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1 Introduction

Natural products have been fueling drug discovery pipelines for decades [1, 2]. How-
ever, many challenging hurdles have hampered the straightforward application of
complex natural product structures for drug discovery, such as a lack of synthetic
accessibility for large-scale production [3, 4] as well as their unknown and insuffi-
ciently predictable polypharmacological properties [5, 6]. Conversely, natural
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product fragments overcome many of such shortcomings and provide privileged
structures with ample opportunities for optimization and derivatization into synthet-
ically accessible mimetics with known or predictable biological effects [4, 5, 7, 8]. It
has been shown that natural product fragments can provide key substructures to bias
a compound collection toward biological activity [9, 10], and it has been argued that
fragment-sized natural products and natural fragments constitute some of the most
relevant of natural products for drug discovery and development [11]. The biosyn-
thesis of a large natural product often relies on the synthesis of fragment-like
building blocks, such that these structures might present biologically motivated
handles to further explore them as chemical probes and drug leads [12].

Furthermore, natural fragments provide innovative as well as structurally and
spatially intricate molecular probes for fragment-based drug discovery [4, 8]. This is
particularly relevant given the much smaller size of chemical fragment space: since
there are orders of magnitude less possible fragment structures compared to the
unfathomable larger number of possible organic molecules [10], a smaller fragment
collection might be capable of spanning the complete chemical (fragment) space
with sufficient resolution [13]. This implies that the high-throughput testing of
fragments and their medicinal chemistry is more likely to enable the design of
bioactive compounds with optimal activity profile [14]. Indeed, focusing on natural
fragments benefits from the advantages of chemically diverse and complex natural
product structures, while simultaneously harnessing fragment-based drug discovery
for finding smaller structures that fit optimally into a binding pocket and can then be
rationally further optimized [13]. The potential for such optimization is additionally
attested to by orthogonal work on privileged fragments and scaffolds [5, 15], which
are notorious for binding certain target classes and families. This advocates for the
selection of molecular substructures that contribute most significantly to the desired
activity of biologically active molecules—and natural product fragments constitute a
prime resource to study these [16].

With these vital benefits of natural fragments in mind, it is important to realize
that cheminformatic and bioinformatic approaches have been instrumental in gen-
erating and curating databases of natural product-derived fragments [4, 8, 17],
analyzing and stratifying their properties [17, 18], as well as guiding their applica-
tions for drug discovery and chemical biology [5, 16, 19–23]. Many in silico tools
exist that have been validated with impressive success in the context of natural
fragments to support their generation, property and polypharmacology predictions,
and derivatization, among others [9, 15, 24, 25]. This contribution discusses various
challenges and opportunities occurring at different stages of computer-guided natu-
ral product fragment research, currently available computational tools to address
these, as well as outstanding research questions and the prospective impact of
computational workflows on natural product-based drug discovery and chemical
biology.
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2 Sources of Natural Product Fragments

To utilize natural product fragments in drug discovery and pharmaceutical research,
it is of utmost importance to source a large set of reliable and meaningful chemical
structures for further analysis or screening. A common selection criterion for natural
products and fragments is compound availability [4], and multiple chemical vendors
now supply chemical structures of natural product fragments that they offer com-
mercially for academic and industrial researchers to fuel natural fragment-based
screening efforts [26–29]. However, the few currently available collections are
limited in the number of included structures and are likely biased toward more
readily accessible fragments or have undergone other external filtering criteria
such as drug- or lead-likeness [30–32]. This can unknowingly distort the compound
collection and thereby dramatically impact the trajectory of a given project. For
cheminformatic analysis or downstream drug and chemical probe discovery, the
automated extraction of fragments from vast natural product collections is a fruitful
strategy to generate large datasets of natural product fragments. Multiple orthogonal
strategies exist (Fig. 1) that enable rapid, chemically meaningful, and reproducible
generation of natural fragment collections [4, 7–9, 17]. The strategy of choice will be
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Fig. 1 Schematic on fragment generation. Shown is a natural product grouping consisting of
proline, piperine, capsaicin, and dysidiolide. Fragment collections are shown that were generated
relying on Murcko scaffolds [33], fragmentation through RECAP [15], and filtering (molecular
weight <300). Asterisks indicate virtual attachment points generated through the in silico fragmen-
tation. All procedures were implemented in RDKit [34]
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determined by the desired goals of the specific project. This section outlines the most
commonly used types of strategies and their various implementations.

2.1 Filtering

A straightforward approach to retrieve natural product fragments relies on filtering of
natural product collections for their fragment-like sub-portion. Multiple studies have
indicated that a large fraction of the currently known natural product space corre-
sponds to low-molecular weight compounds [5, 17, 18, 35]. Thereby, molecular
weight thresholds, commonly with a maximum allowed weight of around 300 Dal-
ton, enable the rapid retrieval of the natural products that appear to be fragment-sized
[8, 17]. More complex filtering strategies can ensure that the retrieved structures also
fulfill other properties that are relevant for their concurrent application and thereby
ensure the utility of the structures retrieved.

Indeed, many other definitions of fragment-likeness exist [36] and commonly
other filters can be applied. A classic filter for fragment-like structures is the “Rule of
Three” [37], a younger cousin of the Lipinski Rule of Five [32], which restricts
fragments to a maximal weight of 300 Dalton, clogP< 3, up to three hydrogen bond
donors (HBD), and up to three hydrogen bond acceptors (HBA). Generally speak-
ing, the inclusion of pharmacophoric features (HBA and HBD, aromatic rings),
measures of solubility (clogP, polar surface area), or measures of molecular com-
plexity (number of rotatable bonds, number of rings, number of heteroatoms) can be
rapidly derived from the molecular structures [38–40] and ensure that the extracted
fragment collection fulfills the necessary criteria. Commonly, upper bounds on these
properties ensure that the extracted structures are sufficiently simple and fragment-
like [11]. It has also proven useful to establish lower bounds on properties such as the
molecular weight, a minimum number of heavy atoms, or a sufficient molecular
complexity to ensure that no trivial metabolites with limited pharmacophoric rele-
vance are included in the natural fragment collection [17, 18].

