not to f but to gτ (x) := f (x)+ τxn, where τ > 0. By the Schur product
theorem, gτ satisfies the hypotheses, whence �(t)/t(

n
2) ≥ 0 for t > 0. Taking

t → 0+, by L’Hôpital’s rule we obtain

gτ (a)g
′
τ (a) · · ·g(n−1)τ (a) ≥ 0, for all τ > 0.

Finally, the induction hypothesis implies that f , f ′, . . . , f (n−2) are non-negative at
a, whence gτ (a), . . . , g

(n−2)
τ (a) > 0. It follows that g(n−1)τ (a) ≥ 0 for all τ > 0,

and hence, f (n−1)(a) ≥ 0, as desired.

Remark 3.6 The above argument is amenable to proving more refined results. For
example, it can be used to prove the positivity of the first n non-zero derivatives of
a smooth preserver f ; see Theorem 3.10.

The second step of Loewner’s proof begins by using mollifiers. Suppose f is
continuous; approximate it by a mollified family fδ → f as δ → 0+. Thus fδ is
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smooth and its first n derivatives are non-negative on (0,∞). By the mean-value
theorem for divided differences, this implies that the divided differences of each fδ ,
of orders up to n− 1 are non-negative. Since f is continuous, the same holds for f .

Now one invokes a rather remarkable result by Boas and Widder [17], which can
be viewed as a converse to the mean-value theorem for divided differences. It asserts
that given an integer k ≥ 2 and an open interval I ⊂ R, if all kth order “equi-spaced”
forward differences (whence divided differences) of a continuous function f : I →
R are non-negative on I , then f is k−2 times differentiable on I ; moreover, f (k−2)
is continuous and convex on I , with non-decreasing left- and right-hand derivatives.
Applying this result for each 2 ≤ k ≤ n−1 concludes the proof of Theorem 3.4. ��

Note that this proof only uses matrices of the form a1n×n + tuuT , and the
arguments are all local. Thus it is unsurprising that strengthened versions of the
Horn–Loewner theorem can be found in the literature; see [7, 47], for example. We
present here the stronger of these variants.

Theorem 3.7 (See [7, Section 3]) Suppose 0 < ρ ≤ ∞, I = (0, ρ), and f : I →
R. Fix u0 ∈ (0, 1) and an integer n ≥ 1, and define u := (1, u0, . . . , u

n−1
0 )T .

Suppose f [A] ∈ P2(R) for all A ∈ P2(I), and also that f [A] ∈ Pn(R) for all
Hankel matrices A = a1n×n + tuuT , with a, t ≥ 0 such that a + t ∈ I . Then the
conclusions of Theorem 3.4 hold.

Beyond the above strengthenings, the notable feature here is that the continuity
hypothesis has been removed, akin to the Rudin and Christensen–Ressel results.
We reproduce here an elegant argument to show continuity; this can be found in
Vasudeva’s paper [93], and uses only the test set P2(I). By considering f [A] for
A =

[
a b

b a

]
with 0 < b < a < ρ, it follows that f is non-negative and non-

decreasing on I . One also shows that f is either identically zero or never zero on I .

In the latter case, considering f [A] for A =
[

a
√
ab√

ab b

]
∈ P2(I) shows that f is

multiplicatively mid-convex: the function

g(y) := log f (ey) (y < logρ)

is midpoint convex and locally bounded on the interval log I . Now the following
classical result [74, Theorem 71.C] shows that g is continuous on log I , so f is
continuous on I .

Proposition 3.8 Let U be a convex open set in a real normed linear space. If g :
U → R is midpoint convex on U and bounded above in an open neighborhood of a
single point in U , then g is continuous, so convex, on U .

We now move to variants of the Horn–Loewner result. Notice that Theorems 3.4
and 3.7 are results for arbitrary positivity preservers f (x). When more is known
about f , such as smoothness or even real analyticity, stronger conclusions can be
drawn from smaller test sets of matrices. A recent variant is the following lemma,
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shown by evaluating f [−] at matrices (tujuk)nj,k=1 and using the invertibility of
“generic” generalized Vandermonde matrices.

Lemma 3.9 (Belton–Guillot–Khare–Putinar [6] and Khare–Tao [58]) Let n ≥
1 and 0 < ρ ≤ ∞. Suppose f (x) = ∑

k≥0 ckxk is a convergent power series on
I = [0, ρ) that is positivity preserving entrywise on rank-one matrices in Pn(I).
Further assume that cm′ < 0 for some m′.

(1) If ρ <∞, then we have cm > 0 for at least n values of m < m′. (In particular,
the first n non-zero Maclaurin coefficients of f , if they exist, must be positive.)

(2) If instead ρ = ∞, then we have cm > 0 for at least n values of m < m′ and
at least n values of m > m′. (In particular, if f is a polynomial, then the first n
non-zero coefficients and the last n non-zero coefficients of f , if they exist, are
all positive.)

Notice that this lemma (a) talks about the derivatives of f at 0 and not in (0, ρ);
and moreover, (b) considers not the first few derivatives, but the first few non-
zero derivatives. Thus, it is morally different from the preceding two theorems, and
one naturally seeks a common unification of these three results. This was recently
achieved.

Theorem 3.10 (Khare [57]) Let 0 ≤ a < ∞, ε ∈ (0,∞), I = [a, a + ε), and let
f : I → R be smooth. Fix integers n ≥ 1 and 0 ≤ p ≤ q ≤ n, with p = 0 if a = 0,
and such that f (x) has q−p non-zero derivatives at x = a of order at least p. Now
let

m0 := 0, . . . mp−1 := p − 1;

suppose further that

p ≤ mp < mp+1 < · · · < mq−1

are the lowest orders (above p) of the first q − p non-zero derivatives of f (x) at
x = a.

Also fix distinct scalars u1, . . . , un ∈ (0, 1), and let u := (u1, . . . , un)
T . If

f [a1n×n + tuuT ] ∈ Pn(R) for all t ∈ [0, ε), then the derivative f (k)(a) is non-
negative whenever 0 ≤ k ≤ mq−1.

Notice that varying p allows one to control the number of initial derivatives ver-
sus the number of subsequent non-zero derivatives of smallest order. In particular,
if p = q = n, then the result implies the “stronger” Horn–Loewner Theorem 3.7
(and so Theorem 3.4) pointwise at every a > 0. At the other extreme is the special
case of p = 0 (at any a ≥ 0), which strengthens the conclusions of Theorems 3.4
and 3.7 for smooth functions.

Corollary 3.11 Suppose a, ε, I , f , n, and u are as in Theorem 3.10. If f [a1n×n +
tuuT ] ∈ Pn(R) for all t ∈ [0, ε), then the first n non-zero derivatives of f (x) at
x = a are positive.
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Remark 3.12 Theorem 3.10 further clarifies the nature of the Horn–Loewner result
and its proof. The reduction from arbitrary functions, to continuous functions, to
smooth functions, requires an open domain (0, ρ), in order to use mollifiers, for
example. However, the result for smooth functions actually holds pointwise, as
shown by Theorem 3.10.

The proof of Theorem 3.10 combines novel arguments together with the
previously mentioned techniques of Loewner. The refinement of the determinant
computations (3.1) is of particular note; see the second part of this survey ([10]
or [9, Section 4.6]).

3.3 Schoenberg Redux: Moment Sequences and Hankel
Matrices

In this section, we outline another approach to proving Schoenberg’s Theorem 2.12,
which yields a stronger version parallel to the strengthening by Rudin of Theo-
rem 2.16. The present section reveals connections between positivity preservers,
totally non-negative Hankel matrices, moment sequences of positive measures on
the real line, and also a connection to semi-algebraic geometry.

We begin with Rudin’s Theorem 2.16 and the family (2.5). Notice that the
positive definite sequences in (2.5) give rise to the Toeplitz matrices A(n, α, β, θ)
with (j, k) entry equal to α + β cos

(
(j − k)θ

)
. From the elementary identity

cos(p − q) = cosp cos q + sinp sin q (p, q ∈ R),

it follows that these Toeplitz matrices have rank at most three:

A(n, α, β, θ) = α1n×n + βuuT + βvvT , (3.2)

where

u := (
cos θ, cos(2θ), . . . , cos(nθ)

)T and v := (
sin θ, sin(2θ), . . . , sin(nθ)

)T
.

In particular, Rudin’s work (see Theorem 2.16 and the subsequent discussion)
implies the following result.

Proposition 3.13 Let θ ∈ R such that θ/π is irrational. An entrywise map f :
R→ R preserves positivity on the set of Toeplitz matrices

{A(n, α, β, θ) : n ≥ 1, α, β > 0}

if and only if f (x) =∑∞
k=0 ckxk is a convergent power series on R, with ck ≥ 0 for

all k ≥ 0.
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Thus, one can significantly reduce the set of test matrices.

Proof Given 0 < ρ < ∞, let the restriction fρ := f |(−ρ,ρ). Observe from the
discussion following Theorem 2.16 that Rudin’s work explicitly shows the result
for f1, whence for any fρ by a change of variables. Thus,

fρ(x) =
∞∑
k=0

ck,ρx
k, ck,ρ ≥ 0 for all k ≥ 0 and ρ > 0.

Given 0 < ρ < ρ′ <∞, it follows by the identity theorem that ck,ρ = ck,ρ′ for all
k. Hence f (x) =∑

k≥0 ck,1xk (which was Rudin’s f1(x)), now on all of R. ��
In a parallel vein to Rudin’s results and Proposition 3.13, the following strength-

ening of Schoenberg’s result can be shown, using a different (and perhaps more
elementary) approach than those of Schoenberg and Rudin.

Theorem 3.14 (Belton–Guillot–Khare–Putinar [7]) Suppose 0 < ρ ≤ ∞ and
I = (−ρ, ρ). Then the following are equivalent for a function f : I → R.

(1) The entrywise map f [−] preserves positivity on Pn(I), for all n ≥ 1.
(2) The entrywise map f [−] preserves positivity on the Hankel matrices in Pn(I)

of rank at most 3, for all n ≥ 1.
(3) The function f is real analytic on I and absolutely monotonic on (0, ρ). In

other words, f (x) =∑
k≥0 ckxk on I , with ck ≥ 0 ∀k.

Remark 3.15 Recall the alternate notion of positive definite functions discussed
in Remark 2.13. In [68] and related works, Pinkus and other authors study this
alternate notion of positive definite functions on H . Notice that such matrices form
precisely the set of positive semidefinite symmetric matrices of rank at most dimH .
In particular, Theorem 3.14 and the far earlier 1959 paper [77] of Rudin both provide
a characterization of these functions, on every Hilbert space of dimension 3 or more.

Parallel to the discussions of the proofs of Schoenberg’s and Rudin’s results (see
the previous chapter), we now explain how to prove Theorem3.14. Clearly, (3) �⇒
(1) �⇒ (2) in the theorem. We first outline how to weaken the condition (2)
even further and still imply (3). The key idea is to consider moment sequences of
certain non-negativemeasures on the real line. This parallels Rudin’s considerations
of Fourier–Stieltjes coefficients of non-negative measures on the circle.

Definition 3.16 A measure μ with support in R is said to be admissible if μ ≥ 0
on R, and all moments of μ exist and are finite:

sk(μ) :=
∫
R

xk dμ(x) <∞ (k ≥ 0).
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The sequence s(μ) := (
sk(μ)

)∞
k=0 is termed the moment sequence of μ. Corre-

sponding to μ and this moment sequence is the moment matrix of μ:

Hμ :=

⎡
⎢⎢⎢⎣

s0(μ) s1(μ) s2(μ) · · ·
s1(μ) s2(μ) s3(μ) · · ·
s2(μ) s3(μ) s4(μ) · · ·
...

...
...

. . .

⎤
⎥⎥⎥⎦ ;

note that Hμ = [si+j (μ)]i,j≥0 is a semi-infinite Hankel matrix. Finally, a function
f : R→ R acts entrywise on moment sequences, to yield real sequences:

f [s(μ)] := (f
(
s0(μ)

)
, . . . , f

(
sk(μ)

)
, . . .).

We are interested in understanding which entrywise functions preserve the
space of moment sequences of admissible measures. The connection to positive
semidefinite matrices is made through Hamburger’s theorem, which says that a
real sequence (s0, s1, . . .) is the moment sequence of an admissible measure on
R if and only if every (finite) principal minor of the moment matrix Hμ is positive
semidefinite. For simplicity, this last will be reformulated below to saying that Hμ

is positive semidefinite.
The weakening of Theorem 3.14(2) is now explained: it suffices to consider the

reduced test set of those Hankel matrices, which arise as the moment matrices of
admissible measures supported at three points. Henceforth, let δx denote the Dirac
probability measure supported at x ∈ R. It is not hard to verify that the m-point
measure μ =∑m

j=1 cj δxj has Hankel matrix Hμ with rank no more than m:

sk(μ) =
m∑
j=1

cj x
k
j (k ≥ 0)

�⇒ Hμ =
m∑
j=1

cjujuTj , where uj := (1, xj , x2j , . . .)
T .

(3.3)

Thus, a further strengthening of Schoenberg’s result is as follows.

Theorem 3.17 (Belton–Guillot–Khare–Putinar [7]) In the setting of Theo-
rem 3.14, the three assertions contained therein are also equivalent to

(4) For each measure

μ = aδ1 + bδu0 + cδ−1, with u0 ∈ (0, 1), a, b, c ≥ 0, a + b + c ∈ (0, ρ),
(3.4)

there exists an admissible measure σμ on R such that f
(
sk(μ)

) = sk(σμ) for
all k ≥ 0.
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In fact, we will see in Sect. 3.4 below that this assertion (4) can be simplified to
just assert that f [Hμ] is positive semidefinite, and so completely avoid the use of
Hamburger’s theorem.

We now discuss the proof of these results, working with ρ = ∞ for ease of
exposition. The first observation is that the strengthening of the Horn–Loewner
Theorem 3.7, together with the use of Bernstein’s theorem (see remark (2) following
Theorem 3.4), implies the following “stronger” form of Vasudeva’s Theorem 3.3:

Theorem 3.18 (See [7]) Suppose I = (0,∞) and f : I → R. Also fix u0 ∈ (0, 1).
The following are equivalent:

(1) The entrywise map f [−] preserves positivity on Pn(I) for all n ≥ 1.
(2) The entrywise map f [−] preserves positivity on all moment matrices Hμ for

μ = aδ1 + bδu0, a, b > 0.
(3) The function f equals a convergent power series

∑∞
k=0 ckxk for all x ∈ I , with

the Maclaurin coefficients ck ≥ 0 for all k ≥ 0.

Notice that the test matrices in assertion (2) are all Hankel, and of rank at most
two. This severely weakens Vasudeva’s original hypotheses.

Now suppose the assertion in Theorem 3.17(4) holds. By the preceding result,
f (x) is given on (0,∞) by an absolutely monotonic function

∑
k≥0 ckxk. The next

step is to show that f is continuous. For this, we will crucially use the following
“integration trick.” Suppose for each admissible measure μ as in (3.4), there is a
non-negative measure σμ supported on [−1, 1] such that f (sk(μ)) = sk(σμ) for all
k ≥ 0. (Note here that it is not immediate that the support is contained in [−1, 1].)

Now let p(t) = ∑
k≥0 bktk be a polynomial that takes non-negative values on

[−1, 1]. Then,

0 ≤
∫ 1

−1
p(t) dσμ(t) =

∞∑
k=0

∫ 1

−1
bkt

k dσμ(t) =
∞∑
k=0

bksk(σμ) =
∞∑
k=0

bkf
(
sk(μ)

)
.

(3.5)

Remark 3.19 For example, suppose p(t) = 1 − td for some d ≥ 1. If μ = aδ1 +
bδu0 + cδ−1, where u0 ∈ (0, 1) and a, b, c > 0, then the inequality (3.5) gives that

0 ≤ f
(
s0(μ)

)− f
(
sd (μ)

) = f (a + b + c)− f (a + bud0 + c(−1)d).

It is not clear a priori how to deduce this inequality using the fact that f [−]
preserves matrix positivity and the Hankel moment matrix of μ. The explanation,
which we provide in Sect. 3.4 below, connects moment problems, matrix positivity,
and real algebraic geometry.

We now outline how (3.5) can be used to prove the continuity of f . First note that
|sk(μ)| ≤ s0(μ) for μ as above and all k ≥ 0. This fact and the easy observation
that f is bounded on compact subsets of R together imply that all moments of
σμ are uniformly bounded. From this we deduce that σμ is necessarily supported
on [−1, 1].
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The inequality (3.5) now gives the left-continuity of f at −β, for every β ≥ 0.
Fix u0 ∈ (0, 1), and let

μb := (β + bu0)δ−1 + bδu0 (b > 0).

Applying (3.5) to the polynomials p±,1(t) := (1± t)(1 − t2), we deduce that

f
(
β + b(1+ u0)

)− f
(
β + b(u0 + u20)

) ≥ |f (−β)− f
(−β − bu0(1− u20)

)|.
Letting b → 0+, the left continuity of f at −β follows. Similarly, to show that
f is right continuous at −β, we apply the integral trick to p±,1(t) and to μ′b :=
(β + bu30)δ−1 + bδu0 instead of μb.

Having shown continuity, to prove the stronger Schoenberg theorem, we next
assume that f is smooth on R. For all a ∈ R, define the function

Ha : R→ R; x �→ f (a + ex).

The functionHa satisfies the estimates

|H(n)
a (x)| ≤ H

(n)
|a| (x) (a, x ∈ R, n ∈ Z+). (3.6)

This is shown by another use of the integration trick (3.5), this time for the
polynomials p±,n(t) := (1 ± t)(1 − t2)n for all n ≥ 0. In turn, the estimates (3.6)
lead to showing that Ha is real analytic on R, for all a ∈ R. Now composing H−a
for a > |x| with the function La(y) := log(a + y) shows that f (x) is real analytic
on R and agrees with

∑
k≥0 akxk on (0,∞). This concludes the proof for smooth

functions.
Finally, to pass from smooth functions to continuous functions, we again use

a mollified family fδ → f as δ → 0+. Each fδ is the restriction of an entire
function, say f̃δ , and the family {f̃1/n : n ≥ 1} forms a normal family on each open
disc D(0, r). It follows from results by Montel and Morera that f̃1/n(z) converges
uniformly to a function gr on each closed disc D(0, r), and gr is analytic. Since gr
restricts to f on (−r, r), it follows that f is necessarily also real analytic on R, and
we are done.

3.4 The Integration Trick and Positivity Certificates

Observe that the inequality (3.5) can be written more generally as follows.
Given a polynomial p(t) = ∑

k≥0 bktk which takes non-negative values on
[−1, 1], as well as a positive semidefinite Hankel matrix H = (si+j )i,j≥0, we have
that

∑
k≥0

bksk ≥ 0. (3.7)
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As shown in (3.5), this assertion is clear via an application of Hamburger’s
theorem. We now demonstrate how the assertion can instead be derived from first
principles, with interesting connections to positivity certificates.

First note that the inequality (3.7) holds if p(t) is the square of a polynomial. For
instance, if p(t) = (1− 3t)2 = 1− 6t + 9t2 on [−1, 1], then

s0 − 6s1 + 9s2 = (e0 − 3e1)T H(e0 − 3e1), (3.8)

where e0 = (1, 0, 0, . . .) and e1 = (0, 1, 0, 0, . . .). The non-negativity of (3.8)
now follows immediately from the positivity of the matrix H . The same reasoning
applies if p(t) is a sum of squares of polynomials, or even the limit of a sequence of
sums of squares. Thus, one approach to showing the inequality (3.7) for an arbitrary
polynomial p(t) which is non-negative on [−1, 1] is to seek a limiting sum-of-
squares representation, which is also known as a positivity certificate, for p.

If a d-variate real polynomial is a sum of squares of real polynomials, then it
is clearly non-negative on R

d , but the converse is not true for d > 1.3 Even when
d = 1, while a sum-of-squares representation is an equivalent characterization for
one-variable polynomials that are non-negative on R, here we are working on the
compact semi-algebraic set [−1, 1]. We now give three proofs of the existence of
such a positivity certificate in the setting used above.

Proof 1. A result of Berg, Christensen, and Ressel (see the end of [12]) shows more
generally that, for every dimension d ≥ 1, any non-negative polynomial on [−1, 1]d
has a limiting sum-of-squares representation. ��
Proof 2. The only polynomials used in proving the stronger form of Schoenberg’s
theorem, Theorems 3.14 and 3.17, appear following (3.6):

p±,n(t) := (1± t)(1− t2)n (n ≥ 0).

Each of these polynomials is composed of factors of the form p±,0(t) = 1 ± t ,
so it suffices to produce a limiting sum-of-squares representation for these two
polynomials on [−1, 1]. Note that

1

2
(1± t)2 = 1

2
± t + t2

2
,

1

4
(1− t2)2 = 1

4
− t2

2
+ t4

4
,

1

8
(1− t4)2 = 1

8
− t4

4
+ t8

8
,

3This is connected to semi-algebraic geometry and to Hilbert’s seventeenth problem: recall the
famous result of Motzkin that there are non-negative polynomials on R

d that are not sums of
squares, such as x4y2+ x2y4− 3x2y2+ 1. Such phenomena have been studied in several settings,
including polytopes (by Farkas, Handelman, and Pólya) and more general semi-algebraic sets (by
Putinar, Schmüdgen, Stengel, Vasilescu, and others).



Dimension-Free Positivity 147

and so on. Adding the first n equations shows that (1± t)+ 2−n(t2n − 1) is a sum-
of-squares polynomial for all n. Taking n→∞ finishes the proof. ��
Proof 3. In fact, for any d ≥ 1 and any compact set K ⊂ R

d , if f is a non-negative
continuous function onK , then f has a positivity certificate. The Stone–Weierstrass
theorem gives a sequence of polynomials which converges to

√
f , and the squares

of these polynomials then provide the desired limiting representation for f . This is a
simpler proof than Proof 1 from [12], but the convergence here is uniform, whereas
the convergence in [12] is stronger. ��
Remark 3.20 In (3.5), we used H = Hσμ , which was positive semidefinite by
assumption. The previous discussion shows that Theorem 3.17(4) can be further
weakened, by requiring only that f [Hμ] is positive semidefinite, as opposed to being
equal to Hσ for some admissible measure σ . Hence we do not require Hamburger’s
theorem in order to prove the strengthening of Schoenberg’s theorem that uses the
test set of low-rank Hankel matrices.

3.5 Variants of Moment-Sequence Transforms

We now present a trio of results on functions which preserve moment sequences.
For K ⊂ R, let M(K) denote the set of moment sequences corresponding to

admissible measures with support in K . We say that F maps M(K) into M(L),
where K , L ⊂ R, if for every admissible measure μ with support in K there exists
an admissible measure σ with support in L such that

F(sk(μ)) = sk(σ ) for all k ∈ Z+,

where sk(μ) is the kth-power moment of μ, as in Definition 3.16.

Theorem 3.21 A function F : R→ R mapsM([−1, 1]) into itself if and only if F
is the restriction to R of an absolutely monotonic entire function.

Theorem 3.22 A function F : R+ → R mapsM([0, 1]) into itself if and only if F
is absolutely monotonic on (0,∞) and 0 ≤ F(0) ≤ limε→0+ F(ε).

Theorem 3.23 A function F : R→ R mapsM([−1, 0]) into M((−∞, 0]) if and
only if there exists an absolutely monotonic entire function F̃ : C→ C such that

F(x) =
⎧⎨
⎩
F̃ (x) if x ∈ (0,∞),

0 if x = 0,
−F̃ (−x) if x ∈ (−∞, 0).

It is striking to observe the possibility of a discontinuity at the origin which may
occur in the latter two of these three theorems.
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We will content ourselves here with sketching the proof of the second result. For
the others, see [7], noting that the first of the results follows from Theorems 3.14
and 3.17 for ρ = ∞.

Proof of Theorem 3.22 Note that the moment matrix corresponding to an element
of M([0, 1]) has a zero entry if and only if μ = aδ0 for some a ≥ 0. This and the
Schur product theorem give one implication.

For the converse, suppose F preserves M([0, 1]). Fix finitely many scalars cj ,
tj > 0 and an integer n ≥ 0, and set

p(t) = (1− t)n and μ =
∑
j

e−tj αcj δe−tj h , (3.9)

where α > 0 and h > 0. If g(x) := ∑
j cj e

−tj x then the integration trick (3.5),
but working on [0, 1], shows that the forward finite differences of F ◦ g alternate in
sign:

n∑
k=0

(−1)k
(
n

k

)
F
(∑

j

cj e
−tj (α+kh)

)
≥ 0,

so (−1)n�n
h(F ◦ g)(α) ≥ 0. As this holds for all α, h > 0 and all n ≥ 0, it follows

that F ◦ g : (0,∞) → (0,∞) is completely monotonic. The weak density of
measures of the form μ, together with Bernstein’s Theorem (2.1), gives that F ◦ g
is completely monotonic on (0,∞) for every completely monotonic function g :
(0,∞)→ (0,∞). Finally, a theorem of Lorch and Newman [61, Theorem 5] now
gives that F : (0,∞)→ (0,∞) is absolutely monotonic. ��

3.6 Multivariable Positivity Preservers and Moment Families

We now turn to the multivariable case, and begin with two results of FitzGerald,
Micchelli, and Pinkus [33]. We first introduce some notation and a piece of
terminology.

Fix I ⊂ C and an integerm ≥ 1, and let

Ak = (akij )
N
i,j=1 ∈ IN×N for k = 1, . . . ,m.

For any function f : Im → C, we have the N × N matrix

f (A1, . . . , Am) := (
f (a1ij , . . . , a

m
ij )

)N
i,j=1 ∈ C

N×N .

We say that f : Rm → R is real positivity preserving if

f (A1, . . . , Am) ∈ PN(R) for all A1, . . . , Am ∈ PN(R) and all N ≥ 1,
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where, as above PN(R) is the collection of N × N positive semidefinite matrices
with real entries. Similarly, we say that f : Cm → C is positivity preserving if

f (A1, . . . , Am) ∈ PN for all A1, . . . , Am ∈ PN and all N ≥ 1,

where PN is the collection of N × N positive semidefinite matrices with complex
entries. Finally, recall that a function f : Rm → R is said to be real entire if there
exists an entire function F : Cm → C such that F |Rm = f . We will also use the
multi-index notation

xα := x
α1
1 · · · xαmm if x = (x1, . . . , xm) and α = (α1, . . . , αm).

The following theorems are natural extensions of Schoenberg’s theorem and
Herz’s theorem, respectively.

Theorem 3.24 ([33, Theorem 2.1]) Let f : Rm → R, where m ≥ 1. Then f is
real positivity preserving if and only f is real entire of the form

f (x) =
∑
α∈Zm+

cαxα (x ∈ R
m),

where cα ≥ 0 for all α ∈ Z
m+.

Theorem 3.25 ([33, Theorem 3.1]) Let f : Cm → C, where m ≥ 1. Then f is
positivity preserving if and only f is of the form

f (z) =
∑

α,β∈Zm+
cαβzαzβ (z ∈ C

m),

where cαβ ≥ 0 for all α, β ∈ Z
m+ and the power series converges absolutely for all

z ∈ C.

We now consider the notion of moment family for measures on R
d . As above, a

measure on R
d is said to be admissible if it is non-negative and has moments of all

orders. Given such a measure μ, we define the moment family

sα(μ) :=
∫

xα dμ(x) for all α ∈ Z
m+.

In line with the above, we let M(K) denote the set of all moment families of
admissible measures supported on K ⊂ R

d .
Note that a measure μ is supported in [−1, 1]d if and only if its moment family

is uniformly bounded:

sup
{|sα(μ)| : α ∈ Z

m+
}
<∞.
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Theorem 3.26 ([7, Theorem 8.1]) A function F : R → R maps M
([−1, 1]d) to

itself if and only if F is absolutely monotonic and entire.

Proof Since [−1, 1] can be identified with [−1, 1] × {0} d−1 ⊂ [−1, 1]d , the
forward implication follows from the one-dimensional result, Theorem 3.21.

For the converse, we use the fact [73] that a collection of real numbers (sα)α∈Zd+
is an element of M

([−1, 1]d) if and only if the weighted Hankel-type kernels on
Z
d+ × Z

d+

(α, β) �→ sα+β and (α, β) �→ sα+β − sα+β+21j (1 ≤ j ≤ d)

are positive semidefinite, where

1j := (0, . . . , 0, 1, 0, . . . , 0) ∈ Z
d+

with 1 in the j th position. Now suppose F is absolutely monotonic and entire; given
a family (sα)α∈Zd+ subject to these positivity constraints, we have to verify that the
family (F (sα))α∈Zd+ satisfies them as well.

Theorem 3.14 gives that (α, β) �→ F(sα+β) and (α, β) �→ F(sα+β+21j ) are
positive semidefinite, so we must show that

(α, β) �→ F(sα+β)− F(sα+β+21j )

is positive semidefinite for j = 1, . . . , d . As F is absolutely monotonic and entire,
it suffices to show that

(α, β) �→ (sα+β)◦n − (sα+β+21j )
◦n

is positive semidefinite for any n ≥ 0, but this follows from the Schur product
theorem: if A ≥ B ≥ 0, then

A◦n ≥ A◦(n−1) ◦ B ≥ A◦(n−2) ◦ B◦2 ≥ · · · ≥ B◦n.

��
We next consider characterizations of real-valued multivariable functions which

map tuples of moment sequences to moment sequences.
Let K1, . . . , Km ⊂ R. A function F : Rm → R acts on tuples of moment

sequences of (admissible) measuresM(K1)× · · · ×M(Km) as follows:

F [s(μ1), . . . , s(μm)]k := F
(
sk(μ1), . . . , sk(μm)

)
for all k ≥ 0. (3.10)

Given I ⊂ R
m, a function F : I → R is absolutely monotonic if F is continuous

on I , and for all interior points x ∈ I and α ∈ Z
m+, the mixed partial derivative
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DαF(x) exists and is non-negative, where

DαF(x) := ∂ |α|

∂x
α1
1 · · · ∂xαmm

F(x1, . . . , xm) and |α| := α1 + · · · + αm.

With this definition, the multivariable analogue of Bernstein’s theorem is as one
would expect; see [20, Theorem 4.2.2].

To proceed further, it is necessary to introduce the notion of a facewise absolutely
monotonic function onRm+. Observe that the orthantRm+ is a convex polyhedron, and
is therefore the disjoint union of the relative interiors of its faces. These faces are in
one-to-one correspondence with subsets of [m] := {1, . . . ,m}:

J �→ R
J+ := {(x1, . . . , xm) ∈ R

m+ : xi = 0 if i 
∈ J }; (3.11)

note that this face has relative interior RJ
>0 := (0,∞)J × {0}[m]\J .

Definition 3.27 A function F : Rm+ → R is facewise absolutely monotonic if, for
every J ⊂ [m], there exists an absolutely monotonic function gJ on R

J+ which
agrees with F on RJ

>0.

Thus a facewise absolutely monotonic function is piecewise absolutely mono-
tonic, with the pieces being the relative interiors of the faces of the orthant Rm+. See
[7, Example 8.4] for further discussion. In the special case m = 1, this broader
class of functions (than absolutely monotonic functions on R+) coincides precisely
with the maps which are absolutely monotonic on (0,∞) and have a possible
discontinuity at the origin, as in Theorem 3.22 above.

This definition allows us to characterize the preservers of m-tuples of elements
of M

([0, 1]); the preceding observation shows that Theorem 3.22 is precisely the
m = 1 case.

Theorem 3.28 ([7, Theorem 8.5]) Let F : Rm+ → R, where the integer m ≥ 1.
The following are equivalent.

