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Foreword

“Big data” has emerged as one key term of the twenty-first century. Wikipedia,
which itself is visible evidence of this development, defines the term as a “field that
treats ways to analyze, systematically extract information from, or otherwise deal
with data sets that are too large or complex to be dealt with by traditional data-
processing application software.”

It is therefore not surprising that also in the field of natural product chemistry over
the last few decades, cheminformatic methods have evolved to analyze databases.
The current volume of “Progress in the Chemistry of Organic Natural Products”
presents a collection of contributions by authors who are experts in this field.

The first contribution (“Cheminformatics Explorations of Natural Products”) by
José Medina-Franco and his colleagues from the National Autonomous University
of Mexico gives a broad overview of cheminformatics strategies that may be used to
mine natural product spaces for their potential biological activity, toxicity, or
biodiversity.

The following chapter “Resources for Chemical, Biological, and Structural Data
on Natural Products” is written by a young team working with Johannes Kirchmair
from the University of Bergen (Norway) and University of Hamburg (Germany).
Therein, they critically review approaches for using cheminformatic tools including
virtual databases, physical natural product collections, and resources for biological
and structural data on natural products.

The chapter “A Toolbox for the Identification of Modes of Action of Natural
Products” by Tiago Rodrigues from the Instituto de Medicina Molecular Jodo Lobo
Antunes (Portugal) reviews cheminformatics tools for the identification of modes of
action of natural products from molecular docking to machine-learning methods.

Thierry Langer and his team from the University of Vienna (Austria) provide a
detailed introduction into pharmacophore-based techniques and the underlying
concept that can be used in natural products chemistry and exemplify respective
projects (“The Pharmacophore Concept and its Applications in Computer-Aided
Drug Design”).



vi Foreword

Daniel Reker from the Massachusetts Institute of Technology (USA) illuminates
the relevance of natural fragments for drug discovery in his contribution
“Cheminformatic Analysis of Natural Product Fragments.”

The chapter “Open Access Activity Prediction Tools for Natural Products. Case
Study: hERG Blockers,” contributed by a team working with Daniela Schuster from
the Paracelsus Medical University Salzburg and the University of Innsbruck (Aus-
tria), shows how potential toxicity caused by interference of natural products with
the hERG potassium ion channel can be recognized by computational tools.

Finally, Benjamin Kirchweger and Judith Rollinger from the University of
Vienna (Austria) analyze the strength, weaknesses, opportunities, and threats of
cheminformatics methods that are used in natural product research (“A SWOT
Analysis of Cheminformatics in Natural Product Research”).

In sum, Volume 110 offers a comprehensive and timely overview of how “big
data” generated over the past decades in the form of natural product collections and
databases can be mined by computational approaches to answer recurring issues.
These include the molecular target identification of natural compounds as well as
ligand identification for relevant macromolecular targets from the large pool of
bioactive compounds from Nature, thus allowing us to assess their potential phar-
macological and toxicological properties.

Vienna, Austria Verena M. Dirsch
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Abbreviations

BRD Bromodomain

CDPs Consensus Diversity Plots

DNMT  DNA methyltransferase

FDA Food and Drug Administration

HDAC Histone deacetylase

hERG Human ether-a-go-go-related gene ion-channel
IMPS Invalid metabolic panaceas

MACCS Molecular Access System

PAINS Pan-Assay Interference compounds
PCA Principal component analysis

SAH S-adenosyl homocysteine

SAM S-adenosyl methionine

SMILES Simplified Molecular Input Line Entries
TCM Traditional Chinese Medicine

UNPD Universal Natural Products Database

1 Introduction

Natural products have intimate relationships with medicine and chemistry, with
various examples from ancient civilizations throughout history. Most of these uses
include those in traditional or herbal medicine, to which also mystical properties to
the plants or fungi concerned have sometimes been attributed. For example, sage is a
herb that was thought to ward off evil. Nowadays, it is known that sage possesses
several biological effects, for example, antibacterial, antioxidant, and cholinergic
[1]. In a similar manner, other traditional uses have been validated by scientific
research [2-5].

As such, natural sources have driven the early stages of medicinal chemistry and
drug discovery, yielding valuable therapeutic agents still in use today. Prominent
examples of drugs approved for clinical use from natural sources include, but are not
limited to, penicillin, pilocarpine, reserpine, and salicylic acid. Furthermore, the role
of natural products as novel avenues for therapy increased after the so-called Golden
Age of Antibiotics (circa 1960) when the larger companies in the pharmaceutical
industry began the development of numerous projects, searching for molecules with
diverse bioactivities [6]. However, the “golden age” of natural products as antibi-
otics was quite short, since most companies reduced such endeavors by the turn of
the twenty-first century [7]. Several reasons have been given that help explain the
decreased enthusiasm of pharmaceutical companies to work on natural products.
Two major points are the inherent complexity of crude extract compound mixtures
and the slowness of natural product optimization [8]. Additionally, with the rapid
development of combinatorial chemistry and high-throughput methods, the search
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for chemical diversity was considered a solved problem. Unfortunately, this has not
been the case, as it has been shown that combinatorial collections tend to get trapped
in the same area of chemical space [9]. Moreover, even with the ability to produce
compounds in high numbers, only a handful of Food and Drug Administration
(FDA)-approved drugs come from such methods [10]. Therefore, it can be argued
that the solution of the problem “quantity over quality” is “quality over quantity”.

As a result, natural products have seen a “rebirth” with novel methods and
synthesis strategies to produce diverse collections [11]. Additionally, in most
cases, vegetal sources are the major players in natural product research. Thus,
other sources like marine, bacterial, and fungal metabolites offer untapped potential
[12, 13]. As recently reviewed, there are several recently approved drugs that are
natural products or are synthetic analogs of hit compounds initially identified from
natural sources. A clear and recent example is the fungal metabolite migalastat
(Galafold®) approved in 2018 for the treatment of Fabry disease [14].

Due to these considerations, current efforts involve multidisciplinary approaches,
which help mitigate the problems inherent to natural products. This mainly focuses
on the improvement of extraction, isolation, and quality control of metabolites,
including “omics technology” [15]. Nonetheless, other technological approaches
have arisen. Take, for example, the high volume of information available on natural
products and their activities. We now live in an era of “big data”, with different
dedicated repositories [16]. The rational and effective mining of such databases
could yield important breakthroughs.

It is well known that many natural products exert multiple effects in vitro, and,
because of this promiscuous nature, some classes of natural products are among the
Pan Assay Interference Compounds (PAINS, see Sect. 3) [17]. It follows that a
screening campaign might well filter scaffolds of natural products to identify prom-
ising ones, while also discarding PAIN-like moieties. In practice, this can be
accomplished rather easily, by conducting a virtual screening that is an in silico
method (part of cheminformatics) aimed at selecting compounds with potential
biological activity.

