
Art Sedighi · Milton Smith

Fair Scheduling
in High
Performance
Computing
Environments

Fair Scheduling in High Performance Computing
Environments

Art Sedighi • Milton Smith

Fair Scheduling in High
Performance Computing
Environments

Art Sedighi
Industrial, Manufacturing
& Systems Engineering
Texas Tech University
Lubbock, TX, USA

Milton Smith
Industrial, Manufacturing
& Systems Engineering
Texas Tech University
Lubbock, TX, USA

ISBN 978-3-030-14567-5 ISBN 978-3-030-14568-2 (eBook)
https://doi.org/10.1007/978-3-030-14568-2

Library of Congress Control Number: 2019934954

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-14568-2

Preface

This book introduces a new scheduler—the Rawlsian Fair scheduler—which can
distribute resources fairly in situations in which users with different usage profiles
are competing for resources in a large, shared computing environment. The Rawlsian
Fair scheduler is demonstrated to increase performance and reduce delay in high-
performance computing workloads of four classes:

Class A – Similar but complementary workloads
Class B – Steady vs. intermittent workloads
Class C – Large vs. small workloads
Class D – Large vs. noise-like workloads

The Rawlsian Fair scheduler achieves short-term fairness in cases in which
varying workloads and usage profiles require rapid responses. It is shown to consis-
tently benefit workloads in C and D situations and to benefit workloads of dispro-
portionate sizes in A and B situations.

This dissertation also presents a new simulation framework—dSim—which was
created to simulate the new Rawlsian Fair scheduler. A series of simulations
performed using dSim demonstrate that the Rawlsian Fair scheduler makes sched-
uling decisions that can ensure instantaneous fairness in high-performance comput-
ing environments. Because it does so, the Rawlsian Fair scheduler can both
maximize user satisfaction and ensure that computational resources are utilized
efficiently.

Lubbock, TX, USA Art Sedighi
Milton Smith

v

Acknowledgments

This effort would not have been possible without the help of Dr. Milton Smith. I
offer special thanks to Dr. Smith for his patience throughout our many rounds of
discussion of my raw ideas and for helping me to sort out my thoughts.

No words can describe my gratitude to Dr. Deng. For many years, you had to
listen to me talk about scheduling, fairness, gameplay, etc. Thank you for your
support and help through this long, and at times unfruitful, process.

Dr. Mario, you are an inspiration and a jewel of Texas Tech and the academic
world in general. I cannot think of anyone else who can handle 2 weeks of 12-hour
days in the same room and still inspire the audience from the first moment to the last.
I will always carry your words of wisdom with me.

I also extend my thanks to Dr. Burns and Dr. Du for affirming my thoughts and
making me think about scenarios I would not otherwise have thought of. I am proud
to have you both as members of my committee.

Irina, my wonderful wife, thank you for your love, support and patience. Thank
you for allowing me to pursue my dreams. I know this process has been long and, at
times, very taxing on our life, so I want to thank you for your love and understand-
ing. I love you very much. Special thanks also go to my boys, Isaac, Benjamin, and
Asher. I love you. I hope that you will someday have the opportunity to pursue your
own dreams. I also want to thank my parents for teaching me the importance of
education and to thank Aylin, my sister, for simply being who she is!

I also want to thank Peng Zhang—I truly enjoyed our discussions—and my
cousin, Dan Zadok, for spending many hours with me during our SoftModule
days discussing the merits of scheduling theory.

vii

Contents

1 Introduction . 1
1.1 Background . 1
1.2 Problem Statement and Scope . 2

1.2.1 Class A – Complementary Intermittent Workloads 3
1.2.2 Class B – Steady vs. Intermittent Workloads 3
1.2.3 Class C – Large vs. Small Transient Workloads 4
1.2.4 Class D – Large vs. Noise-Like Workloads 4

1.3 What Is Covered in This Book . 4
1.4 Seek and You Shall Find . 4
1.5 Expected Outcome . 5

2 Financial Market Risk . 7
2.1 Relevance . 9
2.2 An Example . 10
2.3 Expected Outcome . 13
2.4 Definitions . 13

2.4.1 High Performance Computing 13
2.4.2 Scheduling . 14
2.4.3 Task Load (L) . 14
2.4.4 Priority of the Task (P) . 14
2.4.5 Task Seniority (S) . 14
2.4.6 Time-in-System . 15
2.4.7 Utility . 15

2.5 Book Organization . 15

3 Scheduling in High Performance Computing 17
3.1 Introduction . 17
3.2 Scheduling and Scheduling Theory . 17

3.2.1 Flow Shop Scheduling . 18
3.2.2 Job Shop Scheduling . 19

ix

3.2.3 Open Shop Scheduling . 19
3.2.4 Parallel Machine Scheduling . 19

3.3 Shared and High Performance Computing 21

4 Fairshare Scheduling . 23
4.1 Fairness . 24

4.1.1 The Fairness of Fair-Share Scheduling 25
4.2 Utility . 26

4.2.1 Total Utility vs. Marginal Utility 27
4.3 FUD: Fairness-Utilization-Dynamicity 28

5 Multi-Criteria Scheduling: A Mathematical Model 29
5.1 Scope and Purpose . 29
5.2 Scheduling Parameters in 2-Dimensional Space 29

5.2.1 Load Requirement of a Task (L) 30
5.2.2 Priority of a Task (P) . 30
5.2.3 Auxiliary Parameters . 31

5.3 Seniority of a Task . 31
5.4 Modeling Tasks in 3-Dimensional Space 32
5.5 Determining Seniority and Fairness Factor 34
5.6 Summary . 37

6 Simulation and Methodology . 39
6.1 Calculating Seniority . 40

6.1.1 Example of Calculating Seniority 42
6.2 Performance Measures . 44
6.3 Experimental Simulation Methodology 45

7 DSIM . 47
7.1 dSim Architecture and Simulation Model 47
7.2 dSim Configuration . 50

8 Simulation Scenarios . 51
8.1 Simulation Case 1–2 Users Base Case 51
8.2 Simulation Case 2–2 Users . 55
8.3 Simulation Case 3–2 Users . 56
8.4 Simulation Case 4–2 Users . 56
8.5 Simulation Case 5–2 Users . 57
8.6 Simulation Case 6–6 Users . 57
8.7 Simulation Case 7–6 Users . 58
8.8 Simulation Case 8–6 Users . 58
8.9 Simulation Case 9–6 Users . 59
8.10 Simulation Cases 10 and 14 . 59
8.11 Simulation Cases 11 and 15 . 59
8.12 Simulation Cases 12 and 16 . 59

x Contents

8.13 Simulation Cases 13 and 17 . 59
8.14 Assumptions . 60

8.14.1 No-Randomness Assumption 60
8.14.2 Task-Based-Workload Assumption 60
8.14.3 Resource-Constraint Assumption 60
8.14.4 Simulation Parameters and Configuration 61

9 Overview of Results . 63
9.1 Results Recap . 63

9.1.1 Simulation 1 Analysis and Results 66
9.2 Lessons Learned . 69
9.3 Simulation Results and Analysis . 70

10 Class A Results and Analysis . 71
10.1 Class A Simulations . 71
10.2 Class A Results . 71

10.2.1 Simulation 2 Analysis and Results 71
10.2.2 Simulation 6 Analysis and Results 75
10.2.3 Simulations 10 and 14 Results and Analysis 78

11 Class B Results and Analysis . 85
11.1 Class B Simulations . 85
11.2 Class B Results . 85

11.2.1 Simulation 3 Analysis and Results 87
11.2.2 Simulation 7 Analysis and Results 90
11.2.3 Simulations 11 and 15 Results and Analysis 94

12 Class C Results and Analysis . 101
12.1 Class C Simulations . 101
12.2 Class C Results . 101

12.2.1 Simulation 4 Analysis and Results 101
12.2.2 Simulation 8 Results and Analysis 102
12.2.3 Simulations 12 and 16 Results and Analysis 106

13 Class D Results and Simulations . 111
13.1 Class D Simulations . 111
13.2 Class D Results . 111

13.2.1 Simulation 5 Analysis and Results 111
13.2.2 Simulation 9 Results and Analysis 116
13.2.3 Simulations 13 and 17 Results and Analysis 118

14 Conclusion . 123

References . 125

Index . 129

Contents xi

Chapter 1
Introduction

1.1 Background

While some industries use High Performance Computing (HPC) to increase profits,
other industries require HPC to do business at all. In the oil and gas industries, HPC
is used to conduct seismic simulations. In the pharmaceutical industry, HPC is used
to discover new drugs.

In finance, the calculation of risk is an essential part of doing business (Gleeson
2010; Hakenes and Schnabel 2011; McNeil et al. 2015; Tarullo 2008). Since the
2008 financial crisis (Demirguc-Kunt et al. 2013; Elliott 2009; White 2008, 2009),
governmental regulations, such as BASEL III (Committee 2010), have required each
bank to know the current status of their portfolio, how their portfolio could be
affected by various market conditions, and decision making process that went into
making their own transactions. These restrictions enable banks and other financial
institutions to assess risk quickly.

The primary way to fulfill requirements set forth by regulatory bodies it to
simulate various possibilities and future outcomes. Monte Carlo Simulations
(MCS) are the primary method that financial institutions use to calculate risk
(Glasserman et al. 2010; Reyes et al. 2001; Tezuka et al. 2005). MCS jobs are
parallelizable and can be used to speed calculations in HPC systems. An MCS job
run in an HPC system is decomposed into an array of smaller tasks, each of which is
submitted and executed separately. These tasks can be of various sizes and may
require a variety of system configurations. In agreement with Feitelson, Rudolph,
Schwiegelshohn, Sevcik, and Wong (1997), our work assumes that these tasks are
malleable and, therefore, that additional resources reduce the execution time of a
given job.

Since federal regulations like BASEL III (Committee 2010) require banks to
compile information that gives them the ability to calculate risk more quickly and,
therefore, to conduct more business, the need for computational power has
increased. Historically, however, datacenter utilization has remained between 5%

© Springer Nature Switzerland AG 2019
A. Sedighi, M. Smith, Fair Scheduling in High Performance Computing
Environments, https://doi.org/10.1007/978-3-030-14568-2_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14568-2_1&domain=pdf

and 20% on average (Armbrust et al. 2010). This underutilization is especially
problematic because when management and maintenance costs are taken into con-
sideration, the cost of purchasing a computer is only about a third of the total cost of
operating that computer for 3 years (Marston et al. 2011). About 80% of this total
cost is wasted when the computer is not fully utilized.

To cut costs and raise output1 (Weisbord 2004), a scientific management
approach is required (Taylor 1911). The primary cost is caused by the need for
high computational requirements (i.e. servers). To reduce cost, it is best to use
resources as efficiently as possible. The wasting of computational resources can be
minimized by sharing resources among many users, and a scheduler is a mediator
that controls access to such resources to ensure that they are utilized fairly.

Scheduling tasks that utilize a set of shared resources is not without its challenges,
however. For one, the fact that users must share access with one another inevitably
generates competition for scarce computational resources.

To avoid such competition schedulers work primary to increase utilization and to
reduce “time-in-system”—the time it takes for a request to be processed (Baker and
Trietsch 2013). All schedulers should be axiomatically fair (Kay and Lauder 1988),
i.e. appear and seem fair, while optimizing for two system parameters. These two
parameters are: “task load requirement” and “task priority”2 (Parker 1996).

“Fairness” is not well defined in the literature, however. In scheduling systems, it
is stipulated that schedulers need only to seem fair, and this has translated into long-
term fairness across all users and all tasks (Kay and Lauder 1988). As time-in-system
is not a variable to be optimized, some users might experience undesirable temporal
starvation. In essence, short-term fairness is occasionally sacrificed for long-term
equality (Bertsimas et al. 2011). This was demonstrated by showing how dispropor-
tionate users can be temporarily starved and delayed in systems that employ a fair-
share scheduling mechanisms (Sedighi et al. 2014).

In addition, current fair-share algorithms assume that task submission follows a
Poisson distribution (Kay and Lauder 1988; Kleban and Clearwater 2003), which
may not always be the case—for instance, when a burst of incoming tasks caused by
a market event requires an instantaneous response.

1.2 Problem Statement and Scope

In cases where quick decisions is required, long-term fairness is not acceptable
because the business opportunity may not exist. Such situations are usually seen in
financial institutions to keep up with the rapid changes in the global financial
markets. Small risk-modeling simulations—such as those submitted by trading

1(Weisbord 2004) p.81 is based on Lewin’s “Humanization of the Taylor System: An Inquiry into
the Fundamental Psychology of Work and Vocation” published in 1920.
2See Sect 1.7

2 1 Introduction

desks—can compete with large, bank-level risk-modeling simulations. Both small
and large jobs are important (i.e. they both have “priority”), however, and because
MCS simulations are broken down into thousands or even millions of smaller tasks
(i.e. “load”), it is nearly impossible for fair-share schedulers to determine the order in
which such tasks should be scheduled. As mentioned in the previous section,
conventional schedulers—outlined by Baker and Trietsch (2013)—make decisions
using two primary parameters: load and priority. A third parameter that can be used
is “seniority,” which can be dynamically updated and indicates the time a task has
spent in the system.

Multi-criteria (or “composite”) schedulers (Hoogeveen 2005; T’kindt and Billaut
2006) make decisions using multiple parameters. When an HPC environment
contains a large number of short-running tasks, seniority can be used to ensure
that no user is temporarily starved. This variable is additive, increasing the longer the
task is in the system.

It can assumed that the task-submission profile is unknown and does not follow a
Poisson distribution (Harchol-Balter 2013) and that schedulers must be able to deal
with varying sets of workloads.

1.2.1 Class A – Complementary Intermittent Workloads

In this type of workload, users send tasks to be executed in an intermittent fashion, in
a way that there are complementary users. Complementary users are two or more
users who send tasks when the other(s) are not. In mathematical terms, one user’s
submission pattern resembles a sine wave, and the other user’s submission pattern
resembles a cosine wave.

1.2.2 Class B – Steady vs. Intermittent Workloads

This type of workload resembles a long-running workload versus an intermittent
workload. A long-running workload is a job that is divided into many smaller tasks
that are submitted at a steady rate. The submission rate of a long-running workload
can be limited by the bandwidth between the user and the HPC environment, the
processing power of the user, or any number of other variables. In an intermittent
workload, a user or a set of users submits tasks in a pattern that resembles a sine
wave or a cosine wave.

1.2 Problem Statement and Scope 3

1.2.3 Class C – Large vs. Small Transient Workloads

In this type of workload, a user’s small workload is forced to compete for resources
with much larger workloads. This user has a one-time submission with a dispropor-
tionately small task count, while the other users in the system have much larger
usage requirements.

1.2.4 Class D – Large vs. Noise-Like Workloads

In this workload, one user’s workload is so small relative to another’s that from the
perspective of the larger workload, it appears as noise. The rate of submission,
though very small, may be consistent and require attention.

1.3 What Is Covered in This Book

This book will introduce a new methodology that can provide an alternative solution
to the current fairshare scheduling and by doing do reduce or eliminate the temporal
starvation that is caused by current schedulers that tend to benefit larger users over
smaller ones. This new scheduling algorithm is used in high performance computing
environment and is based on the Rawlsian definition of justice and fairness.
Rawlsian fairness utilizes on the concept of the Least Well-off User which gives
precedence to certain type of tasks seen in HPC environments.

A new parameter, called seniority, is introduced in this research to monitor and
control how a scheduler allocates resources to the Least Well-off User.

1.4 Seek and You Shall Find

Scheduling systems sometimes allocate resources unfairly to users whose workloads
do not fit a Poisson distribution. Although fair-share scheduling can achieve long-
term fairness, it does so by sacrificing temporal fairness to some users.

The primary question that this book seeks to answer is whether a multi-criteria
scheduler with the capacity for adaptive aging can overcome the unfairness endemic
to other fair-share schedulers. The hypothesis of this work is that an HPC scheduler
that uses a tertiary parameter—time-in-system—can reduce the task-execution delay
experienced by users with disproportionate usage profiles.

4 1 Introduction

In order to find the answers to the above, the following sub-questions must be
addressed:

1. Is there a multi-criteria scheduling algorithm capable of accounting for senior-
ity—i.e. the time each task has spent in the system?

2. Is there a model that can represent workloads that are transiently non-Poisson
distributed? Can such a model be used to represent a scheduler with multiple
optimization variables—e.g. load, priority, and seniority?

3. Is there a model for “fairness factor,” a multiplier that can alter the position of a
task awaiting execution?

4. How can a model for fairness factor be verified through simulation? Can a
simulator be created that is capable of representing HPC environments with
various types of users and workloads and of predicting the performance of any
user-developed scheduling algorithm?

5. Is it possible to prove that the newly developed scheduler is quantitatively fair—
specifically, that its decisions accord with the rules of utility and fairness
(as outlined by Nash’s fairness model, which is based on bargaining theory)
and maximize the least utility (as is mandated by Rawls)?

6. How would such a scheduler deal with disproportionate job profiles, in which
smaller workloads are generally neglected in favor of larger ones?

1.5 Expected Outcome

Our work has three objectives:

1. The primary objective is to evaluate the efficacy of a scheduler that uses three
criteria: load, priority, and seniority. The scheduler build for this research can
reduce the time-in-system of a task by considering the task’s seniority as well as
its load and priority.

2. The second objective is to quantitatively demonstrate through simulation how
fairness alters the performance characteristics of the new scheduler.

3. The third objective is to demonstrate the capabilities of a simulation platform that
can be used to test user-supplied scheduling algorithms.

1.5 Expected Outcome 5

Chapter 2
Financial Market Risk

In the first 5 min (9:30–9:35 AM EST) after the market opened on Friday, June
24, 2016, the trading volume of the Dow Jones Industrial Average reached 5.71 mil-
lion shares; by the closing minute (4:00 PM), the volume was over 63 million shares1

(Table 2.1). Over the course of the day, a total of 5.2 million trades were processed
by the New York Stock Exchange (NYSE), and over five million of these were small
trades of 1–2000 shares.2

Many trades are automatic and entered using complex, algorithm-driven pro-
grams. This phenomenon is known as “algorithmic trading” or “algo-trading.”
Financial markets run Value-at-Risk (VaR) models to assess the risk and potential
reward of each trade (Alexander 1998; Jorion 1997). The speed at which a VaR
model runs determines the rate at which a given algo-trading application can enter
trades (Chong et al. 2009).

VaR models are based on Monte Carlo Simulations (MCSs) (Reyes et al. 2001),
and are constituted by both simple and complex mathematical functions that approx-
imate the probability of an outcome by simulating trials featuring one or more vari-
ables and a specified time horizon (Krishnamurthy et al. 2012). Because of their sheer
size, these models require extensive computational power and, as a result, can be
significantly parallelized across High Performance Computing (HPC) environments.

The accuracy of a Monte Carlo Simulation depends on its number of runs
(i.e. “paths”), and varying its input parameters (known as “shocking” the simulation)
can yield a clearer picture of potential outcomes (Glasserman et al. 2010). For
example, a financial institution may want to calculate the VaR of a stock portfolio
by running a pricing calculation with 1,000,000 paths and shocking the simulation
by varying the interest rate, gold price, and dollar exchange rate. If each of the

1Data were gathered using http://finance.yahoo.com/echarts?s¼%5EDJIþInteractive#{“range”:
“1d”,“allowChartStacking”:true}
2Data were taken directly from the NYSE website on June 24th, 2016. Data can be retrieved from:
http://www.nyxdata.com/Data-Products/NYSE-Volume-Summary#summaries

© Springer Nature Switzerland AG 2019
A. Sedighi, M. Smith, Fair Scheduling in High Performance Computing
Environments, https://doi.org/10.1007/978-3-030-14568-2_2

7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14568-2_2&domain=pdf
http://finance.yahoo.com/echarts?s=%5EDJI+Interactive#%7B
http://finance.yahoo.com/echarts?s=%5EDJI+Interactive#%7B
http://finance.yahoo.com/echarts?s=%5EDJI+Interactive#%7B
http://www.nyxdata.com/Data-Products/NYSE-Volume-Summary#summaries

shocks affects only two values (e.g. the current market value and one step up or
down3), the MCS needs to run 1,000,000 paths * 2 (for the interest-rate shock) *
2 (for the price-of-gold shock) * 2 (for the dollar-exchange-rate shock). The paths in
this scenario total six million, and each predicts the value of the portfolio at some
future time—e.g. 30 days out or 5 years out. This case is very simple, featuring only
3 shocks with 2 values each. Significantly greater numbers of shocks with larger
numbers of potential values are feasible, however, and in such cases, predicting the
potential outcome is an unlikely event (Glasserman et al. 2010). Moreover, as the
above example suggests, more complex models that generate greater numbers of
paths require significantly more computing power.

The size and complexity of Monte Carlo Simulations make them great candidates
for HPC environments. MCS models can be broken into large numbers of malleable
tasks, which are packaged into a job. Regardless of the user or the MCS job, these
tasks are similar in both size and required computational power. In contrast, classi-
cal, job-based scheduling methodologies such as Shortest Processing Time (Baker
and Trietsch 2013) and Earlier Due Date (Parker 1996) do not apply because the
tasks resemble one another and the collection of completed tasks constitutes the
desired result of the job. The tasks are not submitted at the same time, and the
scheduler does not know the number of tasks still pending. A challenge thus arises
when there is a vast discrepancy between two or more users running their models at
the same time: the users compete for additional resources to finish more quickly, and
the scheduler is required to allocate resources fairly.

In cases in which an infinite number of tasks is incoming for a particular job, it has
been demonstrated that schedulers temporarily starve users with fewer pending tasks
(Sedighi et al. 2014). The tasks are queued in the scheduler. To empty the queue as

Table 2.1 Per-minute shares-traded volume on the NYSE for June 24, 2016

Time Number of shares

9:30 AM 1.67 million

9:31 AM (no data – Potentially summed up in the next minutes)

9:32 AM 2.84 million

9:33 AM 633 K

9:34 AM 598 K

9:35 AM 996 K

:

3:55 PM 1.57 million

3:56 PM 1.58 million

3:57 PM 2.16 million

3:58 PM 2.65 million

3:59 PM 5.96 million

4:00 PM 63.32 million

3For example, if the current interest rate is 2.5% and interest rate changes by.25% at a time, one step
up would be 2.75%, and one step down would be 2.25%.

8 2 Financial Market Risk

fast as possible, fair-share schedulers (Bach 1986a, b; Kay and Lauder 1988) assign
increased precedence to jobs with larger pending tasks in the queue. This can
temporarily starve jobs with fewer pending tasks.

Our work considers a workload that is not Poisson-distributed because the
requests that have entered the system are related and close together. When all of
the tasks constituting a given job have been completed, the job is finished. Then, the
next job (which may or may not be related to the previous job) enters the system.

Particular conditions in the financial market cause bursts of jobs to enter the
system. When a burst of jobs enters the system, the jobs use the environment and
then leave. Whether and when a given job will return is unknown. In addition, a
given job can be composed of two tasks: one at the beginning of the day (“market
open”) and 1 h later, at the end of the day (“market close”). Because all of the tasks
that constitute a given job are related, a job cannot be finished until all of its tasks are
completed. The user determines when the job is finished; the scheduler is unaware of
“job start” and “job finish” events.

2.1 Relevance

The scenario described in the previous section lends itself in various ways to the
problem statement vis-a-vis the different classes of workloads (Table 2.2).

Table 2.2 Relevance of workload types to problem statement

Workload
classification Relevance

Class A Intermittent workloads occur when users submit jobs throughout the day.
Examples of such jobs include requests for risk calculations submitted by
traders under normal market conditions. Such jobs may or may not be
complementary to other jobs submitted.

Class B Class B workloads occur when a steady workload and an intermittent
workload compete for resources. For example, a firm-level risk calculation
might compete with an individual trader’s risk request. The firm-level
workload is large and arrives continuously, and it is limited by external
constraints, including the bandwidth of the network, the power of the CPU,
etc. In contrast, the trader’s workload represents the trader’s own actions and
potential future actions, and it is intermittent because it varies with market
conditions.

Class C Competing for resources for a one-time burst submission and larger work-
loads represents cases with smaller trades amongst the sea of much larger
trades from various traders. Another example is an end-of-day request, in
which a trader needs to calculate the value of their portfolio and thus sends a
one-time request for a tally of their position.

Class D Reporting and other forms of general verification occur throughout the day
and can be considered background noise. These jobs may be very small—for
instance, requests to sum-up the positions since the last request—but may be
immensely valuable from a book-keeping perspective.

2.1 Relevance 9

Chapter 8 will cover simulations designed to compare the efficacy of a new
scheduling paradigm to that of fair-share in handling these four types of workloads.

2.2 An Example

This section offers an example in which temporal starvation occurs because two users
compete for resources in an HPC environment. While the number of resources is the
same and does not change for both users, the number of tasks and the pattern in which
the tasks are submitted vary between the users. This two-user case can easily be
extended to incorporate n users, where users 1..k-1 compete for resources against user k.

Uk ¼
x, number of Tasks kð Þ �

Xk�1

i¼1

of Tasks ið Þ

< x, number of Tasks kð Þ �
Xk�1

i¼1

of Tasks ið Þ

8
>>>><

>>>>:

ð2:1Þ

where Uk is the level of satisfaction or utility experienced by user k. Equation 2.1
states simply that a user can experience different levels of satisfaction (x or <x) not
only because of their own submission profile (Tasks(k)), but also because of the
actions of others (Tasks(1.. k � 1)). If the number of tasks submitted by k is much
smaller than the total number of tasks submitted by the other users, then the utility
experienced by k (denoted “Uk”) will be less than it would have been had k’s total
number of tasks more closely matched the number of tasks submitted by the other
users. This is the case because current fair-share schedulers normalize requests,
achieving long-term fairness at the expense of short-term fairness to small users.
As a result, utility is a function not only of one’s own submission profile, but also of
the collective’s submission profile (see Sect. 4.2) (Fig 2.1).

Fig. 2.1 Comparison of the task submissions for Job A (green) and Job B (blue)

10 2 Financial Market Risk

Consider a system with only two jobs—A and B—which have the following
characteristics:

– Job A has 5000 tasks in total. All of these tasks are entered at the start time for the
simulation, t ¼ 0. All of these tasks are also of equal load (L) and priority (P).

– Job B has 50 tasks in total. All of these tasks are entered at the start time for the
simulation, t¼ 1. All of these tasks are also of equal load (L) and priority (P), and
are the same as those of Job A.

The submission profile for this example is shown in Table 2.3, in which A sends a
total of 5000 tasks and B sends a total of 50 tasks. Both users submit their tasks at
once.

In Table 2.3, “PC” is the placement counter, a clock tick of the system. “Task” is
represented by x, and L0 (x, PC) is the base task load of 1 task/PC.

