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Foreword

“Big data” has emerged as one key term of the twenty-first century. Wikipedia,
which itself is visible evidence of this development, defines the term as a “field that
treats ways to analyze, systematically extract information from, or otherwise deal
with data sets that are too large or complex to be dealt with by traditional data-
processing application software.”

It is therefore not surprising that also in the field of natural product chemistry over
the last few decades, cheminformatic methods have evolved to analyze databases.
The current volume of “Progress in the Chemistry of Organic Natural Products”
presents a collection of contributions by authors who are experts in this field.

The first contribution (“Cheminformatics Explorations of Natural Products”) by
José Medina-Franco and his colleagues from the National Autonomous University
of Mexico gives a broad overview of cheminformatics strategies that may be used to
mine natural product spaces for their potential biological activity, toxicity, or
biodiversity.

The following chapter “Resources for Chemical, Biological, and Structural Data
on Natural Products” is written by a young team working with Johannes Kirchmair
from the University of Bergen (Norway) and University of Hamburg (Germany).
Therein, they critically review approaches for using cheminformatic tools including
virtual databases, physical natural product collections, and resources for biological
and structural data on natural products.

The chapter “A Toolbox for the Identification of Modes of Action of Natural
Products” by Tiago Rodrigues from the Instituto de Medicina Molecular João Lobo
Antunes (Portugal) reviews cheminformatics tools for the identification of modes of
action of natural products from molecular docking to machine-learning methods.

Thierry Langer and his team from the University of Vienna (Austria) provide a
detailed introduction into pharmacophore-based techniques and the underlying
concept that can be used in natural products chemistry and exemplify respective
projects (“The Pharmacophore Concept and its Applications in Computer-Aided
Drug Design”).
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Daniel Reker from the Massachusetts Institute of Technology (USA) illuminates
the relevance of natural fragments for drug discovery in his contribution
“Cheminformatic Analysis of Natural Product Fragments.”

The chapter “Open Access Activity Prediction Tools for Natural Products. Case
Study: hERG Blockers,” contributed by a team working with Daniela Schuster from
the Paracelsus Medical University Salzburg and the University of Innsbruck (Aus-
tria), shows how potential toxicity caused by interference of natural products with
the hERG potassium ion channel can be recognized by computational tools.

Finally, Benjamin Kirchweger and Judith Rollinger from the University of
Vienna (Austria) analyze the strength, weaknesses, opportunities, and threats of
cheminformatics methods that are used in natural product research (“A SWOT
Analysis of Cheminformatics in Natural Product Research”).

In sum, Volume 110 offers a comprehensive and timely overview of how “big
data” generated over the past decades in the form of natural product collections and
databases can be mined by computational approaches to answer recurring issues.
These include the molecular target identification of natural compounds as well as
ligand identification for relevant macromolecular targets from the large pool of
bioactive compounds from Nature, thus allowing us to assess their potential phar-
macological and toxicological properties.

Vienna, Austria Verena M. Dirsch
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Abbreviations

BRD Bromodomain
CDPs Consensus Diversity Plots
DNMT DNA methyltransferase
FDA Food and Drug Administration
HDAC Histone deacetylase
hERG Human ether-a-go-go-related gene ion-channel
IMPS Invalid metabolic panaceas
MACCS Molecular Access System
PAINS Pan-Assay Interference compounds
PCA Principal component analysis
SAH S-adenosyl homocysteine
SAM S-adenosyl methionine
SMILES Simplified Molecular Input Line Entries
TCM Traditional Chinese Medicine
UNPD Universal Natural Products Database

1 Introduction

Natural products have intimate relationships with medicine and chemistry, with
various examples from ancient civilizations throughout history. Most of these uses
include those in traditional or herbal medicine, to which also mystical properties to
the plants or fungi concerned have sometimes been attributed. For example, sage is a
herb that was thought to ward off evil. Nowadays, it is known that sage possesses
several biological effects, for example, antibacterial, antioxidant, and cholinergic
[1]. In a similar manner, other traditional uses have been validated by scientific
research [2–5].

As such, natural sources have driven the early stages of medicinal chemistry and
drug discovery, yielding valuable therapeutic agents still in use today. Prominent
examples of drugs approved for clinical use from natural sources include, but are not
limited to, penicillin, pilocarpine, reserpine, and salicylic acid. Furthermore, the role
of natural products as novel avenues for therapy increased after the so-called Golden
Age of Antibiotics (circa 1960) when the larger companies in the pharmaceutical
industry began the development of numerous projects, searching for molecules with
diverse bioactivities [6]. However, the “golden age” of natural products as antibi-
otics was quite short, since most companies reduced such endeavors by the turn of
the twenty-first century [7]. Several reasons have been given that help explain the
decreased enthusiasm of pharmaceutical companies to work on natural products.
Two major points are the inherent complexity of crude extract compound mixtures
and the slowness of natural product optimization [8]. Additionally, with the rapid
development of combinatorial chemistry and high-throughput methods, the search
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for chemical diversity was considered a solved problem. Unfortunately, this has not
been the case, as it has been shown that combinatorial collections tend to get trapped
in the same area of chemical space [9]. Moreover, even with the ability to produce
compounds in high numbers, only a handful of Food and Drug Administration
(FDA)-approved drugs come from such methods [10]. Therefore, it can be argued
that the solution of the problem “quantity over quality” is “quality over quantity”.

As a result, natural products have seen a “rebirth” with novel methods and
synthesis strategies to produce diverse collections [11]. Additionally, in most
cases, vegetal sources are the major players in natural product research. Thus,
other sources like marine, bacterial, and fungal metabolites offer untapped potential
[12, 13]. As recently reviewed, there are several recently approved drugs that are
natural products or are synthetic analogs of hit compounds initially identified from
natural sources. A clear and recent example is the fungal metabolite migalastat
(Galafold®) approved in 2018 for the treatment of Fabry disease [14].

Due to these considerations, current efforts involve multidisciplinary approaches,
which help mitigate the problems inherent to natural products. This mainly focuses
on the improvement of extraction, isolation, and quality control of metabolites,
including “omics technology” [15]. Nonetheless, other technological approaches
have arisen. Take, for example, the high volume of information available on natural
products and their activities. We now live in an era of “big data”, with different
dedicated repositories [16]. The rational and effective mining of such databases
could yield important breakthroughs.

It is well known that many natural products exert multiple effects in vitro, and,
because of this promiscuous nature, some classes of natural products are among the
Pan Assay Interference Compounds (PAINS, see Sect. 3) [17]. It follows that a
screening campaign might well filter scaffolds of natural products to identify prom-
ising ones, while also discarding PAIN-like moieties. In practice, this can be
accomplished rather easily, by conducting a virtual screening that is an in silico
method (part of cheminformatics) aimed at selecting compounds with potential
biological activity.

A rather “young” discipline, cheminformatics, is envisioned as the answer for
chemical information problems using several numerical, statistical, and physico-
chemical methods to work with two- and three-dimensional chemical structures
[18]. This aims to optimize resources more effectively and to focus on the more
viable molecules. Therefore, cheminformatics relies heavily on concepts like chem-
ical space, molecular similarity, and chemical representation [19]. More recently, the
scope of cheminformatics has shifted toward in silico evaluation, using molecular
modeling approaches and machine learning.

The goal of this chapter is to discuss the progress of selected cheminformatic
strategies to further advance the identification of bioactive molecules from natural
origin. This contribution is organized in five major sections. After this introduction,
Sect. 2 discusses examples of mining the space of natural products using several
virtual screening strategies, including similarity searching, automated docking, and
consensus methods. In this section, case studies are described of virtual screening for
the identification of bioactive molecules against epigenetic targets. Section 3

Cheminformatics Explorations of Natural Products 3



discusses the in silico toxicity profiling of natural product datasets. Next, Sect. 4
covers the analysis of the chemical diversity and coverage in chemical space as well
as the design of natural product-like molecules and natural product mimetics.
Section 5 presents summary conclusions and perspectives.

2 Mining Natural Product Spaces: Identification
of Bioactive Compounds

As stated, virtual screening aims to evaluate the potential of a molecule as a
biological agent. This can be achieved in several ways; some of these are listed in
Table 1.

Usually, a virtual screening protocol involves various methods in consecutive
order, trying to filter large databases to “cherry-pick” putative ligands of interest.
Thus far, virtual screening has been applied successfully to identify hit compounds
that are usually later optimized [26–28].

In the early days of in silico research, the quintessential approaches were
descriptor-based, mostly inspired by the success of the Hansch-Fujita method.
This led to the birth of Quantitative Structure Activity Relationships (QSAR) and
their more refined counterparts: CoMFA and CoMSIA [29]. A prominent success

Table 1 Representative computational methods and concepts used for virtual screening

Method/concept Brief description Refs.

Chemical space Abstract representation of compounds, using differ-
ent descriptors. This allows the profiling of chemical
collections

[20]

Molecular similarity Using graph decomposition, molecular structures are
codified as vectors. These in turn can be compared
using different equations to measure similarity

[21]

QSAR Mathematical models supported by descriptors that
quantify the impact of substituents in biological
activity. Their main aim is the prediction of biolog-
ical activity

[22]

Molecular docking Simulation that approximates protein-ligand bind-
ing. This is accomplished by the conformational
searches of ligands and the evaluation of these using
dG values as criteria

[23]

Molecular dynamics Physical simulations that allow the study of protein
behavior, using equations of motion and potential
energy functions (forcefields)

[24]

Free energy perturbations Derivatives of molecular dynamics, in this case the
simulation goes across a thermodynamic cycle. This
can be used for the approximation of binding energy
and the change in its value due to fragment changes

[25]
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case being the Lipinski Rule of Five, which describes a general profile of “drug-like”
molecules with optimal bioavailability (no more than 5 hydrogen bond donors, no
more than 10 hydrogen bond acceptors, M � 500, logP � 5) [30]. Alas, it can be
argued that over-reliance on such approaches has led to molecular attrition [31]. In
addition, it has been shown that the overall performance of descriptor-based classi-
fication depends on the correct assessment of relevant properties [32].

On the other hand, there are receptor-based approaches, with the most well-known
of them being molecular docking. One such technique uses the GRID method,
developed by Goodford et al., which generates molecular interaction maps in protein
cavities [33]. Hence, docking can be used to model drug–protein complexes and
perhaps the most appealing aspect of this, the calculation of relative binding
energies.

Even so, molecular docking has critical points that may be often overlooked by
naive users, for example, structure selection, protein preparation, the inclusion of
water molecules and metal ions, and protein flexibility [23, 34]. Furthermore, one of
the most important flaws in molecular docking is the pose versus scoring phenomena
that are related to the uncertainty of significant results without the proper knowledge
of the binding site. Consequently, some protocols and good practices have been
proposed for reliable results [35, 36]. In this sense, proper ligand selection has been
suggested as a preferred method for docking candidate selection [37].

Of the several approaches for molecule mining, chemical similarity is perhaps the
most powerful. Most chemists have encountered this principle, sometimes inadver-
tently. The rather simple axiom, “similar structures share similar activities,” holds
significantly true in a pharmacological context. In practice, chemical similarity
provides a tool for systematic and objective comparison of compound pairs. To do
this, chemical structures are codified as strings, known as SimplifiedMolecular Input
Line Entries (SMILES). Then follows a comparison based on topology or fragment
substructures, commonly performed with the Tanimoto coefficient to compute
similarity values [38].

Without doubt, similarity methods have improved the overall capacities of virtual
screening, with recent examples of success in the literature [39]. Nevertheless,
molecular similarity is not fail-proof due to structure–activity relationship heteroge-
neity. More explicitly, this refers to the existence of activity-cliffs, that is, molecules
with a known active scaffold that loses its effect with small modifications (pyridine
instead of benzene ring) as with compounds 1a and 1b shown in Fig. 1.

This phenomenon deeply impacts the performance of virtual screening as a
whole, not just similarity methods [40]. Accordingly, the best results of virtual
screening campaigns are obtained by complementary approaches, also known as
consensus [41].

Virtual screening protocols may be implemented rather easily and with such
potential, they have been adopted in natural product research. Correspondingly,
screening and optimization of natural products has benefited from computational
tools. In turn, computational chemists saw the potential of natural products as
privileged scaffolds for lead searching, ending in a symbiotic relationship early
on. As may be expected, there have been some inherent difficulties and successes
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along the way. Still, this interdisciplinary environment has led to the development of
public repositories and the overall improvement of computational algorithms [42].

Generally, the proposal or study of putative mechanisms of action is the main
goal of computational methods in natural product research. For example, DNA
topoisomerases have been studied with a wide array of natural products, identifying
interaction patterns crucial to enzyme inhibition [43]. These concepts have been
scaled further as “target fishing” or reverse virtual screening. In this case, the
molecule of interest is used as filter, that is, it is evaluated against several targets
to identify significant activities. The value of such studies cannot be overstated, as
their utility may range from structure–activity relationship optimization to multi-
activity map pathways [44].

Likewise, molecular modeling tools have been used to identify natural product
leads with micromolar activities in targets such as acetylcholinesterase (AChE),
cytochrome P-450, angiotensin-converting enzyme 2 (ACE-2), kinase CK2, and
estrogen receptor-β [42]. On the other hand, consensus protocols have been suc-
cessful in the screening of marine compounds with assorted activities [13].

As may be seen, natural product mining with virtual screening protocols has
proven effective. Of course, there are more examples in different fields, but we
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Fig. 1 Example of an activity cliff, with the most potent structure being 1b. In this case, the
difference in activity between 1a and 1b is almost 400 times. Of note, this large change in activity is
due to a single heteroatom. Below, structural formula of amentoflavone (2)
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consider that among them, the epigenome provides an interesting application for
natural products as chemoprotective agents. Here, we discuss recent applications
with emphasis on epigenetic targets that are emerging as promising targets for the
treatment of several diseases [45–49].

2.1 Case Studies of Virtual Screening for Epigenetic Targets

Epigenetics has become an attractive area of study, first described in 1940 by Conrad
Waddington [50]. It refers to heritable changes in gene expression that occur
independent of alterations in DNA sequence, but are rather based on modifications
of histone proteins or nucleic acids. Since its description, epigenetics is linked to
factors such as diet or the environment to explain the biogenesis of some
diseases [51].

Currently, epigenetics has provided a novel approach to search for therapies in the
treatment of cancer, diabetes, hypertension, or even Alzheimer’s disease. Still,
epigenetic modulation is not “black or white”, as several epigenetically modifying
enzymes modulate a wide array of physiological functions. In addition, the
epi-pocketome continues to grow at steady pace, increasing target diversity and
complexity [52, 53]. Hence, the overall safety and scope of epi-therapies are yet
quite blurry [54].

Consequently, the search for epi-modulators is not limited to drugs but is focused
on the identification of probes [55, 56]. In this context, natural products have taken a
prominent role in the field, serving as leads or even templates to understand
epi-pharmacology. Some examples (3–11) of epi-modulators are presented in Fig. 2.

Of note, flavonoids have a privileged place among natural products as therapeutic
agents. Often regarded as natural polydrugs, this scaffold has a plethora of biologic
actions beyond their antioxidant potential [57]. Considering their abundance in
human diet, flavonoids have a well-documented nutraceutical potential [58].

In the next sub-sections, we further comment on some case studies where natural
products are involved in serving as leads or to uncover interesting structure–activity
relationships.

Cheminformatics Explorations of Natural Products 7
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2.1.1 Bromodomains

Bromodomains (BRDs) are small proteins (around 120 residues) that are classified
as epi-readers, that is, enzymes for which the function is focused on recognizing
patterns of a given moiety. In this case, bromodomains identify acetylated lysine
residues [59]. Currently, over 60 isoforms of bromodomains have been identified
from the human proteome; of those, bromodomain and extraterminal domains
(BETs) have attracted the most interest so far. This is mainly due to their relation
to cancer cell lines and inflammatory processes [60].

One of the pitfalls in bromodomain inhibition is the lack of structural diversity in
current inhibitors [61]. As a result of this, there is an ongoing search for novel
inhibitors of these targets. Additionally, BET isoforms exhibit high values of
sequence similarity in their binding site, making the search more difficult for
selective and potent inhibitors.

Recent endeavors in the field include fragment-based virtual screening [62], lead
optimization based on receptor structure [63], development of bivalent inhibitors
[64], and molecular dynamics of active sites [65]. With this background, our group
focused on molecular modeling methods to further advance the understanding of
BET inhibition [66].

Following a virtual screening protocol using molecular similarity and docking,
two hits were identified. The more promising was amentoflavone (2) (Fig. 1), a
biflavonoid produced by Gingko biloba and Hypericum perforatum among other
plants, with previous reports of antitumor-related activity [67, 68]. Similarly, other
groups identified the flavonoid scaffold as a putative ligand for bromodomains
[69, 70]. Yet, this was the first report for biflavonoids, which is interesting due to
their atropisomeric properties [71]. In addition, all these studies suggested that
flavonoids bind at the ZA channel (a flexible region connecting the Z and A
loops). This region has been suggested as significant for selectivity due to its
interaction with a conserved water network [72].

Further characterization was performed with molecular dynamics simulations,
which showed that amentoflavone (2) can interact with D145, a residue specific to
BRD4-BD1 [73]. This is an interesting observation considering that RVX-297
(a quinazolone) is a specific inhibitor of BRD4-BD2 [74]. Biological evaluation of
amentoflavone showed an IC50 in the micromolar range, with evidence suggesting
selectivity for BRD4-BD1 [75].

Thus, it can be stated that atropisomerism provides positive contacts for BRD4-
specific inhibition. As a proof of concept, Fig. 3 presents protein–ligand interactions
with selected biflavonoids obtained by molecular dynamics. This shows that indeed,
the spatial arrangement and conformational freedom of ligands favor their interac-
tion to D145.

Recently, isothermal titration calorimetry assays have shown that binding in the
pocket of BETs is mostly enthalpy driven [76]. This in addition to the flexibility of
the ZA channel suggests that constrained structures can show BET selectivity and
specificity. This is a notable observation considering the rather “simple” scaffold of
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flavones. Nevertheless, this shows the undeniable potential of natural products, not
just as leads but as pharmacophore templates.

2.1.2 Sirtuins

While not yet discussed in the previous Section on bromodomains, histone acetyla-
tion is crucial for chromatin opening. This happens as a result of the recruitment of
histone acetyl transferases, and to reverse this process, histone deacetylases
(HDACs). The latter are intensively studied to develop novel therapies for several
cancer lines, by reactivating silenced genes [77]. Currently, 18 HDAC isoforms are
classified into four different classes in regard to their homology to yeast proteins.
Class III is the only one for which the function relies on nicotine adenine dinucle-
otide (NAD+), also known as sirtuins due to their relation to Sir2 [78].

There are seven isoforms of sirtuins in humans expressed at different cellular
locations, with highly conserved active sites, but functionally different structures and
domains [79]. Recently, it has been shown that sirtuins exert functions beyond
epigenetic silencing [80]. For example, sirtuins have an active role in DNA protec-
tion and repair by several mechanisms, which include PARP activation, glutamine
anaplerosis, reactive oxygen species, and activation of reactive oxygen species
neutralizing enzymes [81]. Moreover, sirtuin expression has a direct correlation
with caloric restriction. This has been related to extended life span and overall health
status provided by NAD+ upregulation [82]. Hence, the investigation of sirtuins
becomes quite interesting, as the focus diverges for the search of both inhibitors and
activators, according to the effect desired.

One of the first inhibitors of the HDACs was romidepsin (8), a depsipeptide with
a disulfide bond and a caged structure, identified from Chromobacterium violaceum
[83]. In subsequent studies, it was shown that romidepsin activity was mediated by
rupture of the disulfide bond, followed by covalent inhibition of catalytic zinc ions
[84]. As a result of this, 8 has pleiotropic effects via pan-HDAC inhibition
[85]. Romidepsin (8) has been approved by the FDA for the treatment of T-cell
lymphoma [86].

Psammaplin A (11) also contains a disulfide bond, which gives it a potent but
nonspecific inhibition of HDACs. Synthesis optimization of this structure led to
UVI5008, a compound with the added capacity to inhibit SIRT1/2 [87].

As such, with the off-target effects and nonspecific binding, some researchers
have used in silico methods in order to further investigate the inhibition of sirtuins.
Early studies focused on splitomicin, an inhibitor of yeast sirtuins. Using molecular
docking and molecular mechanics methods, structure–activity relationships were
obtained for splitomicin derivatives. These studies provided insight into the rationale
behind the activity of (R)-enantiomers of these scaffolds, which were also
non-competitive SIRT2 inhibitors [88].

Kokkonen et al. [89] conducted a 3D QSAR study based on SIRT1. Using the
CoMFA method a model of significant predictive power was obtained, which
resulted in peptide-like ligands for SIRT1 with IC50 values around 10 μM. Following
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a subsequent ligand-based virtual screening by Sun et al. [90] using data from public
repositories and literature records, 36 representative ligands were selected to obtain
binding models using molecular docking. With this model, 12 compounds from
Traditional Chinese Medicine were identified as putative ligands of SIRT1. That
same year a classic screening of the same database was carried out, identifying four
actives out of 19 candidates for SIRT1 activation [91].

A recent study by Karam et al. [92] presented a virtual screening protocol
followed by in vitro testing, with a focus on SIRT1, 2, and 3. Using a dataset of
African-derived natural products (p-ANAPL), 13 compounds were selected by
molecular docking. Seven of these compounds contained a chalcone scaffold with
modest activity against SIRT1 and 2. Further modeling showed that the putative
binding poses correlate with known crystallographic structures.

Another isoform of interest is SIRT6, as it is related to inflammatory and aging
processes. Several studies in mice have shown the importance of this enzyme,
particularly its role in cardioprotective mechanisms [93]. Rahnasto-Rilla et al. [94]
focused on several flavonoids as putative SIRT6 modulators. The authors of this
work used first in vitro screening to identify inhibition/activation of this enzyme.
Remarkably, the nature of the modulation was concentration-dependent, with
anthocyanidins being identified as effective activators of SIRT6. To gain further
insights, molecular docking and in silico residue mutations were carried out, iden-
tifying the putative site for activators and the possible mechanism being conforma-
tional changes induced by the amino acid residues G156, D185, W186, E187,
and D188.

Finally, we discuss the role of sirtuin inhibitors as putative antiparasitic agents.
This arises from the phylogenetic characterization of sirtuins, identifying SIR2
homologous enzymes in pathogens, for example, Toxoplasma spp., Plasmodium
spp., Trypanosoma cruzi, Leishmania spp., and Trichomonas vaginalis [95]. This
opens an avenue for novel therapies of the so-called neglected diseases, as it has been
shown that these enzymes have direct relationship with growth and infectivity of
pathogens [96, 97].

In this regard, in silico modeling has been used to assess the viability of these
macromolecules as potential targets for the treatment of infections. Mostly by
homology modeling, studies have suggested that parasitic sirtuins have enough
differences from human isoforms to warrant low toxicity [98, 99].

With this in mind, and as a proof of concept, we selected Trypanosoma cruzi Sir2-
related protein 3 (TcSir2rp3), as a potential target for the treatment of Chagas
disease, and conducted representative virtual screening. Beginning with a homology
model for T. cruzi, sirtuin coupled with NAD+, to conduct molecular docking with
putative ligands. Also, we focused on flavonoids, due to their background discussed
above.

12 F. D. Prieto-Martínez et al.



2.1.3 DNA Methyltransferases

Deoxyribonucleic acid may be modified by the addition of methyl groups. This may
be conducted over the CpG islands, specifically position 5 of cytosine nucleotides.
These regions on DNA are related to gene promoters, so methylation-induced
silencing is a recurring feature in most types of cancer [100]. This process involves
de novo methylation carried out by the enzymes DNA methyltransferases (DNMTs)
3A and DNMT3B, while “maintenance” is done by the isoform DNMT1. Abnormal
function of DNMTs has been related to other malignancies, such as asthma, lupus
erythematosus, and myelodysplastic syndrome [101].

An indirect inhibition of DNA methylation, with the use of the nucleotide
5-azacytidine, resulted in re-expression of silenced genes and inhibition of tumor
growth [49]. As a result of this, analogs of S-adenosyl methionine and S-adenosyl
homocysteine (SAM/SAH, respectively) have been studied to uncover the mecha-
nisms of methyltransferases [102]. Sinefungin, a natural analogue of SAM is a
pan-inhibitor of methyltransferases that continues to serve as template for rational
design due to the “transition state model” presented earlier [103].

Nevertheless, nucleotide derivatives possess poor bioavailability and high toxic-
ity, which necessitated research for non-nucleotide scaffolds [104]. Following the
example of sinefungin, other natural products have been studied as direct or indirect
demethylating agents. Phenolic compounds have a prominent place in these
endeavors, as various studies have shown strong evidence of the chemoprotective
role of these dietary compounds. Examples include (Figs. 2 and 4): genistein (15),
rosmarinic acid (6), baicalein (20), and galangin (21); most of them exert indirect
inhibition of DNMT1 by SAH accumulation [105]. Among these compounds,
resveratrol (3) stands out, posing multi-target activities. A recent study by Maugeri
et al. provided evidence of resveratrol modulation of SIRT1 and DNMT [106]. This
serves as further evidence of the potential of 3 beyond its antioxidant capacities.

Using (E)-resveratrol analogs, the study of Aldawsari et al. showed that salicylate
moieties provide putative DNMT3 selectivity [107]. By means of molecular model-
ing and in vitro testing it was assessed that these analogues may have activity
independent of SAH, with an increased potency when compared to the parent
compound.

Similarly, kazinol Q (9), a hydroxy-chromane derivative, showed antiproliferative
activity at 10 μM. Using molecular docking, it was shown that 9 binds to DNMT1 at
the SAM site, sharing pharmacophoric traits with epigallocatechin-3-gallate (EGCG),
despite the lack of a galloyl moiety [108].

As demonstrated above, natural products continue to offer numerous leads for
epigenetic modulation. A focus toward multi-target activity and interdisciplinary
research should together continue to uncover other mechanisms such as protein-
protein interaction (PPI) modulation. However, the possible toxicity of natural
products may still be an issue, as it is a main problem in drug discovery. Hence, in
the next section, we address some of the advances and challenges to predict toxicity.
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3 Toxicity Profile

Despite the fact that natural products are regarded by the public domain as “safe”
because they are “natural compounds” and indeed have been strongly associated
with many health benefits, they can contain undesirable, for example, reactive or
functional groups. They may also have other toxicological and other properties
rendering them not suitable for drug discovery or human consumption such as
preservatives or flavoring compounds. Certainly, there are secondary metabolites
that are used as pesticides and are toxic.

In drug discovery, calculating or whenever feasible measuring or quantifying
experimentally the toxicity profile of chemical compounds is mandatory. In the early
stages of drug development, it is common to assess the toxicity related to cyto-
chrome P450 or the human ether-a-go-go-related gene ion-channel (hERG). In later
stages, other toxicity endpoints are commonly evaluated such as skin sensitization,
potential for genotoxicity and carcinogenicity [109, 110]. This is because many
research programs have failed due to toxicity concerns [110]. One of the strategies in
order to anticipate toxicity issues is applying commercial, public or in-house algo-
rithms [111, 112]. Indeed, the serious toxicity issues in drug discovery have boosted
the need to develop tools to reliably and rapidly predict toxicity endpoints of
compounds. Despite the fact that much progress has been made in in silico toxicol-
ogy, this research area is still under development [110]. In this regard, it is relevant to
bear in mind that accurate models become more challenging to develop as the
complexity of the toxicity endpoint increases. Complex endpoints are characterized
by having various mechanisms of action, that is, due to the interaction of one
compound with multiple targets (“polypharmacology”) [113] or the interaction of
multiple ligands with the same target (“polyspecificity”) [114], or the combination of
both such as the case for certain fragrances (Hernández-Alvarado RB et al. 2019,
personal communication). Moreover, the biggest challenge in toxicity modeling is
that all chemical compounds are toxic at some level. Therefore, it is expected that a
computational approach would be able to predict the type and level of toxicity. As
commented by Gleeson et al., the prediction of the absolute toxic potential of a
compound, either from in silico or animal models, is very difficult because there are a
large number of ways in which toxicity (related to the primary pharmacology or
many secondary pathways) can arise [110].

For practical purposes in many current drug discovery projects, structural alerts
are used to rapidly identify small molecules that are reactive under common test
conditions [115] or are associated with other undesirable properties [116]. These
types of compounds have been termed PAINS in the literature (see above). The
importance of PAINS structural alerts in natural product research for drug discovery
has been discussed extensively by Baell [117].

In this context, it is essential to study and distinguish the concentration and the
mechanism of toxicity of natural products. There are several studies that have been
published with the aim of estimating the toxicity profile of natural product datasets.
Table 2 summarizes representative work of in silico profiling of natural products and
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computer-aided prediction of their toxicity profile. A representative study is further
discussed below.

A visual representation of 24 ADME (absorption, distribution, metabolism, and
elimination)-related properties for a TCM database [123] and natural products from
the ZINC database [124] was obtained with principal component analysis (PCA).
The so-called ADME space of the natural product collections was compared to a
collection of approved drugs, commercial vendor compounds, a general diverse
collection obtained from the National Cancer Institute database, and combinatorial
collections. It was concluded that TCM covers a vast region of this property space,

Table 2 Examples of recent cheminformatic toxicity-related analysis of datasets of natural
products

Study Outcome Refs.

In silico toxicological
screening of natural
products

This study compares the predicted vs. experimental
toxicity profile for the naturally occurring dietary
chemicals: estragole, pulegone, aristolochic acid I,
lipoic acid, 1-octacosanol, and epicatechin. It was
found that consensus predictions appear to be more
accurate than the use of only one or two software pro-
grams. In silico results were in agreement with the
experimental toxicity data

[118]

In silico toxicity profil-
ing of natural product
compound libraries
from African flora

Analysis of the diversity and chemical toxicity assess-
ment of three chemical collections of compounds from
African flora. The predictions were done through the
identification of chemical structural alerts. It was con-
cluded that only a small fraction of the libraries could
have toxicities beyond acceptable limits

[119]

In silico prediction of
the toxic potential of
lupeol

Lupeol is a triterpenoid found in many plant species.
The interaction of lupeol and 11 of its analogues toward
a series of 16 proteins known or suspected to trigger
adverse effects was investigated. It was found that there
is a moderate toxic potential for lupeol and some of its
analogues, by targeting and binding to nuclear recep-
tors involved in fertility

[120]

Toxicity assessment of
natural products from
Mexican plants with
antinociceptive activity

Assessment of the toxicological profile of molecules
with analgesic activity from the UNIIQUIM database.
Most of the compounds are likely to interact with
opioid receptors. The predicted acute toxicity is low
and none is predicted as mutagenic

[121]

PAINS alerts of a Bra-
zilian dataset and other
reference datasets

A large number of molecules in NuBBEDB are prom-
ising sources of molecules for medicinal chemistry and
drug discovery projects

[122]

Promiscuity predictions
for 208,000 natural
products

Predictions of promiscuous compounds with the free
online server Hit Dexter 2.0. Overall, flavonoids, in
particular chalcones, are predicted as highly promiscu-
ous. In contrast, alkaloids are predicted to be less pro-
miscuous in general

[116]
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including areas uncharted by drugs. Natural products from ZINC occupy the same
area as drugs [123].

Physicochemical properties along with sub-structural features, for example, func-
tional groups are also used as criteria to filter out compounds with potential toxicity
issues early in the drug discovery process. To exemplify this point in recent work,
Saldívar-González et al. classified seven natural product collections into six subsets
including drug-like, extended drug-like, fragment-like, lead-like, PPI-like, and
PAINS [122]. The collections were 2214 compounds from Brazil assembled in the
NuBBE database, that is, the first collections of natural products of Brazilian
biodiversity, with 473 cyanobacteria and 206 fungal metabolites, 6253 marine
natural products, 4103 purified natural product screening compounds, 26,318
semi-synthetic molecules (the last two are commercially available for screening),
17,986 compounds from TCM, and 209,574 molecules in the Universal Natural
Products Database (UNPD). Overall, it was found that all seven natural product
types had a similar profile except cyanobacteria metabolites. In particular, it was
concluded that the NuBBE database had a small percentage of PAINS molecules. In
turn, cyanobacteria metabolites had a small fraction of drug-, extended drug-, and
lead-like molecules with an increased fraction of PPI-like compounds.

Furthermore, in a recent investigation, Storck et al. profiled approximately
208,000 natural products with a new generation of machine-learning models to
identify frequent hitters. The models are freely accessible through the web service
Hit Dexter 2.0 [116]. Among the different results, it was found that there was a large
percentage of flavonoids (more than 60% of the compounds analyzed) that were
found to be promiscuous and approximately 20% highly promiscuous. Of the
different flavonoids, chalcones showed the highest rates of promiscuity. In contrast
to the predictions for flavonoids, the predictions found by Hit Dexter 2.0 suggested
that alkaloids were much less promiscuous [116].

3.1 Privileged or Promiscuous Natural Products?

For some natural products, there is a debate and fine line between highly active or
privileged compounds with numerous associated health-related benefits or
non-specificity (or high reactivity) [125]. Perhaps one of the most notorious exam-
ples in this regard is curcumin (5), a constituent of turmeric (Curcuma longa), a
traditional medicine. Curcumin (5) has been classified as both a PAIN [117] and
“invalid metabolic panacea” (IMP) compound [126]. Despite the fact there are a
large number of reports associating 5 with a plethora of biological activities, there
are no conclusive positive results in randomized, placebo-controlled clinical trials
for any studied indication as recently discussed by Nelson et al. [127]. Figure 4
shows the chemical structures of nine additional natural products regarded as IMPs
in the study by Bisson et al. [126], namely: quercetin (12); gossypol (13); β-sitosterol
(14); genistein (15); rutin (16); kaempferol (17); berberine (18); apigenin (19); and
(+)-catechin (22) (selected from a list of 39 compounds in total).
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3.2 Examples of Toxicity Profiling of Natural Product
Databases

As commented above, it is common to evaluate the toxicity related to hERG during
the first steps of drug development. Inhibition of this ion channel has been associated
with a potentially fatal cardiac arrhythmia, Torsades de Pointes [128]. Several varied
experimental tests are routinely used to evaluate hERG inhibitory potential. A
number of in silico methods have been developed to assess hHERG inhibition as
reviewed by Gleeson et al. [110]. In turn, the Salmonella/microsome assay (Ames
assay) is a bacterial short-term test for identification of carcinogens using mutage-
nicity in bacteria as an endpoint. It is one of the most widely used short-term tests. A
high (but not conclusive) association has been found between carcinogenicity in
animals and mutagenicity in the Ames assay. Despite the fact there is still contro-
versy over the value of Salmonella/microsome assay results in risk assessment, the
results of the Ames assay can provide valuable information to aid in the development
of further studies, and may form part of the data, which can be used in evaluating
potential biological effects or projected lack of adverse effects [129].

To further illustrate the toxicity profile of natural product datasets of general
interest, Table 3 summarizes the predicted Ames’ toxicity and hERG affinity of six
datasets of natural products previously profiled in terms of structural and whole-
molecule properties (vide supra, [14]). As reference, the calculations were done for a
dataset of 1806 drugs approved for clinical use. The curation of the datasets is
described in detail by González-Saldívar et al. [122]. These calculations were done
using in-house algorithms and the analysis revealed that the cyanobacteria metabo-
lites contained a small fraction of compounds with predicted Ames mutagenicity
(2.3%) followed by compounds in the semi-synthetic collection NATx (3.3%). The
two datasets with the largest fraction of compounds with calculated Ames mutage-
nicity were NuBBE database and fungal metabolites (10.4 and 10.7%, respectively)
which represent in each case a higher proportion than the approved drugs for clinical
use also investigated (8.6%).

Regarding the predicted toxicity due to hERG affinity, all six natural product
datasets had lower proportions of compounds predicted with high affinity as com-
pared to approved drugs (13.5%). In particular, the datasets with the lowest propor-
tion were fungal metabolites (0.5%) followed by marine and natural products from
the commercial screening collection MEGX (1.2 and 1.3%). These results further
support that, overall, the six natural product collections can be used as a starting
point in drug discovery studies, for instance, in virtual screening to identify potential
hits. Of course, the prediction of the toxicity (such as illustrated in Table 3) can be
used as a guide to filter compounds for selection.
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4 Diversity Analyses of Natural Products

In addition to the applications of computational methods to study natural products,
diversity analysis is one of the most classical and useful applications of
cheminformatics. In this section, we describe briefly the sources of natural products
with emphasis on the public domain. The reader is referred to a recent chapter of
Kirchweger and Rollinger [42] for a more in-depth analysis of this topic. We
describe the importance of diversity analysis and discuss representative work on
cheminformatic-based analysis of the diversity of natural product collections.

4.1 Overview of Collections of Natural Products

Compound collections are a crucial resource for keeping, searching, mining, and
sharing chemical information. Currently, there are several compound databases that
enable storing and sharing biological screening data. The relevance of chemical
datasets to drug discovery projects has been discussed in detail elsewhere
[130]. Interestingly, Clark et al. published initiatives in different countries to pro-
mote collaboration in drug discovery projects with research groups in academia
[131]. In addition to commercial sources of compounds for computational screening,

Table 3 Examples of in silico Ames toxicity and hHERG affinity profiles of six natural product
datasets and compared to drugs approved for clinical use

Ames

Dataset Size Yes Yes (%) No No (%) NA NA (%)

Cyanobacteria 473 11 2.3 456 96.4 6 1.3

Fungi 206 22 10.7 180 87.4 4 1.9

MEG x 4103 333 8.1 3660 89.2 110 2.7

NAT x 26,318 860 3.3 25071 95.3 388 1.5

NuBBE 2214 231 10.4 1925 86.9 58 2.6

Marine 6253 420 6.7 5700 91.2 133 2.1

Approved drugs 1806 156 8.6 1610 89.1 39 2.2

hHERGa

Dataset Size Yes Yes (%) No No (%) Inconclusive NA (%)

Cyanobacteria 473 8 1.7 445 94.1 20 4.2

Fungi 206 1 0.5 202 98.1 3 1.5

MEG x 4103 53 1.3 3977 96.9 73 1.8

NAT x 26,318 2841 10.8 21,008 79.8 2469 9.4

NuBBE 2214 44 2.0 2054 92.8 116 5.2

Marine 6253 73 1.2 5924 94.7 256 4.1

Approved drugs 1806 243 13.5 1435 79.5 126 (+2 empty) 7.0
ahERG 10 μM cutoff for active/inactive
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there are publicly available large compound databases annotated with biological
activity. Representative resources in this regard are ChEMBL, PubChem, and
Binding Database, collectively reviewed by Nicola et al. [132]. Of note, as recently
commented by Saldívar-González et al. [122], databases annotated with information
of the bioactivity profile against one or several biological endpoints are useful for
multiple applications including analysis of polypharmacology and structure
multiple-activity relationships [133], characterization of activity landscapes [134]
and the reexamination of the currently explored chemical space (vide infra).

In 2012, the first databases of natural products available in the public domain at
that time were reviewed by Yongye et al. [135]. Six years ago, there were approx-
imately five databases publicly available containing between 560 and 89,000 mol-
ecules. Today, many more databases are available with over 250,000 natural
products in the public domain as reviewed in the excellent report of Chen et al.
[136]. A significant number of natural product resources are built and maintained by
academic groups and non-for-profit initiatives. A classic example is the TCM
database@Taiwan [137]. Based on this database, iScreen was developed. This is a
web server for docking TCM followed by customized de novo drug design
[138]. Another example of a previous academic effort is the development of the
UNPD [139]. Unfortunately, at the time of writing UNPD is not available. There are
other compound collections that are focused on specific geographical regions. A few
examples include the NuBBE database that is a collection representative of the
Brazilian biodiversity [140, 141]. In turn, the AfroDb collection [142] is an initiative
that collects information on the constituents of African medicinal plants, and con-
tains around 1000 three-dimensional structures. The same group developed the
ConMedNP collection [143]. Very recently, the VIETHERB database was made
available as a compound collection for Vietnamese plant species [144]. In Mexico,
Esquivel et al. are building a comprehensive database of natural products that have
been published by the Institute of Chemistry of the National Autonomous University
of Mexico (UNAM). This database is called UNIIQUIM (http://uniiquim.iquimica.
unam.mx). Another initiative from an academic group of the same institution is
constructing the BIOFACQUIM database. Currently, BIOFACQUIM contains
423 compounds mostly isolated from Mexican plants and fungi [14]. A comprehen-
sive review of other natural product collections and resources available to the public
has been prepared by Chen et al. [136].

4.2 Design of Nature-Inspired Compound Collections

In addition to existing collections of natural products, compounds of natural origin
have inspired the synthesis of natural product datasets. This comes from the appar-
ent, previously mentioned misapprehension using combinatorial chemistry, as the
chemical diversity of the collections made was low [11]. To improve this, natural
product scaffolds have been suggested as novel means to access uncharted regions of
therapeutic and chemical space [9].
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For example, Stratton et al. provided a comprehensive comparison of the chem-
ical space of natural products and drugs [145]. This study highlighted the inherent
complexity of natural products as the main tool to effectively optimize lead com-
pounds. A similar observation had previously been suggested in a series of studies
by Lovering et al. which tackled the issue of molecular attrition, because of low
complexity or “flat molecules” as leads [146, 147]. In addition, the use of natural
product scaffolds may provide other advantages, such as the improvement of
pharmacokinetic properties, intellectual property [148], and even prodrug
design [149].

A noteworthy example of a cheminformatics tool to drive biology-oriented
synthesis is Scaffold Hunter [150]. Originally envisioned as a visualization tool, it
has overgrown its original purpose allowing further types of analysis. A prominent
feature is the so-called Periodic Table of Natural Products, which conducts structural
deconvolution to provide vantage points for synthesis routes. Successful cases using
this method include 11β-hydroxysteroid dehydrogenase, 5-lipoxygenase, phospha-
tase, and kinase inhibitors [151].

4.3 Concept and Importance of Diversity Analysis

The continued increase in the number of compounds available in compound data-
bases has led to the notion of chemical space [152] and makes necessary to
characterize the content and diversity of the molecules stored in those collections.
Indeed, comparison of the content and overall the contents of the molecular data-
bases is important in sortiment design and selection [153] as diversity analysis aids
in the assessment of the structural novelty of molecules. Systematic analysis of the
diversity and chemical space of compound collections, in particular large collec-
tions, usually needs cheminformatic approaches [123].

Approaches to assess the diversity of compound databases can be divided into
two main groups that largely depend on the molecular representation [14], namely,
graphs and descriptor vectors [21, 154]. Graph methods are employed to conduct
structural and sub-structural analysis. These approaches are relatively easy to inter-
pret. Representation using descriptor vectors is commonly used in cheminformatics
for database processing, similarity searching, clustering, and developing descriptive
and predictive models. The choice of descriptors used to analyze compound
datasets—with more than five thousand available thus far—gives rise to different
types of chemical spaces as pointed out by Varnek and Baskin [154]. The structural
diversity of natural product databases using structural fingerprints, molecular scaf-
folds, and other representation was published in several reports. Analysis of the
chemical space of natural product databases has recently been published [14]. In the
next section, we will discuss representative studies with emphasis on the diversity
analysis that have appeared most recently.
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4.4 Representative Diversity Analysis of Natural Products

Table 4 summarizes examples of cheminformatic analysis of natural product collec-
tions and other relevant compound collections that are usually used for reference.
The table includes the databases analyzed, and the main structural representations
employed. Selected studies are further commented below with a focus on the most
recent work carried out.

In 2015, Pascolutti et al. published the generation of fragment screening collec-
tions that aim to capture the broad range of molecular recognition building blocks
included within natural products as included in the “Dictionary of Natural Products”
(DNP; Chapman and Hall/CRC Press, Boca Raton, FL, USA). The structural
diversity of the fragment versus a reference non-fragment assortment was analyzed
using three complementary approaches, namely, atom function analysis (based on
pharmacophore fingerprints), atom type analysis (with radial fingerprints), and
scaffold analysis. Among the various conclusions made, Pascolutti et al. found
that naturally derived fragments could be used as the starting point for building
chemical collections with high diversity for medicinal chemistry projects.

Chen et al. [136] reported recently a comprehensive analysis toward the under-
standing of the population of the chemical space by currently known and accessible
natural products and by individual natural product collections. As stated by the
authors, among the relevant results of this work was that the easily accessible natural
products have a large diversity and cover regions of medicinally relevant chemical

Table 4 Representative studies of chemical diversity of natural products

Datasets Descriptors/representation Refs.

TCM, combinatorial libraries, drugs
approved for clinical use, and screening
collections

Molecular fingerprints, scaffolds,
physicochemical properties

[155]

Natural products, human metabolites,
bioactive compounds, clinical candi-
dates, and drugs

Topological and physicochemical [156]

Fragment-sized and no fragment-sized
natural products

Pharmacophore and radial finger-
prints, and molecular scaffolds

[157]

Eighteen virtual and nine existing natu-
ral product libraries. As reference, the
“Dictionary of Natural Products” was
used

Physicochemical properties [136]

Cyanobacteria, fungi metabolites,
marine, purified natural product screen-
ing compounds, TCM, NuBBEDB,
UNPD. As reference, semi-synthetic and
approved drugs were used

Molecular fingerprints, scaffolds,
physicochemical properties; drug-,
extended drug-, lead-, fragment-,
PPI-like, and PAINS profiling;
molecular complexity

[122]

BIOFACQUIM, NuBBEDB, TCM. As
reference, approved drugs were used

Molecular fingerprints, scaffolds,
physicochemical properties

[14]
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space. In some instances, the authors observed a significant difference in the
coverage of the chemical space of different classes and individual datasets of natural
products.

Saldivar-González et al. reported a comprehensive cheminformatic characteriza-
tion of seven natural product databases inclusive of cyanobacterial, fungal metabo-
lites, marine, purified natural product screening compounds, TCM, NuBBE, and
UNPD databases [122]. As references, a semi-synthetic compound collection and a
set of drugs approved for clinical use were employed. The datasets were profiled and
compared using a number of different and complementary representations and
descriptors, namely, molecular fingerprints of different design (Extended Connec-
tivity fingerprints radius two and Molecular Access System (MACCS) keys), scaf-
folds, and six physicochemical properties of pharmaceutical interest. In addition, the
chemical databases were profiled using empirical rules that have been developed to
classify drug-, extended drug-, lead-, fragment-, PPI-like, and PAINS compounds.
Finally, the datasets were profiled using two descriptors associated with molecular
complexity: fraction of carbon atoms with sp3 hybridization (FCsp3) and the fraction
of chiral carbons (FCC). Among the conclusions, it was found that the NuBBE
database, the main focus of this work, had a restrained chemical space, with the
majority within the region of the drug-like physicochemical properties. It was also
concluded that the main source of diversity in the compounds in NuBBE database
was driven by the side chains. Overall, the results were supportive of a large number
of molecules in NuBBE database being promising sources of lead molecules for
medicinal chemistry and drug discovery projects [122].

Recently, Pilón-Jiménez et al. discussed the collection and first diversity analysis
of BIOFACQUIM, a database of natural products isolated from organisms in
Mexico [158]. In that work, the authors characterize the diversity of BIOFACQUIM
using molecular fingerprints (MACCS keys), molecular scaffolds, and six drug-like
physicochemical properties, namely, molecular weight, topological surface area,
number of hydrogen bond donors and acceptors, number of rotatable bonds and
the n-octanol/water partition coefficient, logP. BIOFACQUIM was compared to
other natural product and reference databases such as NuBBE, TCM, and approved
drugs. It was found that BIOFACQUIM and AfroDb are diverse in terms of scaf-
folds, but both have relatively low fingerprint diversity. It was also concluded that
AfroDb is more diverse than BIOFACQUIM, in terms of relevant physicochemical
properties. In contrast, the set of approved drugs had a medium diversity based on
fingerprints and relatively low diversity using the scaffolds. In turn, TCM had the
largest scaffold and fingerprint diversity, relative to the datasets compared in that
work [14].

4.4.1 Global Analysis of Chemical Diversity

As explained above, chemical representation and descriptors are at the core of
diversity analysis and basically any cheminformatic application [114]. Therefore,
the perception of the chemical space and assessment of the diversity of a compound
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collection in general is relative to the molecular representation. In order to reduce
(although not eliminate entirely) the dependence of the diversity with molecular
representation, it has been proposed to use a consensus approach through the
assessment of the global diversity using Consensus Diversity Plots (CDPs)
[159]. Consensus Diversity Plots are two-dimensional graphs to represent simulta-
neously four diversities (typically fingerprint-based, scaffold, whole molecular
properties—associated with drug-like characteristics, and size of the database).
Consensus Diversity Plots have been employed to characterize quantitatively the
total or global diversity of fungal metabolites [160], natural products from Panama
[161], from Brazil as available in NuBBE [122], and from Mexico (as deposited in
the BIOFACQUIM database) [14].

