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Abstract. Visual SPARQL query notations aim at easing the RDF data
querying task. At the current state of the art there is still no generally accepted
visual graph-based notation suitable to describe RDF data analysis queries that
involve aggregation and subqueries. In this paper we present a visual diagram-
centered notation for SPARQL select query formulation, capable to handle
aggregate/statistics queries and hierarchic queries with subquery structure. The
notation is supported by a web-based prototype tool. We present the notation
examples, describe its syntax and semantics and describe studies with possible
end users, involving both IT and medicine students.
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1 Introduction

SPARQL, as defined by a W3C standard [1], is the main query language over data
structured in accordance to the RDF [2] data model. This includes most of the Semantic
Web data, as well as data brought into the semantic-web formats by various mapping
approaches, as ontology-based data access (OBDA), cf. [3]. Although the semantic
RDF/SPARQL technologies offer a higher-level view on data than the classical rela-
tional databases with the SQL query language, the formal textual notation of SPARQL
queries still complicates its usage by domain experts and IT professionals alike.

A number of approaches exist to ease the SPARQL query formulation. These
include form-based interfaces as e.g. PepeSearch [4] and WYSIWYQ [5]. SPARKLIS
[6] offers faceted SPARQL query composition from natural language based snippets.
The visual/diagrammatic formalisms for SPARQL query creation apply/extend the
visual querying principles studied extensively for relational databases (cf. e.g. [7, 8]).
Most of the existing visual/diagrammatic SPARQL query builders, as SEWASIE [9],
Optique VQs [10], QueryVOWL [11], LinDA [12] or early versions of ViziQuer [13],
although efficient for visual formulation of substantial range of queries, however, are
not designed to support queries with data aggregation available in SPARQL 1.1. [1].

© Springer Nature Switzerland AG 2019
E. Garoufallou et al. (Eds.): MTSR 2018, CCIS 846, pp. 50–62, 2019.
https://doi.org/10.1007/978-3-030-14401-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14401-2_5&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14401-2_5&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14401-2_5&amp;domain=pdf
https://doi.org/10.1007/978-3-030-14401-2_5


The UML class diagram style visual specification of SPARQL select queries with
aggregation has been introduced in [14, 15] and re-formulated in a way to allow for
subquery specification in [16]. In this paper we present for the first time an overall
ViziQuer abstract syntax and semantics (by means of visual query translation into
SPARQL), as well as describe a comparative user study showing an advantage of query
over RDF data composition in ViziQuer vs. query composition in textual SPARQL
notation. Should a well-established tool support be available, we would aim the
ViziQuer visual notation to be useful for query over RDF data creation, presentation
and sharing both for persons without specific IT training, as well. Currently there is a
web-based prototype implementation available for the visual notation [17].

Onwards the Sect. 2 introduces the visual notation, Sect. 3 describes the query
model and Sect. 4 outlines its semantics. Section 5 describes the user study and Sect. 6
concludes the paper. The site http://viziquer.lumii.lv/mtsr2018 contains supplementary
materials for the paper, including the materials for user study reproduction.

2 Notation Examples

The visual/diagrammatic query definition is based on data model containing the
vocabulary of entities, each identified by a local name and optional name prefix and
providing the full entity URI, and the schema information stating the applicability,
ordering and cardinalities of properties in the context of the model classes.

We shall consider example queries over a simple mini-hospital data schema, shown
in Fig. 1 and adapted from [18], where it has been presented as a fragment of a realistic
hospital information system. The names of properties connecting the classes, if not
specified, coincide with the target class name with lowercase first letter. There is default
minimum and maximum cardinality 1 assumption for properties.