Estimates of the fragment-like fraction of natural product databases range any-
where between 10 and 30% depending on both the investigated database and the
exact definition of acceptable properties of the extracted fragments [5, 17, 18,
41]. While this number might be considered low, the vast size of many available
natural product datasets [5, 26, 42, 43] usually still warrants a sufficient number of
diverse fragment-sized structures for further applications [5, 8, 17]. Importantly, in
absence of any computational structure generation or modification, this strategy
promises to exclusively provide fragments that can be found in Nature and thereby
might be available through isolation and, even more importantly, are more likely to
constitute stable and biologically meaningful chemical matter [4].
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2.2 Virtual Fragmentation

Instead of relying on smaller, fragment-like natural products already contained in
natural product resources, in silico procedures to generate fragments can be
harnessed to split larger natural products into smaller, fragment-like entities [7, 8,
15, 35]. Different strategies exist to virtually fragmentize larger structures into
fragments, relying on distinct algorithms to ensure splitting of specific bonds or
generating fragments of a specific size and character. Thereby, multiple fragments
per natural product are generated, resulting in a potentially large set of virtual
fragments that inherently contain natural product-like substructures [44]. A straight-
forward implementation of such fragmentation schemes can involve splitting of
natural products at certain types of bonds, for example, all acyclic rotatable bonds
[45]. Similarly, approaches to split up compounds into substructures of a specific
size have been developed and applied to natural products [46, 47]. Following such
strategies, exhaustive sets of substructures can be generated rapidly simply through
analysis of the molecular graph and its partitions. However, many such generated
fragments might be of limited chemical or biological relevance given their potential
artificial nature and the lack of chemical reasoning for such partitions.

More advanced fragmentation schemes have been developed to ensure synthesis
tractability, chemical stability, or other chemical and biological properties of the
fragments. To this end, strategies have been implemented to virtually break bonds
while considering their chemical context. Most prominently, the RECAP algorithm
has implemented retrosynthetic fragmentation rules according to domain knowledge
regarding bonds that can be easily and efficiently (re-)generated using established
organic chemistry protocols [15]. In spite of not being specifically designed for
natural product structures, the RECAP algorithm has been employed successfully to
multiple natural product databases for the generation of large sets of natural frag-
ments [7, 35, 41, 48]. Many publicly or commercially available cheminformatic
software collections such as RDKit [34] and the Molecular Operating Environment
[49] have re-implemented the RECAP algorithm with sufficient performance to
process large natural product collections [7].

Many of the state-of-the-art de novo design implementations utilize virtual
reactions. These construct novel compounds from commercially available building
blocks according to hard-coded reaction schemes [50]. Pivoting this idea for frag-
mentation, reaction-based cleavage strategies have been implemented for natural
products, for example, virtually performing reactions such as hydrolysis and
ozonolysis [8]. These approaches might further the context-dependent analysis of
cleavable chemical bonds and thereby generate virtual natural fragment-like collec-
tions with even further improved chemical relevance and a synthesis blueprint for
their generation. Similarly, implementations of chemical reactions to introduce
modifications in natural fragments can further diversify or stabilize the fragments
of a virtual collection [4, 8]. While most of these approaches currently rely on hard-
coded reaction schemes, novel approaches are emerging that can automatically
extract such rules and further the applicability of computational fragmentation
[51, 52].
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Irrespective of the details of the implemented strategy, such in silico fragmenta-
tion approaches can rapidly and reproducibly provide large sets of natural fragments
with novel chemical structures [7, 8, 48]. If virtual chemical reactions are utilized for
fragment generation, these reaction schemes might provide blueprints for researchers
to generate fragment-like molecules from a larger natural product serving as the
template in the fragmentation. Even more importantly, virtual fragmentation is often
implemented in such a way that it generates smaller structures with reactive handles
that can serve subsequently as attachment points for further derivation and optimi-
zation [4] (cf. Fig. 1).

2.3 Scaffolds

Scaffold extraction can be regarded as a special case of fragmentation, whereas the
molecular graph is not partitioned into smaller substructures but instead stripped into
its central core structure by removing acyclic substituents [9]. While generally only
one scaffold can be extracted per compound, the exact scaffold definitions and
thereby the extracted molecular framework vary. The differences in the definitions
concern whether the type of atoms or bonds are considered and whether adjacently
connected heteroatoms are included in the scaffold definition [53, 54].

At the most abstract end of this spectrum are reduced molecular frameworks that
ignore atom and bond types and even the size and types of rings within a scaffold
[55, 56]. Molecular frameworks offer a mid-level of abstraction, representing full
molecular graph-like structures utilizing all chemical bonds without atom and bond-
type information. On the other end of this spectrum are decorated molecular sub-
structures with fully defined atoms and bonds and the inclusion of specific adjacent
heteroatoms [57].

Natural products, with their more common occurrence of fused-ring systems, will
generate different reduced frameworks compared to synthetic compounds [57–
59]. Full appreciation of the complexity and novelty of natural product scaffolds
can only be achieved when including information on the distinct heteroatoms
included or preservation of stereochemistry [60]. It is therefore not surprising that
a large number of successful projects extract natural product scaffolds that consider
atom-types, shortened side-chains, bond order, or chirality in their scaffold defini-
tions [4, 9, 16].

A pioneering augmentation of scaffold generation and analysis is their hierarchi-
cal clustering based on substructure relationships to provide a structural classifica-
tion of natural products (SCONP) [9]. Such hierarchical graphs of natural fragments
enable tracking of chemical substructures and their impact on biological activity.
This can aid significantly in the identification of lead fragments for further biological
optimization [16]. Therefore, this concept has been implemented in the open-source
software tool Scaffold Hunter to enable researchers to perform their own scaffold
analysis [19]. Such approaches attest to scaffolds as some of the most useful natural
fragment resource for further downstream analysis or as starting points for focused
collection development (Table 1) [2, 9, 16].
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3 Properties of Natural Product Fragments

Although the exact properties of natural fragments vary widely and are influenced by
the approach taken to extract them (Fig. 2), there are some general trends observable
for natural fragments that render them a particularly useful and unique resource of
chemical matter.

