
UseR !

Chris Chapman
Elea McDonnell Feit

R for
Marketing
Research and
Analytics
 Second Edition

Use R!

Series Editors

Robert Gentleman, Division of Public Health Sciences, San Mateo, CA, USA
Kurt Hornik, Department of Finance, Accounting and Statistics, Wu Wien, Wien,
Austria
Giovanni Parmigiani, Dana-Farber Cancer Institute, Boston, USA

Use R!

This series of inexpensive and focused books on R will publish shorter books
aimed at practitioners. Books can discuss the use of R in a particular subject area
(e.g., epidemiology, econometrics, psychometrics) or as it relates to statistical topics
(e.g., missing data, longitudinal data). In most cases, books will combine LaTeX
and R so that the code for figures and tables can be put on a website. Authors
should assume a background as supplied by Dalgaard’s Introductory Statistics with
R or other introductory books so that each book does not repeat basic material.

More information about this series at http://www.springer.com/series/6991

http://www.springer.com/series/6991

Chris Chapman • Elea McDonnell Feit

R for Marketing Research
and Analytics
Second Edition

123

Chris Chapman
Google
Seattle, WA, USA

Elea McDonnell Feit
Drexel University
Philadelphia, PA, USA

ISSN 2197-5736 ISSN 2197-5744 (electronic)
Use R!
ISBN 978-3-030-14315-2 ISBN 978-3-030-14316-9 (eBook)
https://doi.org/10.1007/978-3-030-14316-9

Library of Congress Control Number: 2019932720

1st edition: © Springer International Publishing Switzerland 2015
2nd edition: © Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-14316-9

Preface

We are here to help you learn R for marketing research and analytics.

R is a great choice for marketing analysts. It offers unsurpassed capabilities for
fitting statistical models. It is extensible and able to process data from many
different systems, in a variety of forms, for both small and large data sets. The R
ecosystem includes the widest available range of established and emerging statis-
tical methods and visualization techniques. Yet its use in marketing lags other fields
such as statistics, econometrics, psychology, and bioinformatics. With your help,
we hope to change that!

This book is designed for two audiences: practicing marketing researchers and
analysts who want to learn R and students or researchers from other fields who wish
to review selected marketing topics in an R context.

What are the prerequisites? Simply that you are interested in R for marketing, are
conceptually familiar with basic statistical models such as linear regression, and are
willing to engage in hands-on learning. This book will be particularly helpful to
analysts who have some degree of programming experience and wish to learn R. In
Chap. 1, we describe additional reasons to use R (and a few reasons perhaps not to
use R).

The hands-on part is important. We teach concepts gradually in a sequence across
the first seven chapters and ask you to type our examples as you work; this book is
not a cookbook-style reference. We spend some time (as little as possible) in Part I
on the basics of the R language and then turn in Part II to applied, real-world
marketing analytics problems. Part III presents a few advanced marketing topics.
Every chapter shows the power of R, and we hope each one will teach you
something new and interesting.

v

Specific features of this book are:

• It is organized around marketing research tasks. Instead of generic examples, we
put methods into the context of marketing questions.

• We presume only basic statistics knowledge and use a minimum of mathe-
matics. This book is designed to be approachable for practitioners and does not
dwell on equations or mathematical details of statistical models (although we
give references to those texts).

• This is a didactic book that explains statistical concepts and the R code. We
want you to understand what we’re doing and learn how to avoid common
problems in both statistics and R. We intend the book to be readable and to
fulfill a different need than references and cookbooks available elsewhere.

• The applied chapters demonstrate progressive model building. We do not pre-
sent “the answer” but instead show how an analyst might realistically conduct
analyses in successive steps where multiple models are compared for statistical
strength and practical utility.

• The chapters include visualization as a part of core analyses. We don’t regard
visualization as a standalone topic; rather, we believe it is an integral part of data
exploration and model building.

• You will learn more than just R. In addition to core models, we include topics
such as structural models and transaction analysis that may be new and useful
even for experienced analysts.

• The book reflects both traditional and Bayesian approaches. Core models are
presented with traditional (frequentist) methods, while later sections introduce
Bayesian methods for linear models and conjoint analysis.

• Most of the analyses use simulated data, which provides practice in the R
language along with additional insight into the structure of marketing data. If
you are inclined, you can change the data simulation and see how the statistical
models are affected.

• Where appropriate, we call out more advanced material on programming or
models so that you may either skip it or read it, as you find appropriate. These
sections are indicated by * in their titles (such as This is an advanced section*).

What do we not cover? For one, this book teaches R for marketing and does not
teach marketing research in itself. We discuss many marketing topics but omit
others that would repeat analytic methods. As noted above, we approach statistical
models from a conceptual point of view and skip the mathematics. A few spe-
cialized topics have been omitted due to complexity and space; these include
customer lifetime value models and econometric time series models. In the R
language, we do not cover the “tidyverse” (Sect. 1.5) because it is an optional part
of the language and would complicate the learning process. Overall, we believe the
topics here represent a great sample of marketing research and analytics practice. If
you learn to perform these, you’ll be well equipped to apply R in many areas of
marketing.

vi Preface

Why are we the right teachers? We’ve used R and its predecessor S for a combined
35 years since 1997, and it is our primary analytics platform. We perform marketing
analyses of all kinds in R, ranging from simple data summaries to complex analyses
involving thousands of lines of custom code and newly created models.

We’ve also taught R to many people. This book grew from courses the authors have
presented at American Marketing Association (AMA) events including the
Academy of Marketing Analytics at Emory University and several years of the
Advanced Research Techniques Forum (ART Forum). As noted in our
Acknowledgements below, we have taught R to students in many workshops at
universities and firms. At last count, more than 40 universities used the first edition
in their marketing analytics courses. All of these students’ and instructors’ expe-
riences have helped to improve the book.

What’s New in the Second Edition

This second edition focuses on making the book more useful for students,
self-learners, and instructors. The code has proven to be very stable. Except for one
line (updated at the book’s Web site), all of the code and examples from the first
edition still work more than four years later. We have added one chapter, and
otherwise, the marketing topics and statistical models are the same as in the first
edition. The primary changes in this edition are:

• New exercises appear at the end of each chapter. Several of these use real-world
data, and there are example solutions at the book’s Web site.

• A new chapter discusses analysis of behavior sequences (Chap. 14) using
Markov chains. These methods are applicable to many sources of behavioral and
other data comprising sequences of discrete events, such as application usage,
purchases, and life events, as well as non-marketing data including physical
processes and genomic sequences. We use a published Web server log file to
demonstrate the methods applied to real data.

• Classroom slides are available for instructors and self-learners at the book’s
Web site. These include the slides themselves, the raw code that they discuss,
and Rmarkdown and LaTeX files that generate the slides and may be edited for
your own use.

• For our various data sets, we present additional details about how such data
might be acquired. For example, when a data set represents consumer survey
data, we describe how the data might be gathered and a brief description of
typical survey items.

• A new appendix describes options for reproducible research in R and explains
the basics of R Notebooks (Appendix B). R Notebooks are a simple yet pow-
erful way to create documents in R with integrated code, graphics, and formatted
text. They may be used to create documents as simple as homework exercises,

Preface vii

or as complex as final deliverable reports for clients, with output in HTML,
PDF, or Microsoft Word formats.

• We have updated other content as needed. This includes additional explana-
tions, code, and charts where warranted; up-to-date references; and correction of
minor errors.

Acknowledgements

We thank many people who made this book possible. First are many participants in
our workshops and classes over the years, including students at Drexel University,
Boston University, Temple University, the Wharton School of the University of
Pennsylvania, and the University of Washington; practitioners at Google and
URBN, Inc.; and workshop attendees at the Advanced Research Techniques Forum
(ART Forum), the Sawtooth Software Conference, and the Academy of Marketing
Analytics at Emory University. They provided valuable feedback, and we hope
their questions and experiences will benefit you.

In the marketing academic and practitioner community, we had valuable feedback
from Ken Deal, Fred Feinberg, Shane Jensen, Jake Lee, Hui Lin, Dave Lyon, Bruce
McCullough, Bernd Skiera, Hiroshi Torii, and Randy Zwitch. Many readers of the
book’s first edition sent notes, reviewed it online, and reported errata. We appre-
ciated the supportive and helpful comments.

Chris’s colleagues in the research community at Google provided extensive feed-
back on portions of the book. We thank the following current and former Googlers:
Eric Bahna, Mario Callegaro, Marianna Dizik, Rohan Gifford, Tim Hesterberg,
Shankar Kumar, Norman Lemke, Paul Litvak, Katrina Panovich, Joe Paxton, Marta
Rey-Babarro, Kerry Rodden, Dan Russell, Angela Schörgendorfer, Jason Schwarz,
Steven Scott, Rebecca Shapley, Bob Silverstein, Gill Ward, John Webb, Ercan
Yildiz, and Yori Zwols for their encouragement and comments.

The staff and editors at Springer helped us smooth the process, especially Hannah
Bracken and Jon Gurstelle for the first edition, and Lorraine Klimowich and
Nicholas Philipson for the second edition. The UseR! series editors, Robert
Gentleman, Kurt Hornik, and Giovanni Parmigiani, provided early feedback. They
have nurtured a superb series of R texts, and we are honored to contribute to it.

Much of this book was written in public and university libraries, and we thank them
for their hospitality alongside their literary resources. Portions of the book were
written during pleasant days at the New York Public Library, Christoph Keller Jr.
Library at the General Theological Seminary (New York), New Orleans Public
Library, British Library (London), University of California San Diego Giesel
Library, University of Washington Suzzallo and Allen Libraries, Sunnyvale Public
Library (California), West Osceola Public Library (Florida), Howard County
Library System (Maryland), Montgomery County Public Libraries (Maryland),

viii Preface

Kennett Library (Pennsylvania), Utica Public Library (Michigan), Clinton-Macomb
Public Library (Michigan), San Juan Island Library (Washington), and in the dining
hall of Holden, Washington (see Sect. 2.4.4). We give special thanks to the Tokyo
Metropolitan Central Library, where the first words, code, and outline were written,
along with much more in both the first and second editions.

Our families supported us in weekends and nights of editing, and they endured
more discussion of R than is fair for any layperson. Thank you, Cristi, Maddie, Jeff,
and Zoe.

Most importantly, we thank you, the reader. We’re glad you’ve decided to inves-
tigate R, and we hope to repay your effort. Let’s start!

Seattle, WA, USA/New York, NY, USA Chris Chapman
Philadelphia, PA, USA Elea McDonnell Feit
January 2019

Preface ix

Contents

Part I Basics of R

1 Welcome to R . 3
1.1 What is R? . 3
1.2 Why R? . 4
1.3 Why Not R? . 5
1.4 When R? . 6

1.4.1 R Versus Python, Julia, and Others 6
1.5 Which R? Base or Tidy? . 7
1.6 Using This Book . 8

1.6.1 About the Text . 8
1.6.2 About the Data . 9
1.6.3 Online Material . 10
1.6.4 When Things Go Wrong . 10

1.7 Key Points . 12

2 An Overview of the R Language . 13
2.1 Getting Started . 13

2.1.1 Initial Steps . 13
2.1.2 Starting R . 14

2.2 A Quick Tour of R’s Capabilities . 15
2.3 Basics of Working with R Commands 19
2.4 Basic Objects . 20

2.4.1 Vectors . 20
2.4.2 Help! A Brief Detour . 23
2.4.3 More on Vectors and Indexing 25
2.4.4 aaRgh! A Digression for New Programmers 27
2.4.5 Missing and Interesting Values 27
2.4.6 Using R for Mathematical Computation 29
2.4.7 Lists . 29

xi

2.5 Data Frames . 31
2.6 Loading and Saving Data . 34

2.6.1 Image Files . 35
2.6.2 CSV Files . 36

2.7 Writing Your Own Functions* . 37
2.7.1 Language Structures* . 39
2.7.2 Anonymous Functions* . 40

2.8 Clean Up! . 41
2.9 Key Points . 42
2.10 Learning More* . 43
2.11 Exercises . 44

2.11.1 Preliminary Note on Exercises 44
2.11.2 Exercises . 44

Part II Fundamentals of Data Analysis

3 Describing Data . 49
3.1 Simulating Data . 49

3.1.1 Store Data: Setting the Structure 50
3.1.2 Store Data: Simulating Data Points 51

3.2 Functions to Summarize a Variable . 54
3.2.1 Discrete Variables . 54
3.2.2 Continuous Variables . 56

3.3 Summarizing Data Frames . 57
3.3.1 summary() . 58
3.3.2 describe() . 59
3.3.3 Recommended Approach to Inspecting Data 60
3.3.4 apply()* . 60

3.4 Single Variable Visualization . 62
3.4.1 Histograms . 62
3.4.2 Boxplots . 66
3.4.3 QQ Plot to Check Normality* 69
3.4.4 Cumulative Distribution* . 70
3.4.5 Language Brief: by() and aggregate() 71
3.4.6 Maps . 73

3.5 Key Points . 75
3.6 Data Sources . 75
3.7 Learning More* . 76
3.8 Exercises . 76

3.8.1 E-Commerce Data for Exercises 76
3.8.2 Exercises . 77

xii Contents

4 Relationships Between Continuous Variables 79
4.1 Retailer Data . 79

4.1.1 Simulating the Data . 80
4.1.2 Simulating Online and In-store Sales Data 81
4.1.3 Simulating Satisfaction Survey Responses 82
4.1.4 Simulating Non-response Data 83

4.2 Exploring Associations Between Variables
with Scatterplots . 84
4.2.1 Creating a Basic Scatterplot with plot() 85
4.2.2 Color-Coding Points on a Scatterplot 88
4.2.3 Adding a Legend to a Plot . 89
4.2.4 Plotting on a Log Scale . 90

4.3 Combining Plots in a Single Graphics Object 91
4.4 Scatterplot Matrices . 93

4.4.1 pairs() . 93
4.4.2 scatterplotMatrix() . 95

4.5 Correlation Coefficients . 96
4.5.1 Correlation Tests . 97
4.5.2 Correlation Matrices . 98
4.5.3 Transforming Variables Before Computing

Correlations . 99
4.5.4 Typical Marketing Data Transformations 101
4.5.5 Box-Cox Transformations* . 102

4.6 Exploring Associations in Survey Responses 103
4.6.1 jitter() . 104
4.6.2 polychoric()* . 105

4.7 Key Points . 106
4.8 Data Sources . 107
4.9 Learning More* . 107
4.10 Exercises . 108

5 Comparing Groups: Tables and Visualizations 111
5.1 Simulating Consumer Segment Data 111

5.1.1 Segment Data Definition . 112
5.1.2 Language Brief: for() Loops 114
5.1.3 Language Brief: if() Blocks 115
5.1.4 Final Segment Data Generation 117

5.2 Finding Descriptives by Group . 119
5.2.1 Language Brief: Basic Formula Syntax 122
5.2.2 Descriptives for Two-Way Groups 122
5.2.3 Visualization by Group: Frequencies

and Proportions . 124
5.2.4 Visualization by Group: Continuous Data 127

Contents xiii

5.3 Key Points . 130
5.4 Data Sources . 131
5.5 Learning More* . 131
5.6 Exercises . 131

6 Comparing Groups: Statistical Tests . 133
6.1 Data for Comparing Groups . 133
6.2 Testing Group Frequencies: chisq.test() 133
6.3 Testing Observed Proportions: binom.test() 137

6.3.1 About Confidence Intervals . 137
6.3.2 More About binom.test() and Binomial

Distributions . 138
6.4 Testing Group Means: t.test() . 139
6.5 Testing Multiple Group Means: Analysis of Variance

(ANOVA) . 141
6.5.1 Model Comparison in ANOVA* 143
6.5.2 Visualizing Group Confidence Intervals 144
6.5.3 Variable Selection in ANOVA: Stepwise

Modeling* . 145
6.6 Bayesian ANOVA: Getting Started* 146

6.6.1 Why Bayes? . 147
6.6.2 Basics of Bayesian ANOVA* 147
6.6.3 Inspecting the Posterior Draws* 150
6.6.4 Plotting the Bayesian Credible Intervals* 152

6.7 Key Points . 153
6.8 Learning More* . 154
6.9 Exercises . 154

7 Identifying Drivers of Outcomes: Linear Models 157
7.1 Amusement Park Data . 158

7.1.1 Simulating the Amusement Park Data 158
7.2 Fitting Linear Models with lm() . 160

7.2.1 Preliminary Data Inspection 161
7.2.2 Recap: Bivariate Association 163
7.2.3 Linear Model with a Single Predictor 164
7.2.4 lm Objects . 164
7.2.5 Checking Model Fit . 167

7.3 Fitting Linear Models with Multiple Predictors 170
7.3.1 Comparing Models . 172
7.3.2 Using a Model to Make Predictions 174
7.3.3 Standardizing the Predictors 174

7.4 Using Factors as Predictors . 176

xiv Contents

7.5 Interaction Terms . 178
7.5.1 Language Brief: Advanced Formula Syntax* 181
7.5.2 Caution! Overfitting . 182
7.5.3 Recommended Procedure for Linear Model

Fitting . 182
7.5.4 Bayesian Linear Models with MCMCregress()* . . . 183

7.6 Key Points . 185
7.7 Data Sources . 186
7.8 Learning More* . 187
7.9 Exercises . 188

7.9.1 Simulated Hotel Satisfaction and Account Data 188
7.9.2 Exercises . 188

Part III Advanced Marketing Applications

8 Reducing Data Complexity . 193
8.1 Consumer Brand Rating Data . 193

8.1.1 Rescaling the Data . 194
8.1.2 Aggregate Mean Ratings by Brand 196

8.2 Principal Component Analysis and Perceptual Maps 198
8.2.1 PCA Example . 198
8.2.2 Visualizing PCA. 200
8.2.3 PCA for Brand Ratings . 201
8.2.4 Perceptual Map of the Brands 203
8.2.5 Cautions with Perceptual Maps 205

8.3 Exploratory Factor Analysis . 206
8.3.1 Basic EFA Concepts . 207
8.3.2 Finding an EFA Solution . 208
8.3.3 EFA Rotations . 210
8.3.4 Using Factor Scores for Brands 213

8.4 Multidimensional Scaling . 215
8.4.1 Non-metric MDS . 215

8.5 Key Points . 217
8.6 Data Sources . 218
8.7 Learning More* . 219
8.8 Exercises . 219

8.8.1 PRST Brand Data . 219
8.8.2 Exercises . 220

9 Additional Linear Modeling Topics . 223
9.1 Handling Highly Correlated Variables 224

9.1.1 An Initial Linear Model of Online Spend 224
9.1.2 Remediating Collinearity . 227

Contents xv

9.2 Linear Models for Binary Outcomes: Logistic Regression 229
9.2.1 Basics of the Logistic Regression Model 229
9.2.2 Data for Logistic Regression of Season Passes 230
9.2.3 Sales Table Data . 231
9.2.4 Language Brief: Classes and Attributes

of Objects* . 232
9.2.5 Finalizing the Data . 233
9.2.6 Fitting a Logistic Regression Model 234
9.2.7 Reconsidering the Model . 236
9.2.8 Additional Discussion . 238

9.3 Hierarchical Models . 239
9.3.1 Some HLM Concepts . 239
9.3.2 Ratings-Based Conjoint Analysis for the

Amusement Park . 240
9.3.3 Simulating Ratings-Based Conjoint Data 241
9.3.4 An Initial Linear Model . 242
9.3.5 Initial Hierarchical Linear Model with lme4 244
9.3.6 Complete Hierarchical Linear Model 245
9.3.7 Conclusion for Classical HLM 247

9.4 Bayesian Hierarchical Linear Models* 247
9.4.1 Initial Linear Model with MCMCregress()* 248
9.4.2 Hierarchical Linear Model

with MCMChregress()* . 249
9.4.3 Inspecting Distribution of Preference* 252

9.5 A Quick Comparison of the Effects* 254
9.6 Key Points . 258
9.7 Data Sources . 259
9.8 Learning More* . 260
9.9 Exercises . 261

9.9.1 Online Visits and Sales Data for Exercises 261
9.9.2 Exercises for Collinearity and Logistic Regression . . . 262
9.9.3 Handbag Conjoint Analysis Data for Exercises 263
9.9.4 Exercises for Metric Conjoint and Hierarchical

Linear Models . 263

10 Confirmatory Factor Analysis and Structural Equation
Modeling . 265
10.1 The Motivation for Structural Models 266

10.1.1 Structural Models in This Chapter 267
10.2 Scale Assessment: Confirmatory Factor Analysis (CFA) 268

10.2.1 Simulating PIES CFA Data . 270
10.2.2 Estimating the PIES CFA Model 273
10.2.3 Assessing the PIES CFA Model 276

xvi Contents

10.3 General Models: Structural Equation Models 280
10.3.1 The Repeat Purchase Model in R 282
10.3.2 Assessing the Repeat Purchase Model 283

10.4 The Partial Least Squares (PLS) Alternative 285
10.4.1 PLS-SEM for Repeat Purchase 286
10.4.2 Visualizing the Fitted PLS Model* 288
10.4.3 Assessing the PLS-SEM Model 289
10.4.4 PLS-SEM with the Larger Sample 291

10.5 Key Points . 293
10.6 Learning More* . 294
10.7 Exercises . 295

10.7.1 Brand Data for Confirmatory Factor Analysis
Exercises . 295

10.7.2 Exercises for Confirmatory Factor Analysis 295
10.7.3 Purchase Intention Data for Structural Equation

Model Exercises . 295
10.7.4 Exercises for Structural Equation Models

and PLS SEM . 296

11 Segmentation: Clustering and Classification 299
11.1 Segmentation Philosophy . 299

11.1.1 The Difficulty of Segmentation 300
11.1.2 Segmentation as Clustering and Classification 301

11.2 Segmentation Data . 302
11.3 Clustering . 302

11.3.1 The Steps of Clustering . 303
11.3.2 Hierarchical Clustering: hclust() Basics 305
11.3.3 Hierarchical Clustering Continued: Groups

from hclust() . 308
11.3.4 Mean-Based Clustering: kmeans() 311
11.3.5 Model-Based Clustering: Mclust() 314
11.3.6 Comparing Models with BIC() 315
11.3.7 Latent Class Analysis: poLCA() 317
11.3.8 Comparing Cluster Solutions 320
11.3.9 Recap of Clustering . 322

11.4 Classification . 322
11.4.1 Naive Bayes Classification: naiveBayes() 323
11.4.2 Random Forest Classification:

randomForest() . 327
11.4.3 Random Forest Variable Importance 330

11.5 Prediction: Identifying Potential Customers* 332
11.6 Key Points . 336
11.7 Learning More* . 337

Contents xvii

11.8 Exercises . 338
11.8.1 Music Subscription Data for Exercises 338
11.8.2 Exercises . 339

12 Association Rules for Market Basket Analysis 341
12.1 The Basics of Association Rules . 342
12.2 Retail Transaction Data: Market Baskets 343

12.2.1 Example Data: Groceries 344
12.2.2 Supermarket Data . 346

12.3 Finding and Visualizing Association Rules 347
12.3.1 Finding and Plotting Subsets of Rules 350
12.3.2 Using Profit Margin Data with Transactions:

An Initial Start . 350
12.3.3 Language Brief: A Function for Margin

Using an Object’s class* . 352
12.4 Rules in Non-transactional Data: Exploring Segments

Again . 356
12.4.1 Language Brief: Slicing Continuous

Data with cut() . 357
12.4.2 Exploring Segment Associations 358

12.5 Key Points . 360
12.6 Learning More* . 361
12.7 Exercises . 361

12.7.1 Retail Transactions Data for Exercises 361
12.7.2 Exercises . 362

13 Choice Modeling . 363
13.1 Choice-Based Conjoint Analysis Surveys 364
13.2 Simulating Choice Data* . 365
13.3 Fitting a Choice Model . 369

13.3.1 Inspecting Choice Data . 370
13.3.2 Fitting Choice Models with mlogit() 371
13.3.3 Reporting Choice Model Findings 374
13.3.4 Share Predictions for Identical Alternatives 378
13.3.5 Planning the Sample Size for a Conjoint Study 379

13.4 Adding Consumer Heterogeneity to Choice Models 380
13.4.1 Estimating Mixed Logit Models with mlogit() . . . 381
13.4.2 Share Prediction for Heterogeneous Choice

Models . 384
13.5 Hierarchical Bayes Choice Models . 385

13.5.1 Estimating Hierarchical Bayes Choice Models
with ChoiceModelR . 385

13.5.2 Share Prediction for Hierarchical Bayes Choice
Models . 391

xviii Contents

13.6 Design of Choice-Based Conjoint Surveys* 393
13.7 Key Points . 395
13.8 Data Sources . 396
13.9 Learning More* . 396
13.10 Excercises . 397

14 Behavior Sequences . 399
14.1 Web Log Data . 399

14.1.1 EPA Web Data . 400
14.1.2 Processing the Raw Data . 401
14.1.3 Cleaning the Data . 401
14.1.4 Handling Dates and Times . 402
14.1.5 Requests and Page Types . 403
14.1.6 Additional HTTP Data . 405

14.2 Basic Event Statistics . 405
14.2.1 Events . 405
14.2.2 Events by Time . 406
14.2.3 Errors . 407
14.2.4 Active Users . 408

14.3 Identifying Sequences (Sessions) . 409
14.3.1 Extracting Sessions . 409
14.3.2 Session Statistics . 412

14.4 Markov Chains for Behavior Transitions 414
14.4.1 Key Concepts and Demonstration 415
14.4.2 Formatting the EPA Data for clickstream

Analysis . 416
14.4.3 Estimating the Markov Chain 419
14.4.4 Visualizing the MC Results . 419
14.4.5 Higher Order Chains and Prediction 420

14.5 Discussion and Questions . 423
14.6 Key Points . 424
14.7 Learning More* . 425
14.8 Exercises . 426

Conclusion . 429

Appendix A: R Versions and Related Software . 431

Appendix B: An Introduction to Reproducible Results
with R Notebooks . 439

Appendix C: Scaling Up . 447

Appendix D: Packages Used. 459

Contents xix

Appendix E: Online Materials and Data Files . 465

References . 469

Index . 479

xx Contents

Part I
Basics of R

Chapter 1
Welcome to R

1.1 What is R?

As a marketing analyst, you have no doubt heard of R. You may have tried R and
become frustrated and confused, after which you returned to other tools that are
“good enough.” You may know that R uses a command line and dislike that. Or you
may be convinced of R’s advantages for experts but worry that you don’t have time
to learn or use it.

We are here to help!Our goal is to present just the essentials, in theminimal necessary
time, with hands-on learning so you will come up to speed as quickly as possible to
be productive in R. In addition, we’ll cover a few advanced topics that demonstrate
the power of R and might teach advanced users some new skills.

A key thing to realize is that R is a programming language. It is not a “statistics
program” like SPSS, SAS, JMP, or Minitab, and doesn’t wish to be one. The official
R Project describes R as “a language and environment for statistical computing and
graphics.” Notice that “language” comes first, and that “statistical” is coequal with
“graphics.”R is a great programming language for doing statistics. The inventor of the
underlying language, John Chambers received the 1998 Association for Computing
Machinery (ACM) Software System Award for a system that “will forever alter the
way people analyze, visualize, and manipulate data …” [5].

R was based on Chambers’s preceding S language (S as in “statistics”) developed
in the 1970s and 1980s at Bell Laboratories, home of the UNIX operating system
and the C programming language. S gained traction among analysts and academics
in the 1990s as implemented in a commercial software package, S-PLUS. Robert
Gentleman and Ross Ihaka wished to make the S approach more widely available
and offered R as an open source project starting in 1997.

Since then, the popularity of R has grown geometrically. The real magic of R is that
its users are able to contribute developments that enhance R with everything from
additional core functions to highly specialized methods. And many do contribute!

© Springer Nature Switzerland AG 2019
C. Chapman and E. M. Feit, R For Marketing Research and Analytics, Use R!,
https://doi.org/10.1007/978-3-030-14316-9_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14316-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-14316-9_1

4 1 Welcome to R

Today there are over 13,000 packages of add on functionality available for R (see
http://cran.r-project.org/web/packages for the latest count).

If you have experience in programming, you will appreciate some of R’s key features
right away. If you’re new to programming, this chapter describes why R is special
and Chap.2 introduces the fundamentals of programming in R.

1.2 Why R?

There are many reasons to learn and use R. It is the platform of choice for the largest
number of statisticians who create new analytics methods, so emerging techniques
are often available first in R. R is rapidly becoming the default educational platform in
university statistics programs and is spreading to other disciplines such as economics
and psychology.

For analysts, R offers the largest and most diverse set of analytic tools and statistical
methods. It allows you to write analyses that can be reused and that extend the R
system itself. It runs onmost operating systems and interfaces well with data systems
such as online data and SQL databases. R offers beautiful and powerful plotting
functions that are able to produce graphics vastly more tailored and informative
than typical spreadsheet charts. Putting all of those together, R can vastly improve
an analyst’s overall productivity. Elea knows an enterprising analyst who used R to
automate the process of downloading data and producing a formattedmonthly report.
The automation saved him almost 40h of work each month…which he didn’t tell his
manager for a few months!

Then there is the community. Many R users are enthusiasts who love to help others
and are rewarded in turn by the simple joy of solving problems and the fact that they
often learn something new. R is a dynamic system created by its users, and there is
always something new to learn. Knowledge of R is a valuable skill in demand for
analytics jobs at a growing number of top companies.

R code is also inspectable; you may choose to trust it, yet you are also free to verify.
All of its core code and most packages that people contribute are open source. You
can examine the code to see exactly how analyses work and what is happening under
the hood.

Finally, R is free. It is a labor of love and professional pride for the R Core Devel-
opment Team, which includes eminent statisticians and computer scientists. As with
all masterpieces, the quality of their devotion is evident in the final work.

http://cran.r-project.org/web/packages

1.3 Why Not R? 5

1.3 Why Not R?

What’s not to love? No doubt you’ve observed that not everyone in the world uses
R. Being R-less is unimaginable to us yet there are reasons why some analysts might
not want to use it.

One reason not to use R is this: until you’ve mastered the basics of the language,
many simple analyses are cumbersome to do in R. If you’re new to R and want a table
of means, cross-tabs, or a t-test, it may be frustrating to figure out how to get them.
R is about power, flexibility, control, iterative analyses, and cutting-edge methods,
not point-and-click deliverables.

Another reason is if you do not like programming. If you’re new to programming,
R is a great place to start. But if you’ve tried programming before and didn’t enjoy
it, R will be a challenge as well. Our job is to help you as much as we can, and we
will try hard to teach R to you. However, not everyone enjoys programming. On the
other hand, if you’re an experienced coder R will seem simple (perhaps deceptively
so), and we will help you avoid a few pitfalls.

Some companies and their information technology or legal departments are skeptical
of R because it is open source. It is common for managers to ask, “If it’s free, how can
it be good?” There are many responses to that, including pointing out the hundreds of
books on R, its citation in peer-reviewed articles, and the list of eminent contributors
(in R, run the contributors() command and web search some of them). Or you
might try the engineer’s adage: “It can be good, fast, or cheap: pick 2.” R is good
and cheap, but not fast, insofar as it requires time and effort to master.

As for R being free, you should realize that contributors to R actually do derive
benefit; it just happens to be non-monetary. They are compensated through respect
and reputation, through the power their own work gains, and by the contributions
back to the ecosystem from other users. This is a rational economic model even when
the monetary price is zero.

A final concern about R is the unpredictability of its ecosystem. With packages
contributed by thousands of authors, there are priceless contributions along with
others that are mediocre or flawed. The downside of having access to the latest
developments is that many will not stand the test of time. It is up to you to determine
whether a method meets your needs, and you cannot always rely on curation or
authorities to determine it for you (although you will rapidly learn which authors and
which experts’ recommendations to trust). If you trust your judgment, this situation
is no different than with any software. Caveat emptor.

We hope to convince you that for many purposes, the benefits of R outweigh the
difficulties.

6 1 Welcome to R

1.4 When R?

There are a few common use cases for R:

• You want access to methods that are newer or more powerful than available else-
where. Many R users start for exactly that reason; they see a method in a journal
article, conference paper, or presentation, and discover that the method is available
only in R.

• You need to run an analysis many, many times. This is how the first author (here-
after, Chris) started his R journey; for his dissertation, he needed to bootstrap exist-
ing methods in order to compare their typical results to those of a new machine
learning model. R is perfect for model iteration.

• You need to apply an analysis to multiple data sets. Because everything is scripted,
R is great for analyses that are repeated across datasets. It even has tools available
for automated reporting.

• You need to develop a new analytic technique or wish to have perfect control and
insight into an existingmethod. For many statistical procedures, R is easier to code
than other programming languages.

• Your manager, professor, or coworker is encouraging you to use R. We’ve influ-
enced students and colleagues in this way and are happy to report that a large
number of them are enthusiastic R users today.

By showing you the power of R, we hope to convince you that your current tools are
not perfectly satisfactory. Evenmore deviously, we hope to rewrite your expectations
about what is satisfactory.

1.4.1 R Versus Python, Julia, and Others

If you are new to programming, you might wonder whether to learn R or Python
... or Julia, Matlab, Ruby, Go, Java, C++, Fortran, or others. Each language has a
somewhat unique value.

For interactive analyses and data visualization, with access to the latest developments
in statistics, R is unmatched. On the other hand, if you want your analytic work to
go into production and integrate with a larger system (such as a product or a web
site), Python is a great choice [176]. If high performance is essential to you, such as
working with massive data sets or models with high mathematical complexity, Julia
is an excellent option [210]. Go is also designed for massive scalability.

Another factor is whether you want to program more generally beyond analytics,
such as writing apps. Python is an excellent general purpose language. Many find
Python more approachable than C or C++, and it has broader support for statistics
and analytics than Go, Java, or Ruby.

1.4 When R? 7

If you often do a lot of directly mathematical work—such as writing equations for
models—then R is a fine choice, although youmight be more comfortable with Julia,
Matlab, or even venerable Fortran (whose name abbreviates formula translation).

If you work with other programmers, you might want to choose a language they
know, so they can help you. At the same time, most languages interact well with
others. For example, it is easy to write analytic code in R and to access it from
Python (and vice versa). Similarly, it is easy in R to include code from C, C++ [49],
Fortran, and SQL (Appendix C.1.4), among others. Many programmers end up using
several languages and find that transitioning among them is not difficult.

In short, for analyses with high flexibility and a straightforward programming envi-
ronment, R is a great choice.

1.5 Which R? Base or Tidy?

As theR languagehas evolved, it has begun to showdiversity of syntax and commands
that is analogous to linguistic dialects. In recent years, a significant distinction has
appeared: base R (the core language) versus the tidyverse. The tidyverse is a vast set
of add-on capabilities that extend base R with many new operators and functions,
inspired by a powerful philosophy of data organization (Wickham and Grolemund
[200]). It provides simple and efficient ways to manipulate, aggregate, and slice data;
to visualize data; and to perform a wide range of analytic tasks from summarization
to data mining.

Despite the power of the tidyverse, in this book we instead focus on programming
in base R. Why? For several reasons:

• Fluency in base R is essential for all R users, so you must learn it. It is the basis
for all R commands, packages, language structures, and analyses. Base R will
always work, even when a particular section of code using it is less compact than
a tidyverse alternative.

• The tidyverse introduces functions that duplicatemany capabilities and approaches
of base R, such as different commands to summarize data. We believe it is eas-
ier to learn a single dialect of a language first rather than to learn two dialects
simultaneously.

• There are significant syntactic differences in the tidyverse. In particular, the tidy-
verse often uses “pipe” operators that cause program flow to be read left-to-right,
whereas base R operations read right-to-left, as do most programming languages.
In earlier chapters where we teach programming, covering both styles would be
overly complicated for new programmers. (Imagine trying to read English in vari-
able direction from one sentence to the next. For example, read this in reverse:
Context in confusing is it but, read to difficult not is sentence this.)

8 1 Welcome to R

• Many of the analyses in later chapters would not benefit from the tidyverse; they
use packages that depend only on base R. Thus, learning the tidyverse approach
would have relatively little benefit as the book progresses.

• Whereas this book focuses on statistical approaches to marketing problems, at
the time of writing the tidyverse is optimized more for data manipulation and
visualization. Thus we view it as complementary but somewhat outside the focus
of this book.

There is one situation in which we recommend that you start with the tidyverse
instead of base R: if your interest is primarily in routine data manipulation and visu-
alization with little or no focus on statistical methods. For example, if you expect to
produce many reports and charts summarizing data, and are not especially interested
in statistical modeling or programming, the tidyverse approach may be especially
productive for you at the beginning. Then you can learn more about base R later.

For most users, we recommend to become fluent in base R. With that under your
belt, we recommend then to learn the tidyverse approach from a text that focuses on
it, such as the excellent text from Wickham and Grolemund [200].

1.6 Using This Book

This book is intended to be didactic and hands-on, meaning that we want to teach
you about R and the models we use in plain English, and we expect you to engage
with the code interactively in R. It is designed for you to type the commands as
you read. (We also provide code files for download from the book’s web site; see
Sect. 1.6.3 below.)

1.6.1 About the Text

R commands for you to run are presented in code blocks like this:

> citation()

To cite R in publications use:

R Core Team (2018). R: A language and environment for statistical

computing. R Foundation for Statistical Computing , Vienna , Austria.

URL https://www.R-project.org/.

...

We describe these code blocks and interacting with R in Chap.2. The code generally
follows theGoogle style guide for R (available at https://google.github.io/styleguide/
Rguide.xml) except whenwe thought a deviationmight make the code or text clearer.
(As you learn R, you will wish to make your code readable; the Google guide is very
useful for code formatting.)

https://google.github.io/styleguide/Rguide.xml
https://google.github.io/styleguide/Rguide.xml

1.6 Using This Book 9

When we refer to R commands, add-on packages, or data in the text outside of code
blocks, we set the names in monospace type like this: citation(). We include
parentheses on function (command) names to indicate that they are functions, such
as the summary() function (Sect. 2.4.1), as opposed to an object such as the
Groceries data set (Sect. 12.2.1).

When we introduce or define significant new concepts, we set them in italic, such as
vectors. Italic is also used simply for emphasis.

We teach the R language progressively throughout the book, and much of our cover-
age of the language is blended into chapters that covermarketing topics and statistical
models. In those cases, we present crucial language topics inLanguageBrief sections
(such as Sect. 3.4.5). To learn as much as possible about the R language, you’ll need
to read the Language Brief sections even if you only skim the surrounding material
on statistical models.

Some sections cover deeper details or more advanced topics, and may be skipped.
We note those with an asterisk in the section title, such as Learning More*.

1.6.2 About the Data

Most of the data sets that we analyze in this book are simulated data sets. They are
created with R code to have a specific structure. This has several advantages:

• It allows us to illustrate analyses where there is no publicly available marketing
data. This is valuable because few firms share their proprietary data for analyses
such as segmentation.

• It allows the book to bemore self-contained and less dependent on data downloads.
• It makes it possible to alter the data and rerun analyses to see how the results
change.

• It lets us teach important R skills for handling data, generating random numbers,
and looping in code.

• It demonstrates how one can write analysis code while waiting for real data. When
the final data arrives, you can run your code on the new data.

There are two exceptions to our usage of simulated data. First, many end-of-chapter
exercises use an actual e-commerce data set (Sect. 3.8.1). Second, we use actual store
transaction data in Chap. 12; such data is complex to create and appropriate data has
been published [23].

We recommend you work through data simulation sections where they appear; they
are designed to teach R and to illustrate points that are typical of marketing data.
However, when you need data quickly to continue with a chapter, it is available for
download as noted in the next section and again in each chapter.

Whenever possible you should also try to perform the analyses here with your own
data sets. We work with data in every chapter, but the best way to learn is to adapt

10 1 Welcome to R

the analyses to other data and work through the issues that arise. Because this is
an educational text, not a cookbook, and because R can be slow going at first, we
recommend to conduct such parallel analyses on tasks where you are not facing
urgent deadlines.

At the beginning, it may seem overly simple to repeat analyses with your own data,
but when you try to apply an advanced model to another data set, you’ll be much
better prepared if you’ve practiced with multiple data sets all along. The sooner you
apply R to your own data, the sooner you will be productive in R.

1.6.3 Online Material

This book has a companion website: http://r-marketing.r-forge.r-project.org. The
website exists primarily to host the R code and data sets for download, although we
encourage you to use those sparingly; you’ll learn more if you type the code and
create the data sets by simulation as we describe.

On the website, you’ll find:

• A welcome page for news and updates: http://r-marketing.r-forge.r-project.org
• Code files in .R (text) format: http://r-marketing.r-forge.r-project.org/code
• Slides for classroom usage, along with RMarkdown files used to create the slides:
http://r-marketing.r-forge.r-project.org/slides

• Copies of data sets that are used in the book: http://r-marketing.r-forge.r-project.
org/data. These are generally downloaded directly into R using the read.csv()
command (you’ll see that command inSect. 2.6.2, andwill find code for an example
download in Sect. 3.1)

• A ZIP file containing all of the data and code files: http://r-marketing.r-forge.r-
project.org/data/chapman-feit-rintro.zip

Links to online data are provided in the form of shortened goo.gl links to save
typing. More detail on the online materials and ways to access the data are described
in Appendix E.

1.6.4 When Things Go Wrong

When you learn something as complex as R or new statistical models, you will
encounter many large and small warnings and errors. Also, the R ecosystem is
dynamic and things will change after this book is published. We don’t wish to scare
you with a list of concerns, but we do want you to feel reassured about small dis-
crepancies and to know what to do when larger bugs arise. Here are a few things to
know and to try if one of your results doesn’t match this book:

http://r-marketing.r-forge.r-project.org
http://r-marketing.r-forge.r-project.org
http://r-marketing.r-forge.r-project.org/code
http://r-marketing.r-forge.r-project.org/slides
http://r-marketing.r-forge.r-project.org/data
http://r-marketing.r-forge.r-project.org/data
http://r-marketing.r-forge.r-project.org/data/chapman-feit-rintro.zip
http://r-marketing.r-forge.r-project.org/data/chapman-feit-rintro.zip

1.6 Using This Book 11

• With R. The basic error correction process when working with R is to check
everythingvery carefully, especially parentheses, brackets, andupper- or lowercase
letters. If a command is lengthy, deconstruct it into pieces and build it up again
(we show examples of this along the way).

• With packages (add-on libraries). Packages add functionality to R and are reg-
ularly updated. Sometimes they change how they work, or may not work at all
for a while. Some are very stable while others change often. If you have trou-
ble installing one, do a web search for the error message. If output or details
are slightly different than we show, don’t worry about it. The error "There is
no package called ..." indicates that you need to install the package
(Sect. 2.2). For other problems, see the remaining items here or check the pack-
age’s help file (Sect. 2.4.2).

• With R warnings and errors. An R “warning” is often informational and does
not necessarily require correction. We call these out as they occur with our code,
although sometimes they come and go as packages are updated. If R gives you an
“error,” that means something went wrong and needs to be corrected. In that case,
try the code again, or search online for the error message. Also check the errata
page on the book’s website (Sect. 1.6.3), where we post any necessary updates to
the code.

• With data. Our data sets are simulated and are affected by random number
sequences. If you generate data and it is slightly different, try it again from the
beginning; or load the data from the book’s website (Sect. 1.6.3).

• With models. There are three things that might cause statistical estimates to vary:
slight differences in the data (see the preceding item), changes in a package that
lead to slightly different estimates, and statistical models that employ random
sampling. If you run a model and the results are very similar but slightly different,
you can assume that one of these situations occurred. Just proceed.

• With output. Packages sometimes change the information they report. The output
in this book was current at the time of writing, but you can expect some packages
will report things slightly differently over time.

• With names that can’t be located. Sometimes packages change the function
names they use or the structure of results. If you get a code error when trying to
extract something from a statistical model, check its help file (Sect. 2.4.2); it may
be that something has changed names.

• When things turn out differently than expected. For various reasons, R or
RStudiomaygive results or errors that differ fromprevious occasions. For example,
a plot command might not work although it has worked in the past. If none of the
preceding tips help, we suggest to exit R or RStudio altogether, restart it, and repeat
your steps from the beginning of a section.

Our overall recommendation is this. If a difference is small—such as the difference
between a mean of 2.08 and 2.076, or a p-value of 0.726 versus 0.758—don’t worry
toomuch about it; you can usually safely ignore these. If you find a large difference—
such as a statistical estimate of 0.56 instead of 31.92—try the code block again in
the book’s code file (Sect. 1.6.3).

12 1 Welcome to R

1.7 Key Points

At the end of each chapter we summarize crucial lessons. For this chapter, there is
only one key point: if you’re ready to learn R, let’s get started with Chap.2!

Chapter 2
An Overview of the R Language

2.1 Getting Started

In this chapter, we cover just enough of the R language to get you going. If you’re
new to programming, this chapter will get you started well enough to be productive
and we’ll call out ways to learn more at the end. R is a great place to learn to program
because its environment is clean and much simpler than traditional programming
languages such as Java or C++. If you’re an experienced programmer in another
language, you should skim this chapter to learn the essentials.

We recommend youwork through this chapter hands-on and be patient; it will prepare
you for marketing analytics applications in later chapters.

2.1.1 Initial Steps

If you haven’t already installed R, please do so. We’ll skip the installation details
except to say that you’ll want at least the basic version of R (known as “R base”)
from the Comprehensive R Archive Network (CRAN): http://cran.r-project.org. If
you are using:

• Windows or Mac OS X: Get the compiled binary version from CRAN.
• Linux: Use your package installer to add R. This might be a GUI installer as
in Ubuntu’s Software Center or a terminal command such as sudo apt-get
install R. (See CRAN for more options.)

In either case, you don’t need the source code version for purposes of this book.

After installing R, we recommend also to install RStudio [172], an integrated envi-
ronment for writing R code, viewing plots, and reading documentation. RStudio is
available forWindows,Mac OSX, and Linux at http://www.rstudio.com.Most users
will want the desktop version. RStudio is optional and this book does not assume

© Springer Nature Switzerland AG 2019
C. Chapman and E. M. Feit, R For Marketing Research and Analytics, Use R!,
https://doi.org/10.1007/978-3-030-14316-9_2

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14316-9_2&domain=pdf
http://cran.r-project.org
http://www.rstudio.com
https://doi.org/10.1007/978-3-030-14316-9_2

14 2 An Overview of the R Language

that you’re using it, although many R users find it to be convenient. Some companies
may have questions about RStudio’s Affero General Public License (AGPL) terms;
if relevant, ask your technology support group if they allow AGPL open source
software.

There are other variants of R available, including options that will appeal to experi-
enced programmers who use Emacs, Eclipse, or other development environments.
For more information on various R environments, see Appendix A.

2.1.2 Starting R

Once R is installed, run it; or if you installed RStudio, launch that. The R command
line starts by default and is known as the R console. When this book was written,
the R console looked like Fig. 2.1 (where some details depend on the version and
operating system).

The “>” symbol at the bottom of the R console shows that R is ready for input from
you. For example, you could type:

> x <- c(2, 4, 6, 8)

R version 3.5.1 (2018-07-02) -- "Feather Spray"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin15.6.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type ’license()’ or ’licence()’ for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type ’contributors()’ for more information and
’citation()’ on how to cite R or R packages in publications.

Type ’demo()’ for some demos, ’help()’ for on-line help, or
’help.start()’ for an HTML browser interface to help.
Type ’q()’ to quit R.

[R.app GUI 1.70 (7543) x86_64-apple-darwin15.6.0]

>

Fig. 2.1 The R console

2.1 Getting Started 15

As we show commands with “>”, you should try them for yourself. So, right now,
you should type “x <- c(2, 4, 6, 8)” into the R console followed by the
Enter key.

This is a simple assignment command using the assignment operator “<-” to cre-
ate a named object x that comprises a vector of numbers, (2, 4, 6, 8). The
assignment operator <- can be pronounced as “gets” and is the way to assign values
to R variables (“objects”).

In reading our code listings, a few notes might help those who are new to program-
ming. We list commands to R proceeded by the “>” symbol just as you would see
in R. Sometimes a command is longer than one line and in those cases it continues
with a “+” symbol that you don’t type (R adds it automatically). Everything else in
the code listings is output from R.

In code listings, we abbreviate long output with ellipses (“…”) and sometimes add
comments, which are anything on a line after “#”. When we refer to code outside a
listing box, we set it in monospace font so you will know it’s an R command
or object. In short, anything after “>” or “+” is something for you to type.

For some commands, R responds by printing something in the console. For example,
when you type the name of a variable into the console like this:

> x

R responds by printing out the value of x. In this case, we defined x above as a vector
of numbers:

[1] 2 4 6 8

We’ll explain more about these results and the preceding “[1]” below.

2.2 A Quick Tour of R’s Capabilities

Before we dive into the details of programming, we’d like to start with a tour of
a relatively powerful analysis in R. This is a partial preview of other parts of this
book, so don’t worry if you don’t understand the commands.We explain them briefly
here to give you a sense of how an R analysis might be conducted. In this and later
chapters, we explain all of these steps and many more analyses.

To begin, we install some add-on packages that we’ll need:

> install.packages(c("lavaan", "semPlot", "corrplot", "multcomp"))

Most analyses require one or more packages in addition to those that come with R.
After you install a package once, you don’t have to install it again unless there is an
update.

16 2 An Overview of the R Language

Now we load a data set from this book’s website and examine it:

> satData <- read.csv("http://goo.gl/UDv12g")

> satData$Segment <- factor(satData$Segment)

> head(satData)

iProdSAT iSalesSAT Segment iProdREC iSalesREC

1 6 2 1 4 3

2 4 5 3 4 4

3 5 3 4 5 4

...

> summary(satData)

iProdSAT iSalesSAT Segment iProdREC iSalesREC

Min . :1.00 Min . :1.000 1: 54 Min . :1.000 Min . :1.000

1st Qu .:3.00 1 st Qu .:3.000 2:131 1 st Qu .:3.000 1 st Qu .:3.000

... ...

Max . :7.00 Max . :7.000 Max . :7.000 Max . :7.000

This data set exemplifies observations from a simple sales and product satisfaction
survey. Suchdatamight begathered froma satisfaction survey answeredby customers
after purchasing a product, such as high end electronics or an automobile. The data
set has 500 (simulated) consumers’ answers to a survey with four items asking
about satisfactionwith a product (iProdSAT), sales (iSalesSAT) experience, and
likelihood to recommend the product and salesperson (iProdREC and iSalesREC
respectively).

The four satisfaction items have been answered on a 7 point rating scale that ranges
from extremely dissatisfied (“1”) to extremely satisfied (“7”). Each respondent is
also assigned to a numerically coded segment (Segment). In the second line of R
code above, we set Segment to be a categorical factor variable (a nominal value,
because we don’t want to model segments in terms of the arbitrary mathematical
values). The segment membership was assigned by a clustering algorithm applied to
the consumers’ responses, such as one of the methods we explore in Chap.11.

Next we chart a correlation matrix for the satisfaction responses, omitting the cate-
gorical Segment variable in column 3:

> library(corrplot)

corrplot 0.84 loaded

> corrplot.mixed(cor(satData [, -3]))

The library() command here is one we’ll see often; it loads an add-on library
of additional functions for R. The resulting chart is shown in Fig. 2.2. The lower
triangle in Fig. 2.2 shows the correlations between item pairs, while the upper triangle
visualizes thosewith circle size and color. The satisfaction items are highly correlated
with one another, as are the likelihood-to-recommend items.

Does product satisfaction differ by segment? We compute the mean satisfaction
for each segment using the aggregate() function, which we will discuss in
Sect. 3.4.5:

> aggregate(iProdSAT ∼ Segment , satData , mean)

Segment iProdSAT

1 1 3.462963

2 2 3.725191

3 3 4.103896

4 4 4.708075

2.2 A Quick Tour of R’s Capabilities 17

Fig. 2.2 A plot visualizing
correlation between
satisfaction and likelihood to
recommend variables in a
simulated consumer data set,
N = 500. All items are
positively correlated with
one another, and the two
satisfaction items are
especially strongly correlated
with one another, as are the
two recommendation items.
Chapter4 discusses
correlation analysis in detail

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

iProdSAT

iSalesSAT

iProdREC

iSalesREC

0.41

0.24

0.27

0.28

0.23 0.46

Fig. 2.3 Mean and
confidence intervals for
product satisfaction by
segment. The X axis
represents a Likert rating
scale ranging 1–7 for product
satisfaction. Chapter5
discusses methods to
compare groups 3.5 4.0 4.5

Segment4

Segment3

Segment2

Segment1 (

(

(

(

)

)

)

)

95% family−wise confidence level

Linear Function

Segment 4 has the highest level of satisfaction, but are the differences statistically
significant? We perform a oneway analysis of variance (ANOVA) and see that satis-
faction differs significantly by segment:
> sat.anova <- aov(iProdSAT ∼ -1 + Segment , satData)

> summary(sat.anova)

Df Sum Sq Mean Sq F value Pr(>F)

factor(Segment) 4 8628 2157 2161 <2e-16 ***

Residuals 496 495 1

Signif . codes : 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We plot the ANOVA model to visualize confidence intervals for mean product satis-
faction by segment:
> library(multcomp)

Loading required package: mvtnorm

Loading required package: survival

...

> par(mar=c(4,8,4,2))

> plot(glht(sat.anova))

The resulting chart is shown in Fig. 2.3. It is easy to see that Segments 1, 2, and 3
differ modestly while Segment 4 is much more satisfied than the others. We will
learn more about comparing groups and doing ANOVA analyses in Chap.5.

R’s open source platform has promoted a proliferation of powerful capabilities in
advanced statistical methods. For example, many marketing analysts are interested

18 2 An Overview of the R Language

in structural equation models, and R has multiple packages to fit structural equation
models.

Let’s fit a structural equation model to the satisfaction data. We define a model with
latent variables—which we discuss in Chaps. 8 and 10—for satisfaction (“SAT”)
and likelihood-to-recommend (“REC”). We propose that the SAT latent variable is
manifest in the two satisfaction items, while REC is manifest in the two likelihood-
to-recommend items. As marketers, we expect and hope that the latent likelihood-
to-recommend variable (REC) would be affected by the latent satisfaction (SAT).