An HPC system is composed of a scheduler and a set of servers or resources that
do the computation. A fair-share scheduler mediates access to the backend resource
pool of 100 computers that make up the HPC system. Each task takes 1 unit of time
to complete.

When Job A is the only job in the system, job A would take 5000/100 (or 50)
units of time to complete Job A. 100 tasks are dispatched at one at a time by the
scheduler to the available resources, and since the processing time is constant, all
tasks finish at the same amount of time. As soon as a batch is finished, the next batch
of 100 tasks is scheduled. As a result, Job A alone takes 50 scheduling cycles to
complete.

When Job B is the only job in the system, one 1 unit of time is needed to complete
Job B.

Because each task takes 1 unit of time to finish and there are more available
resources than there are tasks in job B, the tasks in Job B are parallelized across the
resources and completed in one unit of time. When the two users are forced to share
the system, however, the scheduler distributes the tasks in proportion to the total
number of tasks pending in the queue. Thus, Job A gets 5000

5050 � 100 � 99, and Job B
gets the remaining resource of 1. In the next round, Job A gets 4901

4950 � 100 � 99, and
so on. This is progression is illustrated in Fig. 2.2.

If the sizes of Job A and Job B were known in advance, the scheduler could
employ the Shortest-Job-First algorithm and schedule Job B first. Since the sched-
uler does not know when all of the requests have been submitted for a given job, a
Poisson process property, it cannot reserve resources nor make a decision as to what

Table 2.3 Parameters for the two-user example

Jobs Load in
tasks

time slice PCð Þ
A

L1 x;PCð Þ ¼ max 5000�L0 x; PCð Þ cos π� PC=2ð Þ; 0f g, Pn

PC¼0
L1 PCð Þ ¼ 5000

B
L2 x;PCð Þ ¼ max 50 � L0 x;PCð Þ sin π� PC=2ð Þ; 0f g, Pn

PC¼0
L2 PCð Þ ¼ 50

2.2 An Example 11

the best method of scheduling would be. A fair-share scheduler’s real-time decisions
assume that the incoming load is Poisson distributed, but between t ¼ 0 and t ¼ 2,
the task submission profile does not follow a Poisson distribution. Instead, it
represents a short burst of tasks submitted in close proximity.

As Table 2.4 shows, under fair-share scheduling, both jobs finish at essentially
the same time. While Job A is allocated the majority of the resources, Job B is not
starved—just delayed. The simulated models (see Chap. 6) considers both commu-
nication costs and the wait time in the queue, thereby providing a more realistic
estimate of the delay experienced by each job. In either scenario, both jobs finish
their runs.4 Moreover, if we evaluate the HPC system on the long term (t ¼ infinity),
both jobs are treated fairly. The temporal starvation experienced by Job B is
undesirable, however, especially in cases in which time is short and every second
counts.

The value that is missing in determining fairness is the time that a given job has
spent in the system. After Job B has been in the system for some time, for example,
the priority of its remaining tasks should increase. A new fair-share scheduling
system takes into account the seniority of each job in determining which set of

Fig. 2.2 The distribution of resources by a fair-share scheduler to Job A (green) and Job B (blue)

Table 2.4 Scheduling results of Job A and Job B

Job name Scheduling sequence Start time Finish time Delay from optimal

Job A A goes first t ¼ 0 t ¼ 5000/100 ¼ 50 0

Job B A goes first t ¼ 51 t ¼ 51 50

Job A B goes first t ¼ 1 t ¼ 51 1

Job B B goes first t ¼ 0 t ¼ 0 0

Job A Fair-share t ¼ 0 t ¼ 51 (estimate) 1

Job B Fair-share t ¼ 1 t ¼ 51 (estimate) 50

Job A Fair-share – simulated t ¼ 0 t ¼ 61 (actual) 11

Job B Fair-share – simulated t ¼ 1 t ¼ 60 (actual) 59

4This is referred to as “equifinality” (Bertalanffy 1969)

12 2 Financial Market Risk

requests to fulfill next. A determination of seniority values that change over time,
and not a value that is supplied as the property of the job, can help solve the problem.
The scheduling system assigns a seniority value to the tasks pending for a given job,
thereby preventing short-term starvation. A task’s seniority is calculated based on its
time in the system relative to the other tasks, and this value determines its position in
the queue. This value changes, however: if a job changes its submission profile, its
seniority value and place in the queue also change.

2.3 Expected Outcome

The expected outcome of our work is the development and modeling of a new
scheduling algorithm that will be able to reduce the otherwise disproportionate delay
experienced by users. To assign such users more advantageous seniority values, the
scheduler will employ various criteria, including time-in-system, load, priority, and
the states of the other users. As a result, seniority will aid the scheduler in making
real-time decisions that will change with the values of various system parameters,
including number of users, pending tasks, and access rights.

2.4 Definitions

This section provides operational definitions of some of the terms used in our work.

2.4.1 High Performance Computing

A High Performance Computing (HPC) environment is a system of interconnected
computers that increase the computational capacity available by providing
parallelized execution paths across the pool of available resources. HPC environ-
ments are typically shared by a number of users, each of whom require extensive
computational power. The resources or the number of servers in an HPC environ-
ment are finite (generally on the order of 500–1000 servers) and homogeneous; they
usually share memory and include a number of processors in each node. This setup
enables two or more unrelated applications to run side-by-side on the same machine
but in different process spaces, containers (Soltesz et al. 2007), or even virtual
machines.

2.4 Definitions 13

2.4.2 Scheduling

When the demand for computational resources exceeds the available supply, sched-
uling sequences the tasks to be completed (Conway et al. 2012). Scheduling
balances and optimizes three primary parameters: “fairness,” “utilization,” and
“dynamicity” (FUD) (Sedighi et al. 2017b).

Because schedulers cannot optimize all three of these parameters simultaneously,
one parameter must suffer for the benefit of the other two. Many scheduling systems
reduce fairness in favor of utilization and dynamicity (Sedighi et al. 2017a)

2.4.3 Task Load (L)

Task load (L) is traditionally measured in CPU cycles per second, but it can also
easily be measured in floating-point operations per second (FLOPS) or Giga-
FLOPS. Our work assumes that the load of a given task is either given or calculated,
that it does not change across the lifetime of the task, and that the task loads of a
given job can vary.

2.4.4 Priority of the Task (P)

A task’s priority is static and generally user-defined, and it indicates the importance
of the task. Priority values vary from task to task and may change. Priority is
assigned by the user and may not represent the priority of the task holistically across
all of the users and tasks in the system. In essence, priority may be affected by users’
selfish behavior (Angel et al. 2006).

2.4.5 Task Seniority (S)

Task seniority is a dynamic, time-dependent value that indicates how long a task has
been in the system relative to the current state of the system and to the other users
currently in the system. Seniority changes with changes in the flux of the system,
i.e. the rate at which tasks are flowing through the system.

14 2 Financial Market Risk

2.4.6 Time-in-System

A task’s time-in-system—or “flowtime” (Baker and Trietsch 2013)—is the total time
it spends in the system, from the time it is submitted to the time at which the result is
sent to the user. Although all scheduling algorithms share the goal of reducing the
flowtime of every task, each scheduling algorithm pursues this goal differently,
depending on its workload and performance requirements.

2.4.7 Utility

Utility is a measure of satisfaction or happiness (Luce and Raiffa 2012). There are
two approaches to defining utility: “cardinal” (Bentham 1879), on which utility is
considered measurable and comparable, and “ordinal” (Pareto 1919), on which
utility is used merely to exert user preferences in choosing an option. This disserta-
tion assumes the cardinal view of utility because the scope of how utility is
calculated is defined and boxed to a very specific problem. According to the FUD
hypothesis (Sedighi et al. 2017b), fairness is an aspect of scheduling that directly
affects the utility of the user.

2.5 Book Organization

Chapter 3 offers a review of the landscape of scheduling in high performance
computing environments. Chapter 4 delves into the aspects of fairness in scheduling
and introduces the concepts of FUD as it pertains to scheduling. Chapter 5 will
introduce a new mathematical model for scheduling that will introduce a tertiary
parameter, called Seniority into the model. Chapter 6 onwards focuses on the
simulation and results of our new scheduler based on the aforementioned tertiary
parameter. A simulator that can analyze the performance and characteristics of the
scheduler (dSim) is introduced in Chap. 7. In Chap 8, dSim is used to run a number
of different scenarios, the data from which are then analyzed in Chaps. 9–13. The
analysis focuses on the treatment of varying workload types by the scheduler, rather
than on optimizing a single parameter (e.g. time-in-system).

2.5 Book Organization 15

Chapter 3
Scheduling in High Performance
Computing

3.1 Introduction

This chapter provides background information relevant to our objectives:

i. To evaluate the efficacy of a multi-criteria scheduler that uses seniority as well as
load and priority to make scheduling decisions.

ii. To demonstrate how fairness affects the performance characteristics this
scheduler.

iii. To build and demonstrate the capabilities of a custom simulation platform.

The literature review is divided into the following sections:

i. Scheduling and scheduling theory
ii. High Performance Computing and shared computing
iii. Fair-share scheduling in a HPC environment
iv. Fairness and utility

Each section will review the literature relevant to its specified topic(s), and any
gaps in the research will be noted.

3.2 Scheduling and Scheduling Theory

General scheduling algorithms are among the intractable problems of computer
science and are considered NP-Hard1 (P Brucker and Knust 2012). As a result,
only heuristic methods can be used to solve scheduling problems. While the only
exceptions to this rule have historically been solutions to single- and double-machine
problems, a polynomial-time algorithm has been developed that can solve the three-

1See p.24

© Springer Nature Switzerland AG 2019
A. Sedighi, M. Smith, Fair Scheduling in High Performance Computing
Environments, https://doi.org/10.1007/978-3-030-14568-2_3

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14568-2_3&domain=pdf

machine scheduling problem in very limited cases (Baker and Trietsch 2013).2

Scheduling problems combine two problems into one: resource allocation and
sequencing. Because resource allocation is unnecessary in the single-machine prob-
lem and trivial in the two-machine problem, in which only one of the two machines
is used to make a given decision, only sequencing needs to be solved.

Paradoxically, however, the single-machine problem sheds some light on how
scheduling should be done: it suggests that there is an absolute and optimal solution.
A number of methods have been used to solve the single-machine sequencing
problem (Baker and Trietsch 2013)3:

– The Adjacent Pairwise Interchange method (Potts and van Wassenhove 1991)
two adjacent jobs are compared and interchanged to be in proper ordering (this
method is similar to bubble sort).

– Dynamic Programming (Brucker and Knust 2012) uses the optimality principle
and the optimality of sub-problems to make decisions.

– Branch and Bound (Brucker et al. 1994) partitions large problems into smaller
sub-problems and calculates the bound for the solution to each sub-problem.

– Dominance Properties reduces the problem space to jobs that can neither be
preempted nor allowed to have inserted idle time.

In addition to these optimization methods, a number of heuristic methods (Baker
and Trietsch 2013)4 can be used to sequence jobs to maximize the flow time and
minimize the makespan. These methods include genetic algorithms, simulated
annealing, greedy search, and taboo search. However, the applicability of the
single-machine problem is limited in cases that rely on High Performance Comput-
ing, which are the focus of this research.

Scheduling methodologies generally fall into the following basic categories:
Flow Shop Scheduling (Baker and Trietsch 2013),5 Job Shop Scheduling (Baker
and Trietsch 2013),6 and Open Shop Scheduling (Parker 1996).

3.2.1 Flow Shop Scheduling

In flow shop scheduling (Baker and Trietsch 2013), a product is assembled by
machines in a particular series. A good example of flow shop scheduling is bicycle
assembly, in which a bicycle is assembled piece by piece by machines to which it is
sent in a particular order. The Flow Shop Scheduling Problem closely resembles the
Traveling Salesman Problem (TSP), which is known to be intractable in most cases.

2See p.236
3See p.34–53
4See p.57–75
5See p.225
6See p.325

18 3 Scheduling in High Performance Computing

Flow shop problems have been solved in polynomial time (P), in which up to two
(or, in some conditions, three) machines are used (Baker and Trietsch 2013).7

3.2.2 Job Shop Scheduling

In Job Shop Scheduling (Baker and Trietsch 2013), a product is manufactured by
multiple machines in no particular order. Paint manufacturing is an example of Job
Shop Scheduling: a desired color is made by mixing a number of other colors, but the
order in which each color is added to the mixture is unimportant. This scheduling
problem is also a case of TSP, albeit a less restrictive one.

3.2.3 Open Shop Scheduling

An example of Open Shop Scheduling (Parker 1996) is the check-out line at the
grocery store: excluding special types of lanes (express lanes, self-checkout, etc.)
any cashier can serve any customer. There is a finite set of types of work—checking
out and paying—that all cashiers are capable of handling. If a scheduler were to
decide where the next customer should go, its decision would be a simple one: it
would simply send the next customer to the next available cashier. In this scenario,
there is no flow and no dependency. The Open Shop Scheduling problem is
unsolvable in general cases, but it can be solved in Polynomial time (P) when
there are at most two—or, under certain conditions, three—machines (Parker
1996).8 Open Shop Scheduling and related workloads where a task can be processed
anywhere is of interest in our study because it is highly parallelizeable and indepen-
dent of the other problems.

3.2.4 Parallel Machine Scheduling

Scheduling for parallel machines is more commonly used with High Performance
Computing of various types: (a) cluster, (b) grid, and (c) cloud computing. In these
types of HPC, nodes work in tandem to solve computationally difficult problems.
Table 3.1 compares these three classes of HPC (Hussain et al. 2013).

As Fig. 3.1 shows (Dong and Akl 2006), scheduling algorithms used in HPC are
characterized using five broad distinctions:

7See p.236
8See p.167

3.2 Scheduling and Scheduling Theory 19

– Global vs. Local. Global schedulers are unitary meta-schedulers that allocate
resources across multiple administrative domains. In contrast, local schedulers
manage smaller sets of resources and perform both sequencing and resource
allocation.

– Static vs. Dynamic. Static schedulers allocate resources in advance and accept
jobs only if sufficient resources are available. In contrast, dynamic schedulers
queue jobs until sufficient resources become available.

– Optimal vs. Suboptimal. Because most scheduling problems faced by parallel
systems cannot be computationally solved within a reasonable timeframe, most
scheduling algorithms are suboptimal and heuristic.

– Centralized vs. Distributed. Centralized schedulers make every decision and have
exclusive access to the resource pool. In contrast, distributed schedulers divide
decisions among them and share a resource pool.

– Application Centric vs. Resource Centric. Application centric schedulers work to
minimize the flow time for applications with specific load characteristics. In
contrast, resource centric schedulers work to maximize resource utilization and
increase flow time.

Dynamic scheduling is required when it is difficult to estimate the rate at which
tasks will be submitted and/or the number of jobs that will request resources at a
given time. This situation requires the scheduler to perform system-state estimation,

Table 3.1 Comparison of cluster, grid, and cloud computing

Feature Cluster Grid Cloud

Size (# of nodes) Small to medium (100’s) Large (1000’s) Small to large
(100’s–1000’s)

Network type Private LAN Private LAN or WAN Public WAN

Scheduling method Centralized Centralized or
decentralized

Centralized or
decentralized

Coupling Tight Loose or tight Loose

SLA constraint Strict High High

Fig. 3.1 Classification
of scheduling algorithms
in HPC

20 3 Scheduling in High Performance Computing

which is computationally intensive because it requires the gathering and processing
of complete information on the resources available and on every task in the system,
including the number of CPUs, their memory, and their storage (Dong and Akl
2006). The difficulty of doing so further supports the FUD hypothesis, which states
that the three goals of shared-computing systems—fairness, utilization, and
dynamicity—cannot be optimized simultaneously. As a result of this hypothesis,
many scheduling systems opt to increase resource utilization, even at the cost of
increasing the time-in-system of some tasks (James 1999; Sedighi et al. 2017a).

3.3 Shared and High Performance Computing

Shared computing environments are platforms that allow many users to execute jobs
simultaneously. Typically, the jobs that run in parallel on these systems could benefit
from additional resources. High Performance Computing (HPC) environments are
shared computing environments in which systems of interconnected computers
increase the computational capacity available by providing parallelized execution
paths across a pool of available resources. A resource pool is a set of computer nodes
or servers ready to accept work at any time.

HPC environments must accommodate numerous and widely dispersed cus-
tomers and usage profiles, each of which has priority and exhibits selfish behavior
that may impact the other users in the system. Moreover, the users’ tasks are
malleable and have timescales measured in milliseconds (Feitelson et al. 1997).
Thousands of tasks or requests are generated each second, and the number of users
served at a given time can be large (Chervenak et al. 2000; Foster and Kesselman
2003).

Each user desires to gain access to as many resources as possible (Christodoulou
et al. 2007). This selfish behavior is rational, and competition among users for
resources is a zero-sum game. Little research has examined selfish behavior in
shared computing environments, however, especially in interactive systems (Sedighi
et al. 2014).

The type of problems under consideration are Massively Parallelizable Problems
(MPPs) with dynamic and malleable tasks (Feitelson et al. 1997). The number of
resources dedicated to such problems, which are composed of a number of tasks,
may shrink or grow. When additional resources are allocated to the tasks pending for
such a problem, that problem can be completed more quickly. For this reason, it is
rational for the user to desire as many resources as possible. The problem arises
when multiple users share this desire (Christodoulou et al. 2007; Sedighi et al. 2014):
it creates a competition for resources.

Schedulers mediate access to resources, ensuring that no single user can dominate
the environment. The primary goal of any scheduler is to “seem fair” (Kay and
Lauder 1988). Because schedulers can be tasked with accommodating potentially
large numbers of users and workloads, they must be able to divide resources fairly

3.3 Shared and High Performance Computing 21

among users. However, some schedulers set aside resources for users (Bach 1986a,
b) who are not able to claim them, thereby causing the environment to be
underutilized.

Even though schedulers in HPC environments also ensure equifinality
(Bertalanffy 1969)—i.e. that every user’s job is finished—delays caused by unfair
competition are undesirable (Ferraioli and Ventre 2009). Because the main objective
of schedulers is to drain the queue of pending tasks as quickly as possible, schedulers
pay very little attention to whom each task belongs. Although this model does reduce
time-in-system and thereby ensures long-term fairness (Kay and Lauder 1988),
temporal fairness suffers as a result. In essence, a user with only 10% of the pending
tasks will be forced to wait considerably longer for resources than will users with
more pending tasks.

22 3 Scheduling in High Performance Computing

Chapter 4
Fairshare Scheduling

Many scheduling systems use fair-share or proportional-fair-share algorithms (Kay
and Lauder 1988). Fair-share schedulers were initially designed to manage the time
allocations of processors in uniprocessor systems with workloads consisting of long-
running, computer-bound processes (Kleban and Clearwater 2003). Each user was
assigned a time slot on a machine (i.e. a mainframe), and in this time slot, the user’s
job was the highest priority. If there were any other jobs, they were stopped and
restarted at a later time.

Kelban et al. argued that if the jobs that run on uniprocessor systems were not
checkpoint-able (i.e. able to be stopped and restarted at a later time), fair-share
scheduling would not be able to achieve real-time fairness. For this reason, fair-share
scheduling policies were designed to achieve long-term fairness (i.e. steady-state
fairness), for which immediate fairness was compromised (Kleban and Clearwater
2003). The scenarios discussed in the previous section, in which a faster response is
desired for some tasks, pose a challenge to the current model. Scheduling policies
like Lottery Scheduling (C. A. Waldspurger and Weihl 1994), Stride Scheduling
(Carl A Waldspurger and Weihl 1995), Max-Min Fair-Share Scheduling, and Hier-
archical Share Scheduling (Epema and de Jongh 1999) typically statically pre-assign
a subset of the available resources. If these resources are not initially utilized, they
are shared among the other tasks (Bui 2008).

Fair-share algorithms are simplified and tailored versions of lottery-based sched-
uling algorithm (C. A. Waldspurger and Weihl 1994). In lottery scheduling, lottery
tickets are distributed in proportion to each user’s number of tasks. For example, in a
lottery-based system with 12 tickets, if User 1 has 20 tasks pending and User 2 has
10 tasks pending, User 1 will be allocated 8 tickets and User 2 will be allocated
4 tickets. In High Performance Computing environments, computational resources
are “tickets,” and schedulers assign resources in a ratio representing the current
queue size of the pending tasks.

A scheduler monitors a queue of pending tasks and makes resource-allocation
decisions dynamically. This dynamicity can produce dramatic shifts in how
resources are allocated during a given scheduling cycle. Resources can be taken

© Springer Nature Switzerland AG 2019
A. Sedighi, M. Smith, Fair Scheduling in High Performance Computing
Environments, https://doi.org/10.1007/978-3-030-14568-2_4

23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14568-2_4&domain=pdf

away from one user and assigned to another. Because the total number of resources
is constant, one user’s gain is another user’s loss. Moreover, the number of resources
available to a given user directly affects how fast their tasks are completed, making
varying the resource allocation the primary method by which tasks get completed.
The overall satisfaction or utility a user experiences results from the completion of
their tasks.

Fair-share schedulers can fairly allocate Poisson-distributed workloads, but they
cannot fairly allocate non-Poisson-distributed workloads, in which different users
consume non-comparable amounts of resources (Kay and Lauder 1988). In the
financial services industry, for instance, which uses HPC computing to assess the
risk of stock portfolios (Tezuka et al. 2005), external events (such as market open
and market close) can cause large numbers of tasks to be entered at nearly the same
time. In such situations, the resulting workloads are not Poisson distributed and are
not fairly allocated by fair-share schedulers.

4.1 Fairness

In social justice and welfare economics, the concept of fairness has been studied
from a variety of perspectives, including Aristotle’s equity principle (Shiner 1993),
the theories of John Nash (Nash Jr. 1950) and John Rawls (Rawls 2009), and
classical utilitarianism (Bertsimas et al. 2011):

– Utilitarianism: resources should be allocated to maximize the utility or satisfac-
tion produced by the system.

– Aristotle’s equity principle: resources should be allocated based on some
pre-existing claims.

– Rawls’s theory of justice: resources should be allocated to the users who are worst
off to guarantee the highest level of increase in satisfaction and utility.

– Nash’s bargaining theory: resources should be re-allocated if doing so will
increase the utility of those to whom they are re-allocated to a greater degree
than it will decrease the utility of those from whom they are taken (Young 1995).

One criticism of utilitarianism is that it would be unethical (Young 1995) to
maximize the total utility generated by the system at the expense of the utilities of
particular participants (Bertsimas et al. 2011). Despite this criticism, the utilitarian
approach is adopted by the many scheduling systems that work to increase overall
system utilization. Aristotle’s principle is not relevant to our case because in our
case, system resources are not pre-assigned. However, this principle is utilized in
many scheduling systems (Bach 1986a, b; Henry 1984).

Rawls’s and Nash’s approaches to fairness can be used to model dynamic systems
(Bertalanffy 1969). In any High Performance Computing Environment, some user is
always the worst off. For this reason, the Rawlsian model of justice can be applied.
In another scenario, a scheduler can determine the changes in utility for two users
and use this information to make resource-management decisions. This relationship

24 4 Fairshare Scheduling

is demonstrated in Fig. 4.1, where the Most Advantaged User (MAU) and Least
Advantaged User (LAU) have equal utility and satisfaction at the 45�line. The JJ line
(and all of the parallel, blue lines) represents all the MAU points that map to one
fairness point on the LAU-axis, without lowering the satisfaction or utility to the
LAU. Although it is difficult to achieve, the goal is to distribute resources as close to
the 45�line as possible to achieve near equal utility for both users. The Rawlsian
point (R) is the maximum point on the LAU-axis and the maximum point on the
MAU-axis. As the distribution moves towards the Nash model (N) or the utilitarian
model (U), the distribution benefits the MAU at a cost to the LAU. Any point to the
left of the maximal R represents underutilization.

4.1.1 The Fairness of Fair-Share Scheduling

The literature on scheduling describes two main types of fairness (Bui 2008)
(Wierman 2011):

– Schedulers achieve “proportional fairness” when they schedule and dispatch
smaller jobs first to reduce time-in-system.

– Schedulers achieve temporal fairness when, in cases in which two jobs have equal
loads and runtimes, they schedule and dispatch first the job that arrived first—i.e.
when they employ a first-come, first-served methodology.

Fair-share schedulers allocate resources to users in such a way that over a long
period of time, each user gets their fair share of resources (Kay and Lauder 1988). As

Fig. 4.1 Fairness as it relates to different models (Sedighi et al. 2017b). Taken from (Rawls 2001)

4.1 Fairness 25

this statement implies, the primary goal of any scheduler is to seem fair to its users;
even though “fairness” is not explicitly defined in literature, most agree that sched-
ulers must “seem fair” (Kay and Lauder 1988) and that schedulers must divide
resources “fairly” (Bui 2008). Very little research has been conducted into schedul-
ing fairness, however (Wierman 2011) (Kleban and Clearwater 2003). Users may
not agree on what constitutes “fair.” For example, so that it could more quickly
reduce processing queues and seem essentially fair, the Unix Scheduler (Bach
1986a, b) was designed to assign more resources to users with more pending
processes. Similarly, the Proportional Share Scheduler (PSS) uses “required share”
to statically pre-allocate a fraction of the resources available to each class of users;
unused resources may be reassigned to other users via administrative interventions
(Epema and de Jongh 1999). Every scheduling policy has focused mostly around the
following optimization techniques (Sabin et al. 2004):

– Response Time: the time between when the job arrives and when it leaves the
system.

– Wait Time: the time between when the job enters the system and when it is
dispatched for execution.

– Slowdown: the ratio of response time to task size.
– Utilization: ratio of available resources in use.
– Capacity Loss: the ratio of available resources unutilized due to overhead, even

when there are jobs pending in the system.

Although some schedulers have demonstrated improved performance in the
aforementioned areas, some jobs still suffer from delays that are longer than
expected (Sabin et al. 2004). In particular, jobs with low resource requirements
and short processing times have been given higher priority in recent years (Bui
2008), and this has significantly increased the wait times experience by larger jobs.
This policy embodies the utilitarian approach, on which some jobs are sacrificed to
serve the “greater good.”

4.2 Utility

A measure of the preference for reward over risk, utility is a critical concept in
behavioral economics (Norstad 1999). The theory of utility stipulates that when
given a choice among a number of options and outcomes, a rational person (or a
rational “investor,” to use economics terminology), will choose the option most
likely to produce the best outcome for them. In order words, of two different options,
the preferred option is the option expected to produce the highest utility value (Luce
and Raiffa 2012). Utility theory has many applications, but it stands on its own as a
means to explain preferences and desires (Luce and Raiffa 2012; Sugden 1991).