A rather “young” discipline, cheminformatics, is envisioned as the answer for
chemical information problems using several numerical, statistical, and physico-
chemical methods to work with two- and three-dimensional chemical structures
[18]. This aims to optimize resources more effectively and to focus on the more
viable molecules. Therefore, cheminformatics relies heavily on concepts like chem-
ical space, molecular similarity, and chemical representation [19]. More recently, the
scope of cheminformatics has shifted toward in silico evaluation, using molecular
modeling approaches and machine learning.

The goal of this chapter is to discuss the progress of selected cheminformatic
strategies to further advance the identification of bioactive molecules from natural
origin. This contribution is organized in five major sections. After this introduction,
Sect. 2 discusses examples of mining the space of natural products using several
virtual screening strategies, including similarity searching, automated docking, and
consensus methods. In this section, case studies are described of virtual screening for
the identification of bioactive molecules against epigenetic targets. Section 3
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discusses the in silico toxicity profiling of natural product datasets. Next, Sect. 4
covers the analysis of the chemical diversity and coverage in chemical space as well
as the design of natural product-like molecules and natural product mimetics.
Section 5 presents summary conclusions and perspectives.

2 Mining Natural Product Spaces: Identification
of Bioactive Compounds

As stated, virtual screening aims to evaluate the potential of a molecule as a
biological agent. This can be achieved in several ways; some of these are listed in
Table 1.

Usually, a virtual screening protocol involves various methods in consecutive
order, trying to filter large databases to “cherry-pick” putative ligands of interest.
Thus far, virtual screening has been applied successfully to identify hit compounds
that are usually later optimized [26-28].

In the early days of in silico research, the quintessential approaches were
descriptor-based, mostly inspired by the success of the Hansch-Fujita method.
This led to the birth of Quantitative Structure Activity Relationships (QSAR) and
their more refined counterparts: CoOMFA and CoMSIA [29]. A prominent success

Table 1 Representative computational methods and concepts used for virtual screening

Method/concept Brief description Refs.

Chemical space Abstract representation of compounds, using differ- | [20]
ent descriptors. This allows the profiling of chemical
collections

Molecular similarity Using graph decomposition, molecular structures are | [21]

codified as vectors. These in turn can be compared
using different equations to measure similarity
QSAR Mathematical models supported by descriptors that | [22]
quantify the impact of substituents in biological
activity. Their main aim is the prediction of biolog-
ical activity

Molecular docking Simulation that approximates protein-ligand bind- [23]
ing. This is accomplished by the conformational
searches of ligands and the evaluation of these using
dG values as criteria

Molecular dynamics Physical simulations that allow the study of protein | [24]
behavior, using equations of motion and potential
energy functions (forcefields)

Free energy perturbations | Derivatives of molecular dynamics, in this case the | [25]
simulation goes across a thermodynamic cycle. This
can be used for the approximation of binding energy
and the change in its value due to fragment changes
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case being the Lipinski Rule of Five, which describes a general profile of “drug-like”
molecules with optimal bioavailability (no more than 5 hydrogen bond donors, no
more than 10 hydrogen bond acceptors, M < 500, logP < 5) [30]. Alas, it can be
argued that over-reliance on such approaches has led to molecular attrition [31]. In
addition, it has been shown that the overall performance of descriptor-based classi-
fication depends on the correct assessment of relevant properties [32].

On the other hand, there are receptor-based approaches, with the most well-known
of them being molecular docking. One such technique uses the GRID method,
developed by Goodford et al., which generates molecular interaction maps in protein
cavities [33]. Hence, docking can be used to model drug—protein complexes and
perhaps the most appealing aspect of this, the calculation of relative binding
energies.

Even so, molecular docking has critical points that may be often overlooked by
naive users, for example, structure selection, protein preparation, the inclusion of
water molecules and metal ions, and protein flexibility [23, 34]. Furthermore, one of
the most important flaws in molecular docking is the pose versus scoring phenomena
that are related to the uncertainty of significant results without the proper knowledge
of the binding site. Consequently, some protocols and good practices have been
proposed for reliable results [35, 36]. In this sense, proper ligand selection has been
suggested as a preferred method for docking candidate selection [37].

Of the several approaches for molecule mining, chemical similarity is perhaps the
most powerful. Most chemists have encountered this principle, sometimes inadver-
tently. The rather simple axiom, “similar structures share similar activities,” holds
significantly true in a pharmacological context. In practice, chemical similarity
provides a tool for systematic and objective comparison of compound pairs. To do
this, chemical structures are codified as strings, known as Simplified Molecular Input
Line Entries (SMILES). Then follows a comparison based on topology or fragment
substructures, commonly performed with the Tanimoto coefficient to compute
similarity values [38].

Without doubt, similarity methods have improved the overall capacities of virtual
screening, with recent examples of success in the literature [39]. Nevertheless,
molecular similarity is not fail-proof due to structure—activity relationship heteroge-
neity. More explicitly, this refers to the existence of activity-cliffs, that is, molecules
with a known active scaffold that loses its effect with small modifications (pyridine
instead of benzene ring) as with compounds 1a and 1b shown in Fig. 1.

This phenomenon deeply impacts the performance of virtual screening as a
whole, not just similarity methods [40]. Accordingly, the best results of virtual
screening campaigns are obtained by complementary approaches, also known as
consensus [41].

Virtual screening protocols may be implemented rather easily and with such
potential, they have been adopted in natural product research. Correspondingly,
screening and optimization of natural products has benefited from computational
tools. In turn, computational chemists saw the potential of natural products as
privileged scaffolds for lead searching, ending in a symbiotic relationship early
on. As may be expected, there have been some inherent difficulties and successes
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OH O

2 (amentoflavone)

Fig. 1 Example of an activity cliff, with the most potent structure being 1b. In this case, the
difference in activity between 1a and 1b is almost 400 times. Of note, this large change in activity is
due to a single heteroatom. Below, structural formula of amentoflavone (2)

along the way. Still, this interdisciplinary environment has led to the development of
public repositories and the overall improvement of computational algorithms [42].

Generally, the proposal or study of putative mechanisms of action is the main
goal of computational methods in natural product research. For example, DNA
topoisomerases have been studied with a wide array of natural products, identifying
interaction patterns crucial to enzyme inhibition [43]. These concepts have been
scaled further as “target fishing” or reverse virtual screening. In this case, the
molecule of interest is used as filter, that is, it is evaluated against several targets
to identify significant activities. The value of such studies cannot be overstated, as
their utility may range from structure—activity relationship optimization to multi-
activity map pathways [44].

Likewise, molecular modeling tools have been used to identify natural product
leads with micromolar activities in targets such as acetylcholinesterase (AChE),
cytochrome P-450, angiotensin-converting enzyme 2 (ACE-2), kinase CK2, and
estrogen receptor-f [42]. On the other hand, consensus protocols have been suc-
cessful in the screening of marine compounds with assorted activities [13].

