
Seamless Tool Chain for the Verification,
Validation and Homologation
of Automated Driving

Andrea Leitner, Jürgen Holzinger, Hannes Schneider, Michael Paulweber,
and Nadja Marko

1 Introduction

Autonomous vehicles are becoming increasingly capable and frequent. Any auto-
mated application, whether Advanced Driver Assistance Systems (ADAS) or Highly
Automated Driving (HAD) functions, needs to go through rigorous testing proce-
dures due to the traditionally strict safety requirements of the automotive industry.
However, purely physical testing is cost- and time consuming. Varying road
infrastructure, changing traffic and weather conditions, different driver behavior and
country-specifics need be considered. Furthermore, there is a heavy tail distribution
of surprises from the real world and an automated vehicle needs to be able to detect
and react to these unforeseen situations [1]. All this makes a so-called proven-in-use
certification solely based on physical test driving almost impossible [2]. Software-
based (virtual) validation approaches are therefore promoted as a viable alternative
to support the testing process by enabling a higher scenario coverage at lower costs
and in shorter time. Simulations can further be used to identify the sub-set of test
cases that should be executed in a more accurate test environment (Vehicle-in-the-
Loop or proving ground). At the end, the whole validation process will be a mixture
of different test environments and the results of this overall process will be used
as an input for homologation. Especially for virtual test environments it is also
important to show the correctness and accuracy of the simulation results. This means
that also all models used in the virtual environment must be compared to real world
behavior to ensure trustable results [3]. For all these different tasks it is important
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to have a seamless toolchain, where models as well as test cases can be reused
independent of the test environment.

This paper discusses the requirements and potential solutions for the realization
of a seamless toolchain for the validation of automated driving functions.

2 Test Execution Platforms in the Context of the Generic
Test Architecture

Figure 1 shows an exemplary instantiation of the generic test architecture [15]
proposed by the ENABLE-S3 project and introduced in chapter “ENABLE-S3:
Project Introduction”. The focus of this paper is on the lower layer called Test
Execution Platform. This layer subsumes the different test environments from purely
virtual testing to real-world testing.

In a seamless toolchain, we do not only assume that models can be reused
throughout the different test environments, but also that there is a common interface
for test cases as well as for collecting test results. This enables the reuse of test cases
and test plans on different test execution environments. Of course, the Test Planning
tool has to take care about preparing the test cases in a way that they are executable
in a specific test environment (i.e. considering the constraints and formats of the
execution environment).

One dimension in Fig. 1 distinguishes between three phases: Preparation,
Execution and Evaluation & Reporting. The focus of this paper is on the Execution
phase, but for completeness, we provide a brief introduction into the other phases as
well.

Fig. 1 Exemplary instantiation of the generic test architecture with different Test Execution
Platforms
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The Preparation phase includes all tasks, which are required for preparing the
test execution. This basically means that the test input data needs to be selected and
prepared in a way that makes it executable. An important asset for scenario-based
validation are of course scenarios. Scenarios can come from different sources (e.g.
engineered or extracted from measurement data) and consists of different aspects,
such as dynamic aspects (traffic participants), static aspects (road and traffic signs)
and the scenery (3D environment as input for sensor models). All these aspects
need to be represented in a scenario database. For test case generation, these aspects
are combined and parametrized in a certain way. Of course, the level of detail
and the format is dependent on the test environment. For virtual environments,
OpenDrive1 and OpenScenario2 can be used as standardized formats. For proving
ground testing, the scenarios need to be transformed in a format, which can be used
for test equipment automation. In addition, KPIs need to be assigned to the test
cases dependent on the test purpose to configure the required measurements. As
a last step, the test execution platform configuration needs to be prepared. This
includes the selection of the required models and hardware components and their
communication. In general, there are two ways of test case generation. In offline test
case generation, a complete test plan is prepared beforehand. This test plan consists
of a series of test cases, which can be executed either in a virtual test environment
or on the proving ground (see e.g. [4]). For online test case generation, an initial test
plan is prepared and based on the results of these test cases further test cases are
generated and executed on-the-fly (see e.g. [5]).