Some of the earliest accounts of the use of utility to explain and rationalize
welfare on society are provided by Bentham (Bentham 1879), Edgeworth (Edge-
worth 1879), Pareto (Pareto 1919), and Von Neumann, who used Game Theory

26 4 Fairshare Scheduling

(Von Neumann and Morgenstern 2007) as the means to describe utility. Various
views created a level of inconsistency, and this consistency is represented by the use
of the concept of utility to explain users’ happiness and to predict their actions by
assuming that users share the desire for happiness. For example, the concept of
utility can be used to explain investment decisions because it embodies the assump-
tion that more wealth means more happiness (Norstad 1999).

There are two schools of thought regarding the measurement of utility:

– On Cardinal Utility, proposed by Jeremy Bentham (Bentham 1879), utility is
conceived simply as the intensity of happiness multiplied by its duration. Ben-
tham used this calculation to quantify social good. Edgeworth later transformed
this measurement (Edgeworth 1879) into an integration over time, happiness and
intensity to more precisely calculate societal happiness.

– On Ordinal Utility, proposed by Pareto (Pareto 1919), utility represents a choice
between options. Pareto thought of utility as an index on which the differences
between and preferences for two choices were important, not as a literal value
given to the choices.

Von Neumann (Von Neumann and Morgenstern 2007) resurrected cardinal utility
as a means to explain payoff functions in Game Theory. Von Neumann used utility
as a measurement of the happiness produced by a given choice, where each choice
was assigned a utility. However, Von Neumann still faced the problem of interper-
sonal comparability (Von Neumann and Morgenstern 2007), which states that the
magnitude of happiness or satisfaction perceived by one user may not be comparable
to that of another user. The utilitarian approach to fairness fails as a result of this
problem (Bertsimas et al. 2011): it assumes that the long-term fairness of a system
can satisfy all of its users in the short term.

4.2.1 Total Utility vs. Marginal Utility

If total utility is the ocean, marginal utility is the waves. If we want to know the
volume of the ocean, measuring the waves does us no good (Georgescu-Roegen
1968). Measuring total happiness or goodness is very difficult because the problem
of interpersonal comparability makes precise calculations virtually impossible.
However, measuring marginal utility in the case in which we are measuring an
additional “dose” of good is far simpler (Read 2004).

The second classification of utility distinguishes “experienced utility” from
“decision utility” (Bentham 1879). The former represents the utility actually pro-
duced by a decision or action, while the latter represents the happiness that could
possibly result from a decision yet to be made. In our work, we calculate marginal
experienced utility (Layard 2003) based on a multi-criteria scheduler whose goal is
to optimize a task’s time-in-system.

4.2 Utility 27

4.3 FUD: Fairness-Utilization-Dynamicity

FUD (Sedighi et al. 2017b) states that a scheduler’s three primary parameters—
fairness, utilization, and dynamicity—cannot be optimized simultaneously: one of
these three parameters must suffer for the sake of the other two.

• Fairness: As described in Sect. 4.1, fairness deals with the mechanism by which
resources are distributed. Most schedulers assume a utilitarian view of fairness
(Sedighi et al. 2017a), but we assume a Rawlsian view of fairness.

• Utilization: utilization deals with overall system utilization. If a task needs to be
restarted to be resubmitted, the wasted calculation time increases the underutili-
zation of the system.

• Dynamicity: the degree to which a scheduler alters its decisions based on
information received from the environment. The two extremes in this parameter
are static scheduling and dynamic scheduling. In static scheduling, decisions are
made ahead of time based on resource availability and job runtime. In dynamic
scheduling, decisions are made based on received information in the form of
events or telemetries.

The more events that are received from the environment and the higher the rate at
which these events are received, the more time consuming and process intensive it is
for a scheduler to decode the incoming events and to choose subsequent scheduling
steps. A scheduler may choose to ignore events, but doing so could mean reaching
less-informed decisions that could reduce utilization or fairness.

We determined that scheduling systems tend to optimize for dynamicity and
utilization, reducing fairness in the process (Sedighi et al. 2017a).

28 4 Fairshare Scheduling

Chapter 5
Multi-Criteria Scheduling: A Mathematical
Model

5.1 Scope and Purpose

This section details a mathematical model that further explains the multi-criteria
scheduling mechanism outlined in the main thesis. The traditional scheduling
systems covered in Chap. 3 typically use two primary variables: load and priority.
To avoid the limitations faced by such schedulers, the scheduler presented in our
work uses as a third independent variable—seniority—to determine the order in
which tasks are scheduled for execution. Unlike load and priority, seniority is
system-calculated and changes over time. This aspect of this tertiary variable is
also not modeled in scheduling systems.

This section models the relationships between these three variables and identifies
the relationships they share with other variables in the literature, especially in the
queuing system.

Add a figure to illustrate the procedure for a task to enter the execution by going
through the queue and the scheduler. The main research is the scheduler by feed-
backs form the queue and the execution units.

5.2 Scheduling Parameters in 2-Dimensional Space

Traditional scheduling systems use 2-dimensional space to model a given task (T), as
shown in Fig. 5.1.

L and P are defined in the following sections.

© Springer Nature Switzerland AG 2019
A. Sedighi, M. Smith, Fair Scheduling in High Performance Computing
Environments, https://doi.org/10.1007/978-3-030-14568-2_5

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14568-2_5&domain=pdf

5.2.1 Load Requirement of a Task (L)

Traditionally, the load requirement of task was measured in CPU cycles per second.
Because of recent advances in hardware architecture, however, L should be mea-
sured using the more-common floating-point operations per second (FLOPS). The
load requirement of a given task can be given or deduced, and it does not change
over the lifetime of the task. However, the load requirements of the tasks that
constitute a given job may differ. For this reason, load is usually indexed to a
particular task (Li).

Every task has basic load and system requirements, and the scheduler needs to
know these. A task’s load and the computational capability of the system jointly
determine how long the task takes to complete. In our work, task load was assumed
to be static and the same for every task in a given job. This positive value is supplied
by the user or deduced by the system and will not change once the task has entered
the system.

Li ¼ constant � ℝþ ð5:1Þ

5.2.2 Priority of a Task (P)

A task’s priority is static and generally user-defined, and it determines the impor-
tance of the task. It varies from task to task and may change. Because P is defined by
the user, P may not represent the priority of that task holistically across all the users
and all tasks in the system. This value can be elevated by users’ selfish behavior
(Angel et al. 2006). This value may also be inaccurate because one user’s view of
priority may differ from those of others.

Because priority is defined by the user, it can be skewed. While every user
believes that their tasks should be assigned the highest priority, the system may

Fig. 5.1 Scheduling
parameters in
2-Dimensional space

30 5 Multi-Criteria Scheduling: A Mathematical Model

alter tasks’ priority values in accordance with other criteria. In our work, we assume
that the priority of each task is a constant and positive across the lifetime of the task.

Pi ¼ constant � ℝþ ð5:2Þ

Task (Ti) is expressed in a column vector consisting of

Ti ¼ Pi

Li

� �
ð5:3Þ

Scheduling algorithms use load and priority to decide which task to schedule
next. As a result, the time required for a given task to leave the queue (ti) is a function
of Load (L) and Priority (P).

ti ¼ F Li; Pið Þ ð5:4Þ

5.2.3 Auxiliary Parameters

Other system parameters that are affected by Load and Priority:

– The incoming task rate (λj) is the number of tasks that enter the scheduler per unit
of time for a given user j.

– The outgoing task rate (μj) is the number of tasks that leave the scheduler for
execution per unit of time for a given user j.

A task is a unit of request which enters the system by a user. The states that tasks
occupy are as follows:

– Tasks are Submitted and Queued when they are waiting in the queue to be
scheduled.

– Tasks are Scheduled for Execution when they have left the scheduler and are
running on the target system.

– Tasks are Completed when they have exited the target system.

5.3 Seniority of a Task

The scheduler developed in our work uses Load, Priority, and an additional primary
parameter called Seniority. As a result, Eq. 5.5 is modified as follows:

Ti ¼
S tð Þi
Pi

Li

0
@

1
A ð5:5Þ

5.3 Seniority of a Task 31

Seniority, S(t), is a dynamic, time-dependent variable that determines the duration
that task has been in the system relative to the current state of the system, and relative
to the other users currently in the system. A task’s seniority changes with changes in
the flux of the system, which will be described shortly.

A task’s seniority indicates its “age” in the scheduler, though seniority changes as
the result of other changes in the system. Seniority is measured in 1

sec and can, when
combined with load, determine the temporal computational power requirement
(FLOPS) of the task. This notion only works with malleable tasks, for which
additional computational resources lower the completion time. For example, an
increase in seniority from 1 to 2 would double the instantaneous FLOP required to
meet the completion-time-fairness requirement of the task.

Si P; L; tð Þ � ℝþ ð5:6Þ

5.4 Modeling Tasks in 3-Dimensional Space

A user j’s task i (Tij) represents a point in the 3-dimensional scheduler space, and a
given job is a collection of such points in that space. Since task values can only be
positive, a given task (T) can be assigned coordinates in a 3-dimensional semi-vector
space (Janyška et al. 2007) over ℝ+.

T � ℝ3þ ð5:7Þ

We can use Task Priority (P), Task Load (L), and Task Seniority (S(t)) to
represent tasks in a 3D coordinate system (Fig. 5.2).1

If every task has the same priority and load requirements, then the queue of
pending tasks will be represented as a line parallel to the S-axis. If, however, the
tasks have different load requirements and a different priority levels, a different
envelope takes shape. This is the execution envelope for all of the tasks pending in
the system. If the priority of a given task is directly related to its load requirements
(5.8), the execution envelope is represented as a square perpendicular to the S axis.

Pi , Li ð5:8Þ

The life-line of a task can thus be represented as a vector parallel to the S-axis in
the positive 3-dimensional space (ℝ3+). If the system permits the priority and load
requirement of a given task to be changed after the task has entered the system, the
vector representing the task could become any positive vector in 3-dimensional
space. In our work, we assume that tasks’ priorities and loads are constants.

1Although it is shown as a cube, it should be considered a single point in the 3-dimentional space.

32 5 Multi-Criteria Scheduling: A Mathematical Model

Figure 5.3 shows a single task among a collection of tasks encased in an execution
envelope as per the aforementioned assumptions.

Lemma 2.1 Tasks in the 3-dimensional scheduler space can be mapped into the
classical, 2-dimensional scheduler space. Tasks in ℝ3+ differ from tasks in the
traditional ℝ2+ in the following ways:

– Load (L) represents the computational power required per unit of time
(i.e. seconds).

– Because Seniority (S) is missing, the 3D space collapses into a 2D space.

– From the above, it can be deduced that f : T ℝ3
� � !S¼0 T ℝ2

� �
.

Fig. 5.2 A single task modeled in 3-Dimensional space

Fig. 5.3 Depiction of a task
from queuing to being
scheduled for execution

5.4 Modeling Tasks in 3-Dimensional Space 33

The prioritized and seniority-calibrated load requested by the pending tasks (W(t))
can be defined as the volume encapsulated by these three parameters.

W tð Þ ¼ F S tð Þ;P;Lð Þ ð5:9Þ

W tð Þ ¼
Xn
i¼0

ðt2

t1

Pi � Lið Þ � Si tð Þdt ð5:10Þ

W(t) is the total computational power required by the total number of tasks
(represented by n), and t1 and t2 demarcate the duration under consideration.

As previously mentioned, seniority is a task property that is affected by other
system behaviors. For this reason, seniority is unaffected if no tasks enter or leave the
system.

λ j ¼ μ j ¼ 0) ΔSi ¼ 08i ð5:11Þ

It can be deduced from 5.12 that ΔSi > 0 if tasks enter the system, even if none
leave. Furthermore, tasks enter the system on the (P, L) plane with density distribu-
tions Jj(S(t),P, L), which are related to the incoming and outgoing task densities as
follows:

λ j ¼ dJ j S tð Þ;P; Lð Þ
dt

����
S¼0

ð5:12Þ

μ j ¼
dJ j S tð Þ;P; Lð Þ

dt

����
S¼k

ð5:13Þ

λj is the rate at which incoming tasks enter the system, and μj represents the rate at
which tasks are scheduled for execution. Load density (Jj) represents the distribution
of incoming tasks for user j relative to load (L) and priority (P). User j may submit
any number of tasks at time ¼ t, and each can have a different priority and load. The
density determines the types of tasks entering the system in a specific period of time.

5.5 Determining Seniority and Fairness Factor

Assuming that no tasks are removed from the system, we can use the divergence
theorem to determine task conservation in the enclosed (S(t),P, L) envelope (5.14).
Task conservation determines the dispensation rate of the tasks in the execution
envelope. A small divergence causes the seniority of a given user’s tasks to increase.
Equation 5.18 determines the pending tasks as a function of tasks awaiting execution
minus tasks entering the system as a function of time.

34 5 Multi-Criteria Scheduling: A Mathematical Model

ðt2
t1

ððð
V

�
div � J*�

dVdt ¼
ðt2
t1

�
ðð

P:Lð Þ

J
* � n̂ dAdt ð5:14Þ

Where:

div � J* ¼ ∂JS
∂S

þ ∂JP
∂P

þ ∂JL
∂L

ð5:15Þ

With:

∂JP
∂P

¼ 0 ð5:16Þ

∂JL
∂L

¼ 0 ð5:17Þ

and

�
ðð

P;Lð Þ

J � n̂ dA ¼ �
ðð

P;Lð Þ

JS S ¼ kð ÞdLdP� �
ðð

P;Lð Þ

JS S ¼ 0ð ÞdLdP ð5:18Þ

The task conservation is thus:

ðt2
t1

ððð
v

∂JS
∂S

dV dt ¼
ðt2
t1

�
ðð

P;Lð Þ

JS S ¼ kð ÞdLdPdt �
ðt2
t1

�
ðð

P;Lð Þ

JS S ¼ 0ð ÞdLdPdt ð5:19Þ

Lemma 2.2 div:J ¼ ∂JS
∂S because of the assumption made in Eqs. 5.16 and 5.17: that

load density does not change along the (P, L) axis.
Tasks enter the system and are distributed along the S-axis ∂J

∂S

� �
. As a result, the

left-hand side of the equation represents the total number of tasks pending execution:

ξ tð Þ ¼
ðt2
t1

ððð
V

∂JS
∂S

dVdt ð5:20Þ

We stipulate that a movement in the þS direction is related directly to (P, L) as
follows:

ΔSi
Δt

¼ αi tð Þ Pi Lið Þ ð5:21Þ

With total movement in the þS direction:

5.5 Determining Seniority and Fairness Factor 35

Si tð Þ ¼
ðt2
t1

αi tð Þ Pi Lið Þdt ð5:22Þ

This is better depicted in Fig. 5.4. The product of the load and the priority
determines the directional movement of the seniority. α is the fairness factor or the
fairness multiplier, which allows us to control the task diffusion (Ti) externally and
thereby enforce a level of fairness across the system. α is calculated by taking into
account the rate of pending tasks for a user relative to all the users:

α�1
j tð Þ ¼ ξ j tð ÞP

jξ j tð Þ
ð5:23Þ

The incoming flux of tasks pushes the tasks already in the system alongside the
S-axis. The flux eventually pushes the task against the scheduling edge (the right-
hand side of the execution envelope), indicating that it will be scheduled during the
next scheduling cycle. The scheduler picks the tasks that have surfaced (Fig. 5.5) and
pushes against the incoming tasks pending engagement.

The goal of the scheduler is to get to S) 0 as quickly as possible, and to do so, it
needs to be able to schedule tasks at a rate equal to the rate at which tasks are moving
in the þS direction:

– If Js(S ¼ 0, j) ¼ Js(S ¼ k, j), the pending task ξ(t) ¼ 0, and α ¼ 0.
– If λj > μj, the pending task ξ(t) > 0, and α > 0.

We now need to calculate the total number of tasks pending at time t for S ¼ Sk.
We can calculate the position of a single task at time t by summing X over the entire
time the task has been traveling through the execution envelope.

Fig. 5.4 Depiction of
additive seniority values

36 5 Multi-Criteria Scheduling: A Mathematical Model

5.6 Summary

Because our work introduced a scheduler that uses an additional variable, the
traditional, 2-dimensional model featuring only load and priority had to be modified.
The 3-dimensional model developed uses seniority to determine the status of a task
in the queue before it is executed. This model, although crude, can be used as the
foundation for a more comprehensive, unified theory that ties scheduling to the FUD
conjecture detailed in Chap. 4.

Fig. 5.5 Tasks chosen for
execution

5.6 Summary 37

Chapter 6
Simulation and Methodology

As outlined in 1.3, our work assesses the performance characteristics of a multi-
criteria scheduler that uses seniority as well as priority and load is to make decisions.
It does so by using various simulation models to test the scheduling algorithm. Later
in this book, the simulator used to conduct these simulations (dSim) is introduced.

Previous chapter described a shortcoming of fair-share scheduling techniques:
they achieve long-term fairness at the expense of short-term fairness. Evidence of
this includes cases in which system dynamics were altered by small and frequent
requests. Further evidence is offered by Sedighi et al. (2014). Current scheduling
techniques consider priority and load requirement in making scheduling decisions
(Baker and Trietsch 2013), but do not employ a primary variable indicating the time
that a task has spent in the system. Tasks are queued—or placed in multiple queues if
they have different priority levels—and they are processed in the order in which they
arrive. Queues are one-dimensional constructs in which load requirement is the
primary independent variable. Priority queues are two-dimensional constructs in
which priority is the second independent variable.

Our work introduces an additional independent variable that tracks the time each
task has spent in the system. This variable is called “Seniority” (S); it is additive and
increases in value as one would expect: a net-positive increase in seniority is
calculated for each task after every scheduling cycle, and this new value is used to
reorder the standings of the tasks prior to the next scheduling cycle. The task with the
highest seniority is scheduled first for a given duple of priority and load set of tasks.

The rest of this chapter describes how seniority is calculated based on the
mathematical model introduced in Chap. 5. The experiments conducted to assess
the performance characteristics of the scheduler, which uses three independent
variables: priority, load, and seniority will be introduced in Chap. 8.

© Springer Nature Switzerland AG 2019
A. Sedighi, M. Smith, Fair Scheduling in High Performance Computing
Environments, https://doi.org/10.1007/978-3-030-14568-2_6

39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14568-2_6&domain=pdf

6.1 Calculating Seniority

Seniority (S), is a dynamic, time-dependent value calculated in part by the time that
the task has been in the system relative to the current state of the system and to the
other users in the system—i.e. the “time-in-system” (Baker and Trietsch 2013). The
weight of seniority is determined by the fairness factor (α). Seniority is an additive
value: every time it is calculated, it is added to the seniority value that the task
already holds. In essence, the longer a task has been pending (i.e. the larger is its
time-in-system), the higher its seniority is. This relationship allows seniority to serve
as a surrogate for time-in-system.

Change in seniority, S, is a function of priority and load,

dS

dt
¼ ΔS tð Þ ¼ α�P�L ð6:1aÞ

while total seniority depends on time-in-system (t):

STotal ¼
Xt¼current

t¼0

ΔS tð Þ ð6:1bÞ

where P represents the priority of the task, and L represents the load the task will put
on the system. Both values are entered by the user when the task is submitted and
(for our purposes) both remain constant while the task is in the system. Both values
range from 0 to 1: 0 represents the lowest priority and the lowest computational load,
and 1 represents the highest priority and the highest computational load. Equation
6.1b illustrates how a task’s seniority depends on the time that the task has been in
the system. Seniority is calculated in discrete time intervals, but it is additive and
continues to increase across the lifetime of the task.

The fairness factor, α, is calculated by taking into account the rate of pending
tasks for a user relative to all of the users:

α�1
u tð Þ ¼ ξ tð ÞP

uξ tð Þ # Rawlsian ð6:2Þ

Equation (5.2) implements Rawls’s philosophy of fairness, with ξ(t) representing
the pending tasks for a given user at time t and

P
u
ξ tð Þ representing the pending tasks

for all of the users in the system. This equation causes the user with the least number
of pending tasks to be moved to the front of the queue. This method resembles the
shortest processing time (SPT) scheduling algorithm (Baker and Trietsch 2013),
which has been shown to have the lowest makespan when scheduling jobs. In
essence, the fairness factor makes an implicit assumption about the future task
count of each user, and this assumption is adjusted if it is proven wrong in
subsequent scheduling cycles.

40 6 Simulation and Methodology

https://doi.org/10.1007/978-3-030-14568-2_5#Equ2

For example, if User 1 (u1) has 10 pending tasks and User 2 (u2) has 20 pending
tasks, then:

α�1
u1 tð Þ ¼ 10

30
¼ 1

3
ð6:3Þ

αu1 tð Þ ¼ 3 ð6:4Þ

meaning that for a given task, the fairness multiplier is 3 (Eq. 6.4). User 1’s tasks
move up 3 spots in the queue, but this does not mean that all of u2’s tasks fall behind.
As a result of the same calculation, user 2’s tasks also move up:

αu2 tð Þ ¼ 20
30

� ��1

¼ 3
2

ð6:5Þ

In Nash’s comparison model, the fairness factor is easier to calculate but more
iterative:

Uu tð Þ ¼ 1
ξ tð Þ # Nash ð6:6Þ

For u ¼ 1. . n, and:

au1,u2 tð Þ ¼ Uu1 tð Þ
Uu2 tð Þ ð6:7Þ

with ξ(t) representing the number of tasks pending for a given user at time t andUu(t)
representing the utility or satisfaction gained by a given user when an additional one
of their tasks is executed. The fairness factor, αu1, u2(t), relates u1 over u2: the
fairness factor is the ratio of the utilities of two users competing for a resource.

In a Nash-based fairness-factor calculation, the utilities of all of the users are
calculated. The fairness factor compares the utilities of two users. If user 1 has
10 pending tasks, when a single task is finished for user 1, user 1 gains a percentage
change in utility of 1/10, 0.1, or 10%. Similarly, if user 2 has 30 pending tasks, their
percentage gain in utility per task completed is 1/30, 0.03, or 3%.

αu1,u2 tð Þ ¼ 0:1
0:03

¼ 3:33 ð6:8Þ

αu2,u1 tð Þ ¼ 0:03
0:1

¼ 0:3 ð6:9Þ

In a direct competition between two users, Nash’s model gives more precedence
to the user with the lower number of pending tasks. Equation 6.10 shows the matrix
for a 3-user system, and 6.11 shows a matrix for the general case:

6.1 Calculating Seniority 41

n=a αu1,u2 αu1,u3

αu2,u1 n=a αu2,u3

αu3,u1 αu3,u2 n=a

2
664

3
775 ð6:10Þ

n=a � � � αu1,un

⋮ ⋱ ⋮

αun,u1 � � � n=a

2
664

3
775 ð6:11Þ

Nash’s model is more computationally intensive than other methods of calculat-
ing utility, however, as it requires a comparison between all users. The main reason
to choose one over the other is computational efficacy.

The scheduler is itself a new operating definition for resource management, as is
shown in Fig. 6.1. The scheduler achieves fairness because if it overshoots, incor-
rectly bumping up a task, the next task to be processed for that user will stay in place
or move very slightly towards the front of the queue.

6.1.1 Example of Calculating Seniority

Consider the following scenarios. In the first scenario, two users of a large system
each submit one task. Task 1 is submitted by user 1, and task 2 is submitted by user
2 (Table 6.1). While user 1 and user 2 each submit only a single task, the system
contains other tasks submitted by other users, which are represented by

P
u
ξ tð Þ

(Table 6.2). In the second scenario, user 1` has two pending tasks, while the other
conditions are the same as in the first scenario (Tables 6.1 and 6.3).

Collect
System

information

Calcuate
fairness
factors

Update
seniority

value for tasks

Determine
next supply
and demand

Schedule
tasks for

execution

Fig. 6.1 The scheduler’s
process flow

42 6 Simulation and Methodology

The change in seniority is calculated using Eq. (5.1), and the total accumulated
seniority is calculated using Eq. (5.1). In both scenarios, the fairness factor α is
designed to implement the Rawlsian definition of fairness, as is suggested by
Eq. (5.2).

The total number of tasks pending system wide starts at 100 and decreases every
clock cycle. As the time spent in the queue (i.e. the time-in-system) of a task

Table 6.1 Parameters for calculating seniority in a 2-user example

User 1 User 2 User 1

Number of tasks 1 1 2

Load {0.5} {0.5} {0.5}

Priority {0.8} {0.5} {0.8}

Fairness factor (estimated) Rawlsian Rawlsian Rawlsian

Table 6.2 Calculating seniority in a 2-user example

6.1 Calculating Seniority 43

https://doi.org/10.1007/978-3-030-14568-2_5#Equ1
https://doi.org/10.1007/978-3-030-14568-2_5#Equ1
https://doi.org/10.1007/978-3-030-14568-2_5#Equ2

increases, so does its seniority value. Because it has a higher priority value, user 1’s
task increases in seniority at a higher rate than does user 2’s task.

In scenario 2—which differs from scenario 1 only in that user 1 has 2 pending
tasks—the seniority value of user 1 drops by ½ (SU1 Total ¼ 104) to compensate for
the increased number of pending tasks, becoming smaller than the seniority value of
user 2’s task (SU2 Total ¼ 130). This result is shown in Table 6.3.

6.2 Performance Measures

As mentioned in Sect. 1.5, the primary objective of our work was to assess the
performance characteristics of a multi-criteria scheduler that utilizes seniority as well
as load and priority. Time-in-system was a primary measure in evaluating the
scheduler’s performance in accommodating various sizes of tasks, classes of work-
loads, and numbers of users.

Another performance measure, expected utility, which is used to represent user
satisfaction, was calculated using the Rawlsian method of fairness. Utility is calcu-
lated by comparing the number of completed tasks to the total number of tasks:

UuT tð Þ ¼ ξ t ¼ 0ð Þ � ξ tð Þ
ξ t ¼ 0ð Þ ð6:12Þ

Table 6.3 Recalculating seniority with an additional task pending for user 1

44 6 Simulation and Methodology

where UuT tð Þ is the total utility (T) of the user (u) at time t. ξ(t ¼ 0) represents the
total number of tasks pending at t ¼ 0—i.e. the total tasks submitted by a given
user—and ξ(t) is the current number of pending tasks. A utility plot was used to
validate our algorithm.

The algorithm makes scheduling decisions in time intervals, each of which is
called a “bucket.” Each bucket is filled with incoming tasks. The scheduler makes
resource-allocation (i.e. scheduling) decisions for each bucket in the order in which it
arrives. Each bucket is then fully processed. For each bucket, the following infor-
mation is gathered:

– Bucket size

• The bucket size represents the number of tasks each user submits per sched-
uling cycle. This value is used to calculate time-in-system for each task and
utility of the user.

– Completion time

• The completion time is used to calculate inter-bucket differences in utility and
time-in-system.