This latent variable model is simpler to express in R than in English (note that the
following is a single command, where the + at the beginning of lines is generated by
R, not typed):
> satModel <- "SAT =∼ iProdSAT + iSalesSAT

+ REC =∼ iProdREC + iSalesREC

+ REC ∼ SAT "

This model might be paraphrased as “Latent SATisfaction is observed as items
iProdSAT and iSalesSAT. Latent likelihood to RECommend is observed as items
iProdREC and iSalesREC. RECommendation varies with SATisfaction.”

Next we fit that model to the data using the lavaan package:
> library(lavaan)

This is lavaan 0.6-3

lavaan is BETA software! Please report any bugs.

> sat.fit <- cfa (satModel , data=satData)

> summary(sat.fit , fit.m=TRUE)

lavaan 0.6 -3 ended normally after 31 iterations

...

User model versus baseline model:

Comparative Fit Index (CFI) 0.995

...

The model converged and reported many statistics that we omit above, but we note
that the model fits the data well with a Comparative Fit Index near 1.0 (see Chap.10).

We visualize the structural model using the semPlot package:
> library(semPlot)

> semPaths(sat.fit , what="est",

+ residuals=FALSE , intercepts=FALSE , nCharNodes =9)

This produces the chart shown in Fig. 2.4. Each proposed latent variable is highly
loaded on its manifest (observed) survey items. With an estimated coefficient of
0.76, customers’ latent satisfaction is shown to have a strong association with their
likelihood to recommend. See Chap.10 for more on structural models and how to
interpret and compare them.

That ends the tour. If this seems like an impressive set of capabilities, it is only the
tip of the iceberg. Apart from loading packages, those analyses and visualizations
required a total of only 15 lines of R code!

There is a price to pay for this power: you must learn about the structure of the R
language. At first thismay seembasic or even dull, but we promise that understanding
the language will pay off. You will be able to apply the analyses we present in this
book and understand how to modify the code to do new things.

2.3 Basics of Working with R Commands 19

Fig. 2.4 A structural model
with path loadings for a
model of product satisfaction
and
likelihood-to-recommend,
using the lavaan
and semPlot packages.
Satisfaction has a strong
relationship to
likelihood-to-recommend
(coefficient = 0.76) in the
simulated consumer data.
Chapter10 discusses
structural models

0.76

0.90

1.00

1.00

1.07

iProdSAT iSalesSAT

iProdREC iSalesREC

SAT

REC

2.3 Basics of Working with R Commands

Like many programming languages, R is case sensitive. Thus, x and X are different.
If you assigned x as in Sect. 2.1.2 above, try this:

> x

[1] 2 4 6 8

> X

Error: object ’X’ not found

When working with the R console, you’ll find it convenient to use the keyboard up
and down arrow keys to navigate through previous commands that you’ve typed. If
you make a small error, you can recall the command and edit it without having to
type it all over. It’s also possible to copy from and paste into the console when using
other sources such as a help file.

Tip: although you could type directly into the R console, another option is to use a
separate text editor such as the one built into R (select File | New Script from the R
GUI menu in Windows, File | New Document in Mac OSX, or File | New File | R
Script in RStudio).

With code in a separate file, you can easily edit or repeat commands. To run a
command from a text file, you can copy and paste into the console, or use a key-
board shortcut to run it directly from R: use CTRL+R in standard R on Windows,
CTRL+Enter in RStudio on Windows, or Command+Enter in standard R or RStu-
dio on a Mac. (See Appendix A for other suggestions about R editors.) You do not
have to highlight an entire line to run it; just type CTRL+Enter or Command+Enter
anywhere on the line.

When you put code into a file, it is helpful to add comments. The “#” symbol signifies
a comment in R, and everything on a line after it is ignored. For example:

> x <- c(2, 4, 6, 8) # start a cheer

20 2 An Overview of the R Language

In this book, you don’t need to type any of those comments; they just make the code
more readable.

The command above defines x and ends with a comment. One might instead prefer
to comment a whole line; R doesn’t care:

> # start a cheer
> x <- c(2, 4, 6, 8)

Our code includes comments wherever we think it might help. As a politician might
say about voting, we say comment early and comment often. It is much easier to
document your code now than later.

2.4 Basic Objects

Like most programming languages, R differentiates between data and functions that
perform actions.We’ll spend a bit of time first looking at common data types inR, and
then examine functions. We describe the three most important R data types: vectors,
lists, and data frames. Laterwe introduce the process ofwriting functions. Sometimes
we also use the term object; in R, “object” is a generic term that refers to data,
functions, or anything else that the R system processes. (Experienced programmers:
R is a functional language; although it is similar in someways to procedural languages
such as C++ and Visual Basic, in more important ways it is similar to Scheme and
Lisp. For details, see the references in Sect. 2.10.)

2.4.1 Vectors

The simplest R object is a vector, a one-dimensional collection of data points of a
similar kind (such as numbers or text). For instance, in the following code

> x <- c(2, 4, 6, 8)

…we tell R to create a vector of 4 numbers and name it x. The command c()
indicates to R that you are entering the elements of a vector. Vectors commonly
comprise numeric data, logical values, or character strings. Each of the following
statements defines a vector with 4 items as members (and if you’re not typing along
in R, now is the time to start):

> xNum <- c(1 , 3.14159 , 5 , 7)

> xLog <- c(TRUE , FALSE , TRUE , TRUE)

> xChar <- c("foo", "bar", "boo", "far")

> xMix <- c(1, TRUE , 3, "Hello , world!")

> xNum

[1] 1.00000 3.14159 5.00000 7.00000

The fourth element of xMix is the character string Hello, world!. The comma inside
that string falls inside quotation marks and thus does not cause separation between

2.4 Basic Objects 21

elements as do the other commas. These four objects, xNum, xLog, xChar, and
xMix, have different types of data. We’ll say more about that in a moment.

Vectors may be added to one another with c():

> x2 <- c(x, x)

> x2

[1] 2 4 6 8 2 4 6 8

An overall view of an object can be obtained with the summary() function, whose
results depend on the object type. For vectors of numerics, summary() gives range
and central tendency statistics, whereas for vectors of characters it reports counts of
the most frequent unique values—in this case, that each word occurs exactly once:

> summary(xNum)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.000 2.606 4.071 4.035 5.500 7.000

> summary(xChar)

bar boo far foo

1 1 1 1

Indexing denotes particular elements of a data structure. Vectors are indexed with
square brackets, [and]. For instance, the second element of xNum is:

> xNum [2]

[1] 3.14159

We discuss indexing in depth below (Sect. 2.4.3).

At its core, R is a mathematical language that understands vectors, matrices, and
other structures, as well as common mathematical functions and constants. When
you need to write a statistical algorithm from scratch, many optimized mathematical
functions are readily available. For example, R automatically applies operators across
entire vectors:

> x2 + 1

[1] 3 5 7 9 3 5 7 9

> x2 * pi

[1] 6.283185 12.566371 18.849556 25.132741 6.283185 12.566371 18.849556 ...

> (x+cos (0.5)) * x2

[1] 5.755165 19.510330 41.265495 71.020660 5.755165 19.510330 41.265495 ...

The last example shows something to watch out for: when working with vectors, R
recycles the elements to match a longer set. In the last command, x2 has 8 elements,
while x has only 4. R will line them up and multiply x[1] ∗ x2[1], x[2] ∗
x2[2], and so forth. When it comes to x2[5], there is no matching element in x,
so it goes back to x[1] and starts again. This can be a source of subtle and hard-to-
find bugs. When in doubt, check the length() of vectors as one of the first steps
in debugging:

> length(x)

[1] 4

> length(x2)

[1] 8

In order to keep things clear, matrix math uses different operators than vector math.
For instance, %*% is used to multiply matrices instead of ∗. We do not cover math

22 2 An Overview of the R Language

operations in detail here; see Sect. 2.4.6 below if you want to learn details about math
operators in R.

When you create a vector, R automatically assigns a data type or class to all elements
in the vector. Some common data types are logical (TRUE/FALSE), integer (0, 1,
2, ...), double (real numbers such as 1.1, 3.14159, etc.), and character (“a”, “hello,
world!”, etc.).

When types are mixed in a vector, it holds values in the most general format. Thus,
the vector “c(1, 2, 3.5)” is coerced to type double because the real number 3.5 is
more general than an integer such as 1:

> c(1 , 2 , 3.5)

[1] 1.0 2.0 3.5

This may lead to surprises. When we defined the vector xMix above, it was coerced
to a character type because only a character type can preserve the basic values
of types as diverse as TRUE and “Hello, world!”:

> xMix

[1] "1" "TRUE" "3" "Hello , world!"

When operating on these, R tries to figure out what to do in a sensible way, but
sometimes needs help. Consider the following operations:

> xNum [1]

[1] 1

> xMix [1]

[1] "1"

> xNum [1] + 1

[1] 2

> xMix [1] + 1

Error in xMix [1] + 1 : non -numeric argument to binary operator

When we attempt to add 1 to xNum and xMix, xNum[1]+1 succeeds while
xMix[1]+1 returns an error that one of the arguments is not a number. We can
explicitly force it to be numeric by coercion with the as.numeric() function:

> as.numeric(xMix [1])+1

[1] 2

It would be tedious to go though all of R’s rules for coercing from one type to
another, so we simply caution you always to check variable types when debugging
because confusion about types is a frequent source of errors. Thestr() (“structure”)
function is a good way to see detailed information about an object:

> str(xNum)

num [1:4] 1 3.14 5 7

> str(xChar)

chr [1:4] "foo" "bar" "boo" "far"

> str(xMix)

chr [1:4] "1" "TRUE" "3" "Hello , world!"

In these results, we see that xNum is a numeric vector (abbreviated “num”) with
elements that are indexed 1:4, while xChar and xMix are character vectors (abbre-
viated “chr”).

2.4 Basic Objects 23

2.4.2 Help! A Brief Detour

This is a good place to introduce help in R. R and its add-on packages form an
enormous system and even advanced R users regularly consult the help files.

How to find help depends on your situation. If you know the name of a command or
related command, use “?”. For instance, now that you know the as.numeric()
command, you may wonder whether there are similar commands for other types.
Looking at help for a command you know is a good place to start:

> ?as.numeric

This calls up the R help system, as shown in Fig. 2.5.

R help files are arranged according to a specific structure that makes it easier for
experienced R users to find information. Novice R users sometimes dislike help files
because they can be very detailed, but once you grow accustomed to the structure,
help files are a valuable reference.

Helpfiles are organized into sections titledDescription,Usage,Arguments,Details,
Value, References, See Also, and Examples. We often find it helpful to go directly
to the Examples section. These examples are designed to be pasted directly into the

Fig. 2.5 R help for the as.numeric() command, using ?as.numeric

24 2 An Overview of the R Language

R console to demonstrate a function. If there isn’t an example that matches your use
case, you can go back to the Usage and Arguments sections to understand more
generally how to use a function. The Value section explains what type of object the
function returns. If you find that the function you are looking at doesn’t do quite
what you want, it can be helpful to check out the See Also section, where you will
find links to other related functions.

Now suppose you do not know the name of a specific command, but wish to find
something related to a concept. The “??” command searches the Help system for
a phrase. For example, the command ??anova finds many references to ANOVA
models and utility functions, as shown in Fig. 2.6.

Fig. 2.6 Searching R help with ??anova, as shown in RStudio. The exact results depend on
packages you have installed

2.4 Basic Objects 25

The ? and ?? commands understand quotation marks. For instance, to get help on
the ? symbol itself, put it inside quotation marks (R standard is the double quote
character: "):
> ?"?"

Note that the help file for ? has the same subject headings as any other help file. It
doesn’t tell you how to get help; it tells you how to use the ? function. This way of
thinking about help files may be foreign at first, but as you get to know the language
the consistency across the help files will make it easy for you to learn new functions
as the need arises.

There are other valuable resources besides the built-in help system. If you’re are
looking for something related to a general area of investigation, such as regression
models or econometrics, and are not sure what exists, CRAN is very useful. CRAN
Task Views (http://cran.r-project.org/web/views/) provide annotated lists of pack-
ages of interest in high-level areas such as Bayesian statistics, machine learning, and
econometrics.

When working with an add-on package, you can check whether the authors have
provided a vignette, a PDF file that describes its usage. They are often linked from
a package’s help file, but an especially convenient way to find them is with the
command browseVignettes(), which lists all vignettes for the packages you’ve
installed in a browser window.

If you run into a problem with something that seems it ought to work but doesn’t,
try the official R-help mailing list (https://stat.ethz.ch/mailman/listinfo/r-help or the
R forums on StackOverflow (http://stackoverflow.com/tags/r/info). Both are fre-
quented byRcontributors and expertswho are happy to help if you provide a complete
and reproducible example of a problem.

Google web search understands “R” in many contexts, such as searching for
“R anova table”.

Finally, there is a wealth of books covering specific R topics. At the end of each
chapter, we note books and sites that present more detail about the chapter’s topics.

2.4.3 More on Vectors and Indexing

Now that you can find help when needed, let’s look at vectors and indexing again.
Whereas c() defines arbitrary vectors, integer sequences are commonly defined
with the : operator. For example:
> xSeq <- 1:10

> xSeq

[1] 1 2 3 4 5 6 7 8 9 10

When applying math to : sequences, be careful of operator precedence; “:” is
applied before many other math operators. Use parentheses when in doubt and
always double-check math on sequences:

http://cran.r-project.org/web/views/
https://stat.ethz.ch/mailman/listinfo/r-help
http://stackoverflow.com/tags/r/info

26 2 An Overview of the R Language

> 1:5*2

[1] 2 4 6 8 10

> 1:(5*2)

[1] 1 2 3 4 5 6 7 8 9 10

Sequences are useful for indexing and you can use sequences inside []:

> xNum

[1] 1.00000 3.14159 5.00000 7.00000

> xNum [2:4]

[1] 3.14159 5.00000 7.00000

> myStart <- 2

> xNum[myStart:sqrt(myStart +7)]

[1] 3.14159 5.00000

For complex sequences, use seq() (“sequence”) and rep() (“replicate”). We
won’t cover all of their options, but here is a preview. Read this, try to predict what
the commands do, and then run them:

> seq(from=-5, to=28, by=4)

> rep(c(1,2,3) , each =3)

> rep(seq(from=-3, to=13, by=4) , c(1, 2, 3, 2, 1))

With the last example, deconstruct it by looking first at the inner expression seq
(from=-3, to=13, by=4). Each element of that vector will be replicated a
certain number of times as specified in the second argument to rep(). More ques-
tions? Try ?rep.

Exclude items by using negative indices:

> xSeq

[1] 1 2 3 4 5 6 7 8 9 10

> xSeq[-5:-7]

[1] 1 2 3 4 8 9 10

In all of the R output, we’ve seen “[1]” at the start of the row. That indicates the
vector position index of the first item printed on each row of output. Try these:

> 1:300

> 1001:1300

The result of an R vector operation is itself a vector. Try this:

> xNum [2:4]

> xSub <- xNum [2:4]

> xSub

The new object xSub is created by selecting the elements of xNum. This may seem
obvious, yet it has profound implications because it means that the results of most
operations in R are fully-formed, inspectable objects that can be passed on to other
functions. Instead of just output, you get an object you can reuse, query, manipulate,
update, save, or share.

Indexing also works with a vector of logical variables (TRUE/FALSE) that indicate
which elements you want to select:

> xNum

[1] 1.00000 3.14159 5.00000 7.00000

> xNum[c(FALSE , TRUE , TRUE , TRUE)]

[1] 3.14159 5.00000 7.00000

2.4 Basic Objects 27

This allows you to use logical expressions—which evaluate as a vector of logical
values—to select subsets of data based on specific criteria. We discuss this more in
later chapters and will use it frequently. Here is an example:

> xNum > 3

[1] FALSE TRUE TRUE TRUE

> xNum[xNum > 3]

[1] 3.14159 5.00000 7.00000

When we index using the logical expression xNum > 3, R selects elements that
correspond to TRUE values of that expression.

2.4.4 aaRgh! A Digression for New Programmers

At about this point when learning R, some students become incredulous. “I’ve got
to type the name of a data set over and over?!” Yes. “I have to manually pick which
rows or columns to include?!” Yes, sometimes, but you’ll learn code approaches that
are more general. “I can’t just point and click on the data I want?!” No, you can’t,
at least not in this book or most R books. (Limited point and click and menus are
available as add-ons in R—see Appendix A—but we strongly believe you’ll be better
suited by learning the power of the command line from the beginning.)

Thousands of analysts before you have felt the same way. What’s different this time?
They gave up but you won’t! Seriously, R is not simple and yes, it demands a bit of
effort. Our job is to help you through the difficulty so the effort pays off.

R reminds us of a mountain town, Holden, Washington. Holden is a remote village
in the North Cascades; to get there requires a three hour ferry ride followed by an
hour-long bus trip. Each bus up the mountain has a sign that declares, “The ride up is
free. The trip down is costly.” In other words, everyone is welcomed… but after one
settles in, the place may become beloved and difficult to leave. Some people intend
to make a short visit, yet end up staying for months or years.

R is similar to that mountain village: although it takes time and effort to arrive, after
you settle in and know your way around, you might not want to leave. It has been
many years since we have had a reason to use a statistics environment other than R.

2.4.5 Missing and Interesting Values

In statistics, missing values are important, and as a statistics environment, R under-
stands them and includes a special constant for a missing value: NA. This is not a
character object ("NA") but a constant in its own right. It is useful in several contexts.
For instance, you might create a data object that will be filled in with values later:

> my.test.scores <- c(91, NA , NA)

28 2 An Overview of the R Language

Any math performed on a value of NA becomes NA:
> mean(my.test.scores)

[1] NA

> max(my.test.scores)

[1] NA

This may not be what you want, and you may tell R to ignore NA data rather than
calculating on it. Many commands include an argument that instructs them to ignore
missing values: na.rm=TRUE:
> mean(my.test.scores , na.rm=TRUE)

[1] 91

> max(my.test.scores , na.rm=TRUE)

[1] 91

A second approach is to remove NA values explicitly before calculating on them
or assigning them elsewhere. This may be done most easily with the function
na.omit():
> mean(na.omit(my.test.scores))

[1] 91

A third and more cumbersome alternative is to test for NA using the is.na()
function, and then index data for the values that are not NA by adding the ! (“not”)
operator:
> is.na(my.test.scores)

[1] FALSE TRUE TRUE

> my.test.scores[!is.na(my.test.scores)]

[1] 91

One thing never to do in R is to use an actual numeric value such as -999 to indicate
missing data. That will cause headaches at best and wrong answers at worst. Instead,
as soon as you load such data into R, replace those values with NA using indices:
> my.test.scores <- c(91, -999, -999)

> mean(my.test.scores)

[1] -635.6667

> my.test.scores[my.test.scores < -900] <- NA

> mean(my.test.scores , na.rm=TRUE)

[1] 91

The third command tells R to select my.test.scores where the value is lower
than −900 and replace those elements NA with.

R also handles infinity and undefined numbers, with constants Inf and NaN (“not
a number”). For example, if we take the natural logarithm of positive and negative
numbers:
> log(c(-1, 0, 1))

[1] NaN -Inf 0

Warning message:

In log(c(-1, 0, 1)) : NaNs produced

We get a warning because log() is undefined for negative numbers and log(-1)
gives a value of NaN. Note also that log(0) = −∞ (-Inf).

R tries to be helpful by watching out for such issues, warning you, and carrying on
as best it can. You should watch for “Warning message” and clean up your data
or math when it appears.

2.4 Basic Objects 29

2.4.6 Using R for Mathematical Computation

As a programming environment for computational statistics, R has powerful capabil-
ities for mathematics. In particular, it is highly optimized for vector and matrix oper-
ations, which include everything from indexing and iteration to complex operations
such as matrix inversion and decomposition. This makes R an attractive alternative
to software like Matlab for computation, simulation and optimization.

Wedo not cover suchmath in detail here for several reasons: it is tedious to read,many
operations are obvious or easy to find, and advanced math is not necessarily used in
day to day marketing analytics. Instead, we use math commands and operators with
minor explanations as needed, trusting that you may use ? to learn more.

If you are interested in using R for mathematical computation, remember that ?
understands quotation marks so you can read about operators using a help command
such as ?"*". An entry point to matrix math is the matrix multiplication operator,
%*%. If you need especially high performance, we have pointers on enhancing R’s
computation power in Appendix C.

2.4.7 Lists

Lists are collections of objects of any type. They are useful on their own, and are
especially important to understand how R stores data sets, the topic of the following
section.

Let’s look at two of the objects we defined above, inspecting their structures with
the str() command:
> str(xNum)

num [1:4] 1 3.14 5 7

> str(xChar)

chr [1:4] "foo" "bar" "boo" "far"

We see that these vectors are of type “numeric” and “character,” respectively. All the
elements in a vector must be the same type. We can combine these two vectors into
a list using list():
> xList <- list(xNum , xChar)

> xList

[[1]]

[1] 1.00000 3.14159 5.00000 7.00000

[[2]]

[1] "foo" "bar" "boo" "far"

Using str(), we see that objects inside the list retain the types that they had as
separate vectors:
> str(xList)

List of 2

$: num [1:4] 1 3.14 5 7

$: chr [1:4] "foo" "bar" "boo" "far"

30 2 An Overview of the R Language

Lists are indexed with double brackets ([[and]]) instead of the single brackets that
vectors use, and thus xList comprises two objects that are indexed with [[1]]
and [[2]]. Wemight index the objects and find summary information one at a time,
such as:

> summary(xList [[1]])

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.000 2.606 4.071 4.035 5.500 7.000

It is often more convenient to run such a command on all members of the list at once.
We can do that with the lapply() or “list apply” command.

With lapply() we must pay special attention to the argument order: lapply
(OBJECT, FUNCTION). We use lapply() to produce a summary() for each
member of the list:

> lapply(xList , summary)

[[1]]

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.000 2.606 4.071 4.035 5.500 7.000

[[2]]

bar boo far foo

1 1 1 1

What this did was to separate xList into its separate list elements, [[1]] and
[[2]]. Then it ran summary() on each one of those.

Using lapply() to iterate in this way saves a lot of work, especially with lists
that may comprise dozens or hundreds of objects. It demonstrates that lists have two
advantages: they keep data in one place regardless of constituent types, and they
make it possible to apply operations automatically to diverse parts of that data.

Each element in a list may be assigned a name, which you can access with
the names() function. You may set the names() when a list is created or at
a later time. The following two list creation methods give the same result:

> xList <- list(xNum , xChar) # method 1: create , then name
> names(xList) <- c("itemnum", "itemchar")

> xList <- list(itemnum=xNum , itemchar=xChar) # method 2: create & name
> names(xList)

[1] "itemnum" "itemchar"

A list may be indexed using its names rather than a numeric index. You can use
$name or [["name"]] as you prefer:

> xList [[1]] # method 1: numeric
[1] 1.00000 3.14159 5.00000 7.00000

> xList$itemnum # method 2: $name reference
[1] 1.00000 3.14159 5.00000 7.00000

> xList[["itemnum"]] # method 3: quoted name
[1] 1.00000 3.14159 5.00000 7.00000

List names are character strings and may include spaces and various special charac-
ters. Putting the name in quotes is useful when names include spaces.

This brings us to the most important object type in R: data frames.

2.5 Data Frames 31

2.5 Data Frames

Data frames are the workhorse objects in R, used to hold data sets and to provide data
to statistical functions and models. A data frame’s general structure will be familiar
to any analyst: it is a rectangular object comprised of columns of varying data types
(often referred to as “variables”) and rows that each have a value (or missing value,
NA) in each column (“observations”).

You may construct a data frame with the data.frame() function, which takes as
input a set of vectors of the same length:
> x.df <- data.frame(xNum , xLog , xChar)

xNum xLog xChar

1 1.00000 TRUE foo

2 3.14159 FALSE bar

3 5.00000 TRUE boo

4 7.00000 TRUE far

In this code, we use dot notation with a suffix .df that helps to clarify that x.df is
a data frame. The .df is just part of the name as far as R is concerned—it doesn’t
enforce any special rules or type checking—and we use it only as a reminder.

In the resulting data frame we find three named columns that inherit their names
from the contributing vectors. Each row is numbered sequentially starting from 1.
Elements of a data frame may be indexed using [ROW, COLUMN] notation:
> x.df[2, 1]

[1] 3.14159

> x.df[1, 3]

[1] foo

Levels : bar boo far foo

The latter example shows us something new: by default, R converts character data in
data frames to nominal factors. When xCharwas added to the data frame, its values
were added as the levels of a categorical (nominal) data type. Marketing analysts
often work with categorical data such as gender, region, or different treatments in
an experiment. In R, such values are stored internally as a vector of integers and
a separate list of labels naming the categories. The latter are called levels and are
accessed with the levels() function.

Converting character strings to factors is a good thing for data that you might use
in a statistical model because it tells R to handle it appropriately in the model, but
it’s inconvenient when the data really is simple text such as an address or com-
ments on a survey. You can prevent the conversion to factors by adding an option
to data.frame() that sets stringsAsFactors=FALSE:
> x.df <- data.frame(xNum , xLog , xChar , stringsAsFactors=FALSE)

> x.df

xNum xLog xChar

1 1.00000 TRUE foo

2 3.14159 FALSE bar

3 5.00000 TRUE boo

4 7.00000 TRUE far

> x.df[1,3]

[1] "foo"

32 2 An Overview of the R Language

The value of x.df[1, 3] is now a character string and not a factor.
Indices can be left blank, which selects all of that dimension:
> x.df[2 ,] # all of row 2

xNum xLog xChar

2 3.14159 FALSE bar

> x.df[, 3] # all of column 3
[1] "foo" "bar" "boo" "far"

Index data frames by using vectors or ranges for the elements you want. Use negative
indices to omit elements:
> x.df[2:3 ,]

xNum xLog xChar

2 3.14159 FALSE bar

3 5.00000 TRUE boo

> x.df[, 1:2] # two columns
xNum xLog

1 1.00000 TRUE

2 3.14159 FALSE

3 5.00000 TRUE

4 7.00000 TRUE

> x.df[-3,] # omit the third observation
xNum xLog xChar

1 1.00000 TRUE foo

2 3.14159 FALSE bar

4 7.00000 TRUE far

> x.df[, -2] # omit the second column
xNum xChar

1 1.00000 foo

2 3.14159 bar

3 5.00000 boo

4 7.00000 far

Indexing a data frame returns an object. The object will have whatever type suits that
data: choosing a single element (row + column) yields a singular object (a vector
of length one); choosing a column returns a vector; and choosing rows or multiple
columns yields a new data frame. We can see this by using the str() inspector,
which tells you more about the structure of the object:
> str(x.df[2 , 1])

num 3.14

> str(x.df[, 2])

logi [1:4] TRUE FALSE TRUE TRUE

> str(x.df[c(1, 3) ,]) # use c() to get rows 1 and 3 only
’data.frame’: 2 obs. of 3 variables:

$ xNum : num 1 5

$ xLog : logi TRUE TRUE

$ xChar: chr "foo" "boo"

As with lists, data frames may be indexed by using the names of their columns:
> x.df$xNum

[1] 1.00000 3.14159 5.00000 7.00000

In short, data frames are the way to work with a data set in R. R users encounter
data frames all the time, and learning to work with them is perhaps the single most
important set of skills in R.

2.5 Data Frames 33

Let’s create a new data set that is more representative of data in marketing research.
We’ll clean up our workspace and then create new data:

> rm(list=ls()) # caution , deletes all objects! See explanation below
> store.num <- factor(c(3 , 14 , 21 , 32 , 54)) # store id
> store.rev <- c(543 , 654 , 345 , 678 , 234) # store revenue , $1000
> store.visits <- c(45 , 78 , 32 , 56 , 34) # visits , 1000s
> store.manager <- c("Annie", "Bert", "Carla", "Dave" , "Ella")

> (store.df <- data.frame(store.num , store.rev , store.visits ,

+ store.manager , stringsAsFactors=F)) # F = FALSE
store.num store.rev store.visits store.manager

1 3 543 45 Annie

2 14 654 78 Bert

3 21 345 32 Carla

4 32 678 56 Dave

5 54 234 34 Ella

Notice that we specified that store number is a nominal factor, to tell R that it looks
like a number but really isn’t. We’ll discuss that more in Sect. 3.1.1.

In the final command above, by putting parentheses around the whole expression, we
tell R to assign the result of data.frame(store.num, store.rev, ...)
to store.df and then evaluate the resulting object (store.df). This has the
same effect as assigning the object and then typing its name again to see its contents.
This trick sometimes saves typing.

We can now get a list of our storemanagers by selecting that column using the same$
notation that we used with lists:

> store.df$store.manager

[1] "Annie" "Bert" "Carla" "Dave" "Ella"

We can easily pass columns from the data frame to statistical functions using $ and a
column name. For example, we can compute the average of store.rev from the
store.df data frame using mean():

> mean(store.df$store.rev)

[1] 490.8

Similarly, we could use the cor() function, which computes the Pearson product-
moment correlation coefficient (aka Pearson’s r), to gauge the association between
store visits and revenue in our data:

> cor(store.df$store.rev , store.df$store.visits)

[1] 0.8291032

We discuss correlation analysis in depth in Chap.4.

You can obtain basic statistics for a data frame with summary():

> summary(store.df)

store.num store.rev store.visits store.manager

3 :1 Min . :234.0 Min . :32 Length :5

14:1 1 st Qu .:345.0 1 st Qu .:34 Class : character

21:1 Median :543.0 Median :45 Mode : character

32:1 Mean :490.8 Mean :49

54:1 3 rd Qu .:654.0 3 rd Qu.:56

Max . :678.0 Max . :78

34 2 An Overview of the R Language

This shows us the frequency counts for the factor variable (store number),
arithmetic summaries of the numeric variables, and the overall length of the text
variable. Chapter3 says much more about describing and summarizing data. (Note:
the store.manager columnmight be summarized slightly differently, depending
on the versions of packages loaded earlier in this chapter.)

2.6 Loading and Saving Data

There many ways to load and save data in R. In this section, we focus on the methods
for storing data that are common in typical projects including how to save and read
native R objects, how to save entire R sessions, and how to read and write CSV
formats to move data in and out of other environments like Microsoft Excel.

Native (“binary”) R objects are representations of objects in an R-specific format. If
you need to save an object exclusively for R then this format will be useful to you.
Use save() to write a binary object to disk and load() to read it.

Let’s back up the store.df object to disk using save(OBJECT, FILE). Then
we’ll delete it from memory and use load(FILE) to restore it:

> save(store.df , file="store -df-backup.RData")

> rm(store.df) # caution , only if save() gave no error
> mean(store.df$store.rev) # error
Error in mean(store.df$store.rev) : object ’store.df’ not found

> load("store -df-backup.RData")

> mean(store.df$store.rev)

[1] 490.8

save() can also take a group of objects as an argument; just replace the single
object name with list=c() and fill in c() with a character vector. For instance:

> save(list=c("store.df","store.visits"), file="store -df-backup.RData")

When a file is loaded, its objects are placed into memory with the same names that
they had when saved. Important: when a file is loaded, its objects silently overwrite
any objects in memory with the same names! Consider the following:

> store.df <- 5

> store.df

[1] 5

> load("store -df-backup.RData")

> store.df

store.num store.rev store.visits store.manager

1 3 543 45 Annie

2 14 654 78 Bert

In the example above, store.df is first assigned a new, simple value of 5 but this
is overwritten by load() with no warning. When loading objects from files, we
recommend to begin from a clean slate with no other objects in memory in order to
reduce unexpected side effects.

2.6 Loading and Saving Data 35

Filenames may be specified with just the file name as above, in which case they are
saved to the current R working directory, or as full paths in the format appropriate to
your system. Note that Microsoft Windows uses \ to denote folders, which doesn’t
work in R (which expects Unix-style directory names using “/”). You must convert
\ to either \\ or /, or else R will give an error.

Assuming the appropriate “R” folder exists, and replacing user to match your
system, you could try:

Works only on Windows:
> save(store.df , file="C:\\ Documents and Settings \\user\\My Documents\\R\\

store -df-backup.RData")

Works on all systems (Mac OSX , Linux , and Windows):
> save(store.df , file="∼/Documents/R/store -df-backup.RData")

The standard file suffix for native data files in R is .RData and we recommend to
use that.

If specifying full paths seems cumbersome, youmay change the Rworking directory.
getwd() reports the working directory while setwd(PATH) sets it to a new
location:

example from author ’s Mac OS X system ; yours will vary
> getwd()

[1] "/Users/chris"

> setwd("∼/Documents/R") # tilde is handled on UNIX -like systems
> getwd()

[1] "/Users/chris/Documents/R"

These commands do not create directories; you should do that in the operating system.

2.6.1 Image Files

The memory image of an entire session can be saved with the command save.
image(FILE). If FILE is excluded, then it defaults to a file named ".RData".
Standard R and R Studio both prompt you to save a memory image on closing, but
you can also do it yourself by typing:

> save.image() # saves file ". RData"
> save.image("mywork.RData")

It can be useful to save the contents of working memory if you wish to back up work
in progress, although care is needed (Sect. 2.8). Do not let this substitute for creating
reproducible scripts; a best practice is to create a script file as you work that can
always reproduce an analysis up to the current point. By default, images save to the
working directory as set above.

Workspace images are re-loaded with the general load() command, not with a
special “image” version; an image is a collection of objects and no different than
other files produced by save(). As wewarned above, loading an imagewill silently

36 2 An Overview of the R Language

overwrite current memory objects that have the same names as objects in the image,
but does not remove other objects. In other words, loading an image does not restore
memory to a snapshot of a previous state, but rather adds those contents to current
memory.

> load("mywork.RData")

You can view files with the list.files() command, and delete them with
file.remove()which accepts any number of file names. If you wish to clean up
the files we made above (assuming you have not changed working directory):

> list.files()

[1] "mywork.RData" "store -df-backup.RData"

> file.remove("mywork.RData", "store -df-backup.RData")

[1] TRUE TRUE

The status returned by file.remove() is a vector noting whether each file was
removed (if so, then its status isTRUE) or not (FALSE, if it doesn’t exist or is currently
in use and cannot be removed).

2.6.2 CSV Files

Many analysts save data in delimited files such as comma-separated value (CSV) files
and tab-separated value (TSV) files to move data between tools such as R, databases,
and Microsoft Excel. We focus on CSV files; TSV and other delimited files are
handled similarly.

First, let’s create a CSV by writing store.df to a file. This works similarly
to the save() command above, with syntax write.csv(OBJECT, file=
"FILENAME"). We strongly recommend to add the option row.names=FALSE
to eliminate an extra, unnamed column containing labels for each row; those mostly
get in the way when interchanging CSV files with other programs.

A handy way to test CSV files is to use the command without a file name, which
sends the output to the console just as it would be written to a file:

> write.csv(store.df , row.names=FALSE)

"store.num","store.rev","store.visits","store.manager"

"3" ,543,45,"Annie"

"14" ,654,78,"Bert"

"21" ,345,32,"Carla"

"32" ,678,56,"Dave"

"54" ,234,34,"Ella"

R automatically includes a header row with variable names and puts quotation marks
around character data.

Now let’s write a real file and then read it using read.csv(file=...):

> write.csv(store.df , file="store -df.csv", row.names=FALSE)

> read.csv("store -df.csv") # "file =" is optional
store.num store.rev store.visits store.manager

2.6 Loading and Saving Data 37

1 3 543 45 Annie

2 14 654 78 Bert

3 21 345 32 Carla

4 32 678 56 Dave

5 54 234 34 Ella

By default, read.csv() prints the CSV contents to the R console formatted as a
data frame. To assign the data to an object, use the assignment operator (<-). Let’s
read the CSV file and assign its data to a new object:,

> store.df2 <- read.csv("store -df.csv", stringsAsFactors=FALSE)

> store.df2$store.num <- factor(store.df2$store.num)

After reading the CSV file, we recreate store.num as a factor variable. One of the
problems with CSV files is that they lose such distinctions because they are written
out in plain text.

Now we check that the values are identical to the original data frame:

> store.df == store.df2

store.num store.rev store.visits store.manager

[1 ,] TRUE TRUE TRUE TRUE

[2 ,] TRUE TRUE TRUE TRUE

[3 ,] TRUE TRUE TRUE TRUE

[4 ,] TRUE TRUE TRUE TRUE

[5 ,] TRUE TRUE TRUE TRUE

The operator == tells R to test whether the the two data frames are the same, element-
by-element.Although== confirmsequality, in general the functionall.equal(X,
Y) is more useful because it ignores tiny differences due to binary rounding error
(there is an infinity of real numbers, which computers store as finite approximations).
Also, the output of all.equal() is more compact:

> all.equal(store.df , store.df2)

[1] TRUE

R can handle many other file formats that we do not discuss in this book. These
include fixed format files, databases, and binary files from other software such as
Microsoft Excel, MATLAB, SAS, and SPSS. If you need to work with such data, we
describe some of the options in Appendix C. A more general overview of options
for data exchange is provided by the R Data Import/Export manual [157].

We’ll clean up the unneeded object, “store.df2” (see Sect. 2.8 below):

> rm(store.df2)

2.7 Writing Your Own Functions*

The asterisk (*) in the title indicates that this is an optional section. We examine the
basics of writing reusable functions, a fundamental programming skill. If you are
new to programming, you might wish to skip this section for now and refer back to
it when you encounter functions again in later chapters.

38 2 An Overview of the R Language

Many analyses in R are repetitive: compute statistics across slices of data such as
different sales regions, produce analyses from new data sets such as successive cal-
endar quarters, and so forth. R provides functions to let you write a set of commands
once and reuse it with new data.

We can create a function in R quite easily. A common functionwewrite is to compute
the standard error of the mean for a vector of observed data. Such a function already
exists inR, but is so simple thatwe sometimeswrite our own. In the infinite population
version, the standard error is computed as the standard deviation of the data (sd())
divided by square root (sqrt()) of the sample size, which is the length of the vector
holding the data. We can declare a function to do this in one line:
> se <- function(x) { sd(x) / sqrt(length(x)) }

The new function se() can then be used just like any other built-in function in R:
> se(store.df$store.visits)

[1] 8.42615

A function’s results can also be assigned to other variables or used in additional
functions. For example, wemight compute the upper-bound 95% confidence interval
as the mean + 1.96 standard error:
> mean(store.df$store.visits) + 1.96 * se(store.df$store.visits)

[1] 65.51525

This tells us that, if the present data are a good random sample from a larger set,
we could expect the mean of other such samples to be 65.51 or less in 97.5% of
the samples (97.5% because the 95% confidence interval is symmetric around 50%,
extending from 2.5% to 97.5%). In other words, we can be highly confident from
these data that the mean number of store visits is less than 65.52.

A schematic for a new function is: FUNCTIONNAME <- function(INPUTS)
EXPR . In most cases, EXPR is a set of multiple lines that operate on the inputs.
When there are multiple lines, theymust be enclosed with braces { and }. By default,
the return value of the function is the output of the last command in the function
declaration.

As for the inputs to functions (such as x in se() above), there are a few things
to know. First, you can name them with any legal variable name in R. They can
accept any type of input. We use the term argument for inputs in this book (instead
of parameter, which we reserve for statistical models). An argument has meaning
only within its function; in programming jargon, it is scoped to the function. Thus,
if you declare x as an argument, then x has a value inside that function as assigned
when the function is called; outside the function it could have another value or not
be declared. It is good practice in a function to use only variables that have been
declared as arguments to the function; don’t refer to global workspace variables
whose existence is unpredictable.

If you’ve programmed in other languages, you may find it unusual that R does
not specify types for function arguments. It allows an argument to be of any type
and will try to use it as is, issuing warnings and errors as necessary. (Pay attention

2.7 Writing Your Own Functions* 39

to them!) For example, if we try to compute the standard error of the character
vector store.df$store.manager, we get a return value of NA along with a
warning:
> se(store.df$store.manager)

[1] NA

Warning message:

In var(if (is.vector(x) || is.factor(x)) x else as.double(x) , na.rm = na.rm)

:

NAs introduced by coercion

In Sect. 12.3.3we introduceways to identify object typeswhen you need to determine
them.

When writing a function, we recommend four conventions:

• Put braces around the body using { and }, even if it’s just a one line function
• Create temporary values to hold results along the way inside the function
• Comment the function profusely
• Use the keyword return() to show the explicit value returned by the function.

Putting those recommendations together, the se function above might be rewritten
as follows:
> se <- function(x) {

computes standard error of the mean
tmp.sd <- sd(x) # standard deviation
tmp.N <- length(x) # sample size
tmp.se <- tmp.sd / sqrt(tmp.N) # std error of the mean
return(tmp.se)

}

Perhaps this is overkill for such a simple function. However, when your functions
get longer and you or your colleagues refer to them years later, you’ll be glad that
they are clean and well-documented.

A function is an object in memory just like data, and may be inspected, listed, and
deleted in the same ways. In particular, one may inspect a function simply by typing
its name (without the parentheses):
> se

function(x) {

computes standard error of the mean
tmp.sd <- sd(x) # standard deviation
tmp.N <- length(x) # sample size
tmp.se <- tmp.sd / sqrt(tmp.N) # std error of the mean
return(tmp.se)

}

This makes it possible to examine what a function is doing and works for many
functions in R and add-on packages.

2.7.1 Language Structures*

This optional section is for experienced programmers and describes how the
R language controls a sequence of commands in a script or function.

40 2 An Overview of the R Language

If you program in a language such as C or Java, the control structures in R will be
familiar. Using TEST to indicate a Boolean value (or value coercible to Boolean)
and EXPR for any language expression—which may include a block of expressions
inside { and }—R provides:
if (TEST) EXPR [else EXPR.b] # do EXPR if TEST is true , else EXPR.b

while (TEST) EXPR # repeat EXPR while TEST is true

for (NAME in VECTOR) EXPR # iterate EXPR for values of NAME from VECTOR

switch (INDEX , LIST) # INDEXth statement or matching argument name from
LIST

repeat EXPR # repeats forever until ’break ’; not recommended

Of these, we only use if() and for() in this book. We describe for() in more
detail in Sect. 5.12, and cover if() in Sect. 5.1.3.

There is a caveat to these control structures. On the surface, R syntax appears similar
to imperative programming languages (such as C, C++, and Java) but underneath it
is a functional language whose approach more closely resembles Lisp, Clojure, or
in particular, Scheme. To advance as an R programmer, you will wish to learn more
about functional programming and the object models that underlie it. See Sect. 2.10
for pointers on advanced programming skills.

In addition to the standard if() statement, R provides a vectorized version:
ifelse(TEST, YES, NO). ifelse() applies TEST to every element in a
vector and returns the value of the expression YES for elements that pass the test as
TRUE and the value of the expression NO for those that do not pass.

For example, here’s how we can use ifelse() to test each number in a vector
before applying a math function to it, and thus avoid a common error:
> x <- -2:2

> log(x) # warning , can ’t log() negative numbers
[1] NaN NaN - Inf 0.0000000 0.6931472

Warning message:

In log(x) : NaNs produced

> ifelse(x > 0, x, NA) # replace non -positive values with NA
[1] NA NA NA 1 2

> log(ifelse(x > 0, x, NA)) # no warning now
[1] NA NA NA 0.0000000 0.6931472

2.7.2 Anonymous Functions*

Another useful feature is an anonymous function (also known as a lambda expression)
which can substitute for a general expression and does not need to be declared
separately as a named function. (We use the apply() function here, which is
similar to lapply() that we saw above, but works on non-list data such as data
frames; for full details, see Sect. 3.3.4.)

2.7 Writing Your Own Functions* 41

Suppose for some reason we want the median divided by 2 for columns of data. One
solution is to take the median() of each column using the apply() function on
the data’s 2nd dimension (the columns), and then divide the result by 2:

> my.data <- matrix(runif (100) , ncol =5) # 100 random numbers in 5 columns
> apply(my.data , 2, median) / 2

[1] 0.2866528 0.2846884 0.2103075 0.2157465 0.2442849

The second command here applies the median() function to each column of data
(because the MARGIN is given the value 2), and then divides the resulting vector
by 2.

A second solution is a function with a name such as halfmedian, with apply():

> halfmedian <- function (x) { median(x) / 2 }

> apply(my.data , 2, halfmedian)

[1] 0.2866528 0.2846884 0.2103075 0.2157465 0.2442849

This now applies our custom halfmedian() function to each column.

However, creating such a function adds clutter to the namespace. Unless you want
to use such a function in multiple places, that is inefficient. A third way to solve
the problem is to create an anonymous function that does the work in place with no
function name:

> apply(my.data , 2, function(x) { median(x) / 2 })

[1] 0.2866528 0.2846884 0.2103075 0.2157465 0.2442849

If you find yourself creating a short function that is only used once, consider whether
an anonymous function might be simpler and clearer.

This example reveals a truth about R: there are often many ways to solve a problem,
and the best way in general is the one that makes sense to you. As you learn more
about R, your opinion of what is best will change and your code will become more
elegant and efficient. R analysts are thus like economists in the famous joke: “if you
ask five economists, you’ll get six different opinions.”

For further reference (without jokes), a formal outline of theR language is available in
the R Language Definition, http://cran.r-project.org/doc/manuals/R-lang.pdf [158].

Because this book is about analytics, not programming, we don’t cover the complete
details of functions but just use them as necessary. To learn more about R’s program-
ming model, see the Learning More Sect. 2.10 and a longer example in Chap.12.

2.8 Clean Up!

R keeps everything in memory by default, and when you exit (use the command
q(), for quit) R offers to save the memory workspace to disk to be loaded next time.
That is convenient but means that your workspace will become crowded unless you
keep it clean. This can lead to subtle and irreproducible bugs in your analyses, when

http://cran.r-project.org/doc/manuals/R-lang.pdf

42 2 An Overview of the R Language

you believe an object has one value but in reality it has been kept around with some
other, forgotten value.

We recommend a few steps to keep your workplace clean. Use the ls() (list objects)
command periodically to see what you have in memory. If you don’t recognize an
object, use the rm() command to remove it. You can remove a single object by using
its name, or a group of them with the list= argument plus a character vector of
names, or a whole set following a pattern with list=ls(pattern="STRING")
(tip: don’t use "*" because it will match more than you expect):

> ls()

> rm(store.num)

> rm(list=c("store.rev", "store.visits"))

> rm(list=ls(pattern="store"))

It’s better to start every session clean instead of saving a workspace. And as we’ve
said, it’s a good idea to keep all important and reproducible code in a working script
file. This will make it easy to recreate an analysis and keep a workspace clean and
reproducible.

To clean out memory and ensure you’re starting from scratch at a given time, first
you will wish to remove old data and other objects. In RStudio, you can do this by
clicking the small “broom” icon in the environment window, or selecting Session |
Clear workspace from the menu. Or, at the command line:

> rm(list=ls()) # deletes all visible objects in memory

A good second step is to restart the R interpreter. In RStudio, select Session | Restart
R from the menu. This recovers memory and resets the workspace for subsequent
analyses.

Alternatively, you may accomplish both steps by exiting without saving the
workspace, and then restarting R or RStudio.

2.9 Key Points

Most of the present chapter is foundational to R, yet there are a few especially
important points:

• For work that you want to preserve or edit, use a text editor and run commands
from there (Sect. 2.3).

• Create vectors using c() for enumerated values, seq() for sequences, and
rep() for repeated values (Sects. 2.4.1 and 2.4.3).

• Use the constant NA for missing values, not an arbitrary value such as −999
(Sect. 2.4.5).

• In R, data sets aremost commonlydata.frame objects created with a command
such asmy.df <- data.frame(vector1, vector2, ...) (Sect. 2.5)
or by reading a data file.

2.9 Key Points 43

• Vectors and data frames are most often indexed with specific numbers (x[1]),
ranges (x[2:4]), negative indices (x[-3]) to omit data, and by boolean selection
(x[x>3]) (Sects. 2.5 and 2.4.3).

• Data frames are indexed by [ROW, COLUMN], where a blank value means “all
of that dimension” such as my.df[2,] for row 2, all columns (Sect. 2.5).

• You can also index a data frame with $ and a column name, such as my.df$id
(Sect. 2.5).

• Read and write data in CSV format with read.csv() and write.csv()
(Sect. 2.6.2).

• Functions are straightforward to write and extend R’s capabilities.When youwrite
a function, organize the code well and comment it profusely (Sect. 2.7).

• Clean up your workspace regularly to avoid clutter and bugs from obsolete vari-
ables (Sect. 2.8).

2.10 Learning More*

In this chapter, we have described enough of the R language to get you started for
the applications in this book. Later chapters include additional instruction on the
language as needed for their problems, often presented as separate Language Brief
sections. If you wish to delve more deeply into the language itself, the following
books can also help.

If you are new to statistics, programming, and R, Dalgaard’s An Introduction to R
[40] gives well-paced grounding in R and basic statistics commands. It is a great
complement to this book for more practice with the R language.

For those who are experienced with statistics, A Beginner’s Guide to R by Zuur et al
[209] dives into R broadly at a more accelerated pace.

If you are an experienced programmer or want to learn the R language in detail,
Matloff’s The Art of R Programming [135] is a readable and enjoyable exposition
of the language from a computer science perspective. John Chambers’s Software
for Data Analysis [29] is an advanced description of the R language model and its
implementation. Wickham’s Advanced R [197] focuses on functional programming
in R and how to write more effective and reusable code.

Whereas this book focuses on teaching R at a conceptual level, it is also helpful
to have more examples in a cookbook format. Albert and Rizzo approach that
task from a largely regression-oriented perspective in R by Example [4]. A code-
oriented collection that is lighter on statistics but deeper on programming is Teetor’s
R Cookbook [186]. Lander (2017) presents a mix of both approaches, language and
statistics, applied to a variety of analytic problems in R for Everyone [124].

44 2 An Overview of the R Language

2.11 Exercises

2.11.1 Preliminary Note on Exercises

Theexercises in each chapter are designed to reinforce thematerial. They are provided
primarily for classroomusagebut are alsouseful for self-study.On thebook’swebsite,
we provide R files with example solutions at http://r-marketing.r-forge.r-project.org/
exercises.

We strongly encourage you to complete exercises using a tool for reproducible results,
so the code and R results will be shown together in a single document. If you are
using RStudio, an easy solution is to use an R Notebook; see Appendix B for a brief
overview of R Notebooks and other options. A simple R Notebook for classroom
exercises is available at the book’s website noted above.

For each answer, do not simply determine the answer and report it; instead write
R code to find the answer. For example, suppose a question could be answered by
copying two or more values from a summary command, and pasting them into
the R console to compute their difference. Better programming practice is to write
a command that finds the two values and then subtracts them with no additional
requirement for you to copy or retype them. Why is that better? Although it may be
more difficult to do once, it is more generalizable and reusable, if you needed to do
the same procedure again. At this point, that is not so important, but as your analyses
become complex, if will be important to eliminate manual steps that may lead to
errors.

Before you begin, we would reemphasize a point noted in Sect. 2.7.2: there may be
many ways to solve a problem in R. As the book progresses, we will demonstrate
progressively better ways to solve some of the same problems. And R programmers
may differ as to what constitutes “better.” Some may prefer elegance while others
prefer speed or ease of comprehension. At this point, we recommend that you con-
sider whether a solution seems optimal, but don’t worry too much about it. Getting a
correct answer in any one of multiple possible ways is the most important outcome.

In various chapters the exercises build on one another sequentially; you may need to
complete previous exercises in the chapter to answer later ones. Exercises preceded
by an asterisk (*) correspond to one of the optional sections in a chapter.

2.11.2 Exercises

1. Create a text vector called Months with names of the 12 months of the year.
2. Create a numeric vector Summer, with Calendar month index positions for the

summer months (inclusive, with 4 elements in all).
3. Use vector indexing to extract the text values of Months, indexed by Summer.

http://r-marketing.r-forge.r-project.org/exercises
http://r-marketing.r-forge.r-project.org/exercises

2.11 Exercises 45

4. Multiply Summer by 3. What are the values of Months, when indexed by
Summer multiplied by 3? Why do you get that answer?

5. What is the mean (average) summer month, as an integer value? Which value of
Months corresponds to it? Why do you get that answer?

6. Use the floor() and ceiling() functions to return the upper and lower
limits of Months for the average Summer month. (Hint: to find out how a
function works, use R help if needed.)

7. Using thestore.df data fromSect. 2.5, howmany visits did Bert’s store have?
8. It is easy to make mistakes in indexing. How can you confirm that the previous

answer is actually from Bert’s store? Show this with a command that produces
no more than 1 row of console output.

9. *Write a function called PieArea that takes the length of a slice of pie and
returns the area of the whole pie. (Assume that the pie is cut precisely, and
the length of the slice is, in fact, the radius of the pie.) Note that [\]ˆ is the
exponentiation operator in R.

10. *What is PieArea for slices with lengths 4.0, 4.5, 5.0, and 6.0?
11. *Rewrite the previous command as one line of code, without using the

PieArea() function. Which of the two solutions do you prefer, and why?

Part II
Fundamentals of Data Analysis

Chapter 3
Describing Data

In this chapter, we tackle our first marketing analytics problem: summarizing and
exploring a data set with descriptive statistics (mean, standard deviation, and so
forth) and visualization methods. Such investigation is the simplest analysis one can
do yet also the most crucial. It is important to describe and explore any data set
before moving on to more complex analysis. This chapter will build your R skills
and provide a set of tools for exploring your own data.

3.1 Simulating Data

We start by creating data to be analyzed in later parts of the chapter. Why simulate
data and not work entirely with real datasets? There are several reasons. The process
of creating data lets us practice and deepen R skills from Chap.2. It makes the book
less dependent on vagaries of finding and downloading online data sets. And it lets
you manipulate the synthetic data, run analyses again, and examine how the results
change.