The Evaluation & Reporting phase takes the results of the test execution and
assesses them. This can again be done online or offline. In the case, where
test plans are updated on-the-fly, the respective KPIs also need to be calculated
during the execution or immediately afterwards. Especially on the proving ground,
measurements need to be taken and uploaded for further processing. Either way,
we propose that the same data format is used in order to be able to reuse the KPI
evaluation scripts. In our case, the Open Simulation Interface (OSI) [6] specification
is used to describe sensor measurement data, no matter if it is coming from
simulation or from real sensors.

The Execution phase includes the test execution environments. They and their
potential usages are described in more detail below.

Cloud/HPC Simulation Especially in early phase testing, the huge test space
needs to be scanned quickly. This requires a scalable and fast simulation environ-
ment, where many different parameter combinations can be tested in parallel. Usu-
ally, simulation environments are built for desktop simulation and are not prepared
for scalability. This is especially true for co-simulations, which include various
simulation tools. To support fast and scalable simulation, different cloud-based

1https://www.asam.net/standards/detail/opendrive/
2https://www.asam.net/standards/detail/openscenario/
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simulation environments have popped-up recently (e.g. Metamoto,3 Cognata,4

etc.). These companies promise Simulation as a Service to train, test, debug, and
validate automated vehicle software. Model.CONNECT provides a solution based
on Docker Containers,5 which can be used for setting up scalable co-simulations.
The main advantage is the ability to use the same simulation infrastructure and
models as for other test environments. Additionally, the interfaces to test case
generation and test evaluation tools stay the same and can be used in the same way
as for other test environments.

This setup can also be used for continuous integration and running test cases
automatically for each new software version.

Model (Software) in the Loop This non-real-time test environment features all
system aspects as models or software components. It is mainly used by function
developers, who are testing their function (sensor fusion, trajectory planning, etc.)
or reproducing erroneous situations identified in real-world testing. It further allows
to compare different sensor concepts and algorithm parameterizations in a safe und
reproducible way even before the availability of actual hardware prototypes. There
are many providers for simulation environments (e.g. Vires VTD,6 TASS PreScan,7

Oktal Scaner,8 etc.). All have their strength and weaknesses and depending on the
testing purpose the one or the other might be suited better. There are also several
in-house solutions to meet the specific requirements of companies. With respect to
the overall toolchain, an important requirement of a simulation environment is the
possibility to integrate it with real-time components to be able to reuse the same
environment also in combination with hardware. This requires a modular structure
and certain interface capabilities.

Hardware in the Loop Hardware in the loop is a very common environment to
test different kinds of control units standalone or in combination. The main purpose
is to identify timing and communication issues.

Driver (Human) in the Loop Driver/human-in-the-loop simulation provides a
highly realistic driving experience to the human/driver which is indispensable for
investigating the influence of new products on human [7].

Vehicle in the Loop This test environment bridges the gap between conventional
HiL testing and real road testing for efficient and reproducible validation of fully
integrated vehicles. One concept for vehicle in the loop testing is the DrivingCube
concept [8]. The advantage is the transfer of tests to a controlled environment where

3https://www.metamoto.com
4https://www.cognata.com
5https://www.docker.com
6https://vires.com/vtd-vires-virtual-test-drive
7https://tass.plm.automation.siemens.com/prescan
8https://www.avsimulation.fr
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the risk for man and machine is reduced and the effectiveness is increased. It can
be either a chassis dynamometer or a powertrain test bed for complete vehicles.
Since the interaction with the steering system was not considered until now, the test
of lateral controllers was not feasible. Nevertheless, new developments enable the
stimulation of the steering system of the vehicle while keeping the interference with
the vehicle at a minimum. This is achieved by a mechanical decoupling of tires and
the steering system. Instead, a compact and universal steering force module is used
to induce forces to the tie rod [9]. An additional requirement is the need to stimulate
the environment sensors. There are several approaches for sensor stimulation (e.g.
over-the-air stimulation of radar sensors [10] or the use of moving bases [11]).

