
Chapter 6
Simulation and Methodology

As outlined in 1.3, our work assesses the performance characteristics of a multi-
criteria scheduler that uses seniority as well as priority and load is to make decisions.
It does so by using various simulation models to test the scheduling algorithm. Later
in this book, the simulator used to conduct these simulations (dSim) is introduced.

Previous chapter described a shortcoming of fair-share scheduling techniques:
they achieve long-term fairness at the expense of short-term fairness. Evidence of
this includes cases in which system dynamics were altered by small and frequent
requests. Further evidence is offered by Sedighi et al. (2014). Current scheduling
techniques consider priority and load requirement in making scheduling decisions
(Baker and Trietsch 2013), but do not employ a primary variable indicating the time
that a task has spent in the system. Tasks are queued—or placed in multiple queues if
they have different priority levels—and they are processed in the order in which they
arrive. Queues are one-dimensional constructs in which load requirement is the
primary independent variable. Priority queues are two-dimensional constructs in
which priority is the second independent variable.

Our work introduces an additional independent variable that tracks the time each
task has spent in the system. This variable is called “Seniority” (S); it is additive and
increases in value as one would expect: a net-positive increase in seniority is
calculated for each task after every scheduling cycle, and this new value is used to
reorder the standings of the tasks prior to the next scheduling cycle. The task with the
highest seniority is scheduled first for a given duple of priority and load set of tasks.

The rest of this chapter describes how seniority is calculated based on the
mathematical model introduced in Chap. 5. The experiments conducted to assess
the performance characteristics of the scheduler, which uses three independent
variables: priority, load, and seniority will be introduced in Chap. 8.

© Springer Nature Switzerland AG 2019
A. Sedighi, M. Smith, Fair Scheduling in High Performance Computing
Environments, https://doi.org/10.1007/978-3-030-14568-2_6

39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14568-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-14568-2_5
https://doi.org/10.1007/978-3-030-14568-2_8
https://doi.org/10.1007/978-3-030-14568-2_6


6.1 Calculating Seniority

Seniority (S), is a dynamic, time-dependent value calculated in part by the time that
the task has been in the system relative to the current state of the system and to the
other users in the system—i.e. the “time-in-system” (Baker and Trietsch 2013). The
weight of seniority is determined by the fairness factor (α). Seniority is an additive
value: every time it is calculated, it is added to the seniority value that the task
already holds. In essence, the longer a task has been pending (i.e. the larger is its
time-in-system), the higher its seniority is. This relationship allows seniority to serve
as a surrogate for time-in-system.

Change in seniority, S, is a function of priority and load,

dS

dt
¼ ΔS tð Þ ¼ α�P�L ð6:1aÞ

while total seniority depends on time-in-system (t):

STotal ¼
Xt¼current

t¼0

ΔS tð Þ ð6:1bÞ

where P represents the priority of the task, and L represents the load the task will put
on the system. Both values are entered by the user when the task is submitted and
(for our purposes) both remain constant while the task is in the system. Both values
range from 0 to 1: 0 represents the lowest priority and the lowest computational load,
and 1 represents the highest priority and the highest computational load. Equation
6.1b illustrates how a task’s seniority depends on the time that the task has been in
the system. Seniority is calculated in discrete time intervals, but it is additive and
continues to increase across the lifetime of the task.

The fairness factor, α, is calculated by taking into account the rate of pending
tasks for a user relative to all of the users:

α�1
u tð Þ ¼ ξ tð ÞP

uξ tð Þ # Rawlsian ð6:2Þ

Equation (5.2) implements Rawls’s philosophy of fairness, with ξ(t) representing
the pending tasks for a given user at time t and

P
u
ξ tð Þ representing the pending tasks

for all of the users in the system. This equation causes the user with the least number
of pending tasks to be moved to the front of the queue. This method resembles the
shortest processing time (SPT) scheduling algorithm (Baker and Trietsch 2013),
which has been shown to have the lowest makespan when scheduling jobs. In
essence, the fairness factor makes an implicit assumption about the future task
count of each user, and this assumption is adjusted if it is proven wrong in
subsequent scheduling cycles.

