
Chapter 4
Bioreactor for Microalgal Cultivation
Systems: Strategy and Development
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Abstract Microalgae are important natural resources that can provide food,
medicine, energy and various bioproducts for nutraceutical, cosmeceutical and aqua-
culture industries. Their production rates are superior compared to those of terrestrial
crops. However, microalgae biomass production on a large scale is still a challenging
problem in terms of economic and ecological viability. Microalgal cultivation sys-
tem should be designed to maximize production with the least cost. Energy efficient
approaches of using light, dynamic mixing to maximize use of carbon dioxide (CO2)
and nutrients and selection of highly productive species are the main considerations
in designing an efficient photobioreactor. In general, optimized culture conditions
and biological responses are the two overarching attributes to be considered for
photobioreactor design strategies. Thus, fundamental aspects of microalgae growth,
such as availability of suitable light, CO2 and nutrients to each growing cell, suitable
environmental parameters (including temperature and pH) and efficient removal of
oxygen which otherwise would negatively impact the algal growth, should be inte-
grated into the photobioreactor design and function. Innovations should be strategized
to fully exploit the wastewaters, flue-gas, waves or solar energy to drive large out-
door microalgae cultivation systems. Cultured species should be carefully selected to
match the most suitable growth parameters in different reactor systems. Factors that
would decrease production such as photoinhibition, self-shading and phosphate floc-
culation should be nullified using appropriate technical approaches such as flashing
light innovation, selective light spectrum, light-CO2 synergy and mixing dynamics.
Use of predictive mathematical modelling and adoption of new technologies in novel
photobioreactor design will not only increase the photosynthetic and growth rates
but will also enhance the quality of microalgae composition. Optimizing the use of
natural resources and industrial wastes that would otherwise harm the environment
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should be given emphasis in strategizing the photobioreactor mass production. To
date, more research and innovation are needed since scalability and economics of
microalgae cultivation using photobioreactors remain the challenges to be overcome
for large-scale microalgae production.

4.1 Introduction

Algae are ubiquitous microscopic and macroscopic plants in both marine and fresh-
water ecosystems, and their biomass production is known to exceed those of terrestrial
plants (Schenk et al. 2008; Kraan 2013; Guyon et al. 2018).Manymicroalgae species
contain various high-value compounds with wide range of industrial applications.
Thus, microalgae are important sources for various products including feedstocks of
biofuels (Schenk et al. 2008; Pittman et al. 2011; Georgianna and Mayfield 2012;
Medipally et al. 2015; Rastogi et al. 2018), biomass and pigments for aquaculture
industry (Angeles et al. 2009; Alishahi et al. 2015; Liu et al. 2017), and commer-
cially important compounds for food and health industries (Goh et al. 2014; Foo et al.
2015). Studies on biofuel production indicated that microalgae are more superior and
sustainable source compared to terrestrial crops such as corns, coconut, jatropha and
oil palm (Chisti 2007; Rastogi et al. 2018) due to their fast growth. In addition to
biodiesel production, the use of wastewater and flue-gas for microalgaemass produc-
tion helps to reduce water and air pollution, respectively (Cheah et al. 2015; Guldhe
et al. 2017; Cao et al. 2017).

Microalgae are natural sources of valuable fatty acids and amino acids that can
be utilized in food, nutraceutical, pharmaceutical and cosmeceutical industries (Pen-
nington et al. 1988; Jin et al. 2003; Xia et al. 2013). Many species are capable
of producing bioactives such as carotenoids, phenolic acids, flavonoids and highly
unsaturated fatty acids (HUFAs) that can be used as additives and supplements for
human health-promoting products and animal feeds (Natrah et al. 2007; Ebrahimi
Nigjeh et al. 2013; Goh et al. 2014; Foo et al. 2017). These secondary metabolites
produced in microalgae cells have been proven effective as antioxidant, antimicro-
bial, anti-inflammatory, anticancer andmany other ailments (Ryckebosch et al. 2014;
Foo et al. 2015; Guyon et al. 2018). In addition, they are useful as prebiotics and
immunomodulatory agents. With valuable bioactive compounds in their cells, some
microalgae commodities have been grantedGRAS (generally regarded as safe) status
as novel food products for health and medicines.

In aquaculture, microalgae have the potential to be used as colourants, prebiotics
and enhancement of fish and invertebrate immunity (Peng et al. 2012; Liu et al. 2017).
As a colourant source, carotenoids in microalgae such as canthaxanthin, astaxanthin
and lutein have been regularly used as feed ingredients to enhance colour of thefish. In
fact, β-carotene has been effectively used as pro-vitamin A (retinol) in multivitamin
preparation and is usually included in the formulation of healthy feeds (Begum et al.
2016). Polyunsaturated fatty acids from microalgae, such as EPA (eicosapentaenoic
acid, C20:5n-3) and DHA (docosahexaenoic acid, C22:6n-3), have been shown to
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positively affect immune responses in cultured fish and invertebrates by modulating
fish immunity through enhancement of lymphocyte proliferation, cytokine produc-
tion and natural killer (NK) cells activity (Vallejos-Vidal et al. 2016; Gbadamosi and
Lupatsch 2018). Microalgae are also useful prebiotics that can act as stimulant for
beneficial microbes (Panjiar et al. 2017) and inhibitor for pathogenic bacteria (Natrah
et al. 2014). In addition, microalgae are an essential component of aquaculture sys-
tem to ensure good water quality by efficient uptake of toxic compounds such as
ammonia and nitrite (Mohamed Ramli et al. 2017). In general, the use of microalgae
in aquaculture will improve water quality and provide protection of the cultured ani-
mals against various diseases through improvement of their diets and enhancement
of their immune system. In addition, the current research effort to utilize microalgae
as a vaccine carrier will further enhance not only the fish health but contribute to the
sustainability of aquaculture industry.