Perhaps most importantly, data simulation highlights a strength of R: because it is
easy to simulate data, R analysts often use simulated data to prove that their methods
are working as expected. When we know what the data should say (because we
created it), we can test our analyses to make sure they are working correctly before
applying them to real data. If you have real data sets that you work with regularly,
we encourage you to use those for the same analyses alongside our simulated data
examples. (See Sect. 2.6 for more information on how to load data files.)

We encourage you to create data in this section step-by-step becausewe teachR along
the way. However, if you are in a hurry to learn how to compute means, standard
deviations and other summary statistics, you could quickly run the commands in this
section to generate the simulated data. Alternatively, the following will load the data
from the book’s web site, and you can then go to Sect. 3.6:
> store.df <- read.csv("http://goo.gl/QPDdMl")

© Springer Nature Switzerland AG 2019
C. Chapman and E. M. Feit, R For Marketing Research and Analytics, Use R!,
https://doi.org/10.1007/978-3-030-14316-9_3

49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14316-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-14316-9_3

50 3 Describing Data

But if you’re new to R, don’t do that! Instead, work through the following section
to create the data from scratch. If you accidentally ran the command above, you can
use rm(store.df) to remove the data before proceeding.

3.1.1 Store Data: Setting the Structure

Our first data set represents observations of total sales by week for two products
at a chain of stores. We begin by creating a data structure that will hold the data,
a simulation of sales for the two products in 20 stores over two years, with price
and promotion status. We remove most of the R output here to focus on the input
commands. Type the following lines, but feel free to omit the comments (following
“#”):
> k.stores <- 20 # 20 stores , using "k." for " constant"
> k.weeks <- 104 # 2 years of data each

create a data frame of initially missing values to hold the data
> store.df <- data.frame(matrix(NA , ncol=10, nrow=k.stores*k.weeks))

> names(store.df) <- c("storeNum", "Year", "Week", "p1sales", "p2sales",

+ "p1price", "p2price" , "p1prom", "p2prom", "country")

We see the simplest summary of the data frame using dim():
> dim(store.df)

[1] 2080 10

As expected, store.df has 2080 rows and 10 columns. We create two vectors that
will represent the store number and country for each observation:
> store.num <- 101:(100+k.stores)
> (store.cty <- c(rep("US" , 3) , rep("DE" , 5) , rep("GB" , 3) , rep("BR" , 2),
+ rep("JP" , 4) , rep("AU" , 1) , rep("CN" , 2)))
[1] "US" "US" "US" "DE" "DE" "DE" "DE" "DE" "GB" "GB" "GB" "BR" "BR" "JP" ...

> length(store.cty) # make sure the country list is the right length
[1] 20

Now we replace the appropriate columns in the data frame with those values, using
rep() to expand the vectors to match the number of stores and weeks:
> store.df$storeNum <- rep(store.num , each=k.weeks)

> store.df$country <- rep(store.cty , each=k.weeks)

> rm(store.num , store.cty) # clean up

Next we do the same for the Week and Year columns:
> (store.df$Week <- rep (1:52 , times=k.stores*2))

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ...

> # try the inner parts of the next line to figure out how we use rep()
> (store.df$Year <- rep(rep(1:2, each=k.weeks/2) , times=k.stores))

[1] 1 ...

We check the overall data structure with str():
> str(store.df)

’data.frame’: 2080 obs. of 10 variables:

$ storeNum: int 101 101 101 101 101 101 101 101 101 101 ...

$ Year : int 1 1 1 1 1 1 1 1 1 1 ...

$ Week : int 1 2 3 4 5 6 7 8 9 10 ...

$ p1sales : logi NA NA NA NA NA NA ...

3.1 Simulating Data 51

$ p2sales : logi NA NA NA NA NA NA ...

$ p1price : logi NA NA NA NA NA NA ...

$ p2price : logi NA NA NA NA NA NA ...

$ p1prom : logi NA NA NA NA NA NA ...

$ p2prom : logi NA NA NA NA NA NA ...

$ country : chr "US" "US" "US" "US" ...

The data frame has the right number of observations and variables, and proper column
names.

R chose types for all of the variables in our data frame. For example, store.df
$country is of type chr (character) because we assigned a vector of strings to it.
However, country labels are actually discrete values and not just arbitrary text. So
it is better to represent country explicitly as a categorical variable, known in R as a
factor. Similarly, storeNum is a label, not a number as such. By converting those
variables to factors, R knows to treat them as a categorical in subsequent analyses
such as regression models. It is good practice to set variable types correctly as they
are created; this will help you to avoid errors later.

We redefine store.df$storeNum and store.df$country as categorical
using factor():
> store.df$storeNum <- factor(store.df$storeNum)
> store.df$country <- factor(store.df$country)
> str(store.df)
’data.frame ’: 2080 obs. of 10 variables:
$ storeNum : Factor w/ 20 levels "101","102","103" ,..: 1 1 1 1 1 1 1 1 1 1 ...

... [rows omitted] ...
$ country : Factor w/ 7 levels "AU","BR","CN" ,..: 7 7 7 7 7 7 7 7 7 7 ...

storeNum and country are now defined as factors with 20 and 7 levels, respec-
tively.

It is a good idea to inspect data frames in the first and last rows because mistakes
often surface there. You can use head(x=DATA, n=NUMROWS) and tail()
commands to inspect the beginning and end of the data frame (we omit long output
from the last two commands):
> head(store.df) # defaults to 6 rows

storeNum Year Week p1sales p2sales p1price p2price p1prom p2prom country
1 101 1 1 NA NA NA NA NA NA US
2 101 1 2 NA NA NA NA NA NA US
3 101 1 3 NA NA NA NA NA NA US
...
> head(store.df , 120) # 120 rows is enough to check 2 stores ; not shown
> tail(store.df , 120) # make sure end looks OK too; not shown

All of the specific measures (sales, price, promotion) are shown as missing values
(indicated by NA) because we haven’t assigned other values to them yet, while the
store numbers, year counters, week counters and country assignments look good. It’s
always useful to debug small steps like this as you go.

3.1.2 Store Data: Simulating Data Points

We complete store.df with random data for store-by-week observations of the
sales, price, and promotional status of 2 products.

52 3 Describing Data

Before simulating random data, it is important to set the random number generation
seed to make the process replicable. After setting a seed, when you draw random
samples in the same sequence again, you get exactly the same (pseudo-)random
numbers. Pseudorandom number generators (PRNGs) are a complex topic whose
issues are out of scope here. If you are using PRNGs for something important you
should review the literature; it has been said that whole shelves of journals could be
thrown away due to poor usage of random numbers. (R has support for a wide array
of pseudorandom sequences; see ?set.seed for details. A starting point to learn
more abut PRNGs is Knuth [118].)

If you don’t set a PRNG seed, R will select one for you, but you will get different
random numbers each time you repeat the process. If you set the seed and execute
commands in the order shown in this book, you will get the results that we show.
> set.seed (98250) # a favorite US postal code

Now we can draw the random data. In each row of data—that is, one week of one
year, for one store—we set the status of whether each product was promoted (value
1) by drawing from the binomial distribution that counts the number of “heads”
in a collection of coin tosses (where the coin can have any proportion of heads,
not just 50%).

To detail that process: we use the rbinom(n, size, p) (decoded as “random
binomial”) function to draw from the binomial distribution. For every row of the
store data, as noted by n=nrow(store.df), we draw from a distribution repre-
senting the number of heads in a single coin toss (size=1) with a coin that has
probability p=0.1 for product 1 and p=0.15 for product 2. In other words, we
randomly assigning 10% likelihood of promotion for product 1, and 15% likelihood
for product 2.
> store.df$p1prom <- rbinom(n=nrow(store.df), size=1, p=0.1) # 10% promoted
> store.df$p2prom <- rbinom(n=nrow(store.df), size=1, p=0.15) # 15% promoted
> head(store.df) # how does it look so far? (not shown)

Next we set a price for each product in each row of the data. We suppose that each
product is sold at one of five distinct price points ranging from $2.19 to $3.19 overall.
We randomly draw a price for each week by defining a vector with the five price
points and using sample(x, size, replace) to draw from it as many times
as we have rows of data (size=nrow(store.df)). The five prices are sampled
many times, so we sample with replacement (replace=TRUE):
> store.df$p1price <- sample(x=c(2.19 , 2.29 , 2.49 , 2.79 , 2.99) ,

+ size=nrow(store.df), replace=TRUE)

> store.df$p2price <- sample(x=c(2.29 , 2.49 , 2.59 , 2.99 , 3.19) ,

+ size=nrow(store.df), replace=TRUE)

> head(store.df) # now how does it look?
storeNum Year Week p1sales p2sales p1price p2price p1prom p2prom country

1 101 1 1 NA NA 2.29 2.29 0 0 US

2 101 1 2 NA NA 2.49 2.49 0 0 US

3 101 1 3 NA NA 2.99 2.99 1 0 US

...

Question: if price occurs at five discrete levels, does that make it a factor variable?
That depends on the analytic question, but in general probably not. We often perform
math on price, such as subtracting cost in order to find gross margin, multiplying

3.1 Simulating Data 53

by units to find total sales, and so forth. Thus, even though it may have only a few
unique values, we want R to treat price as number, not a factor.

Our last step is to simulate the sales figures for each week. We calculate sales as a
function of the relative prices of the two products along with the promotional status
of each.

Item sales are in unit counts, so we use the Poisson distribution to generate count
data: rpois(n, lambda), where n is the number of draws and lambda is the
mean value of units per week. We draw a random Poisson count for each row
(nrow(store.df), and set the mean sales (lambda) of Product 1 to be higher
than that of Product 2:

sales data , using poisson (counts) distribution , rpois ()
first , the default sales in the absence of promotion
> tmp.sales1 <- rpois(nrow(store.df) , lambda =120)
> tmp.sales2 <- rpois(nrow(store.df) , lambda =100)

Now we scale those counts up or down according to the relative prices. Price
effects often follow a logarithmic function rather than a linear function, so we use
log(price) here:

scale sales according to the ratio of log(price)
> tmp.sales1 <- tmp.sales1 * log(store.df$p2price) / log(store.df$p1price)

> tmp.sales2 <- tmp.sales2 * log(store.df$p1price) / log(store.df$p2price)

We have assumed that sales vary as the inverse ratio of prices. That is, sales of
Product 1 go up to the degree that the log(price) of Product 1 is lower than the
log(price) of Product 2.

Finally, we assume that sales get a 30% or 40% lift when each product is promoted
in store. We simply multiply the promotional status vector (which comprises all {0,
1} values) by 0.3 or 0.4 respectively, and then multiply the sales vector by that. We
use the floor() function to drop fractional values and ensure integer counts for
weekly unit sales, and put those values into the data frame:

final sales get a 30% or 40% lift when promoted
> store.df$p1sales <- floor(tmp.sales1 * (1 + store.df$p1prom*0.3))

> store.df$p2sales <- floor(tmp.sales2 * (1 + store.df$p2prom*0.4))

Inspecting the data frame, we see that the data look plausible on the surface:

> head(store.df)

storeNum Year Week p1sales p2sales p1price p2price p1prom p2prom country

1 101 1 1 127 106 2.29 2.29 0 0 US

2 101 1 2 137 105 2.49 2.49 0 0 US

3 101 1 3 156 97 2.99 2.99 1 0 US

...

A final command is useful to inspect data because it selects rows at random and
thus may find problems buried inside a data frame away from the head or tail:
some() from the car package [62]:

> install.packages("car") # if needed
> library(car)

> some(store.df , 10)

storeNum Year Week p1sales p2sales p1price p2price p1prom p2prom country

27 101 1 27 135 99 2.29 2.49 0 0 US

54 3 Describing Data

144 102 1 40 123 113 2.79 2.59 0 0 US

473 105 2 5 127 96 2.99 3.19 0 0 DE

...

Thanks to the power of R, we have created a simulated dataset with 20,800 values
(2080 rows × 10 columns) using a total of 22 assignment commands. In the next
section we explore the data that we created.

3.2 Functions to Summarize a Variable

Observations may comprise either discrete data that occurs at specific levels or con-
tinuous data with many possible values. We look at each type in turn.

3.2.1 Discrete Variables

A basic way to describe discrete data is with frequency counts. The table()
function will count the observed prevalence of each value that occurs in a variable
(i.e., a vector or a column in a data frame). In store.df, we may count how many
times Product 1 was observed to be on sale at each price point:
> table(store.df$p1price)

2.19 2.29 2.49 2.79 2.99

395 444 423 443 375

If your counts vary, that may be due to running commands in a different order or
setting a different random number seed. The counts shown here assume that the
commands have been run in the exact sequence shown in this chapter. There is no
problem if your data is modestly different; just remember that it won’t match the
output here, or try Sect. 3.1.1 again.

One of the most useful features of R is that most functions produce an object that
you can save and use for further commands. So, for example, if you want to save
the table that was created by table(), you can just assign the same command to a
named object:
> p1.table <- table(store.df$p1price)

> p1.table

2.19 2.29 2.49 2.79 2.99

395 444 423 443 375

> str(p1.table)

’table’ int [1:5(1d)] 395 444 423 443 375

...

The str() command shows us that the object produced by table() is a special
type called table. You will find many functions in R produce objects of special
types. We can also easily pass p1.table to the plot() function to produce a
quick plot.
> plot(p1.table)

3.2 Functions to Summarize a Variable 55

Fig. 3.1 A simple bar plot
produced by passing a table
object to plot(). Default
charts are sometimes
unattractive, but there are
many options to make them
more attractive and useful

0
10

0
20

0
30

0
40

0

p1
.ta

bl
e

2.19 2.29 2.49 2.79 2.99

You can see from the resulting bar plot in Fig. 3.1 that the product was on sale at
each price point roughly the same number of times. R chose a type of plot suitable
for our table object, but it is fairly ugly and the labels could be clearer. Later in
this chapter we show how to modify a plot to get better results.

An analyst might want to know how often each product was promoted at each price
point. The table() command produces two-way cross tabswhen a second variable
is included:

> table(store.df$p1price , store.df$p1prom)

0 1

2.19 354 41

2.29 398 46

2.49 381 42

2.79 396 47

2.99 343 32

At each price level, Product 1 is observed to have been promoted approximately 10%
of the time (as expected, given howwe created the data in Sect. 3.1.1). In fact, we can
compute the exact fraction of times product 1 is on promotion at each price point, if
we assign the table to a variable and then divide the second column of the table by
the the sum of the first and second columns:
> p1.table2 <- table(store.df$p1price , store.df$p1prom)
> p1.table2 [, 2] / (p1.table2 [, 1] + p1.table2 [, 2])

2.19 2.29 2.49 2.79 2.99
0.10379747 0.10360360 0.09929078 0.10609481 0.08533333

The second command takes the second column of table p1.table—the column
with counts of how often the product is promoted—and divides by the total count
to get the proportion of times the product was promoted at each price point. R
automatically applies math operators + and / across the entire columns.

By combining operating results in this way, you can easily produce exactly the results
you want along with code that can repeat the analysis on demand. This is very helpful
to marketing analysts who produce weekly or monthly reports for sales, web traffic,
and the like.

56 3 Describing Data

Table 3.1 Distribution functions that operate on a numeric vector

Describe Function Value

Extremes min(x) Minimum value

max(x) Maximum value

Central Tendency mean(x) Arithmetic mean

median(x) Median

Dispersion var(x) Variance around the mean

sd(x) Standard deviation (sqrt(var(x)))

IQR(x) Interquartile range, 75th - 25th %’ile

mad(x) Median absolute deviation (a robust
variance estimator)

Points quantile(x,
probs=c(...))

Percentiles

3.2.2 Continuous Variables

Counts are useful when we have a small number of categories, but with continuous
data it is more helpful to to summarize the data in terms of its distribution. The most
common way to do that is with mathematical functions that describe the range of
the data, its center, the degree to which it is concentrated or dispersed, and specific
points that may be of interest (such as the 90th percentile). Table 3.1 lists some R
functions to calculate statistics for numeric vector data, such as numeric columns in
a data frame.

Following are examples of those common functions:

> min(store.df$p1sales)

[1] 73

> max(store.df$p2sales)

[1] 225

> mean(store.df$p1prom)

[1] 0.1

> median(store.df$p2sales)

[1] 96

> var(store.df$p1sales)

[1] 805.0044

> sd(store.df$p1sales)

[1] 28.3726

> IQR(store.df$p1sales)

[1] 37

> mad(store.df$p1sales)

[1] 26.6868

> quantile(store.df$p1sales , probs=c(0.25 , 0.5 , 0.75))

25% 50% 75%

113 129 150

In the case of quantile() we have asked for the 25th, 50th, and 75th percentiles
using the argument probs=c(0.25, 0.5, 0.75), which are also known as
the median (50th percentile, same as the median() function) and the edges of the
interquartile range, the 25th and 75th percentiles.

3.2 Functions to Summarize a Variable 57

For skewed and asymmetric distributions that are common in marketing, such as unit
sales or household income, the arithmeticmean() and standard deviationsd()may
be misleading; in those cases, the median() and interquartile range (IQR(), the
range of the middle 50% of data) are often more useful to summarize a distribution.

Change the probs= argument in quantile() to find other quantiles:

> quantile(store.df$p1sales , probs=c(0.05 , 0.95)) # central 90% of data
5% 95%
93 184

> quantile(store.df$p1sales , probs =0:10/10)
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

73.0 100.0 109.0 117.0 122.6 129.0 136.0 145.0 156.0 171.0 263.0

The second example here shows that we may use sequences in many places in R; in
this case, we find every 10th percentile by creating a simple sequence of 0:10 and
dividing by 10 to yield the vector0, 0.1, 0.2 ... 1.0. You could also do this
using the sequence function (seq(from=0, to=1, by=0.1)), but 0:10/10
is shorter and more commonly used.

Suppose wewanted a summary of the sales for product 1 and product 2 based on their
median and interquartile range. We might assemble these summary statistics into a
data frame that is easier to read than the one-line-at-a-time output above. We create a
data frame to hold our summary statistics and then populate it using functions from
Table 3.1. We name the columns and rows, and fill in the cells with function values:
> mysummary.df <- data.frame(matrix(NA , nrow=2, ncol =2))
> names(mysummary.df) <- c("Median Sales" , "IQR")
> rownames(mysummary.df) <- c("Product 1" , "Product 2")
> mysummary.df["Product 1" , "Median Sales"] <- median(store.df$p1sales)
> mysummary.df["Product 2" , "Median Sales"] <- median(store.df$p2sales)
> mysummary.df["Product 1" , "IQR"] <- IQR(store.df$p1sales)
> mysummary.df["Product 2" , "IQR"] <- IQR(store.df$p2sales)
> mysummary.df

Median Sales IQR
Product 1 129 37
Product 2 96 29

With this custom summary we can easily see that median sales are higher for prod-
uct 1 (129 versus 96) and that the variation in sales of product 1 (the IQR across
observations by week) is also higher. Once we have this code, we can easily run it
the next time we have new sales data to produce a revised version of our table of
summary statistics. Such code might be a good candidate for a custom function you
can reuse (see Sects. 2.7 and 11.3.1). We’ll see a shorter way to create this summary
in Sect. 3.3.4.

3.3 Summarizing Data Frames

As useful as functions such as mean() and quantile() are, it is tedious to apply
them one at a time to columns of a large data frame, as we did with the summary
table above. R provides a variety of ways to summarize data frames without writing

58 3 Describing Data

extensive code.We describe three approaches: the basic summary() command, the
describe() command from the psych package, and the R approach to iterating
over variables with apply().

3.3.1 summary()

As we saw in Sect. 2.5, summary() is a good way to do a preliminary inspection of
a data frame or other object. When you use summary() on a data frame, it reports
a few descriptive statistics for every variable:

> summary(store.df)
storeNum Year Week p1sales p2sales

101 : 104 Min . :1.0 Min . : 1.00 Min . : 73 Min . : 51.0
102 : 104 1 st Qu .:1.0 1 st Qu .:13.75 1 st Qu .:113 1 st Qu .: 84.0
103 : 104 Median :1.5 Median :26.50 Median :129 Median : 96.0
104 : 104 Mean :1.5 Mean :26.50 Mean :133 Mean :100.2
105 : 104 3 rd Qu .:2.0 3 rd Qu .:39.25 3 rd Qu .:150 3 rd Qu .:113.0
106 : 104 Max . :2.0 Max . :52.00 Max . :263 Max . :225.0
(Other):1456

p1price p2price p1prom p2prom country
Min . :2.190 Min . :2.29 Min . :0.0 Min . :0.0000 AU:104
1st Qu .:2.290 1 st Qu .:2.49 1 st Qu .:0.0 1 st Qu .:0.0000 BR:208
Median :2.490 Median :2.59 Median :0.0 Median :0.0000 CN:208
Mean :2.544 Mean :2.70 Mean :0.1 Mean :0.1385 DE:520
3rd Qu .:2.790 3 rd Qu .:2.99 3 rd Qu .:0.0 3 rd Qu .:0.0000 GB:312
Max . :2.990 Max . :3.19 Max . :1.0 Max . :1.0000 JP:416

US:312

summary()works similarly for single vectors, with a horizontal rather than vertical
display:

> summary(store.df$Year)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.0 1.0 1.5 1.5 2.0 2.0

The digits= argument is helpful if you wish to change the precision of the display:

> summary(store.df , digits =2)
storeNum Year Week p1sales p2sales

101 : 104 Min . :1.0 Min . : 1 Min . : 73 Min . : 51
102 : 104 1 st Qu .:1.0 1 st Qu .:14 1 st Qu .:113 1 st Qu.: 84

...
p1price p2price p1prom p2prom country

Min . :2.2 Min . :2.3 Min . :0.0 Min . :0.00 AU:104
1st Qu .:2.3 1 st Qu .:2.5 1 st Qu .:0.0 1 st Qu .:0.00 BR:208

...

R generally uses digits to mean significant digits regardless of absolute magnitude
or the decimal position. Thus, digits=3 does not mean “three decimal places”
but instead “three significant positions.” Output conforming to digits= is not
guaranteed; the format may be different in various cases such as reporting integer
values and for factors.

Perhaps the most important use for summary() is this: after importing data, use
summary() to do a quick quality check. Check the min and max for outliers or
miskeyed data, and check to see that the mean and median are reasonable and
similar to one another (if you expect them to be similar, of course). This simple
inspection often turns up errors in the data!

3.3 Summarizing Data Frames 59

3.3.2 describe()

Another useful command is describe() from the psych package [163]. To use
describe(), install the psych package if you haven’t done so already and make
it available with library():

> install.packages("psych")

Installing package ...

> library(psych) # may warn about " masked " objects , is OK

describe() reports a variety of statistics for each variable in a data set, includingn,
the count of observations; trimmed mean, the mean after dropping a small proportion
of extreme values; and statistics such as skew and kurtosis that are useful when
interpreting data with regard to normal distributions.
> describe(store.df)

vars n mean sd median trimmed mad min max range skew

storeNum* 1 2080 10.50 5.77 10.50 10.50 7.41 1.00 20.00 19.0 0.00

Year 2 2080 1.50 0.50 1.50 1.50 0.74 1.00 2.00 1.0 0.00

Week 3 2080 26.50 15.01 26.50 26.50 19.27 1.00 52.00 51.0 0.00

p1sales 4 2080 133.05 28.37 129.00 131.08 26.69 73.00 263.00 190.0 0.74

...

country* 10 2080 4.55 1.72 4.50 4.62 2.22 1.00 7.00 6.0 -0.29

kurtosis se

storeNum* -1.21 0.13

Year -2.00 0.01

Week -1.20 0.33

p1sales 0.66 0.62

...

country* -0.81 0.04

By comparing the the trimmed mean to the overall mean, one might discover when
outliers are skewing the mean with extreme values. describe() is especially
recommended for summarizing survey data with discrete values such as 1–7 Likert
scale items from surveys (items that use a scale with ordered values such as “Strongly
disagree (1)” to “Strongly agree (7)” or similar).

Note that there is an * next to the labels for storeNum and country in the output
above. This is a warning; storeNum and country are factors and these summary
statistics may not make sense for them. describe() treats each store number as
an integer and computes statistics based on those integers. This may be useful when
your factors are in a meaningful order. When data include character strings or other
non-numeric data, describe() gives an error, “non-numeric argument.”
These problems may be solved by selecting only the variables (columns) that are
numeric with matrix indices. For example, if we wished to describe only columns 2
and 4–9, then we could use the following:

> describe(store.df[, c(2 , 4:9)])
vars n mean sd median trimmed mad min max range skew

Year 1 2080 1.50 0.50 1.50 1.50 0.74 1.00 2.00 1.0 0.00
p1sales 2 2080 133.05 28.37 129.00 131.08 26.69 73.00 263.00 190.0 0.74
p2sales 3 2080 100.16 24.42 96.00 98.05 22.24 51.00 225.00 174.0 0.99
p1price 4 2080 2.54 0.29 2.49 2.53 0.44 2.19 2.99 0.8 0.28
p2price 5 2080 2.70 0.33 2.59 2.69 0.44 2.29 3.19 0.9 0.32
...

60 3 Describing Data

3.3.3 Recommended Approach to Inspecting Data

We can now recommend a general approach to inspecting a data set after compiling
or importing it; replace “my.data” and “DATA” with the names of your objects:

1. Import your data with read.csv() or another appropriate function and check
that the importation process gives no errors.

2. Convert it to a data frame if needed (my.data <- data.frame(DATA) and
set column names (names(my.data) <- c(...)) if needed.

3. Examine dim() to check that the data frame has the expected number of rows
and columns.

4. Use head(my.data) and tail(my.data) to check the first few and last
few rows; make sure that header rows at the beginning and blank rows at the end
were not included accidentally. Also check that no good rows were skipped at the
beginning.

5. Use some() from the car package to examine a few sets of random rows.
6. Check the data frame structure with str() to ensure that variable types and

values are appropriate. Change the type of variables—especially to factor
types—as necessary.

7. Run summary() and look for unexpected values, especially min and max that
are unexpected.

8. Load the psych library and examine basic descriptives with describe().
Reconfirm the observation counts by checking that n is the same for each variable,
and check trimmed mean and skew (if relevant).

3.3.4 apply()*

An advanced and powerful tool in R is the apply() command. apply(x=DATA,
MARGIN=MARGIN, FUN=FUNCTION) runs any function that you specify on each
of the rows and/or columns of an object. If that sounds cryptic, well …it is. In R the
termmargin is a two-dimensional metaphor that denotes which “direction” you want
to do something: either along the rows (MARGIN=1) or columns (MARGIN=2), or
both simultaneously (MARGIN=c(1, 2)).

Here’s an example: supposewewant to find themeanof every columnof store.df,
except for store.df$Store, which isn’t a number and so doesn’t have a mean.
We can apply() the mean() function to the column margin of the data like this:
> apply(store.df[,2:9], MARGIN =2, FUN=mean)

Year Week p1sales p2sales p1price p2price
1.5000000 26.5000000 133.0485577 100.1567308 2.5443750 2.6995192

p1prom p2prom
0.1000000 0.1384615

As it happens,colMeans() does the same thing as the command above, but apply
gives you the flexibility to apply any function you like. If we want the row means
instead, we simply change the margin to 1:

3.3 Summarizing Data Frames 61

> apply(store.df[,2:9], 1, mean)

[1] 29.9475 31.2475 32.9975 29.2725 31.2600 31.7850 27.5225 30.7850 28.0725

[10] 31.5600 30.5975 32.5850 25.6350 29.3225 27.9225 30.5350 31.4475 ...

Although row means make little sense for this data set, they can be useful for other
kinds of data.

Similarly, we might find the sum() or sd() for multiple columns with
margin=2:
> apply(store.df[,2:9], 2, sum)

Year Week p1sales p2sales p1price p2price p1prom p2prom
3120.0 55120.0 276741.0 208326.0 5292.3 5615.0 208.0 288.0

> apply(store.df[,2:9], 2, sd)
Year Week p1sales p2sales p1price p2price ...

0.5001202 15.0119401 28.3725990 24.4241905 0.2948819 0.3292181 ...

What if we want to know something more complex? In our discussion of functions
in Sect. 2.7, we noted the ability to define an ad hoc anonymous function. Imagine
that we are checking data and wish to know the difference between the mean and
median of each variable, perhaps to flag skew in the data. Anonymous function to
the rescue!We can apply that calculation to multiple columns using an anonymous
function:
> apply(store.df[,2:9], 2, function(x) { mean(x) - median(x) })

Year Week p1sales p2sales p1price p2price p1prom

p2prom

0.0000000 0.0000000 4.0485577 4.1567308 0.0543750 0.1095192 0.1000000 0.1384615

This analysis shows that themean of p1sales and themean of p2sales are larger
than the median by about four sales per week, which suggests there is a right-hand
tail to the distribution. That is, there are some weeks with very high sales that pull
the mean up. (Note that we only use this to illustrate an anonymous function; there
are better, more specialized tests of skew, such as those in the psych package.)

Experienced programmers: your first instinct, based on experience with procedural
programming languages,might be to solve the preceding problemwith a for() loop
that iterates the calculation across columns. That is possible in R but less efficient
and less “R-like”. Instead, try to think in terms of functions that are applied across
data as we do here.

There are specialized versions of apply() that work similarly with lists and other
object types besides data frames. If interested, check ?tapply and ?lapply.

All of these functions, including apply(), summary() and describe() return
values that can be assigned to an object. For example, using apply, we can pro-
duce our customized summary data frame from Sect. 3.2.2 in 5 lines of code rather
than 7:
> mysummary2.df <- data.frame(matrix(NA , nrow=2, ncol =2))
> names(mysummary2.df) <- c("Median Sales", "IQR")
> rownames(mysummary2.df) <- names(store.df)[4:5] # names from the data frame
> mysummary2.df[, "Median Sales"] <- apply(store.df[, 4:5], 2, median)
> mysummary2.df[, "IQR"] <- apply(store.df[, 4:5], 2, IQR)
> mysummary2.df

Median Sales IQR
p1sales 129 37
p2sales 96 29

62 3 Describing Data

If there were many products instead of just two, the code would still work if we
changed the number of allocated rows, andapply()would run automatically across
all of them.

Now that we know how to summarize data with statistics, it is time to visualize it.

3.4 Single Variable Visualization

We start by examining plots that are part of the base R system. We examine his-
tograms, density plots, and box plots, and take an initial look at more complex
graphics including maps. Later chapters build on these foundational plots and intro-
duce more that are available in other packages. R has many options for graphics
including dedicated plotting packages such as ggplot2 and lattice, and spe-
cialized plots that are optimized for particular data such as correlation analysis.

3.4.1 Histograms

A fundamental plot for a single continuous variable is the histogram. Such a plot can
be produced in R with the hist() function:

> hist(store.df$p1sales)

The result, which will appear in the graphical display of base R or RStudio, is shown
in Fig. 3.2. It is not a bad start. We see that the weekly sales for product 1 range from
a little less than 100 to a bit more than 250. Because axes should always be labeled,
R tried to provide reasonable labels based on the variables we passed to hist().

Fig. 3.2 A basic histogram
using hist()

Histogram of store.df$p1sales

store.df$p1sales

F
re

qu
en

cy

100 150 200 250

0
10

0
20

0
30

0
40

0
50

0
60

0

3.4 Single Variable Visualization 63

That plot was easy to make but the visual elements are less than pleasing, so we will
improve it. For future charts, we will show either the basic chart or the final one, and
will not demonstrate the successive steps to build one up. However, we go through
the intermediate steps here so you can see the process of how to evolve a graphic
in R.

As you work through these steps, there are four things you should understand about
graphics in R:

• R graphics are produced through commands that often seem tedious and require
trial and iteration.

• Always use a text editor when working on plot commands; they rapidly become
too long to type, and you will often want to try slight variants and to copy and
paste them for reuse.

• Despite the difficulties, R graphics can be very high quality, portable in format,
and even beautiful.

• Once you have code for a useful graphic, you can reuse it with new data. It is often
helpful to tinker with previous plotting code when building a new plot, rather than
recreating it.

Our first improvement to Fig. 3.2 is to change the title and axis labels. We do that by
adding arguments to the hist() command:

main="..." : sets the main title
xlab="..." : sets the X axis label
ylab="..." : sets the Y axis label

We add the title and axis labels to our plot command:

> hist(store.df$p1sales ,
+ main="Product 1 Weekly Sales Frequencies , All Stores",
+ xlab="Product 1 Sales (Units)",
+ ylab="Count")

The result is shown in Fig. 3.3 and is improved but not perfect; it would be nice to
have more granularity (more bars) in the histogram. While we’re at it, let’s add a
bit of color. We adjust the graphic by asking for more bins (breaks) and color the
histogram bars light blue. Here are the arguments involved:

breaks=NUM : suggest NUM bars in the result
col="..." : color the bars

When specifying colors, R knowsmany by name, including themost common ones in
English (“red”, “blue”, “green”, etc.) and less common (such as “coral” and “burly-
wood”). Many of these can be modified by adding the prefix “light” or “dark” (thus
“lightgray”, “darkred”, and so forth). For a list of built-in color names, run the
colors() command.

We add breaks= and col= arguments to our code,with the result shown in Fig. 3.4:

64 3 Describing Data

Fig. 3.3 The same
histogram, with improved
labels

Product 1 Weekly Sales Frequencies, All Stores

Product 1 Sales (Units)
C

ou
nt

100 150 200 250

0
10

0
20

0
30

0
40

0
50

0
60

0

Fig. 3.4 The histogram after
adding color and dividing the
counts into a larger number
of bins (breaks)

Product 1 Weekly Sales Frequencies, All Stores

Product 1 Sales (Units)

C
ou

nt

100 150 200 250

0
50

10
0

15
0

> hist(store.df$p1sales ,
+ main="Product 1 Weekly Sales Frequencies , All Stores",
+ xlab="Product 1 Sales (Units)",
+ ylab="Count",
+ breaks =30 , # more columns
+ col="lightblue") # color the bars

Comparing Fig. 3.4 with Fig. 3.3 we notice a new problem: the y-axis value for the
height of the bars changes according to count. The count depends on the number of
bins and on the sample size. We can make it absolute by using relative frequencies
(technically, the density estimate) instead of counts for each point. This makes the
Y axis comparable across different sized samples.

Figure3.4 also has ugly and oddly centered numbering on the X axis. Instead of using
hist()’s default tick marks (axis numbers), we remove the axis in order to replace
it with one more to our liking. The arguments for relative frequency and removing
the X axis are:

3.4 Single Variable Visualization 65

freq=FALSE : use density instead of counts on Y axis
xaxt="n" : X axis text is set to “none”

Now we need to create the replacement axis. This can be done with axis
(side=MARGIN,at=VECTOR). Note that axis() is a second command and
not an argument to hist(); hist() creates the plot and then axis() modi-
fies it.

Here is the amended code. First we call hist() to create a new plot without an X
axis :

> hist(store.df$p1sales ,

+ main="Product 1 Weekly Sales Frequencies , All Stores",

+ xlab="Product 1 Sales (Units)",

+ ylab="Relative frequency",

+ breaks =30,

+ col="lightblue",

+ freq=FALSE , # freq=FALSE means plot density , not counts
+ xaxt="n") # xaxt="n" means "x axis tick marks == no"

With axis(), we specify which axis to change using a argument: side=1 alters
the X axis while side=2 alters the Y axis (the top and right axes are side=3 and
side=4, respectively). We have to tell it where to put the labels, and the argument
at=VECTOR specifies the new tick marks for the axis. These are easily made with
the seq() function to generate a sequence of numbers:

> axis(side=1, at=seq(60 , 300 , by=20)) # add "60" , "80" , ...

The updated histogram is shown in Fig. 3.5. It is looking good now!

Finally, we add a smoothed estimation line. To do this, we use the density()
function to estimate density values for the p1sales vector, and add those to the
chart with the lines() command. The lines() command adds elements to the
current plot in the same way we saw above for the axis command.

Fig. 3.5 Histogram with
relative frequencies (density
estimates) and improved axis
tick mark labels

Product 1 Weekly Sales Frequencies, All Stores

Product 1 Sales (Units)

R
el

at
iv

e
fr

eq
ue

nc
y

0.
00

0
0.

00
5

0.
01

0
0.

01
5

80 100 120 140 160 180 200 220 240 260

66 3 Describing Data

Fig. 3.6 Final histogram
with density curve

Product 1 Weekly Sales Frequencies, All Stores

Product 1 Sales (Units)
R

el
at

iv
e

fr
eq

ue
nc

y

0.
00

0
0.

00
5

0.
01

0
0.

01
5

80 100 120 140 160 180 200 220 240 260

> lines(density(store.df$p1sales , bw=10) , # "bw = ..." adjusts the
smoothing

+ type="l", col="darkred", lwd=2) # lwd = line width

Figure3.6 is now very informative. Even someone who is unfamiliar with the data
can easily tell that this plot describes weekly sales for product 1 and that the typical
sales range from about 80 to 200.

The process we have shown to produce this graphic is representative of how analysts
use R for visualization. You start with a default plot, change some of the options,
and use functions like axis() and density() to alter features of the plot with
complete control. Although at first this will seem cumbersome compared to the
drag-and-drop methods of other visualization tools, it really isn’t much more time
consuming if you use a code editor and become familiar with the plotting functions’
examples and help files. It has the great advantage that once you’ve written the code,
you can reuse it with different data.

Exercise: modify the code to create the same histogram for product 2. It requires
only minor change to the code whereas with a drag-and-drop tool, you would start
all over. If you produce a plot often, you could even write it as a custom function.

3.4.2 Boxplots

Boxplots are a compact way to represent a distribution. The R boxplot() com-
mand is straightforward; we add labels and use the option horizontal=TRUE to
rotate the plot 90 ◦ to look better:

> boxplot(store.df$p2sales , xlab="Weekly sales", ylab="P2",
main="Weekly sales of P2 , All stores", horizontal=TRUE)

3.4 Single Variable Visualization 67

Fig. 3.7 A simple example
of boxplot()

50 100 150 200

Weekly sales of P2, All stores

Weekly sales

P
2

Figure3.7 shows the resulting graphic. The boxplot presents the distribution more
compactly than a histogram. The median is the center line while the 25th and 75th
percentiles define the box. The outer lines are whiskers at the points of the most
extreme values that are no more than 1.5 times the width of the box away from the
box. Points beyond the whiskers are outliers drawn as individual circles. This is also
known as a Tukey boxplot (after the statistician, Tukey) or as a box-and-whiskers
plot.

Boxplots are even more useful when you compare distributions by some other factor.
How do different stores compare on sales of product 2? The boxplot() command
makes it easy to compare these by specifying a response formula using tilde notation,
where the tilde (“∼”) separates the response variable (sometimes called a dependent
variable) from the explanatory variable (sometimes rather misleadingly called an
independent variable). In this case, our response variable is p2sales and we want
to plot it with regards to the explanatory variable storeNum. This may be easiest
to understand with the R code:
> boxplot(store.df$p2sales ∼ store.df$storeNum , horizontal=TRUE ,
+ ylab="Store", xlab="Weekly unit sales", las=1,
+ main="Weekly Sales of P2 by Store")

Thefirst portion of the commandmaybe read as “boxplot p2sales byStore.” Formulas
like this are pervasive in R and are used both for plotting and for estimating models.
We discuss formulas in detail in Sect. 5.2.1 and Chap.7.

We added one other argument to the plot: las=1. That forces the axes to have text
in the horizontal direction, making the store numbers more readable. The result is
Fig. 3.8, where stores are roughly similar in sales of product 2 (this is not a statistical
test of difference, just a visualization).

We see in Fig. 3.8 that the stores are similar in unit sales of P2, but do P2 sales differ
in relation to in-store promotion? In this case, our explanatory variable would be the
promotion variable for P2, so we use boxplot()with the response formula again,
replacing storeNum with the promotion variable p2prom.

This is a good time to introduce two shortcut commands that make life easier. Many
commands for statistics and plotting understand the data=DATAFRAME argument,
and will use variables from data without specifying the full name of the data
frame. This makes it easy to repeat analyses on different data sets that include the
same variables. All you have to do is change the argument for data=.

68 3 Describing Data

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

50 100 150 200

Weekly Sales of P2 by Store

Weekly unit sales

S
to

re

Fig. 3.8 boxplot() of sales by store

Fig. 3.9 Boxplot of product sales by promotion status

> boxplot(p2sales ∼ p2prom , data=store.df , horizontal=TRUE , yaxt="n",
+ ylab="P2 promoted in store?", xlab="Weekly sales",
+ main="Weekly sales of P2 with and without promotion")
> axis(side=2, at=c(1,2) , labels=c("No", "Yes"))

In this plot we also used axis() to replace the default Y axis with one that is more
informative.The result is shown in Fig. 3.9. There is a clear visual difference in sales
on the basis of in-store promotion!

While boxplots are a standard tool for visualizing the distribution of multiple con-
tinuous variables, they are sometimes criticized because they do not provide fairly
limited information about the distribution. A newer alternative is to place multiple
density plots (like the smoothed line in Fig. 3.6) on the same chart for easy com-
parison. The beanplot package allows you to do this with syntax very similar to
boxplot():
> beanplot(p2sales ∼ p2prom , data=store.df , horizontal=TRUE , yaxt="n",
+ what=c(0,1,1,0) , log="", side="second",
+ ylab="P2 promoted in store?", xlab="Weekly sales",
+ main="Weekly sales of P2 with and without promotion")
> axis(side=2, at=c(1,2) , labels=c("No", "Yes"))

The only additional inputs required for beanplot() (versus boxplot()) are
what=c(1,1,1,0), which controls the features of the plot (see ?beanplot
for more details), log="", which prevents beanplot() from using a log-scale
axis and side="second", which tells beanplot to compute a density plot. The
output, shown in Fig. 3.10, replaces the box-and-whiskers with a density plot for each
group. This format ismore accessible especially in business settingswheremanymay

3.4 Single Variable Visualization 69

50 100 150 200 250

Weekly sales of P2 with and without promotion

Weekly sales

P
2

pr
om

ot
ed

 in
 s

to
re

?

N
o

Ye
s

Fig. 3.10 Beanplot of product sales by promotion status

be unfamiliar with boxplots. There are several variations of plots that improve on the
boxplot, which you may find under names such as violin, ridge, dot, strip, and bean
plots. There is not yet a standard nomenclature for this family of plots.

To wrap up: boxplots and their newer alternatives are powerful tools to visualize a
distribution andmake it easy to explore how an outcome variable is related to another
factor. In Chaps. 4 and 5 we explore many more ways to examine data association
and statistical tests of relationships.

3.4.3 QQ Plot to Check Normality*

This is an optional section on a graphical method to evaluate a distribution more
formally.Youmaywish to skip to Sect. 3.4.4 on cumulative distributions or Sect. 3.4.5
that describes how to compute aggregate values in R.

Quantile-quantile (QQ) plots are a goodway to check one’s data against a distribution
that you think it should come from. Some common statistics such as the correlation
coefficient r (to be precise, the Pearson product-moment correlation coefficient) are
interpreted under an assumption that data are normally distributed. A QQ plot can
confirm that the distribution is, in fact, normal by plotting the observed quantiles of
your data against the quantiles that would be expected for a normal distribution.

To do this, theqqnorm() command compares data versus a normal distribution; you
can use qqline() to add a diagonal line for easier reading. We check p1sales
to see whether it is normally distributed:
> qqnorm(store.df$p1sales)

> qqline(store.df$p1sales)

The QQ plot is shown in Fig. 3.11. The distribution of p1sales is far from the line
at the ends, suggesting that the data is not normally distributed. The upward curving
shape is typical of data with high positive skew.

What should you do in this case? If you are using models or statistical functions that
assume normally distributed data, you might wish to transform your data. As we’ve
already noted, a common pattern in marketing data is a logarithmic distribution. We
examinewhether p1sales is more approximately normal after alog() transform:

70 3 Describing Data

Fig. 3.11 QQ plot to check
distribution. The tails of the
distribution bow away from
the line that represents an
exact normal distribution,
showing that the distribution
of p1sales is skewed

−3 −2 −1 0 1 2 3

10
0

15
0

20
0

25
0

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Fig. 3.12 QQ plot for the
data after log()
transformation. The sales
figures are now much better
aligned with the solid line
that represents an exact
normal distribution

−3 −2 −1 0 1 2 3

4.
4

4.
6

4.
8

5.
0

5.
2

5.
4

5.
6

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

> qqnorm(log(store.df$p1sales))

> qqline(log(store.df$p1sales))

The QQ plot for log(p1sales) is shown in Fig. 3.12. The points are much closer
to the solid line, indicating that the distribution of log(store.df$p1sales) is
much approximately normal than the untransformed variable.

We recommend that you use qqnorm() (and the more general qqplot() com-
mand) regularly to test assumptions about your data’s distribution. Web search will
reveal further examples of common patterns that appear in QQ plots and how to
interpret them.

3.4.4 Cumulative Distribution*

This is another optional section, but one that can be quite useful. If you wish to skip
ahead to cover just the fundamentals, you should continue with Sect. 3.4.5.

Another useful univariate plot involves the impressively named empirical cumulative
distribution function (ECDF). It is less complex than it sounds and is simply a plot

3.4 Single Variable Visualization 71

that shows the cumulative proportion of data values in your sample. This is an easy
way to inspect a distribution and to read off percentile values.

Before that we should explain an important thing to know about the R plot()
command: plot() can make only a few plot types on its own and otherwise must
be given an object that includes more information such as X and Y values. Many
R functions produce objects automatically that are suitable as input for plot(). A
typical pattern looks like this:
> my.object <- FUNCTION(my.data) # not real code
> plot(my.object)

…or combined into a single line as:
> plot(FUNCTION(my.data)) # not real code

Weplot the ECDF of p1sales by combining a few steps. First, we use the ecdf()
function to find the ECDF of the data. Then we wrap plot() around that, adding
options such as titles. Next we put some nicer-looking labels on theY axis that relabel
the proportions as percentiles. The paste() function combines a number vector
(0, 10, 20, . . .) with the “%” symbol to make each label.

Suppose we also want to knowwhere we should expect 90% of sales figures to occur,
i.e., the 90th percentile for weekly sales of P1. We can use the function abline()
to add vertical and horizontal lines at the 90th percentile. We do not have to tell
R the exact value at which to draw a line for the 90th percentile; instead we use
quantile(, pr=0.9) to find it:
> plot(ecdf(store.df$p1sales),

+ main="Cumulative distribution of P1 Weekly Sales",

+ ylab="Cumulative Proportion",

+ xlab=c("P1 weekly sales , all stores" , "90% of weeks sold <= 171 units"

),

+ yaxt="n")

> axis(side=2, at=seq(0, 1, by=0.1) , las=1,

+ labels=paste(seq(0,100,by=10) , "%", sep=""))

> abline(h=0.9, lty=3) # "h=" for horizontal line ; "lty =3" for dotted
> abline(v=quantile(store.df$p1sales , pr=0.9) , lty=3) # "v=" vertical line

The result is Fig. 3.13 we often use cumulative distribution plots both for data explo-
ration and for presenting data to others. They are a goodway to highlight data features
such as discontinuities in the data, long tails, and specific points of interest.

3.4.5 Language Brief: by() and aggregate()

What shouldwe do if wewant to break out data by factors and summarize it, a process
youmight know as “cross-tabs” or “pivot tables”? For example, how canwe compute
the mean sales by store? We have voluminous data (every store by every week by
each product) but many marketing purposes only need an aggregate figure such as
a total or mean. We saw in Sect. 3.3.4 how to summarize data with various statistics

72 3 Describing Data

Fig. 3.13 Cumulative distribution plot with lines to emphasize the 90th percentile. The chart
identifies that 90% of weekly sales are lower than or equal to 171 units. Other values are easy to
read off the chart. For instance, roughly 10% of weeks sell less than 100 units, and fewer than than
5% sell more than 200 units

and plots, and to summarize across columns with the apply() function. Now we
will see how to summarize by a factor within the data itself using the commands
by() and aggregate().

Let’s lookfirst atby(data=DATA, INDICES=INDICES, FUN=FUNCTION).
by() uses INDICES as grouping factors to divide DATA into subgroups. Then it
applies the function FUN to each subgroup.

This is easier to understand in the context of an example. Suppose we wish to find
the average sales of P1 by store. The DATAwould be the weekly sales for each store,
store.df$p1sales. We wish to split this by store, so the INDICES (actually,
“index” in this case) would be store.df$storeNum. Finally, we get the average
of each of those groups by using the mean function. Here is the complete command
to break out mean sales of P1 by store:
> by(store.df$p1sales , store.df$storeNum , mean)
store.df$storeNum : 101
[1] 130.5385
--
store.df$storeNum : 102
[1] 134.7404
...

To group it by more than one factor, use a list() of factors. For instance, we can
obtain the mean of p1sales by store and by year:
> by(store.df$p1sales , list(store.df$storeNum , store.df$Year), mean)
: 101
: 1
[1] 127.7885
--
: 102
: 1
[1] 129.7115
...

A limitation of by() is that the result is easy to read but not structured for reuse.
How can we save the results as data to use for other purposes such as plotting?

3.4 Single Variable Visualization 73

The answer isaggregate()which operates almost identically toby() but returns
a nicely formatted data frame. The following computes the total (sum()) sales of
P1 by country:
> aggregate(store.df$p1sales , by=list(country=store.df$country), sum)

country x

1 AU 14544

2 BR 27836

3 CN 27381

4 DE 68876

5 GB 40986

6 JP 55381

7 US 41737

Howdoes this work? Just as withby(),aggregate(x=DATA, by=BY, FUN=
FUNCTION) applies a particular function (FUN) according to divisions of the data
specified by a factor (by). We want to find the total sales by country, so we apply
the sum function by store.df$country.

If we want to save the result as a new data frame, we simply assign it somewhere—as
we do now because we will use it in Sect. 3.4.6 to make a map:
> p1sales.sum <- aggregate(store.df$p1sales ,
+ by=list(country=store.df$country), sum)

> p1sales.sum
country x

1 AU 14544
2 BR 27836
3 CN 27381
...

aggregate() gave us a nicely structured data frame with our summary. We will
see further options for aggregate() in Sect. 5.2.1.

3.4.6 Maps

We often need to plot marketing data on a map. A common variety is a choropleth
map, which uses graphics or color to indicate values of a variable such as income
or sales. We consider how to do this for a world map using the rworldmap pack-
age [182].

Here is a routine example. Suppose that we want to chart the total sales by country.
We use aggregate() as in Sect. 3.4.5 to find the total sales of P1 by country:
p1sales.sum <- aggregate(store.df$p1sales ,

by=list(country=store.df$country), sum)

To make a map, we’ll use the rworldmap package for plotting routines [182], plus
the RColorBrewer package [148] to generate some better-looking colors.
> install.packages(c("rworldmap", "RColorBrewer")) # if needed
> library(rworldmap)
> library(RColorBrewer)

First, we have to associate the aggregated data to specific map regions using the
country codes. This can be done with the joinCountryData2Map() function,
which matches country locations (store.df$country) for data points with the
corresponding international standard names (ISO names) and returns a map object:

74 3 Describing Data

Total P1 sales by Country

Fig. 3.14 World map for P1 sales by country, using rworldmap

> p1sales.map <- joinCountryData2Map(p1sales.sum , joinCode = "ISO2",
+ nameJoinColumn = "country")

Let’s inspect that command more closely. The data object that we wish to map is
the p1sales.sum aggregated data frame. We place that on a map according to the
2-letter country names (joinCode="ISO2") which are present in the data object
as the "country" column.

Next we draw the resulting map object using mapCountryData(), selecting col-
ors from the RColorBrewer package “Greens” palette.We plot the column named
x because that is the default name that the aggregate() function gives in the
aggregated data fame:

> mapCountryData(p1sales.map , nameColumnToPlot="x",
+ mapTitle="Total P1 sales by Country",
+ colourPalette=brewer.pal(7, "Greens"),
+ catMethod="fixedWidth", addLegend=FALSE)

The result is shown in Fig. 3.14, known as a choropleth chart.

Although such maps are popular, they can be misleading. In The Wall Street Journal
Guide to Information Graphics, Wong explains that choropleth charts are problem-
atic because they confuse geographic area with scaled quantities ([205], p. 90). For
instance, in Fig. 3.14, China is more prominent than Japan not because it has a higher
value but because it is larger in size. We acknowledge the need for caution despite
the popularity of such maps.

For more complex charts, there are options in ?rworldmap for drawing regional
maps, more granular areas, setting color palettes, using locations other than country
codes, and so forth. For othermapping options, see the suggestions in Sect. 3.7 below.

3.5 Key Points 75

3.5 Key Points

The following guidelines and pointers will help you to describe data accurately and
quickly:

• Consider simulating data before collecting it, in order to test your assumptions
and develop initial analysis code (Sect. 3.1).

• Always check your data for proper structure and data quality using str(),
head(), summary(), and other basic inspection commands (Sect. 3.3.3).

• Describe discrete (categorical) data with table() (Sect. 3.2.1) and inspect con-
tinuous data with describe() from the psych package (Sect. 3.3.2).

• Histograms (Sect. 3.4.1), boxplots, and beanplots (Sect. 3.4.2) are good for initial
data visualization.

• Use by() and aggregate() to break out your data by grouping variables
(Sect. 3.4.5).

• Advanced visualizationmethods include cumulative distribution (Sect. 3.4.4), nor-
mality checks (Sect. 3.4.3), and mapping (Sect. 3.4.6).

3.6 Data Sources

Data such as store.df might be derived from a database at a firm’s headquarters
office, where weekly sales figures are gathered. The data often might come from an
automated data system such as point-of-sale machines reporting to in-store databases
and then up to headquarters databases, although at other times it might be gathered
and entered manually. A common situation would be to have transaction data in a
SQL database, which is then aggregated to total up sales by week and store number,
with the results exported to a CSV file. Another common situation would be to gather
the data in a spreadsheet program, where it might be aggregated with a function such
as pivot tables, and then exported to CSV.

We can assume that such a database would contain hundred or thousands of items—
as we see in actual store transaction data in Chap. 12—but for purposes here we have
simplified it to two items.