Consensus Diversity Plots have also been used to compare the diversity of food
chemicals to other datasets [162]. There is a free online server where any user can
generate CDPs for their own collections [159]. The server is available through
D-TOOLS (www.difacquim.com/d-tools/). To exemplify a CDP, Fig. 5 shows a
comparison of the total diversity of the current version of BIOFACQUIM dataset
(vide supra) with seven reference datasets [157]. The CDP compares the databases
considering as basis of diversity a molecular fingerprint typically used to assess
structural diversity (MACCS keys), molecular scaffolds, and the six physicochem-
ical properties SlogP, TPSA, MW, RB, HBD, and HBA (vide supra). The median of
the distribution of the MACCS keys (166-bits)/Tanimoto Similarity of each dataset
is represented on the x-axis (lower values denote higher fingerprint-based diversity).
The y-axis measures the scaffold diversity of each set as the area under the scaffold
recovery curve [158]; here lower values denote higher scaffold diversity (where the
highest diversity would be an area under the curve of 0.5 [163]). The property-based
diversity is represented with the Euclidean distance of the scaled properties, inserted
into the maps using a continuous color scale: a darker blue color indicates lower
diversity while lighter blue denotes higher property diversity. The relative size of
each dataset is mapped with different sizes of the data points, with smaller data
points indicating datasets with fewer numbers of molecules. Thus, the CDP indi-
cates, for instance, that BIOFACQUIM and cyanobacteria metabolites have, overall,
the lowest scaffold and fingerprint-based diversity (among the datasets compared).
Considering the diversity based on physicochemical properties, cyanobacteria
metabolites have a larger diversity than compounds in BIOFACQUIM
(as indicated by a lighter blue data point). The CDP further indicated that the set
of drugs approved for clinical use have a high scaffold and fingerprint-based
diversity (as noted for other CDPs, the set of approved drugs tend to have high
global diversity [159, 162, 164]).
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5 Conclusions and Future Directions

Natural products retain a fundamental role in the drug discovery process, despite
the implicit difficulties involved. Nonetheless, the industrial setting has favored
other approaches leaving such endeavors to academia. With the emergence of

Fig. 5 Consensus Diversity Plot comparing the global diversity of BIOFACQUIM with other
natural product databases. The structural diversity (fingerprint diversity) was calculated with the
median Tanimoto coefficient of MACCS keys fingerprints is plotted on the x-axis. The scaffold
diversity of each database was defined as the area under the curve (AUC) of the respective scaffold
recovery curves, and it is represented on the y-axis. The diversity based on physicochemical
properties (PCP) was calculated with the Euclidean distance of six scaled properties (SlogP,
TPSA, MW, RB, HBD, and HBA) and is shown in a color scale. The distance is represented
with a continuous color scale from light blue (more diverse) to dark blue (less diverse). The relative
size of the dataset is represented with the size of the data point: smaller data points indicate
compound datasets with fewer molecules
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multidisciplinary studies, natural products have seen a renaissance. In this sense, in
silico methods provide flexible tools to analyze screens and describe in a qualitative
and quantitative basis the diversity, presumptive activity, and even the potential
toxicity of natural products.

With several instances of success across different targets, it would seem that
natural product research driven by computational methods is “a match made in
heaven.” Still, some aspects of computational methodologies cannot be applied “as
is,” due to current limitations of the techniques and algorithms. This has had a
positive impact in the computational field, stimulating the development of more
robust protocols and methods or even a focus toward natural product modeling as a
whole. As discussed in this chapter, the availability of new and improved algorithms
has led to the development and implementation of a plethora of applications that
range from the collection of data to the in silico profiling and screening of natural
products. In this sense, the overall projection of computational-based natural product
research will continue to thrive, given the increasing number of data sources and the
array of metabolites that remain unexplored.

Hence, perspectives on this field regard the construction and optimization of
proper databases to enhance fragment-based campaigns and the expansion of chem-
ical space. These include improvement of cheminformatic filters for the identifica-
tion of activity cliffs.
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1 Introduction

Throughout history, natural products have been used as components of traditional
medicines and herbal remedies. For modern small-molecule drug development as
well, natural products remain the single most productive source of inspiration
[1, 2]. According to a widely cited survey of drugs approved between 1981 and
2014 [1], 6% of all small-molecule drugs are unaltered natural products, 26% are
natural product derivatives, and 32% are natural product mimetics and/or contain a
natural product pharmacophore.

The high importance of natural products is rooted in their evolution-based
specific biological purposes, which enable them to exhibit a wide range of biological
activities across different organisms. Their structural and physicochemical diversity
outrivals that of modern synthetic collections [3–5], and their often high complexity
with respect to molecular shape and stereochemistry [3, 6, 7] adds to their ability to
modulate a significant number of targets for which no synthetic compounds are
known.

Today, in addition to botanicals, natural products from bacteria, fungi, and marine
life are increasingly being explored. However, developing drugs from natural
products remains a challenging resource- and time-consuming task. Covalent bind-
ing, aggregate formation, decomposition, precipitation, and other chemical, physi-
cal, and biological processes pose technical barriers to assays run on crude extracts
or isolated natural products [2, 8]. Apart from technical complications, the avail-
ability of material for testing remains a severe bottleneck. The sourcing process can
be complex and expensive, and further complications may arise when material needs
to be transferred across national boundaries [2].

Computational methods such as docking, pharmacophore modeling, and quanti-
tative structure–activity relationship modeling can make a significant contribution to
natural product-based drug discovery as they allow the selection of promising
natural products for extraction, purification, (partial) synthesis, and biological testing
[9]. An essential precondition for the application of in silico approaches is access to
information on the molecular structure of natural products, which today is available
from a large number of sources [10]. These sources can be categorized into two main
classes: virtual natural product databases and physical natural product collections.

Virtual natural product databases contain the molecular structures of known
natural products and vary in size, coverage, and types of information they contain
for the individual compounds, among other aspects. As such, they can be further
divided into encyclopedic or general, natural product databases, and specialized
collections that are focused on, for example, traditional medicines, geographical
regions, or bioactivities (e.g., compounds with anticancer or antimalarial activity).
The majority of virtual natural product databases are accessible via online services
that offer free searching and browsing functionalities. Many of them also offer an
option for bulk download, thus enabling virtual screening applications, such as the
Dictionary of Natural Products (DNP) [11] and Reaxys [12].
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Physical natural product collections are mostly commercial offerings of in-stock
natural products and natural products that are sourced or synthesized on-demand.
Most vendors make the content of their collections browsable and searchable via free
public web services. These web services also often include an option for bulk
download. However, the download function may only be enabled after (usually
free) registration for the web service.

With this contribution, we aim to provide a timely overview of natural product
data sources useful for virtual screening and other applications in cheminformatics.
The contribution builds on our recent analyses of virtual natural product databases
and physical natural product collections [10, 13] and adds a wealth of information on
the latest reported natural product data sources.

2 Virtual Natural Product Databases

In this section, we discuss virtual natural product databases that are particularly
relevant for cheminformatics applications in the context of drug discovery. As such,
priority is given to resources offering free bulk download of chemical data. At a
minimum, the virtual natural product databases listed in this section provide a
chemistry-aware web service for browsing and searching, and access to the molec-
ular structures of the search results (Table 1).
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2.1 Encyclopedic and General Natural Product Databases

2.1.1 Dictionary of Natural Products (DNP)

The Dictionary of Natural Products [11] is one of the most established encyclopedic
collections of natural products available to date. The commercial database consists
of more than 230k natural products, 46k of which are not covered by any of the free
virtual natural product collections investigated in our recent study [10] and marked
in Table 1. The molecular structures are richly annotated with compound names and
synonyms, physicochemical properties (e.g., molecular weight, pKa, solubilities,
and spectroscopic data), biological sources, use, and toxicity data. One particularly
useful feature of this database is that the natural products are classified into 1050
structural types. Importantly, stereochemical information is stored only in Fisher-
type diagrams, separate from the 2D connection tables and InChIs. The database is
accessible via a web service [11] and also distributed as a CD-ROM.

2.1.2 AntiBase

AntiBase [15] is a comprehensive commercial database including more than 43k
natural products collected primarily from microorganisms and higher fungi (includ-
ing algae, cyanobacteria, lichens, yeasts, Ascomycetes, and Basidiomycetes).
AntiBase stands out due to the large amount of spectrometric data provided (includ-
ing experimental and computed 13C NMR data). The individual natural products are
annotated with further physicochemical properties and biological data, such as
pharmacological activities and toxicity. AntiBase is available in several software
formats featuring powerful text, structure, and spectra search capabilities.

2.1.3 Reaxys

Reaxys [12] is a comprehensive resource for chemical information relevant to
synthesis chemists. As such, Reaxys has no specific focus on natural products, but
contains information on the molecular structures, reactions, physical properties,
biological sources, and activity data for more than 260,000 natural products. Reaxys
is accessible via a web interface, which features detailed search functionality. Bulk
download of natural products (and other chemicals and data) is supported.

2.1.4 Super Natural II

Super Natural II [16] provides chemical information on more than 325,000 natural
products and, accordingly, is currently one of the most comprehensive free data
sources available. Super Natural II draws data from several preexisting databases
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and provides information on molecular structures (including stereochemistry anno-
tations), suppliers, bioactivities, computed physicochemical properties, and toxicity
classes. The web interface supports the download of individual structures but not
bulk download.

2.1.5 Universal Natural Products Database (UNPD)

With a total of more than 229,000 entries, the Universal Natural Products Database
(UNPD) [18] is currently the most comprehensive of all free and commercial
resources on natural products that offer bulk download. Drawing data from a number
of different sources, including the Chinese Natural Product Database (CNPD) [67],
the CHDD [68] (a database of compounds of traditional Chinese medicinal herbs,
previously provided by the authors of the UNPD), and the Traditional Chinese
Medicines Database (TCMD) [69], the UNPD is itself a component of Super Natural
II. Our recent analysis showed that approximately one-third of the natural products
contained in the UNPD are not covered by any of the other investigated virtual
natural product databases [13]. We also found that the UNPD covers a wide
chemical space and represents all major classes of natural products. Approximately
85% of the natural products contained in the UNPD comply with Lipinski’s rule of
five (here and elsewhere, statements on the compliance with Lipinski’s rule of five
refer to the molecular structures of natural products after the removal of sugars and
sugar-like moieties with the tool “SugarBuster” [13]). The connection tables of
UNPD store 3D structures with explicit stereochemistry defined by atom coordinates
(enantiomers are stored as individual entries) plus several identifiers. In recent years,
significant downtimes of the web presence have been observed.

2.1.6 Natural Product Activity and Species Source (NPASS)

The Natural Product Activity and Species Source [19] is another large resource of
chemical and biological information on natural products. The database currently
includes more than 35,000 natural products from a total of approximately 25,000
species. Two-thirds of the natural products come from Viridiplantae; the remaining
third comes primarily from Metazoa, fungi, and bacteria. Bioactivity data are
recorded against approximately 3000 protein targets, more than 1300 microbial
species and a similar number of cell lines. Natural Product Activity and Species
Source offers a powerful, chemistry-aware web interface for browsing and
searching. Data for individual natural products can easily be downloaded, but bulk
download of structures and other data is not offered.
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2.1.7 Collective Molecular Activities of Useful Plants (CMAUP)

Collective Molecular Activities of Useful Plants [21] is a large, new resource for
information on plant natural products and their biological activities. The database
stores information on over 47,000 natural products of more than 5600 plants native
to greater than 150 countries and regions. The individual natural products are
annotated with recorded bioactivities against more than 640 biomacromolecular
targets. In addition, information on plant species, use, geographical distribution,
metabolic pathways, gene ontologies, and diseases is provided. The database can be
browsed and searched via a free, chemistry-aware web interface. Free bulk down-
load of structural data (including stereochemical information) and metadata is also
supported.

2.1.8 Natural Product Atlas

The Natural Product Atlas [23] has been recently introduced as a comprehensive
resource of chemical information on natural products from bacteria (including
cyanobacteria) and fungi (including mushrooms and lichens) reported in peer-
reviewed original research articles. The current version of the database covers
approximately 20,000 natural products, almost one-third of which are found in
Streptomyces. Further prominent genera are Aspergillus and Penicillium, each
representing approximately 10% of the data. The web service provides powerful
tools for browsing, searching, and data visualization. Particularly noteworthy are the
network visualization features, which allow users to obtain a solid overview of the
molecular diversity and coverage of the chemical space. An option for bulk down-
load of the database is provided.

2.1.9 Pye et al. Dataset

As part of a comprehensive survey of natural products discovered between 1941 and
2015, Pye et al. have recently published a dataset of almost 6300 natural products
that have been published between 2012 and 2015 [24]. As such, the dataset provides
a good overview of the chemical space of natural products discovered in recent
years. All structures are available as isomeric SMILES (simplified molecular input
line entry specification) from the supporting information.

2.1.10 Natural Products Included in the PubChem Substance Database

The PubChem database [70] contains structures of more than 3500 natural products,
which can be retrieved using the query “MLSMR [SRC] AND NP[CMT]”
[25]. Most compounds are annotated with bioactivity data, covering a total of
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more than 650 biomolecular targets. Approximately 40% of all compounds are not
covered by any other resource investigated in our recent study [13]. More than 95%
of all natural products of this dataset comply with Lipinski’s rule of five; greater than
half of all compounds are alkaloids. All structures are downloadable and include
stereochemical information.

2.1.11 UEFS Natural Products

Researchers from the State University of Feira de Santana (UEFS) in Brazil have
deposited a dataset of approximately 500 natural products for download at the ZINC
database [71, 72]. The natural products have been compiled from papers that the
authors and collaborators have published separately. Noteworthy is the relatively
high proportion of flavonoids in the dataset [13].

2.2 Databases Focused on Traditional Medicines

2.2.1 Traditional Chinese Medicine Database@Taiwan

The TCM Database@Taiwan [27] is the most comprehensive free resource for
molecular structures of natural products related to TCM. It has been compiled
from Chinese medical texts and various dictionaries, and contains the structures of
more than 60,000 natural products from over 450 herb, animal, and mineral product
TCMs. Important features of this database include the organization of the data into
22 TCM usage classes, such as “digestant medicinal”, and comprehensive ingredient-
to-TCM mapping. We found that 38% of all natural products of the TCM
Database@Taiwan are alkaloids, which is one of the highest percentages observed
among all investigated databases [13]. The database also stands out due to its large
proportion of high molecular weight natural products, among which polyphenols
and basic alkaloids are particularly prominent. In contrast to the previously discussed
natural product databases, the proportion of natural products in compliance with
Lipinski’s rule of five is only 51%. The web interface of the TCM
Database@Taiwan offers advanced search functionalities based on molecular struc-
tures and physicochemical properties. Bulk download of all molecular structures
including stereochemical information is supported.

2.2.2 Traditional Chinese Medicine Integrated Database (TCMID 2.0)

The TCMID 2.0 [29] is a large database of natural products that links traditional
Chinese with modern western medicine by incorporating data on drugs, targets, and
diseases. The database integrates data on herbal ingredients from, among many other
sources, the TCM Database@Taiwan, TCM-ID [73], and the Encyclopedia of
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Traditional Chinese Medicines [74]. Since its initial release in 2013, the database has
been substantially expanded, with the latest release counting more than 43k com-
pounds. As major additions to the latest release, almost 4k mass spectra of natural
products and over 176,000 protein-protein interactions have been added. The
TCMID 2.0 web interface offers, among many other features, a tool for visualizing
ingredient-target-drug-disease networks and herb-target-disease networks. This
enables users, for example, to browse the natural products of a herb of interest, the
targets of these natural products and how they are linked to diseases. As such, the
platform can provide valuable information on multi-target effects and molecular
mechanisms. Download of molecular structures (including stereochemical informa-
tion) and associated data is possible in principle. At the time of writing, the online
presence of this database could not be confirmed.

2.2.3 Yet Another Traditional Chinese Medicine Database (YaTCM)

The YaTCM database [30] is a further recently introduced database on natural
products from Chinese medicinal herbs. The database currently holds more than
47,000 records of natural products found in over 6200 herbs. Like TCMID 2.0
(which is integrated into YaTCM), the chemical data are supplemented with a wealth
of information on targets (approximately 3500 therapeutic targets are covered),
pathways, and diseases. The web service offers chemistry-aware browsing and
search functionality. The website also features an in silico model for target prediction
and tools for visualizing networks of TCM recipes, herbs, natural products, known
and predicted protein targets, pathways, and diseases. Bulk download of chemical
information is not supported.

2.2.4 Chemical Database of Traditional Chinese Medicine (Chem-
TCM)

Chem-TCM [33] is a commercial resource that holds more than 12,000 records on
natural products from approximately 350 herbs used in TCM. The database provides
rich chemical information, including molecular structures with stereochemical infor-
mation, names and identifiers, molecular scaffold types, and natural product classes.
The botanical information includes Latin binomial botanical names, pharmaceutical
names, and Chinese herb names. Chem-TCM seeks to link TCM to western medi-
cine by including activities against 41 drug targets predicted with a random forest
model [32]. In addition, the database includes estimated affinities of molecular
activities according to 28 traditional Chinese herbal medicine categories. Chem-
TCM is provided via a chemistry-aware software application and as SD files.
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2.2.5 Herbal Ingredients In Vivo Metabolism Database (HIM)

The Herbal Ingredients In Vivo Metabolism (HIM) [34] consists of around 1300
natural products richly annotated with absorption, distribution, metabolism, and
excretion (ADME) data and information on compound toxicity. Most natural prod-
ucts of HIM comply with Lipinski’s rule of five, and approximately one-third of the
natural products in this database are not available from any of the other resources that
we investigated recently [13].

At the time of writing, the online presence of this database could not be con-
firmed. The molecular structures of HIM can, however, be accessed via the ZINC
database and include stereochemical information.

2.2.6 Herbal Ingredients’ Targets Database (HIT)

The Herbal Ingredients’ Targets (HIT) database [35] is a collection of more than
530 active ingredients from herbs. Most natural products of HIT comply with
Lipinski’s rule of five [13]. As for HIM, the web presence of HIT could not be
confirmed at the time of writing, but the molecular structures (including stereochem-
ical information) are available via the ZINC database. The natural products stored in
HIT are covered to a large extent by other databases [13].

2.2.7 Indian Medicinal Plants, Phytochemistry, and Therapeutics
Database (IMPPAT)

The Indian Medicinal Plants, Phytochemistry, and Therapeutics (IMPPAT) database
[36] is a rich resource of chemical, biological, and botanical information on Indian
medicinal plants, covering more than 9500 natural products from more than 1700
species. The chemistry-aware web interface allows browsing and searching. A
network visualization tool allows the investigation of plant-natural product associ-
ations, plant-therapeutic use associations, and plant-formulation associations. Bulk
download of molecular structures is not supported.

2.3 Databases Focused on a Specific Habitat or Geographic
Region

2.3.1 Dictionary of Marine Natural Products (DMNP)

The Dictionary of Marine Natural Products [38] is a subset of the Dictionary of
Natural Products (DNP) containing more than 55,000 marine natural products and
their derivatives. This commercial resource is provided as a web service (with
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similar capacities as that of the DNP) and is also distributed as a combination of a
book and CD-ROM.

2.3.2 MarinLit Database

The MarinLit database [39] is a large database of marine natural products collected
from journal articles. The commercial resource currently lists more than 33,000
natural products, richly annotated with bibliographic information, molecular structure,
names, biological sources, physicochemical properties, and identifiers. MarinLit’s
web interface provides powerful search functionalities and features for the
dereplication of natural products.

2.3.3 Taiwan Indigenous Plant Database (TIPdb)

The TIPdb database [40] provides information on the anticancer, antituberculosis,
and antiplatelet activity of more than 9000 natural products of plants indigenous to
Taiwan. Noteworthy are the rather high percentage of natural products with sugars
and sugar-like moieties (25%) and a rather low percentage of alkaloids (14%)
[13]. The web service offers basic browsing and searching functionality, and the
molecular structures of all natural products can be downloaded in bulk.

2.3.4 Northern African Natural Products Database (NANPDB)

With more than 6800 natural products records, NANPDB [43] is the largest database
of natural products isolated from species native to Northern Africa, primarily plants
but also endophytes, animals, fungi, and bacteria. This freely accessible database has
been compiled from many different sources, including articles published in natural
product journals as well as Ph.D. theses. The database provides information on
source organisms, biological activities, and activity types (e.g., antimalarial, cancer-
related). We have shown that the chemical space covered by NANPDB is similar to
that of approved drugs, with more than 90% of all compounds complying with
Lipinski’s rule of five [13]. Noteworthy is the high proportion of natural products
containing sugars and sugar-like moieties (28%). The Northern African Natural
Products Database is provided via a chemistry-aware web interface [44] and can
be downloaded in SMILES and SD file format (including stereochemical
information).

2.3.5 AfroDb Database

The AfroDb database [45] is a diverse collection of natural products found in African
medicinal plants. Worth mentioning is the high percentage of phenols and phenol
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ethers in this database (61%), which is approximately double of that of the DNP
[13]. The molecular structures (including stereochemical information) are freely
available in the supplementary information of the original publication and via the
ZINC database.

2.3.6 South African Natural Compound Database (SANCDB)

The SANCDB [46] is composed of more than 700 natural products from plants and
marine life native to South Africa. The database has been compiled manually from
the literature and contains information on molecular structure (including stereo-
chemistry information), name, structural class, source organism, and physicochem-
ical properties. A free, chemistry-aware web interface for searching and browsing is
provided. The resource is also accessible via a representational state transfer appli-
cation programming interface (REST API).

2.3.7 African Anticancer Natural Products Library (AfroCancer)

AfroCancer [48] focuses on natural products from African medicinal plants with
confirmed antineoplastic, cytotoxic, or antiproliferative activity. The database con-
tains a high percentage of phenols and phenolic compounds (57%) [13]. The molec-
ular structures (including stereochemical information) are freely available in the
supplementary information of the original publication.

2.3.8 African Antimalarial Natural Products Library (AfroMalariaDB)

The AfroMalariaDB [49] is focused on natural products with antimalarial or
antiplasmodial activity confirmed by in vitro and/or in vivo experiments. It consists
of approximately 250 natural products collected from more than 130 African plants.
Like AfroDb and AfroCancer, AfroMalariaDB is rich in phenols and phenolic
compounds [13]. The database is available for download in the supplementary
information of the original publication.

2.3.9 Nuclei of Bioassays, Biosynthesis, and Ecophysiology of Natural
Products Database (NuBBEDB)

The NuBBE database [50, 51] lists more than 2200 natural products of mainly plants
but also fungi, insects, marine organisms, and bacteria native to Brazil. In addition to
chemical information, pharmacological and toxicological data are provided. Most of
the natural products contained in NuBBEDB are drug-like [50]. Compared to other
sources, a low proportion of alkaloids (9%) is observed [50]. The chemistry-aware
web interface allows the search for compounds according to structure, spectroscopic
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information, physicochemical properties, and biological source. Bulk download of
structures in MOL2 file format is available.

2.3.10 BIOFACQUIM Database

The BIOFACQUIM database [54] is a manually compiled dataset of natural prod-
ucts isolated and characterized in Mexico. Approximately three-quarters of the
400 natural products currently listed in this database are from plants and 23% are
from fungi. The web service offers basic searching functionality and bulk download
of all data (molecular structures including stereochemical information).

2.4 Databases Focused on Specific Organisms

2.4.1 Pseudomonas aeruginosa Metabolome Database (PAMDB)

The PAMDB [56] is a rich resource of natural products found in Pseudomonas
aeruginosa. The database contains more than 4300 natural products linked to
ontology, reaction, and pathway data. The database also provides information on
the physicochemical properties of natural products and cross-links to external
resources. The PAMDB can be browsed and searched via a chemistry-aware web
interface [57]. The web service also offers bulk download of data in various formats.

2.4.2 StreptomeDB 2.0

StreptomeDB 2.0 [58] is a comprehensive database of about 4000 natural products
produced by Streptomycetes. The database has been compiled from the literature, the
Novel Antibiotics Database [75], and KNApSAcK [76, 77]. The individual molec-
ular structures (including stereochemical information) are annotated with names,
Streptomyces species, biological activities, and key physicochemical properties.
Approximately one-third of the natural products recorded in StreptomeDB2.0 are
not available from any of the other resources that we investigated recently
[13]. StreptomeDB2.0 stands out by having one of the largest proportions of natural
products containing sugars and sugar-like moieties (25%). Although most of the
natural products of StreptomeDB2.0 cover areas in chemical space that are also
densely populated with approved drugs, only a relatively small portion of the natural
products in this database comply with Lipinski’s rule of five (70%). Noteworthy are
a high proportion of alkaloids (47%), although only relatively few of these contain a
basic nitrogen (19%). The database can be freely searched and browsed via a
chemistry-aware web interface. Bulk download of the data in SD file format with
chirality flags is supported.
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2.5 Databases Focused on Specific Biological Activities

2.5.1 Database of Natural Products for Cancer Gene Regulation
(NPCARE)

The NPCARE database [60] contains more than 6500 natural products with potential
anticancer activity measured for a total of approximately 1100 cell lines for 34 cancer
types. The natural products in NPCARE originate from more than 2000 plants,
marine species, and microorganisms. The provided data include chemical informa-
tion (including molecular structures with stereochemistry annotations) and informa-
tion on modulated genes and proteins. The molecular structures of a subset of more
than 1500 compounds are available for bulk download (the SMILES notations do
not include stereochemical information; however, this information can be retrieved
using the PubChem compound identifiers provided).

2.5.2 Naturally Occurring Plant-Based Anti-cancer Compound-
Activity-Target Database (NPACT)

The NPACT database [62] is focused on plant-derived natural products with exper-
imentally confirmed cancer-inhibitory activity. The database lists more than 1500
compounds annotated with approximately 5200 compound-cell line and 2000
compound-target interactions. Cross-links with other resources such as the HIT
database and PubChem are also provided. The chemistry-aware web interface allows
browsing and searching. The molecular structures including stereochemical infor-
mation can be downloaded from the ZINC database.

2.5.3 InflamNat Database

The InflamNat database [64] contains 665 natural products with experimentally
confirmed anti-inflammatory activity. Most natural products (86%) originate from
terrestrial plants; a minority comes from marine life, terrestrial fungi, and bacteria.
The InflamNat database is rich in flavonoids and triterpenoids. Cross-linking with
the PubChem Bioassay database provides information on the biomolecular targets of
the natural products. All structures are provided in the supporting information of the
publication on InflamNat.
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2.6 Databases Focused on Specific Natural Product Classes

2.6.1 Carotenoids Database

The Carotenoids Database [65] contains over 1100 natural carotenoids extracted
from almost 700 source organisms. The resource was compiled from the primary
literature. The web interface provides access to molecular structures, source organ-
isms, and biological function of the individual carotenoids. The structures of indi-
vidual carotenoids can be downloaded in various formats (including stereochemical
information) but only one molecule at a time.

3 Physical Natural Product Collections

Few physical collections are in existence that are purely based on genuine natural
products. More common are physical collections containing a mix of natural prod-
ucts, natural product analogs and derivatives, and synthetic compounds. Among the
mixed collections, only a minority have annotated their compounds as genuine
natural products, semisynthetic, and synthetic compounds. However, computational
approaches allow the accurate discrimination of natural products and (semi-)
synthetic compounds based on molecular structures. The latest in silico approach,
“NP-Scout”, has been reported from our lab [78]. The NP-Scout approach is a
random forest-based machine-learning model that calculates the probability of a
compound being a natural product. The model was trained on more than 265,000
natural products and synthetic molecules. On an independent test set of over 80,000
compounds, the model reached an area under the receiver operating characteristic
curve (AUC) of 0.997 and a Matthew’s correlation coefficient (MCC) of 0.960,
documenting the high performance of the model. The NP-Scout web service also
supports the generation of similarity maps, which indicate atoms in a molecule that
contribute significantly to the classification of a molecule as a synthetic molecule or
natural product. This allows, for example, the identification of synthetic fragments in
natural product derivatives. Two examples of similarity maps generated with
NP-Scout are shown in Fig. 1, for vorapaxar and empagliflozin. Vorapaxar is a
derivative of the natural product himbacine, for which NP-Scout correctly identifies
the decahydronaphtho[2,3-c]furan-1(3H )-one scaffold as being a natural product
fragment. Empagliflozin mimics the flavonoid phlorizin, and NP-Scout correctly
recognizes the C-glycosyl moiety as being a natural product fragment.

In the following Sections, we will discuss examples of physical natural product
collections for which molecular structures are accessible via a chemistry-aware web
interface and/or bulk download. An overview of the resources discussed herein is
provided in Table 2.
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Fig. 1 Similarity maps of (a) vorapaxar and (b) empagliflozin. Green-highlighted atoms contribute
to the classification of a molecule as a natural product; orange-highlighted atoms contribute to the
classification of a molecule as a synthetic compound. Adapted from [78] (CC BY 4.0; https://
creativecommons.org/licenses/by/4.0)

Table 2 Physical natural product collectionsa

Supplier name (Sub-)set name
Number of
compounds

Collection
composition

Molecular
structures
provided
free of
charge

Web
presence

Ambinter and
Greenpharma

Natural products >8000;
plated col-
lection of
480 NPs

NPs only Yes [79, 80]

Ambinter and
Greenpharma

Natural product
derivatives

>11,000 (Semi-) synthetic
compounds

Yes [79, 80]

AnalytiCon
Discovery

MEGx—Purified
natural products
of microbial and
plant origin

~5000 NPs only Yes [81]

AnalytiCon
Discovery

NATx—Semi-
synthetic natural
product-derived
compounds

>29,000 NPs and (semi-)
synthetic
compounds

Yes [81]

AnalytiCon
Discovery

MACROx—Next
generation
macrocycles

>2000 Semisynthetic
compounds
based on nine
scaffolds

Yes [81]

AnalytiCon
Discovery

FRGx—Frag-
ments from
Nature

>200 NPs and (semi-)
synthetic
compounds

Yes [81]

Chengdu
Biopurify
Phytochemicals

TCM Com-
pounds Library

>4600 NPs and (semi-)
synthetic
compounds

Yes [82]

(continued)
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Table 2 (continued)

Supplier name (Sub-)set name
Number of
compounds

Collection
composition

Molecular
structures
provided
free of
charge

Web
presence

Selleck
Chemicals

Natural Products ~1600
(plated)

NPs only Yes [83]

TargetMol Natural Com-
pound Library

>1500
(plated)

NPs only Yes [84]

MedChem
Express

Natural Product
Library

>1500;
plated col-
lection of
>900 NPs

NPs only Yes [85]

InterBioScreen Natural Com-
pound
(NC) Collection

>1300 nat-
ural com-
pounds and
66,000
derivatives
and analogs

NPs and (semi-)
synthetic com-
pounds; distin-
guishable by tags

Yes [86]

InterBioScreen Building Blocks >13,000 NPs and (semi-)
synthetic
compounds

Yes [86]

InterBioScreen Natural Scaffold
Libraries

>500 NPs and (semi-)
synthetic
compounds

Yes [86]

TimTec Natural Product
Library (NPL)

~800 NPs only No [87]

TimTec Natural Deriva-
tives Library
(NDL)

~3000 NPs and (semi-)
synthetic
compounds

Yes [87]

TimTec Flavonoids
Collection

~500 NPs and (semi-)
synthetic
compounds

Yes [87]

TimTec Flavonoid Deriv-
atives Extended
Collection

>4000 NPs and (semi-)
synthetic
compounds

Yes [87]

TimTec Gossypol Deriva-
tives Collection

~100 NPs and (semi-)
synthetic
compounds

Yes [87]

AK Scientific Natural Products ~500 NPs only Yes [88]

Developmental
Therapeutic
Program (DTP)
of NCI NIH

Natural Products
Set IV

~400 NPs only Yes [89]

INDOFINE
Chemical

Natural Products,
Flavonoids, Cou-
marins, etc.

>4000 NPs and (semi-)
synthetic
compounds

Yes [90]

(continued)
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3.1 Pure Natural Product Collections

In this section, we list offerings of pure natural product collections and mixed
collections in which genuine natural products are clearly marked and can hence be
distinguished from other compounds.

3.1.1 Ambinter and Greenpharma

With more than 8000 listed compounds, the physical natural product collection of
Ambinter and Greenpharma [79] is one of the largest offerings available to date. As
we have shown previously [13], approximately half of all these natural products are
available exclusively from these providers. The collection stands out due to the well-
balanced representation of all major natural product classes, which is comparable to
that observed for the DNP [13]. Ambinter and Greenpharma also offer a collection of
more than 11,000 purchasable natural product derivatives and a preformatted col-
lection of 480 diverse natural products.

Table 2 (continued)

Supplier name (Sub-)set name
Number of
compounds

Collection
composition

Molecular
structures
provided
free of
charge

Web
presence

Pharmeks Screening
Compounds

>360,000
(>2800
NPs and
NP
derivatives)

NPs and (semi-)
synthetic com-
pounds; distin-
guishable by tags

Yes [91]

Pharmeks Building Blocks >12,000 NPs and (semi-)
synthetic
compounds

Yes [91]

Princeton Bio-
Molecular
Research

Macrocycles >1500 NPs and (semi-)
synthetic
compounds

Yes [92]

MicroSource
Discovery
Systems

Natural Products
Collection
(NatProd)

~800 NPs and (semi-)
synthetic
compounds

Yes [93]

Specs Natural Products >600 NPs and (semi-)
synthetic
compounds

Yes [94]

aAdapted with permission from [10]. Copyright 2017 American Chemical Society
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3.1.2 AnalytiCon Discovery

AnalytiCon Discovery [81] offers a continuously growing collection of purchasable
natural products (“MEGx”). The collection consists of approximately 5000 com-
pounds, the majority of which are available exclusively from this provider
[13]. Among the offered compounds are many microbial natural products. The
MEGx has the highest proportion of natural products containing sugar or sugar-
like fragments among all natural product collections we investigated previously. In
contrast, the percentage of alkaloids in this collection is low (14%). AnalytiCon also
offers collections of more than 29,000 semisynthetic compounds derived from
natural products (“NATx”), over 2000 macrocycles (“MACROx”), and more than
200 fragments from Nature (“FRGx”).

3.1.3 Chengdu Biopurify Phytochemicals

Chengdu Biopurify Phytochemicals [82] offers a collection of over 4600 compounds
related to TCM. The collection is rich in flavonoids, alkaloids, phenols, and terpe-
noids. Many of the natural products are offered exclusively by this provider.

3.1.4 Selleck Chemicals

Selleck Chemicals [83] offers a plated collection of over 1600 natural products for
screening. The collection is rich in flavonoids and phenolic natural products, and
more than three-quarters of the natural products in this collection comply with
Lipinski’s rule of five [13].

3.1.5 TargetMol Collection

TargetMol [84] offers a plated collection of more than 1500 natural products for
screening. The compounds originate from plants, animals, microorganisms, and
other organisms. Many of the natural products of this collection are active on
pharmaceutically relevant proteins.

3.1.6 MedChem Express Collection

The MedChem Express collection [85] offers a diverse ensemble of more than 1500
natural products, including 216 alkaloids, 189 terpenoids and glycosides, 183 acids
and aldehydes, 156 flavonoids, and 88 saccharides and glycosides. The company
also offers a plated collection of more than 900 natural products for screening.
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3.1.7 InterBioScreen Collection

InterBioScreen [86] offers the Natural Compound (NC) collection of purchasable
compounds, which contains over 1300 genuine natural products plus 66,000 natural
product derivatives (the labels allow the discrimination of genuine natural products
from natural product analogs and derivatives). The vast majority of natural products
contained in this collection originate from plants, 5 to 10% are isolated from
microbes, and another 5% from marine species. The NC collection includes uncom-
mon compounds as well, such as certain classes of phytoalexins, allelopathic agents,
and specific sex attractants. In our recent studies, we found that the NC collection
features the highest rate of steroids among all investigated natural product databases
[13]. Approximately 95% of all compounds of the natural product collection comply
with Lipinski’s rule of five. InterBioScreen also offers a collection of over 13,000
building blocks that are partly related to natural products, plus more than 500 natural
product scaffolds for compound synthesis.

3.1.8 TimTec Collection

The Natural Product Library (NPL) from TimTec [87] consistes of approximately
800 genuine natural products. These natural products originate primarily from
plants, but some have animal, bacterial, or fungal origins. In addition, TimTec offers
the Natural Derivatives Library (NDL), which is composed of more than 3000
natural product derivatives, natural product analogs, and semi-natural compounds.
A subset of 500 flavonoid derivatives based on nine core flavonoid scaffolds is
available, as are an extended collection of over 4000 flavonoid derivatives and a
small collection of gossypol derivatives.

3.1.9 AK Scientific Collection

AK Scientific [88] offers a collection of approximately 500 natural products includ-
ing alkaloids, flavonoids, stilbenoids, terpenoids, and terpenes. The company also
provides a subset of synthetic compounds and additives, containing over 100 flavo-
noids, food preservatives/additives, and vitamins.

3.1.10 Natural Products Set IV of the National Cancer Institute’s
Developmental Therapeutic Program (DTP)

The Developmental Therapeutic Program of the National Cancer Institute, National
Institutes of Health, provides a plated collection of approximately 400 natural
products for experimental screening. These natural products have been selected
from 140,000 compounds available from the DTP Open Repository based on
compound diversity, availability, and purity. According to our previous analysis
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[13], more than 60% of these compounds are available exclusively from this source.
Approximately 80% comply with Lipinski’s rule of five, which is the lowest among
all investigated physical collections. Noteworthy is the high proportion of alkaloids
(42%).

3.2 Mixed Collections of Natural Products, Semisynthetic, and
Synthetic Compounds

More than 100 vendors offer natural products for experimental testing today, as will
be discussed in the next section. However, only a rather small number of vendors
explicitly mention the presence of natural products in their mixed physical collec-
tions. One of them is INDOFINE Chemical [90], which offers around 4000 natural
products and semisynthetic compounds including flavones, isoflavones, flavanones,
coumarins, chromones, chalcones, and lipids. The company also has a broad port-
folio of synthetic compounds.

Pharmeks [91] offers a diverse, mostly heterocyclic collection of 360,000 organic
molecules, 2800 of which are natural products or natural product derivatives. In
addition, Pharmeks also offers more than 12,000 building blocks of both synthetic
compounds and natural products.

Princeton BioMolecular Research [92] provides a collection of over 1500 mac-
rocyclic natural products, natural product derivatives, and synthetic compounds.
MicroSource Discovery Systems [93] offers its Natural Products Collection
(“NatProd”), which is composed of 800 natural products and natural product deriv-
atives originating from plant, animal, and microbial sources. Specs [94] offers a
collection of over 600 isolated or synthesized natural products and natural product
derivatives originating from fungi, bacteria, plants, marine species, and other
organisms.

4 Coverage and Reach of Molecular Structures Deposited
in Natural Product Collections

As part of one of our previous studies [10], we have analyzed the coverage and reach
of 18 virtual natural product databases (marked in Table 1 as included in the analysis
published in Ref. [10]) and several physical natural product collections. The number
of unique compounds contained in the individual datasets was determined by
counting unique InChIs (without stereochemistry and fixed hydrogen layers) derived
from neutralized molecules (i.e., counter-ions of salts removed and compounds
neutralized with the Wash function in the Molecular Operating Environment
(MOE) [95]). Summarized here are some of the most relevant findings of this study.
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4.1 Coverage of Free and Commercial Virtual Natural
Product Collections

The 18 virtual natural product databases marked in Table 1 contain more than
250,000 unique natural products in total. Approximately 46,000 of these natural
products are exclusively covered by the DNP, which is the most widely accepted
reference natural product database (Fig. 2a). At the same time, 70% of all natural
products listed in the commercial DNP are also present in at least one free database.
The largest contribution to the significant overlap between the DNP and the free
virtual natural product collections stems from the UNPD, which remains the most
comprehensive free and fully downloadable virtual natural product database.

4.2 Readily Obtainable Natural Products and Derivatives

In the context of early drug discovery, virtual screening in particular, it is important
to understand both the proportion of and coverage of chemical space by natural
products that are readily obtainable for experimental testing. Only approximately
11,000 natural products are readily obtainable from pure, physical natural product
collections. However, the number increases to more than 25,000 when also taking
mixed physical collections into account. This number was derived by overlaying a
dataset of 250,000 known natural products (sources marked in Table 1) with the
7.3 million readily obtainable compounds listed in the ZINC database “in-stock”
subset (Fig. 3). The ZINC database is widely accepted as the most comprehensive
meta-database of purchasable compounds and offers a subset of readily obtainable
compounds. As part of this analysis, 100 vendors of natural products were identified.
Only nine of these offer more than 5000 readily obtainable compounds (Table 3).
The number of accessible natural products can be further increased by using services
for on-demand sourcing, extraction, and synthesis. This involves longer lead times

Fig. 2 The overlap between the Dictionary of Natural Products (DNP) and (a) the freely accessible
virtual natural product collections or (b) the Universal Natural Products Database (UNPD).
Reprinted with permission from [10]. Copyright 2017 American Chemical Society
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Fig. 3 Comparison of the
content of virtual natural
product collections and the
ZINC “in-stock” subset.
Reprinted with permission
from [10]. Copyright 2017
American Chemical Society

Table 3 Numbers of natural products readily purchasable from suppliersa

Number of readily
purchasable NPs Suppliers

>5000 Molport, TimTec, AK Scientific, Tetrahedron Scientific, BOC Sci-
ences, FineTech Industry, Sigma Aldrich, Specs, National Cancer
Institute (NCI)

3000 to 5000 Fluorochem, Nanjing Kaimubo Pharmatech Company, Hong Kong
Chemhere, Oxchem Corporation, BePharm, Zelinsky Institute,
Combi-Blocks, Debye Scientific, Matrix Scientific, WuXi AppTec,
Ark Pharm, Bide Pharmatech, BioSynth, InterBioScreen, Labseeker,
StruChem, Alfa-Aesar

2000 to 3000 AstaTech, Enamine, Oakwood Chemical, Frontier Scientific Ser-
vices, Alfa Chemistry, Key Organics, Apollo Scientific, W&J
PharmaChem, AnalytiCon Discovery, Acros Organics, Shanghai Pi
Chemicals, Syntharise Chemical

1000 to 2000 Toronto Research Chemicals, Capot Chemical, Rostar, INDOFINE
Chemical, Alinda, Pharmeks, Innovapharm, Synthon-Lab, Vesino
Industrial, Life Chemicals, Bosche Scientific, Chem-Impex Interna-
tional, Vitas-M Laboratory, Biopurify Phytochemicals, Otava
Chemicals, A2Z Synthesis, Cayman Chemical, Accela ChemBio,
Molepedia, Curpys Chemicals, ChemDiv, AsisChem

100 to 1000 Boerchem Pharmatech, AbovChem, Ryan Scientific, Hangzhou
Yuhao Chemical Technology, TargetMol, APExBIO, Princeton
BioMolecular Research, EDASA Scientific, ChemBridge, May-
bridge, MolMall, HDH Pharma, UORSY, Chemik, Bachem, Creative
Peptides, MedChem Express, Aronis, Heteroz, Selleck Chemicals,
Tocris, Frinton Laboratories, Asinex, Synchem, EndoTherm Life
Science Molecules, Coresyn, SpiroChem, Advanced ChemBlock

aNumbers are estimates based on the overlap of all known natural products (NPs) and the
compounds present from a particular vendor in the “in-stock” subset of ZINC. Reprinted with
permission from [10]. Copyright 2017 American Chemical Society
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and higher costs but, as Lucas et al. [96] have shown recently, approximately
one-third of all natural products listed in the DNP, TCM Database@Taiwan, and
StreptomeDB are obtainable via these routes.

As observed in the physical collection sizes reported in Table 2, the number of
readily obtainable natural product analogs and derivatives is much higher than that
of genuine natural products. Hence, by allowing small deviations in molecular
structure from genuine natural products, a much higher number of natural product-
like compounds become readily obtainable. As shown in Fig. 4, there are approxi-
mately 58,000 natural products readily obtainable that have a Tanimoto coefficient
based on Morgan3 fingerprints [97] equal to 0.7 or higher. Given these high
similarity values, these compounds are likely natural product derivatives or analogs.

Macrocycles have gained significant interest in the context of drug discovery in
recent years. Due to their conformational constraints, macrocycles can provide
advantages in entropic binding and specificity [98]. Our analysis has shown that
approximately 14% (35,000) of all 250,000 known natural products contain rings
formed by more than seven atoms. However, only approximately 800 genuine
natural products with a ring size larger than seven atoms are readily obtainable

Fig. 4 Cumulative histogram of maximum molecular similarity (Tanimoto coefficient) for the
compounds in virtual natural product libraries compared to the ZINC “in-stock” subset. The bars in
the histogram represent the number of known natural products with a maximum molecular
similarity greater than or equal to the bin threshold. Reprinted with permission from [10]. Copyright
2017 American Chemical Society
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(note that, e.g., AnalytiCon offers more than 2000 semisynthetic, macrocyclic
compounds based on nine scaffolds).

5 Resources for Biological Data on Natural Products

The majority of virtual natural product databases provide biological information in
addition to chemical data (Table 1). Most of this information is in the form of
bioactivities measured for organisms, cells, or individual biomacromolecules. Sev-
eral resources provide information on pathways, diseases, and ADME properties.

The ChEMBL [99] database is one of the most comprehensive sources of
measured biological activities of small molecules. The database is manually com-
piled primarily from scientific publications. It also draws information from other
sources such as the PubChem Bioassay database [100, 101]. The latest version of the
ChEMBL database counts over 1.8 million distinct compounds annotated with more
than 15.2 million activity records on a total of more than 12,000 targets. In our recent
analysis, we found that approximately 16% (40,000) of known natural products are
contained in ChEMBL [10].

6 Resources for Structural Data on Natural Products

The Cambridge Structural Database (CSD) [102] provides a wealth of information
on the three-dimensional structures of small-molecule organic and metal-organic
compounds. Currently, the database is approaching the milestone of storing 1 million
structures derived by X-ray and neutron diffraction analysis.

Structural information of natural products bound to their biomacromolecular
targets is available from the Protein Data Bank (PDB) [103] but remains sparse.
We found that for approximately 2000 natural products at least one X-ray crystal
structure in complex with a biomacromolecule is deposited in the PDB [13]. A small
number of structures of protein-bound macrocyclic natural products are also
available [104].

7 Conclusions

During the last few years, the chemical, biological, and structural information
available on natural products has increased substantially. Today, the molecular
structures of several hundred thousand natural products are available from a large
number of different sources. In particular, natural products from botanical sources
are to a large part covered by subscription-free resources that permit bulk export or
download of data, allowing an array of different cheminformatics methods to be
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employed in the context of drug discovery. It is important to mention that the quality
and quantity of the information provided by the individual sources vary substan-
tially. For example, not all sources provide information on stereochemical proper-
ties, which in fact are often incomplete or inaccurate for natural products anyway. To
the best of our knowledge, there have been no systematic studies on the quality of the
data provided by natural product databases. This would, of course, be an important
aspect to examine further.

Measured data on biological activities and ADME properties are becoming
increasingly available, whereas structural information on natural products bound to
their biomacromolecular target remain sparse. The bottleneck for drug discovery
continues to be the availability of material for experimental testing. It is estimated
that only about 10% (25,000) of all known natural products are readily obtainable
from commercial and other sources. However, a substantially higher number of
natural product-like compounds are readily obtainable.

In the coming years, we expect a further increased growth rate for chemical,
biological, and structural data on natural products. In particular, we expect resources
providing free access and bulk data download to play an ever more important role.
One major challenge is to develop strategies for the sustainability of such valuable
sources. What is seen today, unfortunately, is that many databases are no longer
maintained after they have been reported in the scientific literature, and there are
many examples of resources that go offline even within 1 year after their launch. This
phenomenon is, of course, not specific to natural product databases but part of a
general and largely unsolved problem.

Despite the remaining challenges, the large amount of data on natural products
available today enables investigators to effectively employ computational methods
and make substantial contributions to natural product-based drug discovery.
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1 Introduction

Natural products have long played a leading role in successful chemical biology and
drug discovery, providing chemotypes sufficiently tailored to serve as chemical
probes, drug leads or, at the very least, as sources of inspiration for molecular design
[1–4]. While the development of innovative chemistry has facilitated the access to
new and more diverse natural products in amounts suitable for bioactivity screening
[5], prioritizing target-based assays remains not only a bottleneck in drug discovery
but is also troublesome [6]. In fact, screening natural products of interest in target-
based assays is often motivated by a prior phenotype change observation induced by
the studied natural product in cell-based assays, e.g., cancer cell growth inhibition
[6, 7]. Typically, the effective development of such bioactive natural products as
useful drug leads relies on the deconvolution of the phenotypic readout and corre-
lation of the said phenotype with the engagement of any given drug target or targets
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[7]. It is now widely accepted that natural products, like small molecules, rarely are
selective but engage dozens of related or unrelated targets [8], resulting in intricate
pharmacology networks that might be explored in a drug discovery context
[9, 10]. Crucially, such knowledge may bring benefits to the design of leads with
lower probability of attrition and ultimately afford efficacious disease modulators.