As may be seen, natural product mining with virtual screening protocols has
proven effective. Of course, there are more examples in different fields, but we
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consider that among them, the epigenome provides an interesting application for
natural products as chemoprotective agents. Here, we discuss recent applications
with emphasis on epigenetic targets that are emerging as promising targets for the
treatment of several diseases [45-49].

2.1 Case Studies of Virtual Screening for Epigenetic Targets

Epigenetics has become an attractive area of study, first described in 1940 by Conrad
Waddington [50]. It refers to heritable changes in gene expression that occur
independent of alterations in DNA sequence, but are rather based on modifications
of histone proteins or nucleic acids. Since its description, epigenetics is linked to
factors such as diet or the environment to explain the biogenesis of some
diseases [51].

Currently, epigenetics has provided a novel approach to search for therapies in the
treatment of cancer, diabetes, hypertension, or even Alzheimer’s disease. Still,
epigenetic modulation is not “black or white”, as several epigenetically modifying
enzymes modulate a wide array of physiological functions. In addition, the
epi-pocketome continues to grow at steady pace, increasing target diversity and
complexity [52, 53]. Hence, the overall safety and scope of epi-therapies are yet
quite blurry [54].

Consequently, the search for epi-modulators is not limited to drugs but is focused
on the identification of probes [55, 56]. In this context, natural products have taken a
prominent role in the field, serving as leads or even templates to understand
epi-pharmacology. Some examples (3—11) of epi-modulators are presented in Fig. 2.

Of note, flavonoids have a privileged place among natural products as therapeutic
agents. Often regarded as natural polydrugs, this scaffold has a plethora of biologic
actions beyond their antioxidant potential [57]. Considering their abundance in
human diet, flavonoids have a well-documented nutraceutical potential [58].

In the next sub-sections, we further comment on some case studies where natural
products are involved in serving as leads or to uncover interesting structure—activity
relationships.
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Fig. 2 Illustrative examples of natural products reported as epigenetic modulators, as identified by
direct or indirect mechanisms. Most of the examples have supportive in silico modeling studies that
help to explain their effect
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2.1.1 Bromodomains

Bromodomains (BRDs) are small proteins (around 120 residues) that are classified
as epi-readers, that is, enzymes for which the function is focused on recognizing
patterns of a given moiety. In this case, bromodomains identify acetylated lysine
residues [59]. Currently, over 60 isoforms of bromodomains have been identified
from the human proteome; of those, bromodomain and extraterminal domains
(BETs) have attracted the most interest so far. This is mainly due to their relation
to cancer cell lines and inflammatory processes [60].

One of the pitfalls in bromodomain inhibition is the lack of structural diversity in
current inhibitors [61]. As a result of this, there is an ongoing search for novel
inhibitors of these targets. Additionally, BET isoforms exhibit high values of
sequence similarity in their binding site, making the search more difficult for
selective and potent inhibitors.

Recent endeavors in the field include fragment-based virtual screening [62], lead
optimization based on receptor structure [63], development of bivalent inhibitors
[64], and molecular dynamics of active sites [65]. With this background, our group
focused on molecular modeling methods to further advance the understanding of
BET inhibition [66].

Following a virtual screening protocol using molecular similarity and docking,
two hits were identified. The more promising was amentoflavone (2) (Fig. 1), a
biflavonoid produced by Gingko biloba and Hypericum perforatum among other
plants, with previous reports of antitumor-related activity [67, 68]. Similarly, other
groups identified the flavonoid scaffold as a putative ligand for bromodomains
[69, 70]. Yet, this was the first report for biflavonoids, which is interesting due to
their atropisomeric properties [71]. In addition, all these studies suggested that
flavonoids bind at the ZA channel (a flexible region connecting the Z and A
loops). This region has been suggested as significant for selectivity due to its
interaction with a conserved water network [72].

Further characterization was performed with molecular dynamics simulations,
which showed that amentoflavone (2) can interact with D145, a residue specific to
BRD4-BD1 [73]. This is an interesting observation considering that RVX-297
(a quinazolone) is a specific inhibitor of BRD4-BD2 [74]. Biological evaluation of
amentoflavone showed an ICs, in the micromolar range, with evidence suggesting
selectivity for BRD4-BD1 [75].

Thus, it can be stated that atropisomerism provides positive contacts for BRD4-
specific inhibition. As a proof of concept, Fig. 3 presents protein—ligand interactions
with selected biflavonoids obtained by molecular dynamics. This shows that indeed,
the spatial arrangement and conformational freedom of ligands favor their interac-
tion to D145.

Recently, isothermal titration calorimetry assays have shown that binding in the
pocket of BETs is mostly enthalpy driven [76]. This in addition to the flexibility of
the ZA channel suggests that constrained structures can show BET selectivity and
specificity. This is a notable observation considering the rather “simple” scaffold of
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flavones. Nevertheless, this shows the undeniable potential of natural products, not
just as leads but as pharmacophore templates.

2.1.2 Sirtuins

While not yet discussed in the previous Section on bromodomains, histone acetyla-
tion is crucial for chromatin opening. This happens as a result of the recruitment of
histone acetyl transferases, and to reverse this process, histone deacetylases
(HDAC:S). The latter are intensively studied to develop novel therapies for several
cancer lines, by reactivating silenced genes [77]. Currently, 18 HDAC isoforms are
classified into four different classes in regard to their homology to yeast proteins.
Class III is the only one for which the function relies on nicotine adenine dinucle-
otide (NAD+), also known as sirtuins due to their relation to Sir2 [78].

There are seven isoforms of sirtuins in humans expressed at different cellular
locations, with highly conserved active sites, but functionally different structures and
domains [79]. Recently, it has been shown that sirtuins exert functions beyond
epigenetic silencing [80]. For example, sirtuins have an active role in DNA protec-
tion and repair by several mechanisms, which include PARP activation, glutamine
anaplerosis, reactive oxygen species, and activation of reactive oxygen species
neutralizing enzymes [81]. Moreover, sirtuin expression has a direct correlation
with caloric restriction. This has been related to extended life span and overall health
status provided by NAD™ upregulation [82]. Hence, the investigation of sirtuins
becomes quite interesting, as the focus diverges for the search of both inhibitors and
activators, according to the effect desired.

One of the first inhibitors of the HDACs was romidepsin (8), a depsipeptide with
a disulfide bond and a caged structure, identified from Chromobacterium violaceum
[83]. In subsequent studies, it was shown that romidepsin activity was mediated by
rupture of the disulfide bond, followed by covalent inhibition of catalytic zinc ions
[84]. As a result of this, 8 has pleiotropic effects via pan-HDAC inhibition
[85]. Romidepsin (8) has been approved by the FDA for the treatment of T-cell
lymphoma [86].

Psammaplin A (11) also contains a disulfide bond, which gives it a potent but
nonspecific inhibition of HDACSs. Synthesis optimization of this structure led to
UVIS5008, a compound with the added capacity to inhibit SIRT1/2 [87].