As a side note, although we used a CSV file to store the data set online for those
who don’t simulate it (Sect. 3.1), CSV format is not required to get data into R. R
can also read data from SQL databases directly, and can import directly from many
spreadsheet programs as well as other sources. See Appendix C.1.1 for more about
data formats.

76 3 Describing Data

3.7 Learning More*

Plotting. We demonstrate plotting in R throughout this book. R has multiple, often
disjoint solutions for plotting and in this text we use plots as appropriate without
going deeply into their details. The base plotting system comes standard in R and
appears in commands such as hist() and plot().

Two popular and powerful packages that produce more complex graphics are
lattice [173] andggplot2 [198]. The choice betweenlattice andggplot2
is largely a matter of personal preference and style. We sometimes suspect that
lattice appeals more to scientists and engineers while ggplot2 appeals to com-
puter scientists and social scientists. Chang’s R Graphics Cookbook [31] is a single
volume overview of many kinds of plots available in R, focused on the ggplot2
package.

Wong’s The Wall Street Journal Guide to Information Graphics [205] presents fun-
damentals of good style for effective graphics in any business context (not specific
to R).

Maps. Producing maps in R is an especially complex topic. Maps require three
essential components: shape files that define the borders of areas (such as country or
city boundaries); spatial translation of one’s data (for instance, a database to match
Zip codes in your data to the relevant areas on a map); and plotting software to
perform the actual plotting. R packages such as rworldmap usually provide access
to all three of those elements.

As of this writing, the landscape of available packages and tools formapping in Rwas
changing rapidly. We use the rworldmap package here for its simplicity. For more
complex tasks, the ggplot2 package [198] serves as the basis for a sophisticated
mapping tool, the ggmap package [113].

3.8 Exercises

3.8.1 E-Commerce Data for Exercises

Starting in this chapter, many of our exercises use a real data set contributed to the
authors by an e-commerce site. The data set comprises responses to intercept surveys
asked when users visited the site, along with data about each user’s site activity such
as number of pages visited and whether a sale was completed. Identifying details for
the site and customers have been removed but the observations otherwise are actual
data.

We will load the data set first, and then explain a few of its observations. To load
the data from CSV format, use the following command (or load ecommerce-
data.csv from a local location if you have downloaded it, as noted in Sect. 1.6.3).

3.8 Exercises 77

> ecomm.df <- read.csv("https://goo.gl/hzRyFd")

> summary(ecomm.df)

As a reminder, Sect. 2.11 discussed our general approach and recommendations for
exercises.

3.8.2 Exercises

1. How many observations and variables are in the e-commerce data set?
2. Compute a frequency table for the country of origin for site visits. After the

United States, which country had the most visitors?
3. Compute a two-way frequency table for the intent to purchase (intentWas

PlanningToBuy), broken out by user profile.
4. What are the proportions of parents who intended to purchase? the proportions

of teachers who did? For each one, omit observations for whom the intent is
unknown (blank).

5. Among US states (recorded in the variable region), which state had the most
visitors and how many?

6. Solve the previous problem for the state with the most visitors, using the
which.max() function (or repeat the same answer, if you already used it).

7. Draw a histogram for the number of visits to the site (behavNumVisits).
Adjust it for more detail in the lower values. Color the bars and add a density
line.

8. Draw a horizontal boxplot for the number of site visits.
9. Which chart from the previous two exercises, a histogram or a boxplot, is more

useful to you, and why?
10. Draw a boxplot for site visits broken out with a unique row for each profile

type. (Note: if the chart margins make it unreadable, try the following command
before plotting: par(mar=c(3, 12, 2, 2)). After plotting, you can use
the command par(mar=c(5, 4, 4, 2) + 0.1) to reset the chart mar-
gins.)

11. *Write a function called MeanMedDiff that returns the absolute difference
between the mean and the median of a vector.

12. *What is the mean-median difference for number of site visits?
13. *What is the mean-median difference for site visits, after excluding the person

who had the most visits?
14. *Use the apply() function to find the mean-median difference for the 1/0

coded behavioral variables for onsite behaviors.
15. *Write the previous command using an anonymous function (see Sect. 2.7.2)

instead of MeanMedDiff().
16. *Do you prefer the named function for mean-median difference (Mean

MaxDiff()), or an anonymous function? Why? What is a situation for each in
which it might be preferable?

Chapter 4
Relationships Between Continuous
Variables

Experienced analysts understand that the most important insights in marketing
analysis often come from understanding relationships between variables. While it
is helpful to understand single variables, such as how many products are sold at
a store, more valuable insight emerges when we understand relationships such as
“Customers who live closer to our store visit more often than those who live farther
away,” or “Customers of our online shop buy as much in person at the retail shop as
do customers who do not purchase online.”

Identifying these kinds of relationships helps marketers to understand how to reach
customersmore effectively. For example, if peoplewho live closer to a store visitmore
frequently and buy more, then an obvious strategy would be to send advertisements
to people who live in the area.

In this chapter we focus on understanding the relationships between pairs of variables
in multivariate data, and examine how to visualize the relationships and compute
statistics that describe their associations (correlation coefficients). These are the
most important ways to assess relationships between continuous variables. While it
might seem appealing to go straight into building regressionmodels (see Chap.7), we
caution against that. The first step in any analysis is to explore the data and its basic
properties. This chapter continues the data exploration and visualization process that
we reviewed for single variables in Chap.3. It often saves time and heartache to
begin by examining the relationships among pairs of variables before building more
complex models.

4.1 Retailer Data

We simulate a data set that describes customers of a multi-channel retailer and their
transactions for one year. This data includes a subset of customers for whomwe have
survey data on product satisfaction.

© Springer Nature Switzerland AG 2019
C. Chapman and E. M. Feit, R For Marketing Research and Analytics, Use R!,
https://doi.org/10.1007/978-3-030-14316-9_4

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14316-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-14316-9_4

80 4 Relationships Between Continuous Variables

As in Chap.3, we present the code that generates this data as a way to teach more
about R syntax. However, if you prefer to jump right into the analysis, you could
quickly run all the commands in Sect. 4.1.1 and then continue with Sect. 4.2 where
we begin plotting the data.

Alternatively, the following will load the data from this book’s website:
> cust.df <- read.csv("http://goo.gl/PmPkaG")

However, you will learn more about R if you work through the simulation code
instead of downloading the data.

4.1.1 Simulating the Data

In this section, we create a data set for 1000 customers of a retailer that sells products
in stores and online. This data is typical of what one might sample from a company’s
customer relationship management (CRM) system. We begin by setting a random
number seed to make the process repeatable (as described in Sect. 3.1.2) and creating
a data frame to store the data:
> set.seed (21821)
> ncust <- 1000
> cust.df <- data.frame(cust.id=as.factor(c(1: ncust)))

We declare a variable ncust for the number of customers in the synthetic data set
and use that variable wherever we need to refer to the number of customers. This is
a good practice, as it allows you to change ncust in just one place in your code and
then re-run the code to generate a new data set with a different number of customers.

Next we create a number of variables describing the customers, add those variables
to the cust.df data frame, and inspect them with summary():
> cust.df$age <- rnorm(n=ncust , mean=35, sd=5)
> cust.df$credit.score <- rnorm(n=ncust , mean=3*cust.df$age+620, sd=50)
> cust.df$email <- factor(sample(c("yes", "no"), size=ncust , replace=TRUE ,
+ prob=c(0.8 , 0.2)))
> cust.df$distance.to.store <- exp(rnorm(n=ncust , mean=2, sd=1.2))

> summary(cust.df)
cust.id age credit.score email distance.to.store

1 : 1 Min . :19.34 Min . :543.0 no :186 Min . : 0.2136
2 : 1 1 st Qu .:31.43 1 st Qu .:691.7 yes :814 1 st Qu .: 3.3383
3 : 1 Median :35.10 Median :725.5 Median : 7.1317
4 : 1 Mean :34.92 Mean :725.5 Mean : 14.6553
5 : 1 3 rd Qu .:38.20 3 rd Qu .:757.2 3 rd Qu .: 16.6589
6 : 1 Max . :51.86 Max . :880.8 Max . :267.0864
(Other):994

We add new variables to cust.df data frame using simple assignment (<-) to a
name with $ notation. Columns in data frames can be easily created or replaced in
this way, as long as the vector has the appropriate length (or is recycled to fit the
length).

The customers’ ages (age) are drawn from a normal distribution with mean 35
and standard deviation 5 using rnorm(n, mean, sd). Credit scores (credit.

4.1 Retailer Data 81

score) are also simulated with a normal distribution, but in that case we specify that
the mean of the distribution is related to the customer’s age, with older customers
having higher credit scores on average. We create a variable (email) indicating
whether the customer has an email on file, using the sample function that was
covered in Chap.3.

Our final variable for the basic CRM data is distance.to.store, which
we assume follows the exponential of the normal distribution. That gives dis-
tances that are all positive, with many distances that are relatively close to the
nearest store and fewer that are far from a store. To see the distribution for
yourself, try hist(cust.df$distance.to.store). Formally, we say that
distance.to.store follows a lognormal distribution. (This is sufficiently com-
mon that there is a built in function called rlnorm(n, meanlog, sdlog) that
does the same thing as taking the exponential of rnorm().)

4.1.2 Simulating Online and In-store Sales Data

Our next step is to create data for the online store: one year totals for each customer
for online visits and transactions, plus total spending. We simulate the number of
visitswith a negative binomial distribution, a discrete distribution often used tomodel
counts of events over time. Like the lognormal distribution, the negative binomial
distribution generates positive values and has a long right-hand tail, meaning that
in our data most customers make relatively few visits and a few customers make
many visits. Data from the negative binomial distribution can be generated using
rnbinom():
> cust.df$online.visits <- rnbinom(ncust , size=0.3,
+ mu = 15 + ifelse(cust.df$email=="yes" , 15, 0)
+ - 0.7 * (cust.df$age -median(cust.df$age)))

We model the mean (mu) of the negative binomial with a baseline value of 15. The
size argument sets the degree of dispersion (variation) for the samples. We add an
average 15 online visits for customers who have an email on file, using ifelse()to
generate a vector of 0 or 15 as appropriate. Finally, we add or subtract visits from the
target mean based on the customer’s age relative to the sample median; customers
who are younger are simulated to make more online visits. To see exactly how this
works, try cutting and pasting pieces of the code above into the R console.

For each online visit that a customer makes, we assume there is a 30% chance
of placing an order and use rbinom() to create the variable online.trans.
We assume that amounts spent in those orders (the variable online.spend) are
lognormally distributed:
> cust.df$online.trans <- rbinom(ncust , size=cust.df$online.visits , prob =0.3)
> cust.df$online.spend <- exp(rnorm(ncust , mean=3, sd=0.1)) *
+ cust.df$online.trans

82 4 Relationships Between Continuous Variables

The randomvalue for amount spent per transaction—sampledwithexp(rnorm())
is multiplied by the variable for number of transactions to get the total amount spent.

Next we generate in-store sales data similarly, except that we don’t generate a count
of store visits; few customers visit a physical store without making a purchase and
even if customers did visit without buying, the company probably couldn’t track the
visit.We assume that transactions follow a negative binomial distribution, with lower
average numbers of visits for customers who live farther away. We model in-store
spending as a lognormally distributed variable simply multiplied by the number of
transactions:
> cust.df$store.trans <- rnbinom(ncust , size=5,
+ mu=3 / sqrt(cust.df$distance.to.store))
> cust.df$store.spend <- exp(rnorm(ncust , mean =3.5, sd=0.4)) *
+ cust.df$store.trans

As always, we check the data along the way:

> summary(cust.df)
cust.id age credit.score email distance.to.store

1 : 1 Min . :19.34 Min . :543.0 no :186 Min . : 0.2136
2 : 1 1 st Qu .:31.43 1 st Qu .:691.7 yes :814 1 st Qu .: 3.3383

...
online.spend store.trans store.spend

Min . : 0.00 Min . : 0.000 Min . : 0.00
1st Qu .: 0.00 1 st Qu .: 0.000 1 st Qu .: 0.00
Median : 37.03 Median : 1.000 Median : 30.05

...

4.1.3 Simulating Satisfaction Survey Responses

It is common to for retailers to survey their customers and record responses in the
CRM system. Our last simulation step is to create survey data for a subset of the
customers.

To simulate survey responses, we assume that each customer has an unobserved
overall satisfactionwith the brand.Wegenerate this overall satisfaction fromanormal
distribution:
> sat.overall <- rnorm(ncust , mean =3.1, sd=0.7)
> summary(sat.overall)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.617 2.632 3.087 3.100 3.569 5.293

We assume that overall satisfaction is a psychological construct that is not directly
observable. Instead, the survey collects information on two items: satisfaction with
service, and satisfaction with the selection of products. We assume that customers’
responses to the survey items are based on unobserved levels of satisfaction overall
(sometimes called the “halo” in survey response) plus the specific levels of satisfac-
tion with the service and product selection.

To create such a score from a halo variable, we add sat.overall (the halo)
to a random value specific to the item, drawn using rnorm(). Because survey

4.1 Retailer Data 83

responses are typically given on a discrete, ordinal scale (i.e., “very unsatisfied”,
“unsatisfied”, etc.), we convert our continuous random values to discrete integers
using the floor() function.

> sat.service <- floor(sat.overall + rnorm(ncust , mean =0.5, sd=0.4))
> sat.selection <- floor(sat.overall + rnorm(ncust , mean=-0.2, sd=0.6))
> summary(cbind(sat.service , sat.selection))

sat.service sat.selection
Min . :0.000 Min . : -1.000
1st Qu .:3.000 1 st Qu .: 2.000

...
Max . :6.000 Max . : 5.000

Note that we use cbind() to temporarily combine our two vectors of data into
a matrix, so that we can get a combined summary with a single line of code. The
summary shows that our data now ranges from−1 to 6.However, a typical satisfaction
item might be given on a 5-point scale. To fit that, we replace values that are greater
than 5 with 5, and values that are less than 1 with 1. This enforces the floor and
ceiling effects often noted in survey response literature.

We set the ceiling by indexing with a vector that tests whether each element of
sat.service is greater than 5): sat.service[sat.service > 5]. This
might be read as “sat.service, where sat.service is greater than 5.” For the elements
that are selected—which means that the expression evaluates as TRUE—we replace
the current values with the ceiling value of 5. We do the same for the floor effects
(< 1, replacing with 1) and likewise for the ceiling and floor of sat.selection.
While this sounds quite complicated, the code is simple:

> sat.service[sat.service > 5] <- 5
> sat.service[sat.service < 1] <- 1
> sat.selection[sat.selection > 5] <- 5
> sat.selection[sat.selection < 1] <- 1
> summary(cbind(sat.service , sat.selection))

sat.service sat.selection
Min . :1.000 Min . :1.000

...
Max . :5.000 Max . :5.000

Using this type of syntax to replace values in a vector or matrix is common in R, and
we recommend that you try out some variations (being careful not to overwrite the
cust.df data, of course).

4.1.4 Simulating Non-response Data

Because some customers do not respond to surveys, we eliminate the simulated
answers for a subset of respondents who are modeled as not answering. We do this
by creating a variable of TRUE and FALSE values called no.response and then
assigning a value of NA for the survey response for customerswhoseno.response
is TRUE. As we have discussed, NA is R’s built-in constant for missing data.

Wemodel non-response as a function of age, with higher likelihood of not responding
to the survey for older customers:

84 4 Relationships Between Continuous Variables

> no.response <- as.logical(rbinom(ncust , size=1, prob=cust.df$age/100))
> sat.service[no.response] <- NA
> sat.selection[no.response] <- NA
> summary(cbind(sat.service , sat.selection))

sat.service sat.selection
Min . :1.00 Min . :1.000
1st Qu .:3.00 1 st Qu .:2.000
Median :3.00 Median :2.000
Mean :3.07 Mean :2.401
3rd Qu .:4.00 3 rd Qu .:3.000
Max . :5.00 Max . :5.000
NA’s :341 NA’s :341

summary() recognizes the 341 customers with NA values and excludes them from
the statistics.

Finally, we add the survey responses to cust.df and clean up the workspace:

> cust.df$sat.service <- sat.service
> cust.df$sat.selection <- sat.selection
> summary(cust.df)

cust.id age credit.score email distance.to.store
1 : 1 Min . :19.34 Min . :543.0 no :186 Min . : 0.2136
2 : 1 1 st Qu .:31.43 1 st Qu .:691.7 yes :814 1 st Qu .: 3.3383
...

store.spend sat.service sat.selection
Min . : 0.00 Min . :1.000 Min . :1.000

...
Max . :705.66 Max . :5.000 Max . :5.000

NA’s :341 NA’s :341

> rm(ncust , sat.overall , sat.service , sat.selection , no.response)

The data set is now complete and ready for analysis.

4.2 Exploring Associations Between Variables with
Scatterplots

Our analysis begins by checking the data with str() to review its structure:

> str(cust.df)
’data.frame’: 1000 obs. of 12 variables:
$ cust.id : Factor w/ 1000 levels "1","2","3","4" ,..: 1 2 3 ...
$ age : num 22.9 28 35.9 30.5 38.7 ...
$ credit.score : num 631 749 733 830 734 ...
$ email : Factor w/ 2 levels "no","yes": 2 2 2 2 1 2 2 2 1 1 ...
$ distance.to.store: num 2.58 48.18 1.29 5.25 25.04 ...
$ online.visits : num 20 121 39 1 35 1 1 48 0 14 ...
$ online.trans : int 3 39 14 0 11 1 1 13 0 6 ...
$ online.spend : num 58.4 756.9 250.3 0 204.7 ...
$ store.trans : num 4 0 0 2 0 0 2 4 0 3 ...
$ store.spend : num 140.3 0 0 95.9 0 ...
$ sat.service : num 3 3 NA 4 1 NA 3 2 4 3 ...
$ sat.selection : num 3 3 NA 2 1 NA 3 3 2 2 ...

As we noted above, in this data frame each row represents a different customer. For
each, there is a flag indicating whether the customer has an email address on file
(email), along with the customer’s age, credit.score, and distance to the
nearest physical store (distance.to.store).

Additional variables report one-year total visits to theonline site (online.visits)
as well as online and in-store transaction counts (online.trans and

4.2 Exploring Associations Between Variables with Scatterplots 85

store.trans) plus one-year total spending online and in store (online.spend
and store.spend). Finally, the data contains survey ratings of satisfaction
with the service and product selection at the retail stores (sat.service and
sat.selection. Some of the survey values are NA for customers without
survey responses. All values are numeric, except that cust.df$cust.id and
cust.df$email are factors (categorical). We’ll say more shortly about why the
details of the data structure are so important.

4.2.1 Creating a Basic Scatterplot with plot()

We begin by exploring the relationship between each customer’s age and credit score
using plot(x, y), where x is the x-coordinate vector for the points and y is the
y-coordinate vector:

> plot(x=cust.df$age , y=cust.df$credit.score)

The code above produces the graphic shown in the left panel of Fig. 4.1, a fairly
typical scatterplot. There is a large mass of customers in the center of the plot with
age around 35 and credit score around 725, and fewer customers at themargins. There
are not many younger customers with very high credit scores, nor older customers
with very low scores, which suggests an association between age and credit score.

The default settings in plot() produce a quick plot that is useful when you are
exploring the data for yourself; plot() adjusts the x- and y-axes to accommodate
the range of the data and labels the axes using variable names. But if we present the
plot to others, we ought to provide more informative labels for the axes and chart
title:

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

● ●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

20 25 30 35 40 45 50

55
0

60
0

65
0

70
0

75
0

80
0

85
0

cust.df$age

cu
st

.d
f$

cr
ed

it.
sc

or
e

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

● ●

●

●

● ●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

20 30 40 50

50
0

60
0

70
0

80
0

90
0

Active Customers as of June 2014

Customer Age (years)

C
us

to
m

er
 C

re
di

t S
co

re

Fig. 4.1 Basic scatterplot of customer age versus credit score using default settings in plot()
function (left), and a properly labeled version of the same plot (right)

86 4 Relationships Between Continuous Variables

> plot(cust.df$age , cust.df$credit.score ,
+ col="blue",
+ xlim=c(15 , 55) , ylim=c(500 , 900),
+ main="Active Customers as of June 2014",
+ xlab="Customer Age (years)", ylab="Customer Credit Score ")
> abline(h=mean(cust.df$credit.score), col="dark blue", lty="dotted")
> abline(v=mean(cust.df$age), col="dark blue", lty="dotted")

We do not specifically name x= and y= here because, when names of arguments
are omitted, a function such as plot() assumes that they line up in order as listed
in a function’s definition (and shown in help). We use the argument col to color
the points blue. xlim and ylim set a range for each axis. main, xlab and ylab
provide a descriptive title and axis labels for the chart. The result on the right side of
Fig. 4.1 is labeled well enough that someone viewing the chart can easily understand
what it depicts.

After creating the plot, we use abline() to add lines to the plot, to indicate
the average age and average credit score in the data. We add a horizontal line at
mean(cust.df$credit.score) using abline(h=), and a vertical line at
the mean age with abline(v=).

Often, plots are built-up using a series of commands like this. The first step is to
use plot() to set up the basic graphics; then add features with other graphics
commands. Some of the most useful functions are points() to add specific points,
abline() to add a line by slope and intercept, lines() to add a set of lines by
coordinates, and legend() to add a legend (see Sect. 4.2.3). Each of these adds
elements to a plot that has already been created using plot().

Before we move on, we should make an important note about how the plot()
command works in R. When you type plot() into the console, R looks at what
type of data you are trying to plot and, based on the data type, Rwill choose a specific
lower-level plotting function, known as a method, that is appropriate to the data you
are trying to plot. When we call plot()with vectors of x and y coordinates, R uses
the plot.default() function. However, there are many other plotting functions
for different data types. For example, if you plot the cust.df data frame by typing
plot(cust.df) into the console, R will use plot.data.frame() instead
of plot.default(). This produces one of several plot types depending on the
number of dimensions in the data frame; in this case, it produces a scatterplot matrix,
which we review in Sect. 4.4.2.

While this may seem like an obtuse detail of the language, it is important to general
R users for two reasons. First, help files for generic functions like plot() and
summary() may be rather unhelpful because they describe the generic methods;
often you need to navigate to the help file for the specific method that you are using.
For instance, to learn more about the plotting function we are using in this chapter,
you should type ?plot.default into the console.

Second, when plot() produces something unexpected, it may be because R has
selected a differentmethod than you expect. If so, check the data types of the variables
you’re sending to plot() because R uses those to select a plot method. Despite this

4.2 Exploring Associations Between Variables with Scatterplots 87

complexity, generic functions are convenient because you only have to remember
one function name such as plot() instead of many. When you need to figure out
more, you can check the methods available for plot(), depending on the packages
you are using, by typing methods(plot).

We next turn to an important marketing question: in our data, do customers who
buy more online buy less in stores? We start by plotting online sales against in-store
sales:
> plot(cust.df$store.spend , cust.df$online.spend ,
+ main="Customers as of June 2014",
+ xlab="Prior 12 months in-store sales ($)",
+ ylab="Prior 12 months online sales ($)",
+ cex =0.7)

The resulting plot in Fig. 4.2 is typical of the skewed distributions that are common in
behavioral data such as sales or transaction counts; most customers purchase rarely
so the data is dense near zero. The resulting plot has a lot of points along the axes;
we use the cex option, which scales down the plotted points to 0.7 of their default
size so that we can see the points a bit more clearly. The plot shows that there are
a large number of customers who didn’t buy anything on one of the two channels
(the points along the axes), along with a smaller number of customers who purchase
fairly large amounts on one of the channels.

Because of the skewed data, Fig. 4.2 does not yet give a good answer to our question
about the relationship between online and in-store sales. We investigate further with
a histogram of just the in-store sales (see Sect. 3.4 for hist()):

> hist(cust.df$store.spend ,
+ breaks =(0: ceiling(max(cust.df$store.spend)/10))*10,
+ main="Customers as of June 2014",
+ xlab="Prior 12 months in-store sales ($)",
+ ylab="Count of customers")

Fig. 4.2 Scatterplot of
online sales versus in-store
sales for the customers in our
data set

●

●

●

●

●

● ●

●

●

●

● ●●

●

● ●●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●● ●

●

● ●●●●

●

● ●

●

●

●

●● ●

●

●
●

●

●

●

●●●

●

●● ●

●

●

●

●● ●●● ● ●

●
●● ●● ● ● ●● ●

●

●●● ●

●

● ●●

●●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●
●

●

●

●

●

●

●

●● ●

●

● ●●

●

●
●

●

●
● ●● ●

●

●

●

●

●●●

●●

● ●● ●

●

●

●

●
●

●●

●
●

●
●

●

●
● ●

●

●
●

●

●

●
●● ● ●

●
●

●

●

● ● ●

●

●●
●

●

●

●
●

●
●

●
●

● ●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

● ●

●

●

●●●

●

●

●
●

●●

●

●
● ●● ●

●

●

●
● ●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

●

●
●●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

● ●

● ●

●

●

●●

●

● ●
●

● ●●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●

●● ● ●●

●

●

●

● ●

●

●

●

●

●
● ●● ●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●●

●
● ●

●●

●

● ● ●

●

● ●
● ●

●

●

●

●
●● ● ●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●● ●

●

●

● ●

●

●

●●
●

●

●

●

●

●●●

●

● ●● ●

●

●

●

●

● ●

● ●● ●

●

●

●

●

● ●

●●

●

●

●

●

●● ●

●
●

●●

●

●

●

●

●

●

●●
●

●

● ●●

●

●
●●

● ●

●

●

●

●

●● ● ●● ●

●

● ●

●

●

●

●

●

●

● ●
●

●● ● ● ●

●

●●

●

●

●
●● ●

● ● ●

●

● ●●

●

●
●
●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●
●

●

●

● ●● ●● ●● ●●

●

●
●●

●●

●

●

●

●●

●
● ●

● ●●

●

●

●

●

●

●

●

●

●

●●

●

● ●● ●
●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●●
● ●

●

●

●

●●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●●
●

●
●

●

●

●

● ●● ●●

●

●

●

●
●●

●

●●

●

●●

● ●●
●● ●●

●

●

●

●

●

●

● ●

●●● ●

●

●

●

●

●

●

●

●
●

●
●

●● ●●

●

●

●

●

●● ●●

●

●

●

● ● ●● ● ● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

● ●
●

●

●
●

●

●

●● ●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

● ●
●

●

● ●●●

●
●

● ●

●

●

●●● ●● ●●

●

●

●

●

●

● ●

●

●●

●

●

● ●

●

●

●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
● ●

●

●
●

●

●

●

●

●

● ● ●

●

●●

●

● ●
●

●●●

●

●

●

● ●
●

●

●

●

●

● ●

●

●

●

●● ●●
●

●

●
●
● ●

●

●● ● ●
● ●

●

●

●
●

●● ●● ● ●

●

●

●

●●●

●

●

● ● ●

●

●●
● ● ●

●

●

●

●●

●

●

●
● ●

● ●● ●
●

● ● ● ●
●

●

●

●●

●●

●

●

●

●

●

●

●

●● ●●

●

●●
●

●

●

●

●

●

● ● ●●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

0 100 200 300 400 500 600 700

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00

Customers as of June 2014

Prior 12 months in−store sales ($)

P
rio

r 1
2

m
on

th
s

on
lin

e
sa

le
s

($
)

88 4 Relationships Between Continuous Variables

Fig. 4.3 A histogram of
prior 12 months online sales
reveals more clearly a large
number of customers who
purchase nothing along with
a left-skewed distribution of
sales among those who
purchase something

Customers as of June 2014

Prior 12 months in−store sales ($)
C

ou
nt

 o
f c

us
to

m
er

s
0 100 200 300 400 500 600 700

0
10

0
20

0
30

0

The histogram in Fig. 4.3 shows clearly that a large number of customers bought noth-
ing in the online store (about 400 out of 1000). The distribution of sales among those
who do buy has a mode around $20 and a long right-hand tail with a few customers
whose 12 month spending was high. Such distributions are typical of spending and
transaction counts in customer data. Data with a highly-skewed distribution like this
should be transformed before plotting, as we will discuss in Sect. 4.2.3.

4.2.2 Color-Coding Points on a Scatterplot

Another question is whether the propensity to buy online versus in store is related
to our email efforts (as reflected by whether or not a customer has an email address
on file). We can add the email dimension to the plot in Fig. 4.2 by coloring in
the points for customers whose email address is known to us. To do this, we use
plot() arguments that allow us to draw different colors (col=) and symbols for
the points (pch=). Each argument takes a vector that specifies the option—the color
or symbol—that you want for each individual point. Thus, if we provide a vector
of colors of the same length as the vectors of x and y values, col= will use the
corresponding colors for each point. Constructing such vectors can be tricky, so we
will build them up slowly.

To begin, we first declare vectors for the color and point types that we want to use:
> my.col <- c("black", "green3")
> my.pch <- c(1 , 19) # R’s symbols for solid and open circles (see ? points)

We use green3 as a slightly darker shade of green. It is often helpful to review all
the color names in colors() to find such options.

With these defined, we can select the appropriate color and plotting symbol for each
customer simply by using cust.df$email to index them. How does this work?

4.2 Exploring Associations Between Variables with Scatterplots 89

The factor email is converted to a numeric value under the hood (1 for no and 2
for yes) and then that value is used to select colors.

Let’s see how that works (using just the head() of the data for brevity). First we
see that email is a factor, which we could coerce to numeric values:
> head(cust.df$email)
[1] yes yes yes yes no yes
Levels : no yes
> as.numeric(head(cust.df$email))
[1] 2 2 2 2 1 2

If we use those numbers to index my.col then we get the matching color for each
value of email:
> my.col[as.numeric(head(cust.df$email))]
[1] "green3" "green3" "green3" "green3" "black" "green3"

However, it’s tedious (although error-resistant) to write as.numeric() all the
time, and R understands what we want just by indexing with the factor directly:
> my.col[head(cust.df$email)]
[1] "green3" "green3" "green3" "green3" "black" "green3"

Now that we have a vector of colors, we can pass it as the col option in plot()
to get a plot where customers with emails on file are plotted in green and customers
without email addresses on file are plotted in black. We use a similar strategy for
setting the point styles using the pch option, such that customers without email
addresses have open circles instead of solid. The complete code is:
> plot(cust.df$store.spend , cust.df$online.spend ,
+ cex=0.7,
+ col=my.col[cust.df$email], pch=my.pch[cust.df$email],
+ main="Customers as of June 2014",
+ xlab="Prior 12 months in-store sales ($)",
+ ylab="Prior 12 months online sales ($)")

The resulting plot appears in the left panel of Fig. 4.4.

When we created Fig. 4.1 earlier, we used an option col="blue" and it turned
all of the points blue. This is because if the vector you pass for col is shorter than
the length of x and y, then R recycles the values. Thus, if your col vector has
one element, all the points will be that single color. Similarly, if you were to pass
the vector c("black", "green3"), then plotwould simply make alternating
points black or green, which might not be what you want. Usually what you’ll want
is to create a vector that exactly matches the length of your data by starting with a
shorter vector as we did here, and then indexing it with [] such that you extract a
value for each one of your data points. That can be difficult to get right in practice,
so we encourage you to experiment with these examples until you understand how
it works.

4.2.3 Adding a Legend to a Plot

Given that we’ve colored some points in our chart, it would be helpful to add a legend
that explains the colors. We can do this using legend().

90 4 Relationships Between Continuous Variables

●●

●

●

●

●

● ●

●

●

●

● ●●

●

● ●●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

● ●●● ●

●

●●

●

●

●

●●●

●

●
●

●

●

●

●●●

●

●● ●

●

●

●

●● ●●● ● ●

●
●● ●● ● ●●● ●

●

●●●●

●

● ●●

●●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●
●

●

●

●

●

●

●

●● ●

●

● ●●

●

●
●

●

●
● ●●●

●

●

●

●

●●●

●●

● ●● ●

●

●

●

●
●

●●

●
●

●
●

●

●
● ●

●

●
●

●

●

●
●● ● ●

●
●

●

●

● ● ●

●

●●
●

●

●

●
●

●
●

●
●

● ●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

● ●

●

●

●●●

●

●

●
●

●●

●

●
● ●● ●

●

●

●
● ●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

●

●
●●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

● ●

●●

●

●

●●

●

●●
●

● ●●

●

●

●
●

●

●●●
●

●

●

●

●

●

●

●● ●●●

●

●

●

●●

●

●

●

●

●
● ●●●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●●

●
● ●

●●

●

● ● ●

●

● ●
● ●

●

●

●

●
●● ● ●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●● ●

●

●

● ●

●

●

●●
●

●

●

●

●

●●●

●

● ●● ●

●

●

●

●

● ●

● ●● ●

●

●

●

●

● ●

●●

●

●

●

●

●●●

●
●

●●

●

●

●

●

●

●

●●
●

●

● ●●

●

●
●●

● ●

●

●

●

●

●● ● ●● ●

●

● ●

●

●

●

●

●

●

● ●
●

●●●●●

●

●●

●

●

●
●● ●

●●●

●

●● ●

●

●
●
●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●
●

●

●

● ●● ●●● ●● ●

●

●
●●

●●

●

●

●

●●

●
● ●

● ●●

●

●

●

●

●

●

●

●

●

●●

●

● ●● ●
●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●●
● ●

●

●

●

●●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●●
●

●
●

●

●

●

● ●● ●●

●

●

●

●
●●

●

●●

●

●●

● ●●
●● ●●

●

●

●

●

●

●

● ●

●●● ●

●

●

●

●

●

●

●

●
●

●
●

●● ●●

●

●

●

●

●●●●

●

●

●

● ● ●●●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

● ●
●

●

●
●

●

●

●● ●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

● ●
●

●

●● ●●

●
●

● ●

●

●

●●● ●● ●●

●

●

●

●

●

●●

●

●●

●

●

● ●

●

●

●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●
● ●

●

●
●

●

●

●

●

●

● ●●

●

●●

●

● ●
●

●●●

●

●

●

●●
●

●

●

●

●

● ●

●

●

●

●● ●●
●

●

●
●
● ●

●

●● ● ●
● ●

●

●

●
●

●● ●● ● ●

●

●

●

●●●

●

●

●● ●

●

●●
● ● ●

●

●

●

●●

●

●

●
● ●

● ●● ●
●

●●● ●
●

●

●

●●

●●

●

●

●

●

●

●

●

●● ●●

●

●●
●

●

●

●

●

●

● ● ●●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

Customers as of June 2014

Prior 12 months in−store sales ($)

P
rio

r 1
2

m
on

th
s

on
lin

e
sa

le
s

($
)

●

●

email on file: no
email on file: yes

●

●

●

●

●

● ●

●

●

●

●

●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●● ●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

● ●

●

● ● ●

●

●● ●

●

●

●●● ●

●

●

●

●●

●

● ●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

● ● ●

●

● ●

●

●

●

●

●

●

●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●● ● ●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●●●●

●

●

●

●

●

●

●●
●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●● ●

●

● ●● ●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

● ●●●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

● ●

●

●

●● ●●

●

●

● ●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●● ● ●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●●

●

● ●

●

●

●●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

● ●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

● ●

●

●

●

●

●●

●

●

●

● ●

● ●● ●

●

●●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

1

0 100 200 300 400 500 600 700

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00

1 2 5 10 20 50 100 200 500

5
10

50
10

0
50

0

Customers as of June 2014

Prior 12 months in−store sales ($)

P
rio

r 1
2

m
on

th
s

on
lin

e
sa

le
s

($
)

●

●

email on file: no
email on file: yes

Fig. 4.4 Scatterplots of online sales versus in-store sales by customer. On the left, we see a typical
extremely skewed plot using raw sales values; data is grouped along the x and y axes because many
customers purchase nothing. On the right, plotting the log() of sales separates zero and non-zero
values more clearly, and reveals the association among those who purchase in the two channels (see
Sect. 4.2.4)

> legend(x="topright", legend=paste("email on file:", levels(cust.df$email)),
+ col=my.col , pch=my.pch)

The legend() function can be frustrating, but the idea is relatively simple. The
first input to legend() is x=LOCATION, which sets the location of the legend on
the plot. Then you specify the legend argument, which is a vector of labels that
you want to include in the legend. In the present case, we use paste() to create
the labels "email on file: no" and "email on file: yes" by adding
the constant string "email on file:" to the factor levels of email. Next, you
define the markers to associate with those labels in the legend. Because we defined
these with my.col and my.pch, we reuse those here.

Although the code to create the legend is compact, it is a hassle to track the details
of labels, colors, and symbols. Our recommendation is to define the argument values
in a reusable way as we have done here using definition vectors such as my.col
and my.pch. An alternative would be to invest in learning a specialized graphics
package such as lattice or ggplot2. Those packages handle legends in more
sophisticated ways that we do not explore in depth here (see Sect. 3.7).

4.2.4 Plotting on a Log Scale

With raw values as plotted in the left panel of Fig. 4.4, it is still difficult to see whether
there is a different relationship between in-store and online purchases for those with
and without emails on file, because of the heavy skew in sales figures. A common

4.2 Exploring Associations Between Variables with Scatterplots 91

solution for such scatterplots with skewed data is to plot the data on a logarithmic
scale. This is easy to do with the log= argument of plot(): set log="x" to plot
the x-axis on the log scale, log="y" for the y-axis, or log="xy" for both axes.

For cust.df, because both online and in-store sales are skewed, we use a log scale
for both axes:
> plot(cust.df$store.spend + 1 , cust.df$online.spend + 1,
+ log="xy", cex=0.7,
+ col=my.col[cust.df$email], pch=my.pch[cust.df$email],
+ main="Customers as of June 2014",
+ xlab="Log of prior 12 months in-store sales ($)",
+ ylab="Log of prior 12 months online sales ($)")
> legend(x="topright", legend=paste("email on file:", levels(cust.df$email)),
+ col=my.col , pch=my.pch)

In this code, we plot ...spend + 1 to avoid problems due to the fact that log(0) is
infinite (in the negative direction). In the right hand side of Fig. 4.4, the axes are now
logarithmic; for instance, the distance from 1–10 is the same as 10–100.

On the right-hand panel of Fig. 4.4, it is easy to see a large number of customers
with no sales (the points at x=1 or y=1, which correspond to zero sales because
we added 1). It now appears that there is little or no association between online
and in-store sales; the scatterplot among customers who purchase in both channels
shows no pattern. Thus, there is no evidence here to suggest that online sales have
cannabalized in-store sales (a formal test of that would be complex, but the present
data do not argue for such an effect in any obvious way).

We also see in Fig. 4.4 that customers with no email address on file show slightly
lower online sales than those with addresses; there are somewhat more black circles
in the lower half of the plot than the upper half. If we have been sending email
promotions to customers, then this suggests that the promotions might be working.
An experiment to confirm that hypothesis could be an appropriate next step.

Did it take work to produce the final plot on the right side of Fig. 4.4? Yes, but the
result shows how a well-crafted scatterplot can present a lot of information about
relationships in data. Looking at the right-hand panel of Fig. 4.4, we have a much
better understanding of how online and offline sales are related to each other, and
whether each relates to having customers’ email status.

4.3 Combining Plots in a Single Graphics Object

Sometimes we want to visualize several relationships at once. For instance, suppose
we wish to examine whether customers who live closer to stores spend more in
store, and whether those who live further away spend more online. Those involve
different spending variables and thus need separate plots. If we plot several such
things individually, we end up with many individual charts. Luckily, R can produce
a single graphic that consists of multiple plots. You do this by telling R that you want
multiple plots in a single graphical object with the par(mfrow=...) command;
then simply plot each one with plot() as usual.

92 4 Relationships Between Continuous Variables

cust.df$distance.to.store

cu
st

.d
f$

st
or

e.
sp

en
d

50 100 150 200 250 0 50 100 150 200 250

cust.df$distance.to.store

cu
st

.d
f$

on
lin

e.
sp

en
d

cust.df$distance.to.store

cu
st

.d
f$

st
or

e.
sp

en
d

+
1

1.00.2 5.0 20.0 100.0 0.2 1.0 5.0 20.0 100.0

0

0

20
0

40
0

60
0

0
10

00
20

00
30

00

1
2

5
20

10
0

50
0

1
5

50
50

0

cust.df$distance.to.store

cu
st

.d
f$

on
lin

e.
sp

en
d

+
1

store online

store, log online, log

Fig. 4.5 A single graphic object consisting of multiple plots shows that distance to store is related
to in-store spending, but seems to be unrelated to online spending. The relationships are easier to
see when spending and distance are plotted on a log scale using log="xy" in the two lower panels

It is easiest to see how this works with an example:
> par(mfrow=c(2, 2))
> plot(cust.df$distance.to.store , cust.df$store.spend , main="store")
> plot(cust.df$distance.to.store , cust.df$online.spend , main="online")
> plot(cust.df$distance.to.store , cust.df$store.spend+1, log="xy",
+ main="store , log")
> plot(cust.df$distance.to.store , cust.df$online.spend+1, log="xy",
+ main="online , log")

Instead of four separate plots from the individual plot() commands, this code
produces a single graphic with four panels as shown in Fig. 4.5. The first line sets
the graphical parameter mfrow to c(2, 2), which instructs R to create a single
graphic comprising a two by two arrangement of plots, which begins on the first row
and moves from left to right.

Although the plots in Fig. 4.5 are not completely labelled, we see in the lower left
panel that there may be a negative relationship between customers’ distances to the
nearest store and in-store spending. Customers who live further from their nearest

4.3 Combining Plots in a Single Graphics Object 93

store spend less in store. However, on the lower right, we don’t see an obvious
relationship between distance and online spending.

After usingpar(mfrow=), you can return to a single plot layout with par(mfrow
=c(1,1)).

4.4 Scatterplot Matrices

4.4.1 pairs()

In our customer data, we have a number of variables that might be associated with
each other;age,distance.to.store, and email all might be related to online
and offline transactions and to spending. When you have several variables such as
these, it is good practice to examine scatterplots between all pairs of variables before
moving on to more complex analyses.

To do this, R provides the convenient function pairs(formula, data), which
makes a separate scatterplot for every combination of variables:
> pairs(formula = ∼ age + credit.score + email +
+ distance.to.store + online.visits + online.trans +
+ online.spend + store.trans + store.spend ,
+ data=cust.df)

The first input to pairs is a formula listing the variables to include from a data
frame. Formulas are used in many R functions and we describe more about them
in Chaps. 5 and 7. For now it is sufficient to know that in pairs(), the formula
is composed with a ∼ followed by the variables to include, separated by +. If you
want to transform a variable, include the math in the formula. For example, to plot
the log() of online.spend, you would include log(online.spend) in the
formula.

The second input is data=cust.df, which tells pairs that we want to use the
cust.df data frame as the source of data for the plot.

The resulting plot is shown in Fig. 4.6 and is called a scatterplot matrix. Each position
in this matrix shows a scatterplot between two variables as noted in the diagonal for
each row and column. For example, the plot in the second row and third column is
a scatterplot of cust.df$age on the y-axis versus cust.df$distance.to.
store on the x-axis.

We can see relationships between variables quickly in a scatterplot matrix. In the fifth
row and sixth column we see a strong linear association between online.visits
and online.trans; customers who visit the website more frequently make more
online transactions. Looking quickly over the plot, we also see that customers with
a higher number of online transactions have higher total online spending (not a
surprise), and similarly, customers with more in-store transactions also spend more
in-store. This simple command produced a lot of information to consider.

94 4 Relationships Between Continuous Variables

Fig. 4.6 A scatterplot matrix for the customer data set produced using pairs()

In addition to using the formula notation above, it is also possible to pass a data
frame directly to pairs and when you do that, pairs() creates a scatterplot
matrix including all the columns in your data frame. In the code below, we select
columns 2–10 from cust.df and pass the resulting data frame to pairs, which
gives us the same plot as shown in Fig. 4.6:

> pairs(cust.df[, c(2:10)]) # chart not printed; same as above

While this results in compact code, we recommend instead to use the formula version
as shown above; it is robust to future changes in cust.df that might re-order the
columns. Over time, it becomes a habit to think about how your R code might be
re-used in the future.

4.4 Scatterplot Matrices 95

4.4.2 scatterplotMatrix()

Scatterplot matrices are so useful for data exploration that several add-on packages
offer additional versions them. We want to point out two other scatterplot matrix
functions that we find valuable. The scatterplotMatrix() function in the
car package (abbreviating “companion to applied regression” [62]) adds a number
of features over pairs(), including adding smoothed lines on scatterplots and
univariate density plots on the diagonal. The syntax for scatterplotMatrix()
is similar to pairs():
> library(car) # install if needed
> scatterplotMatrix(formula = ∼ age + credit.score + email +
+ distance.to.store + online.visits + online.trans +
+ online.spend + store.trans + store.spend ,
+ data=cust.df)

In Fig. 4.7, we have density plots on the diagonal that show us the distribution of
each variable, where it is easy to see that all of the numeric variables except age

Fig. 4.7 A scatterplot matrix for the customer data set produced usingscatterplotMatrix()

96 4 Relationships Between Continuous Variables

and credit.score are highly left skewed. The solid lines show linear fit lines
(see Chap.7), while the dotted lines show smoothed fit lines with confidence inter-
vals. The smoothed lines on the bivariate scatterplots suggest the extent to which
associations are linear. For instance, the smoothed line on the plot of age versus
distance.to.store is nearly flat and shows that there is no linear association
between those variables.

A limitation of Figs. 4.6 and 4.7 concerns the display of the email variable. email
is a binary factor with values yes and no, and a scatterplot is not ideal to visualize a
discrete variable. You will wish to keep those limitations in mind when interpreting
the plots.

4.5 Correlation Coefficients

Although scatterplots provide a lot of visual information, when there are more than a
few variables, it can be helpful to assess the relationship between each pair with a sin-
gle number. Onemeasure of the relationship between two variables is the covariance,
which can be computed for any two variables using the cov function:
> cov(cust.df$age , cust.df$credit.score)
[1] 63.23443

If values xi and yi tend to go in the same direction—to be both higher or both
lower than their respective means—across observations, then they have a positive
covariance. If cov(x, y) is zero, then there is no (linear) association between xi and
yi . Negative covariance means that the variables go in opposite directions relative to
their means: when xi is lower, yi tends to be higher.

However, it difficult to interpret the magnitude of covariance because the scale
depends on the variables involved. Covariance will be different if the variables are
measured in cents versus dollars or in inches versus centimeters. So, it is helpful to
scale the covariance by the standard deviation for each variable, which results in a
standardized, rescaled correlation coefficient known as the Pearson product-moment
correlation coefficient, often abbreviated as the symbol r .

Pearson’s r is a continuous metric that falls in the range [−1, +1]. It is +1 in the
case of a perfect positive linear association between the two variables, and −1 for
perfect negative linear association. If there is little or no linear association, r will be
near 0. On a scatterplot, data with r = 1 or r = −1 would have all points along a
straight line (up or down, respectively). This makes r an easily interpreted metric to
assess whether two variables have a close linear association or not.

In R, we compute correlation coefficient r with the cor() function:
> cor(cust.df$age , cust.df$credit.score)
[1] 0.2545045

r is identical to rescaling the covariance by the joint standard deviations (but more
convenient):

4.5 Correlation Coefficients 97

> cov(cust.df$age , cust.df$credit.score) /
+ (sd(cust.df$age)*sd(cust.df$credit.score))
[1] 0.2545045

What value of r signifies an important correlation between two variables in market-
ing? In engineering and physical sciences, physical measurements may demonstrate
extremely high correlations; for instance, r between the lengths andweights of pieces
of steel rodmight be 0.9, 0.95, or even 0.999, depending on the uniformity of the rods
and the precision of measurement. However, in social sciences such as marketing,
we are concerned with human behavior, which is less consistent and more difficult
to measure. This results in lower correlations, but they are still important.

We often use Cohen’s Rules of Thumb, which come out of the psychology tradition
[34]. Cohen proposed that for correlations between variables describing people, r =
0.1 should be considered a small or weak association, r = 0.3 might be considered
to be medium in strength, and r = 0.5 or higher could be considered to be large or
strong. Cohen’s interpretation of a large effect was that such an association would be
easily noticed by casual observers. A small effect would require carefulmeasurement
to detect yet might be important to our understanding and to statistical models.

Importantly, interpretation of r according to Cohen’s rules of thumb depends on the
assumption that the variables are normally distributed (also known as Gaussian) or
are approximately so. If the variables are not normal, but instead follow a logarithmic
or other distribution that is skewed or strongly non-normal in shape, then these
thresholds do not apply. In those cases, it can be helpful to transform your variables
to normal distributions before interpreting, as we discuss in Sect. 4.5.3 below.

4.5.1 Correlation Tests

In the code above, cor(age, credit.score) shows r = 0.25, a medium-
sized effect by Cohen’s standard. Is this also statistically significant? We can use the
function cor.test() to find out:
> cor.test(cust.df$age , cust.df$credit.score)

Pearson’s product -moment correlation

data : cust.df$age and cust.df$credit.score t = 8.3138 , df = 998 ,
p-value = 3.008e-16 alternative\index{P-value} hypothesis:
true correlation is not equal to 0 95 percent confidence
interval\index{Confidence interval}:
0.1955974 0.3115816

sample estimates:
cor

0.2545045

This tells us that r = 0.25 and the 95% confidence interval is r = 0.196 − 0.312.
Because the confidence interval for r does not include 0 (and thus has p-value of
p < 0.05), the association is statistically significant. Such a correlation, showing
a medium-sized effect and statistical significance, probably should not be ignored
in subsequent analyses (for more about that problem, known as collinearity, see
Sect. 9.1).

98 4 Relationships Between Continuous Variables

4.5.2 Correlation Matrices

For more than two variables, you can compute the correlations between all pairs
x, y at once as a correlation matrix. Such a matrix shows r = 1.0 on the diagonal
because cor(x, x) = 1. It is also symmetric; cor(x, y) = cor(y, x). We compute a
correlation matrix by passing multiple variables to cor():
> cor(cust.df[, c(2 , 3 , 5:12)])

age credit.score distance.to.store online.visits
age 1.000000000 0.254504457 0.00198741 -0.06138107
credit.score 0.254504457 1.000000000 -0.02326418 -0.01081827
distance.to.store 0.001987410 -0.023264183 1.00000000 -0.01460036
online.visits -0.061381070 -0.010818272 -0.01460036 1.00000000
online.trans -0.063019935 -0.005018400 -0.01955166 0.98732805
online.spend -0.060685729 -0.006079881 -0.02040533 0.98240684
store.trans 0.024229708 0.040424158 -0.27673229 -0.03666932
store.spend 0.003841953 0.042298123 -0.24149487 -0.05068554
sat.service NA NA NA NA
sat.selection NA NA NA NA

online.trans online.spend store.trans store.spend
age -0.06301994 -0.060685729 0.02422971 0.003841953
credit.score -0.00501840 -0.006079881 0.04042416 0.042298123
...

In the second column of the first row,we see that cor(age, credit.store) =
0.254 as above. We can easily scan to find other large correlations; for instance, the
correlation between store.trans, distance.to.store = -0.277, showing
that people who live further from a store tend to have fewer in-store transactions.
cor() did not compute correlations for sat.selection and sat.service
because they have some NA values. The argument use="complete.obs"would
instruct R to use only cases without NA values; try it for practice.

Rather than requiring one to scan a matrix of numbers, the corrplot package
charts correlation matrices nicely with corrplot() and corrplot.mixed():
> library(corrplot) # for correlation plot , install if needed
> library(gplots) # color interpolation , install if needed
> corrplot.mixed(corr=cor(cust.df[, c(2 , 3 , 5:12)], use="complete.obs"),
+ upper="ellipse", tl.pos="lt",
+ upper.col = colorpanel (50, "red", "gray60", "blue4"))

The resulting graphic is shown in Fig. 4.8. We will explain the code and features
of the plot. The main argument to corrplot.mixed is a correlation matrix and
we use cor(..., use="complete.obs") to provide this, excluding the NA
values.

InFig. 4.8, numeric values of r are shown in the lower triangle of thematrix. Theupper
triangle displays ellipses (because we used the argument upper="ellipse").
These ellipses are tighter, progressively closer to being lines, for larger values of
r , and are rounder, more like circles for r near zero. They are also shaded blue for
positive direction, and red for negative (and show corresponding positive or negative
slope).

This makes it easy to find the larger correlations in the data: age is positively
correlated with credit.score;distance.to.store is negatively correlated
with store.trans and store.spend; online.visits, online.trans,
and online.spend are all strongly correlated with one another, as are store.

4.5 Correlation Coefficients 99

Fig. 4.8 A correlation plot
produced using
corrplot.mixed()
from the corrplot
package is an easy way to
visualize all of the
correlations in the data.
Correlations close to zero are
plotted as circular and gray
(using the color scheme we
specified), while magnitudes
away from zero produce
ellipses that are increasingly
tighter and blue for positive
correlation and red for
negative

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ag
e

cr
ed

it.
sc

or
e

di
st

an
ce

.to
.s

to
re

on
lin

e.
vi

si
ts

on
lin

e.
tra

ns

on
lin

e.
sp

en
d

st
or

e.
tra

ns

st
or

e.
sp

en
d

sa
t.s

er
vi

ce

sa
t.s

el
ec

tio
n

age

credit.score

distance.to.store

online.visits

online.trans

online.spend

store.trans

store.spend

sat.service

sat.selection

0.27

0.05

−0.06

−0.07

−0.07

0.02

−0.01

−0.06

−0.07

−0.03

−0.04

−0.03

−0.03

0.07

0.07

−0.05

−0.02

−0.03

−0.03

−0.03

−0.29

−0.25

0.03

0.01

0.98

0.98

−0.02

−0.06

−0.02

−0.02

0.99

−0.03

−0.06

−0.02

−0.02

−0.03

−0.06

−0.01

−0.02

0.89

0

0

0.01

0.01 0.59

trans and store.spend. In the survey items, sat.service is positively
correlated with sat.selection.

corrplot.mixed() has numerous options that let you customize a chart. For
this plot, we use the options upper="ellipse" to visualize the correlations as
ellipses and tl.pos="lt" to place the variable name labels on the left and top
of the matrix. The correlations in this case are mostly small in magnitude, which
produces a very light chart with the default colors. We use colorpanel() from
thegplots package to generate a set of colors anchored at 3 points (“red”, “gray60”,
and “blue4”) and tell corrplot.mixed() to use that set of colors instead of its
default. You could try other colors and see how the plot is affected; the colors()
command will list all the names of colors that R understands.