Over the past few years, chemical proteomics (or chemoproteomics) has been
established as the method of choice to identify binding counterparts for bioactive
matter [7, 11]. In essence, the small molecule of interest is modified to incorporate a
chemical handle prone to “tagging”; the modified chemical entity is then used to pull
down proteins from cell lysates prior to subjecting such proteins to a downstream
analytical method for identification (Fig. 1). In a recent prominent example, Cravatt
and coworkers modified the diterpenoid ester ingenol mebutate—a first-in-class drug
used for the treatment for actinic keratosis—to obtain a diazirine probe [12]. Using
this photoreactive moiety the mitochondrial carnitine-acylcarnitine translocase
SLC25A20 was identified as a functional target of ingenol mebutate. Despite the
success in identifying a translocase as binding counterpart, membrane proteins are
only seldomly identified as molecular targets using chemoproteomics as are proteins
with low cellular expression [2]. Furthermore, the need for chemical modification of
a molecule of interest may increase significantly chemical synthesis work, particu-
larly in the case of natural products, and inadvertently disrupt the binding affinity
towards relevant on- and off-targets [13]. Altogether, one may appreciate that
the field of chemical proteomics is laborious, time consuming, and may require
expensive equipment, and only provides motivated research hypotheses that must be
validated with functional assays [6].

It is conceivable that in silico methods can provide viable alternatives to generate
such motivated research hypotheses, yet within a fraction of time and resources
spent. Virtual screening of an enumerated fraction of chemical space has been
employed widely with vendor libraries as a means of accelerating hit discovery
and prioritizing chemical matter for screening campaigns [14]. In contrast to

Fig. 1 Typical workflow for identifying drug targets through chemical proteomics approaches
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chemical proteomics, where target identification is a step downstream from pheno-
typic assays, in silico screening often focuses on a drug target for which ligands are
sought [3]; only in the event of successful experimental validation of the predicted
ligand-target relationship is the engagement of the target correlated with modulation
of disease or adverse drug reactions [13, 15].

In this contribution, an overview will be provided and a discussion of strengths
and limitations of computational methods that have been successfully employed for
unveiling targets in the natural product realm. In particular, molecular docking and
pharmacophore model-based strategies will be described as a means of accounting
for three-dimensionality in scrutinizing potential drug targets for either natural
products or synthetic small molecules. Importantly, with the advent of big data in
biological and chemical sciences [16, 17], molecular docking and pharmacophore
screening have become suboptimal approaches to process large volumes of infor-
mation. In fact, the increasing computer power, storage capacity, and improved
algorithms to analyze unstructured and sparse data, are setting the tone for a new
era of cheminformatics where artificial intelligence promises to tackle some of the
long-standing problems in molecular informatics and chemistry in general
[17, 18]. As such, a special focus is given to emerging machine learning tools that
leverage topological descriptors as a workhorse to building predictive models, and
how such approaches can drive future chemical biology and early drug discovery
programs. By comparing different tools, some of them accessible through
webservers [8, 19], this contribution aims at being a reference work for the motivated
selection of any given tool according to the goal of the project.

2 Molecular Docking

Molecular docking has become a standard means of screening virtual libraries within
the realm of receptor-based methods [20, 21]. In short, such methods sample the
ligand conformation space in a user-defined “box”/binding site in an attempt to
predict the so-called “docking pose” and rationalize, on a molecular structure level,
the activity that any compound might present against a given protein [20]. Thus,
molecular docking software tools do not aim at identifying ready-made and opti-
mized ligands, but rather discriminate relevant chemical features responsible for a
molecular recognition event. These compounds and spatial arrangement of features
might then be further tuned through medicinal chemistry to enhance binding affinity
and, ideally, improve functional activity. Despite the simplicity of the concept and
the existence of several user-friendly tools to carry out molecular docking studies,
the researcher must bear in mind several caveats for proper data interpretation
[20, 22, 23]. For instance, docking solely provides motivated research hypotheses
or can rationalize them prior to experimental observations. Given that docking
models account for only a snapshot of the protein in a conformational ensemble
[21], they ought to be validated in biochemical studies (e.g., site mutagenesis) and
the accuracy of the output is tightly connected to the quality of the protein X-ray
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structure where docking is performed. Since X-ray structures represent electron
density models, careful selection of the starting data is fundamental to avoid the
exponential propagation of errors and inaccurate predicted poses. To this end, it is
often advisable to select high-resolution structures (�2.5 Å) and screen/correct
amino acid residue rotamers, as assessed through Ramachandran plots [24–26].

While the search algorithms are generally able to find the correct pose [26], the
scoring function that discerns the most likely and complementary ligand–target
complex is often inaccurate at estimating the magnitude of the binding affinity.
This is not a trivial task and endures as an active field of research. Binding affinity is
best quantified by a free energy change between bound and unbound states as
defined in Eq. (1):

ΔG ¼ ΔH � TΔS ð1Þ

where G is the free energy of the ligand–receptor interaction, H is the enthalpy for
the binding event, T is the absolute temperature, and S is the entropy. While the
enthalpic contributions to binding can be both measured experimentally and
modeled with some accuracy, this is not true for the entropic factor. Contributing
to this is the limited information of protein flexibility in docking studies, the critical
role of water molecules in mediating ligand–protein interactions or their displace-
ment if unfavorable [27–29]. For example, inhibition of HIV protease by transition
state mimetics occurs via displacement of a catalytic water molecule [30]. Usually,
only a rough estimation of entropy change can be provided or else this is assumed to
be identical in all cases. To mitigate this limitation, software tools such as
WaterMap, can now evaluate statistically the position and the importance of each
water molecule, and estimate if they are either structural or bulk solvent
[31, 32]. Indeed, the physics-based modulation of water molecules can directly
impact the entropic factor of binding for the ligand–target complex and provide
more accurate modeling results [29]. Nonetheless, the scoring function data from
mainstream molecular docking software tools should be analyzed with caution.
These data serve well the purpose of generating a rank ordered list of ligands and
help prioritize further investigations, but do not correlate with binding affinities.

2.1 Identification of Modes of Action with Docking

In keeping the drawbacks of molecular docking in mind, and analyzing the generated
binding poses with healthy skepticism, it has been possible to deploy this technology
with great effectiveness on natural products with the goal of unveiling putative
binding partners that explain therapeutic effects and/or adverse drug reactions. For
example, through inverse molecular docking, i.e., docking a single structure into
several binding pockets of a large array of proteins, cyclooxygenase-2 (COX2; 56%
inhibition at a concentration of 0.4 μM) and peroxisome proliferator-activated
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receptor gamma (PPARγ; active at concentrations above 10 μM) were identified
expeditiously as targets of meranzin (1) (Fig. 2). Importantly, this natural product
displayed concentration-dependent effects and potencies comparable to indometha-
cin (COX2 ligand) and rosiglitazone (PPARγ ligand) [33], suggesting that it could
serve as a source of inspiration to design improved target effectors.

3 Pharmacophore Model-Based Screening

A pharmacophore is the ensemble of steric and electronic features that is necessary to
ensure the optimal supramolecular interactions with a specific biological target
structure and to trigger (or to block) its biological response. A pharmacophore
does not represent a real molecule or a real association of functional groups, but a
purely abstract concept that accounts for the common molecular interaction capac-
ities of a group of compounds toward their target structure. The pharmacophore can
be considered the largest common denominator shared by a set of active molecules.
This definition avoids a misuse often found in the medicinal chemistry literature,
which consists of naming as pharmacophores simple chemical functionalities such as
guanidines, sulfonamides, or dihydroimidazoles (formerly imidazolines), or typical
structural skeletons such as flavones, phenothiazines, prostaglandins, or steroids. In
summary, Wermuth’s definition of 3D pharmacophores encompasses different
regions of molecules in 3D space that encode steric and electronic properties and
are responsible for molecular recognition. Through application of the molecular
similarity principle, one may then assume that ligands with similar pharmacophore
feature arrangements are likely to bind to the same targets. With this in mind, it is
then possible to rapidly identify isofunctional molecules without explicitly compar-
ing chemical structures, which may considerably speed up the search process, when
compared to molecular docking. Moreover, pharmacophores are a convenient and
physicochemically valid means of comparing molecules and perform scaffold
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Fig. 2 Predicted interactions between the natural product meranzin (1) and cyclooxygenase-2
(COX2) and the peroxisome proliferator-activated receptor gamma (PPAR γ)
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hopping, taking into account that entities with similar biological behavior can
present disparate frameworks. As with the case of molecular docking, the output
of pharmacophore model-based screening may vary considerably, depending on the
software tool employed. Indeed, different tools present distinct pharmacophore
feature assignment rules (Table 1), but all of them consider a tolerance zone that
can be occupied by the atoms conferring a given property/feature.

It is good practice to take into account a range of different molecules binding to
the same target being queried and generate several pharmacophore models for virtual
screening purposes. Indeed, despite binding to the same target, it is not uncommon
that modulators of a given target recognize different surface patches or recognize
particular subpockets within a binding pocket. In this case, the ligands will modulate
the same target through disparate binding modes. As such, it is sensible to cluster
molecules in the reference ligand set by structural similarity, and generate as many
models as the number of chemotypes, if there is no compelling evidence of identical
modes of binding. Pharmacophore models may be computed either by performing
multiple ligand alignment or ideally, by superimposing known bioactive conforma-
tions. In doing so, one is more likely to build relevant models for virtual screening.
With such data in hand, features and their tolerance spheres can then be calculated
automatically. As in the case of the reference ligand (training) set, conformers must
be calculated and stored for the search (test) ligand set. While searching for matches
to the pharmacophore model within a conformer set is not a computationally
expensive task, the same cannot be said regarding the conformer generation routine.
A force field must be selected, the potential energy of each ligand minimized and a
user-defined array of energetically distinct conformers assembled. One may intui-
tively consider that an accurate three-dimensional representation of the ligands is key
to the successful use of pharmacophore models. However, it has been suggested that
the impact of the bioactive conformation on the overall database enrichment is
limited [34–36]. Nevertheless, the computation of reasonable low-energy con-
formers is an important and a difficult task [37, 38]. This consideration is particularly
true for natural products [39], for which the high content of stereogenic centers can

Table 1 Comparison of pharmacophore feature assignment schemes, by four popular software
tools

Feature LigandScout MOE Phase Catalyst

H-bond Acceptor and
donor located on
heavy atom

Acceptor and
donor located on
heavy atom

Donor located on
hydrogen and acceptor
on heavy atom

Acceptor and
donor located on
heavy atom

Lipophilic Aromatic rings
are recognized

Aromatic rings
are not
recognized

Aromatic rings are not
recognized

Aromatic rings
are recognized

Aromatic Represented with
plane orientation

Depends on
pharmacophore
scheme

Represented with
plane orientation

Represented
with plane
orientation

Charge
transfer

No explicit
charges

Explicit charges No explicit charges No explicit
charges
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lead to several inaccurate and/or irrelevant conformers, as exemplified by archazolid
A (2) (Fig. 3). Fortunately, as laborious as the conformer generation step may be,
each search database needs to undergo the process only once—the output can be
stored for future use. Taken together, and considering the caveats of conformer
generation, pharmacophore model-based virtual screening is a viable alternative to
molecular docking for rapid retrieval of hits.

3.1 Identification of Modes of Action with Pharmacophore
Models

Using 3D pharmacophore models, Rollinger and coworkers have successfully inter-
rogated binding and engagement of targets by different natural products and their
analogues. For example, a range of metabolites from common rue, Ruta graveolens
(Plate 1), were screened against a panel of more than 2000 pharmacophore models to
prioritize biochemical assays and experimentally confirm arborinine (3) (Fig. 4) and
rutamarin (4) as inhibitors of the human rhinovirus coat protein and the G-protein
coupled cannabinoid-2 receptor, respectively [40]. Moreover, hecogenin (5) isolated
from the sisal plant, Agave sisalana, the labdane diterpenoid hispanolone (6), from
Ballota africana, and lasalocid (7), from Streptomyces lasaliensis, have been iden-
tified as modulators of 11β-hydroxysteroid dehydrogenase [41], whereas several
depside/depsidones, including perlatolic acid (8) from Pertusaria globularis and
physodic acid (9) from Pseudevernia furfuracea were associated with inhibition of
microsomal prostaglandin E2 synthase-1 [42]. Finally, PPARγ was identified as
target for biphenyl-based natural products, such as dieugenol (10) from aged clove
basil (Ocimum gratissimum), magnolol (11) from the cortex ofMagnolia officinalis,

Fig. 3 Structure of a natural product and the superimposition of energy-minimized conformers, as
computed with MOE (Chemical Computing Group, Canada). Data show that several distinct
conformers are generated from the same structure
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Plate 1 Ruta graveolens. Photograph: Jörg Hempel, Creative Commons 3.0
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tetrahydrodieugenol (12) from the flowers of Syzygium aromaticum, and honokiol
(13) also from the cortex of M. officinalis [43, 44].

4 Molecular Similarity Searches

Both molecular docking and 3D pharmacophore screening have been applied with
great effectiveness to unveil putative binding counterparts for natural products.
However, they rely on the computation of meaningful conformations; as discussed
above, which is a particularly challenging endeavor. Additionally, these methods
persist in being computationally expensive and arguably are of limited throughput.

In contrast to 3D methods, topological (2D) approaches offer viable alternatives of
comparable accuracy, yet at a fraction of computational cost and speed [45]. Impor-
tantly, from a target inference point of view, the use of topological descriptors is well
motivated, as similar ligands (and hence a similar resulting descriptor vector) are likely
to bind to identical targets [19]. Thus, using appropriate descriptors/features to com-
pare and correlate small molecules is key for success. Despite the high interest in
designing efficient and highly informative descriptors, e.g., the extended
3-dimensional fingerprint (E3FP) that encodes stereochemical information [46],
some methods remain mainstream. Among them is the use of physicochemical
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descriptors, MACCS keys, or extended connectivity fingerprints (ECFPs) of different
correlation diameters. Irrespective of the approach undertaken, the goal is to translate
molecular structure into computable units that can be compared by one of several
available metrics. Arguably, the Tanimoto-Jacquard coefficient/index [Eq. (2)] is the
most widely employed metric to compare fingerprints, but others, such as dice
similarity and Euclidean or Manhattan distances [Eq. (3)] have equally found appli-
cability in cheminformatics to assess similarity between distinct molecules
[47, 48]. The Tanimoto coefficient computes a value between zero and one to quantify
the fingerprint similarity. A value of zero means complete dissimilarity between
fingerprints of molecules under comparison, whereas a value of one indicates full
identity. Therefore, the higher the value, the more similar the molecules will be
according to the chosen fingerprint. Although there is no hard cutoff for similarity, it
is generally accepted that a value equal or higher than 0.7–0.8 is obtained for similar
ligands. Notably, the Tanimoto coefficient will vary significantly, depending on the
chosen fingerprint and the number of bits (a certain substructural element) selected to
store structural information. This will critically influence the accuracy of the approach
and the molecules prioritized for experimental validation.

T ¼ c

aþ b� c
ð2Þ

where T is the Tanimoto coefficient, a and b are the numbers of bits set for molecules
A and B, under comparison, and c is the number of common bits in the fingerprints
of molecules A and B.

Euclidean and Manhattan distances can be computed through the Minkowski
metric D, according to the formula (3):

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

Ai � Bij jpp

s

ð3Þ

where n is the number of descriptor elements for molecules A and B. The formula
affords the Manhattan and Euclidean distances for p ¼ 1 or 2, respectively.

In principle, any molecule with experimentally confirmed bioactivity against the
target of interest can be used as starting point (reference) for similarity searches.
However, taking into account that the goal of the method is to retrieve hits from a
search database, a high-affinity ligand is a better motivated choice as reference
molecule. Naturally, the selection of the descriptors employed and the metric used
to assess similarity are cornerstones for the success of a screening campaign [49].
A wealth of screening techniques and software is available (some of which is
implemented in open-source pipelining tools like KNIME), and their proper selec-
tion depends on the goal, suitability and availability, among others [50–
52]. Irrespective of the screening strategy, similarity (or distance) values are calcu-
lated and stored in a database, which are then sorted in order of decreasing similarity
(or increasing distance) to the query/reference molecules. The rank ordered list is
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provided as output for human inspection, wherein the molecule with the smallest
distance or higher similarity is called the “nearest neighbor.”

4.1 Identification of Modes of Action Through Structural
Similarity

The Similarity Ensemble Approach (SEA, SeaChange Pharmaceuticals; webserver:
http://sea.bkslab.org) [19, 53–55] leverages the similarity search concept discussed
herein, coupled to probabilistic models to ascertain the relevance of its predictions.
Notably, SEA allows prioritizing drug targets for screening with speed unrivaled by
the abovementioned 3D methods. Having been developed primarily to identify on-
and off-targets for synthetic small molecules, one can expect that high rates of false-
positive predictions are obtained for natural products for which the frameworks
diverge from those in the reference ligand database (ChEMBL [56]). While a
thorough proof-of-concept is warranted, there is encouraging evidence that SEA
can also perform efficiently, with natural products such as physalins B, D, F, and G
(14–17) having been associated successfully with antiplasmodial activity
(Fig. 5) [57].

5 Machine Learning Methods

Machine (statistical) learning is an (re-)emerging technology in chemical biology
and drug discovery, with the potential to reshape how fundamental science is
performed [18]. Its greatest value resides in leveraging an increasing amount of
chemical and biological data to identify patterns and establish correlations that are
otherwise intractable to human analyses [58]. Indeed, the recent progress made in all
of computer storage, hardware, and algorithms provides a platform to foster inves-
tigations using machine learning as research tool. As in other modeling techniques,
e.g., traditional quantitative structure-activity/property relationships, clearly defining
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15 (physalin D): 5a-OH, 6b-OH
16 (physalin F): 5b,6b-epoxy
17 (physalin G): Δ4, 6a-OH

5
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Fig. 5 Structures of
antiplasmodial physalins
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the research question is key to allow an appropriate strategy selection. Moreover, a
certain amount of quality data is warranted to ensure that generalizable models are
obtained for prospective deployment. To this end, tuning hyperparameters and
performing cross-validation studies are equally important steps to assess whether
the selected algorithm is under- or overfitting the training data. As a consequence of
under- or overfit models, performance will be compromised when applied on related,
yet previously unseen data. In brief, machine-learning technologies can be
subdivided into three different categories, depending on the type of output and
data requirements for learning:

1. Regression (supervised learning) if the output is a numeric value
2. Classification (supervised learning) if the output is a label
3. Clustering (unsupervised learning) if the algorithm associates data solely based

on its structure

Independently of the method, all machine-learning approaches have proven
useful in early drug discovery by streamlining processes and facilitating the design
of relevant experiments. On one hand, regression and classification models have
been employed prospectively for de novo design of small-molecule effectors [59],
prediction of pharmacokinetics [60], prediction of drug-likeness [61], prediction of
synthesis routes [62], optimization of chemical reactions [63], and conformational
sampling [39], among many others. On the other hand, clustering methods have
proven useful in the analysis of bioactivity landscapes [64, 65].

Given its utility for a number of tasks and the increase of bioactivity data for small
molecules, machine learning has found applicability in research programs aiming at
identifying targets for bioactive molecules of synthetic and natural origin
[17]. Indeed, the need for minimal computational effort to afford statistically moti-
vated research hypotheses renders machine learning as an attractive alternative to
molecular docking and pharmacophore-based virtual screening.

5.1 Identification of Modes of Action Using Learning
Algorithms

The Prediction of Activity Spectra for Substances (PASS) is available as an online
tool (http://www.pharmaexpert.ru/passonline/) [66, 67], which uses topological
fragment structure descriptors [68] and leverages a Bayesian-like method to
infer > 2500 kinds of activities, including drug targets, for the queried molecules.
Being a Bayes theorem-inspired method, PASS outputs probabilities of a studied
molecule being active (Pa) or inactive (Pi). As such, a potentially interesting target
for experimental validation will afford Pa > Pi, and the higher the difference, the
more promising the target ought to be. To date, several marine sponge alkaloids have
been scrutinized with PASS, and antitumor activity has been suggested for the great
majority of them (80%) [69]. In addition to antitumor activity, PASS has also been
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able to predict different kinds of activities for halitulin (18) from the sponge
Haliclona tulearensis and betulin bishemiphthalate (19) a derivative of the triterpene
betulin obtained from birch bark (Fig. 6). Thus, data suggest that these natural
products may find broad applicability as therapeutics upon experimental confirma-
tion of ligand–target correlations.

Considering the intricate frameworks in natural products and their dissimilarity to
those entailed in synthetic molecules in reference datasets, one may argue that
fingerprints and substructural descriptors are suboptimal to leverage confident target
predictions in natural product space. Indeed, SEA and PASS were designed for
synthetic entities, and may afford less accurate predictions than software tools
tailored for natural products. To mitigate this limitation, the Chemically Advanced
Template Search (CATS) computes topological pairwise correlations of atom types
in a given molecule, up to a distance of 10 bonds [70, 71]. This simple
pharmacophore descriptor provides a fuzzy and size-independent molecular repre-
sentation, which has proven well suited for scaffold hopping and correlation of
structurally dissimilar chemical entities. According to the CATS descriptors, feature
pairs are expressed as the number of bonds along the shortest path connecting two
non-hydrogen nodes in the molecular graph. Atoms are typed as one of six possible
features: hydrogen bond donor, hydrogen bond acceptor, positively charged, nega-
tively charged, lipophilic, and aromatic, resulting in a 210-dimensional vector
(21 feature combinations � 10 bonds) that can be employed to predict drug targets.

Taking advantage of the CATS descriptors, the Self-Organizing Maps (SOMs)-
based prediction of drug equivalence (SPiDER) software [8, 72] uses a neural
network heuristically inspired to achieve a weighted projection of the descriptor/
chemical space onto a toroidal map in unsupervised fashion. To do so, the algorithm
takes into account the structure of the input data and runs until convergence or for a
user-defined number of epochs. SOMs, such as those implemented in SPiDER are of
straightforward interpretation since the local neighborhoods in data are preserved in
the projection, i.e., similar data points are located in the same or adjacent neurons.
Besides the CATS descriptors, the SPiDER software also uses 2D physicochemical
properties computed by MOE (Chemical Computing Group, Canada) to afford a
complementary vantage point on data for both reference ligands and queries. Next,
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Fig. 6 Examples of a natural product 18 and a natural product derivative 19 studied with PASS
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through arithmetical combination of the CATS and physicochemical descriptors-
derived SOMs, and analyses of background distances between ligands, a consensus
output is obtained together with a p-like value that allows assessment of the
prediction significance (Fig. 7).

Although SPiDER was originally developed with the goal of inferring targets for
de novo-designed small molecules [8], i.e., chemotypes displaying structural dis-
similarity to their seed structures, Schneider and coworkers recognized that the same
concept could be applied efficiently to deorphanize natural products and interrogate
their polypharmacological profiles. In a first report, SPiDER was applied prospec-
tively to the macrocyclic natural product archazolid A (2) [73]. As 2 differs consid-
erably from ligands in the SPiDER reference database, only low confidence
predictions could be obtained. The observation led to the deconvolution of the
macrocyclic structure into its computationally generated fragments, assuming that
the bioactivity fingerprint of 2 could be partly stored into those fragments and used
subsequently as surrogate structures for SPiDER processing. Interestingly, different
fragments afforded identical confident predictions, which were used to initiate
biochemical assays. Compound 2 was confirmed as modulating COX2, PPARγ,
glucocorticoid receptor (GR), mPGES-1, and 5-lipoxygenase (5-LO), among others.
Albeit not confirmed experimentally, modulation of these targets may contribute to
its possible anticancer activity (Fig. 8). Similarly, the highly cytotoxic macrocycle
doliculide (20) from the Japanese sea hare (Aplysia juliana) was deorphanized as a
nanomolar-potent prostanoid receptor 3 antagonist using synthetically motivated
fragments to leverage a target prediction routine. Inhibition of the prostanoid
receptor 3 may also be involved in cancer progression [74].

The SPiDER method has equally shown accuracy in identifying drug targets for
fragment-like natural products. While (–)-sparteine (21) modulates the κ-opioid
receptor (EC50 ¼ 245 μM, Fig. 9) [3], isomacroin (22) was found to be an inhibitor
of the platelet-derived growth factor receptor alpha kinase (PDGFRα) without
selectivity for the beta isoform, but with negligible effects against a panel of diverse
kinases [15]. Through substitution of the imidazole ring to the N-methylpyrrole
counterpart, activity against PDGFRα was abrogated, which indicated the para-
mount role of the imidazole moiety as a hinge-binding motif. Indeed, compound
22 is a substructure of a single-digit nanomolar PDGFRβ inhibitor developed by the
pharmaceutical industry [75], further attesting to the validation of natural products as
starting points for hit-to-lead optimization programs. In another case study,
graveolinin (23) was identified as a COX2 and serotonin 5-HT2B modulator. Indeed,

Fig. 7 Schematics of the SPiDER method workflow
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inhibition of COX2 may explain the antiplatelet aggregation effect displayed by
extracts of Ruta graveolens (Plate 1), for which the major constituent is 23
[76]. Importantly, despite the structural dissimilarity to typical COX2 inhibitors, a
similar pharmacophore can explain the prediction made by SPiDER, and suggests
that potent COX2 inhibitors inspired by 23 can be developed.

Finally, (–)-englerin A (24) (Fig. 10), a known renal antitumor cell agent from the
African plant Phyllanthus engleri, which increases intracellular calcium concentra-
tion through activation of the transient receptor potential channel canonical 4 and
5 (TRPC4/5) [77, 78] was suggested as a voltage-gated calcium Cav1.2 channel
ligand [79]. As has occurred for 2 and 20, prediction of targets with the full natural
product structure afforded only few confident predictions. To augment the number of
confidently predicted targets, the authors used piperlongumine (25) from Piper
longum as a pharmacophore surrogate for SPiDER, assuming that targets inferred
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Fig. 9 Structures of fragment-like natural products deorphanized with SPiDER
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for alkaloid 25would equally represent motivated research hypotheses for 24, from a
cheminformatics vantage point. A range of biochemical and cell-based assays
confirmed that 24 moderately antagonized Cav1.2 channels (IC50 ¼ 6 μM). Despite
the low relevance of the finding to further explain the antitumor activity of 24, the
study afforded a rationale to graft natural product-derived fragments and tailor
Cav1.2 modulators. Interestingly, SPiDER was also able to predict TRP channels
as binding counterparts for 24, which could significantly speed up target exploration
studies. The result from the pseudo-prospective evaluation of 24 is in line with the
observation that natural products are privileged ligands of TRP channels [80]. Alto-
gether, the validation of 24 as a calcium channel modulator provides another
example of the utility of machine learning in identifying membrane proteins as
targets of bioactive matter.

The SPiDER method has recently been replicated to afford the Target Inference
Generator (TIGER) tool that also leverages a consensus of two SOMs, but slightly
modified CATS descriptors, i.e., without charged features, and a disparate statistical
approach. By encoding ligand–target relationships, TIGER is capable of performing
qualitative predictions of up to 331 targets [81], among which orexin 1/2, glucocor-
ticoid and cholecystokinin-2 receptors that were experimentally validated for the
marine natural product (�)-marinopyrrole A (26) isolated from a Streptomyces
sp. (Fig. 11). In an additional prospective application of TIGER, resveratrol (27)
was predicted and experimentally confirmed to modulate the estrogen receptor β
(ERβ, Ki ¼ 0.4 μM) with a reasonable degree of selectivity over its α counterpart
(ERα, Ki ¼ 4 μM) [82].

Built with the goal of scrutinizing the qualitative SPiDER predictions, Rodrigues
et al. reported the Drug–Target Relationship Predictor (DEcRyPT) software tool [13]
that uses random forest technology to predict affinity values for targets of interest. In

Fig. 10 (–)-Englerin A (24) and piperlongumine (25) display pharmacophore feature commonal-
ities that allow cross-structure target inference. Cyan ¼ hydrogen bond donor/acceptor; green ¼
lipophilic; orange ¼ aromatic and/or sp2 hybridized
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short, random forest models leverage the individual predictions of a user-defined
number of decision trees, built with only a subset of all data. As such, each decision
tree functions as a weak estimator, but as an ensemble, more robust and reliable
predictions are made, with the added value of theoretically reducing over-fitting and
improving the model generalizability. The tool DEcRyPT was built with curated and
transformed bioactivity data as collected from ChEMBL, v.22 [56] and the CATS2
descriptors [70]. Applying DEcRyPT to β-lapachone (28) (Fig. 12), originally
isolated from the heartwood of the South American Lapacho tree (Tabebuia
avellanedae), 5-LO emerged as potential target of interest. Using multiple cell-free
assays, the authors confirmed that 28 must be converted to its hydroquinone form,
which acts as a nanomolar inhibitor of 5-LO (IC50 ¼ 240 nM). Importantly, the
authors ruled out unspecific inhibition by colloidal aggregates [83], by confirming
inhibitory activity of 5-LO independently of the presence or absence of Triton
X-100. Moreover, inhibition of 5-LO was comparable in cell-free and whole-cell
assays, confirming the absence of permeability issues that could hamper further
exploratory work on this chemotype. Unexpectedly, compound 28 displayed selec-
tivity for 5-LO over its congeners 15- and 12-LO, which suggests binding to an
allosteric site (Fig. 12). Elaboration of these preliminary findings showed that in fact,
compound 28 does not compete with the natural 5-LO ligand—arachidonic acid—
nor is a general metal chelator. Conversely, the potency of 28 is reduced significantly
in competition assays with phosphatidylcholine, which binds at the interface of the
catalytic and C2-like domains. Finally, inhibition of 5-LO by the hydroquinone form
of 28 (Fig. 12) could be correlated with the antitumor effects, as cells overexpressing
5-LO are more sensitive to the natural product.

In another application of DEcRyPT, secondary pharmacology was unveiled for
DMP-1 (29)—a synthetic analogue of militarinone A (30) (Fig. 13) isolated from the
mycelium of the entomogenous fungus Paecilomyces militaris [84]. The tool
DEcRyPT predicted potent modulation of the cannabinoid receptor 1 (CB1) by 29
(predicted affinity of 0.16 μM) with high confidence, which was confirmed exper-
imentally by determining functional antagonism with a potency of 0.32 μM, and
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Fig. 11 Structures of natural products that have been studied by the TIGER method
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Fig. 12 Mechanism of anticancer activity of β-lapachone (28). (a) Natural product 28 is converted
in the intracellular compartment to the corresponding hydroquinone, which is a potent, reversible,
allosteric inhibitor of 5-lipoxygenase (5-LO). (b) Differentiated HL-60 cell line overexpresses 5-LO
(left) and are more sensitive to 28 (middle and right). IC50 (differentiated)¼ 0.18 μM; IC50 (control)
¼ 0.39 μM (middle). Percentage of live HL-60 cells in the differentiated and control groups when
treated with 0.5 μM of 28. ��p < 0.005 (two-tailed t-Student test)
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displacement of a radiolabeled ligand with a Ki value of 3.2 μM [84]. Again, the
identification of a trans-membrane protein was facilitated by machine intelligence,
which could have hardly been done through chemical proteomics.

6 Outlook

Target identification and deconvolution of phenotypic readouts is an important step
in early discovery programs. While this is a challenging task for synthetic small
molecules, the difficulty is typically magnified for natural products, given the poorer
synthetic accessibility and troublesome derivatization tendencies. However, with
such knowledge in hand, developing bioactive natural products and designing
analogues may be facilitated and assisted by state-of-the-art computational technol-
ogies. In this contribution, different in silico methods that can be of utility to unveil
pharmacology of natural products have been discussed, and in a broader sense any
small molecule of interest, by generating motivated research hypotheses for confir-
mation in biochemistry laboratories.

There is no universal best method and both 3D and 2D approaches can be
deployed efficiently by keeping in mind their caveats and limitations. Still, any
computational method is certain to fail occasionally even when properly employed,
but more often when applied outside its domain of applicability. However, there is
compelling evidence that the accuracy and scope of computational methods are
improving considerably. This offers great prospects for more successful case studies
in the deconvolution of modes of action and biochemical liabilities of natural
products. Much of the current enthusiasm is spearheaded by the emergence of big
data, faster computers, and more efficient algorithms for pattern recognition, which
parallels the need for sustainable drug discovery. Machine learning is primed to
analyze large volumes of data; these algorithms will equally benefit from high-
quality negative data, which historically tends to be neglected. With the rise of
digital chemistry, it is expected that laborious tasks such as target identification will
be increasingly automated, thus opening new avenues for probabilistic drug
discovery.
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1 Introduction

In medicinal chemistry, the concept of pharmacophores has become increasingly
popular over the last few decades and pharmacophore-based methods can be con-
sidered as an indispensable component in the modern computer-aided drug design
toolbox. Due to their abstract nature, pharmacophores are easy to comprehend and
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intuitive, which renders them rather useful as a tool to describe, explain, and
visualize ligand–target binding modes.

Depending on background and context, the term pharmacophore was often
attributed with different meanings. Historically, medicinal chemists used the term
pharmacophore to vaguely denote common structural or functional elements of a set
of compounds that are essential for activity toward a particular biological target.
However, the official IUPAC definition for this term [1] is more specific and states:
“A pharmacophore is the ensemble of steric and electronic features that is necessary
to ensure the optimal supra-molecular interactions with a specific biological target
structure and to trigger (or to block) its biological response.”

According to this definition, pharmacophores do not represent sets of particular
functional groups (e.g., a primary amine or thioamide) or characteristic structural
fragments (e.g., a pyrrolidine ring), but are an abstract description of stereoelectronic
properties of molecules that are indispensable for energetically favorable ligand–
target interactions. Molecules possessing similar pharmacophoric patterns can there-
fore be assumed to be recognized by the same binding site of a biological target and
thus also show similar biological profiles [2].

2 The Pharmacophore Concept

2.1 Historical Background

The idea that drug molecules can act upon some receptor was put forward by
Langley in 1878 [3] who named receptors “receptive substance” [4]. The word
“receptor” itself was introduced later by Paul Ehrlich [5, 6]. Although several
observations during the first half of the twentieth century supported the receptor
concept [7], the selectivity of drug–target interactions was not then commonly
recognized and accepted. A notable milestone in this regard was the drug Salvarsan
discovered by Paul Ehrlich. Ehrlich intended to develop a chemical compound that
could be used as a chemotherapeutic “magic bullet” against specific infectious
organisms. After testing hundreds of candidate compounds, he eventually came
across one that had enough potential to treat syphilis and trypanosomiasis.

The therapeutic effect was confirmed in clinical tests and Ehrlich’s discovery was
officially announced in 1910. A side effect of Ehrlich’s discovery was the support of
an assertion made by Emil Fischer in 1894. From his research results, Fischer
reasoned that an enzyme and glucoside must fit together like lock and key in order
to have a chemical effect on each other [8]. This “lock and key” concept is still in use
today although it assumes a rigid receptor structure. Currently, it is commonly
known that the receptor part is also flexible and, at least to some extent, can adapt
to the structure of a bound ligand.
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Long before computers became an integral part of drug design and optimization,
simple pharmacophores were already described in the literature and became applied
by medicinal chemists for the development of novel drugs. Thanks to a knowledge
of the bond lengths and van der Waals radii, early structure–activity relationship
considerations were possible starting in the 1940s and allowed the construction of
simple two-dimensional model structures.

Notable within this respect is the recognition of the ability of p-aminobenzoic
acid (PABA, a biological precursor of dihydrofolic acid) to reverse the bacteriostatic
effect of p-aminobenzenesulfonamides. This finding led later to the formulation of
the fundamentals of the theory of metabolite antagonism by Woods and Fildes
[9, 10]. As shown in Fig. 1, PABA and the sulfonamides are isosteres and either
the metabolite or its antagonist can attach to the critical area on the dihydrofolate
reductase enzyme surface. If the latter occurs, the metabolic process is interrupted
and, in the case of bacteria, multiplication is inhibited.

Another early achievement was the discovery of (E)-diethylstilbestrol. (E)-Dieth-
ylstilbestrol acts as an estrogenic agent, which is due to its similarity to estradiol [11]
(Fig. 2). The fact that the estradiol conformation is not planar was known even at that
time; however, the proposed model was a two-dimensional one.

Chiral and conformational effects were first included in drug design consider-
ations starting in the early twentieth century which eventually led to a deeper
understanding of the interdependencies between three-dimensional ligand structures
and associated activities. Furthermore, it became obvious that the simple presence of

Fig. 1 p-Aminobenzoic acid (PABA, a) and p-aminobenzenesulfonamide (b) are isosteres and
show similarities regarding interatomic distances that are critical for binding to the dihydrofolate
reductase enzyme surface [2]. Binding of the sulfonamide instead of PABA thus inhibits the
biosynthesis of tetrahydrofolic acid
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pharmacophoric groups alone is not sufficient to explain biological activity and that
the spatial disposition of these groups plays an equally important role in the
recognition of a ligand by the target protein.

Easson and Stedman introduced the “three-point contact model” in 1933 [12],
which suggested that the substituents of a chiral center establish a three-point contact
with the target protein. This led to the assumption that only one enantiomer of the
molecule can form a complementary match. The optical antipode of the active
molecule will not present an adequate feature distribution. Underlining this, adren-
aline (epinephrine) presents an interesting showcase. (R)-(–)-Adrenaline, which is
the more active natural form, establishes contact with the adrenergic receptor by
engaging a total of three interactions (Fig. 3); its stereoisomer (S)-(+)-adrenaline,
which shows less activity, merely displays a two-point contact (Fig. 3). Conse-
quently, the loss of an energetically favorable hydrogen bonding interaction leads to
an approximately 100-fold lower activity of (S)-(+)-adrenaline when compared to
(R)-(–)-adrenaline.

Fig. 2 Analogy between estradiol and (E)-diethylstilbestrol [2]: (a) 2D structures of both com-
pounds, (b) three-dimensional overlay, the compounds with estradiol shown in gray and (E)-
diethylstilbestrol in purple
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The first crystal structures of protein targets [13] substantiated the drug–receptor
theory. Being able to cocrystalize a drug bound to its target opened a new field of
possibilities, as the interaction pattern of a small molecule and the protein can be
examined in much more detail. Being able to analyze the interactions of the
anticancer drug methotrexate bound to the dihydrofolate reductase enzyme was
particularly revealing for the interplay of pharmacophoric ligand and receptor
features [14]. With the availability of further protein structures, many more structural
models could thus be generated based on their homology to solved crystal structures.

The next conceptual breakthrough was an answer to the question of whether
chemical forces alone are sufficient to explain drug–receptor interactions and other
pharmacological effects, or if yet unknown additional driving forces have also to be
considered. Wolfenden performed a thorough investigation of intermolecular forces
[15] which eventually led to a rationale for explaining drug–receptor interaction rates
by chemical forces alone. This later evolved into present-day calculations of ligand–
receptor binding energies, dynamic motion of ligand and receptor, and linear free-
energy perturbation estimation.

The examples and milestones outlined above, together with influential work by
Gund [13, 16], Humblet and Marshall [17], and many others, paved the way for the
modern pharmacophore concept and its derived applications. The pharmacophore
concept summarizes insight into the effects of chemical structure on bioactivity. This
allows medicinal chemists to postulate pharmacophore models as the “essence” of
the structure–activity knowledge they have gained in an extensive structural study of
a series of active and inactive molecules for a given drug target.

2.2 Three-Dimensional Pharmacophores

Pharmacophores present a valuable tool to represent the nature as well as the location
of functional groups of a molecule that is involved in ligand–target interactions. For
an easy comprehension of such interactions by humans, all types of noncovalent

Fig. 3 Possible interactions of (R)-(–)-adrenaline (a) and its stereoisomer (S)-(+)-adrenaline (b)
with an adrenergic target receptor [2]
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interactions can be represented by geometric entities. Apart from the abstract
characterization of known structures, pharmacophore modeling can aid in the design
of novel molecules and the prediction of their activities. One of the strengths of
integrating the concept of pharmacophores is that it allows scaffold hopping, as the
pharmacophoric features of a model have to be met in their spatial arrangement, but
not necessarily the underlying chemical structure as such. These geometric entities,
represented by spheres and vectors, prompt a simplified way to capture the confor-
mation of a molecule and the features that contribute to its activity in three-
dimensional space. Obviously, the choice of features (number and type) has an
inevitable impact on the quality of a pharmacophore model.

While the choice of features used to be very specific at the early stage of
pharmacophore modeling [18], recent techniques build pharmacophore models in
a more general way [19]. Nonetheless, while those universal models are interpretable
and easy to comprehend, they might lack selectivity. Building a very general model
can sacrifice the quality of the pharmacophoric representation by reflecting chemical
functionality only, but neglecting further characteristics of specific functional
groups. However, building a very restrictive model by employing a higher number
of feature types can quickly lead to problems when it comes to the identification of
structurally unrelated chemical compounds. Thus, developing a feature set that
represents a reasonable tradeoff between being too general and being too selective
is one of the biggest challenges current software packages [20–23] for
pharmacophore modeling face. In order to describe the different levels of universal-
ity and specificity of chemical features, a simple layer model according to Table 1
can be used [23–26]. In this model, a lower layer number corresponds to higher
specificity and, therefore, lower universality. Some examples for chemical features
together with the corresponding abstraction level are given in Table 1.

Table 1 Classification of the Abstraction Levels of Chemical Features

Layer Example Classification Universality Specificity

1 An ammonium group facing
another aromatic system
within a distance of 2–4 Å

Molecular graph descriptor
(atom, bond) with geometric
constraints

� � +++

2 A hydroxy group, a primary,
secondary, or tertiary amine,
or a carboxylic acid moiety

Molecular graph descriptor
(atom, bond) without geo-
metric constraints

� ++

3 A hydrogen bond acceptor
vector including the accep-
tor location as well as the
projected donor point; an
aromatic ring system with
location and orientation
(ring plane)

Chemical functionality (aro-
matic ring, hydrogen bond
donor, acceptor) with geo-
metric constraints

++ +

4 Hydrogen bond acceptor
without a projected donor
point; a lipophilic group

Chemical functionality
(lipophilic area, positive
ionizable group) without
geometric constraints

+++ �
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If a higher level definition (levels 3 and 4) does not describe sufficiently the
features occurring in the training set, low universality levels 1 and 2 will be
employed [27]. If such a customization results in a layer 1 or layer 2 feature, there
should be a possibility of including layer 3 or 4 information in order to be able to
categorize and thus increase comparability (e.g., an ammonium group as a layer
2 feature is a subcategory of “positive ionizable,” which is a layer 4 feature).

Some of the most important types of ligand–receptor interactions together with
their corresponding representation in pharmacophore models are discussed in the
following sections.

2.2.1 Basic Interactions and Their Representation

2.2.1.1 Hydrogen Bonding Interactions

Hydrogen bonding can usually be observed when an electropositive hydrogen atom
interacts with a so-called hydrogen bond acceptor. A hydrogen bond acceptor—or in
short “H-bond acceptor”—is an electronegative atom like oxygen, fluorine, or
nitrogen. The counterpart, the H-bond donor, provides the hydrogen, which is
covalently bound to another electronegative atom. The hydrogen bond can be
created between those two atoms and it indeed represents the most important specific
interaction observed in the formation of ligand–receptor complexes [28]. Hydrogen
bond acceptors and donors are usually modeled as a position, allowing a certain
tolerance to that position as well as for the position of its counterpart. Together these
two positions form a vector that constrains and directs the H-bonding axis as well as
the location of the interacting atom in the protein target. Therefore, donor and
acceptor features, since they show specific directional constraints, are layer 3 fea-
tures. If the direction constraint is omitted, they become layer 4 features. This makes
them much less specific and they can match any acceptor/donor atom irrespective of
whether the essential geometric preconditions for H-bond formation are fulfilled
(Fig. 4).

Fig. 4 Geometry of hydrogen bonding: The N and H atom of the secondary amine and the O atom
of the ketone are aligned linearly. The distance between N and O is typically around 2.8 to 3.2 Å,
while the N-H-O angle α is >150�, the C¼O–H angle β ranges from 100� to 180�
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2.2.1.2 Hydrophobic Contacts

Aromatic and aliphatic hydrocarbons as well as halogens represent hydrophobic
moieties of the ligand. Hydrophobic contacts result from the spatial vicinity of the
side chain of a nonpolar amino acid and the aforementioned hydrophobic substitu-
ents on the ligand. Contribution to the binding free energy derives from an increase
of entropy of the system, mainly because hydrophobic contacts normally lead to
release of water molecules from hydrophobic areas (Fig. 5). Water molecules at
hydrophobic interfaces display a very high degree of order without undergoing
interactions and are often described as “trapped water molecules.” Yet, the
unconstrained water molecules once released to the bulk solvent are capable of
participating in energetically favorable hydrogen bond interactions and, therefore,
contribute to a ligand’s overall binding affinity. According toΔG¼ ΔH – TΔS, both
contributions will lower the free energy change ΔG for the interaction, thus increase
the ligand’s binding affinity.

Hydrophobic interactions are nondirectional, which enables their representation
as unconstrained layer 4 features. A tolerance sphere is placed in the center of the
hydrophobic moiety or chain.

Fig. 5 On formation of interactions of hydrophobic ligand groups (H) and hydrophobic receptor
structures, water molecules get expelled from the binding pocket. The desolvation of the binding
pocket increases the entropy of the system, as the water molecules, which were trapped in an
unfavorable (hydrophobic) environment, have been liberated. This contributes to an increase of the
binding affinity of the ligand to its target, which is typically around�100 and�200 J/mol per Å2 of
the hydrophobic contact surface [29]
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2.2.1.3 Aromatic and Cation–π Interactions

These interactions are directional and strongly attractive, always involving at least
one electron-rich aromatic moiety. The interactions can be found between π systems
of two aromatic rings, which can also be called π stacking, and furthermore, between
aromatic systems and nearby cationic groups like metal ions or ammonium cations
of the protein side chains [30]. These interactions play a crucial role for stabilizing
DNA and protein structure, as well as enzymatic catalysis. Interaction energies
involving π systems are energetically comparable to hydrogen bonding and therefore
contribute essentially to the binding free energy. Interactions of the π–π and cation–π
types require specific geometric configuration of the interacting counterparts
(Fig. 6). Like hydrophobic interactions, aromatic features in pharmacophore models
are layer 4 features. They are represented by a tolerance sphere located in the center
of the aromatic ring. Furthermore, the directional aspect of aromatic interactions is
taken into account by additional information regarding the spatial orientation of the
aromatic system. This can be done in the form of a ring plane or by two points
defining this vector (layer 3 feature).

Fig. 6 Steric configurations of π–π and cation–π interactions [31]
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2.2.1.4 Ionic Interactions

Oppositely charged groups attract each other and form relatively strong (>400
kJ/mol) interactions between the ligand and the protein environment. Those charged
groups can be either single atoms like metal cations or functional groups that tend to
easily protonate or deprotonate, such as carboxylic acids, guanidines, or aromatic
heterocycles. These charged atoms or groups can be represented as positive or
negative ionizable areas. Ionic interactions are nondirectional, as they are of elec-
trostatic nature. In terms of pharmacophoric representation, this allows the utilization
of simple tolerance spheres (layer 4 features).

2.2.1.5 Metal Ion Complexation

A number of proteins contain metal ions as cofactors. A prominent example of
metal-containing enzymes is metalloproteases [32] which enclose Zn2+, coordinated
to the protein via three residues (Fig. 7). The complexation of this metal ion with
suitable electron donating atoms or functional groups of the ligand can contribute
crucially to the binding affinity and has proven essential for the ligand’s mode of
action. Functional groups that exhibit a strong affinity for metal ions are, for
instance, thiols (R-SH), hydroxamates (R-CONHOH), or sulfur and nitrogen
containing heterocycles. In pharmacophore models, metal ion binding interactions
are usually represented by tolerance spheres located on single atoms or in the center
of groups, capable of interacting with metal ions. To additionally constrain the
location of the coordinated metal ion and/or to accommodate for a particular
coordination geometry, a vector representation similar to hydrogen bonding inter-
actions can be used.

2.2.1.6 Ligand Shape Constraints

A pharmacophore model does not necessarily represent all sufficient chemical
characteristics an active molecule must exhibit for high-affinity binding. Even if a
molecule fits the pharmacophoric model well and displays the features represented in
the model, the molecule can still fail to bind due to steric clashes. The possibility of
steric clashes between ligand and receptor atoms has to be considered by a model
and can be handled by the incorporation of exclusion volumes. Such volumes can be
of different sizes as they represent areas where the ligand is not allowed to occupy
space after an alignment with the pharmacophore. The structures from an X-ray
analysis of the receptor can be used to extract reliable information about spatial
restrictions upon ligand–target binding. Utilizing a crystal structure enables the
representation of exclusion volumes in accordance with the size of respective
residues present in the receptor binding site. The van der Waals radii of the
corresponding atoms determine the size of the exclusion spheres (Fig. 8), and a
clash with those spheres coincides with the ligand atoms overlapping the receptor
atoms. This naturally leads to a poor fit of the molecule inside the binding site and
presumably to no ligand binding. In various cases, X-ray structures of the receptor
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are not available, which makes placing volume spheres more challenging. The
location and size of the exclusion volumes must be assigned manually or
computer-aided methods can be used to distribute the volume spheres based on the
union molecular shapes of a set of aligned known actives.

2.2.2 Pharmacophore Elucidation

Pharmacophore models can be constructed manually, and may be generated in an
automated way starting from the structure of one or multiple ligands (ligand-based),
or they can be deduced from the three-dimensional structure of the target receptor
(structure-based). Which approach is chosen depends mainly on data availability,
data quality, and computational resources. It also plays a crucial role for which
purpose the pharmacophore model will be used. The most common approaches for
pharmacophore modeling and their characteristics are outlined in the following
sections.

