Chapter 9)
Overview of Results Check or

Chapter 8 outlined 17 cases simulated using dSim. Both the traditional, fair-share
scheduling algorithm and the Rawlsian Fair scheduling algorithm developed for our
work were used in these simulations. Table 9.1 outlines the different classes of
simulations and their purposes.

9.1 Results Recap

The results reveal that the Rawlsian Fair scheduling algorithm both significantly
decreased the times-in-system of the users with the lowest relative numbers of tasks
and decreased the time-in-system variance for every user. This section offers an
overview of the delays incurred by the users in the simulations. Data analysis is
conducted per class of requests, as is outlined in Sect. 1.2. Data analysis for the Least
Benefited User (LBU) will be considered as defined in Rawls (2001).

The Rawlsian Fair scheduling algorithm uses seniority as well as the traditional
parameters of load and priority. Seniority is updated by the scheduler according to
the changes that occur as tasks enter and leave the system. Seniority is included to
decrease the time-in-system experienced by users with low numbers of tasks. In fair-
share scheduling, the delay is normalized across the users. This effect is revealed in
our results. In Rawlsian Fair scheduling, however, seniority moves tasks to the front
of the queue: the tasks in the queue are ordered first by seniority and then by arrival
time, so that of the tasks that share the highest seniority value, the first one in the
queue is executed first. As mentioned previously, the Rawlsian Fair scheduler uses
buckets to calculate seniority. Seniority is calculated based on the current state of the
bucket (i.e. the number of tasks in the bucket), and all of the tasks in a given bucket
are finished before the scheduler moves on to the next bucket (Fig. 9.1).

The Placement Counter (PC) dictates the target bucket location: PC = 1 indicates
that the tasks are destined for Bucket 1, PC = 2 indicates that the tasks are destined
for Bucket 2, and so on. Bucket History (BH) size is another variable. Seniority is

© Springer Nature Switzerland AG 2019 63
A. Sedighi, M. Smith, Fair Scheduling in High Performance Computing
Environments, https://doi.org/10.1007/978-3-030-14568-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14568-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-14568-2_8
https://doi.org/10.1007/978-3-030-14568-2_1#Sec2
https://doi.org/10.1007/978-3-030-14568-2_9

64 9 Overview of Results

Table 9.1 Summary of simulation types and expected outcome

Workload

classification Relevance

Class A Intermittent workloads occur when users submit jobs throughout the day.
These simulations describe situations in which complementary users of
different load compete for resources. It considers how performance is
affected as the number of users increase.

Class B These simulations describe situations in which steady workloads compete
for resources with intermittent workloads.

Class C These simulations describe situations in which one user is competing for
resources for a one-time burst submission against larger workloads.

Class D These simulations describe situations in which small but steady workloads
compete with larger workloads.

Scheduler taking tasks for execution

N

/
hY

/’ A

Completed bucket

Users submitting tasks to be executed

Fig. 9.1 Illustration of the role of buckets in placing (via the Placement Counter) and executing
tasks

calculated across a number of buckets denoted by the BH value. BH = 1 (Fig. 9.1)
means that seniority is calculated based on the parameters of the current bucket,
i.e. the oldest bucket waiting to be drained.

Once all of the tasks in a given bucket have been scheduled for execution, the
bucket is deleted and the scheduler moves on to the next bucket. In each of the
simulations, the number of processing nodes (or CPUs) was held constant at
100, meaning that 100 tasks could be processed simultaneously. Each task takes
1000 ms to complete, so if 1000 tasks were submitted and the system was able to
process 100 at a time, it would take 10 s to complete all of the tasks in a real-world
scenario.

In BH = 2 scenarios (Fig. 9.2), the tasks are placed in their respective buckets, but
seniority is calculated based on the parameters of two buckets. In other words, the
total number of pending tasks and the total number of submitted tasks are based on
the values spanning two buckets.