(1) F mapsM([0, 1])m intoM([0, 1]).
(2) F is facewise absolutely monotonic, and the functions {gJ : J ⊂ [m]} are such

that 0 ≤ gJ ≤ gK on RJ+ whenever J ⊂ K ⊂ [m].
(3) F is such that

F
(√

x1y1, . . . ,
√
xmym

)2 ≤ F(x1, . . . , xm)F (y1, . . . , ym)

for all x, y ∈ R
m+ and there exists some z ∈ (0, 1)m such that the products

zα := z
α1
1 · · · zαmm are distinct for all α ∈ Z

m+ and F maps M
({1, z1}) × · · · ×

M
({1, zm}) ∪M({0, 1})m toM(R).

The heart of Theorem 3.28 can be deduced from the following result on positivity
preservation on tuples of low-rank Hankel matrices. In a sense, it is the multi-
dimensional generalization of the “stronger Vasudeva Theorem” 3.18.
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Fix ρ ∈ (0,∞], an integerm ≥ 1 and a point z ∈ (0, 1)m with distinct products,
as in Theorem 3.28(3). For all N ≥ 1, let

HN := {a1N×N + bul,NuTl,N : a ∈ (0, ρ), b ∈ [0, ρ − a), 1 ≤ l ≤ m},

where ul,N := (1, zl, . . . , z
N−1
l )T .

Theorem 3.29 ([7, Theorem 8.6]) If F : (0, ρ)m → R preserves positivity
on P2

(
(0, ρ)

)m
and Hm

N for all N ≥ 1, then F is absolutely monotonic and is
the restriction of an analytic function on the polydiscD(0, ρ)m.

The notion of facewise absolute monotonicity emerges from the study of
positivity preservers of tuples of moment sequences. If one focuses instead on
maps preserving positivity of tuples of all positive semidefinite matrices, or even
all Hankel matrices, then this richer class of maps does not appear.

Proposition 3.30 Suppose ρ ∈ (0,∞] and F : [0, ρ)m → R. The following are
equivalent.

(1) F [−] preserves positivity on the space of m-tuples of Hankel matrices with
entries in [0, ρ).

(2) F is absolutely monotonic on [0, ρ)m.
(3) F [−] preserves positivity on the space of m-tuples of all matrices with entries

in [0, ρ).
Proof Clearly (2) �⇒ (3) �⇒ (1), so suppose (1) holds. It follows from
Theorem 3.29 that F is absolutely monotonic on the domain (0, ρ)m and agrees
there with an analytic function g : D(0, ρ)m → C. To see that F ≡ g on [0, ρ)m,
we use induction on m, with the m = 1 case being left as an exercise (see [7, Proof
of Proposition 7.3]).

Now supposem > 1, let c = (c1, . . . , cm) ∈ [0, ρ)m \ (0, ρ)m and define

H :=
⎡
⎣1 0 1
0 1 1
1 1 2

⎤
⎦ and Ai :=

{
13×3 if ci > 0,

H if ci = 0.

Choosing un = (u1,n, . . . , um,n) ∈ (0, ρ)m such that un → c, it follows that

lim
n→∞F [u1,nA1, . . . , um,nAm] =

⎡
⎣g(c) F (c) g(c)F (c) g(c) g(c)
g(c) g(c) g(c)

⎤
⎦ ∈ P3,

where the (1, 2) and (2, 1) entries are as claimed by the induction hypothesis. The
determinants of the first and last principal minors now give that

g(c) ≥ 0 and − g(c)
(
g(c)− F(c)

)2 ≥ 0,

whence F(c) = g(c). ��
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Having considered functions defined on the positive orthant, we now look at the
situation for functions defined over the whole of Rm.

Theorem 3.31 ([7, Theorem 8.9]) Suppose F : Rm → R for some integer m ≥ 1.
The following are equivalent.

(1) F mapsM
([−1, 1])m intoM(R).

(2) The function F is real positivity preserving.
(3) The function F is absolutely monotonic on R

m+ and agrees with an entire
function on Rm.

As before, the proof reveals that verifying positivity preservation for tuples of
low-rank Hankel matrices suffices. The following notation and corollary make this
precise.

For all u ∈ (0,∞), let Mu :=M
({−1, u, 1}) and

M[u] :=
⋃{

M
({s1, s2}) : s1 ∈ {−1, 0, 1}, s2 ∈ {−u, 0, u}}.

Corollary 3.32 ([7, Theorem 8.10]) The hypotheses in Theorem 3.31 are also
equivalent to the following.

(4) There exist u0 ∈ (0, 1) and ε > 0 such that F maps

Mm[u0] ∪
⋃{

Mv1 × · · · ×Mvm : v1, . . . , vm ∈ (0, 1+ ε)
}

intoM(R).

4 Totally Non-negative Matrices and Positivity Preservers

In this chapter, we discuss variant notions of matrix positivity that are well studied
in the literature, total positivity and total non-negativity, and characterize the maps
which preserve these properties.

Definition 4.1 A real matrix A is said to be totally non-negative or totally positive
if every minor of A is non-negative or positive, respectively. We will denote these
matrices, as well as the property, by TN and TP.

In older texts, such matrices were called totally positive and strictly totally
positive, respectively.

To introduce the theory of total positivity, we can do no better than quote from
the preface of Karlin’s magisterial book [54]: “Total positivity is a concept of
considerable power that plays an important role in various domains of mathematics,
statistics and mechanics.” Karlin goes on to list “problems involving convexity,
moment spaces, eigenvalues of integral operators, . . . oscillation properties of solu-
tions of linear differential equations . . . the theory of approximations . . . statistical
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decision procedures . . . discerning uniformly most powerful tests for hypotheses
. . . ascertaining optimal policy for inventory and production processes . . . analysis
of diffusion-type stochastic processes, and . . . coupled mechanical systems.”

Perhaps the earliest result on total positivity is due to Fekete, in correspondence
with Pólya [32] published in 1912. Schoenberg observed the variation-diminishing
properties of TP matrices in 1930 [80], and published a series of papers on Pólya
frequency functions, which are defined in terms of total positivity, in the 1950s
[87–89]. Independently of Schoenberg,Krein’s investigation of ordinary differential
equations led him to the total positivity of Green’s functions for certain differential
operators, and in the mid-1930s his works with Gantmacher looked at spectral
and other properties of totally positive matrices and kernels; see [36] and [54,
Section 10.6].

For more on these four authors, one may consult the afterwork of Pinkus’s book
on total positivity [69], which also contains a wealth of results on totally positive
and totally non-negative matrices. For a modern collection of applications of the
theory of total positivity, see the book edited by Gasca and Micchelli [37].

More recently, total positivity has had a major impact on Lie theory. Lusztig
extended the theory of total positivity to the setting of linear algebraic groups; see
[62] for an exposition of this work. This led Fomin and Zelevinsky to investigate
the combinatorics of Lusztig’s theory [34] and resulted in the invention of cluster
algebras [35]. These objects have generated an enormous amount of activity in
a short period of time, with connections across a wide range of areas within
representation theory, combinatorics, geometry, and mathematical physics. For
the latter, we will mention only the totally non-negative Grassmannian [72], its
connections with scattering amplitudes for quantum field theories [1], and the work
by Kodama andWilliams on regular soliton solutions of the Kadomtsev–Petviashvili
equation [59].

Example 4.2 Perhaps the most well-known class of totally positive matrices con-
sists of the (generalized) Vandermonde matrices: for real numbers 0 < x1 < · · · <
xm and α1 < · · · < αn, the m× n matrix

A := [xαkj ]1≤j≤m, 1≤k≤n
is totally positive. Indeed, it suffices to show the positivity of any such matrix
determinant detA when m = n. That detA is non-zero follows from Laguerre’s
extension of Descartes’ rule of signs (see [51]) and by fixing the xj and considering
a linear homotopy from (0, 1, . . . , n− 1) to (α1, . . . , αn), one obtains a continuous
non-vanishing function from the usual Vandermonde determinant

∏
1≤j<k≤n(xk −

xj ) (which is positive) to detA.

Example 4.3 Another prominent class of symmetric totally positive matrices con-
sists of the Hankel moment matrices Hμ := [sj+k(μ)]j,k≥0 corresponding to
admissible measures μ; see Definition 3.16.
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4.1 Totally Non-negative and Totally Positive Kernels

An important generalization of TN and TP matrices is given by the following
functional form.

Definition 4.4 Let X and Y be totally ordered sets, and let K : X × Y → R be a
kernel.

(1) The kernel K is totally positive of order r , denoted T Pr , if, for any n-tuples of
points x1 < · · · < xn in X and y1 < · · · < yn in Y , where 1 ≤ n ≤ r , the
matrix

[K(xj , yk)]nj,k=1
has positive determinant.

(2) The kernel K is totally positive if K is T Pr for all r ≥ 1.
(3) Similarly, one defines TNr kernels and totally non-negative kernels by replac-

ing the word “positive” in the above by “non-negative.”

If X = {1, . . . ,m} and Y = {1, . . . , n}, we recover the earlier notions of totally
positive and totally non-negative matrices. When X and Y are taken to be real
intervals, TN and TP kernels can be thought of as continuous analogues of TN and
TP matrices. In fact, one has a continuous analogue of the Cauchy–Binet formula,
which generalizes its traditional version.

Theorem 4.5 (Basic Composition Lemma, See, e.g., [54, 55]) SupposeX, Y ,Z ⊂
R and let μ be a non-negative Borel measure on Y . Suppose K : X × Y → R and
L : Y × Z→ R are pointwise Borel measurable with respect to Y , and let

M : X × Z→ R; (x, z) �→
∫
Y

K(x, y)L(y, z) dμ(y).

IfM is well defined on the whole of X × Z, then

det

⎡
⎢⎣
M(x1, z1) . . . M(x1, zm)

...
. . .

...

M(xm, z1) . . . M(xm, zm)

⎤
⎥⎦

=
∫
· · ·

∫

y1<y2<···<ym∈Y
det[K(xi, yj )]mi,j=1 det[L(yj , zk)]mj,k=1

m∏
j=1

dμ(yj).

As an immediate consequence, we have the following corollary.

Corollary 4.6 In the setting of Theorem 4.5, if the kernels K and L are both T Nr

or T Pr for some r ≥ 1, thenM has the same property. In particular, if K and L are
both TN or TP, then so isM .
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We conclude this part with an observation of Pólya that connects to a class of
well-studied functions, and also implies the positive definiteness of the Gaussian
kernel. Recall from the proof of Theorem 2.4 above that this latter property
was crucially used by Schoenberg in characterizing metric space embeddings
into Hilbert space; however, its proof above was only outlined (via the more
sophisticated machinery of Fourier analysis and Bochner’s theorem).

Lemma 4.7 (Pólya) The Gaussian kernel K : R × R → R given by K(x, y) :=
exp(−(x − y)2) is totally positive.

Proof It suffices to show that every square matrix generated from the kernel has
positive determinant. Given real numbers x1 < · · · < xn and y1 < · · · < yn, we
observe the following factorization:

[exp(−(xj − yk)
2)]nj,k=1
= diag[exp(−x2j )]nj=1[exp(2xjyk)]nj,k=1 diag[exp(−y2k )]nk=1.

The proof concludes by observing that all three matrices on the right-hand side have
positive determinants, the second because it is a Vandermonde matrix [pαkj ] with
pj = exp(2xj ) and αk = yk. ��
Example 4.8 The Gaussian function f (x) = exp(−x2) is thus an example of a
Pólya frequency function, that is, one for which f (x−y) is a TP kernel onR×R. As
noted above, these functions were intensively studied by Schoenberg, and continue
to be much studied in mathematics and statistics; two of the classic references are
[22, 27].

The case of the multivariate Gaussian kernel follows immediately from the one-
dimensional version.

Corollary 4.9 For all d ≥ 1, the Gaussian kernel

R
d ×R

d → (0,∞); (x, y) �→ K(x, y) := exp(−‖x− y‖2)

is positive semidefinite on R
d × R

d . In other words, the matrix [exp(−‖xj −
xk‖2)]nj,k=1 is positive semidefinite for all x1, . . . , xn ∈ R

d .

Proof The d = 1 case is a direct consequence of Lemma 4.7, and the case of general
d follows from this by using the Schur product theorem. ��

4.2 Entrywise Preservers of Totally Non-negative Matrices

The TN property is very rigid when it comes to entrywise operations, as the
following result makes clear.
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Theorem 4.10 ([8, Theorem 2.1]) Let F : R+ → R be a function and let d :=
min(m, n), where m and n are positive integers. The following are equivalent.

(1) F preserves TN entrywise on m× n matrices.
(2) F preserves TN entrywise on d × d matrices.
(3) F is either a non-negative constant or

(a) (d = 1) F (x) ≥ 0;
(b) (d = 2) F (x) = cxα for some c > 0 and some α ≥ 0;
(c) (d = 3) F (x) = cxα for some c > 0 and some α ≥ 1;
(d) (d ≥ 4) F (x) = cx for some c > 0.

Proof That (1) ⇐⇒ (2) is immediate, as is the equivalence of (2) and (3) when
d = 1. For larger values of d , we sketch the implication (2) �⇒ (3).

For d = 2, let the totally non-negative matrices

A(x, y) :=
[
x xy

1 y

]
and B(x, y) :=

[
xy x

y 1

]
(x, y ≥ 0). (4.1)

If the non-constant function F preserves TN entrywise for 2 × 2 matrices, then the
non-negativity of the determinants of F [A(x, y)] and F [B(x, y)] gives that

F(xy)F (1) = F(x)F (y) for all x, y ≥ 0. (4.2)

It follows that F is strictly positive. ApplyingVasudeva’s argument, as set out before
Proposition 3.8, now implies that F is continuous on (0,∞). Since the identity (4.2)
shows that x �→ F(x)/F (1) is multiplicative, there exists an exponent α ∈ R+ such
that F(x) = F(1)xα for all x > 0. The final details are left as an exercise.

For d = 3, note that the 3× 3 matrix A⊕ 0 is totally non-negative if and only if
the 2× 2 matrix A is. Hence the previous working gives that F(x) = cxα for some
c > 0 and α ≥ 0. Looking at detF [C] for the totally non-negative matrix

C :=
⎡
⎣ 1 1/

√
2 0

1/
√
2 1 1/

√
2

0 1/
√
2 1

⎤
⎦ (4.3)

shows that we must have α ≥ 1.
The argument to rule out the possibility that α ∈ [1, 2) when d ≥ 4 is

more involved, but makes use of an example of Fallat, Johnson, and Sokal [31,
Example 5.8]. Full details are provided in [8]. ��

If our totally non-negative matrices are also required to be symmetric, and so
positive semidefinite, then the classes of preservers are enlarged somewhat, but still
fairly restrictive.
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Theorem 4.11 ([8, Theorem 2.3]) Let F : R+ → R and let d be a positive integer.
The following are equivalent.

(1) F preserves TN entrywise on symmetric d × d matrices.
(2) F is either a non-negative constant or

(a) (d = 1) F ≥ 0;
(b) (d = 2) F is non-negative, non-decreasing, and multiplicatively mid-convex,

that is, F(
√
xy)2 ≤ F(x)F (y) for all x, y ∈ [0,∞), so continuous;

(c) (d = 3) F (x) = cxα for some c > 0 and some α ≥ 1;
(d) (d = 4) F (x) = cxα for some c > 0 and some α ∈ {1} ∪ [2,∞);
(e) (d ≥ 5) F(x) = cx for some c > 0.

4.3 Entrywise Preservers of Totally Positive Matrices

In moving from total non-negativity to total positivity, we face two significant
technical challenges. Firstly, the idea of realizing totally non-negative d×d matrices
as submatrices of totally non-negative (d + 1) × (d + 1) matrices, by padding
with zeros, does not transfer to the TP setting. Secondly, it is no longer possible
to use Vasudeva’s idea to establish multiplicative mid-point convexity, since the test
matrices used for this are not always totally positive.

The first issue leads us into the domain of totally positive completion problems
[30]. It is possible to do this generality, using parametrizations of TP matrices [34]
or exterior bordering [29, Chapter 9], but the following result has the advantage of
providing an explicit embedding into a well-known class of matrices.

Lemma 4.12 ([8, Lemma 3.2]) Any totally positive 2 × 2 matrix may be realized
as the leading principal submatrix of a positive multiple of a rectangular totally
positive generalized Vandermonde matrix of any larger size.

Remark 4.13 ([8, Remark 3.4]) Lemma 4.12 can be strengthened to the following
completion result: given integers m, n ≥ 2, an arbitrary 2× 2 matrix A occurs as a
minor in a totally positivem× n matrix at any given position (that is, in a specified
pair of rows and pair of columns) if and only if A is totally positive.

The other tool which will be vital to our deliberations is the following result of
Whitney.

Theorem 4.14 ([97, Theorem 1]) The set of totally positivem×nmatrices is dense
in the set of totally non-negativem× n matrices.

With these tools in hand, we are able to provide a complete classification of
the entrywise TP preservers of each fixed size, akin to the results in the preceding
section.
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Theorem 4.15 ([8, Theorem 3.1]) Let F : (0,∞)→ R be a function and let d :=
min(m, n), where m and n are positive integers. The following are equivalent.

(1) F preserves total positivity entrywise on m× n matrices.
(2) F preserves total positivity entrywise on d × d matrices.
(3) The function F satisfies

(a) (d = 1) F (x) > 0;
(b) (d = 2) F (x) = cxα for some c > 0 and some α > 0;
(c) (d = 3) F (x) = cxα for some c > 0 and some α ≥ 1;
(d) (d ≥ 4) F (x) = cx for some c > 0.

Proof We sketch the proof that (2) �⇒ (3) when d = 2 and d ≥ 3. For the first
case, working with the matrix

[
y x

x y

]
(y > x > 0)

shows that F takes positive values and is increasing, so is Borel measurable and
continuous except on a countable set. We now fix a point of continuity a and use the
totally positive matrices

A(x, y, ε) :=
[
ax axy

a − ε ay

]
and B(x, y, ε) :=

[
axy ax

ay a + ε

]

to show that

0 ≤ lim
ε→0+

detF [A(x, y, ε)] = F(ax)F (ay)− F(axy)F (a)

and 0 ≤ lim
ε→0+

detF [B(x, y, ε)] = F(a)F (axy)− F(ax)F (ay)

for all x, y > 0. HenceG : x �→ F(ax)/F (a) is such that

G(xy) = G(x)G(y) for all x, y > 0,

so G is a measurable solution of the Cauchy functional equation. It follows that
G(x) = xα for some α ∈ R. As F , and so G, is increasing, we must have α > 0.

Finally, if d ≥ 3, then the embedding of Lemma 4.12 and the previous
working give positive constants c and α such that F(x) = cxα. In particular, the
function F admits a continuous extension F̃ to R+. The density of TP in TN,
that is, Theorem 4.14, implies that F̃ preserves TN entrywise on d × d matrices.
Theorem 4.10 now establishes the form of F̃ , and so of F . ��

We may consider a version of the previous theorem which restricts to the case
of totally positive matrices which are symmetric. A moment’s thought leads to the
consideration of a symmetric version of the matrix completion problem.
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Lemma 4.16 ([8, Lemma 3.7]) Any symmetric totally positive 2×2 matrix occurs
as the leading principal submatrix of a totally positive d × d Hankel matrix, where
d ≥ 2 can be taken arbitrary large.

Proof It suffices to embed the matrix

[
1 a
a b

]
(0 < a <

√
b)

into such a Hankel matrix. It is an exercise to prove the existence of a continuous
function f : [0, 1] → R+; x �→ cxs such that

∫ 1

0
f (x) dx = a and

∫ 1

0
f (x)2 dx = b,

and then setting

ajk :=
∫ 1

0
f (x)j+k dx (j, k ≥ 0)

gives a Hankel matrixA as required. The verification of total positivity may be made
with the help of Andréief’s identity,

det

[∫
φi(x)ψj (x) dx

]k
i,j=1

= 1

k!
∫
· · ·

∫
det(φi(xj ))ki,j=1 det(ψi(xj ))ki,j=1 dx1 · · · dxk,

where φi(x) = f (x)αi−1 and ψj (x) = f (x)βj−1, with

1 ≤ α1 < · · · < αk ≤ d and 1 ≤ β1 < · · · < βk ≤ d,

together with the total positivity of generalized Vandermonde matrices. ��
We remark here that the preceding result can be further strengthened to have the

symmetric TP 2×2 matrix occur in any “symmetric” position inside a larger square
symmetric TP Hankel matrix, in the spirit of Remark 4.13. See [8, Theorem 3.9] for
details.

We now state the symmetric version of Theorem 4.15.

Theorem 4.17 ([8, Theorem 3.6]) Let F : (0,∞) → R and let d be a positive
integer. The following are equivalent.

(1) F preserves total positivity entrywise on symmetric d × d matrices.
(2) The function F satisfies



Dimension-Free Positivity 161

(a) (d = 1) F (x) > 0;
(b) (d = 2) F is positive, increasing, and multiplicatively mid-convex, that is,

F(
√
xy)2 ≤ F(x)F (y) for all x, y ∈ (0,∞), so continuous;

(c) (d = 3) F (x) = cxα for some c > 0 and some α ≥ 1;
(d) (d = 4) F (x) = cxα for some c > 0 and some α ∈ {1} ∪ [2,∞).
(e) (d ≥ 5) F (x) = cx for some c > 0.

Although we have developed the key ingredients to prove this theorem, we
content ourselves with referring the interested reader to [8].
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1 Introduction

Inspired by Beurling’s analysis of the structure of the shift invariant subspaces of the
classical Hardy spaceH 2 [4, 11], and by similar analysis in other settings [1, 3, 22–
24, 27], we explored a notion of “inner function” in the sequence space �pA and
used it to characterize its zero sets [8, 10]. As this “Beurling approach” seems to be
ubiquitous, we will survey a method from [27] to the setting of reproducing kernel
Hilbert spaces of analytic functions, as we head towards an analogous result for
Banach spaces of analytic functions.

Broadly speaking, we start with a Banach space X of analytic functions on a
bounded planar domain � for which, among some mild technical conditions (see
Sect. 4), the shift operator (SX f )(z) = zf (z) is well defined and continuous. We
will examine a notion of “orthogonality”f ⊥X g for f, g ∈X due to Birkhoff and
James [18] (see Sect. 7) and use this orthogonality to define an SX -inner function
to be an f ∈X \ {0} for which

f ⊥X SnX f, n � 1.

When � is the open unit disk D and X is the classical Hardy space H 2,
basic Fourier analysis will show that an SH 2 -inner function is a bounded analytic
function on D for which the radial boundary function has constant modulus almost
everywhere, in agreement with the classical and well-known notion of inner.
Similarly defined inner functions were explored in other spaces [1, 3, 10, 26]. As a
topic to be explored in future work, a more general notion of T -inner vector will be
presented in this paper, in which T is a bounded linear transformation on a Banach
spaceX , and a vector x ∈ X is said to be T -inner if x ⊥X T nx for all n � 1.

This abstract notion of “inner” arises naturally in prediction theory for norm-
stationary processes. We say that a nonzero sequence {Xk}k∈Z in a Banach space
X is norm stationary when

∥∥∥
m∑
j=1

ajXkj

∥∥∥ =
∥∥∥

m∑
j=1

ajXkj+t
∥∥∥ (1.1)

for all t ∈ Z, coefficients aj ∈ C, and indices kj ∈ N. The identity in (1.1) induces
an isometry T on

M :=
∨
{X0,X1,X2, . . .},

the closed linear span of the sequence {Xk}k�0, for which

TXk = Xk+1, k � 0.
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Writing X̂0 for a metric projection (nearest point) of X0 onto TM , one can show
that the vector X0 − X̂0 is T -inner on M . This construction appears in studies
involving norm-stationary processes with infinite variance [6, 7, 20], extending, in
part, the extensive literature on stationary Gaussian processes. In particular, the
results from [20] seek to find a Wold-like decomposition in this setting.

This paper is structured as follows. In Sect. 2 we discuss a general notion of a
T -inner vector, where T is a bounded linear transformation on a Hilbert space, and
give a variety of examples, and encourage the reader to investigate further. In Sect. 3
we develop some basic properties of T -inner vectors and show in Proposition 3.1
that all T -inner vectors take a particular form.

In Sect. 4 we apply this notion of T -inner to recast some work of Shapiro and
Shields [27] (in which the concept of inner also has its roots in the work of Beurling),
in terms of SH -inner functions, to characterize the zero sets of a Hilbert space of
analytic functions on a bounded planar domain (see Theorem 4.12). This will lead
us in several directions. First, we explore whether the SH -inner function associated
with a polynomial has extra zeros. Indeed, with the Hardy spaceH 2, the inner factor
of a function in H 2 has exactly all of the zeros of the original function, and no
others. In Sect. 5 we develop conditions (see Theorem 5.1) for which the SH -inner
function J associated with an f ∈ H (where H is a Hilbert space of analytic
functions on a bounded planar domain) has only the zeros of f , and no others. In
particular, our result applies to the shift operator on the well-known Dirichlet space
(see Corollary 5.4) as well as shift operator on a space studied by Korenblum (see
Corollary 5.5).

Second, we investigate the connection between inner functions and zero sets. In
particular, we encounter the phenomenon of an SH -inner function J having “extra
zeros,” that is, zeros in addition to a prescribed set. The existence of such extra zeros
was first demonstrated in [15], whereH was a weighted Bergman space. In Sect. 6
we give a large class of spacesH for which the SH -inner function associated with
a linear polynomial has extra zeros.

Third, so far, we have focused on Hilbert spaces. In our final two sections we
develop, via Birkhoff–James orthogonality, notions of “inner” for operators on
Banach spaces. Our concept of inner will coincide with the classical definition for
the Hardy classes Hp, when p ∈ (1,∞). In addition, we discuss the zero sets for
Banach spaces of analytic functions on a planar domain, and prove an extension of
the Shapiro-Shields result.

2 Inner Vectors in Hilbert Spaces

Let us begin with a discussion of T -inner vectors for Hilbert space operators T ,
where one can take a very broad approach. We will see later in the Banach space
setting that some restrictions become necessary in order for the definitions to make
sense.
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Let H be a complex Hilbert space with inner product 〈·, ·〉, and let T be a
bounded linear operator onH . We say a vector v ∈H \ {0} is T -inner when

v ⊥ T nv, n � 1.

For a vector w ∈H , let

[w]T :=
∨
{w, Tw, T 2w, . . .} (2.1)

denote the T -invariant subspaces generated by w. When the context is clear we will
use [w] in place of [w]T . Observe that v is T -inner precisely when v ⊥ [T v]T . Here
are a few examples of T -inner vectors.

Example 2.2 Suppose that T is the shift operator (Tf )(z) = zf (z) on the classical
Hardy space H 2 [11]. Via standard theory of radial boundary values, the inner
product on H 2 can be written as the integral

〈f, g〉 =
∫ 2π

0
f (eiθ )g(eiθ )

dθ

2π
, f, g ∈ H 2. (2.3)

Thus a function (vector) f ∈ H 2 \ {0} is T -inner precisely when

0 = 〈f, T nf 〉 =
∫ 2π

0
|f (eiθ )|2e−inθ dθ

2π
, n � 1.

The equation above, along with its complex conjugate, shows f is T -inner precisely
when all but the zeroth Fourier coefficients of |f |2 vanish. This implies that the
function θ �→ |f (eiθ )| is constant almost everywhere. The condition “|f | has
constant radial limit values almost everywhere on the unit circle” is the classical
definition of inner [11]—though one usually normalizes things so that inner means
|f (eiθ )| = 1 for almost every θ . We will refer to this notion of inner as classical
inner.

Example 2.4 Suppose that (Tf )(z) = z2f (z), the square of the unilateral shift on
H 2. Then, with a similar analysis as in the previous example, f ∈ H 2 is T -inner
when

∫ 2π

0
|f (eiθ )|2e2ikθ dθ

2π
= 0, k ∈ Z \ {0},

though it is somewhat unclear what to glean from this condition. Certainly any
classical inner function is a T -inner function. However, functions like f (z) =
a + bz, which are not classical inner when a and b are both nonzero, is a T -inner
function. Observe that this class of T -inner functions is closed under multiplication
by classical inner functions.
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With a little extra effort, and transferring the problem to a different venue, we
can describe the T -inner functions more explicitly. Indeed, if

H 2 ⊕H 2 := {f ⊕ g : f, g ∈ H 2}

with norm

‖f ⊕ g‖2
H 2⊕H 2 :=

∫ 2π

0
|f (eiθ )|2 dθ

2π
+

∫ 2π

0
|g(eiθ )|2 dθ

2π
,

then the operator

U : H 2→ H 2 ⊕H 2,

defined by

U
( ∞∑
n=0

anz
n
)
=

( ∞∑
n=0

a2nz
n,

∞∑
n=0

a2n+1zn
)

(2.5)

is unitary. Furthermore, if (Sf )(z) = zf (z) is the shift on H 2, we have

S ⊕ S : H 2 ⊕H 2→ H 2 ⊕H 2, (S ⊕ S)(f ⊕ g) = (Sf )⊕ (Sg),

and one can show that US2 = (S ⊕ S)U . Thus f ∈ H 2 is S2-inner, if and only if
Uf ∈ H 2⊕H 2 is S⊕S-inner. If Uf = f1⊕f2 as in (2.5), then f is S2-inner when

0 = 〈(f1 ⊕ f2, (S ⊕ S)n(f1 ⊕ f2)〉H 2⊕H 2

= 〈f1 ⊕ f2, (S
nf1)⊕ (Snf2)〉H 2⊕H 2

=
∫ 2π

0
|f1(eiθ )|2e−inθ dθ

2π
+

∫ 2π

0
|f2(eiθ )|2e−inθ dθ

2π
.

The above equation, along with its complex conjugate, shows that |f1|2 + |f2|2 is
(almost everywhere) constant on the circle. We leave it to the reader to show that
U−1(f1 ⊕ f2) is equal to f1(z2)+ zf2(z2) and thus f ∈ H 2 is S2-inner if and only
if

f (z) = f1(z
2)+ zf2(z

2),

where f1, f2 ∈ H 2 with |f1|2 + |f2|2 is constant almost everywhere on T.
This example only scratches the surface of a much wider (and deeper) theory of

shifts of higher multiplicity and the well-developed Beurling–Lax theorem [16].
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Example 2.6 The previous example can be extended even further to T = Tφ , φ ∈
H∞ is an analytic Toeplitz operator on H 2 with symbol φ, i.e., Tφf = φf . Here
f ∈ H 2 \ {0} is Tφ-inner when

∫ 2π

0
|f (eiθ )|2φ(eiθ )n dθ

2π
= 0, n � 1.

Of course, when φ(0) = 0, then any (classical) inner function is Tφ inner, and this
class is also closed under multiplication by classical inner functions. In general,
what are the Tφ-inner functions?

Let us work out a particular example. Suppose that φ is a Riemann map from
D onto a simply connected domain G with smooth boundary �. Then, with dsT
denoting arc length measure on T, ds� denoting arc length measure on �, and ψ =
φ−1, we see, via a change of variables, that a unit vector f ∈ H 2 is Tφ-inner when

0 =
∫
T

|f (ζ )|2φ(ζ )ndsT(ζ )

=
∫
�

|f (ψ(w)|2|ψ ′(w)|wnds�(w), n � 1.

Using the (harmless) assumption that f is a unit vector, we see that

∫
�

(|f (ψ(w)|2|ψ ′(w)| − 1)wnds�(w) = 0, n � 0.

Taking the complex conjugate of the above expression we see the measure

(|f ◦ ψ|2|ψ ′| − 1)ds�

annihilateswn and wn for all n � 0. Standard harmonic analysis will show that this
measure must be the zero measure and so

|f ◦ ψ|2|ψ ′| = 1

almost everywhere on �. Consequently, we see that

|f |2|ψ ′ ◦ φ| = 1

almost everywhere on T. But since

ψ ′ ◦ φ = 1

φ′
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we see that f/
√
φ′ is a classical inner function. In summary, f is Tφ-inner if and

only if f/
√
φ′ is a classical inner function. We thank Dima Khavinson for pointing

this out to us.
For a particularly simple example, consider the case where

φ(z) = z−w

1−wz
, w ∈ D.