2.1 Basic Visual Queries

A basic visual query (cf. [13, 16]) is a UML class diagram style graph with nodes
describing data instances, the edges describing their connections and the fields forming
the query selection list from the node instance model attributes and their expressions;

HospitalEpisode
admissionTime:dateTime
dischargeTime:dateTime[0..1]
dischargeReason:{"cured", "
deceased", "other"}[0..1]
lengthInDays:integer
totalCost:decimal
caseRecordNo:integer
responsiblePhysician:CPhysician
referringPhysician:CPhysician[0..1]
admissionDiagnosis:CDiagnosis[*]
dischargeDiagnosis:CDiagnosis[*]

<<EnumClass>>
CDiagnosis

code:string
name:string

<<EnumClass>>
CPhysician

personCode:string
name:string
surname:string

OutpatientEpisode
visitDate:date
visitDuration:decimal
visitCost:decimal
physician:CPhysician
outpatientDiagnosis:CDiagnosis[*]

Patient
personCode:string
name:string
surname:string
gender:{"male", "female"}
birthDate:date
familyDoctor:CPhysician[0..1]

TreatmentInWard
ward:string
arrivalTime:dateTime
transferTime:dateTime
orderNo:integer
attendingPhysician:CPhysician

*

**

Fig. 1. Example hospital domain ontology fragment
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every node can specify both the instance class and additional conditions on the
instance. One of the graph nodes is the main query node (shown as orange round
rectangle in the concrete syntax); the structural edges (all edges except the condition
ones, cf. Sect. 2.4) within the graph form its spanning tree with the main query node
being its root.

Figure 1 shows an example basic visual query: find 10 most expensive hospital
episodes among those lasting at least for 10 days, having a discharge reason specified
and having a patient that does not have any outpatient episode with an infectious
disease diagnosis; list episode case record number, total cost and discharge reason,
the patient name and birth year, and the name of the referring physician, if specified.

The basic visual query links are labelled by properties (or sequences thereof) from
the data model. The query in Fig. 2 illustrates the links that are required (patient),
optional (referringPhysician) and negated (outpatientEpisode).

Each query node contains an ordered list of (instance) fields denoting the properties
of instances corresponding to the node that are to be included in the query output; each
field has a data expression (in the simplest case just an instance model attribute name)
and an optional alias (e.g. E, Y and DName in Fig. 2 query). Additionally, conditions
over field and other instance attribute values can be placed in the query nodes.

The presence of a node field value in the query output is optional to not bypass
entire solution rows because of some missing attribute values. The {+} mark is used to
mark a field as required (cf. {+} dischargeReason in Fig. 2).

The YEAR() function calculates the birth year from the patient’s birth date that is
available in the data model. The operations and functions used to construct expressions
in SPARQL [1] are allowed also in ViziQuer; further operation shortcuts, such as x[1]
standing for the first symbol in x are available to ease the query definition.

The outpatientDiagnosis.code notation in the example illustrates property chaining
that is allowed both in field value expressions and in conditions.

PREFIX : <http://lumii.lv/ontologies/2016/mini-bkus-en#>
SELECT ?caseRecordNo ?totalCost ?dischargeReason ?name 
?Y ?DName WHERE{ ?E a :HospitalEpisode.
OPTIONAL{?E :caseRecordNo ?caseRecordNo.}
OPTIONAL{?E :totalCost ?totalCost.}
?E :dischargeReason ?dischargeReason.
?Patient a :Patient. OPTIONAL{?Patient :name ?name.}
OPTIONAL{?Patient a :Patient. ?Patient :birthDate ?birthDate_1.
BIND(YEAR(?birthDate_1) AS ?Y)}
FILTER NOT EXISTS{?OutpatientEpisode a :OutpatientEpisode.
FILTER(EXISTS{?OutpatientEpisode :outpatientDiagnosis/:code 
?code. FILTER(SUBSTR(?code, 1, 1) = "A")})
?Patient :outpatientEpisode ?OutpatientEpisode.}
OPTIONAL{?CPhysician a :CPhysician.
OPTIONAL{?CPhysician :name ?DName.}
?E :referringPhysician ?CPhysician.}
?E :patient ?Patient.
FILTER(EXISTS{?E :lengthInDays ?lengthInDays.
FILTER(?lengthInDays >= 10)})}
ORDER BY DESC(?totalCost) LIMIT 10