– Time-in-System

• As mentioned previously, a given job can be composed of many tasks that may
enter the system at any time. The time-in-system of a given job is a meaning-
less value because if 2 tasks compose a job, one task may be submitted at the
beginning of the day and the other may be submitted at the end of the day. Part
of the analysis was devoted to determining the times-in-system of tasks from
the various usage profiles we simulated.

In essence, the algorithm time-boxes the utility calculation to ensure that we are
within operating parameters.

Bucket duration was also examined. Because each bucket had its own metric, a
clear picture of utility emerges. In order to maintain fairness in statistical control, we
monitored these values to make sure that the bucket completion time remained in an
envelope acceptable to the operators, users, and business. If not, the fairness factor
for the user needs to be revisited.

6.3 Experimental Simulation Methodology

The primary goals of the simulation were to validate the new scheduling algorithm
and to determine its efficacy in handling various types of workloads. A number of
simulators were available, including Optorsim (Bell et al. 2003), the Bricks Grid
simulator (Takefusa et al. 2003), GridFlow (Cao et al. 2003), GridSim (Buyya and
Murshed 2002), and Alea (Klusáček and Rudová 2010). The majority of these

6.3 Experimental Simulation Methodology 45

simulators were designed for job scheduling, however, and thus lacked the charac-
teristics necessary to handle short-running tasks. In addition, we required a simulator
that was extendable and able to accommodate dynamic sets of resources, job types,
submission profiles, and task durations. We created dSim for this purpose.

46 6 Simulation and Methodology

Chapter 7
DSIM

dSim improves upon Alea 3.0 (Klusacek 11/17/2014; Klusáček and Rudová 2010)
and GridSim (Albin et al. 2007; Buyya and Murshed 2002). GridSim is a discrete,
event-based toolkit that uses the Java language (McGill 2008) (p.56–75). It allows
components to be modelled and simulated in parallel environments, and it can be
used to evaluate scheduling algorithms. It can also create different classes of
heterogeneous resources and enables such resources to be managed using a user-
defined scheduling algorithm. Even though GridSim allows environments to be
managed via a graphical user interface, GridSim’s framework was of greatest interest
because it allowed us to customize our interactions with the environment. Alea
expands upon the GridSim framework, enabling the evaluation of various schedul-
ing techniques. dSim extends the framework created by Alea 3.0, enabling scenarios
to be automated and simulated by varying the number of users, the types of job
profiles, and the number of resources. Most importantly, it includes a simulator
clock. dSim uses a (bucket) Placement Counter (PC) to keep all of the tasks
synchronized in buckets. Each tick of the PC is a new bucket, in which events like
task submissions, gatherings of results, and scheduling events are synchronized. The
duration of a single PC tick was set at 1000 ms (1 s.).

We disabled Alea’s graphical presentation of results and outputted our results to
files containing the data required to measure the scheduler’s performance. We
analyzed this data externally using Input Analyzer, a stand-alone feature of Arena
(“Rockwell Automation” 2016) that allows data to be visualized.

7.1 dSim Architecture and Simulation Model

Although dSim is based on Alea’s framework (Klusacek 11/17/2014), it overcomes
a number Alea’s of limitations. For one, Alea reads job information from input files,
which are time-consuming to generate. dSim includes a job-creation plug-in that
automates this process, enabling the programmatic configuration of number of users,

© Springer Nature Switzerland AG 2019
A. Sedighi, M. Smith, Fair Scheduling in High Performance Computing
Environments, https://doi.org/10.1007/978-3-030-14568-2_7

47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14568-2_7&domain=pdf

number of jobs, job frequency, size of payload, and basic information like user
name, time of task submission, and task duration. StrategyMultiUserGeneric was the
class created to simulate loads, and it has the following basic control functions:

//implementation omitted
//some of the auxiliary functions omitted
class StrategyMultiUserGeneric {

public void setNumberOfSubmitters(int count);
public String getNextUserID() throws Exception;
public int getNextJobID();
public void setWavelength(String lambda);
public void setAmplitude(String load);
public void setPhase(String phase);
public void setTaskCount(String count);
public void incrementProgramCounter();

}

To simulate the sharing of an environment by many users, we first needed to add
the ability to control the number of users. We did this by calling
setNumberOfSubmitters(int count). Job profiles or submissions can be
thought of as waves of input information. To control these profiles, we used wave
semantics to describe and implement the job-loader class.

The ability to fine-tune job-submission profiles was achieved by calling
setTaskCount(String count), setWavelength(String lambda),
setAmplitude(String load), and setPhase(String phase). The
passed strings take the form of colon-delimited numbers (not ratios). For example:

:
(1) simulator.setNumberOfSubmitters(4);
(2) simulator.setTaskCount(1000:200:200:50);
(3) simulation.setWavelength(“4:2:2:1”);
(4) simulation.setAmplitude(“10:10:20:100”);
(5) simulation.setPhase(“0:0:0:1”);

:

(1) sets the number of users to 4, and they show up in the output as: User1, User2,
User3, and User4. (2) sets the total number of jobs that a given user will submit over
the duration of the simulation. In the current example, the total number of tasks
submitted by user 1 is 1000, the total number of tasks submitted by user 2 is 200, and
so on. The simulation continues until all of the users have submitted their tasks and
received their results. While some users may receive their results before others do,
these users simple remain idle for the remainder of the simulation. (3) sets the
wavelengths. User1 submits 10 jobs for every 4 PCs, User2 submits 10 jobs for
every 2 PCs, and so on. The number of tasks sent to the scheduler per PC is set by
setting the amplitude in (4). One deviation from wavelength semantics is wavelength

48 7 DSIM

0, which indicates a constant load. (5) indicates the start time for each user, starting
with PC 0. It should be noted that actual numbers are used, not ratios. If the
amplitude is given as “8:6:4:2,” even though it looks the same from a ratio perspec-
tive, it is very different from a job-submission perspective. For a given string, for
every 8 tasks that User1 submits, User2 submits 6, User3 submits 4, and User4
submits 2.

The API (Application Programming Interface) allows, for example, to simulate
two users with loads resembling the following:

L1 x; Placement Counterð Þ ¼ 1000,
Xn

PC¼0

L1 PCð Þ ¼ 500 ð7:1Þ

L2 x; PCð Þ ¼ max L1 x; PCð Þ sin π� PCþ 3π=2ð Þ; 0f g,
Xn

PC¼0

L2 PCð Þ ¼ 1000 ð7:2Þ

Here, PC¼ 1, . . . , n. L1(x, PC) is the base load of 1000 tasks/PC, and L2(x, PC) is
1000 tasks for every other PCs. L1 sends a total of 500 tasks over the course of the
simulation, and L2 sends a total of 1000 tasks. The aforementioned load can be
represented as follows (Fig. 7.1):

:
simulator.setNumberOfSubmitters(2);
simulation.setTaskCount(“500:10000”);
simulation.setAmplitude(“1000:1000”);
simulation.setWavelength(“0:2”);
simulation.setPhase(“0:1”);

:

The next step in the simulation is the scheduling of incoming tasks, which is
conducted via the NewFairShare class. The NewFairShare class is the imple-
mentation of the fair-share algorithm used in the simulation. This class has three

Fig. 7.1 Illustration of the task-submission strategies of two users

7.1 dSim Architecture and Simulation Model 49

public interfaces and one private interface, which is called after each new task added
to the queue. Every user has an “incoming” queue, and this scheduling step employs
the proportional fair-share algorithm outlined in C. A. Waldspurger and Weihl
(1994). The step is triggered when the queue of tasks waiting to be dispatched—
which is controlled by setGangSize—is empty. The task id of the next task to be
dispatched and executed is returned by calling selectTask. The task duration can
be changed, but we chose to hold it equal to one PC tick.

//implementation omitted
public class NewFairShare implements SchedulingPolicy {

public void setGangSize(int size);
private void calculateRatios(int total);
public void addNewTask(GridletInfo gi);
public int selectTask();

}

Each task comes with a submission time, which is entered by the user when they
submit the task. Submission time and completion time are used to determine the
time-in-system of a task. Since all of the tasks in the simulation require the same
computation time (one PC tick), it is possible to measure and compare the delays
experienced by two or more users over the course of the simulation.

7.2 dSim Configuration

dSim reads a configuration file (config.properties) that holds all of the parameters
necessary to run a given simulation, including number of users, number of tasks per
user, each user’s submission profile and pattern, output file location, and debug file
location. Each configuration takes the form of “name ¼ value” and resembles the
following:

majority of parameters omitted
:

number-of-submitters=2
task-count=500:10000
task-amplitude=1000:1000
task-wavelength=0:2
task-phase=0:1

:

50 7 DSIM

Chapter 8
Simulation Scenarios

Table 8.1 outlines the seventeen simulated scenarios run in our work. The goal of
these simulations was to simulate the model proposed in Sect. 8.2. These simulations
cover the four classes of job profiles discussed in Sect 1.2.

The first group of simulations covered the 2-user scenario, in which two users
compete for access to system resources. The number of users in the simulation was
then expanded to 6, 11, and 21. The total number of resources was held constant at
100 across the simulations (see Sect. 8.14 for a summary of assumptions) (Fig. 8.1).

8.1 Simulation Case 1–2 Users Base Case

This two-user, trivial case demonstrates the use of the simulator and its configura-
tion. The total load (1000 tasks per user) is submitted at the beginning of the
simulation.

L1 x; PCð Þ ¼ max 1000 � L0 x; PCð Þ cos π � PCð Þ; 0f g ð8:1aÞ

L2 x; PCð Þ ¼ max 1000 � L0 x; PCð Þ sin π � PCþ 3π
2

� �
; 0

� �
ð8:1bÞ

L0 x; PCð Þ ¼ 1 ð8:2Þ

Xn
PC¼0

L1 PCð Þ ¼
Xn
PC¼0

L2 PCð Þ ¼ 1000 ð8:3Þ

© Springer Nature Switzerland AG 2019
A. Sedighi, M. Smith, Fair Scheduling in High Performance Computing
Environments, https://doi.org/10.1007/978-3-030-14568-2_8

51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14568-2_8&domain=pdf

T
ab

le
8.
1

S
im

ul
at
io
n
sc
en
ar
io
s
co
ve
re
d
by

th
is
re
se
ar
ch

S
im

ul
at
io
n

nu
m
be
r

N
um

be
r

of
us
er
s

Jo
b
pr
ofi

le
Jo
b
pr
ofi

le
de
sc
ri
pt
io
n

1
1

L
1
x;
P
C

ð
Þ¼

m
ax

20
0�

L
0
x;
P
C

ð
Þc
os

π�
P
C

ð
Þ;0

f
g,

Pn P
C
¼0

L
1
P
C

ð
Þ¼

10
00

8.
1

L
2
x;
P
C

ð
Þ¼

m
ax

20
0�

L
0
x;
P
C

ð
Þs
in

π�
P
C
þ
3π

=
2

ð
Þ;0

f
g,

Pn P
C
¼0

L
1
P
C

ð
Þ¼

10
00

2
2

L
1
x;
P
C

ð
Þ ¼

m
ax

10
00

�
L
0
x;
P
C

ð
Þ c
os

π�
P
C

ð
Þ ;0

f
g,

Pn P
C
¼0

L
1
P
C

ð
Þ ¼

50
00

8.
2

L
2
x;
P
C

ð
Þ¼

m
ax

50
0�

L
0
x;
P
C

ð
Þs
in

π�
P
C
þ
3π

=
2

ð
Þ;0

f
g,

Pn P
C
¼0

L
2
P
C

ð
Þ¼

50
00

3
2

L
1
x;
P
C

ð
Þ¼

10
0�

L
0
x;
P
C

ð
Þ,

Pn P
C
¼0

L
1
P
C

ð
Þ¼

50
00

8.
3

L
2
x;
P
C

ð
Þ¼

m
ax

20
0�

L
0
x;
P
C

ð
Þc

os
π�

P
C

ð
Þ;0

f
g,

Pn P
C
¼0

ð
ÞL

2
P
C

ð
Þ¼

50
00

4
2

L
1
x;
P
C

ð
Þ¼

m
ax

50
00

�
L
0
x;
P
C

ð
Þc

os
π�

P
C

ð
Þ;0

f
g,

Pn P
C
¼0

L
1
P
C

ð
Þ¼

50
00

8.
4

L
2
x;
P
C

ð
Þ¼

m
ax

50
�
L
0
x;
P
C

ð
Þs
in

π�
P
C
þ
3π
=
2

ð
Þ;0

f
g,

Pn P
C
¼0

L
2
P
C

ð
Þ¼

50

5
2

L
1
x;
P
C

ð
Þ¼

m
ax

50
00

�
L
0
x;
P
C

ð
Þc
os

π�
P
C

ð
Þ;0

f
g,

Pn P
C
¼0

L
1
P
C

ð
Þ¼

50
00

8.
5

L
2
x;
P
C

ð
Þ¼

m
ax

L
0
x;
P
C

ð
Þc
os

π�
P
C

ð
Þ;0

f
g,

Pn P
C
¼0

L
2
P
C

ð
Þ¼

10

6
6

L
1
x;
P
C

ð
Þ¼

m
ax

20
0�

L
0
x;
P
C

ð
Þs
in

π�
P
C

ð
Þ;0

f
g,
Xn P
C
¼0
L
1
P
C

ð
Þ¼

10
00

L
1
x;
P
C

ð
Þ¼

L
2
x;
P
C

ð
Þ

¼
L
3
x;
P
C

ð
Þ¼

L
4
x;
P
C

ð
Þ¼

L
5
x;
P
C

ð
Þ

8.
6

L
6
x;
P
C

ð
Þ¼

m
ax

50
0�

L
0
x;
P
C

ð
Þs
in

π�
P
C
þ
3π

=
2

ð
Þ;0

f
g,

Pn P
C
¼0

L
2
P
C

ð
Þ¼

50
00

52 8 Simulation Scenarios

7
6

L
1
x;
P
C

ð
Þ ¼

20
�
L
0
x;
P
C

ð
Þ ,

Pn P
C
¼0

L
1
P
C

ð
Þ ¼

10
00

L
1
(x
,P
C
)
¼

L
2
(x
,P
C
)

¼
L
3
(x
,P
C
)
¼

L
4
(x
,P
C
)
¼

L
5
(x
,P
C
)

8.
7

L
6
x;
P
C

ð
Þ¼

m
ax

20
0�

L
0
x;
P
C

ð
Þc
os

π�
P
C

ð
Þ;0

f
g,

Pn P
C
¼0

L
6
P
C

ð
Þ¼

50
00

8
6

L
1
x;
P
C

ð
Þ¼

m
ax

50
00

�
L
0
x;
P
C

ð
Þc
os

π�
P
C

ð
Þ;0

f
g,
Xn P
C
¼0
L
1
P
C

ð
Þ¼

10
00

L
1
x;
P
C

ð
Þ

¼
L
2
x;
P
C

ð
Þ¼

L
3
x;
P
C

ð
Þ¼

L
4
x;
P
C

ð
Þ¼

L
5
x;
P
C

ð
Þ

8.
8

L
6
x;
P
C

ð
Þ¼

m
ax

50
�
L
0
x;
P
C

ð
Þs
in

π�
P
C
þ
3π
=
2

ð
Þ;0

f
g,

Pn P
C
¼0

L
6
P
C

ð
Þ¼

50

9
6

L
1
x;
P
C

ð
Þ¼

m
ax

10
00

�
L
0
x;
P
C

ð
Þc
os

π�
P
C

ð
Þ;0

f
g,
Xn P
C
¼0
L
1
P
C

ð
Þ¼

10
00

L
1
x;
P
C

ð
Þ¼

L
2
x;
P
C

ð
Þ

¼
L
3
x;
P
C

ð
Þ¼

L
4
x;
P
C

ð
Þ¼

L
5
x;
P
C

ð
Þ

8.
9

L
6
x;
P
C

ð
Þ¼

m
ax

L
0
x;
P
C

ð
Þc
os

π�
P
C

ð
Þ;0

f
g,

Pn P
C
¼0

L
6
P
C

ð
Þ¼

10

10
11

L
1
x;
P
C

ð
Þ¼

m
ax

10
0�

L
0
x;
P
C

ð
Þc
os

π�
P
C

ð
Þ;0

f
g,

Pn P
C
¼0

L
1
P
C

ð
Þ¼

50
0L

1
x;
P
C

ð
Þ¼

..
.
¼

L
10

x;
P
C

ð
Þ

8.
10

L
11

x;
P
C

ð
Þ¼

m
ax

50
0�

L
0
x;
P
C

ð
Þs
in

π�
P
C
þ
3π

=
2

ð
Þ;0

f
g,

Pn P
C
¼0

L
11

P
C

ð
Þ¼

50
00

11
11

L
1
x;
P
C

ð
Þ¼

10
�
L
0
x;
P
C

ð
Þ,

Pn P
C
¼0

L
1
P
C

ð
Þ¼

50
0L

1
x;
P
C

ð
Þ¼

..
.
¼

L
10

x;
P
C

ð
Þ

8.
11

L
11

x;
P
C

ð
Þ¼

m
ax

20
0�

L
0
x;
P
C

ð
Þc
os

π�
P
C

ð
Þ;0

f
g,

Pn P
C
¼0

L
11

P
C

ð
Þ¼

50
00

12
11

L
1
x;
P
C

ð
Þ¼

m
ax

50
0�

L
0
x;
P
C

ð
Þc
os

π�
P
C

ð
Þ;0

f
g,

Pn P
C
¼0

L
1
P
C

ð
Þ¼

50
0L

1
x;
P
C

ð
Þ¼

..
.
¼

L
10

x;
P
C

ð
Þ

8.
12

L
11

x;
P
C

ð
Þ ¼

m
ax

50
�
L
0
x;
P
C

ð
Þ s
in

π�
P
C
þ
3π
=
2

ð
Þ ;0

f
g,

Pn P
C
¼0

L
11

P
C

ð
Þ ¼

50

(c
on

tin
ue
d)

8.1 Simulation Case 1–2 Users Base Case 53

T
ab

le
8.
1

(c
on

tin
ue
d)

S
im

ul
at
io
n

nu
m
be
r

N
um

be
r

of
us
er
s

Jo
b
pr
ofi

le
Jo
b
pr
ofi

le
de
sc
ri
pt
io
n

13
11

L
1
x;
P
C

ð
Þ¼

m
ax

50
0�

L
0
x;
P
C

ð
Þc
os

π�
P
C

ð
Þ;0

f
g,

Pn P
C
¼0

L
1
P
C

ð
Þ¼

50
0L

1
x;
P
C

ð
Þ¼

..
.
¼

L
10

x;
P
C

ð
Þ

8.
13

L
11

x;
P
C

ð
Þ¼

m
ax

L
0
x;
P
C

ð
Þc
os

π�
P
C

ð
Þ;0

f
g,

Pn P
C
¼0

L
11

P
C

ð
Þ¼

10

14
21

L
1
x;
P
C

ð
Þ¼

m
ax

50
�
L
0
x;
P
C

ð
Þc
os

π�
P
C

ð
Þ;0

f
g,

Pn P
C
¼0

L
1
P
C

ð
Þ¼

25
0L

1
x;
P
C

ð
Þ¼

..
.
¼

L
20

x;
P
C

ð
Þ

8.
10

L
21

x;
P
C

ð
Þ ¼

m
ax

50
0�

L
0
x;
P
C

ð
Þ s
in

π�
P
C
þ
3π

=
2

ð
Þ ;0

f
g,

Pn P
C
¼0

L
21

P
C

ð
Þ ¼

50
00

15
21

L
1
x;
P
C

ð
Þ¼

10
�
L
0
x;
P
C

ð
Þ,

Pn P
C
¼0

L
1
P
C

ð
Þ¼

25
0
L
1
(x
,P
C
)
¼

..
.
¼

L
2
0
(x
,P
C
)

8.
11

L
21

x;
P
C

ð
Þ¼

m
ax

20
0�

L
0
x;
P
C

ð
Þc
os

π�
P
C

ð
Þ;0

f
g,

Pn P
C
¼0

L
21

P
C

ð
Þ¼

50
00

16
21

L
1
x;
P
C

ð
Þ¼

m
ax

25
0�

L
0
x;
P
C

ð
Þc
os

π�
P
C

ð
Þ;0

f
g,

Pn P
C
¼0

L
1
P
C

ð
Þ¼

25
0L

1
x;
P
C

ð
Þ¼

..
.
¼

L
20

x;
P
C

ð
Þ

8.
12

L
21

x;
P
C

ð
Þ¼

m
ax

50
�

L
0
x;
P
C

ð
Þs
in

π�
P
C
þ
3π

=
2

ð
Þ;0

f
g,

Pn P
C
¼0

L
21

P
C

ð
Þ¼

50

17
21

L
1
x;
P
C

ð
Þ¼

m
ax

25
0�

L
0
x;
P
C

ð
Þc
os

π�
P
C

ð
Þ;0

f
g,

Pn P
C
¼0

L
1
P
C

ð
Þ¼

25
0L

1
x;
P
C

ð
Þ¼

..
.
¼

L
20

x;
P
C

ð
Þ

8.
13

L
21

x;
P
C

ð
Þ¼

m
ax

L
0
x;
P
C

ð
Þs
in

π�
P
C

ð
Þ;0

f
g,

Pn P
C
¼0

L
21

P
C

ð
Þ¼

10

54 8 Simulation Scenarios

8.2 Simulation Case 2–2 Users

In this two-user case, one user submits a sine load, and the other user submits a
cosine load. The sine-load1 user submits tasks in a start–stop fashion. The cosine-
load user does so as well, but with a phase shift that complements the sine-load. In
the first case, c1 submits a workload that is complementary but has a higher rate than
that of c2 by 100%. The configuration for the simulator in this case is as follows:

(1) simulator.setNumberOfSubmitters(2);
(2) simulation.setWavelength(“2:2”);
(3) simulation.setPhase(“0:1”);
(4) simulation.setAmplitude(“1000:500”);
(5) simulation.setTaskCount(“5000:5000”);

We create a setup with two submitters (1), each of which has a wavelength of
2 (2). The sine-load user submits a load at PC zero and then at even PCs. The cosine-
load user submits a load at PC 1 and then at odd PCs (3). The actual loads are 1000
tasks/PC for c1 and 500 tasks/PC for c2 (4). Both users send the same number of
tasks (5000) over the duration of the simulation (5) (Fig. 8.2).

Fig. 8.1 Depiction of simulation case 1

1An un-shifted sine wave can go negative, which does not make sense in this context. For this
reason, we only consider the positive when we talk about sine and cosine:
max L1 x; PCð Þ sin π�PCþ 3π

2

� �
; 0

� 	

8.2 Simulation Case 2–2 Users 55

8.3 Simulation Case 3–2 Users

In this two-user case, one user submits a sine load and the other user submits a
constant load. For a given lambda, the total number of tasks submitted by each user
is the same. Furthermore, the total number of tasks submitted by each user during the
simulation is the same: 5000 each.

The API level configuration is as follows:

:
(1) simulator.setNumberOfSubmitters(2);
(2) simulation.setWavelength(“0:2”);
(3) simulation.setPhase(“0:0”);
(4) simulation.setAmplitude(“100:200”);
(5) simulation.setTaskCount(“5000:5000”);

:

8.4 Simulation Case 4–2 Users

In this two-user case, one user first submits a large, one-time workload of 5000 tasks.
Then, a second user submits a one-time workload of 50 tasks, a mere fraction of the
total number of tasks submitted by the first user. Interestingly, a small workload can
be overwhelmed in this type of case. Configuring the simulator for this simulation is
accomplished by using the API as follows:

Fig. 8.2 Depiction of simulation case 2

56 8 Simulation Scenarios

:
(1) simulator.setNumberOfSubmitters(2);
(2) simulation.setWavelength(“2:2”);
(3) simulation.setPhase(“0:1”);
(4) simulation.setAmplitude(“5000:50”);
(5) simulation.setTaskCount(“5000:50”);

:

8.5 Simulation Case 5–2 Users

This case is similar to case 4, but the second user submits only 1 task/PC until each
of their 10 tasks have been submitted. The API level configuration is as follows:

:
(1) simulator.setNumberOfSubmitters(2);
(2) simulation.setWavelength(“2:2”);
(3) simulation.setPhase(“0:1”);
(4) simulation.setAmplitude(“5000:1”);
(5) simulation.setTaskCount(“5000:10”);

:

8.6 Simulation Case 6–6 Users

This six-user case resembles case 2, but 5 users each submit a sine load in equal parts
and one user submits a cosine load. All of the users submit their tasks in a start–stop
fashion. c1¼ c2¼ c3¼ c4¼ c5, but c6 submits a complimentary workload at a higher
rate. The configuration is as follows:

(1) simulator.setNumberOfSubmitters(6);
(2) simulation.setWavelength(“2:2:2:2:2:2”);
(3) simulation.setPhase(“0:0:0:0:0:1”);
(4) simulation.setAmplitude(“200:200:200:200:200:500”);
(5) simulation.setTaskCount(“1000:1000:1000:1000:1000:5000”);

The setup includes six submitters (1), each with a wavelength of 2 (2). The sine-
load user submits a load at PC zero and then at even PCs. The cosine-load user

8.6 Simulation Case 6–6 Users 57

submits a load at PC 1 and then at odd PCs (3). For c1. . c5, the actual load is
200 tasks/PC up to 1000 tasks, and for c6, the actual load is 500 tasks/PC up to 5000
tasks (4–5).

8.7 Simulation Case 7–6 Users

This six-user case resembles case 3, but 5 users each submit a constant load in equal
parts and one user submits a sine load. For a given lambda, the total number of tasks
submitted by the 5 constant-load users is the same as the total number of tasks
submitted by the sine-load user.

The API level configuration is as follows:

:
(1) simulator.setNumberOfSubmitters(6);
(2) simulation.setWavelength(“0:0:0:0:0:2”);
(3) simulation.setPhase(“0:0:0:0:0:1”);
(4) simulation.setAmplitude(“20:20:20:20:20:200”);
(5) simulation.setTaskCount(“5000:5000:5000:5000:5000:5000”);

:

8.8 Simulation Case 8–6 Users

In this six-user case, 5 users submit large, one-time workloads of 1000 tasks. Then,
one user submits a one-time workload of 50 tasks, a fraction of the total number of
tasks submitted by the other users. This case resembles case 4, but with 6 users. The
goal in this case is to analyze the multi-user case scenario of our workload. This was
accomplished by using the API to configure the simulator as follows:

:
(1) simulator.setNumberOfSubmitters(6);
(2) simulation.setWavelength(“2:2:2:2:2:2:2”);
(3) simulation.setPhase(“0:0:0:0:0:0:1”);
(4) simulation.setAmplitude(“1000:1000:1000:1000:1000:50”);
(5) simulation.setTaskCount(“1000:1000:1000:1000:1000:50”);

:

58 8 Simulation Scenarios

8.9 Simulation Case 9–6 Users

This is similar to case 5, but with 6 users. 5 users each send 1000 tasks, while one
user sends 1 task/PC. The API level configuration is as follows:

:
(1) simulator.setNumberOfSubmitters(6);
(2) simulation.setWavelength(“2:2:2:2:2:2”);
(3) simulation.setPhase(“0:0:0:0:0:1”);
(4) simulation.setAmplitude(“1000:1000:1000:1000:1000:1”);
(5) simulation.setTaskCount(“1000:1000:1000:1000:1000:10”);

:

8.10 Simulation Cases 10 and 14

Cases 10 and 14 are similar to case 6, but they feature 11 and 21 users, respectively.