40 6 Simulation and Methodology

https://doi.org/10.1007/978-3-030-14568-2_5#Equ2


For example, if User 1 (u1) has 10 pending tasks and User 2 (u2) has 20 pending
tasks, then:

α�1
u1 tð Þ ¼ 10

30
¼ 1

3
ð6:3Þ

αu1 tð Þ ¼ 3 ð6:4Þ

meaning that for a given task, the fairness multiplier is 3 (Eq. 6.4). User 1’s tasks
move up 3 spots in the queue, but this does not mean that all of u2’s tasks fall behind.
As a result of the same calculation, user 2’s tasks also move up:

αu2 tð Þ ¼ 20
30

� ��1

¼ 3
2

ð6:5Þ

In Nash’s comparison model, the fairness factor is easier to calculate but more
iterative:

Uu tð Þ ¼ 1
ξ tð Þ # Nash ð6:6Þ

For u ¼ 1. . n, and:

au1,u2 tð Þ ¼ Uu1 tð Þ
Uu2 tð Þ ð6:7Þ

with ξ(t) representing the number of tasks pending for a given user at time t andUu(t)
representing the utility or satisfaction gained by a given user when an additional one
of their tasks is executed. The fairness factor, αu1, u2(t), relates u1 over u2: the
fairness factor is the ratio of the utilities of two users competing for a resource.

In a Nash-based fairness-factor calculation, the utilities of all of the users are
calculated. The fairness factor compares the utilities of two users. If user 1 has
10 pending tasks, when a single task is finished for user 1, user 1 gains a percentage
change in utility of 1/10, 0.1, or 10%. Similarly, if user 2 has 30 pending tasks, their
percentage gain in utility per task completed is 1/30, 0.03, or 3%.

αu1,u2 tð Þ ¼ 0:1
0:03

¼ 3:33 ð6:8Þ

αu2,u1 tð Þ ¼ 0:03
0:1

¼ 0:3 ð6:9Þ

In a direct competition between two users, Nash’s model gives more precedence
to the user with the lower number of pending tasks. Equation 6.10 shows the matrix
for a 3-user system, and 6.11 shows a matrix for the general case:

6.1 Calculating Seniority 41



n=a αu1,u2 αu1,u3

αu2,u1 n=a αu2,u3

αu3,u1 αu3,u2 n=a

2
664

3
775 ð6:10Þ

n=a � � � αu1,un

⋮ ⋱ ⋮

αun,u1 � � � n=a

2
664

3
775 ð6:11Þ

Nash’s model is more computationally intensive than other methods of calculat-
ing utility, however, as it requires a comparison between all users. The main reason
to choose one over the other is computational efficacy.

The scheduler is itself a new operating definition for resource management, as is
shown in Fig. 6.1. The scheduler achieves fairness because if it overshoots, incor-
rectly bumping up a task, the next task to be processed for that user will stay in place
or move very slightly towards the front of the queue.

6.1.1 Example of Calculating Seniority

Consider the following scenarios. In the first scenario, two users of a large system
each submit one task. Task 1 is submitted by user 1, and task 2 is submitted by user
2 (Table 6.1). While user 1 and user 2 each submit only a single task, the system
contains other tasks submitted by other users, which are represented by

P
u
ξ tð Þ

(Table 6.2). In the second scenario, user 1` has two pending tasks, while the other
conditions are the same as in the first scenario (Tables 6.1 and 6.3).

Collect
System

information

Calcuate
fairness
factors

Update
seniority

value for tasks

Determine
next supply
and demand

Schedule
tasks for

execution

Fig. 6.1 The scheduler’s
process flow

42 6 Simulation and Methodology



The change in seniority is calculated using Eq. (5.1), and the total accumulated
seniority is calculated using Eq. (5.1). In both scenarios, the fairness factor α is
designed to implement the Rawlsian definition of fairness, as is suggested by
Eq. (5.2).