Fig. 2. An example basic visual query and its translation into SPARQL
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2.2 Aggregated and Grouping Attributes

Figure 3 shows three example queries specifying the aggregated attribute computation:

(a) Count the hospital episodes lasting for at least 10 days;
(b) Count the treatment cases for each ward, and
(c) Count the hospital instances and find their average length in days, grouped by the

patient’s gender and patient’s age at admission time

The principal design idea for aggregate attribute inclusion in the query, introduced
in [13], is to place them in a special compartment, situated above the node class name.
Should there be instance-level attributes in an aggregated query, as e.g. in Fig. 3(b) and
(c) examples, these are to be regarded as grouping attributes for the aggregations.

The function years in Fig. 3(c) is a custom ViziQuer notation for expressing the
date or datetime value difference in years (similar functions for months, days, hours,
minutes and seconds are available, as well). Figure 3(c) uses also the concrete syntax
option to hide the default label for links connecting the data model classes (the link
name remains still present in the query abstract syntax discussed onwards in Sect. 3).

2.3 Visual Subquery Notation

The ability to create subqueries is important both for SQL queries over relational
databases, and for SPARQL queries over RDF databases. Still, there is no generally
accepted visual notation for definition of data queries that involve subqueries. Our
proposal [13] for including subqueries in the visual query notation consists in letting
certain edges in the query structure tree to be marked as subquery ones, so considering
the edge together with the part of the query tree behind it as a subquery. The visual
notation for the subquery edge is proposed to be a black bullet at the hosting (non-
subquery) end of the edge. Figure 4 shows example queries that can be phrased, as
follows:

(a) Select all hospital episodes with at least 4 treatments in wards, show the episode
case record number, treatment in ward count and list of admission diagnosis
codes, order descending by treatment in ward count;

(b) For every physician responsible for at least one hospital episode, select the
surname, as well as count and average treatment in ward count for episodes with
this responsible physician.

Intuitively, each subquery is computed in the context of a single hosting node class
instance (e.g. a hospital episode, in the Fig. 4(a)). The subquery link together with its

Fig. 3. Aggregate query examples
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reference to the hosting node instance is considered to be a part of the subquery. The
subquery results (the selection variables, as well as the references to the hosting query
nodes) are projected into the hosting query, where they can be handled in a similar way
as the hosting node attributes themselves (e.g. included in filters, computations, order
lists and further aggregates). The subqueries can be nested, as shown in Fig. 4(b).

In the case, if a subquery does not return any result except its host node instance, it
works as an existence filter, as in Fig. 5(a). In Fig. 5(c) a single-node query models the
same behavior, using explicit predicate exists and property paths. These examples
should be contrasted with a simple join query in Fig. 5(b), where the count of patients
is taken over joined patient and hospital episode records.

2.4 Query Structure Extensions

The visual notation considered so far is suitable for visual query specification, if the
query has a tree form that is matching a data model fragment. The following more
advanced notations (cf. [16]) raise the query language expressive power beyond the
query tree shape and model structure matching.

Figure 6 shows two visual options for the query “Count patients with at least 3
hospital episodes without a matching outpatient episode within the 30 day range before
it”. The query structure requires non-existence of an outpatient episode for a hospital
episode, however, there is no direct link in the data model connecting these classes. To
build the query structure in this case, a non-model edge (a “free” edge), marked by ‘++’
is used (in the example it happens to be a negation link). The data connections can then
be established either by extra condition links, as in Fig. 6(a), or by explicit node
references (Fig. 6(b)). The condition links, drawn using a thinner line with white
diamond ends, are not structure links; they are added on top of the query tree shape
structure.

Fig. 4. Visual subquery examples

Fig. 5. Subquery as an existential quantifier
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Further visual query examples, including the ones that use unit node [ ] and union
node [+] for query structuring (these nodes do not correspond to data instances in the
query) can be found in [13]. The ViziQuer visual notation contains counterparts of
most SPARQL 1.1 select query constructs. The currently not covered constructs are
named graphs, advanced property path expressions, SELECT * (in SPARQL sense)
and reduced (cf. [16]).