Table 1 Number of natural
fragments that can be
generated from natural
product databases relying on
different computational
strategies

Database Fragment-sized Scaffolds RECAP

DNP 64,650 2,10,213 1,37,12,533

TCM@Taiwan 10,023 58,802 6,68,402

NuBBE 712 2218 21,892

AfroDB 191 954 3048

DMNP �17,941 28,833 17,77,882

DTNP �75,804 1,21,975 69,15,803

Data for TCM@Taiwan [43], NuBBE [61], and AfroDB [62] was
analyzed in RDKit [34]. Data for DNP [42] were extracted from
Reker et al. [7] and Rodrigues et al. [5]. Data for DMNP [63] and
DTNP [64] were extracted from Shang et al. [35], whereas the
number of fragment-sized compounds was estimated at half of the
collection size given their reported median molecular weight

Fig. 2 Principal component analysis of standardized physicochemical properties of fragment-sized
natural products (orange), scaffolds (red), and RECAP fragments (gray) from the TCM database.
[43] Properties were calculated in RDKit [34], analyzed in KNIME [65], and visualized using
Python and Inkscape (arbitrary units)

Cheminformatic Analysis of Natural Product Fragments 149



3.1 Chemical and Physical Properties

As expected, natural product fragments are more three-dimensional compared to flat
synthetic fragments [4, 8] and rich in sp3-configured and chiral centers [5, 8,
66]. They also differ in their chemical composition and contain more oxygen, less
nitrogen, and more aliphatic rings compared to synthetic screening collections
[4, 12, 66], with an average number of three rings per fragment [9]. Some studies
have investigated other properties relevant for biological activity and have shown a
higher propensity for pharmacophoric features such as HBD and HBA and lower
numbers of rotatable bonds [17], which has supported their perception as privileged
structures with an increased potential to interact with a wider range of different
biological targets compared to synthetic compound collections and their larger,
complex natural counterparts [5, 7].

Chemography of natural products, their fragments, and drugs allows charting the
general differences between compounds from these sources in terms of their phys-
icochemical properties or chemical structures [67–70]. Generally speaking,
researchers have found that natural product-derived fragments using various frag-
mentation sources generate good representative structures of the larger natural
product collections in terms of fully spanning the natural product space [4, 57]
while they show disparate placement compared to synthetic fragments [4] in terms of
physicochemical properties. Pharmacophoric and structural assessments have placed
natural fragments at the interface between synthetic bioactive compounds and
complex natural products [7, 58].

Accordingly, less “Rule of Five” [32] violations are observed for natural frag-
ments compared to natural products [18, 71], which might not be too surprising
given that these rules include thresholds that depend heavily on the size of the
investigated molecule and therefore are commonly conformed to by natural product
fragments. Fascinatingly, natural products in general often violate the “Rule of Five”
[12, 72], such that fragmentation might be regarded as a transformation of natural
product space into “Rule of Five” compliant areas [73]. This is fully in line with the
observation that the regions of physicochemical space that are populated exclusively
by natural products but not drugs are mostly spanned by larger, more complex
natural product structures [7, 57]. Thereby, fragments enable a more drug-like
handle to natural product space [2]. This can be further utilized since their decoration
with classic medicinal chemistry side chains enables populating drug-like spaces but
with innovative scaffolds [57] with potentially superior properties such as higher
three-dimensionality [8].

3.2 Spatial Properties

To assess the size and shape of natural product fragments, the three-dimensional
conformation can be predicted from the two-dimensional molecular graph
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[74]. Conformation prediction of natural products is often challenging given their
large size, complex structures, and common occurrence of chiral centers and
macrocycles [75, 76]. Therefore, natural product research often harnesses advanced
methods relying on experimental methods such as nuclear magnetic resonance
measurements or machine learning predictions [77, 78], thereby limiting the appli-
cation to only select natural products with available experimental data or sufficient
interest to warrant the necessary experimental or computational resources. Since
fragment-like natural products are smaller and populate a more restricted conforma-
tional search space, their conformations might be estimated more rapidly and more
accurately [36]. This suggests that natural product fragments and their derivatives
might enable researchers to study natural products in three dimensions with reduced
need for advanced conformation estimations to identify targets via pharmacophore
searching or rationalizing binding modes through docking [9, 21, 22, 79, 80]. On a
more general level, such three-dimensional structure prediction tools have also been
employed to whole collections of natural product fragments to calculate the distri-
bution of their volumes: this has charted most natural fragments within the range of
100 to 500 A3. This renders them similar in size compared to volumes calculated for
approved drugs and currently explored protein pocket cavities [9, 16, 35], further
attesting to their utility for drug discovery. Similarly, the shape of natural product
fragments has been investigated through their principal moments of inertia [81] and
it was concluded that natural product fragments provide a wide range of different
shapes and, most notably, are less “flat” compared to other compound databases,
including the complex natural products stored in the Dictionary of Natural Products
[42] as well as various synthetic fragment collections [8, 17].

3.3 Natural Fragments from Different Sources

Natural products and their fragments from different origins can vary drastically in
their chemical structures and properties [12]. By selectively analyzing natural
products from different sources, their properties can be compared to identify poten-
tially helpful trends in physical or chemical differences between structures produced
by distinct organisms or within specific environments or locations [35, 41, 66, 82]. A
handful of studies have started to chart and compare natural products from different
sources. For example, marine products seem to offer a larger variety of different
substructures, while terrestrial products appear to borrow more frequently from
similar substructures [35]. It has been suggested that natural products originating
from fungi might represent distinct natural product properties without deviating too
much from the drug-like space in terms of physicochemical descriptions [57]. Ertl
and Schuffenhauer specifically investigated unusual chemical structures populating
natural products from different sources and found that plant-based natural products
contain more fused carbocycles compared to natural products from other sources
[83]. Other studies have found that arenes, while dominating plant- and marine-
derived natural products, seem to be almost completely absent from bacterial
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organisms [66]. Bacterial metabolites may also be sulfur-containing natural products
[83] and marine natural products contain more oxygen compared to terrestrial
natural products [35]. Isolated studies have started to draw conclusions from
observed chemical structures and the implications for their occurrence in certain
natural products: for example, marine natural product repositories contain more
hydrophobic compounds and a lower number of ester bonds [35]. This could point
potentially at evolutionary forces selecting for organisms that are more adapted to
their marine environment by producing compounds with lower risks of losing
metabolites to the aqueous environment surrounding them as well as spontaneous
hydrolysis [35, 83]. Such insights are transferable into the fragment space of natural
products and can be helpful in compound collection design when certain physico-
chemical properties are of importance. Relying on selected organisms or origins
might enable compound pools to be steered in the desired direction. Furthermore,
through such in-depth analysis, cheminformatic research potentially may assist
fundamental research in metabolomics to better understand specific organisms or
microenvironments through their small molecular armamentarium [84, 85].