Here φ is a simple Blaschke factor (which is an automorphism of D). Since

φ′(z) = 1− |w|2
(1−wz)2

,

the Tφ inner functions in this case take the form

C
j(z)

1−wz
,

where C ∈ C and j is a classical inner function.

Example 2.7 If (Tf )(x) = xf (x) on L2[0, 1], it is an easy exercise to show that
there are no (nonzero) T -inner vectors. Indeed, if

〈f, xnf 〉 =
∫ 1

0
xn|f (x)|2dx = 0, n � 1,

then all the polynomials annihilate the measure x|f (x)|2dx and an argument using
the Weierstrass approximation and the Riesz representation theorems will show that
f = 0 (almost everywhere).

Example 2.8 Let

(Tf )(x) =
∫ x

0
f (t)dt,

be the Volterra operator on L2[0, 1]. Let us establish that there are no nonzero T -
inner vectors. By a well-known result [25], every invariant subspace of the Volterra
operator takes the form χ[a,1]L2[0, 1] for some a ∈ [0, 1]. Thus

[Tf ] = χ[a,1]L2[0, 1]

for some a ∈ [0, 1]. By the Lebesgue differentiation theorem, f = d
dx
Tf almost

everywhere and so f ∈ χ[a,1]L2[0, 1]. In other words, f ∈ [Tf ], and since f is
T -inner, we have f ⊥ f . This forces f = 0, and so there are no T -inner functions.
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Example 2.9 Let T denote the compressed shift Tf = P!(zf ) on the model space
(!H 2)⊥, where! is a classical inner function as in Example 2.2. These compressed
shifts have been well studied and serve as models for certain types of contractions
on Hilbert spaces [14, Ch, 9]. Here an f ∈ (!H 2)⊥ is T -inner when

0 = 〈f, T nf 〉
= 〈f, P!(znf )〉
= 〈P!f, znf 〉
= 〈f, znf 〉

=
∫ 2π

0
|f (eiθ )|2e−inθ dθ

2π
, n � 1.

As in Example 2.2, this says that f must have constant modulus on the unit circle
and thus be a classical inner function. However, f must also belong to the model
space (!H 2)⊥. This extra condition places a restriction on !, namely !(0) = 0,
and on f , namely f must be an inner divisor of !/z [14, p. 177].

Example 2.10 Continuing with Example 2.9, one can consider the special case
where!(z) = zn, n � 1. Here the model space takes the form

(znH 2)⊥ =
∨
{1, z, z2, . . . , zn−1}

and the matrix representation of the compressed shift Tf = P!(zf ) with respect to
the orthonormal basis {1, z, z2, . . . , zn−1} for (znH 2)⊥ becomes

⎛
⎜⎜⎜⎜⎜⎜⎝

0
1 0

1
. . .

. . . 0
1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(see [14]). The powers of the above matrix just move the 1s on the sub-diagonal to
the succeeding sub-diagonals (until the matrix becomes the zero matrix) and from
here one can see that the T -inner vectors are v = c ej , for j = 0, 1, . . . , n − 2,
where ej is the standard basis vector. Notice how this corresponds to the T -inner
vectors

f (z) = czk, k = 0, 1, . . . , n− 1.

from the previous example (the inner divisors of zn−1).
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Example 2.11 In the previous example if!(z) = z4, then the model space becomes
(z4H 2)⊥ =∨{1, z, z2, z3} and the matrix of the compressed shift is

⎛
⎜⎜⎝
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ .

If T is the square of the compressed shift, then T has matrix representation

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ .

If v = (z1, z2, z3, z4) ∈ C
4, one can quickly check that v is T -inner if and only if

z3z1 + z4z2 = 0.

In terms of a function in the model space, this says, for example, that f (z) = a+bz3
is T -inner for any a, b ∈ C.

Example 2.12 Let (Tf )(z) = zf (z) be the unilateral shift on the Dirichlet space D
of analytic functions f (z) =∑

n�0 anz
n on D for which

∑
n�0

(1+ n)|an|2 <∞. (2.13)

The above quantity defines the square of the norm on D . In [26, 27] they discussed
the T -inner functions. The reproducing kernel for D is

kw(z) = 1

wz
log

( 1

1− wz

)
, w, z ∈ D,

and the function

f (z) = kw(w)− kw(z)

is T -inner.

Example 2.14 Let (Tf )(z) = zf (z) be the unilateral shift on the Bergman spaceB
of analytic functions f (z) =∑

n�0 anz
n on D for which

∑
n�0

|an|2
n+ 1

<∞.
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The above quantity defines the square of the norm on B. The T -inner functions
were discussed in [1]. As in the Dirichlet space example, if

kw(z) = 1

(1− wz)2

denotes the reproducing kernel forB, then kw(w)− kw(z) is a T -inner function.

Example 2.15 Consider the space H 2
1 of analytic functions f ∈ H 2 whose first

derivative f ′ also belongs to H 2. This space, along with other associated spaces,
was studied by Korenblum in [19] in his work on ideals of algebras of analytic
functions. The quantity

|f (0)|2 +
∑
n�1

n2|an|2

defines the square of the norm on this space. This is a reproducing kernel Hilbert
space with kernel

kw(z) = 1+
∑
n�1

wnzn

n2
.

The shift operator (Tf )(z) = zf (z) turns out to be continuous on H 2
1 and, as with

previous two examples, kw(w)− kw(z) is a T -inner function.

Example 2.16 We point out that T -inner functions for (Tf )(z) = zf (z) in other
weighted Hardy spaces were studied in [3].

Observe that in the four previous examples of the shift on the Dirichlet space, the
Bergman space, H 2

1 , and other weighted spaces, the respective T -inner functions
look quite different.

3 Elementary Properties

Here are some routine but nevertheless interesting facts about T -inner vectors.
Recall the definition of [T v] from (2.1).

Proposition 3.1 Suppose that T is a bounded linear transformation on a Hilbert
spaceH and v is any vector inH . Let P[T v] be the orthogonal projection onto the
subspace [T v]. Then the vector v − P[T v]v is T -inner (or zero), and every T -inner
vector arises in this way.

Proof Observe that for any two vectors u, v in a Hilbert space H we have

u ⊥ v ⇐⇒ ‖u+ αv‖ � ‖u‖, α ∈ C. (3.2)
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To see this, use the Pythagorean theorem for one direction and the definition of the
orthogonal projection of u onto v for the other.

By the definition of the orthogonal projection P[T v], we know that

v− P[T v]v ⊥ [T v]

and so for any n � 1 we can use (3.2) to see that

‖(v− P[T v]v)− αT n(v− P[T v]v)‖ � ‖v− P[T v]v‖, α ∈ C.

Another application of (3.2) yields

v− P[T v]v ⊥ T n(v− P[T v]v)

which says that v− P[T v]v is T -inner.
Now suppose that v is T -inner. By the definition of T -inner, v ⊥ z for all z ∈

[T v] which implies

‖v‖ � ‖v− z‖, z ∈ [T v].

By the uniqueness of P[T v]v as a vector satisfying the above inequality, we see that
P[T v]v = 0 and so the T -inner vector v has the desired form v = v− P[T v]v. ��
Remark 3.3 This proposition suggests a possible avenue to describe the T -inner
vectors. Indeed, if {u1,u2, . . .} is an orthonormal basis for [T v], then Proposi-
tion 3.1 says that every T -inner function can be described as

v−
∑
j�1

〈v,uj 〉uj . (3.4)

Though this approach might seem initially appealing, this is not always a tractable
problem. For example, when T = Tφ , φ ∈ H∞ is an analytic Toeplitz operator on
H 2, as in Example 2.6, the above analysis requires a description of

[Tφf ] =
∨
{φf, φ2f, φ3f, . . .}

which can be extremely complicated.
When φ(z) = z, things become much easier in that Beurling’s theorem [11]

says that [zf ] = zIf H
2, where If is the (classical) inner factor of f . Moreover,

due to the fact that each of the functions zn+1If has unimodular boundary values,
along with Beurling’s theorem, the set {zn+1If : n � 0} is an orthonormal basis for
zIf H

2. Furthermore, following the formula in (3.4), we have

〈f, zn+1If 〉 = Ôf (n+ 1),
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where Ôf (n+ 1) is (n+ 1)st Fourier coefficient of the outer factor Of of f . Thus
we obtain the curious fact that

f −
∞∑
n=0

Ôf (n+ 1)zn+1If = Ôf (0)If (3.5)

is inner (in the classical sense) for any nonzero f ∈ H 2 and moreover, any inner
function arises in this fashion. Note that when f is inner then Ôf (n + 1) = 0 for
all n � 0 and so the expression in (3.5) simply reduces to f . When f is outer, then
If = 1 and (3.5) becomes the constant function Ôf (0) which, according to our
definitions, is inner.

Proposition 3.6 A vector v ∈H is T -inner if and only if v is T ∗-inner.

Proof For any n � 1 we have

〈v, T nv〉 = 〈T ∗nv, v〉.

This shows that v is T -inner if and only if v is T ∗-inner. ��
Though the proposition above seems to be a triviality, we mention it since in the

Banach space setting the T -inner vectors and the T ∗-inner vectors are from different
spaces (see Proposition 7.7).

4 Application: Zero Sets for Reproducing Kernel Hilbert
Spaces

In exploring the zero sets of functions in the Dirichlet spaceD (recall the definition
from (2.13)), Shapiro and Shields [27] constructed solutions to certain extremal
problems. As a consequence of their investigations, they developed necessary and
sufficient conditions on a sequence of points in D to be the set of zeros of a
non-trivial function from D . (Towards a Banach space generalization of this, see
Sect. 7.) We now recast the Shapiro-Shields construction in the language of S-inner
functions on a more general class of Hilbert spaces of analytic functions and obtain
a characterization of zero sets. We will also begin to examine when these S-inner
functions have extra zeros.

Suppose � is a bounded domain in C with 0 ∈ �. Also suppose that H is
a Hilbert space of (scalar-valued) analytic functions on � satisfying the following
properties:

For every nonnegative integer j , and every w ∈ �, there exists a constant C =
C(j,w) such that

|f (j)(w)| � C‖f ‖, f ∈H ; (4.1)
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f ∈H �⇒ zf (z) ∈H ; (4.2)

∨
{zj : j � 0} =H ; (4.3)

w ∈ �,f ∈H �⇒ (Qwf )(z) := f (z)− f (w)

z−w
∈H (4.4)

The first property (4.1) says that for each w ∈ �, the point evaluation at w of the
j th order derivative of f is continuous and so, by the Riesz representation theorem
for Hilbert spaces, there is a kj,w ∈ H (called a reproducing kernel [21] for H )
for which

f (j)(w) = 〈f, kj,w〉, f ∈H .

When j = 0 we write kw in place of k0,w.
The closed graph theorem, together with the second property (4.2), shows that

the shift operator

SH :H →H , (SH f )(z) = zf (z),

is well defined and continuous on H . We included the hypothesis that � was a
bounded domain from the beginning. However, the continuity of SH along with
the existence of reproducing kernels kw,w ∈ �, automatically gives us that � is a
bounded domain. Indeed, it is a straightforward computation to show that

S∗H kw = wkw, w ∈ �.

It follows that {w : w ∈ �} must belong to the spectrum of S∗H , which, by basic
functional analysis, is a bounded set. Thus, at the end of the day, � is a bounded
domain anyway.

Furthermore, the list of hypotheses (4.1)–(4.4) is actually redundant in that we
can deduce the first condition from the other three. To see this, let f ∈ H , and
w ∈ �. By (4.3), H contains the constant function 1, and so

|f (w)| = ‖f (w)‖‖1‖
� ‖f − f (w)‖ + ‖f ‖

‖1‖
� ‖(SH − wI)Qwf ‖ + ‖f ‖

‖1‖
� ‖SH − wI‖‖Qwf ‖ + ‖f ‖

‖1‖
� ‖SH − wI‖‖Qw‖ + 1

‖1‖ ‖f ‖.
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From the Taylor series of f about w, we see that

(Qwf )(z) = f ′(w)+ f ′′(w)
2! (z− w)+ · · · .

This shows that (Qwf )(w) = f ′(w). By the boundedness of Qw , and of point
evaluation as shown above, it must be that point evaluation at a derivative is
bounded. This result extends to derivatives of all orders, and (4.1) follows.

We point out that many of the known Hilbert spaces of analytic functions (Hardy,
Bergman, Dirichlet, etc.) discussed previously satisfy conditions (4.1)–(4.4).

If (wj )j�1 is a sequence of points in � (repetitions allowed), then we say, for
fixed g ∈H , that

Z(g) = (wj )j�1,

when wj has multiplicity rj � 1,

g(wj ) = g′(wj ) = · · · = g(rj−1)(wj ) = 0

and

g(rj )(wj ) 
= 0

and

g(w) 
= 0 when w 
∈ (wj )j�1.

We say that (wj )j�1 ⊆ � is a zero set for H if Z(g) ⊇ (wj )j�1 for some
g ∈H \ {0}. Here, g may have zeros in addition to the prescribed points (wj )j�1.
Obviously (wj )j�1 cannot be a zero set for� if it has an accumulation point in �.

Lemma 4.5 Suppose p is a polynomial whose zeros

W = {w1, w2, . . . , wn},

repeated according to their multiplicity, belong to �. Then

[p] :=
∨
{SjH p : j � 0} = {g ∈H : Z(g) ⊇ W }.

Proof By property (4.1) we see that since Z(p) = W then

∨
{SjH p : j � 0} ⊆ {g ∈H : Z(g) ⊇ W }. (4.6)

For the other inclusion, let g ∈ H with Z(g) ⊇ W . Observe that n applications
of property (4.4) shows that g/p ∈ H . Now use condition (4.3), the density of the
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polynomials in H , to produce a sequence of polynomials qn so that qn → g/p in
the norm of H . Using the continuity of SH (really the continuity of p(SH )) we
see that pqn → g in H . This yields ⊇ in (4.6) which completes the proof. ��

Sticking to the same notation as before, taking into account the multiplicities of
the w ∈ W , we use the notation

∨
{kw : w ∈ W }

to include the linear span of kw along with ks,wj for 0 � s � rw − 1.

Lemma 4.7 Suppose p is a polynomial whose zeros

W = {w1, w2, . . . , wn},

repeated according to their multiplicity, belong to �. Then

[p] =
(∨
{kw : w ∈ W }

)⊥
.

Proof Suppose that

g ∈
(∨
{kw : w ∈ W }

)⊥
.

The reproducing property of the kernels kw will show that Z(g) ⊇ W and so
Lemma 4.5 yields g ∈ [p]. Conversely, if g ∈ [p] then Z(g) ⊇ W and so g

has zeros with at least the correct multiplicities at the w ∈ W and so 0 = 〈g, kw〉.
Thus g ⊥ kw for all w ∈ W which proves the reverse inclusion. ��

We now recast a result of Shapiro and Shields [27] to develop a criterion, based
on SH -inner functions, for an infinite sequence (wj )j�1 ⊆ � \ {0} to be a zero set
forH . To this end, let

Wn = {w1, w2, . . . , wn}

and

fn(z) =
n∏

j=1

(
1− z

wj

)
,

which belongs toH by (4.3). Define the function

Jn = fn − P[zfn]fn,
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where P[zfn] is the orthogonal projection ofH onto

[zfn] =
∨
{zjfn : j � 1},

and note that Proposition 3.1 shows that Jn is SH -inner. For notational convenience
we are using [zfn] in place of the more cumbersome [SH f ].

To compute Jn somewhat explicitly, let

v1, v2, . . . , vn

denote the Gram-Schmidt normalization of the kernel functions

kw1 , . . . , kwn,

where, as discussed earlier in this section, we include ks,w for 0 � s � rw − 1 if the
multiplicity of w is more than one. Note that

∨
{kwj : 1 � j � n} =

∨
{vj : 1 � j � n}

and by Lemma 4.7,

(∨
{vj : 1 � j � n}

)⊥ = {f ∈H : Z(f ) ⊇ Wn}.

Now define

v0 =
k0 −∑n

j=1〈k0, vj 〉vj
‖k0 −∑n

j=1〈k0, vj 〉vj ‖
.

Observe that v0 
= 0, since

k0 
∈
∨
{kwj : 1 � j � n},

and that

v0, v1, . . . , vn

is an orthonormal basis for

∨
{k0, kw1 , . . . , kwn}.

By Lemmas 4.5 and 4.7,

(∨
{vj : 0 � j � n}

)⊥ = {g ∈H : Z(g) ⊇ Wn ∪ {0}}
= [zfn].
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Basic linear algebra shows that

P[zfn]fn = fn −
n∑

j=0
〈fn, vj 〉vj

= fn − 〈fn, v0〉v0
and thus

Jn = fn − P[zfn] (4.8)

= 〈fn, v0〉v0

=
〈
fn,

k0 −∑n
j=1〈k0, vj 〉vj

‖k0 −∑n
j=1〈k0, vj 〉vj‖

〉 k0 −∑n
j=1〈k0, vj 〉vj

‖k0 −∑n
j=1〈k0, vj 〉vj ‖

= k0 −∑n
j=1〈k0, vj 〉vj

‖k0 −∑n
j=1〈k0, vj 〉vj‖2

. (4.9)

In the above calculation note the use of the facts that 〈fn, vj 〉 = 0 for all 1 � j � n

and 〈fn, k0〉 = fn(0) = 1. This says that

‖Jn‖2 = 1

‖k0 −∑n
j=1〈k0, vj 〉vj‖2

= 1

‖k0‖2 −∑n
j=1 |〈k0, vj 〉|2

. (4.10)

By Bessel’s inequality, applied to the denominator of the expression above, we have
‖Jn‖ > 1/‖k0‖, and that ‖Jn‖ is a non-decreasing sequence in n.

Let �n be the co-projection of k0 onto {g ∈ H : Z(g) ⊇ Wn}. Again, linear
algebra will show that

�n =
n∑

j=1
〈k0, vj 〉vj

and Eqs. (4.9) and (4.10) yield the identity

�n = k0 − Jn

‖Jn‖2 .

By Bessel’s inequality we have

‖�n‖2 =
n∑

j=1
|〈k0, vj 〉|2 � ‖k0‖2.
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We now present a technical lemma.

Lemma 4.11 With the notation above, (wj )j�1 is a zero set for H if and only if

sup{‖�n‖ : n � 1} < ‖k0‖2.

Proof LetW = (wj )j�1 and

H (W) := {g ∈H : Z(g) ⊇ W }.

From our previous discussions we now see that

∨
{vj : j � 1} =

∨
{kwj : j � 1}

and

(
∨
{kwj : j � 1})⊥ =H (W).

Also observe that

sup{‖�n‖ : n � 1} =
∑
j�1

|〈k0, vj 〉|2 = ‖k0‖2

if and only if

k0 ∈
∨
{kwj : j � 1}

if and only if

f ∈H (W) �⇒ f (0) = 0.

Thus ifH (W) 
= {0} then for some n � 0, f (z)/zn belongs toH (W) (note the
use of property (4.4)) and does not vanish at the origin. The result now follows. ��

Finally we note that 1 = Jn(0) = 〈Jn, k0〉 and so

‖�n‖2 = 〈�n,�n〉

=
〈
k0 − Jn

‖Jn‖2 , k0 −
Jn

‖Jn‖2
〉

= ‖k0‖2 − 1

‖Jn‖2 .

Putting this all together, we obtain the identity

(‖k0‖2 − ‖�n‖2)‖Jn‖2 = 1,
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which means that (wj )j�1 is a zero set forH if and only if

sup{‖Jn‖ : n � 1} <∞.

This leads to the following result of Shapiro and Shields [27], expressed in terms
of SH -inner functions, and extended to a wide class of reproducing kernel Hilbert
spaces of analytic functions.

Theorem 4.12 Let (wj )j�1 ⊆ � \ {0} and

fn =
n∏

j=1

(
1− z

wj

)
, Jn = fn − P[zfn]fn.

Then

(1) Each Jn is an SH -inner function;
(2) the sequence ‖Jn‖ is a non-decreasing sequence;
(3) (wj )j�1 is a zero sequence forH if and only if

sup{‖Jn‖ : n � 1} <∞.

Example 4.13 Suppose H = H 2. A result of Takenaka [14, p. 120] shows that
if wj are the proposed zeros, then the Gram-Schmidt process applied to the first n
Cauchy kernels kw1 , . . . , kwn yields

v1 =
√
1− |w1|2
1−w1z

;

v2 =
√
1− |w2|2
1−w2z

w1 − z

1− w1z
;

v3 =
√
1− |w3|2
1−w3z

w1 − z

1−w1z

w2 − z

1−w2z
;

and so on. The condition to be a zero set is then

sup{‖Jn‖ : n � 1} <∞

which, by the previous analysis, translates to

inf

⎧⎨
⎩‖k0‖2 −

n∑
j=1
|〈k0, vj 〉|2 : n � 1

⎫⎬
⎭ > 0.
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A calculation shows that

|〈k0, vj 〉|2 = (1− |wj |2)
j−1∏
i=1
|wi |2.

Furthermore, by telescoping series,

‖k0‖2 −
n∑

j=1
|〈k0, vj 〉|2 =

n∏
j=1
|wj |2.

Thus we have

inf

⎧⎨
⎩‖k0‖2 −

n∑
j=1
|〈k0, vj 〉|2 : n � 1

⎫⎬
⎭ = inf

⎧⎨
⎩

n∏
j=1
|wj |2 : n � 1

⎫⎬
⎭

and the above infimum being positive is equivalent to the standard Blaschke
condition

∑
j�1

(
1− |wj |

)
<∞.

This confirms that the nontrivial zero sets ofH 2 are exactly the Blaschke sequences.

Example 4.14 Let us compute the SH -inner function J corresponding to a one
point zero set. Suppose thatH is a reproducing kernel Hilbert space satisfying our
assumptions and

f (z) = 1− z

w
, w ∈ � \ {0}.

Following the procedure in the derivation of Theorem 4.12, we define

vw(z) = kw(z)√
kw(w)

,

the normalized reproducing kernel at w. By the formula (4.9) for J (the inner
function corresponding to f ) we have

J = k0 − 〈k0, vw〉vw
‖k0‖2 − |〈k0, vw〉|2

= k0 − vw(0)vw
k0(0)− |vw(0)|2
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=
k0 − kw(0)√

kw(w)

kw√
kw(w)

k0(0)− |kw(0)|2kw(w)

= kw(w)k0 − kw(0)kw
kw(w)k0(0)− |kw(0)|2 . (4.15)

Any nonzero constant multiple of an SH -inner function is also SH -inner, and so

kw(w)k0 − kw(0)kw

is always an SH -inner function.
In the H 2 case we have

kw(z) = 1

1−wz

and so (4.15) yields

J = 1

w

z−w

1−wz
,

which, as expected by classical theory, is a constant multiple of a Blaschke factor.
In the Dirichlet space case, the reproducing kernel is

kw(z) = 1

wz
log

( 1

1−wz

)

and (4.15) yields

J (z) = log(1− |w|2)− w
z
log(1− wz)

log(1− |w|2)− |w|2 .

In the Bergman spaceB2, we have

kw(z) = 1

(1− wz)2

and (4.15) yields

J =
1− (1−|w|2)2

(1−wz)2
1− (1− |w|2)2 .

Notice the concept of “inner” yields different types of functions in each Hardy,
Dirichlet, and Bergman setting. In the above analysis we see that the expression

kw(w)k0 − kw(0)kw (4.16)
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is always an SH -inner function. This can also be verified directly from the
calculation

〈kw(w)k0 − kw(0)kw, S
n
H (kw(w)k0 − kw(0)kw)〉 = 0, n � 1.

These next two results provide an interesting link between the zero set for H
and the property that ‖SH ‖ or ‖Q0‖ = 1.

Theorem 4.17 Suppose that H is a RKHS of analytic functions on D satisfying
conditions (4.1)–(4.4). If ‖SH ‖ � 1, then the union of a zero set with a Blaschke
sequence is again a zero set forH .

Proof For notational convenience let S = SH . First, suppose that J is S-inner, and
w ∈ D \ {0}. Since J is S-inner, we have J ⊥ SkJ for all k � 1. Let

F(z) =
d∑

k=0
Fkz

k

be any polynomial with F0 = 1. By the linearity of ⊥ (in the second slot) in a
Hilbert space, and the Pythagorean Theorem,

‖JF‖2 = ‖J + F1SJ + F2S
2J + · · · + FdS

dJ‖2

= ‖J‖2 + ‖F1SJ + F2S
2J + · · · + FdS

dJ‖2

� ‖J‖2 + ‖S‖2‖F1J + F2SJ + · · · + FdS
d−1J‖2

� ‖J‖2 + ‖S‖2|F1|2‖J‖2 + ‖S‖2‖F2SJ + · · · + FdS
d−1J‖2

� · · ·
� ‖J‖2(1+ |F1|2‖S‖2 + |F2|2‖S‖2·2 + · · · + |Fd |2‖S‖2·d

)

= ‖J‖2(1+ |F1|2 + |F2|2 + · · · + |Fd |2
)
.

The final expression in parentheses is the square of the norm in �2A of F(z). The
inequality remains true if F is the Blaschke factor that vanishes at w, normalized so
that F(0) = 1, i.e.,

F(z) = 1

w

w − z

1−wz
.

This function has norm in �2A = H 2 given by 1/|w|.
Now let W be any zero set for H , and let {w1, w2, w3, . . .} ∈ D \ {0}. Let JW

be the S-inner function associated with W with J (0) = 1, i.e., J = f − f̂ , where



Inner Functions in Reproducing Kernel Spaces 189

f ∈ H and f has zeros W (according to multiplicity) and f (0) = 1. By repeated
application of the above argument, we find that

‖JW∪{w1,w2,...,wm}‖ �
‖JW ‖

|w1w2 · · ·wm| , m � 1.

This, in conjunction with Theorem 4.12, proves the assertion. ��
Theorem 4.18 Suppose that H is a RKHS of analytic functions on D satisfying
conditions (4.1)–(4.4). If ‖Q0‖ = 1, J is an S-inner function with zero set W , and
f ∈ [J ] \ {0}, then the zero set for f is the union ofW and a Blaschke sequence.

Proof For any g ∈H observe that

g = Q0Sg

and so, since ‖Q0‖ = 1 by assumption,

‖g‖ � ‖Q0‖‖Sg‖ = ‖Sg‖.

Apply this identity k times to get

‖Skg‖ � ‖g‖, k � 1. (4.19)

Suppose that f ∈ [J ]. By the inner property of J , along with repeated use of (4.19),

‖JF‖2 = ‖JF0‖2 + ‖SJF1 + S2JF2 + · · · ‖2

= ‖JF0‖2 + ‖S(JF1 + SJF2 + · · · )‖2

� ‖JF0‖2 + ‖JF1‖2 + ‖SJF2 + · · · )‖2
...

= ‖J‖2(|F0|2 + |F1|2 + |F2|2 + · · ·
)

for any polynomial F . The bound is true for any sequence of polynomials Fm such
that JFm tends to f inH . This tells us that f is the product of J and a function in
H 2. The claim follows. ��

5 Zeros of S-Inner Functions

In the Hardy space H 2, we know that when f ∈ H 2 \ {0}, the classical inner part
If of f takes the form If = BSμ, where B is the Blaschke product and Sμ is
an inner function. The Blaschke factor contains all the zeros of f in D (and no
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others) while the inner factor Sμ has no zeros in D. This means that the inner factor
If has precisely the same zeros as f (counting multiplicity). How ubiquitous is
this phenomenon? In other words, if H is a Hilbert space of analytic functions
satisfying conditions (4.1)–(4.4) and f ∈H \ {0}, does the SH -inner function

J = f − P[zf ]f

have any “extra” zeros insideD? Certainly J has at least the zeros of f . Does it have
any others? A result of Hedenmalm and Zhu shows that in the weighted Bergman
space of analytic functions f on D for which f ∈ L2((1 − |z|2)αdA), where dA
is planar Lebesgue measure, it is possible, when α > 4, for the inner function J
corresponding to the linear function f (z) = 1− z/w to have an extra zero in D. So,
indeed, the “no extra zeros” property for SH -inner functions is not ubiquitous. In
this section we obtain lower bounds for these extra zeros and show that they must
lie somewhat close to the boundary. Moreover, we will see that in some situations
such extra zeros do not exist at all.

From condition (4.4), we know that for each w ∈ �, the operator

Qw :H →H , Qwf (z) = f (z)− f (w)

z− w

is well defined and continuous. Our criterion that the SH -inner function J has no
extra zeros will be stated in terms of the norm of the operatorQ0. This operator

(Q0f )(z) = f (z)− f (0)

z

is often called the backward shift operator since if � = D, then Q0 acts on the
Taylor series of f (about the origin) by shifting all of the coefficients backwards
and dropping the constant term, i.e.,

Q0(a0 + a1z + a2z
2 + · · · ) = a1 + a2z+ a3z

2 + · · · .

Theorem 5.1 Let f ∈H \ {0}, and let J = f − P[zf ]f be the SH -inner function
corresponding to f . If w ∈ � \ {0} is a zero of J that is not a zero of f , then

|w| � [1+ ‖SH ‖
2‖Qw‖2]1/2

‖Q0‖‖SH ‖‖Qw‖ .

Towards the proof of this theorem, we start with the following.

Proposition 5.2 Let f ∈H \ {0} and let J = f − P[zf ]f . If w is a zero of J that
is not a zero of f , thenQwJ ∈ [f ].
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Proof By hypothesis, there are polynomials φn such that φnf converges in norm to
J . It follows thatQw(φnf ) converges in norm toQwJ , i.e.,

φn(z)f (z)− φn(w)f (w)

z−w
−→ QwJ.

Since evaluation at w is bounded, we may further conclude that

φn(w)f (w)→ J (w) = 0,

and henceQwJ is the limit in norm of

φn(z)f (z)− φn(w)f (w)

z−w

= φn(z)f (z)− φn(w)f (z)+ φn(w)f (z)− φn(w)f (w)

z−w

= φn(z)− φn(w)

z−w
f (z)+ f (z)− f (w)

z −w
φn(w).

The last term above tends to zero which says thatQwJ ∈ [f ]. ��
Proof of Theorem 5.1 Observe that

∥∥∥∥ J (z)

1− z
w

∥∥∥∥
2

=
∥∥∥∥ J (z)

1− z
w

(
1− z

w
+ z

w

)∥∥∥∥
2

=
∥∥∥∥J (z)+ z

w

J (z)

1− z
w

∥∥∥∥
2

.

Now apply Proposition 5.2 and the Pythagorean Theorem to get

∥∥∥∥ J (z)

1− z
w

∥∥∥∥
2

= ‖J (z)‖2 +
∥∥∥∥ zw

J (z)

1− z
w

∥∥∥∥
2

∥∥∥∥Q0

( zJ (z)
1− z

w

)∥∥∥∥
2

= ‖J (z)‖2 + 1

|w|2
∥∥∥∥ zJ (z)1− z

w

∥∥∥∥
2

(
‖Q0‖2 − 1

|w|2
) ∥∥∥∥ zJ (z)1− z

w

∥∥∥∥
2

� ‖J (z)‖2

(
‖Q0‖2 − 1

|w|2
)
‖SH ‖2‖Qw‖2|w|2‖J (z)‖2 � ‖J (z)‖2

(
‖Q0‖2 − 1

|w|2
)
‖SH ‖2‖Qw‖2|w|2 � 1
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|w|2 � 1+ ‖SH ‖2‖Qw‖2
‖Q0‖2‖SH ‖2‖Qw‖2 .

��
As a corollary to this theorem we note that ifQ0 is contractive, and � = D, then

J will have no extra zeros.