9.1 Results Recap 65

Scheduler taking tasks for execution

: , Buckets : ,
Hl Bucketl Bucket2 [PHOVRENENERE Bucketn-1 Bucketn M

i " 1 i

Users submitting tasks to be executed

Fig. 9.2 Scheduling scenario with BH = 2

Fig. 9.3 Calculating seniority based on BH value

Simulations were run for different workloads and six different BH sizes:
BH ={1,2,3,5,10,inf} 9.1)

Bh = inf is a special case in which seniority is calculated by taking into
consideration the entire submission history of a given user (Fig. 9.3). This scenario
consider a system never forgets. While smaller BH values can suffer from local
maxima problems (see the results of simulations 3 and 4), local maxima problems are
resolved when Bh = inf. A side effect, however, is that disproportionately large jobs
tend to suffer.

Although the aim of the Rawlsian Fair scheduler is to improve the fairness of the
system, as the FUD conjecture suggests, one of the other parameters will suffer as a
result of this change.

Our results revealed that although the Rawlsian Fair scheduler improved fairness
of the system, i.e. smaller users experienced smaller times-in-system—the overall
dynamicity of the system decreased. To calculate seniority, the incoming tasks were
placed in buckets (or queues) (see Sect. 6.2) in the order in which they arrived. In
cases in which multiple users had the same seniority level (e.g. in simulation 6), the

https://doi.org/10.1007/978-3-030-14568-2_6#Sec3

66 9 Overview of Results

200
180

160

Task Count
8

20

2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

Submission Time {ms)

o ser] e==|Jser2

Fig. 9.4 Task submission pattern for simulation 1

tasks were executed in a first-come-first-served fashion. The same applies for users
with the same number of overall tasks, as one would expect. In cases in which two or
more users submitted the same number of tasks at the same time, the tasks were
executed in the order in which they arrived in the queue.

9.1.1 Simulation 1 Analysis and Results

Simulation 1 was a “smoke simulation” to make sure that our system worked as
expected end-to-end. Two users submitted 1000 tasks each at 200 tasks/PC
(Fig. 9.4).

Each user submitted their next task after the other user had submitted theirs,
creating a sine—cosine submission pattern. We expected that the delays incurred for
each task would be similar for Rawlsian Fair with BH = inf and fair-share (Figs. 9.5,
9.6).

First, we compare the simulation results for fair-share and Rawlsian Fair with a
bucket history of infinity (inf). Rawlsian Fair’s stepwise task-delay line is the result
of the bucketing feature for task submission. Tasks are sorted into buckets and
executed in the order in which they arrive. There were 100 worker nodes, so user
1’s first 100 tasks were sorted into bucket 1, and so on.

The task delays obtained with each scheduling method were complimentary
because there were only two users: an increase in the delay experienced by one
user meant a decrease in the delay experienced by the other (Fig. 9.7).

9.1 Results Recap 67

25000
20000
3.15000
o
[=1
-
©
= 10000
5000
0
R8s LGB8HABLIENIRSYRSRBERB5R28
™ - = N NN Mmoo I W W O W M~MC 000G O
Task Count
e Jser 1 Fairshare = ==—=User 1 - BH = inf

Fig. 9.5 User 1’s task delay in simulation 1 with BH = inf

25000

o =

15000

10000

Task Delay (ms)

5000

Task Count

=== |Jser 2 Fairshare User2-BH =inf

Fig. 9.6 User 2’s task delay in simulation 1 with BH = inf

The goal in this simulation was to evaluate how close Rawslian Fair scheduling
gets to traditional fair-share when two users share the same job-submission profile.
The results for all of the BH sizes in simulation 1 are also presented (Figs. 9.8, 9.9),
and they show a similar delay pattern.