3.4 Commercial Availability and Synthetic Tractability

Although fragment-sized natural products make up only around a third of the known
natural product structures [5], they constitute the bulk of commercially available and
hence easily-accessible natural compounds for drug discovery and biotechnology
applications [4, 26]. Natural product fragments are often easier to synthesize com-
pared to their complex, larger counterparts [4, 73]. Computational assessments of
synthesizability as well as computational retrosynthesis planning potentially can aid
at prioritizing natural fragments and synthesis pathways [15, 51, 86]. However, most
of these tools were not designed to be specifically applicable to natural products and
therefore might need to be augmented to enable their straightforward application to
natural fragments. It has also been shown that, even in cases where the fragments are
not readily available or synthesizable, they can often be represented through com-
mercially available or easily synthesizable analogs [4] (Fig. 3). This can be achieved
by employing classical ligand-based similarity and virtual screening approaches to
search for similar fragments [87, 89]. Alternatively, clustering of fragment spaces
enables partitioning the chemical fragment universe into regions of high similarity to
substitute critical fragments with other co-clustered representatives [4, 7]. Extending
this concept even further and relying on hierarchical clustering techniques, Koch
et al. showed that constructing graphs through chemical substructure relationships
can build data structures to enable such simplifications [16]. Applying this concept
to scaffolds, such a graph can be built iteratively by populating the network with all
possible scaffolds. Subsequently, two nodes are connected if the respective scaffolds
can be transformed into each other by either removing or adding one ring structure.
Thereby, a graph is generated based on a special case of a substructure relationship.
Traversing this graph [19] can inform chemical derivatization and simplifications
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into smaller scaffolds with lower complexity and sufficient similarity to enable
tackling of the same biological target [90]. If a substructure of the scaffold does
not warrant a sufficient simplification, such graphs also enable “brachiating” into
neighboring branches with potentially simplified chemical structures but retained
biological activity [9]. In such advanced simplification approaches, it is important to
keep in mind that too aggressive derivatization or simplification can lead to loss of
the biological activity or other desired properties of the investigated natural product
fragment [9, 91]. Prediction of the biological and physicochemical properties of the
in silico-derivatized structures can enable researchers to monitor the expected
behavior of the novel structures and guide the structural modifications [5, 22, 25,
92–95]. Conversely, the originally investigated fragments might be unstable or
contain reactive substructures such as enamines or Michael acceptors, and slight
modifications can easily eliminate such structures [4, 8, 20]. The prediction of
reactive substructure or other liabilities can assist in identifying problematic frag-
ments and speed up this process [96, 97].

H
N

Cl Cl

H
N

HO Cl

clustering and
similarity search

WHALES

O

O
O

O
O

a b

c

O

O

O

O

O

O

O

O

SCONP

brachiation

S

NN

N
H

S
O

O

O

HO

Fig. 3 Identifying accessible derivatives of natural products, e.g., through molecular similarity
assessments, using, for example, the WHALES descriptor [87] (a), or through clustering and
subsequent selection of representative structures via chemical structure similarity (b) [4]. Alterna-
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3.5 Problematic Natural Fragments

An increasing body of literature has served to warn of false-positive assay results,
i.e., compounds that elicit a positive readout in spite of not showing the actually
desired biological activity [97, 98]. This behavior can originate from various under-
lying causes, many of which relate to physicochemical properties of the investigated
compound such as reactivity, quenching, membrane interactions, fluorescence, or
colloidal aggregation [97–99]. Natural products and their fragments can potentially
contain substructures that can elicit such effects in vitro even if such effects might be
masked in their natural, biological (micro)environments [12]. This hints at the
necessity to identify problematic structures in natural product collections and for
fragment-like hit compounds to avoid hunting artifactual biological in vitro
results [99].

Cheminformatics efforts to design automated pattern-recognition systems to filter
such potentially problematic compounds have led to the development of multiple
substructure-based filtering lists that flag chemistry with motifs associated with
false-positive results for subsequent validation or elimination [97, 100,
101]. Although such methods have been designed based on screening data or with
synthetic molecular probes in mind, it has been shown that such false-positive
behavior can occur among natural products in general and their fragment-like
portion in particular [101, 102]. False-positive results from natural products might
be common, as indicated by multiple case studies and in-depth analysis of com-
monly used natural fragments [101, 102]. For example, the discovery of viable
inhibitors of indoleamine 2,3-dioxygenase 1 (IDO1) has been fueled by fragment-
like natural products such as β-carboline or galanal, but it has been suggested that
potential false-positive readouts might be at play for such compounds [103]. Similar
arguments have been made for fragments such as thymoquinone in the context of
anti-protozoal agents [104] and plumbagin as a histone acetyltransferase inhibitor
[105]. On a larger scale, statistical data analysis of natural product assay data has
been conducted and suggests that a large fraction of the acquired positive assay
results might stem from causes other than useful biological activity [99].

To counter such effects, researchers have designed taboo lists of chemical sub-
structures that are linked to various artifactual readouts [97]. Many natural products
contain such critical chemical substructures [12] recognized by filtering rules such as
PAINS [2, 99, 101] or ALARM NMR [100, 106, 107]. In fact, it appears that natural
products are particularly prone to contain such critical substructures recognized by
automated filtering rules compared to synthetic compounds and approved drugs
[5]. For example, around 40% of natural products currently studied in the context
of their antiprotozoal activity contain PAINS substructures [104] and up to 65% of
natural products from the commercial MicroSource collection are flagged according
to the ALARM NMR filters [107]. While, to the best of our knowledge, no large-
scale analysis on flagging of natural fragments has been conducted, it is fair to
assume that fragmentation or selection of potentially problematic natural structures
would transfer such liabilities into fragment-based collections and pipelines
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[108]. Furthermore, specific investigations of selected fragment-sized natural prod-
ucts have highlighted cases of such naturally occurring structures to be flagged by
multiple different false-positive detection methods (Table 2) [103].

Colloidal aggregation has been suggested as the single largest reason for a
compound to elicit artifactual, false-positive assay readouts in screening assays
[97, 109]. Indeed, many fragment-sized natural products such as physcion and
equol have been shown to form colloidal aggregates that can sequester proteins
and thereby interfere with biochemical assay readouts [99, 102, 110]. A high logP
for many natural products [58, 60] is an indicator that natural products and their
fragments might possess such aggregation propensity [109]. More accurate and fine-
grained computational prediction models exist that anticipate whether a compound
aggregates from its molecular structure and physicochemical properties [109, 111,
112]. Such models might be applied fruitfully to get more accurate estimates on
which natural product fragments form colloidal aggregates. However, given that
such models rely on molecular data mostly derived from synthetic screening com-
pounds [112], the discrepancy between natural compounds and the training data in
terms of molecular properties and structures hint at natural products potentially lying
outside of the applicability domain of such models [7, 113, 114]. An in-depth
evaluation will be necessary to understand whether the colloidal aggregation of
natural products can be studied by relying on data derived from synthetic screening
compounds or whether specifically tailored machine learning tools will be necessary
to accurately delineate the potentially common aggregation behavior of natural
products [102].