While it is impossible to draw strong conclusions based on associations such as
Fig. 4.8, finding large correlations should inform subsequent analysis or suggest
hypotheses.

4.5.3 Transforming Variables Before Computing
Correlations

Correlation coefficient r measures the linear association between two variables. If the
relationship between two variables is not linear, it would be misleading to interpret
r . For example, if we create a random variable that ranges from −10 to 10—using
runif() to sample random uniform values—and then compute the correlation
between that variable and its square, we get a correlation close to zero:

100 4 Relationships Between Continuous Variables

> set.seed (49931)
> x <- runif (1000 , min=-10, max =10)
> cor(x, x^2)
[1] -0.003674254

r is near zero despite the fact that there is a perfect nonlinear relationship between
x and x2. So, it is important that we consider transformations before assessing the
correlation between two variables. (It might be helpful to plot x and x2 by typing
plot(x, xˆ2), so that you can see the relationship.)

Many relationships in marketing data are nonlinear. For example, as we see in the
cust.df data, the number of trips a customer makes to a store may be inversely
related to distance from the store. When we compute the correlation between the raw
values of distance.to.store and store.spend, we get a modest negative
correlation:
> cor(cust.df$distance.to.store , cust.df$store.spend)
[1] -0.2414949

However, if we transform distance.to.store to its inverse (1/distance), we
find a much stronger association:

> cor(1/cust.df$distance.to.store , cust.df$store.spend)
[1] 0.4329997

In fact, the inverse square root of distance shows an even greater association:

> cor(1/sqrt(cust.df$distance.to.store), cust.df$store.spend)
[1] 0.4843334

How do we interpret this? Because of the inverse square root relationship, someone
who lives 1 mile from the nearest store will spend quite a bit more than someone
who lives 5 miles away, yet someone who lives 20 miles away will only buy a little
bit more than someone who lives 30 miles away.

These transformations are important when creating scatterplots between variables
as well. For example, examine the scatterplots in Fig. 4.9 for raw distance.to.
fRcstore versus store.spend, as compared to the inverse square root of
distance.to.store versus store.spend. We create those two charts as
follows:
> plot(cust.df$distance.to.store , cust.df$store.spend)
> plot(1/sqrt(cust.df$distance.to.store), cust.df$store.spend)

The association between distance and spending is much clearer with the transformed
data as shown in the right-hand panel of Fig. 4.9.

To review, it is important to consider transforming variables to approximate normality
before computing correlations or creating scatterplots; the appropriate transformation
may help you to see associationsmore clearly. Aswe noted in Sect. 4.5, interpretation
of r with rules of thumb requires data to be approximately normal.

4.5 Correlation Coefficients 101

0

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

cust.df$distance.to.store

cu
st

.d
f$

st
or

e.
sp

en
d

0.0 0.5 1.0 1.5 2.050 100 150 200 250

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

1/sqrt(cust.df$distance.to.store)

cu
st

.d
f$

st
or

e.
sp

en
d

Fig. 4.9 A transformation of distance.to.store to its inverse square root makes the asso-
ciation with store.trans more apparent in the right-hand chart, as compared to the original
values on the left

4.5.4 Typical Marketing Data Transformations

Considering all the possible transformsmay seem impossible, but becausemarketing
data often concerns the same kinds of data in different data sets—counts, sales,
revenue, and so forth—there are a few common transformations that often apply. For
example, as we discussed when simulating the data for Chap. 3, unit sales are often
related to the logarithm of price.

In Table 4.1, we list common transformations that are often helpful with different
types of marketing variables.

For most purposes, these standard transformations are appropriate and theoretically
sound. However, when these transformations don’t work or you want to determine
the very best transformation, there is a general-purpose transformation function that
can be used instead, and we describe that next.

Table 4.1 Common transformations of variables in marketing

Variable Common transform

Unit sales, revenue, household income, price log(x)

Distance 1/x , 1/x2, log(x)

Market or preference share based on a utility
value (Sect. 9.2.1)

ex
1+ex

Right-tailed distributions (generally)
√
x or log(x) (watch out for log(x ≤ 0))

Left-tailed distributions (generally) x2

102 4 Relationships Between Continuous Variables

4.5.5 Box-Cox Transformations*

The remaining sections in the chapter are optional, although important. If you’re new
to this material, you might skip to the Key Points at the end of this chapter (Sect. 4.7).
Remember to return to these sections later and learn more about correlation analysis!

Many of the transformations in Table 4.1 involve taking a power of x : x2, 1/x = x−1,
and

√
x = x−0.5. TheBox-Cox transformationgeneralizes this use of power functions

and is defined as:

y(lambda)
i

{
= ylambda

i −1
lambda if lambda �= 0

= log(yi) if lambda = 0
(4.1)

where lambda can take any value and log is the natural logarithm. One could try
different values of lambda to see which transformation makes the distribution best
fit the normal distribution. (We will see in Chap. 7 that it is also common to use
transformed data that makes a linear regression have normally distributed residuals.)
Because transformed data is more approximately normal, it is more suitable to assess
the strength of association using the rules of thumb for r (Sect. 4.5).

Instead of trying values of lambda by hand, there is an automatic way to find the opti-
mal value: use thepowerTransform(object=DATA) function.Wefind the best
Box-Cox transformation fordistance.to.storeusingpowerTransform()
as follows:
> library(car)
> powerTransform(cust.df$distance.to.store)
Estimated transformation parameters
cust.df$distance.to.store

-0.003696395

This tells us that that the value of lambda to make distance as similar as possible to a
normal distribution is −0.003696. We extract that value of lambda using using the
coef() function and create the transformed variable using bcPower(U=DATA,
lambda):
> lambda <- coef(powerTransform (1/cust.df$distance.to.store))
> bcPower(cust.df$distance.to.store , lambda)

[1] 0.950421270 3.902743543 0.251429693 1.664085284 3.239908993
[6] 2.931485684 2.243992143 1.940984081 2.565290889 1.896458754

[11] 1.898262423 0.411047042 4.101597125 1.359172873 3.8973383223
...

To see how this changes cust.df$distance.to.store, we plot two his-
tograms comparing the transformed and untransformed variables:
> par(mfrow=c(1,2))
> hist(cust.df$distance.to.store ,
+ xlab="Distance to Nearest Store", ylab="Count of Customers",
+ main="Original Distribution")
> hist(bcPower(cust.df$distance.to.store , lambda),
+ xlab="Box -Cox Transform of Distance" , ylab="Count of Customers",
+ main="Transformed Distribution")

The resulting graphs in Fig. 4.10 shows the highly skewed original distribution on
the left and the transformed distribution on the right, which is much approximately
normally distributed.

4.5 Correlation Coefficients 103

Fig. 4.10 A Box-Cox
transformation of
distance.to.store
makes the distribution closer
to Normal

Distance to Nearest Store

C
ou

nt
 o

f C
us

to
m

er
s

Box−Cox Transform of Distance

C
ou

nt
 o

f C
us

to
m

er
s

0 50 150 250 −2 0 2 4 6

0
40

0
80

0

0
50

15
0

If you attempt to transform a variable that is already close to normally distributed,
powerTransform()will report a value of lambda that is close to 1. For example,
ifwefind theBox-Cox transform for age, we get lambda very close to 1, suggesting
that a transformation is not required:

> powerTransform(cust.df$age)
Estimated transformation parameters
cust.df$age
1.036142

Finally, we can compute correlations for the transformed variable. These correlations
will often be larger in magnitude than correlations among raw, untransformed data
points. We check r between distance and in-store spending, transforming both of
them first:
> l.dist <- coef(powerTransform(cust.df$distance.to.store))
> l.spend <- coef(powerTransform(cust.df$store.spend +1))
>
> cor(bcPower(cust.df$distance.to.store , l.dist),
+ bcPower(cust.df$store.spend+1, l.spend))
[1] -0.4683126

The relationship between distance to the store and spending can be interpreted as
strong and negative.

In practice, you could considerBox-Cox transformations on all variableswith skewed
distributions before computing correlations or creating scatterplots. Thiswill increase
the chances that you will find and interpret important associations between variables.

4.6 Exploring Associations in Survey Responses

Many marketing data sets include variables where customers provide ratings on
a discrete scale, such as a 5- or 7-point rating scale. These are ordinal (ranked)
variables and it can be a bit tricky to assess associations among them. For instance,
in the cust.df data, we have response on a 5-point scale for two satisfaction items,
satisfaction with the retailer’s service and with the retailer’s product selection.

What is the problem? Consider a simple plot() of the two 5-point items:

> plot(cust.df$sat.service , cust.df$sat.selection ,
+ xlab="Customer Satisfaction with Service",
+ ylab="Customer Satisfaction with Selection",
+ main="Customers as of June 2014")

104 4 Relationships Between Continuous Variables

1 2 3 4 5

1
2

3
4

5

Customers as of June 2014

Customer Satisfaction with Service

C
us

to
m

er
 S

at
is

fa
ct

io
n

w
ith

 S
el

ec
tio

n

1 2 3 4 5

1
2

3
4

5

Customers as of June 2014

Customer Satisfaction with Service

C
us

to
m

er
 S

at
is

fa
ct

io
n

w
ith

 S
el

ec
tio

n
Fig. 4.11 A scatter plot of responses on a survey scale (left) is not very informative. Using jitter
(right) makes the plot more informative and reveals the number of observations for each pair of
response values

The resulting plot shown in the left-hand panel of Fig. 4.11 is not very informative.
Because cust.df$sat.service and cust.df$sat.selection only take
integer values from 1 to 5, the points for customers who gave the same responses are
drawn on top of each other. The main thing we learn from this plot is that customers
reported most of the possible pairs of values, except that ratings rarely showed a
difference between the two items of 3 or more points (there were no pairs for (1, 4),
(1, 5), (5, 2), or a few other combinations).

This poses a problem both for visualization and, as it turns out, for assessing the
strength of association. We’ll see next how to improve the visualization.

4.6.1 jitter()

One way to make a plot of ordinal values more informative is to jitter each variable,
adding a small amount of random noise to each response. This moves the points
away from each other and reveals how many responses occur at each combination
of (x, y) values.

R provides the function jitter() to do this:
> plot(jitter(cust.df$sat.service), jitter(cust.df$sat.selection),
+ xlab="Customer Satisfaction with Service",
+ ylab="Customer Satisfaction with Selection",
+ main="Customers as of June 2014")

The result is shown in the right-hand panel of Fig. 4.11, where it is easier to see that
the ratings (3, 2) and (3, 3) were the most common responses. It is now clear that
there is a positive relationship between the two satisfaction variables. People who
are more satisfied with selection tend to be more satisfied with service.

4.6 Exploring Associations in Survey Responses 105

4.6.2 polychoric()*

Theconstrainedobservations fromratings scales affect assessment of correlationwith
metrics such as Pearson’s r because the number of available scale points constrains
the potential range and specificity of r . An alternative to the simple computation of
r is a polychoric correlation coefficient, which is designed specifically for ordinal
responses.

The concept of a polychoric correlation is that respondents have continuous values
in mind when they answer on a rating scale. However, because the scales are limited
to a small number of points, respondents must select discrete values and choose
points on the scale that are closest to the unobserved latent continuous values. The
polychoric estimate attempts to recover the correlations between the hypothetical
latent (unobserved) continuous variables.

We examine whether the sat.service survey item is associated with sat.
selection. Because we have responses for only some customers, we set an index
vector resp to identify the customers with responses to examine. Then we look at
the r correlation coefficient from cor():
> resp <- !is.na(cust.df$sat.service)
> cor(cust.df$sat.service[resp], cust.df$sat.selection[resp])
[1] 0.5878558

To compute the polychoric correlation coefficient, we use polychoric() from
the psych package:

> library(psych)
> polychoric(cbind(cust.df$sat.service[resp],
+ cust.df$sat.selection[resp]))
Call: polychoric(x = cbind(cust.df$sat.service[resp], cust.df$sat.selection[

resp]))
Polychoric correlations

C1 C2
R1 1.00
R2 0.62 1.00

with tau of
1 2 3 4

[1 ,] -1.83 -0.72 0.54 1.7
[2 ,] -0.99 0.12 1.26 2.4
warning omitted (caused by simulated data ’s lack of error)

This is somewhat more complex information than the simple output of cor(). At
the top of the output, polychoric() reports the polychoric correlation matrix.
The values range [−1, 1] and are interpreted in the same way as Pearson’s r . (In fact,
they are the values of Pearson’s r between the estimated latent continuous variables.)
In our satisfaction data, we can see that the polychoric correlation is quite high at
rho = 0.62. Like cor(), polychoric() can produce a correlation matrix for
multiple variables.

The second output section under “with a tau of” describes how the estimated
latent scores are mapped to the discrete item values. For each variable (in our case
just two), there are 4 cut points: if a customer’s latent satisfaction is below the first
cut point, the survey response is the first value on the scale (i.e., 1). For latent scores

106 4 Relationships Between Continuous Variables

between the 1th and 2th cut points, the survey response is the second value (2), and so
forth. Reviewing the cut points can be informative about how the scale is performing
and whether it has adequate discrimination of responses versus the estimated latent
scores.

4.7 Key Points

Following are some of the important points to consider when analyzing relationships
between variables.

Visualization

• plot(x, y) creates scatterplots where x is a vector of x-values to be plotted
and y is a vector of the same length with y-values (Sect. 4.2.1.)

• When preparing a plot for others, the plot should be labeled carefully using argu-
ments such as xlab, ylab and main, so that the reader can easily understand
the graphic (Sect. 4.2.1.)

• You can color-code a plot by passing a vector of color names or color numbers as
the col parameter in plot() (Sect. 4.2.2).

• Use the legend() command to add a legend so that readers will knowwhat your
color coding means (Sect. 4.2.3).

• The cex= argument is helpful to adjust point sizes on a scatterplot (Sect. 4.2.1)
• Ascatterplotmatrix is a goodway to visualize associations among several variables
at once; options include pairs() (Sect. 4.4.1) and scatterplotMatrix()
from the cars package (Sect. 4.4.2).

• Many functions such as plot() call a generic function that determines what to
do based on the type of data.When a plotting function does something unexpected,
checking data types with str() will often reveal the problem (Sect. 4.2.1).

• When variables are highly skewed, it is often helpful to draw the axes on a log-
arithmic scale using the by setting the log argument of the plot() function
to log="x", log="y", or log="xy" (Sect. 4.2.4). Alternatively, the variables
might be transformed to a more interpretable distribution (Sect. 4.5.3).

Statistics

• cor(x, y) computes the Pearson correlation coefficient r between variables x
and y. This measures the strength of the linear relationship between the variables
(Sect. 4.5).

• cor() will produce a correlation matrix when it is passed several or many vari-
ables. A handyway to visualize these is with the corrplot package (Sect. 4.5.2).

• cor.test() assesses statistical significance and reports the confidence interval
for r (Sect. 4.5.1).

• For many kinds of marketing data, the magnitude of r may be interpreted by
Cohen’s rules of thumb (r=0.1 is a weak association, r=0.3 is medium, and r=0.5
is strong), although this assumes that the data are approximately normal in distri-
bution (Sect. 4.5).

4.7 Key Points 107

• When the relationship between two variables is nonlinear, r does not give an accu-
rate assessment of the association. Computing r between transformed variables
may make associations more apparent (Sect. 4.5.3.)

• There are common distributions that often occur in marketing, such as unit sales
being related to log(price). Beforemodeling associations, plot histograms of your
variables and assess potential transformations of them (Sect. 4.5.4).

• An automated way to select an optimal transformation is to use a Box-Cox trans-
form (Sect. 4.5.5).

• The function polychor() from the psych package is useful to compute cor-
relations between survey responses on ordinal ratings scales (Sect. 4.6.2).

4.8 Data Sources

The data set in this chapter is typical of a customer table that might be compiled from
several sources. Store purchase data could be gathered from a point of sale (POS)
transaction system, where the consumer is identified via a loyalty card, telephone
number, or similar identification. Online data might be gathered from an e-commerce
site, with identification by email address. Satisfaction data could be collected in a
survey platform, and recruited through an email broadcast to customers. Commonly,
there would be a unified table such as “accounts” that holds all of the identifiers for
a customer—email address, an internal account number, phone number, name, and
so forth—so the data may be cross-referenced. As an aside, when combining such
data, take care not to include personal identifiers in the final data sets unless it is
necessary; use internal account numbers instead (or, ideally, disguised or encrypted
versions of them).

In a typical system, these data would be in different locations: a POS system for the
stores, a web database for online sales, and a survey platform such as Qualtrics for
the survey data. An analyst would then join the data on the basis of the common user
identifiers in the “accounts” table to compile a unified data set. The details of how
to perform such data operations are outside our scope, except to note that they might
be performed in R using the merge() function, or performed separately with SQL
SELECT ... JOIN commands (see Appendix C.1.4). We assume here that the
in-store, online, and survey data have already been combined into a single data set.

4.9 Learning More*

Plotting. As wementioned at the end of Chap.3, plotting in R is a complete topic and
the subject of several books. We’ve demonstrated fundamental plotting methods that
work for many analyses. Those who do a great deal of plotting or need to produce
high-quality graphics for presentation might consider learning ggplot2 [198] or
lattice [173].

108 4 Relationships Between Continuous Variables

Correlation analysis. The analysis of variable associations is important for sev-
eral reasons: it often reveals interesting patterns, it is relatively straightforward to
interpret, and it is the simplest case of multivariate analysis. Despite the apparent
simplicity there are numerous issues to consider, some of which we have consid-
ered here. A classic text for learning about correlation analysis in depth and how to
perform it well while avoiding pitfalls, is Cohen, Cohen, and West (2003), Applied
Multiple Regression/Correlation Analysis for the Behavioral Sciences [36], although
it is not specific to R.

Analyzing survey scale responses. Much of the data in that we analyze in mar-
keting involves customers’ responses to survey ratings scales, and in Sect. 4.6.2
we mentioned some of the challenges with such ordinal response data. Although
polychor() is a useful tool when analyzing survey data, there are other advanced
options. For example, the bayesm package [167] provides the function rscaleUs
age(), which estimates differences in how each customer uses a scale (see also the
material on scale usage in Rossi et al. [168]). Using bayesm requires knowledge of
Bayesian methods, which we introduce in Chap.5.

4.10 Exercises

The following exercises use the e-commerce data set as described in Sect. 3.8.1.

1. The e-commerce data set (Sect. 3.8.1) includes the number of visits a user made
to the site (behavNumVisits). Plot this using a histogram, and then again by
plotting a table of frequencies. Which plot is a better starting place for visualiza-
tion, and why?

2. Adjust the table plot from the previous exercise to improve it. Use logarithmic
values for the numbers of visits instead of raw counts, and add a chart title and
axis labels.

3. The default Y axis on the previous plot is somewhat misleading. Why? Remove
the default Y axis, and replace it with better labels. (Note: for logarithmic values,
labels that begin with digits 1, 2, and 5—such as 1, 2, 5, 10, 20, 50, etc.—may be
useful.) Make the Y axis readable for all labels.

4. The variable behavPageViews is a factor variable, but we might like to do
computations on the number of views. Create a new variable pageViewInt
that is an integer estimate of the number of page views for each row, and add it to
ecomm.df. Be conservative with the estimates; for example, when the data say
“10+” views, code only as many as are indicated with confidence.

5. Plot a histogram of the newly added integer estimate of page views (pageView
Int).

Site visits and page views. For the next several exercises, we consider whether
frequent visitors are likely to view more pages on the site. It is plausible to think
that frequent visitors might view more pages in a session because they are more

4.10 Exercises 109

engaged users, or that frequent visitors would view fewer pages because they are
more familiar with the site. We will see what the data suggest.

6. For a first exploration, make a scatterplot for the integer estimate of page views
vs. the number of site visits. Should number of visits be on a log scale? Why or
why not?

7. There are only a few values of X and Y in the previous plot. Adjust the plot to
visualize more clearly the frequencies occurring at each point on the plot.

8. What is the Pearson’s r correlation coefficient between number of visits and the
integer estimate of page views? What is the correlation if you use log of visits
instead?

9. Is the correlation from the previous exercise statistically significant?
10. Is Pearson’s r a good estimate for the relationship of these two variables? Why

or why not?
11. *What is the polychoric correlation coefficient between number of visits and

integer page views? Is it a better estimate than Pearson’s r in this case?
12. Overall, what do you conclude about the relationship between the number of

times a user has visited the site and the number of page views in a given session?

Salaries data. For the remaining exercises, we use the Salaries data from the
car package.

13. How do you load the Salaries data from the car package? (Hint: review the
data() function.) Within R itself, how can you find out more detail about the
Salaries data set?

14. Using the Salaries data, create scatterplot matrix plots using two different
plotting functions. Which do you prefer and why?

15. Which are the numeric variables in the Salaries data set? Create a correlation
plot for them, with correlation coefficients in one area of the plot. Which two
variables are most closely related?

Chapter 5
Comparing Groups: Tables
and Visualizations

Marketing analysts often investigate differences between groups of people. Do men
or women subscribe to our service at a higher rate?Which demographic segment can
best afford our product? Does the product appeal more to homeowners or renters?
The answers help us to understand the market, to target customers effectively, and to
evaluate the outcome of marketing activities such as promotions.

Such questions are not confined to differences among people; similar questions are
asked of many other kinds of groups. One might be interested to group data by
geography: does Region A perform better than Region B? Or time period: did same-
store sales increase after a promotion such as a mailer or a sale? In all such cases,
we are comparing one group of data to another to identify an effect.

In this chapter, we examine the kinds of comparisons that often arise in marketing,
with data that illustrates a consumer segmentation project. We review R procedures
to find descriptive summaries by groups, and then visualize the data in several ways.

5.1 Simulating Consumer Segment Data

Webegin by creating a data set that exemplifies a consumer segmentation project. For
this example, we are offering a subscription-based service (such as cable television or
membership in a warehouse club) and have collected data fromN= 300 respondents
on age, gender, income, number of children, whether they own or rent their homes,
and whether they currently subscribe to the offered service or not. We use this data
in several later chapters as well.

In this data, each respondent has been assigned to one of four consumer segments:
“Suburb mix,” “Urban hip,” “Travelers,” or “Moving up.” (In this chapter we do not
address how such segments might be created; we just presume to know them. We
look at how to cluster respondents in Chap.11.)

© Springer Nature Switzerland AG 2019
C. Chapman and E. M. Feit, R For Marketing Research and Analytics, Use R!,
https://doi.org/10.1007/978-3-030-14316-9_5

111

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14316-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-14316-9_5

112 5 Comparing Groups: Tables and Visualizations

Segmentation data is moderately complex and we separate our code into three parts:

1. Definition of the data structure: the demographic variables (age, gender, and so
forth) plus the segment names and sizes.

2. Parameters for the distributions of demographic variables, such as the mean and
variance of each.

3. Code that iterates over the segments and variables to draw random values accord-
ing to those definitions and parameters.

By organizing the code this way, it becomes easy to change some aspect of the
simulation to draw data again. For instance, if we wanted to add a segment or change
the mean of one of the demographic variables, only minor change to the code would
be required. We also use this structure to teach new R commands that appear in the
third step to generate the data.

If you wish to load the data directly, it is available from the book’s web site:

> seg.df <- read.csv("http://goo.gl/qw303p")
> summary(seg.df)

age gender income kids ownHome
Min . :19.26 Female :157 Min . : -5183 Min . :0.00 ownNo :159
1st Qu .:33.01 Male :143 1 st Qu .: 39656 1 st Qu .:0.00 ownYes :141

...

However, we recommend that you at least read the data generation sections. We
teach important R language skills—looping and if() statements—in Sects. 5.1.2
and 5.1.3.

5.1.1 Segment Data Definition

Our first step is to define general characteristics of the dataset: the variable names,
data types, segment names, and sample size for each segment:

> segVars <- c("age", "gender", "income", "kids", "ownHome", "subscribe")
> segVarType <- c("norm" , "binom", "norm", "pois", "binom", "binom")
> segNames <- c("Suburb mix", "Urban hip", "Travelers", "Moving up")
> segSize <- c(100 , 50 , 80 , 70)

The first variable segVars specifies and names the variables to create. segVar
Type defineswhat kind of data will be present in each of those variables: normal data
(continuous), binomial (yes/no), or Poisson (counts).Nextwename the four segments
with the variable segNames and specify the number of observations to generate in
each segment (segSize). For instance, looking at the first entry in segNames and
segSize, the code says that we will create N = 100 observations (as specified by
segSize[1]) for the “Suburb mix” segment (named by segNames[1]).

Although those variables are enough to determine the structure of the data set—the
number of rows (observations) and columns (demographic variables and segment
assignment)—they do not yet describe the values of the data. The second step is to
define those values. We do this by specifying distributional parameters such as the
mean for each variable within each segment.

5.1 Simulating Consumer Segment Data 113

There are four segments and six demographic variables, so we create a 4 × 6 matrix
to hold the mean of each. The first row holds the mean values of each of the six
variables for the first segment; the second row holds the mean values for the second
segment, and so forth. We do this as follows:

> segMeans <- matrix (c(
+ 40 , .5 , 55000 , 2 , .5 , .1 ,
+ 24 , .7 , 21000 , 1 , .2 , .2 ,
+ 58 , .5 , 64000 , 0 , .7 , .05 ,
+ 36 , .3 , 52000 , 2 , .3 , .2) , ncol=length(segVars), byrow=TRUE)

How does this work? It specifies, for example, that the first variable (which we
defined above as age) will have a mean of 40 for the first segment, 24 for the second
segment, and so forth. When we draw the random data later in this section, our
routine will look up values in this matrix and sample data from distributions with
those parameters.

In the case of binomial and Poisson variables, we only need to specify the mean.
In these data gender, ownHome, and subscribe will be simulated as binomial
(yes/no) variables, which requires specifying the probability for each draw. kids
is represented as a Poisson (count) variable, whose distribution is specified by its
mean. (Note that we use these distributions for simplicity and do not mean to imply
that they are necessarily the best distributions to fit real observations of these vari-
ables. For example, real observations of income are better represented with a skewed
distribution.)

However, for normal variables—in this case, age and income the first and third
variables—we additionally need to specify the variance of the distribution, the degree
of dispersion around the mean. So we create a second 4 × 6 matrix that defines the
standard deviation for the variables that require it:

> # standard deviations for each segment (NA = not applicable for variable)
> segSDs <- matrix (c(
+ 5 , NA , 12000 , NA , NA , NA,
+ 2 , NA , 5000 , NA , NA , NA,
+ 8 , NA , 21000 , NA , NA , NA,
+ 4 , NA , 10000 , NA , NA , NA) , ncol=length(segVars), byrow=TRUE)

Putting those two matrices together, we have fully defined the distributions of the
segments. For instance, look at the third line of each matrix, which corresponds to
the “Travelers” segment. The matrices specify that the mean age of that segment
will be 58 years (looking at the first matrix) and that it will have a standard deviation
of 8 years (second matrix). Also it will be approximately 50% male (looking at the
second column), with an average income of $64000 and $21000 standard deviation.
By storing values in look-up tables this way, we can easily change the definitions
for future purposes without digging through detailed code. Such separation between
data definition and procedural code is a good programming practice.

With these data definitions in place, we we are ready to generate data. This uses
for() loops and if() blocks, so we review those before continuing with the
simulation process in Sect. 5.1.4.

114 5 Comparing Groups: Tables and Visualizations

5.1.2 Language Brief: for() Loops

Our dataset involves six random variables for age, gender, and so forth, and four
segments. So, we need to draw random numbers from 6 × 4 = 24 different distribu-
tions. Luckily, the structure of each of those random number draws is very similar,
and we can use for() loops to iterate over the variables and the segments.

The for() command iterates over a vector of values such as 1:10, assigning
successive values to an index variable and running a statement block on each iteration.
Here is a simple example:
> for (i in 1:10) { print(i) }
[1] 1
[1] 2
[1] 3
...
[1] 10

The value of i takes on the values from 1 to 10, and the loop executes 10 times in
all, running the print() command for each successive value of i.

If you’ve programmed before, this will be quite familiar—but there are a couple of
twists. The index variable in R for() loops can take on any scalar value, not just
integers, and it can operate on any vector including those that are defined elsewhere
or are unordered. Consider the following where we define a vector of real numbers,
i.seq, and iterate over its values:
> (i.seq <- rep(sqrt(seq(from =2.1 , to=6.2, by =1.7)) , 3))
[1] 1.449138 1.949359 2.345208 1.449138 1.949359 2.345208 1.449138 1.949359 ...
> for (i in i.seq) { print(i) }
[1] 1.449138
[1] 1.949359
...
[1] 2.345208

An index vector may comprise character elements instead of numeric:
> for (i in c("Hello ","world , ","welcome to R!")) { cat(i) }
Hello world , welcome to R!

We use the cat() command for output here instead of print() because of its
greater flexibility.

The brackets (“{” and “}”) enclose the statements that you want to loop over and are
only strictly required when a loop executes a block of more than one statement. How-
ever, we recommend for clarity to use brackets with all loops and control structures
as we’ve done here.

By tradition the most common index variable is named “i” (and inner loops com-
monly use “j”) but you may use any legal variable name. It is a nice practice to give
your index variable a descriptive-but-short name like seg for segments or cust for
customers.

There is one thing to avoid with for() loops in R: indexing on 1:length(some
Variable). Suppose for the example above, we wanted not the value of each
element in i.seq but its position (1, 2, 3, etc.). It would seem natural to write
something like this:

5.1 Simulating Consumer Segment Data 115

> for (i in 1: length(i.seq)) { cat("Entry", i, "=", i.seq[i], "\n") }
Entry 1 = 1.449138
Entry 2 = 1.949359
...

Don’t! This works in many cases but R has a better solution: seq_along
(someVariable), which gives a vector of 1, 2, 3, etc. of the same length as
someVariable. Write the following instead:
> for (i in seq_along(i.seq)) { cat("Entry" , i, "=", i.seq[i], "\n") }
Entry 1 = 1.449138
Entry 2 = 1.949359
...

Why? Because seq_along() protects against common errors when the index
vector has zero length or is inadvertently reversed. To seewhat happenswhen for()
has a zero-length vector, look at the following buggy code:
> i.seq <- NULL
> # maybe we have a bunch of other code , and then ...
> for (i in 1: length(i.seq)) { print (i) } # bad
[1] 1
[1] 0

What happened? If i.seq isNULL, why does it appear to have length 2? The answer
is that it doesn’t. We told R to do this: start a for() loop with the value of 1, and
then continue until you reach an index value that matches the length of the vector
i.seq, which happens to be 0. R complied precisely and iterated over the vector
1:0. That is, it started with 1 on the first iteration, and then 0 on the second iteration,
which then matched the length of i.seq.

The proper way to write this is to use seq_along():
> i.seq <- NULL
> for (i in seq_along(i.seq)) { print (i) } # better

This time the index vector has zero length, so nothing is printed. Whenever you find
yourself or a colleague writing “for (i in 1:length ...),” stop right there
and fix it. One day this will save you from a hard-to-find bug…and every day you’ll
be writing better R!

Many R and functional language programmers prefer to avoid for() loops and
instead use apply() functions and the like (Sect. 3.3.4), which automatically work
across vector or list objects. We suggest a mixed approach: do whichever makes
more sense to you. For many R newcomers, the logic of a for() loop is obvious
and easier to write reliably than an equivalent such as a list apply (lapply()). As
you gain experience in R and become comfortable with functions, we recommend
to reduce the reliance on for().

5.1.3 Language Brief: if() Blocks

Like most programming languages, R provides if() statements to handle condi-
tional code execution. The formal syntax is if (statement1) statement2
else statement3 but we suggest the following code template:

116 5 Comparing Groups: Tables and Visualizations

dummy code , not executed
if (condition1) {

statements
} else if (condition2) {

statements
} else {

statements
}

A condition is the part that evaluates to be TRUE or FALSE, and it goes inside
parentheses. For example, we might write if (segment==1) { ... } to do
something when the value of segment is 1. (Advanced note: An if() condition
may in fact be any R statement and will be coerced to a logical value but you should
take care to make sure it resolves to be a single, logical TRUE or FALSE value.)

The else if() blocks and final else block in the template are optional and are
evaluated only when the preceding if() statement evaluates as FALSE. The else
if() blocks are just sequenced if() statements and may be chained indefinitely.
In case you’re wondering, there is no requirement for an else block to handle cases
that if() does not match; there is an implicit “else do nothing and just continue.”

We strongly encourage to use brackets (“{” and “}”) around all conditional statement
blocks as we’ve done in the template above. This makes code more readable, avoids
syntactical ambiguities, and helps prevent bugs when lines are added or deleted in
code. Note that when brackets are followed by an else block, the closing bracket
(“}”) generally must be on the same line as else.

There is a common error with if() statements: accidentally or mistakenly using a
logical vector instead of a single logical value for the condition. Consider:

> x <- 1:5
> if (x > 1) {
+ print ("hi")
+ } else {
+ print ("bye")
+ }
[1] "bye"
Warning message:
In if (x > 1) { :

the condition has length > 1 and only the first element will be used

R warns us that the condition is not a single value. It then evaluates x[1] > 1 as
FALSE, so it skips to the else statement and evaluates that. This is probably not
what the programmer intended with this code. There are two possibilities that are
likely responsible for this code problem. First, the programmer might have forgotten
that x is a vector instead of a single value. The warning about “length > 1” tells us
to examine our code for that problem.

A second possibility is that the programmer wanted to evaluate all of the values
of x and act on each one of them. However, the if() statement is about program
flow—in R jargon, it is not vectorized—and thus it evaluates only a single condition
per if(). To perform conditional evaluation on every element of a vector, use
ifelse(test, yes, no) instead:
> ifelse(x > 1, "hi", "bye")
[1] "bye" "hi" "hi" "hi" "hi"

5.1 Simulating Consumer Segment Data 117

In this case, the condition x > 1 is evaluated for each element of x. That is, it tests
whether x[1] > 1 and then x[2] > 1 and so forth. When a test evaluates as
TRUE, the function returns the first (“yes”) value; for others it returns the second
(“no”) value. The “yes” and “no” values may be functions as needed. For instance,
in a silly case:
> fn.hi <- function() { "hi" }
> fn.bye <- function() { "bye" }
> ifelse(x > 1, fn.hi() , fn.bye())
[1] "bye" "hi" "hi" "hi" "hi"

Experienced programmers: applying functions conditionally along a vector in this
way is one way to avoid for() loops in R as we mentioned in Sect. 5.1.2.

5.1.4 Final Segment Data Generation

Armed with for() and if() and the data definitions above, we are ready to
generate the segment data. The logic we follow is to use nested for() loops, one
for the segments and another within that for the set of variables. (As mentioned in
Sects. 5.1.2 and 5.1.3, one could do this without for() loops in keeping with the
functional programming paradigm of R. However, we use for() loops here for
clarity and simplicity, and recommend that you code similarly; write whatever code
is clearest and easiest to maintain.)

To outline how this will work, consider the following pseudocode (sentences orga-
nized like code):
Set up data frame "seg.df" and pseudorandom number sequence
For each SEGMENT i in "segNames" {

Set up a temporary data frame "this.seg" for this SEGMENT’s data
For each VARIABLE j in " segVars " {

Use nested if() on " segVarType[j]" to determine data type for VARIABLE
Use segMeans[i, j] and segSDs[i, j] to
... Draw random data for VARIABLE (within SEGMENT) with
... " segSize[i]" observations

}
Add this SEGMENT’s data ("this.seg") to the overall data ("seg.df")

}

Pseudocode is a goodway to outline and debug code conceptually before you actually
write it. In this case, you can compare the pseudocode to the actual R code to see
how we accomplish each step. Translating the outline into R, we write:
> seg.df <- NULL
> set.seed (02554)

> # iterate over segments and create data for each
> for (i in seq_along(segNames)) {
+ cat(i, segNames[i], "\n")
+
+ # empty matrix to hold this particular segment ’s data
+ this.seg <- data.frame(matrix(NA , nrow=segSize[i], ncol=length(segVars)))
+
+ # within segment , iterate over variables and draw appropriate random data
+ for (j in seq_along(segVars)) { # and iterate over each variable
+ if (segVarType[j] == "norm") { # draw random normals
+ this.seg[,j] <- rnorm(segSize[i], mean=segMeans[i,j], sd=segSDs[i,j])
+ } else if (segVarType[j] == "pois") { # draw counts

118 5 Comparing Groups: Tables and Visualizations

+ this.seg[, j] <- rpois(segSize[i], lambda=segMeans[i, j])
+ } else if (segVarType[j] == "binom") { # draw binomials
+ this.seg[, j] <- rbinom(segSize[i], size=1, prob=segMeans[i, j])
+ } else {
+ stop("Bad segment data type: ", segVarType[j])
+ }
+ }
+ # add this segment to the total dataset
+ seg.df <- rbind(seg.df , this.seg)
+ }

The core commands occur inside the if() statements: according to the data type
we want (“norm”[al], “pois”[son], or “binom”[ial]), use the appropriate pseudoran-
dom function to draw data (the function rnorm(n, mean, sd), rpois(n,
lambda), or rbinom(n, size, prob), respectively). We draw all of the val-
ues for a given variable within a given segment with a single command (drawing all
the observations at once, with length specified by segSize[i]).

There are a few things to note about this code.As inSect. 5.1.2weuseseq_along()
to set up the for() loops. To see that the code is working and to show progress,
we usecat("some output message", counter, "\n") inside the loop
(\n ends a line so the next iteration will be on a new line of output). That results in
the following output as the code runs:
1 Suburb mix
2 Urban hip
3 Travelers
4 Moving up

Inside the first loop (the i loop), we predefine this.seg as a data frame with
the desired number of rows and columns, but full of missing values (NA). Why?
Whenever R grows an object in memory—such as adding a row—it makes a copy
of the object. This uses twice the memory and slows things down; by preallocating,
we avoid that. In small data sets like this one, it hardly matters, but with larger data
sets, it can make a huge difference in speed. Also, R can easily draw random values
for all respondents in a segment at once and this makes it easier to do so. Finally, it
adds a bit of error checking: if a result doesn’t fit into the data frame where it should
fit, we will get a warning or error.

By filling temporary and placeholder objects with missing values (NA) instead of 0
or blank values, we add another layer of error-checking: if we describe() the
object and discover missing values where we expect data, we know there is a code
error.

We finish the if() blocks in our code with a stop() command that executes in
the case that a proposed data type doesn’t match what we expect. There are three
if() tests for the expected data types, and a final else block in case none of the
ifs matches. This protects us in the case that we mistype a data type or if we try to
use a distribution that hasn’t been defined in the random draw code, such as a gamma
distribution. This stop() condition would cause the code to exit immediately and
print an error string.

Notice that we are doing a lot of thinking ahead about how our code might change
and potentially break in the future to ensure that we would get a warning when

5.1 Simulating Consumer Segment Data 119

something goes wrong. Our code also has another advantage that you may not notice
right away: we call each random data function such as rnorm in exactly one place.
If we discover that there was something wrong with that call—say we wanted to
change one of the parameters of the call—we only need to make the correction in
one place. This sort of planning is a hallmark of good programming in R or any
other language. While it might seem overly complex at first, many of these ideas will
become habitual as you write more programs.

To finish up the data set, we perform a few housekeeping tasks: we name the columns,
add segment membership, and convert each binomial variable to a labeled factor:
make the data frame names match what we defined
names(seg.df) <- segVars
add segment membership for each row
seg.df$Segment <- factor(rep(segNames , times=segSize))
convert the binomial variables to nicely labeled factors
seg.df$ownHome <- factor(seg.df$ownHome , labels=c("ownNo", "ownYes"))
seg.df$gender <- factor(seg.df$gender , labels=c("Female", "Male"))
seg.df$subscribe <- factor(seg.df$subscribe , labels=c("subNo", "subYes"))

We may now inspect the data. As always, we recommend a data inspection plan as
noted in Sect. 3.5, although we only show one of those steps here:
> summary(seg.df)

age gender income kids ownHome
Min . :19.26 Female :157 Min . : -5183 Min . :0.00 ownNo :159
1st Qu .:33.01 Male :143 1 st Qu .: 39656 1 st Qu .:0.00 ownYes :141
Median :39.49 Median : 52014 Median :1.00
Mean :41.20 Mean : 50937 Mean :1.27

...

The data frame is now suitable for exploration. And we have reusable code: we
could create data with more observations, different segment sizes, or segments with
different distributions or means by simply adjusting the matrices that define the
segments and running the code again.

As a final step we save the data frame as a backup and to use again in later chapters
(Sects. 11.2 and 12.4). Change the destination if you have created a folder for this
book or prefer a different location:
> save(seg.df , file="∼/segdf -Rintro -Ch5.RData")

5.2 Finding Descriptives by Group

For our consumer segmentation data, we are interested in how measures such as
household income and gender vary for the different segments. With this insight, a
firm might develop tailored offerings for the segments or engage in different ways
to reach them.

An ad hoc way to do this is with data frame indexing: find the rows that match
some criterion, and then take the mean (or some other statistic) for the matching
observations on a variable of interest. For example, to find the mean income for the
“Moving up” segment:

120 5 Comparing Groups: Tables and Visualizations

> mean(seg.df$income[seg.df$Segment == "Moving up"])
[1] 53090.97

This says “from the income observations, take all cases where the Segment column
is ‘Moving up’ and calculate their mean.” We could further narrow the cases to
“Moving up” respondents who also do not subscribe using Boolean logic:

> mean(seg.df$income[seg.df$Segment == "Moving up" &
+ seg.df$subscribe=="subNo"])
[1] 53633.73

This quickly becomes tedious when you wish to find values for multiple groups.

As we saw briefly in Sect. 3.4.5, a more general way to do this is with by(data,
INDICES, FUN). The result of by() is to divide data into groups for each of
the unique values in INDICES and then apply the FUN function to each group:

> by(seg.df$income , seg.df$Segment , mean)
seg.df$Segment: Moving up
[1] 53090.97

seg.df$Segment: Suburb mix
[1] 55033.82
...

With by(), keep in mind that data is the first argument and the splitting factors
INDICES come second. You can break out the results by multiple factors if you sup-
ply factors in a list(). For example, we can break out by segment and subscription
status:
> by(seg.df$income , list(seg.df$Segment , seg.df$subscribe), mean)
: Moving up
: subNo
[1] 53633.73

: Suburb mix
: subNo
[1] 54942.69
...
: Urban hip
: subYes
[1] 20081.19

Our favorite command for computing a function to each group is aggregate()
as we introduced in Sect. 3.4.5. aggregate() works almost identically to by in
its list form (we’ll see another form of aggregate()momentarily), except that it
takes a list for even a single factor:

> aggregate(seg.df$income , list(seg.df$Segment), mean)
Group .1 x

1 Moving up 53090.97
2 Suburb mix 55033.82
3 Travelers 62213.94
4 Urban hip 21681.93

A first advantage of aggregate() is this: the result is a data frame. As we saw
in Sect. 3.4.5, you can save the results of aggregate() to an object, which you
can then index, subject to further computation, write to a file, or manipulate in other
ways.

Here’s an example: suppose we wish to add a “segment mean” column to our data
set, a new observation for each respondent that contains the mean income for their

5.2 Finding Descriptives by Group 121

respective segment so we can compare respondents’ incomes to those typical for
their segments. We can do this by first aggregating the mean incomes into a table,
and then indexing that by segment to look up the appropriate value for each row of
our data:
> seg.income.mean <- aggregate(seg.df$income , list(seg.df$Segment), mean)
> seg.df$segIncome <- seg.income.mean[seg.df$Segment , 2]

When we check the data, we see that each row has an observation that matches its
segment mean (some() does a random sample of rows, so your output may vary):
> library(car)
> some(seg.df)

age gender income kids ownHome subscribe Segment segIncome
58 34.46528 Male 60971.76 2 ownNo subNo Suburb mix 55033.82
79 42.31337 Male 49674.79 0 ownYes subNo Suburb mix 55033.82
124 22.30333 Female 24541.24 1 ownNo subNo Urban hip 21681.93
136 23.08861 Male 33909.50 3 ownNo subNo Urban hip 21681.93
158 43.35230 Male 51787.88 0 ownNo subNo Travelers 62213.94
...

It is worth thinking about how this works. In the following command:
> seg.df$segIncome <- seg.income.mean[seg.df$Segment , 2]

... we see this index for the rows: seg.df$Segment. If we evaluate that on its
own, we see that it is a vector with one entry for each row of seg.df:
> seg.df$Segment

[1] Suburb mix Suburb mix Suburb mix Suburb mix Suburb mix Suburb mix
Suburb mix

...
[295] Moving up Moving up Moving up Moving up Moving up Moving up
Levels : Moving up Suburb mix Travelers Urban hip

Now let’s see what happens when we index seg.income.mean with that vector:
> seg.income.mean[seg.df$Segment ,]

Group .1 x
2 Suburb mix 55033.82
2.1 Suburb mix 55033.82
...
1.68 Moving up 53090.97
1.69 Moving up 53090.97

The result is a a data frame in which each row of seg.income.mean occurs many
times in the order requested.

Finally, selecting the second column of that gives us the value to add for each row
of seg.df:
> seg.income.mean[seg.df$Segment , 2]

[1] 55033.82 55033.82 55033.82 55033.82 55033.82 55033.82 55033.82 55033.82
...
[297] 53090.97 53090.97 53090.97 53090.97

We generally do not like adding derived columns to primary data because we like to
separate data from subsequent computation, but we did so here for illustration. We
now remove that column by setting its value to NULL:
> seg.df$segIncome <- NULL

This use of aggregate() exemplifies the power of R to extract and manipulate
data with simple and concise commands. You may recall that we said this was the
first advantage of aggregate(). The second advantage is even more important
and we describe it next.

122 5 Comparing Groups: Tables and Visualizations

5.2.1 Language Brief: Basic Formula Syntax

Rprovides a standardway to describe relationships among variables through formula
specification. A formula uses the tilde (∼) operator to separate response variables
on the left from explanatory variables on the right. The basic form is:

y ∼ x (Simple formula)

This is used in many contexts in R, where the meaning of response and explanatory
depend on the situation. For example, in linear regression, the simple formula above
wouldmodel y as a linear function of x . In the case of the aggregate() command,
the effect is to aggregate y according to the levels of x .

Let’s see that in practice. Instead of aggregate(seg.df$income, list
(seg.df$Segment), mean) we can write:
> aggregate(income ∼ Segment , data=seg.df , mean)

Segment income
1 Moving up 53090.97
...

The general form is aggregate(formula, data, FUN). In our example, we
tell R to “take income by Segment within the data set seg.df, and apply mean
to each group.”

The formula “y ∼ x” might be pronounced in various contexts as “y in response
to x ,” “y is modeled by x ,” “y varies with x ,” and so forth. R programmers often
become so accustomed to this syntax that they just say “y tilde x .” This syntax may
seem like nothing special at first, but formulas are used in many different contexts
throughout R. We will encounter many uses for formulas later in this book, and
discuss additional forms of them in Sect. 7.5.1.

5.2.2 Descriptives for Two-Way Groups

A common task in marketing is cross-tabulating, separating customers into groups
according to two (or more) factors. Formula syntax makes it easy to compute a cross
tab just by specifying multiple explanatory variables:

y ∼ x1 + x2 + · · · (Multiple variable formula)

Using this format with aggregate(), we write:

> aggregate(income ∼ Segment + ownHome , data=seg.df , mean)
Segment ownHome income

1 Moving up ownNo 54497.68
2 Suburb mix ownNo 54932.83
...
7 Travelers ownYes 61889.12
8 Urban hip ownYes 23059.27

5.2 Finding Descriptives by Group 123

We now have a separate group for each combination of Segment and ownHome
and can begin to see how income is related to both the Segment and the ownHome
variables.

A formula can be extended to include as many grouping variables as needed:

> aggregate(income ∼ Segment + ownHome + subscribe , data=seg.df , mean)
Segment ownHome subscribe income

1 Moving up ownNo subNo 55402.89
...
8 Urban hip ownYes subNo 23993.93
9 Moving up ownNo subYes 50675.70
...
16 Urban hip ownYes subYes 19320.64

As we saw for one-way aggregate, the result can be assigned to a data frame object
and indexed:
> agg.data <- aggregate(income ∼ Segment + ownHome , data=seg.df , mean)
> agg.data[2,]

Segment ownHome income
2 Suburb mix ownNo 54932.83
> agg.data [2, 3]
[1] 54932.83

The aggregate command allows us to compute functions of continuous variables,
such as the mean of income or age) for any combination of factors (Segment,
ownHomeand so forth). This is such a common task in marketing research that there
used to be entire companies who specialized in producing cross tabs. As we’ve just
seen, these are not difficult to compute in R.

We might also want to know the frequency with which different combinations of
Segment and ownHome occur. We can compute frequencies using
table(factor1, factor2, ...) to obtain one-way or multi-way counts:

> with(seg.df , table(Segment , ownHome))
ownHome

Segment ownNo ownYes
Moving up 47 23
Suburb mix 52 48
Travelers 20 60
Urban hip 40 10

There are 10 observed customers in the “Urban hip” segment who own their own
homes, and 60 in the “Travelers” segment.

Suppose we want a breakdown of the number of kids in each household (kids) by
Segment:
> with(seg.df , table(kids , Segment))

Segment
kids Moving up Suburb mix Travelers Urban hip

0 13 11 80 17
1 17 36 0 17
2 18 22 0 11
3 13 19 0 4

...

This tells us that we have 17 “Urban hip” respondents with 0 kids, 22 “Suburb mix”
respondents with 2 kids, and so forth. It represents purely the count of incidence for
each crossing point between the two factors, kids and Segment. In this case we
are treating kids as a factor and not a number.

124 5 Comparing Groups: Tables and Visualizations

However, kids is actually a count variable; if a respondent reported 3 kids, that is a
count of 3 and we could add together the counts to get the total number of children
reported in each segment. xtabs(formula, data) provides a handy way to do
this. It works with counts to find their total:
> xtabs(kids ∼ Segment , data=seg.df)
Segment
Moving up Suburb mix Travelers Urban hip

134 192 0 55

Now we know that our “Urban hip” respondents reported a total of 55 kids, while
the “Travelers” reported none. You might think of other ways this could be done in
R as well. One alternative is aggregate(..., sum):
> aggregate(kids ∼ Segment , data=seg.df , sum)

Segment kids
1 Moving up 134
2 Suburb mix 192
3 Travelers 0
4 Urban hip 55

Another option is to multiply the frequency table by marginal number of kids and
add it up:

> seg.tab <- with(seg.df , table(kids , Segment))
> apply(seg.tab*0:7, 2, sum)
Moving up Suburb mix Travelers Urban hip

134 192 0 55

apply(, 2, sum) is better expressed using colSums():

> seg.tab <- with(seg.df , table(kids , Segment))
> colSums(seg.tab*0:7)
Moving up Suburb mix Travelers Urban hip

134 192 0 55

Wehave belabored this in order to show that R typically hasmanyways to arrive at the
same result. This may seem overly complex yet it is a good thing. One reason is that
there are multiple options to match your style and situation. Each method produces
results in a different format, and one format might work better in some situation than
another. For instance, we’ve argued that the format from aggregate() is often
more useful than by(). Another reason is that you can do the same thing in two
different ways and compare the answers, thus testing your analyses and uncovering
potential errors.

5.2.3 Visualization by Group: Frequencies and Proportions

Suppose we plot the proportion of subscribers for each segment to understand better
which segments use the subscription service. Apart frommaking four separate plots,
it isn’t obvious how to do this with the tools we have learned so far. We could
use table() along with barplot() (from Sect. 3.2.1) to get a plot showing the
number of subscribers and non subscribers overall, but breaking this out bysegment
would require lots of work to separate the data and label the plots correctly.

5.2 Finding Descriptives by Group 125

Fig. 5.1 Conditional
histogram for proportion of
subscribers within each
segment, using lattice

subscribe

P
er

ce
nt

 o
f T

ot
al

0

20

40

60

80

subNo subYes

Moving up Suburb mix

Travelers

subNo subYes

0

20

40

60

80

Urban hip

Happily, thelatticepackageprovides a useful solution:histogram(formula,
data, type) is similar to hist() but understands formula notation including
conditioning on a factor, which means to separate the plot into multiple panes based
on that factor. Conditioning is indicated with the symbol “|”. This is easiest to under-
stand in an example:

> library(lattice)
> histogram(∼subscribe | Segment , data=seg.df)

You will notice that there is no response variable before the tilde (∼) in this formula,
only the explanatory variable (subscribe) after it. histogram() automatically
assumes that we want to plot the proportion of people at each level of subscribe.
We condition the plot on Segment, telling histogram to produce a separate
histogram for each segment. The result is shown in Fig. 5.1.

In Fig. 5.1, we see that the “Suburban mix” segment is least likely to subscribe to
our service. While this data doesn’t tell us why that might be, it does suggest that the
company might investigate and perhaps either improve the product to make it more
appealing to this group or else stop marketing to them.

The default in histogram() is to plot proportions within each group so that the
values are relative to the group size. If we wanted actual counts instead, we could
include the argument type="count". We do that, adding options for color and
changing the layout to 4 columns and 1 row:

> histogram(∼subscribe | Segment , data=seg.df , type="count",
+ layout=c(4,1) , col=c("burlywood", "darkolivegreen"))

126 5 Comparing Groups: Tables and Visualizations

Fig. 5.2 Conditional
histogram for count of
subscribers within each
segment

subscribe

C
ou

nt

0

20

40

60

80

Moving up Suburb mix

subNo subYes subNo subYes

Travelers

subNo subYes subNo subYes

Urban hip

Fig. 5.3 Conditional
histogram for subscribers,
broken out by segment (in
the four columns) and home
ownership (in the two rows)

subscribe

Pe
rc

en
t o

f T
ot

al

0

20

40

60

80

100

subNo subYes

Moving up
ownNo

Suburb mix
ownNo

subNo subYes

Travelers
ownNo

Urban hip
ownNo

Moving up
ownYes

subNo subYes

Suburb mix
ownYes

Travelers
ownYes

subNo subYes

0

20

40

60

80

100
Urban hip
ownYes

This produces Fig. 5.2. By plotting the counts, we can see which segments are larger,
but it is difficult and potentially misleading to compare the count of subscribers
across groups of different sizes.