At present, the production of microalgae biomass is still low, and adequate pro-
duction to satisfy the increasing demand from various industries remained a chal-
lenging bottleneck. One of the main strategies of microalgae production is the use
of appropriate microalgae cultivation system using natural or cheap resources such
as wastewaters for nutrients, solar energy for light, flue-gas for CO2 and waves for
mixing. There are many options for microalgal cultivation such as photobioreactors,
raceways, tanks and ponds (Table 4.1). Among many types of microalgae produc-
tion system, photobioreactors are key devices for pure single species culture where
contaminants that occur in pond or raceway cultures can be controlled. However,
like other photosynthetic systems, the success of photobioreactors will depend on all
factors that affect energy consumption and maintenance of optimum culture condi-
tion. In mass microalgae cultivation, availability of water, light, nutrients and energy
would be the main items to be factored into the production cost. The production
can be further improved by species or strain selection and optimization of all related
culture conditions. The use of wastes and natural resources for the culture would
make the microalgae production more economical, and to some extent improves the
pollution pressure on the environment.

4.2 Photobioreactor Development—Strategies

Conventional microalgae culture is mainly carried out in open space cultivation,
especially in ponds, tanks or raceways. With comparatively lower construction and
operating cost compared to closed system, open space cultivation is relatively easy to
operate and relatively cheap as most utilize natural sunlight and aeration (Table 4.1).
However, open system cultivation is prone to contamination which can affect the
quality of the produced microalgae biomass and the extracted compounds such as
astaxanthin and other carotenoids used in health and food industries. Thus, closed
systemcultivation is the better alternative for the production of high-valuemicroalgae
products (Table 4.1).
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Fig. 4.1 Schematics of an open raceway system (a) and a closed horizontal photobioreactor with
shallow water depth and high S/V ratio (b)

Photobioreactors have been developed since 1950s for biomass production of a
specific microalgae species in order to overcome food supply crisis. Several con-
figurations such as raceway system (Fig. 4.1), bubble column (Fig. 4.2), flat plate
(Fig. 4.3) and tubular (Fig. 4.4) have been used (Olivieri et al. 2014). The early
bioreactor design was very simple consisting of tubes and light sources. In the earlier
years, bioreactors were relatively small, but the photobioreactor volume is getting
bigger with more sophisticated design. Novoveská et al. (2016) designed a large
microalgae photobioreactor in the offshore area to treat municipal wastewater, up
to 50,000 gallons/day, whereby 75% of total nitrogen, 93% of total phosphorus and
92% of biological oxygen demand (BOD) of the influent wastewater was removed,
and 3.5–22.7 g m−2 d−1 of microalgae biomass was produced.

Photobioreactors are often categorized into (1) open and closed system, or (2)
vertical and horizontal flow of culture media (Table 4.1). Most bioreactors have
different specifications in terms of materials, light pass length, working volume
and volume/surface ratio. Common features in bioreactors include (1) light receiver
to capture light energy effectively, (2) loading ports for the culture media, carbon
dioxide and harvesting and (3) mixing function to remove produced oxygen and
to increase mass transfer efficiency in the culture media. Open raceway system is
the most popular microalgae production system. The basic design was derived from
oxidation pond in wastewater treatment. In general, the open raceway system has
one or multiple paddles for circulating the media in the trough that has 20–30 cm
water depth (Fig. 4.1a). The paddle mixing has higher energy efficiency compared to
aeration mixing used in other closed photobioreactors due to low energy loss in the
former. However, the lower cell density was often reported in raceway system due
to the longer light path length (≈30 cm) compared to other closed photobioreactors.
However, only the species that has low contamination risk can be cultured in this
system.
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Fig. 4.2 Schematics of several types of column bioreactors; a normal column bioreactor, b column
bioreactor with concentric airlift, c annular bioreactor

Fig. 4.3 Schematics of flat plate reactor (a) and flat panel airlift (FPA) photobioreactor (b)
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Fig. 4.4 Schematics of tubular photobioreactor

To overcome the contamination issue, Dogaris et al. (2015) modified the raceway
system to develop a new horizontal photobioreactor (HBR) that has thin light pass
length of 5 cm with airlift pumps (Fig. 4.1a). The HBR system achieved a maximum
biomass concentration of 4.3 g L−1 and average biomass productivity of 18.2 g m−2

d−1 over the course of 165 days without any contamination problem (Dogaris et al.
2015). Column and flat plate systems are categorized as vertical mixing photobiore-
actors, in which the agitation and mixing are accomplished by aeration. The main
advantage of these bioreactors is the homogeneous and efficient mass transfer by
entire mixing of the water column, while the raceway and tubular systems undergo
partial mixing by paddle and airlift systems. To improve mixing efficiency, airlift
column bioreactor was invented (Fig. 4.2). An airlift column bioreactor has a phys-
ical separation of the two interconnecting zones; the center column (dark zone) for
upper flow and external side (light zone) for the downstream. The circulation of the
dark and light cycles of overall media in the column provides constant light energy
to all cells in the bioreactor.

To scale-up a column bioreactor, the reactor diameter increases and its sur-
face/volume (S/V) ratio decreases, resulting in a decrease of cell density in the
bioreactor. Lower biomass concentration in the harvested media requires higher cost
and energy, when the harvested culture media is concentrated and dried. To avoid
decreasing S/V ratio, the annular reactor was developed (Chini Zittelli et al. 2006;
Posten 2009). The structure of the annular bioreactor is actually wrapped flat plate
bioreactor with the appearance of a column bioreactor (Fig. 4.2c). The flat plate
photobioreactor uses simple geometry and it can be designed to reduce light path
length and keep high S/V ratio (Fig. 4.3a). The reactor is placed in a vertical or tilted
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inclination to receive sunlight energy effectively. The vertical mixing in column and
flat plate bioreactors uses aeration which requires high energy consumption.

The performance of energy consumption in bioreactor is evaluated by net energy
ratio (NER) that is the energy balance between total energy produced by the microal-
gae biomass (energy output) and energy requirement in the biomass production
(energy input). Generally, the raceway system shows high NER ratio (>1.0) and high
energy efficiency. On the other hand, vertical mixing reactor shows relatively low
NER due to high energy consumption of aeration mixing (Burgess and Fernández-
Velasco 2007; Huesemann and Benemann 2009; Jorquera et al. 2010). In order to
improve the energy efficiency, the flat panel airlift (FPA) bioreactor with rectangular
channel airlift which improves the efficiency of light utilization was designed (Degen
et al. 2001) (Fig. 4.3b). Degen et al. (2001) reported that the FPA bioreactor showed
1.7 times higher productivity than the conventional flat plate reactor in Chlorella
vulgaris cultivation.