The total number of tasks pending system wide starts at 100 and decreases every
clock cycle. As the time spent in the queue (i.e. the time-in-system) of a task

Table 6.1 Parameters for calculating seniority in a 2-user example

User 1 User 2 User 1

Number of tasks 1 1 2

Load {0.5} {0.5} {0.5}

Priority {0.8} {0.5} {0.8}

Fairness factor (estimated) Rawlsian Rawlsian Rawlsian

Table 6.2 Calculating seniority in a 2-user example

6.1 Calculating Seniority 43

https://doi.org/10.1007/978-3-030-14568-2_5#Equ1
https://doi.org/10.1007/978-3-030-14568-2_5#Equ1
https://doi.org/10.1007/978-3-030-14568-2_5#Equ2


increases, so does its seniority value. Because it has a higher priority value, user 1’s
task increases in seniority at a higher rate than does user 2’s task.

In scenario 2—which differs from scenario 1 only in that user 1 has 2 pending
tasks—the seniority value of user 1 drops by ½ (SU1 Total ¼ 104) to compensate for
the increased number of pending tasks, becoming smaller than the seniority value of
user 2’s task (SU2 Total ¼ 130). This result is shown in Table 6.3.

6.2 Performance Measures

As mentioned in Sect. 1.5, the primary objective of our work was to assess the
performance characteristics of a multi-criteria scheduler that utilizes seniority as well
as load and priority. Time-in-system was a primary measure in evaluating the
scheduler’s performance in accommodating various sizes of tasks, classes of work-
loads, and numbers of users.

Another performance measure, expected utility, which is used to represent user
satisfaction, was calculated using the Rawlsian method of fairness. Utility is calcu-
lated by comparing the number of completed tasks to the total number of tasks:

UuT tð Þ ¼ ξ t ¼ 0ð Þ � ξ tð Þ
ξ t ¼ 0ð Þ ð6:12Þ

Table 6.3 Recalculating seniority with an additional task pending for user 1

44 6 Simulation and Methodology

https://doi.org/10.1007/978-3-030-14568-2_1#Sec9


where UuT tð Þ is the total utility (T) of the user (u) at time t. ξ(t ¼ 0) represents the
total number of tasks pending at t ¼ 0—i.e. the total tasks submitted by a given
user—and ξ(t) is the current number of pending tasks. A utility plot was used to
validate our algorithm.

The algorithm makes scheduling decisions in time intervals, each of which is
called a “bucket.” Each bucket is filled with incoming tasks. The scheduler makes
resource-allocation (i.e. scheduling) decisions for each bucket in the order in which it
arrives. Each bucket is then fully processed. For each bucket, the following infor-
mation is gathered:

– Bucket size

• The bucket size represents the number of tasks each user submits per sched-
uling cycle. This value is used to calculate time-in-system for each task and
utility of the user.

– Completion time

• The completion time is used to calculate inter-bucket differences in utility and
time-in-system.

– Time-in-System

• As mentioned previously, a given job can be composed of many tasks that may
enter the system at any time. The time-in-system of a given job is a meaning-
less value because if 2 tasks compose a job, one task may be submitted at the
beginning of the day and the other may be submitted at the end of the day. Part
of the analysis was devoted to determining the times-in-system of tasks from
the various usage profiles we simulated.

In essence, the algorithm time-boxes the utility calculation to ensure that we are
within operating parameters.

Bucket duration was also examined. Because each bucket had its own metric, a
clear picture of utility emerges. In order to maintain fairness in statistical control, we
monitored these values to make sure that the bucket completion time remained in an
envelope acceptable to the operators, users, and business. If not, the fairness factor
for the user needs to be revisited.

6.3 Experimental Simulation Methodology

The primary goals of the simulation were to validate the new scheduling algorithm
and to determine its efficacy in handling various types of workloads. A number of
simulators were available, including Optorsim (Bell et al. 2003), the Bricks Grid
simulator (Takefusa et al. 2003), GridFlow (Cao et al. 2003), GridSim (Buyya and
Murshed 2002), and Alea (Klusáček and Rudová 2010). The majority of these

6.3 Experimental Simulation Methodology 45



simulators were designed for job scheduling, however, and thus lacked the charac-
teristics necessary to handle short-running tasks. In addition, we required a simulator
that was extendable and able to accommodate dynamic sets of resources, job types,
submission profiles, and task durations. We created dSim for this purpose.

46 6 Simulation and Methodology


	Chapter 6: Simulation and Methodology
	6.1 Calculating Seniority
	6.1.1 Example of Calculating Seniority

	6.2 Performance Measures
	6.3 Experimental Simulation Methodology