You can condition on more than one factor; just include it in the conditioning part of
the formula with “+”. For example, what is the proportion of subscribers within each
segment, by home ownership?We add ownHome to the formula in histogram():

> histogram(∼subscribe | Segment + ownHome , data=seg.df)

The result is Fig. 5.3. In this plot, the top and bottom rows of Fig. 5.3 are similar,
and we conclude that differences in subscription rate according to home ownership
within segment are small. An implication is that the company should continue to
market to both homeowners and non-homeowners.

5.2 Finding Descriptives by Group 127

Fig. 5.4 Proportion of
subscribers by segment using
prop.table and
barchart

Subscriber proportion by Segment

Moving up

Suburb mix

Travelers

Urban hip

0.10 0.15 0.20

Finally, we could plot just “yes” proportions instead of both “yes” and “no” bars.
There are several ways to do this; we’ll do so by introducing the prop.table
(table, margin) command. If you wrap prop.table(..., margin=
...) around a regular table() command, it will give you the proportions for
each cell with respect to the entire table (by default), or just the rows (margin=1),
or the columns (margin=2).

We would like to know the proportion of subscribers within each segment, which
are the columns in table(...$subscribe, $Segment), so we use prop.
table(..., margin=2) as follows:
> prop.table(table(seg.df$subscribe , seg.df$Segment), margin =2)

Moving up Suburb mix Travelers Urban hip
subNo 0.800 0.940 0.875 0.800
subYes 0.200 0.060 0.125 0.200

To plot just the “yes” values, we use barchart() and select only the second row
of the prop.table() result:
> barchart(prop.table(table(seg.df$subscribe , seg.df$Segment) , margin =2)[2,],
+ xlab="Subscriber proportion by Segment" , col="darkolivegreen ")

The result is Fig. 5.4, which strongly communicates that the Suburb mix segment has
an apparent low subscription rate. Note that this visual impression is amplified by the
fact that barchart() started theX axis at 0.05, not at 0, which is rathermisleading.
In practice, you might adjust that using the xlim=c(low, high) argument to
barchart(); we leave that as an exercise. We will see more examples of barcharts
in the next section.

5.2.4 Visualization by Group: Continuous Data

In the previous section we saw how to plot counts and proportions. What about
continuous data? How would we plot income by segment in our data? A simple

128 5 Comparing Groups: Tables and Visualizations

Fig. 5.5 Average income by
segment using
prop.table and
barchart

in
co

m
e

20000

30000

40000

50000

60000

Moving up Suburb mix Travelers Urban hip

Fig. 5.6 Average income by
segment and home
ownership, using
aggregate and
barchart

in
co

m
e

20000

30000

40000

50000

60000

Moving up Suburb mix Travelers Urban hip

ownNo
ownYes

way is to use aggregate() to find the mean income, and then use barchart()
from the lattice package to plot the computed values:
> seg.mean <- aggregate(income ∼ Segment , data=seg.df , mean)
> library(lattice)
> barchart(income∼Segment , data=seg.mean , col="grey")

The result is Fig. 5.5.

How do we split this out further by home ownership? First we have to aggregate
the data to include both factors in the formula. Then we tell barchart() to use
ownHome as a grouping variable by adding the argument groups=factor. Doing
that, and also adding a simpleTheme option to improve the chart colors, we have:
> seg.income.agg <- aggregate(income ∼ Segment + ownHome , data=seg.df , mean)
> barchart(income ∼ Segment , data=seg.income.agg ,
+ groups=ownHome , auto.key=TRUE ,
+ par.settings = simpleTheme(col=terrain.colors (2)))

This produces a passable graphic as shown in Fig. 5.6 although it still looks as if it
came from a spreadsheet program. We can do better in R.

A more informative plot for comparing values of continuous data, like income for
different groups is a box-and-whiskers plot, which we first encountered in Sect. 3.4.2.
A boxplot is better than a barchart because it shows more about the distributions of
values.

5.2 Finding Descriptives by Group 129

Fig. 5.7 Box-and-whiskers
plot for income by segment
using boxplot

●

●

●

●
●

Moving up Suburb mix Travelers Urban hip

In
co

m
e

($
k)

0k

20k

40k

60k

80k

100k

Fig. 5.8 Box-and-whiskers
plot for income by segment
using bwplot

Income

Moving up

Suburb mix

Travelers

Urban hip

0 20000 40000 60000 80000 100000

boxplot() works with formula syntax to plot a box-and-whiskers plot by factor.
Adding improved labels for the Y axis (see Sect. 3.4), we write:
> boxplot(income ∼ Segment , data=seg.df , yaxt="n", ylab="Income ($k)")
> ax.seq <- seq(from=0, to=120000 , by =20000)
> axis(side=2, at=ax.seq , labels=paste(ax.seq/1000, "k", sep=""), las=1)

We can now see in Fig. 5.7 that the income for “Travelers” is higher and also has
a greater range, with a few “Travelers” reporting very low incomes. The range of
income for “Urban hip” is much lower and tighter. Although box-and-whisker plots
are not common in business reporting, they encode a lot more information than the
averages shown in Fig. 5.4. Box-and-whisker plots, or theirmoremodern cousins (see
Sect. 3.4.2), should be more common business communications, since they provide
more information than a barplot of averages.

An even better option for box-and-whiskers plots is the bwplot() command from
the lattice package, which produces better looking charts and allowsmulti-factor
conditioning. One point of caution is that bwplot() uses the model formula in a
direction opposite than you might expect; you write Segment s ∼ income. We
plot a horizontal box-and-whiskers for income by segment as follows:
> bwplot(Segment ∼ income , data=seg.df , horizontal=TRUE , xlab = "Income")

The lattice box-and-whiskers is shown in Fig. 5.8.

We can break out home ownership as a conditioning variable using “ | ownHome”
in the formula:

130 5 Comparing Groups: Tables and Visualizations

Fig. 5.9 Box-and-whiskers
plot for income by segment
and home ownership using
bwplot

Income

Moving up

Suburb mix

Travelers

Urban hip

0 20000 40000 60000 80000 100000

●

●

●

●

● ●

●

ownNo

0 20000 40000 60000 80000 100000

●

●

●

●

●

●

●

ownYes

> bwplot(Segment ∼ income | ownHome , data=seg.df , horizontal=TRUE ,
+ xlab="Income")

The conditioned plot for incomeby segment and homeownership is shown inFig. 5.9.
In this chart we discover—among other things—that in our simulated data the Trav-
elers segment has a much wider distribution of income among those who own their
homes than those who don’t.

5.3 Key Points

This was a crucial chapter for doing everyday analytics with R. Following are some
of the lessons.

In R code in general:

• When writing for() loops, use seq_along() instead of 1:length()
(Sect. 5.1.2)

• For if() and for() blocks, always use brackets (“{” and “}”) for improved
readability and reliability (Sect. 5.1.3)

• When creating a data object from scratch, pre-populate it with missing data (NA)
and then fill it in, for speed and reliability (Sect. 5.1.1)

When describing and visualizing data for groups:

• The by() command can split up data and automatically apply functions such as
mean() and summary() (Sect. 5.2)

• aggregate() is even more powerful: it understands formula models and pro-
duces a reusable, indexable object with its results (Sects. 5.2 and 5.2.1)

• Frequency of occurrence can be found with table(). For count data, especially
when using formulas, xtabs() is useful (Sect. 5.2.2)

• Charts of proportions and occurrence by a factor are well suited to the lattice
package histogram() command (Sect. 5.2.2)

5.3 Key Points 131

• Plots for continuous data by factor may use barchart(), or even better, box-
and-whiskers plots with boxplot() (Sect. 5.2.4) or bean plots (Sect. 3.4.2). The
lattice package extends boxplots to multiple factors using formula specifica-
tion in the bwplot() command (Sect. 5.2.4).

5.4 Data Sources

Segmentation data is commonly obtained from three sources: account profile infor-
mation (such as gender and age), survey data (such as home ownership and household
income), and account behavior (such as subscribing to a service). These might be
collected in a unified data set—for example, when survey items are asked during
account sign up—or combined from separate waves of data collection, such as sur-
veys emailed to customers. We assume here that the data have already been gathered
and compiled (see Sect. 4.8).

Finally, in addition to the descriptive data, there are segment assignments, such as the
“Urban hip” and “Travelers” segments. These might be assigned through a clustering
or classification method (Chap. 11), expert assignment, or a typing tool—perhaps a
simple script that implements segment membership logic. In the present data, we
assume that those segment assignments have been made.

5.5 Learning More*

The topics in this chapter are foundational both for programming skills in R and for
applied statistics. To gain skill in aspects of R programming that we introduce in this
chapter, we recommend Matloff’s The Art of R Programming [135]. We presented
charts in this chapter using the lattice package, which is described in detail in
an eponymous book: Sarkar’s Lattice [173].

In Chap.6 we continue our investigation with methods that formalize group compar-
isons and estimate the statistical strength of differences between groups.

5.6 Exercises

The following exercises use the e-commerce data set as described in Sect. 3.8.1.

1. Using the integer approximation of page views (see Exercises in Sect. 4.10),
describe page views for parents, teachers, and health professionals. Use a by()
or aggregate() function as appropriate.

2. Repeat the previous task, this time using a for() loop to iterate over the groups.

132 5 Comparing Groups: Tables and Visualizations

3. Comparing the previous two approaches—grouping versus a for() loop—
which do you prefer, and why? What is a time when the other approach might be
preferable?

4. What are the proportions of men and women among the various visitor profiles
(teacher, parent, relative, etc.)? For this question, don’t count observations where
the gender is not specified as male or female.

5. Considering parents, teachers, and health professionals, which group has made
the most purchases recently? Answer with both descriptives and a visualization.

6. In answering the previous question, you might use either counts or proportions.
Do they give you the same answer? If not, show an example. What is a business
question for which counts would be preferable? What is a question for which
proportions would be preferable?

7. When we split the profiles into men and women, and consider completed pur-
chases on the site (variable behavAnySale) which combination of profile and
gender made the highest number of purchases? Which had the highest rate of
purchase, relative to total number of observations?

Chapter 6
Comparing Groups: Statistical Tests

In Chap.5 we saw how to break out data by groups and inspect it with tables and
charts. In this chapter we continue our discussion and address the question, “It looks
different, but is it really different?” This involves our first inferential statistical pro-
cedures: chi-square, t-tests, and analysis of variance (ANOVA). In the final section,
we introduce a Bayesian approach to compare groups.

6.1 Data for Comparing Groups

In this chapter, we continue with the data from Chap.5. If you saved it at that time,
you could load it again with a command such as:
> load("~/segdf -Rintro -Ch5.RData") # modify directory as needed
> summary(seg.df)

age gender income kids ownHome

Min. :19.26 Female :157 Min. : -5183 Min. :0.00 ownNo :159

1st Qu .:33.01 Male :143 1st Qu.: 39656 1st Qu .:0.00 ownYes :141

...

Alternatively, you could create the data following the procedure in Sect. 5.1. Or
download it from this book’s web site:
> seg.df <- read.csv("http://goo.gl/qw303p")

> summary(seg.df)

age gender income kids ownHome

Min. :19.26 Female :157 Min. : -5183 Min. :0.00 ownNo :159

1st Qu .:33.01 Male :143 1st Qu.: 39656 1st Qu .:0.00 ownYes :141

...

6.2 Testing Group Frequencies: chisq.test()

Much of the work we do in marketing analytics and marketing research involves
summarizing the differences between groups using group averages and cross tabs as
we described in Sect. 5.2. However, a good analyst is able to use statistical tests to

© Springer Nature Switzerland AG 2019
C. Chapman and E. M. Feit, R For Marketing Research and Analytics, Use R!,
https://doi.org/10.1007/978-3-030-14316-9_6

133

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14316-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-14316-9_6

134 6 Comparing Groups: Statistical Tests

determine whether differences are real or might instead be due to minor variation
(“noise”) in the data. In the rest of the book, we largely focus on statistical tests that
help to identify real differences.

One of the simplest statistical tests is the chi-square test, which is usedwith frequency
counts such as those produced by table. A chi-square test determines whether the
frequencies in cells are significantly different from what one would expect on the
basis of their total counts.

In our segment data, we might ask whether there are equal numbers of respon-
dents in each segment, given a marginal count of N = 300 observations. In R,
we use the chisq.test() command. One thing to remember is that in general
chisq.test() operates on a table (such as produced by table()). To see how
this works, let’s look at the process using simple data before we tackle the question
for our segments. Experimenting with simple data is always a good idea when trying
a new command.

For the first example, we create a table where the data comprises 95 observations of
the numbers 1 to 4 and where the counts of each are almost, but not quite identical.
We then test this with chisq.test():
> tmp.tab <- table(rep(c(1:4), times=c(25 ,25 ,25 ,20)))

> tmp.tab

1 2 3 4

25 25 25 20

> chisq.test(tmp.tab)

Chi -squared test for given probabilities

data: tmp.tab

X-squared = 0.78947 , df = 3, p-value = 0.852

In this code, we generate 95 observations of 1:4, compile those into a table, and
then test that table for chi-square independence. The test evaluates the likelihood of
seeing such a result under the null hypothesis that the data were randomly sampled
from a large population where the values 1:4 are equally distributed, given amarginal
count of N= 95 observations. The p-value of 0.852 tells us that there is an estimated
85% chance of seeing a data set with differences similar to or greater than those in
our table, if the null hypothesis is true. We conclude that under the assumptions of
the chi-square test, our table does not suggest real differences in frequency between
the four cells. Put another way, this data shows no evidence that the groups in the
population are of unequal size, under the assumption of random sampling.

Compare that to the following, which differs from the code above by a single
character—we change the number of observations of “4” from 20 to 10:
> tmp.tab <- table(rep(c(1:4), times=c(25 ,25 ,25 ,10)))

> tmp.tab

1 2 3 4

25 25 25 10

> chisq.test(tmp.tab)

Chi -squared test for given probabilities

6.2 Testing Group Frequencies: chisq.test() 135

data: tmp.tab

X-squared = 7.9412 , df = 3, p-value = 0.04724

In this case, we could conclude from the p-value of 0.047 that we we can reject the
null hypothesis of no difference between the cells with “95% confidence.” In other
words, the data in this sample suggests that the distribution of the values 1:4 is likely
to be unequal in the larger population, assuming the data are a random sample. In
general, a p-value less than 0.10 or 0.05 suggests that there is a difference between
groups.

As an aside, there are disagreements among statisticians about the meaning of
null hypotheses and the value of traditional significance testing. We do not advo-
cate classical significance testing in particular, but report the methods here because
they are widely used in marketing to gauge the strength of evidence in a data set.
We believe the classical methods are imperfect but nevertheless useful and impor-
tant to know. For review and discussion of the controversies and alternatives, see
[35, 101, 119]. In Sect. 6.6 we introduce Bayesian methods that do not rely on this
kind of null hypothesis.

In the results above, if we had a smaller sample we would not get the same result
for the significance test even if the relative proportion of customers in each group
was the same. Significance tests are sensitive to both the observed difference and the
sample size. To see this, we can create data with the same proportions but one fifth
as many observations by dividing tmp.tab by 5.

> tmp.tab <- tmp.tab/5

> tmp.tab

1 2 3 4

5 5 5 2

> chisq.test(tmp.tab)

Chi -squared test for given probabilities

data: tmp.tab

X-squared = 1.5882 , df = 3, p-value = 0.6621

Warning message:

In chisq.test(tmp.tab) : Chi -squared approximation may be incorrect

This shows a non-significant result—no evidence of a real difference in group sizes—
even though the proportion of people in the “4” group is the same as in the larger
sample above where the result was significant. This highlights one of the cautions
about statistical significance testing: it is dependent on sample size as well as on
the real effect. By the way, the warning occurs when doing chisq.test() where
some cells have very few observations; that poses questions about sample size that
we set aside for now.

Returning to our simulated segment data, which has a N = 300 observations, we
ask whether the segment sizes are significantly different from one another (assuming
that our 300 customers are a random sample of a larger population). We use the same
procedure as above, combiningchisq.test() and table() into one command:

136 6 Comparing Groups: Statistical Tests

> chisq.test(table(seg.df$Segment))

Chi -squared test for given probabilities

data: table(seg.df$Segment)

X-squared = 17.333 , df = 3, p-value = 0.0006035

The answer to our question is “yes, there are differences in segment size.” That is,
with p = 0.0006, our sample does not support the hypothesis that there are identical
numbers of customers in each segment.

Is subscription status independent from home ownership, as we hypothesized when
we plotted the data in Sect. 5.2? That is, in our simulated data, are respondents just as
likely to subscribe or not, without regard to home ownership status (and conversely,
are they just as likely to own a home or not, independent of subscription status)? We
construct a two-way table and test it:

> table(seg.df$subscribe , seg.df$ownHome)

ownNo ownYes

subNo 137 123

subYes 22 18

> chisq.test(table(seg.df$subscribe , seg.df$ownHome))

Pearson’s Chi -squared test with Yates’ continuity correction

data: table(seg.df$subscribe , seg.df$ownHome)

X-squared = 0.0104 , df = 1, p-value = 0.9187

The null hypothesis in this case is that the factors are unrelated, i.e., that the counts
in the cells are as one might expect from the marginal proportions. Based on the
high p-value, we cannot reject the null hypothesis of no difference, and conclude
that the factors are unrelated and that home ownership is independent of subscription
status in our data. Although people in general have a low subscription rate—and thus
there are many more non-subscribers than subscribers in both groups—there is no
relationship between subscription rate and home ownership.

You should be aware of one aspect of chisq.test() for 2 × 2 tables: chisq.
test() defaults to using Yates’ correction, which adjusts the chi-square statistic in
light of the fact that the assumption of continuous data is imperfect when data comes
from a lumpy binomial distribution. If youwant the results tomatch traditional values
such as calculation by hand or spreadsheet, turn that off with correct=FALSE:

> chisq.test(table(seg.df$subscribe , seg.df$ownHome), correct=FALSE)

Pearson’s Chi -squared test

data: table(seg.df$subscribe , seg.df$ownHome)

X-squared = 0.074113 ,

df = 1, p-value = 0.7854

The test statistics and p-values change slightly across these commands, but the
conclusion is the same: the factors are independent (or, more precisely and in the
logic of significance testing, there is little evidence that they are not independent).

6.3 Testing Observed Proportions: binom.test() 137

6.3 Testing Observed Proportions: binom.test()

When we are dealing with observations that have only two values, we can consider
them to be a binomial (two-valued) variable. We illustrate this by taking a brief break
from marketing data. On the day of Superbowl XLVIII in 2014, played in the New
York City area, Chris took a walk in Manhattan and observed 12 groups of Seattle
fans and 8 groups of Denver fans.

Suppose we assume the observations are a random sample of a binomial value
(either Seattle or Denver fandom). Is the observed value of 60% Seattle fans sig-
nificantly different from equal representation (which would be 50% each)? We use
binom.test(successes, trials, probability) to test the likelihood
of randomly observing 12 cases out of 20 in one direction, if the true likelihood is
50%:

> binom.test(12, 20, p=0.5)

Exact binomial test

data: 12 and 20

number of successes = 12, number of trials = 20, p-value = 0.5034

alternative hypothesis: true probability of success is not equal to 0.5

95 percent confidence interval:

0.3605426 0.8088099

sample estimates:

probability of success

0.6

Based on our data, the 95% confidence interval is 36–81%, which includes the null
hypothesis value of 50%. Thus, we conclude that observing 60% Seattle fans in a
sample of 20 does not conclusively demonstrate that there are more Seattle fans in
the larger group of fans roaming New York. We could also interpret the p-value
(p = 0.5034) as being non-significant, i.e., as failing to support the idea that the
results are different from the null hypothesis.

6.3.1 About Confidence Intervals

We have mentioned confidence intervals several times, and should take a moment
to discuss them because they are widely misunderstood. Our definition of a 95%
confidence interval is this: it captures the values that we would expect to see 95%
of the time if we repeatedly estimated a statistic using random samples of the same
sample size. When that confidence interval excludes the null hypothesis—such as
a hypothesis of 0.5 probability in a binomial test, or a mean difference of 0 when
testing a difference between groups—the result is said to be statistically significant.

There are many misunderstandings of confidence intervals and statistical signif-
icance. Confidence intervals (CIs) do not express “how confident we are in the
answer” because they do not reflect the degree of confidence in the assumptions. For
example, true random sampling is rare, so the presumption of random sampling is

138 6 Comparing Groups: Statistical Tests

usually not completely justified; but that additional uncertainty is not reflected in a
CI. CIs are often misunderstood to imply that “the true value lies in the CI range,”
when in fact it is the other way around; if the true value were what we obtained, then
we would expect estimates to fall within the CI range 95% of the time in additional
samples. Finally, statistical significance does not imply practical importance or the
meaningfulness of a result; a tiny difference can be statistically significant with a
large sample even when it is not actionable or interpretable as a business matter.

In practice, we suggest that before interpreting a result, make sure it is statistically
significant for some level of confidence interval (95%, or possibly 80, 90 or 99%
depending on how sensitive the matter is). If it is not significant, then your evidence
for the result is weak, and you should not interpret it. In that case, ignore the result
or collect more data. You might also report it as “non-significant,” but only if your
audience is sophisticated enough to understand what that means. If the result is
significant, then proceed with your interpretation and reporting, taking care with
how you describe “confidence.” Interpret results in light of their importance, not
their statistical significance (once it has been established).We recommend to report—
and when appropriate, to chart—confidence intervals whenever feasible rather than
reporting single point estimates. By reporting CIs, one presents a more complete and
accurate description to stakeholders.

Note that this discussion applies to the interpretation of significance in classical
statistics (which covers most of this book, and is what practitioners mostly use). We
briefly review the Bayesian alternative to confidence intervals (known as credible
intervals) in Sect. 6.6.2. In general, the cautions expressed above do not directly
apply to Bayesian models (there are different considerations), yet the practical rec-
ommendations about interpretation and reporting are the same.

There is a general function in R to determine the confidence intervals for a statistical
model: confint(), which we use in the next section.

6.3.2 More About binom.test() and Binomial
Distributions

Now that we understand confidence intervals, let’s look at binom.test() again.
What if we had observed 120 out of 200 groups as being Seattle fans, the same
proportion as before but in a larger sample?

> binom.test(120, 200, p=0.5)

... number of successes = 120, number of trials = 200, p-value =

0.005685 ...

95 percent confidence interval:

0.5285357 0.6684537

With 120/200 cases, the confidence interval no longer includes 50%. If we had
observed this, it would be evidence for a preponderance of Seattle fans. Correspond-
ingly, the p-value is less than 0.05, indicating a statistically significant difference.

6.3 Testing Observed Proportions: binom.test() 139

With R, we can ask much more about the distribution. For example, what are the
odds that we would observe 8–12 Seattle fans out of 20, if the true rate is 50%? We
use the density estimate for a binomial distribution across the range of interest and
sum the point probabilities:

> sum(dbinom (8:12, 20, 0.5))

[1] 0.736824

If we observe 20 fans, and the true split is 50%, there is a 73.7% chance that wewould
observe between 8 and 12 fans (and thus a 1 − p or 27.3% chance of observing fewer
than 8 or more than 12).

An “exact” binomial test (the classical method) may be overly conservative in its
estimation of confidence intervals [2]. One alternative method is to use binom.
confint(, method="agresti-coull"), available in the binom package
[45] (you may need to install that package):

> library(binom)

> binom.confint(12, 20, method="ac") # same as "agresti -coull"
method x n mean lower upper

1 agresti -coull 12 20 0.6 0.3860304 0.7817446

With the Agresti-Coull method, the confidence interval is slightly smaller but still
includes 50%. The binom package also computes several other variants on binomial
tests, including a Bayesian version.

Finally, Chris also observed that among the 20 groups, 0 had a mixture of Seattle and
Denver fans (as inferred from their team clothing). Based on that observation, what
should we conclude is themost likely proportion of groups that comprise mixed fans?
We use the Agresti-Coull method because exact tests have no confidence interval for
0% or 100% observations:

> binom.confint(0, 20, method="ac")

method x n mean lower upper

1 agresti -coull 0 20 0 -0.0286844 0.1898096

The negative lower bound may be ignored as an artifact, and we conclude that
although Chris observed 0 cases, the occurrence of mixed fandom groups is likely
to be somewhere between 0 and 19%.

6.4 Testing Group Means: t.test()

A t-test compares the mean of one sample against the mean of another sample (or
against a specific value such as 0). The important point is that it compares the mean
for exactly two sets of data. For instance, in the segment data we might ask whether
household income is different among those who own a home and those who do not.

Before applying any statistical test or model, it is important to examine the data and
check for skew, discontinuities, and outliers. Many statistical tests assume that the

140 6 Comparing Groups: Statistical Tests

data follows a normal distribution or some other smooth continuous distribution;
skewness or outliers violate those assumptions and might lead to an inaccurate test.

One way to check for non-normal distributions is to plot the data with a boxplot or
histogram.We have already plotted income above (Figs. 5.7, 5.8, 5.9) and thus skip
that step. Additionally, we can check histograms for income overall as well as by
home ownership:

> hist(seg.df$income) # not shown
> with(seg.df, hist(income[ownHome=="ownYes"])) # not shown
> with(seg.df, hist(income[ownHome=="ownNo"])) # not shown

We omit those figures for brevity. Overall, in these histograms and in the boxplots
above, income is approximately normally distributed (as it should be, given the
data generation procedure, Sect. 5.1).

Now we are ready to test whether home ownership overall is related to differences in
income, across all segments, usingt.test(formula, data).Wewrite the for-
mula usingincome as the response variable to bemodeled on the basis of ownHome
as the explanatory variable:

> t.test(income ~ ownHome , data=seg.df)

Welch Two Sample t-test

data: income by ownHome

t = -3.2731, df = 285.25 , p-value = 0.001195

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-12080.155 -3007.193

sample estimates:

mean in group ownNo mean in group ownYes

47391.01 54934.68

There are several important pieces of information in the output of t.test(). First
we see that the t statistic is −3.2, with a p-value of 0.0012. This means that the
null hypothesis of no difference in income by home ownership is rejected. The data
suggest that people who own their homes have higher income.

Next we see that the 95% confidence interval for the difference is−3007 to−12080.
If these are representative data of a larger population, we can have 95% confidence
that the group difference is between those values. Finally, we see the sample means
for our data: mean income is $47391 for the rent (ownNo) condition, and $54935
for the ownership condition.

What about the difference within the Travelers segment? In Fig. 5.9, we saw
that household income appeared to have a wider distribution among members of
the Travelers segment who own homes than those who do not. Does that also
reflect a difference in the mean income for the two groups? We use the filter
data=subset(data, condition) to select just Travelers and repeat the test:

6.4 Testing Group Means: t.test() 141

> t.test(income ~ ownHome , data=subset(seg.df, Segment=="Travelers"))

Welch Two Sample t-test

data: income by ownHome

t = 0.26561 , df = 53.833 , p-value = 0.7916

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-8508.993 11107.604

sample estimates:

mean in group ownNo mean in group ownYes

63188.42 61889.12

The confidence interval of −8508 to 11107 includes 0, and thus we conclude—as
evidenced in the p-value of 0.79—that there is not a significant difference in mean
income among those Travelers in our data who own homes and who don’t.

We might be puzzled: we saw in the first t-test that there is a significant difference in
income based on home ownership, but in the second test that there’s no significant
difference within Travelers. Any difference must lie largely outside the Travelers
group.

How can we locate where the difference lies? A t-test across all segments will not
work because there are four segments and a t-test only compares two groups. We
could test income within each segment, one at a time, but this is not a good idea
because multiple tests increase the likelihood of finding a spurious difference (a
“Type I error”). To track down the difference, we need a more robust procedure that
handles multiple groups; we turn to that next.

6.5 Testing Multiple Group Means: Analysis of Variance
(ANOVA)

An analysis of variance (ANOVA) compares the means of multiple groups. Tech-
nically, it does this by comparing the degree to which groups differ as measured by
variance in their means (from one another), relative to the variance of observations
around each mean (within each group). Hence the importance of variance in the
name. More casually, you can think of it as testing for difference among multiple
means, assuming that the groups have similar variance.

AnANOVAcan handle single factors (known as one-wayANOVA), two factors (two-
way), and higher orders including interactions among factors. A complete discussion
of ANOVA would take more space than we have here, yet we use it to address our
question from the previous section: which factors are related to differences in mean
income in the segment data? Specifically, is income related to home ownership, or
to segment membership, or both?

The basic R commands for ANOVA are aov(formula, data) to set up the
model, followed by anova(model) to display a standard ANOVA summary. We
look at income by home ownership first, and assign the aov()model to an object so

142 6 Comparing Groups: Statistical Tests

we can use it with anova(). aov() uses the standard formula interface to model
income as a response to ownHome:

> seg.aov.own <- aov(income ~ ownHome , data=seg.df)

> anova(seg.aov.own)

Analysis of Variance Table

Response: income

Df Sum Sq Mean Sq F value Pr(>F)

ownHome 1 4.2527e+09 4252661211 10.832 0.001118 **

Residuals 298 1.1700e+11 392611030

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Thevalue of Pr(>F) forownHome is the p-value and reflects that there is significant
variation in income between those who do and do not own their own homes. (This
is a slightly different test but the same conclusion that we obtained from the t-test in
Sect. 6.4).

What about income by segment? We model that and save the aov object:

> seg.aov.seg <- aov(income ~ Segment , data=seg.df)

> anova(seg.aov.seg)

Analysis of Variance Table

Response: income

Df Sum Sq Mean Sq F value Pr(>F)

Segment 3 5.4970e+10 1.8323e+10 81.828 < 2.2e-16 ***

Residuals 296 6.6281e+10 2.2392e+08

...

The value of Pr(>F) is very close to zero, confirming that income varies signifi-
cantly by segment. (If you’re wondering, 2.2e-16 means 2.2 × 10−16 and is the
smallest non-zero number that R will typically report in Mac OS X. It is the value of
the R constant .Machine$double.eps that expresses the tolerance of floating
point differences.)

If income varies by both home ownership and segment, does that mean that a more
complete model should include both? We can add both factors into the ANOVA
model to test this:

> anova(aov(income ~ Segment + ownHome , data=seg.df))

Analysis of Variance Table

Response: income

Df Sum Sq Mean Sq F value Pr(>F)

Segment 3 5.4970e+10 1.8323e+10 81.6381 <2e-16 ***

ownHome 1 6.9918e+07 6.9918e+07 0.3115 0.5772

Residuals 295 6.6211e+10 2.2444e+08

...

The results indicate that when we try to explain differences in income by both
Segment and ownHome, segment is a significant predictor (p << 0.01) but home
ownership is not a significant predictor. Yet the previous results said that itwas signif-
icant. What’s the difference?What is happening is that segment and home ownership
are not independent, and the effect is captured sufficiently by segment membership
alone. Home ownership accounts for little more over and above what is explained
by Segment.

6.5 Testing Multiple Group Means: Analysis of Variance (ANOVA) 143

Could it be that home ownership is related to income in some segments but not in
others? This would be represented in our model by an interaction effect. In a model
formula, “+” indicates that variables should be modeled for main effects only. We
can instead write “:” for an interaction or “*” for both main effect and interaction.
We test main effects and interaction of home ownership and segment:
> anova(aov(income ~ Segment * ownHome , data=seg.df))

Analysis of Variance Table

Response: income

Df Sum Sq Mean Sq F value Pr(>F)

Segment 3 5.4970e+10 1.8323e+10 81.1305 <2e-16 ***

ownHome 1 6.9918e+07 6.9918e+07 0.3096 0.5784

Segment:ownHome 3 2.6329e+08 8.7762e+07 0.3886 0.7613

Residuals 292 6.5948e+10 2.2585e+08

...

Again, segment is a significant predictor, while home ownership and the interaction
of segment with home ownership are not significant. In other words, segment mem-
bership is again the best predictor on its own. We discuss interaction effects further
in Chap.7.

6.5.1 Model Comparison in ANOVA*

Another capability of the anova() command is to compare two or more models,
using the syntaxanova(model1, model2, ...)Wecan compare theaov()
model with segment alone versus the model with both segment and income:
> anova(aov(income ~ Segment , data=seg.df),

+ aov(income ~ Segment + ownHome , data=seg.df))

Analysis of Variance Table

Model 1: income ~ Segment

Model 2: income ~ Segment + ownHome

Res.Df RSS Df Sum of Sq F Pr(>F)

1 296 6.6281e+10

2 295 6.6211e+10 1 69918004 0.3115 0.5772

This tells us that Model 2—which includes both segment and home ownership—
is not significantly different in overall fit from Model 1. If it were better, the null
hypothesis of no difference would be rejected, as shown by a p-value (“Pr(>F)”)
less than 0.05.

It is essential to note thatmodel comparison as performed by theanova() command
only makes sense in the case of nested models. In this context, a model A is nested
within anothermodel B when one ormore parameters of B can be fixed or removed to
yieldmodel A. In the present case,income∼Segment is nestedwithinincome∼
Segment + ownHome because we can remove ownHome and arrive at the former
model. Because they are nested, the two models may be compared by anova() or
other functions that perform likelihood comparisons.

The model income ∼ Segment is not nested within income ∼ subscribe +
ownHome because no amount of removing or fixing parameters in the latter model

144 6 Comparing Groups: Statistical Tests

will produce the former. Thus, those twomodels could not be compared byanova()
in a meaningful way. If you try to compare them, R may produce some output but it
is not generally interpretable.

The question of how to compare non-nested models is one we do not tackle in depth
in this book, although it recurs in our discussion of structural models in Chap. 10. If
youwish to learnmore about the issues andmethods for general model comparison, a
good place to start is to review the literature on theAkaike information criterion (AIC)
and Bayesian information criterion (BIC). We review BIC briefly in Sect. 11.3.5.

6.5.2 Visualizing Group Confidence Intervals

A good way to visualize the results of an ANOVA is to plot confidence intervals for
the group means. This will reveal more about whether the differences are substantial
in magnitude or not. We use the multcomp (multiple comparison) package and
its glht(model) (general linear hypothesis) command [100]. You may need to
install the “multcomp” package on your system.

Let’s take a look at what glht() does.We assign anaov() to an object and inspect
it with glht():
> library(multcomp)

> seg.aov <- aov(income ~ Segment , data=seg.df)

> glht(seg.aov)

General Linear Hypotheses

Linear Hypotheses:

Estimate

(Intercept) == 0 53091

SegmentSuburb mix == 0 1943

SegmentTravelers == 0 9123

SegmentUrban hip == 0 -31409

There is a problem: the default aov() model has an intercept term (corresponding
to the Moving up segment) and all other segments are relative to that. This may
be difficult for decision makers or clients to understand, so we find it preferable to
remove the intercept by adding “-1” to the model formula:
> seg.aov <- aov(income ~ -1 + Segment , data=seg.df)

> glht(seg.aov)

General Linear Hypotheses

Linear Hypotheses:

Estimate

SegmentMoving up == 0 53091

SegmentSuburb mix == 0 55034

SegmentTravelers == 0 62214

SegmentUrban hip == 0 21682

With the intercept removed, glht() gives us the mean value for each segment. We
plot that, using the, par(mar=...) command to add some extra margins for large
axis labels:

6.5 Testing Multiple Group Means: Analysis of Variance (ANOVA) 145

Fig. 6.1 Confidence intervals for income by segment, from an analysis of variance model with
aov() and glht()

> par(mar=c(6,10,2,2)) # adjusts margins to preserve axis labels
> plot(glht(seg.aov),

+ xlab="Income", main="Average Income by Segment (95% CI)")

The result is Fig. 6.1. The dot shows the mean for each segment, and bars reflect the
confidence interval. In Fig. 6.1 we see confidence intervals for the mean income of
each segment. It is clear that the average income of Urban hip segment members is
substantially lower than the other three groups.

6.5.3 Variable Selection in ANOVA: Stepwise Modeling*

Building models iteratively by adding and removing variables—as an exploratory
procedure—can be done automatically with the step(model) command. This
performs stepwise model selection by testing models one at time while changing
the variables in the model to see whether the change improves the model. There are
options for both backward (starting with a larger set of variables and progressively
cutting them) and forward (adding variables) procedures. The step() command
uses theAkaike information criterion (AIC) to comparemodels on the basis of overall
fit balanced with model complexity [3].

We perform a backward stepping procedure here (the default direction) by specifying
a complete main effect model using the formula shorthand “response∼.” The “.”
is shorthand for “all other variables (except the response variable).” By default this
models all main effects without interactions. Higher order effects in this case may
be added with superscript notation, such as “.∧2” for two-way interactions, but it is
usually good to avoid such indiscriminate interaction modeling.

For our aov() model for income, the command to run the stepwise procedure for
main effects and save the resulting best model is:

146 6 Comparing Groups: Statistical Tests

> seg.aov.step <- step(aov(income ~ ., data=seg.df))

Start: AIC =5779.17

income ~ age + gender + kids + ownHome + subscribe + Segment

Df Sum of Sq RSS AIC

- age 1 4.7669e+06 6.5661e+10 5777.2

- ownHome 1 1.0337e+08 6.5759e+10 5777.6

- kids 1 1.3408e+08 6.5790e+10 5777.8

- subscribe 1 1.5970e+08 6.5816e+10 5777.9

- gender 1 2.6894e+08 6.5925e+10 5778.4

<none > 6.5656e+10 5779.2

- Segment 3 1.9303e+10 8.4959e+10 5850.5

Step: AIC =5777.19

income ~ gender + kids + ownHome + subscribe + Segment

... [several steps] ...

Step: AIC =5772.02

income ~ Segment

Df Sum of Sq RSS AIC

<none > 6.6281e+10 5772.0

- Segment 3 5.497e+10 1.2125e+11 5947.2

We see that step() started by modeling income with all six other variables, went
through several steps of removing variables, and concluded with the “best” model
as income ∼ Segment.

We examine the result of step(), which was saved in a model object, using the
standard anova() command:

> anova(seg.aov.step)

Analysis of Variance Table

Response: income

Df Sum Sq Mean Sq F value Pr(>F)

Segment 3 5.4970e+10 1.8323e+10 81.828 < 2.2e-16 ***

Residuals 296 6.6281e+10 2.2392e+08

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Stepwise procedures must be used with caution. They should not be used to deter-
mine a finalmodel, and theymay encourage inadvertent or deliberate p-hacking (e.g.,
exploring data to find a relationship, and subsequently claiming that relationship to be
a theory-based hypothesis). When using stepwise procedures, consider strong repli-
cation processes, such as those suggested for classification models (Sect. 11.4). In
more general cases—where theremay be dozens, hundreds, or thousands of available
variables—variable selection is better informed by procedures such as a lasso [188]
or random forest [21] procedure. We examine random forest models in Sect. 11.4.2.

6.6 Bayesian ANOVA: Getting Started*

This is an advanced section that is primarily recommended for readers who have
some familiarity with the principles of Bayesian analysis and seek an introduction to
Bayesian models in R.We do not provide a comprehensive overview of the methods,

6.6 Bayesian ANOVA: Getting Started* 147

and assume that the reader is generally familiar with Bayesian concepts such as a
prior, posterior, and posterior sampling.

For other readers, we attempt to give enough context to make the concepts approach-
able. Although this may be insufficient for a real project, it introduces how such
models work and demonstrates the steps involved. We refer you to Sect. 6.8 for
additional references.

6.6.1 Why Bayes?

We suggest analysts consider Bayesian analyses instead of traditional (“frequentist”)
statistical models when possible. Bayesian analysis is often a more direct way to
tackle the questions we usually want to know: “Is this hypothesis likely to be true?”,
“How much confidence should I have?”, and “What are the most likely values?”
A Bayesian analysis does not take refuge in the double and triple negatives of tra-
ditional models (“we failed to reject the null hypothesis that there is no difference
between the models”). Instead, it answers, “Given these data, how likely is the dif-
ference?”

Despite the advantages, there are reasons Bayesian analyses are not more common:
there are fewer Bayesian teachers, texts, and practitioners; many Bayesian texts are
dense with formulas; and the field is rapidly developing and some contentious issues
have not been settled. Perhaps most importantly, available software packages are
designed to make traditional models easy to run and that ease has not yet been
brought to many areas of Bayesian practice. For an analyst, it may be easier and
more productive to use traditional models in day-to-day work. Happily, Bayesian
and traditional methods often lead to the same business conclusions (although not
always).

R is on the forefront of making Bayesian methods more widely available. This is
made possible by the many contributors to R, and by the R language itself which is
well suited for the iterated analyses that Bayesian methods require. In this section,
we demonstrate a starting point for a Bayesian version of ANOVA.

6.6.2 Basics of Bayesian ANOVA*

There are many options in R for Bayesian analyses (see the Bayesian task view on
CRAN: http://cran.r-project.org/web/views/). The MCMCpack package is a robust,
fast, and powerful Bayesian kit. However, we opt here to use the BayesFactor
package for its simplicity. In particular, BayesFactor has sensible defaults for
weakly informative prior probabilities [142, 170] and makes model comparison
easy. You will need to install the BayesFactor package for the following code.

http://cran.r-project.org/web/views/

148 6 Comparing Groups: Statistical Tests

We use the lmBF(formula, data) command to specify our ANOVA model as
a linear model for income modeled by the Segment factor:
> set.seed (96761)

> library(BayesFactor) # install if needed
> seg.bf1 <- lmBF(income ~ Segment , data=seg.df)

We set a pseudorandom number seed because this function will take draws from the
posterior distribution. What does that mean? Briefly, a common way to estimate a
Bayesian model is to do repeated assessments of how well a proposed model fits the
data.

To understand this we must consider the concept of a parameter. We have not used
the term yet, but a statistical model estimates one or more parameters that define the
presumed distribution. For example, a t-test compares the mean of two groups, and
the parameter it estimates is the difference between the means. An ANOVA model
can also be used to estimate the mean. It was confidence in the estimation of that
parameter that we plotted in Sect. 6.5.2.

Common Bayesian models operate by selecting initially random values for model
parameters (such as the mean for a segment). The process then retains the parameter
according to the likelihood that it fits the data and prior expectation (an estimated
starting point, if we have one), and iterates that process thousands or even millions
of times. The retained estimates are the draws from the posterior distribution for the
parameters, while the final estimated distribution of them is the posterior distribution.
The end result is a large sample of possible parameters and their likelihoods, or in
other words, an outline of the most likely parameters for a given model. Again, see
Sect. 6.8 for more.

After fitting the model for income ∼ Segment, we might inspect it directly.
However, instead of starting to interpret a model, it is preferable to have a sense that
it is an adequate model. So we first compare it to the alternative we considered in
Sect. 6.5.1, which modeled income ∼ Segment + ownHome. We would then
interpret the Segment-only model if it fits the data better (or fits just as well but is
simpler).

Model comparison in BayesFactor is performed by using the “/” operator to
find the ratio of the models’ Bayes Factors. We have the first model seg.bf1 from
above, and now fit the second model with two factors that we wish to compare:

> seg.bf2 <- lmBF(income ~ Segment + ownHome , data=seg
.df)

0
|----|----|----|----|----|----|----|----|----|----|
**|
> seg.bf1 / seg.bf2
Bayes factor analysis

[1] Segment : 6.579729 +/- 1.62%

Against denominator:
income ~ Segment + ownHome

6.6 Bayesian ANOVA: Getting Started* 149

This tells us that the ratio of Bayes Factors for model 1 (∼ Segment) versus model
2 (∼ Segment + ownHome) is 6.58. This means that model 1 is the preferable
model by a factor of 6.58.

To find the model parameters and their credible ranges, we use the posterior
(model, index, draws) command to draw 10000 samples of the possible
parameters from model 1:

> seg.bf.chain <- posterior(seg.bf1 , 1, iterations = 10000)

0

%

|----|----|----|----|----|----|----|----|----|----|

**|

The draws are known as a chain because they are estimated by a Markov chain
process; we skip those details (see [73]).

Before we examine the estimates, we should inspect whether the draws converged to
stable values such that the estimates are reliable. In BayesFactor, we simply call
plot() on the chain object. We select columns 1:6 from the draws because there
are six parameters we care about: the population mean and variance (mu and sigma)
and the estimates of means for the four segments:

> plot(seg.bf.chain[, 1:6]) # check console: may need <Return > to see all

The charts for the first three parameters are shown in Fig. 6.2; we omit the other three
charts because they are nearly identical. We interpret the charts as follows. On the
left, we see the estimated parameter values (y axis) plotted against the draw sequence
(x axis). These form a fat but straight line, sometimes called a “fuzzy caterpillar”,
which means the estimates varied around a stable central point; thus they converged.

Fig. 6.2 Trace plot for draws from the posterior distribution of a Bayesian ANOVA for income
by segment, for the first three parameters. The left hand charts show trace convergence; right hand
charts show the posterior distributions for the parameters

150 6 Comparing Groups: Statistical Tests

(If they had not converged, the plot would show erratic variations up or down, or
would spread out increasingly rather than being straight.)

On the right, we see a density plot of the values. The density shape is approximately
normal, which matches the assumption of the regression model. Thus, the charts
confirm that the model was stable and converged (note that these don’t mean the
model is useful, only that it achieved a stable estimate).

6.6.3 Inspecting the Posterior Draws*

We now examine the parameters as expressed in our posterior draw chain. A simple
summary() of the chain shows us the estimates:
> summary(seg.bf.chain)

Iterations = 1:10000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 10000

1. Empirical mean and standard deviation for each variable ,

plus standard error of the mean:

Mean SD Naive SE Time -series SE

mu 4.806e+04 8.969e+02 8.969e+00 8.804e+00

Segment -Moving up 4.951e+03 1.548e+03 1.548e+01 1.548e+01

Segment -Suburb mix 6.927e+03 1.373e+03 1.373e+01 1.373e+01

Segment -Travelers 1.398e+04 1.487e+03 1.487e+01 1.518e+01

Segment -Urban hip -2.586e+04 1.777e+03 1.777e+01 1.956e+01

sig2 2.259e+08 1.856e+07 1.856e+05 1.856e+05

g_Segment 2.138e+00 3.359e+00 3.359e-02 3.359e-02

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

mu 4.631e+04 4.745e+04 4.805e+04 4.868e+04 4.982e+04

Segment -Moving up 1.925e+03 3.916e+03 4.968e+03 5.961e+03 8.054e+03

Segment -Suburb mix 4.243e+03 5.996e+03 6.934e+03 7.857e+03 9.608e+03

Segment -Travelers 1.104e+04 1.297e+04 1.399e+04 1.499e+04 1.690e+04

Segment -Urban hip -2.934e+04 -2.703e+04 -2.586e+04 -2.466e+04 -2.239e+04

sig2 1.923e+08 2.128e+08 2.249e+08 2.378e+08 2.647e+08

g_Segment 3.765e-01 7.949e-01 1.298e+00 2.284e+00 8.738e+00

The first section of the summary (“1. Empiricalmean and ...”) gives arithmetic central
tendency estimates for the 10000 draws of each of the parameters in the chain: the
mean of each parameter, the standard deviation of that estimate across the 10000
draws, and so forth. The second result (“Quantiles ...”) is what we prefer to use
instead; it reports the actual observed quantiles for each of the parameters.

Note that the model estimates an overall mu that is the best guess for the population
mean regardless of segment effects, and then estimates each segment as a deviation
from that. However, for many purposes, it is more useful to have direct estimates for
the mean of each segment rather than its deviation. To estimate the direct values for
each segment, we add the population value (mu) to the deviations for each segment.
However, we cannot simply do that with the aggregate numbers here by adding the

6.6 Bayesian ANOVA: Getting Started* 151

mu row to each of the other rows. Why not? Because the best estimates of segment
totals are found within each draw; we need to compute segment values at that level
and then summarize those estimates. Luckily that is easy to do in R.

To see how, let’s examine the chain object:

> head(seg.bf.chain)

...

mu Segment -Moving up Segment -Suburb mix Segment -Travelers ...

[1,] 48055.75 4964.3105 6909.032 13983.21 ...

[2,] 47706.52 6478.1497 7816.873 12160.32 ...

[3,] 48362.90 5228.0718 6654.030 12565.87 ...

[4,] 49417.43 5300.9543 7249.228 12218.89 ...

...

We see rows (10000 in all) for the draws, and columns for the estimates for each
segment. By indexing the chain, we confirm that it is arranged as a matrix:

> seg.bf.chain [1:4, 1:5]

mu Segment -Moving up Segment -Suburb mix Segment -Travelers ...

[1,] 48055.75 4964.310 6909.032 13983.21 ...

[2,] 47706.52 6478.150 7816.873 12160.32 ...

[3,] 48362.90 5228.072 6654.030 12565.87 ...

[4,] 49417.43 5300.954 7249.228 12218.89 ...

This means that simple vector math will work to find within-draw estimates for each
row. We do this by adding column 1, the population estimate, to each of the other
columns 2–5. We test this first on rows 1:4 only:

> seg.bf.chain [1:4, 2:5] + seg.bf.chain [1:4, 1]

Segment -Moving up Segment -Suburb mix Segment -Travelers Segment -Urban hip

[1,] 53020.06 54964.78 62038.95 22199.20

[2,] 54184.67 55523.40 59866.84 21251.18

[3,] 53590.97 55016.93 60928.77 23914.93

[4,] 54718.38 56666.66 61636.32 24648.35

It works, so now we compute that total for all rows and assign the result to a new
object. Thenwe get quantiles from that object as the overall best estimates of segment
income:

> seg.bf.chain.total <- seg.bf.chain[, 2:5] + seg.bf.chain[, 1]

> seg.bf.ci <- t(apply(seg.bf.chain.total , 2,

+ quantile , pr=c(0.025 , 0.5, 0.975)))

> seg.bf.ci

2.5% 50% 97.5%

Segment -Moving up 49582.08 53020.98 56522.05

Segment -Suburb mix 52039.66 54988.99 57867.29

Segment -Travelers 58799.46 62048.33 65355.62

Segment -Urban hip 17992.85 22216.26 26450.56

In the apply() command, we applied the quantile() function to the columns
with the probabilities that wewanted for a 95% credible interval. Thenwe transposed
the result with t() to be more readable (treating the segments as “cases”).

Those values are the best estimates of the 95% credible range for the estimate of
average income as modeled by segment, under the assumptions of our model.

152 6 Comparing Groups: Statistical Tests

6.6.4 Plotting the Bayesian Credible Intervals*

We can plot the credible intervals from the previous section using the capability of
the ggplot2 package to plot error bars. Install the “ggplot2” package if needed.
The ggplot2 commands work best with data frames, so we coerce our credible
interval object seg.bf.ci to a data frame and add a column for segment names:

> library(ggplot2)

> seg.bf.df <- data.frame(seg.bf.ci)

> seg.bf.df$Segment <- rownames(seg.bf.df)

Now we construct the chart in three steps. We add elements corresponding to the
values of segment quartiles in the summary data frame:

> p <- ggplot(seg.bf.df, aes(x=Segment , y=X50., ymax=X97.5., ymin=X2.5.))

We add points for the y values (the estimated median in this case), and add the 2.5%
and 97.5% quartiles as “error bars” (which are automatically associated with the
names ymax and ymin as we set above):

> p <- p + geom_point(size =4) + geom_errorbar(width =0.2) + ylab("Income")

Finally we draw that plot object while adding a title and flipping the plot coordinates
so the segments are nicely on the left:

> p + ggtitle("95% CI for Mean Income by Segment") + coord_flip()

The result is Fig. 6.3, a chart that is easy to explain yet comes from a powerful
underlying Bayesian model.

You might notice that the Bayesian results in Fig. 6.3 are not all that different from
the classical results in Fig. 6.1. This is to be expected because they come from the
same data. In fact, if themodel is exactly correct and the population is infinite, then as
the sample size approaches infinity, the Bayesian and classical confidence intervals
will be the same.

Fig. 6.3 Using ggplot2 to plot the credible intervals for income by segment from the Bayesian
posterior draws

6.6 Bayesian ANOVA: Getting Started* 153

In that case, why one would want to use the Bayesian approach? One answer will
come in Chaps. 7 and 13 when we introduce hierarchical methods that are more
flexibly modeled in a Bayesian framework. Another answer is that data are never
infinite, and in our opinion Bayesian models more directly address confidence in
models for the data you actually have.

As you can see from R provides powerful capability for Bayesian analysis. R’s
open-source structure has made it easier for the software to keep pace with a rapidly
evolving field. If you run into limitations with existing packages, you can use R’s
programming language to accomplish tasks (as we did here to compute posterior
draws for total segment income).

6.7 Key Points

This chapter introduced formal statistical tests in R. Following are some of the
important lessons. To perform statistical tests on differences by group:

• chisq.test() (Sect. 6.2) and binom.test() (Sect. 6.3) find confidence
intervals and perform hypothesis tests on tables and proportion data, respectively.
The binom package offers options such as Agresti-Coull and Bayesian versions
of binomial tests that may be more informative and robust than standard exact
binomial tests (Sect. 6.3).

• A t.test() is a common way to test for differences between the means of two
groups (or between one group and a fixed value) (Sect. 6.4).

• Analysis of variance (ANOVA) is amore generalway to test for differences inmean
among several groups that are identified by one or more factors. The basic model
is fit with aov() and common summary statistics are reported with anova()
(Sect. 6.5).

• The anova() command is also useful to compare two or more ANOVA or other
linear models, provided that they are nested models (Sect. 6.5.1).

• Stepwise model selection with step() is one way to evaluate a list of variables
to select a well-fitting model, although we recommend that it be used with caution
as other procedures may be more appropriate (Sect. 6.5.3).