Proving Ground Currently, tests on proving grounds are mainly focusing on
standardized testing of active safety systems [12] and evolving gradually towards
driver assistant systems. These testing approaches will not scale for automated
driving, which means that test automation and new techniques (e.g. augmented
reality on proving grounds) are required. One challenge is the increased complexity
of orchestrating a growing number of robotic test equipment on proving grounds.
Another one is the ability to collect, exchange, and compare data from test tracks
as well as from virtual test environments. This requires a certain standardized data
format [13]. Currently, for testing of active safety systems, the proving ground is
the last instance of testing activities. Nevertheless, with the growing importance of
virtual validation, proving grounds will also be an important environment for model
calibration and validation.

Road testing is of course still a required test environment. Nevertheless, because
of the different scope and requirements (no test planning, no models, etc.) we will
not discuss this test environment in detail here.

In our setup, the co-simulation platform Model.CONNECT9 and real-time
integration platform Testbed.CONNECT10 are used to couple the different elements
(models and hardware components) and to take care about the communication
and timing issues between these elements. Model.CONNECT interlinks simulation
models into a consistent virtual prototype, regardless of the tool they were created
with. Simulation and hardware components can be easily integrated into a complete
virtual/real system. This facilitates the continuous, model-based development in a
wide range of powertrain and vehicle applications (e.g. driver assistance systems).
Testbed.CONNECT connects simulation models with the testbed. The testbed
engineers do not have to wait for all the hardware components to be available but
can simply replace them with the corresponding simulation models. Even complex
models from the concept phases can be easily and robustly integrated on any kind
of testbed. The system developers gain a deeper understanding of the complex
interactions of their systems by using their models at the testbed. The acquired
findings are continuously used to the further improve the simulation models. The

9https://www.avl.com/-/model-connect-
10https://www.avl.com/web/guest/-/testbed-connect-
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concrete architecture used within the co-simulation and integration platform is
described in more detail in Sect. 3.

Model.CONNECT is furthermore used as the interface for test planning and
evaluation. This means that Model.CONNECT is taking care about the execution
of the test cases in the respective test environment. There is also one interface to
collect the simulation results for evaluation and post-processing.

Another important building block is a model repository, which can be used
to manage and access different versions of different simulation models (e.g.
various levels of detail for different testing purposes). The tight integration in
Model.CONNECT enables the definition of different simulation configurations,
which can be switched on the fly as needed.

3 Test Execution Environment: Architecture

The Test Execution Platform covers all relevant aspects of an automated cyber
physical system as described in chapter “ENABLE-S3: Project Introduction” and
shown in Fig. 2. An essential aspect of automated driving functions is their tight
interaction with the environment (i.e. other traffic participants). This means that the
environment needs to be simulated in an appropriate manner. For the perception of
the environment, the automated vehicle uses different kinds of sensors. Therefore,
it is also important to represent the characteristics and potential limitations of the
sensors in terms of sensor models in the simulation. The required level of detail and
accuracy of these models depend on the testing purpose. For testing the trajectory
planning, ideal object level sensor models might be sufficient. For testing sensor
fusion algorithms or even for system validation, more accurate and detailed sensor
models (either phenomenological or physical) reflecting the properties of the actual
sensor types are required. If the automated vehicle uses communication with the
infrastructure or other vehicles, this aspect needs to be considered in simulation as
well.

Fig. 2 Test execution platform—detailed architecture
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Depending on the function under test, the dynamics of the vehicle need to be
modeled as well. It gets evident that a modular structure is important here as
well, since the required level of detail of the models differs for different tests. A
modular structure enables an efficient exchange of models. Usually these models
are developed using different simulation tools, each specialized on a specific aspect.

A co-simulation platform is required to couple the different simulation models
to a holistic closed-loop simulation. The co-simulation platform is responsible for
establishing the communication and minimizing latency effects during simulation.
Depending on the development stage, there will be different instances of the test
execution platform. For example, in a MiL environment all components will be
available as simulation models. Later simulated components will be step by step
substituted by real physical components resulting in a mixed environment of real-
time and non-real-time components. Especially this latter case presents additional
challenges for the test execution platform as there are various real-time systems
with different properties that have to be integrated. Additional requirements have
to be fulfilled; there are hard real-time conditions that have to be considered,
communication is needed in real-time, synchronization of real-time and wall clock
time as well as communication delays have to be handled by the platform. Real
hardware has to be operated safely which means that safety mechanisms have to
be implemented in order to avoid damage of hardware. To facilitate the integration
of different models and real-time components, standardized interfaces can be used
(FMI11 for non-real-time communication and DCP12 for real-time communication).