3 Abstract Query Model

Figure 7 summarizes the abstract syntax of the visual queries in a UML-style model1

that shows the query structure and is the basis of further query semantics definition.
The hierarchy of nodes (Node) and structure edges (StructureEdge) describes the

query graph G spanning tree T(G), rooted at the main query node (an edge is a structure
edge, if it is not a condition one). Let an edge be plain, condition, local subquery or
global subquery one by its edgeType, and required, optional or negated one by its
relationType. A structure edge is a union edge, if its target is a union node (Union-
Node), a sub-union edge, if its source is a union node, and a union-free edge otherwise.
Let a structure edge characteristics apply also to the edge target node (so, there are e.g.
optional local subquery nodes).

A query fragment is a (maximal) set of nodes in T(G) connected by plain required
union-free edges only, together with structure edges incoming into fragment nodes and
condition edges outgoing from fragment nodes. Let the fragment head node be the
node that is above all other fragment nodes in T(G) and let any fragment head node
attributes (e.g. optional, local subquery, union-free) extend to the fragment, as well.

We call a query or its subquery fragment aggregated, if it has at least one aggre-
gated field or the distinct option (distinct = true) within its head node specified.

The aggregated field list and distinctness specification is allowed in the main query
node and the (local and global) subquery nodes only. The ordering, limit and offset
specifications are for the main query node and global subquery nodes only.

We shall assume also that there are no name coincidences among the explicit node
instance names and field aliases (except for alternative union branches).

Fig. 6. Condition and non-model links

1 The composition notation (a little diamond at an edge end) indicates the query item structure. For all
generalization groups in the diagram the superclass is a disjoint union of subclasses.
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The expressions, central both for field and condition specification, are defined on
the basis of compound and simple expressions, where the operators from SPARQL
expression notation [1] can be used to obtain expressions from simple expressions.

A simple expression can be a constant or a data item. A data item is either a context
item itself (a reference to a node or field defined elsewhere in the query), or, most
typically, it would be a path data item consisting of a path (e.g. an attribute name)
starting from a context item (the context item specification is omitted in the concrete
syntax in the most typical case, if it coincides with the node containing the expression’s
container field or condition, allowing it to become just a property name or a path
expression).

For fragments X and Y let X ! Y if Y is a direct child fragment of X (i.e., Y head
node is a child of some X node in T(G)). For a fragment X we let UC(X), the upwards
context of X, to consist of all fragments reachable from X upwards in T(G) (including
X itself).

We allow the condition edges from a fragment X nodes to go only to nodes inUC(X).
Let the optional-closure o(F) of a fragment F be the union of F and all fragments

downwards reachable from it by edges that are (i) union-free and plain, and (ii) required
or optional. For a fragment F let its selection set Sel(F) consist of all non-internal fields,
all query variables, as well as all “upwards” references to nodes in UC(F), found within
o(F). Let SubSel(F) be the union of Sel(H) for all subquery fragments H hosted in o(F).

Fig. 7. Core abstract syntax of queries
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The node and field references in the field and condition expressions within a
fragment F node n shall refer to only:

– SubSel(F), the results projected out of sub-fragments;
– Nodes from UC(F), the context information available for the fragment (not allowed

in aggregate field expressions);
– Nodes and instance fields from o(F) (the field references from an instance field

f body expression can go only to a n field above f; the node/field references to o(F)/
F shall not start a path expression).

The references to UC(F) shall allow locating the reference in the data model within
F (an equality assertion with a value computed within o(F), or participation in a path
data item would be sufficient to allow the reference usage).

4 Query Semantics

We define the query semantics via translation into SPARQL 1.1 [1], done in three
steps:

(1) providing the SPARQL query variable names for query model elements;
(2) defining local query model translations into SPARQL, and
(3) computing the SPARQL query inductively over the query fragment structure.