Tubular reactor is one of the typical closed photobioreactors consisting of a tube
and pump system (generally airlift pump system) to circulate culturemedia andworks
as degasser to remove oxygen produced by photosynthesis (Fig. 4.4). The advantage
of the system is the high flexibility for the setting and it can be arranged horizontally,
vertically and any other shape that is optimized to receive light source (Carlozzi
2003). However, the oxygen resulting from photosynthesis often increases up to an
inhibitory level since it is only partially removed in the airlift system (SánchezMirón
et al. 1999). In addition to the oxygen accumulation problem, the tubular system
consumes high energy to circulate the culture media. Jorquera et al. (2010) reported
that the tubular system requires >2500 W/m3 (NER = 0.2) to generate turbulent for
suitable gas/liquid mixing and mass transfer in the systems while the raceway and
flat plate systems consume 3.72 W/m3 (NER = 8.34) and 53 W/m3 (NER = 4.51)
for the mixing and/or aeration, respectively. However, these energy consumption
values greatly vary with the culturing conditions and assumptions made during the
calculation of NER.

4.3 Strategies to Increase Efficiency of Photobioreactor
Systems

Microalgae are flagged as the next generation biomass feedstock for bioenergy and
biochemical for the growingworld population. Since its production is associatedwith
reducing the impacts of climate change and enhancing of food security, microalgae-
based industries have high potential to assist the socio-economic development of the
global community. Thus, upscaling of microalgae products should be pursued by
improving its production systems.

There is a great need to develop efficient photobioreactors to satisfy the high
demand for microalgae biomass. The strategy to design a highly efficient bioreactor
system is to focus on all factors that affect the microalgae physiological responses
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and biomass quality. Microalgae require light, carbon dioxide and nutrients to pro-
duce biomass and biocompounds, the rates of which are governed by the metabolic
properties of the cultured species itself and the culture conditions (Lucker et al.
2014). Optimizing the delivery of these factors to increase photosynthetic rates in
photobioreactors would be the best strategy to obtain the maximum microalgae pro-
duction. Thus, bioreactors have been designed to increase efficiencies in light, gas
and nutrient utilization with increased outputs (Table 4.2).

4.3.1 Selection of Microalgae Species

Many microalgal species have variable contents of high-value compounds such
as fatty acids, amino acids and carotenoids. Thus, for photobioreactor production,
microalgae species with high yield biomass and rapid growth rate should be care-
fully selected to suit targeted products. For example, Haematococcus spp. have high
carotenoids contents, especially astaxanthin (Guyon et al. 2018; Lim et al. 2018)
and Chlamydomonas spp. are known sources for carbohydrates (Gifuni et al. 2017).
In fact, some species have compounds that cannot be found in other species. For
example, fucoxanthin is only found in brown seaweeds and diatoms (Foo et al.
2015). Molina-Miras et al. (2018) reported the production of amphidinols, a group
of polyketides with high bioactivities from a marine dinoflagellate, Amphidinium
carterae. Thus, concentration of a target compound can also be an important crite-
rion for selecting an algal species for mass production in a photobioreactor.

Physiological parameters and biochemical composition of microalgae biomass
also determine the productivity and quality. The culture environment has a high
influence on the species physiological response. Zhang et al. (2017a, b) manipulated
the glucose, nitrogen and light levels to enhance astaxanthin production in Chlorella
zofingiensis. In a study of tropical microalgae, Rocha et al. (2017) reported that
different chlorophyte strains of Scenedesmus, Chlamydomonas, Chlorella, Mono-
raphidium, Scenedesmus and Selenastrum have variable fatty acids, carbohydrate
and protein contents and their metabolism and composition were closely related to
the culture conditions. Guyon et al. (2018) also suggested that microalgae produc-
tivity and carotenoid contents are species-specific and influenced by a wide range of
environmental parameters.

Different species require different light intensity and spectra to maximize their
growth and productivity. Vadiveloo et al. (2015) showed that a green microalga,
Nannochloropsis sp. produced the highest biomass when cultured under blue light
(400–525 nm). Hidasi and Belay (2018) reported that biomass composition of Spir-
ulina platensis showed diurnal changes with lower photosynthetic pigments dur-
ing the light hours, but recovered during the night. In fact, optimal growth factors
(light, CO2 and nutrients) are essential to achievemaximum production, but the exact
requirements differ from one species to another. Mondal et al. (2017b) reported that
light intensity of 80 μmol m−2 s−1 and photoperiod of 12L:12D were the optimal
conditions for Chlorella sorokiniana culture, whereas other species require higher
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Table 4.2 Various microalgae photobioreactors and their production

Type Design and
capacity

Special
feature

Biomass
production (g
L−1)/productivity
(g m−2 d−1)

Microalgae
species

References

Floating
large
modular
offshore pho-
tobioreactors

189.3 m3,
45.7 m long
× 1.83 m
wide

Nutrient
uptake-75%
of total
nitrogen,
93% of total
phosphorus

3.5–22.7 g m−2

d−1
Mixed
species,
Scenedesmus,
Chlorella and
Cryptomonas

Novoveská
et al. (2016)

Energy-free
rotating
floating pho-
tobioreactor
(RFP)

Outdoor
rotating
floating pho-
tobioreactor
powered by
flowing
water—with
plexiglass
serving as
paddles and
culture
barrels
in-between
them

Two-step
cultiva-
tion—high
biomass yield
fermentation
and outdoor
culture
induction

Biomass: 98.4 g
L−1

Astaxanthin: 73.3
mg L−1

Chlorella
zofingiensis

Zhang et al.
(2017b)

Vacuum
airlift photo-
bioreactor

An outdoor
500 L pilot
plant

20 m high
airlift system
with 8 cm
internal
diameter
using novel
double-
degaser that
provided
good
gas–liquid
separation

na na Marotta et al.
(2017)

Flat plate
gas-lift pho-
tobioreactors

Scale-up of
biomass
production

300-L Pilot
scale—opti-
mization of
gas, light and
nutrients

Biomass:
14–19 g m−2

d−1

Scenedesmus
spp.