Furthermore, fragment-like natural compounds such as genistein and capsaicin
potentially can interact with and modulate lipid bilayer properties and thereby cause
false-positive readouts in cell-based screening assays [115]. To rapidly decode such
effects and flag compounds that potentially exert such behavior, computationally
accessible properties such as lipophilicity [116], charge [117], and amphiphilicity
[115, 118] can enable model development to predict the ability of natural fragments

Table 2 Percentages of natural product fragments flagged by PAINS [96] and ALARM NMR
[100] filtering rules for select datasets from Table 1 [43, 61, 62]

Database Fragmentation ALARM NMR/% PAINS/%

TCM@Taiwan Fragment-sized 34.2 0.7

Scaffolds 38.8 0.9

RECAP 24.6 0.6

NuBBE Fragment-sized 28.2 0.8

Scaffolds 25.4 0.5

RECAP 24.0 0.5

AfroDB Fragment-sized 69.6 16.8

Scaffolds 41.2 3.1

RECAP 50.9 8.1

Flagging was performed using the webserver made available through the Division of
Biocomputing, Department of Biochemistry and Molecular Biology, University of New Mexico,
Albuquerque, NM (http://pasilla.health.unm.edu/tomcat/biocomp/smartsfilter)
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to interact with or modulate lipid bilayer properties. Molecular dynamic simulations
are another tool that can potentially anticipate such effects and identify the natural
fragments that can cause this type of behavior [115, 117, 119].

Not all natural fragments that are flagged by such methods need to be blindly
eliminated [120]. Many liabilities will only be relevant in specific screening contexts
[121, 122], which has led to major criticism against the blind application of the
aforementioned prediction models and flagging lists to eliminate compounds from
screening collections [98, 120]. Indeed, many safe and clinically effective medica-
tions have been shown to be flagged by various computational false-positive detec-
tion methods [123, 124]. Therefore, if sufficient caution is taken and validations and
counter-screens are established, even apparently problematic structures might fuel
successful drug discovery and development pipelines. In the future, augmented
prediction methodologies could enable more fine-grained analysis of contextual
assay results of natural product fragments [106]. Other studies have shown how
natural fragments containing problematic structures constituted initial hits and were
subsequently derivatized during optimization to eliminate the liability for down-
stream validations [8] or how potentially pernicious substructures might not be
liabilities in their specific natural product context [5, 17]. Utilizing computational
prediction models to anticipate context-specific liabilities, as well as the establish-
ment of automated molecular design for the derivation of natural product fragments
will automate such processes in the future.

4 Applications of Natural Product Fragments

Given the aforementioned advantageous properties of natural fragments, they have
been suggested as representing innovative starting points for drug discovery and
chemical biology [4, 5, 13]. Importantly, such efforts are most productive if the
polypharmacological properties of the natural product under investigation is known
and derivatives can easily be made to fine-tune biological and physicochemical
properties of the molecular probes. As described in this section, computational
tools can assist in predicting these properties, generating focused collections of
derivatives and mimetics of natural compounds, as well as utilizing them for
statistical analysis of natural product-likeness to assess the utility of a compound
or molecular collection.

4.1 Predicting Biomacromolecular Targets of Natural
Fragments

Natural fragments with known polypharmacological profiles may be regarded as
most useful starting points for drug discovery campaigns and chemical probe
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development since candidate structures will already possess the desired activity and
potential known off-targets can be avoided [5]. Unfortunately, the biological effects
of a vast majority of natural products and their fragments is currently not known
[6, 7, 9]. In silico target-interference methods represent easily deployable prediction
tools to anticipate the biomacromolecular receptors targeted by natural products
[5]. However, classical target prediction methods usually underperform for natural
product fragments given the stark difference in chemical structure of natural prod-
ucts and their fragments to the synthetic compounds that populate (training) data-
bases of ligand-target interactions [4, 5, 18]. Therefore, with few exceptions
[125, 126], most of the advanced and well-validated target prediction technologies,
which are largely based on applying the chemical similarity principle [127] to
chemical substructure descriptions [128, 129], underperform at identifying targets
for natural product fragments compared to their impressive success reported for the
target identification of drugs and synthetic compounds [95, 130–133]. Therefore, in
the context of natural product fragments, researchers have employed or designed
target prediction methods that generalize from the underlying chemical substructure
and instead directly or indirectly quantify the pharmacophoric potential of natural
product fragments [5].

For example, Rollinger et al. have used 2208 three-dimensional pharmacophore
models to screen a collection of 16 fragment-like secondary metabolites isolated
from Ruta graveolens and found between ten and 287 confident predictions per
natural fragment [79]. In prospective experiments, arborinine was validated success-
fully as an acetylcholinesterase inhibitor (IC50 ¼ 34.7 � 7.1 μM). Their model for
binding the cannabinoid-2 receptor was based on five selective agonists. The only
confident prediction of this model was rutamarin. Indeed, rutamarin was the only
metabolite that showed ligand displacement with a Ki of 7.4 � 0.6 μM [79]. These
data suggest that such models are not only able to correctly identify inhibitors but
also are robust in recognizing true negatives—although further testing will need to
statistically validate these results [79]. Follow-up research has led to the identifica-
tion of acetylcholinesterase inhibitors among morphinans and isoquinolines [134] as
well as partial agonists of proliferator-activated receptor gamma among neolignans
[80, 135].