Corollary 5.3 Let H be a RKHS of analytic functions on D. If Q0 is contractive,
then the SH -inner function J corresponding to f will have no extra zeros.

Proof If ‖Q0‖ � 1, then

[1+ ‖SH ‖2‖Qw‖2]1/2
‖Q0‖‖SH ‖‖Qw‖ � [1+ ‖SH ‖

2‖Qw‖2]1/2
‖SH ‖‖Qw‖ � 1.

By Theorem 5.1, any extra zero w ∈ D must satisfy |w| � 1. ��
It is easy to see that for the Hardy space H 2, the operator Q0 (which is just

the well-known backward shift operator) satisfies ‖Q0‖ = 1 and so the S-inner
function J of corresponding to f , which in this case is the classical inner factor of
f , never has extra zeros. Slightly more work is that on the Dirichlet space D (See
Example 2.12), the operator Q0 also has norm equal to one [25]. This gives us the
following.

Corollary 5.4 For any f ∈ D , the corresponding SD -inner function J has no extra
zeros in D.

We point out here that this result, in a way, is known. As shown in [23], every shift
invariant subspace M of the Dirichlet space has the property that M - zM = Cφ

and this function generatesM , in that
∨{φ, zφ, z2φ, . . .} = M . Applying this fact

to a vector f ∈ D andM = [f ], we see that [J ] = [f ] and so J cannot have any
extra zeros.

For the Bergman space B from Example 2.14, Q0 has norm
√
2 and so we are

unable to apply Corollary 5.3. However, it is known, for different reasons [1], that J
has no extra zeros. On the other hand, for the spaceH 2

1 from Example 2.15, one can
quickly check (using power series) that Q0 is contractive on H 2

1 and thus we have
the following.

Corollary 5.5 For any f ∈ H 2
1 , the corresponding inner function J has no extra

zeros in D.

6 Extra Zeros Abound

In the previous section it was shown that if an S-inner function J corresponding to
a given function f has extra zeros, then those extra zeros must be bounded away
from the origin. When � = D, this gave rise to a sufficient condition on the space
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H for the S-inner functions to have no extra zeros. In the present section we shall
see that extra zeros are nonetheless quite abundant. A large class of spaces will be
constructed for which certain S-inner functions will have extra zeros.

We begin by presenting another description of the zero sets for a RKHS H
satisfying our hypotheses. This description is due to Shapiro and Shields [27].

LetWn := {w1, w2, . . . , wn}, wj ∈ � \ {0}, and define

fn(z) =
(
1− z

w1

)(
1− z

w2

)
· · ·

(
1− z

wn

)
,

and Jn = fn − P[zfn]fn. For notational simplicity, let kj be the reproducing kernel
for wj and let k0 be the reproducing kernel at the origin.

From (4.9) we know that Jn has the representation

Jn(z) = cn,0k0 + cn,1k1 + cn,2k2 + · · · + cn,nkn, (6.1)

where the coefficients cn,j are uniquely determined by the conditions

Jn(w1) = Jn(w2) = · · · = Jn(wn) = 0, Jn(0) = 1.

Indeed, the coefficients are the unique solutions to the matrix equation

⎡
⎢⎢⎢⎢⎢⎣

G0,0 G0,1 G0,2 . . . G0,n

G1,0 G1,1 G1,2 . . . G1,n

G2,0 G2,1 G2,2 . . . G2,n
...

...
...

...
...

Gn,0 Gn,1 Gn,2 . . . Gn,n

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

cn,0

cn,1

cn,2
...

cn,n

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

1
0
0
...

0

⎤
⎥⎥⎥⎥⎥⎦
,

where

G = G(n) = G[k0, k1, k2, . . . , kn]

is the Gramian matrix for the vectors k0, k1, k2, . . . , kn, and

Gs,t := 〈kt , ks〉.

Since a finite set of reproducing kernels is linearly independent, the Gramian
determinant is nonzero, and hence the matrixG is invertible, guaranteeing a unique
solution for the coefficients.
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Continuing from the above equation, we can write

Jn(z) =
[
k0(z) k1(z) k2(z) · · · kn(z)

]
⎡
⎢⎢⎢⎢⎢⎣

cn,0

cn,1

cn,2

. . .

cn,n

⎤
⎥⎥⎥⎥⎥⎦

= [
k0(z) k1(z) k2(z) · · · kn(z)

]
G(n)−1

⎡
⎢⎢⎢⎢⎢⎣

1
0
0
. . .

0

⎤
⎥⎥⎥⎥⎥⎦

= [
A0,0k0(z)− A0,1k1(z)+ · · · + (−1)nA0,nkn(z)

]
/ detG(n),

where Am,n is the (m, n)th cofactor ofG(n). But the last quantity in square brackets
is itself the determinant of a certain matrix, yielding

Jn(z) detG
(n) = det

⎡
⎢⎢⎢⎢⎢⎣

k0(z) k1(z) k2(z) . . . kn(z)

G1,0 G1,1 G1,2 . . . G1,n

G2,0 G2,1 G2,2 . . . G2,n

. . . . . . . . . . . . . . .

Gn,0 Gn,1 Gn,2 . . . Gn,n

⎤
⎥⎥⎥⎥⎥⎦

(6.2)

Let

dn := inf
∥∥k0 − (c1k1 + c2k2 + · · · cnkn)

∥∥ (6.3)

where the infimum is over the coefficients c1, c2, . . . , cn. It is well known that

d2n =
detG[k0, k1, k2, . . . , kn]
detG[k1, k2, . . . , kn] . (6.4)

A proof of this appears in [13, Lemma 4.2.4].
Furthermore, Oppenheim’s inequality (see, for example, [17]) tells us that for

nonnegative definite square matrices A = (as,t ) and B = (bs,t), the Hadamard
product of A and B, i.e., (as,tbs,t), satisfies

det[as,tbs,t ] �
(
det[as,t ]

)(∏
t

bt,t

)
. (6.5)

This enables us to derive, as was done in [27], the following sufficient condition for
a zero set ofH (see also [13] for an exposition of this).
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Theorem 6.6 Let {w1, w2, w3, . . .} ⊆ D \ {0} be a sequence of distinct points. If
the matrix

[
1− k0(ws)k0(wt )/kwt (ws)k0(0)

]
1�s,t�n

(6.7)

is nonnegative definite for all n � 1, and

inf
n

n∏
m=1

[
1− |k0(wm)|2

kwm(wm)k0(0)

]
> 0, (6.8)

then there exists a nonzero f ∈H such that f (wn) = 0 for all n � 1.

Proof By (4.10) and Theorem 4.12, it is enough to show that the quantity dn
from (6.3) satisfies inf dn > 0. Let us examine detG(n), with a view towards
applying (6.4). This determinant is unchanged if the multiple of any row is added
to a different row. Suppose thatGs,0/G0,0 times the 0th row (the rows and columns
are indexed from 0 to n) is added to the sth row, for all 1 � s � n. The result is that

detG(n) = G0,0 det
[
Gs,t −Gs,0G0,t /G0,0

]
1�s,t�n

= G0,0 det
[
Gs,t (1−Gs,0G0,t /Gs,tG0,0)

]
1�s,t�n

� G0,0

(
detG[k1, k2, . . . , kn]

)( n∏
t=1
[1−Gt,0G0,t /Gt,tG0,0]

)
,

where in the last step we applied (6.5). The claim now follows from invoking (6.4),
and writing outGt,t in terms of the kernel functions. ��
Example 6.9 WhenH = H 2, the matrix in (6.7) takes the form

[w̄tws]1�s,t�n ,

which is obviously positive definite.
Now the zero set criterion (6.8) is

0 < inf
n

n∏
m=1

[
1− |k0(wm)|2

kwm(wm)k0(0)

]

= inf
n

n∏
m=1
[1− 1

1/(1− |wm|2) ]

= inf
n

n∏
m=1
|wm|2.
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Of course, this is equivalent to the Blaschke condition.

In [27] the zero sets of functions in the Dirichlet space D (and other related
spaces) were discussed. The Dirichlet space can be viewed as the weighted �2 space
with weights 1, 2, 3, . . . , n+1, . . . .We now construct a large class of such weighted
spaces for which the correspondingmatrices 6.7 are nonnegative definite, and hence
lie within the scope of Theorem 6.6.

Example 6.10 Fix� = D, and letw1, w2, w3, . . . be a sequence of distinct nonzero
points in D. Suppose that � := (λn)n�0 is a sequence of positive numbers with
λ0 = 1, and define �2(�) to be the Hilbert space of sequences f = (fn)n�0 such
that

‖f ‖ =
( ∞∑
n=0
|fn|2λn

)1/2
<∞.

Provided that the weights λn do not decay to zero too rapidly, each member of �2(�)
can be identified with the analytic function

f (z) =
∞∑
n=0

fnz
n

on D. (For example, if the weights decay exponentially, then �2(�) will contain
some coefficient sequences that increase exponentially; such functions will not
necessarily be analytic in all of D.) The reproducing kernel function

kw(z) :=
∞∑
n=0

(w̄z)n

λn

implements point evaluation at w ∈ D. Again, if the weights λn do not decay too
rapidly, the kernel function will be analytic in D. Notice that point evaluation at the
origin corresponds to the constant kernel 1.

Let us determine sufficient conditions on the sequence � of weights for the
matrix in (6.7) to be nonnegative definite. We claim that for any a > 0, and positive
integersm and n, the matrix

M := [
a(w̄tws)

m
]
1�s,t�n

is nonnegative definite. This is because

C∗MC = a
∣∣c1wm

1 + c2w
m
2 + · · · + cnw

m
n

∣∣2 � 0

for any column vector C with C∗ = [c̄1 c̄2 . . . c̄n]. For n fixed the sum of any
such matrices is also nonnegative definite. In particular, if (am)m�1 is a sequence of
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nonnegative numbers with a1 > 0 and
∑∞

m=1 am � 1, the matrix

[ ∞∑
m=1

am(w̄tws)
m

]

1�s,t�n

is nonnegative definite.
It is clear that the function of z defined by

�(z) := 1

1−∑∞
m=1 anzm

is analytic in D, and has a convergent power series

�(z) = 1+
∞∑
n=1

bnz
n (6.11)

in D. By expressing� as the geometric series

�(z) = 1+
( ∞∑
m=1

anz
m
)
+

( ∞∑
m=1

anz
m
)2 + · · · ,

and using the assumption that a1 > 0, we find that each bn is positive (see also the
Kaluza lemma [13, p. 69]).

Thus, with the identification bn = 1/λn for all n � 1, the function �(w̄z) is the
reproducing kernel in the weighted space �2(�) for w ∈ D. It then follows that

1− k0(ws)k0(wt )/kwt (ws)k0(0) = 1− 1/kwt (ws)

= 1−
(
1+

∞∑
n=1

bn(w̄tws)
n
)−1

= 1−
(
1−

∞∑
m=1

an(w̄tws)
m
)

=
∞∑
m=1

an(w̄tws)
m

That is to say, for the weighted space �2(�), the matrix in (6.7) is nonnegative
definite.
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According to Theorem 6.6, a sequencew1, w2, w3, . . . of distinct nonzero points
of D is the zero set of some nontrivial function f ∈ �2(�) if

inf
n�1

n∏
m=1

[
1− 1

1−∑∞
j=1 aj |wm|2j

]
> 0.

This provides a sufficient condition for a zero set of �2(�).

Example 6.12 With the definitions of Example 6.10, it was shown in [27] that if the
sequence (bn)n�0 (the reciprocals of the weights of the space �2(�)) satisfies

b2n � bn+1bn−1

for all n � 1, then the matrices given by 6.7 are nonnegative definite, and thus
Theorem 6.6 applies. This class of examples includes the Dirichlet space D .

Here is another way to see how extra zeros may arise. Recall the formula
from (6.1)

Jn(z) = cn,0k0 + cn,1k1 + cn,2k2 + · · · + cn,nkn

for expressing the SH -inner function of a finite zero set in terms of the correspond-
ing kernel functions.

Lemma 6.13 The SH -inner function Jn−1 has an extra zero at the point wn if and
only if the coefficient cn,n vanishes.

Proof Suppose that cn,n = 0. Then Jn has the following properties:

Jn(0) = 1, Jn(w1) = · · · = Jn(wn−1) = 0,

and

〈zmfn−1, Jn〉 = 0, m � 1,

This forces the identification Jn = Jn−1. Since Jn−1(wn) = 0, it can be said that
wn is an extra zero of Jn−1.

Conversely suppose that wn is an extra zero of Jn−1. First, for any m � 1,

〈zmfn(z), Jn−1〉 = 〈zmfn−1(z), Jn−1〉 − 〈zm+1(1/wn)fn−1(z), Jn−1〉
= 0.

Furthermore,

Jn−1(w1) = Jn−1(w2) = · · · = Jn−1(wn) = 0, Jn−1(0) = 1.
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This implies that Jn−1 = Jn. Since the representations (6.1) are unique, it must be
that cn,n = 0. ��

Let us calculate cn,n. Let H be the matrixG(n) with its nth column (the columns
are indexed 0 through n) replaced by [1 0 0 . . . 0]T . By Cramer’s Rule,

cn,n = detH

detG(n)
.

Since the last column of H is such a special form, taking the determinant of H
results in (−1)n times the determinant of the following submatrix of G(N):

R :=

⎡
⎢⎢⎣
G1,0 G1,1 G1,2 . . . G1,n−1
G2,0 G2,1 G2,2 . . . G2,n−1
. . . . . . . . . . . . . . .

Gn,0 Gn,1 Gn,2 . . . Gn,n−1

⎤
⎥⎥⎦ .

Proposition 6.14 The inner function Jn−1 corresponding to the zero set
w1, w2, . . . , wn−1 has an extra zero at wn precisely when detR = 0.

By comparing this situation to the representation (6.2), we can confirm that this
is a way of expressing Jn−1(wn) = 0.

When n = 2 this gives us a simple criterion for deciding whether the inner
function corresponding to a linear polynomial has an extra zero. In this situation,

detR = det

[
G1,0 G1,1

G2,0 G2,1

]
= 〈k0, k1〉〈k2, k1〉 − 〈k0, k2〉〈k1, k1〉.

Thus by another route we have arrived at the inner function identified in (4.16).

Example 6.15 Consider the case H = H 2. The S-inner functions are the
classical inner functions, which have no extra zeros. Let us confirm this for linear
polynomials, using Proposition 6.14. Let r and s be distinct nonzero points in D.
Then the inner part of the linear polynomial

f (z) = 1− z

r

has the extra zero s precisely if

1 · 1

1− s̄r
= 1 · 1

1− |r|2 .

Of course, this never happens when r 
= s, reflecting that the Blaschke factor
vanishing at r vanishes nowhere else. To rule out the possibility of a double root
at r , we use the kernel function

k1,r = 1

(1− r̄z)2
,



200 R. Cheng et al.

for evaluation of a derivative at r . The criterion then becomes

1 · 1

(1− |r|2)2 = 1 · 1

1− |r|2 ,

which is also impossible.

Finally, we demonstrate that there are numerous spaces for which there exist
S-inner functions with extra zeros.

Example 6.16 Let us return to the weighted spaces �2(�) of Example 6.10, and
consider the special case that the weights arise in connection with the choice

�(z) = 1

1− a1z− a2z2
,

where a1+a2 � 1, and a2 > 4a1 > 0. Then, by use of the geometric series formula
we find that

�(z) = 1+
∞∑
n=1

bnz
n,

with

b2n−1 =
(
2n− 1

0

)
a2n−11 +

(
2n− 2

1

)
a2n−31 a2 +

(
2n− 3

2

)
a2n−51 a22

+ · · · +
(

n

n− 1

)
a1a

n−1
2

� (a21 + a2)
2n/a1

� 1/a1

b2n =
(
2n

0

)
a2n1 +

(
2n− 1

1

)
a2n−21 a2 +

(
2n− 2

2

)
a2n−41 a22

+ · · · +
(
n

n

)
an2

� (a21 + a2)
2n

� 1.

for all n � 1.
Each coefficient bn is positive, and so we may define the weights λ0 = 1, and

λn = 1/bn, n � 1. The weights are bounded away from zero, and therefore the
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functions belonging to �2(�) are analytic in D. Furthermore, point evaluation at
w ∈ D arises from the reproducing kernel function

kw(z) = �(w̄z) = 1

1− a1w̄z− a2(w̄z)2
,

which is obviously analytic in D.
The inner function associated with the polynomial 1 − z/w has an extra zero ζ ,

distinct from w, provided that

〈k0, kw〉〈kζ , kw〉 = 〈k0, kζ 〉〈kw, kw〉

1 · 1

1− a1w̄ζ − a2(w̄ζ )2
= 1 · 1

1− a1w̄w − a2(w̄w)2

a1w̄(ζ −w)+ a2w̄
2(ζ −w)2 = 0

a1w̄ + a2w̄
2(ζ +w) = 0

ζ = −a1 + a2|w|2
a2w̄

But by assumption a2 > 4a1, so we can choose w ∈ D so that

|w| − |w|2 > a1/a2,

which in turn implies that ζ ∈ D.
We have thus constructed a family of spaces H of analytic functions on D

for which there exist S-inner functions having extra zeros. This shows that the
phenomenon of extra zeros is in some way unexceptional.

7 Inner Vectors in Banach Spaces

Recall from Sect. 2 that a vector v in a Hilbert space is T -inner if

〈v, T nv〉 = 0, n � 1. (7.1)

We want to extend the definition of T -inner vectors to Banach spaces. However, first
we need a notion of “orthogonality” so we can make sense of the very definition in
a Banach space. Indeed, what do we mean by v ⊥ T nv when there is no inner
product?

Before jumping into our definition of orthogonality, we need to review a few
necessary facts. See [5] for the details. For a complex Banach space X with norm
‖ · ‖, we say that X is smooth if given any x ∈ X \ {0} there is a unique � ∈ X ∗
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(the norm dual space ofX ) such that ‖�‖ = 1 and �(x) = ‖x‖. Though not relevant
to our discussion here, there is an equivalent definition of smoothness of a Banach
space involving the Gâteaux derivative of the norm. It is important to point out that
the Hahn-Banach theorem yields the existence of a norming functional �x for each
x ∈ X . The uniqueness of the above norming functional for every x ∈ X \ {0}
is what makes X smooth. Hilbert spaces are smooth, as are the Lebesgue spaces
Lp(X,μ) when p ∈ (1,∞). The spaces L1(X,μ) and L∞(X,μ) are not smooth.

A Banach space X is uniformly convex if given ε > 0, there is a δ = δ(ε) > 0
such that

‖x‖ � 1, ‖y‖ � 1, ‖x− y‖ � ε �⇒ ‖ 12 (x+ y)‖ � 1− δ.

A Hilbert space is uniformly convex and Clarkson’s inequalities imply that
Lp(X,μ) is uniformly convex when p ∈ (1,∞) [5, p. 107]. A uniformly convex
Banach space turns out to be reflexive. Important to this paper is the fact that
uniformly convex spaces enjoy the unique nearest point property in that for a closed
subspace (or more generally a closed convex set) Y of X and a vector x ∈ X ,
there is a unique vector x̂ ∈ Y for which

‖x− x̂‖ � ‖x− y‖, y ∈ Y. (7.2)

This unique nearest point x̂ is called the metric projection of x onto Y . When X
is a Hilbert space, x̂ turns out to be the orthogonal projection of x onto Y and the
mapping x �→ x̂ is linear. For a general Banach space, the mapping x �→ x̂ is not
necessarily linear.

We now follow [2, 18] and define what it means for vectors to be “orthogonal”
in a Banach space. For vectors x and y in a Banach space X we say that x is
orthogonal to y in the Birkhoff–James sense if

‖x+ βy‖X � ‖x‖X (7.3)

for all β ∈ C. In this situation we write x ⊥X y. A little exercise will show that if
X is a Hilbert space, then x ⊥ y ⇐⇒ x ⊥X y. In this generality the relation⊥X
is generally neither symmetric nor linear in either argument. However, in a smooth
Banach space, the relation ⊥X is linear in its second slot, meaning that

x ⊥X y, x ⊥X z, �⇒ x ⊥X (αy+ βz), α, β ∈ C.

See [18] for a proof of this.
When X is a smooth Banach space and x ∈ X , we let �x ∈ X ∗ denote the

unique norming functional for x (recall �x(x) = ‖x‖). By [2, Cor. 4.2], we can state
Birkhoff–James orthogonality equivalently as

x ⊥X y ⇐⇒ �x(y) = 0. (7.4)
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This condition can be expressedmove tangibly forLp(X,μ) spaces as (see [18]):
For f, g ∈ Lp(X,μ),

f ⊥Lp(X,μ) g ⇐⇒
∫
X

|f |p−2f gdμ = 0. (7.5)

In the above integral, we interpret any instance of |0|p−20 to be zero. We have used
Birkhoff–James orthogonality in several recent papers to discuss problems involving
the �pA spaces of analytic functions whose power series coefficients belong to the
sequence space �p. In [8] we use this orthogonality to give some new bounds on
the zeros of an analytic function while in [10] we use this orthogonality, and the
concept of an �pA-inner function, to describe the zero sets of �

p

A. Still further, we use
orthogonality in [7] to give a factorization theorem for �pA functions. Though perhaps
not using explicitly, by name, the authors in [12] use the above orthogonality to
discuss zero sets, via extremal functions, for the Lp Bergman spaces.

With these preliminary remarks, we are ready to define a notion of inner
elements. We make the following assumption for the rest of the paper:

X is a uniformly convex, smooth, complex Banach space.

For a bounded linear transformation T : X → X and a nonzero vector x ∈ X ,
we say that x is T -inner when

x ⊥X T nx, n � 1.

By the linearity of the relation ⊥X in the second slot (which follows from our
assumptions onX ), we see that x is T -inner if and only if x ⊥X [T x], where, as a
reminder,

[T x] =
∨
{T x, T 2x, T 3x, . . .}.

If we let x̂ denote the metric projection (nearest point) of x onto the subspace
[T x], equivalently, x̂ is the unique vector satisfying

‖x − x̂‖ � ‖x− y‖, y ∈ [T x],

the proof of Proposition 3.1 yields the following.

Proposition 7.6 If T is a bounded linear transformation on X and x ∈ X , then
x− x̂ is T -inner (or zero) and every T -inner vector arises in this manner.

Recall that if T is a bounded linear transformation onX , then the Banach space
adjoint operator T ∗, i.e., (T ∗�)(x) = �(T x) for all x ∈ X and � ∈ X ∗, is a
bounded linear transformation onX ∗.
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Proposition 7.7 Suppose that T is a bounded linear transformation on X . If x ∈
X is T -inner, and �x is the unique norming functional of x, then �x is T ∗-inner in
X ∗.

Proof The assumption of uniform smoothness implies that each nonzero element
of X has a unique norming functional. The hypotheses further imply that X is
reflexive and thatX ∗ is strictly convex and smooth [5]. Therefore we may speak of
unique norming functionals for bothX andX ∗.

Suppose that ‖x‖ = 1, and

x ⊥ T kx, k � 1.

This implies that �x(T
kx) = 0 and T ∗k�x(x) = 0 for all k � 1. Note that x/‖x‖ can

be viewed as the norming functional for �x, since it has norm 1 and

�x(x/‖x‖) = 1

‖x‖‖x‖ = 1 = ‖�x‖.

It follows that �x ⊥ T ∗k�x for all k � 1. This says that the vector �x ∈ X ∗ is
T ∗-inner. ��
Example 7.8 For the Hardy spacesHp, 1 < p <∞, which we can regard as closed
subspaces of Lp(dθ/2π), we can use (7.5) to see that

f ⊥Hp g ⇐⇒
∫ 2π

0
|f (eiθ )|p−2f (eiθ )g(eiθ ) dθ

2π
= 0.

If, as in Example 2.2, (Tf )(z) = zf (z) is the unilateral shift on Hp, then f is
T -inner precisely when

f ⊥Hp znf ⇐⇒
∫ 2π

0
|f (eiθ )|peinθ dθ

2π
= 0, n � 1.

Again, this shows that f has constant modulus on the circle, i.e., inner in the
classical sense.

Example 7.9 For the Bergman spaces A p of analytic functions f on D for which

∫
D

|f (z)|pdA <∞

(which is a closed subspace ofLp(D, dA)), we can use (7.5) to extend Example 2.14
and say that f ∈ A p is T -inner (Tf = zf ) when

∫
D

|f (z)|pzndA = 0, n � 1.
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Example 7.10 For the space

�
p
A =

⎧⎨
⎩f (z) =

∑
k�0

akz
k :

∑
k�0

|ak|p <∞
⎫⎬
⎭ ,

which turns out to be a well-studied space Banach space of analytic functions on D

(see [9] for a survey), the Birkhoff–James orthogonality becomes

f ⊥�pA g ⇐⇒
∑
k�0

|ak|p−2akbk = 0.

The unilateral shift (Tf )(z) = zf is an isometry on �pA and the notion of T -inner
was studied in [10]. The condition for f ∈ �pA to be T -inner is

∑
k�0

|ak|p−2akaN+k = 0, N � 1,

but this condition can be difficult to work with. One can see functions such as
f (z) = zn are inner. When w ∈ D \ {0} an analysis in [7] shows that

f (z) = 1− z/w

1− |w|p−2wz
is inner. Notice how when p = 2 this function becomes a constant times the single
Blaschke factor

z−w

1−wz
.

8 Application: Zero Sets for Banach Spaces of Analytic
Functions

In this section we develop the analog of Theorem 4.12 for Banach spaces of analytic
functions. LetX be a uniformly convex, smooth, complex Banach space of analytic
functions on a domain � that satisfies the following conditions.

Point evaluation of derivatives of any order is bounded; (8.1)

f ∈X �⇒ zf (z) ∈X ; (8.2)

∨
{zj : j � 0} =X ; (8.3)
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w ∈ �,f ∈X �⇒ f (z)− f (w)

z−w
∈X (8.4)

For some positive constants r and K ,

f ⊥X g �⇒ ‖f + g‖r � ‖f ‖r +K‖g‖r . (8.5)

Just as in the Hilbert space case, condition (8.1) can be deduced from condi-
tions (8.2)–(8.4). Furthermore, conditions (8.1), (8.2), and the closed graph theorem
show that the operator

SX :X →X , (SX f )(z) = zf (z),

is a bounded linear operator onX .
Note thatX is reflexive and enjoys the unique nearest point property in the sense

of (7.2). Furthermore, each nonzero vector f ∈X has a unique norming functional
�f from which it follows from our general discussion in the previous section that
f ⊥X g if and only if �f (g) = 0. Since evaluation at each point w ∈ � is
continuous, it is given by a functional kw ∈ X ∗, i.e.,

f (w) = kw(f ).

Unlike the Hilbert space case discussed earlier, where kλ belonged to the Hilbert
space (equating Hilbert space with its dual space in the natural way via the Riesz
representation theorem), here kw belongs to the dual space X ∗ which is not
necessarily a space of analytic functions (and for which we don’t use the notation
kw(z) as we did for the Hilbert space case).

Condition (8.5) is a “Pythagorean inequality,” and it was shown in [6] that all Lp

spaces with p ∈ (1,∞) satisfy this condition for a range of parameter values r and
K . Furthermore, the inequality holds in reverse for other values of r and K .

Important to the development of the analog of Theorem 4.12 for Banach spaces
is the following projection lemma, which makes use of the Pythagorean inequality
from (8.5).

Lemma 8.6 Let X be a smooth Banach space satisfying (8.5). For each n ∈ N,
suppose thatXn is a subspace of X , such that

X1 ⊆X2 ⊆X3 ⊆ · · · .

DefineX∞ =⋃∞
n=1 Xn. If Pn is the metric projection mapping fromX toXn, for

all n ∈ N ∪ {∞}, then for any x ∈ X , Pnx converges to P∞x in norm.

Proof By hypothesis,X is uniformly convex (and hence has unique nearest points),
and satisfies the Pythagorean inequality

‖x+ y‖r � ‖x‖r +K‖y‖r
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whenever x ⊥X y. Let x ∈ X . By the definition of metric projection, whenever
m < n, we have

‖x − Pmx‖ = inf{‖x− z‖ : z ∈Xm}
� inf{‖x− z‖ : z ∈Xn}
= ‖x− Pnx‖
� ‖x − P∞x‖.

Thus, as a sequence indexed by n, ‖x − Pnx‖ is monotone nonincreasing, and
bounded below. Accordingly, it converges.

Next, for m < n, the vector Pnx− Pmx lies in Xn (the larger space), and hence
the co-projection x − Pnx is Birkhoff–James orthogonal to it. Consequently, the
Pythagorean inequality says that

‖x− Pmx‖r � ‖x − Pnx‖r +K‖Pnx− Pmx‖r .

Since the (positive) difference ‖x−Pmx‖r−‖x−Pnx‖r can be made arbitrarily small
by choosingm sufficiently large, it follows that {Pmx}m�1 is a Cauchy sequence in
norm, and converges to some vector z. It is clear that z ∈X∞, and hence

‖x − z‖ � ‖x− P∞x‖.

Next, let ε > 0. There exists an N such that

‖x − y‖ � ‖x − P∞x‖ + ε

for some y ∈XN . But then

‖x− z‖ � ‖x− Pnx‖ � ‖x− y‖ � ‖x − P∞x‖ + ε.

Since this is true for arbitrary ε, we conclude that

‖x − z‖ � ‖x− P∞x‖.

Equality holds in these norms, so finally uniqueness of nearest points forces z =
P∞x. ��

With the above setup we are now ready to develop a version of Theorem 4.12
for Banach spaces satisfying the conditions (8.1)–(8.5). Fix an infinite sequence
W = (w1, w2, w3, . . .) ⊆ � \ {0}, and for each n � 1, define

fn(z) =
(
1− z

w1

)
· · ·

(
1− z

wn

)
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and, by Proposition 7.6, the SX -inner function

Jn = fn − f̂n,

where f̂ stands for the metric projection of f onto [zf ]. Note that f̂ exists and is
unique, by uniform convexity. (When X is a Hilbert space, the metric projection
coincides with the orthogonal projection.)

Let kj ∈ X ∗ denote the evaluation functional at wj , j � 1 and k0 denote
the evaluation functional at the origin. The analogous argument used to prove
Lemma 4.7 shows that

{f ∈X : f (0) = f (wj ) = 0, 1 � j � n} = [zfn].

Next, suppose that λ = �Jn ∈X ∗ is the norming functional for Jn. From

Jn ⊥X zjfn, 1 � j � n

and (7.4) we see that

λ(zj fn) = 0, 1 � j � n.

That is, λ ∈ [zfn]⊥ =∨{kj : 0 � j � n}. We may therefore express λ as

λ = c0k0 + c1k1 + · · · + cnkn

for some complex coefficients c0, c1,. . . , cn. By definition of norming functional
this says that

‖Jn‖ = λ(Jn)

= c0k0(Jn)+ c1k1(Jn)+ · · · + cnkn(Jn)

= c0 · 1+ 0+ · · · + 0

= c0,

since k0(Jn) = Jn(0) = fn(0) = 1.
Finally, the condition

kj (Jn) = 0, 1 � j � n

can be interpreted as saying that

λ ⊥X ∗ kj , 1 � j � n.
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That is, λ solves the infimum problem

inf ‖c0k0 + c′1k1 + · · · + c′nkn‖

where c0 = ‖Jn‖ is fixed, and c′1, . . . , c′n are varied.
By renaming the constants, we have shown that

1 = ‖λ‖ = ‖Jn‖ inf ‖k0 + b1k1 + · · · + bnkn‖,

or

‖Jn‖ =
[
inf ‖k0 + b1k1 + · · · + bnkn‖

]−1
.

As n tends to infinity, the infimum is over a larger set, and thus decreases
monotonically, while ‖Jn‖ must therefore be nondecreasing monotonically.