Koller et al.
(2018)

Twin-layer
biofilm pho-
tobioreactors
(TL-PBRs)

Twin-layer
sheet of 1 m2

Use of high
light
(1023μmolm−2

s−1) and
CO2 (3.0%)
on
immobilized
microalgae

31–50 g m−2

d−1
Halochlorella
rubescens

Schultze
et al. (2015)

(continued)
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Table 4.2 (continued)

Type Design and
capacity

Special
feature

Biomass
production (g
L−1)/productivity
(g m−2 d−1)

Microalgae
species

References

Suspended-
solid phase
photobiore-
actors
(ssPBR)

Solid
attachment
carriers
floating in
the bioreactor
by aeration

Attached
microalgae
cultivation on
cotton
carriers

70% higher than
the conventional
system

Scenedesmus.
LX1

Zhuang et al.
(2018)

Resonant
ultrasound
field
incorporated
dynamic pho-
tobioreactor
(RUF-DPBS)

Semi-
automatic
RUF-DPBS
high-density
microalgae
culture in
continuous
mode

Use of
acoustic
radiation
forces and
gravity for
cell retention
and medium
replacemen-
t—reduced
cost, labour
and contami-
nation

Biomass: 2.6
folds
Total lipids: 2.1
folds

Nannochloropsis
aculata

Lee and Li
(2017)

light intensity (Schultze et al. 2015). On the other hand, Holdmann et al. (2018)
reported that Chlorella sorokiniana produced the highest biomass under strong light
intensity and shorter photoperiod, probably due to different strains and culture con-
ditions. Some species such as Chlorella sorokiniana and C. minutissima are capable
of using pentoses which otherwise do not have any significant industrial application
as a carbon source (Freitas et al. 2017). In fact, some species, such as Scenedesmus
obliquus, was shown to sustain cell growth up to 2 h in the dark without affecting
the photosynthetic rate (Maroneze et al. 2016).

Thus, one of the strategies for optimized photobioreactor production is to explore
the vast sources of microalgae diversity and select those strains with high poten-
tial for different biotechnological applications. Gonçalves et al. (2016) showed that
culture of mixed compatible species resulted not only in higher biomass production
with higher nutrient removal, but also increased amount of lipids. Future research
should focus on the selection and engineering of high-value species with robust
characteristics and high growth rate. In addition, optimal culture conditions should
be developed to enhance the microalgal biomass and high-value compounds pro-
duction such as lipids, fatty acids, carotenoids and proteins (Rezvani et al. 2017;
Zhuang et al. 2018). Manirafasha et al. (2018) demonstrated that supply of nitrogen
source with metabolic stress resulted in high Arthrospira platensis growth with high
accumulation of phycocyanin.
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4.3.2 Aeration and Mixing

Aeration is important in providing adequate carbon dioxide and nutrients formicroal-
gal cells to photosynthesize and synthesize organic compounds. In addition to deliv-
ering gas and nutrients, aeration also controls themixing of the water columnmoving
the algal cells to various parts of the reactors, from the light zone near the illumination
surfaces to the darker-interior area. With mixing, algal cells are shuttled back and
forth between the light and dark zone, enabling the microalgal cells to undergo short
light–dark cycles that can promote faster growth and higher production of biomass
compared to those bioreactors with limited optimized mixing. Ugwu et al. (2005,
2008) reported that short light–dark cycles could promote growth of microalgal cells.
In addition, with regulated mixing and proper supply of carbon dioxide and removal
of oxygen, microalgal cells are kept in suspension in suitable zones to efficiently har-
vest the light and nutrients for their growth. In general, mixing is one of the important
aspects in photobioreactor development. Thawechai et al. (2016) optimized all inter-
acting growth factors using Resonance Surface Methodology to enhance microalgae
lipid and pigment production.

4.3.2.1 Carbon Dioxide

Carbon dioxide (CO2) is readily available in the atmosphere with concentrations
ranging from 0.03–0.06% (v/v) depending on the area. There is a global trend of
increasing CO2 from anthropogenic activities especially in congested urban and
industrial areaswhere flue-gas can contribute significantly to theCO2 pool (Rahaman
et al. 2011; Norhasyima and Mahlia 2018). Microalgae, on the other hand, can effi-
ciently sequester CO2 at the rate of approximately 1.8 kg for every 1 kg ofmicroalgae
produced (Jiang et al. 2013). In addition, flue-gas which can be obtained from vari-
ous industries can be utilized to enhance microalgae productivity to new production
level and contribute to the reduction of greenhouse gases. Carbon dioxide uptake
by microalgae can be enhanced in tandem with other growth factors, such as light
(Mondal et al. 2017b) and nutrients (Yan et al. 2016) to promote high growth rates
in microalgae. Schultze et al. (2015) reported that the increase of carbon dioxide
together with light improved the production to 31–50 g m−2 d−1, using twin-layer
biofilm photobioreactors (TL-PBRs), the highest microalgae dry biomass productiv-
ity reported to date (Table 4.2). Cheah et al. (2015) also reported the use of atmo-
spheric CO2 and flue-gas for microalgae biomass production.

4.3.2.2 Nutrients

Carbon, nitrogen and phosphorus are the three major nutrients that are essential for
microalgae growth. Carbon dioxide can be obtained from the atmosphere by aera-
tion, but reactive nitrogen and phosphorus have to be supplied to the culture media.
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Microalgae are effective in consuming nutrients from wastewaters, such as domestic
sewage, tannery wastewaters and aquaculture sludge which normally have organic
contents (Table 4.3). da Fontoura et al. (2017) reported that Scenedesmus sp. showed
a maximum biomass production of 210.5 mg L−1 d−1 when cultured in tannery
wastewater with high uptake rate of ammoniacal nitrogen (85.6%) and phosphorus
(96.9%).Other industrieswith discharges of nutrients can also usemicroalgae culture
to reduce their nutrient loadings into the ecosystem. Yan et al. (2016) reported that
removal efficiencies of total oxygen demand, total nitrogen and total phosphorus by
Chlorella culture in a simultaneous biogas upgrading and nutrient reduction system
were 93%, 81% and 80%, respectively, illustrating that microalgae can efficiently
remove nutrients from wastewaters. Groundwater can also have high contents of
nutrients. Rezvani et al. (2017) used groundwater to cultivate Ettlia sp. with biomass
productivity of 0.2 g L−1 d−1.