8.11 Simulation Cases 11 and 15

Cases 11 and 15 are similar to case 7, but they feature 11 and 21 users, respectively.

8.12 Simulation Cases 12 and 16

Cases 12 and 16 are similar to case 8, but they feature 11 and 21 users, respectively.

8.13 Simulation Cases 13 and 17

Cases 13 and 17 are similar to case 9, but they feature 11 and 21 users, respectively.

8.13 Simulation Cases 13 and 17 59

8.14 Assumptions

While various assumptions are made in the aforementioned cases, each supports the
overall goal of assessing the feasibility of a new scheduling model that uses three
system parameters to reduce time-in-system. Due to the complexity of the task at
hand, a number of assumptions are made. These assumptions are enumerated in this
section.

8.14.1 No-Randomness Assumption

The simulation runs feature no randomness: a given input always led to the same
output, and no random parameters or variables appeared anywhere in the simulation.
This is required as the interest is in achieving predictable improvements in perfor-
mance and not statistical significance across the various results. The simulation and
results were predictable and repeatable in every case. The applicability of the
Rawlsian Fair scheduler hypothesis is tested in each simulation. For each simulation,
(a) the submission profiles are varied, (b) the number of users are varied, and (c) the
method used to calculate seniority are varied. As the interest is to test the hypothesis
under specific conditions, the specificity of the scenario will prove to be more
applicable in a controlled environment and without any randomness as to the
submission profile or number of users.

8.14.2 Task-Based-Workload Assumption

In the cases considered, a given job is composed of many requests or tasks, each of
which is self-contained and can be executed independently. In addition, resources
are allocated dynamically. Due to the nature of the interactive workloads that run in
HPC environments, the resources allocated to a given user can change with every
scheduling cycle. We also assume that the tasks are malleable (Feitelson et al. 1997):
they are able to take advantage of new resources allocated during the scheduling
cycle.

8.14.3 Resource-Constraint Assumption

The number of resources is held constant at 100 CPUs in all of the simulations.
Although the number of resources is largely irrelevant, it had to be smaller than the
workload and to remain constant. The number of resources had to be smaller than the
workload because if it was not, users would not have been forced to compete for

60 8 Simulation Scenarios

resources and the simulation would not have been representative of real-world cases.
The number of resources was held constant to reduce the number of variables.

8.14.4 Simulation Parameters and Configuration

17 simulation cases were run, each with seven scheduling algorithms: traditional
fair-share and Rawlsian Fair with 6 different BH values. Simulation 1 was a “smoke-
test” to assess the basic functionality of the simulator, but the other 16 tests were
broken into four different classes of simulations, as is described in Sect. 1.2. Figure 8.3
maps the simulation runs to the four classes of job profiles. Below, an overview is
provided of all of the simulations and the expectations for each class of simulation.

8.14.4.1 Simulations for Class-A: Simulations 2, 6, 10 and 14

Simulations 2, 6, 10, and 14 were conducted to determine the applicability of the
Rawlsian Fair algorithm vis-à-vis Class A workloads. In these simulations, the
overall load was held constant at 10,000. The parameters of the simulation keeps
one user’s submission load profile constant while distributing other loads among the
rest of the users. The goal of these tests was to determine whether Rawlsian Fair is as
good as fair-share scheduling. Rawlsian Fair was expected to introduce no addition
delays, and the simulations validated this assumption. Since fair-share scheduling
seeks long-term fairness (Kleban and Clearwater 2003), the primary objective of
these tests was to make sure that Rawlsian Fair does not generate more delays than
fair-share.

Fig. 8.3 Classification of
the 16 simulation scenarios

8.14 Assumptions 61

8.14.4.2 Simulation Class-B: Simulations 3, 7, 11, and 15

Simulations 3, 7, 11, and 15 were conducted to determine the applicability of the
Rawlsian Fair algorithm vis-à-vis Class B workloads. In each of these simulations,
one or more of the workloads submitted is a constant workload. In each case, the
constant workload(s) competes with intermittent workloads. Since a constant work-
load submits a constant number of tasks, in 2-user simulations, the results achieved
by the Rawlsian Fair algorithm were expected to be as good as those achieved by
fair-share algorithm. As the number of users increased, the Rawlsian Fair algorithm
was expected to yield results that were increasingly better than those of fair-share
scheduling.

8.14.4.3 Simulation Class-C: Simulations 4, 8, 12, and 16

Simulations 4, 8, 12, and 16 were conducted to determine the applicability of the
Rawlsian Fair algorithm vis-à-vis Class C workloads. In each simulation, Rawlsian
Fair scheduling was expected to reduce the delay experienced by the smallest user(s).

8.14.4.4 Simulation Class-D: Simulations 5, 9, 13, and 17

Simulations 5, 9, 13, and 17 were conducted to determine the applicability of the
Rawlsian Fair algorithm vis-à-vis Class D workloads. In each simulation, Rawlsian
Fair scheduling was expected to reduce the delay experienced by the smallest user(s).
As the number of users increased from 2 to 21, the delay experienced by the smallest
user(s) was expected to remain constant.

62 8 Simulation Scenarios

Chapter 9
Overview of Results

Chapter 8 outlined 17 cases simulated using dSim. Both the traditional, fair-share
scheduling algorithm and the Rawlsian Fair scheduling algorithm developed for our
work were used in these simulations. Table 9.1 outlines the different classes of
simulations and their purposes.

9.1 Results Recap

The results reveal that the Rawlsian Fair scheduling algorithm both significantly
decreased the times-in-system of the users with the lowest relative numbers of tasks
and decreased the time-in-system variance for every user. This section offers an
overview of the delays incurred by the users in the simulations. Data analysis is
conducted per class of requests, as is outlined in Sect. 1.2. Data analysis for the Least
Benefited User (LBU) will be considered as defined in Rawls (2001).

The Rawlsian Fair scheduling algorithm uses seniority as well as the traditional
parameters of load and priority. Seniority is updated by the scheduler according to
the changes that occur as tasks enter and leave the system. Seniority is included to
decrease the time-in-system experienced by users with low numbers of tasks. In fair-
share scheduling, the delay is normalized across the users. This effect is revealed in
our results. In Rawlsian Fair scheduling, however, seniority moves tasks to the front
of the queue: the tasks in the queue are ordered first by seniority and then by arrival
time, so that of the tasks that share the highest seniority value, the first one in the
queue is executed first. As mentioned previously, the Rawlsian Fair scheduler uses
buckets to calculate seniority. Seniority is calculated based on the current state of the
bucket (i.e. the number of tasks in the bucket), and all of the tasks in a given bucket
are finished before the scheduler moves on to the next bucket (Fig. 9.1).

The Placement Counter (PC) dictates the target bucket location: PC ¼ 1 indicates
that the tasks are destined for Bucket 1, PC ¼ 2 indicates that the tasks are destined
for Bucket 2, and so on. Bucket History (BH) size is another variable. Seniority is

© Springer Nature Switzerland AG 2019
A. Sedighi, M. Smith, Fair Scheduling in High Performance Computing
Environments, https://doi.org/10.1007/978-3-030-14568-2_9

63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14568-2_9&domain=pdf

calculated across a number of buckets denoted by the BH value. BH ¼ 1 (Fig. 9.1)
means that seniority is calculated based on the parameters of the current bucket,
i.e. the oldest bucket waiting to be drained.

Once all of the tasks in a given bucket have been scheduled for execution, the
bucket is deleted and the scheduler moves on to the next bucket. In each of the
simulations, the number of processing nodes (or CPUs) was held constant at
100, meaning that 100 tasks could be processed simultaneously. Each task takes
1000 ms to complete, so if 1000 tasks were submitted and the system was able to
process 100 at a time, it would take 10 s to complete all of the tasks in a real-world
scenario.

In BH¼ 2 scenarios (Fig. 9.2), the tasks are placed in their respective buckets, but
seniority is calculated based on the parameters of two buckets. In other words, the
total number of pending tasks and the total number of submitted tasks are based on
the values spanning two buckets.

Table 9.1 Summary of simulation types and expected outcome

Workload
classification Relevance

Class A Intermittent workloads occur when users submit jobs throughout the day.
These simulations describe situations in which complementary users of
different load compete for resources. It considers how performance is
affected as the number of users increase.

Class B These simulations describe situations in which steady workloads compete
for resources with intermittent workloads.

Class C These simulations describe situations in which one user is competing for
resources for a one-time burst submission against larger workloads.

Class D These simulations describe situations in which small but steady workloads
compete with larger workloads.

Fig. 9.1 Illustration of the role of buckets in placing (via the Placement Counter) and executing
tasks

64 9 Overview of Results

Simulations were run for different workloads and six different BH sizes:

BH ¼ 1; 2; 3; 5; 10; inff g ð9:1Þ

Bh ¼ inf is a special case in which seniority is calculated by taking into
consideration the entire submission history of a given user (Fig. 9.3). This scenario
consider a system never forgets. While smaller BH values can suffer from local
maxima problems (see the results of simulations 3 and 4), local maxima problems are
resolved when Bh ¼ inf. A side effect, however, is that disproportionately large jobs
tend to suffer.

Although the aim of the Rawlsian Fair scheduler is to improve the fairness of the
system, as the FUD conjecture suggests, one of the other parameters will suffer as a
result of this change.

Our results revealed that although the Rawlsian Fair scheduler improved fairness
of the system, i.e. smaller users experienced smaller times-in-system—the overall
dynamicity of the system decreased. To calculate seniority, the incoming tasks were
placed in buckets (or queues) (see Sect. 6.2) in the order in which they arrived. In
cases in which multiple users had the same seniority level (e.g. in simulation 6), the

Fig. 9.2 Scheduling scenario with BH ¼ 2

Fig. 9.3 Calculating seniority based on BH value

9.1 Results Recap 65

tasks were executed in a first-come-first-served fashion. The same applies for users
with the same number of overall tasks, as one would expect. In cases in which two or
more users submitted the same number of tasks at the same time, the tasks were
executed in the order in which they arrived in the queue.

9.1.1 Simulation 1 Analysis and Results

Simulation 1 was a “smoke simulation” to make sure that our system worked as
expected end-to-end. Two users submitted 1000 tasks each at 200 tasks/PC
(Fig. 9.4).

Each user submitted their next task after the other user had submitted theirs,
creating a sine–cosine submission pattern. We expected that the delays incurred for
each task would be similar for Rawlsian Fair with BH¼ inf and fair-share (Figs. 9.5,
9.6).

First, we compare the simulation results for fair-share and Rawlsian Fair with a
bucket history of infinity (inf). Rawlsian Fair’s stepwise task-delay line is the result
of the bucketing feature for task submission. Tasks are sorted into buckets and
executed in the order in which they arrive. There were 100 worker nodes, so user
1’s first 100 tasks were sorted into bucket 1, and so on.

The task delays obtained with each scheduling method were complimentary
because there were only two users: an increase in the delay experienced by one
user meant a decrease in the delay experienced by the other (Fig. 9.7).

Fig. 9.4 Task submission pattern for simulation 1

66 9 Overview of Results

The goal in this simulation was to evaluate how close Rawslian Fair scheduling
gets to traditional fair-share when two users share the same job-submission profile.
The results for all of the BH sizes in simulation 1 are also presented (Figs. 9.8, 9.9),
and they show a similar delay pattern.

Fig. 9.5 User 1’s task delay in simulation 1 with BH ¼ inf

Fig. 9.6 User 2’s task delay in simulation 1 with BH ¼ inf

9.1 Results Recap 67

Fig. 9.7 Task delay comparison of both users for simulation 1

Fig. 9.8 User 2’s task delay for all BH sizes in simulation 1

68 9 Overview of Results

9.2 Lessons Learned

In the calculation of seniority, incoming tasks were timeboxed into “buckets” (see
Sect. 6.2) denoted by the placement counter (PC) variable. The granularity of the
placement counter had a profound effect on the performance levels of the less senior
tasks. While the PC granularity had to be set at 1000 ms (1 s) (equal to the task-
execution size) for seniority to be calculated, this had the side effect of delaying less
senior tasks by their position within each bucket. This delay resulted from the action
of the First-Come-First-Serve (FCFS) algorithm, which was used to take equal-
seniority tasks off the queue. Even though the tasks were submitted at the “same
time,” even a fraction of a second can affect the arrival time. dSim is aware of
communication delays and uses them in setting the arrival time of each task.

Regardless of the PC value, however, Rawlsian Fair scheduler performed equal to
or better than fair-share overall for Class A and Class B workloads. A comparison of
the results of simulations 5 and 9 further demonstrates this point. While the number
of tasks was the same in both simulations, simulation 9 had more users. As the
number of users increased, so did the effectiveness of Rawlsian Fair.

Rawlsian Fair performed universally better with Class C and Class D workloads.
This is apparent when simulation 5 is compared to simulations 13 and 17. The tasks
submitted by a single, the large user for simulation 5, are distributed among 5 users
in simulation 9, 11 users in simulation 13, and 20 users in simulation 17. The

Fig. 9.9 User 1’s task delay for all BH sizes in simulation 1

9.2 Lessons Learned 69

outcome of each simulation is the same for the smallest user, however, demonstrat-
ing the effect of Rawlsian Fair’s use of seniority.

The number of tasks distributed among the users is held constant across each of
the simulations, including simulations 10 and above, and the effect of Rawlsian Fair
becomes increasingly apparent as the number of users increases. Seniority consis-
tently benefits disproportionately small users, but because Rawlsian Fair picks
smaller users from sets of larger users, this effect becomes more pronounced as
the number of users increases.

9.3 Simulation Results and Analysis

The following chapters review the results of the various simulation runs. We
generated over 600,000 data points,1 and we illustrate our key findings. Given the
sheer number of data points, every data point cannot be independently considered.

Some of the simulation results are grouped into pairs because while the number of
tasks is the same for the members of each pair, one member of each pair demon-
strates the effect of Rawlsian Fair on the smallest user, and the other member
demonstrates the effect of seniority as the number of users increases.

117 tests, 7 different scheduling algorithms, and 5000þ tasks per run

70 9 Overview of Results

Chapter 10
Class A Results and Analysis

10.1 Class A Simulations

Class A simulations describe situations featuring intermittent workloads. In Simu-
lation2, two users submit equal but complementary workloads. As the number of
users increases—to 6 in Simulation6, 11 in Simulation10, and 21 in Simulation14—
one user’s submission rate stays constant while the workload from the second user
(5000 tasks) is distributed among the rest of the users in the system. In Simulation6,
users 1–5 submit 1000 tasks each and 5000 total, while user 6 submits 5000 tasks on
their own. In Simulation10, users 1–10 submit 500 tasks each, while user 11 submits
5000 tasks on their own. In Simulation14, users 1–20 submit 250 tasks each, while
user 21 submits 5000 tasks on their own.

10.2 Class A Results

When the workloads are equal but complementary, as in Simulation2, a difference in
performance of less than 2% is observed between fair-share and Rawlsian Fair
scheduling methods. As the gap between the largest user and the smallest user
increases, however, Rawlsian Fair produces an average performance that is approx-
imately 80% better than that of fair-share (Table 10.1). The average total delay
remains constant, confirming the fairness of Rawlsian Fair.

10.2.1 Simulation 2 Analysis and Results

In simulation 2, two users submitted different loads. User 1 submitted 1000 tasks/PC
up to a total of 5000 tasks, and user 2 submitted 500 tasks/PC up to a total of 5000

© Springer Nature Switzerland AG 2019
A. Sedighi, M. Smith, Fair Scheduling in High Performance Computing
Environments, https://doi.org/10.1007/978-3-030-14568-2_10

71

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14568-2_10&domain=pdf

Table 10.1 Class A Submission type average delay

Class A average delay

Simulation 2 Simulation 6 Simulation 10 Simulation 14

User under test User 1 Users 1–5 Users 1–10 Users 1–20

Fairshare average delay (ms) 62,891 61,824 66,873 73,617

Average Rawlsian Fair
delay (ms)

61,455 34,783 34,783 34,783

Rawlsian Fair delay per
user (ms)

61,455 User 1:
29,321

User 1:
28,641

User
1:28,641

BH ¼ inf User 2:
32,041

User 2:
30,001

User
2:28,641

User 3:
34,761

User 3:
38,161

User
3:31,361

User 4:
37,481

User 4:
39,521

User
4:32,721

User 5:
40,311

User 5:
41,101

User
5:34,081

User 6:
34,081

User
6:35,441

User 7:
35,441

User
7:30,001

User 8:
36,801

User
8:30,001

User 9:
32,721

User
9:31,361

User
10:31,361

User
10:41,101

User
11:39,521

User
12:39,521

User
13:38,161

User
14:38,161

User
15:36,801

User
16:36,801

User
17:35,441

User
18:34,081

User
19:32,721

User
20:41,101

(continued)

72 10 Class A Results and Analysis

tasks. The number of available CPU’s was set at 100 for the duration of the
simulation (Fig. 10.1).

Simulation 2 featured 2 users and was run for all BH options and fair-share
(Figs. 10.2 and 10.3).

The red line traversing both figures represents the task delay incurred using the
fair-share scheduler. As expected, fair-share normalized the delay for both users,
irrespective of their different submission profiles. Very little difference was observed
at the micro-level between fair-share and Rawlsian Fair, but the results are interest-
ing nonetheless. As Fig. 10.1 shows, the submission is interweaving amongst the
two users. As such, each bucket contains tasks from only one user. User 2’s tasks
came in at a lower rate, and with varying of the BH sizes, user 2’s tasks were lowered
task delay to start (red circle in Fig. 10.3). This was particularly true for BH ¼ inf, at
which user 2, who had a lower task-submission rate, started off with a lower task
delay. This, in turn, caused user 1’s tasks to fall behind, at which point they were

Table 10.1 (continued)

Class A average delay

Simulation 2 Simulation 6 Simulation 10 Simulation 14

Average improvement <2% 86% 95% 114%

Improvement per user <2% User 1: 118% User 1: 133% User 1: 157%

User 2: 99% User 2: 123% User 2: 157%

User 3: 84% User 3: 75% User 3: 135%

User 4: 70% User 4: 69% User 4: 125%

User 5: 58% User 5: 63% User 5: 116%

User 6: 96% User 6: 108%

User 7: 89% User 7: 145%

User 8: 82% User 8: 145%

User 9: 104% User 9: 135%

User 10:
113%

User 10: 79%

User 11: 86%

User 12: 86%

User 13: 93%

User 14: 93%

User 15:
100%

User 16:
100%

User 17:
108%

User 18:
116%

User 19:
125%

User 20: 79%

10.2 Class A Results 73

assigned greater seniority and were executed ahead of user 2’s tasks (as is indicated
by the red circle in Fig. 10.3).

High BH values, such as 10 or inf, were the best-case scenarios. In other cases,
user 2’s tasks lagged in execution behind user 1’s because of how they were sorted
into buckets. Once each user had submitted all of their 5000 tasks, the FCFS aspect
of the scheduler took over. Table 10.2 compares the results obtained with Rawlsian
Fair and fair-share in simulation 2.

Fig. 10.1 Task submission for simulation 2

Fig. 10.2 User 1’s task delay for all BH sizes in simulation 2

74 10 Class A Results and Analysis

10.2.2 Simulation 6 Analysis and Results

In simulation 6, one user submitted 5000 tasks and five other users submitted 1000
tasks each (Fig. 10.4). The difference between simulation 6 and simulation 2 is that
in simulation 6, users 1–5 submitted simultaneously at a rate of 200 tasks for every
two PC ticks. In Simulation 6, the performance level that users 1–5 experienced
under Rawlsian Fair with a minimum BH value of 1 (Table 10.3) exceeded the
performance level they experienced under fair-share by as much as 170%. This was
mainly because with BH ¼ 1, only the size of the immediate bucket was taken into
account. The remainder of this section compares the performance levels of Rawlsian

Fig. 10.3 User 2’s task delay for all BH sizes in simulation 2

Table 10.2 Comparison of the delays generated by Fair-Share (FS) and Rawlsian Fair (RF) in
simulation 2

FS
delay
(ms)

RF delay
(ms)
BH ¼ 1

RF delay
(ms)
BH ¼ 2

RF delay
(ms)
BH ¼ 3

RF delay
(ms)
BH ¼ 5

RF delay
(ms)
BH ¼ 10

RF delay
(ms)
BH ¼ inf

User 1 62,891 42,133 41,913 47,955 53,615 64,935 61,455

vs FS N/A 49% 50% 31% 17% �3% 2%

User 2 61,824 84,221 84,221 78,069 72,079 60,099 63,029

vs FS N/A �27% �27% �21% �14% 3% �2%

10.2 Class A Results 75

Fair and fair-share for users 1–5, and again for user 6. The other comparison is
amongst users 1–5 for a given simulation parameter.

Figure 10.6 shows the task delays that user 1 experienced with the different BH
values. User 1 submitted their tasks first, followed by user 2, and so on. This is
important because with time, the FCFS aspect of the Rawlsian Fair scheduler
negatively affects tasks with the same seniority. Every user was still better off than
they would have been under fair-share, but user 1’s tasks were completed first
(Fig. 10.5). Rawlsian Fair pushed out user 6 in favor of the smaller users (users
1–5). This feature delayed user 6, which is apparent in Fig. 10.7. In every case, the
dotted red line represents the task delay generated by the Fair-Share scheduler.

Table 10.3 shows the different performance levels that user 1 experienced as the
BH value varied. User 6, the largest user, experienced a level of performance that

Fig. 10.4 The task submissions of all 6 users in simulation 6

Table 10.3 Comparison of the delays generated by Fair-Share (FS) and Rawlsian Fair (RF) in
simulation 6

FS
delay
(ms)

RF delay
(ms)
BH ¼ 1

RF delay
(ms)
BH ¼ 2

RF delay
(ms)
BH ¼ 3

RF delay
(ms)
BH ¼ 5

RF delay
(ms)
BH ¼ 10

RF delay
(ms)
BH ¼ inf

User 1 63,883 23,481 27,821 31,421 35,041 29,321 29,417

vs
Fairshare

N/A 172% 130% 103% 82% 118% 121%

User 6 62,635 85,891 87,091 83,381 83,271 90,251 89,701

vs
Fairshare

N/A �27% �28% �25% �25% �31% �30%

76 10 Class A Results and Analysis

Fig. 10.6 User 1’s task delays with Fair-Share and all BH values in simulation 6

Fig. 10.5 The task delays experienced by all users with BH ¼ inf and Fair-Share in simulation 6

10.2 Class A Results 77

was expectedly worse than those of the other users because users 1–5 were given
precedence by the Rawlsian Fair scheduler.

10.2.3 Simulations 10 and 14 Results and Analysis

Simulation 10 featured 11 users, and simulation 14 featured 21 users. The total
number of tasks submitted was the same in both simulations, but the number of tasks
each user submitted decreased as the number of users increased. In simulation
10, users 1–10 submitted 100 tasks every two PCs up to a total of 5000 tasks,
while user 11 submitted 500 tasks every two PCs up to a total of 5000 tasks
(Fig. 10.8). In Simulation14, users 1–20 each submitted 50 tasks every two PCs,
while user 21 submitted 500 tasks at a time up to a total of 5000 tasks (Fig. 10.10). In
simulation 10, users 1–10 submitted their tasks to the same bucket simultaneously,
starting with bucket 2. As a result, bucket 2 held 100 tasks from each of ten users, for
a total of 1000 tasks. Users 1–20 in simulation 14 submitted their tasks in the same
way: each submitted 50 tasks at a time, so bucket 2 held 1000 tasks. In both
simulations, bucket 3 held 500 tasks submitted by the larger user.

In both simulations, the larger user—user 11 in simulation 10 and user 21 in
simulations 14—experienced delays with Rawlsian Fair that exceeded the delays
they experienced with traditional fair-share. The same pattern was observed in
simulation 6. The delays the larger users incurred in both cases were almost identical

Fig. 10.7 User 6’s task delays with Fair-Share and all BH values in simulation 6

78 10 Class A Results and Analysis

(Figs. 10.13 and 10.14) because in both cases, the scheduler did not send the larger
user’s task for execution until all of the smaller users’ tasks had been executed.
Figure 10.12 shows a close-up of the of one of the smaller users in simulation
10 (user 1), and Fig. 10.11 shows a close-up of the of one of the smaller users in
simulation 14. Rawlsian Fair scheduling was able to pick this smaller user from the
others in the system and execute their tasks earlier than Fair-Share would have. The
different Bucket-History (BH) sizes affected the task delay only after each user’s
submission number had exceeded the minimum number of buckets required for BH
to be valid—with BH ¼ 3, there must be at least three buckets, and so on. The red
circle in Fig. 10.12 shows this effect in simulation 10, and the red circle in Fig. 10.11
shows this effect in simulation 14. The delays incurred by the smaller users were due
largely to the number of available resources (100 CPU’s), which determined the
number of tasks that could be executed simultaneously. This is apparent in Fig. 10.9
(for Simulation10) and Fig. 10.15 (for Simulation14), which show the task delays
experienced by all of the users. The task delays experienced by the smaller users are
similar because the scheduler picked the largest seniority in the order of arrival
before moving on to the next user on a first-come-first-served basis.

Table 10.4 compares the performance characteristics of one of the smaller users
(user 1) to those of the larger user (user 11). With every BH value in simulation

500

450

400

350

300

250

200

Submission Time (ms)

User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9 User 10 User 11

User 1

User 3
User 5

User 7
User 9

User 11

U
se

r

150

100

50

0

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

T
as

k
C

ou
nt

Fig. 10.8 The task submissions of all 11 users in simulation 10

10.2 Class A Results 79

500

450

400

350

300

250

200

150

100

50

User 1

User 12 User 13

User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9 User 10 User 11

User 21User 20User 19User 18User 17User 16User 15User 14

Submission Time (ms)

User 1

User 4

User 7

User 10

User 13
User 16

User 19

U
se

r

Ta
sk

 C
ou

nt

0

2000
3000

4000
5000

6000
7000

8000
9000

10000

11000

12000

13000

14000

15000

16000

17000

18000

19000

20000

21000

Fig. 10.10 The task submissions of all 21 users in simulation 14

Fig. 10.9 The task delays experienced by users 1–10 with BH ¼ inf in simulation 10

80 10 Class A Results and Analysis

Fig. 10.11 Task delay for user 1 for all BH values for simulation 14

Fig. 10.12 User 1’s task delays with all BH values in simulation 10

10.2 Class A Results 81

10, the smaller users (1–10) saw an increase in performance. All of these users saw
the most improvement with BH ¼ inf (Table 10.1), at which users 1–10 saw an
average increase in performance greater than 95%.