Instead of deriving a pharmacophore model for a protein target of interest,
researchers have also successfully employed docking strategies to assess the poten-
tial of a natural fragment to bind a pocket of a target protein [136–138]. For example,
Lanz and Riedl probed the S10-binding site of matrix metalloproteinase
13 [22]. They identified uracil as a natural fragment with a unique binding mode
that was further optimized into nanomolar inhibitors with impressive selectivity over
other matrix metalloproteinase subtypes. In a broader screen against 400 proteins,
Bernard and colleagues identified peroxisome proliferator-activated receptor gamma
and cyclooxygenase-2 as targets of the coumarin derivative meranzin [139]. Both
pharmacophore models and computational docking strategies have shown impres-
sive results for identifying biomacromolecular targets of natural product fragments
[5], but require good estimates of the confirmation space of natural fragments and
their stereochemistry, which are not always available.
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Other prediction technologies enable target identification for natural products
while circumventing the challenges originating from the differences in chemical
structure compared to synthetic screening collections or unknown conformations
[5]. For example, researchers have employed productively biological fingerprints as
an alternative strategy to compare molecules and predict their targets [140]. In brief,
the underlying assumption is that if two compounds have shown similar activities for
some biological targets, it is likely that they will behave similarly when tested
against other targets. This can be employed for target prediction if one of the
compounds has been tested against targets against which the other compound is
yet to be tested. Wassermann et al. have shown how this approach predicts more
targets for natural products compared to chemical fingerprint-based approaches and
have used this concept to identify vascular endothelial growth factor receptor 2 as a
target for fisetin with an IC50 of 230 nM, which might aid explaining the
antiangiogenic effects of this fragment-like flavonoid [141]. However, this success-
ful strategy is exclusively applicable to natural products that have been screened for
biological activity previously. A majority of natural product fragments have not been
investigated yet or the results have not been made publicly available [6, 7], highlight-
ing the need for additional technologies that can predict targets of natural fragments
exclusively from their structures without the need for conformational sampling or
previous biological screening.

In an effort to design a prediction technology specifically focusing on its ability to
predict targets for novel chemical structures, Reker et al. have designed the SPiDER
method [25]. The method circumvents the problem of predicting targets for
chemicals with unusual or previously underexplored chemical substructures by
explicitly employing “fuzzy” descriptors that enable relating chemicals through
their two-dimensional graph structure via pharmacophore correlations (CATS2
descriptor) [142, 143] and physicochemical properties [39, 49]. The method relies
on self-organizing maps as a clustering approach [144] to define local regions
(Voronoi fields) of equivalent biological activity [145, 146]. Confidence scores for
every prediction are derived from statistical interpretation of molecular similarities to
enable prioritization of the most meaningful target hypotheses [25]. It was realized
that this workflow not only is successful at identifying targets for novel, de novo-
designed synthetic compounds [25, 147] but specifically excels at predicting targets
of natural products [5, 7, 21, 148]. Natural fragments, in particular, appear to show
the highest number of confident SPiDER predictions [5, 7], highlighting the ability
of the SPiDER algorithm to predict new targets for this important compound class.
Indeed, SPiDER has been utilized to identify biomacromolecular targets for various
naturally occurring fragments such as β-lapachone [149], graveolinine, isomacroin,
DL-goitrin [21], sparteine [5], valerenic acid, isopimaric acid, and dehydroabietic
acid [20] (Fig. 4). While these and other studies [7, 148] highlight the power of
ligand-based target prediction methods such as SPiDER to identify the targets of
natural fragments, these studies also provide powerful insights into how these
methods can be used in concert with molecular docking [21], molecular similarity
assessments [20], and orthogonal machine learning technology [149] to fuse multi-
ple prediction methodologies for further improved predictive confidence or to enable
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additional hit rationalization. Similarly, conceptually related target prediction
methods such as TIGER show promise to further the computational toolset for
polypharmacological prediction of natural product fragments such as resveratrol
[150] that can be easily derivatized for further structure-activity relationship studies
and in vivo applications [151].

Although multiple striking examples exist of utilizing advanced target prediction
technology to predict targets of large and structurally intricate natural products
[7, 125, 148, 152, 153], it seems that fragment-like natural products are more
computationally relatable to the available screening data [2, 7, 57] and therefore
lead to more confident predictions [5, 7, 21, 107]. Some investigations suggest that
this trend might also be true for other target prediction methodologies such as
computational docking, where fragment-like entities lead to higher scores or
improved retrieval of correct binding modes [36], which might be connected to the
problem of conformational sampling of complex natural product structures [78].

Taken together, it appears that fragment-like natural products are exquisitely
positioned to provide starting points for drug and chemical tool development to
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modulate the activity of their anticipated targets [13]. For example, sparteine is a
natural fragment that has been studied extensively and computational methods such
as ligand-based target prediction and clustering-based diversity selection have iden-
tified biomacromolecular targets spanning different protein families such as p38α
MAP kinase [4], muscarinic and nicotinic receptors [5, 154], and the kappa opioid
receptor [5]. Such initial hits can then be further optimized by derivatizing the
fragment and adding additional chemical functionality: sparteine derivatives were
further functionalized with a primary amine that enabled improved p38α MAP
kinase activity from additional polar interactions as indicated by molecular
modeling [4].

4.2 Collection Design

Natural product fragments are believed to coalesce the advantages of fragment-based
drug discovery and biologically privileged natural product structures [13]. Therefore,
general-purpose screening collections of natural fragments with diverse structures
have been harnessed to generate compound collections that could provide novel hits
at improved rates with better selectivity compared to classical synthetic fragment
sets [8, 11, 17, 155]. For example, Over et al. [4] used scaffold-based fragmentation
on the Dictionary of Natural Products [42] and subsequently filtered for fragment-
like structures without reactive groups. Clustering-based diversity selection [156]
and identification of commercially available cluster representatives (cf. Fig. 3) lead
to the assembly of a screening collection that was employed successfully to identify
novel, allosteric ligands of p38α MAP kinase as well as phosphatase inhibitors
[4]. Similarly, Quinn and colleagues [17] used filtering directly on the Dictionary
of Natural Products [42] to arrive at a small, diverse collection of naturally occurring,
three-dimensional fragments that were successfully isolated or purchased. This
compound collection was then screened in parallel for their potential to bind to
multiple malarial protein targets as well as phenotypically for their activity against
asexual intraerythrocytic blood stage Plasmodium falciparum 3D7 parasites. Ana-
lyzing these data in parallel enabled the target identification of 31 relevant antima-
larial targets as well as the generation of 79 innovative hit structures for further
optimization [17]. Such efforts attest to the enormous potential of diverse, target-
agnostic screening collections composed of natural product fragments to fuel
fragment-based discovery efforts against targets from various protein families
using various assay technology as well as validating their utility in phenotypic
screens.