Zhuang et al. (2018) reported that nitrogen and phosphorus were the two major
determinants not only for microlagal biomass but also for improvement of protein
synthesis. His ideawas supported bymany other studies that reported highermicroal-
gae compounds are synthesized under adequate culture environment (Manirafasha
et al. 2018). In fact, a culture consisting of a consortia of species showed higher nutri-
ent removal compared to a single species culture (Gonçalves et al. 2016). Manip-
ulations of major nutrients could enhance lipid production in marine microalgae
(Adenan et al. 2016). In addition, light can also influence the production of lipids.
Using a chemostat culture system at 1500 μmol m−2 s−1 light intensity, Seo et al.
(2017) showed that high lipid productivity of 291.4 mg L−1 d−1 could be obtained.
Someminerals also show effects onmicroalgae production. In a phototrophic culture,
addition of calcium ions (Ca2+) would decrease the microalgae biomass production
because the increase Ca2+ would increase the phosphate precipitation (Di Caprio
et al. 2018).

4.3.3 Light and Temperature

In addition to carbon dioxide and nutrients, light is a critical factor in promoting
microalgal growth and biomass/biocompound accumulation. Light does not only
affect microalgae but also microbes. Nitrite oxidizers are light sensitive, and nitrite
accumulation may occur if light intensity is increased (Vergara et al. 2016), and this
might have some implication in photobioreactors using wastewater as the culture
medium.

For photosynthetic-based industries, light is one of the main limiting factors for
an efficient system. Thus, for the development of technological applications of pro-
ducing energy from living biomass, the design of the culture vessels should ensure
the availability of light to the producing cells both in terms of quantity and quality.
Based on this premise, somemodels to predict the availability of light and its spectral
distribution has been developed for microalgae bioreactors to increase biomass pro-
duction and high-value compounds (Table 4.4). Fuente et al. (2017) developed a light



132 F. M. Yusoff et al.

Ta
bl

e
4.

3
N
ut
ri
en
tu

pt
ak
e
in

di
ff
er
en
tm

ic
ro
al
ga
e
cu
ltu

re

C
ul
tu
re

sy
st
em

M
ic
ro
al
ga
e
sp
ec
ie
s

N
ut
ri
en
ts
an
d
so
ur
ce
s

N
ut
ri
en
tu

pt
ak
e
ra
te
s,
to
ta
l

ni
tr
og
en

(T
N
),
to
ta
l

ph
os
ph
or
us

(T
P)

M
ic
ro
al
ga
e

bi
om

as
s/
co
m
po
un
ds

pr
od
uc
ed

R
ef
er
en
ce

Fl
as
k
ba
tc
h
cu
ltu

re
Sc
en
ed
es
m
us

sp
.

Ta
nn
er
y
w
as
te
w
at
er

To
ta
la
m
m
on
ia
86
%
;s
ol
ub
le

re
ac
tiv

e
ph
os
ph
or
us

97
%

0.
9
g
L

−1
da

Fo
nt
ou
ra

et
al
.(
20
17
)

Si
m
ul
ta
ne
ou
s
bi
og
as

pr
od
uc
tio

n
an
d
nu
tr
ie
nt

re
du
ct
io
n
sy
st
em

C
hl
or
el
la

sp
.

B
io
ga
s
sl
ur
ry

nu
tr
ie
nt
s

T
N
81
%
;T

P
80
%

0.
5
g
L

−1
Y
an

et
al
.(
20
16
)

Fe
d-
ba
tc
h
cu
lti
va
tio

n
A
rt
hr
os
pi
ra

pl
at
en
si
s

Su
bs
tr
at
es

(s
od
iu
m

gl
ut
am

at
e)

as
m
et
ab
ol
ic

st
re
ss

an
d
ni
tr
at
e
fe
ed
in
g

st
ra
te
gy

N
itr
at
e
re
du
ct
io
n,

>
20
0%

A
lg
ae

bi
om

as
s—

8.
0
g
L

−1
Ph

yc
oc
ya
ni
n—

0.
34

m
g
m
L

−1
M
an
ir
af
as
ha

et
al
.(
20
18
)

C
ol
um

n
re
ac
to
rs

E
tt
li
a
sp
.

G
ro
un
d
w
at
er

hi
gh

in
nu
tr
ie
nt
s,
N
an
d
P

P
re
m
ov
al
ra
te
—
6.
0
m
g
L

−1
d−

1

N
re
m
ov
al
ra
te
—
11
.0

m
g

L
−1

d−
1

A
lg
ae

bi
om

as
s,
1.
0–
1.
4
g

L
−1

R
ez
va
ni

et
al
.(
20
17
)

T
ub
ul
ar

ai
rl
if
tb

io
re
ac
to
rs

N
an
no
ch
lo
ro
ps
is
sp
.

Su
pp
ly

of
N
(9
4–
99
%
)
an
d
P

(1
5–
41
%
)
fr
om

an
ae
ro
bi
c

di
ge
st
io
n
of

fo
od

w
as
te

na
A
lg
ae

bi
om

as
s,
0.
3–
0.
4
g

L
−1

M
ay
er
s
et
al
.(
20
17
)

D
ua
ls
pe
ci
es

cu
ltu

re
sy
st
em

Sy
ne
ch
oc
ys
ti
s
sa
li
na

an
d

C
hl
or
el
la

vu
lg
ar
is

O
E
C
D
(O

rg
an
iz
at
io
n
fo
r

E
co
no
m
ic
C
o-
op
er
at
io
n
an
d

D
ev
el
op
m
en
t)
cu
ltu

re
m
ed
ia

N
—
84
.5
%

P—
85
.9
%

To
ta
ll
ip
id

pr
od
uc
tiv

ity
–8
–1
1

m
g
L

−1
d−

1
G
on
ça
lv
es

et
al
.(
20
16
)



4 Bioreactor for Microalgal Cultivation Systems … 133

field model to predict light attenuation in bioreactors which can be easily modified
to accommodate different microalgae species in different photobioreactor types. The
ability to predict the light intensity and spectral distribution are fundamental for pro-
ductivity enhancement of these photobiological processes, the microalgal biomass
production. In temperate countrieswhen the growing season is short, photobioreactor
engineering would focus on lengthening the photoperiod and maintaining a suitable
temperature for the microalgae optimum growth and biomass production (Saeid and
Chojnacka 2015).