As such, with the off-target effects and nonspecific binding, some researchers
have used in silico methods in order to further investigate the inhibition of sirtuins.
Early studies focused on splitomicin, an inhibitor of yeast sirtuins. Using molecular
docking and molecular mechanics methods, structure—activity relationships were
obtained for splitomicin derivatives. These studies provided insight into the rationale
behind the activity of (R)-enantiomers of these scaffolds, which were also
non-competitive SIRT2 inhibitors [88].

Kokkonen et al. [89] conducted a 3D QSAR study based on SIRTI1. Using the
CoMFA method a model of significant predictive power was obtained, which
resulted in peptide-like ligands for SIRT1 with ICsq values around 10 pM. Following
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a subsequent ligand-based virtual screening by Sun et al. [90] using data from public
repositories and literature records, 36 representative ligands were selected to obtain
binding models using molecular docking. With this model, 12 compounds from
Traditional Chinese Medicine were identified as putative ligands of SIRT1. That
same year a classic screening of the same database was carried out, identifying four
actives out of 19 candidates for SIRT1 activation [91].

A recent study by Karam et al. [92] presented a virtual screening protocol
followed by in vitro testing, with a focus on SIRTI, 2, and 3. Using a dataset of
African-derived natural products (p-ANAPL), 13 compounds were selected by
molecular docking. Seven of these compounds contained a chalcone scaffold with
modest activity against SIRT1 and 2. Further modeling showed that the putative
binding poses correlate with known crystallographic structures.

Another isoform of interest is SIRT6, as it is related to inflammatory and aging
processes. Several studies in mice have shown the importance of this enzyme,
particularly its role in cardioprotective mechanisms [93]. Rahnasto-Rilla et al. [94]
focused on several flavonoids as putative SIRT6 modulators. The authors of this
work used first in vitro screening to identify inhibition/activation of this enzyme.
Remarkably, the nature of the modulation was concentration-dependent, with
anthocyanidins being identified as effective activators of SIRT6. To gain further
insights, molecular docking and in silico residue mutations were carried out, iden-
tifying the putative site for activators and the possible mechanism being conforma-
tional changes induced by the amino acid residues G156, D185, W186, E187,
and D188.

Finally, we discuss the role of sirtuin inhibitors as putative antiparasitic agents.
This arises from the phylogenetic characterization of sirtuins, identifying SIR2
homologous enzymes in pathogens, for example, Toxoplasma spp., Plasmodium
spp., Trypanosoma cruzi, Leishmania spp., and Trichomonas vaginalis [95]. This
opens an avenue for novel therapies of the so-called neglected diseases, as it has been
shown that these enzymes have direct relationship with growth and infectivity of
pathogens [96, 97].

In this regard, in silico modeling has been used to assess the viability of these
macromolecules as potential targets for the treatment of infections. Mostly by
homology modeling, studies have suggested that parasitic sirtuins have enough
differences from human isoforms to warrant low toxicity [98, 99].

With this in mind, and as a proof of concept, we selected Trypanosoma cruzi Sir2-
related protein 3 (TcSir2rp3), as a potential target for the treatment of Chagas
disease, and conducted representative virtual screening. Beginning with a homology
model for T. cruzi, sirtuin coupled with NAD*, to conduct molecular docking with
putative ligands. Also, we focused on flavonoids, due to their background discussed
above.
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2.1.3 DNA Methyltransferases

Deoxyribonucleic acid may be modified by the addition of methyl groups. This may
be conducted over the CpG islands, specifically position 5 of cytosine nucleotides.
These regions on DNA are related to gene promoters, so methylation-induced
silencing is a recurring feature in most types of cancer [100]. This process involves
de novo methylation carried out by the enzymes DNA methyltransferases (DNMTs)
3A and DNMT3B, while “maintenance” is done by the isoform DNMT1. Abnormal
function of DNMTs has been related to other malignancies, such as asthma, lupus
erythematosus, and myelodysplastic syndrome [101].

An indirect inhibition of DNA methylation, with the use of the nucleotide
5-azacytidine, resulted in re-expression of silenced genes and inhibition of tumor
growth [49]. As a result of this, analogs of S-adenosyl methionine and S-adenosyl
homocysteine (SAM/SAH, respectively) have been studied to uncover the mecha-
nisms of methyltransferases [102]. Sinefungin, a natural analogue of SAM is a
pan-inhibitor of methyltransferases that continues to serve as template for rational
design due to the “transition state model” presented earlier [103].

Nevertheless, nucleotide derivatives possess poor bioavailability and high toxic-
ity, which necessitated research for non-nucleotide scaffolds [104]. Following the
example of sinefungin, other natural products have been studied as direct or indirect
demethylating agents. Phenolic compounds have a prominent place in these
endeavors, as various studies have shown strong evidence of the chemoprotective
role of these dietary compounds. Examples include (Figs. 2 and 4): genistein (15),
rosmarinic acid (6), baicalein (20), and galangin (21); most of them exert indirect
inhibition of DNMT1 by SAH accumulation [105]. Among these compounds,
resveratrol (3) stands out, posing multi-target activities. A recent study by Maugeri
et al. provided evidence of resveratrol modulation of SIRT1 and DNMT [106]. This
serves as further evidence of the potential of 3 beyond its antioxidant capacities.

Using (E)-resveratrol analogs, the study of Aldawsari et al. showed that salicylate
moieties provide putative DNMT3 selectivity [107]. By means of molecular model-
ing and in vitro testing it was assessed that these analogues may have activity
independent of SAH, with an increased potency when compared to the parent
compound.

Similarly, kazinol Q (9), a hydroxy-chromane derivative, showed antiproliferative
activity at 10 pM. Using molecular docking, it was shown that 9 binds to DNMT1 at
the SAM site, sharing pharmacophoric traits with epigallocatechin-3-gallate (EGCG),
despite the lack of a galloyl moiety [108].

As demonstrated above, natural products continue to offer numerous leads for
epigenetic modulation. A focus toward multi-target activity and interdisciplinary
research should together continue to uncover other mechanisms such as protein-
protein interaction (PPI) modulation. However, the possible toxicity of natural
products may still be an issue, as it is a main problem in drug discovery. Hence, in
the next section, we address some of the advances and challenges to predict toxicity.
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12 (quercetin)

HO
14 (B-sitosterol)
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21 (R = H, R = H; galangin) OH 22 ((+)-catechin)

Fig. 4 Chemical structures of ten invalid metabolic panaceas (IMPs), a category that also includes
curcumin (5)
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3 Toxicity Profile

Despite the fact that natural products are regarded by the public domain as “safe”
because they are “natural compounds” and indeed have been strongly associated
with many health benefits, they can contain undesirable, for example, reactive or
functional groups. They may also have other toxicological and other properties
rendering them not suitable for drug discovery or human consumption such as
preservatives or flavoring compounds. Certainly, there are secondary metabolites
that are used as pesticides and are toxic.