We reviewed a few advanced topics for statistical models and data visualization:

• Plotting a glht() object from themultcomp package is a goodway to visualize
confidence intervals for ANOVA models (Sect. 6.5.2).

• A relatively straightforward starting point for Bayesian ANOVA and other linear
models is the BayesFactor package (Sect. 6.6).

• Bayesian models should be evaluated for the stability and distribution of their
estimated parameters using trace and density plots (Sect. 6.6).

• Credible intervals (and other types of intervals) may be plotted with the ggplot2
option to add geom_errorbar() lines for groups (Sect. 6.6.4).

154 6 Comparing Groups: Statistical Tests

6.8 Learning More*

For categorical data analysis, which we briefly sampled with our discussion of chi-
square and binomial tests, the best starting place—although not specific to R—is
Agresti’s An Introduction to Categorical Data Analysis [1].

T-tests and ANOVA are nothing more than flavors of general linear models, which
we cover in more depth in Chap.7. In the R domain, there are many books on linear
models. A readable text that focuses on understanding basic models and getting them
right is Fox and Weisberg’s An R Companion to Applied Regression [62].

Readings onBayesian data analysis vary tremendously inmathematical prerequisites
and authors’ styles. McElreath’s Statistical Rethinking is an excellent exposition
of Bayesian models in R, designed to teach both intuition and practical, computa-
tional usage of the models with basic college mathematics [136]. Kruschke’s Doing
Bayesian Data Analysis [120] is an undergraduate textbook that uses R and builds
intuition from the ground up with high school level mathematics. It is a lengthy and
thorough exposition of Bayesian thinking. A standard text that moves faster with
more mathematics is Gelman et al. Bayesian Data Analysis [73]. For advanced mar-
keting applications, especially hierarchical linear models and stated choice models, a
standard text is Rossi, Allenby, and McCulloch’s Bayesian Statistics and Marketing
[168].

We presented charts in this chapter using the ggplot2 package, which is described
in detail in an eponymous book: Wickham’s ggplot2 [198].

6.9 Exercises

The following exercises use the e-commerce data set as described in Sect. 3.8.1.

1. Among Teachers and Parents who visited the site, which group was more likely
to know the product of interest in advance (variable productKnewWhatWanted)?
Answer with both descriptive statistics and visualization.

2. In the previous exercise, should you limit observations to just those with product
knowledge of “Yes” or “No”? Why or why not? How does it change the result?

3. Is the difference in prior product knowledge (variable productKnewWhat
Wanted) statistically significantly different for teachers versus parents? (Hint:
make a table of counts, and then select only the rows and columns needed for
testing.)

4. Using the integer approximation of page views (see Exercises in Sect. 4.10),
describe page views for parents, teachers, and health professionals. Use a by()
or aggregate() function as appropriate.

5. What is the proportion of teachers who had prior product knowledge, and what
is the proportion for parents?

6.9 Exercises 155

6. Suppose we believe that the parent proportion in the previous exercise is the true
value for both parents and teachers. How dowe compare the observed proportion
for teachers to that? Is is statistically significantly different? What is the 95%
confidence interval for the observations among teachers?

7. Using the integer approximation of page views (see Exercises in Sect. 4.10),
compare the mean number of page views for Parents and Teachers. Which is
higher? Is the difference statistically significant? What is the confidence interval
for the difference?

8. Compare estimated page views (variable pageViewInt) for all profile groups.
Are the groups statistically significantly different? Answer and visualize the
differences.

9. Repeat the previous exercise, and limit the data to just Parents and Teachers.
Explain and visualize. Is the answer different than in the previous exercise?
Why?

10. *Repeat the previous comparison for page views among just Teachers and
Parents, using aBayesianAnalysis ofVariance.Report the statistics and visualize
it. Is the answer the same or different as obtained from classical ANOVA?

11. *Write a function of your own to compute proportions from a table of frequency
counts. Compare your code to that in prop.table(). (Don’t forget that you
can see the code for most functions by typing the name of the function into the
command line.)

Chapter 7
Identifying Drivers of Outcomes: Linear
Models

In this chapter we investigate linear models, which are often used in marketing
to explore the relationship between an outcome of interest and other variables.
A common application in survey analysis is to model satisfaction with a prod-
uct in relation to specific elements of the product and its delivery; this is called
“satisfaction drivers analysis.” Linear models are also used to understand how price
and advertising are related to sales, and this is called “marketing mix modeling.”
There are many other situations in which it is helpful to model an outcome, known
formally as a response or dependent variable, as a function of predictor variables
(also known as explanatory or independent variables). Once a relationship is esti-
mated, one can use the model to make predictions or forecasts of the likely outcome
for other values of the predictors.

In this chapter, we illustrate linear modeling with a satisfaction drivers analysis using
survey data for customerswho have visited an amusement park. In the survey, respon-
dents report their levels of satisfaction with different aspects of their experience, and
their overall satisfaction. Marketers frequently use this type of data to figure out what
aspects of the experience drive overall satisfaction, asking questions such as, “Are
people who are more satisfied with the rides also more satisfied with their experience
overall?” If the answer to this question is “no,” then the company will know to invest
in improving other aspects of the experience.

An important thing to understand is that driver does not imply causation. A linear
model only assumes an association among variables. Consider a survey of automobile
purchasers that finds a positive association between satisfaction and price paid. If a
brand manager wants customers to be more satisfied, does this imply that she should
raise prices? Probably not. It ismore likely that price is associatedwith higher quality,
which then leads to higher satisfaction. Results should be interpreted cautiously and
considered in the context of domain knowledge.

Linear models are a core tool in statistics, and R provides an excellent set of functions
for estimating them. As in other chapters, we review the basics and demonstrate how
to conduct linear modeling in R, yet the chapter does not review everything that

© Springer Nature Switzerland AG 2019
C. Chapman and E. M. Feit, R For Marketing Research and Analytics, Use R!,
https://doi.org/10.1007/978-3-030-14316-9_7

157

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14316-9_7&domain=pdf
https://doi.org/10.1007/978-3-030-14316-9_7

158 7 Identifying Drivers of Outcomes: Linear Models

one would wish to know in practice. We encourage readers who are unfamiliar with
linear modeling to supplement this chapter with a review of linear modeling in a
statistics or marketing research textbook, where it might appear under a name such
as regression analysis, linear regression, or least-squares fitting.

7.1 Amusement Park Data

In this section, we simulate data for a hypothetical survey of visitors to an amuse-
ment park. This data set comprises a few objective measures: whether the respon-
dent visited on a weekend (which will be the variable weekend in the data frame),
the number of children brought (num.child), and distance traveled to the park
(distance). There are also subjective measures of satisfaction: expressed satis-
faction overall (overall) and satisfaction with the rides, games, waiting time, and
cleanliness (rides, games, wait, and clean, respectively).

Unlike earlier chapters, in this onewe recommend that you skip the simulation section
and download the data. There is no new R syntax, and this will allow you to review
the models without knowing the outcome in advance. To download and check:
> sat.df <- read.csv("http://goo.gl/HKnl74")

> str(sat.df)

’data.frame’: 500 obs. of 8 variables:

$ weekend : Factor w/ 2 levels "no","yes": 2 2 1 2 1 1 2 1 1 2 ...

$ num.child: int 0 2 1 0 4 5 1 0 0 3 ...

$ distance : num 114.6 27 63.3 25.9 54.7 ...

...

If you have the data, skip to Sect. 7.2 for now, and return later to review the simulation
code.

7.1.1 Simulating the Amusement Park Data

To start the data simulation, we set the random number seed to make the process
repeatable and declare a variable for the number of observations:
> set.seed (08226)

> nresp <- 500 # number of survey respondents

Our hypothetical survey includes four questions about a customer’s satisfaction
with different dimensions of a visit to the amusement park: satisfaction with rides
(rides), games (games), waiting times (wait), and cleanliness (clean), along
with a rating of overall satisfaction (overall). In such surveys, respondents often
answer similarly on all satisfaction questions; this is known as the halo effect.

We simulate a satisfaction halo with a random variable for each customer, halo,
that does not appear in the final data but is used to influence the other ratings:
> halo <- rnorm(n=nresp , mean=0, sd=5)

7.1 Amusement Park Data 159

We generate responses for the satisfaction ratings by adding each respondent’s halo
to the value of another random variable that is specific to the survey item (satisfaction
with rides, cleanliness, and so forth).

We add a constant just to adjust the range slightly, and convert the continuous values
to integers using floor(). This gives us a final value for each satisfaction item on
a 100-point scale. Although scales rating 1–5, 1–7, or 1–11 may be more common
in practice, such discrete scales introduce complications that we discuss in Sect. 7.8;
those would detract from our presentation here. So we assume that the data comes
from a 100-point scale. Such near-continuous valuesmight be obtained bymeasuring
where respondents mark levels of satisfaction along a line on paper or by touching a
screen.

Creating the nresp responses can be done in just one line per variable:
> rides <- floor(halo + rnorm(n=nresp , mean=80, sd=3)+1)

> games <- floor(halo + rnorm(n=nresp , mean=70, sd=7)+5)

> wait <- floor(halo + rnorm(n=nresp , mean=65, sd=10) +9)

> clean <- floor(halo + rnorm(n=nresp , mean=85, sd=2)+1)

By adding halo to the response for each question, we create positive correlation
between the responses. The constants +1, +5, and +9 are arbitrary to adjust the ranges
just for appearance. You can verify the correlation between variables that share the
halo by using cor():
> cor(rides , games)

[1] 0.4551851

Satisfaction surveys often include other questions related to the customer experi-
ence. For the amusement park data, we include whether the visit was on a weekend,
how far the customer traveled to the park in miles, and the number of children in
the party. We generate this data using two functions: rlnorm(n, meanlog,
sdlog) to sample a log-normal distribution for distance, and sample(x,
size, replace) to sample discrete distributions for weekend and number of
children (num.child):
> distance <- rlnorm(n=nresp , meanlog=3, sdlog =1)

> num.child <- sample(x=0:5, size=nresp , replace=TRUE ,

+ prob=c(0.3, 0.15, 0.25, 0.15, 0.1, 0.05))

> weekend <- as.factor(sample(x=c("yes", "no"), size=nresp , replace=TRUE ,

+ prob=c(0.5 ,0.5)))

Wecreate the overall satisfaction rating as a function of ratings for the various aspects
of the visit (satisfaction with rides, cleanliness, and so forth), distance traveled, and
the number of children:
> overall <- floor(halo + 0.5*rides + 0.1*games + 0.3*wait + 0.2*clean +

+ 0.03*distance + 5*(num.child ==0) + 0.3*wait*(num.child >0) +

+ rnorm(n=nresp , mean=0, sd=7) - 51)

Although this is a lengthy formula, it is relatively simple with five parts:

1. It includes halo to capture the latent satisfaction (also included in rides and
the other ratings)

160 7 Identifying Drivers of Outcomes: Linear Models

2. It adds the satisfaction variables (rides, games, wait, and clean) with a
weight for each one

3. It includes weighted contributions for other influences such as distance
4. There is random normal variation using rnorm()
5. It uses floor() to produce an integer, with a constant −51 that adjusts the total

to be 100 points or less

When a variable likeoverall is a linear combination of other variables plus random
noise, we say that it follows a linear model. Although these ratings are not a model
of real amusement parks, the structure exemplifies the kind of linear model one
might propose. With real data, one would wish to discover the contributions from
the various elements, which are the weights associated with the various predictors.
In the next section, we examine how to fit such a linear model.

Before proceeding, we combine the data points into a data frame and remove
unneeded objects from the workspace:

> sat.df <- data.frame(weekend , num.child , distance , rides , games , wait ,

+ clean , overall)

> rm(nresp , weekend , distance , num.child , halo , rides , games , wait , clean ,

+ overall)

7.2 Fitting Linear Models with lm()

Every modeling effort should begin with an inspection of the data, so we start with
a summary() of the data:

> summary(sat.df)

weekend num.child distance rides games

no :259 Min. :0.000 Min. : 0.5267 Min. : 72.00 Min. : 57.00

yes :241 1st Qu .:0.000 1st Qu.: 10.3181 1st Qu.: 82.00 1st Qu.: 73.00

...

Max. :5.000 Max. :239.1921 Max. :100.00 Max. :100.00

wait clean overall

Min. : 40.0 Min. : 74.0 Min. : 6.00

1st Qu.: 62.0 1st Qu.: 84.0 1st Qu.: 40.00

...

Max. :100.0 Max. :100.0 Max. :100.00

The data comprise eight variables from a survey of satisfaction with a recent visit to
an amusement park. The first three variables describe features of the visit: weekend
is a factor with two levels,no and yes;num.child is the number of children in the
party, 0–5; and distance is the distance traveled to the park. The remaining five
variables are satisfaction ratings for the customers’ experience of the rides, games,
wait times, cleanliness, and overall experience of the park, on a 100 point scale.

7.2 Fitting Linear Models with lm() 161

7.2.1 Preliminary Data Inspection

Before modeling, there are two important things to check: that each individual vari-
able has a reasonable distribution, and that joint relationships among the variables
are appropriate for modeling.

We do an initial check of the variable distributions and relationships in sat.df
using scatterplotMatrix() as described in Sect. 4.4.2:
> library(car)

> scatterplotMatrix(sat.df)

The result is Fig. 7.1, where we see in the diagonal elements that each of the satisfac-
tion rating density plots is close to normally distributed, but distance has a highly
skewed distribution. For most purposes it is a good idea to transform such a variable
to a more normal distribution. As we discussed in Sect. 4.5.4, a common transfor-
mation for such data is a logarithmic transform; we take the log() of distance
and add that to the data frame:
> sat.df$logdist <- log(sat.df$distance)

We could then run scatterplotMatrix(sat.df) again (or run
hist(sat.df$logdist)) to confirm that the new variable logdist is more
normally distributed.

To check the relationships among variables, we examine the bivariate scatterplots
shown in Fig. 7.1. They show few concerns apart from the need to transform
distance. For example, the pairwise scatterplots of our continuous measures are
generally elliptical in shape, which is a good indication that they are appropriate to
use in a linear model. One question, however, concerns the fact that the variables in
the lower right of Fig. 7.1 are positively correlated.

Why is this a concern? A common issue with marketing data and especially satisfac-
tion surveys is that variables may be highly correlated with one another. Although
we as marketers care about individual elements of customers’ experiences such as
their amusement park experience with rides and games, when completing a survey,
the respondents might not give independent ratings to each of those items. They may
instead form an overall halo rating and rate individual elements of the experience in
light of that overall feeling.

When variables are strongly related in this way, it is difficult to assess their individual
effects with statistical models. As we will see in Sect. 9.1, the effect can be so severe
that the relationships become uninterpretable without taking some action to handle
the high correlations.

Given the positive associations shown in Fig. 7.1, we investigate the correlation struc-
ture further using cor() and corrplot() as demonstrated in Sect. 4.5.2:
> corrplot.mixed(cor(sat.df[, c(2, 4:9)]), upper="ellipse")

We selected columns c(2, 4:9) to exclude the categorical variable weekend
and the raw variable distance that we transformed as logdist. The result is the

162 7 Identifying Drivers of Outcomes: Linear Models

Fig. 7.1 An inspection of data using scatterplotMatrix() before we perform further mod-
eling. This reveals that distance has a highly skewed distribution and should be transformed
beforemodeling. Several variables, such asrides and clean, are obviously correlated and should
be examined further for the strength of association

correlation plot shown in Fig. 7.2. We see that the satisfaction items are moderately
to strongly associated with one another. However, none of the items appear to be
nearly identical, as would be indicated by correlations exceeding r > 0.8 for several
of them, or r > 0.9 for particular pairs. Thus, on an initial inspection, it appears to
be acceptable to proceed with modeling the relationships among these variables.

In Chap.9 we discuss how to assess this question in more detail and what to do when
high correlations pose a more significant problem. In Chap. 8 we discuss strategies
to find underlying dimensions that appear in highly correlated data.

7.2 Fitting Linear Models with lm() 163

Fig. 7.2 A correlation plot
for the amusement park data.
Inspection of the item
associations is always
recommended before linear
modeling, in order to check
for extremely high
correlations between items
(such as r > 0.9). In the
present data, rides and
clean are highly related
(r = 0.79) but not so
strongly that remediation is
strictly required

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

num.child

rides

games

wait

clean

overall

logdist

−0.04

0

−0.02

−0.01

0.32

0

0.46

0.31

0.79

0.59

−0.01

0.3

0.52

0.44

0

0.37

0.57

0.02

0.64

0.02 0.08

7.2.2 Recap: Bivariate Association

The goal of a satisfaction drivers analysis is to discover relationships between cus-
tomers’ satisfaction with features of the of the service (or product) and their overall
experience. For example, to what extent is satisfaction with the park’s rides related
to overall experience? Is the relationship strong or weak? One way to assess this is
to plot those two variables against each other as we did in Chap.4:

> plot(overall~rides , data=sat.df,

+ xlab="Satisfaction with Rides", ylab="Overall Satisfaction")

This creates a plot similar to the one in Fig. 7.3, except that it does not include the
blue line (but we’ll get to that soon). The points on the plot show that there is a
tendency for people with higher satisfaction with rides to also have higher overall
satisfaction.

Fig. 7.3 Scatterplot
comparing satisfaction with
rides to overall satisfaction
among recent visitors to an
amusement park

164 7 Identifying Drivers of Outcomes: Linear Models

7.2.3 Linear Model with a Single Predictor

A linear model estimates a best fit line through the cloud of points. The function to
estimate a linearmodel islm(formula, data), wheredata is a data frame con-
taining the data and formula is a R formula, as we saw in Sect. 6.5 for anova().
To estimate a linear model relating overall satisfaction to satisfaction with rides, we
write:

> lm(overall ~ rides , data=sat.df)

...

Coefficients:

(Intercept) rides

-94.962 1.703

The formula above can be read as “overall varies with rides.” When we
call lm(), R finds a line that best fits the relationship of sat.df$rides and
sat.df$overall. In the output, R repeats the model for reference and reports
two Coefficients, which are the intercept and the slope of the fitted line. Those
can be used to determine the best estimate for any respondent’s report of overall
based on knowing his or her value for rides. For example, from this model we
would expect that a customer who gives a rating of 95 for satisfaction with rides
would give an overall rating of:

> -94.962 + 1.703*95

[1] 66.823

Using coefficients manually is not very efficient. This brings us to our next topic,
lm; objects.

7.2.4 lm Objects

Like most other R functions, lm() returns an object that we can save and use for
other purposes. Typically, we assign the result of lm() to an object that is used in
subsequent lines of code. For example, we can assign the result of lm() to a new
object m1:

> m1 <- lm(overall ~ rides , data=sat.df)

We can then reuse the model by accessing m1. If we redraw the scatterplot for
overall ∼ rides, we can add the linear fit line using abline(m1):

> plot(overall ~ rides , data=sat.df,

+ xlab="Satisfaction with Rides", ylab="Overall Satisfaction")

> abline(m1, col=’blue’)

The result is shown in Fig. 7.3. abline() recognizes that it is dealing with an lm
object and uses the slope and the intercept from m1 to draw the line.

We can also inspect the m1 object:

7.2 Fitting Linear Models with lm() 165

> str(m1)

List of 12

$ coefficients : Named num [1:2] -95 1.7

..- attr(*, "names")= chr [1:2] "(Intercept)" "rides"

$ residuals : Named num [1:500] -6.22 11.78 11.18 -17.93 19.89 ...

...

This shows us that the m1 object is a list with 12 specific members that contain
everything lm() knows about the model. (To refresh yourself on list objects, see
Chap.2.) The first element of this list is $coefficients, which you can inspect:

> m1$coefficients

(Intercept) rides

-94.962246 1.703285

You don’t have to use the full name m1$coefficients. In many places in R, it
works to abbreviate long names, such as m1$coef.

As with other types of R objects, there is a summary() function for lm objects that
summarizes features of the fitted model, reporting much more than the short output
we saw from lm() above:

> summary(m1)

...

Residuals:

Min 1Q Median 3Q Max

-33.597 -10.048 0.425 8.694 34.699

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -94.9622 9.0790 -10.46 <2e-16 ***

rides 1.7033 0.1055 16.14 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 12.88 on 498 degrees of freedom

Multiple R-squared: 0.3434 , Adjusted R-squared: 0.3421

F-statistic: 260.4 on 1 and 498 DF, p-value: < 2.2e-16

This summarizes the principal information to review for a linear model. More
advanced models are reported similarly, so it is useful to become familiar with this
format. In addition to listing the model that was estimated, we get information about
coefficients, residuals, and the overall fit.

The most important section is labeled Coefficients and shows the model coef-
ficients in the Estimate column. The coefficient for rides is 1.70, so each addi-
tional rating point for rides is estimated to result in an increase of 1.7 points of
overall rating. (In case you’re wondering, the coefficient for the (Intercept)
shows where the linear model line crosses the y-axis, but this is usually not inter-
pretable in a satisfaction drivers analysis—for instance, there is no such thing as
a possible negative rating on our scale—so it is generally ignored by marketing
analysts.)

The Std. Error column indicates uncertainty in the coefficient estimate. The “t
value”, p-value (“Pr(>|t|)”), and significance codes indicate aWald test, which
assesses whether the coefficient is significantly different than zero. A traditional esti-
mate of a 95% confidence interval for the coefficient estimate is that it will fall within

166 7 Identifying Drivers of Outcomes: Linear Models

±1.96 × std.error . In this case, 1.7033 ± 1.96 × 0.1055 = (1.495, 1.910). So we
are confident—assuming the model is appropriate and the data are representative—
that the coefficient for ride is 1.495–1.910.

Although you could compute the confidence intervals by hand, the confint()
function will compute them for you:
> confint(m1)

2.5 % 97.5 %

(Intercept) -112.800120 -77.124371

rides 1.495915 1.910656

This confirms our computation by hand, that the best estimate for the relationship
overall ∼ rides is 1.496–1.911 (with slight differences due to rounding). It is
a best practice to report the range of an estimate, not just the single best point.

The Residuals section in the summary(m1) output tells us how closely the data
follow the best fit line. A residual is the difference between the model-predicted
value of a point and its actual value. In Fig. 7.3, this is the vertical distance between
a plotted point (actual value) and the blue line (predicted value).

In the summary of m1, we see that the residuals are quitewide, ranging from−33.597
to 34.699, which means our predictions can be quite a bit off for any given data point
(more than 30 points on the rating scale). The quartiles of the residuals suggest that
they are fairly symmetric around 0. As we discuss in Sect. 7.2.5, that is a good sign
that the model is unbiased (although perhaps imprecise).

In the last section of the output, summary(m1) provides measures of how well
the model fits the data. The first is the residual standard error, an estimate of the
standard error of the residuals. Like the residuals, this is a measure of how close the
data points are to the best estimate line. (You can directly check this by examining
the standard deviation of the residuals using sd(m1$residuals), which will be
similar.)

The second line reports the estimate ofR-squared, ameasure of howmuchvariation in
the dependent variable is captured by themodel. In this case, the R-squared is 0.3434,
indicating that about a third of the variation in overall satisfaction is explained by
variation in satisfaction with rides. When a model includes only a single predictor,
R-squared is equal to the square of the correlation coefficient r between the predictor
and the outcome:
> cor(sat.df$overall , sat.df$rides)^2

[1] 0.3433799

Finally, the line labeled F-statistic: provides a statistical test of whether the
model predicts the data better than simply taking the average of the outcome variable
and using that as the single prediction for all the observations. In essence, this test
tells whether our model is better than a model that predicts overall satisfaction using
no predictors. (For reasons wewill not describe in detail, this is the same test reported
by the anova() function that we saw in Chap.5; you could find the same value
with anova(m1). Check a statistics textbook for a description of the F-test in more
detail.) In the present case, the F-statistic shows a p-value<< .05, so we reject
the null hypothesis that a model without predictors performs as well as model m1.

7.2 Fitting Linear Models with lm() 167

7.2.5 Checking Model Fit

Because it is easy to fit linear models, too many analysts fit models and report results
without considering whether the models are reasonable. However, there are a variety
of ways to assess model fit and adequacy that are easy to perform in R. While we
can’t possibly cover this material comprehensively, we would like to give you a few
pointers that will help you assess model adequacy.

There are several assumptions when a linear model is fitted to data. The first is that
the relationship between the predictors and the outcomes is linear. If the relationship
is not linear, then the model will make systematic errors. For example, if we generate
data where y is a function of the square of x and then fit a linear model y ∼ x, this
will draw a straight line through a cloud of points that is curved.

> x <- rnorm (500)

> y <- x^2 + rnorm (500)

> toy.model <- lm(y~x)

If you inspect the model by typing summary(toy.model), you will see that the
fitted coefficient for x is −0.01159 and the Wald significance test indicates that the
coefficient is not significantly different from zero. Without model checking, a sloppy
analyst might conclude that x is not related to y. However, if we plot x versus y and
then draw our fitted line on the plot, we can see more clearly what is going on.

> plot(y~x)

> abline(toy.model)

The resulting plot is shown on the left side of Fig. 7.4. The plot shows that our fitted
linear model (illustrated with a blue line) completely misses the curvature in the
relationship between x and y.

Another assumption of a linear model is that prediction errors—the parts of the data
that do not exactly fit the model—are normally distributed and look like random

Fig. 7.4 Fitting a linear model when the true relationship is non-linear (as shown on the left) results
in unusual residual patterns (shown on the right)

168 7 Identifying Drivers of Outcomes: Linear Models

noise with no pattern. One way to examine this is to plot the model’s fitted values
(the predictions) versus the residuals (the prediction errors).

> plot(toy.model$fitted.values , toy.model$residuals)

This results in the plot on the right side of Fig. 7.4 and you can see from the plot
that there is a clear pattern in the residuals: our model under-predicts the value of
y near zero and over-predicts far from zero. When you come across this problem in
real data, the solution is usually to transform x; you can use the methods described
in Sect. 4.5.4 to find a transformation that is suitable. If you begin by inspecting
scatterplots as we recommend in Sect. 7.2.1, you will be unlikely to commit such a
simple error. Still, it is good to know that later checks can help prevent errors as well.

We can look at this same diagnostic plot for our satisfaction drivers data. R suggests
four specific plots to assess the fit of linear model objects and you can look at all
four simply by using plot() with any lm object. To see all four plots at once, we
par(mfrow=c(2,2)) first:

> par(mfrow=c(2,2))

> plot(m1)

In Fig. 7.5, the first plot (in the upper left corner) shows the fitted values versus
residuals for m1, just as we produced manually for our toy y ∼ x model. In Fig. 7.5
there is no obvious pattern between the fitted values for overall satisfaction and the
residuals; this is consistent with the idea that the residuals are due to random error,
and supports the notion that the model is adequate.

The second plot in the lower left of Fig. 7.5 is similar to the first, except that instead of
plotting the raw residual value, it plots the square root of the standardized residual.
Again, there should be no clear pattern; if there were it might indicate a non-linear
relationship. Observations with high residuals are flagged as potential outliers, and
R labels them with row numbers in case we wish to inspect them in the data frame.

A common pattern in residual plots is a cone or funnel, where the range of errors gets
progressively larger for larger fitted values. This is called heteroskedasticity and is
a violation of linear model assumptions. A linear model tries to maximize fit to the
line; when values in one part of the range have a much larger spread than those in
another area, they have undue influence on the estimation of the line. Sometimes a
transformation of the predictor or outcome variable will resolve heteroskedasticity
(see Sect. 4.5.3).

The third result of plot() forlmobjects is aNormalQQplot, as in the upper right of
Fig. 7.5. A QQ plot helps you see whether the residuals follow a normal distribution,
another key assumption (see Sect. 3.4.3). It compares the values that residuals would
be expected to take if they are normally distributed, versus their actual values. When
the model is appropriate, these points are similar and fall close to a diagonal line;
when the relationship between the variables is non-linear or otherwise does notmatch
the assumption, the points deviate from the diagonal line. In the present case, the QQ
plot suggests that the data fits the assumption of the model.

7.2 Fitting Linear Models with lm() 169

Fig. 7.5 Diagnostic plots for the model relating overall satisfaction to satisfaction with rides

The final plot in the lower right panel of Fig. 7.5 again helps to identify potential
outliers, observations that may come from a different distribution than the others.
Outliers are a problembecause, if they are far fromother points, they unduly influence
the fitted line. We do not want one or a very few observations to have a large effect
on the coefficients. The lower right plot in Fig. 7.5 plots the leverage of each point, a
measure of howmuch influence the point has on themodel coefficients.When a point
has a high residual and high leverage, it indicates that the point has both a different
pattern (residual) and undue influence (leverage). One measure of the leverage of a
data point is Cook’s distance, an estimate of how much predicted (y) values would
change if the model were re-estimated with that point eliminated from the data. If
you have observations with high Cook’s distance, this chart would show dotted lines
for the distances; in the present case, there are none.

Still, in the lower right of Fig. 7.5, three points are automatically labeled with row
numbers because they are potentially problematic outliers based on high standard-
ized residual distance and leverage on the model. We do not recommend routinely
removing outliers, yet we do recommend to inspect them and determine whether

170 7 Identifying Drivers of Outcomes: Linear Models

there is a problem with the data. We inspect the identified points by selecting those
rows:

> sat.df[c(57, 129, 295) ,]

weekend num.child distance rides games wait clean overall logdist

57 yes 2 63.29248 98 87 89 100 100 4.147767

129 yes 0 11.89550 76 77 51 77 6 2.476161

295 no 0 11.74474 98 83 63 92 45 2.463406

In this case, none of the data points is obviously invalid (for instance, with values
below 1 or greater than 100), although row 129 might be checked for input correct-
ness; an overall rating of 6 on the surveywould be unusual although perhaps accurate.
We generally do not omit outliers except when they represent obvious errors in the
data. In the present case, we would keep all of the observations.

Overall, Fig. 7.5 looks good and suggests that the model relating overall satisfaction
to satisfaction with rides is reasonable.

But we’ve only examined a single variable so far. In the next section, we consider
multiple predictors. For brevity, in following sections we omit the checks of model
adequacy thatwere shown in this section, butwe encourage you to check and interpret
plot() for the models.

7.3 Fitting Linear Models with Multiple Predictors

Now that we’ve covered the basics of linear models using just one predictor, we
turn to the problem of assessing multiple drivers of satisfaction. Our goal is to sort
through all of the features of the park—rides, games, wait times, and cleanliness—to
determine which ones are most closely related to overall satisfaction.

To estimate our first multiple variable model, we call lm with a formula describing
the model:

> m2 <- lm(overall ~ rides + games + wait + clean , data=sat.df)

> summary(m2)

...

Residuals:

Min 1Q Median 3Q Max

-29.944 -6.841 1.072 7.167 28.618

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -131.40919 8.33377 -15.768 < 2e-16 ***

rides 0.52908 0.14207 3.724 0.000219 ***

games 0.15334 0.06908 2.220 0.026903 *

wait 0.55333 0.04781 11.573 < 2e-16 ***

clean 0.98421 0.15987 6.156 1.54e-09 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 10.59 on 495 degrees of freedom

Multiple R-squared: 0.5586 , Adjusted R-squared: 0.5551

F-statistic: 156.6 on 4 and 495 DF, p-value: < 2.2e-16

7.3 Fitting Linear Models with Multiple Predictors 171

Looking first at the model fit statistics at the bottom of the output, we see that our
prediction was improved by including all the satisfaction items in the model. The
R-squared increased to 0.5586,meaning that about half the variation in overall ratings
is explained by the ratings for specific features. The residual standard error is now
10.59, meaning that the predictions aremore accurate. Our residuals also appear to be
symmetric. As noted above, we recommend also to inspect the model using plot()
to confirm that there are no patterns in the residuals indicative of non-linearity or
outliers, although we omit that step here.

Next we examine the model coefficients. Each coefficient represents the strength
of the relationship between satisfaction with that feature and overall satisfaction,
conditional on the values of the other predictors. All four features are identified
as being statistically significant (p-value, shown as Pr(>|t|), < 0.05). Rather
than just comparing the numbers in the output, it can be helpful to visualize the
coefficients. We use the coefplot package [125] to do this, calling coefplot()
for our model, and adding intercept=FALSE to plot just the individual item
coefficients:

> library(coefplot) # install if necessary
> coefplot(m2, intercept=FALSE , outerCI =1.96, lwdOuter =1.5,

+ ylab="Rating of Feature",

+ xlab="Association with Overall Satisfaction")

We use coefplot() arguments to set the outer confidence interval to a width
of 1.96 standard errors (using outerCI=1.96, which corresponds to a 95%
confidence interval) and to increase the size of the plotted lines slightly with
lwdOuter=1.5.

The result is shown in Fig. 7.6 where we see that satisfaction with cleanliness is esti-
mated to be the most important feature associated with overall satisfaction, followed

Fig. 7.6 A coefficient plot produced with coefplot() for an initial multivariate lm()model of
satisfaction in the amusement park data. In the model, satisfaction with cleanliness is most strongly
associated with overall satisfaction, and rides and wait times are also associated

172 7 Identifying Drivers of Outcomes: Linear Models

by satisfaction with the rides and wait times. Satisfaction with games is estimated to
be relatively less important.

A plot of coefficients is often a key output from a satisfaction drivers analysis. Sorting
the plot so that the coefficients are in order based on their estimated coefficient may
make it easier to quickly identify the features that are most closely related to overall
satisfaction if you have a large number of predictors.

7.3.1 Comparing Models

Now that we have two model objects, m1 and m2 we might ask which one is better.
One way to evaluate models is to compare their R-squared values.

> summary(m1)$r.squared

[1] 0.3433799

> summary(m2)$r.squared

[1] 0.558621

Based on the R-squared values we can say that m2 explains more of the variation in
satisfaction than m1. However, a model with more predictors usually has a higher
R2, so we could instead compare adjusted R-squared values, which control for the
number of predictors in the model.

> summary(m1)$adj.r.squared

[1] 0.3420614

> summary(m2)$adj.r.squared

[1] 0.5550543

The adjusted R-squared still suggests that the m2 explains more of the variation in
overall satisfaction, even accounting for the fact that m2 uses more predictors.

To compare the predictions of the models visually, we plot the fitted versus actual
values for each:
> plot(sat.df$overall , fitted(m1), col=’red’,

+ xlim=c(0 ,100), ylim=c(0 ,100),

+ xlab="Actual Overall Satisfaction", ylab="Fitted Overall Satisfaction")

> points(sat.df$overall , fitted(m2), col=’blue’)

> legend("topleft", legend=c("model 1", "model 2"),

+ col=c("red", "blue"), pch=1)

If the model fit the data perfectly, it would fall along a 45◦ line in this plot, but, of
course, it is nearly impossible tofit customer satisfactiondata perfectly.Bycomparing
the red and the blue points in the resulting plot in Fig. 7.7, you can see that the blue
cloud of points is more tightly clustered along a diagonal line, which shows that m2
explains more of the variation in the data than m1.

For a more formal test, which is possible because the models here are nested (see
Sect. 6.5.1), we can use anova() function to determine whether m2 explains more
of the variation than m1:

7.3 Fitting Linear Models with Multiple Predictors 173

Fig. 7.7 Comparison of
fitted versus actual values for
linear models m1 and m2

> anova(m1, m2)

Analysis of Variance Table

Model 1: overall ~ rides

Model 2: overall ~ rides + games + wait + clean

Res.Df RSS Df Sum of Sq F Pr(>F)

1 498 82612

2 495 55532 3 27080 80.463 < 2.2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The low p-value indicates that the additional predictors in m2 significantly improve
the fit of the model. If these two models were the only ones under consideration, we
would interpret m2 instead of m1.

We should also point out that the coefficient for rides changed from m1 to m2.
The value in m1 was 1.70 × rides, while in m2 it is 0.529 × rides. Why is this
happening?The reason is becauserides is not independent of all the other variables;
Fig. 7.1 shows that customers who are more satisfied with the rides tend to be more
satisfied with the wait times and games.When those variables are added as predictors
in model m2, they now perform some of the work in predicting the overall rating,
and the contribution of rides is a smaller share of the total model.

Neither coefficient for rides is more correct in itself because a coefficient is not
right or wrong but part of a larger model. Which model is preferable? Because model
m2 has better overall fit, we would interpret its coefficient for rides, but only in
the context of the total model. In the sections below, we see that as the structure of
a model changes, the coefficients generally change as well (unless the variables are
entirely uncorrelated, which only happens in designed experiments).

174 7 Identifying Drivers of Outcomes: Linear Models

7.3.2 Using a Model to Make Predictions

As we saw for the single variable case, we could use the model coefficients to predict
the overall outcome for different combinations of the explanatory variables. For
example, if we wanted to predict the overall rating for a customer who rated the
four separate aspects as 100 points each, we could multiply those ratings by the
coefficients and add the intercept:
> coef(m2)["(Intercept)"] + coef(m2)["rides"]*100 + coef(m2)["games"]*100 +

+ coef(m2)["wait"]*100 + coef(m2)["clean"]*100

(Intercept)

90.58612

The best estimate is 90.586 using model m2. Because coef(m2) is a named vector,
we access the individual coefficients here using their names.

The prediction equation above is clunky to type, and there are more efficient ways
to compute model predictions. One way is to use matrix operations to multiply
coefficients by a vector of predictor values:
> coef(m2)%*%c(1, 100, 100, 100, 100)

[,1]

[1,] 90.58612

We could also use predict(object, newdata) where newdata is a data
frame with the same column names as the data that was used to estimate the model.
For example, if we want to find the predictions for the first 10 customers in our data
set we would pass the first 10 rows of sat.df to predict:
> predict(m2, sat.df[1:10 ,])

1 2 3 4 5 6 7 ...

46.60864 54.26012 51.17289 50.30434 52.94625 27.87214 36.27435 ...

This predicts satisfaction for the first 10 customers. The predictions for observations
used to estimate the model are also stored in the model object (in this case, the m2
object), and can be accessed with fitted():
> fitted(m2)[1:10]

1 2 3 4 5 6 7 ...

46.60864 54.26012 51.17289 50.30434 52.94625 27.87214 36.27435 ...

7.3.3 Standardizing the Predictors

Thus far, we have interpreted raw coefficients in order to evaluate the contributions
of ratings on the shared 100 point scale. However, if the variables have different
scales, such as a survey where rides is rated on a 1–10 scale while cleanliness is
rated 1–5 scale, then their coefficient values would not be directly comparable. In
the present data, this occurs with the distance and logdist variables, which
are not on a 100 point scale.

When you wish to compare coefficients, it can be helpful to standardize data on a
common scale before fitting a model (and after transforming any variables to a more

7.3 Fitting Linear Models with Multiple Predictors 175

normal scale). The most common standardization converts values to zero-centered
units of standard deviation. This subtracts a variable’s mean from each observation
and then divides by the standard deviation (sd()). This could be done using math,
such as:

> (sat.df$rides - mean(sat.df$rides)) / sd(sat.df$rides)

[1] 0.21124774 0.21124774 -0.15486620 0.39430471 -0.33792317 ...

This process is so common that R includes the scale() function to perform it:

> scale(sat.df$rides)

[,1]

[1,] 0.21124774

[2,] 0.21124774

[3,] -0.15486620

...

In the remainder of the chapter, we do not want to worry about the scale of our
variables, only their relative contributions, so we create a scaled version of sat.df
called sat.std:
> sat.std <- sat.df[, -3] # sat but remove distance
> sat.std[, 3:8] <- scale(sat.std[, 3:8])

> head(sat.std)

weekend num.child rides games wait clean overall

1 yes 0 0.2112477 -0.69750817 -0.918784090 0.21544189 -0.2681587

2 yes 2 0.2112477 -0.08198737 0.566719693 -0.17555973 0.8654385

3 no 1 -0.1548662 0.16422095 0.009655775 0.01994108 0.6135280

...

In this code, we first copied sat.df to the new data frame sat.std, dropping
the untransformed values of distancewith [, -3] because we use logdist
instead. Then we standardized each of the numeric columns. We do not standardize
weekend because it is a factor variable rather than numeric. We leave num.child
as is for now because we have not yet analyzed it.

Note that we do not alter the original data frame sat.df when standardizing it.
Instead, we copy it to a new data frame and alter the new one. This process makes
it easier to recover from errors; if anything goes wrong with sat.std we can just
run these few commands again to recreate it.

The question of standardizing values depends primarily on how you want to use a
model’s coefficients. If you want to interpret coefficients in terms of the original
scales, then you would not standardize data first. However, in driver analysis we
are usually more concerned with the relative contribution of different predictors and
wish to compare them, and standardization assists with this. Additionally, we often
transform variables before analysis such that they are no longer on the original scale.

After standardizing, you should check the results. A standardized variable should
have a mean of 0 and values within a few units of the mean. Checking the
summary():

176 7 Identifying Drivers of Outcomes: Linear Models

> summary(sat.std)

weekend num.child rides games

no :259 Min. :0.000 Min. : -2.53461 Min. : -2.66717

yes :241 1st Qu .:0.000 1st Qu.: -0.70404 1st Qu.: -0.69751

Median :2.000 Median : 0.02819 Median : -0.08199

Mean :1.738 Mean : 0.00000 Mean : 0.00000

3rd Qu .:3.000 3rd Qu.: 0.76042 3rd Qu.: 0.77974

Max. :5.000 Max. : 2.59099 Max. : 2.62630

...

We see that sat.std matches expectation.

There is a technical point we should mention when standardizing variables. If the
outcome and predictors are all standardized, their means will be zero and thus the
intercept will be zero. However, that does not imply that the intercept could be
removed from the model. The model is estimated to minimize error in the overall fit,
which includes error for the intercept. This implies that the intercept should remain
in a model after standardization if it would be there otherwise (as it usually should
be; see Sect. 7.5.1).

7.4 Using Factors as Predictors

While m2 above was reasonable, we can continue to improve it. It is typical to try
many models before arriving at a final one.

For the next step, we wonder whether satisfaction is different for customers who
come on the weekend, travel farther, or have more children. We add these predictors
to the model using standardized data:
> m3 <- lm(overall ~ rides + games + wait + clean +

+ weekend + logdist + num.child , data = sat.std)

> summary(m3)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.37271 0.04653 -8.009 8.41e-15 ***

rides 0.21288 0.04197 5.073 5.57e-07 ***

games 0.07066 0.03026 2.335 0.0199 *

wait 0.38138 0.02777 13.734 < 2e-16 ***

clean 0.29690 0.04415 6.725 4.89e-11 ***

weekendyes -0.04589 0.05141 -0.893 0.3725

logdist 0.06470 0.02572 2.516 0.0122 *

num.child 0.22717 0.01711 13.274 < 2e-16 ***

...

Multiple R-squared: 0.6786 , Adjusted R-squared: 0.674

F-statistic: 148.4 on 7 and 492 DF, p-value: < 2.2e-16

The model summary shows a substantial improvement in fit (R-squared of 0.6786)
and the coefficients for logdist and num.child are significantly greater than
zero, suggesting that people who travel further and have more children have higher
overall satisfaction ratings.

Notice that the coefficient for weekend is labeled weekendyes, which seems a bit
unusual. Recall that weekend is a factor variable, but a factor doesn’t fit naturally in

7.4 Using Factors as Predictors 177

our linear model; you can’t multiply yes by a number. R handles this by converting
the data to a numeric value where 1 is assigned to the value of yes and 0 to no.
It labels the output so that we know which direction the coefficient applies to. So,
we can interpret the coefficient as meaning that on average those who come on the
weekend rate their overall satisfaction -0.046 standard units (standard deviations)
lower than those who come on a weekday. A convenient feature of R is that it does
this automatically for factor variables, which are common in marketing.

In fact, we used a linear model with a factor as a predictor in Chap. 5, when we
compared groups using ANOVA. An ANOVA model is a linear model with a factor
as a predictor, and the command we learned in Chap.5, aov(), internally calls
lm() to fit the model. aov(overall ∼ weekend, data=sat.std) and
lm(overall ∼ weekend, data=sat.std) fit the same model, although the
result is reported differently because of tradition.

If they are the same, which should one use? We generally prefer to use lm because it
is a more flexible method and allows us to include both numeric and factor predictors
in the same model. (For those of you who were wondering, this explains why we
used the linear modeling function lmBF to fit a Bayesian ANOVAmodel in Chap.5.)

When your data includes factors, you must be careful about the data type. For exam-
ple, num.child is a numeric variable, ranging 0–5, but it doesn’t necessarily make
sense to treat it as a number, as we did in m3. In doing so, we implicitly assume that
satisfaction goes up or down linearly as a function of the number of children, and that
the effect is the same for each additional child. (Anyone who has taken a group of
children to an amusement park might guess that this is an unreasonable assumption.)

We correct this by converting num.child to a factor and re-estimating the model:

> sat.std$num.child.factor <- factor(sat.std$num.child)

> m4 <- lm(overall ~ rides + games + wait + clean +

+ weekend + logdist + num.child.factor , data=sat.std)

> summary(m4)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.69100 0.04488 -15.396 < 2e-16 ***

rides 0.22313 0.03541 6.301 6.61e-10 ***

...

num.child.factor1 1.01610 0.07130 14.250 < 2e-16 ***

num.child.factor2 1.03732 0.05640 18.393 < 2e-16 ***

num.child.factor3 0.98000 0.07022 13.955 < 2e-16 ***

num.child.factor4 0.93154 0.08032 11.598 < 2e-16 ***

num.child.factor5 1.00193 0.10369 9.663 < 2e-16 ***

...

Multiple R-squared: 0.7751 , Adjusted R-squared: 0.77

F-statistic: 152.9 on 11 and 488 DF, p-value: < 2.2e-16

We now see that there are 5 fitted coefficients for num.child.factor: one for
parties with 1 child, one for parties with 2 children, etc. There is not a coefficient
for num.child.factor0, because it is the baseline level to which the other
coefficients are addedwhen they apply.We interpret each coefficient as the difference
between that level of the factor and the baseline level. So, parties with 1 child rate
their overall satisfaction on average 1.016 standard deviations higher than parties
without children.

178 7 Identifying Drivers of Outcomes: Linear Models

Internally, R has created a new variable num.child.factor1 that is equal to 1
for those cases where num.child.factor represents one child (a factor level of
“1”), and is 0 otherwise. Similarly, num.child.factor2 is 1 for cases with two
children, and 0 otherwise, and so forth. The coefficient for num.child.factor2
is 1.037, meaning that people with two children rate their overall satisfaction on
average a full standard deviation higher than those with no children.

A striking thing about m4 is that the increase in overall satisfaction is about the same
regardless of how many children there are in the party—about 1 standard deviation
higher for any number of children. This suggests that we don’t actually need to
estimate a different increase for each number of children. In fact, if the increase is
the same for 1 child as for 5 children, attempting to fit amodel that scales increasingly
per child would result in a less accurate estimate.

Instead, we declare a new variable called has.child that is TRUE when the party
has children in it and FALSE when the party does not have children. We then
estimate the model using that new factor variable. We also drop weekend from the
model because it doesn’t seem to be a significant predictor:

> sat.std$has.child <- factor(sat.std$num.child > 0)

> m5 <- lm(overall ~ rides + games + wait + clean + logdist + has.child ,

+ data=sat.std)

> summary(m5)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.70195 0.03906 -17.969 < 2e-16 ***

rides 0.22272 0.03512 6.342 5.12e-10 ***

...

has.childTRUE 1.00565 0.04683 21.472 < 2e-16 ***

...

Multiple R-squared: 0.7741 , Adjusted R-squared: 0.7713

F-statistic: 281.5 on 6 and 493 DF, p-value: < 2.2e-16

Is this still a good model? The change in R-squared between model m4 and m5 is
negligible, suggesting that our simplification did not deteriorate the model fit.

Model m5 estimates overall satisfaction to be about 1 standard deviation higher
for parties with children. However, one might now wonder how children influence
other aspects of the ratings. For instance, is the relationship between satisfaction
and waiting times different for parties with and without children? One might guess
from experience that wait time would be more important to parties with children. To
explore this question, we need to incorporate interactions into the model.

7.5 Interaction Terms

We can include an interaction of two terms by using the : operator between variables
in a formula. For instance, to estimate overall as a function of rides plus the
interaction of wait and has.child, we could write the formula as overall ∼

7.5 Interaction Terms 179

rides + wait:no.child. There are other ways in R to write interaction terms
(see Sect. 7.5.1) but for our first model we will specify them explicitly in this way.

We create a new model with interactions between the satisfaction ratings and two
variables that describe the visit: no.child and weekend:

> m6 <- lm(overall ~ rides + games + wait + clean +

+ weekend + logdist + has.child +

+ rides:has.child + games:has.child + wait:has.child +

+ clean:has.child + rides:weekend + games:weekend +

+ wait:weekend + clean:weekend , data=sat.std)

> summary(m6)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

...

rides:has.childTRUE 0.057837 0.073070 0.792 0.42902

games:has.childTRUE -0.064043 0.052797 -1.213 0.22572

wait:has.childTRUE 0.350649 0.047241 7.423 5.21e-13 ***

clean:has.childTRUE -0.001854 0.079710 -0.023 0.98146

rides:weekendyes 0.061784 0.067750 0.912 0.36225

games:weekendyes 0.018511 0.049036 0.377 0.70597

wait:weekendyes 0.035168 0.044463 0.791 0.42936

clean:weekendyes -0.027305 0.071005 -0.385 0.70074

...

The model object m6 now includes eight interaction terms between ratings for fea-
tures of the park and no.child and weekend. Only one of these interactions
is significant: the wait:no.child interaction. This suggests we could drop the
non-significant interactions to create a new model m7:

> m7 <- lm(overall ~ rides + games + wait + clean + logdist + has.child +

+ wait:has.child , data=sat.std)

> summary(m7)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.69316 0.03684 -18.814 < 2e-16 ***

rides 0.21264 0.03313 6.419 3.24e-10 ***

games 0.04870 0.02394 2.034 0.0425 *

wait 0.15095 0.03688 4.093 4.98e-05 ***

clean 0.30244 0.03485 8.678 < 2e-16 ***

logdist 0.02919 0.02027 1.440 0.1504

has.childTRUE 0.99830 0.04416 22.606 < 2e-16 ***

wait:has.childTRUE 0.34688 0.04380 7.920 1.59e-14 ***

...

Multiple R-squared: 0.7996 , Adjusted R-squared: 0.7968

F-statistic: 280.5 on 7 and 492 DF, p-value: < 2.2e-16

In these results, we see that attending the park with children is a predictor of higher
satisfaction, and waiting time is more important predictor among those with children
(wait:has.childTRUE) than those without children. We don’t know the reason
for this, but perhaps children go on more rides and their parents are therefore more
influenced by wait times.

One might further tune the model by considering whether logdist is still needed;
we’ll leave that to the reader and assume that model m7 is the final model.

What do we do with these results as marketers? We identify several possible market-
ing interventions. If we want to increase satisfaction overall, we could perhaps do so
by trying to increase the number of visitors with children. Alternatively, if we want to

180 7 Identifying Drivers of Outcomes: Linear Models

Fig. 7.8 Satisfaction drivers for visitors to an amusement park (simulated). The model reveals that
the variable most strongly (and positively) associated with satisfaction is visiting the park with
children. Satisfaction with waiting time is a stronger predictor of overall satisfaction among visitors
with children than those without, as shown in the wait:has.childTRUE interaction. Of the
individual park features, satisfaction with cleanliness is most associated with overall satisfaction

appeal to visitors without children, wemight engage in further research to understand
why their ratings are lower. If we are allocating budget to personnel, the importance
of cleanliness suggests continuing to allocate resources there (as opposed, say, to
games). We might also want to learn more about the association between children
and waiting time, and whether there are things we could do to make waiting less
frequent or more enjoyable.

There are many more such questions one could pose from results like these; a crucial
step in analysis is to think carefully about the implications and where one might be
able to make a product or market intervention. When considering actions to take, it is
especially important to remember that the model assesses association, not causation.
Possible changes in outcome should be viewed as hypotheses suggested by themodel,
to be confirmed separately.

To share these results with others, it is helpful to create a new satisfaction drivers
plot using coefplot():

> library(coefplot) # install if needed
> coefplot(m7, intercept=FALSE , outerCI =1.96, lwdOuter =1.5,

+ ylab="Rating of Feature",

+ xlab="Association with Overall Satisfaction")

The result is Fig. 7.8 summarizing the relative contribution of each element on overall
satisfaction.

When including interaction terms in a model, there are two important points. First,
it is especially important to consider standardizing the predictors when modeling
interactions in order to have an interpretable and comparable scale for coefficients.

7.5 Interaction Terms 181

Second, one should always include main effects (such as x + y) when including
an interaction effect (x:y). If you don’t estimate the main effects, you won’t know
whether a purported interaction is in fact due to an interaction, or is instead due to
one of the individual variables’ unestimated main effects.

7.5.1 Language Brief: Advanced Formula Syntax*

This section is optional for those who wish to construct more complex formulas with
interaction effects. As in the examples above, we generally write formulas using only
+ (for main effects) and : (specific interactions), but the following may help create
more compact formulas when you have many variables or interactions.

As we’ve seen, you can include an interaction between x and z by including x:z
in the formula. If you want to include two variables along with their interaction, you
can use x*z, which is the equivalent to writing x + z + x:z.

To include all of the predictors in your data frame in the model, use a ., writing write
y ∼ . You can also omit any variable using -x. Thus, y ∼ . - x means “include
all the variables except x.”

The intercept can be removed from a model by including -1 in the formula. This is
ill-advised in general linear models with continuous predictors, because it forces the
line to go through the origin (0, 0), which alters the other coefficients. However, it can
be helpful in some kinds of models, such as those with purely categorical predictors.

Table 7.1 summarizes the common options for formula syntax and their interpretation
in terms of a linear equation (where β is a model coefficient with β0 for the intercept,
β1 for the first predictor, and so forth; ε is the error term).