Light distribution in a bioreactor depends on the incident light intensity, the con-
figuration of the vessel and the algal biomass concentration (Zhang et al. 2017a, b).
Naderi et al. (2017) developed a model of light distribution in a bioreactor based on
the Beer–Lambert model which could provide useful information on light distribu-
tion and predict light reduction in the culture vessel. In bioreactors, light intensity
attenuates sharply with the distance from the irradiated surface due to self-shading
in the inner areas and light absorption by the dense microalgae cells. However, Hu
and Sato (2017) proposed an internal light-limiting diode (LED) system that does
not limit the volume of the reactor vessel, and light attenuation could be avoided by
decreasing the light spacing (Table 4.4). In a bioreactor, not all zones are well lighted.
Thus, strategies should be made such that the distance between the light source to
the algal cells be optimized. Sun et al. (2016) illustrated the use of light guide to
bring light close to the growing algal cells using hollow polymethyl methacrylate
(PMMA) tubes embedded into a flat plate photobioreactor. In this way, the incident
light can be transmitted and emitted to the interior of the PBR, providing a secondary
light source for cells in light-deficient regions.

Different light spectrum has different effects on microalgae photosynthetic rates,
which is further dependent on specific species (Vadiveloo et al. 2015). Schulze
et al. (2016) suggested that LEDs emitting spectra between 390–450 (blue) and
630–690 nm (red) should be combined to increase high-quality microalgae biomass.
Blue spectrum has been shown to be effective in increasing themicroalgae productiv-
ity (Atta et al. 2013; Vadiveloo et al. 2015), in addition to the red spectrum (Detweiler
et al. 2015; Schulze et al. 2014, 2016; Gao et al. 2017; Yan et al. 2016). Lima et al.
(2018) showed that using LEDs with 70% red and 30% blue spectra with light inten-
sity of 100 μmol m−2 s−1 provided relatively high biomass productivity of 0.145 g
L−1 d−1 for Athrospira platensis cultured in modified Zarrouk’s medium. Thus, both
red and blue spectrum are needed to boost the microalgae production. Interestingly,
Leonardi et al. (2018) reported that it was not the blue or red spectrum individually
that caused the increase in microalgal biomass (Scenedesmus quadricauda), but the
interactions of all the photons in the absorption process. In addition to enhancing
microalgae growth rates and biomass production, specific light spectrum can also
influence the quantity and quality of biochemical compounds synthesized inmicroal-
gae cells. Vadiveloo et al. (2015) reported that the lipid content in Nannochloropsis
sp. was highest under the blue spectrum.

However, increasing light intensity is not necessarily good for all microalgae.
Naderi et al. (2017) demonstrated that increasing light intensity in dense cultures did
not result in increased biomass due to light absorption and scattering. To accurately
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Table 4.4 Use of light in photobioreactor systems

Light system Advantages Strategies References

Use of light-limiting
diodes (LEDs)

Optimize biomass
and high-value
compounds
(carotenoids and
phycocyanin)

Suitable light spectra
for the highest
microalgae biomass
productivity—0.15 g
L−1 d−1

Yan et al. (2016),
Lima et al. (2018)

Internal (light-limiting
diode) LED
illumination
system—flashing light
effects or dynamic
light condition

Volume of reactor
vessel is not limited;
flashing lights
decrease the
occurrence of
photoinhibition,
more light absorption
with less xanthophyll
cycle and less
thermal dissipation

Efficient use of light
by the microalgae
cells

Abu-Ghosh et al.
(2016), Hu and Sato
(2017)

A serial lantern
shaped draft tube
(LTD)

Increased mixing and
enhanced flashing
light effects

Ye et al. (2018)

Light and CO2
synergy

Synergistic action of
light and
CO2—Enhanced
biomass and lipid
production

Efficient (regulated)
supply of CO2 and
nutrients. With light
of 1500 μmol m−2

s−1, algal (Ettlia sp.)
productivity (1.48 g
L−1 d−1)

Seo et al. (2017)

60 μmol m−2 s−1,
algal
(Nannochloropsis
sp.) productivity 0.73
g L−1 d−1

Thawechai et al.
(2016)

The green solar
collector (GSC)—use
lenses and light guides

Efficient capturing
mechanism of solar
energy, reduced
operation cost

High light utilization
efficiency with low
cost

Zijffers et al. (2008)

Mechanically stirred
bioreactor

The different zone in
the reactor can be
controlled by
geometric
configuration and
impeller stirring
mechanism

High light utilization
efficiency and
production of
high-quality biomass

Zhang (2013)

Use of selected light
spectrum for specific
species:
i. Photovoltaic panels
ii. Use of blue and red
spectra

Increase the
photosynthetic
efficiency of the algal
cells and enhanced
growth rates

The specific
spectrum best match
the physiological
requirements of the
species

Atta et al. (2013),
Vadiveloo et al.
(2015), Detweiler
et al. (2015), Schulze
et al. (2016)

(continued)
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Table 4.4 (continued)

Light system Advantages Strategies References

Use of light guide Light can be
transferred to the
interior parts of the
bioreactor where
incident light cannot
reach

Make light available
to all cells in the
bioreactor

Sun et al. (2016)

Light in immobilized
cell cultures

Microalgae cell
immobilized in agar
gel to minimize
contamination and
easy metabolite
recovery

Light can be supplied
through immobilized
biopolymer

Kandilian et al.
(2017)

Central composite
design (CCD)
approach

Three main factors,
light, temperature
and CO2 were
optimized using
response surface
methodology (RSM)