SupposeW is the zero set of some nontrivial function f ∈ X . By dividing by z
a suitable number of times, we can assume that f (0) 
= 0. Then

‖k0 + b1k1 + · · · + bnkn‖ � |〈k0 + b1k1 + · · · + bnkn, f 〉|/‖f ‖
= |f (0)|/‖f ‖

is bounded from zero, and consequently ‖Jn‖ is bounded above.
Conversely, if W fails to be the zero set of some nontrivial function of X , then

by the Lemma 8.6, there exists an element� ofX ∗ such that the following infimum
is attained:

‖�‖ = inf{‖k0 + b1k1 + · · · + bnkn‖ : b1, . . . , bn ∈ C, n � 1}.

Indeed, Lemma 8.6 tells us that � is the k0 minus its metric projection onto

∨
{k1, k2, k3, . . .}.

Let� ∈X be the norming functional of�. Then the infimum condition assures
that

� ⊥X ∗ kj , 1 � j ;

that is,

kj (�) = 0
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for all j � 1. This shows thatW is a zero set for �. The only way this can happen
is if � is identically zero, which implies that

lim
n→∞ inf ‖k0 + b1k1 + · · · + bnkn‖ = 0.

We memorialize these findings as follows, obtaining an extension of Theorem 4.12
to certain Banach spaces of analytic functions.

Theorem 8.7 Let X be a uniformly convex, smooth, complex Banach space of
analytic functions on a domain � satisfying conditions (8.1)–(8.5). Let (wj )j�1 ⊆
� \ {0} and

fn =
n∏

j=1

(
1− z

wj

)
, Jn = fn − P[zfn]fn.

Then

(1) Each Jn is an SX -inner function;
(2) the sequence ‖Jn‖ is a non-decreasing sequence;
(3) (wj )j�1 is a zero sequence forX if and only if

sup{‖Jn‖ : n � 1} <∞.

Spaces for which this applies (i.e., they satisfy the conditions of the abstract
Banach space along with the Pythagorean inequality) include the Lp Bergman
spaces and �pA spaces. A proof specifically tailored for �pA was developed in [10].

References

1. A. Aleman, S. Richter, C. Sundberg, Beurling’s theorem for the Bergman space. Acta Math.
177(2), 275–310 (1996)

2. J. Alonso, H. Martini, S. Wu, On Birkhoff orthogonality and isosceles orthogonality in normed
linear spaces. Aequationes Math. 83(1–2), 153–189 (2012)

3. C. Beneteau, M. Fleeman, D. Seco, A. Sola, Remarks on inner functions and optimal
approximants. Can. Math. Bull. 61(4), 704–716 (2018)

4. A. Beurling, On two problems concerning linear transformations in Hilbert space. Acta Math.
81, 239–55 (1949)

5. N.L. Carothers, in A Short Course on Banach Space Theory. London Mathematical Society
Student Texts, vol. 64 (Cambridge University Press, Cambridge, 2005)

6. R. Cheng, W.T. Ross, Weak parallelogram laws on Banach spaces and applications to
prediction. Period. Math. Hung. 71(1), 45–58 (2015)

7. R. Cheng, W.T. Ross, An inner-outer factorization in �p with applications to ARMA processes.
J. Math. Anal. Appl. 437, 396–418 (2016)

8. R. Cheng, J. Mashreghi, W.T. Ross, Birkhoff–James orthogonality and the zeros of an analytic
function. Comput. Methods Funct. Theory 17(3), 499–523 (2017)



Inner Functions in Reproducing Kernel Spaces 211

9. R. Cheng, J. Mashreghi, W.T. Ross, Multipliers of sequence spaces. Concr. Oper. 4, 76–108
(2017)

10. R. Cheng, J. Mashreghi, William T. Ross, Inner functions and zero sets for �pA (2018). Preprint
11. P.L. Duren, in Theory of Hp Spaces. Pure and Applied Mathematics, vol. 38 (Academic, New

York/London, 1970)
12. P. Duren, D. Khavinson, H.S. Shapiro, Extremal functions in invariant subspaces of Bergman

spaces. Ill. J. Math. 40(2), 202–210 (1996)
13. O. El-Fallah, K. Kellay, J. Mashreghi, T. Ransford, A Primer on the Dirichlet Space

(Cambridge University Press, New York, 2014)
14. S.R. Garcia, J. Mashreghi, W.T. Ross, Introduction to Model Spaces and Their Operators.

Cambridge Studies in Advanced Mathematics, vol. 148 (Cambridge University Press, Cam-
bridge, 2016)

15. H.K. Hedenmalm, K.H. Zhu, On the failure of optimal factorization for certain weighted
Bergman spaces. Complex Variables Theory Appl. 19(3), 165–176 (1992)

16. K. Hoffman, Banach Spaces of Analytic Functions (Dover Publications, New York, 1988).
Reprint of the 1962 original

17. R.A. Horn, C.R. Johnson, Matrix Analysis (Cambridge University Press, New York, 2012)
18. R.C. James, Orthogonality and linear functionals in normed linear spaces. Trans. Am. Math.

Soc. 61, 265–292 (1947)
19. B.I. Korenbljum, Invariant subspaces of the shift operator in a weighted Hilbert space. Mat. Sb.

(N.S.) 89(131), 110–137, 166 (1972)
20. A.G. Miamee, M. Pourahmadi, Wold decomposition, prediction and parameterization of

stationary processes with infinite variance. Probab. Theory Relat. Fields 79(1), 145–164 (1988)
21. V.I. Paulsen, M. Raghupathi, in An Introduction to the Theory of Reproducing Kernel Hilbert

Spaces. Cambridge Studies in Advanced Mathematics, vol. 152 (Cambridge University Press,
Cambridge, 2016)

22. S. Richter, Invariant subspaces of the Dirichlet shift. J. Reine Angew. Math. 386, 205–220
(1988)

23. S. Richter, C. Sundberg, Multipliers and invariant subspaces in the Dirichlet space. J. Operator
Theory 28(1), 167–186 (1992)

24. S. Richter, C. Sundberg, Invariant subspaces of the Dirichlet shift and pseudocontinuations.
Trans. Am. Math. Soc. 341(2), 863–879 (1994)

25. D. Sarason, Invariant subspaces. Math. Surveys 13, 1–47 (1974)
26. D. Seco, A characterization of Dirichlet inner functions. Compl. Anal. Oper. Theory (to appear)
27. H.S. Shapiro, A.L. Shields, On the zeros of functions with finite Dirichlet integral and some

related function spaces. Math. Z. 80, 217–229 (1962)



Spherically Quasinormal Pairs
of Commuting Operators

Raúl E. Curto and Jasang Yoon

Abstract We first discuss the spherical Aluthge and spherical Duggal transforms
for commuting pairs of operators on Hilbert space. Second, we study the fixed
points of these transforms, which are the spherically quasinormal commuting pairs.
In the case of commuting 2-variable weighted shifts, we prove that spherically
quasinormal pairs are intimately related to spherically isometric pairs. We show that
each spherically quasinormal 2-variable weighted shift is completely determined
by a subnormal unilateral weighted shift (either the 0-th row or the 0-th column in
the weight diagram). We then focus our attention on the case when this unilateral
weighted shift is recursively generated (which corresponds to a finitely atomic
Berger measure). We show that in this case the 2-variable weighted shift is also
recursively generated, with a finitely atomic Berger measure that can be computed
from its 0-th row or 0-th column. We do this by invoking the relevant Riesz
functionals and the functional calculus for the columns of the associated moment
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1 Introduction

LetH be a complex Hilbert space and let B(H) denote the algebra of bounded linear
operators onH. We say that T ∈ B(H) is normal if T ∗T = T T ∗; quasinormal if T
commutes with T ∗T ; subnormal if T = N |H, where N is normal and N(H) ⊆ H;
and hyponormal if T ∗T ≥ T T ∗. It is well known that

normal �⇒ quasinormal �⇒ subnormal �⇒ hyponormal.

For T ∈ B(H), consider now the canonical polar decomposition of T , T ≡ VP ,

where V is a partial isometry, P := (T ∗T ) 12 , and kerT = kerV = kerP . The

Aluthge transform T̂ is T̂ := P
1
2VP

1
2 ; on the other hand, the Duggal transform is

T̂ D := PV . The Aluthge transform was first introduced in [1] and it has attracted
considerable attention over the last two decades (see, for instance, [2, 9, 27, 32, 33,
36] and [41]).

It is well known that T ∈ B(H) is quasinormal if and only if T commutes with
the positive factor P in the canonical polar decomposition T ≡ VP ; equivalently, if
V commutes with P . It follows easily that T is quasinormal if and only if T = T̂ ,
that is, if and only if T is a fixed point for the Aluthge transform. One can similarly
establish that the fixed points of the Duggal transform are also the quasinormal
operators.

To study the bivariate situation, we need some notation. The class of commuting
pairs of operators on Hilbert space will be denoted by C0; the subclass of commuting
pairs of subnormal operators will be denoted by H0; and the subclass of jointly
subnormal pairs by H∞.

For S, T ∈ B(H) let [S, T ] := ST − T S. We say that a commuting pair T =
(T1, T2) of operators onH is (jointly) hyponormal if the operator matrix

[T∗,T] :=
( [T ∗1 , T1] [T ∗2 , T1]
[T ∗1 , T2] [T ∗2 , T2]

)

is positive on the direct sum of two copies of H (cf. [3, 12]). A commuting pair T
is said to be normal if T is commuting and each Ti is normal, and subnormal if T
is the restriction of a normal pair to a common invariant subspace. For k ≥ 1, a
commuting pair T ≡ (T1, T2) is said to be k-hyponormal [25] if

T(k) :=
(
T1, T2, T

2
1 , T2T1, T

2
2 , · · · , T k

1 , T2T
k−1
1 , · · · , T k

2

)

is hyponormal.
For k ≥ 1, we let Hk denote the class of k-hyponormal pairs in H0. It is now

clear that

H∞ ⊆ Hk ⊆ H0 ⊆ C0.
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The multivariable Bram-Halmos Theorem states that T is subnormal if and only if
T is k-hyponormal for all k ≥ 1 [25, Theorem 2.3]; that is, H∞ =⋂

k≥1Hk.
We next consider a suitable polar decomposition (and correspondingAluthge and

Duggal transforms) for T = (T1, T2) ∈ C0. Given a commuting pair T ≡ (T1, T2)

of operators acting onH, let

Q := (T ∗1 T1 + T ∗2 T2)
1
2 . (1.1)

Clearly, kerQ = kerT1
⋂

kerT2. For x ∈ kerQ, let Vix := 0, and for y ∈ RanQ,
say y = Qx, let Viy := Tix (i = 1, 2). It is easy to see that V1 and V2 are well
defined. We then have

(
T1

T2

)
=

(
V1

V2

)
Q,

as operators from H to H ⊕ H. Moreover, this is the unique canonical polar

decomposition of

(
T1

T2

)
. It follows that

(
V1

V2

)
is a partial isometry from (kerQ)⊥

onto Ran

(
T1

T2

)
.

Following [5] and [30], we say that T is (jointly) quasinormal if Ti commutes
with T ∗j Tj for all i, j = 1, 2; and spherically quasinormal if Ti commutes with Q
for i = 1, 2. By [5], for all k ≥ 1, one has

normal �⇒ (jointly) quasinormal �⇒ spherically quasinormal

�⇒ subnormal �⇒ k-hyponormal. (1.2)

On the other hand, the results in [25] and [30] show that the reverse implications
in (1.2) do not necessarily hold.

We are now ready to introduce two bivariate operator transforms.

Definition 1.1 (cf. [23, 24]) With T, V1, V2 andQ as above, the spherical Aluthge
transform of T is

T̂ ≡ (T̂1, T̂2),

where

T̂i := Q
1
2ViQ

1
2 (i = 1, 2). (1.3)

Lemma 1.2 ([7, 24]) T̂ is commutative.
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Definition 1.3 (cf. [35]) With T, V1, V2 and Q as above, the spherical Duggal
transform of T is

T̂D := (T̂ D
1 , T̂ D

2 ),

where

T̂ D
i := QVi (i = 1, 2). (1.4)

A simple application of Lemma 1.2 together with the fact that kerV1
⋂

kerV2 =
kerQ readily implies the following result.

Lemma 1.4 ([35]) T̂D is commutative.

Remark 1.5 Note that, in general, T̂i ≡ (T̂)i (resp. T̂ D
i ≡ (T̂D)i) is not the Aluthge

(resp. Duggal) transform of Ti (i = 1, 2). ��
The spherical Aluthge transform was introduced in [23]; its general theory was

developed in [24]. In this paper we focus on the spherical quasinormal pairs,
which are the fixed points of the spherical Aluthge and Duggal transforms. After
characterizing the spherically quasinormal 2-variable weighted shifts, we study the
case when a row or column in the weight diagram corresponds to a recursively
generated unilateral weighted shift, that is, a weighted shift with finitely atomic
Berger measure.

The organization of this paper is as follows. In Sect. 2 we will characterize
the fixed points of the Aluthge and Duggal bivariate operator transforms; these
are the spherically quasinormal pairs, that is, those commuting pairs for which
Ti commutes with T ∗1 T1 + T ∗2 T2 for all i = 1, 2. In Sect. 3 we characterize the
spherically quasinormal 2-variable weighted shifts. In Sect. 4 we provide a concrete
construction of spherically quasinormal 2-variable weighted shifts, in terms of the
0-th row or 0-th column in their weight diagram (see Fig. 1i). In Sect. 5 we focus our

(0, 0) (1, 0) (2, 0) (3, 0)

α(0,0) α(1,0) α(2,0) · · ·

α(0,1) α(1,1) α(2,1) · · ·

α(0,2) α(1,2) α(2,2) · · ·

· · · · · · · · · · · ·

T1

(0, 1)

(0, 2)

(0, 3)

β(0,0)

β(0,1)

β(0,2)

..

β(1,0)

β(1,1)

β(1,2)

..

β(2,0)

β(2,1)

β(2,2)

..

(i) (ii) T1

T2

(0, 0) (1, 0) (2, 0) (3, 0)

2
3

5
6

14
15 · · ·

1
3

1
3

1
3 · · ·

1
3

1
3

1
3 · · ·

· · · · · · · · · · · ·

1
3

2
3

2
3

..

1
6

2
3

2
3

..

1
15

2
3

2
3

..

T2

Fig. 1 Weight diagram of a generic 2-variable weighted shift and weight diagram of the 2-variable
weighted shift in Example 5.10, respectively
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attention on the case when the 0-th row or 0-th column corresponds to a recursively
generated subnormal unilateral weighted shift. Finally, we list in Appendix some
known results which are needed somewhere else in the paper.

We devote the rest of this section to establishing some additional basic terminol-
ogy and notation. For ω ≡ {ωn}∞n=0 a bounded sequence of positive real numbers
(called weights), letWω ≡ shift(ω0, ω1, · · · ) : �2(Z+)→ �2(Z+) be the associated
unilateral weighted shift, defined by Wωen := ωnen+1 (all n ≥ 0), where {en}∞n=0
is the canonical orthonormal basis in �2(Z+). The moments of ω ≡ {ωn}∞n=0 are
given as

γk ≡ γk(Wω) :=
{
1, if k = 0

ω2
0 · · ·ω2

k−1, if k > 0.
(1.5)

The (unweighted) unilateral shift is U+ := shift(1, 1, 1, · · · ). For 0 < a < 1 we let

Sa := shift(a, 1, 1, · · · ).
We now recall a well-known characterization of subnormality for unilateral

weighted shifts, due to Berger (cf. [10, III.8.16]) and independently established by
Gellar and Wallen [29]: Wω is subnormal if and only if there exists a probability
measure σ supported in [0, ‖Wω‖2] (called the Berger measure of Wω) such that
γk(ω) = γk(Wω) ω

2
0 · . . . · ω2

k−1 =
∫
tkdσ (t) (k ≥ 1).

Observe that U+ and Sa are subnormal unilateral weighted shifts, with Berger
measures δ1 and (1 − a2)δ0 + a2δ1, respectively. (Here δp denotes the point-mass
probability measure with support the singleton set {p}.)

Similarly, consider double-indexed positive bounded sequences αk, βk ∈
�∞(Z2+), k ≡ (k1, k2) ∈ Z

2+ and let �2(Z2+) be the Hilbert space of square-
summable complex sequences indexed by Z

2+. (Recall that �2(Z2+) is canonically
isometrically isomorphic to �2(Z+)

⊗
�2(Z+).) We define the 2-variable weighted

shift T ≡ (T1, T2) = W(α,β) by

T1ek := αkek+ε1 and T2ek := βkek+ε2 , (1.6)

where ε1 := (1, 0) and ε2 := (0, 1). Clearly,

T1T2 = T2T1 ⇐⇒ βk+ε1αk = αk+ε2βk

(
all k ∈ Z

2+
)
. (1.7)

Moreover, for k ∈ Z
2+ we have

T ∗1 e(0,k2) = 0 and T ∗1 ek = αk−ε1ek−ε1 (k1 ≥ 1); (1.8)

T ∗2 e(k1,0) = 0 and T2ek := βk−ε2ek−ε2 (k2 ≥ 1). (1.9)

In an entirely similar way one can define multivariable weighted shifts (see. [21,
22]).
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We now recall the definition of moments for a 2-variable weighted shift T ≡
(T1, T2) = W(α,β) ∈ C0. Given k ≡ (k1, k2) ∈ Z

2+, the moment of T ≡ (T1, T2) =
W(α,β) of order k is

γk ≡ γk(W(α,β)) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if k1 = 0 and k2 = 0

α2
(0,0) · · ·α2(k1−1,0), if k1 ≥ 1 and k2 = 0

β2
(0,0) · · ·β2

(0,k2−1), if k1 = 0 and k2 ≥ 1

α2
(0,0) · · ·α2(k1−1,0)β2

(k1,0)
· · · β2

(k1,k2−1), if k1 ≥ 1 and k2 ≥ 1.
(1.10)

We remark that, due to the commutativity condition (1.7), γk can be computed using
any nondecreasing path from (0, 0) to (k1, k2). Given a 2-variable weighted shift
T ≡ (T1, T2) = W(α,β) ∈ C0, and given k1, k2 ≥ 0, we let

Wk2 := shift(α(0,k2), α(1,k2), · · · ) (1.11)

be the k2-th horizontal slice of T1; similarly, we let

Vk1 := shift(β(k1,0), β(k1,1), · · · ) (1.12)

be the k1-th vertical slice of T2. (Clearly, W0 and V0 are the unilateral weighted
shifts associated with the 0-th row and 0-column in the weight diagram for T, resp.)
By the commutativity condition (1.7), we note that

γ(k1,k2)(W(α,β)) = γk1
(
Wk2

)
β2
(0,0) · · ·β2

(0,k2−1)
, (1.13)

where γk1
(
Wk2

)
is given by (1.5). A similar identity holds for Vk1 .

A straightforward generalization of the above-mentioned Berger-Gellar-Wallen
result was proved in [31]. That is, a commuting 2-variable weighted shift T ≡
(T1, T2) = W(α,β) admits a commuting normal extension if and only if there is a
probability measure μ (which we call the Berger measure of T) defined on the 2-
dimensional rectangle R = [0, a1] × [0, a2] (where ai := ‖Ti‖2) such that γk =∫
R
sk1 tk2dμ(s, t), for all k ∈ Z

2+.
In the single variable case, if Wω is subnormal with Berger measure σω and

h ≥ 1, and if we let Lh := ∨{en : n ≥ h} denote the invariant subspace obtained
by removing the first h vectors in the canonical orthonormal basis of �2(Z+), then
the Berger measure ofWω|Lh

is sh

γh
dσω(s); alternatively, if S : �∞(Z+)→ �∞(Z+)

is defined by

S(ω)(n) := ω(n + 1) (ω ∈ �∞(Z+), n ≥ 0), (1.14)
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then

dσS(ω)(s) = s

ω2
0

dσω(s). (1.15)

2 The Spherical Aluthge and Duggal Transforms

In [32], Jung et al. proved that an operator T ∈ B(H) with dense range has a
nontrivial invariant subspace if and only if T̂ does. On the other hand, one can
show that T has a nontrivial invariant subspace if and only if T̂ D does, where T̂ D is
the Duggal transform for T . In [34, 35], the authors studied the common invariant
subspaces between the spherical Aluthge (resp. Duggal) transform and its original
pair. By Lemmas 1.2 and 1.4, we know that T̂, T̂D ∈ C0 whenever T ∈ C0 (cf.
[23, 35]). In [34, 35], the authors showed that for T ∈ C0 with dense ranges, T
has a common nontrivial invariant subspace if and only if T̂ does if and only if T̂D

does.
In [33], Jung et al. also proved that T and T̂ have the same spectrum. This result

can be extended to pairs T ∈ C0 (cf. [7, 26]). That is, one can show that for a
commuting pair T ≡ (T1, T2)

σT (T̂) = σT (T), (2.1)

where σT (T) is the Taylor spectrum of T. (For more information on the notion of
Taylor spectrum and related results, the reader is referred to [11, 13, 39, 40]).

Related to the above-mentioned results, it is well known, and easy to prove, that

if T ∈ B(H) is invertible, then T̂ is also invertible. In this case, T̂ = |T | 12 T |T |− 1
2 .

Similarly, for T ∈ C0, one can use a bit of homological algebra applied to the
appropriate Koszul complexes to prove directly that T̂ is Taylor invertible when T
is Taylor invertible. If T ≡ (T1, T2) is Taylor invertible and we represent it as a
column matrix, then one can see thatQ is also invertible, and in this case,

T̂ = Q
1
2 T

(
Q−

1
2 ⊕Q−

1
2

)
.

We next consider the structure of commuting pairs which are fixed points of the
spherical Aluthge and Duggal transform. It is known that T is quasinormal if and
only if T = T̂ if and only if T = T̂ D . We will extend this result to the case of
commuting pairs T ≡ (T1, T2). First, we need an auxiliary result.

Lemma 2.1 For i = 1, 2, Ti commutes with Q if and only if Vi commutes with Q.

Proof Recall that, for i = 1, 2, Ti = ViQ. If Ti commutes with Q, then ViQ2 =
(ViQ)Q = TiQ = QTi = Q(ViQ), and as a consequence (VIQ − QVi)Q = 0;
that is, Vi commutes withQ on RanQ. On the other hand, ViQ−QVi vanishes on
kerQ. It now easily follows that Vi commutes withQ. The converse is trivial. ��
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We next consider spherical quasinormality for commuting pairs. Suppose a
commuting pair T is spherically quasinormal. Since for i = 1, 2, Ti commutes with
T ∗1 T1 + T ∗2 T2, then for i = 1, 2 Ti commutes withQ (by the continuous functional
calculus forQ). Observe now that

̂(T1, T2)
√
Q =

(√
QV1

√
Q,

√
QV2

√
Q
)√

Q =
(√

QT1,
√
QT2

)
= (T1, T2)

√
Q,

so that

̂(T1, T2) = (T1, T2) on Ran
√
Q (= RanQ). (2.2)

On the other hand, since kerQ = kerT1
⋂

kerT2, it follows easily that

̂(T1, T2) = (T1, T2) on kerQ. (2.3)

Since H = (
RanQ

) ⊕ kerQ, we can combine (2.2) and (2.3) to prove that
̂(T1, T2) = (T1, T2).
We are now ready to state the main result of this section.

Theorem 2.2 Let T ≡ (T1, T2) ∈ C0. The following statements are equivalent.

(i) T is spherically quasinormal.
(ii) ̂(T1, T2) = (T1, T2).

(iii) ̂(T1, T2)
D = (T1, T2).

Proof (i) ⇒ (ii): This follows from the discussion preceding the statement of
Theorem 2.2.
(ii)⇒ (iii):

T̂ = T �⇒
(√

QV1
√
Q,

√
QV2

√
Q
)
= (V1Q,V2Q)

�⇒
(√

QT1,
√
QT2

)
=

(
T1

√
Q,T2

√
Q
)

�⇒ Ti commutes with
√
Q (i = 1, 2)

�⇒ Ti commutes withQ (i = 1, 2)

�⇒ Vi commutes with Q (i = 1, 2)

�⇒ T̂D = T.

(iii)⇒ (i): Assume that T̂D = T. It follows that Vi commutes with Q (i = 1, 2).
As a consequence, Ti commutes with Q, which implies that Ti commutes with Q2

(i = 1, 2), as desired. ��
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3 A Characterization of Spherically Quasinormal 2-Variable

Weighted Shifts

In this section we present a characterization of spherical quasinormality for 2-
variable weighted shifts. The following theorem was announced in [23]. Before
we state it, we list a simple fact about quasinormality for 2-variable weighted shifts.

Remark 3.1 A 2-variable weighted shift T ≡ (T1, T2) = W(α,β) is (jointly)
quasinormal if and only if α(k1,k2) = α(0,0) and β(k1,k2) = β(0,0) for all k1, k2 ≥ 0.
This can be seen via a simple application of (1.7) and (1.8). As a result, up to a scalar
multiple in each component, a quasinormal 2-variable weighted shift is identical to
the so-called Helton-Howe shift; that is, the shift that corresponds to the pair of
multiplications by the coordinate functions in the Hardy space H 2(T × T) of the
2-torus, with respect to arclength measure on each circle T (cf. [30]). This fact is
entirely consistent with the one-variable result: a unilateral weighted shift Wω is
quasinormal if and only ifWω = cU+ for some c > 0. ��
Theorem 3.2 Let T ≡ (T1, T2) = W(α,β) ∈ C0 be a 2-variable weighted shift.
Then the following statements are equivalent.

(i) T ≡ (T1, T2) is spherically quasinormal.

(ii) There exists a constant c > 0 such that for all k ≡ (k1, k2) ∈ Z
2+,

α2(k1,k2) + β2
(k1,k2)

= c.

(iii) T ∗1 T1 + T ∗2 T2 = c I .

Proof (i) �⇒ (ii): Assume that T ≡ (T1, T2) is spherically quasinormal. Then,
̂(T1, T2) = (T1, T2), where ̂(T1, T2) is the spherical Aluthge transform of T. Thus,
we have
(√

QV1
√
Q,

√
QV2

√
Q
)
= (V1Q,V2Q) �⇒

(√
QT1,

√
QT2

)
=

(
T1

√
Q,T2

√
Q
)
,

that is, for all i = 1, 2, Ti commutes with
√
Q. Hence, the continuous functional

calculus imposes that T1 and T2 commute withQ. We now consider the following:
for all k ≡ (k1, k2) ∈ Z

2+, α2(k1,k2) + β2
(k1,k2)

= c. If we fix an orthonormal basis
vector ek, then by (1.6) and (1.1) we have

T1ek = αkek+ε1, T2ek := βkek+ε2,

and

Qek =
√
α2(k1,k2)

+ β(k1,k2).
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We thus obtain

QT1ek = α(k1,k2)

√
α2(k1+1,k2) + β2

(k1+1,k2) (3.1)

T1Qek =
√
α2(k1,k2)

+ β2
(k1,k2)

α(k1,k2). (3.2)

It follows that

√
α2(k1+1,k2) + β2

(k1+1,k2) =
√
α2(k1,k2)

+ β2
(k1,k2)

. (3.3)

Similarly, we have

QT2ek = β(k1,k2)

√
α2
(k1,k2+1) + β2

(k1,k2+1) (3.4)

T2Qek =
√
α2(k1,k2)

+ β2
(k1,k2)

β(k1,k2). (3.5)

Hence,

√
α2(k1,k2+1) + β2

(k1,k2+1) =
√
α2(k1,k2)

+ β2
(k1,k2)

. (3.6)

Therefore, by (3.3) and (3.6), for all k ≡ (k1, k2) ∈ Z
2+ we obtain

√
α2(k1,k2)

+ β2
(k1,k2)

=
√
α2(k1+1,k2) + β2

(k1+1,k2) =
√
α2(k1,k2+1) + β2

(k1,k2+1);

that is, for all k ≡ (k1, k2) ∈ Z
2+ we have

α2(k1,k2) + β2
(k1,k2)

= c := α2(0,0) + β2
(0,0) > 0,

as desired.
(ii) �⇒ (iii): We assume that α2(k1,k2) + β2

(k1,k2)
= c > 0 for all k ≡ (k1, k2) ∈

Z
2+. Then, by (3.2) and (3.5), we clearly get that

T ∗1 T1 + T ∗2 T2 = c · I .

(iii) �⇒ (i): We assume that T ∗1 T1 + T ∗2 T2 = c · I . Then, for all i = 1, 2, we have

Ti
(
T ∗1 T1 + T ∗2 T2

) = c · Ti =
(
T ∗1 T1 + T ∗2 T2

)
Ti ,

so that we get that T1 and T2 commute with Q. Thus, by the same argument in the
proof of Theorem 2.2, we have that ̂(T1, T2) = (T1, T2). Therefore, by Theorem 2.2,
T is spherically quasinormal. ��
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Remark 3.3 If T ≡ (T1, T2) = W(α,β) ∈ C0 is a spherically quasinormal 2-variable
weighted shift, then Q is injective, so that by the continuous functional calculus,
we have that (T1, T2) ∈ C0 is spherically quasinormal if and only if each Ti is
commute with Q2 = T ∗1 T1 + T ∗2 T2 for all i = 1, 2. Observe that in the case of
arbitrary commuting pairs of operators, we always have Q2 = T ∗1 T1 + T ∗2 T2 =
Q(V ∗1 V1 + V ∗2 V2)Q; thus, whenQ is injective, we obtain V ∗1 V1 + V ∗2 V2 = I . ��

We now investigate the weight diagrams of T̂ and T̂D for a 2-variable weighted
shift T ≡ (T1, T2) = W(α,β).

Proposition 3.4 Let T ≡ (T1, T2) = W(α,β) be a 2-variable weighted shift. Then

T̂1ek = αk
(α2k+ε1 + β2

k+ε1)
1/4

(α2k + β2
k)

1/4
ek+ε1; T̂2ek = βk

(α2k+ε2 + β2
k+ε2)

1/4

(α2k + β2
k)

1/4
ek+ε2

(3.7)
and

T̂ D
1 ek = αk

(α2k+ε1 + β2
k+ε1)

1/2

(α2k + β2
k)

1/2
ek+ε1; T̂ D

2 ek = βk
(α2k+ε2 + β2

k+ε2)
1/2

(α2k + β2
k)

1/2
ek+ε2

(3.8)
for all k ∈ Z

2+.

Proof Straightforward from (1.1), (1.3), (1.4) and (1.6). ��
Remark 3.5 By (3.7) and (3.8) in Proposition 3.4, if Ŵ(α,β) = Ŵ(α,β)

D
, then for

all k ≡ (k1, k2) ∈ Z
2+, α2(k1,k2) + β2

(k1,k2)
= c > 0, so that W(α,β) is a spherically

quasinormal. Thus, consistent with Theorem 3.2, we see that W(α,β) is spherically

quasinormal if and only if Ŵ(α,β) = Ŵ(α,β)

D
. ��

We now recall the class of spherically isometric commuting pairs of operators
(cf. [4–6, 28, 30]).

Definition 3.6 A commuting pair T ≡ (T1, T2) is a spherical isometry if T ∗1 T1 +
T ∗2 T2 = I .

The following result is a straightforward application of Definition 3.6.

Lemma 3.7 A 2-variable weighted shift T ≡ (T1, T2) = W(α,β) is a spherical
isometry if and only if

α2k + β2
k = 1

for all k ∈ Z
2+.

By Theorem 3.2, we have:

Corollary 3.8 A 2-variable weighted shift T ≡ (T1, T2) is spherically quasinormal
if and only if there exists c > 0 such that 1√

c
T is a spherical isometry, that is,

T ∗1 T1 + T ∗2 T2 = I .
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We pause to recall an important result about spherical isometries.

Lemma 3.9 ([28]) Any spherical isometry is subnormal.

Combining Corollary 3.8 and Lemma 3.9, we easily obtain the following result.