Fig. 8 Receptor-based pharmacophore generated by LigandScout for the COX2/inhibitor complex
4COX. Gray spheres represent exclusion volumes that model the shape of the receptor surface.
Yellow spheres represent hydrophobic, red arrows hydrogen bond acceptor features, and the red
spherical star represents a negative ionizable group involved in an electrostatic interaction
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2.2.2.1 Manually Created Pharmacophore Models

From an algorithmic point of view, this is the simplest way to obtain pharmacophore
models. Manual construction relies on information about known key characteristics
and/or the molecular structures of a series of active compounds. Choosing a manual
construction can be feasible if an experimental structure of the bound ligand is
available or the ligand exhibits only very low conformational flexibility. This is
because one of the biggest sources of uncertainty in pharmacophore modeling is
conformational flexibility, which makes a determination of optimal feature positions
challenging. Placing pharmacophoric features for a rigid compound or for a known
active ligand conformation is thus already much less complicated. Another challenge
is to choose the set of relevant features that needs to be incorporated into the
pharmacophore model. Today, this task is normally left to computer-aided methods.
The manual involvement has moved toward the refinement of the model, while the
model itself is automatically generated using specialized software tools.

2.2.2.2 Receptor-Based Pharmacophore Models

Having access to three-dimensional information about a ligand–receptor complex
offers a tremendous advantage for developing high-quality pharmacophore models.
The bioactive conformation of the ligand can be retrieved directly from the atomic
coordinates set of the investigated complex and guides the correct placement of the
pharmacophoric features. Information about the binding site structure moreover
enables the incorporation of receptor shape information into the generated models
(see Sect. 2.2.1). Potential interaction points and interactions of interest are identified
by a thorough binding site analysis using an array of available methods [34]. Grid-
based methods like GRID [35, 36] probe the binding site at discrete points
employing small molecules or functional groups. Interaction energies between
probe molecules and the receptor atoms are calculated, which finally results in
so-called molecular interaction fields (MIF). These fields can then be used to identify
energetically favorable and unfavorable regions for specific ligand–receptor inter-
actions that guide a correct pharmacophoric feature placement or aids in ligand
design and optimization. The program GRAIL [37], a quite similar but
pharmacophore-based interaction field method, can also be employed for the pre-
diction of interaction hot spots in apo binding sites (see Sect. 2.4.2 for a more
thorough description of GRID and GRAIL). The programs LUDI [38] and SuperStar
[39] are further available methods, which use a knowledge-based approach for the
identification of interaction hot spots in the binding site. The rules these methods rely
on are largely based on a statistical interaction analysis of experimental structures.
They take into consideration the chemical nature of the functional groups involved
as well as the preferred orientation of directed interactions, as is the case for
hydrogen bond donors and acceptors. After the identification of all possible inter-
action sites, three-dimensional pharmacophores with three or more features (at least
three features are required for a defined orientation in space) can then be generated.
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These models have to be validated thoroughly and any models with no significance
get discarded. This can be done, for example, using enrichment-based methods.
Commercially available programs that are able to perform the entire modeling
process from structure to pharmacophore include structure-based focusing [40, 41]
and LigandScout [24, 25]. In structure-based focusing [42], a sphere with user-
adjustable location and size is used to mark key residues in the binding site and a
LUDI interaction map is generated to identify favorable interactions in which a
ligand is expected to engage. The interaction map is transferred to an interaction
model, which consists of a set of complementary points in the binding pocket,
representing possible locations of pharmacophore features on the ligand. A user-
defined density controls the number of points created, but it is usually quite large.
Therefore, hierarchical clustering is performed to select a smaller number of repre-
sentative features. After the addition of exclusion volumes, a database of known
actives is searched to determine which pharmacophore models are most frequently
matched. LigandScout takes a more direct approach and derives a pharmacophore
model from a single ligand/receptor complex. After perceiving hybridization states,
unsaturated bonds, and aromatic rings, the ligand and binding pocket structure is
analyzed for the presence of atoms and groups that can take part in hydrogen
bonding, hydrophobic, aromatic, ionic, and metal binding interactions.
Pharmacophoric feature detection can be customized with respect to interaction-
specific geometric characteristics like allowed distances and angle ranges. Whether a
feature is incorporated into the final pharmacophore model depends on its location
relative to a complementary feature in the binding site. For example, a hydrogen
bond acceptor feature of the ligand is only included if there is an opposing hydrogen
donor feature on the receptor side within a certain distance and angle range. After all
complementary feature pairs of the complex have been detected and the
corresponding ligand side features have been put into the derived pharmacophore
model, exclusion volume spheres are finally added to resemble the shape of the
binding pocket. Figure 8 shows a typical receptor-based pharmacophore that was
generated by LigandScout for the cyclooxygenase-2 complex 4COX.

2.2.2.3 Ligand-Based Pharmacophore Models

Ligand-based pharmacophore modeling is the way to go in cases where no infor-
mation about the three-dimensional structure of the receptor is available, but a
sufficient number of actives are known. A very important prerequisite for developing
a correct model of high quality is knowledge about the binding mode of the ligands.
The ligands from which the pharmacophore model is derived must bind to the same
receptor, at the same binding site, and in the same orientation. Otherwise, the
pharmacophore models obtained will not represent the correct mode of action and
cannot be used for the identification of novel actives via, for example, virtual
screening experiments. For the generation of pharmacophore models starting from
a set of active ligands, several algorithms have been published that are described
elsewhere [34, 43]. In general, they all follow the generic workflow shown in Fig. 9.
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The input structures are imported and prepared accordingly. After this, conformers
are generated. This step is a delicate and crucial part of the procedure, as the
conformer output has to provide a dataset that is sufficiently large and diverse.
This step is so important, as the bioactive conformation of the ligands is not
known. Therefore, more than one conformation has to be generated and in each
set of generated conformers at least one of the structures should represent a good
approximation of the bioactive conformation. In the next step, a chemical feature
pattern has to be identified [26], which is common in all training set ligands, and
furthermore, can be superimposed with one or more conformations of each ligand. In
many cases, more than one pharmacophoric pattern can be extracted. This results in a
list of multiple possible solutions that are ranked according to a fitness function. The
best model(s) are usually selected from the list by the user, following a careful
validation procedure [44]. A validation of pharmacophore models can be carried out
in various ways [43]:

1. Statistical significance analysis and randomization tests.
2. Enrichment-based methods: the ability to recover active molecules from a test

database by placing a small number of known actives among randomly selected
compounds. Pharmacophore-based virtual screening techniques and receiver
operating characteristic (ROC) curve plots are usually employed for this valida-
tion approach (see also Sect. 2.3.1).

3. Biological testing of the retrieved, putatively active molecule.

Fig. 9 Workflow for the
generation of ligand-based
pharmacophore models. The
input structures are known,
active compounds. For these
structures, multiple
conformations will be
generated (if not provided as
an input) and common
pharmacophore(s) will be
perceived. Finally, a
pharmacophore validation
procedure provides
information about the
quality of the models
obtained. If necessary, the
models will then be refined
or completely rebuilt using
different training/test set
molecules and/or by
changing the parameters of
previous processing steps
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Manual refinement should be considered if the pharmacophore validation proce-
dure reveals an unsatisfying quality of the generated model. This can be done by a
deletion/addition of features or by changing feature tolerances. However, the entire
modeling procedure can also be repeated using a different setup. The composition of
the training and test set can be altered, conformer generation might be repeated with
fine-tuned parameters, and of course the pharmacophore model generation itself can
be carried out using different settings. Ligand-based pharmacophore modeling is
challenging, as a number of variables impact the outcome and the receptor structure
is completely ignored. It is crucial to keep a critical view on the models and to
validate comprehensively. Furthermore, the expertise of the user and the algorithmic
power of the software employed are contributing significantly to a successful ligand-
based pharmacophore model.

2.3 Application of Pharmacophores in Drug Design

2.3.1 Virtual Screening

The most common reason for the generation of pharmacophore models is their use as
an efficient search filter for the discovery of novel compounds with a set of desired
stereoelectronic properties. Most chemists are familiar with two-dimensional sub-
structure-based similarity searches, but these typically yield hit lists containing only
compounds of the same structural family or with largely similar scaffolds.
Pharmacophore models, though, represent an abstraction that is able to also identify
alternative chemotypes, that is, compounds with a different underlying common
framework or scaffold. All that matters for a match to the pharmacophore query is
the spatial disposition of stereoelectronic molecular features, and not the underlying
chemical structure on the atom and bond level. The simplicity of the pharmacophoric
abstraction enables a fast in silico search even of large compound databases.
Molecules that end up in the obtained hit lists are guaranteed to exhibit the desired
pharmacophoric features and thus have a high chance to show biological activity
toward the target of interest [45–48]. Depending on the selectivity of the query
pharmacophore, application-specific match constraints, and database size, tens to
thousands of hit molecules are usually retrieved by a typical screening run. A portion
of the hits will be false positives and show no significant activity at all, but in
comparison with random sampling, hit rates obtained by pharmacophore searches
are generally much higher and thus allow an enrichment of potentially active
compounds in significantly smaller database subsets. This is especially important
for academic research where the available resources are usually quite limited and
only budget and facilities for a low-throughput biological testing of relatively few
compounds might be at hand. In industry, on the other hand, it is often equally cost-
effective to screen the whole corporate collection as it is to screen just a significant
subset [34]. The main role of industrial pharmacophore searching thus has changed
and the emphasis is nowadays on the creation of small focused sets for
low-throughput, higher quality assays, which are carried out in parallel with high-
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throughput screening experiments in order to enhance the lead identification process.
As already stated, pharmacophore screening allows the identification of novel and
diverse chemotypes, which are for a human researcher not obvious matches to the
query pharmacophore. Hit lists containing molecules that belong to different struc-
tural classes thus can also serve as a valuable source of new “ideas” for the
development and optimization of novel lead compounds that might not have been
discovered by traditional rational drug design processes alone.

The next sections provide some insight into the algorithmic details of
pharmacophore-based database searching and the preparatory work usually required.
After this, the chapter concludes by a discussion of the methods and measures that
can be used for hit-list analysis and the assessment of the discriminatory power of the
query pharmacophores.

2.3.1.1 Annotated Database Creation

An important aspect to consider when screening compound collections against three-
dimensional pharmacophore models is conformational flexibility. The most common
way to deal with this problem is to create dedicated screening databases that store
pregenerated conformations for each of the contained molecules. Another approach
is to tweak the conformation of the molecules on-the-fly in the pharmacophore
matching process [49]. The latter approach has the advantage of lower database
storage requirements; however, screening runs computationally are more expensive
and thus considerably slower. An additional disadvantage is the dramatic reduction
of the conformational search space during pharmacophore alignment that bears the
danger of getting trapped in a local minimum [34, 50]. Currently, pregenerating
conformations and storing them in dedicated databases is the preferred approach, as
hard disk storage is cheap and readily available. Furthermore, the generation of
screening databases has to be performed only once, as they can be reused for all
subsequent screening runs. This obviously results in a considerable acceleration of
the overall screening process and allows to screen even millions of compounds in
relatively short periods of time.

2.3.1.2 Database Searching

The database search is most commonly implemented as a multistep filtering process.
First, a fast prefiltering step based on feature types, feature counts, and quick
distance checks is applied in which definitively nonmatching compounds can get
eliminated to an already large extent. Second, exact 3D matching algorithms are
utilized, which are normally slower but more restrictive.
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2.3.1.3 Prefiltering

Since the actual three-dimensional alignment of query pharmacophore models and
molecules is the time-limiting step in the screening process, prefiltering is of utmost
importance [51]. Prefiltering aims at a quick identification and elimination of all
molecular structures that cannot be fitted to the query pharmacophore model in three
dimensions. Only molecules that pass this filtering step need to be processed in the
final, accurate, but computationally expensive three-dimensional alignment step.
Descriptor-based similarity methods [52] have proven to be appropriate filters, as
little information is needed, and similarity calculations are fast and the implication of
biological similarity from structural similarity is generally valid [53].

Feature count matching is a very simple, but nevertheless effective filtering
method that is able to dispose a large fraction of the database molecules (depending
on the complexity of the query) in a computationally inexpensive way [34]. If feature
counts are determined for the query pharmacophore model and get precalculated for
the database molecules, only molecules that have the same (or higher) feature counts
as the query need to be forwarded to the time-consuming matching step. Another
medium complex method in terms of three-dimensional pharmacophore database
searching is the concept of “pharmacophore keys” [54]. Essentially, pharmacophore
keys are simple binary fingerprints that encode the spatial disposition of features in
three-dimensional pharmacophores. By a binning of interfeature distances and the
calculation of hash codes for all possible two-, three-, or four-point feature subsets of
an input pharmacophore, a set of specific bit indices in a fixed size bitset is obtained
in which each bit then denotes the presence or absence of a particular n-point
pharmacophore. As a result, the screening becomes a simple intersection test to
identify molecules that do not satisfy the query. Nearly all currently available
software applications use similar approaches that follow this concept with only
slight modifications like integration of feature tolerance sampling, different feature
definitions, varying binning constraints, and so on [55, 56]. Most programs also
include filters that potentially discard molecules that mathematically could fit the
query pharmacophore model, but this loss in filtering is accepted for the benefit of
higher efficiency. Other programs, such as LigandScout, strictly apply lossless filters
that guarantee all of the discarded molecules are not able to geometrically match the
query, which results in geometrically more accurate virtual screening results [57]. In
summary, prefiltering is intended to prune large parts of the overall search space in
favor of speed. This speed-up strategy, however, must ensure that the overall quality
of the screening outcome is maintained and goals like an enrichment of actives and
the identification of novel scaffolds [58] can still be met.

2.3.1.4 Matching of Three-Dimensional Pharmacophore Models

Once all database molecules that have a high chance to match the query
pharmacophore are identified, their conformation-specific pharmacophores need to
be examined more closely to see whether they are able to match the spatial dispo-
sition of the query features. In this step, it will finally be decided whether a database
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compound gets rejected or is put into the final hit list. In general, special care must be
taken in this decision process since it has a direct impact on the quality of the
screening results obtained. The geometric alignment of a query pharmacophore
model with the pharmacophore derived from a database molecule conformation
can be reduced to the problem of finding a suitable subset of features that fulfills
all n-point distance combinations of the query. Greedy algorithms that find solutions
for this problem have been proposed relatively early and range from three-
dimensional maximum clique detection algorithms [59] to the incremental buildup
of increasingly larger common feature configurations [60]. However, since pure
feature-pair distance comparisons (two-point pharmacophores) cannot distinguish
between a pharmacophore and its mirror image [19], an actual overlay in three-
dimensional space is required to be able to correctly identify a match to the query
within the defined feature tolerances. This overlay is also necessary to check and/or
score additional constraints imposed by vector features like hydrogen bond accep-
tors/donors, planary features like aromatic rings and exclusion/inclusion volume
spheres. Commercial software packages for pharmacophore modeling that incorpo-
rate state-of-the-art screening functionality like catalyst [20], phase [56], MOE [22],
and LigandScout [23] all perform some sort of geometric alignment in the three-
dimensional pharmacophore matching step, which is usually done by minimizing the
RMSD between associated feature pairs [61]. While all other programs implement a
search in increasing n-point distances, LigandScout uses a sophisticated pattern-
matching technique to identify an initial alignment resulting in lower restrictions
regarding the number of features in the query pharmacophore model. Although the
general strategies for hit identification are similar, they differ in various details that
range from the handling of conformational flexibility and interpretation of query
feature constraints to the customization of search parameters [62].

2.3.1.5 Hit-List Analysis

The hit list obtained by a database is a good starting point for the validation and
refinement of the pharmacophore model (Fig. 10). For this purpose, several useful
measures [51, 63–65] have been devised that are described in more detail below.

Sensitivity (Se) is the ratio of the retrieved true-positive compounds TP (Fig. 10)
to all active compounds in the database, which is the sum of TP and the number of
false-negative compounds FN. Sensitivity values can range from 0 to 1, where Se ¼
0 means that the search did not find any of the actives in the database and Se ¼
1 means that the search returned all active compounds.

Se ¼ TP

TPþ FN

Specificity (Sp) is the amount of rejected truly negative compounds TN divided
by the sum of TN and the number of retrieved false-positive compounds FP.
Specificity ranges from 0 to 1 and denotes the percentage of truly inactive com-
pounds. A value of Sp ¼ 0 means that none of the inactive compounds could be
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identified as such and Sp¼ 1 means that all inactive compounds have been correctly
rejected during the screening process.

Sp ¼ TN

TN þ FP

Yield of actives (Ya) is a measure that shows the amount of the retrieved truly
active compounds TP in relation to the size of the hit list n. The yield of actives can,
for example, be used to compare hit lists retrieved for databases created with
different conformer sampling techniques [64].

Ya ¼ TP

n

Enrichment factor (EF) measures the yield of actives proportionally to the ratio of
actives in the database, where A is the amount of actives in the database and N is the
total number of database molecules (not including their conformations).

Fig. 10 Binary classification of compounds in a screening database into active and inactive relative
to a set score threshold. Depending on the score distributions of the known active and inactive
compounds (in gray and red) and the value of the score threshold, the classified compounds can be
divided into four different subsets: true positives (TP), false positives (FP), true negatives (TN), and
false negatives (FN)
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EF ¼ Ya

A=N

Goodness of hit list (GH) combines sensitivity, specificity, and yield of actives
and is therefore a very useful measure that considers both the true actives ratio and
the true inactives ratio. The goodness of hit list is defined as the weighted sum of Ya
and Se multiplied with Sp. The quantity of active compounds is usually weighted
higher than that of actives in the hit list. For example, Güner and Henry [63] weight
the yield of actives with 3/4 and the sensitivity with only 1/4. Thus, a high value of
GH can only be achieved with a high value of actives and a low false-negative ratio
at the same time.

GH ¼ w1 � Ya þ w2 � Seð Þ � Sp

A modern tool for the assessment of screening results is a receiver operating
characteristic (ROC) curve [66, 67] (Fig. 11). The ROC curve displays the increase

Fig. 11 Example of a ROC curve. The best possible classification method would yield a point in
the upper left corner of the ROC space, representing 100% sensitivity (i.e., no false negatives) and
100% specificity (i.e., no false positives). Random guesses would result in points along the diagonal
line (blue) from the left bottom to the top right corners. Points above the diagonal represent good
classification results (green; better than random), points below the line represent bad results (red;
worse than random). Note that the output of a consistently bad predictor could simply be inverted to
obtain a good predictor. The classification model performance is determined by looking at the area
under the ROC curve (AUC). The best possible AUC is 1, while the worst is 0.5. AUC values less
than 0.5 suggest that one can simply do the exact opposite of what the model recommends to get
back a value above 0.5
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of false positives that results with increased true positives. The y-coordinate of the
ROC curve represents the true-positive rate (sensitivity), whereas the x-coordinate
denotes the appropriate false-positive rate (1-specificity). An ideal curve would rise
vertically along the y-axis until it reaches the maximum true-positive rate, which is
1, and then continues horizontally to the right, which means that the hit list contains
all active compounds in the database and that none of the hits is a false positive. The
ROC curve of a random database search is represented by a diagonal line.

2.3.1.6 Pharmacophore Model Refinement

On the basis of an analysis of the hit list with the above measures and tools, the
pharmacophore model is often refined to achieve more satisfactory results. Adapta-
tion of feature definitions, modification of feature tolerances, addition or removal of
features, and exclusion volumes are some of the adjustments that can help to tune a
pharmacophore model.

Another possibility is to modify the database by readjusting the number of
pregenerated conformations to address molecular flexibility more adequately.
Since pharmacophore modeling and database screening are very complex tasks,
several iterations of screening—analysis—refinement are usually necessary to
achieve good results.

2.3.2 Pharmacophore-Based De Novo Design

Another application of three-dimensional pharmacophores worth mentioning is the
tailored de novo design of ligands for a given biological target of interest. The hit
compounds obtained from pharmacophore-based virtual screening runs are usually
existing compounds that might be patent protected, show only unsatisfying activity,
or have suboptimal ADME-Tox properties. In contrast to virtual screening, de novo
ligand design allows the generation of novel molecular structures with desired
pharmacological properties directly from scratch. In this approach, the de novo
molecular structure generator is confronted with a huge search space of chemically
feasible drug-like molecules that has been estimated to be in the order of 1060–10100

[68]. Such a large space renders an exhaustive search impossible. Instead of the
systematic generation and assessment of each individual compound, a practically
feasible de novo design process has to rely on the principle of local optimization
which eventually ends up with some practical optimum solution for the given design
problem. However, it is important to note that de novo design will rarely yield novel
lead compounds with an already optimal activity in the nanomolar range. The
molecules generated rather represent suggestions for a new series of lead structures
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showing only micromolar activity and further (manual) optimization of the obtained
compounds might be necessary.

An additional considerable challenge for de novo structure generators is to assess
the synthetic accessibility of the designed compounds. This needs to be done
because the generated molecules usually do not yet physically exist and have to be
synthesized for more thorough investigations. A quite complicated or impossible
synthesis of the generated molecules renders them practically useless and the
generation of such structures must be avoided at all costs.

Up to now a considerable amount of de novo design methods have already been
developed. These include, for example, 3D Skeletons [69], LEGEND [70], LUDI
[38], NEWLEAD [71], CONCEPTS [72], SPROUT [73], MCSS&HOOK [74],
SMoG [75], CONCERTS [76], LEA [77], LigBuilder [78]], TOPAS [79],
F-DycoBlock [80], ADAPT [81], SYNOPSIS [82], CoG [83], BREED [84], and
PhDD [85] (for an excellent review of most of these methods, see [68]). All listed
methods were applied in drug design projects and some of them also have shown
good performance. However, most of the methods—with the exception of
NEWLEAD and PhDD—adopt a strategy based purely on receptor structure. This
means that detailed structural information about the target receptors must be avail-
able otherwise those methods simply cannot be applied. If the three-dimensional
structure of the biological target is not available but one or more active ligands are
known, a ligand-based strategy can be applied. Using pharmacophores to guide for
the construction of novel molecular structures is especially appealing because they
can be obtained both in a ligand- and receptor-based manner (see Sect. 2.2.2) and
capture all essential ligand–target interactions independent of the underlying molec-
ular structures.

The program NEWLEAD, which was developed by Tschinke and Cohen in 1993
[71], was the first de novo design method that automatically generated candidate
structures conforming to the requirements of a given pharmacophore. The program
NEWLEAD builds novel structures by connecting a set of molecular fragments that
correspond to key pharmacophoric features with spacers assembled from small
chemical entities (atoms, chains, or ring moieties). The method was tested on several
sets of input fragments, each consisting of selected functional groups that were
obtained from the bioactive conformation of reference molecules comprising meth-
otrexate, indomethacin, and the HIV-1 protease inhibitor A74704. The program was
not only able to reproduce the reference structures, it also produced additional
meaningful structures that were chemically unrelated to the reference molecules
and thus demonstrated its potential for de novo drug design.

The program PhDD, a more recent development introduced by Huang et al. in
2010 [85], is in many respects similar to NEWLEAD, but addresses additional issues
in order to increase the quality of the design results obtained. The program PhDD has
the following characteristics that are distinct from the commonly used receptor-
based de novo design methods and NEWLEAD: (a) PhDD completely works on an
abstract pharmacophore model level and does not require any prealigned molecular
fragments as input. Furthermore, PhDD regards exclusion volumes and thus allows
constrainment of the size and shape of the generated molecules. (b) PhDD assesses
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the synthetic accessibility of the generated molecules. (c) Fragments and linkers that
are used for molecule buildup were all obtained by fragmentation of existing drug
molecules. This drastically reduces the molecular search space and increases drug
likeness of the generated structures. (d) The bioactivity of designed molecules is
estimated by using a fit value, which describes how well a ligand is aligned with the
input pharmacophore model. The program PhDD was validated using three test
pharmacophore models that were generated for sets of known HDAC, CDK2, and
IN inhibitors. The results have shown that PhDD was indeed able to generate
completely new molecules that were structurally different from any known inhibitors
but still had high synthetic accessibility, high drug likeness, and matched the
pharmacophore hypotheses quite well. Table 2 lists the structures of four compounds
that were generated for the CDK2 pharmacophore hypothesis together with their
molecular weight, fit, and synthetic accessibility scores.

Although promising results could be obtained, pharmacophore-based de novo
design can be inherently problematic due to the nature of the underlying
pharmacophoric abstraction. If, for example, the input pharmacophore describes
the binding mode of actives inadequately, any generated molecules will likewise
be far from optimal in terms of their activity. Furthermore, exclusion volumes only
allow an approximative modeling of receptor shape. As a consequence, structures
might be generated for which the atoms will collide with atoms of the target binding
site. A third problematic factor is the bioactivity scoring of the generated com-
pounds. For activity prediction only pharmacophoric features are available that do
not provide enough information for a reliable calculation of binding affinities. They
just can be used to calculate a geometric fit of the designed ligand and the input

Table 2 Examples for De Novo Compounds That Were Generated by PhDD [85] for a Given
CDK2 Inhibitor Pharmacophore

Designed compound
Molecular
weight (g/mol) Fit score

Synthetic
accessibility

N
O

H
N

N

N

N

N

OH2N

OH
311 8.327 603

O
H
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H2N S
NH2

O

O 319 8.193 738

S N
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356 8.563 778
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O
N O

350 8.797 781
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pharmacophore model, which does not necessarily correlate well with actual inter-
action energies. All of these factors are challenges that need to be embraced by
pharmacophore-based de novo design methods in order to promote further develop-
ments in this promising field.

2.4 Current Research and Developments

2.4.1 Dynamic Pharmacophore Modeling and Virtual Screening

As already discussed in Sect. 2.2.2, the availability of three-dimensional structural
information about a ligand–receptor complex in general allows one to derive
pharmacophore models with highest possible quality. Three-dimensional structures
of ligand–receptor complexes are usually obtained via X-ray crystallography or
NMR methods. However, such experimentally determined structures of a ligand–
target complex represent just a single snapshot of a dynamic system and do not
provide information about the conformational flexibility and dynamics of the ligand
and residues constituting the binding pocket [86, 87]. A structure-based
pharmacophore model derived from only a single set of three-dimensional coordi-
nates obtained from, for example, an X-ray structure might therefore include or lack
features as a result of the crystal specific packing of the ligand–receptor complex.
One approach to overcome this problem is to use multiple crystal structures of active
ligands that are complexed with the same target. The interactions present for each
ligand are identified and then merged into a more refined pharmacophore hypothesis
[88–90]. This approach, however, is limited to ligand–target complexes for which
multiple crystal structures are available and it has to be assured that each ligand
exhibits the same binding mode. Another way to obtain several valid atomic
coordinates sets that is not limited to the availability of multiple experimental
structures is to perform molecular dynamics (MD) simulations of the investigated
systems. The thus obtained very large amount of information can then be exploited
for pharmacophore modeling and pharmacophore-based virtual screening in several
ways. Choudhury et al., for example, derived a pharmacophore model for each
output conformation and then performed a ranking based on docking and screening
results [91]. A downside of this approach is that it requires activity data for
validating/ranking the pharmacophore models. Other methods rely on a clustering
or averaging of the ligand–target complex MD trajectory to obtain representative
coordinates sets or perform similar operations on the derived pharmacophore models
[92–96]. A general problem with the aforementioned methods is that they do not
automatically deliver “better” pharmacophores. They all require the intervention of
an experienced human operator to analyze the intermediary results obtained and then
to decide about any further steps. Furthermore, infrequently observed metastable
protein conformations might actually be those that enable the energetically most
beneficial ligand interactions [97, 98]. A blind selection of highly populated con-
former or pharmacophore clusters thus does not necessarily result in pharmacophore
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models of higher quality. In a recent publication, Wieder et al. analyzed the stability
of individual pharmacophoric features that were observed during MD simulations of
ligand–protein complexes [99]. A merged pharmacophore model was constructed
that consisted of all observed features and their occurrence count was used for
prioritization. This approach gave interesting insights into the dynamics of the
pharmacophore models but led to problems when the models were subjected to
virtual screening runs. In several cases the combination of features from different
protein conformations resulted in models that actually could not be observed in any
of the frames saved during the MD simulation. Furthermore, the selection of
representative feature coordinates also caused substantial difficulties. In summary,
the authors could not find general solutions for the problems encountered without
again having to rely on the expertise of a human operator that performs model
evaluation and refinement. These examples show that an improvement of
pharmacophore hypotheses using MD conformational flexibility information is not
as straightforward as it might seem at the first glance.

However, when the main focus of interest lies on the improvement of virtual
screening results the picture changes completely. The common hits approach (CHA)
[100], for example, is a fully automated procedure for pharmacophore-based virtual
screening that aims at boosting early enrichment by making use of conformational
flexibility information in a traditional screening protocol setting. The approach
generates a structure-based pharmacophore model for each coordinates set that
was saved during an extensive MD simulation and then groups all models together
that have the same set of ligand side features. This step effectively reduces the high
number of pharmacophore models obtained for all frames of the MD trajectory to
only a few hundred representative models (RPM). Virtual screening runs are
performed with each representative pharmacophore model and the screening results
obtained are combined and rescored to generate a single hit list. The final score for a
particular molecule in the output hit list is then calculated based on the number of
representative pharmacophore models that matched the molecule (see Fig. 12 for a
graphical representation of the CHA workflow).

The performance of the CHA approach was assessed using screening databases
with actives and decoys for 40 protein–ligand systems. The assessment was
performed by a comparison of the ROC AUC value obtained for the CHA hit list
and the corresponding AUC values obtained for the pharmacophore model of the
experimental PDB structure and a representative model of the most populated MD
derived pharmacophore cluster. For 34 of the 40 investigated systems, for which at
least one of the performed screening runs gave results better than a random classifier,
in 68% of the cases the highest enrichment was achieved by the CHA, compared to
12% for the PDB structure model and 20% for the representative pharmacophore
model of the most populated cluster. These results clearly show that an incorporation
of conformational flexibility information can indeed help to increase the quality of
results obtained by classical pharmacophore-based drug design techniques and a MD
simulation of the investigated biological target might be worth the relatively high
computational costs.
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2.4.2 Pharmacophore-Based Interaction Fields

As briefly discussed in Sect. 2.2.2, molecular interaction field (MIF)-based
approaches allow for an identification of ligand interaction hot spots in receptor
binding sites. Once the preferred sites for particular types of nonbonded interactions
are known they guide the placement of corresponding pharmacophoric features and
thus allow generation of complete pharmacophore models [101, 102]. Especially
when the three-dimensional structure of a ligand–receptor complex is unavailable
and a direct perception of present ligand–target interactions thus not possible,
employing a MIF-based method is the only way to obtain a reliable pharmacophore

Fig. 12 Workflow of the “common hits approach” [100] starting with the MD output trajectory of a
simulated ligand–receptor complex and a screening database. The final hit-list score of a molecule
depends on the number of representative pharmacophore models (RPM) that matched the molecule
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hypothesis for the characterization of potential ligands. Molecular interaction fields
moreover can be used for the guided optimization of existing ligands toward higher
affinity by modifying ligand structures in a way that additional interaction sites
pointed out by the MIF get captured [103]. A well-known program for the calcula-
tion of molecular interaction fields is GRID developed by Goodford et al. [35]. The
GRID field evaluates a classical empirical energy function for a given probe
molecule at each point of a regular grid that covers a region of interest of the target
protein. Areas of the grid that have probe–target interaction energies above or below
a certain user-defined threshold can then be visualized as isosurfaces using a suitable
graphical display program. Areas with large negative energies indicate energetically
favorable regions while those with large positive energies correspond to regions in
which the probe molecule would encounter repelling forces. To obtain physically
sound and accurate interaction energies, GRID uses an energy function containing
terms that account for (1) hydrogen bonding (Ehb), (2) steric effects (Elj), and
(3) electrostatic attraction/repulsion (Eel). The total energy E is then calculated as
the sum of the pairwise interaction energies between the atoms of the probe and the
atoms of the target molecule:

E ¼
X

Elj þ
X

Eel þ
X

Ehb

This energy function is essentially the same for every type of probe molecule. By
calculating grid maps for multiple probes that are orthogonal in characteristics like
charge distribution, size, and hydrogen bonding potential, it is possible to identify
regions of the target receptor in which specific structural features of a ligand are
more or less favorable. However, a drawback of this approach is that the calculated
MIFs are specific for the molecular structure of the probe and the obtained interac-
tion energies are always a mix of several contributions that cannot be separated
easily. To be able to derive a set of favorable ligand features multiple grid calcula-
tions for different types of probes have to be performed and substantial
postprocessing is required. Furthermore, calculations of physical interaction ener-
gies on the atomic level are computationally quite expensive and do not scale well
with the size of the investigated system which makes them less suitable for an
interaction analysis for whole MD trajectories.

If the primary goal is not the calculation of exact interaction energies but the
identification of hot spots for certain types of ligand–target interactions, then the
GRAIL approach [37] provides a viable alternative, which circumvents many of the
problems mentioned before. In contrast to GRID, GRAIL works on a purely
pharmacophoric representation of the target system and the probe is also just a
single pharmacophoric feature of a particular type (representing, i.e., a hydrogen
bond donor/acceptor, aromatic system, positive/negative ionizable group, hydropho-
bic group). The calculated interaction scores do not correspond to physical interac-
tion energies as obtained by GRID, but rather reflect how well geometrical
constraints like preferred distance and angle ranges are met when the probe feature
gets placed at the grid points. The score at a particular grid point therefore gives an
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insight as to how well a ligand feature of the probe type is able to interact with
complementary features of the binding site. Performing grid calculations on a
pharmacophoric feature level has two main advantages: (1) In comparison to
atoms, due to the much smaller number of pharmacophoric features, the calculation
of GRAIL grids is significantly faster than grid calculations on the atomic level.
Therefore, dynamic information obtained by MD simulations can also be incorpo-
rated in the interaction hot-spot analysis, for even larger biological systems. (2) The
number of probe and complementary target feature types is limited. Accordingly, the
number of required grid calculations to capture all relevant nonbonded interactions
for biological activity is also limited. Figure 13 shows examples for three different
GRAIL grid maps covering the binding pocket region of CDK2. The bound inhibitor
and the structure-based pharmacophore derived are shown to illustrate the good
match of the identified interaction hot spots with the corresponding hydrophobic
(yellow spheres), hydrogen bond acceptor (red arrows) and hydrogen bond donor
(green arrows) features of the ligand pharmacophore.

Fig. 13 Examples for GRAIL grid maps calculated for a CDK2/inhibitor complex (PDB-code:
1KE5). Red areas represent favorable ligand side regions for hydrogen bond acceptors, green areas
for hydrogen bond donors, and yellow areas for lipophilic groups. The bound ligand and water
molecules are ignored during the grid calculation and are only shown for reference
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3 Application of Pharmacophores in Natural Product
Research

Natural product-inspired design has become essential in designing tool compounds.
There is growing interest in employing computational approaches for natural
product-derived fragments. Chemotype-specific synthetic compound collections
used to be the common approach in medicinal chemistry, in which compounds can
be designed according to a specific target profile and aimed for a high degree of
diversity [104, 105]. As natural products can serve as novel molecular scaffolds and
therefore aid lead structure optimization, they have become an integral part of drug
design, and can additionally stimulate ideas for synthesis [106]. Natural products do
not always follow rules often applied in drug design (for instance, Lipinski’s “Rule
of Five” [107]), which opens the field to exploring powerful molecules in diverse
chemical space. Recently some potential anticancer agents were described [108]
possessing scaffolds inspired by natural products. These compounds are syntheti-
cally accessible, and the ability to link natural and synthetic compounds can be seen
as a great benefit to medicinal chemistry [109]. Software has been made available to
aim for natural product-derived chemical space, which correlate with bioactivity
profiles [109, 110].

As this chapter has focused on three-dimensional pharmacophore modeling,
some of the findings achieved through exploiting pharmacophore models for virtual
screening purposes have been reviewed. By employing databases, curated from
structures of natural products, the in silico approach can be successfully linked to
the pharmacognostic profiles.

3.1 Screening for Selective Inhibitors of 11ß-Hydroxysteroid
Dehydrogenase 1

One example of how pharmacophore modeling has successfully been employed to
obtain potent inhibitors in natural product space was published in 2006 [111] and
additional work on the same receptor was reported in 2010 [112].

11ß-Hydroxysteroid dehydrogenases (11ß-HSD) convert inactive 11-keto-
steroids into the active, reduced 11ß derivatives. Inhibiting the enzyme 11ß-HSD1
has proved potentially important in the context of obesity, diabetes, and wound
healing, as these conditions are glucocorticoid related. Enhanced expression of 11ß-
HSD1 in adipose tissue of obese patients as well as in skeletal muscles of diabetic
patients has been reported [113, 114].

Inhibition of closely related enzymes like 11ß-HSD2 or 17ß-HSD, however,
leads to unwanted side effects, which is why the aim is to discover highly selective
11ß-HSD1 inhibitors. Pharmacophore modeling was employed to create a selective
model to screen for potent inhibitors [115].
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The pharmacophore model utilized in this study was purely ligand based, since
there was no X-ray structure available at the time the research was carried out. The
ligand-based model could be retrieved due to known, active and selective 11ß-HSD
inhibitors [116, 117].

This pharmacophore model was used subsequently in order to screen databases to
retrieve the aforementioned novel inhibitors. The steroidal core of the inhibitors was
represented by hydrophobic and aromatic features in the pharmacophore model.
Selectivity can be achieved by introducing substitutions to those core features that
will be in charge of interacting with the environment by either forming hydrogen
bonds, ionic interactions, or additional hydrophobic contacts.

Indeed, employing the ligand-based model and utilizing spatial restrictions
derived from known inhibitors led to 15 novel hits with moderate to potent activity
on 11ß-HSD1.

In a second step, a nonselective model was built. However, a model for 11ß-
HSD2 proved difficult to establish the most potent and selective, known inhibitor of
11ß-HSD2, which is a glycyrrhetinic acid (Fig. 14) analog.

To incorporate information about 11ß-HSD2 inhibitors, this was chosen as a first
template for the nonselective model. Applying this model and its consecutive hits,
the initial model could be refined and hits from the first hit list could be excluded, as
they were not found to selectively target 11ß-HSD1, but to be more promiscuous.

The final model was used for virtual screening of 12 commercially available
compound collections to determine compounds suitable for biological testing. As
many potent 11ß-HSD inhibitors do not meet the requirements of orally available
drugs, like, for instance, the Lipinski “Rule of Five” [107], these restrictions were
not applied. In fact, the screen returned hits from both models and the test com-
pounds proved to be selective for 11ß-HSD1 over 11ß-HSD2 for the 11ß-HSD1
selective model and showed distinct inhibition of 11ß-HSD2 for the nonselective
model. Compounds with structural similarities to glycyrrhetinic acid could be
derived from the screen. Moreover, by using the 11ß-HSD1 selective and
nonselective models structurally diverse compounds could be obtained, which had
not been published in an 11ß-HSD1 inhibition context previously (Fig. 15).

These novel compounds are potential starting points for further optimization and
possible therapeutic applications [111].

HO

OHO

O

Fig. 14 Glycyrrhetinic acid
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Following the work published in 2006 [111], Rollinger et al. further investigated
the approach in 2010 [112] using the antidiabetic medicinal plant Eriobotrya
japonica as a starting material for their studies. By employing the previously
established pharmacophore model to screen the molecular database DIOS, which
consists of 10,000 compounds from medicinal plants, 172 hits could be retrieved. A
majority of the hits belonged to the scaffold class of the triterpenoids. One of the best
scored hits in this context was the triterpene corosolic acid (Fig. 16e), which is a
constituent of several herbal remedies. Furthermore, it is present in almond hulls
[118], apple peel [119], and in the leaf extract of E. japonica [120, 121]. The latter is
well known for its inhibitory effect on 11ß-HSD1 and 11ß-HSD2 [122]. Inhibitors of
11ß-HSD1 have been reported to counteract the accumulation of visceral fat and
reduce glucose blood level, and in addition, reduce metabolic risks in type-2 diabetes
[123]. Further hits in the virtual screening were ursolic acid (Fig. 16b) as well as
ursolic acid derivatives (Fig. 16c–d). After the screen, for further validation and
examination of interactions, the output molecules were all docked into the 11ß-
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Fig. 15 Virtual screening hits (a) and (b): Structurally diverse compounds derived from the 11ß-
HSD1 selective model, with proved 11ß-HSD1 selectivity in vitro. Compounds (c) and (d) showed
significant inhibition of 11ß-HSD2, in the range of 10 μM or less. Compound (c) possesses a
steroid-like structure and showed a 27-fold preference in inhibiting 11ß-HSD1 over 11ß-HSD2.
Compound (d), however, is more GA like and inhibited 11ß-HSD2 in vitro with a three- to fourfold
preference

130 T. Seidel et al.



HSD1 binding site. The docking algorithm allowed full ligand flexibility, partial
protein flexibility, and water molecules in the binding domain were treated
respectively.

After the placement, all chemical interactions were determined, utilizing the
software LigandScout 3.0 [23]. The geometry, distance, and angles of the protein
and the ligand in its vicinity were used to estimate the interactions. Subsequently, the
structure–activity relationship could be assessed by interpreting chemical interac-
tions, based on chemical functionalities.

The hits retrieved from the computational approach, exploiting pharmacophore
modeling, exhibited selective inhibitors of 11ß-HSD1 (Fig. 16). The hits displayed
IC50 values between 0.8 and 2 μM, which could be assessed in biological tests.

These results show how inhibitor-based pharmacophore modeling, in combina-
tion with virtual screening, can facilitate identifying novel, potent inhibitors in a
natural product context.
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Fig. 16 Compound (a), corosolic acid, which was the first ranked compound in the hit list, showed
an in vitro IC50 of 0.81 μM, inhibiting 11ß-HSD1 selectively. Compound (b), ursolic acid, with an
IC50 of 1.9 μM was ranked just before the ursolic acid derivatives (c) and (d), displaying IC50 values
of 2.06 and 1.35 μM, respectively

The Pharmacophore Concept and Its Applications in Computer-Aided Drug Design 131



3.2 Identification of Novel Natural Inhibitors
of Trypanosoma brucei Glyceraldehyde-3-Phosphate
Dehydrogenase

An example for structure-based pharmacophore modeling in conjugation with nat-
ural product databases was published in 2015 [124] and helped to identify natural
inhibitors of Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase
(TbGAPDH). Trypanosoma brucei is a protozoan parasite that can cause human
African trypanosomiasis, also known as “sleeping sickness.” As a part of the
“Neglected Tropical Diseases” classification by the World Health Organization,
this infectious disease endangers more than 70 million sub-Saharan African people
[125]. Suggested as potential drug target to deprive the parasite of energy supply
[126], inhibitors of GAPDH represent promising trypanocidal agents [126–
128]. Offering a vast structural diversity, natural products are known to exhibit
high potential against protozoan infectious diseases [129, 130].

The database of natural product MEGx collection was selected to perform the
virtual screening of the study. Among the 4803 available natural compounds,
700 were kept after several filtering steps such as the Lipinski’s Rule of Five [107]
or limiting the number of stereocenters.

Three crystallographic structures (PDB-IDs: 2X0N, 3IDS, and 1GYP) of
GAPDH from human pathogenic trypanosomatids were extracted from the Protein
Data Bank and used to generate four structure-based pharmacophore models
established on cocrystallized NAD+ and the last was built manually by analyzing
an electrostatic map of the G-3-P site, due to the absence of the substrate.

Virtual screening was performed for each pharmacophore model. All resulting
hits were docked in the respective binding site of the pharmacophore model from
which they were retrieved. Based on their docking and virtual screening scores,
13 natural products were tested experimentally to validate the inhibition of GAPDH.
The five compounds displaying enzyme inhibition superior to 50% at a concentra-
tion of 50 μM were selected and their IC50 values were determined.

Three compounds were geranylated benzophenone derivatives extracted from the
fungus Geniculosporium sp., one compound was a flavaspidic acid analog extracted
from the fern Dryopteris crassirhizoma, and the last was a tetradecane derivative
extracted from the tree Grevillea whiteana. Structures of the natural compounds are
depicted in Table 3. All five tested compounds exhibited inhibition of GAPDH,
displaying IC50 values below 30 μM, while two of the geranylated benzophenone
derivatives exhibited an IC50 value lower than 8 μM.

Considering the significant rate of experimentally confirmed inhibitors from more
than 4800 initial natural products, structure-based pharmacophore modeling thus
helped to selectively identify five new TbGAPDH inhibitors.
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1 Introduction

Natural products have been fueling drug discovery pipelines for decades [1, 2]. How-
ever, many challenging hurdles have hampered the straightforward application of
complex natural product structures for drug discovery, such as a lack of synthetic
accessibility for large-scale production [3, 4] as well as their unknown and insuffi-
ciently predictable polypharmacological properties [5, 6]. Conversely, natural
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product fragments overcome many of such shortcomings and provide privileged
structures with ample opportunities for optimization and derivatization into synthet-
ically accessible mimetics with known or predictable biological effects [4, 5, 7, 8]. It
has been shown that natural product fragments can provide key substructures to bias
a compound collection toward biological activity [9, 10], and it has been argued that
fragment-sized natural products and natural fragments constitute some of the most
relevant of natural products for drug discovery and development [11]. The biosyn-
thesis of a large natural product often relies on the synthesis of fragment-like
building blocks, such that these structures might present biologically motivated
handles to further explore them as chemical probes and drug leads [12].

Furthermore, natural fragments provide innovative as well as structurally and
spatially intricate molecular probes for fragment-based drug discovery [4, 8]. This is
particularly relevant given the much smaller size of chemical fragment space: since
there are orders of magnitude less possible fragment structures compared to the
unfathomable larger number of possible organic molecules [10], a smaller fragment
collection might be capable of spanning the complete chemical (fragment) space
with sufficient resolution [13]. This implies that the high-throughput testing of
fragments and their medicinal chemistry is more likely to enable the design of
bioactive compounds with optimal activity profile [14]. Indeed, focusing on natural
fragments benefits from the advantages of chemically diverse and complex natural
product structures, while simultaneously harnessing fragment-based drug discovery
for finding smaller structures that fit optimally into a binding pocket and can then be
rationally further optimized [13]. The potential for such optimization is additionally
attested to by orthogonal work on privileged fragments and scaffolds [5, 15], which
are notorious for binding certain target classes and families. This advocates for the
selection of molecular substructures that contribute most significantly to the desired
activity of biologically active molecules—and natural product fragments constitute a
prime resource to study these [16].

With these vital benefits of natural fragments in mind, it is important to realize
that cheminformatic and bioinformatic approaches have been instrumental in gen-
erating and curating databases of natural product-derived fragments [4, 8, 17],
analyzing and stratifying their properties [17, 18], as well as guiding their applica-
tions for drug discovery and chemical biology [5, 16, 19–23]. Many in silico tools
exist that have been validated with impressive success in the context of natural
fragments to support their generation, property and polypharmacology predictions,
and derivatization, among others [9, 15, 24, 25]. This contribution discusses various
challenges and opportunities occurring at different stages of computer-guided natu-
ral product fragment research, currently available computational tools to address
these, as well as outstanding research questions and the prospective impact of
computational workflows on natural product-based drug discovery and chemical
biology.
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2 Sources of Natural Product Fragments

To utilize natural product fragments in drug discovery and pharmaceutical research,
it is of utmost importance to source a large set of reliable and meaningful chemical
structures for further analysis or screening. A common selection criterion for natural
products and fragments is compound availability [4], and multiple chemical vendors
now supply chemical structures of natural product fragments that they offer com-
mercially for academic and industrial researchers to fuel natural fragment-based
screening efforts [26–29]. However, the few currently available collections are
limited in the number of included structures and are likely biased toward more
readily accessible fragments or have undergone other external filtering criteria
such as drug- or lead-likeness [30–32]. This can unknowingly distort the compound
collection and thereby dramatically impact the trajectory of a given project. For
cheminformatic analysis or downstream drug and chemical probe discovery, the
automated extraction of fragments from vast natural product collections is a fruitful
strategy to generate large datasets of natural product fragments. Multiple orthogonal
strategies exist (Fig. 1) that enable rapid, chemically meaningful, and reproducible
generation of natural fragment collections [4, 7–9, 17]. The strategy of choice will be

O

H
N

OH

O

*
*

O

*
H
N

HO

O

*

O

O
O

HO

HO

O
O

H
N

O

OH

H
N

O

OH

N

O

O

O

HN

N
O

O O

N
O

O O

* O

O
*

O

N

filtering scaffolds

fragmentation

proline

piperine

capsaicin

dysidiolide

Fig. 1 Schematic on fragment generation. Shown is a natural product grouping consisting of
proline, piperine, capsaicin, and dysidiolide. Fragment collections are shown that were generated
relying on Murcko scaffolds [33], fragmentation through RECAP [15], and filtering (molecular
weight <300). Asterisks indicate virtual attachment points generated through the in silico fragmen-
tation. All procedures were implemented in RDKit [34]
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determined by the desired goals of the specific project. This section outlines the most
commonly used types of strategies and their various implementations.