Chlorellla sp.
BA9031—0.235 g
L−1 d−1

Mondal et al. (2017a)

determine the light availability to microalgae cells, Kandilian et al. (2016) proposed
a simple method to measure microalgal spectral absorption cross-section that can be
used to predict and control light transfer and biomass production in a photobiore-
actor. Too strong light can cause photoinhibition. In their study of cyanobacteria
culture in raceways, Hidasi and Belay (2018) reported that photosynthetic depres-
sion occurred at midday when the sunlight was highest. Aly et al. (2017) estimated
that photoinhibition could cause 30–40% reduction in net microalgae biomass in an
outdoor bioreactor. Yan et al. (2016), in their study of growing Chlorella sp. using
biogas slurry nutrient, suggested that light intensity should be low (approximately
400 μmol m−2 s−1) during the early phase of the culture to avoid photoinhibition,
and increase accordingly (to approximately 1000 μmol m−2 s−1) as the microalgae
density increases. To prevent photoinhibition, Hidasi and Belay (2018) used flash-
ing light in his raceway culture and showed that the microalgae growth rates were
significantly higher compared to those that received continuous light. Application of
flashing light approach by using different technological devices and/or by optimiz-
ing the mixing velocity of the culture at a suitable microalgae density, can also be
integrated into the photobioreactor design to decrease the effect of photoinhibition
and increase the microalgae biomass production (Abu-Ghosh et al. 2016).

4.3.3.1 Light Sources

Light can be obtained from the sun which is free but subjected to inconsisten-
cies due to daily or seasonal, environmental and climate changes. In spite of the
problems, solar energy should be fully utilized to decrease the cost of energy used.
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Zijffers et al. (2008) used Fresnel lenses to guide solar energy to focus on themicroal-
gae cells in the photobioreactor. Vadiveloo et al. (2015) used blue photovoltaic filters
to increase biomass production of Nannochloropsis sp. in large outdoor cultures as
this species illustrated that blue light was the most efficient light to biomass con-
version. In addition, trapped solar energy can be used as a source of electricity to
run the microalgae cultivations system such as pumps and aerators (Parlevliet and
Moheimani 2014). Thus, photobioreactor innovations should be strategized to fully
exploit the natural, free and clean solar energy to drive large outdoor microalgae
cultivation system, not only to increase the productivity of the cultivated microalgae,
but also for electricity production to drive the cultivations system. On the other hand,
the artificial light from lamps such as fluorescent tube, high intensity discharge lamp
(HID) and light-limiting diode (LED), is costly, but consistent (Blanken et al. 2013).
Thus, in designing an efficient microalgae production bioreactor, light factor, either
from solar energy or artificial light, has to be optimized to ensure its availability to
the photosynthesizing cells.

The effects of light of microalgae production also depend on other growth factors,
such as the use ofwastewater.Using a higher light intensity of 182.5μmolm−2 s−1, da
Fontoura et al. (2017) reported Scenedesmus biomass productivity of 0.211 g L−1 d−1

cultured in tannery wastewater. Thus, optimization of light, both in terms of intensity
and spectral distributionwith respect to other growth factors such as temperature, pH,
aeration, nutrients and cultured species is themost important strategy to be considered
in designing a photobioreactor (Mondal et al. 2017b; Seo et al. 2017; Lima et al.
2018).Willette et al. (2018) demonstrated thatmicroalgae growth and photosynthetic
rates declined at extreme temperatures (<15 °C), but the cold stress could boost the
lipid and fatty acids production. In addition to temperature, photoperiods also play
an important role in microalgae biomass production. Maroneze et al. (2016) showed
that manipulations of photoperiod can reduce energy cost in Scenedesmus obliquus
culture.

4.4 The Performances in Different Types
of Photobioreactors

Upscaling of microalgae cultivation is crucial in the assessment of its economics
and ecological viability. In assessing the performance of different types of photo-
bioreactors, the cell density (g L−1) and biomass production rate (g m−2 d−1) are
the most important parameters in terms of bioprocess engineering, although con-
struction and running costs and energy expenditure are also crucial for the actual
industrial process. High cell density culture has the merits of (1) efficient light uti-
lization, (2) low energy consumption for pumping and circulating of culture media
and (3) saving energy in dewatering and biomass concentration for downstream use
of the biomass. Thus, high cell density culture is one of the keys for improvement of
mass production of microalgae. Based on 48 previous works on outdoor microalgae
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Fig. 4.5 The relationship between cell density (g-dw L−1) and light path length (m) of each reactor
in outdoor culture. The data are collected from 48 previous studies on outdoor culture works listed
in Table 4.1

culture in different countries, species and culturemedia (Table 4.5), there is a negative
between the cell density (g-dw L−1) and light path length (m) in outdoor microalgae
cultures (Fig. 4.5). The cell density increased with decreasing light pass length or
volume/surface ratio (m) of the bioreactor. Doucha and Lívanský (2006) reported
that high cell density of 43 g L−1 in the closed raceway system with 1 cm light path
length. Ozkan et al. (2012) achieved extremely high cell density of 96.4 g L−1 in a
biofilm reactor.

For higher production rate, the bioreactor requires higher light intensity, since
the production of microalgae are the conversion process of light energy to biomass
energy. The areal production rate (g.m−2 day−1) seems to increase with daily solar
radiation-PAR (MJm−2 day−1) (Fig. 4.6). The areal production is not much different
amongbioreactor types and the rate tends to increasewith higher daily solar radiation-
PAR until around 13MJm−2 day−1 since the photosynthesis is the energy conversion
process of light and biomass energy. However, lower production values were often
reported even in the bioreactor that received higher solar radiations. These low values
are causally related to (1) lack of nutrients and CO2, (2) insufficient mass transfer
efficiency to distribute nutrients and CO2, (3) unsuitable environmental factor of pH
and temperature, (4) non-optimal dilution rate and (5) variation of species-specific
growth rate.