In drug discovery, calculating or whenever feasible measuring or quantifying
experimentally the toxicity profile of chemical compounds is mandatory. In the early
stages of drug development, it is common to assess the toxicity related to cyto-
chrome P450 or the human ether-a-go-go-related gene ion-channel (hERG). In later
stages, other toxicity endpoints are commonly evaluated such as skin sensitization,
potential for genotoxicity and carcinogenicity [109, 110]. This is because many
research programs have failed due to toxicity concerns [110]. One of the strategies in
order to anticipate toxicity issues is applying commercial, public or in-house algo-
rithms [111, 112]. Indeed, the serious toxicity issues in drug discovery have boosted
the need to develop tools to reliably and rapidly predict toxicity endpoints of
compounds. Despite the fact that much progress has been made in in silico toxicol-
ogy, this research area is still under development [110]. In this regard, it is relevant to
bear in mind that accurate models become more challenging to develop as the
complexity of the toxicity endpoint increases. Complex endpoints are characterized
by having various mechanisms of action, that is, due to the interaction of one
compound with multiple targets (“polypharmacology”) [113] or the interaction of
multiple ligands with the same target (“polyspecificity”) [114], or the combination of
both such as the case for certain fragrances (Herndndez-Alvarado RB et al. 2019,
personal communication). Moreover, the biggest challenge in toxicity modeling is
that all chemical compounds are toxic at some level. Therefore, it is expected that a
computational approach would be able to predict the type and level of toxicity. As
commented by Gleeson et al., the prediction of the absolute toxic potential of a
compound, either from in silico or animal models, is very difficult because there are a
large number of ways in which toxicity (related to the primary pharmacology or
many secondary pathways) can arise [110].

For practical purposes in many current drug discovery projects, structural alerts
are used to rapidly identify small molecules that are reactive under common test
conditions [115] or are associated with other undesirable properties [116]. These
types of compounds have been termed PAINS in the literature (see above). The
importance of PAINS structural alerts in natural product research for drug discovery
has been discussed extensively by Baell [117].

In this context, it is essential to study and distinguish the concentration and the
mechanism of toxicity of natural products. There are several studies that have been
published with the aim of estimating the toxicity profile of natural product datasets.
Table 2 summarizes representative work of in silico profiling of natural products and
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Table 2 Examples of recent cheminformatic toxicity-related analysis of datasets of natural
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products
Study Outcome Refs.
In silico toxicological This study compares the predicted vs. experimental [118]
screening of natural toxicity profile for the naturally occurring dietary
products chemicals: estragole, pulegone, aristolochic acid 1,
lipoic acid, 1-octacosanol, and epicatechin. It was
found that consensus predictions appear to be more
accurate than the use of only one or two software pro-
grams. In silico results were in agreement with the
experimental toxicity data
In silico toxicity profil- | Analysis of the diversity and chemical toxicity assess- | [119]
ing of natural product ment of three chemical collections of compounds from
compound libraries African flora. The predictions were done through the
from African flora identification of chemical structural alerts. It was con-
cluded that only a small fraction of the libraries could
have toxicities beyond acceptable limits
In silico prediction of Lupeol is a triterpenoid found in many plant species. [120]
the toxic potential of The interaction of lupeol and 11 of its analogues toward
lupeol a series of 16 proteins known or suspected to trigger
adverse effects was investigated. It was found that there
is a moderate toxic potential for lupeol and some of its
analogues, by targeting and binding to nuclear recep-
tors involved in fertility
Toxicity assessment of | Assessment of the toxicological profile of molecules [121]
natural products from with analgesic activity from the UNIIQUIM database.
Mexican plants with Most of the compounds are likely to interact with
antinociceptive activity | opioid receptors. The predicted acute toxicity is low
and none is predicted as mutagenic
PAINS alerts of a Bra- | A large number of molecules in NuBBEpg are prom- | [122]
zilian dataset and other | ising sources of molecules for medicinal chemistry and
reference datasets drug discovery projects
Promiscuity predictions | Predictions of promiscuous compounds with the free [116]
for 208,000 natural online server Hit Dexter 2.0. Overall, flavonoids, in
products particular chalcones, are predicted as highly promiscu-
ous. In contrast, alkaloids are predicted to be less pro-
miscuous in general

computer-aided prediction of their toxicity profile. A representative study is further
discussed below.

A visual representation of 24 ADME (absorption, distribution, metabolism, and
elimination)-related properties for a TCM database [123] and natural products from
the ZINC database [124] was obtained with principal component analysis (PCA).
The so-called ADME space of the natural product collections was compared to a
collection of approved drugs, commercial vendor compounds, a general diverse
collection obtained from the National Cancer Institute database, and combinatorial
collections. It was concluded that TCM covers a vast region of this property space,
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including areas uncharted by drugs. Natural products from ZINC occupy the same
area as drugs [123].

Physicochemical properties along with sub-structural features, for example, func-
tional groups are also used as criteria to filter out compounds with potential toxicity
issues early in the drug discovery process. To exemplify this point in recent work,
Saldivar-Gonzélez et al. classified seven natural product collections into six subsets
including drug-like, extended drug-like, fragment-like, lead-like, PPI-like, and
PAINS [122]. The collections were 2214 compounds from Brazil assembled in the
NuBBE database, that is, the first collections of natural products of Brazilian
biodiversity, with 473 cyanobacteria and 206 fungal metabolites, 6253 marine
natural products, 4103 purified natural product screening compounds, 26,318
semi-synthetic molecules (the last two are commercially available for screening),
17,986 compounds from TCM, and 209,574 molecules in the Universal Natural
Products Database (UNPD). Overall, it was found that all seven natural product
types had a similar profile except cyanobacteria metabolites. In particular, it was
concluded that the NuBBE database had a small percentage of PAINS molecules. In
turn, cyanobacteria metabolites had a small fraction of drug-, extended drug-, and
lead-like molecules with an increased fraction of PPI-like compounds.

Furthermore, in a recent investigation, Storck et al. profiled approximately
208,000 natural products with a new generation of machine-learning models to
identify frequent hitters. The models are freely accessible through the web service
Hit Dexter 2.0 [116]. Among the different results, it was found that there was a large
percentage of flavonoids (more than 60% of the compounds analyzed) that were
found to be promiscuous and approximately 20% highly promiscuous. Of the
different flavonoids, chalcones showed the highest rates of promiscuity. In contrast
to the predictions for flavonoids, the predictions found by Hit Dexter 2.0 suggested
that alkaloids were much less promiscuous [116].