Theorem 3.10 Any quasinormal 2-variable weighted shift is subnormal.

Remark 3.11 (cf. [23, Remark 2.14])

(i) A. Athavale and S. Poddar have recently proved that a commuting spherically
quasinormal pair is always subnormal [5, Proposition 2.1]; this provides a
different proof of Theorem 3.10.

(ii) In a different direction, letQT(X) := T ∗1 XT1+T ∗2 XT2. By induction, it is easy
to prove that if T is spherically quasinormal, thenQn

T(I) = (QT(I))
n (n ≥ 0);

by [8, Remark 4.6], T is subnormal. ��

4 Construction of Spherically Quasinormal 2-Variable
Weighted Shifts

As observed in [24], within the class of 2-variable weighted shifts there is a simple
description of spherical isometries, in terms of the weight sequences α ≡ {α(k1,k2)}
and β ≡ {β(k1,k2)}. Indeed, since spherical isometries are (jointly) subnormal, we
know that the unilateral weighted shift associated with the 0-th row in the weight
diagrammust be subnormal. Thus, without loss of generality, we can always assume
that the 0-th row corresponds to a subnormal unilateral weighted shift, and denote
its weights by {α(k,0)}k=0,1,2,···. Also, in view of Corollary 3.8 we can assume that
c = 1. Using the identity

α2k + β2
k = 1 (k ∈ Z

2+) (4.1)

and the above-mentioned 0-th row, we can compute β(k,0) :=
√
1− α2k,0 for k =

0, 1, 2, · · · . With these new values at our disposal, we can use the commutativity
property (1.7) to generate the values of α in the first row (see Fig. 1i); that is,

α(k,1) := α(k,0)β(k+1,0)/β(k,0).

We can now repeat the algorithm, and calculate the weights β(k,1) for k =
0, 1, 2, · · · , again using the identity (4.1). This in turn leads to the α weights for the
second row, and so on.

This simple construction of spherically isometric 2-variable weighted shifts will
allow us to study properties like recursiveness (tied to the existence of finitely atomic
Berger measures) and propagation of recursive relations. We pursue this in Sect. 5
below.
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5 Recursively Generated Spherically Quasinormal
2-Variable Weighted Shifts

We begin by recalling some terminology and basic results from [15] and [16]. A
subnormal unilateral weighted shift Wω is said to be recursively generated if the
sequence of moments γn(Wω) admits a finite-step recursive relation; that is, if there
exists an integer k ≥ 1 and real coefficients ϕ0, ϕ1, · · · , ϕk−1 such that

γn+k = ϕ0γn + ϕ1γn+1 + · · · + ϕk−1γn+k−1 (all n ≥ 0). (5.1)

In conjunction with (5.1) we consider the generating function

gω(s) := sk − (ϕ0 + ϕ1s + · · · + ϕk−1sk−1). (5.2)

The following result characterizes recursively generated subnormal unilateral
weighted shifts.

Lemma 5.1 ([17]) LetWω be a subnormal unilateral weighted shift. The following
statements are equivalent.

(i) Wω is recursively generated.

(ii) The Berger measure μ of Wω is finitely atomic, and suppμ ⊆ Z(gω), where
Z(gω) denotes the zero set of gω, that is, the set of roots of the equation gω = 0.

Our first result in this section establishes the propagation of a recursive relation
from the 0-th row of a spherically quasinormal 2-variable weighted shift to the first
row. Given a 2-variable weighted shift T ≡ (T1, T2) = W(α,β), recall from (1.11)
the notationW0 andW1.

Theorem 5.2 Let T be a spherically quasinormal 2-variable weighted shift, and
assume thatW0 is recursively generated, with coefficients ϕ0, ϕ1, . . . , ϕn−1; that is,

γn+k (W0) = ϕ0γk (W0)+ ϕ1γk+1 (W0)+ · · · + ϕn−1γn+k−1 (W0) (all k ≥ 0) .
(5.3)

ThenW1 is recursively generated, with the same recursion coefficients.

Proof Since T ≡ (T1, T2) ∈ C0 is spherically quasinormal, by Theorem 3.2, for all
k ≥ 0 observe that

β2
(0,0)γk1 (W1) = β2

(k1,0)γk1 (W0)

=
(
c − α2(k1,0)

)
γk1 (W0)

= cγk1 (W0)+ γk1+1 (W0) ,
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Thus, we have

β2
(0,0)γn+k1 (W1) = cγn+k1 (W0)− γn+k1+1 (W0) (5.4)

= c

(
n−1∑
i=0

ϕiγk1+i (W0)

)
−

n−1∑
i=0

ϕiγk1+i+1 (W0) (5.5)

=
n−1∑
i=0

ϕiγk1+i (W0)
(
c − α2(k1+i,0)

)
(5.6)

=
n−1∑
i=0

ϕiγk1+i (W0) β
2
(k1+i,0) (5.7)

= β2
(0,0)

n−1∑
i=0

ϕiγk1+i (W1) . (5.8)

It follows from (5.8) that

γn+k1 (W1) = ϕ0γk1 (W1)+ ϕ1γk1+1 (W1)+ · · · + ϕn−1γn+k1−1 (W1) . (5.9)

Thus, we see that W1 is a recursively generated weighted shift with the same
recursion coefficients; that is, (5.3) holds forW1. ��

A straightforward induction argument yields the following result.

Corollary 5.3 Let T be a spherically quasinormal 2-variable weighted shift, and
assume thatW0 is recursively generated, with coefficients ϕ0, ϕ1, . . . , ϕn−1, and let
k2 > 1. ThenWk2 is recursively generated, with the same recursion coefficients.

In view of Theorem 5.2, one is naturally led to the following question. If W0
is recursively generated, is it also the case that V0 is recursively generated? To
study this question, we will take advantage of the theory of truncated moment
problems in two real variables. (The reader is referred to [18–20] for terminology
and basic results.) Here we will only make use of the moment matrix associated
with W(α,β); that is, the infinite matrix M(α, β) whose rows and columns are
indexed by k ∈ Z

2+ and whose (i, j)-entry is given by γi+j. As typically done
in the theory of truncated real moment problems, it is natural to label the rows
and columns of M(α, β) using the homogenous monomials of ascending degree
1, S, T , S2, ST , T 2, S2, S2T , ST 2, T 3, · · · . For instance, when we refer to the
entry in the position ((1, 2), (0, 1)), we mean the entry corresponding to row (1, 2)
and column (0, 1), that is, the row labeled by the monomial ST 2 and the column
labeled by the monomial T .

The proof of the following result is straightforward.
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Lemma 5.4 Let W(α,β) be a 2-variable weighted shift, let c > 0 and fix k ∈ Z
2+.

The following statements are equivalent.

(i) α2k + β2
k = c.

(ii) γk+ε1 + γk+ε2 = cγk.

Corollary 5.5 Let W(α,β) be a spherically quasinormal 2-variable weighted shift,
with constant c > 0. Then the columns of the moment matrix M(α, β) satisfy the
linear relation S + T = c 1.

Corollary 5.6 Let W(α,β) be a spherically quasinormal 2-variable weighted shift,
with constant c > 0, and let σ and τ be the Berger measures of W0 and V0,
respectively. Then supp τ = c − supp σ := {c − s : s ∈ suppσ } .
Proof Since the columns of the moment matrix M(α, β) satisfy the linear relation
S + T = c 1, the Riesz functionals Λα and Λβ for σ and τ (resp.) satisfy the
condition

Λβ(p(t)) = Λα(p(c − t)),

for every polynomial p in one real variable. This immediately leads to the desired
result about the supports of the Berger measures. ��

We are now ready to prove that for spherically quasinormal 2-variable weighted
shifts the property of being recursively generated transfers from the 0-th row in the
weight diagram to the 0-th column.

Theorem 5.7 Let W(α,β) be a spherically quasinormal 2-variable weighted shift,
with constant c > 0, and assume that the unilateral weighted shift W0 (which
corresponds to the 0-th row in the weight diagram of W(α,β)) is recursively
generated. Then the unilateral weighted shift V0 ((which corresponds to the 0-th
column) is also recursively generated.

Proof The proof is based on a simple observation at the level of the Riesz functional
associated with the moment matrixM ≡ M(α, β). Since S+T = c 1 in the column
space of M , it follows that, at the level of polynomials in the indeterminates s and
t , one can replace any occurrence of s by c − t . As a consequence, the same holds
for the columns ofM , by the functional calculus introduced and studied in [17, 18]
and [19]. Thus, the linear relation

Sk = ϕ01+ ϕ1S + · · · + ϕk−1Sk−1

can be rewritten (in terms of T ) as

(c 1− T )k = ϕ01+ ϕ1(c 1− T )+ · · · + ϕk−1(c 1− T )k−1. (5.10)
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Inspection of (5.10) already shows that T k can be expressed in terms of columns
labeled by monomials of degree up to k−1. In what follows we make the recursive
relation explicit. Recall that, by the Binomial Theorem,

(c 1− T )p =
p∑
j=0

(−1)j
(
p

j

)
cp−j T j .

As a result, (5.10) becomes

k∑
j=0

(−1)j
(
k

j

)
ck−j T j =

k−1∑
i=0

ϕi

i∑
j=0

(−1)j
(
i

j

)
ci−j T j (5.11)

=
k−1∑
j=0

⎡
⎣k−1∑
i=j

(−1)j
(
i

j

)
ϕic

i−j
⎤
⎦ T j (5.12)

It follows that

(−1)kT k +
k−1∑
j=0

[
(−1)j

(
k

j

)
ck−j

]
T j =

k−1∑
j=0

(−1)j
⎡
⎣k−1∑
i=j

(
i

j

)
ϕic

i−j
⎤
⎦ T j , (5.13)

and therefore

(−1)kT k =
k−1∑
j=0

(−1)j
⎡
⎣k−1∑
i=j

(
i

j

)
ϕic

i−j −
(
k

j

)
ck−j

⎤
⎦ T j , (5.14)

so that

T k =
k−1∑
j=0

(−1)k−jψjT j , (5.15)

where

ψj :=
k−1∑
i=j

(
i

j

)
ϕic

i−j −
(
k

j

)
ck−j .

We have thus found explicitly the recursive coefficients for the moments associated
with V0. This completes the proof. ��
Corollary 5.8 Let W(α,β) be a spherically quasinormal 2-variable weighted shift,
with constant c > 0, and assume that the unilateral weighted shift W0 (which
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corresponds to the 0-th row in the weight diagram of W(α,β)) is recursively
generated. Let σ be the Berger measure ofW0, and let μ be the Berger measure of
W(α,β). Then

(i) suppμ ⊆ supp σ × (c − supp σ); and
(ii) μ is finitely atomic.

Proof Recall that σ and τ are the marginal measures of μ (cf. Definition 6.1). By
Lemma 6.2, we know that

suppμ ⊆ suppσ × supp τ.

By Corollary 5.6, we obtain (i). Since σ is finitely atomic, (ii) is now immediate.
��

Remark 5.9 LetW(α,β) be a spherically quasinormal 2-variable weighted shift, with
constant c > 0, and assume that the unilateral weighted shiftW0 (which corresponds
to the 0-th row in the weight diagram of W(α,β)) is recursively generated. By
Theorem 5.2, W1 is also recursively generated, and let σ (1) be its (finitely atomic)
Berger measure. Although the recursive coefficients transfer from W0 to W1, it
is not necessarily true that σ and σ (1) have the same support. By Lemma 6.4 in
Appendix, we know that σ (1) ) σ , so supp σ (1) ⊆ supp σ . Example 5.10 below
shows that this inclusion may be proper. ��

First, we need some terminology.
Given three positive numbers a, b, c such that 0 < a < b < c, we recall

Stampfli’s result on the existence of a subnormal unilateral weighted shift, denoted
byW(

√
a,
√
b,
√
c)∧ , whose first three weights are a, b and c [38]. Here we will briefly

recall the approach to Stampfli’s result presented in [15, 16] and [17]. As proved
in those papers, the Berger measure σ of W(

√
a,
√
b,
√
c)∧ is finitely atomic, and the

coefficients of recursion are given by

ϕ0 = −ab(c− b)

b − a
and ϕ1 = b(c− a)

b − a
; (5.16)

cf. [14, Section 1, p. 81], [15, Example 3.12], [16, Section 3]. Moreover, the atoms
t0 and t1 are the roots of the equation

s2 − (ϕ0 + ϕ1s) = 0, (5.17)

and the densities ρ0 and ρ1 uniquely solve the system of equations

{
ρ0 + ρ1 = 1

ρ0s0 + ρ1s1 = α20,
(5.18)
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where

s0 :=
ϕ1 −

√
ϕ21 + 4ϕ0

2
, s1 :=

ϕ1 +
√
ϕ21 + 4ϕ0

2
, ρ0 := s1 − a

s1 − s0
, and ρ1 := a − s0

s1 − s0
.

(5.19)

We can now easily see that ϕ0 < 0, ϕ1 > 0, and s0 < s1 < ϕ1. We thus obtain
σ = ρ0δs0 + ρ1δs1 , which is the Berger measure of W(

√
a,
√
b,
√
c)∧ . The recursive

relation, at the level of the weights, is

α2k+1 = ϕ1 + ϕ0

α2k

(k ≥ 0). (5.20)

In view of the preservation of the recursive relation fromW0 toW1, one might be
tempted to claim that all unilateral weighted shiftsWk2 corresponding to horizontal
rows have Berger measures σ (k2) with the same support. This is not true. What
is actually true is that supp σ (k2) = supp σ (1) for all k2 > 1. The support of
σ (1), however, might be strictly smaller than the support of σ . We will exhibit
this behavior in the following concrete example. Notice that in this example, the
2-variable weighted shift is actually a spherical isometry.

Example 5.10 Consider the 2-variable weighted shift T ≡ (T1, T2) = W(α,β) ∈ C0
whose weight diagram is given in Fig. 1ii. That is, W0 is the Stampfli subnormal

completion of the initial segment of weights {
√

2
3 ,

√
5
6 ,

√
14
15 }. Using (5.16) one gets

at once

ϕ0 = −
α2(0,0)α

2
(1,0)

(
α2(2,0) − α2(1,0)

)

α2(1,0) − α2(0,0)

= −1

3
and ϕ1 =

α2(1,0)

(
α2(2,0) − α2(0,0)

)

α2(1,0) − α2(0,0)

= 4

3
.

(5.21)

It follows thatW0 is subnormal with Berger measure

σ = 1

2
δ 1
3
+ 1

2
δ1.

Since

β(k1,0) :=
√
1− α2(k1,0) (k1 ≥ 0) ,

direct calculation yields

β(k1,0) =
√

2

3
(
3k1 + 1

) k1 ≥ 0.
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Theorem 5.2 says thatW1 = shift(α(0,1), α(1,1), · · · ) is also a recursively generated
weighted shift with the same recursion coefficients ϕ0 and ϕ1. Moreover, the
generating function

g (t) := t2 − (ϕ1t + ϕ0)

has two distinct real roots

0 < s0 ≡ 1

3
< s1 ≡ 1.

Let

V :=
(
1 1
s0 s1

)

and let

(
ρ0 (W1)

ρ1 (W1)

)
= V −1

(
γ0 (W1)

γ1 (W1)

)
.

We then have

σ (1) = ρ0 (W1) δs0 + ρ1 (W1) δs1,

where σ (1) is the Berger measure of W1 ≡ shift(
√

1
3 ,

√
1
3 , · · · ). A straightforward

calculation yields ρ0(W1) = 1 and ρ1(W1) = 0. It follows that σ (1) = δ 1
3
,

as desired. Moreover, for k1 ≥ 0 we have β(k1,1) =
√

2
3 . Now, W2 =

shift(
√

1
3 ,

√
1
3 , · · · ) = W1 and, more generally,Wk2 = W1 for all k2 ≥ 1. We have

thus shown that even within the class of spherically isometric 2-variable weighted
shifts it is indeed possible to shrink the support of σ as we move from the 0-th row
to the remaining rows in the weight diagram. ��

We will now state and prove an improved version of Lemma 6.4. We have known
this fact for many years, as it was implicit in the proof of [21, Theorem 3.1]. We
have also referred to it in research presentations, but somehowwe have never had the
occasion to give a formal proof. Let us first recall that for h ≥ 1 we letLh :=∨{en :
n ≥ h} denote the invariant subspace obtained by removing the first h vectors in the
canonical orthonormal basis of �2(Z+). Thus, ifWω is subnormal, then the Berger
measure of Wω|Lh

is 1
γh
shdσω(s), whereWω|Lh

means the restriction ofWω to the
invariant subspace Lh. We can extend this result to the case of 2-variable weighted
shifts. We first recall that for an arbitrary 2-variable weighted shift W(α,β), we let
Mj (resp.Ni ) be the subspace of �2(Z2+) spanned by the canonical orthonormal
basis associated to indices k = (k1, k2) with k1 ≥ 0 and k2 ≥ j (resp. k1 ≥ i and



232 R. E. Curto and J. Yoon

k2 ≥ 0). IfW(α,β) is subnormal with Berger measure μ, then the Berger measure of

Wω|Mj
is t j

γ0j (W(α,β))
dμ(s, t). We then have:

Theorem 5.11 Consider the 2-variable weighted shift T ≡ (T1, T2) = W(α,β)

given by Fig. 1i. Let σ (j) and τ (i) be as in Lemma 6.4. If T ≡ (T1, T2) = W(α,β)

is subnormal, then σ (j+1) / σ (j) and τ (i+1) / τ (i) for (i, j ≥ 1), where /
indicates that the two relevant measures are mutually absolutely continuous.

Proof Let R := X × Y ≡ [0, a1] × [0, a2], where ak := ‖Tk‖ (k = 1, 2). By
Lemma 6.4, we only need to show the following implication:

for j ≥ 1, σ (j) ) σ (j+1); that is, σ (j+1) (E) = 0 �⇒ σ (j) (E) = 0 (for all E ⊆ X).

Since W(α,β) ≡ (T1, T2) is subnormal, we let μ be the Berger measure of W(α,β).
Then, by Lemma 6.4, for j ≥ 1 dμj (s, t) := 1

γ0j (W(α,β))
tj dμ(s, t), and as a result

dμj+1(s, t) = 1

γ0j
(
W(α,β)

) tj+1dμ(s, t)

= γ0j
(
W(α,β)

)
γ0j+1

(
W(α,β)

) tdμj (s, t)

= γ0j−1
(
W(α,β)

)
γ0j+1

(
W(α,β)

) t2dμj−1(s, t).

Suppose now that for j ≥ 1 and for E ⊆ X, σ (j+1) (E) = 0. Then, by Lemma 6.6,
we have that

σ (j+1)(E) = μXj+1(E) = μj+1(E × Y ) =
∫
E×Y

dμj+1(s, t) = 0

�⇒
∫
E×Y

t2dμj−1(s, t) = 0.

Since t2 ≥ 0, we know that t2 = 0 a.e. [μj−1] on E × Y ; it follows that t = 0 a.e.
[μj−1] on E × Y . Then

∫
E×Y

tdμj−1(s, t) = 0 �⇒
∫
E×Y

dμj(s, t) = 0 �⇒ σ (j)(E) = 0.

This completes the proof. ��
Remark 5.12 (i) We now refer back to the 2-variable weighted shift T ≡ (T1, T2) =
W(α,β) constructed in Example 5.10. Since W(α,β) is quasinormal, it is also
subnormal by Theorem 3.10; let μ be its Berger measure. It is easy to see that
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T|M ∈ H∞ and that the Berger measure of T|M is μM = δ( 1
3 ,

2
3

). By Lemma 6.3

and Fig. 1ii, we can see that (μM)ext = δ( 1
3 ,

2
3

) and hence it follows that

(μM)Xext = δ 1
3
.

Since β2
00 = 1

3 , Lemma 6.3 shows that

μ = 1

2

(
δ( 1

3 ,
2
3

) + δ(1,0)

)
. ��

The following problem arises naturally.

Problem 5.13 Consider a spherically quasinormal 2-variable weighted shift T ≡
(T1, T2) = W(α,β) and let σ be the Bergermeasure ofW0. SinceW(α,β) is subnormal
by Theorem 3.10, let μ be the Berger measure ofW(α,β).

(i) Describe μ in terms of σ .
(ii) Assume that W0 is recursively generated. By Corollary 5.8, we know that μ

is finitely atomic, and that suppμ ⊆ supp σ × (c− supp σ). What else can we
say? Can we give a concrete formula for the atoms and densities of μ?

In Problem 5.13(ii) we know that W0 carries all the information about W(α,β);
therefore, we know that the atoms and densities of μ must algorithmically be
obtained from those of σ . Thus, the question refers to finding such algorithm. In
Example 5.14 below, we show how one might go about finding a concrete formula
for μ.

Example 5.14 In Problem 5.13, assume that σ is 2-atomic, and write σ ≡ λ0δs0 +
λ1δs1 , with 0 ≤ s0 < s1 ≤ 1 and λ0, λ1 > 0. From Corollary 5.8 we know that

suppμ ⊆ {(s0, c − s0), (s0, c − s1), (s1, c − s0), (s1, c − s1)}.
Moreover, suppμ must have at least two atoms, because σ (and τ ) are 2-atomic.
Thus, we can postulate that μ = ρ00δ(s0,c−s0) + ρ01δ(s0,c−s1) + ρ10δ(s1,c−s0) +
ρ11δ(s1,c−s1), with ρij ≥ 0 (i, j = 1, 2). We now write the moment equations
as follows:

⎛
⎜⎜⎝

1 1 1 1
s0 s0 s1 s1

c − s0 c − s1 c − s0 c − s1

s0(c − s0) s0(c − s1) s1(c − s0) s1(c − s1)

⎞
⎟⎟⎠

⎛
⎜⎜⎝
ρ00

ρ01

ρ10

ρ11

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
γ(0,0)

γ(0,1)

γ(1,0)

γ(1,1)

⎞
⎟⎟⎠ . (5.22)

Denote the 4 × 4 matrix in (5.22) by V . A calculation using Mathematica [37]
shows that detV = −(s1 − s0)

4 < 0. It follows that we can always find real
numbers ρ00, ρ01, ρ10, ρ11 satisfying the moment equations. However, that is not
sufficient, since we need to guarantee that these four numbers are nonnegative. We
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T1

T2

(0, 0) (1, 0) (2, 0) (3, 0)

1
2

2
3

3
4 · · ·

1
3

2
4

3
5 · · ·

1
4

2
5

3
6 · · ·

· · · · · · · · · · · ·

1
2

2
3

3
4

...

1
3

2
4

3
5

...

1
4

2
5

3
6

...
The 2-variable weighted shift W(α,β) whose weight

diagram is shown on the left has the following properties:

(i) α2
(k1,k2) + β2

(k1,k2) = 1 for all (k1, k2) ∈ Z
2
+.

(ii) W(α,β) = W(α,β)
D

= W(α,β).

(iii) W(α,β) is a spherical isometry.

Fig. 2 The weight diagram on the left corresponds to the 2-variable weighted shift in Ques-
tion 5.15

do know that γ(0,0) = 1, γ(0,1) = λ0s0 + λ1s1, γ(1,0) = λ0(c− s0)+ λ1(c− s1) and
γ(1,1) = γ(1,0)β

2
(1,0). We also know that β2

(1,0) = c−α2(1,0) = c− γ(2,0)
γ (1,0) . Using this

information, a calculation with Mathematica reveals that ρ01 = ρ10 = 0, and that
ρ00 = λ0 and ρ11 = 1− λ0. It follows that

μ = λ0δ(s0,c−s0) + (1− λ0)δ(s1,c−s1).

In particular,μ is always 2-atomic. For instance, the Bergermeasure of the spherical
isometry built in Example 5.10 is

μ = 1

2
(δ
( 13 ,

2
3 )
+ δ(1,0)).

This formula for μ is entirely consistent with Remark 5.12. ��
We conclude this section with an intriguing question.

Question 5.15 Let W0 be the Bergman shift shift(
√

1
2 ,

√
2
3 ,

√
3
4 , · · · ), and use

Sect. 4 to build a spherically quasinormal 2-variable weighted shift W (cf. Fig. 2).
For this shift the j -th row is identical to the j -column, for every j ≥ 0. Note also
thatW is a close relative of the Drury-Arveson 2-variable weighted shift, in that the
j -row ofW is the Agler Aj+2 shift. What is the Berger measure ofW?

6 Appendix

For the reader’s convenience, in this section, we gather several well-known auxiliary
results which are needed for the proofs of the main results in this article. To
check subnormality of 2-variable weighted shifts, we introduce some definitions
[22, Proposition 3.10].
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Definition 6.1

(i) Let μ and ν be two positive Borel measures on a set X. We say that μ ≤ ν on
X, if μ(E) ≤ ν(E) for each Borel subset E ⊆ X; equivalently, μ ≤ ν if and
only if

∫
f dμ ≤ ∫

f dν for all f ∈ C(X) such that f ≥ 0 on X.

(ii) Let μ be a probability Borel measure on X × Y , and assume that 1
t
∈ L1(μ).

The extremal measure μext (which is also a probability Borel measure) on
X × Y is given by dμext (s, t) := (1− δ0(t))

1

t

∥∥∥ 1
t

∥∥∥
L1(μ)

dμ(s, t).

(iii) Given a Borel measure μ on X × Y , the marginal measure μX is given by
μX := μ ◦ π−1X , where πX : X × Y → X is the canonical projection onto X.
Thus μX(E) = μ(E × Y ), for every E ⊆ X.

Lemma 6.2 Let μ be a probability Borel measure onX×Y , and let μX and μY be
the two marginal measures. Then

suppμ ⊆ suppσ × supp τ ⊆ X × Y.

Lemma 6.3 ([22, Proposition 3.9] Subnormal Backward Extension) Assume
that W(α,β) ∈ H0 (see Fig. 1i) and that W(α,β)|M is subnormal with associated
measure μM. Then W(α,β) is subnormal if and only if the following conditions
hold:

(i) 1
t
∈ L1(μM);

(ii) β2
00 ≤ (

∥∥∥ 1
t

∥∥∥
L1(μM)

)−1;

(iii) β2
00

∥∥∥ 1
t

∥∥∥
L1(μM)

(μM)Xext ≤ σ .

Moreover, if β2
00

∥∥∥ 1
t

∥∥∥
L1(μM)

= 1, then (μM)Xext = σ . In the case when W(α,β) is

subnormal, the Berger measure μ ofW(α,β) is given by

μ = β2
00

∥∥∥∥1t
∥∥∥∥
L1(μM)

(μM)ext +
(
σ − β2

00

∥∥∥∥1t
∥∥∥∥
L1(μM)

(μM)Xext

)
× δ0. (6.1)

Recall that given two positive regular Borel measures μ and ω, μ is said to be
absolutely continuous with respect to ω (in symbols, μ ) ω) if for every Borel set
E, ω(E) = 0⇒ μ(E) = 0.

Lemma 6.4 ([21, Theorem 3.3]) Consider the 2-variable weighted shift T ≡
(T1, T2) = W(α,β) given by Fig. 1i. If T ≡ (T1, T2) = W(α,β) is subnormal, then
σ (j+1) ) σ (j) and τ (i+1) ) τ (i) (i, j ≥ 0), where σ (j) (resp. τ (i)) is the Berger
measure of the j -th horizontal slice of T1 (resp. the i-th vertical slice of T2).
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Lemma 6.5 ([21]) Let μ and ν be two regular Borel measures on R, and assume
that μ) ν. Then μX ) νX and μY ) νY .

Lemma 6.6 ([21]) Let μ be the Berger measure of a subnormal 2-variable
weighted shift, and for j ≥ 0 let σ (j) be as in Lemma 6.4. Then σ (j) = μXj ,

where dμj (s, t) := 1
γ0j (W(α,β))

tj dμ(s, t).
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Remarks on the Interplay Between
Algebra and PDE

Dmitry Khavinson

Dedicated to the memory of S. Shimorin, an extraordinary
mathematician and a kind and gentle man

Abstract We discuss Hesse’s conjecture for homogeneous polynomials and Koren-
blum’s conjecture on algebras of harmonic functions from the standpoint of
nonlinear first-order PDE. Also, we extend a recent theorem of McKinley and
Shekhtman for homogeneous polynomial partial differential operators to a wider
class of linear PDE with entire coefficients.

1 Hesse’s Conjecture

In 1859, Hesse [5] conjectured that if a homogenous polynomial u of N > 1

variables has a vanishing Hessian
(

∂2u
∂xj ∂xk

)N
j,k=1, then the partial derivatives ∂u

∂xi
,

j = 1, . . . , N are linearly dependent. In other words, Hess u ≡ 0 ⇔ ∇u :=
grad u : CN → hyperplane. For example, let N = 2 and u(x, y) is a homogeneous
C2-function of degree of homogeneity k+1, such that Hess u = uxxuyy−u2xy ≡ 0.
Let ux = f , uy = g, f, g are homogeneous of degree k. Then, fxgy − fygx = 0

implies fx
gx
= fy

gy
:= λ, while by homogeneity, xfx + yfy = k f and xgx + ygy =

kg = 1
λ
xfx + 1

λ
y fy = k

λ
f . So, f = λg and fx = λxg + λgx . Hence, λx ≡ 0 and,

similarly, λy ≡ 0. Thus, λ ≡ const = c, ux = cuy and ∇u maps C2 into a line.
Gordan and Nöther [2] showed that Hesse’s conjecture holds for N = 2, 3, 4

but is false for n ≥ 5 in view of the following example of a cubic in 5 variables:
u (x1, . . . , x5) = x1x

4
4 + x2x4x5 + x3x

2
5 . Indeed, denoting Dju = ∂u

∂xj
, we have

(D1u) (D3u) − (D2u)
2 ≡ 0. Hence, the components of ∇u are algebraically
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dependent, so Hess u ≡ 0 and ∇u : C5 → {
x1x3 − x22 = 0

}
—cf. [10] for further

discussion.

Note u also satisfies a linear PDE, D1D3 u − D2
2 u = 0. In other words, if we

denote by P (x1, x2, x3) = x1x3 − x22 , a quadratic homogeneous polynomial, then
Gordan–Nöther quintic satisfies two equations: a nonlinear one, P(∇u) = 0; and a
linear one, P(D)(u) = 0. We shall return to this point later in the discussion—cf.
[10].

2 The Higher Ground: General Nonlinear First-Order PDE

Looking for the higher ground, one might ask whether if u, a holomorphic function,
satisfies a “purely” nonlinear equation F(∇u) = 0, with F : CN → C being an
entire or a meromorphic function with no linear factors, then the choices for u to
be a global solution of such nonlinear equation are severely limited—e.g., perhaps
forcing u to be linear. The Gordan–Nöther example, though crashing such hopes
in general, is not overly satisfying since their u is a function of 5 variables while
F := x1x3−x22 is a function of only 3 variables so F vanishes on the 2-dimensional
linear subspace {(x4, x5)}. The following result is relevant to our discussion.

Theorem 1 (Khavinson [7]) If an entire function u solves the (eiconal) equation
u2x + y2y − 1 = 0, then u is linear.

The proof was based on some elementary trick, thus missing the “correct,” much
more general, theorem.

Theorem 2 (Hemmati (Guerra) [4]) If F : C
2 → C is a meromorphic,

purely nonlinear (cf. above) function and u is a meromorphic in C
2 solution of

F
(
ux, uy

) = 0, then u is a linear function.

Thus, in particular, if for a meromorphic in C2 function u, the gradient map, grad
u : C2 → V , maps C2 into an algebraic, nonlinear and irreducible variety V , u
is a linear function and the grad u is a constant map—cf. [4]. This is, of course, a
far-reaching generalization of Hesse’s conjecture for N = 2. We refer to the survey
[6] for recent extensions and generalizations of the Hemmati (Guerra) theorem.