Instead of generating natural fragment sets from whole natural product collections
[4, 17], molecular series derived from one specific natural product core can provide
focused collections with privileged and novel structures [12, 16]. Especially when
the biomacromolecular targets of the template natural product are known or
predicted [9, 149, 157], the derived structures often inherit the template’s
polypharmacological profile—leading to dramatically increased hit rates for the
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focused natural fragment collections on the target of interest [9, 158]. Furthermore, if
the template fragments were generated in silico through virtual fragmentation and
(retro)synthesis approaches, their attachment points might constitute useful chemical
handles to add side chains with additional pharmacophore functionality while
preserving the original scaffold and shape [4] (cf. Fig. 1). Thereby, potentially
inaccessible natural products can serve as templates for synthetically tractable sets
of derivatives [91]. Waldmann and colleagues have pioneered and validated this
concept as biologically oriented synthesis (BIOS) [16]. Relying on and derivatizing
core structures originating from fragments that were computationally extracted from
natural ligands of an enzyme of interest or other known or predicted inhibitors,
focused screening collections can be generated with high hit rates and, even more
importantly, an often improved selectivity to structurally related protein targets
compared to other screening approaches [9, 90, 158].

Fascinatingly, such efforts can be performed phenotypically without necessarily
understanding the exact mechanism of action of the template compounds. For
example, in an effort to identify molecular tools with neurotrophic activity, Schröder
et al. relied on BIOS to simplify N-deoxymilitarinone A (Fig. 5), a fungal metabolite
causing neurite outgrowth in PC-12 cells [90]. Previous research had shown that this
effect is relatively robust toward simplifying the natural product and its side chains
have minor impact on its neurotrophic activity [159, 160], suggesting a pivotal role
of the scaffold for activity. This motivated the generation of 59 compounds around
the 4-hydroxy-2-pyridone scaffold and its 2,4-dimethoxypyridine derivative
[90]. The most active compound 11e showed 74% neurite growth at 10 μM com-
pared to control. Interestingly, activity in the phenotypic screen of the focused
collection could be correlated with MAP 4K4 activity, which potentially links this
kinase to neurotrophic effects and proposes it as a target to combat neurodegener-
ative diseases [90].

An earlier study by Koch et al. set out to identify novel 11β-hydroxysteroid
dehydrogenase 1 inhibitors from the natural ligand glycyrrhetinic acid [9]. The
complex pentacyclic scaffold was simplified into a two-ring system following the
SCONP hierarchical clustering of scaffold structures [9]. In an additional step of
collection development, the scaffold was subsequently substituted by a more stable
derivative with endocyclic double bond through “brachiation” within the scaffold
tree [161]. Such a horizontal shift from one arm of the scaffold tree into another can
enable transformations of target fragments into more suitable structures in terms of
advantageous physicochemical properties or improved chemical tractability for
derivation and collection design. However, this comes at the risk of losing the
associated pharmacological effect of the original natural product through deviating
too much from the privileged scaffold arrangement [9, 91]. In this specific case,
further confidence in the applied modification was drawn from the fact that the
aspired fragment corresponds to the scaffold of the natural product dysidiolide,
which is an inhibitor of Cdc25A phosphatase [162]. Since Cdc25A phosphatase is
structurally related to the 11β-hydroxysteroid dehydrogenase 1 target protein
according to the protein structure similarity clustering (PSSC) approach [158], it is
likely that they share common inhibitors and that therefore scaffolds targeting
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Cdc25A phosphatase might also warrant 11β-hydroxysteroid dehydrogenase 1 inhib-
itors. Indeed, a collection of 162 compounds derived from the octahydronaphthalene
scaffold afforded 30 inhibitors of 11β-hydroxysteroid dehydrogenase 1 and some of
the hits revealed remarkable selectivity against 11β-hydroxysteroid dehydrogenase
1 over 2 [9], further hinting at the potential of natural fragments to serve as starting
points for highly selective lead structures and probes [5].

In these and other examples [16], BIOS has specifically excelled at addressing
challenging targets where out-of-the-box fragment or screening collections might
give unsatisfactory results [4]. This has been associated with the ability of such
approaches to generate focused sets of compounds that inherit relevant physico-
chemical properties and pharmacophores from the template natural product [4, 9,
16]. However, notwithstanding the impressive success rate of the BIOS approach,
this hypothesis is not always correct, and depending on the chemistry employed,
compounds with vastly different properties can emerge [9, 91]. In a fascinating meta-
analysis, Pascolutti and Quinn [163] investigated the distribution of molecular
weight and logP as well as the number of HBD, HBA, rotatable bonds, and rings
in collections generated through derivatizing natural product templates. They found
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that such generated collections can show markedly different ranges of properties
and, most importantly, could be drastically different from the original natural
product that was used as the template structure [163]. A close monitoring of the
properties of collections generated, including their potential to trigger false-positive
assay readouts (cf. Sect. 3.5) potentially can improve the quality of such generated
collections and even further enhance success rates [5].

The impressive success of the BIOS approach is possible due to advanced
chemical knowledge and manual labor to delineate stable core structures and suitable
chemical routes for their derivation [16]. In an orthogonal and automated approach,
computational de novo design can be installed to generate large collections of natural
product mimetics autonomously [20, 58, 92, 164]. To this end, natural product
fragments with known biological activities can fuel ligand-based de novo design
algorithms [50] to derivatize them and build small collections of novel chemical
structures with similar chemical features and biological activities [92].

Schneider and colleagues have pioneered both established as well as novel de
novo design methods for the generation of collections of synthetically accessible
natural product mimetics from natural product fragments [20, 92]. For example, the
DOGS software [24] was harnessed to create a collection of synthetically accessible
natural product mimetics with potential inhibitory effect against the retinoid X
receptor [20]. DOGS implements a virtual synthesis algorithm that connects
25,144 commercially available chemical building blocks according to 58 chemical
reaction principles to generate novel chemical matter with a suggested protocol for
its synthesis [24]. Since the connection of all building blocks would lead to a
combinatorial explosion of possibilities, the DOGS designs are iteratively guided
by a graph kernel similarity towards a template structure [165]. The DOGS designs
have been validated extensively to afford novel chemical matter with the desired
activity against (patho)biologically relevant protein targets [166–172] and were most
recently validated in the context of fragment-based drug discovery [173] and were
used to identify mimetics of large, complex natural products [164]. In a consequent
next step, Schneider and colleagues applied the concept to natural fragments as
retinoid X receptor modulators, utilizing small natural compounds with known
retinoid X receptor activity such as honokiol, drupanin, valerenic acid, isopimaric
acid, and dehydroabietic acid as template structures (Fig. 6) [20]. These designs were
prioritized further using a consensus of a CATS2 descriptor-based similarity assess-
ment [142] as well as SPiDER target predictions [25]. This workflow led to the
synthesis of six de novo-generated natural product mimetics, of which five showed
the desired retinoid X receptor activity [20].