3.1 Privileged or Promiscuous Natural Products?

For some natural products, there is a debate and fine line between highly active or
privileged compounds with numerous associated health-related benefits or
non-specificity (or high reactivity) [125]. Perhaps one of the most notorious exam-
ples in this regard is curcumin (5), a constituent of turmeric (Curcuma longa), a
traditional medicine. Curcumin (5) has been classified as both a PAIN [117] and
“invalid metabolic panacea” (IMP) compound [126]. Despite the fact there are a
large number of reports associating S with a plethora of biological activities, there
are no conclusive positive results in randomized, placebo-controlled clinical trials
for any studied indication as recently discussed by Nelson et al. [127]. Figure 4
shows the chemical structures of nine additional natural products regarded as IMPs
in the study by Bisson et al. [126], namely: quercetin (12); gossypol (13); p-sitosterol
(14); genistein (15); rutin (16); kaempferol (17); berberine (18); apigenin (19); and
(+)-catechin (22) (selected from a list of 39 compounds in total).
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3.2 Examples of Toxicity Profiling of Natural Product
Databases

As commented above, it is common to evaluate the toxicity related to hERG during
the first steps of drug development. Inhibition of this ion channel has been associated
with a potentially fatal cardiac arrhythmia, Torsades de Pointes [128]. Several varied
experimental tests are routinely used to evaluate hERG inhibitory potential. A
number of in silico methods have been developed to assess hHERG inhibition as
reviewed by Gleeson et al. [110]. In turn, the Salmonella/microsome assay (Ames
assay) is a bacterial short-term test for identification of carcinogens using mutage-
nicity in bacteria as an endpoint. It is one of the most widely used short-term tests. A
high (but not conclusive) association has been found between carcinogenicity in
animals and mutagenicity in the Ames assay. Despite the fact there is still contro-
versy over the value of Salmonella/microsome assay results in risk assessment, the
results of the Ames assay can provide valuable information to aid in the development
of further studies, and may form part of the data, which can be used in evaluating
potential biological effects or projected lack of adverse effects [129].

To further illustrate the toxicity profile of natural product datasets of general
interest, Table 3 summarizes the predicted Ames’ toxicity and hERG affinity of six
datasets of natural products previously profiled in terms of structural and whole-
molecule properties (vide supra, [14]). As reference, the calculations were done for a
dataset of 1806 drugs approved for clinical use. The curation of the datasets is
described in detail by Gonzalez-Saldivar et al. [122]. These calculations were done
using in-house algorithms and the analysis revealed that the cyanobacteria metabo-
lites contained a small fraction of compounds with predicted Ames mutagenicity
(2.3%) followed by compounds in the semi-synthetic collection NATx (3.3%). The
two datasets with the largest fraction of compounds with calculated Ames mutage-
nicity were NuBBE database and fungal metabolites (10.4 and 10.7%, respectively)
which represent in each case a higher proportion than the approved drugs for clinical
use also investigated (8.6%).

Regarding the predicted toxicity due to hERG affinity, all six natural product
datasets had lower proportions of compounds predicted with high affinity as com-
pared to approved drugs (13.5%). In particular, the datasets with the lowest propor-
tion were fungal metabolites (0.5%) followed by marine and natural products from
the commercial screening collection MEGX (1.2 and 1.3%). These results further
support that, overall, the six natural product collections can be used as a starting
point in drug discovery studies, for instance, in virtual screening to identify potential
hits. Of course, the prediction of the toxicity (such as illustrated in Table 3) can be
used as a guide to filter compounds for selection.



Cheminformatics Explorations of Natural Products 19

Table 3 Examples of in silico Ames toxicity and hHERG affinity profiles of six natural product
datasets and compared to drugs approved for clinical use

Ames

Dataset Size Yes Yes (%) |No No (%) |NA NA (%)
Cyanobacteria 473 11 23 456 |96.4 6 1.3
Fungi 206 22 | 10.7 180 |87.4 4 1.9
MEG x 4103 333 8.1 3660 |89.2 110 2.7
NAT x 26,318 860 33 25071 |95.3 388 1.5
NuBBE 2214 | 231 | 104 1925 |86.9 58 2.6
Marine 6253 420 | 6.7 5700 |91.2 133 2.1
Approved drugs 1806 156 | 8.6 1610 | 89.1 39 2.2
hHERG*"

Dataset Size Yes Yes (%) | No No (%) | Inconclusive NA (%)
Cyanobacteria 473 8 1.7 445 |94.1 20 4.2
Fungi 206 1 0.5 202 | 98.1 3 1.5
MEG x 4103 53 1.3 3977 196.9 73 1.8
NAT x 26,318 [2841 |10.8 21,008 |79.8 2469 9.4
NuBBE 2214 44 | 2.0 2054 |92.8 116 5.2
Marine 6253 73 1.2 5924 | 94.7 256 4.1
Approved drugs 1806 | 243 |13.5 1435 |79.5 126 (+2 empty) |7.0

“hERG 10 pM cutoff for active/inactive

4 Diversity Analyses of Natural Products

In addition to the applications of computational methods to study natural products,
diversity analysis is one of the most classical and useful applications of
cheminformatics. In this section, we describe briefly the sources of natural products
with emphasis on the public domain. The reader is referred to a recent chapter of
Kirchweger and Rollinger [42] for a more in-depth analysis of this topic. We
describe the importance of diversity analysis and discuss representative work on
cheminformatic-based analysis of the diversity of natural product collections.

4.1 Opverview of Collections of Natural Products

Compound collections are a crucial resource for keeping, searching, mining, and
sharing chemical information. Currently, there are several compound databases that
enable storing and sharing biological screening data. The relevance of chemical
datasets to drug discovery projects has been discussed in detail elsewhere
[130]. Interestingly, Clark et al. published initiatives in different countries to pro-
mote collaboration in drug discovery projects with research groups in academia
[131]. In addition to commercial sources of compounds for computational screening,
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there are publicly available large compound databases annotated with biological
activity. Representative resources in this regard are ChEMBL, PubChem, and
Binding Database, collectively reviewed by Nicola et al. [132]. Of note, as recently
commented by Saldivar-Gonzalez et al. [122], databases annotated with information
of the bioactivity profile against one or several biological endpoints are useful for
multiple applications including analysis of polypharmacology and structure
multiple-activity relationships [133], characterization of activity landscapes [134]
and the reexamination of the currently explored chemical space (vide infra).