Let SS stand for all selection variables in query node direct SPARQL fragments of
select query form and SG – for all outer scope variables in node direct SPARQL
fragments of group graph pattern form.

The SPARQL query variables in a query G shall be ascribed to the following
variable points: VP(G) = DataNode [ Field [ DataItem [ QueryVariable [ SS [
SG. Let the SPARQL query variable name assignment m:VP(G) ! Var be such that:

(1) for x 2 SS [ SG, m(x) = x (i.e. a direct SPARQL variable is mapped onto itself);
(2) for x 2 QueryVariable, m(x) = x.variableName;
(3) for x 2 DataNode, m(x) = x.instanceName, if x has instanceName specified;
(4) for x 2 Field, m(x) = x.alias, if x has alias specified;
(5) if x 2 DataNode is a node/field reference and y 2 DataNode [ Field is the

corresponding node/field, then m(x) = m(y);
(6) m(x) = m(y), if x 2 Field and y = x.bodyExpression 2 DataItem and x does not

have alias specified (same variable for the field and the data item within it);
(7) m(x) = m(y) if the nodes x, y 2 DataNode are connected by a same data edge;
(8) m(x) 6¼ m(y), if the equality m(x) = m(y) does not follow by the rules (1)–(7).

It is clear that an appropriate mapping m can be generated for every query G. To
define m(x) for x 2 PathDataItem, a rule of thumb is to use the local name of the last
property in its path component with appropriate suffix to avoid name clashes.

For a data model reference d 2 ClassReference [ PropertyReference let t(d) be the
full IRI of the referred model entity. We extend t also to map property expressions that
are sequences of property references and their inverses to SPARQL property paths
concatenating the IRIs (and their inverses, as necessary) of the referred properties; let
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for brevity t(p) = m(v) for a path expression p and query variable v, if v = p.
propertyVariable.

Table 1 shows the definition of the “local” SPARQL-fragments S(x) for x a node,
an edge, a data item and a field, and filters FL(c) for c a condition.

For v 2 VP(G) let its container c(v) 2 Node [ Edge be the graph node or edge
where v is located. Let for a fragment F the set of F variables Vars(F) and the set of
F external variables Ext(F) be defined inductively over the fragment structure, as
follows:

– Vars(F) = {m(x) | x 2 VP(G) ^ c(x) 2 F} [ S
{Ext(F′) | F ! F′}

– Ext(F) = Vars(F), if F is (i) plain and (ii) either optional, union or sub-union
fragment; otherwise Ext(F) = {m(x) | x 2 Sel(F)}.

The SPARQL group graph pattern P(F), its non-filtered form PX(F) and external
filter EFL(F) for a query fragment F is defined recursively over the query sub-fragment
structure, as follows (we use the SPARQL algebra notation, as defined in [1]):

(1) If F is a union fragment (consisting of a single union node), let P(F) = Union(P
(F1),…, P(Fn)) for F ! {F1,.., Fn}; for all other cases use steps (2)–(13).

(2) Consider the raw fragment F0 obtained from F by replacing all node aggregate
field function calls by their arguments (if F is non-aggregate, then F0 = F).

(3) Join the local SPARQL fragments S(x) for data nodes, edges and group graph
pattern direct SPARQL clauses within F0 to obtain the initial pattern P0.

(4) Join to P0 the patterns P(H) of all required subquery fragments hosted by F0

nodes, as well as full select direct SPARQL clauses to obtain P1.

Table 1. Local SPARQL translations of query model elements

n 2 Node S(x) = BGP(m(n) rdf:type t(n.classRef.class)), if n.classRef is defined
S(x) = BGP(m(n) rdf:type m(n.classVariable)), if n.classVariable is defined;
otherwise S(x) is empty

e 2 Edge S(e) = BGP(m(e.rsc) t(e.propertyExpr) m(e.trg)), if e.propertyExpr is
defined, otherwise S(e) is empty

d 2 DataItem S(e) = BGP(m(d.startingPoint) t(d.path) m(d)), if d is a path data item,
otherwise S(d) is empty