Another important aspect, which influences the performance of the simulation is
the system decomposition. The main questions are how to split aspects in different
models, how to distribute the execution of the models and how to define the
model interfaces. Splitting and distributing models can be an important mean to
improve the performance (e.g. distribution to different cores). The definition of
model interfaces is often constraint by I/O capabilities of simulation tools but can
also include a lot of integration experience and know how (e.g. taking constraints
by physics as low inertia vs. high inertia into consideration). This knowledge could
be made explicit and reusable by providing best practice templates and standardized
interfaces.

4 Open Simulation Interface

Traditional automotive testing is mainly based on time-series signals and most tools
are designed and optimized for this kind of data. For testing automated cyber-
physical systems, large data sets with complex data types/data structures (object
lists, images, point clouds, etc.) have to be exchanged. This also includes the

11https://fmi-standard.org
12https://dcp-standard.org/

https://fmi-standard.org
https://dcp-standard.org/
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challenge of how to interpret the data. Regarding the generic test architecture, OSI
provides a standardized interface for environment and environment sensor data,
which can be used by automated driving functions. Hence, this interface enables
the connection between function development frameworks and the simulation
environment.

The OSI implementation is based on google protocol buffers13 that provide a
mechanism for serializing data which is defined in language-neutral and platform-
neutral messages. OSI specifies an object-based environment description by defin-
ing messages describing the ground truth as well as the sensor data for testing
in simulation environments. Ground truth data contains unmodified object data
describing the environment of the ego vehicle that is the output of the simulation
framework. It is based on a global reference frame. In contrast to the ground truth,
sensor data describes object data in the environment relative to one specific sensor
which is thus based on the sensor reference frame. This data structure contains input
as well as output of statistical sensor models.

OSI is in an early development stage and thus the specification can be subject
to change. Further, there are large data sets necessary to describe environment data
and experiences are needed in using OSI for simulations with such large data sets.

In addition to the data structure, OSI sensor model packaging is specified that
defines how the OSI sensor models have to be packaged as FMU for use in
simulation environments.

During the project a simple OSI demonstrator has been set up, which shows the
application of the standardized interfaces to test an Adaptive Cruise Control (ACC)
function. OSI is used for the communication between the environment simulation
and the function under test. The main task of the environment simulation is the
generation of realistic ground truth data based on the selected scenario. The output
of the environment simulation varies from general simulation data to simple and
complex object lists and beyond to realistic raw sensor data. For the demonstrator
“VIRES Virtual Test Drive” (VTD) is used as environment simulation software,
which covers the full range from the generation of 3D content to the simulation of
complex traffic scenarios. In the demonstrator mainly object lists are generated in
an OSI compliant form (osi3::GroundTruth).

Model.CONNECT™ uses a TCP connection to receive the OSI ground truth
data from VTD and to hand it over to a sensor model. The sensor model has been
implemented as an FMU running in Model.CONNECT. For the demonstrator a
simple phenomenological sensor model was implemented, which transforms the
global coordinates to relative coordinates with respect to the ego car and applies
a filter function to the detected objects list from the ground truth data. The filter
reduces the detection range of objects based on precipitation, fog and illumination.
Based on this ‘real’ sensor data the ACC function is tested.

To compare ground truth and the sensor data, the object lists are visualized
in ROS (Robot Operating System). Therefore, OSI data is exchanged between

13https://developers.google.com/protocol-buffers

https://developers.google.com/protocol-buffers
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Fig. 3 Setup of the Open Simulation Interface demonstrator

Model.CONNECT and the ROS environment via DCP (Distributed Co-Simulation
Protocol) over UDP. DCP is applied to evaluate this upcoming standard for
distributed simulations. This standard should facilitate managing co-simulations
and enables a standardized way of integrating various tools as well as real physical
components. Figure 3 illustrates the demonstrator setup.

The demonstrator has mainly been used to gather experience with the specifica-
tion and to assess the practical applicability. Results have been fed back into the OSI
working group.