2.1 Filtering

A straightforward approach to retrieve natural product fragments relies on filtering of
natural product collections for their fragment-like sub-portion. Multiple studies have
indicated that a large fraction of the currently known natural product space corre-
sponds to low-molecular weight compounds [5, 17, 18, 35]. Thereby, molecular
weight thresholds, commonly with a maximum allowed weight of around 300 Dal-
ton, enable the rapid retrieval of the natural products that appear to be fragment-sized
[8, 17]. More complex filtering strategies can ensure that the retrieved structures also
fulfill other properties that are relevant for their concurrent application and thereby
ensure the utility of the structures retrieved.

Indeed, many other definitions of fragment-likeness exist [36] and commonly
other filters can be applied. A classic filter for fragment-like structures is the “Rule of
Three” [37], a younger cousin of the Lipinski Rule of Five [32], which restricts
fragments to a maximal weight of 300 Dalton, clogP< 3, up to three hydrogen bond
donors (HBD), and up to three hydrogen bond acceptors (HBA). Generally speak-
ing, the inclusion of pharmacophoric features (HBA and HBD, aromatic rings),
measures of solubility (clogP, polar surface area), or measures of molecular com-
plexity (number of rotatable bonds, number of rings, number of heteroatoms) can be
rapidly derived from the molecular structures [38–40] and ensure that the extracted
fragment collection fulfills the necessary criteria. Commonly, upper bounds on these
properties ensure that the extracted structures are sufficiently simple and fragment-
like [11]. It has also proven useful to establish lower bounds on properties such as the
molecular weight, a minimum number of heavy atoms, or a sufficient molecular
complexity to ensure that no trivial metabolites with limited pharmacophoric rele-
vance are included in the natural fragment collection [17, 18].

Estimates of the fragment-like fraction of natural product databases range any-
where between 10 and 30% depending on both the investigated database and the
exact definition of acceptable properties of the extracted fragments [5, 17, 18,
41]. While this number might be considered low, the vast size of many available
natural product datasets [5, 26, 42, 43] usually still warrants a sufficient number of
diverse fragment-sized structures for further applications [5, 8, 17]. Importantly, in
absence of any computational structure generation or modification, this strategy
promises to exclusively provide fragments that can be found in Nature and thereby
might be available through isolation and, even more importantly, are more likely to
constitute stable and biologically meaningful chemical matter [4].
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2.2 Virtual Fragmentation

Instead of relying on smaller, fragment-like natural products already contained in
natural product resources, in silico procedures to generate fragments can be
harnessed to split larger natural products into smaller, fragment-like entities [7, 8,
15, 35]. Different strategies exist to virtually fragmentize larger structures into
fragments, relying on distinct algorithms to ensure splitting of specific bonds or
generating fragments of a specific size and character. Thereby, multiple fragments
per natural product are generated, resulting in a potentially large set of virtual
fragments that inherently contain natural product-like substructures [44]. A straight-
forward implementation of such fragmentation schemes can involve splitting of
natural products at certain types of bonds, for example, all acyclic rotatable bonds
[45]. Similarly, approaches to split up compounds into substructures of a specific
size have been developed and applied to natural products [46, 47]. Following such
strategies, exhaustive sets of substructures can be generated rapidly simply through
analysis of the molecular graph and its partitions. However, many such generated
fragments might be of limited chemical or biological relevance given their potential
artificial nature and the lack of chemical reasoning for such partitions.

More advanced fragmentation schemes have been developed to ensure synthesis
tractability, chemical stability, or other chemical and biological properties of the
fragments. To this end, strategies have been implemented to virtually break bonds
while considering their chemical context. Most prominently, the RECAP algorithm
has implemented retrosynthetic fragmentation rules according to domain knowledge
regarding bonds that can be easily and efficiently (re-)generated using established
organic chemistry protocols [15]. In spite of not being specifically designed for
natural product structures, the RECAP algorithm has been employed successfully to
multiple natural product databases for the generation of large sets of natural frag-
ments [7, 35, 41, 48]. Many publicly or commercially available cheminformatic
software collections such as RDKit [34] and the Molecular Operating Environment
[49] have re-implemented the RECAP algorithm with sufficient performance to
process large natural product collections [7].

Many of the state-of-the-art de novo design implementations utilize virtual
reactions. These construct novel compounds from commercially available building
blocks according to hard-coded reaction schemes [50]. Pivoting this idea for frag-
mentation, reaction-based cleavage strategies have been implemented for natural
products, for example, virtually performing reactions such as hydrolysis and
ozonolysis [8]. These approaches might further the context-dependent analysis of
cleavable chemical bonds and thereby generate virtual natural fragment-like collec-
tions with even further improved chemical relevance and a synthesis blueprint for
their generation. Similarly, implementations of chemical reactions to introduce
modifications in natural fragments can further diversify or stabilize the fragments
of a virtual collection [4, 8]. While most of these approaches currently rely on hard-
coded reaction schemes, novel approaches are emerging that can automatically
extract such rules and further the applicability of computational fragmentation
[51, 52].
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Irrespective of the details of the implemented strategy, such in silico fragmenta-
tion approaches can rapidly and reproducibly provide large sets of natural fragments
with novel chemical structures [7, 8, 48]. If virtual chemical reactions are utilized for
fragment generation, these reaction schemes might provide blueprints for researchers
to generate fragment-like molecules from a larger natural product serving as the
template in the fragmentation. Even more importantly, virtual fragmentation is often
implemented in such a way that it generates smaller structures with reactive handles
that can serve subsequently as attachment points for further derivation and optimi-
zation [4] (cf. Fig. 1).

2.3 Scaffolds

Scaffold extraction can be regarded as a special case of fragmentation, whereas the
molecular graph is not partitioned into smaller substructures but instead stripped into
its central core structure by removing acyclic substituents [9]. While generally only
one scaffold can be extracted per compound, the exact scaffold definitions and
thereby the extracted molecular framework vary. The differences in the definitions
concern whether the type of atoms or bonds are considered and whether adjacently
connected heteroatoms are included in the scaffold definition [53, 54].

At the most abstract end of this spectrum are reduced molecular frameworks that
ignore atom and bond types and even the size and types of rings within a scaffold
[55, 56]. Molecular frameworks offer a mid-level of abstraction, representing full
molecular graph-like structures utilizing all chemical bonds without atom and bond-
type information. On the other end of this spectrum are decorated molecular sub-
structures with fully defined atoms and bonds and the inclusion of specific adjacent
heteroatoms [57].

Natural products, with their more common occurrence of fused-ring systems, will
generate different reduced frameworks compared to synthetic compounds [57–
59]. Full appreciation of the complexity and novelty of natural product scaffolds
can only be achieved when including information on the distinct heteroatoms
included or preservation of stereochemistry [60]. It is therefore not surprising that
a large number of successful projects extract natural product scaffolds that consider
atom-types, shortened side-chains, bond order, or chirality in their scaffold defini-
tions [4, 9, 16].

A pioneering augmentation of scaffold generation and analysis is their hierarchi-
cal clustering based on substructure relationships to provide a structural classifica-
tion of natural products (SCONP) [9]. Such hierarchical graphs of natural fragments
enable tracking of chemical substructures and their impact on biological activity.
This can aid significantly in the identification of lead fragments for further biological
optimization [16]. Therefore, this concept has been implemented in the open-source
software tool Scaffold Hunter to enable researchers to perform their own scaffold
analysis [19]. Such approaches attest to scaffolds as some of the most useful natural
fragment resource for further downstream analysis or as starting points for focused
collection development (Table 1) [2, 9, 16].
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3 Properties of Natural Product Fragments

Although the exact properties of natural fragments vary widely and are influenced by
the approach taken to extract them (Fig. 2), there are some general trends observable
for natural fragments that render them a particularly useful and unique resource of
chemical matter.

Table 1 Number of natural
fragments that can be
generated from natural
product databases relying on
different computational
strategies

Database Fragment-sized Scaffolds RECAP

DNP 64,650 2,10,213 1,37,12,533

TCM@Taiwan 10,023 58,802 6,68,402

NuBBE 712 2218 21,892

AfroDB 191 954 3048

DMNP �17,941 28,833 17,77,882

DTNP �75,804 1,21,975 69,15,803

Data for TCM@Taiwan [43], NuBBE [61], and AfroDB [62] was
analyzed in RDKit [34]. Data for DNP [42] were extracted from
Reker et al. [7] and Rodrigues et al. [5]. Data for DMNP [63] and
DTNP [64] were extracted from Shang et al. [35], whereas the
number of fragment-sized compounds was estimated at half of the
collection size given their reported median molecular weight

Fig. 2 Principal component analysis of standardized physicochemical properties of fragment-sized
natural products (orange), scaffolds (red), and RECAP fragments (gray) from the TCM database.
[43] Properties were calculated in RDKit [34], analyzed in KNIME [65], and visualized using
Python and Inkscape (arbitrary units)
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3.1 Chemical and Physical Properties

As expected, natural product fragments are more three-dimensional compared to flat
synthetic fragments [4, 8] and rich in sp3-configured and chiral centers [5, 8,
66]. They also differ in their chemical composition and contain more oxygen, less
nitrogen, and more aliphatic rings compared to synthetic screening collections
[4, 12, 66], with an average number of three rings per fragment [9]. Some studies
have investigated other properties relevant for biological activity and have shown a
higher propensity for pharmacophoric features such as HBD and HBA and lower
numbers of rotatable bonds [17], which has supported their perception as privileged
structures with an increased potential to interact with a wider range of different
biological targets compared to synthetic compound collections and their larger,
complex natural counterparts [5, 7].

Chemography of natural products, their fragments, and drugs allows charting the
general differences between compounds from these sources in terms of their phys-
icochemical properties or chemical structures [67–70]. Generally speaking,
researchers have found that natural product-derived fragments using various frag-
mentation sources generate good representative structures of the larger natural
product collections in terms of fully spanning the natural product space [4, 57]
while they show disparate placement compared to synthetic fragments [4] in terms of
physicochemical properties. Pharmacophoric and structural assessments have placed
natural fragments at the interface between synthetic bioactive compounds and
complex natural products [7, 58].

Accordingly, less “Rule of Five” [32] violations are observed for natural frag-
ments compared to natural products [18, 71], which might not be too surprising
given that these rules include thresholds that depend heavily on the size of the
investigated molecule and therefore are commonly conformed to by natural product
fragments. Fascinatingly, natural products in general often violate the “Rule of Five”
[12, 72], such that fragmentation might be regarded as a transformation of natural
product space into “Rule of Five” compliant areas [73]. This is fully in line with the
observation that the regions of physicochemical space that are populated exclusively
by natural products but not drugs are mostly spanned by larger, more complex
natural product structures [7, 57]. Thereby, fragments enable a more drug-like
handle to natural product space [2]. This can be further utilized since their decoration
with classic medicinal chemistry side chains enables populating drug-like spaces but
with innovative scaffolds [57] with potentially superior properties such as higher
three-dimensionality [8].

3.2 Spatial Properties

To assess the size and shape of natural product fragments, the three-dimensional
conformation can be predicted from the two-dimensional molecular graph
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[74]. Conformation prediction of natural products is often challenging given their
large size, complex structures, and common occurrence of chiral centers and
macrocycles [75, 76]. Therefore, natural product research often harnesses advanced
methods relying on experimental methods such as nuclear magnetic resonance
measurements or machine learning predictions [77, 78], thereby limiting the appli-
cation to only select natural products with available experimental data or sufficient
interest to warrant the necessary experimental or computational resources. Since
fragment-like natural products are smaller and populate a more restricted conforma-
tional search space, their conformations might be estimated more rapidly and more
accurately [36]. This suggests that natural product fragments and their derivatives
might enable researchers to study natural products in three dimensions with reduced
need for advanced conformation estimations to identify targets via pharmacophore
searching or rationalizing binding modes through docking [9, 21, 22, 79, 80]. On a
more general level, such three-dimensional structure prediction tools have also been
employed to whole collections of natural product fragments to calculate the distri-
bution of their volumes: this has charted most natural fragments within the range of
100 to 500 A3. This renders them similar in size compared to volumes calculated for
approved drugs and currently explored protein pocket cavities [9, 16, 35], further
attesting to their utility for drug discovery. Similarly, the shape of natural product
fragments has been investigated through their principal moments of inertia [81] and
it was concluded that natural product fragments provide a wide range of different
shapes and, most notably, are less “flat” compared to other compound databases,
including the complex natural products stored in the Dictionary of Natural Products
[42] as well as various synthetic fragment collections [8, 17].

3.3 Natural Fragments from Different Sources

Natural products and their fragments from different origins can vary drastically in
their chemical structures and properties [12]. By selectively analyzing natural
products from different sources, their properties can be compared to identify poten-
tially helpful trends in physical or chemical differences between structures produced
by distinct organisms or within specific environments or locations [35, 41, 66, 82]. A
handful of studies have started to chart and compare natural products from different
sources. For example, marine products seem to offer a larger variety of different
substructures, while terrestrial products appear to borrow more frequently from
similar substructures [35]. It has been suggested that natural products originating
from fungi might represent distinct natural product properties without deviating too
much from the drug-like space in terms of physicochemical descriptions [57]. Ertl
and Schuffenhauer specifically investigated unusual chemical structures populating
natural products from different sources and found that plant-based natural products
contain more fused carbocycles compared to natural products from other sources
[83]. Other studies have found that arenes, while dominating plant- and marine-
derived natural products, seem to be almost completely absent from bacterial
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organisms [66]. Bacterial metabolites may also be sulfur-containing natural products
[83] and marine natural products contain more oxygen compared to terrestrial
natural products [35]. Isolated studies have started to draw conclusions from
observed chemical structures and the implications for their occurrence in certain
natural products: for example, marine natural product repositories contain more
hydrophobic compounds and a lower number of ester bonds [35]. This could point
potentially at evolutionary forces selecting for organisms that are more adapted to
their marine environment by producing compounds with lower risks of losing
metabolites to the aqueous environment surrounding them as well as spontaneous
hydrolysis [35, 83]. Such insights are transferable into the fragment space of natural
products and can be helpful in compound collection design when certain physico-
chemical properties are of importance. Relying on selected organisms or origins
might enable compound pools to be steered in the desired direction. Furthermore,
through such in-depth analysis, cheminformatic research potentially may assist
fundamental research in metabolomics to better understand specific organisms or
microenvironments through their small molecular armamentarium [84, 85].

3.4 Commercial Availability and Synthetic Tractability

Although fragment-sized natural products make up only around a third of the known
natural product structures [5], they constitute the bulk of commercially available and
hence easily-accessible natural compounds for drug discovery and biotechnology
applications [4, 26]. Natural product fragments are often easier to synthesize com-
pared to their complex, larger counterparts [4, 73]. Computational assessments of
synthesizability as well as computational retrosynthesis planning potentially can aid
at prioritizing natural fragments and synthesis pathways [15, 51, 86]. However, most
of these tools were not designed to be specifically applicable to natural products and
therefore might need to be augmented to enable their straightforward application to
natural fragments. It has also been shown that, even in cases where the fragments are
not readily available or synthesizable, they can often be represented through com-
mercially available or easily synthesizable analogs [4] (Fig. 3). This can be achieved
by employing classical ligand-based similarity and virtual screening approaches to
search for similar fragments [87, 89]. Alternatively, clustering of fragment spaces
enables partitioning the chemical fragment universe into regions of high similarity to
substitute critical fragments with other co-clustered representatives [4, 7]. Extending
this concept even further and relying on hierarchical clustering techniques, Koch
et al. showed that constructing graphs through chemical substructure relationships
can build data structures to enable such simplifications [16]. Applying this concept
to scaffolds, such a graph can be built iteratively by populating the network with all
possible scaffolds. Subsequently, two nodes are connected if the respective scaffolds
can be transformed into each other by either removing or adding one ring structure.
Thereby, a graph is generated based on a special case of a substructure relationship.
Traversing this graph [19] can inform chemical derivatization and simplifications
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into smaller scaffolds with lower complexity and sufficient similarity to enable
tackling of the same biological target [90]. If a substructure of the scaffold does
not warrant a sufficient simplification, such graphs also enable “brachiating” into
neighboring branches with potentially simplified chemical structures but retained
biological activity [9]. In such advanced simplification approaches, it is important to
keep in mind that too aggressive derivatization or simplification can lead to loss of
the biological activity or other desired properties of the investigated natural product
fragment [9, 91]. Prediction of the biological and physicochemical properties of the
in silico-derivatized structures can enable researchers to monitor the expected
behavior of the novel structures and guide the structural modifications [5, 22, 25,
92–95]. Conversely, the originally investigated fragments might be unstable or
contain reactive substructures such as enamines or Michael acceptors, and slight
modifications can easily eliminate such structures [4, 8, 20]. The prediction of
reactive substructure or other liabilities can assist in identifying problematic frag-
ments and speed up this process [96, 97].
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Fig. 3 Identifying accessible derivatives of natural products, e.g., through molecular similarity
assessments, using, for example, the WHALES descriptor [87] (a), or through clustering and
subsequent selection of representative structures via chemical structure similarity (b) [4]. Alterna-
tively, hierarchical graphs of scaffolds can be utilized to identify related structures following the
SCONP concept (c) [9, 88]
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3.5 Problematic Natural Fragments

An increasing body of literature has served to warn of false-positive assay results,
i.e., compounds that elicit a positive readout in spite of not showing the actually
desired biological activity [97, 98]. This behavior can originate from various under-
lying causes, many of which relate to physicochemical properties of the investigated
compound such as reactivity, quenching, membrane interactions, fluorescence, or
colloidal aggregation [97–99]. Natural products and their fragments can potentially
contain substructures that can elicit such effects in vitro even if such effects might be
masked in their natural, biological (micro)environments [12]. This hints at the
necessity to identify problematic structures in natural product collections and for
fragment-like hit compounds to avoid hunting artifactual biological in vitro
results [99].

Cheminformatics efforts to design automated pattern-recognition systems to filter
such potentially problematic compounds have led to the development of multiple
substructure-based filtering lists that flag chemistry with motifs associated with
false-positive results for subsequent validation or elimination [97, 100,
101]. Although such methods have been designed based on screening data or with
synthetic molecular probes in mind, it has been shown that such false-positive
behavior can occur among natural products in general and their fragment-like
portion in particular [101, 102]. False-positive results from natural products might
be common, as indicated by multiple case studies and in-depth analysis of com-
monly used natural fragments [101, 102]. For example, the discovery of viable
inhibitors of indoleamine 2,3-dioxygenase 1 (IDO1) has been fueled by fragment-
like natural products such as β-carboline or galanal, but it has been suggested that
potential false-positive readouts might be at play for such compounds [103]. Similar
arguments have been made for fragments such as thymoquinone in the context of
anti-protozoal agents [104] and plumbagin as a histone acetyltransferase inhibitor
[105]. On a larger scale, statistical data analysis of natural product assay data has
been conducted and suggests that a large fraction of the acquired positive assay
results might stem from causes other than useful biological activity [99].

To counter such effects, researchers have designed taboo lists of chemical sub-
structures that are linked to various artifactual readouts [97]. Many natural products
contain such critical chemical substructures [12] recognized by filtering rules such as
PAINS [2, 99, 101] or ALARM NMR [100, 106, 107]. In fact, it appears that natural
products are particularly prone to contain such critical substructures recognized by
automated filtering rules compared to synthetic compounds and approved drugs
[5]. For example, around 40% of natural products currently studied in the context
of their antiprotozoal activity contain PAINS substructures [104] and up to 65% of
natural products from the commercial MicroSource collection are flagged according
to the ALARM NMR filters [107]. While, to the best of our knowledge, no large-
scale analysis on flagging of natural fragments has been conducted, it is fair to
assume that fragmentation or selection of potentially problematic natural structures
would transfer such liabilities into fragment-based collections and pipelines
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[108]. Furthermore, specific investigations of selected fragment-sized natural prod-
ucts have highlighted cases of such naturally occurring structures to be flagged by
multiple different false-positive detection methods (Table 2) [103].

Colloidal aggregation has been suggested as the single largest reason for a
compound to elicit artifactual, false-positive assay readouts in screening assays
[97, 109]. Indeed, many fragment-sized natural products such as physcion and
equol have been shown to form colloidal aggregates that can sequester proteins
and thereby interfere with biochemical assay readouts [99, 102, 110]. A high logP
for many natural products [58, 60] is an indicator that natural products and their
fragments might possess such aggregation propensity [109]. More accurate and fine-
grained computational prediction models exist that anticipate whether a compound
aggregates from its molecular structure and physicochemical properties [109, 111,
112]. Such models might be applied fruitfully to get more accurate estimates on
which natural product fragments form colloidal aggregates. However, given that
such models rely on molecular data mostly derived from synthetic screening com-
pounds [112], the discrepancy between natural compounds and the training data in
terms of molecular properties and structures hint at natural products potentially lying
outside of the applicability domain of such models [7, 113, 114]. An in-depth
evaluation will be necessary to understand whether the colloidal aggregation of
natural products can be studied by relying on data derived from synthetic screening
compounds or whether specifically tailored machine learning tools will be necessary
to accurately delineate the potentially common aggregation behavior of natural
products [102].

Furthermore, fragment-like natural compounds such as genistein and capsaicin
potentially can interact with and modulate lipid bilayer properties and thereby cause
false-positive readouts in cell-based screening assays [115]. To rapidly decode such
effects and flag compounds that potentially exert such behavior, computationally
accessible properties such as lipophilicity [116], charge [117], and amphiphilicity
[115, 118] can enable model development to predict the ability of natural fragments

Table 2 Percentages of natural product fragments flagged by PAINS [96] and ALARM NMR
[100] filtering rules for select datasets from Table 1 [43, 61, 62]

Database Fragmentation ALARM NMR/% PAINS/%

TCM@Taiwan Fragment-sized 34.2 0.7

Scaffolds 38.8 0.9

RECAP 24.6 0.6

NuBBE Fragment-sized 28.2 0.8

Scaffolds 25.4 0.5

RECAP 24.0 0.5

AfroDB Fragment-sized 69.6 16.8

Scaffolds 41.2 3.1

RECAP 50.9 8.1

Flagging was performed using the webserver made available through the Division of
Biocomputing, Department of Biochemistry and Molecular Biology, University of New Mexico,
Albuquerque, NM (http://pasilla.health.unm.edu/tomcat/biocomp/smartsfilter)
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to interact with or modulate lipid bilayer properties. Molecular dynamic simulations
are another tool that can potentially anticipate such effects and identify the natural
fragments that can cause this type of behavior [115, 117, 119].

Not all natural fragments that are flagged by such methods need to be blindly
eliminated [120]. Many liabilities will only be relevant in specific screening contexts
[121, 122], which has led to major criticism against the blind application of the
aforementioned prediction models and flagging lists to eliminate compounds from
screening collections [98, 120]. Indeed, many safe and clinically effective medica-
tions have been shown to be flagged by various computational false-positive detec-
tion methods [123, 124]. Therefore, if sufficient caution is taken and validations and
counter-screens are established, even apparently problematic structures might fuel
successful drug discovery and development pipelines. In the future, augmented
prediction methodologies could enable more fine-grained analysis of contextual
assay results of natural product fragments [106]. Other studies have shown how
natural fragments containing problematic structures constituted initial hits and were
subsequently derivatized during optimization to eliminate the liability for down-
stream validations [8] or how potentially pernicious substructures might not be
liabilities in their specific natural product context [5, 17]. Utilizing computational
prediction models to anticipate context-specific liabilities, as well as the establish-
ment of automated molecular design for the derivation of natural product fragments
will automate such processes in the future.

4 Applications of Natural Product Fragments

Given the aforementioned advantageous properties of natural fragments, they have
been suggested as representing innovative starting points for drug discovery and
chemical biology [4, 5, 13]. Importantly, such efforts are most productive if the
polypharmacological properties of the natural product under investigation is known
and derivatives can easily be made to fine-tune biological and physicochemical
properties of the molecular probes. As described in this section, computational
tools can assist in predicting these properties, generating focused collections of
derivatives and mimetics of natural compounds, as well as utilizing them for
statistical analysis of natural product-likeness to assess the utility of a compound
or molecular collection.

4.1 Predicting Biomacromolecular Targets of Natural
Fragments

Natural fragments with known polypharmacological profiles may be regarded as
most useful starting points for drug discovery campaigns and chemical probe
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development since candidate structures will already possess the desired activity and
potential known off-targets can be avoided [5]. Unfortunately, the biological effects
of a vast majority of natural products and their fragments is currently not known
[6, 7, 9]. In silico target-interference methods represent easily deployable prediction
tools to anticipate the biomacromolecular receptors targeted by natural products
[5]. However, classical target prediction methods usually underperform for natural
product fragments given the stark difference in chemical structure of natural prod-
ucts and their fragments to the synthetic compounds that populate (training) data-
bases of ligand-target interactions [4, 5, 18]. Therefore, with few exceptions
[125, 126], most of the advanced and well-validated target prediction technologies,
which are largely based on applying the chemical similarity principle [127] to
chemical substructure descriptions [128, 129], underperform at identifying targets
for natural product fragments compared to their impressive success reported for the
target identification of drugs and synthetic compounds [95, 130–133]. Therefore, in
the context of natural product fragments, researchers have employed or designed
target prediction methods that generalize from the underlying chemical substructure
and instead directly or indirectly quantify the pharmacophoric potential of natural
product fragments [5].

For example, Rollinger et al. have used 2208 three-dimensional pharmacophore
models to screen a collection of 16 fragment-like secondary metabolites isolated
from Ruta graveolens and found between ten and 287 confident predictions per
natural fragment [79]. In prospective experiments, arborinine was validated success-
fully as an acetylcholinesterase inhibitor (IC50 ¼ 34.7 � 7.1 μM). Their model for
binding the cannabinoid-2 receptor was based on five selective agonists. The only
confident prediction of this model was rutamarin. Indeed, rutamarin was the only
metabolite that showed ligand displacement with a Ki of 7.4 � 0.6 μM [79]. These
data suggest that such models are not only able to correctly identify inhibitors but
also are robust in recognizing true negatives—although further testing will need to
statistically validate these results [79]. Follow-up research has led to the identifica-
tion of acetylcholinesterase inhibitors among morphinans and isoquinolines [134] as
well as partial agonists of proliferator-activated receptor gamma among neolignans
[80, 135].

Instead of deriving a pharmacophore model for a protein target of interest,
researchers have also successfully employed docking strategies to assess the poten-
tial of a natural fragment to bind a pocket of a target protein [136–138]. For example,
Lanz and Riedl probed the S10-binding site of matrix metalloproteinase
13 [22]. They identified uracil as a natural fragment with a unique binding mode
that was further optimized into nanomolar inhibitors with impressive selectivity over
other matrix metalloproteinase subtypes. In a broader screen against 400 proteins,
Bernard and colleagues identified peroxisome proliferator-activated receptor gamma
and cyclooxygenase-2 as targets of the coumarin derivative meranzin [139]. Both
pharmacophore models and computational docking strategies have shown impres-
sive results for identifying biomacromolecular targets of natural product fragments
[5], but require good estimates of the confirmation space of natural fragments and
their stereochemistry, which are not always available.
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Other prediction technologies enable target identification for natural products
while circumventing the challenges originating from the differences in chemical
structure compared to synthetic screening collections or unknown conformations
[5]. For example, researchers have employed productively biological fingerprints as
an alternative strategy to compare molecules and predict their targets [140]. In brief,
the underlying assumption is that if two compounds have shown similar activities for
some biological targets, it is likely that they will behave similarly when tested
against other targets. This can be employed for target prediction if one of the
compounds has been tested against targets against which the other compound is
yet to be tested. Wassermann et al. have shown how this approach predicts more
targets for natural products compared to chemical fingerprint-based approaches and
have used this concept to identify vascular endothelial growth factor receptor 2 as a
target for fisetin with an IC50 of 230 nM, which might aid explaining the
antiangiogenic effects of this fragment-like flavonoid [141]. However, this success-
ful strategy is exclusively applicable to natural products that have been screened for
biological activity previously. A majority of natural product fragments have not been
investigated yet or the results have not been made publicly available [6, 7], highlight-
ing the need for additional technologies that can predict targets of natural fragments
exclusively from their structures without the need for conformational sampling or
previous biological screening.

In an effort to design a prediction technology specifically focusing on its ability to
predict targets for novel chemical structures, Reker et al. have designed the SPiDER
method [25]. The method circumvents the problem of predicting targets for
chemicals with unusual or previously underexplored chemical substructures by
explicitly employing “fuzzy” descriptors that enable relating chemicals through
their two-dimensional graph structure via pharmacophore correlations (CATS2
descriptor) [142, 143] and physicochemical properties [39, 49]. The method relies
on self-organizing maps as a clustering approach [144] to define local regions
(Voronoi fields) of equivalent biological activity [145, 146]. Confidence scores for
every prediction are derived from statistical interpretation of molecular similarities to
enable prioritization of the most meaningful target hypotheses [25]. It was realized
that this workflow not only is successful at identifying targets for novel, de novo-
designed synthetic compounds [25, 147] but specifically excels at predicting targets
of natural products [5, 7, 21, 148]. Natural fragments, in particular, appear to show
the highest number of confident SPiDER predictions [5, 7], highlighting the ability
of the SPiDER algorithm to predict new targets for this important compound class.
Indeed, SPiDER has been utilized to identify biomacromolecular targets for various
naturally occurring fragments such as β-lapachone [149], graveolinine, isomacroin,
DL-goitrin [21], sparteine [5], valerenic acid, isopimaric acid, and dehydroabietic
acid [20] (Fig. 4). While these and other studies [7, 148] highlight the power of
ligand-based target prediction methods such as SPiDER to identify the targets of
natural fragments, these studies also provide powerful insights into how these
methods can be used in concert with molecular docking [21], molecular similarity
assessments [20], and orthogonal machine learning technology [149] to fuse multi-
ple prediction methodologies for further improved predictive confidence or to enable
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additional hit rationalization. Similarly, conceptually related target prediction
methods such as TIGER show promise to further the computational toolset for
polypharmacological prediction of natural product fragments such as resveratrol
[150] that can be easily derivatized for further structure-activity relationship studies
and in vivo applications [151].

Although multiple striking examples exist of utilizing advanced target prediction
technology to predict targets of large and structurally intricate natural products
[7, 125, 148, 152, 153], it seems that fragment-like natural products are more
computationally relatable to the available screening data [2, 7, 57] and therefore
lead to more confident predictions [5, 7, 21, 107]. Some investigations suggest that
this trend might also be true for other target prediction methodologies such as
computational docking, where fragment-like entities lead to higher scores or
improved retrieval of correct binding modes [36], which might be connected to the
problem of conformational sampling of complex natural product structures [78].

Taken together, it appears that fragment-like natural products are exquisitely
positioned to provide starting points for drug and chemical tool development to
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modulate the activity of their anticipated targets [13]. For example, sparteine is a
natural fragment that has been studied extensively and computational methods such
as ligand-based target prediction and clustering-based diversity selection have iden-
tified biomacromolecular targets spanning different protein families such as p38α
MAP kinase [4], muscarinic and nicotinic receptors [5, 154], and the kappa opioid
receptor [5]. Such initial hits can then be further optimized by derivatizing the
fragment and adding additional chemical functionality: sparteine derivatives were
further functionalized with a primary amine that enabled improved p38α MAP
kinase activity from additional polar interactions as indicated by molecular
modeling [4].

4.2 Collection Design

Natural product fragments are believed to coalesce the advantages of fragment-based
drug discovery and biologically privileged natural product structures [13]. Therefore,
general-purpose screening collections of natural fragments with diverse structures
have been harnessed to generate compound collections that could provide novel hits
at improved rates with better selectivity compared to classical synthetic fragment
sets [8, 11, 17, 155]. For example, Over et al. [4] used scaffold-based fragmentation
on the Dictionary of Natural Products [42] and subsequently filtered for fragment-
like structures without reactive groups. Clustering-based diversity selection [156]
and identification of commercially available cluster representatives (cf. Fig. 3) lead
to the assembly of a screening collection that was employed successfully to identify
novel, allosteric ligands of p38α MAP kinase as well as phosphatase inhibitors
[4]. Similarly, Quinn and colleagues [17] used filtering directly on the Dictionary
of Natural Products [42] to arrive at a small, diverse collection of naturally occurring,
three-dimensional fragments that were successfully isolated or purchased. This
compound collection was then screened in parallel for their potential to bind to
multiple malarial protein targets as well as phenotypically for their activity against
asexual intraerythrocytic blood stage Plasmodium falciparum 3D7 parasites. Ana-
lyzing these data in parallel enabled the target identification of 31 relevant antima-
larial targets as well as the generation of 79 innovative hit structures for further
optimization [17]. Such efforts attest to the enormous potential of diverse, target-
agnostic screening collections composed of natural product fragments to fuel
fragment-based discovery efforts against targets from various protein families
using various assay technology as well as validating their utility in phenotypic
screens.

Instead of generating natural fragment sets from whole natural product collections
[4, 17], molecular series derived from one specific natural product core can provide
focused collections with privileged and novel structures [12, 16]. Especially when
the biomacromolecular targets of the template natural product are known or
predicted [9, 149, 157], the derived structures often inherit the template’s
polypharmacological profile—leading to dramatically increased hit rates for the
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focused natural fragment collections on the target of interest [9, 158]. Furthermore, if
the template fragments were generated in silico through virtual fragmentation and
(retro)synthesis approaches, their attachment points might constitute useful chemical
handles to add side chains with additional pharmacophore functionality while
preserving the original scaffold and shape [4] (cf. Fig. 1). Thereby, potentially
inaccessible natural products can serve as templates for synthetically tractable sets
of derivatives [91]. Waldmann and colleagues have pioneered and validated this
concept as biologically oriented synthesis (BIOS) [16]. Relying on and derivatizing
core structures originating from fragments that were computationally extracted from
natural ligands of an enzyme of interest or other known or predicted inhibitors,
focused screening collections can be generated with high hit rates and, even more
importantly, an often improved selectivity to structurally related protein targets
compared to other screening approaches [9, 90, 158].

Fascinatingly, such efforts can be performed phenotypically without necessarily
understanding the exact mechanism of action of the template compounds. For
example, in an effort to identify molecular tools with neurotrophic activity, Schröder
et al. relied on BIOS to simplify N-deoxymilitarinone A (Fig. 5), a fungal metabolite
causing neurite outgrowth in PC-12 cells [90]. Previous research had shown that this
effect is relatively robust toward simplifying the natural product and its side chains
have minor impact on its neurotrophic activity [159, 160], suggesting a pivotal role
of the scaffold for activity. This motivated the generation of 59 compounds around
the 4-hydroxy-2-pyridone scaffold and its 2,4-dimethoxypyridine derivative
[90]. The most active compound 11e showed 74% neurite growth at 10 μM com-
pared to control. Interestingly, activity in the phenotypic screen of the focused
collection could be correlated with MAP 4K4 activity, which potentially links this
kinase to neurotrophic effects and proposes it as a target to combat neurodegener-
ative diseases [90].

An earlier study by Koch et al. set out to identify novel 11β-hydroxysteroid
dehydrogenase 1 inhibitors from the natural ligand glycyrrhetinic acid [9]. The
complex pentacyclic scaffold was simplified into a two-ring system following the
SCONP hierarchical clustering of scaffold structures [9]. In an additional step of
collection development, the scaffold was subsequently substituted by a more stable
derivative with endocyclic double bond through “brachiation” within the scaffold
tree [161]. Such a horizontal shift from one arm of the scaffold tree into another can
enable transformations of target fragments into more suitable structures in terms of
advantageous physicochemical properties or improved chemical tractability for
derivation and collection design. However, this comes at the risk of losing the
associated pharmacological effect of the original natural product through deviating
too much from the privileged scaffold arrangement [9, 91]. In this specific case,
further confidence in the applied modification was drawn from the fact that the
aspired fragment corresponds to the scaffold of the natural product dysidiolide,
which is an inhibitor of Cdc25A phosphatase [162]. Since Cdc25A phosphatase is
structurally related to the 11β-hydroxysteroid dehydrogenase 1 target protein
according to the protein structure similarity clustering (PSSC) approach [158], it is
likely that they share common inhibitors and that therefore scaffolds targeting
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Cdc25A phosphatase might also warrant 11β-hydroxysteroid dehydrogenase 1 inhib-
itors. Indeed, a collection of 162 compounds derived from the octahydronaphthalene
scaffold afforded 30 inhibitors of 11β-hydroxysteroid dehydrogenase 1 and some of
the hits revealed remarkable selectivity against 11β-hydroxysteroid dehydrogenase
1 over 2 [9], further hinting at the potential of natural fragments to serve as starting
points for highly selective lead structures and probes [5].

In these and other examples [16], BIOS has specifically excelled at addressing
challenging targets where out-of-the-box fragment or screening collections might
give unsatisfactory results [4]. This has been associated with the ability of such
approaches to generate focused sets of compounds that inherit relevant physico-
chemical properties and pharmacophores from the template natural product [4, 9,
16]. However, notwithstanding the impressive success rate of the BIOS approach,
this hypothesis is not always correct, and depending on the chemistry employed,
compounds with vastly different properties can emerge [9, 91]. In a fascinating meta-
analysis, Pascolutti and Quinn [163] investigated the distribution of molecular
weight and logP as well as the number of HBD, HBA, rotatable bonds, and rings
in collections generated through derivatizing natural product templates. They found
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that such generated collections can show markedly different ranges of properties
and, most importantly, could be drastically different from the original natural
product that was used as the template structure [163]. A close monitoring of the
properties of collections generated, including their potential to trigger false-positive
assay readouts (cf. Sect. 3.5) potentially can improve the quality of such generated
collections and even further enhance success rates [5].

The impressive success of the BIOS approach is possible due to advanced
chemical knowledge and manual labor to delineate stable core structures and suitable
chemical routes for their derivation [16]. In an orthogonal and automated approach,
computational de novo design can be installed to generate large collections of natural
product mimetics autonomously [20, 58, 92, 164]. To this end, natural product
fragments with known biological activities can fuel ligand-based de novo design
algorithms [50] to derivatize them and build small collections of novel chemical
structures with similar chemical features and biological activities [92].

Schneider and colleagues have pioneered both established as well as novel de
novo design methods for the generation of collections of synthetically accessible
natural product mimetics from natural product fragments [20, 92]. For example, the
DOGS software [24] was harnessed to create a collection of synthetically accessible
natural product mimetics with potential inhibitory effect against the retinoid X
receptor [20]. DOGS implements a virtual synthesis algorithm that connects
25,144 commercially available chemical building blocks according to 58 chemical
reaction principles to generate novel chemical matter with a suggested protocol for
its synthesis [24]. Since the connection of all building blocks would lead to a
combinatorial explosion of possibilities, the DOGS designs are iteratively guided
by a graph kernel similarity towards a template structure [165]. The DOGS designs
have been validated extensively to afford novel chemical matter with the desired
activity against (patho)biologically relevant protein targets [166–172] and were most
recently validated in the context of fragment-based drug discovery [173] and were
used to identify mimetics of large, complex natural products [164]. In a consequent
next step, Schneider and colleagues applied the concept to natural fragments as
retinoid X receptor modulators, utilizing small natural compounds with known
retinoid X receptor activity such as honokiol, drupanin, valerenic acid, isopimaric
acid, and dehydroabietic acid as template structures (Fig. 6) [20]. These designs were
prioritized further using a consensus of a CATS2 descriptor-based similarity assess-
ment [142] as well as SPiDER target predictions [25]. This workflow led to the
synthesis of six de novo-generated natural product mimetics, of which five showed
the desired retinoid X receptor activity [20].

In a second study against the same target, the team added bigelovin to the natural
product templates for a novel, generative deep-learning campaign [92]. Generative
deep neural networks are the newest addition to the molecular design toolbox,
teaching a machine molecular structure constraints by providing tens of thousands
of valid chemical structures in text representation such as SMILES formats [174–
176]. These neural networks can then sample novel text representations of molecules
that translate into compounds with desired properties. To this end, the neural
network is first trained to produce chemically meaningful text representations
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through a large corpus of chemical structures. Providing the six natural fragments as
data for an additional round of training enables the fine-tuning of the model and bias
the generation of chemical structures to natural mimetics with potential for the
desired biological activity (“transfer learning”). Indeed, the fine-tuned model was
able to create hundreds of chemically valid and novel structures that exhibited the
desired natural product-likeness [44]. Around half of these designs were predicted as
ligands of retinoid X receptor by orthogonal target prediction methodology relying
on SPiDER predictions [25]. Further filtering of these positively predicted designs
using WHALES molecular similarity assessment [87] and visual inspection for
synthesizability lead to four chosen designs, of which two possessed retinoid X
receptor activity with varying subtype selectivity [92].

Such de novo design campaigns are complementary to the previously mentioned
BIOS approaches. While BIOS harnesses chemical expert knowledge to generate
structurally related compound series employing the same or a similar privileged
scaffold, automated molecular design can create large sets of novel structures that are
chemically more different from the template but inherit natural product-likeness [44]
and crucial pharmacological features from the template natural fragments
[73, 92]. Given their impressive success in previous studies, the herein discussed
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and orthogonal tools are likely to become essential parts of the drug and chemical
probe discovery toolbox to provide novel and privileged compound collections from
natural fragment templates [73].

4.3 Analysis of Natural Product-Likeness

Instead of using fragments directly as tools in computer-assisted drug discovery,
researchers have utilized them as chemical patterns to quantify the similarity
between two compounds or compound collections. Scaffolds in particular have
been utilized as the indicators of structural novelty for collection design and com-
pound development [18, 58, 132, 177]. Therefore, the concept of “scaffold hopping”
has been coined by Schneider and colleagues to ascribe the capabilities of a method
or the success of a project to identify new chemical entities [143, 167]. Conversely,
in the context of natural product-inspired drug discovery research where scaffold
similarity to a naturally occurring compound is desired, the detection of natural
product fragments in a new lead structure or screening collection is a measure of
desirability [44]. On a larger scale, fragmentation and structure matching can provide
statistically quantifiable measures of “natural product-likeness” [5, 44]. For exam-
ple, Hou and colleagues [35] analyzed the natural product-likeness of the Compre-
hensive Medicinal Chemistry Database and found that about 20% of the scaffolds in
this dataset were present in the Terrestrial Natural Product Database [64] while only
10% could be found in the Dictionary of Marine Natural Products [63]. While this
bias might be in parts explained through the smaller size of the Dictionary of Marine
Natural Products (cf. Table 1), other effects such as the underrepresentation of
marine natural products in historic drug discovery might help explain this effect as
well [57].

To measure natural product-likeness of individual chemical structures, Rodrigues
et al. have devised a scoring procedure that captures the count of natural product
fragments occurring in one specific molecule normalized by its molecular weight
[5]. Through this normalization, each score captures the relative frequency of natural
product fragments found within one specific structure compared to the size of the
molecule. Through applying this score to FDA-approved drugs, therapeutics that are
more or less similar to natural products can be identified. Interestingly, while there
were strong variations per year, a sustained occurrence of natural fragments in
approved drugs was observed [5]. This is fully in line with previous observations
of the relevance of natural products for drug discovery [3, 178].

Ertl et al. have devised the most commonly utilized score that specifically
captures the occurrence of fragments from natural products that cannot be found in
synthetic molecules [44]. Thereby, the score removes “background noise” fragments
that can be found in either compound class. This score enabled the classification of
natural products vs. synthetic molecules with higher enrichment compared to
machine learning models based on physicochemical properties, thereby highlighting
its utility to measure the natural product-likeness of a compound in terms of
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chemical fragments. In a striking experiment, they compared the scores for natural
products, synthetic compounds, and approved drugs: while natural products and
synthetic compounds show disparate distributions, approved drugs show higher
natural product-likeness, further attesting to the utility of using natural product
fragments in the design of new therapeutics [179].

Accordingly, such measures of natural product-likeness act not only as a seismo-
graph to measure the relevance of natural products for drug discovery over time [5],
but have also been used to guide screening efforts for specific collection design [71]
or to assess the natural product-likeness of de novo-generated natural product
derivatives and collections of mimetics [20, 155]. The success of these studies is a
remarkable testimony to the relevance of natural product fragments for the develop-
ment of novel and impactful chemical probes and drug discovery hits [73].

5 Concluding Remarks and Outlook

As highlighted in this contribution, multiple impressive projects have relied on
natural fragments to efficiently discover novel and selective starting points for
drug discovery and chemical biology with great potential for further optimization
[7, 9, 19, 20, 22]. The success of such endeavors stems, at least in part, from the
potential to benefit from fragment-based approaches [17, 180] for compound dis-
covery and design. At the same time, such natural fragments provide innovative,
three-dimensional molecular frameworks [8, 17] that are chemically [4, 8] and
computationally [2, 5, 7, 57, 107, 169] more accessible compared to their complex
counterparts. Computational workflows have been implemented that support this
process at all stages. Generating novel fragments [4, 9], their property analysis
[8, 18, 57], their biological applications [4, 5, 21, 22], and compound collection
designs [16, 20] can be supported through in silico approaches. It is noteworthy,
however, that most of the computational tools discussed herein were not designed
specifically with an application to natural products or their fragments in mind. Some
early studies have indicated that algorithmic tools specifically tailored to process
natural products might even further increase the performance and success rate of
such pipelines [7, 9]. This indicates that further studies to design computational tools
specifically for natural fragments, optimizing currently available workflows, and
their intelligent application to drug discovery and chemical biology promise multiple
avenues for impactful research and innovative molecular matter through coalescing
data science and natural product research.
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1 Introduction

1.1 General Background on hERG Physiology

The human ether-a-go-go-related gene (hERG) encodes the α-subunit of voltage-
gated potassium ion channels. The so-called hERG channel plays a key role in
cardiac myocytes, where it controls the efflux of potassium ions and thereby
coordinates a regular heartbeat. The ion efflux is necessary for the repolarization
of the cardiac action potential [1]. A hERG channel blockage leads to a prolongation
of cardiac repolarization, which is shown in electrocardiogram measurements as
prolonged QT interval. Such blockage can eventually result in a dangerous ventric-
ular tachyarrhythmia, called Torsade de Pointes, which is potentially life threatening
[2]. Several marketed drugs such as the antihistamines astemizole (9) and
terfenadine (10) and even substances used to prevent arrhythmia [such as quinidine
(6) and dofetilide (13)] had to be withdrawn from the market by regulatory agencies,
because they triggered ventricular arrhythmia and led, in some cases, to sudden
death [3]. Figure 1 shows a selection of such withdrawn drugs in addition to several
natural products known to interact with the hERG channel. A comprehensive list of
withdrawn drugs can be found in the WITHDRAWN database (http://cheminfo.
charite.de/withdrawn/) [4].

Due to this critical role, the hERG channel has emerged as a highly important
antitarget in drug discovery. In 2005, harmonized preclinical and clinical guidelines
were issued to ensure hERG channel-related risk assessment in drug development
and to prevent torsadogenic drugs from reaching the market [5, 6]. Consequently,
QT prolongation has become a major cause of attrition throughout the drug devel-
opment pipeline [7].
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1.2 The hERG Protein Structure

Compounds interacting with hERG are structurally very diverse due to the high
promiscuity of the hERG channel. The protein contains a large hydrophobic binding
pocket, which undergoes conformational changes with the three states known for
voltage-gated potassium channels (open, closed, and inactive) [8]. The channel is a
tetramer, forming an ion channel pore. Each monomer consists of six transmembrane
domains and amino- and carboxy-terminal cytoplasmic segments [1]. In the closed
state, which is assumed at negative membrane potentials, the intracellular regions
pucker up and close off the pore. Once depolarization occurs, the cell membrane
allows for an opening of the channel for efflux of potassium ions. With further
depolarization, the channel enters the inactive state, where the extracellular
domains close the channel. These processes occur with a typical kinetic pattern of
slow opening and closing and rapid voltage-dependent inactivation [1, 2,
9]. The architecture of the hERG channel is illustrated in Fig. 2. In 2017, Wang
and MacKinnon reported a cryo-electron microscopy (cryo-EM) structure of the
open hERG structure [10]. The three-dimensional models are available at the Protein
Data Bank provided by the Research Collaboratory for Structural Bioinformatics

Fig. 2 Three-dimensional structure of hERG in the open conformation modified after Wang and
MacKinnon [10]. (a) Top view (from extracellular) of hERG tetramer. Volume data as determined
by cryo-EM are displayed as light gray shapes. Secondary structures were superimposed for one
monomer (orange). (b) Side view of hERG tetramer embedded into the membrane, as obtained by
90� rotation of (a). Schematically illustrated again are the secondary structures for one monomer
(orange), the approximate membrane location (dotted line), the pore (yellow arrow), and potassium
ions (yellow spheres). (c) Close-up of one hERG monomer in open conformation. The molecular
surface is displayed as transparent, gray shape, with the respective secondary structures: Per Arnt
Sirn (PAS)-domain (orange), voltage sensor (green), pore domain (blue), C-linker domain (purple),
and cyclic nucleotide binding homology (CNBH) domain (pink)
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(RCSB-PDB, https://www.rcsb.org/) under the four-letter codes “5VA1,” “5VA2,”
and “5VA3.” The volume data as obtained by cryo-EM can be found in the
EMDataBank (EMD, http://www.emdatabank.org/) under the code “EMD-8650.”
The most comprehensive database of experimentally solved three-dimensional struc-
tures of biomolecules is RCSB-PDB [11–14]. The EMD is the most comprehensive
database for three-dimensional structures of biomolecules that were solved by cryo-
EM [15]. Both databases are publicly available and are connected to one other.