To increase the light energy received by a photobioractor, the second genera-
tion of internally irradiated photobioreactors using optical fibers (Javanmardian and
Palsson 1991; Ogbonna et al. 1999) and fresnel lenses (Ogbonna et al. 1999) as
light-concentrating devices, were developed. Masojídek et al. (2003) used fresnel
lenses to concentrate light energy on the surface of tubular reactor and achieved
high light intensity of 7000 μE m−2 s−1 and 31.5 MJ m−2 day−1 (Masojídek et al.
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Fig. 4.6 The relationship between areal production rate (g-dw m−2 day−1) and daily solar
radiation-PAR (MJ m−2 day−1) in outdoor culture. The data are collected from 48 previous studies
on outdoor culture works listed in Table 4.1

2003), although the areal production was not the highest. The idea of the internal
irradiation by light-concentrating device is not only to concentrate light energy but
also to diffuse strong light in order to avoid photoinhibition. However, this bioreactor
structure becomes complex and its cost of construction also increases. The strategy
of using light concentration technology may not be suitable for mass production of
microalgae that requires low cost and low energy consumption.

4.4.1 Technology Improvements

There are technologies to improve microalgae biomass production using photobiore-
actors by strategizing the use of growth factors especially increasing the efficiencies
of light, carbon dioxide and nutrient utilization by different species (Table 4.6).
Holdmann et al. (2018) illustrated an extremely effective technology using an air-
lift reactor showing 300% of production compared to the conventional method. To
address the major problems in microalgae biomass and biomolecule production, Lee
and Li (2017) proposed resonant ultrasound field incorporated dynamic photobiore-
actor (RUF-DPBS) that is labour-efficient, cost-effective and non-fouling. Huang
et al. (2015) developed a novel internal mixers optimized with computational fluid
dynamics to improve the performance of their flat plate photobioreactors to about
32.8% higher than the conventional mixer. In general, innovative and cost-effective
technologies for microalgae biomass production are still urgently required to satisfy
the market demand for microalgae biomass by microalgae-based industries. Con-
ventional technologies cannot keep up with the increasing demand for microalgae.
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Table 4.6 Improvements of microalgae biomass production using novel technologies

System Percent improved
production compared
to conventional
system

Technology References

Flat plate
Bioreactor-Archetype
reactor

32.8% (Chlorella
pyrenoidosa)

Optimized internal
mixer using
computational fluid
dynamics

Huang et al. (2015)

Flat panel airlift (FPA) 300% (from <1–4 g
L−1) (Chlorella
sorokiniana)

Airlift reactor mixed
solely by aeration
with sterile air

Holdmann
(2018)—commercialized
by Subitech GmbH

A serial lantern
shaped draft tube in
(LTD) Gas-lift
circumflux column
(GCC)
photobioreactor

50% (Chlorella) The serial lantern
shaped draft tube
(LDT improved CO2
fixation in a by
generating vortices to
increase radial
velocity between
dark and light region.
Mass transfer
coefficient increased
by 26% and mixing
time decreased by
21%

Ye et al. (2018)

Submerged-light
photobioreactor
(SL-PBR)

51% (Chlorella
vulgaris)

Free floating wireless
internal light source
powered by near field
resonant inductive
coupling for
Chlorellla vulgaris
(51% increase) and
Haematococcus
pluvialis (53%)

Murray et al. (2017)

ePBR—novel
environmental
photobioreactor

Chlorella
sorokiniana
(25—150 mg L−1)

Algal culturing
platform for
simulating
dynamicsof natural
environments

Lucker et al. (2014)

Predictive system, the
laboratory
environmental algae
pond simulator
(LEAPS)
photobioreactor

88.7–109.2%
(Chlorella
sorokiniana and
Nannochloropsis
salina)

Screening of
microalgae strains
and photobioreactor
operating conditions
for high biomass and
biocompound yields
in outdoor systems

Huesemann et al.
(2017)
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4.4.2 Mathematical Modelling

Due to many interacting factors influencing microalgae biomass production, math-
ematical modelling becomes a useful tool in predicting the behaviour and impacts
of different factors, which in turn affect the design of suitable culture vessels and
microalgae production systems. Thus, integrated modelling of an efficient and strate-
gic photobioreactor for optimum and sustainable production of microalgae should
encompass light intensity and spectral distribution, carbon dioxide and nutrient sup-
ply and uptake, optimization of environmental factors in culture vessels, dissolved
oxygen removal and growth biokinetics with reference to selected species (Al Ketife
et al. 2016).Mondal et al. (2017a) used response surfacemethodology (RSM)-central
composite design approach to model three interacting factors (light intensity, CO2

and temperature) to determine optimal culture conditions forChlorellla sp. Gao et al.
(2018) suggested a light distribution model to accurately predict the light intensity
required for the fast growth of Haematococcus pluvialis culture under red LEDs.
Aly et al. (2017) produced a mathematic model for the microalgae growth and CO2

sequestration in outdoor photobioractors, whereas Al Ketife et al. (2016) suggested a
model that could permit optimization and scale-up ofmicroalgae biomass production
based on light, nutrients and carbon dioxide and their kinetics.

4.5 Conclusions and Future Perspectives

Microalgae are known to be sustainable feedstocks for biofuels and valuable com-
pounds which are important in food, health and animal production industries. How-
ever, biomass production on a large scale is still an insurmountable challenge that
need to be solved in terms of technological, economics and ecological viability. Pho-
tobioreactor is the best alternative to produce high-quality microalgae biomass but
strategies are needed to build an economical, efficient and high-throughput microal-
gae production system. Efficient production of biomass through balancing the use of
energy and reducing cost should be the focus in designing bioreactors. Microalgae
growth factors including light, carbon dioxide and nutrients have to be technologi-
cally manipulated to develop a simple, efficient and cost-effective photobioreactor
with high production rate but minimal construction and operation cost. Additional
features to increase efficiency of the bioreactor such as efficient light harvesting with
suitable light spectrum and adjustable photoperiod, suitable fluid dynamics to ensure
optimised dispersion of microalgal cells, adjustable application of nutrient stress to
trigger the production of high lipids contents in the algal cells, and automated oxygen
discharge structure are necessary to overcome biomass production limitation.Natural
light, gas and nutrient sources should be used to defray the operation cost. Strategic
bioreactor should be flexible and adjustable to suit different species of microalgae
and the target compounds and can be used in many areas with different climatic
conditions. Large-scale photobioreactors should not be only technically improved
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but should be made economically feasible. Once technologically and economically
improvised, photobioreactors could generate all the resources that are valuable and
useful to global communities.
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cation Malaysia.
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