68 9 Overview of Results

25000

20000

g
8

Task Delay (ms)

g
g

0
“ %5888 %‘338338@8&&'&&38’&8%
L B B B o T o B I B s T o B T R o I T T Y = Y= Y= S S o
Task Count

826
859
892
925
958
991

e=—==|Jser 1- BH = inf User 2 - BH = inf

Fig. 9.7 Task delay comparison of both users for simulation 1

:

Task Delay (ms)

:

0
0 100 200 300 400 500 600 700 800 900 1000
Task Count
= = olser 2 Fairshare s ser2-BH =1 == User2-BH=2 User2-BH=3

e Jser2 -BH=5 e Jser2 - BH = 10 e User 2 - BH = inf

Fig. 9.8 User 2’s task delay for all BH sizes in simulation 1

9.2 Lessons Learned 69

25000
L]
20000 E= J
o
@ <
— d o
[
E 15000 ?ﬁ_
= g
E ' | | l 8]
a =] 0 3 }
a— L1
J
[A |
0 L |
[— ey — N —]
5000 E 0p i_ﬂ
0
0 100 200 300 400 500 600 700 800 900 1000
Task Count
= = oUser 1 Fairshare Userl-BH=1 === Userl-BH=2 Userl-BH=3

e——lJser1-BH=5 User1-BH = 10 e Jser 1 - BH = inf

Fig. 9.9 User 1’s task delay for all BH sizes in simulation 1

9.2 Lessons Learned

In the calculation of seniority, incoming tasks were timeboxed into “buckets” (see
Sect. 6.2) denoted by the placement counter (PC) variable. The granularity of the
placement counter had a profound effect on the performance levels of the less senior
tasks. While the PC granularity had to be set at 1000 ms (1 s) (equal to the task-
execution size) for seniority to be calculated, this had the side effect of delaying less
senior tasks by their position within each bucket. This delay resulted from the action
of the First-Come-First-Serve (FCFS) algorithm, which was used to take equal-
seniority tasks off the queue. Even though the tasks were submitted at the “same
time,” even a fraction of a second can affect the arrival time. dSim is aware of
communication delays and uses them in setting the arrival time of each task.

Regardless of the PC value, however, Rawlsian Fair scheduler performed equal to
or better than fair-share overall for Class A and Class B workloads. A comparison of
the results of simulations 5 and 9 further demonstrates this point. While the number
of tasks was the same in both simulations, simulation 9 had more users. As the
number of users increased, so did the effectiveness of Rawlsian Fair.

Rawlsian Fair performed universally better with Class C and Class D workloads.
This is apparent when simulation 5 is compared to simulations 13 and 17. The tasks
submitted by a single, the large user for simulation 5, are distributed among 5 users
in simulation 9, 11 users in simulation 13, and 20 users in simulation 17. The

https://doi.org/10.1007/978-3-030-14568-2_6#Sec3

70 9 Overview of Results

outcome of each simulation is the same for the smallest user, however, demonstrat-
ing the effect of Rawlsian Fair’s use of seniority.

The number of tasks distributed among the users is held constant across each of
the simulations, including simulations 10 and above, and the effect of Rawlsian Fair
becomes increasingly apparent as the number of users increases. Seniority consis-
tently benefits disproportionately small users, but because Rawlsian Fair picks
smaller users from sets of larger users, this effect becomes more pronounced as
the number of users increases.

9.3 Simulation Results and Analysis

The following chapters review the results of the various simulation runs. We
generated over 600,000 data points,' and we illustrate our key findings. Given the
sheer number of data points, every data point cannot be independently considered.

Some of the simulation results are grouped into pairs because while the number of
tasks is the same for the members of each pair, one member of each pair demon-
strates the effect of Rawlsian Fair on the smallest user, and the other member
demonstrates the effect of seniority as the number of users increases.

17 tests, 7 different scheduling algorithms, and 5000+ tasks per run

	Chapter 9: Overview of Results
	9.1 Results Recap
	9.1.1 Simulation 1 Analysis and Results

	9.2 Lessons Learned
	9.3 Simulation Results and Analysis