The hERG channel binding modes have not been characterized comprehensively
to this point. Due to the large binding pocket, the different conformational states, and
the possibility of allosteric binding sites, it is likely that there are multiple ways to
interfere with the channel.

1.3 Types of hERG Modulators and Binding Sites

There are different types of hERG modulators: blockers, which simply block the
pore and lower electrolyte flux, and activators, which facilitate electrolyte flux at
membrane potential almost high enough for channel activation [16]. For hERG
channel blockers binding within the channel cavity, mutagenesis studies revealed
the residues Tyr652 and Phe565 as crucial for ligand binding. For some blockers,
also mutation of Thr623 and Ser624 led to reduced activity [8, 17]. More recently,
Saxena et al. also identified Phe557 as a key residue for hERG blockage, which also
plays a role for hERG activators [18]. All of the abovementioned amino acid
residues are located either directly at the pore-forming helices or at the nearby
located voltage sensor (Fig. 2c).

The hERG activators are divided into two classes, depending on how they
enhance the hERG current. Type 1 hampers channel deactivation and reduces
inactivation, while type 2 activators only reduce channel inactivation. A mutagenesis
experiment on the type 1 hERG channel activator RPR260243 showed that muta-
tions of the four residues Leu553, Phe557, Asp658, and Val659 to alanine abolished
its activity [19]. For the type 2 hERG channel activator PD118057, mutations of
Leu646 or Phe619 abolished activity [20]. Furthermore, an allosteric mechanism of
action has been proposed for several compounds [21].

To sum up, it is probable that there are several hERG binding sites distributed
across the ligand accessible regions of the tetramer. This circumstance complicates
structure-based modeling efforts on the hERG channel.

1.4 Computational hERG Assessment of Natural Products

Methods to assess hERG-related cardiotoxicity in novel chemical structures with
low cost are of high interest. This is, however, a highly complex field, due to the
multiple ways to interfere with the hERG channel with different binding modes and
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modes of action [22, 23]. Furthermore, channel promiscuity and interactions with
other ion channels may prove problematic [1].

Experimentally, hERG activity is evaluated predominantly in a patch clamp
assay, which is generally expensive and time-consuming. Attempts at using auto-
mated patch clamp systems exist but currently do not reach the same quality
standards as the conventional experimental setups [24].

A wide array of in silico methods has been developed to predict hERG activity, as
reviewed by Villoutreix and Taboureau [25]. However, in silico methods suffer from
the poor understanding of binding modes on hERG. This realization, together with
the relatively late availability of a three-dimensional structural model of human
hERG, has forced in silico experiments to focus on ligand-based approaches.

While novel drug candidates are examined routinely for hERG-channel-related
cardiotoxicity, many herbal remedies and even commonly consumed plants have not
been tested for their hERG-related properties. As natural products play a vital role in
the healthcare system of many developing countries and also constitute a large share
of the drugs used overall, often accessible without prescription, it is crucial to
examine them for hERG channel-related off-target effects.

Computational methods have been widely applied, and partly also successfully,
to predict hERG blocking activity [25–27]. However, natural products often pose a
special challenge for computational models because their physicochemical proper-
ties differ from what we typically see as “drug-like” molecules [28]. They generally
possess a larger molecular mass, contain fewer rotable bonds, more stereocenters,
and more oxygens, to name just a few aspects. A comprehensive overview on the
differences between synthetic drugs and natural products can be found in a review by
Feher and Schmidt [29].

2 Computational Target Prediction

The central domain of the drug discovery scientist is the exploration of novel
bioactivities. The bioactivity itself is typically a product of a compound’s interaction
with a macromolecular target, mostly a protein [30]. Any bioactivity, next to its
qualitative nature (compound A interacts with protein 1), can also be described using
quantitative metrics (EC50, IC50, Ki, etc.). These data currently are readily available
in public databases like ChEMBL [31–33] or PubChem [34, 35] and can be mined
on a large scale due to recent advances in computer power and big data processing.
The ever-growing content of such databases constitutes nothing less than the foun-
dation of any cheminformatic approach used in current drug discovery. It allows for
a systematic search for new bioactivities according to the similarity principle: similar
compounds exert similar bioactivities [36, 37]—which is perhaps the most important
hallmark of medicinal chemistry. The search for novel bioactivities can be
approached from two directions: screening for new ligands of a molecular target
or screening for new molecular targets of a ligand. The first of these applies to a
typical virtual screening (VS), independent of the actual technique used (e.g.,
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molecular docking, pharmacophore-based VS, 2D similarity searches, etc.). The
second strategy allows for the identification of molecular targets for ligands and is
therefore often referred to as target prediction, target fishing, activity profiling, or
inverse virtual screening (iVS). This is undisputedly a younger but still an
established approach. Nevertheless, target prediction has gained steeply in popular-
ity and already plays a crucial role in the toolkit of a drug discovery scientist today.
The main fields of application to target prediction are diverse: first, the
de-orphanization of compounds with unknown interaction partners. Such com-
pounds are often produced from phenotypic high-throughput screenings [38, 39],
where cell-based assays are deployed, for which readout cannot be associated with
one specific molecular target (e.g., pro-apoptotic or antimicrobial). In these cases, a
so-called target deconvolution has to be conducted, which is time-consuming and
challenging [40]. Even though several target deconvolution strategies are available
and have been successful in the past, in silico target prediction can support a search
for the respective molecular target in an economic manner [41]. Second, drug
repositioning, or often referred to as “drug repurposing” in the literature, is yet
another method in drug discovery to take advantage from in silico target prediction.
Drug repositioning is aimed at establishing new indications for approved drugs.
These drugs are used as input for the in silico target prediction, and the respective
predictions are validated subsequently. The steep increase in the popularity of drug
repositioning can be attributed primarily to the increasing pressure on research and
development over the last decade. The great advantage of a drug repositioning
campaign compared to a conventional drug discovery campaign is the considerably
smaller effort in research and development incurred. Hence, pharmacokinetic stud-
ies, toxicity data, and expensive clinical data can be reutilized from previously
conducted studies. The same is true for the development of an appropriate dosage
form, production process, and the respective facilities. These circumstances save
time and resources and ultimately result in shortened time and drug development
costs [42]. Third, in the early stages of drug discovery, target prediction plays an
important role in in silico ADMET prediction. The aim of this is to identify potential
antitargets for the structure in question. Antitargets are druggable macromolecular
structures that are mostly associated with side effects, like, e.g., various cytochrome
P450 enzymes (CYP), P-glycoprotein, or hERG. Binding to such antitargets has to
be avoided and is therefore determined at an early stage in the drug discovery
process. Modern target prediction tools can facilitate the identification of such
unwanted molecular targets of a lead compound, even before any examination in a
wet laboratory. In this chapter, the focus is based on the third field of application: an
in silico target prediction on hERG for natural products [43–46]. Fourth, especially
in natural products research, target prediction is often applied to deconvolute the
bioactivity of extracts. Extracts, or sub-fractions of extracts, are after all complex
mixtures of a myriad of constituents. Target prediction can be used to address the
bioactivity to certain natural products abundant in a bioactive extract.

Regardless of what the goal of the target prediction is, the same techniques are
applied. They are subdivided into ligand-based and structure-based methods. This
principle can be found, for example, in “reverse pharmacognosy.”
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2.1 Ligand-Based Target Prediction Methods

Ligand-based methods are a widely used concept in cheminformatics today and are
defined as models that are derived from the various available ligands for a specific
target activity. The fundamental difference between structure-based models and
ligand-based models is evident, as follows: while structure-based models are derived
from protein-ligand complexes of the target of interest, ligand-based models are
derived from at least one known ligand/s of this same target. Accordingly, the first
step of any VS campaign is typically to check whether three-dimensional structures
in adequate quality are available. Ligand-based models are therefore often seen
incorrectly as the stopgaps in VS, if no three-dimensional structure can be found.
However, and to the contrary, ligand-based models should be seen as a potent
approach that brings into play a myriad of molecular targets, which three-
dimensional structures have not been solved previously. For example, while at the
beginning of 2019, 4563 distinct drug targets were listed in DrugBank (https://www.
drugbank.ca/) [47], 1215 of those protein structures have been solved and are
represented by at least 1 structure deposited in the RCSB-PDB. DrugBank is a
comprehensive database of drugs, drug targets, and diseases of drugs that are either
marketed or have been included in a clinical trial [48–52]. Both databases are
publicly available. Even though these numbers may not represent the undisputed
truth (it is simply not possible to categorize proteins into only drug targets and
non-targets), they seem to represent the day-to-day subjective experience of a
molecular modeler quite well: approximately 75% of the protein targets of interest
for a drug discovery scientist will lack three-dimensional structural information.
However, neither ligand-based approaches nor structure-based approaches can guar-
antee success. The truth is both approaches bear some inherent advantages as well as
disadvantages. Ultimately, it has to be decided case-by-case which approach is the
most promising for the specific project.

2.1.1 Two-Dimensional Ligand-Based Similarity Searching

Ligand-based approaches can be subdivided into two major classes:
two-dimensional (2D) and three-dimensional (3D) approaches. Two-dimensional
ligand-based models compare the similarity between two molecules on a 2D level,
without considering conformations or spatial arrangement. Two-dimensional
approaches solely focus on atom types and their connectivity using so-called molec-
ular fingerprints. Molecular fingerprints are the bit string representation of molecular
structures. They can be seen as lists of predefined features, whereas “1” indicates the
presence and “0” indicates the absence of that feature in the molecule represented.
The length of the fingerprints or the count of bits corresponds to the number of such
features being listed. There are several types of fingerprints that can be computed.
Cereto-Massague et al. grouped them into substructure keys-based fingerprints,
topological or path-based fingerprints, and circular fingerprints [53]. Substructure
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keys-based fingerprints are bit strings that are used to browse the query molecule for
predefined substructures or features. The type of substructures and the order in the
bit string are defined by the respective fingerprint. A popular example of this group
would be the two MACCS fingerprints with different lengths [54]. Topological or
path-based fingerprints browse for fragments of the query molecule in a typically
linear pattern up to a predefined distance. Length, order, and type of fragment are
defined by the fingerprint. An example for a topological fingerprint is the prominent
Daylight fingerprint [55] utilized by the early Similarity Ensemble Approach (SEA)
or the FP2 fingerprint used in SwissTargetPrediction. Finally, circular fingerprints
browse for molecular fragments that make up the query molecule. In contrast to
topological fingerprints, circular fingerprints work with circular concentric frag-
ments of a molecule, starting from one atom like indicated schematically in Fig. 3.
The number of such concentric circles used is specific to the respective fingerprint,
usually specified in its name (e.g., the number “two” in FCFP2). A particularly
popular class of fingerprints are the extended connectivity fingerprints (ECFPs). For
example, SuperPred and admetSAR use the ECFP4 and the ECFP8 fingerprint,
respectively, for 2D similarity comparison. HitPick makes use of the so-called
functional class fingerprints (FCFP), a variant of ECFP. While ECFP aim to repre-
sent accurately the atomic environment of the center atom, FCFP describe the
abstracted functional class environment of the center atom. Functional class finger-
prints are often described as incorporating a pharmacophore-like idea into finger-
prints, which are 2D representation of molecules [56]. PASSonline, on the other
hand, uses the so-called multilevel neighborhood of atoms (MNA) to assess the 2D
similarity of molecule pairs—yet another circular fingerprint [57].

The principal reason to use molecular fingerprints in VS is to compare the
similarities of two molecules. To do so, the distance between the two bit strings
representing the two molecules has to be calculated. The distance, a positive
numerical value, can be interconverted to a similarity metric, a value between zero
and one, using Eq. (1).

Similarity ¼ 1
1þ distance

ð1Þ

Equation 1 Conversion from distance metric to a similarity metric

Even though several distance metrics are available that can be translated to a
similarity metric, the most popular similarity coefficient in cheminformatics appli-
cations is the Tanimoto or Jaccard coefficient (Tc) [58]. The Tc is calculated
according to Eq. (2). There are several similarity metrics available for such compar-
isons, the most popular being the Dice coefficient, the Cosine similarity, the Russel-
RAO coefficient, and the Forbes coefficient (reviewed in [53]). In 2015, Bajusz et al.
compared several of these similarity coefficients in the context of 2D similarity
comparisons of molecular structures. The authors found Tc to be the most represen-
tative of chemical similarity comparisons [59].
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Tc ¼ AB

Aþ B� AB
ð2Þ

Equation 2 Calculation of Tanimoto coefficient (Tc) using molecular fingerprints. A indicates the
amount of bits set to “1” in the first bit string, B indicates the amount of bits set to “1” in the second
bit string, and AB indicates the amount of bits set to “1” in both bit strings

Tcs range from zero to one, while zero indicates no 2D similarity or, in other
words, the highest possible dissimilarity, and one indicates identical molecules. For
a more detailed explanation of molecular fingerprints, the interested reader may refer
to [53, 60].

Molecular fingerprints are currently the state of the art to bring 2D molecular
structures into a format, which is readable for a computer. Fingerprints have in
common that both their generation and their comparison are “computationally
cheap,” meaning that both processes are rapidly computed—regardless of which
fingerprint is used. This fact constitutes the most important advantage of 2D
similarity calculations: they are fast and easy to use, allowing for high-throughput
rates at low computational costs. The biggest limitation of 2D similarity comparisons
so far lies in the very nature of molecular fingerprints: the molecular similarity
coefficients produced are strictly limited to the 2D representation of the compounds.
However, molecules are three-dimensional entities, and therefore molecular finger-
prints ignore an important property of molecules in that they may not accurately
predict the activities of chiral compounds.

2.1.2 Three-Dimensional Ligand-Based Similarity Searching

Three-dimensional ligand-based models compare the three-dimensional “shape” of
molecules to one another. This principle is, in contrast to 2D ligand-based models,
based on the theory of molecular complementarity (ligand–target), rather than molec-
ular similarity (ligand–ligand of target). A ligand can only bind to its target, if their
shapes complement each other to a certain degree, and allow the ligand to fit perfectly
into the binding pocket. Both of these principles are legitimate and belong to the same
umbrella paradigm of today’s understanding of ligand–target interaction, namely, the
key-lock principle, first hypothesized by Emil Fischer in 1894 [61]. Three-dimensional
ligand-based models therefore aim to compare the molecular shapes of a target’s
known ligands with a set of screening compounds. This is of particular interest in
regard to a phenomenon addressed as “scaffold hopping.” Scaffold hopping is the
ability of a method to identify chemically diverse scaffolds that bind to the same target.
The similarity of the compounds shows in the third dimension, in that molecules
appearing dissimilar in a 2D representation can be quite similar if looked upon in a
three-dimensional representation. Three-dimensional ligand-based models were
designed to account for exactly this circumstance and, in fact, are less susceptible to
fail because of scaffold hopping. The algorithms behind the vast majority of three-
dimensional ligand-based models belong to only two classes: Gaussian shape methods
and approximate shape methods. Three-dimensional ligand-based models, especially
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Gaussian shape methods, are generally considered a lot more exhaustive, due to their
expansive calculations. Approximate shape methods were developed about 5 years
later, aiming at reducing calculation times.

Gaussian shape methods derive their name from the spherically symmetric
functions that are used to describe the atoms of the respective molecules. The overlap
between the spheres of two molecules is then calculated and used as a quantitative
estimate of the shape similarity. This approach is hampered by one important issue:
to be able to compare two shapes that potentially are made up by different atoms
and/or different amounts of atoms, these molecules need to be superimposed earlier.
This can be achieved either by an algorithm that fits one molecular shape into
another over iterative optimization cycles [62] or by a translation of all atoms into
a common coordinate system, followed by the superimposition of the centers of
masses and the alignment of the principal axes of inertia [63]. This process is
illustrated schematically in Fig. 4. In both variants, various orientations of both
molecules are sampled, because the two methods suffer from a considerable bias
caused by the starting orientations. Neglecting this important issue can lead to a
missed match between two molecular shapes due to different orientations.

Finally, the shape overlap OA,B of two correctly superimposed molecular shapes
can be computed (for a detailed mathematical description, see [64]). OA,B then allows
for the calculation of distance metrics (Euclidean distance, Manhattan distance) or

Fig. 4 Gaussian shape method for three-dimensional shape comparison of the hERG blockers
nicotine (2) in light red, and dihydroberberine in light blue, schematically illustrated. A pink
asteroid marks the centers of masses in both molecules; the three dotted arrows mark the computed
principal moments of inertia
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similarity metrics like Tc [see Eq. (3)], as shown before for two-dimensional ligand-
based models.

Tc ¼ OA,B

OA,A þ OB,B þ OA,B
ð3Þ

Equation 3 Calculation of Tanimoto coefficient (Tc) using molecular shapes. OA,B is the
shape overlap of molecules A, and molecule B, OA,A is the shape overlap of molecule A with itself,
and OB,B is the shape overlap of molecule B with itself

The Tc obtained from such three-dimensional ligand-based models can be
interpreted identical to Tcs obtained from 2D ligand-based models: a Tc of zero
indicates no shape similarity, while a Tc of one indicates a perfectly congruent shape
overlap. The first commercial application of a three-dimensional ligand-based model
based on a Gaussian shape method was the Rapid Overlay of Chemical Structures
(ROCS) [64, 65]. In terms of publicly available target prediction tools, SuperPred
makes use of an algorithm based on a Gaussian shape method.

More recent advancements in three-dimensional ligand-based models are the
so-called approximate shape methods. These algorithms are designed in a
completely different manner, with the objective of accelerating the calculation
time compared to the much slower Gaussian shape methods. To do so, the laborious
steps of pre-aligning and orienting molecules and computing of overall shapes can
be avoided. Instead, the molecular shape is “approximated” and described through
different variables. Ballester et al. introduced the Ultra Shape Recognition (USR) to
describe molecular shapes [66, 67]. First, four molecular locations are defined: the
centroid of the molecule (ctd), the closest atom to ctd (cst), the farthest atom from ctd
(fct), and the farthest atom from fct (ftf). Then, Euclidean distances are computed
from all atoms to the four respective molecular locations. Each of the resulting four
distances is described with three moments μ, namely, its average μ1, its standard

deviation μ2, and its cubic root of the skewness μ3. The molecular shape MB

!
is

ultimately made up by 12 variables. This process is illustrated schematically in
Fig. 5. Using this method, USR circumvents time-consuming calculation of absolute
atom coordinates using relative coordinates. Moreover, the 12 variables are com-
puted rapidly and are easily stored. This allows also for high throughput in an
acceptable amount of time.

To compare how similar the shapes of two molecules are, the similarity metric,
SA,B, can be computed as indicated in Eq. (4). The result ranges again from zero to
one, and the interpretation is consistent with Tcs.

SA,B ¼ 1þ 1
12

X12

k¼1
MA

! � MB

!���
���

� ��1

ð4Þ

Equation 4 Similarity score obtained from approximate shape methods.MA

!
describes the molecular

shape of molecule A and MB

!
describes the molecular shape of molecule B, both containing 12

variables each
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Three-dimensional similarity measures are in general more sophisticated than 2D
methods. Initially, they were even thought to have superior prediction power over
2D methods, for the simple reason that molecules are three-dimensional, rather than
two-dimensional. Therefore, a three-dimensional comparison should perform better
in, e.g., retrieving active compounds from a random screening list, and thus balance
the higher computational cost. Unfortunately, this is not the case. In some cases,
three-dimensional methods are even outperformed by two-dimensional methods
[44]. This phenomenon can be attributed mainly to the fact that the shape of an
active molecule alone does not explain the bioactivity. Important concepts like
chemical functionalities, electronic properties of the molecule’s surface, or chirality
are neglected. These drawbacks were eliminated stepwise, especially within the
approximate shape methods, e.g., by accounting for chirality as in Chiral Shape
Recognition (CSR) [68] or adding two further dimensions like in ElectroShape
[69]. Also, the fusion with pharmacophoric features has improved the success
rates of initial three-dimensional ligand-based methods, as shown in Ultra-Fast
Shape Recognition (UFSRAT) [70] or Ultra-Fast Shape Recognition with CREDO
Atom Types (USRCAT) [71]. Within the Gaussian shape methods, the same devel-
opment took place. Noteworthy are the implementation of the hydrogen-bond
propensity in ROCS and the development of SHApe-FeaTure Similarity (SHAFTS):
a combination of shape similarity and pharmacophoric features. As a rule of thumb
for the medicinal chemist, three-dimensional ligand-based methods are said to
perform better for low structural similarity, because an ability to detect scaffold
hopping comes into play. Within higher structural similarity, two-dimensional
ligand-based methods usually perform better or at least equal [72]. For example,
the three-dimensional shape comparison implemented in SwissTargetPrediction uses
a USR-based algorithm.

Fig. 5 Working principle of approximate shape methods schematically illustrated. For the example
molecule nicotine (2), the centroid is computed (ctd), as well as cst, fct, and ftf. For each of these
four molecular positions, 3 moments μ are computed, resulting in a 12-variable vector (MB

!
)
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2.1.3 Machine-Learning Applications in Chemical Similarity Searching

Artificial intelligence is currently one of the most dominant technologies in our daily
lives. As artificial intelligence steadily advanced over the last decade, it has also been
introduced into drug discovery. This has led to a myriad of applications and tools
using machine learning over the last couple of years, which are discussed elsewhere
[73–75]. The field of target prediction also has been subjected to experiments with
such algorithms, especially in its subcategory of ligand-based target prediction.
When discussing machine learning, usually, the respective algorithms are meant.
These machine-learning algorithms (MLAs) use statistical tools that are able to
“learn” from a given training set, without being explicitly coded. This makes
MLAs particularly versatile and applicable to numerous problems, one being
ligand-based target prediction. Machine learning can be subdivided into two main
groups: supervised learning and unsupervised learning. In supervised learning, the
algorithm “knows the correct answer,” meaning that it is trained with a number of
exemplary input-output pairs. In unsupervised learning, the algorithm is not given
the correct answer, because an absolutely correct answer may not exist. Instead, the
algorithm detects commonalities and patterns in the test set, and, e.g., groups them
accordingly (such as clustering of chemical structures). Supervised learning again
consists of two subgroups, namely, regression models and classification models.
While regression models are used typically to predict continuous numerical variables
(e.g., demand for product “X” during holidays or relative humidity for a weather
forecast), classification models aim to predict discrete classes (e.g., “tomorrow will
be rainy” and “tomorrow won’t be rainy” or “inhibiting cyclooxygenase-2” and “not
inhibiting cyclooxygenase-2”). As might be apparent to the attentive reader, the kind
of MLA to employ depends greatly on how the question is posed, so there are
problems that can be solved by both classification and regression models. In other
words, by reformulating the question, another class of MLAs becomes usable.
Despite this great variety and interchangeability of MLAs, almost exclusively
classification models are used for VS as well as for target prediction. Exceptions
are quantitative structure-activity relationship (QSAR) models, which use regression
models to predict, e.g., activity values. The development of a machine-learning
model is performed in three phases, as illustrated in Fig. 6a. First, the data have to
be prepared. In the case of target prediction, a training set of molecules with a given
class, typically “active” or “inactive” on the target of interest has to be gathered. This
step is particularly crucial, because the quality and the nature of the dataset ulti-
mately will determine the behavior of the model. Second, the MLA can be trained
using the just-prepared training set. During this step, the algorithm will adjust its
prediction to what it can “learn” from the training set. This means that the algorithm
looks for features that discriminate well between the two classes “active” or “inac-
tive.” For example, all active molecules bear a carbonyl group in position C-2, or
most of the inactive molecules are substituted in position C-7. Third, based on the
knowledge obtained during the training phase, the algorithm optimizes a model that
can finally be deployed. The model can then be used for predicting the bioactivity of
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new molecules that were not present in the training set. Here, the algorithm applies
the knowledge it has obtained during the training phase on new, yet unclassified
molecules. Some of the most popular MLAs, namely, naïve Bayesian classifiers,
support vector machines (SVMs), logistic regressions, and k-nearest neighbors (k-
NN), are mentioned in this chapter. Therefore, such MLAs require more detailed
explanation.

Naïve Bayesian classifiers rely on the Bayes theorem, which aims to calculate the
probability of an event A under a certain condition B. This so-called a-posteriori-
probability P (A|B) can be calculated by multiplying the probability of the event
B happening under the condition A P (B|A) with the a-priori-probability of A, P (A),
all divided by the a-priori-probability of B, P (B), as shown in Eq. (5).

P AjBð Þ ¼ P BjAð Þ P Að Þ
P Bð Þ ð5Þ

Equation 5 Bayes theorem to calculate the a-posteriori-probability of event A happening under the
condition of B

Such Bayesian models are typically referred to as “naïve,” due to their simplified
assumption of strong independence between the various features. This assumption
simplifies the calculation significantly, even though feature independence of this
extent rarely occurs in real-world examples. An advantage is that due to assumed
feature independence, no normalization is necessary. Nevertheless, naïve Bayesian
classifiers have proven successful in VS and related fields, but also, e.g., as spam
filters or document classifiers. Another term frequently used in association with
naïve Bayes is “Laplacian modification.” The Laplacian modification, also known as
Laplacian smoothening, introduces a so-called pseudo count ensuring that no prob-
ability is ever set to zero. Without the Laplacian modification, naïve Bayesian
classifiers would set the probability of belonging to a class that was never associated
to a certain feature value in the training set always to zero. Such zero probabilities
disrupt further calculations and unnaturally lower the overall probability. Applica-
tions of such Bayesian classifiers will be presented later in HitPick (Sect. 3.4),
admetSAR (Sect. 3.5), and PASSonline (Sect. 3.6).

Logistic regression is yet another MLA, typically used to classify test instances
into two discrete classes (e.g., “active” and “inactive”) from one continuous attribute
x (e.g., similarity score). The logistic regression belongs to supervised learning.
Typically, the continuous variable is displayed on the x-axis, while the y-axis
displays the probabilities from zero to one (see Fig. 6b). Despite the y-axis covering
a continuous range of values, the final output of a logistic regression is binominal,
with probability values of either zero or one. The logistic regression is, seen from its
basic idea, close to the common linear regression, with the main difference being the
logistic function that is fitted to the training instances, instead of a linear function. To
be able to fit a logistic function to the training instances, a simple least-squares
method as used in linear regression is not applicable. To make this possible, the
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probabilities p on the y-axis have to be converted to the respective logit ( p) or log
odds before, according to Eq. (6).

logit pð Þ ¼ log
p

1� p

� �
ð6Þ

Equation 6 Calculation of logit ( p) for curve fitting in a logistic regression

The y-axis now ranges from negative infinity to positive infinity, instead of zero
to one as before. This allows one to draw a random linear line through this coordinate
system. The training instances of both classes can be projected onto that line, since
their x coordinate is still known (continuous feature x), and their respective logit ( p)
can be seen. Now that the logit ( p) of each training instance is known, they can be
converted back to probability values p. This transformation was necessary to calcu-
late p of the training instances when using this particular logistic function, which
were before just zero or one. Now, the log ( p) values can be summed up yielding the
log (likelihood), a quantitative measure of how well the logistic function fits the data
points produced by the training instances. The algorithm of logistic regressions
varies the linear line on the logit ( p) plot in a way that log (likelihood) is optimized
iteratively, and thus finds the best fitting line similar as to linear regression. There are
several variants of logistic regressions known today. In the context of target predic-
tion, multiple logistic regression is worth mentioning. It is used by the
SwissTargetPrediction web server (Sect. 3.3). A multiple logistic regression can
utilize several attributes as, for example, the SwissTargetPrediction uses
two-dimensional similarity and three-dimensional similarity to calculate an overall
probability.

Another popular and fairly simple category of MLAs for classification are the
k-nearest neighbor algorithms, schematically described in Fig. 6c (in the literature
often found as k-NN). The k-NN are group of algorithms that classify complex data
points according to their immediate vicinity. To do so, the distance of each instance
in a training dataset to every other instance in the same training dataset has to be
computed. Additionally, every instance is assigned to one of the two possible classes
“active” and “inactive.” For a new instance to be classified (e.g., test set), all
distances to every training instance are calculated and the k-nearest neighbors
selected; k is a natural number ℕ and stands for the number of nearest neighbors
to be considered by the algorithm. So, in a 1-NN model, the algorithm picks the
nearest neighbor to the instance to be classified and assigns it to that same class. In a
3-NN model, the algorithm first picks the three nearest neighbors to the instance to
be classified, and assigns the class that is the most abundant in those instances. For
example, if one instance belongs to the class “active” and two instances belong to the
class “inactive,” the new instance will be classified as “inactive.” The value of
k should be chosen depending on which performs best. General considerations are
that a small k value like in 1-NN tends to have a poor signal-to-noise ratio, and
predictions can be influenced heavily by, e.g., outliers, since only a few samples are
considered. Large k values give more accurate predictions, but over-prioritize classes
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containing many training instances. Comparatively smaller classes will constantly be
overruled in favor of larger classes. For example, a 1-NN model is used within
HitPick (Sect. 3.4).

In contrast to naïve Bayesian models, SVMs classify a population by discrimi-
nating projected data points in a vector space. Each data point is represented as a
vector. The SVM then builds a hyperplane, aiming to achieve an optimal separation
between vectors of different classes, e.g., “active” and “inactive.” Thereby, SVMs
endeavor to maximize the distance between the hyperplane and the frontline of
closest vectors of both classes (best possible separation). Vectors that are farther
away from the hyperplane are neglected during this process. However, hyperplanes
are actually linear, but most classification problems in the real world are not linearly
separable. To account for this limitation, SVMs provide various “kernels” that allow
the use of nonlinear hyperplanes (see Fig. 6d), making SVMs versatile and practi-
cally meaningful. The SVMs are, next to classifiers, also available as regression
models, allowing for a continuous prediction of the dependent variable. For exam-
ple, in admetSAR (Sect. 3.5), five SVM regression models are implemented. The
VM classification models are used, e.g., in admetSAR (Sect. 3.5) and Pred-hERG
(Sect. 3.6).

Next to the four MLAs presented, a myriad of other supervised learning methods
are available and have been discussed elsewhere, like decision trees, random forests,
AdaBoost, artificial neural networks, and deep learning. As indicated earlier, the
fields of artificial intelligence and machine learning are currently developing at
enormous speeds, as the general understanding of artificial intelligence and compu-
tational power keeps on growing. Leading tech companies are investing large
amounts of resources into this technology, and new applications are being generated
at a high rate. The benefits that come along with these efforts and are being made
currently within and outside the drug discovery world, will certainly aid VS tech-
nology on the long run. Calculation times will be shortened and predictions will
become more accurate. It remains to be seen, however, if artificial intelligence will
revolutionize various fields of drug discovery, including target prediction. Applica-
tions of MLA classifiers for hERG prediction can be found, for example, in [76–89].

2.1.4 Ligand-Based Pharmacophore Modeling

A pharmacophore is a three-dimensional arrangement of physicochemical features
that represent the interactions between a small molecule ligand and its protein target.
It consists of hydrogen-bond donors, hydrogen-bond acceptors, aromatic features,
hydrophobic features, positive ionizable features, negative ionizable features, and
exclusion volumes. A pharmacophore model can be used to screen virtually large
three-dimensional databases for other structures that fulfill the interaction pattern and
consequently have a high probability of activity. Pharmacophore models either can
be derived from crystallized ligand-protein complexes (structure-based approach;
see Sect. 2.1.5.5) or from a training set of compounds with measured activities.

Open-Access Activity Prediction Tools for Natural Products. Case Study:. . . 195



The structure-based approach produces models that closely reflect the biologi-
cally active conformation of a molecule within the binding pocket, featuring known
key interactions. However, not all protein targets have been co-crystallized with a
ligand molecule and many protein targets can be inhibited in more than one way.
Ligand-based pharmacophore modeling can be used either if no crystallographic
data is available or to complement structure-based models with models for alterna-
tive binding modes. To create ligand-based pharmacophore models, a small number
of active and structurally similar compounds are aligned in three-dimensional to
derive common physicochemical features. The shared feature pharmacophore model
is then optimized by screening a training set database of known active and inactive
molecules. Feature settings and placement are then optimized for maximal perfor-
mance. Even though there is no steric information available from the protein, it is
possible to include steric aspects by introducing exclusion volumes or a shape
feature, based on the training set. The generation of ligand-based pharmacophore
models is shown schematically in Fig. 7.

To cover all possible binding modes without losing model restrictivity, it is often
feasible to perform a combined VS of multiple different models, each representing
different classes of ligands (see Fig. 8).

Sidelining the difficulties of conducting structure-based modeling with homology
models, ligand-based pharmacophore modeling has been used successfully in sev-
eral instances for hERG activity prediction. In 2002, Cavalli et al. created a ligand-
based pharmacophore based on QT-prolonging activity and combined it with a
3D-QSAR model for hERG channel blocking activity [90]. Durdagi et al. derived
ligand-based pharmacophore models in PHASE based on 31 hERG channel blockers
[91]. Aronov et al. proposed a pharmacophore model for charged [92] and
uncharged hERG blockers in 2006 [93]. Pharmacophore modeling was also com-
bined with descriptor-based models predicting hERG channel blockage
[94]. Yamakawa et al. used pharmacophore modeling to describe the different
structural requirements for hERG channel blockers and facilitators, compounds
that block the channel but also enhance channel activation after the application of
a depolarizing voltage step [95]. Kratz et al. published a set of seven ligand-based
pharmacophore models for hERG channel blockers, based on 15 hERG blockers
from the literature, validated both theoretically with literature data and experimen-
tally by a prospective screening of large compound databases and subsequent
biological testing. The models in this approach achieved hit rates of up to 66%,
illustrating that pharmacophore modeling can be a powerful predictive tool for
hERG-based cardiotoxicity [96]. In 2017, Durdagi et al. developed pharmacophore
models for hERG-1 activation based on 18 hERG-1 activators from the
literature [97].

2.1.5 Generation of Protein Structures for Molecular Modeling

As explained above, structure-based models are derived from experimentally solved
protein-ligand complexes. In drug discovery, the three-dimensional representation of
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such complexes is most frequently obtained by X-ray diffraction measurements.
Next to protein crystallography, NMR methodology is used to determine three-
dimensional structures of proteins. More recently, yet another promising technique
has been included in drug discovery, namely, cryo-EM. In the case of hERG, there is
only one structure available, which was solved using cryo-EM by Wang and
MacKinnon in 2017 [10]. In the following paragraphs, an overview of the three
abovementioned experimental techniques will be provided, explaining their respec-
tive constraints and strengths. Also, a theoretical technique to obtain three-
dimensional structures of proteins will be described, which has played a major role
in hERG research over the last decade: homology modeling.

2.1.5.1 X-Ray Crystallography of Proteins

X-ray crystallography is not just the oldest of the three experimental techniques
mentioned above, it is also the most important technique in drug discovery. The
roots of X-ray crystallography date back to experiments of Max von Laue in 1912, in
order to prove the wave character of X-rays, and his findings are hence the very
foundation of X-ray crystallography: Crystalline matter diffracts X-rays. The
diffracted X-rays can be measured, or to be more precise, the angles and intensities
of the diffracted beam can be used, to deduce the actual electron density of the
sampled crystal. The electron density is located around the atoms of the crystal, and
thus the electron density map can be seen as an empty shell around the protein’s
molecular skeleton. However, a crystal under investigation is never a single protein,
but a large agglomerate of proteins. This agglomerate in the crystal is made up by a
highly ordered crystal lattice that can be described by the primitive cell. Therefore,
electron density maps resulting from X-ray crystallography depict the primitive cell
as a mean over all the measured primitive cells. Ultimately, this can be used to model
the protein sequence inside. Protein structures solved by X-ray crystallography are

Fig. 8 Ligand-based pharmacophore modeling often requires the generation of several
pharmacophore models that are meant to be used in cooperative mode. Complementary models
can cover a larger chemical space of the true active compounds (left side) than just one compre-
hensive model (right side)
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typically not that well resolved to permit a direct assignment of atoms. It is much
more feasible that the protein sequence is modeled into an electron density map.

For example, since hydrogen atoms only have one electron, hydrogen assign-
ments are typically set empirically. In a protein, the most common hydrogen species
is connected to a carbon, for which typical angles are known. Hydrogen atoms that
are covalently bound to heteroatoms are more flexible, but here a contextualization
into an overall H-bond network can help. Nevertheless, the better the resolution of a
solved crystal structure is, the easier the assignment. Usually, resolutions below
2.5 Å are considered as well resolved (e.g., suitable for molecular docking). In
contrast, electron density maps that were not well resolved result in structures that
are potentially erroneous, at least in some regions, to a certain degree. Such struc-
tures are eventually unsuited for techniques like molecular docking. Cole et al.
reviewed extensively the quality attributes of structures produced by X-ray crystal-
lography in regard to molecular docking [98]. However, the narrowest bottleneck in
X-ray crystallography is the crystallization of the protein. Biomolecules in general
do not crystallize very well, and thus, many decades of development work have been
necessary to overcome this hurdle.

The advantage of X-ray crystallography is definitely its ability to reach very good
resolutions, and to be able to depict large proteins such as receptors. The biggest
drawbacks still lie in the crystallization procedures themselves, since proteins, like
those bound in the membrane, crystallize very poorly. This on the one hand is due to
their dynamic behavior and on the other hand as a result of their large hydrophobic
surfaces turned to the outside (interaction sites for membrane). Moreover, the
crystallized state is not necessarily a realistic projection of the in vivo conformation.
Even further, proteins are per se dynamic, meaning that a single conformation is
often not enough to properly describe a “living” protein accurately. However, X-ray
crystallography has contributed greatly to many disciplines over the last decades,
and its insights have fueled numerous successful projects in drug discovery. From
the 137329 protein structures deposited in the RCSB-PDB, 123978 (90.27%) were
solved by X-ray crystallography [99]. Over the last 10 years, the number of three-
dimensional structures deposited in the RCSB-PDB has grown constantly each year,
indicating that X-ray crystallography is still of the utmost importance [11–14].

2.1.5.2 Biomolecular NMR

Biomolecular NMR is yet another technique to solve three-dimensional structures of
proteins. While the technique of nuclear magnetic resonance (NMR) has for decades
been the gold standard method for structure elucidation of small organic compounds,
the latest advances in the field of NMR have focused on large biomolecules.
Biomolecular NMR uses the exact same principles as classical NMR, with the
difference that proteins are considerably larger than small organic compounds.
Moreover, proteins are built up by only 20 units of structurally quite similar amino
acids, meaning that, e.g., a regular 1H or 13C spectrum becomes very crowded by
overlapping peaks. To tackle this problem, multidimensional NMR experiments
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have been developed that allow for an assignment of the respective chemical shifts to
a distinct atom—the hallmark for any NMR data evaluation. These experiments
were pioneered mainly by Richard R. Ernst and Kurt Wüthrich, who were awarded
the Nobel Prize in Chemistry in 1991 and 2002. Biomolecular NMR is limited
inherently to five types of nuclei, which possess a spin and are present in a
biomolecule: 1H, 13C, 15N, 19F, and 31P, whereas only the first three are actually of
relevance in proteins. However, such multidimensional experiments can aid the
assignment of NMR peaks. Moreover, Nuclear Overhauser Effect Spectroscopy
(NOESY) can give insights into non-covalent atom interactions, like those formed
through protein folding. The sum of such information allows for the construction of
several three-dimensional structures of the protein.

The major advantage of biomolecular NMR is that data are acquired from
solution, which, in general, represents an environment closer to reality for proteins
than the crystallized state. Moreover, dynamic movements of the protein can be
observed. The major disadvantage without doubt is its limitation to relatively small
proteins. These limitations result from several factors, like the obvious increasing
number of peaks in the spectrum, or the shorter relaxation times. Moreover, biomo-
lecular NMR structures are typically an ensemble of possible structures. From the
137,329 protein structures deposited in the publicly accessible RCSB-PDB, 10,962
(7.98%) were solved by biomolecular NMR [99]. However, the number of such
structures that were deposited each year in the RCSB-PDB has diminished slightly
over the last decade [11–14].

2.1.5.3 Cryo-Electron Microscopy

In 2017, the Nobel Prize in Chemistry was awarded to Jacques Dubochet, Joachim
Frank, and Richard Henderson to honor their joint efforts in cryo-electron micros-
copy (cryo-EM). Even though the foundations of this electron microscopy technol-
ogy date back to the 1930s (Max Knoll and Ernst Ruska), it was not possible to
image biological samples for a long time and very difficult to reach atomic resolu-
tion. Recent efforts have finally led to a boost in high-resolution cryo-EM images of
proteins, mainly due to the improving instrumental capacities and image processing
software. Moreover, the software to run the respective instruments has become more
user-friendly and the technique as a whole more established, allowing its application
now also to non-EM specialists. The process of a cryo-EMmodel generation roughly
can be divided into five steps: first, the protein of interest needs to be expressed in a
sufficient amount and sufficient purity. Second, the sample needs to be prepared, so
that the protein is kept in a natural or near-natural conformation while simulta-
neously optimizing the image contrast. The first requirement can be achieved such as
by optimizing the buffer system or by stabilizing membrane proteins using
amphipols or detergents [100]. The second prerequisite can be achieved by, e.g.,
removing sugars or glycerol. Third, the sample needs to be fixed onto a grid to be
introduced into the instrument. Currently, this is usually done by placing the sample
solution on the sample grid and subjecting the loaded grid to rapid cooling in liquid
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ethane. This process is also referred to as “vitrification” and turned out to be of
pivotal importance to ensuring the most recent successes in cryo-EM. The flash
cooling leads to the formation of amorphous ice around the sample, which, in
contrast to crystalline ice, does not interact with electrons. This thus behaves like
transparent glass holding the protein sample in the conformation it had in the buffer
solution. Moreover, the low temperature protects the sample from the relatively
strong electron beam emitted by the electron microscope. Fourth is the actual image
acquisition, in which the flash-cooled grid is placed into the transmission electron
microscope and several thousand images are taken. The image acquisition in cryo-
EM is quite elaborate and can take up to a few days. This shortcoming mainly results
from the fact that the contrast between the sample and its background (such as
buffer) is still relatively low, although having been significantly increased over the
last years. Therefore, it remains necessary to acquire many single images and to
average these computationally in order to reach meaningful contrasts. Fifth, the
image post-processing stage plays a major role as well. To point out its central
importance, it should be noted that enhancements in this step especially have
boosted cryo-EM technology. Algorithms employed for this particular task are
able to detect the various protein particles in the sample, classify their relative
orientation and the projected angles (such as top view, side view, side view 30�),
and to reconstruct a three-dimensional model out of those various two-dimensional
images. The resulting three-dimensional model further can be refined manually, to
obtain the best possible resolution.

The obvious advantage of cryo-EM over X-ray crystallography is its applicability
in resolving large and very large complexes or assemblies while being independent
of the crystallization process. For example, efforts to crystallize human hERG have
failed so far. Moreover, vitrification allows for the detection eventually of various
possible protein conformations, while X-ray crystallography typically covers just
one conformation. The conformations in cryo-EM are near native, since they are
fixed while being in buffer solution. In X-ray crystallography, however, the one
detected conformation is, by design, typical for the protein in solid state, which does
not necessarily reflect its native conformation. Therefore, cryo-EM also enables the
imaging of dynamic, flexible proteins like, e.g., G-protein-coupled receptors
[101]. The clear disadvantages of cryo-EM are however the long acquisition times
and the currently still lacking automation of the process. Sample preparation still
needs to be performed manually. For example, Renaud et al. state that in “high-
throughput crystallography,” data of 500 crystals soaked with different compounds
can be acquired in just 24 h and post-processed approximately in a few days. In cryo-
EM, measuring the same amount of samples would take approximately 1.5 years
[102]. Another disadvantage is the relatively low resolution still produced by cryo-
EM compared to other techniques, as demanded by, e.g., molecular docking
[103]. For example, the hERG structure reported by Wang and MacKinnon is
resolved at 3.7 Å, which is not far away from the threshold set for docking
experiments (2.5 Å) [98]. However, 3.7 Å ranges in the magnitude of two to three
C-C single bonds, which makes molecular modeling studies with this structure
blurry, but not impossible. This situation very likely will improve over the next
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few years, as technology keeps on progressing. Cryo-EM is, after all, the fastest
growing technique in this field, with the greatest increases in entries per year in the
RCSB-PDB since 2010. As for January of 2019, of the 137,329 proteins listed in the
RCSB-PDB, 2016 (1.47%) were solved by cryo-EM [99]. This number doubled in
just 2 years. In addition to the RCSB-PDB, cryo-EM data are also deposited in
the EMD.

2.1.5.4 Homology Modeling

Whenever a three-dimensional structure of the desired protein is not available,
homology modeling represents another option, next to pure structure-based and
pure ligand-based modeling. In short, it is possible to construct a three-dimensional
model of the desired protein using a closely related protein as template, for which the
structure has been solved. Closely related means that the respective amino acid
sequences should be considered as homologous, with not less than 30% identical
residues. Homology models with more than 50% sequence identity usually produce
reliable models, even though particularly flexible parts of the protein (e.g., loops) are
prone to errors [104–106] and the active center is often the very point of distinction
between closely related proteins. Thanks to the Basic Local Alignment Search Tool
(BLAST), the complete PDB can be sampled in relatively short time span
[107]. Homology models can ultimately be seen as models of a protein for which
the structure is not yet available. Homology models can also be used, e.g., for
molecular docking, to derive structure-based pharmacophore models, for molecular
dynamics simulations, and other purposes. Thus, homology modeling is a technique
to model a protein’s three-dimensional structure, which then allows for structure-
based methods. Regarding hERG, several homology models have been proposed
prior to the first cryo-EM structure in 2017 [23, 108–111]. This reflects the great
interest of researchers for hERG as an antitarget.

2.1.5.5 Structure-Based Pharmacophore Modeling

Structure-based pharmacophore models rely on the availability of crystallographic
data on the protein-ligand complex. While it is easy to generate a model based on
protein-ligand complexes, automatically calculated models can almost always be
improved by optimizing them with a training set to maximize active enrichment in
their hit lists.

As discussed above, a three-dimensional structure of hERG has been published
quite recently, so there are not yet many publications based on this new information.
Nevertheless, examples for structure-based modeling using this hERG structure are,
e.g., [112, 113], and Munawar et al. who derived structure-based pharmacophore
models [114]. The generation of structure-based pharmacophore models is described
schematically in Fig. 9.
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2.1.6 Molecular Docking

Molecular docking is perhaps the most popular and possibly even the most well-
known technique in VS and iVS currently. Since molecular docking is described
extensively elsewhere in the literature [115–121], its theoretical foundation will only
be described rather concisely below. In general, molecular docking is a completely
structure-based approach, meaning that an experimentally solved or theoretically
generated three-dimensional representation of the desired protein is inalienable. A
docking run can always be described in two phases: the actual “docking” and the
“scoring.” During the docking, an algorithm samples a vast amount of ligand
conformers inside the binding site, while during the scoring, the hypothetical
energies of the hypothetical protein-ligand complexes are computed. However, the
processes of docking and scoring occur in an alternating manner, so that each
complex generated is scored immediately after being docked. The algorithm repeats
this process many times, while trying to constantly minimize the calculated energy
of the hypothetical protein-ligand complexes at each iteration. Within docking, the
ligands in such complexes are referred to as “docking poses.” Finally, the docking
software can output either the best-scored (lowest energy) pose or a list of poses,

Fig. 9 Examples of structure-based modeling with a protein-ligand complex from hERG. In
structure-based pharmacophore modeling (top), a pharmacophore model is generated from a
protein-ligand complex, and extracted. Amino acid residues are finally converted to the so-called
exclusion volumes (gray spheres), forbidden zones that would lead to spatial clashes. In molecular
docking (bottom), the native ligand is removed from the binding site, before the screening ligand
(s) are placed into it. The conformational space of the ligand(s) is explored inside the protein’s
binding pocket in an iterative manner, and a scoring function is applied. The result is a set of ranked
docking poses for each screened ligand. Images were created using LigandScout 4.2 (Inte:Ligand,
Vienna, Austria) and the PDB entry “5VA1” [10]
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ranked according to their respective score. Molecular docking is shown schemati-
cally in Fig. 8.

These principles are true for all docking techniques, regardless of which
subcategory of docking is being used (with the exception of protein-protein
docking). Typically, docking techniques are divided into how protein flexibility is
handled: If the protein and the ligand are kept flexible, the correct term is “flexible
docking.” Unfortunately, flexible docking requires considerable computational
efforts but is still used in drug discovery. Usually, VS campaigns aim to screen
hundreds or even thousands of compounds or targets, making time-consuming
applications unfeasible. To tackle this shortcoming, VS is usually conducted using
“rigid body docking.” In rigid body docking, the protein is assumed to be rigid, and
only ligand conformations are sampled. This simplification greatly reduces calcula-
tion times and enables even high-throughput VS. The assumption that a protein
behaves like a rigid body through ligand binding is of course incorrect. Flexible
docking is much closer to reality, but still rigid body docking can produce good
results. Moreover, a middle ground of these two techniques exists, namely,
“induced-fit docking.” In induced-fit docking, parts of the protein are considered
as flexible, e.g., certain amino acid residues or a loop. Induced-fit docking represents
a compromise between the higher accuracy that may be attained through flexible
docking and the increased speed of rigid body docking.