Fig. 10.13 User 21’s task delays with all BH values in simulation 14

Fig. 10.14 User 11’s task delays with all BH values in simulation 10

82 10 Class A Results and Analysis

Fig. 10.15 The task delays of users 1–20 with BH ¼ inf in simulation 14

Table 10.4 Comparison of the delays experienced by user 1 and user 11 under Fair-Share (FS) and
Rawlsian Fair (RF) in simulation 10

FS
delay
(ms)

RF delay
(ms)
BH ¼ 1

RF delay
(ms)
BH ¼ 2

RF delay
(ms)
BH ¼ 3

RF delay
(ms)
BH ¼ 5

RF delay
(ms)
BH ¼ 10

RF delay
(ms)
BH ¼ inf

User 1 67,133 21,361 26,421 30,021 34,121 28,641 28,641

vs
Fairshare

N/A 214% 154% 124% 97% 133% 133%

User 11 63,302 85,891 87,091 83,381 83,271 90,251 89,701

vs
Fairshare

N/A �26% �27% �24% �24% �30% �29%

10.2 Class A Results 83

Table 10.5 compares the delay of a smaller user (user 1) in simulation 14 to that of
the larger user (user 21). As expected, user 1 saw an increase in performance with
every BH value, and all users saw performance increases with BH¼ inf (Table 10.1).
The average improvement in performance was over 110%.

Table 10.5 Comparison of the delays experienced by user 1 and user 21 under Fair-Share (FS) and
Rawlsian Fair (RF) in simulation 14

FS
delay
(ms)

RF delay
(ms)
BH ¼ 1

RF delay
(ms)
BH ¼ 2

RF delay
(ms)
BH ¼ 3

RF delay
(ms)
BH ¼ 5

RF delay
(ms)
BH ¼ 10

RF delay
(ms)
BH ¼ inf

User 1 73,617 20,401 25,941 29,541 33,881 28,641 28,641

vs
Fairshare

N/A 261% 184% 149% 117% 157% 157%

User 21 65,245 85,891 87,091 83,381 83,271 90,251 89,701

vs
Fairshare

N/A �24% �25% �22% �22% �28% �27%

84 10 Class A Results and Analysis

Chapter 11
Class B Results and Analysis

11.1 Class B Simulations

Class B simulations describe situations in which one user submits an intermittent
workload while another user or other users submits a steady workload. In simulation
2, two users submit workloads that are steady and equal in the number of tasks, while
one user submits an intermittent workload. As the number of users increases—to 6 in
simulation 7, 11 in simulation 11, and 21 in simulation 15—one user’s workload
remains constant at an intermittent rate of 200 tasks for every two PCs up to 5000
tasks.

As the number of users increases, the steady workload is distributed among the
users. In simulation 7, users 1–5 submit 20 tasks/PC each, for a total of 5000 tasks,
while user 6 submits 5000 tasks on their own. In simulation 11, users 1–10 submit
10 tasks/PC each, while user 11 submits 5000 tasks on their own. In simulation
15, users 1–20 submit 20 tasks/PC each, for a total of 5000 tasks, while user
21 submits 5000 tasks intermittently.

11.2 Class B Results

When the workloads are equal, as in simulation 3, a difference in performance of less
than 2% is observed between fair-share and Rawlsian Fair. As the gap between the
largest user and the smallest user increases, however, Rawlsian Fair demonstrates a
performance that is up to 200% better than that of Fair-Share (Table 11.1). The drop
in performance improvement can be explained by the fact that while all 20 users
submit at a rate of 10 tasks/PC, for a total of 200 tasks, the total number of resources
remains at 100. Even though the scheduler dedicates all of the resources to users
1–20, the length of the delay is double that observed in other tests simply because

© Springer Nature Switzerland AG 2019
A. Sedighi, M. Smith, Fair Scheduling in High Performance Computing
Environments, https://doi.org/10.1007/978-3-030-14568-2_11

85

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14568-2_11&domain=pdf

Table 11.1 Class B Submission type average delay

Class B Average delay
Simulation 3 Simulation 7 Simulation 11 Simulation 15

User under test User 1 Users 1–5 Users 1–10 Users 1–20
Fairshare average delay (ms) 59,698 54,927 66,144 61,113
Average Rawlsian
Fair delay (ms)

54,537 21,873 21,873 34,425

Rawlsian Fair delay
per user (ms)

54,537 User 1: 21,801 User 1: 21,083 User 1: 32,049

BH ¼ inf User 2: 21,803 User 2: 21,083 User 2: 32,049
User 3: 21,783 User 3: 22,663 User 3: 33,585
User 4: 22,663 User 4: 22,663 User 4: 33,585
User 5: 22,663 User 5: 22,663 User 5: 33,585

User 6: 21,08 User 6: 35,297
User 7: 21,083 User 7: 32,049
User 8: 22,663 User 8: 32,049
User 9: 22,663 User 9: 32,049
User 10: 21,083 User 10: 36,769

User 11: 36,769
User 12: 36,769
User 13: 36,769
User 14: 35,297
User 15: 35,297
User 16: 35,297
User 17: 35,297
User 18: 33,585
User 19: 33,585
User 20: 36,769

Average improvement <2% 156% 203% 78%
Improvement per user <2% User 1:165% User 1: 214% User 1 91%

User 2: 165% User 2: 214% User 2 91%
User 3: 155% User 3: 192% User 3 82%
User 4: 147% User 4: 192% User 4 82%
User 5: 147% User 5: 192% User 5 82%

User 6: 214% User 6 73%
User 7: 214% User 7 91%
User 8: 192% User 8 91%
User 9: 192% User 9 91%
User 10: 214% User 1 66%

User 11: 66%
User 12: 66%
User 13: 66%
User 14: 73%
User 15: 73%
User 16: 73%
User 17: 73%
User 18: 82%
User 19: 82%
User 20: 66%

86 11 Class B Results and Analysis

there are not enough resources available at any given time. In simulation 11, the
users submit at a rate of 10 tasks/PC, but there are only 10 users. Similarly, in
simulation 7, 5 users submit at a rate of 20 tasks/PC.

11.2.1 Simulation 3 Analysis and Results

In simulation 3, one user sent a continuous load and another user sent a load in start–
stop fashion. Within a given span of two PCs, both users sent the same number of
tasks. User 1 sent 100 tasks/PC and user 2 sent 200 tasks every two PCs. Both sent
5000 tasks in total (Fig. 11.1). As expected, no dramatic differences in performance
were observed in this two-user simulation (Table 11.2).

Simulation 3 featured 2 users and was run for all BH options and fair-share. As
expected, the results were similar for Rawlsian Fair and Fair-Share. Individual
results are presented to depict the cases with practically identical submission pro-
files. Table 11.2 outlines the performance characteristics of the two users in simu-
lation 2. Figures 11.2 and 11.3 show the variance in performance between Fair-Share
and Rawlsian Fair with BH¼ 1. The variance is minimal for the first 1000 tasks, and
then it aligns nicely with fair-share. The same pattern is observed to a greater extent
with BH ¼ inf, as is shown in Figs. 11.4 and 11.5, in which the task delays for fair-
share and BH ¼ inf practically match.

Fig. 11.1 Task submission in simulation 3 by user 1 and user 2

11.2 Class B Results 87

T
ab

le
11

.2
C
om

pa
ri
so
n
of

th
e
F
ai
r-
S
ha
re

(F
S
)
an
d
R
aw

ls
ia
n
F
ai
r
(R
F
)
de
la
ys

in
si
m
ul
at
io
n
3

F
S
de
la
y

(m
s)

R
F
de
la
y
(m

s)
B
H

¼
1

R
F
de
la
y
(m

s)
B
H

¼
2

R
F
de
la
y
(m

s)
B
H

¼
3

R
F
de
la
y
(m

s)
B
H

¼
5

R
F
de
la
y
(m

s)
B
H

¼
10

R
F
de
la
y
(m

s)
B
H

¼
in
f

U
se
r
1

55
,6
98

53
,3
01

60
,5
61

51
,2
29

49
,3
49

73
,3
37

54
,5
37

vs F
ai
rs
ha
re

N
/A

4.
50

%
�8

.0
3%

8.
72

%
12

.8
7%

�2
4.
05

%
2.
13

%

U
se
r
2

54
,2
88

58
,3
45

51
,0
25

60
,3
37

62
,1
37

37
,9
29

55
,0
37

vs F
ai
rs
ha
re

N
/A

�6
.9
5%

6.
39

%
�1

0.
03

%
�1

2.
63

%
43

.1
3%

�1
.3
6%

88 11 Class B Results and Analysis

Fig. 11.2 User 1’s task delay with Fairshare and BH ¼ 1 in simulation 3

Fig. 11.3 User 2’s task delay with Fairshare and BH ¼ 1 in simulation 3

11.2 Class B Results 89

11.2.2 Simulation 7 Analysis and Results

In simulation 7, one user submitted 5000 tasks, and five other users submitted 1000
tasks each (Fig. 11.6). The difference between simulation 7 and simulation 3 is that
in simulation 7, users 1–5 submitted continuously and simultaneously at a rate of
20 tasks/PC.

Fig. 11.4 User 2’s task delay—comparing Fair-Share with BH ¼ inf in simulation 3

Fig. 11.5 User 1’s task delay—comparing Fair-Share with BH ¼ inf in simulation 3

90 11 Class B Results and Analysis

The remainder of this section compares Rawsian Fair scheduling to Fair-Share for
users 1–5, and again for user 6. The other comparison is amongst users 1–5 for a
given simulation parameter. Table 11.3 shows the performance characteristics of
user 1 compared to those of the larger user 6.

Figure 11.7 shows the task delays that user 1 experienced with the different BH
values. User 1 submitted their tasks first, followed by user 2, and so on. As
previously mentioned, the FCFS aspect of the Rawlsian Fair scheduler delays the
execution of tasks from some users with equal seniority. All of the users were better
off than they would have been under Fair-Share, but user 1’s tasks were completed
first (Fig. 11.8). The performance level that user 1 experienced under Rawlsian Fair
was as much as 165% better than the performance level they experienced under fair-

Fig. 11.6 The task submissions of all 6 users in simulation 7

Table 11.3 Comparison of the delays generated by Fair-Share (FS) and Rawlsian Fair (RF) in
simulation 7

FS
delay
(ms)

RF delay
(ms)
BH ¼ 1

RF delay
(ms)
BH ¼ 2

RF delay
(ms)
BH ¼ 3

RF delay
(ms)
BH ¼ 5

RF delay
(ms)
BH ¼ 10

RF delay
(ms)
BH ¼ inf

User 1 55,866 24,349 25,561 24,981 24,261 22,153 21,083

vs
Fairshare

N/A 129% 119% 124% 130% 152% 165%

User 6 54,255 85,721 82,865 83,025 80,713 75,601 87,701

vs
Fairshare

N/A �37% �35% �35% �33% �28% �38%

11.2 Class B Results 91

share. Similarly, the performance levels that users 2–5 experienced under Rawlsian
Fair were approximately 140%–165% better than the performance levels they
experienced under Fair-Share (Table 11.1). However, the performance level that
user 6 experienced under Rawlsian Fair was approximately 35% lower than the
performance level they experienced under Fair-Share. Rawlsian Fair pushed out user

Fig. 11.7 User 1’s task delay with Fair-Share and all BH values in simulation 7

Fig. 11.8 The task delays experienced by users 1–5 with BH ¼ inf and Fair-Share in simulation 7

92 11 Class B Results and Analysis

6 in favor of the smaller users (users 1–5). This is shown in Fig. 11.9. The dotted red
line traversing the graph represents the delay caused by the fair-share scheduling
algorithm.

The rise and the fall of the task delay with various bucket-history (BH) values
resulted from abrupt changes in the seniorities of tasks for the smaller user compared
with the larger user. This feature is further zoomed in Fig. 11.10, in which an abrupt
increase in the task delay is a product of the BH values and the submission profile for
user 6 (this is marked with a red circle). User 6 submitted 200 tasks for every 2 PC
ticks, starting at PC ¼ 2. With BH ¼ 1, the rise occurs after 200 tasks, or a single
bucket worth of tasks compared to other users. With BH ¼ 2, the rise occurs after
400 tasks: 200 tasks submitted at PC ¼ 2 and 200 tasks submitted at PC ¼ 4. With
BH ¼ 3, the rise is the same at 400 tasks because user 6 submits tasks every other
PC. This trend continues with rises at 600 tasks with BH ¼ 5 and at 1200 tasks with
BH ¼ 10. BH ¼ inf is not represented in this figure because it normalizes the
submission across all PC ticks.

The effect of the BH values on FUD parameters is apparent in this simulation:
dynamicity was higher with lower BH values, and it was lower with higher BH
values. At BH ¼ inf, the delay was barely affected by the submission pattern of user
6 and was only affected by the overall difference in the task-submission count.

Fig. 11.9 User 6’s task delay with all BH values and Fair-Share in simulation 7

11.2 Class B Results 93

11.2.3 Simulations 11 and 15 Results and Analysis

Simulation 11 featured 11 users, and simulation 15 featured 21 users. The total
number of tasks submitted in both simulations was the same, but the number of tasks
submitted by each user decreased as the number of users increased. In simulation
11, 10 small users each submitted 10 tasks/PC up to a total of 500 tasks (5000 for all
10 users). User 11 submitted 500 tasks every two PCs up to a total of 5000 tasks
(Fig. 11.11). In simulation 15, 20 small users each submitted 10 tasks/PC up to a
total of 250 tasks (5000 for all 20 users). User 21 submitted 200 tasks for every two
PCs up to a total of 5000 tasks (Fig. 11.12).

In simulation 11, the BH value had very little effect on the execution of the small
users’ tasks. With all BH values, the smaller users’ tasks were completed more
quickly than they were with fair-share (Fig. 11.13). The BH value did affect the
execution of the larger user’s tasks, however: tasks submitted earlier incurred shorter
delays than did tasks submitted later depending on the BH value. With BH ¼ 3, for
example, the larger user’s first 1000 tasks were completed more quickly than were
their other 4000 tasks. This was because their first 1000 tasks were submitted within
the first 3 PC values (500 at PC ¼ 2 and 500 at PC ¼ 4). With BH ¼ 3, until there
were at least 3 buckets, the bucket history did not affect the smaller users. Once three
buckets had been created, however, proper Rawlsian Fair scheduling took place.
Similarly, in simulation 15, the BH value did not affect the scheduler’s behavior
toward the small users (Fig. 11.14). The tasks submitted by the larger user (user 21)
were delayed until the smaller users’ tasks had finished, but as in simulation
11 (Fig. 11.15), the effect of Rawlsian Fair scheduling vis-à-vis apparent seniority

Fig. 11.10 A close-up of user 6’s (i.e. the largest user’s) task delay under Rawlsian Fair with
different BH values in simulation 7

94 11 Class B Results and Analysis

Fig. 11.11 The task submissions of all 11 users in simulation 11

Fig. 11.12 The task submissions of all 21 users in simulation 15

11.2 Class B Results 95

Fig. 11.13 User 1’s task delays with all BH values in simulation 11

Fig. 11.14 User 1’s task delays with all BH values in simulation 15

96 11 Class B Results and Analysis

was based on the BH values (Figs. 11.16 and 11.17). Overall, the smaller users’ tasks
were completed more quickly under Rawlsian Fair scheduling than under fair-share
(Fig. 11.18).

Fig. 11.15 User 21’s task delays with all BH values in simulation 1

Fig. 11.16 User 11’s task delays with all BH values in simulation 11

11.2 Class B Results 97

Fig. 11.17 The task delays experienced by users 1–10 with BH ¼ inf in simulation 11

Fig. 11.18 The task delays experienced by users 1–20 with BH ¼ inf in simulation 15

98 11 Class B Results and Analysis

Table 11.4 compares the performance characteristics of one of the smaller users
(user 1) to those of the larger user (user 11). With all BH values in simulation 11, the
smaller users (users 1–10) saw in an increase in performance. All of the users saw the
most improvement with BH ¼ inf (Table 11.1), with which the average performance
for users 1–10 increased by over 200%.

Table 11.5 compares a smaller user (user 1) in simulation 15 with the larger user
(user 21). As expected, user 1 saw an increase in performance with every BH value,
and all users saw performance increases with BH ¼ inf (Table 11.1), which gener-
ated an average performance increase of about 80%.

Table 11.4 Comparison of the delays experienced by user 1 and user 11 under Fair-Share (FS) and
Rawlsian Fair (RF) in simulation 11

FS
delay
(ms)

RF delay
(ms)
BH ¼ 1

RF delay
(ms)
BH ¼ 2

RF delay
(ms)
BH ¼ 3

RF delay
(ms)
BH ¼ 5

RF delay
(ms)
BH ¼ 10

RF delay
(ms)
BH ¼ inf

User 1 66,199 26,421 26,641 25,741 24,405 35,937 21,083

vs
Fairshare

N/A 151% 148% 157% 171% 84% 214%

User 11 66,186 96,221 89,441 89,841 84,661 73,319 102,701

vs
Fairshare

N/A �31% �26% �26% �22% �10% �36%

Table 11.5 Comparison of the delays experienced by user 1 and user 21 under Fair-Share (FS) and
Rawlsian Fair (RF) in simulation 15

FS
delay
(ms)

RF delay
(ms)
BH ¼ 1

RF delay
(ms)
BH ¼ 2

RF delay
(ms)
BH ¼ 3

RF delay
(ms)
BH ¼ 5

RF delay
(ms)
BH ¼ 10

RF delay
(ms)
BH ¼ inf

User 1 61,113 26,221 16,565 12,761 20,921 33,081 32,049

vs
Fairshare

N/A 133% 269% 379% 192% 85% 91%

User 21 61,784 85,017 82,517 82,837 81,361 80,477 87,801

vs
Fairshare

N/A �27% �25% �25% �24% �23% �30%

11.2 Class B Results 99

Chapter 12
Class C Results and Analysis

12.1 Class C Simulations

Class C simulations describe cases featuring a small user and one or more dispro-
portionately large users. In Simulation 4, one user submits a large workload (5000),
and another user submits a 50-task, one-time workload at a later time. As the number
of users increases—to 6 in Simulation 8, 11 in Simulation 12, and 21 in Simulation
16—the smaller user’s workload remains constant while the larger users’ workloads
are distributed to one or more other users. In Simulation 8, users 1–5 submit 1000
tasks each and 5000 together. In Simulation 12, users 1–10 submit 500 tasks each,
and user 11 submits 5000 tasks on their own. In Simulation 16, users 1–20 submit
250 tasks each.

12.2 Class C Results

As Table 12.1 shows, all class C workloads benefit from Rawlsian Fair scheduling.
Each of the Class C simulations that used Rawlsian Fair performed 9 times (~900%)
better than did those that used fair-share scheduling.

12.2.1 Simulation 4 Analysis and Results

Simulation 4 was the first scenario in which the two users did not send the same total
number of tasks. It was also the first simulation in which Rawlsian Fair performed
dramatically better (close to 900% better) than did traditional fair-share (Table 12.2).
The tasks were intentionally submitted at a time where the effects of varying of the
Bucket History (BH) sizes can be realized vis-à-vis the submission pattern.

© Springer Nature Switzerland AG 2019
A. Sedighi, M. Smith, Fair Scheduling in High Performance Computing
Environments, https://doi.org/10.1007/978-3-030-14568-2_12

101

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14568-2_12&domain=pdf

Table 12.2 compares the performance characteristics of Rawlsian Fair and fair-share
in simulation 4.

In simulation 4, user 1 sent a single batch of 5000 tasks, which were sorted into a
single bucket. User 2 submitted a one-time load of 50 tasks at PC¼ 7. As a result, the
first bucket held user 1’s 5000 tasks, and all of the buckets remained empty until
bucket 7, which held user 2’s 50 tasks. PC ¼ 7 was chosen to demonstrate how the
algorithm behaves with different BH values. At low BH values—e.g. 1, 2, 3, and 5—
the First-Come-First-Served feature of the Rawlsian Fair scheduler kicked in, exe-
cuting user 1’s tasks ahead of user 2’s. At BH values of 10 and inf, the scheduler is
capable of picking user 2’s tasks, and schedule them for execution (Fig. 12.2). The
red line traversing the figure represents the delay incurred by user 2 under fair-share.
In contrast, user 1’s tasks were completed as in the Fair-Share scenario (Fig. 12.1);
user 1’s total delay was unaffected by the scheduling decisions made by the
Rawlsian Fair scheduler.

12.2.2 Simulation 8 Results and Analysis

In Simulation 8, users 1–5 sent 1000 tasks each in one-time bursts at the beginning of
the simulation, submitting a total of 5000 tasks. User 6 sent a one-time load of
50 tasks at PC ¼ 7. Because all of the tasks for users 1–5 were submitted in the first
bucket (5000 tasks in bucket 2), the delay incurred under various BH values was

Table 12.1 Class C Submission type average delay

Class C Average delay (BH ¼ inf)

Simulation 4 Simulation 8 Simulation 12 Simulation 16

User under test User 2 User 6 User 11 User 21

Fairshare delay (ms) 32,317 32,917 33,037 33,189

Rawlsian Fair delay (ms) 3301 3301 3301 3301

Improvement 879%
~9x

897%
~9x

901%
~9x

905%
~9x

Table 12.2 Comparison of the delays generated by fair-share (FS) and Rawlsian Fair (RF) in
simulation 4

FS
delay
(ms)

RF delay
(ms)
BH ¼ 1

RF delay
(ms)
BH ¼ 2

RF delay
(ms)
BH ¼ 3

RF delay
(ms)
BH ¼ 5

RF delay
(ms)
BH ¼ 10

RF delay
(ms)
BH ¼ inf

User 1 65,501 64,301 64,301 64,301 64,301 65,501 65,501

vs
Fairshare

N/A 1.87% 1.87% 1.87% 1.87% 0.00% 0.00%

User 2 32,317 59,601 59,601 59,601 59,601 3301 3301

vs
Fairshare

N/A �45.78% �45.78% �45.78% �45.78% 879.01% 879.01%

102 12 Class C Results and Analysis

virtually the same for a single user (Fig. 12.3). With smaller BH values—such as
1, 2, 3, and 5—the FCFS feature of the Rawlsian Fair scheduler executed all of the
tasks for a given user at once before moving on to the next user, which included User

Fig. 12.1 User 1’s task delays with fair-share and all BH values in simulation 4

Fig. 12.2 User 2’s task delays with fair-share and all BH values in simulation 4

12.2 Class C Results 103

6. This is shown for users 1–5 in Fig. 12.5. The dotted red line in the figure indicates
the delays generated by the fair-share scheduling algorithm. Table 12.3 shows the
difference in performance level experienced by user 6: Rawlsian Fair with BH ¼ inf
performed about 900% better than did Fair-Share.

User 6’s 50 tasks were submitted into bucket 7 after users 1–5 had submitted their
tasks. As a result, user 6’s tasks were pending behind those of users 1–5. With BH
values of 1, 2, 3, and 5, user 6’s tasks were executed on a first-come-first-served
basis. With BH values of 10 and inf (Fig. 12.4), however, they were scheduled for
execution immediately because of their seniority. Because the tasks submitted by
users 1–5 were executed in the order in which they arrived, user 1 saw an increase in
performance, while user 5 saw a drop in performance of close to 40% (Table 12.4).
The first-come-first-served aspect of the Rawlsian Fair scheduler can be gamed when
users have identical workloads.

Fig. 12.3 Users 1’s task delay with all BH values in simulation 8

Table 12.3 Comparison of the delays generated by Fair-Share (FS) and Rawlsian Fair (RF) in
simulation 8

FS
delay
(ms)

RF delay
(ms)
BH ¼ 1

RF delay
(ms)
BH ¼ 2

RF delay
(ms)
BH ¼ 3

RF delay
(ms)
BH ¼ 5

RF delay
(ms)
BH ¼ 10

RF delay
(ms)
BH ¼ inf

User 6 32,918 59,601 59,601 59,601 59,601 3301 3301

vs
Fairshare

N/A �45% �45% �45% �45% 897% 897%

104 12 Class C Results and Analysis

Fig. 12.4 User 6’s task delay with all BH values in simulation 8

Fig. 12.5 The task delays experienced by users 1–5 with BH ¼ inf in simulation 8

12.2 Class C Results 105

12.2.3 Simulations 12 and 16 Results and Analysis

Simulation 12 featured 11 users, and Simulation 16 featured 21 users. In Simulation
12, users 1–10 each submitted 500 tasks, creating a burst of 5000 tasks, while user
11 submitted a one-time load of 50 tasks at PC ¼ 7. A similar pattern was used in
simulation 16: each of 20 users submitted 250 tasks in a one-time burst, while user
21 submitted a one-time burst of 50 tasks at PC ¼ 7. This pattern demonstrated the
effects of different BH values on task-submission profiles. All 5000 of the tasks
submitted by users 1–10 in simulation 12 and users 1–20 in simulation 16 were
submitted in bucket 2.

Figure 12.7 shows the delay incurred by one of the smaller users (user 1) in
simulation 12, and Fig. 12.6 shows the delay incurred by user 1 in simulation 16. As
in the previous simulations and as shown in Fig. 12.8, the First-Come-First-Served
(FCFS) feature of the Rawlsian Fair scheduler executed all of the tasks for a given

Fig. 12.6 User 1’s task delays with all BH values in simulation 16

Table 12.4 Comparison of the delays experienced by users 1–5 with Fair-Share (FS) and Rawlsian
Fair (RF) with BH ¼ inf in simulation 8

FS
delay
(ms)

User 1 RF
delay (ms)

User 2 RF
delay (ms)

User 3 RF
delay (ms)

User 4 RF
delay (ms)

User 5 RF
delay (ms)

BH ¼ inf 32,174 8041 20,101 32,101 44,101 56,101

vs
Fairshare

N/A 340% 76% 10% �20% �37%

106 12 Class C Results and Analysis

user at once before moving on to the other users. With small BH values of 1, 2, 3, and
5, user 11 and user 21 fell into the FCFS category as well. With BH values of 10 and
inf, however, these users’ tasks were assigned higher seniority values and executed

Fig. 12.7 User 1’s task delays with all BH values in simulation 12

Fig. 12.8 The task delays experienced by users 1–10 with BH ¼ inf in simulation 12

12.2 Class C Results 107

immediately after they were submitted. This effect is shown in Fig. 12.9 and
Fig. 12.10. Table 12.5 and Table 12.6 detail the performance gains experienced by
user 11 in simulation 12 and by user 21 in simulation 16, respectively. In both cases,

Fig. 12.9 User 21’s task delays with all BH values in simulation 16

Fig. 12.10 User 11’s task delays with all BH values in simulation 12

108 12 Class C Results and Analysis

an improvement of over 900% was seen by the smaller users with BH ¼ inf. These
improvements are similar to those observed in simulation 4 and simulation
8 (Table 12.1). The dotted red line in the figures represents the delays incurred by
the users under fair-share. In these simulations, the tasks submitted by user 11 and
user 21 were completed more quickly with higher BH values than under fair-share
scheduling. The number of users did not affect the outcomes because these two
simulations had results similar to those of Simulation 8.