In a second study against the same target, the team added bigelovin to the natural
product templates for a novel, generative deep-learning campaign [92]. Generative
deep neural networks are the newest addition to the molecular design toolbox,
teaching a machine molecular structure constraints by providing tens of thousands
of valid chemical structures in text representation such as SMILES formats [174–
176]. These neural networks can then sample novel text representations of molecules
that translate into compounds with desired properties. To this end, the neural
network is first trained to produce chemically meaningful text representations
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through a large corpus of chemical structures. Providing the six natural fragments as
data for an additional round of training enables the fine-tuning of the model and bias
the generation of chemical structures to natural mimetics with potential for the
desired biological activity (“transfer learning”). Indeed, the fine-tuned model was
able to create hundreds of chemically valid and novel structures that exhibited the
desired natural product-likeness [44]. Around half of these designs were predicted as
ligands of retinoid X receptor by orthogonal target prediction methodology relying
on SPiDER predictions [25]. Further filtering of these positively predicted designs
using WHALES molecular similarity assessment [87] and visual inspection for
synthesizability lead to four chosen designs, of which two possessed retinoid X
receptor activity with varying subtype selectivity [92].

Such de novo design campaigns are complementary to the previously mentioned
BIOS approaches. While BIOS harnesses chemical expert knowledge to generate
structurally related compound series employing the same or a similar privileged
scaffold, automated molecular design can create large sets of novel structures that are
chemically more different from the template but inherit natural product-likeness [44]
and crucial pharmacological features from the template natural fragments
[73, 92]. Given their impressive success in previous studies, the herein discussed
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and orthogonal tools are likely to become essential parts of the drug and chemical
probe discovery toolbox to provide novel and privileged compound collections from
natural fragment templates [73].

4.3 Analysis of Natural Product-Likeness

Instead of using fragments directly as tools in computer-assisted drug discovery,
researchers have utilized them as chemical patterns to quantify the similarity
between two compounds or compound collections. Scaffolds in particular have
been utilized as the indicators of structural novelty for collection design and com-
pound development [18, 58, 132, 177]. Therefore, the concept of “scaffold hopping”
has been coined by Schneider and colleagues to ascribe the capabilities of a method
or the success of a project to identify new chemical entities [143, 167]. Conversely,
in the context of natural product-inspired drug discovery research where scaffold
similarity to a naturally occurring compound is desired, the detection of natural
product fragments in a new lead structure or screening collection is a measure of
desirability [44]. On a larger scale, fragmentation and structure matching can provide
statistically quantifiable measures of “natural product-likeness” [5, 44]. For exam-
ple, Hou and colleagues [35] analyzed the natural product-likeness of the Compre-
hensive Medicinal Chemistry Database and found that about 20% of the scaffolds in
this dataset were present in the Terrestrial Natural Product Database [64] while only
10% could be found in the Dictionary of Marine Natural Products [63]. While this
bias might be in parts explained through the smaller size of the Dictionary of Marine
Natural Products (cf. Table 1), other effects such as the underrepresentation of
marine natural products in historic drug discovery might help explain this effect as
well [57].

To measure natural product-likeness of individual chemical structures, Rodrigues
et al. have devised a scoring procedure that captures the count of natural product
fragments occurring in one specific molecule normalized by its molecular weight
[5]. Through this normalization, each score captures the relative frequency of natural
product fragments found within one specific structure compared to the size of the
molecule. Through applying this score to FDA-approved drugs, therapeutics that are
more or less similar to natural products can be identified. Interestingly, while there
were strong variations per year, a sustained occurrence of natural fragments in
approved drugs was observed [5]. This is fully in line with previous observations
of the relevance of natural products for drug discovery [3, 178].

Ertl et al. have devised the most commonly utilized score that specifically
captures the occurrence of fragments from natural products that cannot be found in
synthetic molecules [44]. Thereby, the score removes “background noise” fragments
that can be found in either compound class. This score enabled the classification of
natural products vs. synthetic molecules with higher enrichment compared to
machine learning models based on physicochemical properties, thereby highlighting
its utility to measure the natural product-likeness of a compound in terms of
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chemical fragments. In a striking experiment, they compared the scores for natural
products, synthetic compounds, and approved drugs: while natural products and
synthetic compounds show disparate distributions, approved drugs show higher
natural product-likeness, further attesting to the utility of using natural product
fragments in the design of new therapeutics [179].

Accordingly, such measures of natural product-likeness act not only as a seismo-
graph to measure the relevance of natural products for drug discovery over time [5],
but have also been used to guide screening efforts for specific collection design [71]
or to assess the natural product-likeness of de novo-generated natural product
derivatives and collections of mimetics [20, 155]. The success of these studies is a
remarkable testimony to the relevance of natural product fragments for the develop-
ment of novel and impactful chemical probes and drug discovery hits [73].

5 Concluding Remarks and Outlook

As highlighted in this contribution, multiple impressive projects have relied on
natural fragments to efficiently discover novel and selective starting points for
drug discovery and chemical biology with great potential for further optimization
[7, 9, 19, 20, 22]. The success of such endeavors stems, at least in part, from the
potential to benefit from fragment-based approaches [17, 180] for compound dis-
covery and design. At the same time, such natural fragments provide innovative,
three-dimensional molecular frameworks [8, 17] that are chemically [4, 8] and
computationally [2, 5, 7, 57, 107, 169] more accessible compared to their complex
counterparts. Computational workflows have been implemented that support this
process at all stages. Generating novel fragments [4, 9], their property analysis
[8, 18, 57], their biological applications [4, 5, 21, 22], and compound collection
designs [16, 20] can be supported through in silico approaches. It is noteworthy,
however, that most of the computational tools discussed herein were not designed
specifically with an application to natural products or their fragments in mind. Some
early studies have indicated that algorithmic tools specifically tailored to process
natural products might even further increase the performance and success rate of
such pipelines [7, 9]. This indicates that further studies to design computational tools
specifically for natural fragments, optimizing currently available workflows, and
their intelligent application to drug discovery and chemical biology promise multiple
avenues for impactful research and innovative molecular matter through coalescing
data science and natural product research.
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