In 2012, the first databases of natural products available in the public domain at
that time were reviewed by Yongye et al. [135]. Six years ago, there were approx-
imately five databases publicly available containing between 560 and 89,000 mol-
ecules. Today, many more databases are available with over 250,000 natural
products in the public domain as reviewed in the excellent report of Chen et al.
[136]. A significant number of natural product resources are built and maintained by
academic groups and non-for-profit initiatives. A classic example is the TCM
database@Taiwan [137]. Based on this database, iScreen was developed. This is a
web server for docking TCM followed by customized de novo drug design
[138]. Another example of a previous academic effort is the development of the
UNPD [139]. Unfortunately, at the time of writing UNPD is not available. There are
other compound collections that are focused on specific geographical regions. A few
examples include the NuBBE database that is a collection representative of the
Brazilian biodiversity [140, 141]. In turn, the AfroDb collection [142] is an initiative
that collects information on the constituents of African medicinal plants, and con-
tains around 1000 three-dimensional structures. The same group developed the
ConMedNP collection [143]. Very recently, the VIETHERB database was made
available as a compound collection for Vietnamese plant species [144]. In Mexico,
Esquivel et al. are building a comprehensive database of natural products that have
been published by the Institute of Chemistry of the National Autonomous University
of Mexico (UNAM). This database is called UNIIQUIM (http://uniiquim.iquimica.
unam.mx). Another initiative from an academic group of the same institution is
constructing the BIOFACQUIM database. Currently, BIOFACQUIM contains
423 compounds mostly isolated from Mexican plants and fungi [14]. A comprehen-
sive review of other natural product collections and resources available to the public
has been prepared by Chen et al. [136].

4.2 Design of Nature-Inspired Compound Collections

In addition to existing collections of natural products, compounds of natural origin
have inspired the synthesis of natural product datasets. This comes from the appar-
ent, previously mentioned misapprehension using combinatorial chemistry, as the
chemical diversity of the collections made was low [11]. To improve this, natural
product scaffolds have been suggested as novel means to access uncharted regions of
therapeutic and chemical space [9].
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For example, Stratton et al. provided a comprehensive comparison of the chem-
ical space of natural products and drugs [145]. This study highlighted the inherent
complexity of natural products as the main tool to effectively optimize lead com-
pounds. A similar observation had previously been suggested in a series of studies
by Lovering et al. which tackled the issue of molecular attrition, because of low
complexity or “flat molecules” as leads [146, 147]. In addition, the use of natural
product scaffolds may provide other advantages, such as the improvement of
pharmacokinetic properties, intellectual property [148], and even prodrug
design [149].

A noteworthy example of a cheminformatics tool to drive biology-oriented
synthesis is Scaffold Hunter [150]. Originally envisioned as a visualization tool, it
has overgrown its original purpose allowing further types of analysis. A prominent
feature is the so-called Periodic Table of Natural Products, which conducts structural
deconvolution to provide vantage points for synthesis routes. Successful cases using
this method include 11f-hydroxysteroid dehydrogenase, 5-lipoxygenase, phospha-
tase, and kinase inhibitors [151].

4.3 Concept and Importance of Diversity Analysis

The continued increase in the number of compounds available in compound data-
bases has led to the notion of chemical space [152] and makes necessary to
characterize the content and diversity of the molecules stored in those collections.
Indeed, comparison of the content and overall the contents of the molecular data-
bases is important in sortiment design and selection [153] as diversity analysis aids
in the assessment of the structural novelty of molecules. Systematic analysis of the
diversity and chemical space of compound collections, in particular large collec-
tions, usually needs cheminformatic approaches [123].

Approaches to assess the diversity of compound databases can be divided into
two main groups that largely depend on the molecular representation [14], namely,
graphs and descriptor vectors [21, 154]. Graph methods are employed to conduct
structural and sub-structural analysis. These approaches are relatively easy to inter-
pret. Representation using descriptor vectors is commonly used in cheminformatics
for database processing, similarity searching, clustering, and developing descriptive
and predictive models. The choice of descriptors used to analyze compound
datasets—with more than five thousand available thus far—gives rise to different
types of chemical spaces as pointed out by Varnek and Baskin [154]. The structural
diversity of natural product databases using structural fingerprints, molecular scaf-
folds, and other representation was published in several reports. Analysis of the
chemical space of natural product databases has recently been published [14]. In the
next section, we will discuss representative studies with emphasis on the diversity
analysis that have appeared most recently.
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4.4 Representative Diversity Analysis of Natural Products

Table 4 summarizes examples of cheminformatic analysis of natural product collec-
tions and other relevant compound collections that are usually used for reference.
The table includes the databases analyzed, and the main structural representations
employed. Selected studies are further commented below with a focus on the most
recent work carried out.

In 2015, Pascolutti et al. published the generation of fragment screening collec-
tions that aim to capture the broad range of molecular recognition building blocks
included within natural products as included in the “Dictionary of Natural Products”
(DNP; Chapman and Hall/lCRC Press, Boca Raton, FL, USA). The structural
diversity of the fragment versus a reference non-fragment assortment was analyzed
using three complementary approaches, namely, atom function analysis (based on
pharmacophore fingerprints), atom type analysis (with radial fingerprints), and
scaffold analysis. Among the various conclusions made, Pascolutti et al. found
that naturally derived fragments could be used as the starting point for building
chemical collections with high diversity for medicinal chemistry projects.

Chen et al. [136] reported recently a comprehensive analysis toward the under-
standing of the population of the chemical space by currently known and accessible
natural products and by individual natural product collections. As stated by the
authors, among the relevant results of this work was that the easily accessible natural
products have a large diversity and cover regions of medicinally relevant chemical

Table 4 Representative studies of chemical diversity of natural products

Datasets Descriptors/representation Refs.
TCM, combinatorial libraries, drugs Molecular fingerprints, scaffolds, [155]
approved for clinical use, and screening | physicochemical properties

collections

Natural products, human metabolites, Topological and physicochemical [156]
bioactive compounds, clinical candi-

dates, and drugs

Fragment-sized and no fragment-sized | Pharmacophore and radial finger- [157]
natural products prints, and molecular scaffolds

Eighteen virtual and nine existing natu- | Physicochemical properties [136]
ral product libraries. As reference, the

“Dictionary of Natural Products” was

used

Cyanobacteria, fungi metabolites, Molecular fingerprints, scaffolds, [122]
marine, purified natural product screen- | physicochemical properties; drug-,

ing compounds, TCM, NuBBEpg, extended drug-, lead-, fragment-,

UNPD. As reference, semi-synthetic and | PPI-like, and PAINS profiling;

approved drugs were used molecular complexity

BIOFACQUIM, NuBBEpg, TCM. As Molecular fingerprints, scaffolds, [14]
reference, approved drugs were used physicochemical properties
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space. In some instances, the authors observed a significant difference in the
coverage of the chemical space of different classes and individual datasets of natural
products.

Saldivar-Gonzélez et al. reported a comprehensive cheminformatic characteriza-
tion of seven natural product databases inclusive of cyanobacterial, fungal metabo-
lites, marine, purified natural product screening compounds, TCM, NuBBE, and
UNPD databases [122]. As references, a semi-synthetic compound collection and a
set of drugs approved for clinical use were employed. The datasets were profiled and
compared using a number of different and complementary representations and
descriptors, namely, molecular fingerprints of different design (Extended Connec-
tivity fingerprints radius two and Molecular Access System (MACCS) keys), scaf-
folds, and six physicochemical properties of pharmaceutical interest. In addition, the
chemical databases were profiled using empirical rules that have been developed to
classify drug-, extended drug-, lead-, fragment-, PPI-like, and PAINS compounds.
Finally, the datasets were profiled using two descriptors associated with molecular
complexity: fraction of carbon atoms with sp* hybridization (FCsp?) and the fraction
of chiral carbons (FCC). Among the conclusions, it was found that the NuBBE
database, the main focus of this work, had a restrained chemical space, with the
majority within the region of the drug-like physicochemical properties. It was also
concluded that the main source of diversity in the compounds in NuBBE database
was driven by the side chains. Overall, the results were supportive of a large number
of molecules in NuBBE database being promising sources of lead molecules for
medicinal chemistry and drug discovery projects [122].