x 2 Expression Let e1,…, en be all (possibly none) data items contained in the expression
x = x(e1,.., en)
Let for x its direct translation be T(x) = x(m(e1),…, m(en)) and support
pattern Q(x) be the join (the concatenation) of all S(ei)

f 2 Field Let x be f body expression
Let S0(f) = Q(x), if x 2 DataItem and m(x) = m(f), otherwise let S0(f) be Q(x)
extended by BIND(T(x) AS m(f))
Let S(f) be S0(f), if f.requireValues, and OPTIONAL {S0(f)} otherwise

c 2 Condition Let x be c condition expression
If Q(x) is empty (there are no property references within x), let FL(c) = T(x),
otherwise let FL(c) = EXISTS{Q(x) FILTER (T(x))}
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(5) Left join (add optional SPARQL subqueries) the patterns P(H) to P1 of all
optional subquery fragments hosted by F0 nodes, to obtain P2.

(6) Extend P2 with local SPARQL fragments for fields in F0, obtaining P3. The
extension ordering has to respect the instance field ordering in all F0/F nodes, as
well as the fields not aggregated in F have to come before F aggregated fields.
These conditions ensure that a node instance field body expression can refer to
an earlier instance field of the same node, as well as that aggregated field body
expressions can refer to instance fields within the nodes of the same fragment.
The placement of subquery fragments before the fields enable the field body
expressions to refer to the results projected out of the subqueries.

(7) Left join to P3 the non-filtered patterns PX(H) of plain optional fragments
H hosted by F0 nodes; each fragment PX(H) is joined, taking into account the
corresponding external filter expression EFL(H), denote the result P4.

(8) Subtract (using Minus clause) from P4 the patterns P(H) for all negated global
subquery fragments hosted by F0, denote the result P*.

(9) Collect the F0 filter expressions specified in fragment node conditions into FL0.
(10) Add fn:not(exists(P(Fr))) to FL0 for all negated plain and local subquery

fragments Fr, hosted by F0, (the semantics of negated plain and local subquery
fragments coincide). Denote the result FL1.

(11) The raw SPARQL pattern corresponding to F is R(F) = Filter(FL1, P
*).

(12) If F is an aggregated fragment, add over R(F) the aggregation for all aggregate
fields in F head node, with all non-aggregated variables in Ext(F) forming the
grouping set; denote the result R′(F). For a non-aggregated F let R′(F) = R(F).

(13) Let R*(F) be obtained from R′(F) by applying the order by, offset and limit
operations (the offset and limit operations are allowed only for the main query
and for global subquery fragments). Let P(F) = Project(R*(F), Ext(F)).

For a plain optional union-free F let PX(F) = P* and EFL(F) = FL1 (since F is non-
aggregated, Ext(F) = Vars(F)). In all other cases let PX(F) = P(F) and EFL(F) = true.

This completes the visual query semantics description. The algorithm described
here has been implemented in the ViziQuer tool, including a few adaptations required
to successfully run the queries over concrete vendor-specific SPARQL endpoints (e.g.
OpenLink Virtuoso).

5 User Studies

A pilot user study on visual query readability by domain experts without IT training
has been reported in [16], indicating that most of the participants (6 out of 7) were able
to correctly interpret at least 70% of visually presented queries; there has been a similar
interpretation success rate both for queries that involve aggregation and those that do
not, also observing that the subquery notation is not causing a particular difficulty (the
success rates for 3 queries involving subqueries were 6/7, 6/7 and 4/7) [16].