The scoring during a docking run is conducted by a so-called scoring function—
a predefined ruleset to evaluate the meaningfulness of the generated poses. It has
been a constant endeavor in the development of the docking technology to imple-
ment a scoring function that accurately computes the ligand’s affinity to the proteins
to which it is docked. However, such a scoring function has still not been found.
They are either computationally too expensive to use in a docking run or too
simplified and thus lack accuracy. Scoring functions that are in place today are
designed instead to produce relative scores for each compound. Based on their
working principle, they can be subdivided into knowledge-based, empirical and
force field-based. Knowledge-based scoring functions are derived from large data-
bases containing experimentally solved protein-ligand complexes. From these, the
“knowledge” of typical protein-ligand interactions in terms of nature, distances, and
angles can be mined and translated into a scoring function. Empirical scoring
functions are derived from databases containing a multitude of experimentally
assessed binding affinities together with the respective structural features of the
protein-ligand complex. Such relationships can be used as training instances, for the
construction of a statistical model, which can extrapolate this knowledge to new
compounds. These models can include linear regressions but also more sophisti-
cated MLAs like, e.g., SVMs or random forests. Scoring functions have been
reviewed in great detail in [116, 122, 123].

A docking workflow practically consists of three main steps. First, the inputs have
to be prepared—protein and the ligand(s). An appropriate three-dimensional repre-
sentation of the protein has to be found, the binding site defined, eventual ligands
removed, as well as optional modeling of the protein conducted (e.g., minimization
of loops, flipping of side chains). The ligands have to be selected, three-dimensional
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starting conformations computed, as well as protonation states and tautomeric states
generated. The second step comprises the actual docking procedure as described
above (consisting of docking and scoring). The third and final step is the post-
processing of the results. This can include, e.g., rescoring of the poses using a
different scoring function, applying pharmacophore models to screen for known
binding modes, or using shape filters to introduce specific steric requirements.
However, post-processing is highly customizable and depends on the inputs used,
the results obtained, and the goal of the docking. In terms of computation time,
molecular docking is a relatively costly technique used in VS and definitely the most
expensive general method described in this chapter. By rule of thumb, the compu-
tation times rise in the following order: 2D ligand-based similarity
searches ¼ machine learning-based similarity searches < approximate shape-based
searches¼ pharmacophore searches<Gaussian-based shape searches<<molecular
docking.

For a long time, structure-based approaches for the modeling of hERG were not
possible. Therefore, the only structure-based approach featured in this study is
VirtualToxLab™ (see Sect. 3.8). VirtualToxLab™ uses a modified induced-fit
docking algorithm, based on the homology model proposed by Farid et al.
[109]. It is very likely that this situation will change very soon, based on the recent
advances made by Wang and MacKinnon [10].

2.2 Evaluating Target Prediction Models

To assess the overall predictive power of each tool under investigation, our group
computed receiver operating characteristic (ROC) curves and calculated the follow-
ing quantitative metrics: true positive hits (TP), false-positive hits (FP), true negative
hits (TN), false-negative hits (FN), precision (Pr), sensitivity (Se), specificity (Sp),
F-measure (F1), accuracy (Acc), and the area under the ROC curve (ROC-AUC).

In VS, a TP describes a virtual hit that was validated experimentally, while an FP
is a virtual hit that does not show the predicted activity in the experiment. A hit list
therefore typically consists of TPs and FPs. True negatives are accordingly com-
pounds that are predicted to be inactive by the model, which can be proved
experimentally. False-negative hits are compounds that are predicted as inactive
by the model, but show activity in vitro.

The metrics TPs, FPs, TNs, and FNs are simple numbers, describing the amount
of compounds belonging to each class. However, these numbers are mainly depen-
dent of the size of the screened database, and thus do not allow for an objective
judgment at first sight. One might understand that not the absolute number of these
four metrics, but rather the ratio between them is of interest in describing a model’s
performance. As TP, FP, TN, and FN reflect numbers from zero to one, all of the
following metrics that are calculated from the latter also range from zero to one. One
always indicates the highest reachable score, while zero always indicates the lowest
reachable score.
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One of these measures is Se, or often referred to as “recall” or “true positive rate”
(TPR). The Se describes how many true actives a model can retrieve from a
screening database [Eq. (7)]. Sp, on the other hand, often referred to as true negative
rate (TNR), describes how many inactives can be retrieved from a screening
database [see Eq. (8)] [124].

Se ¼ TPR ¼ TP

P
¼ TP

TPþ FN
ð7Þ

Equation 7 Calculation of Se. P: in vitro active molecules

Sp ¼ TNR ¼ TN

N
¼ TN

TN þ FP
ð8Þ

Equation 8 Calculation of Sp. N: in vitro inactive molecules

In general, a model with only high Se or Sp does not necessarily produce good
results, since both of these metrics only consider one side of the activity spectrum
(retrieval of active or inactive hits from actives or inactives, respectively). Therefore,
Pr is yet another popular metric. The Pr, or also known as the “positive predictive
value” (PPV) or the “yield of actives” (Ya), describes the amount of TPs in a hit list.
The Pr is a measure of how likely it is that a hit in a hit list is really active [see
Eq. (9)] [124, 125].

Pr ¼ PPV ¼ Ya ¼ TP

nhits
¼ TP

TPþ FP
ð9Þ

Equation 9 Calculation of Pr. nhits: number of hits

Also, Pr only takes into account the actual hit list, and not so much the retrieval of
actives or inactive from the screening database. For example, a model could have a
high Pr but a low Se, meaning that most of the compounds in the hit list are in fact
active, with many actives being misclassified as inactive by the model. The values Se
and Pr are very similar in terms of their calculation, even though their meaning is
different. A model could be very sensitive by correctly retrieving all actives from the
screening database but still lack in precision by producing also a high number of FPs.
Both cases just described would actually make this model not very reliable, even
though single quantitative metrics seem appropriate at first sight. Thus, it is desirable
to have more than just one metric close to one, e.g., Se and Pr, or Se and Sp, etc.

To properly evaluate a model, more global, objective metrics are necessary: Acc
and F1 equally can be computed from the four initial metrics TP, FP, TN, and
FN. The F1 score is a metric incorporating both of those prior metrics, by combining
Se and Pr into their harmonic mean. Therefore, one can expect from models with an
F1 score close to one to have both good Se and Pr [see Eq. (10)]. The Acc, on the
other hand, describes the overall correctness of the model’s classification results, by
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comparing all true predictions (TP and TN) with the overall entries in the screening
database (ncompounds), like shown in Eq. (11) [125, 126].

F1 ¼ 2 � Se � Pr
Seþ Pr

ð10Þ

Equation 10 Calculation of F1

Acc ¼ TPþ TN

ncompounds
¼ TPþ TN

Pþ N
ð11Þ

Equation 11 Calculation of Acc

The ROC curve is a very popular metric to describe the predictive power of any
binary classifier. The biggest advantage of ROC curves over other metrics is the 2D
plot. An ROC curve can be visually easy to interpret and thus gives more clues about
the actual performance behavior of a model. Other typical metrics only return single
numbers that often do not meet the complexity levels of the actual performance
behavior of a model. ROC curves are plots, where the Se is plotted as a function of
the false-positive rate (FPR), which corresponds to 1� Sp. As explained above, Se is
a direct measure on how many actives can be retrieved from the screening database.
The FPR, on the other hand, describes how often FPs occur. The FPR therefore
behaves complementary to the specificity, which describes how often inactives are
correctly predicted as TNs. To simplify: the hit list is sampled hit by hit, starting
from the most probable (highest scored) to the most improbable (lowest scored)
virtual hit. If a hit is classified correctly (TP), the ROC curve directs upward (TPR >
FPR). Misclassified hits (FP) make the ROC curve turn left (TPR < FPR). If TPR ¼
FPR over the complete dataset, so then the model would not seem to show any
preference for true actives or true inactives. The model classifies on a random basis,
which is no better than if one is rolling a dice. Models with good predictive power
produce significantly higher TPRs than FPRs (TPR >> FPR) and run above the
“random line.” A bad model can even show ROC curves that run below that
“random line” (TPR << FPR).

The ROC curve can also be integrated. The properties explained above have
indicated that the ROC-AUC is proportional to the predictive power of the model.
Since the ROC curve is plotted on a 2D coordinate system with x- and y-axis ranging
from zero to one, the ROC-AUC also ranges from zero to one. One indicates a
perfect model, with a TPR of one (the hit list contains only hits that are active) and a
FPR of 0 (the hit list contains no inactive hits). In contrast, an ROC-AUC of
0 indicates a TPR of zero and an FPR of one, indicating that every hit in the hit
list is misclassified. An ROC-AUC of 0.5 indicates a random model where there is
the same amount of TPs than FPs in the hit list [124, 127]. The metrics describing the
in silico tools used during this study are summarized in Sects. 4.4.1 to 4.4.3.
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3 Publicly Available Target Prediction Tools Suitable
for hERG

3.1 Similarity Ensemble Approach

The Similarity Ensemble Approach (SEA, http://sea16.docking.org/) is a publicly
available web server developed by Keiser et al. at the University of California, San
Francisco (UCSF) [128, 129]. SEA operates according to the above-described
principle of 2D ligand-based similarity, by comparing a screening compound to
reference compounds, which are each associated with a protein target. To perform
such a task, a large annotated database is required, containing several compounds in
a computer-readable format and its respective confirmed bioactivities. The Similarity
Ensemble Approach uses the ChEMBL database, which is maintained and curated
by the European Bioinformatics Institute (EBI), of the European Molecular Biology
Laboratory (EMBL) [31–33]. The ChEMBL database contains a large collection of
bioactive chemical entities with drug-like properties that are manually retrieved from
scientific literature, making ChEMBL one of the most popular chemical databases
for computer-aided drug design. For SEA, the ChEMBL data was processed and
sorted according to protein targets, while chemical structures were translated into
ECFP4 fingerprints [56]. For target prediction, a screening compound entered to the
SEA server is first converted to an ECFP4 fingerprint, and subsequently compared to
any compound from each subset stored in SEA. For each comparison, a Tc is
computed and kept if the absolute value is greater than 0.57. In a third step, all the
Tc scores kept are summed up for each protein target, yielding the so-called raw
similarity score (RSS). Raw similarity scores are thus a measure of how many
confirmed binders to protein X are similar to compound a subjected to the target
prediction. Of course, this measure, and therefore the RSS as well, is inherently
biased by the original dataset size of protein X. If protein X is represented by a
500-compound-large dataset, while the dataset of protein Y contains only 40 com-
pounds, the probability of finding similarities between screening compound a and
dataset X is higher than with a and Y. This correlation is valid independently of target
class or chemical substructure. To tackle this internal bias, RSS values were
subjected to a z-transformation, yielding a z-score Zs. Moreover, RSS values calcu-
lated from n comparisons of random sets were computed and z-transformed,
resulting in a z-score distribution of random ¼ ZRi . . . ZRnf g, representing the dis-
tribution for similarity comparisons between random chemical structures. Thus, it is
legitimate to calculate whether the resulting Zs of screening compound a is signif-
icantly different from random. Moreover, expectation values, E, are computed,
which are interpreted as follows: E indicates the number of hits one would observe
by pure chance at the same Zs or higher. More practically, it can be summarized that
in SEA, a low E is associated with high similarity to the screening compound and
known binders of the predicted target. Accordingly, SEA issues a table of predicted
protein targets, starting from the lowest E (most probable) to the highest E (least
probable). Already known targets of the respective screening compound are also
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highlighted by SEA. This can be detected easily by the algorithm if a Tc of one is
observed (indicated 100% structural similarity), which can only be achieved if two
identical compounds are compared to each other.

The core concept of SEA was inspired by the BLAST algorithms [107], a group
of algorithms for sequence alignment popular in bioinformatics, ever since it was a
core desire in bioinformatics to be able to compare how similar the sequences of
proteins or nucleic acids are. As the sheer amount of available sequences has grown,
there has become an increased need for efficient algorithms that are fast enough to
sample through these growing databases. First, the sequence is cut into smaller
pieces (e.g., three amino acids, called “words”) that are matched with the database
entries. Once a database entry is found that contains this word, this match is
expanded continuously. This principle is called “local alignment” and enabled
BLAST algorithms to sample through large databases a lot faster than its successors
performing the so-called global alignments. Now analogously one could argue that
SEA describes a protein target by the chemistry of its ligands, rather than a sequence
of amino acids. The single-reference ligands of a protein target would then corre-
spond to the “words” in a BLAST search. The input of a SEA search is already in a
word-like format, being a potential ligand itself. Comparisons between the input
compound and the reference ligands are computed, and only those with a similarity
score higher than a predefined cut-off are considered and accumulated.

Accordingly, protein targets with many similar ligands will produce high simi-
larity scores in SEA, while sequences with many similar “words” will produce high
similarity scores in BLAST. Both approaches compare the resulting similarity scores
with a background distribution, which would be obtained from random similarity
comparisons. Since in both cases this random distribution follows an extreme value
distribution, it is legitimate to calculate expectation values E like those shown above.
Also the interpretation of E remains the same as for a BLAST search. The calculation
of E-values for 2D similarity comparisons is outlined schematically in Fig. 10.

3.2 SuperPred

SuperPred (http://prediction.charite.de/) is another publicly accessible web server,
developed by the structural bioinformatics group of the Charité—University Med-
icine Berlin, Germany [63, 130, 131]. SuperPred’s working principle is, similar to
SEA, also derived from the BLAST, meaning that protein pharmacology is com-
pared via the chemistry of their ligands. To do so, every protein target that can be
predicted is represented by a set of reference ligands. Moreover, next to predicting
druggable protein targets, SuperPred can also predict drug classes based on an ATC
code. Since hERG is not a drug class, and is therefore not represented in the ATC
code, the drug class prediction suite of SuperPred will only be briefly introduced in
this contribution. For the purpose of target prediction, SuperPred was equipped with
the protein-ligand interaction data derived from ChEMBL [31–33], BindingDB
[132], and SuperTarget [133] to build the reference ligand datasets for every protein
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target. Similar to those mentioned above for SEA, SuperPred also uses ECFP4
fingerprints [56] for describing molecular structures. A compound submitted for
target prediction to the SuperPred server is then first translated into a bit string
according to the ECFP4 pattern. Second, the compound is compared to every
reference compound in SuperPred and the respective Tcs are computed. Tcs above
0.45 are summed up to yield RSSs. Since RSSs, as shown by Keiser et al. [128, 129],
correlate linearly with the size of the reference ligand set, RSSs need to be normal-
ized to give meaningful results. In SuperPred, this is done by a division of the RSS
by the number of reference ligands in the respective reference set. To the normalized
RSS, a weighting factor λ is multiplied to account for different intra-reference set
assemblies. More diverse reference sets are prone to yield lower RSSs, while less
diverse reference sets can produce higher RSSs. If one reference set is composed for
a major part of one series of ligands (which are structurally closely related), a
screening compound that is similar to that series will yield many Tcs above 0.45
and consequently produce higher RSSs. Finally, this normalized, corrected RSS is
compared to the background distribution of random set comparisons, similar to
information outlined above for SEA and BLAST, yielding the z-score. Starting
from the z-score, expectation values, E, can again be calculated for each predicted
interaction. Low E-values correspond to high probability of the interaction not to be
predicted by pure chance. The calculation of E-values for 2D similarity comparisons
is outlined schematically in Fig. 9.

While the target prediction suite of SuperPred relies on the principle of 2D
similarity, the ATC code classification is making use of various ligand-based
approaches. Again, like in the target prediction suite, the 2D similarity is quantified
by calculating Tcs from ECFP4 fingerprints. Furthermore, SuperPred compares the
three-dimensional similarity by a Gaussian shape method and the 2D similarity of
the respective compound’s fragments.

3.3 SwissTargetPrediction

The SwissTargetPrediction server was developed by the Swiss Institute of Bioinfor-
matics (SIB) and published byGfeller et al. in 2014 [134, 135]. SwissTargetPrediction
can be accessed from the SIB website (http://www.swisstargetprediction.ch/) and is
provided free of charge. SwissTargetPrediction’s idea is based on the observation that
2D ligand-based similarity often performs better within high structural similarity,
while three-dimensional ligand-based similarity searches tend to perform better
within low structural similarity. Thus, the SwissTargetPrediction paradigm was
developed to take advantage of both strengths, by calculating two-dimensional and
three-dimensional similarities between the screening compound and various refer-
ence ligand sets and combining the latter. The combination of two-dimensional and
three-dimensional similarity scores is achieved over a logistic regression, a super-
vised MLA used for classification. The SwissTargetPrediction relies on a solid data
foundation, representing all predictable protein targets by a representative set of
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confirmed ligands. For the SwissTargetPrediction, similar observations were seen
with SEA and SuperPred, and these data were derived from ChEMBL [31–33] and
processed as described in Gfeller et al. [134]. Each ligand in every reference ligand set
of a protein target is stored in two representations: first, as FP2 fingerprint, as
implemented in OpenBabel (version 2.2.0) [136], accounting for the
two-dimensional similarity. Second, as five-dimensional vector (x-axis, y-axis,
z-axis, partial charges, logP) for a maximum of 20 low-energy conformations per
ligand, accounting for the three-dimensional similarity.

Whenever a screening molecule is submitted to the SwissTargetPrediction web
server, two-dimensional and three-dimensional similarities are computed in parallel.
Two-dimensional similarities are computed by first translating the screening mole-
cule into a bit string, according to the FP2 fingerprint scheme, and subsequently
calculating Tcs describing molecular similarities to all reference ligands. Similar to
other approaches, a threshold of 0.25 for minimum similarity was chosen, for which
values below that threshold are regarded as dissimilar. All the similarity comparisons
yielding a Tc > 0.25 are stored. Three-dimensional similarities are computed
according to the principle of USR, described above. First, 20 low-energy conforma-
tions of the screening compound are generated and translated to a five-dimensional
vector (identical procedure as for the reference ligands). Next, the vectors of all of
the 20 conformations are compared to all vectors of the reference ligand and the
Manhattan distance calculated. As indicated in Sect. 2.1.1, the Manhattan distance
can be converted into a similarity measure S3D, ranging from 0 (maximum dissim-
ilarity) to 1 (maximum similarity, identity) according to Eq. (1). For three-
dimensional similarity comparisons, a cut-off of 0.65 was introduced, classifying
ligand pairs with S3D < 0.65 as not significantly similar. Finally, both Tc and S3D
values may be normalized between zero and one and used as input features for a
multiple logistic regression model (as described in Sect. 2.1.3). The logistic regres-
sion, being an MLA, “learned” the optimal weighting of Tc and S3D during a training
phase to yield the most accurate predictions. This model may be applied subse-
quently for posing target predictions of novel ligands.

3.4 HitPick

HitPick is another fully ligand-based target prediction tool that can predict hERG
interactions (http://mips.helmholtz-muenchen.de/hitpick/cgi-bin/index.cgi?content¼
targetPrediction.html). It was developed by the Institute of Bioinformatics and Sys-
tems Biology and German Center for Diabetes Research of the Helmholtz Zentrum in
Munich. HitPick is available free of charge, and its functionality is discussed in detail
in [137]. Recently, HitPick was updated to HitPickV2; however, the present study
was conducted with the first version of HitPick [138]. HitPick combines two 2D
ligand-based similarity methods, both using MLAs, namely, 1NN and a Laplacian-
modified naïve Bayes algorithm (both outlined in Sect. 2.1.3). Typical for 2D ligand-
based approaches, also HitPick bases its predictions on reference ligands that are
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annotated with their respective, confirmed protein target. Here, the dataset was
derived from the STITCH 3.1 database [139] and processed as described in the
respective publication. The mined STITCH 3.1 database was ultimately used to
build and train a 1-NN model and a Laplacian-modified naïve Bayes model using
the FCFP as input [56].

A screening compound that is submitted to the HitPick server is then first
translated into an FCFP-like fingerprint, like implemented in the RDKit (http://
rdkit.org), an open-source cheminformatics toolbox, and stored. The nearest neigh-
bor of the stored fingerprints from the reference ligands to the fingerprint of the
screening compound is then estimated using the previously developed 1-NN model.
The protein target of this most similar reference ligand can thus be predicted and the
respective probability of the interaction actually occurring be calculated using the
Bayes theorem. This probability of the prediction is displayed in the HitPick output
as a score, from which the predicted targets are ranked accordingly.

3.5 admetSAR

The tool admetSAR (http://lmmd.ecust.edu.cn/admetsar2/) is yet another target
prediction tool based on 2D ligand-based similarity. This tool is available free of
charge as a web server and was initiated by Cheng et al., Laboratory of Molecular
Modeling and Design at the East China University in Shanghai [140]. Recently, in
August 2018, admetSAR was updated and extended [141]. The presently described
study was conducted before this date, so that the data presented herein were acquired
with the first version of admetSAR. This was developed, as the name implies, as an
in silico absorption, distribution, metabolism, excretion, toxicity (ADMET) predic-
tion tool, including the prediction of hERG binding. The user can seek a large variety
of predictions from these categories, like, e.g., being a substrate of various cyto-
chromes, P-glycoprotein, but also an estimation of logS or permeability in Caco
cells. admetSAR uses a collection of SVM models (described in Sect. 2.1.3) that are
either classifiers (22 models) or regression models (five models). While the SVM
classifiers assign screening compounds to binary classes (like, e.g., substrate of
enzyme: “yes”/“no,” inhibitor of enzyme: “yes”/“no,” Caco permeable: “yes”/
“no,” etc.), the SVM regression models predict continuous values (like, e.g., logS
or LD50 in rats). All models were built from an in-house database that was created
manually and curated by retrieving high-quality scientific literature. This database is
accessible as well free of charge (http://lmmd.ecust.edu.cn/admetsar1/). All com-
pounds are stored as MACCS keys, as implemented in OpenBabel (version 2.3.1),
which are further used as inputs for the various SVM models [136].

In the initial version of admetSAR, two hERG models were available. The first
model contained weak and strong inhibitors of hERG, while the second model
contained inhibitors and non-inhibitors of hERG. Since the scope of this study
was to evaluate the discrimination capacity of admetSAR between binders and
non-binders of hERG, only the second model was considered for further use.
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3.6 PASSonline

PASSonline (http://www.way2drug.com/PASSOnline/) is the web-accessible form
of the PASS program, target prediction software developed by Poroikov and col-
leagues at the Institute of Biomedical Chemistry, Moscow, Russia
[142, 143]. PASSonline is available free of charge. The web server operates in a
ligand-based manner, by comparing screening compounds to compound datasets
annotated with the respective biological activity using 2D similarity. Screening
compounds are then compared to training compounds of various protein targets or
disease conditions by Bayesian estimates (as outlined in Sect. 2.1.3).

As a first step, the user has to input the screening compound as a SMILES string,
an sd-file, or a mol2-file. PASSonline converts the input molecule to a chemical
fingerprint. Throughout PASSonline, an in-house-developed second-level MNA
fingerprint is used—a variant of circular fingerprints [57]. In the second step,
PASSonline compares the second-level MNA to all compounds to the training set
present in PASSonline. For PASSonline, this training dataset was derived from the
literature, describing either protein targets (e.g., “MAP kinase 14 inhibitor”), disease
conditions (e.g., “cystic fibrosis treatment”), or simply categories assigned to com-
pounds regarding their biological activity (e.g., “antioxidant” or “weight loss”). The
latter two prediction categories somehow distinguish PASSonline from the other
approaches presented in this study. Online available web servers like SEA,
SuperPred, SwissTargetPrediction, HitPick, Pred-hERG, and VirtualToxLab predict
discrete macromolecular targets, while PASSonline can predict also more diffuse,
functional biological activities. Initially, all the activity data were derived from the
MDL Drug Data Report, covering 190,000 compounds with activities assigned for
over 120 different categories. When this study was carried out (March 2017), the
training set of PASSonline contained 4099 categories with a total of 11,39,257 active
compounds. Note that many of the active compounds in this database are present in
several categories, so PASSonline does not contain 11,39,257 single compounds. A
summary of the dataset is available at the PASSonline homepage (http://www.
way2drug.com/PASSOnline/methods.php). The actual comparison of the screening
compound to a compound of the dataset is made by the PASSonline algorithm. The
PASSonline algorithm is a modified naïve Bayesian estimate that is used to compute
both the probability of the screening compound as being active (Pa) and its proba-
bility to be inactive (Pi). A detailed description of the mathematical approach used
was described elsewhere [142]. Finally, the output generated by PASSonline is a list
containing the predicted activity, Pa values, and Pi values. The list is sorted in
descending order of Pa–Pi, predicted activities where the probability of being active
is high, while the probability to be inactive is low. The user is thus able to adjust the
selection criteria based on the output, by not just depending on Pa–Pi, and hence
vary the overall sensitivity and specificity.

The program PASSonline contains four training sets of different sizes for hERG
that can be predicted (see Table 1).
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3.7 Pred-hERG

Another open-source hERG prediction platform is Pred-hERG (http://labmol.com.
br/predherg/). The platform Pred-hERG was developed by the LabMol—Laboratory
for Molecular Modeling and Drug Design at the Faculty of Pharmacy, Federal
University of Goias [144, 145]. Pred-hERG operates fully ligand-based and can be
classified as a 2D similarity machine-learning approach. The training data were
retrieved from ChEMBL and accordingly processed. The curated dataset consists
of 5984 compounds including 2191 non-blockers (activity � 10 μM), 2565 weak/
moderate blockers (1 μM � activity � 10 μM), and 1228 strong blockers (�1 μM).
Pred-hERG computed Morgan fingerprints using the RDKit (http://rdkit.org) as
implemented in the Konstanz Information Miner (KNIME, KNIME AG, Zurich,
Switzerland). Moreover, molecular descriptors as implemented in the Chemistry
Development Kit (CDK) in KNIME were computed. The dataset has been used to
train MLAs based on SVMs, one as a binary model and one as a multiclass model.
Both of the models were validated theoretically using a fivefold cross validation,
yielding Acc values from 0.83 to 0.84. Use of the web server is fairly easy and can be
done by submitting a molecule as SMILES string into the web form. The output
produced by Pred-hERG consists of three parts: first, the binary model outputs one of
the two classes “blocker” or “non-blocker,” with the respective probability. Second,
the multiclass model classifies the screening compound into “strong blocker,” “weak
blocker,” or “non-blocker,” again with the respective probability. Third, Pred-hERG
outputs a two-dimensional structure of the screened molecule and the respective
predicted probability maps (PPM) mapped onto it. In the PPMs, fragments or sub-
structures highlighted in green contribute to hERG blockage, while those
highlighted in pink counteract hERG blockage. Fragments marked with a gray
color do not contribute to hERG blockage.

3.8 VirtualToxLab™

VirtualToxLab™ is commercial software free of charge for academic users and was
developed by A. Vedani, M. Dobler, and M. Smiesko at the Department of Phar-
maceutical Sciences, University of Basel and the Foundation Biographics Labora-
tory 3R, Basel, Switzerland (http://www.biograf.ch/index.php?id¼projects&
subid¼virtualtoxlab) [146–148]. VirtualToxLab™ is the only structure-based

Table 1 Training sets available for hERG in PASSonline

Activity type Active compounds

Ether-a-go-go potassium channel 1 blocker 21

Ether-a-go-go potassium channel blocker 21

hERG 1 channel blocker 38

hERG channel blocker 1207
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method that was used during the present study. It combines flexible docking, binding
affinity calculation, and linear regression into a single protocol. VirtualToxLab™
currently features 16 proteins, on which the test compounds are sampled and that are
known to trigger concerning effects toxicologically in vivo. One of those proteins is
the hERG channel. At the time when VirtualToxLab™ was developed, no experi-
mentally solved three-dimensional model of the human hERG protein was available.
Thus, the developers of VirtualToxLab™ used the homology model (as described in
Sect. 2.1.5.1) of the hERG channel that was published previously by Farid
et al. [109].

For VirtualToxLab™, as a first step, the compounds intended for screening need
to be prepared, as described previously in Sect. 2.1.6. This can be done by either
preparing the desired compounds with any external software computing three-
dimensional information or with the built-in VTL builder. Next, a flexible docking
protocol docks the prepared ligands into the binding site of the protein. Typical
docking algorithms perform so-called rigid docking, meaning that the protein is
considered as a rigid body. Flexible docking as in VirtualToxLab™ allows for the
simulation of induced-fit binding. To account for such binding modes, the docking
algorithm needs to keep parts of the protein, e.g., a predefined radius around the
ligand binding site, flexible. This requires more computational effort, leading to
longer calculation times. In VirtualToxLab™, the flexible docking is carried out by
the software Cheetah [146]. Moreover, VirtualToxLab™ simulates dynamic solva-
tion effects of the ligand and the binding pocket [147]. Finally, the flexible docking
protocol outputs up to 25 poses per input ligand. For each input ligand is thus output
as conformational ensemble (various poses), generated within the binding site of the
protein, augmented by solvation effects and induced-fit (4D-dataset). The confor-
mational ensemble of each input ligand is then used to calculate binding affinity to
the respective protein, using 4D Boltzmann scoring in the software BzScore4D
[148]. BzScore4D samples each conformational ensemble coming from the flexible
docking protocol using Monte Carlo simulation with Metropolis criterion, first in a
water box and second in the protein’s binding site. Each functional group is then
scored individually in both states and the change in free energy calculated. Finally,
VirtualToxLab™ predicts the toxic potential for each compound to the respective
target. In the case of hERG, this corresponds to the degree of interference with the
channel.

4 Results and Discussion

4.1 Study Setup

The aim of this case study was to evaluate whether publicly available tools are able
to predict hERG-modulated toxicity. In the last few decades, hERG has gained much
research attention as an antitarget. Consequently, a great deal of research has been
done on hERG, especially in the field of target prediction. Being able to predict
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hERG efficiently using in silico techniques, representing low costs and time com-
mitments, has thus represented a constant objective for medicinal chemists. Surpris-
ingly, comparatively little effort has been placed on the development of robust hERG
screening tools (in vitro and in silico) for natural products. Many natural products
have been characterized as hERG blockers, even some of those frequently used in
phytopharmaceuticals [149]. Thus, our focus was set on evaluating the predictive
power of some open-access hERG prediction tools toward natural products. To do
so, eight open-access web servers (presented in Sect. 3) with two pharmacophore
models/pharmacophore model ensembles (as published by Kratz et al. [96]) and a
dataset of 278 compounds were screened (see Sect. 4.2).

4.2 Dataset Used in This Study

The dataset gathered for this study contained a total of 277 compounds. The dataset
could be subdivided into 188 natural products and 90 synthetic compounds. The
natural products subset could be further subdivided based on their origin from the
alkaloid compound class (129 compounds) and non-alkaloid compound class
(59 compounds). Of the alkaloids, 37 compounds were categorized as “strong
blockers,” 28 as “moderate blockers,” and 64 as “non-blockers.” From the
non-alkaloids, seven compounds were categorized as “strong blockers,” six as
“moderate blockers,” and 46 as “non-blockers.” Among the synthetic compounds,
57 were categorized as “blockers” and 33 as “non-blockers.” The dataset and the
respective subsets are visualized in Fig. 11. The natural products were derived from a

Fig. 11 Dataset and the respective subsets visualized. Single-colored red rectangles indicate
compounds that block the hERG channel; single-colored green fields indicate compounds that do
not block the hERG channel
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comprehensive review on natural product hERG blockers, authored by Kratz et al.
[149]. The synthetic compounds were used from a study conducted by Kratz et al.
and our own department in 2014 [96].

4.3 Data Curation and Pre-processing

To be able to compare the respective hits in a semi-automated and efficient way, the
target nomenclature for hERG had to be normalized. Moreover, some of the tools
used contain different models with each different names referring to hERG. The
SMILES strings for all structures were generated by using the “copy as! SMILES”
function in ChemDraw Professional (Perkin Elmer, Waltham, MA, USA) and
pasting them into an Excel sheet.

The exact data curation for each tool is described as follows: SEA uses the
ChEMBL/UniProt nomenclature, and thus outputs the full target name “Potassium
voltage-gated channel subfamily H member 2,” as well as other metadata. Only
predictions containing the key “Potassium voltage-gated channel subfamily H mem-
ber 2” in the “Description” column were considered as predicted actives. Com-
pounds without this prediction were considered as predicted inactive. In SuperPred,
SMILES strings were imported and the “Target Prediction” option selected.
SuperPred uses the nomenclature derived from ChEMBL. Only predictions
containing the key “KCNH2” in the “Name” column were considered as predicted
actives. Compounds without this prediction were considered to be predicted inac-
tive. In SwissTargetPrediction, SMILES strings were posted to the server.
SwissTargetPrediction uses the nomenclature derived from ChEMBL. Only pre-
dictions containing the key “Potassium voltage-gated channel subfamily H member
2” in the “Target” column were considered as predicted actives. Compounds lacking
this annotation were considered as predicted inactive. In HitPick, SMILES strings
were posted to the server, using the “Target Prediction” suite. HitPick outputs
various metadata on each predicted interaction, including the gene names of the
respective proteins. Only predictions containing the key “KCNH2” in the “Target”
column were considered as predicted actives. Compounds without this annotation
were considered as predicted inactive. In admetSAR, SMILES strings were posted to
the server, using the “predict” suite. The admetSAR contains two hERG models:
T_hERG_I, classified into “Weak inhibitor” and “Strong inhibitor,” and the model
“T_hERG_II” classified into “Inhibitor” and “Non-inhibitor.” Only the model
“T_hERG_II” was used, since the aim of this study was to evaluate the predictive
power of such tools between true actives and true inactives. Compounds predicted
by “T_hERG_II” as “Inhibitor” were considered as predicted active, while those
predicted as ‘Non-inhibitors’ were considered as predicted inactive. In PASSonline,
SMILES strings were uploaded to the server. As outlines in Sect. 3.6, Table 1,
PASSonline contains four models for hERG. In this study, all of the four were
considered, since all of them were binary classifiers trained on the discrimination
between true actives and inactives. Thus, all compounds that were classified into one
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of those four classes by PASSonline were considered as predicted actives and all
remaining compounds as predicted inactives. Moreover, PASSonline’s probability
output is composed of Pa and Pi values. We subtracted Pi from Pa, to calculate an
overall probability and ranked the prediction according to this information. Large
differences in Pa and Pi may then considered as more probable than small differ-
ences. In Pred-hERG, SMILES strings were posted to the server. Similar to
admetSAR, Pred-hERG contains two models: one binary classifier and one
multiclass classifier. Again, only the binary classifier was evaluated, since the
scope of this study was limited to this instance. Accordingly, the prediction
“blocker” given in the row “Binary Pred” was considered as predicted active,
while the prediction “non-blocker” was considered as predicted inactive. In
VirtualToxLab™, each compound was submitted as single sd-file. Finally, the
binding affinity in the “hERG” column was used. According to VirtualToxLab™,
binding affinities smaller than 100 μM were considered as predicted active, while
binding affinities greater than 100 μM were considered as predicted inactive. For the
in-house pharmacophore model collection, the compounds were prepared into one
single sd-file, and preprocessed with idbgen application in LigandScout 3.03b (Inte:
Ligand, Vienna, Austria), using “best”’ settings [150]. Screening was performed in
LigandScout 3.03b, using the six pharmacophore models described by Kratz et al.
[96] in cooperative mode. Compounds that mapped to one or more pharmacophore
models were considered as predicted actives, and the remaining compounds were
considered as predicted inactives. For the Discovery Studio pharmacophore models,
the same single sd-file of the compounds was used as input. The ligands were
prepared using the “build 3D database” application and the screening conducted
using the “search 3D database” application, both integrated in Discovery Studio
version 4.5 (Dassault Systèmes, Vélizy-Villacoublay, France). The pharmacophore
model used in screening was described by Kratz et al. [96], and referenced there as
“Catalyst model.”

4.4 Post-processing of Data

The data were collected by inserting SMILES strings, or sd-files, if required, to the
respective tool. The resulting output was gathered in Excel spreadsheets, csv-files, or
sd-files.

Every approach used during this study outputs the respective results in different
formats. To be able to evaluate the results obtained from both online accessible target
prediction tools and our in-house pharmacophore models, the data had to be
processed and homogenized first. A custom-built KNIME workflow was created to
fulfill this task (illustrated in Fig. 12). The KNIME workflow has ten inputs: one for
the in vitro results and nine for the nine different in silico tools (represented by the
single-colored rectangles). Moreover, the workflow produces one single output. The
resulting tables could be saved automatically as csv-files (yellow-framed rectangle).
The output is subdivided three times, accounting for the overall dataset, natural
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products, and synthetic compounds. The complete table obtained from the KNIME
workflow described above was imported subsequently into Jupyter Notebook (Pro-
ject Jupyter, https://jupyter.org/) to calculate quantitative performance metrics for
each tool and to compute ROC curves.

4.4.1 Performance with Natural Products

The ROC curves produced for the natural products subset are given in Fig. 13, and
their quantitative performance metrics for the natural products subset are provided in
Table 2. In general, all of the used tools performed poorly, with the exception of
Pred-hERG, which showed an intermediate performance. Pred-hERG, showing the
best predictive power according to ROC-AUC (0.63), produced an overall Acc of
0.66, while being more specific (0.90) than sensitive (0.33), which stands for the
more accurate classification of true negatives as such. The Pr, on the other hand, was
intermediate (0.70), and thus the F1 score relatively low (0.45). The admetSAR F1

score (0.46) was slightly better than the one produced by Pred-hERG, proving an
improved sensitivity/precision ratio. This might seem confusing, since the other
computed metrics indicate poor performance (Acc, Se, Sp, Pr, and ROC-AUC).
This occurred because the F1 score represents a harmonic mean of the similarly poor
Se and Pr. For the poor F1 score of Pred-hERG, the good Pr was made worse by the
poor Se. Interestingly, in admetSAR, the ROC curve shows that especially high-

Fig. 13 ROC curves of the tools used, describing their predictive power toward natural products
investigated in this study
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ranked predictions (bottom left, SlopeROC < 1) are more often incorrect than correct.
Predictions below the median of the probability become more accurate (SlopeROC >
1). Overall, the admetSAR ROC curve performed worse than random for the natural
products subset (ROC-AUC ¼ 0.39), but the accuracy was slightly better than
random (0.57). VirtualToxLab™ also produced an ROC-AUC worse than random
(0.38), and more than half of the predictions were incorrect (Acc ¼ 0.38) for the
natural products subset. Accordingly, the remaining metrics (Se, Sp, Pr, F1) also
show a performance worse than random. The two in-house pharmacophore
approaches (LigandScout and Discovery Studio models) showed a perfectly random
performance according to ROC-AUC (both 0.50), but more than half of the pre-
dictions made were correct (Acc ¼ 0.58 and 0.59, respectively). Both models
appeared very good at detecting true negatives as such (Sp ¼ 0.99 and 1.00,
respectively), but performed poorly in detecting true binders (Se ¼ 0 both). Accord-
ingly, Pr and F1 were also calculated as zero. The same was true for HitPick, which
showed a random ROC-AUC (0.50), a Se of zero, and a Sp of one. The overall
accuracy was the same as for both pharmacophore models better than random (Acc¼
0.59). SEA, SwissTargetPrediction, and PASSonline showed very similar perfor-
mance, slightly superior to random (ROC-AUC ¼ 0.53, 0.53, 0.52, respectively).
Similar to the pharmacophore models and HitPick, Se was very poor for all of the
three (0.08 to 0.17), while Sp was very good (0.89 to 0.98). SEA showed the best Sp
(0.98), PASSonline showed the best F1 (0.25), and SwissTargetPrediction showed
the best Pr (0.75). Acc was again slightly superior to the group of the two
pharmacophore models and HitPick (0.59–0.61). A slightly better performance
was achieved by SuperPred. SuperPred showed the second-best ROC-AUC (0.55)
while posing 63% of the predictions correct (Acc ¼ 0.63). As seen with most of the
other models, Se was very low (0.10), while Sp was perfect (1.00). SuperPred even
achieved the highest possible Pr (1.00).

It remains to be said, that according to the quantitative metrics obtained, Pred-
hERG was clearly superior, followed by SuperPred. A clear trend could be observed

Table 2 Quantitative performance metrics of the used tools toward natural products

Tool TN FP FN TP Acc Se Sp Pr F1

ROC-
AUC

SEA 108 2 72 6 0.61 0.08 0.98 0.75 0.14 0.53

admetSAR 73 37 44 34 0.57 0.44 0.66 0.48 0.46 0.39

HitPick 110 0 78 0 0.59 0.00 1.00 0.00 0.00 0.50

PASSonline 98 12 65 13 0.59 0.17 0.89 0.52 0.25 0.53

Pred-hERG 99 11 52 26 0.66 0.33 0.90 0.70 0.45 0.63

SuperPred 110 0 70 8 0.63 0.10 1.00 1.00 0.19 0.55

VirtualToxLab 37 73 44 34 0.38 0.44 0.34 0.32 0.37 0.38

SwissTargetPrediction 99 11 67 11 0.59 0.14 0.90 0.50 0.22 0.52

Pharmacophore model
(LigandScout)

109 1 78 0 0.58 0.00 0.99 0.00 0.00 0.50

Pharmacophore model
(Discovery Studio)

110 0 78 0 0.59 0.00 1.00 0.00 0.00 0.50
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with all of the used tools, namely, the poor Se values and high Sp values. These
properties could be beneficial for certain applications in drug discovery, but for that
considered here in being of toxicological interest, the exact opposite would be
desirable. Such applications should be greatly more sensitive than specific. For
example, high Sp, Pr, and F1 values are preferable in classical VS, because this
means that the hit list will be very much enriched with true actives. In toxicologically
relevant VS, it would be better to detect possibly all potentially harmful compounds.
This property is indicated by high Se values, even if Pr is low. This would mean that
most of the true hERG binders are detected by this model, even if it produces many
FPs. With this being said, admetSAR produced the best results, followed by
VirtualToxLab™, even though the performances of both tools were still
comparably poor.

4.4.2 Performance with Synthetic Compounds

The ROC curves produced for the synthetic compounds subset are provided in
Fig. 14, and the quantitative performance metrics for the synthetic compounds subset
are provided in Table 3. For the synthetic compound subset, the overall performance
of all tools was more satisfactory than for the natural products subset. All tools
performed intermediate to good, with the exception of the Discovery Studio

Fig. 14 ROC curves of the tools used, describing their predictive power toward synthetic com-
pounds investigated in this study
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pharmacophore model. For the Discovery Studio pharmacophore model, the metrics
indicated a performance worse than random for this test set. In turn, HitPick,
SwissTargetPrediction, SEA, and SuperPred showed similar performance. HitPick
shows the typical behavior observed with the natural products subset, and the model
is way more specific (1.00) than sensitive (0.20). The Pr is very good (1.00), and
accordingly F1 improved as a consequence (0.33). SwissTargetPrediction also
shows the tendency of being more specific (0.82) than sensitive (0.39), even though
the discrepancy was not as large as with HitPick. The Pr is good (0.79) and the F1

moderate (0.52). Also, SEA and SuperPred performed similarly, but as seen already
with SwissTargetPrediction, the discrepancy between Se and Sp was smaller than
observed with HitPick. Moreover, they produced quite distinct ROC-AUCs (0.72,
0.60, 0.71, 0.62, respectively) and Acc (0.65, 0.49, 0.64., 0.55, respectively).
Another group of tools also showed very similar performances to one another:
admetSAR, PASSonline, Pred-hERG, VirtualToxLab™, and the LigandScout
pharmacophore models. They all have in common that their Se/Sp ratio is compar-
atively good. From this group, the LigandScout pharmacophore model’s perfor-
mance is worse than that of the other tools. admetSAR, PASSonline, Pred-hERG,
and VirtualToxLab™ showed both good Se and good Pr scores. Accordingly, they
all have very good F1 scores. Moreover, in this group, admetSAR, PASSonline,
Pred-hERG, and VirtualToxLab™ show a good early enrichment in ROC curves
(by rising steeply at the left half of the plot, and decreasing their slope also at the left
half of the plot). This indicated that especially highly ranked predictions (high
probability score assigned by the respective tool) show very favorable ratios between
TPR and FPR. The LigandScout pharmacophore models also show this property to a
less extent. Here, the slope of the ROC curve was evenly distributed along the whole
plot.

According to the quantitative performance metrics, Pred-hERG and PASSonline
showed the best performance in predicting synthetic hERG binders. As described in

Table 3 Quantitative performance metrics of the used tools toward synthetic compounds

Tool TN FP FN TP Acc Se Sp Pr F1

ROC-
AUC

SEA 33 0 31 25 0.65 0.45 1.00 1.00 0.62 0.72

admetSAR 17 16 8 48 0.73 0.86 0.52 0.75 0.80 0.76

HitPick 33 0 45 11 0.49 0.20 1.00 1.00 0.33 0.60

PASSonline 21 12 10 46 0.75 0.82 0.64 0.79 0.81 0.80

Pred-hERG 23 10 12 44 0.75 0.79 0.70 0.81 0.80 0.83

SuperPred 33 0 32 24 0.64 0.43 1.00 1.00 0.60 0.71

VirtualToxLab 14 19 10 46 0.67 0.82 0.42 0.71 0.76 0.69

SwissTargetPrediction 27 6 34 22 0.55 0.39 0.82 0.79 0.52 0.62

Pharmacophore model
(LigandScout)

18 15 20 36 0.61 0.64 0.55 0.71 0.67 0.61

Pharmacophore model
(Discovery Studio)

7 26 32 24 0.35 0.43 0.21 0.48 0.45 0.28
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Sect. 4.4.1, high Se values are desirable for a VS that is toxicologically relevant. This
being said, admetSAR showed again the best performance, followed by
PASSonline, VirtualToxLab™, and Pred-hERG. The LigandScout pharmacophore
models showed a good tendency, but were unable to retrieve as many true actives as
admetSAR, PASSonline, Pred-hERG, and VirtualToxLab™. In this context, the
performances of these tools can be described as good, while the LigandScout
pharmacophore model was moderate; HitPick, SwissTargetPrediction, SEA, and
SuperPred performed poor; and the Discovery Studio pharmacophore model showed
poor performance.

4.4.3 Overall Performance

The ROC curves produced for the complete dataset are provided in Fig. 15, and the
quantitative performance metrics for the synthetic compounds subset is provided in
Table 4. As discussed in Sect. 4.4.2, the predictive accuracy was good for the
synthetic compounds subset and poor for the natural products subset, resulting in a
moderate performance for the complete dataset. According to the ROC curves, Pred-
hERG showed the best performance, followed by PASSonline, SuperPred, and SEA.
Moreover, they all show good early enrichment in the ROC curve. VirtualToxLab™
also showed a good early enrichment but failed to maintain this TPR/FPR ratio along
the plot. Therefore, the highly ranked predictions posed by VirtualToxLab™ are
quite reliable, but intermediate-to-low probabilities tended to be more error-prone.

Fig. 15 ROC curves of the tools used, describing their predictive power toward synthetic com-
pounds investigated in this study
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The ROC curve of SuperPred, in comparison to the other three tools in the latter
group, rose very steeply and then got connected with a linear line to the top right
corner of the plot. This indicated that the highest probabilities calculated by
SuperPred were always correct, although it should be noted that such probabilities
were assigned to only a very few compounds (those predicted as hERG inhibitors),
which were in fact all correct (32 TPs, 0 FPs). The remaining 245 compounds did not
produce a prediction for hERG, for which, in these cases, was set to a probability of
zero. This produced of course the highest reachable precision of 1.00. The same
phenomenon can be observed with SEA. The SEA predicted 31 compounds cor-
rectly as hERG inhibitors (TP) and two were falsely classified as such (FP). This
gave an ROC curve very similar to that of SuperPred, with very similar ROC-AUCs
(0.61 and 0.62, respectively). Thus, the resulting Pr produced by SEA is bit lower
than that of SuperPred, but still very good (0.94). The next group of tools producing
similar ROC-AUCs comprised SwissTargetPrediction, HitPick, and the
LigandScout pharmacophore models. The ROC curve produced by HitPick was
very similar to those produced by SuperPred and SEA. Accordingly, the same
interpretation is true also for HitPick. The main difference from the performance
of SuperPred and SEA is that HitPick showed a much lower Se (0.08), compared to
0.24 and 0.23, respectively. As a consequence, the resulting F1 score (0.15) was also
much lower than those of SuperPred (0.39) and SEA (0.37). The values of Acc, Sp,
Pr, and ROC-AUC were comparable. SwissTargetPrediction and the LigandScout
pharmacophore models performed in a similar manner in all calculated metrics, with
the LigandScout pharmacophore model always performing slightly better. The main
difference between the performances of those two tools was that
SwissTargetPrediction showed an early enrichment in the ROC curve, while the
LigandScout pharmacophore models did not. The admetSAR gives an ROC curve
showing a performance below random, resulting in an ROC-AUC of 0.48. On the
other hand, SEA was the overall best (0.61), with an acceptable Pr (0.61). Accord-
ingly, the F1 score was also 0.61, and was only outperformed by Pred-hERG (0.62).
Moreover, the inverse behavior of the ROC curves toward VirtualToxLab™ could
be seen. While VirtualToxLab™ showed an early enrichment, which depletes over
time, admetSAR seemed to produce more reliable predictions when the calculated
probabilities were intermediate to low. The Discovery Studio pharmacophore
model’s performance was poor and showed random accuracy for the natural prod-
ucts subset, and an accuracy below random for the synthetic compounds subset.