Recently, Pilon-Jiménez et al. discussed the collection and first diversity analysis
of BIOFACQUIM, a database of natural products isolated from organisms in
Mexico [158]. In that work, the authors characterize the diversity of BIOFACQUIM
using molecular fingerprints (MACCS keys), molecular scaffolds, and six drug-like
physicochemical properties, namely, molecular weight, topological surface area,
number of hydrogen bond donors and acceptors, number of rotatable bonds and
the n-octanol/water partition coefficient, logP. BIOFACQUIM was compared to
other natural product and reference databases such as NuBBE, TCM, and approved
drugs. It was found that BIOFACQUIM and AfroDb are diverse in terms of scaf-
folds, but both have relatively low fingerprint diversity. It was also concluded that
AfroDb is more diverse than BIOFACQUIM, in terms of relevant physicochemical
properties. In contrast, the set of approved drugs had a medium diversity based on
fingerprints and relatively low diversity using the scaffolds. In turn, TCM had the
largest scaffold and fingerprint diversity, relative to the datasets compared in that
work [14].

4.4.1 Global Analysis of Chemical Diversity

As explained above, chemical representation and descriptors are at the core of
diversity analysis and basically any cheminformatic application [114]. Therefore,
the perception of the chemical space and assessment of the diversity of a compound
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collection in general is relative to the molecular representation. In order to reduce
(although not eliminate entirely) the dependence of the diversity with molecular
representation, it has been proposed to use a consensus approach through the
assessment of the global diversity using Consensus Diversity Plots (CDPs)
[159]. Consensus Diversity Plots are two-dimensional graphs to represent simulta-
neously four diversities (typically fingerprint-based, scaffold, whole molecular
properties—associated with drug-like characteristics, and size of the database).
Consensus Diversity Plots have been employed to characterize quantitatively the
total or global diversity of fungal metabolites [160], natural products from Panama
[161], from Brazil as available in NuBBE [122], and from Mexico (as deposited in
the BIOFACQUIM database) [14].

Consensus Diversity Plots have also been used to compare the diversity of food
chemicals to other datasets [162]. There is a free online server where any user can
generate CDPs for their own collections [159]. The server is available through
D-TOOLS (www.difacquim.com/d-tools/). To exemplify a CDP, Fig. 5 shows a
comparison of the total diversity of the current version of BIOFACQUIM dataset
(vide supra) with seven reference datasets [157]. The CDP compares the databases
considering as basis of diversity a molecular fingerprint typically used to assess
structural diversity (MACCS keys), molecular scaffolds, and the six physicochem-
ical properties SlogP, TPSA, MW, RB, HBD, and HBA (vide supra). The median of
the distribution of the MACCS keys (166-bits)/Tanimoto Similarity of each dataset
is represented on the x-axis (lower values denote higher fingerprint-based diversity).
The y-axis measures the scaffold diversity of each set as the area under the scaffold
recovery curve [158]; here lower values denote higher scaffold diversity (where the
highest diversity would be an area under the curve of 0.5 [163]). The property-based
diversity is represented with the Euclidean distance of the scaled properties, inserted
into the maps using a continuous color scale: a darker blue color indicates lower
diversity while lighter blue denotes higher property diversity. The relative size of
each dataset is mapped with different sizes of the data points, with smaller data
points indicating datasets with fewer numbers of molecules. Thus, the CDP indi-
cates, for instance, that BIOFACQUIM and cyanobacteria metabolites have, overall,
the lowest scaffold and fingerprint-based diversity (among the datasets compared).
Considering the diversity based on physicochemical properties, cyanobacteria
metabolites have a larger diversity than compounds in BIOFACQUIM
(as indicated by a lighter blue data point). The CDP further indicated that the set
of drugs approved for clinical use have a high scaffold and fingerprint-based
diversity (as noted for other CDPs, the set of approved drugs tend to have high
global diversity [159, 162, 164]).


http://www.difacquim.com/d-tools/

Cheminformatics Explorations of Natural Products 25

®
Cyanobacteria
L ]
BioFacQuim
0.704
NuBBE A
ﬁ 0.65+ Fungi
£
o]
3]
w
0.604 MEGx
@
Approved .
Marine
0.554 &
NATx
0.35 0.40 0.45 0.50
Fingerprints

Fig. 5 Consensus Diversity Plot comparing the global diversity of BIOFACQUIM with other
natural product databases. The structural diversity (fingerprint diversity) was calculated with the
median Tanimoto coefficient of MACCS keys fingerprints is plotted on the x-axis. The scaffold
diversity of each database was defined as the area under the curve (AUC) of the respective scaffold
recovery curves, and it is represented on the y-axis. The diversity based on physicochemical
properties (PCP) was calculated with the Euclidean distance of six scaled properties (SlogP,
TPSA, MW, RB, HBD, and HBA) and is shown in a color scale. The distance is represented
with a continuous color scale from light blue (more diverse) to dark blue (less diverse). The relative
size of the dataset is represented with the size of the data point: smaller data points indicate
compound datasets with fewer molecules

5 Conclusions and Future Directions

Natural products retain a fundamental role in the drug discovery process, despite
the implicit difficulties involved. Nonetheless, the industrial setting has favored
other approaches leaving such endeavors to academia. With the emergence of
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multidisciplinary studies, natural products have seen a renaissance. In this sense, in
silico methods provide flexible tools to analyze screens and describe in a qualitative
and quantitative basis the diversity, presumptive activity, and even the potential
toxicity of natural products.

With several instances of success across different targets, it would seem that
natural product research driven by computational methods is “a match made in
heaven.” Still, some aspects of computational methodologies cannot be applied “as
is,” due to current limitations of the techniques and algorithms. This has had a
positive impact in the computational field, stimulating the development of more
robust protocols and methods or even a focus toward natural product modeling as a
whole. As discussed in this chapter, the availability of new and improved algorithms
has led to the development and implementation of a plethora of applications that
range from the collection of data to the in silico profiling and screening of natural
products. In this sense, the overall projection of computational-based natural product
research will continue to thrive, given the increasing number of data sources and the
array of metabolites that remain unexplored.

Hence, perspectives on this field regard the construction and optimization of
proper databases to enhance fragment-based campaigns and the expansion of chem-
ical space. These include improvement of cheminformatic filters for the identifica-
tion of activity cliffs.
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