A new user study was conducted to show that there is a range of data analysis queries
(involving aggregation and subqueries) over RDF data that are for IT-trained users
(without specific background in SPARQL) easier to compose in the visual notation and
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tool than to write in the textual SPARQL notation. The user study was held in con-
junction with a presentation on SPARQL and RDF data querying within the Knowledge
Engineering course for the Master’s degree computing students at the University of
Latvia. The study started with the presentation on SPARQL (including a hands-on
session over the hospital data endpoint) for 90 min with half of it devoted to the general
presentation of SPARQL and the other half to the usage of SPARQL in the context of
the hospital data. The ViziQuer notation and tool then was presented for 25 min. The 30
students attending the class were randomly split into two groups of 15 with the groups
doing SPARQL queries and the visual notation queries respectively. The students were
informed about the test purpose, methodology and voluntary participation. Although the
student’s results shall be counted towards the credit in a course homework, a similar
credit can be obtained by solving the same tasks outside the user study participation.
There were two students from the SPARQL group who did not participate in the user
study and chose to do visual queries instead of the assigned SPARQL queries; their
results are not included in the query result analysis, so leaving 13 participants writing
SPARQL queries and 15 doing queries in the visual notation.

There were 10 basic tasks given to the users corresponding to different query pat-
terns: (1) class-attribute-condition, (2) class-attribute-links-conditions, (3) count+con-
dition, (4) count+link+conditions, (5) statistics by attribute (with link and condition),
(6) subquery (condition on linked item count), (7) count over condition on subquery
results, (8) existential link and sum aggregate, (9) nested subqueries and (10) negated
links. There was 70 min time limit for the query completion. Table 2 provides the
success of the participants on the queries (+: success, /: notable partial success (not
counted in statistics), -: not solved, a: attempted query with no submitted solution). The
columns U indicate the user ID’s, the columns 1–10 correspond to the tasks; the table
left part shows SPARQL text writers and the right part – the visual notation users.

Table 2. Raw test results

U 1 2 3 4 5 6 7 8 9 10 U 1 2 3 4 5 6 7 8 9 10

2 + a / + 1 + / + + + − − −

3 + / + + + / / a 4 + + + + + + + / −

8 + + 5 + + + + + + + −

9 + − + − a 6 + + + + + + + a
11 + + + − − a 7 + a + + a
12 + + + + / a 10 + + + + + a
14 + 13 + + + + + a
17 + + 15 + + + + / + + + + +
19 + + + + a 16 + + + + + a
22 + + + + a / 18 + + + + + − − −

23 − + + a 20 + + + − +
24 + + + + + / + + 21 + + + + a + a
25 + 26 + + + + / + + + a

29 + / + / / /
30 + + + + + a − −
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The rather low overall mean test results (on average 2.92 fully successful queries
per participant in SPARQL query writing and 5.27 queries in visual notation) can be
partly explained by the limited time the users had for a large number of query creation
in a new notation. A comparative analysis of both used notations still can be performed
by creating a joint rank of participants by the number of their fully successful queries,
finding the rank sums A = 257.5 for SPARQL writing users and B = 148.5 for visual
notation users, and calculating the test statistics Z = 3.1785 and p-value 0.0007 < 0.05
threshold for the null hypothesis that writing queries for the IT-trained users in
SPARQL is easier or about as easy than composing the queries in the visual notation.
The calculation details, the user tasks and the materials needed for the user study
reproduction are available on paper’s supplementary material site. The visual notation
user difficulties with Task 8 (just 2 successful results out of 8 attempts) indicate the
need for explicit existential query design pattern in the query notation presentation.

6 Conclusions

We have presented a notation for RDF data analysis query specification in the style of
extended UML class diagrams; the notation is able to cover most of SPARQL 1.1
select query constructs, including basic graph patterns, as well as optional and negated
blocks, aggregation, grouping and subqueries, without query nesting structure
restrictions.

The query notation is meant to be used both by general IT experts who may find
using the notation convenient in parallel with textual SPARQL query writing and by
non-IT trained domain experts for whom the direct SPARQL query reading and writing
is generally expected to be too difficult (cf. e.g. [10]).

The user studies performed so far have shown that non-IT end users shall be able
mostly to read and understand the basic visual query notation (including subqueries)
[16], as well as that already the current generic query creation environment shall
provide an advantage over textual SPARQL query writing in RDF data query creation
for general IT experts that do not have previous specific training in SPARQL.

There is web-based tool support for the introduced notation, described in [17].
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