In summary, the overall performance of all tools taken together was disappoint-
ing. For synthetic compounds, there are definitely free-of-charge online tools avail-
able that are easy to use and can give reliable results. For natural products, there
seems to be a great need for improvement. This might be due to the fact that none of
the tools employed was explicitly designed for use with natural products. It is well
known that natural products differ from synthetic compounds, which was discussed
extensively in several publications [29].
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5 Conclusion and Outlook

The predictive power of open-access activity prediction tools was assessed. All of the
tools evaluated in this study performed more effectively for synthetic compounds than
for natural products. This outcome can be mainly addressed to the distinct chemical
space occupied by natural products when compared with synthetic compounds.
Another factor is that the training sets used for the available tools are always composed
of bioactivity data derived from the scientific literature. Regarding hERG, this litera-
ture is mainly comprised by synthetic compounds, and less by natural products.
Moreover, the overall awareness of hERG-blocking properties of natural products is
much lower when compared to synthetic compounds. Moreover, the models used are
able to handle synthetic compounds better than they do natural products.

Pharmacophore-based approaches and VirtualToxLab™ were mostly found to be
outperformed by the alternative approaches used. These pharmacophore-based
approaches were generated out of just a few training compounds, which are repre-
sentative for the chemical space of hERG blockers. The resulting models then screen
for compounds that can exert the same hypothetical binding modes.
VirtualToxLab™ does not use training compounds at all, since it relies fully on
molecular docking. Molecular docking requires to define one single binding site, in
which the poses are sampled. As known today, hERG blockers bind to several
binding sites of the protein, which naturally produces several possible binding
modes. This may have a significant impact on the performance of these two
approaches. In comparison, the other approaches presented using two-dimensional
ligand-based similarity comparisons have a much different data foundation. They
rely on thousands of training compounds, against which the compounds screened are
compared. Such approaches are largely independent of binding sites, and perform
best if the training sets are large.

In silico prediction methodology for the hERG blocking potential of natural
products still has to mature. To date, few efforts have been made to design in silico
prediction tools for hERG, specifically for natural products, or to explicitly include
natural products. Nevertheless, substantial progress should be made in this field over
the next few decades. Wang and MacKinnon have opened the door for structure-
based modeling on hERG, and to a better structural understanding of hERG
[10]. Furthermore, the knowledge of both synthetic compound and natural product
hERG blockers is constantly increasing. This should ultimately lead to more com-
prehensive and more accurate in silico tools for this particular target, for both
synthetic compounds and for compounds biosynthesized by Nature.
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1 Introduction

Small molecule natural products are biosynthesized by biological systems to enable
communication and interaction between cells, individuals, and species, serving as
repellents, poisons, attractants, and signaling molecules. Owing to their biosynthetic
enzyme origin and specific biological purposes, their chemical structures were
designed by evolution to interact with macromolecules such as proteins, lipids,
and nucleic acids [1–4]. This is in accordance with the finding of increased hit
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rates of natural product collections compared to synthetic and combinatorial collec-
tions in high-throughput screening campaigns [5, 6]. Analysis of such natural
product collections revealed an exceptionally high diversity of molecular structures
and properties, such as considerable molecular shape, stereogenic and ring-system
complexity. They cover a broad chemical space, especially biologically relevant
space [7–13] as outlined in detailed chapter “Cheminformatics Explorations of
Natural Products” by Medina-Franco et al. in this volume (p. 1).

This makes natural products ideal candidates for drug discovery. Indeed, plants,
fungi, and animals were almost the only source for pharmaceutical preparations for a
long period of human history. Even with the advent of modern single-molecule
medicines, natural products continued to play an important role [14]. A comprehen-
sive analysis by Newman and Cragg points out that still 32% of all small-molecule
approved drugs launched between 1981 and 2014 are unaltered natural products or
natural product derivatives. Another 32% were inspired by natural products or their
pharmacophores [15]. It is therefore tempting to speculate that natural product
structures are privileged, possessing particular geometries; for instance, they exhibit
a variety of novel, non-flat ring systems suitable for specific side chain substitutions,
which are then prone to interact with an array of target proteins [16].

In contrast to the well-recognized high potential of natural products in drug
discovery, the research engagement in this field has been dramatically scaled
down in major pharmaceutical companies, mainly because it is stigmatized as an
expensive endeavor [17]. The process of choosing a suitable biological source, its
often limited or restricted access, the successful isolation of single active constituents
from complex matrices, and deciphering their molecular structures seem too cum-
bersome compared to an increasingly automated and straightforward drug discovery
process. New technologies like combinatorial chemistry, high-throughput screening
using miniaturized and automatized assay batteries, and big data evaluation have
triggered a great transformation in drug discovery [18]. The identification of ligands
against specific targets as starting points for lead development is of utmost impor-
tance in this scientific field [19–21].

A major challenge in drug discovery from natural sources is hereby the identifi-
cation of single bioactive constituents in order to establish unambiguous cause-effect
relationships for later lead development. The classical approach for this task has
been the bioassay-guided fractionation of crude or partly purified extracts [22]. Thus,
a multicomponent mixture (extract) is separated step by step with subsequent
assessment of the biological activities of the fractions obtained, followed by iterative
rounds of separation and assaying [23–25]. Ideally, the goal is to end up with a single
or a few purified active constituents—a goal which is certainly not often achieved
because of certain shortcomings, such as insufficient robustness of bioassays used,
potential solute adsorption to the solid phase during chromatographic fractionation,
the re-isolation of previously known bioactive compounds, the failure to detect
synergistic activity between the components present, and/or the decomposition of
the constituents [14, 26].
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The reverse path of testing pure natural products after isolation brings up several
questions: (1) How to choose the natural starting organism? (2) Which components
should be isolated? (3) How to choose a promising target for testing? Some of the
most interesting natural products are difficult to isolate and only contained in small
quantities in their natural source, for example, the yield of paclitaxel isolated from its
source plant, Taxus brevifolia bark, was in the range of 0.01% [27]. Moreover, only
10% of all known natural products can be obtained by commercial suppliers [28],
and these sometimes command very high prices. This is one reason their macromo-
lecular targets remain largely unknown [29]. Natural products can be considered as
too precious for dissecting their potential bioactivities by trial and error, and a
rationale to streamline their biological evaluation is needed.

In this context, the application of in silico tools, in particular, virtual screening,
has developed as an important strategy in natural product research for the prediction
of ligand-target interactions and for rationalizing their bioactivity or even efficacy on
a molecular level. Computational models can be created based upon already avail-
able information for the system under investigation and used to make predictions on
new events. Without question, cheminformatics-based techniques are nowadays
increasingly vital and substantial parts of modern-day drug discovery in medicinal
chemistry, in both industry and academia. Their impact in natural product research is
also increasing and has been reviewed elsewhere [30–32].

Here, we provide a comprehensive analysis of the strengths, weaknesses, oppor-
tunities, and threats (SWOT) of cheminformatics tools in natural product research.
The analysis will provide a guide to facilitate their concatenation on the basis of past
research projects, and aims to indicate gaps and caveats that exist. Therefore, the
outcome of this analysis should give insight into strategic steps for further advances
toward the combined use of cheminformatics and natural products drug discovery, to
cope expediently with the challenges and opportunities in these two promising and
prolific research areas.

2 S: Strengths of Cheminformatics in Natural Product
Research

Cheminformatics is the use of computational and informational tools to understand
and solve problems in the field of chemistry, particularly drug lead identification and
optimization. The intended goal is to make better decisions faster [33]. In particular,
virtual screening, which is the use of computational algorithms and models for the
identification of bioactivities, has huge potential for more extensive application in
natural product research [34, 35].

The implementation of cheminformatic tools can circumvent some of the costly
and time-consuming bottlenecks prohibitive to drug discovery from natural sources.
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From a pharmacognostic perspective, the prediction of molecular properties, possi-
ble targets but also antitargets of secondary metabolites, may be extremely useful to
streamline experimental efforts, and hence to accelerate research and development
projects. The scarce availability of isolated test materials demands for in silico
predictions to unravel natural product molecular modes of actions and to deploy a
rationale in lead development [32, 36–38]. From a cheminformatics perspective,
virtual screening of collections consisting of fewer, but more sophisticated chemical
entities, which are designed by evolution to interact specifically with macromolec-
ular targets, rather than large synthetic molecule collections, can be a straightforward
and prolific approach for the identification of novel lead compounds. The exploita-
tion of natural product chemistry to implement Nature’s privileged structures
and chemical traits into synthetic compound repositories is another important
topic [39–41].

From a retrospective analysis of research in the past two decades, the concatena-
tion of cheminformatics and natural product research has certain prerequisites, which
have gained substantial input and development in recent years, to categorize them as
strengths. These refer to:

1. The availability and access to data providing available information on and the
ability to obtain reliable data of the system under investigation

2. Natural product collections including their annotation to meta-data, curation, and
a well-analyzed content

3. Availability and applicability of cheminformatic tools for the handling of natural
products and specialized software and methods for event prediction

The following sections will provide more insight into the tools and most impor-
tant databases available or literature dealing with this topic, without intending to
provide a complete account.

2.1 Availability and Access to Data

A computational model’s predictive power can be correlated roughly to the state of
knowledge for the system it describes. The access to resources such as chemical
databases, bioactivity collections, and biological data and a viable linkage and
curation of these data is required to perform successful projects [42–44]. Lots of
these resources are deposited and freely accessible. Chemical molecular databases
with close to a billion virtual molecular entities have been established [44]. In 2017,
four big chemical databases, PubChem, ChemSpider, Scifinder, and UniChem,
compiled 95, 63, 134, and 154 million chemical structure records, respectively [45].

Biological and biomedical data stored in publicly available bioactivity databases
provide a huge amount of detailed information on chemical entities in combination
with target proteins, quantitative binding, and bioactivity values. The ChEMBL
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database [46–48] connects 1.8 million 2D drug-like small molecule structure records
with 12,000 molecular targets and 15.2 million bioactivities in an easily accessible
interface. The data are derived mainly from seven medicinal chemistry journals
(Bioorganic and Medicinal Chemistry Letters, Journal of Medicinal Chemistry,
Bioorganic and Medicinal Chemistry, Journal of Natural Products, European Journal
of Medicinal Chemistry, ACS Medicinal Chemistry Letters, MedChemComm) and
selected articles from 200 journals and certain patents [48]. PubChem has compiled
239.6 million bioactivities for 3.4 million molecules, mainly from high-throughput
screening experiments [49, 50]. Chemical patents represent another rich resource of
chemical and biomedical information. The SureCHEMBL database aims to make the
chemistry annotations of US, EP, WO, and JP patents available in a searchable
interface. However, the connected biomedical data are not annotated [51, 52]. A
smaller but highly curated database is the DrugBank with 12,000 chemical entries
focusing on drugs and related molecules like nutraceuticals. Drug targets, pathways,
indications and other pharmacological information are provided [53–55]. A large
and comprehensive biomedical database of natural products does not yet exist. The
Protein Data Bank (PDB) is a valuable resource for 3D information on biological
macromolecules. It archives 144,000 experimentally determined structures and
their complexes with metals, co-factors, crystal water, and small-molecule ligands
[56, 57].

Table 1 summarizes the most important free accessible databases of biomedical
and biological information useful in cheminformatics. A more detailed list has been
compiled in [58]. It should be noted that the quality of information in the databases
differs due to diverse data sources, data acquisition procedures, and curation efforts.

Chemical, biomedical, and other life science data can be estimated to grow further
in the future as the integration of chemical information from multiple sources and
analytical techniques, extracting and mining information from journal articles and
patents is still improving. Collaborative efforts and the commitment to make gener-
ated data available in the public domain will stimulate this development.
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2.2 Natural Product Collections

A prerequisite of conducting cheminformatics in natural product research is the
existence of stereochemically well-defined molecules. Appropriate commercial and
also free natural product databases are available. These important resources have
been reviewed several times [28, 72–77].

Table 1 Biomedical databases

Database Content Size References

BindingDB Experimental protein-small mole-
cule binding affinities

1.2 million binding data for
55,000 proteins and 520,000
drug-like molecules

[59]

CHEMBL Data compiled from literature;
PubChem and SureCHEMBL

1.8 million drug-like small
molecules
15.2 million bioactivities

[46–48]

Drugbank Highly curated drug data combined
with drug target, pathway, indica-
tion, and other pharmacological
information

12,000 nutraceuticals,
approved and experimental
drugs

[53–55]

DUD.E. Active compounds and target affini-
ties, includes widely used decoys in
virtual screening

22,886 actives
102 targets
50 decoys for each active

[60, 61]

GLASS Manually curated repository for
experimentally validated GPCR-
ligand interactions

342.5 million ligands
3 million GPCR targets

[62]

GOSTAR Manually curated SAR database 6.6 million inhibitors
22 million quantitative SAR
points

[63]

OCHEM ADME data 2.8 million property records [64, 65]

PDBbind Binding affinities of PDB entries 11,000 binding affinities [60]

PubChem Chemical database with bioactivity
data from HTS assays

63 million molecules
For 3.4 million molecules
239.6 million bioactivities are
compiled

[49, 50]

Binding
MOAD

High-quality PDB subset of ligand-
protein complexes

33,000 structures [67, 68]

PDB Databank of experimentally deter-
mined structures of proteins, nucleic
acids and complex assemblies

144,000 experimental deter-
mined macromolecule
structures

[56, 57]

SMPDB Interactive and visual small mole-
cule pathway database

30,000 human pathways [69, 70]

TTD Database of therapeutic targets 3000 targets [71]

DUD.E database of useful decoys, GLASS GPCR-ligand association database, GOSTAR global
online structure-activity relationship database, GPCR G-protein-coupled receptor, MOAD mother
of all databases, OCHEM online chemical database, PDB protein databank, SAR structure-activity
relationship, SMPDB small molecule pathway database, TTD therapeutic target database
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The most comprehensive database is the Dictionary of Natural Products (DNP)
with currently 260,000 natural products. Information on trivial names, physicochem-
ical properties, and toxicity data are supplied. For pharmaceutical biologists the
information on biological sources and experimental properties such as UV spectra
and dissociation constants can be very useful. Caution should be given when used
for 3D applications, because the stereochemistry is not annotated in the 2D connec-
tion tables. The database was built manually by a team of academics and freelancers,
who enable reconciling of errors and ensure high quality data [28, 78]. Although this
database is comprehensive and well curated and covers a large chemical diversity, its
availability only on a commercial basis hampers its broader use by the interested
scientific community.

Alternatives are free virtual natural product collections, like the Universal Natural
Product Database (UNPD) , the TCM database@Taiwan, NPCARE, and the NuBBE
database; these all have been made available free of charge [79–83]. Chen et al.
recently have analyzed the content of natural product collections and observed a
large overlap (108,000 molecules) of free virtual natural product collections with the
DNP [28]. A thorough survey on natural product resources and their characteristics
is provided in the chapter “Resources for Chemical, Biological, and Structural Data
on Natural Products” by Kirchmair et al. in this volume (p. 37).

The use of cheminformatics tools to select natural products and natural product
like compounds from large chemical (e.g., PubChem [50]), biomedical (e.g.,
ChEMBL [47], PDB [57]) or commercial vendor databases (e.g., ZINC [84], Aldrich
Market Select [85]) would be a worthwhile strategy. Several tools able to identify
natural products in large molecule sets have been developed. They are based on
different machine learning tools such as rule-based approaches, similarity measure-
ments of structural space, or connectivity fingerprints [86–91]. Recently, a random
forest classifier with high accuracy was made available in a free online tool [92].

The diligent exploitation of natural product resources from widely unexplored
organisms from different niches of our globe and the closer examination of already
investigated marine and terrestrial organisms by advanced technical means will
continue to extend the diversity and coverage of natural product collections. The
exchange of virtual physically available collections between cooperation partners
has been suggested to increase the access to natural products [93]. Efforts to compile,
annotate, analyze, and finally enable their availability to a broad community will
lead to an increasingly valuable resource for future drug discovery.

2.3 Applicability of Cheminformatics Tools

As summarized earlier, scientists have to learn from the vast amount of biomedical
data generated and made available via data-sharing platforms. However, it is
indisputable that the amount of data is far beyond traditional analysis and learning
[94]. To create predictive cheminformatic models from big data, various approaches
have been established ranging from comprehensive similarity measurements (e.g.,
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pharmacophore, shape-based approaches, physicochemical property comparison) to
complex molecular docking and sophisticated machine learning approaches (e.g.,
self-organizing maps). The basic concepts underlying these methods have been
reviewed elsewhere [30–32, 95].

Notably, most virtual screening, binding pose prediction, and target fishing
approaches have been shown to be also applicable to natural products. From the
examples presented in Tables 2, 3, and 4, previous studies have been carried out
frequently with user-friendly comprehensible in silico tools. Three-dimensional
pharmacophore alignments, e.g., with Catalyst or LigandScout, and molecular
docking, e.g., with Autodock Vina or Glide, offer an intuitive interface and allow
easy implementation also to scientists not specialized in cheminformatics. These

Table 2 Approaches for the prediction of natural product binding modes

Technique Software Targeta Target classb Examples

Molecular docking Ligandfit HR V [96]

GOLD NA V [97]

5-LOX E [98]

COX-2 E [98]

11β-HSD1 E [99]

Glide MD-2 PPI [100]

5-HT2C GPCR [101]

MOE PPARγ TF [102]

Autodock AChE E [103]

Autodock Vina NF-κB TF [98]

CDOCKER PPARγ TF [104]

Molecular dynamic simulation AMBER NA V [97]

MD-2 AG [100]

DNA DNA [105]

AChE E [103]

NAMD NF-κB TF [98]
aTarget abbreviations: 11β-HSD1 11β-hydroxysteroid dehydrogenase type 1, 5-LOX
5-lipoxygenase, 5-HT2C 5-hydroxytryptamine2C receptor, AChE acetylcholinesterase, COX-2
cyclooxygenase-2, DNA deoxyribonucleic acid, HR human rhinovirus coat protein, MD-2 lympho-
cyte antigen 96, NA neuraminidase, NF-κB nuclear factor kappa-light-chain-enhancer of activated B
cells, PPARγ peroxisome proliferator-activated receptor gamma
bTarget class abbreviations: AG antigen, DNA deoxyribonucleic acid, E enzyme, GPCR G-protein
coupled receptor, PPI protein-protein interaction, TF transcription factor, V viral protein

Table 3 Different approaches for the prediction of natural product molecular targets

Technique Strategy/software Examples

Artificial neural networks Self-organizing maps, e.g. [106] [29, 36, 107]

Hierarchical clustering Based on in silico retrobiosynthesis [108] [109]

Virtual parallel screening Ligandprofiler, PipelinePilot, Ligandscout, Catalyst [95, 110, 111]

Reverse docking Autodock Vina [112, 113]
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Table 4 Different/complementary virtual screening approaches applied to natural products

Approach Strategy/software Targeta
Target
classb Examples

Pharmacophore-based vir-
tual screening

Catalyst AChE E [114]

COX-1, COX-2 E [115, 116]

HR V [96]

hERG IC [117, 118]

FXR TF [119, 120]

cPLA2α E [121]

mPGES-1 E [122]

IKK-β E [98]

mGlu GPCR [123]

PrPC V [124]

Ligandscout AChE E [114]

hERG IC [117, 118]

GPBAR1 GPCR [125]

11β-HSD1 E [99, 126]

PPARγ TF [127]

CETP LTP [128]

PharmaGIST AMA1-RON2 PPI [129]

MOE PPARγ TF [102]

TbGAPDH E [130]

2D similarity search chemGPS [7] Antichlamydial – [131]

Connectivity
fingerprints

FXR TF [132]

3D similarity search ROCS GPBAR1 GPCR [125]

NA V [133]

IKK-β E [134]

SQUIRREL mPGES-1 E [135]

Phase HIV-1 RT V [136]

Molecular docking Autodock Complex III E [137, 138]

NA V [139]

AMPK E [140]

Autodock Vina ROCK1 E [141]

Complex III E [137, 138]

GOLD AChE E [142]

CK2 E [143]

Glide HIV-1 RT V [136]

CK2 E [143]

FXR TF [132]

PPARγ TF [144]

Sirt1 E [145]

ACE E [146]

LigandFit mGlu GPCR [123]

CDOCKER PrPC V [124]

(continued)
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methods are already well-established and have demonstrated solid performance as
shown by many successful projects [98, 99, 101, 123, 126, 134, 137, 138]. Most
studies have combined different methods such as molecular docking and molecular
dynamic simulations for the prediction of binding modes [100] or shape and
molecular docking for virtual screening [136]. Further cheminformatic approaches,
such as artificial neural networks, increasingly have gained importance, especially
for target and activity prediction [29, 36, 107], and also in qualitative virtual
screening experiments [129, 142, 151] (see the chapters “The Pharmacophore
Concept and Its Applications in Computer-Aided Drug Design” and
“Cheminformatic Analysis for Natural Product Fragments” of Langer and Reker,
this volume (p. 97 and 141)).

Table 4 (continued)

Approach Strategy/software Targeta
Target
classb Examples

MOE CK2 E [143]

TbGAPDH E [130]

Molsoft TNF-α PPI [147]

DNA DNA [148]

DOCK AMPK E [140]

ROCK1 E [141]

QSAR GP regressionc IRF-7 TF [149]

Multiple linear
regression

Antitrypanosomal – [150]

Machine learning Self-organizing
maps

AChE E [142]

Random forest
classifier

AMA1-RON2 PPI [129]

GP regressionc PPARγ TF [151]
aTarget abbreviations: 11β-HSD1 1β-hydroxysteroid dehydrogenase type 1, 5-LOX
5-lipoxygenase, ACE angiotensin-converting enzyme, AChE acetylcholinesterase, AMA1 apical
membrane antigen 1, AMPK 50 AMP-activated protein kinase, CETP cholesteryl ester transfer
protein, CK2 casein kinase 2, Complex III coenzyme Q-cytochrome c-oxidoreductase, COX-1
cyclooxygenase-1, COX-2 cyclooxygenase-2, cPLA2α Cytosolic phospholipase A2α, DNA
deoxyribonucleic acid, FXR farnesoid X receptor, GPBAR1 G protein-coupled bile acid receptor,
hERG human ether-à-go-go-related gene potassium ion channel, HIV-1 RT human immunodefi-
ciency virus type 1 reverse transcriptase, HR human rhinovirus coat protein, IKK-β inhibitor of
nuclear factor kappa-B kinase subunit beta, IRF-7 Interferon regulatory factor 7, mPGES-1 micro-
somal prostaglandin E synthase-1,MD-2 lymphocyte antigen 96, NA neuraminidase, NF-κB nuclear
factor kappa-light-chain-enhancer of activated B cells, mGlu metabotropic glutamate receptor,
PPARγ peroxisome proliferator-activated receptor gamma, PrPC cellular prion protein, ROCK1
Rho-associated protein kinase, RON2 rhoptry neck protein 2, Sirt1 NAD-dependent deacetylase
sirtuin-1, TbGAPDH Mycobacterium tuberculosis glyceraldehyde-3-phosphate dehydrogenase,
TNF-α tumor necrosis factor ligand superfamily member 2
bTarget class abbreviations: DNA deoxyribonucleic acid, E enzyme, GPCR G protein-coupled
receptor, IC ion channel, LTP lipid transfer protein, PPI protein-protein interaction, TF transcription
factor, V viral protein
cGaussian process regression
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Perhaps the most important cheminformatics application for natural product
researchers is the prediction of molecular targets as thoroughly reviewed in the
chapter “A Toolbox for the Identification of Modes of Action of Natural Products”
provided by Rodrigues et al. (this volume, p. 73). Besides virtual target fishing of
new isolates, it can help to fast forward the rationalization of traditionally used
herbal remedies, the prediction of side effects, and the profiling of
polypharmacologic actions [29, 30, 110, 112, 152]. The experimental validation of
the target-predicting approaches is usually demonstrated on single molecules or only
on few examples rather than on a large set of natural products [36, 108, 113], mainly
owing to the major effort necessary for experimental testing and the limited physical
availability of compounds.

The benefit of experimental testing based on virtual predictions compared to
serendipitous experimental screening could be demonstrated convincingly by
Doman et al. [153]. Their random in vitro screening for protein tyrosine phosphatase
inhibitors revealed a hit rate of 0.02%, while assaying the virtually predicted hits
yielded a hit rate of 34.8%. In general, the first evaluation of virtual hits does not
require any physically available material but requires a critical check on various
parameters before compounds are selected as candidates for experimental testing,
e.g., availability; isolation efforts; physicochemical parameters referring to PAINS
or inappropriate absorption, distribution, metabolism, excretion, and toxicity
(ADMET); reported toxicity; and reliability of predictions [72, 30]. Rare biological
material and precious isolates can be saved, and fewer bioassays are needed for the
identification of active hits.

Computer-aided techniques have shown to be applicable to many natural product
scaffolds such as polyketides [109], alkaloids [37, 118], coumarins [111, 125],
flavonoids [133], and sesqui- and triterpenes, [99, 126, 150], and they have been
used to make predictions on many biological drug target classes and phenotypic
effects.

The concatenation of cheminformatics tools in combination with pharmacognos-
tic expertise and complementary empirical knowledge, such as information from
traditional medicine, in vivo studies, epidemiological or clinical investigations,
bioassay-guided fractionation, and high-resolution mass spectrometry-based
dereplication is able to dramatically enhance the true positive hit rates as discussed
in Sect. 4.2 [116, 117].

The ever-increasing computing power and availability of augmented data analy-
sis algorithms have led to a broad use of computational tools in drug discovery. Even
big data quantities can be processed with increasingly clever algorithms. Moreover,
some predictive methods have shown similar performance levels to a group of
experienced medicinal chemists in predicting biological activities, and outperform
the brains of experts in the ability to process large databases [154].
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3 W: Weaknesses of Cheminformatics in Natural Product
Research

The many successful projects documented in the literature should not lead to wrong
perceptions. The processing of natural products with cheminformatics bears some
caveats, risks and limitations, which are present not only in both domains
(cheminformatics and natural product research) but also at their interface (Fig. 1).
To overcome weaknesses, these limitations should be recognized in order to be
considered and avoided as far as possible.

The limited availability of natural starting material [155] and of readily available
natural products by commercial vendors [28], the absence of elucidated molecular
structures for the vast majority of natural products that exist, in addition to assay
interference [156], are examples of drawbacks with respect to natural products. The
complexity of multicomponent mixtures with difficult-to-predict additive effects and
separation problems in isolation efforts are further caveats.

In the field of cheminformatics, there are recommended reviews on the pitfalls of
virtual screening [157] also in combination with natural product research
[72, 30]. The most fatal weakness of cheminformatics approaches is that they have
an inherent incapability to find novel compounds or novel molecular mechanisms of
action. They can just extend knowledge on existing topics; the predictive power is
better the more knowledge is available already for the system under investigation.
An investigator has to navigate on the one hand between innovation usually

Fig. 1 Weaknesses and challenges in cheminformatics, in natural product research, and at the
interface of these two fields
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combined with interesting but ambitious topics with few relevant data available, and,
on the other hand, probably trite, less risky targets with good prospects of success
due to a vast amount of information already available. A number of molecular
mechanisms have been explored by means of natural products, and some biological
targets have even been named by their natural product ligands, as exemplified by the
muscarinic acetylcholine receptor and cannabinoid receptors. Therefore, in silico
tools should be used as part of an interconnected network combined with empirical
knowledge and phenotype-directed and target-directed screening platforms
[38, 158].

3.1 Structural Complexity of Natural Products

A main weakness appearing upon the handling of natural products with computa-
tional algorithms is the difference between natural products and synthetic small
molecules [35], which was previously analyzed by several groups [11, 12, 76, 159–
161]. Most algorithms were trained on synthetic molecules and might perform less
well when they are confronted to unfamiliar molecules [35].

Natural products differ from other compound sets in several molecular properties.
They are more hydrophobic and contain more oxygen atoms and fewer nitrogen
atoms compared to synthetic drugs. The structural complexity, especially the differ-
ences in ring architecture with unsaturated ring systems and more three-dimensional
molecular shapes but less aromaticity is, on the one hand, closely correlated to the
concept of privileged structures but may cause a difference in performance [161].

Natural products are more flexible due to high numbers of sp3 hybridized atoms
making computations with three-dimensional tools (e.g., molecular docking) and
conformational sampling for 3D similarity searches or pharmacophore-based virtual
screening slower and more error-prone. A large number of rotatable bonds can also
lead to promiscuous results, where ligands are fitted to molecular shapes,
pharmacophores, and molecular docking in implausible ways. Rotatable bond filters
for shape matching experiments like the suggested Veber rule (rotatable bonds<12)
[162] can be applied.

A characteristic of natural products is the frequent occurrence of one or even more
chiral centers [11, 76, 160], which are not always annotated in natural product
databases or catalogs of chemical vendors [78]. Moreover, the exact configuration
is not always reported in the primary literature. The generation of all stereochemical
configurations is time-intensive and error-prone.

Projects are more likely to be successful if the input information is related to the
test subjects. Screening of natural product collections with a synthetic molecule
query may be problematic concerning the reliability of the prediction. Similarly, the
screening of synthetic molecule collections with a natural product-like query may
lead to disappointing results. It is obvious that different ligands can occupy different
regions on the same protein, even in the same binding site, making 3D alignments
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like pharmacohore- and shape-based screening prone to high rates of false-negative
results [157].

3.2 Handling of Glycosides

Glycosides play an important role in living organisms and are abundant moieties of
natural products with different biological roles. Glycosides like amygdalin are used by
different plants as storage and transport forms of their aglycone molecules. Upon
disruption of compartments (e.g., by grazing herbivores), enzyme hydrolysis cleaves
the glycosides and sets free the toxic aglycone. Other glycosides are natural prodrugs,
enabling improved drug-likeness of the transformed metabolites [163, 164].

At first glance and from a medicinal chemistry perspective, sugars and sugar-like
moieties are not in the focus of drug discovery. They are easily cleaved in the gut by
microbes or by first-pass metabolism, increase the molecular weight, and lead to steric
hindrance. Further, the polar glycoside moiety hinders the lipophilic effect between
protein and ligand. Therefore, algorithms were created to cleave sugars from their
aglycone counterparts for creation of virtual screening databases [28, 165].

The molecular docking force field was adjusted to the binding of comparably
rigid and nonpolar molecules and performs therefore well on such molecules;
however, the performance with carbohydrates and carbohydrate-containing mole-
cules is questionable. The frequently used molecular docking tool Autodock Vina
was able to produce acceptable structures within the top five ranked poses in only
55% of experimental crystallographic carbohydrate-protein complexes [166].

Notably, glycosides have been important drugs for a long time. In herbal medi-
cines, it is acknowledged that glycosides decrease capillary fragility and exert
secretolytic, diuretic, and antiexudative effects [167–169]. Carbohydrates play
important biological roles such as cell signaling, infection, and protein function
[170–172]. These effects are mediated generally by nonclassical modes of action
such as membrane activity and interaction with protein surfaces yet difficult to
describe with algorithms [173–175].

There are also examples of classic ligand-target interactions with natural product
glycosides. Thus, phlorizin, a dihydrochalcone derivative, was the blueprint for
sodium-dependent glucose transporter 2 inhibitors. The sugar moiety of phlorizin
represents a vital part of the necessary pharmacophore to block the transporter
[176]. From perspectives such as this, it may be a fallacy to exclude glycosides
from virtual screening databases.

The handling of glycosides may be dependent on the individual target and project
but definitely needs consideration. Further improvement of virtual screening tools
toward a better applicability for glycosides is certainly needed.
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3.3 Tiny Databases

A comparison of commercially available natural product collections with synthetic
collections reveals a large difference in their size (Fig. 2). When compared to large
databases of commercially available synthetic and mixed collections like Aldrich
Market Select [85] with 8 million unique available compounds, and ZINC [84]
comprising 120 million available compounds (7.3 million in stock), 11,000 natural
products available from natural product-only catalogues and 25,000 natural products
in total (including natural products in mixed catalogues) are fairly small [28]. In
total, an estimated 250,000–300,000 natural products are known up to now [28, 83].

Model rigidity has to be balanced according to the size of the databases screened.
Assuming a restrictive model with a hit rate of 0.2% will lead to estimated 50 virtual
hits from commercially available natural product databases and 16,000 virtual hits
from commercially available synthetic molecules.

Natural product chemical diversity, however, is insufficiently explored and is
biased toward molecules from extensively exploited sources making a final state-
ment on their extent speculative. This is underlined, for example, by the discovery of
naturally occurring organohalogens, which were considered until quite recently as
rare and exotic isolates and often suspected to be artifacts. With the exploitation of
unexplored sources such as marine organisms, algae, and lichens, thousands of these
have been described [177]. Also, improved isolation and analytical methods, which
enable the characterization of natural products contained at even lower traces,
constantly change our perception of natural products chemistry.

Two main issues in future will be to continue the present rate of natural product
discovery and to properly exploit what is found [178].

Fig. 2 Amounts of
purchasable compounds in
virtual collections on a
logarithmic scale; white,
natural product; black,
primarily synthetic
molecules; CA-NP,
commercially available
natural products; AMS
Aldrich Market Select
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4 O: Opportunities of Cheminformatics in Natural Product
Research

The growing popularity in the usage of computer-aided techniques in natural product
research resulted in numerous successful application examples. Depending on the
scientific issues at hand and the available information, in addition to that missing,
different in silico tools and strategies have to be carefully selected. Figure 3 provides
a schematic overview on opportunities to approach scientific questions by
cheminformatic means. Besides the individual application examples named in
Tables 2, 3, and 4, some successful projects are outlined in this chapter.

Fig. 3 Opportunities and areas of applications of cheminformatics in natural product research
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4.1 Virtual Screening of Natural Product Databases

When considering the innate character of natural product collections (prolific, but
low number of entities, difficult availability, high cost to obtain, etc.), as discussed in
the previous chapters, it is highly recommended to first validate the predictive power
of the model used by experimental testing of a set of virtual hits from easily
accessible and inexpensive, physically available (synthetic) databases. Also, a
proper preparation of the database subjected to virtual screening, e.g. by
pre-connected filtering experiments may help to (1) focus on the most interesting
candidates and (2) economize computational power.

For example, Su et al. prepared a virtual screening collection with fingerprint
clustering and drug-likeness filters. Natural products unsuitable for the molecular
docking algorithms due to their size and polarity could be removed in advance. The
virtual screening of only 24,000 molecules with a stepwise workflow employing
molecular docking led to the identification of baicalein and phloretin as new natural
Rho kinase inhibitors [141].

Considerable database preparation was also performed by Costa et al. for the
identification of HIV-1 reverse transcriptase inhibitors. They generated a natural
product database from 11 vendors and natural product databases publicly available
in the ZINC repository. They narrowed down the database by removing molecules
violating the Lipinski Rule of Five [179], and with predicted poor solubility and
permeability. A parallel molecular docking protocol as well as a 3D similarity search
led to the selection and experimental testing of several virtual hits. β-Carboline
derivatives were identified as HIV-1 reverse transcriptase inhibitors and their bind-
ing mode was examined using the molecular docking predictions as well as molec-
ular dynamic simulations [136].

Insufficient capacities to obtain large sets of natural products for experimental
testing may be circumvented by the application of a set of ligand-based
pharmacophore models previously validated mainly on synthetic molecules for the
most prevalent antitarget in drug discovery and development, i.e., the hERG channel
[38, 117, 118]. For a detailed insight into the performance of different hERG
prediction tools toward a fast and efficient cardiotoxic risk assessment, reference is
made in the contribution in the chapter “Open Access Activity Prediction Tools for
Natural Products. Case Study: hERG Blockers” by Schuster (this volume, p. 175).
Kratz et al. used the previously generated, best performing pharmacophore model for
the subsequent virtual hERG screening of natural product databases. They validated
their predictions in a patch clamp assay by testing small-scale lead-like enhanced
extracts from 12 plant materials known to contain the virtual hits. At 100 μg/cm3,
4 out of the 12 extracts exerted a hERG tail current inhibition of more than 30%,
among them Ipecacuanhae Radix. Use of an appropriate phytochemical workflow
resulted in the isolation and identification of five out of the six virtually predicted
alkaloids, among them the major constituents emetine and cephaeline with IC50

values of 21.4 and 5.3 μM, respectively [118]. Similarly, Vuorinen et al. [126] used
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pharmacophore models for the identification of hydroxysteroid dehydrogenase
inhibitors from Nature using previously validated models [180, 181].

Virtual screening can also predict phenotypic efficacy as shown by work of Karhu
et al. [131]. They performed a principal component analysis [7] of the physicochem-
ical properties of a natural product database and an antichlamydial reference set and
compared the Euclidian distances in the chemical space. Out of 26 virtual hits,
6 molecules were confirmed as active and 1 high-potency lead was identified.

4.2 Exploitation of Pharmacognostic Knowledge

The implementation of information from traditional medicine and the knowledge
from structural ligand-target interaction can increase significantly the yield of true
active hits (Fig. 4a, b). Applying pharmacophore models for cyclooxygenase (COX)
inhibitors, which were completely derived with input from synthesis chemistry,
Rollinger et al. were able to demonstrate statistically their effectiveness in the field
of natural products. A comparison of virtual hits obtained by screening of the mainly
synthetic molecular 3D collections of the Derwent World Drug Index (WDI) and the
Database of the National Cancer Institute (NCI) revealed hit rates in the range of
6.6% to 13.7% (depending on the search queries used). Using the in-house-gener-
ated natural product database NPD consisting of molecular structures from 80,000
natural products, even a slight increase of molecules that virtually fit into the

Fig. 4 Examples of strategies for the implementation of cheminformatics in pharmacognostic
workflows: (a) starting from validated in silico model/s; (b) starting from bioactive natural material
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required features of the pharmacophore models could be achieved. A striking result
of this study, however, was the average increase of hit rates (77 to 133%) when an
ethnopharmacologically biased database labeled as DIOS was screened compared to
the WDI and the NCI. The DIOS database contains structural information of 28,000
secondary metabolites reported from those medicinal plants that Pedanius
Dioscorides (first century AD) described in his “De Materia Medica” as useful in
the application of different sorts of inflammation. In this way, the distinct statistical
benefit of a combination of an ethnopharmacological approach and an in silico
screening could be demonstrated [115, 116]. In a follow-up study, one of the most
promising herbal drugs, the root bark of Morus alba, was selected based on the
predictions from the DIOS database. The plant material was phytochemically inves-
tigated to evaluate the applicability of the computer-aided approach. Several virtu-
ally predicted constituents from the group of the isolated Diels-Alder adducts could
be confirmed successfully as COX inhibitors [116].

Kirchweger et al. [125] performed a virtual screening of several small natural
product databases and a larger synthetic small molecule collection (SPECS) for the
identification of activators for the G protein-coupled bile acid receptor 1 (GPBAR1)
using a ligand-based pharmacophore virtual screening approach. The virtual hits
were ranked according to a shape-focused similarity score and the molecules were
clustered according to their physicochemical properties. This approach enabled the
selection of chemically diverse compounds endowed with the putative structural
requirements to act as ligands of the envisaged target for experimental validation
using a reporter-gene based assay. Both synthetic and natural product-derived virtual
hits were subjected to experimental testing. Accordingly, the yield of active syn-
thetic compounds (>15% receptor activation at 20 μM) was 10.5% (2 out of 19);
natural products resulted in a five-time higher hit rate (57%; 8 out of 14). The latter
group also included two novel GPBAR1 activating scaffolds, namely, the sesqui-
terpene coumarins farnesiferol B and microlobidene, which at 20 μM increased the
receptor activation to 61% and 84%, respectively, thus showing an activity compa-
rable to that of the endogenous ligand, lithocholic acid.

Cheminformatics can also be used in a straightforward manner for the identifica-
tion of active principles of traditionally used medicines and unravel their molecular
modes of actions. Schuster et al. [120] generated a set of validated pharmacophore
models for the transcription factor FXR, a drug target for inflammatory liver diseases
[182]. Grienke et al. [119] used this model for virtual screening of the Chinese herbal
medicine database, and, from this work, lanostane-type triterpenes from the fruit
body of Ganoderma lucidum were predicted as virtual hits. As this mushroom is
traditionally used against hepatitis, liver disease, and arthritis, a full mycochemical
investigation and isolation was performed. Five isolated lanostane triterpenes were
confirmed experimentally to induce FXR activation with EC50 values in the low
micromolar range.
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4.3 Virtual Target Fishing

It is a frequent observation that a herbal drug shows a well-documented biological or
clinical effect, but the constituents responsible as well as their underlying mecha-
nisms of action remain elusive [95, 108]. Binding mode prediction and virtual target
fishing can help to fast forward the rationalization of research and identify possible
drug leads. Similar to already described nutritional and medicinal effects in humans,
an observed phenotypic effect such as cytotoxicity, antimicrobial, or hypoglycemic
activity can be followed up with focused isolation and experimental efforts.

In 2014, Reker et al. [29] presented a novel method for target fishing, which is
independent of the target structure. The approach uses topological pharmacophore
features of query compound fragments to compare them to pre-calculated drug
compound clusters. The constituent can then be assigned to the cluster with the
smallest Euclidian distance. Target information for the cluster was derived from
confirmed interaction partners of reference drugs within the cluster. As a prospective
application example, the macrolide archazolide A (ArcA) was investigated. This
compound exerts potent cancer-related effects by inhibiting the ion pump vacuolar-
type H+-ATPase at the nanomolar level. However, it was suggested that additional
targets might be responsible for the pronounced antitumor effect. The analysis
predicted several targets involved in arachidonic acid-associated signaling cascades
as potential interaction partners, and subsequent biological testing confirmed a
concentration-dependent effect of ArcA on half of these targets. In addition, weak
effects on two further targets were observed. The experimental results validated the
applicability of the natural product-derived fragment-based approach for the identi-
fication of novel macromolecular targets. Remarkably, all newly identified interac-
tion partners of ArcA have also been linked to putative anticancer effects [29].

Mastic gum has been used traditionally against metabolic disorders [183] and has
also shown to exert a hypoglycemic in vivo activity [184]. Its bioactive constituents
and the molecular targets responsible were largely unknown. The virtual screening
of a natural compound database against 11β-HSD1 pharmacophore models retrieved
triterpenoids from Pistacia lentiscus as virtual hits. Together with empirical and
preclinical data, the prediction seemed plausible. Therefore, mastic gum and its
acidic fraction, which is known to contain the predicted hits, were subjected to
experimental testing. Both samples inhibited 11β-HSD1 in a concentration-
dependent manner; the two virtually predicted main triterpenes showed IC50 values
in the low micromolar range [126].

Gong et al. [112] used a similar approach based on reverse docking against
211 cancer-related targets to explain an observed cytotoxic effect against two cancer
cell lines of two novel sponge metabolites. The precious isolates were only tested
against the two most promising targets according to the docking scores. The
experimental testing explained the phenotypic effects as attributed to the inhibition
of histone acetyltransferase h(p300).
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Several target prediction tools have been made accessible online such as the self-
organizing map-based prediction of drug equivalence relationships (SPIDER) [106]
and the Antibiotic'ome [108].

4.4 Binding Pose and Activity Predictions

If a broad set of structurally very similar molecules and their biological activity in a
certain assay is well described, quantitative structure-activity relationship (QSAR)
models can be calculated. Schmidt et al. used the information on 69 sesquiterpene
lactone structures and their antitrypanosomal activities to generate a predictive
model. The query was able to predict correctly furanoheliangolides with highly
potent antitrypanosomal in vitro activity out of a virtual sesquiterpene
database [150].

Molecular docking in combination with molecular dynamic simulations but also
pharmacophore alignments have been demonstrated to accurately predict the binding
mode of natural products to their respective targets offering valuable support for the
understanding of bioactivities on a molecular level. Rollinger et al. used a combi-
nation of molecular docking and pharmacophore-based virtual screening to identify
experimentally novel inhibitors of the human rhinovirus (HRV) capsid binders and
to give insights into the interaction of natural product-derived inhibitors in the
binding pocket. They proposed an eight-feature pharmacophore necessary for the
identified ligands interacting in the binding site in addition to their fitting and
binding mechanism into the highly lipophilic pocket [96].

The structure and function of membrane-bound GPCRs is still not well under-
stood due to their difficult crystallization. Binding mechanisms of their ligands are
nevertheless crucial, since approximately one third of all drugs target these proteins.
After identifying several alkaloids as 5-HT2C receptor ligands with a combined
virtual and experimental screening, Peng et al. used a homology model to predict
the interaction pattern of the ligands. Molecular docking and molecular dynamics
suggested key interactions such as a conserved salt bridge and π stacking [101].

5 T: Threats of Cheminformatics in Natural Product
Research

At first glance, the broad use of natural products in the field of cheminformatics
should not lead to overestimated perceptions. As outlined in Sect. 3 weaknesses are
pervasive and experiments are mandatory for confirmation of results. However,
commonly, this is not the case for binding mode predictions, which frequently are
reported without any proof of correctness.
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Molecular target prediction tools are similarly hard to evaluate experimentally
and natural product researchers should scrutinize retrieved predictions with healthy
skepticism. The biomedical data for natural products is comparatively small when
compared to other molecule classes. Therefore, it must be assumed that they are
generally underrepresented in generation and validation of computational models.
This might not only be the case for target prediction but also for the estimation of
lipophilicity, conformer generation, assay interference prediction, molecular
docking force-field adjustment, and other tasks.

In silico models must follow scripted instructions and generate only predictions.
Flexibility, dynamics, entropic issues along with many more aspects can only be
approached with extensive computational efforts. Virtual screening experiments still
produce many false-positive virtual hits and incorrect or distorted results. Accord-
ingly, predictions without any solid and unbiased experimental validation are not
able to stand any test of scientific meaningfulness and therefore have to be regarded
as “preliminary.”On the other hand, even if experimentally validated, the probability
of not being able to gain access to information of experimentally proven wrong
hypothesis/models is very high. This not only refers to models that failed a proof of
concept but also to test data of compounds showing no activity on a specific target.
With special regard to the correct feeding and training of prediction tools with
structural data covering a broad range of activity, ideally from inactive compounds
to highly potent ones, learning from previous mistakes and non-working hypotheses
would be extremely valuable. The fact that so many successful projects have been
reported disguises the fact that other projects failed.

The availability of natural products in sufficient purity from commercial suppliers
or obtaining these by isolation from a suitable natural source can be very costly or
time-intensive. The natural starting material should be accessible and legally avail-
able for collection/acquisition considering issues on bioprospecting, intellectual
property rights, and transfer of natural material to the outside its country of origin
(Nagoya protocol, [155]). Also reliable reports on the natural product isolation
procedure as well as compound structure elucidation parameters and the description
of relevant physicochemical properties should be accessible for a target-oriented
re-isolation and identification using mass spectrometry-based dereplication.

Special attention should be devoted to broadly distributed PAINS motifs in
natural products such as catechols, hydroquinones, epoxides, peroxide bridges,
and phenolic Mannich bases. Other concerns are solubility problems and compound
aggregation. However, it might be inadvisable to generate a naive black-box appli-
cation of PAINS and general drug-likeness filters [156] without looking beyond
these parameters.

6 Conclusion

The process of small-molecule drug discovery can be described as being determin-
istic and nonlinear (e.g., activity cliffs) resembling a chaotic system. This is partic-
ularly true for drug discovery from natural products, where researchers are
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confronted along with nonlinear behavior, serendipitous events, errors, and incom-
pleteness also from biological variance, complex multicomponent mixture interac-
tions, and frequent assay interferences. The current challenge of medicinal chemists
is to choose which of the possible 1060 drug-like molecules should be synthesized
and tested [18]. Considering the historical impact of natural products on the phar-
maceutical arsenal and their infinite (however, incompletely known) diversity,
secondary metabolites have already been synthesized by the most trained chemist
on earth and thus are hidden gems designed to have key functions. In natural product
research, the application of cheminformatics-based strategies is limited to already
structurally disclosed molecules; accordingly, their potentially very large impact
relies on properly performed and trustworthy chemical studies on natural resources
and their constituents and their documentation and dissemination.

The technological advances and experimental exploration of the last centuries, in
particular, have afforded the opportunity of accessing enormous amounts of data.
Selecting the appropriate computational tools for handling these data and for
addressing the research question is a key step but still requires a healthy skepticism
and an unbiased attitude.

The Nobel Laureate Rolf Zinkernagel once made a piercing summary of different
research strategies and their chance for success [185]: Having no rationale and
performing no experiments is cheap but will not lead to results. To start from a
rationale, but renounce experimental work is another relatively cheap method, but
similarly does not lead to results. Lots of experiments without any rationale may
produce interesting and serendipitous results, but with a disproportionate effort and
waste of capacities. To perform experimental studies with a rationale is without
surprise the gold method with a good yield of results and appropriate expenses. The
generation of this rationale assisted by the use of already available data and with
modern computational techniques based on the combined expertise from natural
product researchers and computational chemists harbors the key to successful drug
discovery processes in the field of remedies from Mother Nature.
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