Remark 1

(i) Not only is Theorem 2 more general than its predecessor, Theorem 1, but
its proof is much shorter and more to the point. Namely, it is easy to
check [4] that the characteristics for F

(
ux, uy

)
are all straight lines. Also,

ux, uy stay constant on characteristics while nonlinearity implies that these
characteristic lines have different slopes. This yields multivaluedness of ux, uy
at the intersection points, thus implying that those functions have branching
singularities and, hence, cannot be meromorphic.
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(ii) Also, as another illustration of the failure of Hesse’s conjecture in higher
dimensions, Theorem 1 already fails in C

3. The function z − ϕ(x + iy) :=
u(x, y, z) satisfies the eiconal in C

3 for any entire function ϕ of one variable.
Moreover, in higher dimensions there are more and more opportunities for

entire solutions of the eiconal
N∑
1

(
∂u
∂zj

)2 = 1. Take in C
5, for example,

u = ϕ (z1 + i z2)+ ψ (z3 + i zu)+ z5 with entire ϕ,ψ , etc.
(iii) It is worth noticing that nonlinear equations in R

N are even more rigid. For
example, as is well-known (cf. the references in [4, 7]), any C1 solution

u in R
N of

N∑
1
u2xj = 1 that is real-valued is linear. Indeed, the eiconal

equation describes the velocity of light moving along the normals to the
level surface with the constant speed (=1). If the level surfaces of u have
nontrivial curvatures, the normals will intersect causing for the solution to
become multivalued.

3 Korenblum’s Conjecture

What happens when a solution of a linear PDE generates an algebra of solutions?
Consider the following example.

Example 1 Let P =
N∑
1
x2j , xj ∈ R, so P(D) = Δ. If Δu = 0, and Δu2 = 0, then

Δu2 = 2uΔu + 2
N∑
1

(
∂u
∂xj

)2 = 0, thus implying that u also satisfies a nonlinear

equation (grad u)2 = 0, a similar equation to the eiconal. In the latter case, one can
easily check that for all k ∈ N,Δ

(
uk

) = 0, thus u generates an algebra of harmonic
functions. For example, Δu3 = uΔu2 + u2Δu + 2u(grad u)2 = 0, etc. In two

variables,
2∑
1

(
∂u
∂xj

)2 = 0 is equivalent to either ∂u
∂x1
+ i ∂u

∂x2
= 0, or ∂u

∂x1
− i ∂u

∂x2
= 0,

thus making u either a holomorphic or an anti-holomorphic function.

Korenblum [9] in the late 1970s conjectured that if u ∈ C2(Ω), Ω ⊂ R
3 is a

domain, and Δu = Δu2 = 0 (and then Δuk = 0, k ∈ N), then, after an appropriate
rotation of coordinates, u must be either an analytic or an anti-analytic complex-
valued function in two dimensions. Korenblum announced several proofs of the
conjecture, all of which contained gaps.

The reason was that, as stated, the conjecture is false and the intensely developing
theory of harmonic morphisms (cf., e. g., [1]) provides many counterexamples.

However, if we consider a global version of the conjecture, it might as well be
true.

The following unpublished result by the author verifies the conjecture in the
category of polynomials.
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Theorem 3 (DK 1992, Unpublished) If u is a polynomial inR3 andΔu = Δu2 =
0, then after an appropriate rotation of the coordinates, u must become an analytic
or an anti-analytic complex polynomial in 2 dimensions.

The proof rests on the Lemma (DK 1992, unpublished), characterizing carriers
of singularities of harmonic functions in C

3.

Lemma 1 ([8, Prop. 20.1]) Let ϕ = ϕ (z1, z2, z3) be a homogeneous polynomial of
degree m such that the variety Γ := {

z ∈ C
3 : ϕ(z) = 0

}
is everywhere character-

istic (cf., e.g. [8, pp. 16, 53, 151] with respect to Δ :=
3∑
1

∂2

∂z2i
, i. e.,

3∑
1

(
∂ϕ
∂zi

)2 = 0

on Γ . Then, up to a constant factor, either ϕ (z1, z2, z3) =
(

3∑
1
αjzj

)m

, where

αj ∈ C are constants such that
3∑
1
α2j = 0, i.e., Γ is a characteristic (w.r.t. Δ)

plane, or ϕ (z1, z2, z3) =
(

3∑
1
z2j

)m
2

, and Γ is an isotropic cone.

For our purposes, we need the following obvious corollary.

Corollary 1 If ϕ (z1, z2, z3) is a homogeneous polynomial of degree m satisfying

an “eiconal” equation
3∑
1

(
∂ϕ
∂zi

)2 = 0 in C
3, then, up to a constant factor, ϕ =

(
3∑
1
αj zj

)m

,
3∑
1
α21 = 0.

We shall sketch the proof of the lemma later. Now, let us finish the proof of the
theorem.

Let u = u0 + · · · + um, where uj are homogeneous harmonic polynomials
of degree j ≤ m. Then, clearly, the senior term um satisfies Δu2m = 0, hence
3∑
1

(
∂um
∂zi

)2 ≡ 0 and, by Corollary 1, um =
(

3∑
1
αj zi

)m

, with
3∑
1
α2j = 0. Rotating

the coordinate system in C
3 we can assume without loss of generality that um =

cm (z1 + i z2)
m, where c is a constant. Now um−1um is harmonic as well as the

second senior term in the expansion of u2 and since u2m is harmonic. Therefore, 0 =
Δ(um−1um) = um−1Δum + umΔum−1 + 2 grad um−1 · cm(1, i) (z1 + i z2)

m−1 =
2Cm

(
∂um−1
∂z1
+ i

∂um−1
∂z2

)
(z1 + i z2)

m−1. Hence, ∂um−1
∂z1

+ i
∂um−1
∂z2

= 0, yielding

um−1 = cm−1 (z1 + i z2)
m−1 + b zm−13 . But Δum−1 = b(m− 1)(m− 2) zm−33 = 0,

yielding b = 0 and um−1 = cm−1 (z1 + i z2)
m−1. Continuing this “backward”

induction, we conclude that u = P (z1 + i z2), where P(u) is a polynomial of
degreem of one variable. Thus, it remains to indicate the proof of the lemma.

Here are the main steps—cf. [8, Ch. 20, Sec. 2].
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1. Solving ϕ(z) = 0 for one of the variables, say z3, we obtain on Γ = {ϕ(z) = 0},
z3 = ψ (z1, z2), whose ψ , as is easily-verified, satisfies an eiconal equation(
ψj := ∂ϕ

∂zj
, j = 1, 2

)
, ψ2

1 + ψ2
2 = −1. ϕ is homogeneous of order m, so

3∑
1
zjϕj = mϕ, and the implicit differentiation yields ψj = −ϕj

ϕ3
, j = 1, 2,

so −z1ϕ3ψ1 − z2ϕ3ψ2 + z3ϕ3 = mϕ = 0 on Γ .
2. Substituting z3 = φ (z1, z2), we conclude that z1ψ1 + z2ψ2 = ψ , i.e., φ is

homogeneous of order 1 function in 2 variables. Switching to polar coordinates
r, θ we can write φ = rf (θ) and it is easy to check that f satisfies an ODE(
f ′

)2 + f 2 = 1. Differentiating the latter equation we obtain a second-order
ODE that factors easily producing two solutions: (I) f = ±1, in which case Γ is

an isotropic cone

{
3∑
1
z2j = 0

}
, or (II) f = β1 cos θ + β2 sin θ , β2

1 + β2
2 = 1, in

which case Γ is a plane.

Remarks

(i) In view of the results on global solutions of the eiconal equations in 2D
described in Sect. 2, Korenblum’s conjecture holds for entire functions u in

C
3 as well. Indeed, as before, Δu2 = 0 ⇒

3∑
1

(
∂u
∂zi

)2 ≡ 0, so on a level

surface {u = c}, writing z3 = ψ (z1, z2), we have
(
ψz1

)2 + (
ψz2

)2 = −1,
i.e., ψ is a “global” solution of an eiconal, and hence must be linear. Therefore,
all level surfaces of u are planes, and after a rotation, we conclude that u =
f (z1 ± i z2), where f is an entire function of one variable.

(ii) With appropriate modifications one can show that an extended Korenblum’s
conjecture holds for polynomials in N variables but the statement must be
adjusted, and loses its esthetic appeal. For example, in C4, u = f (z1 + i z2)+
g (z3 − i z4), where f, g are analytic functions of one variable, satisfy Δu =
Δu2 = · · · = Δuk = · · · = 0. In higher dimensions there are even more
opportunities to group the variables according to the same principle by taking

corresponding vectors (0, . . . , α1, 0, . . . , 0, αk, 0, . . . ), k ≤ N ,
k∑
1
α21 = 0 in

the isotropic cone Γ0 =
{
z :

N∑
1
z2j = 0

}
and applying functions of one variable

to dot products of these vectors with z = (z1, . . . , zN ). We leave it to the
interested reader to draw out the corresponding statements.
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4 The McKinley–Shekhtman Conjecture

Recall that the Gordan–Nöther homogeneous cubic u in Sect. 1 satisfies two
homogeneous equations: P(grad u) = 0 (first-order nonlinear equation), where
P (z1, . . . , z5) = z1z3 − z22, and a linear equation P(D) u = D1D3u − D2

2u = 0.
In a recent elegant paper [10], McKinley and Shekhtman suggested that this is part
of a general phenomenon.

Conjecture 1 (McKinley–Shekhtman [10]) Let P, u be homogeneous polynomials.
If P(grad u) = 0, then P(D) u = 0.

The conjecture is based on the general feeling, underscored in Sect. 2, that global
solutions of the first-order nonlinear PDE are quite special and scarce.

Example 2 As was shown in Sect. 3, a homogeneous polynomial u in C3 satisfying

an “eiconal”
3∑
1

(
∂u
∂zi

)2 ≡ 0 has a very special form c

(
3∑
1
αj zi

)m

,
3∑
1
α2j = 0, thus

obviously satisfying Δu = 0. We refer the reader to [10], where several special
cases of the above conjecture are verified.

Also in [10], the following weak converse to the M–S conjecture is proved.

Theorem 4 ([10]) Let P be a homogeneous polynomial while u is a polynomial. If
P(D)

[
f k

] ≡ 0 for all k ∈ N, then P(grad f ) ≡ 0.

The proof in [10] is based on clever algebraic manipulations. Theorem 4
unexpectedly has a nice implication in the approximation theory based on the
following result by Pinkus and Wajnryb [11].

Theorem 5 ([11]) Let f ∈ C [z1, . . . , zn) be a polynomial, then the following are
equivalent:

(i) P(f ) := Span
{[f (· + b)]k : b ∈ C

N, k ∈ N
} 
= C [z1, . . . , zN ].

(ii) ∃ polynomial P : P(D) [f k
] = 0, for all k ∈ N

(iii) P(f ) 
= C
(
C
N
)
with respect to the usual topology of convergence on

compact subsets of CN . Invoking this, a nice corollary to Theorem 4 is given
in [10].

Invoking this, a nice corollary to Theorem 4 is given in [10].

Corollary 2 Let f be a homogeneous polynomial. If P(f ) 
= C [z1, . . . , zN ], then
there exists a homogeneous polynomial P : P(grad f ) ≡ 0, i.e., grad f : CN →
C
N maps CN into an algebraic variety and, hence, Hess f ≡ 0.

For the proof one just takes a senior homogeneous part of a polynomial
guaranteed by Theorem 5 and applies Theorem 4. However, applying the standard
classical result in PDE known as the Delassus–Le Roux theorem (cf. [8, pp. 22,
153], one can substantially expand Theorem 4 in [10] and the proof becomes much
more straightforward and transparent.
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Theorem 6 Let P(D) := ∑
|α|≤m

aα(z)D
α , z = (z1, . . . , zN ), α = (α1, . . . , αN ),

αj ∈ N ∪ {0}, Dα =
(

∂
∂z1

)α1 · · ·( ∂
∂zN

)αN
be a linear differential operator with

entire coefficients aα. Let u : CN → C be an entire function and P(D)
[
uk

] = 0,
for all k in some arithmetic progression (e.g., k ∈ N, or k = 2n + 1, n ∈ N, etc.).

Then,
∑
|α|=m

aα(z)(grad u)α = ∑
|α|=m

aα(z)
(
∂u
∂z1

)α1 · · ·( ∂u
∂zN

)αN ≡ 0. Thus, grad u

maps CN into an analytic hypersurface and, hence, Hess u ≡ 0.

(Theorem 4 follows at once from Theorem 6 when P = ∑
|α|=m

aαz
α, a

homogeneous polynomial, i.e., P(D) is a constant coefficients operator.)
The following result of Delassus–Le Roux is the key.

Lemma 2 (cf. [8, pp. 22, 153 and the References there]) Let Γ := {z : ϕ(z) = 0}
be a non-singular analytic hypersurface in C

N and ν be a holomorphic solution of
P(D) ν = 0 in CN

� Γ and ν is singular everywhere on Γ . Then, Γ is everywhere
characteristic with respect to P(D), i.e.,

∑
|α|=m

aα(z)(grad ϕ)α ≡ 0 on Γ .

Remark 2 The Delassus–Le Roux theorem says simply that the singularities of
solutions of linear analytic PDE “propagate” through C

N exclusively along char-
acteristic surfaces.

From Lemma 2, Theorem 6 follows almost at once.

Proof First assume, for the sake of clarity, P(D)
[
uk

] = 0, for all k ∈ N . For
any c ∈ C, in an open neighborhood where |u| < |c| we have f := 1

c−u =
1/c

∞∑
0

uk

ck
, and the series converges. Hence, by the hypothesis, P(D)(f ) = 0 in

that neighborhood, and by analytic continuation everywhere in C
N
� {u = c}. By

Lemma 2, Γc := {u = c} must be everywhere characteristic with respect to P(D),
i.e.,

∑
|α|=m

aα(z)(gradu)α ≡ 0 on Γc. But taking a continual family of Γc, c runs

over an open set in C, we arrive at the conclusion of the theorem.

The proof is easily modified to establish the theorem in full generality. Indeed, if
the hypothesis holds for k = n� + d , �, d ∈ N, fixed, n = 1, 2, . . . we can always
write

fc := ud

c� − u�
=
∞∑
n=0

ud

c�

(u
c

)n� =
∞∑
r=0

un�+d

c(n+n�)

and then proceed exactly as before.
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Remarks

(i) The classical (“calculus”) proof of the Delassus–Le Roux theorem can be
found in [3, Ch. 3]. A modern proof based on the elementary but far-reaching
extension of the Cauchy–Kovalevskaya theorem due to Zerner (1971) is in [8,
pp. 22, 153].

(ii) Instead of the family of functions
{

1
u−c , c ∈ C

}
, one can, of course, take

dilations of any function f (u) with finitely many singularities on the circle
of convergence of its Taylor series. We leave the straightforward details of
formulating the corresponding result to the reader.
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Which Quartic Polynomials Have
a Hyperbolic Antiderivative?

Rajesh Pereira

In memory of Serguei Shimorin

Abstract Every linear, quadratic or cubic polynomial having all real zeros is the
derivative of a polynomial having all real zeros. The statement is false for higher
degree polynomials. In particular, not every fourth degree polynomial with real
zeros is the derivative of a polynomial having all real zeros. We derive a necessary
and sufficient condition for a quartic polynomial to be the derivative of a polynomial
having all real zeros. This condition is a single quadratic form inequality involving
the zeros of the quartic polynomial.

Keywords Geometry of polynomials · Hyperbolic polynomials · Quartics

Mathematics Subject Classification (2010) Primary 26C10; Secondary 26D05

1 Introduction

The relationship between the zeros of a polynomial and those of its derivative has
been of significant interest to mathematicians for at least three centuries. Serguei
Shimorin has worked in this area [3]. In this paper, we will study polynomials having
all of their zeros on the real line; these are sometimes called hyperbolic polynomials.
It is a simple consequence of Rolle’s theorem that the derivative of a hyperbolic
polynomial is a hyperbolic polynomial.
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The converse to this is false. A hyperbolic polynomial of degree three or
less always has a hyperbolic antiderivative. However for n ≥ 4, there are nth
degree hyperbolic polynomials which have no hyperbolic antiderivatives at all. The
example p(x) = (x − 1)2(x − 4)2 was given in [1].

It would be desirable to have a systematic test for this. SupposeQ(z) is an (n+
1)th degree monic hyperbolic polynomial with zeros z1 ≥ z2 ≥ z3 ≥ . . . ≥ zn ≥
zn+1. ThenQ(z) is nonnegative on [z2j+1, z2j ] and nonpositive on [z2j , z2j−1] for
all j : 1 ≤ j ≤ n

2 . Now let w1 ≥ w2 ≥ w3 ≥ . . . ≥ wn be the zeros of Q′(z). By
Rolle’s theorem zj+1 ≤ wj ≤ zj and hence Q(w2j ) ≥ 0 and Q(w2j−1) ≤ 0 for
all j . Conversely if Q is a real monic (n + 1)th degree polynomial and there exists
w1 ≥ w2 ≥ w3 ≥ . . . ≥ wn with Q′(wj ) = 0,Q(w2j ) ≥ 0 andQ(w2j−1) ≤ 0 for
all j , thenQ is hyperbolic by the Intermediate Value theorem.

This is a nice characterization, however it is in terms ofQ(z). If we start with the
polynomialp(z) and find an antiderivative, there is no guarantee that we will get the
particularQ(x) which has all of its zeros real, we will instead get P(z) = Q(z)+ c
for some arbitrary real c. This will shift everything by c which gives us the criterion
of Souroujon and Stoyanov.

Lemma 1.1 ([4]) Let {wk}nk=1 be real numbers withw1 ≥ w2 ≥ . . . ≥ wn−1 ≥ wn.
Let p(x) = ∏n

k=1(x − wk) and let P(x) be any antiderivative of p(x), then there
exists c ∈ R such that P(x) − c has all zeros real if and only if max{P(wk) : k
odd } ≤ min{P(wk) : k even } in which case we can take any choice of c such that
max{P(wk) : k odd } ≤ c ≤ min{P(wk) : k even }.

We can restate this Lemma in a more convenient form.

Lemma 1.2 Let {wk}nk=1 be real numbers with w1 ≥ w2 ≥ . . . ≥ wn−1 ≥ wn. Let
p(x) =∏n

k=1(x−wk) and let P(x) be any antiderivative of p(x), then there exists
c ∈ R such that P(x)− c has all zeros real if and only if P(wj ) ≥ P(wk) whenever
j is even and k is odd and |j − k| ≥ 3.

We note that if j−k = 1, then p(x) > 0 on the interval (wk,wj ) and if k−j = 1,
then p(x) < 0 on the interval (wj ,wk); therefore in both cases, we automatically
get P(wj ) ≥ P(wk) which is why we can drop these as conditions in Lemma 1.2.
(Interestingly, while this fact will not play a role in this paper, these inequalities are
the only conditions on the ordered set {P(wj )} for arbitrary hyperbolic polynomials
P . See [2] for the exact statement, proof and discussion of this fact.)

2 Quartic Polynomials

A simple induction shows that the number of inequalities in Lemma 1.2 is $( n2−1)2%
when n ≥ 2. In particular, we see that for fourth degree polynomials the existence
of a hyperbolic antiderivative essentially is equivalent to a single condition.We state
this special case of Lemma 1.2.
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Corollary 2.1 Let {wk}nk=1 be real numbers with w1 ≥ w2 ≥ w3 ≥ w4. Let p(x) =∏4
k=1(x − wk) and let P(x) be any antiderivative of p(x), then there exists c ∈ R

such that P(x)− c has all zeros real if and only if P(w4) ≥ P(w1).

We note that if a and b are real numberswith a 
= 0 then p(ax+b) is a hyperbolic
polynomial with a hyperbolic antiderivative if and only if p(x) is. We may therefore
apply the transformation ax + b which maps w1 to 1 and w4 to −1 and consider
quartic polynomials having 1, −1, s and t as zeros with s, t ∈ [−1, 1]. In this case,
we get a very simple condition in terms of the zeros of p.

Theorem 2.2 Let s, t ∈ [−1, 1] and let p(x) = (x− 1)(x− s)(x− t)(x+ 1). Then
p(x) has a hyperbolic antiderivative if and only if st ≥ − 1

5 .

Proof Since p(x) = x4− (s+ t)x3+ (st − 1)x2+ (s+ t)x − st , we get 60P(x) =
12x5 − 15(s + t)x4 + 20(st − 1)x3 + 30(s + t)x2 − 60stx where P(x) is an
antiderivative of p(x). Now 60(P (1) − P(−1)) = 2(12 + 20(st − 1) − 60st) =
8(3 + 5(st − 1) − 15st) = 8(−2 − 10st) = −16(1 + 5st), which means p has a
hyperbolic antiderivative if and only if st ≥ − 1

5 . ��
We note that the mapping w1−w4

2 x− w1+w4
2 maps the numbers−1, s, t, 1 (where

s = 2w2−w1−w4
w1−w4

and t = 2w3−w1−w4
w1−w4

) to w1, w2, w3, w4. The inequality st ≥ − 1
5 is

equivalent to 5(2w2 − w1 − w4)(2w3 − w1 − w4) + (w1 − w4)
2 ≥ 0. After some

algebra, we can restate this condition as follows:

Theorem 2.3 Let {wi}4i=1 be real numbers with w1 ≥ w2 ≥ w3 ≥ w4 and
let p(x) = (x − w1)(x − w2)(x − w3)(x − w4). Then p(x) has a hyperbolic
antiderivative if and only if wtAw ≥ 0 where w = (w1, w2, w3, w4) and where

A =

⎡
⎢⎢⎣

6 −5 −5 4
−5 0 10 −5
−5 10 0 −5
4 −5 −5 6

⎤
⎥⎥⎦ .

We can also reformulate this result in terms of the gaps between the zeros. Let
gj = wj −wj+1 for j = 1, 2, 3. Then 5(2w2−w1−w4)(2w3−w1−w4)+ (w1−
w4)

2 = 5(−g1 + g2 + g3)(−g1 − g2 + g3) + (g1 + g2 + g3)
2 = 5(g3 − g1)

2 −
5g22 + (g1 + g2 + g3)

2. This gives us the following result.

Theorem 2.4 Let {wi}4i=1 be real numbers with w1 ≥ w2 ≥ w3 ≥ w4 and
let p(x) = (x − w1)(x − w2)(x − w3)(x − w4). Then p(x) has a hyperbolic
antiderivative if and only if vtBv ≥ 0 where v = (w1 − w2, w2 −w3, w3 −w4) is
the vector of distances between adjacent zeros of p and where

B =
⎡
⎣ 6 1 −4

1 −4 1
−4 1 6

⎤
⎦ .
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This suggests the problem of finding the characterization of the zero sets of
higher degree polynomials which have hyperbolic antiderivatives. It is clear that the
characterization will be a set of homogeneous polynomial inequalities of the form
Sn = {w1 ≥ w2 ≥ . . . ≥ wn : pn,k(w1, w2, . . . , wn) ≥ 0; 1 ≤ k ≤ $( n2 − 1)2%}. A
characterization of the degrees of these polynomials in terms of n would be a good
start.
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Positive Integral Kernels for Polar
Derivatives

Mihai Putinar and Serguei Shimorin

Abstract The non-negativity on the unit disk of the real part of the polar derivative
of a polynomial is proved via an integral representation with a positive kernel, or as
a consequence of a weighted sum of hermitian squares decomposition.

Keywords Grace Theorem · Walsh Coincidence Theorem · Positive
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1 Introduction

The polar derivative dp(z)− (z− α)p′(z) of a complex polynomial p(z) of degree
d is one of the wonder constructs in function theory; it has impacted deep results
for a century and a half and continues to do so. Laguerre proved that, depending
on the locus of the parameter α, the zeros of p and those of the polar derivative
of p, or equivalently, the critical points of p(z)/(z − α)d , cannot be separated by
a circular region. This is the key ingredient in Grace’s apolarity theorem and the
coincidence theorem of Walsh, both referring to the multi-affine symmetrizations of
the polynomial p, see for ample comments [4, 6, 7].

When speaking about the geometry of zeros or critical points of complex analytic
functions inequalities of various kinds naturally appear. In general their proofs rely
on integral representations with a positive kernel, or purely algebraic completion of
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squares, see Chapter 4 of [6] for many revealing examples. Directly related to the
polar derivative of a polynomial are inequalities discovered by van der Corput and
Schaake [8] and later generalized by Hörmander [1].

Regarding the polar derivative operation from the point of view of harmonic
analysis on the unit circle one unveils a representation of the polar derivative
via an integral with positive kernel, and from there one derives an algebraic
identity expressing the pull back of the polar derivative by a covering map of the
circle in terms of the original polynomial. Both representations imply and explain
from different perspectives van der Corput-Schaake and Hörmander inequalities. A
new observation resulting from our computations states that, modulo a coordinate
change, a symmetric multi-affine trigonometric polynomial which is non-negative
on the torus is equal to a sum of hermitian squares. The general theory provides
such a decomposition only for strictly positive polynomials [3].

This note is dedicated to the second author, a refined mathematician and talented
photographer, who left us too early due to an accident in the Caucasus mountains.

2 Analytic Positivity

The complex variable z ∈ C defines the unit disk D = {z; |z| < 1} and the torus, or
unit circle, T = {z; |z| = 1}.

The polar derivative of a polynomial p ∈ C[z] is defined as follows:

Dα,n[p](z) = (nI − (z − α)
d

dz
)[p](z) = np(z)− (z− α)p′(z).

Note the dependence of the order n, usually equal to the degree of p, and of the
parameter α ∈ C.

Poisson’s kernel for the disk is

Pβ(ζ ) = 1− |β|2
|1− βζ |2 , |ζ | = 1, |β| < 1.

Also we consider Fejér’s kernel or order n:

�n−1(z) =
n∑

k=−n
(1− |k|

n
)zn, n ≥ 1.

A direct computation proves that the latter is a hermitian square on the unit circle:

�n−1(ζ ) = 1

n
|1+ ζ + ζ 2 + · · · + ζ n−1|2, |ζ | = 1. (2.1)
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Consequently the product kernel

Kα,n(ζ, η) = �n−1(ηζ )Pαζ (ηnζ n)

has positive values for |ζ | = |η| = 1 and |α| < 1.

Proposition 2.1 Let p ∈ C[z] be a polynomial of degree n ≥ 0 and let α ∈ D.
Then

Dα,n[p](ζ ) = n

∫
T

Kα,n(ζ, η)p(η)
|dη|
2π

.

Proof Write

p(z) =
n∑

k=0
p̂(k)zk

and remark that

Dα,n[p](ζ ) = n

n∑
k=0

(1− k

n
)p̂(k)ζ k + αζ

n∑
k=0

kp̂(k)ζ k. (2.2)

On the other hand, the power series expansion of Poisson’s kernel yields

Kα,n(ζ, η) =
∞∑
�=0

�n−1(ηζ )(αζηnζ n)� +
∞∑
m=0

�n−1(ηζ )(αζηnζ n)m.

When integrating p(η) againstKα,n(ζ, η) we notice that among all the terms above
only those corresponding to � = 0, 1 are possibly non-zero. Hence

n

∫
T

Kα,n(ζ, η)p(η)
|dη|
2π
=

n

∫
T

�n−1(ηζ )p(η)
|dη|
2π
+ nαζ

∫
T

�n−1(ηζ )ηnζ np(η)
|dη|
2π

.

But this is exactly the decomposition (2.2). ��
Note that the kernelKα,n(ζ, η) has the projection property on constants:

∫
T

Kα,n(ζ, η)
|dη|
2π
= 1.
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Laguerre’s Theorem asserts that, for all α ∈ D, Dα,n[p] does not vanish in D

if the polynomial p has degree n and does not vanish on D, see [4, 6] for ample
comments on this important fact. The following is a variation on Laguerre’s theme.

Corollary 2.2 Let α ∈ D and n ≥ 1. For a polynomial p ∈ C[z] of degree n
satisfying Rep ≥ 0 on T, one has ReDα,n[p] ≥ 0 on T.

The multi-affine symmetrization of a polynomial p ∈ C[z] of degree n can be
defined directly or by an iteration of the polar derivative operations:

P(z1, · · · , zn) = 1

n!Dz2,2Dz3,3 · · ·Dzn,n[p](z1).

In any case the result being the substitution of the monomial zk by the symmetric
polynomial σk(z1, · · · , zn) of degree k. The relationship between the values of the
affine symmetrization and those of the original polynomial is at the core of Grace-
Walsh-Szegö Theorem, or rather phenomenon, in a variety of equivalent statements,
see again [4, 6]. In this direction, algebraic inequalities responsible for geometric
facts were recurrently unveiled.

The following classical result immediately follows from the preceding computa-
tions.

Theorem 2.3 Let f : C −→ C
N be a polynomial map of degree n and denote

by F : Cn −→ C
N its multi-affine symmetrization. If M ⊆ C

N is a convex set
containing f (D), then it also contains F(D× · · · × D).

Proof Apply Corollary 2.2 to an affine functional of the form Re〈f (z), b〉 + a. ��
For the original, quite different proofs, see [1, 8].

3 Algebraic Positivity

A foundational theorem of real algebra, going back to the early discoveries of Tarski,
asserts that polynomial inequalities are consequences of completion of squares
identities. For the relevance to real algebraic geometry and modern optimization
theory of this is Ansatz, see, for instance, [5]. We mention from this context Riesz
and Fejér Lemma which asserts that every non-negative trigonometric polynomial
is equal to a hermitian square. More precisely, if

n∑
k=−n

cke
ikθ ≥ 0, θ ∈ [−π, π],

then there exists a polynomial p ∈ C[z] with the property

n∑
k=−n

cke
ikθ = |p(eiθ |2, θ ∈ [−π, π].
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A similar phenomenonwas unveiled by Quillen on the odd dimensional spheres: if a
polynomial P(z1, · · · , zd , z1, · · · , zd ) is strictly positive on the sphere of equation
|z1|2 + · · · + |zd |2 = 1, then there exists a vector valued, complex polynomial map
 : Cd −→ C

m, such that

P(z1, · · · , zd , z1, · · · , zd ) = ‖(z1, · · · , zd )‖2, |z1|2 + · · · + |zd |2 = 1.

Then we say that P is equal to a sum of hermitian squares along the sphere. For a
characterization of real ideals of the complex polynomial algebra on which similar
decompositions hold, see [3].

We will show below that our harmonic analysis approach implies such a universal
positivity certificate for the multi-affine symmetrization of a polynomial with non-
negative real part on the unit circle. We emphasize that the sums of hermitian
squares decomposition for strictly positive polynomials on the d-torus (the natural
support of the symmetrization) follows from general theory, see [3]. The novelty
in the statement below being the relaxed assumption allowing the non-negative
polynomials to vanish on the respective tori.

Theorem 3.1 Let p ∈ C[z] be a complex polynomial of degree d ≥ 1 with
Rep(ζ ) ≥ 0, |ζ | = 1. Denote by P(z1, · · · , zd ) the multi-affine symmetrization of
p. Then ReP(ζ d !1 , · · · , ζ d !d ) is equal to a sum of hermitian squares on the d-torus:
|ζk| = 1, 1 ≤ k ≤ d.

Proof The multi-affine symmetrization P is obtained from p by an iteration of the
polar derivative operation:

P(z1, · · · , zd ) = 1

d!Dz2,2Dz3,3 · · ·Dzd,d [p](z1).

We perform partial symmetrizations:

pzd (z) =
1

d
Dzd ,d [p](z), pzd−1,zd (z) =

1

d − 1
Dzd−1,d−1[pzd ](z), . . . ,

so that P(z1, · · · , zd ) = pz2,z3,··· ,zd (z1).
Let �k = d !

(k−1)! , 1 ≤ k ≤ d.We will prove by descending induction that

Rep
ζ
�k
k ,··· ,ζ �dd

(ζ �k )

is a sum of hermitian squares on the torus |ζ | = |ζd | = · · · = |ζk| = 1.
Riesz-Fejér Lemma proves step zero, that is Rep(ζ ) is a hermitian square on the

circle. The induction step is implied by the following statement.