Table 12.5 Comparison of the delays generated by Fair-Share (FS) and Rawlsian Fair (RF) in
simulation 12

FS
delay
(ms)

RF delay
(ms)
BH ¼ 1

RF delay
(ms)
BH ¼ 2

RF delay
(ms)
BH ¼ 3

RF delay
(ms)
BH ¼ 5

RF delay
(ms)
BH ¼ 10

RF delay
(ms)
BH ¼ inf

User 11 33,038 59,601 59,601 59,601 59,601 3301 3301

vs
fairshare

N/A �45% �45% �45% �45% 901% 901%

Table 12.6 Comparison of the delays generated by Fair-Share (FS) and Rawlsian Fair (RF) in
simulation 16

FS
delay
(ms)

RF delay
(ms)
BH ¼ 1

RF delay
(ms)
BH ¼ 2

RF delay
(ms)
BH ¼ 3

RF delay
(ms)
BH ¼ 5

RF delay
(ms)
BH ¼ 10

RF delay
(ms)
BH ¼ inf

User 21 33,190 59,601 59,601 59,601 59,601 3301 3301

vs
fairshare

N/A �44% �44% �44% �44% 905% 905%

12.2 Class C Results 109

Chapter 13
Class D Results and Simulations

13.1 Class D Simulations

Class D workloads represent cases in which one user submits a small, noise-like
workload, and one or more disproportionately larger users submit much larger
workload. In Simulation 5, one user submits a large workload with 5000 tasks,
and another user submits 1 task for every two PCs up to a total of 10 tasks. This
submission pattern continues, with 6 users in Simulation 9, 11 users in Simulation
13, and 21 users in Simulation 17. In Simulation 9, users 1–5 submit 1000 tasks each
for a total of 5000 tasks. In Simulation 13, users 1–10 submit 500 tasks each, while
user 11 submits 5000 tasks on their own. In Simulation 17, users 1–20 submit
250 tasks each.

13.2 Class D Results

As Table 13.1 shows, all class D workloads benefit from Rawlsian Fair scheduling.
All of the simulations that used Rawlsian Fair performed 17 times (~170%) better
than did those that used Fair-Share scheduling.

13.2.1 Simulation 5 Analysis and Results

In Simulation 5, two users had severely disproportionate task-submission profiles.
One user submitted a one-time burst of 5000 tasks, while the other user submitted
one task every two buckets up to a total of 10 tasks. Figure 13.1 shows the task delay
experienced by user 2 with every BH parameter and with fair-share scheduling. User
2 sees as much as 17� (>1600%) increase in performance (Table 13.2).

© Springer Nature Switzerland AG 2019
A. Sedighi, M. Smith, Fair Scheduling in High Performance Computing
Environments, https://doi.org/10.1007/978-3-030-14568-2_13

111

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14568-2_13&domain=pdf

The red line traversing the top of Fig. 13.1 indicates the task delay experienced
with fair-share, which was considerably higher than the task delay experienced with
Rawlsian Fair with a bucket history (BH) of infinity (inf). The effects of the FCFS

Table 13.1 Class D Submission type average delay

Class D Average delay (BH ¼ inf)

Simulation 5 Simulation 9 Simulation 13 Simulation 17

User under test User 2 User 6 User 11 User 21

Fairshare delay (ms) 53,701 54,582 54,582 54,582

Rawlsian Fair delay (ms) 3141 3141 3141 3141

Improvement 1610%
~17�

1638%
~17�

1638%
~17�

1638%
~17�

Fig. 13.1 User 2’s task delays with fair-share and all BH values in simulation 5

Table 13.2 Comparison of the delays generated by fair-share (FS) and Rawlsian Fair (RF) in
simulation 5

FS
delay
(ms)

RF delay
(ms)
BH ¼ 1

RF delay
(ms)
BH ¼ 2

RF delay
(ms)
BH ¼ 3

RF delay
(ms)
BH ¼ 5

RF delay
(ms)
BH ¼ 10

RF delay
(ms)
BH ¼ inf

User 1 39,085 38,796 38,796 38,809 38,822 38,845 38,897

vs
fairshare

N/A 1% 1% 1% 1% 1% 0%

User 2 53,701 55,741 55,741 49,081 42,621 30,301 3141

vs
fairshare

N/A �4% �4% 9% 26% 77% 1610%

112 13 Class D Results and Simulations

aspects of the Rawlsian Fair scheduler vis-à-vis bucket history were explained
previously and are circled in Fig. 13.1. Simulation 5 produced the lowest possible
delay for any single task for the dSim simulator. It is important to discuss in more
detail what produced this task-delay value.

User 2’s first task was submitted at timestamp 2005, according to Table 13.3, and
its results came back at timestamp 6001. The delay was thus approximately 4000 ms,
or 4 PC ticks. The cause of this difference was that while within a PC, that bucket is
not ready to be scheduled (Fig. 13.2). A given bucket opens at the beginning of a PC
and closes at the end of that PC. For this reason, an extra 1000 ms, or 1 PC, was
added to the delay.

Table 13.3 Task-Submission timing in simulation 5

Task number User 1 submission time (ms) User 2 submission time (ms)

1 2000a (PC ¼ 2) 2005 (PC ¼ 2)

2 2000 (PC ¼ 2) 4005 (PC ¼ 4)

3 2000 (PC ¼ 2) 6005 (PC ¼ 6)

4 2000 (PC ¼ 2) 8005 (PC ¼ 8)

5 2000 (PC ¼ 2) 10,005 (PC ¼ 10)

6 2000 (PC ¼ 2) 12,005 (PC ¼ 12)

7 2000 (PC ¼ 2) 14,005 (PC ¼ 14)

8 2000 (PC ¼ 2) 16,005 (PC ¼ 16)

9 2000 (PC ¼ 2) 18,005 (PC ¼ 18)

10 2000 (PC ¼ 2) 20,005 (PC ¼ 20)

. . .

5000 2000 (PC ¼ 2) N/A
aAll simulations start at 2000 ms, or PC ¼ 2. The first 2000 ms, or PC ¼ 1, is used to set up the
environment and make sure that everything is ready

Fig. 13.2 Depiction of how delay in measured in dSim

13.2 Class D Results 113

As is shown in Fig. 13.3, in all scenarios, user 1’s performance was unaffected by
the scheduling decisions. The task delay that user 1 experienced with each BH value
matched the task delay that they experienced under fair-share.

13.2.1.1 Algorithm-Implementation Correctness

The correctness of the implementation is apparent when one considers the results of
Simulation 5 with the following parameters for the two users:

L1 x; PCð Þ ¼ max 5000 � L0 x; PCð Þ cos π � PCð Þ; 0f g,
Xn

PC¼1

L1 PCð Þ ¼ 5000 ð13:1Þ

L2 x; PCð Þ ¼ max L0 x; PCð Þ cos π � PCð Þ; 0f g,
Xn

PC¼1

L2 PCð Þ ¼ 10 ð13:2Þ

The load for user 1—or L1(x, PC)—was 5000 tasks, all of which were submitted
at the start of the simulation (eq. 13.1). In contrast, user 2 submitted one task every
two PCs up to a total of 10 tasks (eq. 13.2). Table 13.3 further illustrates the task-
submission timing in Simulation 5.

User 1 submitted all of their tasks at t ¼ 2000 ms, filling the queue with 5000
tasks in a single PC tick (PC¼ 2). At t¼ 2005 ms, after all of user 1’s tasks had been
submitted, user 2 submitted their first task. After that, user 2 submitted one task

Fig. 13.3 Task delay for user 1 for Fairshare and all BH values for simulation 5

114 13 Class D Results and Simulations

every two PCs. In bucket 2, there were 5001 tasks pending execution. In bucket
3, there were no tasks. Between buckets 4 and 20, every other bucket had one task
pending execution. The scheduler began accepting tasks at PC ¼ 2.

The dSim simulator is capable of fine-grained timing, and this scenario described
a case in which a small user was forced to wait for a larger user; a circumstance
commonly known as “the head of the line blocking problem” (Karol et al. 1987).
This simulation was conducted with the fair-share scheduling algorithm and the
Rawlsian Fair scheduling algorithm with seven different BH sizes.

Different FUD parameters suffered when the BH values were extreme: at BH¼ 1
and at BH ¼ inf. At BH ¼ 1, dynamicity suffered because the scheduler was unable
to process additional tasks until the current bucket had been completed. At BH¼ inf,
fairness suffered because tasks with the same seniority value were executed in a
FCFS fashion. In cases in which the users had the same number of tasks pending,
only the first user benefited.

13.2.1.2 Expectation for BH ¼ 1 and BH ¼ 2

When the bucket history was set to 1, the scheduler made its decisions using the
parameters of the current bucket. The scheduler began taking tasks from the queue at
PC ¼ 2 (the 2nd bucket), and user 2’s first task (at PC ¼ 2) was executed quickly.
User 1’s 5000 tasks were also in bucket 2, however, since they were submitted at
PC ¼ 2. Because the scheduler was programmed to finish each bucket before
moving on to the next, we see that subsequently, user 1’s tasks get executed. Once
all of user 1’s tasks were completed, the scheduler moved on to the remaining
buckets. There was no difference at BH ¼ 2 because user 2 did not submit a task
at PC ¼ 3. The next tasks was submitted at PC ¼ 4 Table 13.4.

Table 13.4 Task delay for Rawlsian Fair with BH ¼ 1 and BH ¼ 2

Client 2 – task
number

Task arrival time
(ms)

Task delay time – BH¼ 1
(ms)

Task delay time – BH¼ 2
(ms)

1 2005 (PC ¼ 2) 3001 3001

2 4005 (PC ¼ 4) 53,601 53,601

3 6005 (PC ¼ 6) 55,601 55,601

4 8005 (PC ¼ 8) 57,601 57,601

5 10,005 (PC ¼ 10) 59,601 59,601

6 12,005 (PC ¼ 12) 61,601 61,601

7 14,005 (PC ¼ 14) 63,601 63,601

8 16,005 (PC ¼ 16) 65,601 65,601

9 18,005 (PC ¼ 18) 67,601 67,601

10 20,005 (PC ¼ 20) 69,601 69,601

13.2 Class D Results 115

13.2.1.3 Expectations for BH ¼ 3, BH ¼ 5, and BH ¼ 10

When the bucket history was set at 3, the scheduler made its decisions using the
parameters of the current bucket and of the previous two buckets. For this reason,
user 2’s first and second tasks were executed quickly. Because the scheduler was
programmed to finish one bucket before moving on to the next, we see that
subsequently, user 1’s tasks get executed. Once all of user 1’s tasks were completed,
the scheduler moved on to the remaining buckets.

The same pattern was observed with BH ¼ 5; 3 of the tasks were completed
quickly. User 1’s tasks followed, after which the scheduler took tasks from the
remaining buckets. With BH ¼ 10, 5 of the tasks were completed quickly
Table 13.5.

13.2.1.4 Expectation for BH ¼ inf

When the bucket history was turned off (i.e. set to infinity), the scheduler made its
decisions using the parameters from the beginning of the simulation. In making its
decisions, it considered the entire history of submissions and pending tasks. As was
expected, user 2’s tasks were completed quickly, and user 1’s tasks were completed
thereafter Table 13.6.

13.2.2 Simulation 9 Results and Analysis

In simulation 9, as in simulation 5, one user had a task-submission profile that was
severely disproportionate to those of the other 5 users. Users 1–5 each submitted a
one-time burst of 1000 tasks (for a total of 5000 tasks), while user 6 submitted a
single task every other bucket up to a total of 10 tasks (Table 13.7).

Table 13.5 Task delay for Rawlsian Fair with BH ¼ 3, BH ¼ 5, and BH ¼ 10

Client 2 –

task number
Task arrival time
(ms)

Task delay time –
BH ¼ 3 (ms)

Task delay time –
BH ¼ 5 (ms)

Task delay time –
BH ¼ 10 (ms)

1 2005 (PC ¼ 2) 3001 3001 3001

2 4005 (PC ¼ 4) 3001 3001 3001

3 6005 (PC ¼ 6) 53,601 3001 3001

4 8005 (PC ¼ 8) 55,601 53,601 3001

5 10,005 (PC ¼ 10) 57,601 55,601 3001

6 12,005 (PC ¼ 12) 59,601 57,601 53,601

7 14,005 (PC ¼ 14) 61,601 59,601 55,601

8 16,005 (PC ¼ 16) 63,601 61,601 57,601

9 18,005 (PC ¼ 18) 65,601 63,601 59,601

10 20,005 (PC ¼ 20) 67,601 65,601 61,601

116 13 Class D Results and Simulations

The red line traversing the top of Fig. 13.6 indicates the task delay under fair-
share, which was considerably higher than that under Rawlsian Fair with a bucket
history (BH) of infinity (inf). User 6 experienced performance levels with the
Rawlsian Fair scheduler that were up to 17 times better than the performance level
they experienced with fair-share (Table 13.8). Varying the bucket size affects how
many of the tasks end up getting executed with higher seniority. The same execution
pattern was seen in Simulation 5 (13.2.1).

Table 13.6 Task delay for Rawlsian Fair with BH ¼ inf

Client 2 – task number Task arrival time (ms) Task delay time – BH ¼ inf (ms)

1 2005 (PC ¼ 2) 3001

2 4005 (PC ¼ 4) 3001

3 6005 (PC ¼ 6) 3001

4 8005 (PC ¼ 8) 3001

5 10,005 (PC ¼ 10) 3001

6 12,005 (PC ¼ 12) 3001

7 14,005 (PC ¼ 14) 3001

8 16,005 (PC ¼ 16) 3001

9 18,005 (PC ¼ 18) 3101

10 20,005 (PC ¼ 20) 3301

Table 13.7 Task submission profiles in simulation 9

Task count

Submission time (ms) User 1 User 2 User 3 User 4 User 5 User 6

2000 1000 1000 1000 1000 1000 0

3000 0 0 0 0 0 1

4000 0 0 0 0 0 0

5000 0 0 0 0 0 1

6000 0 0 0 0 0 0

7000 0 0 0 0 0 1

8000 0 0 0 0 0 0

9000 0 0 0 0 0 1

10,000 0 0 0 0 0 0

11,000 0 0 0 0 0 1

12,000 0 0 0 0 0 0

13,000 0 0 0 0 0 1

14,000 0 0 0 0 0 0

15,000 0 0 0 0 0 1

16,000 0 0 0 0 0 0

17,000 0 0 0 0 0 1

18,000 0 0 0 0 0 0

19,000 0 0 0 0 0 1

20,000 0 0 0 0 0 0

21,000 0 0 0 0 0 1

13.2 Class D Results 117

The effects of the FCFS aspect of the Rawlsian Fair scheduler vis-à-vis bucket
history are shown in Fig. 13.5.

While in simulation 5 the task delay for the largest user was unaffected by the
smaller user and the delay matched the Fair-Share execution pattern, in simulation
9, each user’s task execution was affected by Rawlsian Fair’s FCFS methodology.
While users 1 and 2 faired better (Fig. 13.5), this came at a cost to users 4 and 5. User
1 saw an increase in performance, while user 5 saw a drop in performance of close to
40% (Table 13.9). For each user, however, changes in the bucket size did not make a
difference (Fig. 13.4) because of the large discrepancy between the submission
profiles of the larger users (users 1–5) and user 6.

13.2.3 Simulations 13 and 17 Results and Analysis

In simulations 13 and 17, one user’s task-submission profile was severely dispro-
portionate to those of many other users. In simulation 13, 10 users each submitted
500 tasks, while one user (user 11) submitted a single task every two PCs up to a
total of 10 tasks. A similar submission pattern occurred in simulation 17, but the
number of users was increased to 20 and the tasks submitted per user was halved to
250. Because the total number of tasks per type of user (large or small) was the same,
it was expected that the Rawlsian Fair scheduler would pick the smaller user out of
the crowd in both cases.

Table 13.10 shows the task submission profiles in these two simulations. The left
column for each simulation shows the per-user submissions.

Table 13.8 Comparison of the delays generated by Fair-Share (FS) and Rawlsian Fair (RF) in
simulation 9

FS
delay
(ms)

RF delay
(ms)
BH ¼ 1

RF delay
(ms)
BH ¼ 2

RF delay
(ms)
BH ¼ 3

RF delay
(ms)
BH ¼ 5

RF delay
(ms)
BH ¼ 10

RF delay
(ms)
BH ¼ inf

User 6 54,582 55,741 55,741 49,081 42,621 30,301 3141

vs
Fairshare

N/A �2% �2% 11% 28% 80% 1638%

Table 13.9 Comparison of the delays experienced by users 1–5 with Fair-Share (FS) and Rawlsian
Fair (RF) with BH ¼ inf in simulation 9

FS
delay
(ms)

User 1 RF
delay (ms)

User 2 RF
delay (ms)

User 3 RF
delay (ms)

User 4 RF
delay (ms)

User 5 RF
delay (ms)

BH ¼ inf 38,939 11,203 27,821 39,821 51,821 63,821

vs
Fairshare

N/A 248% 40% �2% �25% �39%

118 13 Class D Results and Simulations

The results of these two simulations are identical, as is shown by Fig. 13.7 and
Fig. 13.8. Table 13.11 details the performance improvements experienced by the
least-benefitted user (i.e. the smallest user) in both simulations. The identical results
obtained in both simulations demonstrate the adaptability of the Rawlsian Fair

Fig. 13.5 The task delay experienced by users 1–5 with BH ¼ inf in simulation 9

Fig. 13.4 User 1’s task delay with all BH values in simulation 9

13.2 Class D Results 119

Table 13.10 Task submission profiles for simulations 13 and 17

Submission time (ms)

Task count simulation 13 Task count simulation 17

Users 1–10 User 11 Users 1–20 User 21

2000 500 0 250 0

3000 0 1 0 1

4000 0 0 0 0

5000 0 1 0 1

6000 0 0 0 0

7000 0 1 0 1

8000 0 0 0 0

9000 0 1 0 1

10,000 0 0 0 0

11,000 0 1 0 1

12,000 0 0 0 0

13,000 0 1 0 1

14,000 0 0 0 0

15,000 0 1 0 1

16,000 0 0 0 0

17,000 0 1 0 1

18,000 0 0 0 0

19,000 0 1 0 1

20,000 0 0 0 0

21,000 0 1 0 1

Fig. 13.6 User 6’s task delay with fair-share and all BH values in simulation 9

120 13 Class D Results and Simulations

algorithm in detecting the desired user to promote. It can pick the smaller user
regardless of the total number of users submitting tasks to the scheduler. The
behavior matches the results of simulation 9 (Sect. 13.2.2). The dotted red line
traversing the top is the task delay generated by the fair-share scheduling mecha-
nism. The First-Come-First-Served aspect of the Rawlsian Fair scheduling algorithm

Fig. 13.8 User 11’s task delays with Fair-Share and all BH values in simulation 13

Fig. 13.7 User 21’s task delay with Fair–Share and all BH values in simulation 17

13.2 Class D Results 121

executed the tasks submitted by users 1–10 in simulation 13 and users 1–20 in
Simulation 17 in the order in which they were submitted (Fig. 13.9). As was the case
with other simulations, some users were better off and some were worse off than they
were under fair-share scheduling.

Fig. 13.9 The task delays experienced by users 1–20 with BH ¼ inf in simulation 17

Table 13.11 Comparison of the delays generated by Fair-Share (FS) and Rawlsian Fair (RF) in
simulations 13 and 17

FS
delay
(ms)

RF delay
(ms)
BH ¼ 1

RF delay
(ms)
BH ¼ 2

RF delay
(ms)
BH ¼ 3

RF delay
(ms)
BH ¼ 5

RF delay
(ms)
BH ¼ 10

RF delay
(ms)
BH ¼ inf

User 11 54,582 55,741 55,741 49,081 42,621 30,301 3141

vs
Fairshare

N/A �2% �2% 11% 28% 80% 1638%

User 21 54,582 55,741 55,741 49,081 42,621 30,301 3141

vs
Fairshare

N/A �2% �2% 11% 28% 80% 1638%

122 13 Class D Results and Simulations

Chapter 14
Conclusion

Our work introduced a new scheduler—Rawlsian Fair—which employs Rawls’s
theory of fairness in scheduling malleable tasks in High Performance Computing
environments. This scheduler assigns precedence to the least-well-off user via a new
parameter: seniority. Rawlsian Fair performed up to 17� better than did traditional
fair-share in scheduling scenarios featuring users with disproportionate task-
submission profiles.

The Value-at-Risk problem which is often used by financial services companies
to determine the risk associated with a trade represents a typical problem that can
benefit from the proposed scheduling methodology. VaR uses the Monte Carlo
method, which can be parallelized in HPC environments. Because fair-share sched-
uling demonstrates shortcomings in handling such problems, a new method that
employs the Rawlsian definition of fairness is proposed. This method uses seniority
(a new optimization parameter that indicates the time-in-system of each task) to
distribute resources in a way that minimizes temporal starvation.

Workloads of four different classes were considered:

– Class A – Complementary Intermittent Workloads. In this class of workload, two
users submit intermediate workloads whose distributions complement each other.

– Class B – Steady vs. Intermittent Workloads. In this class of workload, a long-
running workload competes with an intermittent workload.

– Class C – Large vs. Small, Transient Workloads. In this type of workload, a large
workload competes with a much smaller workload.

– Class D – Large vs. Noise-Like Workloads. In this type of workload, one user’s
workload is so small relative to another, larger workload that it appears as noise.

These workloads resemble real-world scenarios in which users compete for
resources in a shared computing environment. To determine the feasibility of a
multi-criteria scheduler vis-à-vis the Rawlsian fairness model, a new simulator—
dSim—was built and used to simulate 17 scenarios. These 17 scenarios varied in a
number of dimensions, including the number of users (from 2 to 21) and the Bucket

© Springer Nature Switzerland AG 2019
A. Sedighi, M. Smith, Fair Scheduling in High Performance Computing
Environments, https://doi.org/10.1007/978-3-030-14568-2_14

123

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14568-2_14&domain=pdf

History. Each simulation was run with 6 different Bucket History (BH) values—1,
2, 3, 5, 10, and infinity—and the results were compared to those achieved with
traditional fair-share. Over 600,000 data points were collected. The BH value of
infinity (inf) proved to be the most beneficial across all simulations. One concern in
using a BH value of infinity, however, is that while previous task submissions are
never forgotten, submission history may sometimes be irrelevant to current sched-
uling decisions.

In the Class C and Class D simulations, the Rawlsian Fair scheduler performed
between 900% and 1700% (~9� and ~17�) better than traditional fair-share sched-
uling methods. While users in these types of scenarios have historically suffered
under the utilitarian approach to scheduling employed by fair-share schedulers,
Rawlsian Fair was shown to reduce the temporary starvation experienced by certain
users.

In Class A and class B scenarios, users have similar workloads. In such scenarios
with two users, Rawlsian Fair behaves very similarly to fair-share. This indicates that
in its worst-case scenarios, Rawlsian Fair performs roughly as well as fair-share.
Even though the overall load is the same between simulations, as the number of tasks
per user decreases, the Rawlsian Fair scheduler is able to pick users that would have
been delayed under fair-share scheduling. On average, class A and B workloads saw
an increase in performance of about 80%.

When the FUD (Fairness, Utilization, and Dynamicity) conjecture is considered,
increases in fairness come at the cost of either utilization or dynamicity. The
decrease in utilization results from the bucketing scheme employed by the Rawlsian
Fair scheduler. Because the scheduler completes each bucket before moving on to
the next bucket, with lower BH values, utilization may suffer because the number of
tasks in a given bucket may not be divisible by the number of available resources.
With a BH of infinity, in contrast, dynamicity suffers because the scheduler con-
siders the complete history before making a decision. This may reduce dynamicity
when prior history is irrelevant to the decision at hand.

The next step in this line of research is to redesign the scheduler so that BH is
dynamic and can be adjusted based on usage and fairness metrics. A random
selection method plus using the design methods of BH can provide an alternative
to the FCFS limitations of the Rawlsian Fair scheduler, and a data point for
comparison to both Rawlsian and traditional fairshare, In addition, dSim can be
expanded to enable the graphical representation of real-time information on the
performance characteristics of the scheduler.