5 Simulation Model Preparation

An important ingredient for most of the test execution environments are simulation
models. Simply simulating millions of test kilometers is of no value, if the
simulation does not reflect the reality, at least to a certain degree. This means,
the simulation is only as good as the match between the simulated signals from
the sensor and vehicle model and corresponding values in the real vehicle. A
model should be developed for a specific purpose (or application) and its validity
determined with respect to that purpose. There are various validation techniques
described in [14].

With respect to environment simulations, there are several factors, which can
lead to significantly different results between tests in the real and virtual world.
It starts with the modelling of the scenarios and 3D-environment, continues with
material parameters of the modelled simulated objects, goes on with measuring and
transferring weather conditions from real world to environment simulation and ends
in the accuracy of the simulation models of sensors and ego-vehicle.

Here, we are mainly focusing on sensor models. We distinguish between generic
sensor models, capable of simulating the main features of different sensor types
(such as ultrasonic sensors, cameras sensors, radar sensors or LiDAR sensors), and
specific sensor models used to replicate the behavior of a specific version of a sensor
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from a specific manufacturer. Specific sensor models have to model the normal
behavior of a sensor type as well as the peculiarities and imperfections of a specific
sensor. As these imperfections often lead to a non-perfect perception of the real
environment, it can lead to safety-critical situations which are the most interesting
cases in vehicle system validation.

The required level of realism depends on the development phase. For early
function verification, ideal sensor models are sufficient as the developed functions
will have to work with sensors from different manufactures. In many cases, it is
even not decided, which specific sensor instances or makes will be used in the final
automated cyber-physical system.

Therefore, we need two sensor model preparation activities: first, tune the
parameters of an ideal sensor model to create a specific sensor model for a specific
instance of a sensor; second, validate that the specific sensor model replicates the
behavior of a specific sensor in all relevant scenarios and weather conditions.

More information about sensor models and sensor model architectures is given
in the respective chapters (“Radar Signal Processing Chain for Sensor Model
Development”, “Camera Sensor System Decomposition for Implementation and
Comparison of Physical Sensor Models”, “Functional Decomposition of Lidar
Sensor Systems for Model Development”).

Here, we will spend a few more words on the challenges of sensor model
parametrization. Sensor model parametrization describes the procedure to tune a
generic sensor model in a way that it reflects the properties of a specific real
sensor. Therefore, a lot of measurements have to be taken. First, the behavior of
the sensor has to be measured. This can be done best on a proving ground, because
the second important part is the measurement of the ground truth. This means
that all involved traffic participants need to be instrumented with very accurate
measurement devices. Only then we can determine the detailed position of each
traffic participant at any time. Furthermore, all the participants of the scenario are
under our control. This means that we can exactly determine their dimensions,
materials, and behavior. All this information is required to reconstruct the ground
truth information with the required accuracy. Another aspect which needs to be
considered are environment conditions (such as weather conditions). This data is
needed to calibrate the environment simulation with weather data to ensure, that
different environment simulations deliver the same information to sensor models at
same weather conditions. Unfortunately, no standardized metrics for environment
conditions exists and it is not completely clear which metrics are required.

The basic idea of the parametrization procedure is to transfer the ground truth
information into the environment simulation. The sensor models are then fed with
ground truth and weather data from the simulation. At the same time the sensor
model parameters are adjusted until the simulated output of the sensor model
matches the measurement taken with the real sensor.

There are still a lot of unknowns for this parametrization procedure and for the
final validation that the model is reflecting the reality with sufficient accuracy for
the specific validation task. Nevertheless, this is a major prerequisite to make virtual
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validation a useful alternative to real-world testing of automated cyber-physical
systems and thus to reduce the required test effort.

6 Conclusion

In this paper we propose a seamless validation toolchain, which aims to overcome
the challenges of testing automated cyber-physical systems in general and auto-
mated driving functions in concrete. The validation toolchain promotes an open and
modular architecture to use different simulation models as well as to support reuse
of test cases throughout various test execution environments. We highlighted that
there are already first standardization activities for interfaces, which support the
modular structure. Nevertheless, there are still some challenges to ensure that the
simulation reflects the reality.
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