Lemma 3.2 Let q ∈ C[z, z1, · · · , zk] with the property that there exists a positive
integer m, so that Re q(ζm, ζ1, · · · , ζk) is a sum of hermitian squares on the torus
|ζ | = |ζ1| = · · · = |ζk| = 1. Assume degz(q) ≤ d. Then the polynomial
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Q(z,w, z1, · · · , zk) = D(w, d)[p(·, z1, · · · , zk)](z) has the property that

ReQ(ζ dm, σdm, ζ1, · · · , ζk)

is a sum of hermitian squares on the torus |σ | = |ζ | = |ζ1| = · · · = |ζk| = 1.

To prove Lemma we use Poisson’s formula, written below in the sense of
distributions:

1

2π

∑
n∈Z

ein(t−α) =
∑
�∈Z

δα+2π�(t),

or, for a fixed positive integer d:

1

2π

∑
n∈Z

ein(dt−α) = 1

d

∑
�∈Z

δ α+2π�
d

(t) =
∑
s∈Z

1

d

d−1∑
k=0

δ α+2πk
d +2πs(t).

Consider a single variable polynomial f (z) of degree at most d , and with non-
negative real part h = Re f on the unit circle. According to Proposition 2.1 we
have

ReDσ,d [p](ζ ) = d

∫
T

Kσ,d(ζ, η)h(η)
|dη|
2π

and we focus on the real integral in the second term. Write for ζ ∈ T

h(ζ ) =
d∑

k=−d
ĥ(k)ζ k,

and define

Jd [h](σ, ζ ) =
∫
T

Kσ,d(ζ, η)h(η)
|dη|
2π

.

Formula (2.2) yields, for |σ | = |ζ | = 1:

Jd(h)(σ, ζ ) =
d∑

k=−d
(1− |k|

d
)ĥ(k)ζ k + σ

d−1∑
k=0

k + 1

d
ĥ(k + 1)ζ k + σ

d−1∑
k=0

k + 1

d
ĥ(−k − 1)ζ−k.

We prove, using Poisson’s summation formula, that Jd(h)(σ d, ζ d) is a sum of
hermitian squares on the bi-torus (whenever h = Re f ≥ 0). To this aim, it will be
convenient to switch to periodic real variables

σ = eix, ζ = eiϕ.
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To simplify notation we set �d−1(t) = �d−1(eit ) and similarly h(x) = h(eix). By
an identification of the Fourier coefficients appearing in the expression of Jd(h), or
a rewriting of the formula proved in Proposition 2.1 in real coordinates, we find:

Jd(e
ix, eiϕ) =

∑
n∈Z

∫ π

−π
h(x − t)ein(ϕ−x)eindt�d−1(t)

dt

2π
=

∫ π

−π
h(x − t)�d−1(t)

∑
n∈Z

ei(dt−x+ϕ) dt
2π
=

∫ π

−π
h(x − t)�d−1(t)

∑
j∈Z

1

d

d−1∑
k=0

δ x−ϕ+2πk
d +2πj (t) =

1

d

d−1∑
k=0

h(
d − 1

d
x + ϕ

d
− 2πk

d
)�(

x − ϕ

d
+ 2πk

d
).

In conclusion, returning to complex coordinates, we obtain:

Jd [h](σ d, ζ d) = 1

d

d−1∑
k=0

h(σd−1ζ e−2πki/d)�d−1(ζσe2πki/d). (3.1)

Since the function h is non-negative and � is a sum of hermitian squares on the
unit circle, we obtain the conclusion in the statement. ��

As a matter of fact, the above theorem can be directly formulated in terms of
a symmetric multi-affine function F(z1, · · · , zd ) which is non-negative on the d-
torus.

Returning to polar derivatives, the proof above implies the following algebraic
identity.

Corollary 3.3 Let p ∈ C[z] be a polynomial of degree less than or equal to d ≥ 1.
Then

Dσd,d [p](ζ d) =
1

d

d∑
k=0

p(σd−1ζ ε−k)|1+ ζσεk + · · · + (ζσεk)d−1|2,

where σ, ζ ∈ T and ε = e2πi/d .

Proof The two terms have equal real parts by (3.1). Then there difference is a purely
imaginary constant. By taking σ = ζ we find that this constant is equal to zero. ��
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We can of course reverse the order and prove directly the above corollary by taking
p to be a monomial. Denote as before by P the multi-affine symmetrization of the
complex polynomial p. The iterative process

P(ζ d !1 , ζ
d !/1!
2 , ζ

d !/2!
3 , · · · , ζ dd ) =

1

d!Dζ
d!/1!
2 ,2

D
ζ
d!/2!
3 ,3

· · ·Dζdd ,d
[p](ζ d !1 )

provides a weighted sum of hermitian squares decomposition for the left-hand side.
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The Weak Type Estimates of Two
Different Martingale Transforms
Coincide

Alexander Reznikov and Alexander Volberg

Abstract We consider several weak type estimates for dyadic singular operators
using the Bellman function approach. We write the precise formula for the
unweighted weak type estimate Bellman function. We prove that the weak norms
of two different martingale transforms coincide. The proof uses the precise form of
the Bellman function of the weak type estimate of martingale transform.
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1 Introduction

Maria Reguera and Christoph Thiele disproved the Muckenhoupt–Wheeden con-
jecture [6, 7], which asked whether the Hilbert transform maps L1(Mw) into
L1,∞(w). It has been suggested in Pérez’ paper [5] that there should exist such a
counterexample, also [5] has several very interesting positive results, where Mw
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is replaced by a slightly bigger maximal function, in particular, by M2w (which is
equivalent to a certain Orlicz maximal function).

There exists a related A1 conjecture of Muckenhoupt and Wheeden, sometimes
called a weak Muckenhoupt–Wheeden conjecture. In this conjecture the weight w
is assumed to be in A1, thus, one has the pointwise inequality

Mw ≤ [w]A1w .

Under this assumption, Muckenhoupt and Wheeden asked whether the norm of the
Hilbert transform (or martingale transform) from L1(w) into L1,∞(w) is bounded
byC[w]A1 (linear bound). The reader can get acquaintedwith the best so far positive
result on A1 conjecture in the paper [1].

In paper [4] we strengthened the Reguera and Reguera–Thiele results by
disproving this A1 conjecture.

We prove that the linear estimate in the weak Muckenhoupt–Wheeden conjecture
is impossible, and, moreover, the growth of the weak norm of the Martingale
transform and the weak norm of the Hilbert transform from L1(w) into L1,∞(w)
is at least c [w]A1 log

1
3 [w]A1 . Paper [1] gives an estimate from above for such a

norm: it is ≤ C [w]A1 log[w]A1 . Our method relies on Bellman function technique
[2, 3].

2 Unweighted Weak Type of 0 Shift

The unweighted problem is much easier than the weighted problem. However, a
glance at a simpler problem helps us to set up a more difficult one and to understand
the difficulties. So we start with unweighted martingale transform, and briefly recall
for the reader the setup and some of the results of preprint [8].

We are on I0 := [0, 1]. As always D denotes the dyadic lattice. We consider the
operator

ϕ→
∑

I⊆I0,I∈D
εI (ϕ, hI )hI ,

where−1 ≤ εI ≤ 1. Notice that the sum does not contain the constant term.
Put

F := 〈|ϕ|〉I , f := 〈ϕ〉I ,

and introduce the following function:

B(F, f, λ) := sup
1

|I | |{x ∈ I :
∑

J⊆I,J∈D
εJ (ϕ, hJ )hJ (x) > λ}| , (2.1)
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where the sup is taken over all εJ = ±1, J ∈ D, J ⊆ I , and over all ϕ ∈ L1(I)

such that F := 〈|ϕ|〉I , f := 〈ϕ〉I , hI are normalized in L2(R) Haar function of the
cube (interval) I , and | · | denotes Lebesgue measure. Recall that

hI (x) :=
⎧⎨
⎩

1√|I | , x ∈ I+
− 1√|I | , x ∈ I−

This function is defined in a convex domain � ⊂ R
3: � := {(F, f, λ) ∈ R

3 :
|f | ≤ F }.

Now we would like to introduce another Bellman function. It is assigned to a
“slightly” different martingale transform.

Put

F := 〈|ϕ|〉I , f := 〈ϕ〉I ,

and introduce the following function:

B̃(F, f, λ) := sup
1

|I | |{x ∈ I :
∑

J⊆I,J∈D
εJ (ϕ, hJ )hJ (x) > λ}| , (2.2)

where the sup is taken over all−1 ≤ εJ ≤ 1, J ∈ D, J ⊆ I , and over all ϕ ∈ L1(I)

such that F := 〈|ϕ|〉I , f := 〈ϕ〉I .
Remark The functionsB, B̃ should not be indexed by I because they do not depend
on I . We will use this soon.

2.1 The Main Inequality

Theorem 2.1 Let P,P+, P− ∈ �,P = (F, f, λ), P+ = (F + α, f + β, λ + β),
P− = (F − α, f − β, λ− β). Then

B(P) − 1

2
(B(P+)+ B(P−)) ≥ 0 . (2.3)

At the same time, if P,P+, P− ∈ �,P = (F, f, λ), P+ = (F + α, f + β, λ− β),
P− = (F − α, f − β, λ+ β). Then

B(P) − 1

2
(B(P+)+ B(P−)) ≥ 0 . (2.4)

Proof Fix P,P+, P− ∈ �,P = (F, f, λ), P+ = (F+α, f +β, λ+β), P− = (F−
α, f − β, λ− β). Let ϕ+, ϕ− be functions giving the supremum in B(P+), B(P−),
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respectively, up to a small number η > 0. Using the remark above we think that ϕ+
is on I+ and ϕ− is on I−. Consider

ϕ(x) :=
{
ϕ+(x) , x ∈ I+
ϕ−(x) , x ∈ I−

Notice that then

(ϕ, hI ) · 1√|I | = β . (2.5)

Then it is easy to see that

〈|ϕ|〉I = F = P1, 〈ϕ〉I = f = P2 . (2.6)

Fix P,P+, P− ∈ �,P = (F, f, λ), P+ = (F + α, f + β, λ + β), P− = (F −
α, f − β, λ− β). Let ϕ+, ϕ− be functions giving the supremum in B(P+), B(P−),
respectively, up to a small number η > 0. Using the remark above we think that ϕ+
is on I+ and ϕ− is on I−. Consider

ϕ(x) :=
{
ϕ+(x) , x ∈ I+
ϕ−(x) , x ∈ I−

Notice that then

(ϕ, hI ) · 1√|I | = β . (2.7)

Then it is easy to see that

〈|ϕ|〉I = F = P1, 〈ϕ〉I = f = P2 . (2.8)

If εI = −1, then for x ∈ I+, we get (we use (2.7) here)
1

|I | |{x ∈ I+ :
∑

J⊆I,J∈D
εJ (ϕ, hJ )hJ (x) > λ}| = 1

|I | |{x ∈ I+ :
∑

J⊆I+,J∈D
εJ (ϕ, hJ )hJ (x) > λ + β}|

= 1

2|I+| |{x ∈ I+ :
∑

J⊆I+,J∈D
εJ (ϕ+, hJ )hJ (x) > P+,3}| ≥ 1

2
B(P+)− η .
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Similarly, for x ∈ I− using (2.7), we get if εI = −1
1

|I | |{x ∈ I− :
∑

J⊆I,J∈D
εJ (ϕ, hJ )hJ (x) > λ}| = 1

|I | |{x ∈ I− :
∑

J⊆I+,J∈D
εJ (ϕ, hJ )hJ (x) > λ − β}|

= 1

2|I−| |{x ∈ I− :
∑

J⊆I−,J∈D
εJ (ϕ−, hJ )hJ (x) > P−,3}| ≥ 1

2
B(P−)− η .

Combining the two left-hand sides we obtain for εI = −1
1

|I | |{x ∈ I+ :
∑

J⊆I,J∈D
εJ (ϕ, hJ )hJ (x) > λ}| ≥ 1

2
(B(P+)+ B(P−))− 2η .

Let us use now the simple information (2.8): if we take the supremum in the left-
hand side over all functions ϕ, such that 〈|ϕ|〉I = F, 〈ϕ〉I = f , and supremum
over all εJ ∈ [−1, 1] (only εI = −1 stays fixed), we get a quantity smaller or
equal than the one, where we have the supremum over all functions ϕ, such that
〈|ϕ|〉 = F, 〈ϕ〉I = f , and an unrestricted supremum over all εJ ∈ [−1, 1]. The
latter quantity is of course B(F, f, λ). So we proved (2.3).

To prove (2.4) we repeat verbatim the same reasoning, only keeping now εI = 1.
We are done. ��

Denote

T ϕ :=
∑

J⊆I,J∈D
εJ (ϕ, hJ )hJ (x) .

It is a dyadic singular operator (actually, it is a family of operators enumerated by
sequences of εI ∈ [−1, 1]). To prove that it is of weak type is the same as to prove

B(F, f, λ) ≤ C F

λ
, λ > 0 . (2.9)

Our B satisfies (2.3), (2.4). We consider these two conditions as special concavity
conditions.

Let us make the change of variables, (F, f, λ)→ (F, y1, y2):

y1 := 1

2
(λ+ f ) , y2 := 1

2
(λ− f ) .

Denote

M(F, y1, y2) := B(F, y1 − y2, y1 + y2) = B(F, f, λ).
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In terms of functionM Theorem 2.1 reads as follows:

Theorem 2.2 The function M is defined in the domain G := {(F, y1, y2) : |y1 −
y2| ≤ F }, and for each fixed y2, M(F, y1, ·) is concave and for each fixed y1,
M(F, ·, y2) is concave.

Abusing the language we will call by the same letter B (correspondingly,M) any
function satisfying (2.3), (2.4) (correspondingly satisfying Theorem 2.2).

It is not difficult to obtain one more condition, the so-called obstacle condition:

Lemma 2.3

If λ < f then B(F, f, λ) = 1. (2.10)

Proof

a) Let us first consider the case f = F , which can be viewed as the case of non-
negative functions ϕ. Fix λ0 and ε > 0, let ϕ be a non-negative function on I =
[0, 1] such that it looks like (λ0 + ε)δ0, and F = f := ∫ 1

0 ϕ dx = λ0 + ε > λ0.
Namely, ϕ is zero on the set of measure 1 − τ , and an almost δ function times
λ0 + ε on a small interval of measure τ .

Since it looks like a multiple of delta function, it can be written down as
(λ0 + ε)1I + H , where H is a combination of Haar functions. Then consider a
special martingale transform of ϕ, namely, −H . Then −H = λ0 + ε > λ0 on a
set of measure 1 − τ with an arbitrary small τ (the smallness is independent of
λ0 and ε). Then the example of this ϕ shows that

B(λ0 + ε, λ0 + ε, λ0) ≥ 1− τ

with an arbitrary τ > 0.
b) We have to consider the case of f < F as well. But if f f > λ0, the construction

is the same. Namely, consider � := ϕ + aS, where S is a Haar function with
very small support in a small dyadic interval � (say, of measure smaller than τ )
and normalized in L1, let � be contained in the set, where ϕ is small (ϕ is small
essentially on almost the whole interval, because it looks like a positive multiple
of the delta function), and ensure that

∫
S dx = 0, and

∫ |S| dx = 1. Then the
example of ϕ shows that

B(

∫ 1

0
|�| dx, λ0 + ε, λ0) ≥ 1− 2τ .

By varying a from 0 to ∞ we can reach
∫ |�| dx = F for any F ≥ λ0 + ε.

Therefore, making first τ → 0 and then ε → 0, we prove (2.10).
��
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Remark 2.4

If λ < f or λ < 0, then B(F, f, λ) = 1. (2.11)

Of course if λ < 0 this is obvious because we can take a test function equal to
constant. The rest is 0 ≥ λ < f , then parts a) and b) of the proof of Lemma 2.3
show that

Theorem 2.5 Let us have B ≥ 0 that satisfies (2.3), (2.4). (Equivalently, let the
correspondingM ≥ 0 be concave in (F, y1) and in (F, y2).) Let B satisfy (2.9), or,
equivalently,

M(F, y1, y2) ≤ C F

y1 + y2
, y1 + y2 > 0 . (2.12)

Let B(F, f, λ) = 1 if λ < 0. Then we have the weak type estimate with constant at
most C for all T uniformly in εI ∈ {−1, 1}.
Proof Just by reversing the argument of Theorem 2.1. ��
Remark Notice that the Bellman function B defined above satisfies by definition
B(F, f, λ) = B(F,−f, λ). Therefore, Lemma 2.3 claims in particular that
B(F, f, λ) = 1 if λ < 0 (and we saw that it also satisfies (2.3), (2.4)).

3 The Main Result

We are interested in weak norm of two martingale transforms:

φ→
∑

I∈D(J )

εI (φ, hI )hI ,

the first one T ε
1 is when εI are allowed to be only ±1, and the second one T ε

2 is
when εI runs freely in [−1, 1].

Of course for every number tI ∈ [−1, 1]we can write it as a convex combination

tI =
∞∑
k=1

2−ktk,I ,

where tk,I ∈ {−1, 1}. Thus, for any sequence ε = {εI }I∈D , εI ∈ [−1, 1], there will
be sequences εk = {εk,I }I∈D , εk,I ∈ {−1, 1} such that

T ε
2 =

∞∑
k=1

2−kT εk
1 .
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If we were interested in the estimate of T ε
2 in a Banach space X (say, X =

Lp, p > 1, then this convex combination representation would show that

sup
ε : εI∈[−1,1]

‖T ε
2 ‖X = sup

ε : εI∈{−1,1}
‖T ε

1 ‖X . (3.1)

However, we are interested in the case X = L1,∞. Here one can use the Lemma
of Stein–Weiss:

Lemma 3.1 Let {gj } be a sequence of non-negative measurable functions, such

that ‖gj‖L1,∞ ≤ 1 for all j . Let {cj } be a sequence of non-negative scalars such
that

∑
cj = 1 and

∑
cj log 1

cj
= K <∞. Then

‖
∑
j

cjgj ||L1,∞ ≤ 2(K + 2) .

See [9] for the proof. From this lemma, we would conclude that

sup
ε : εI∈[−1,1]

‖T ε
2 ‖L1,∞ ≤ 2(2+

∞∑
k=1

k2−k) sup
ε : εI∈{−1,1}

‖T ε
1 ‖L1,∞ .

However, Theorem 4.1 gives immediately a better result. This is the main result
of this note.

Theorem 3.2

sup
ε : εI∈[−1,1]

‖T ε
2 ‖L1,∞ = sup

ε : εI∈{−1,1}
‖T ε

1 ‖L1,∞ . (3.2)

4 The Second Type of Martingale Transform: Why It
has the Same Weak Norm?

In this section we are concerned with the second type of the martingale transform,
the one where the numbers εJ , J ∈ D are allowed to run over the interval [−1, 1]. In
other words, we are interested to find the function B̃ from (2.2) rather than function
B from (2.1). The latter is found in Theorem 5.1.

It turns out that these two functions are equal, but this requires a proof.

Theorem 4.1 B̃(F, f, λ) = B(F, f, λ).
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4.1 The Proof of Theorem 4.1

It is immediate by definition that B̃ ≥ B. Indeed, the supremum in the definition of
B̃ is taken over a larger set. It is easy to see that to prove the equality B̃ = B, one
needs to prove the following concavity of the function B found in Theorem 5.1:

d2B(F, f, λ) ≥ 0, if |dλ| ≤ |df | and λ > F ≥ |f | .

Recall that in coordinates

y1 := 1

2
(λ+ f ), y2 := 1

2
(λ− f )

λ > |f | can be written down as y1y2 > 0, and we write the function B as
M(y1, y2, F ). The above mentioned property becomes

−d2M(y1, y2, F ) ≥ 0, if dy1, dy2 are of the opposite sign and y1 + y2 > F, y1y2 > 0 .
(4.1)

The formula for B is found in Theorem 5.1, thus, we know the formula forM:

4(1−M(y1, y2, F )) = (y1 + y2 − F)2

y1y2
=: �(y1, y2, F ) .

So we need to prove the appropriate version of “convexity” of �:

d2�(y1, y2, F ) ≥ 0, if dy1, dy2 of opposite sign and y1 + y2 > F, y1y2 > 0 .
(4.2)

As

�(y1, y2, F ) = y1

y2
+ y2

y1
− 2F

y1
− 2F

y2
+ F 2

y1y2
,

we can calculate its Hessian:

A · d2� · A = 1

y1y2

⎡
⎣ 2(y2 − F)2, −(y21 + y22 − F 2), 2(y2 − F)

−(y21 + y22 − F 2), 2(y1 − F)2, 2(y1 − F)

2(y2 − F), 2(y1 − F), 2

⎤
⎦ ,

where A = diag(y1, y2, 1) is a diagonal non-singular matrix.
As we know that y1y2 > 0 we need to prove that the quadratic form of the matrix

in the right-hand side is positive as soon as it is computed on vectors (dy1, dy2, dF ),
where dy1dy2 < 0. Consider vectors (−η, ξ, dF ), where ξ, η are of the same sign,
and let us write down the quadratic form on such a vector.
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This is (up to constant 2)

[
(y2 − F)2η2 + (y1 − F)2ξ2 + (y21 + y22 − F 2)ξη

]
+
[
(dF)2 + 2 (−(y2 − F)η + 2(y1 − F)ξ) dF

]
.

What we have is at least

(−(y2 − F)η + 2(y1 − F)ξ)2 +
[
2(y2 − F)(y1 − F)ξη + (y21 + y22 − F 2)ξη

]
+

(dF )2 + 2 (−(y2 − F)η + 2(y1 − F)ξ) dF .

Expanding [. . . ] and using the fact that ξη ≥ 0:

[. . . ] = (y21 +y22 +2y1y2−F 2+2F 2−2(y1+y2)F )ξη = (y1+y2−F)2ξη ≥ 0 .

Hence, our quadratic form is at least

(−(y2 − F)η + 2(y1 − F)ξ)2 + (dF )2 + 2 (−(y2 − F)η + 2(y1 − F)ξ) dF .

But this is also a full square. We are done, Theorem 4.1 is proved.

5 Unweighted Case: The Exact Bellman Function

Consider first finding the unweighted Bellman function on the boundary F = f .
This means that we are working with positive functions ϕ. If we denote as before

y1 = 1

2
(λ+ f ) , y2 = 1

2
(λ− f )

then we need a 0-homogeneous function in y1, y2, that is a function b(
y1
y2
), such that

b(t) is defined for t ∈ (1,∞] (which corresponds to λ ∈ [f,∞)) such that

(
b

(
y1

y2

))′′
y1y1

≤ 0 ,

(
b

(
y1

y2

))′′
y2y2

≤ 0 (5.1)

and knowing that when λ→∞ we have y1
y2
→ 1, we obtain that

b(1) = 0 . (5.2)

On the other hand, we will use soon that

b(t)→ 1, t →∞ . (5.3)
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But (5.3) is just Lemma 2.3 in the case f = F and the continuity of the function
B(F, f, λ) on the border λ = f of the domain λ < f considered in Lemma 2.3 and
the domain λ > f considered here.

From (5.1) we derive

b′′ ≤ 0, t2b′′(t)+ 2tb′(t) ≤ 0, t ∈ [1,∞) .

Make the second inequality an equation. Then we have its concave solution

b(t) = c1 + c2

t
, c2 < 0 ,

the last assumption (c2 < 0) follows from the concavity requirement on b. Now (5.2)
and (5.3) give us our desired biconcave function:

b(t) = 1− 1

t
⇒M(y1 − y2, y1, y2) = 1− y2

y1
= 1− λ− f

λ+ f
= 2f

λ+ f
.

Here is the Bellman function for unweighted weak type inequality for martingale
transform, see [8].

Theorem 5.1

B(F, f, λ) =
{
1, if λ ≤ F ,

1− (λ−F)2
λ2−f 2 if λ > F .

(5.4)

As above we always denote

y1 = 1

2
(λ+ f ), y2 = 1

2
(λ− f ) . (5.5)

We are looking for a function M , which is defined in � := {(F, y1, y2) : F ≥
|y1 − y2|}, bi-concave in variables (F, y1) and (F, y2), satisfies the first boundary
condition:

If F = f := y1 − y2 ≥ 0 , y2 > 0 ⇒ B(F, f, λ) := 2f

λ+ f ⇒ M(y1 − y2, y1, y2) = 1− y2

y1
.

(5.6)

It also satisfies, see (2.10), the second boundary condition:

y2 + y1 ≤ F ⇒ M = 1 . (5.7)

In particular, if we recall that M is defined only in the domain � :=
{(F, y1, y2) ∈ R

3 : |y1 − y2| ≤ F } we conclude that (see (5.8))
M(F, y1, 0) = 1, F ≥ |y1| . (5.8)
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Now let us consider the section �y1 of the domain of definition � =
{(F, y1, y2) : F ≥ |y1 − y2|} given by the hyperplane y1 = fixed. We want to
find anM satisfying concavity in this hyperplane. We are going to look forM (and
we will check later that it is concave) that solves Monge–Ampère equation in �y1

with boundary conditions (5.6) and (5.7). That is

detD2
F,y2

M = 0, (F, y1, y2) ∈ �y1 . (5.9)

In�y1 , there is a point P := (y1, y1, 0). Let us make a guess that the characteristics
(which we know by Pogorelov’s theorem form the foliation of�y1 by straight lines)
of our Monge–Ampère equation in �y1 form the fan of lines with common point
P = (y1, y1, 0).

We denote the collection of straight line segments emanating from P =
(y1, y1, 0) and foliating the domain �y1 by L = {Lt }t≥0. The parameter t = 0
corresponds to the line segment F = −y2 + y1 , 0 ≤ y2 ≤ y1, which is a boundary
segment of �y1 .

By Pogorelov’s theorem we also know that there exist functions t1, t2, t constant
on characteristics such that

M = t1F + t2y2 + t , (5.10)

such that t1 = t1(t; y1), t2 = t2(t; y1) (we think that y1 is a parameter) that

0 = (t1)
′
tF + (t2)

′
t y2 + 1 , (5.11)

and, moreover, that one can choose

t1 = ∂M(F, ·, y2)
∂F

, t2 = ∂M(F, ·, y2)
∂y2

. (5.12)

Remark 5.2 Incidentally, the reader can easily see that (5.11) and (5.10)
imply (5.12). In fact, differentiate (5.10) in F . Then

∂M

∂F
= t1 + ((t1)

′
tF + (t2)

′
t y2 + 1)

∂t

∂F
,

and now we use (5.11). Relationship (5.11) gives the straight lines �t := (F, y2) :
(t1)
′
tF + (t2)

′
t y2 + 1 = 0 in domain �y1 . These are exactly the lines Lt (up to

reparametrization of t).

Remark 5.3 Actually (5.10), (5.12) follow from Monge–Ampère equation on M .
In fact, the fact that M satisfies the Monge–Ampère equation in variables F, y2
obviously means that the level curves of ∂M(F,·,y2)

∂F
and ∂M(F,·,y2)

∂y2
are the same. The

reader can see this by checking that the normals to the level curves of these two
functions are just rows of Hessian matrix D2

F,y2
M , and these rows are proportional

by the Monge–Ampère equation (5.9).
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If two functions share the family of level sets, then any of them is a function
of the other one. So the functions t1, t2 (partial derivatives) are functions of each
other in (5.12). It is very easy to check (chain rule) that if, for a smooth function
�(x, y), its partial derivatives �x,�y share all the level curves, then t (x, y) :=
�(x, y) − �x(x, y)x − �y(x, y)y has also the same set of level curves, that is,
�x,�y are some functions of t . This is exactly relationship (5.10).

Extend a segment Lt from P till y2 = y1. The latter is the vertical line in �y1 ,
which is the intersection of �y1 with f = 0. Our function B is even with respect
to f , being (as we will see shortly) smooth it has one more boundary condition:
∂B
∂f
(F, 0, λ) = 0, that is

y2 = y1 ⇒ ∂M

∂y2
= ∂M

∂y1
. (5.13)

Or if we denote the intersection of Lt with the hyperplane y2 = y1 by

(F (t), y1, y1) (5.14)

we get

∂M

∂y1
(F (t), y1, y1) = t2(t; y1) . (5.15)

We want to prove now that

F(t)t1(t)+ 2y1t2(t) = 0 . (5.16)

In fact, ourM is 0 homogeneous. So everywhereFM ′F+y1M ′y1+y2M ′y2 = 0. Apply
this to point (F (t), y1, y1), where we can use (5.15) to get F(t)t1+y1t2+y1t2 = 0,
which is (5.16).

So far we did not use our guess that the Lt fan from P = (y1, y1, 0). Let us use
this now. Plug that coordinates into 0 = (t1)

′
tF + (t2)′t y2 + 1, which is (5.11). Then

we get the crucial (and trivial) ODE

t ′1(t) = −
1

y1
⇒ t1(t) = − 1

y1
t + C1(y1) . (5.17)

By our convention the boundary line

{
F = y1 − u

y2 = u

corresponds to t = t0 = 0.
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It is time to use the boundary condition (5.6). We use (5.10) and (5.6):

(
− 1

y1
t0 + C1(y1)

)
(y1 − u)+ t2u+ t0 = 1− u

y1
.

Using (5.16) we can plug t2 expressed via F(t). But by definition (5.14) F(t0) = 0,
and hence by (5.16) t2(t0) = 0. So we get (plug t0 = 0)

C1(y1)(y1 − u) = 1− u

y1
.

So we get C1(y1) = 1
y1
. Now from (5.17) we get

t1(t) = 1

y1
(1− t) . (5.18)

After that, (5.11) at the point (F (t), y1, y1) and (5.16) become the system of two
linear algebro-differential equations in F(t) and t2(t):

{
− 1

y1
F(t)+ y1t

′
2(t)+ 1 = 0

2y1t2(t)+ F(t) 1
y1
(1− t) = 0 .

(5.19)

Hence we found

(1− t)y1t
′
2(t)+ 2y1t2(t)+ (1− t) = 0 .

So y1t2 = C(1 − t)2 − (1 − t). Plug this t2 into the second equation of (5.19) and
then plug in t = 0. Taking into account, that L0 is the boundary segment F =
−y2 + y1, 0 ≤ y2 ≤ y1, we conclude that

F(0) = 0 .

This allows us to find C = 1, hence

t2 = − 1

y1
(1− t)t . (5.20)

Plugging in (5.18), (5.20) into (5.11) yields the following (this is the form of the
straight line Lt ):

− 1

y1
F + 1

y1
(2t − 1)y2 + 1 = 0 . (5.21)
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From this we find at last the function t (F, y2; y1) from (5.10):

t = 1

2

F − (y1 − y2)

y2
. (5.22)

Remark Notice that in (F, f, λ) coordinates, we will get t = F−f
λ−f .

Plug this into (5.10), in which we know already t1(t) and t2(t) (see (5.18), (5.20)).
In other words, in the formula

M(F, y1, y2) = t1(t)F + t2(t)y2 + t (5.23)

we know now all three functions t, t1, t2 as functions of F and y2 (and of parameter
y1).

We get

M =
{
1 , y2 + y1 ≤ F ,

1− (y2+y1−F)2
4y2y1

, y2 + y1 > F .
(5.24)

This is the same as

B(F, f, λ) = 1− (λ− F)2

λ2 − f 2 . (5.25)

6 Verification

It is not difficult to check now that M(F, y1, y2) = B(F, y1 − y2, y1 + y2) is bi-
concave and satisfies all boundary conditions. To verify that actually this is the exact
Bellman function of the unweighted weak type estimate we need to prove that for
every (F, y1, y2) ∈ �y1 we can find the sequence of functions giving the right
estimate of the measure of the level sets of their martingale transform. The reader
can find these functions in [8].
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