124 14 Conclusion

References

J. L. Albin, J. A. Lorenzo, J. C. Cabaleiro, T. F. Pena, F. F. Rivera, Simulation of parallel
applications in gridSim. Ibergrid: 1st Iberian Grid Infrastructure Conference Proceedings,
208–219 (2007)

C. Alexander, Volatility and correlation: Measurement, models and applications. Risk. Manag.
Anal.1, 125–171 (1998)

E. Angel, E. Bampis, F. Pascual, Truthful algorithms for scheduling selfish tasks on parallel
machines. Theor. Comput. Sci.369(1), 157–168 (2006)

M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, et al., A view of cloud
computing. Commun. ACM.53(4), 50–58 (2010)

M.J. Bach, The design of the UNIX operating system (Prentice-Hall, Inc, Upper Saddle River, New
Jersey, 1986a)

M.J. Bach, The design of the UNIX operating system, vol 5 (Prentice-Hall, Englewood Cliffs,
1986b)

K.R. Baker, D. Trietsch, Principles of sequencing and scheduling (Wiley, New Jersey, 2013)
W.H. Bell, D.G. Cameron, A.P. Millar, L. Capozza, K. Stockinger, F. Zini, Optorsim: A grid

simulator for studying dynamic data replication strategies. Int. J. High. Perform. Comput.
Appl.17(4), 403–416 (2003)

J. Bentham, An introduction to the principles of morals and legislation (Clarendon Press, Oxford,
1879)

L.v. Bertalanffy, General system theory; foundations, development, applications (G. Braziller,
New York, 1969)

D. Bertsimas, V.F. Farias, N. Trichakis, The price of fairness. Oper. Res.59(1), 17–31 (2011)
P. Brucker, B. Jurisch, B. Sievers, A branch and bound algorithm for the job-shop scheduling

problem. Discret. Appl. Math.49(1), 107–127 (1994)
P. Brucker, S. Knust, Complex scheduling, 2nd edn. (Springer, Heidelberg, 2012)
H. V. Bui, Fairshare scheduling-a case study, University of Arkansas, (2008)
R. Buyya, M. Murshed, GridSim: A toolkit for the modeling and simulation of distributed resource

management and scheduling for Grid computing. Concurrency. Comput. Pract. Experience.14
(13–15), 1175–1220 (2002). https://doi.org/10.1002/Cpe.710

J. Cao, S. A. Jarvis, S. Saini, G. R. Nudd, Gridflow: Workflow management for grid computing.
Paper presented at the Cluster Computing and the Grid, 2003. Proceedings. CCGrid 2003. 3rd
IEEE/ACM International Symposium on

A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, S. Tuecke, The data grid: Towards an
architecture for the distributed management and analysis of large scientific datasets. J. Netw.
Comput. Appl.23(3), 187–200 (2000)

© Springer Nature Switzerland AG 2019
A. Sedighi, M. Smith, Fair Scheduling in High Performance Computing
Environments, https://doi.org/10.1007/978-3-030-14568-2

125

https://doi.org/10.1002/Cpe.710
https://doi.org/10.1007/978-3-030-14568-2

J. Chong, K. Keutzer, M.F. Dixon, Acceleration of market value-at-risk estimation. Available at
SSRN1576402 (2009)

G. Christodoulou, L. Gourves, F. Pascual. Scheduling selfish tasks: about the performance of
truthful algorithms Computing and Combinatorics, (Springer, 2007), pp. 187–197

B. Committee, Basel III: A global regulatory framework for more resilient banks and banking
systems (Basel Committee on Banking Supervision, Basel, 2010)

R.W. Conway, W.L. Maxwell, L.W. Miller, Theory of scheduling (Courier Corporation, NewYork,
2012)

A. Demirguc-Kunt, E. Detragiache, O. Merrouche, Bank capital: Lessons from the financial crisis.
J. Money. Credit. Bank.45(6), 1147–1164 (2013)

F. Dong, S. G. Akl, Scheduling algorithms for grid computing: State of the art and open problems:
Technical report (2006)

F.Y. Edgeworth, The hedonical calculus. Mind4(15), 394–408 (1879)
M. N. Baily, D. J. Elliott, The US financial and economic crisis: Where Does It Stand andWhere Do

We Go From Here?: Business and Public Policy at BROOKINGS (2009).
D.H. Epema, J. de Jongh, Proportional-share scheduling in single-server and multiple-server

computing systems. ACM SIGMETRICS Perform. Eval. Rev.27(3), 7–10 (1999)
D. Feitelson, L. Rudolph, U. Schwiegelshohn, K. Sevcik, P. Wong, Theory and practice in parallel

job scheduling, in Job scheduling strategies for parallel processing, ed. by D. Feitelson,
L. Rudolph, vol. 1291, (Springer, Heidelberg, 1997), pp. 1–34

D. Ferraioli, C. Ventre, On the price of anarchy of restricted job scheduling games. Paper presented
at the ICTCS (2009)

I. Foster, C. Kesselman, The Grid 2: Blueprint for a new computing infrastructure: (Elsevier 2003)
N. Georgescu-Roegen, Utility. Int. Enc. Soc. Sci.16(1), 236–267 (1968)
P. Glasserman, P. Heidelberger, P. Shahabuddin, Efficient monte carlo methods for value-at-risk,

(2010)
S. Gleeson, International regulation of banking: Basel II, capital and risk requirements (Oxford

University Press Catalogue, Oxford, 2010)
H. Hakenes, I. Schnabel, Bank size and risk-taking under Basel II. J. Bank. Financ.35(6),

1436–1449 (2011)
M. Harchol-Balter, Performance modeling and design of computer systems: Queueing theory in

action (Cambridge University Press, Cambridge, 2013)
G.J. Henry, The unix system: The fair share scheduler. AT&T Bell. Labs. Tech. J.63(8), 1845–1857

(1984)
H. Hoogeveen, Multicriteria scheduling. Eur. J. Oper. Res.167(3), 592–623 (2005)
H. Hussain, S.U.R. Malik, A. Hameed, S.U. Khan, G. Bickler, N. Min-Allah, et al., A survey on

resource allocation in high performance distributed computing systems. Parallel. Comput.39
(11), 709–736 (2013)

H. A. James, Scheduling in metacomputing systems Citeseer (1999)
J. Janyška, M. Modugno, R. Vitolo, Semi--vector spaces and units of measurement. arXiv preprint

arXiv:0710.1313, (2007)
P. Jorion, Value at risk (McGraw-Hill, New York, 1997)
M. Karol, M. Hluchyj, S. Morgan, Input versus output queueing on a space-division packet switch.

IEEE Trans. Commun.35(12), 1347–1356 (1987)
J. Kay, P. Lauder, A fair share scheduler. Commun. ACM.31(1), 44–55 (1988)
S. D. Kleban, S. H. Clearwater, Fair share on high performance computing systems: What does fair

really mean? Paper presented at the Cluster Computing and the Grid, 2003. Proceedings.
CCGrid 2003. 3rd IEEE/ACM International Symposium on (2003)

D. Klusacek, Alea 3.0 web site, 11/17/2014., from http://www.fi.muni.cz/~xklusac/alea/
D. Klusáček, H. Rudová, Alea 2: Job scheduling simulator. Paper presented at the Proceedings of

the 3rd International ICST Conference on Simulation Tools and Techniques (2010)

126 References

http://www.fi.muni.cz/~xklusac/alea/

R. B. Krishnamurthy, I. Chin, A. Chinnapatlolla, Exploration of parallelization frameworks for
computational finance. Paper presented at the Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA) (2012)

R. Layard, Income and happiness: Rethinking economic policy, Lecture (2003)
R. D. Luce, H. Raiffa, Games and decisions: Introduction and critical survey. (Courier Corporation

2012)
S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, A. Ghalsasi, Cloud computing—The business

perspective. Decis. Support. Syst.51(1), 176–189 (2011)
R. McGill, Technology management in financial services: (Springer, 2008)
A.J. McNeil, R. Frey, P. Embrechts, Quantitative risk management: Concepts, techniques and tools

(Princeton university press, Princeton, New Jersey, 2015)
J. F. Nash Jr, The bargaining problem. Econometrica: Journal of the Econometric Society, 155-162

(1950)
J. Norstad, An introduction to utility theory (1999). Unpublished manuscript athttp://homepage.

mac.com/j.norstad
V. Pareto, Manuale di economia politica con una introduzione alla scienza sociale (manual of

political economy) (Societa Editrice Libraria, Milano, 1919)
R. G. Parker, Deterministic scheduling theory. (CRC Press, 1996)
C. Potts, L.N. van Wassenhove, Single machine tardiness sequencing heuristics. IIE Trans.23(4),

346–354 (1991)
J. Rawls, Justice as fairness: A restatement (Harvard University Press, Cambridge, 2001)
J. Rawls, A theory of justice. (Harvard university press, 2009)
D. Read, Utility theory from jeremy bentham to daniel kahneman (2004)
C. Reyes, K. Walters, W. Yang, Monte carlo within a day. Paper presented at the quantitative

analysis in financial markets: Collected papers of the New York university mathematical finance
seminar (2001)

Rockwell Automation, (2016), 10/26/2016, from https://www.arenasimulation.com/
G. Sabin, G. Kochhar, P. Sadayappan, (2004 15–18 Aug. 2004). Job fairness in non-preemptive job

scheduling. Paper presented at the Parallel processing, 2004. ICPP 2004. International Confer-
ence on

A. Sedighi, Y. Deng, P. Zhang, Fariness of task scheduling in high performance computing
environments. Scalable Computing: Pract. Experience15(3), 273–285 (2014). https://doi.org/
10.12694/scpe.v15i3.1020

A. Sedighi, M. Smith, Y, Deng, (2017a, November 3rd–5th 2017). An evaluation of optimizing for
FUD in scheduling for shared computing environments. Paper presented at the 2nd IEEE
International Conference on Smart Cloud (SmartCloud 2017), New York

A. Sedighi, M. Smith, Y. Deng, FUD – Balancing scheduling parameters in shared computing
environments. Paper presented at the 4th IEEE International Conference on Cyber Security and
Cloud Computing (IEEE CSCloud 2017) (New York 2017b)

R.A. Shiner, Aristotle’s theory of equity. Loy. LAL Rev.27, 1245 (1993)
S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, L. Peterson, Container-based operating system

virtualization: a scalable, high-performance alternative to hypervisors. Paper presented at the
ACM SIGOPS operating systems review (2007)

R. Sugden, Rational choice: A survey of contributions from economics and philosophy. Econ. J.101
(407), 751–785 (1991)

V. T’kindt, J.-C. Billaut,Multicriteria scheduling: theory, models and algorithms (Springer Science
& Business Media, Berlin, Heidelberg, 2006)

A. Takefusa, S. Matsuoka, O. Tatebe, Y. Morita, Performance analysis of scheduling and replica-
tion algorithms on grid datafarm architecture for high-energy physics applications. Paper
presented at the High Performance Distributed Computing, 2003. Proceedings 12th IEEE
International Symposium on (2003)

D.K. Tarullo, Banking on Basel: The future of international financial regulation (Peterson Institute,
Washington, D.C., 2008)

References 127

http://homepage.mac.com/j.norstad
http://homepage.mac.com/j.norstad
https://www.arenasimulation.com/
https://doi.org/10.12694/scpe.v15i3.1020
https://doi.org/10.12694/scpe.v15i3.1020

F. W. Taylor The principles of scientific management (1911)
S. Tezuka, H. Murata, S. Tanaka, S. Yumae, Monte Carlo grid for financial risk management.

Futur. Gener. Comput. Syst.21(5), 811–821 (2005)
J. Von Neumann, O. Morgenstern, Theory of games and economic behavior (Princeton university

press, Princeton, 2007)
C. A. Waldspurger, W. E. Weihl, Lottery scheduling – flexible proportional-share resource man-

agement. Operating Systems Design and Implementation (Osdi), 1–11 (1994)
C. A. Waldspurger, W. E. Weihl, Stride scheduling: Deterministic proportional share resource

management: Massachusetts institute of technology. Laboratory for computer science (1995)
M.R. Weisbord, Productive workplaces revisited: Dignity, meaning, and community in the 21st

century (Wiley, Hoboken, 2004)
L.H. White, How did we get into this financial mess? (CATO Institue Briefing Papers, Washington,

D.C., 2008)
L. H. White, Housing finance and the 2008 financial crisis. CATO Institute (2009)
A. Wierman, Fairness and scheduling in single server queues. Surv. Oper. Res. Manag. Sci.16(1),

39–48 (2011)
H.P. Young, Equity: in theory and practice (Princeton University Press, Princeton, 1995)

128 References

Index

A
Alea, 45, 47
Algorithmic trading, 7
Algorithm-implementation correctness,

114–115
Algo-trading, 7
Alpha (α), 35, 36, 40–43
Application Programming Interface (API), 49,

56–59
Aristotle’s equity principle, 24
Assumptions, 33, 35, 40, 51, 60–62
Average delay, 72–73, 86, 102, 112

B
BASEL, 1
Bentham, J., 15, 26, 27
BH ¼1, 64, 75, 76, 83, 84, 87–89, 93, 99, 102,

104, 109, 115, 118, 122
BH ¼2, 64, 65, 75, 76, 83, 84, 88, 91, 93, 99,

102, 104, 109, 112, 115, 118, 122
BH ¼3, 75, 76, 79, 83, 84, 88, 91, 93, 94, 99,

102, 104, 109, 112, 116, 118, 122
BH¼5, 75, 76, 83, 84, 88, 91, 93, 99, 102, 104,

109, 112, 116, 118, 122
BH ¼10, 75, 76, 83, 84, 88, 91, 93, 102, 104,

109, 116, 118, 122
BH ¼inf, 65–67, 72, 73, 75–77, 80, 82–84,

86–88, 90–93, 98, 99, 102, 104–107,
109, 112, 115, 117–119, 122

Bucket, 45, 47, 63–66, 69, 73, 74, 75, 78, 79,
93, 94, 102, 104, 106, 111, 113,
115–118, 123, 124

Bucket-history (BH), 61, 63–69, 72–84, 86–94,
96–99, 101–109, 111, 112–122, 124

Bucket size, 45, 117, 118
Burst, 2, 9, 12, 64, 102, 106, 111, 116

C
Calculating seniority, 40–44, 65
Capacity loss, 26
Cardinal utility, 27
Case 1, 51–55
Case 2, 55–57
Case 3, 56, 58
Case 4, 56–58
Case 5, 57–59
Case 6, 57–59
Case 7, 58, 59
Case 8, 58, 59
Case 9, 59
Case 10, 59
Case 11, 59
Case 12, 59
Case 13, 59
Case 14, 59
Case 15, 59
Case 16, 59
Case 17, 59
Class A, 3, 9, 61, 64, 69, 123, 124

results, 71–84
simulation, 61, 71

Class B, 3, 9, 62, 64, 69, 123, 124
results, 85–99
simulation, 62, 85

Class C, 4, 9, 48, 62, 64, 69, 123, 124
results, 101–109
simulation, 62, 101

© Springer Nature Switzerland AG 2019
A. Sedighi, M. Smith, Fair Scheduling in High Performance Computing
Environments, https://doi.org/10.1007/978-3-030-14568-2

129

https://doi.org/10.1007/978-3-030-14568-2

Class D, 4, 9, 62, 64, 69, 123, 124
results, 111–122
simulation, 62, 111, 124

Cloud computing, 19, 20
Completion time, 32, 45, 50
Configuration, 1, 47, 50, 55–59, 61–62
Correctness, 114–115

D
Decision utility, 27
Determining seniority, 34–37
2-Dimensional model, 29–31, 33, 37
3-Dimensional model, 32–34, 37
dSim, 15, 39, 45–50, 63, 69, 113, 115, 124
Dynamicity, 14, 21, 23, 28, 65, 93, 115, 124
Dynamic scheduling, 20, 28

E
Earlier due date, 8
Equality, 2
Experienced utility, 27

F
Fairness, 2, 4, 5, 10, 12, 14, 15, 17, 21, 22–28,

32, 36, 39–45, 61, 65, 71, 115, 123, 124
Fairness factor, 5, 34–37, 40, 41, 43, 45
Fairness-utilization-dynamicity (FUD), 14, 15,

21, 28, 37, 65, 93, 115, 124
Fair-share (FS), 2–4, 9–12, 17, 23–25, 49, 50,

61, 62, 66, 67, 69, 71, 73, 75–79, 83–85,
87, 89–94, 97, 99, 101–104, 106, 109,
111, 112, 114, 115, 117, 118, 120–124

average, 72, 86
scheduling, 4, 12, 17, 23, 25–26, 39, 61, 63,

93, 101, 104, 111, 115, 122–124
Financial market, 7, 9
Financial market risk, 7–15
First-come-first-serve (FCFS), 66, 69, 74, 76,

91, 102, 103, 104, 106, 107, 112, 118,
121, 124

Floating-point operations per second (FLOPS),
14, 30, 32

Flow shop scheduling, 18–19
FS, see Fair-share (FS)

G
Game theory, 26–27
Global scheduling, 20
GridSim, 45, 47

H
High performance computing (HPC), 1, 3–5, 7,

8, 10–13, 17–22, 24, 60, 123

I
Increasing seniority, 34, 39
Infinity (inf), 12, 65–67, 72–77, 80, 82–84,

86–88, 90–93, 98, 99, 102, 104–107,
109, 112, 115–119, 122, 124

J
Job, 1, 3, 5, 8–14, 18–23, 25, 26, 28,

30, 32, 40, 45–49, 51, 52, 54, 60,
61, 64, 65, 67

Job-shop scheduling, 18, 19

K
Kay, J., 2, 9, 21–26
Kleban, S.D., 2, 23, 26, 61

L
Lambda, 48, 56, 58
Lauder, P., 2, 9, 21–26
Least advantaged user (LAU), 25
Least well-off user, 4, 123
Load, 2, 3, 5, 11–14, 17, 20, 25, 29,

32–37, 39, 40, 43, 44, 48, 49, 51,
55–58, 61–64, 71, 87, 102, 106,
114, 124

Load-density, 34, 35
Local scheduling, 20
Long-term equality, 2, 10, 22, 23, 27, 39, 61
Lottery-based scheduling, 23

M
Marginal utility, 27
Massively parallelizable problems

(MPPs), 21
Model, 5, 7, 8, 12, 15, 22–25, 29–37, 39, 41, 42,

47–51, 60, 123
Modeling, 2, 3, 13, 32–34
Monte Carlo simulations (MCS), 1, 3, 7, 8
Most advantaged user (MAU), 25
Multi-criteria scheduler, 17, 27, 39, 44, 123

130 Index

N
Nash, J.F., 5, 24, 25, 41, 42
Nash’s bargaining theory, 24
NP-Hard, 17

O
Open shop scheduling, 18, 19
Optimal scheduling, 12, 18, 20
Ordinal utility, 27

P
Parallel machine scheduling, 19–21
Pareto, V., 15, 26, 27
Performance, 1, 4, 5, 7, 13, 15, 17–24, 26, 39,

44–45, 64, 69, 71, 73, 75, 76, 79, 82, 84,
85, 87, 91, 92, 99, 102, 104, 108, 114,
117–119, 123, 124

Performance characteristics, 5, 17, 39, 44, 79,
87, 91, 99, 102, 104

Phase, 48–50, 55–59
Placement counter (PC), 11, 47, 48–55, 57–59,

63, 66, 69, 71, 75, 85, 87, 90, 93, 94,
102, 106, 113–117

Poisson distribution, 2–4, 12, 24
Priority, 2, 3, 5, 11–14, 17, 21, 23, 26, 29–32,

34, 36, 37, 39, 40, 43, 44, 63

R
Rawls, J., 5, 24, 25, 40, 63
Rawlsian, 4, 24, 25, 43, 44
Rawlsian fair (RF), 4, 28, 60–63, 65, 66, 69–73,

75, 76, 78, 79, 83–88, 91, 92, 94, 97, 99,
101–104, 106, 109, 111–113, 115–119,
121–124

Rawls’s theory of justice, 24
Response time, 26
Result expectation, 61, 115, 116
Results, 7, 8, 10–13, 15, 17, 21, 22, 24, 27, 31,

32, 35, 44, 47, 48, 60, 62–99, 101–109,
111–122, 124

Risk, 1–3, 7–15, 24, 26, 123
Risk calculation, 9

S
S-axis, 32, 35, 36
Scheduler, 2–5, 8–15, 17, 19–33, 36, 37, 39, 42,

44, 45, 47, 48, 60, 63–65, 69, 73, 74, 76,
78, 79, 85, 91, 94, 102–104, 106, 113,
115–118, 121, 123, 124

Scheduling, 2, 4, 5, 8, 10–15, 17–37, 39, 40,
45–47, 49, 60–63, 65–67, 70, 71, 93, 94,
97, 101, 102, 104, 109, 111, 114, 115,
121–124

algorithms, 4, 5, 13, 15, 17, 19, 20,
30, 31, 39, 40, 45, 47, 61, 63, 70,
104, 115, 121

system, 2, 4, 13, 14, 21, 23, 24, 28, 29
theory, 17–21

Scientific management, 2
+S direction, 35–36
Seem-fair, 2, 21, 26
Seniority, 3–5, 12–15, 17, 29, 31–37, 39–44,

60, 63–65, 69, 70, 74, 76, 79, 91, 94,
104, 107, 115, 117, 123

Seniority-calibrated load, 34
Shared computing, 17, 21–22, 123
Shortest-job-first, 11
Shortest processing time (SPT), 8, 40
Short-term fairness, 2, 10, 39
Simulation 1 results, 61, 66–69
Simulation 2, 71–75
Simulation 3, 85–90
Simulation 4, 101–103, 109
Simulation 5, 69, 111–118
Simulation 6, 65 , 72, 73, 75–78
Simulation 7, 78, 85–87, 90–94
Simulation 8, 101–106, 109
Simulation 9, 69, 111, 112, 116–121
Simulation 10, 72, 73, 78–83
Simulation 11, 85–87, 94, 95–99
Simulation 12, 101, 102, 106–109
Simulation 13, 69, 111, 112, 118, 120–122
Simulation 14, 72, 73, 78–84
Simulation 15, 85, 86, 94–96, 98, 99
Simulation 16, 101, 102, 106, 108, 109
Simulation 17, 69, 111, 112, 118, 120–122
Simulations, 1–5, 7, 8, 10, 11, 15, 17, 39–99,

101–109, 111–122, 124
Simulation seniority, 15, 39–44, 60
Single-machine problem, 18
Slowdown, 26
Social justice, 24
Starvation, 2, 4, 10, 12, 13, 123, 124
Static scheduling, 28
Suboptimal scheduling, 20

T
Tasks, 1–5, 8–15, 19–37, 39–51, 55–60, 62–71,

73–83, 85, 87, 89–98, 101–109,
111–124

Temporarily starve, 2, 3, 8, 9

Index 131

Tick, 11, 47, 50, 75, 93, 113, 114
Time-in-system, 2, 4, 5, 13, 15, 21, 22, 25, 27,

40, 43–45, 50, 60, 63, 123
Time slice, 11
Total utility, 24, 27, 45

U
User cases, 10, 55–58
2 Users, 43, 51–57, 62, 73
6 Users, 57–59, 76, 91, 111
11 Users, 69, 78, 79, 85, 94, 95, 106, 111
21 Users, 59, 78, 80, 94, 95, 106, 111
Utilitarianism, 24

Utility, 5, 10, 15, 17, 24–27, 41, 42, 44, 45
Utilization, 1, 2, 14, 20, 21, 24, 26, 28, 124

V
Value-at-risk (VaR), 7, 123
Von Neumann, J., 26, 27

W
Wait time, 12, 26
Welfare, 24, 26
Welfare economics, 24

132 Index

	Preface
	Acknowledgments
	Contents
	Chapter 1: Introduction
	1.1 Background
	1.2 Problem Statement and Scope
	1.2.1 Class A - Complementary Intermittent Workloads
	1.2.2 Class B - Steady vs. Intermittent Workloads
	1.2.3 Class C - Large vs. Small Transient Workloads
	1.2.4 Class D - Large vs. Noise-Like Workloads

	1.3 What Is Covered in This Book
	1.4 Seek and You Shall Find
	1.5 Expected Outcome

	Chapter 2: Financial Market Risk
	2.1 Relevance
	2.2 An Example
	2.3 Expected Outcome
	2.4 Definitions
	2.4.1 High Performance Computing
	2.4.2 Scheduling
	2.4.3 Task Load (L)
	2.4.4 Priority of the Task (P)
	2.4.5 Task Seniority (S)
	2.4.6 Time-in-System
	2.4.7 Utility

	2.5 Book Organization

	Chapter 3: Scheduling in High Performance Computing
	3.1 Introduction
	3.2 Scheduling and Scheduling Theory
	3.2.1 Flow Shop Scheduling
	3.2.2 Job Shop Scheduling
	3.2.3 Open Shop Scheduling
	3.2.4 Parallel Machine Scheduling

	3.3 Shared and High Performance Computing

	Chapter 4: Fairshare Scheduling
	4.1 Fairness
	4.1.1 The Fairness of Fair-Share Scheduling

	4.2 Utility
	4.2.1 Total Utility vs. Marginal Utility

	4.3 FUD: Fairness-Utilization-Dynamicity

	Chapter 5: Multi-Criteria Scheduling: A Mathematical Model
	5.1 Scope and Purpose
	5.2 Scheduling Parameters in 2-Dimensional Space
	5.2.1 Load Requirement of a Task (L)
	5.2.2 Priority of a Task (P)
	5.2.3 Auxiliary Parameters

	5.3 Seniority of a Task
	5.4 Modeling Tasks in 3-Dimensional Space
	5.5 Determining Seniority and Fairness Factor
	5.6 Summary

	Chapter 6: Simulation and Methodology
	6.1 Calculating Seniority
	6.1.1 Example of Calculating Seniority

	6.2 Performance Measures
	6.3 Experimental Simulation Methodology

	Chapter 7: DSIM
	7.1 dSim Architecture and Simulation Model
	7.2 dSim Configuration

	Chapter 8: Simulation Scenarios
	8.1 Simulation Case 1-2 Users Base Case
	8.2 Simulation Case 2-2 Users
	8.3 Simulation Case 3-2 Users
	8.4 Simulation Case 4-2 Users
	8.5 Simulation Case 5-2 Users
	8.6 Simulation Case 6-6 Users
	8.7 Simulation Case 7-6 Users
	8.8 Simulation Case 8-6 Users
	8.9 Simulation Case 9-6 Users
	8.10 Simulation Cases 10 and 14
	8.11 Simulation Cases 11 and 15
	8.12 Simulation Cases 12 and 16
	8.13 Simulation Cases 13 and 17
	8.14 Assumptions
	8.14.1 No-Randomness Assumption
	8.14.2 Task-Based-Workload Assumption
	8.14.3 Resource-Constraint Assumption
	8.14.4 Simulation Parameters and Configuration
	8.14.4.1 Simulations for Class-A: Simulations 2, 6, 10 and 14
	8.14.4.2 Simulation Class-B: Simulations 3, 7, 11, and 15
	8.14.4.3 Simulation Class-C: Simulations 4, 8, 12, and 16
	8.14.4.4 Simulation Class-D: Simulations 5, 9, 13, and 17

	Chapter 9: Overview of Results
	9.1 Results Recap
	9.1.1 Simulation 1 Analysis and Results

	9.2 Lessons Learned
	9.3 Simulation Results and Analysis

	Chapter 10: Class A Results and Analysis
	10.1 Class A Simulations
	10.2 Class A Results
	10.2.1 Simulation 2 Analysis and Results
	10.2.2 Simulation 6 Analysis and Results
	10.2.3 Simulations 10 and 14 Results and Analysis

	Chapter 11: Class B Results and Analysis
	11.1 Class B Simulations
	11.2 Class B Results
	11.2.1 Simulation 3 Analysis and Results
	11.2.2 Simulation 7 Analysis and Results
	11.2.3 Simulations 11 and 15 Results and Analysis

	Chapter 12: Class C Results and Analysis
	12.1 Class C Simulations
	12.2 Class C Results
	12.2.1 Simulation 4 Analysis and Results
	12.2.2 Simulation 8 Results and Analysis
	12.2.3 Simulations 12 and 16 Results and Analysis

	Chapter 13: Class D Results and Simulations
	13.1 Class D Simulations
	13.2 Class D Results
	13.2.1 Simulation 5 Analysis and Results
	13.2.1.1 Algorithm-Implementation Correctness
	13.2.1.2 Expectation for BH = 1 and BH = 2
	13.2.1.3 Expectations for BH = 3, BH = 5, and BH = 10
	13.2.1.4 Expectation for BH = inf

	13.2.2 Simulation 9 Results and Analysis
	13.2.3 Simulations 13 and 17 Results and Analysis

	Chapter 14: Conclusion
	References
	Index