Table 7.1 Syntax for including interactions in model formulas

R Formula syntax Linear model Description

y ∼ x yi = β0 + β1xi + εi y is a linear function of x

y ∼ x - 1 yi = β1xi + β2zi + εi Omit the intercept

y ∼ x + z yi = β0 + β1xi + β2zi + εi y is a linear combination of x
and z

y ∼ x:z yi = β0 + β1xi zi + εi Include the interaction
between x and z

y ∼ x*z yi = β0 + β1xi + β2zi +
β3xi zi + εi

Include x, z and the
interaction between them

y ∼ (u + v + w)ˆ3 yi = β0 + β1ui + β2vi +
β3wi + β4uivi + β5uiwi +
β6viwi + β7uiviwi + εi

Include u, v, and w, and all
interactions among them up to
three-way (u:v:w)

y ∼ (u+v+w)ˆ3 - u:v yi = β0 + β1ui + β2vi +
+β3wi + β5uiwi + β6viwi +
β7uiviwi + εi

Include these variables and all
interactions up to three-way,
but remove the u:v interaction

182 7 Identifying Drivers of Outcomes: Linear Models

7.5.2 Caution! Overfitting

Now that we’ve seen the complete process of creating a model, from initial data
inspection to the potential implications, we have a caution about linear models. As
you become more comfortable with linear models, you may want to put more and
more predictors into your equation. Be careful about that.

A typical satisfaction drivers survey might include dozens of different features. As
you add predictors to a model, estimates of the coefficients become less precise due
to both the number of effects and associations among the variables. This shows up
in the lm() output as larger standard errors of the coefficients, indicating lower
confidence in the estimates. This is one reason we like to plot confidence intervals
for coefficients, as in Fig. 7.8.

Despite the potentially low confidence in estimates, as you add variables to a model,
the value of R2 will become higher and higher. On a first impression, that might
seem as if the model is getting better and better. However, if the estimates of the
coefficients are imprecise, then the utility of the model will be poor; it could lead to
making the wrong inferences about relationships in your data.

This process of adding too many variables and ending up with a less precise or
inappropriate model is called overfitting. One way to avoid it is to keep a close eye
on the standard errors for the coefficients; small standard errors are an indicator that
there is sufficient data to estimate the model. Another approach is to select a subset
of the data to hold out and not use to estimate the model. After fitting the model,
use predict() on the hold out data and see how well it performs. Overfitted
models will perform poorly when predicting outcomes for holdout data. Stepwise
model selection is a traditional approach to select variables while attempting to avoid
overfitting; the step() functionwe saw in Sect. 6.5.3 works forlm objects the same
as for aov models.

We recommend to keep models as parsimonious as possible. Although it is tempting
to create large, impressive, omnibus models, it is usually more valuable in marketing
practice to identify a few interventions with clear and confident interpretations.

7.5.3 Recommended Procedure for Linear Model Fitting

We followed a lengthy process to arrive at the final model m7, and it is helpful to
recount the general steps we recommend in creating such a linear model.

1. Inspect the data tomake sure it is clean and has the structure you expect, following
the outline in Sect. 3.3.3.

2. Check the distributions of the variables to make sure they are not highly skewed
(Sect. 7.2.1). If one is skewed, consider transforming it (Sect. 4.5.4).

7.5 Interaction Terms 183

3. Examine the bivariate scatterplots and correlation matrix (Sect. 7.2.1) to see
whether there are any extremely correlated variables (such as r > 0.9, or sev-
eral with r > 0.8). If so, omit some variables or consider transforming them if
needed; see Sect. 9.1 for further discussion.

4. If you wish to estimate coefficients on a consistent scale, standardize the data
with scale() (Sect. 7.3.3).

5. After fitting a model, check the residual quantiles in the output. The residuals
show how well the model accounts for the individual observations (Sect. 7.2.4).

6. Check the standardmodel plots usingplot(),whichwill help you judgewhether
a linear model is appropriate or whether there is nonlinearity, and will identify
potential outliers in the data (Sect. 7.2.4).

7. Try several models and compare them for overall interpretability and model fit
by inspecting the residuals’ spread and overall R2 (Sect. 7.3.1). If the models are
nested, you could also use anova() for comparison (Sect. 6.5.1) .

8. Report the confidence intervals of the estimates with your interpretation and
recommendations (Sect. 7.3).

7.5.4 Bayesian Linear Models with MCMCregress()*

In this section, we review how the satisfaction analysis could be performed with
Bayesian methods. This is an optional section; if you’re not familiar with Bayesian
methods, you could skip this section or review the basics in Sect. 6.6.

Like lm() above, Bayesian inference for a linear model attempts to estimate the
most likely coefficients relating the outcome to the explanatory variables. How-
ever, the Bayesian method does this by sampling the posterior distribution of model
coefficients (Sect. 6.6.2), using a procedure known as Markov-chain Monte Carlo
(MCMC).

The package MCMCpack includes MCMCregress(), which estimates Bayesin
linear models; it makes a Bayesian estimation of the model as easy as calling lm().
We call MCMCregress() to estimate the model m7 from above, supplying an
identical formula and data frame as we used earlier with lm() (Sect. 7.5):
> library(MCMCpack)

...

> m7.bayes <- MCMCregress(overall ~ rides + games + wait + clean + logdist +

+ has.child + wait:has.child , data=sat.std)

> summary(m7.bayes)

Iterations = 1001:11000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 10000

1. Empirical mean and standard deviation for each variable ,

plus standard error of the mean:

Mean SD Naive SE Time -series SE

(Intercept) -0.69331 0.03702 0.0003702 0.0003702

rides 0.21262 0.03351 0.0003351 0.0003301

184 7 Identifying Drivers of Outcomes: Linear Models

games 0.04885 0.02400 0.0002400 0.0002400

wait 0.15096 0.03683 0.0003683 0.0003683

clean 0.30205 0.03515 0.0003515 0.0003515

logdist 0.02891 0.02029 0.0002029 0.0002029

has.childTRUE 0.99837 0.04441 0.0004441 0.0004441

wait:has.childTRUE 0.34733 0.04358 0.0004358 0.0004358

sigma2 0.20374 0.01306 0.0001306 0.0001306

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

(Intercept) -0.764177 -0.71841 -0.69345 -0.66861 -0.62004

rides 0.145773 0.19015 0.21290 0.23499 0.27833

games 0.001507 0.03285 0.04876 0.06453 0.09668

wait 0.079481 0.12629 0.15060 0.17602 0.22353

clean 0.233243 0.27832 0.30218 0.32581 0.37076

logdist -0.010923 0.01539 0.02885 0.04262 0.06869

has.childTRUE 0.910071 0.96896 0.99857 1.02800 1.08498

wait:has.childTRUE 0.261291 0.31780 0.34720 0.37724 0.43211

sigma2 0.179781 0.19454 0.20311 0.21213 0.23094

What does this tell us? The important thing to understand is that MCMCregress()
has drawn 10000 samples from the estimated distribution of possible coefficients for
model m7. It then describes those 10000 sets of estimates in two ways: using central
tendency statistics (mean and standard deviation, in the output section labeled “1.”),
and again using distribution quantiles (in output section “2.”).

We can compare the values to those from lm() in Sect. 7.5 above. There, we
saw that rides had an estimated coefficient of 0.2126; here the mean of the
Bayesian estimates is 0.2126 and the median is 0.2129. Similarly, lm() estimated
wait:has.child as 0.9983; themeanBayesian estimate is 0.9984 and themedian
is 0.9986. The coefficients estimated by the classical and Bayesian models are nearly
identical.

Despite the similar model coefficients, there are two notable differences between this
output and the output from lm(). First, it includes 2. Quantiles ... because
the Bayesian posterior distribution may be asymmetric; the distribution of estimates
could be skewed.

Second, theBayesian output does not include statistical tests or p-values; null hypoth-
esis tests are not emphasized in theBayesian paradigm. Instead, to determinewhether
a parameter is likely to be non-zero (or to compare it to any other value), check the
2.5 and 97.5 %’iles and directly interpret the credible interval. For instance, in the
quantiles above, the 2.5–97.5%’iles for logdist range (−0.01092, 0.06869) and
we conclude that the coefficient for logdist is not credibly different from 0 at a
level of 95% confidence. However, all of the other coefficients are different from
zero.

Note that MCMCregress() is similar to lmBF() in the BayesFactor pack-
age that we used in Sect. 6.6. Both functions produce draws from the posterior of
a linear model, which you can then summarize using the summary(). We used
MCMCregress() here because lmBF() does not estimate interaction coefficients
(at the time of writing). It is common in R that different packages do similar things,
yet may be better or worse for a specific problem.

7.5 Interaction Terms 185

If the Bayesian estimates are so similar to those from lm(), what is the advantage?
The results here are similar for two reasons. First, we have plenty of data and a
well-behaved model. Second, classical methods such as lm() are eminently suited
to estimation of linear models. In Chap.9 we examine hierarchical Bayesian models,
in which more advantages of the Bayesian approach emerge; we later continue that
investigation with choice models in Chap.13.

We also believe, as noted in Sect. 6.6.1, that inferences such as hypothesis testing are
clearer and more interpretable in the Bayesian approach. In fitting models, it is not
always the case that classical and Bayesian estimates are so similar, and when they
differ, we are more inclined to trust the Bayesian estimates.

7.6 Key Points

There are many applications for linear models in marketing: satisfaction drivers
analysis, advertising response modeling, customer churn modeling, and so forth.
Although these use different kinds of data, they are all implemented in similar ways
inR. The following points are some of the important considerations for such analyses.
We also summarized the basic process of linear modeling in Sect. 7.5.3.

• Linear models relate continuous scale outcome variables to predictors by find-
ing a straight line that best fits the points. A basic linear model function in
R is lm(formula, data). lm() produces an object that can be used with
plot(), summary(), predict(), and other functions to inspect the model
fit and estimates of the coefficients.

• Before modeling, it is important to check the data quality and the distribution of
values on each variable. For distributions, approximately normal distributions are
generally preferred, and data such as counts and revenue often need to be trans-
formed. Also check that variables do not have excessive correlation (Sect. 7.2.1).

• To interpret coefficients on a standardized scale, such that they are comparable to
one another, you will either need predictors that are on identical scales or that have
been standardized to be on a uniform scale. The most common standardization is
conversion to units of standard deviation, performed by scale() (Sect. 7.3.3).

• A linear model assumes that the relationship between predictors and an outcome
is linear and that errors in fit are symmetric with similar variability across their
range (a property known as homoskedasticity). Results may be misleading when
these assumptions do not match the data. plot() of a model can help you assess
whether these assumptions are reasonable for your data (Sect. 7.2.5.)

• The summary() function for lm objects provides output that analysts review
most frequently, reporting model coefficients along with their standard errors and
p-values for hypothesis tests assessing whether the coefficients differ from zero
(Sect. 7.2.4)

186 7 Identifying Drivers of Outcomes: Linear Models

• Factor variables may be included in a model simply by adding the name of the
factor to the model formula. R automatically converts the factor into dummy-
coded 0/1 values for each level. You must check the direction shown in the output
to ensure you interpret these correctly (Sect. 7.4).

• An interaction is a predictor that is the product of two other predictors, and thus
assesses the degree to which the predictors reinforce (or cancel) one another. You
can model an interaction between x and y by including x:y in a model formula
(Sect. 7.5).

• Model building is the process of adding and removing predictors from a model to
find a set of predictors that fits the data well. We can compare the fit of different
models using the R-squared value or, if models are nested (see Sect. 6.5) by using
the more formal ANOVA test (anova()) (Sect. 7.3.1).

• You can fit a Bayesian version of a linear model using MCMCregress() from
the MCMCpack package. The usage is nearly identical to lm(). The resulting
coefficient estimates are assessed as expressing the most likely values (known as
credible intervals) under the assumption that the model is appropriate (Sect. 7.5.4).

• We recommend to interpret coefficients in terms of their estimated ranges, such
as confidence intervals in the case of lm() (Sect. 7.2.4) or credible intervals from
Bayesian estimates (Sect. 7.5.4). A plot of the coefficient ranges for lm objects
can be created with the coefplot package (Sect. 7.3).

7.7 Data Sources

This kind of data we considered in this chapter usually comes from a consumer
survey written in a survey platform such as Qualtrics or SurveyMonkey and hosted
online. A respondent sample might be obtained by asking customers exiting the park
to answer the survey on a tablet, by sending bulk mail to an existing list of known
customers (from a customer database) or to an email list otherwise collected online
(such as visitors who “sign up for our newsletter”), or by surveying an online panel
of respondents managed by a third party research supplier.

There are several important considerations for data quality with surveys. One set of
issues concerns sample quality; the respondentsmay be biased due to list composition
(for example, surveying only customers who are willing to stop on their way out of
the park), channel bias (if you send the survey by email, you don’t reach people
who do not use email), non-response bias (different groups may respond at different
rates), and other factors. Another set of issues relates to the reliability and construct
validity of the items you pose (see Sects. 8.3 and 10.2).

It is also important to consider the overall survey experience, and the clarity and
usability of its individual items. If your respondents do not understand the questions
in theway you intended, the results can be difficult to interpret. A common example is
a question about a customer’s likelihood to recommend a product, as used to compute
the popular “Net Promoter Score.” If customers say they would not recommend a

7.7 Data Sources 187

product, is that because they don’t like the product or because they would not discuss
the product with friends? For more on survey design issues, see Callegaro,Manfreda,
and Vehovar (2015) and Callegaro et al, eds. (2014) [27, 28].

7.8 Learning More*

In this chapter we’ve given an overview of linear modeling in R and its application
to satisfaction drivers analysis. The same modeling approach could be applied to
many other marketing applications, such as advertising response (or marketing mix)
modeling [20], customer retention (or churn) modeling, and pricing analysis.

We covered traditional linear models in this chapter, which relate continuous or near-
continuous outcomes to predictors. Other models apply in cases where the variables
are different in structure, such as binary outcomes or counts. However, the process
of estimating those is similar to the steps here. Such models include poisson and
binomial regression model for outcomes that are counts, hazard regression for event
occurrence (also known as timing regression or survival modeling), and logistic
regression for binary outcomes (see Sect. 9.2). R covers all of these models with the
generalized linear model (GLM) framework, an elegant way of representing many
families of models, and such models can be estimated with the glm() function.
To learn more about generalized models, consult an introduction to GLM such as
Dobson and Barnett (2018) [43].

In our synthetic satisfaction drivers data, hypothetical customers rated satisfaction
on a 100-point scale, making it reasonable for us to analyze the data as if the ratings
were continuous. However, many survey studies collect ratings on a 5- or 7- point
scale, which may be questionable to fit with a linear model. Although many analysts
use lm() for outcomes on 5- or 7-point scales, an alternative is a cut-point model,
such as an ordered logit or probit model. Such a model will fit the data better and
won’t make nonsensical predictions like a rating of 6.32 on a 5-point scale (as lm()
might). These models can be fit with the polr() function from the MASS package
[192].

A more sophisticated model for ordinal ratings data is a Bayesian scale-usage het-
erogeneity model, as described by Rossi, Allenby and McCullough (2005) [168].
This models that different customers (and cultures) may use scales in different ways;
some customers may give systematically higher or lower scores than others due to
differences in interpreting the rating scale. When this is modeled, it is possible to
find a better estimate of the underlying satisfaction levels. A Bayesian estimation
procedure for such models is implemented in the bayesm package [167].

In this chapter,we usedmodels inwhich an effect has uniform influence. For example,
we assumed that the effect of satisfaction with cleanliness is a single influence that
is the same for every respondent (or, more precisely, whose average influence is
the same, apart from random individual variation). You might instead consider a

188 7 Identifying Drivers of Outcomes: Linear Models

model in which the effect varies for different people, with both a group-level and an
individual-level effect, known as a hierarchicalmodel.We examine ways to estimate
individual-level effects using hierarchical models in Chap. 9.

Finally, many data sets have variables that are highly correlated (known as collinear-
ity), and this can affect the stability and trustworthiness of linearmodeling. InSect. 9.1
we introduce additional ways to check for collinearity and strategies to mitigate it.
One approach is to reduce the number of dimensions under consideration by extract-
ing underlying patterns from the correlated variables; we review such principal com-
ponent and factor analytic procedures in Chap.8.

7.9 Exercises

7.9.1 Simulated Hotel Satisfaction and Account Data

For these and some later exercises, we use a simulated dataset for a hotel. The data
combine customers’ responses to a satisfaction surveywith basic account information
from their hotel stays. These are the sort of data that you might acquire from an email
survey is sent to users, where an disguised identifier links the surveys responses to
account data. Another common source of similar data is an online system where
a pop-up survey asks satisfaction questions, and the answers can be related to the
user’s account (the real data set referenced in Sect. 3.8.1 is an example).

To access the hotel data set, load the data from CSV format online as follows, or load
froma local location as filehotelsat-data.csv if you have already downloaded
it (see Sect. 1.6.3).

> hotel.df <- read.csv("https://goo.gl/oaWKgt")

> summary(hotel.df)

These data include 18 items asking about satisfaction with various aspects of the
hotel (cleanliness, dining experience, staff, satisfaction with elite status perks, and
so forth), each on a 7 point rating scale. (In reality, we would rarely recommend
asking 18 separate satisfaction items! However, we will use all of them for some
investigations in later chapters.) In addition to the survey responses, the data include
each respondent’s corresponding number of nights stayed at the hotel, the distance
traveled, reason for visiting, their elite membership level, and the average amounts
spent per night on the room, dining, and WiFi.

7.9.2 Exercises

1. Visualize the distributions of the variables in the hotelsatisfaction data. Are
there variables that might be understood better if they are transformed? Which

7.9 Exercises 189

variables and what transforms would you apply? (Suggestion: for efficiency, it
may help to divide the data set into smaller sets of similar variables.)

2. What are the patterns of correlations in the data? Briefly summarize any patterns
you observe, in 2–4 sentences.

3. Consider just the three items for cleanliness (satCleanRoom, satClean
Bath, and satCleanCommon). What are the correlation coefficients among
those items? Is there a better measure than Pearson’s r for those coefficients, and
why? Does it make a difference in these data? (Consider the notes in Sect. 4.5.)

4. Management wants to know whether satisfaction with elite membership perks
(satPerks) predicts overall satisfaction (satOverall). Assume that sat
Perks is a predictor and we want to know how satOverall is associated
with changes in it. How do you interpret the relationship?

5. We might wish to control the previous satPerks model for other influences,
such as satisfaction with the Front Staff (satFrontStaff) and with the city
location (satCity). How do you change the previous model to do this? Model
and interpret the result. Is the answer different than in themodel with only Perks?
Why or why not?

6. Suppose we have a business strategy to maximize satisfaction with elite recogni-
tion (satRecognition) among our Gold and Platinum elite members. To do
so, we might invest more in the front staff, room cleanliness, the points that we
award elite members, or the membership perks given to them. Which of those
strategies might we want to consider first, according to these data, if we wish to
increase Gold and Platinum member satisfaction with elite recognition?

7. What are some problems with using the present data to answer that strategic
question? What data would you need to give a better answer?

8. Considering the results in the previous question, would you recommend to invest
more in room cleanliness? Why or why not?

9. Now we are examining ways to improve revenue in the restaurant. Manage-
ment wants to understand the relationship of average food spend per night with
elite status (eliteStatus) and satisfaction with food price (satDiningPrice).
Model this and interpret it.

10. Howdoes satisfaction relate to spending in our restaurant?On one side, wemight
expect dining satisfaction to be higher when food costs less, because customers
are often happy about lower prices. However, we might also expect the exact
opposite relationship, where satisfied diners spend more. Which relationship is
better supported by these data?

11. Plot the predicted food spend per night in dollars, as a function of nights stayed.
(Suggestion: fit a linear model with one predictor.) In our data, no one stayed
40 nights. But if someone had, what would be a good guess as to their average
food spend per night?

12. Is the association between nights spent and spending on food different among
Platinum elite members? Visualize the difference. What does this suggest for
a restaurant strategy? Is this consistent with findings in the previous models
(Exercises9–11 above)?

190 7 Identifying Drivers of Outcomes: Linear Models

13. Fit the elite recognition model (Exercise6 above) using Bayesian regression.
Which variables are most associated with members’ satisfaction with recogni-
tion?

14. How do those Bayesian coefficient estimates compare to the classical linear
model estimates in Exercise6? Visualize the relationship among the coefficients
from each. What is the correlation coefficient?

15. Which model do you prefer, classical or Bayesian? Why?

Part III
Advanced Marketing Applications

Chapter 8
Reducing Data Complexity

Marketing data sets often have many variables—many dimensions—and it is
advantageous to reduce these to smaller sets of variables to consider. For instance, we
might have many items on a consumer survey that reflect a smaller number of under-
lying concepts such as customer satisfactionwith a service, category leadership for a
brand, or luxury for a product. If we can reduce the data to its underlying dimensions,
we can more clearly identify the underlying relationships among concepts.

In this chapter we consider three common methods to reduce data complexity by
reducing the number of dimensions in the data. Principal component analysis (PCA)
attempts to find uncorrelated linear dimensions that capture maximal variance in
the data. Exploratory factor analysis (EFA) also attempts to capture variance with a
small number of dimensions while seeking to make the dimensions interpretable in
terms of the original variables. Multidimensional scaling (MDS) maps similarities
among observations in terms of a low-dimension space such as a two-dimensional
plot. MDS can work with metric data and with non-metric data such as categorical
or ordinal data.

In marketing, PCA is often associated with perceptual maps, which are visualiza-
tions of respondents’ associations among brands or products. In this chapter we
demonstrate perceptual maps for brands using principal component analysis. We
then look at ways to draw similar perceptual inferences from factor analysis and
multidimensional scaling.

8.1 Consumer Brand Rating Data

We investigate dimensionality using a simulated data set that is typical of consumer
brand perception surveys. This data reflects consumer ratings of brands with regard
to perceptual adjectives as expressed on survey items with the following form:

© Springer Nature Switzerland AG 2019
C. Chapman and E. M. Feit, R For Marketing Research and Analytics, Use R!,
https://doi.org/10.1007/978-3-030-14316-9_8

193

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14316-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-14316-9_8

194 8 Reducing Data Complexity

On a scale from 1 to 10—where 1 is least and 10 is most—how [ADJECTIVE] is [BRAND
A]?

In this data, an observation is one respondent’s rating of a brand on one of the
adjectives. Two such items might be:

1. How trendy is Intelligentsia Coffee?
2. How much of a category leader is Blue Bottle Coffee?

Such ratings are collected for all the combinations of adjectives and brands of interest.

The data here comprise simulated ratings of 10 brands (“a” to “j”) on 9 adjec-
tives (“performance,” “leader,” “latest,” “fun,” and so forth), for N = 100 simulated
respondents. The data set is provided on this book’s web site. We start by loading
and checking the data:

> brand.ratings <- read.csv("http://goo.gl/IQl8nc")
> head(brand.ratings)

perform leader latest fun serious bargain value trendy rebuy brand
1 2 4 8 8 2 9 7 4 6 a
2 1 1 4 7 1 1 1 2 2 a
...
> tail(brand.ratings)
...
999 1 1 7 5 1 1 2 5 1 j
1000 7 4 7 8 4 1 2 5 1 j

Each of the 100 simulated respondents has observations data on each of the 10 brands,
so there are 1000 total rows. We inspect the summary() and str() to check the
data quality and structure:

> summary(brand.ratings)
perform leader latest fun

Min . : 1.000 Min . : 1.000 Min . : 1.000 Min . : 1.000
1st Qu .: 1.000 1 st Qu .: 2.000 1 st Qu .: 4.000 1 st Qu .: 4.000
Median : 4.000 Median : 4.000 Median : 7.000 Median : 6.000

...
> str(brand.ratings)
’data.frame’: 1000 obs. of 10 variables:
...
$ rebuy : int 6 2 6 1 1 2 1 1 1 1 ...
$ brand : Factor w/ 10 levels "a","b","c","d" ,..: 1 1 1 1 1 1 1 1 1 1 ...

We see in summary() that the ranges of the ratings for each adjective are 1–10. In
str(), we see that the ratings were read as numeric while the brand labels were
properly interpreted as factors. In short, the data appear to be clean and formatted
appropriately.

There are nine perceptual adjectives in this data set. Table8.1 lists the adjectives and
the kind of survey text that they might reflect.

8.1.1 Rescaling the Data

It is often good practice to rescale raw data. This makes data more comparable
across individuals and samples. A common procedure is to center each variable by
subtracting itsmean from every observation, and then rescaling those centered values

8.1 Consumer Brand Rating Data 195

Table 8.1 Adjectives in the brand.rating data and examples of survey text that might be used
to collect rating data

Perceptual adjective (column name) Example survey text

Perform Brand has strong performance

Leader Brand is a leader in the field

Latest Brand has the latest products

Fun Brand is fun

Serious Brand is serious

Bargain Brand products are a bargain

Value Brand products are a good value

Trendy Brand is trendy

Rebuy I would buy from Brand again

as units of standard deviation. This is commonly called standardizing, normalizing,
or Z scoring the data (Sect. 7.3.3).

In R, data could be standardized in this way with a mathematical expression using
mean() and sd():
> x <- 1:1000
> x.sc <- (x - mean(x)) / sd(x)
> summary(x.sc)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.7290 -0.8647 0.0000 0.0000 0.8647 1.7290

As we saw in Sect. 7.3.3, a simpler way is to use scale() to rescale all variables
at once. We never want to alter raw data, so we assign the raw values first to a new
data frame brand.sc and alter that:
> brand.sc <- brand.ratings
> brand.sc[, 1:9] <- data.frame(scale(brand.ratings [, 1:9]))
> summary(brand.sc)

perform leader latest fun
Min . : -1.0888 Min . : -1.3100 Min . : -1.6878 Min . : -1.84677
1st Qu .: -1.0888 1 st Qu .: -0.9266 1 st Qu .: -0.7131 1 st Qu.: -0.75358
Median : -0.1523 Median : -0.1599 Median : 0.2615 Median : -0.02478
Mean : 0.0000 Mean : 0.0000 Mean : 0.0000 Mean : 0.00000
3rd Qu .: 0.7842 3 rd Qu .: 0.6069 3 rd Qu .: 0.9113 3 rd Qu .: 0.70402
Max . : 1.7206 Max . : 2.1404 Max . : 1.2362 Max . : 1.43281

...

We add data.frame() around scale() to clean up the resulting object for
simplicity, removing information about the scaling process. We name the new data
frame with extension “.sc” to remind ourselves that observations have been scaled.
We operate on columns 1–9 because the 10th column is a factor variable for brand.
We see that the mean of each adjective is correctly 0.00 across all brands because the
data is rescaled. Observations on the adjectives have a spread (difference between
min and max) of roughly 3 standard deviation units. This means the distributions are
platykurtic, flatter than a standard normal distribution, because we would expect a
range of more than 4 standard deviation units for a sample of this size. (Platykurtosis
is a common property of survey data, due to floor and ceiling effects.)

196 8 Reducing Data Complexity

Fig. 8.1 Correlation plot for
the simulated consumer
brand ratings. This
visualization of the basic
data appears to show three
general clusters that
comprise fun/latest/trendy,
rebuy/bargain/value, and
perform/leader/serious
respectively

We use corrplot() for initial inspection of bivariate relationships among the
variables:
> library(corrplot)
> corrplot(cor(brand.sc[, 1:9]) , order="hclust")

As before, we plot columns 1–9 because the 10th column is the non-numeric brand
label. In corrplot(), the argument order="hclust" reorders the rows and
columns according to variables’ similarity in a hierarchical cluster solution (see
Sect. 11.3.2 for more on hierarchical clustering). The result is shown in Fig. 8.1,
where we see that the ratings seem to group into three clusters of similar variables,
a hypothesis we examine in detail in this chapter.

8.1.2 Aggregate Mean Ratings by Brand

Perhaps the simplest business question in these data is: “What is the average (mean)
positionof the brandon each adjective?”Wecanuseaggregate() (seeSects. 3.4.5
and 5.2.1) to find the mean of each variable by brand:

> brand.mean <- aggregate (. ∼ brand , data=brand.sc , mean)
> brand.mean

brand perform leader latest fun serious bargain
1 a -0.88591874 -0.5279035 0.4109732 0.6566458 -0.91894067 0.21409609
2 b 0.93087022 1.0707584 0.7261069 -0.9722147 1.18314061 0.04161938
...

Before proceeding, we perform a bit of housekeeping on the new brand.mean
object. We name the rows with the brand labels that aggregate() put into the
brand column, and then we remove that column as redundant:
> rownames(brand.mean) <- brand.mean [, 1] # use brand for the row names
> brand.mean <- brand.mean [, -1] # remove brand name column

8.1 Consumer Brand Rating Data 197

Fig. 8.2 A heatmap for the
mean of each adjective by
brand. Brands f and g are
similar—with high ratings
for rebuy and value but low
ratings for latest and fun.
Other groups of similar
brands are b/c, i/h/d, and a/j

The resultingmatrix is now nicely formatted with brands by row and adjective means
in the columns:
> brand.mean

perform leader latest fun serious bargain
a -0.88591874 -0.5279035 0.4109732 0.6566458 -0.91894067 0.21409609
b 0.93087022 1.0707584 0.7261069 -0.9722147 1.18314061 0.04161938
...

A heatmap is a useful way to examine such results because it colors data points by
the intensities of their values. We use heatmap.2() from the gplots package
[193] with colors from the RColorBrewer package [148] (install those if you need
them):
> library(gplots)
> library(RColorBrewer)
> heatmap .2(as.matrix(brand.mean),
+ col=brewer.pal(9, "GnBu"), trace="none", key=FALSE , dend="none",
+ main="\n\n\n\n\nBrand attributes")

heatmap.2() is a complex function. In the code above, we coerce brand.mean
to be a matrix as heatmap.2() expects. We color the map using greens and blues
from RColorBrewer’s “GnBu” palette and turn off a few options that otherwise
clutter the heatmap (trace, key, and dendrogram). We improve title alignment
by adding blank lines with \n before the title text.

The resulting heatmap is shown in Fig. 8.2. In this chart’s green-to-blue ("GnBu")
palette a green color indicates a low value and dark blue indicates a high value; lighter
colors are for values in the middle of the range. The brands are clearly perceived
differently with some brands rated high on performance and leadership (brands b and
c) and others rated high for value and intention to rebuy (brands f and g). By default,
heatmap.2() sorts the columns and rows in order to emphasize similarities and
patterns in the data, which is why the rows and columns in Fig. 8.2 are ordered in an
unexpected way. It does this using a form of hierarchical clustering (see Sect. 11.3.2).

Looking at Figs. 8.1 and 8.2 we could guess at the groupings and relationships of
adjectives and brands. For example, there is similarity in the color pattern across
columns for the bargain/value/rebuy; a brand that is high on one tends to be high on
another. But it is better to formalize such insight, and the remainder of this chapter
discusses how to do so.

198 8 Reducing Data Complexity

8.2 Principal Component Analysis and Perceptual Maps

Principal Component Analysis (PCA) recomputes a set of variables in terms of linear
equations, known as components, that capture linear relationships in the data [108].
The first component captures as much of the variance as possible from all variables
as a single linear function. The second component captures as much variance as
possible that remains after the first component. This continues until there are as many
components as there are variables. We can use this process to reduce data complexity
by then retaining and analyzing only a subset of those components—such as the first
one or two components—that explain a large proportion of the variation in the data.

8.2.1 PCA Example

We explore PCA first with a simple data set to see and develop intuition about what
is happening. We create highly correlated data by copying a random vector xvar
to a new vector yvar while replacing half of the data points. Then we repeat that
procedure to create zvar from yvar:

> set.seed (98286)
> xvar <- sample (1:10 , 100 , replace=TRUE)
> yvar <- xvar
> yvar[sample (1: length(yvar) , 50)] <- sample (1:10 , 50 , replace=TRUE)
> zvar <- yvar
> zvar[sample (1: length(zvar) , 50)] <- sample (1:10 , 50 , replace=TRUE)
> my.vars <- cbind(xvar , yvar , zvar)

yvar will be correlated with xvar because 50 of the observations are identical
while 50 are newly sampled random values. Similarly, zvar keeps 50 values from
yvar (and thus also inherits some from xvar, but fewer). We compile those three
vectors into a matrix.

We check one of the three possible bivariate plots along with the correlation matrix.
If we simply plotted the raw data, there would be many overlapping values because
the responses are discrete (integers 1–10). To separate and visualize multiple points
with the same values, we jitter() them (Sect. 4.6.1):
> plot(yvar ∼ xvar , data=jitter(my.vars))
> cor(my.vars)

xvar yvar zvar
xvar 1.0000000 0.5969717 0.2496469
yvar 0.5969717 1.0000000 0.5231468
zvar 0.2496469 0.5231468 1.0000000

The bivariate plot in Fig. 8.3 shows a clear linear trend for yvar versus xvar on
the diagonal. In the correlation matrix, xvar correlates highly with yvar and less
so with zvar, as expected, and yvar has strong correlation with zvar (using the
rules of thumb from Sect. 4.5).

Using intuition, what would we expect the components to be from this data? First,
there is shared variance across all three variables because they are positively corre-
lated. So we expect to see one component that picks up that association of all three

8.2 Principal Component Analysis and Perceptual Maps 199

Fig. 8.3 Scatterplot of
correlated data with discrete
values, using jitter() to
separate the values slightly
for greater visual impact of
overlapping points

variables. After that, we expect to see a component that shows that xvar and zvar
are more differentiated from one another than either is from yvar. That implies that
yvar has a unique position in the data set as the only variable to correlate highly
with both of the others, so we expect one of the components to reflect this uniqueness
of yvar.

Let’s check the intuition. We use prcomp() to perform PCA:
> my.pca <- prcomp(my.vars)
> summary(my.pca)
Importance of components:

PC1 PC2 PC3
Standard deviation 3.9992 2.4381 1.6269
Proportion of Variance 0.6505 0.2418 0.1077
Cumulative Proportion 0.6505 0.8923 1.0000

There are 3 components because we have 3 variables. The first component accounts
for 65%of the explainable linear variance,while the second accounts for 24%, leaving
11% for the third component. How are those components related to the variables?
We check the rotation matrix, which is helpfully printed by default for a PCA object:
> my.pca
Standard deviations:
[1] 3.999154 2.438079 1.626894

Rotation:
PC1 PC2 PC3

xvar -0.6156755 0.63704774 0.4638037
yvar -0.6532994 -0.08354009 -0.7524766
zvar -0.4406173 -0.76628404 0.4676165

Interpreting PCA rotation loadings is difficult because of the multivariate nature—
factor analysis is a better procedure for interpretation, as we will see later in this
chapter—but we examine the loadings here for illustration and comparison to our
expectations. In component 1 (PC1) we see loading on all 3 variables as expected
from their overall shared variance (the negative direction is not important; the key is
that they are all in the same direction).

In component 2, we see that xvar and zvar are differentiated from one another as
expected, with loadings in opposite directions. Finally, in component 3, we see resid-

200 8 Reducing Data Complexity

ual variance that differentiates yvar from the other two variables and is consistent
with our intuition about yvar being unique.

In addition to the loading matrix, PCA has computed scores for each of the principal
components that express the underlying data in terms of its loadings on those com-
ponents. Those are present in the PCA object as the $x matrix, where the columns
([, 1], [, 2], and so forth) may be used to obtain the values of the compo-
nents for each observation. We can use a small number of those columns in place of
the original data to obtain a set of observations that captures much of the variation
in the data.

A less obvious feature of PCA, but implicit in the definition, is that extracted PCA
components are uncorrelated with one another, because otherwise there would be
more linear variance that could have been captured. We see this in the scores
returned for observations in a PCA model, where the off-diagonal correlations are
effectively zero (approximately 10−15 as shown in R’s scientific notation):

> cor(my.pca$x) # components have zero correlation
PC1 PC2 PC3

PC1 1.000000e+00 4.808932e -16 1.768720e-15
PC2 4.808932e -16 1.000000e+00 -1.174441e-15
PC3 1.768720e -15 -1.174441e -15 1.000000e+00

8.2.2 Visualizing PCA

A good way to examine the results of PCA is to map the first few components, which
allows us to visualize the data in a lower-dimensional space. A common visualization
is a biplot, a two-dimensional plot of data points with respect to the first two PCA
components, overlaid with a projection of the variables on the components. We use
biplot() to generate this:

> biplot(my.pca)

The result is Fig. 8.4, where every data point is plotted (and labeled by row number)
according to its values on the first two components. Such plots are especially helpful
when there are a smaller number of points (as we will see below for brands) or when
there are clusters (as we see in Chap.11).

In Fig. 8.4, there are arrows that show the best fit of each of the variables on the
principal components—a projection of the variables onto the 2-dimensional space
of the first two PCA components, which explain a large part of the variation in the
data. These are useful to inspect because the direction and angle of the arrows reflect
the relationship of the variables; a closer angle indicates higher positive association,
while the relative direction indicates positive or negative association of the variables.

In the present case, we see in the variable projections (arrows) that yvar is closely
aligned with the first component (X axis). In the relationships among the variables
themselves, we see that xvar and zvar are more associated with yvar, relative to

8.2 Principal Component Analysis and Perceptual Maps 201

Fig. 8.4 A biplot() of a
principal component analysis
solution for the simple,
constructed example,
showing data points plotted
on the first two components

the principal components, than either is with the other. Thus, this visually matches
our interpretation of the correlation matrix and loadings above.

By plotting against principal components, a biplot benefits from the fact that com-
ponents are uncorrelated; this helps to disperse data on the chart because the x- and
y-axes are independent. When there are several components that account for sub-
stantial variance, it is also useful to plot components beyond the first and second.
This can be done with the choices argument to biplot().

8.2.3 PCA for Brand Ratings

Let’s look at the principal components for the brand rating data (refer to Sect. 8.1
above if you need to load the data). We find the components with prcomp(),
selecting just the rating columns 1–9:

> brand.pc <- prcomp(brand.sc[, 1:9])
> summary(brand.pc)
Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7
Standard deviation 1.726 1.4479 1.0389 0.8528 0.79846 0.73133 0.62458 ...
Proportion of Variance 0.331 0.2329 0.1199 0.0808 0.07084 0.05943 0.04334 ...
Cumulative Proportion 0.331 0.5640 0.6839 0.7647 0.83554 0.89497 0.93831 ...

The default plot() for a PCA is a scree plot, which shows the successive proportion
of additional variance that each component adds. We plot this as a line chart using
type="l" (lower case “L” for line):
> plot(brand.pc , type="l")

The result is Fig. 8.5. A scree plot is often interpreted as indicating where additional
components are not worth the complexity; this occurs where the line has an elbow,
a kink in the angle of bending, a somewhat subjective determination. In Fig. 8.5,

202 8 Reducing Data Complexity

Fig. 8.5 A scree plot() of
a PCA solution shows the
successive variance
accounted by each
component. For the brand
rating data, the proportion
largely levels out after the
3rd component

Fig. 8.6 A biplot of an
initial attempt at principal
component analysis for
consumer brand ratings.
Although we see adjective
groupings on the variable
loading arrows in red, and
gain some insight into the
areas where ratings cluster
(as dense areas of
observation points), the chart
would be more useful if the
data were first aggregated by
brand

the elbow occurs at either component 3 or 4, depending on interpretation; and this
suggests that the first 2 or 3 components explain most of the variation in the observed
brand ratings.

A biplot() of the first two principal components—which biplot() selects by
default for a PCA object—reveals how the rating adjectives are associated:

> biplot(brand.pc)

Wesee the result in Fig. 8.6,where adjectivesmap in four regions: category leadership
(“serious,” “leader,” and “perform” in the upper right), value (“rebuy,” “value,” and
“bargain”), trendiness (“trendy” and “latest”), and finally “fun” on its own.

But there is a problem: the plot of individual respondents’ ratings is too dense and it
does not tell us about the brand positions! A better solution is to perform PCA using
aggregated ratings by brand. First we remind ourselves of the data that compiled the
mean rating of each adjective by brand as we found above using aggregate()(see
Sect. 8.1). Then we extract the principal components:

> brand.mean
perform leader latest fun serious bargain

a -0.88591874 -0.5279035 0.4109732 0.6566458 -0.91894067 0.21409609
b 0.93087022 1.0707584 0.7261069 -0.9722147 1.18314061 0.04161938

8.2 Principal Component Analysis and Perceptual Maps 203

...
> brand.mu.pc <- prcomp(brand.mean , scale=TRUE)
> summary(brand.mu.pc)
Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7
Standard deviation 2.1345 1.7349 0.7690 0.61498 0.50983 0.36662 0.21506
Proportion of Variance 0.5062 0.3345 0.0657 0.04202 0.02888 0.01493 0.00514
Cumulative Proportion 0.5062 0.8407 0.9064 0.94842 0.97730 0.99223 0.99737
...

In the call to prcomp(), we added scale=TRUE in order to rescale the data; even
though the raw data was already rescaled, the aggregated means have a somewhat
different scale than the standardized data itself. The results show that the first two
components account for 84% of the explainable variance in the mean ratings, so we
focus on interpreting results with regards to them.

8.2.4 Perceptual Map of the Brands

A biplot of the PCA solution for the mean ratings gives an interpretable perceptual
map, showing where the brands are placed with respect to the first two principal
components. We use biplot() on the PCA solution for the mean rating by brand:

> biplot(brand.mu.pc , main="Brand positioning", cex=c(1.5 , 1))

We plot the brand labels with a 50% larger font using the character expansion argu-
ment cex=c(1.5, 1). The result is Fig. 8.7.

Before interpreting the new map, we first check that using mean data did not greatly
alter the structure. Figure8.7 shows a different spatial rotation of the adjectives,
compared to Fig. 8.6, but the spatial position is arbitrary and the new map has the
same overall grouping of adjectives and relational structure (for instance, seeing as
in Fig. 8.6 that “serious” and “leader” are closely related while “fun” is rather distant
from other adjectives). Thus the variable positions on the components are consistent
with PCA on the full set of observations, and we go ahead to interpret the graphic.

What does the map tell us? First we interpret the adjective clusters and relationships
and see four areas with well-differentiated sets of adjectives and brands that are
positioned in proximity. Brands f and g are high on “value,” for instance, while a
and j are relatively high on “fun,” which is opposite in direction from leadership
adjectives (“leader” and “serious”).

With such a map, one might form questions and then refer to the underlying data to
answer them. For instance, suppose that you are the brandmanager for brand e. What
does the map tell you? For one thing, your brand is in the center and thus appears
not to be well-differentiated on any of the dimensions. That could be good or bad,
depending on your strategic goals. If your goal is to be a safe brand that appeals to
many consumers, then a relatively undifferentiated position like e could be desirable.
On the other hand, if you wish your brand to have a strong, differentiated perception,
this finding would be unwanted (but important to know).

204 8 Reducing Data Complexity

Fig. 8.7 A perceptual map
of consumer brands with
biplot() for aggregate
mean rating by brand. This
shows components almost
identical to those in Fig. 8.6
(although spatially rotated)
but the mean brand positions
are clear

What should you do about the position of your brand e? Again, it depends on the
strategic goals. If you wish to increase differentiation, one possibility would be to
take action to shift your brand in some direction on the map. Suppose you wanted to
move in the direction of brand c. You could look at the specific differences from c
in the data:
> brand.mean["c" ,] - brand.mean["e" ,]

perform leader latest fun serious bargain value ...
c 1.214314 0.9699315 -0.5587936 -1.140567 1.180621 -1.158594 -0.8588416 ...

This shows you that e is relatively stronger than c on “value” and “fun”, which
suggests dialing down messaging or other attributes that reinforce those (assuming,
of course, that you truly want to move in the direction of c). Similarly, c is stronger
on “perform” and “serious,” so those could be aspects of the product or message for
e to strengthen.

Another option would be not to follow another brand but to aim for differentiated
space where no brand is positioned. In Fig. 8.7, there is a large gap between the group
b and c on the bottom of the chart, versus f and g on the upper right. This area might
be described as the “value leader” area or similar.

How do we find out how to position there? Let’s assume that the gap reflects approx-
imately the average of those four brands (see Sect. 8.2.5 for some of the risks with
this assumption). We can find that average using colMeans() on the brands’ rows,
and then take the difference of e from that average:
> colMeans(brand.mean[c("b", "c", "f", "g") ,]) - brand.mean["e" ,]

perform leader latest fun serious bargain value
e 1.174513 0.3910396 -0.9372789 -0.9337707 0.5732131 -0.2502787 0.07921355
...

This suggests that brand e could target the gap by increasing its emphasis on perfor-
mance while reducing emphasis on “latest” and “fun.”

8.2 Principal Component Analysis and Perceptual Maps 205

To summarize, when you wish to compare several brands across many dimensions,
it can be helpful to focus on just the first two or three principal components that
explain variation in the data. You can select how many components to focus on
using a scree plot, which shows how much variation in the data is explained by each
principal component. A perceptual map plots the brands on the first two principal
components, revealing how the observations related to the underlying dimensions
(the components).

PCA may be performed using survey ratings of the brands (as we have done here) or
with objective data such as price and physical measurements, or with a combination
of the two. In any case, when you are confronted with multidimensional data on
brands or products, PCA visualization is a useful tool for understanding how they
differ from one another in the market.

8.2.5 Cautions with Perceptual Maps

There are three important caveats in interpreting perceptual maps. First, you must
choose the level and type of aggregation carefully. We demonstrated the maps using
mean rating bybrand, but dependingon the data andquestion at hand, itmight bemore
suitable to usemedian (for ordinal data) or evenmodal response (for categorical data).
You should check that the dimensions are similar for the full data and aggregated
data before interpreting aggregate maps. You can do this by examining the variable
positions and relationships in biplots of both aggregated data (such as means) and
raw data (or a random subset of it), as we did above.

Second, the relationships are strictly relative to the product category and the brands
and adjectives that are tested. In a different product category, or with different brands,
adjectives such as “fun” and “leader” could have a very different relationship. Some-
times simply adding or dropping a brand can change the resulting map significantly
because the positions are relative. In other words, if a new brand enters the market (or
one’s analysis), the other positions may change substantially. One must also be con-
fident that all of the key perceptions (adjectives, in this example) have been assessed.
Oneway to assess sensitivity here is to run PCA and biplot on a few different samples
from your data, such as 80% of your observations, and perhaps dropping an adjective
each time. If the maps are similar across those samples, you may feel more confident
in their stability. And one should update perceptual maps frequently ; the map may
change substantially if one or two competitors start emphasizing a new dimesion on
which competitors were previously undifferentiated.

Third, it is frequently misunderstood that the positions of brands in such a map
depend on their relative positioning in terms of the principal components, which are
constructed composites of all dimensions. This means that the strength of a brand
on a single adjective cannot be read directly from the chart. For instance, in Fig. 8.7,
it might appear that brands b and c are weaker than d, h, and i on “latest” but are

206 8 Reducing Data Complexity

similar to one another. In fact, b is the single strongest brand on “latest” while c is
weak on that adjective. Overall, b and c are quite similar to one another in terms of
their scores on the two components that aggregate all of the variables (adjectives), but
they are not necessarily similar on any single variable. Another way to look at this is
that when we use PCA to focus on the first one or two dimensions in the data, we are
looking at the largest-magnitude similarities, which may obscure smaller differences
that do not show up strongly in the first one or two dimensions.

This last point is a common area of confusion with analysts and stakeholders who
want to read adjective positions directly from a biplot. We recommend to explain
that positions are not absolute but are relative. We often explain positions with
language such as, “compared to its position on other attributes, brand X is relatively
differentiated by perceptions of strength (or weakness) on such-and-such attribute.”

Despite these caveats, perceptual maps can be a valuable tool. We use them primarily
to form hypotheses and to provide material to inform strategic analyses of brand and
product positioning. If they are used in that way—rather than as absolute assessments
of position—they can contribute to engaging discussions about position and potential
strategy.

Although we illustrated PCA with brand position, the same kind of analysis could
be performed for product ratings, position of consumer segments, ratings of political
candidates, evaluations of advertisements, or any other area where you have metric
data on multiple dimensions that is aggregated for a modest number of discrete
entities of interest.

In Chap.9 we will see the usefulness of PCA for pre-processing highly correlated
data prior to linear modeling. By extracting components, one can derive a reduced
set of variables that captures as much of the variance as desired, yet where each of
the measures is independent of the others.

8.3 Exploratory Factor Analysis

Exploratory factor analysis (EFA) is a family of techniques to assess the relation-
ship of constructs (concepts) in surveys and psychological assessments. Factors are
regarded as latent variables that cannot be observed directly, but are imperfectly
assessed through their relationship to other variables.

In psychometrics, canonical examples of factors occur in psychological and educa-
tional testing. For example, “intelligence,” “knowledge of mathematics,” and “anx-
iety” are all abstract concepts (constructs) that are not directly observable in them-
selves. Instead, they are observed empirically through multiple behaviors, each one
of which is an imperfect indicator of the underlying latent variable. These observed
values are known asmanifest variables and include indicators such as test scores, sur-
vey responses, and other empirical behaviors. Exploratory factor analysis attempts to

8.3 Exploratory Factor Analysis 207

find the degree to which latent, composite factors account for the observed variance
of those manifest variables.

In marketing, we often observe a large number of variables that we believe should
be related to a smaller set of underlying constructs. For example, we cannot directly
observe customer satisfaction but we might observe responses on a survey that asks
about different aspects of a customer’s experience, jointly representing different
facets of the underlying construct satisfaction. Similarly, we cannot directly observe
purchase intent, price sensitivity, or category involvement but we can observe mul-
tiple behaviors that are related to them.

In this section, we use EFA to examine respondents’ attitudes about brands, using
the brand rating data from above (Sect. 8.1) and to uncover the latent dimensions in
the data. Then we assess the brands in terms of those estimated latent factors.

8.3.1 Basic EFA Concepts

The result of EFA is similar to PCA: a matrix of factors (similar to PCA components)
and their relationship to the original variables (loadings of the factors on the vari-
ables). Unlike PCA, EFA attempts to find solutions that are maximally interpretable
in terms of the manifest variables. In general, it attempts to find solutions in which a
small number of loadings for each factor are very high, while other loadings for that
factor are low. When this is possible, that factor can be interpreted in terms of that
small set of variables.

To accomplish this, EFA uses rotations that start with an uncorrelated (orthogonal)
mathematical solution and then mathematically alter the solution to explain identical
variance but with different loadings on the original variables. There are many such
rotations available, and they typically share the goals of maximizing the loadings on
a few variables while making factors as distinct as possible from one another.

Instead of reviewing that mathematically (see [145]), let’s consider a loose analogy.
Onemight think about EFA in terms of a pizza toppedwith large items such as tomato
slices andmushrooms that will be cut into a certain number of slices. The pizza could
be rotated and cut in an infinite number of ways that are all mathematically equivalent
insofar as they divide up the same underlying structure.

However, some rotations aremore useful than others because they fall in-between the
large items rather than dividing them. When this occurs, one might have a “tomato
slice,” a“mushroom slice,” a “half-and-half tomato and mushroom slice,” and so
forth. By rotating and cutting differently, one makes the underlying substance more
interpretable relative to one’s goals (such as having differentiated pizza slices). No
rotation is inherently better or worse, but some aremore useful than others. Similarly,
the manifest variables in EFA can be sliced in many ways according to one’s goals
for interpreting the latent factors. We will see how this works in Sect. 8.3.3.

208 8 Reducing Data Complexity

Because EFA produces results that are interpretable in terms of the original variables,
an analystmay be able to interpret and act on the results inways thatwould be difficult
with PCA. For instance, EFA can be used to refine a survey by keeping items with
high loading on factors of interest while cutting items that do not load highly. EFA
is also useful to investigate whether a survey’s items actually go together in a way
that is consistent with expectations.

For example, if we have a 10-item survey that is supposed to assess the single con-
struct customer satisfaction, it is important to know whether those items in fact go
together in a way that can be interpreted as a single factor, or whether they instead
reflect multiple dimensions that we might not have considered. Before interpreting
multiple items as assessing a single concept, one might wish to test that it is appro-
priate to do so. In this chapter, we use EFA to investigate such structure. In Chap.10,
we will see how to test whether one’s data are in fact consistent with an asserted
structure.

EFA serves as a data reduction technique in three broad senses:

1. In the technical sense of dimensional reduction, we can use factor scores instead
of a larger set of items. For instance, if we are assessing satisfaction, we could
use a single satisfaction score instead of several separate items. (In Sect. 9.1.2 we
review how this is also useful when observations are correlated.)

2. We can reduce uncertainty. If we believe satisfaction is imperfectly manifest in
several measures, the combination of those will have less noise than the set of
individual items.

3. We might also reduce data collection by focusing on items that are known to
have high contribution to factors of interest. If we discover that some items are
not important for a factor of interest, we can discard them from data collection
efforts.

In this chapter we use the brand rating data to ask the following questions: How
many latent factors are there? How do the survey items map to the factors? How are
the brands positioned on the factors? What are the respondents’ factor scores?

8.3.2 Finding an EFA Solution

The first step in exploratory factor analysis is to determine the number of factors to
estimate. There are various ways to do this, and two traditional methods are to use a
scree plot (Sect. 8.2.3), and to retain factors where the eigenvalue (a metric for pro-
portion of variance explained) is greater than 1.0. An eigenvalue of 1.0 corresponds
to the amount of variance that might be attributed to a single independent variable;
a factor that captures less variance than such an item may be considered relatively
uninteresting.

8.3 Exploratory Factor Analysis 209

As we saw in Sect. 8.2.3, a scree plot of the brand rating data suggests 2 or 3 compo-
nents. The nFactors package [160] (install if necessary) formalizes this analysis
with nScree():
> library(nFactors)
> nScree(brand.sc[, 1:9])

noc naf nparallel nkaiser
1 3 2 3 3

nScree() applies several methods to estimate the number of factors from scree
tests, and in the present case three of the four methods suggest that the data set has
3 factors. We can examine the eigenvalues using eigen() on a correlation matrix:

> eigen(cor(brand.sc[, 1:9]))
$values
[1] 2.9792956 2.0965517 1.0792549 0.7272110 0.6375459 0.5348432 0.3901044
...

The first three eigenvalues are greater than 1.0, although barely so for the 3th value.
This again suggests 3—or possibly 2—factors.

The final choice of a model depends on whether it is useful. For EFA, a best practice
is to check a few factor solutions, including the ones suggested by the scree and
eigenvalue results. Thus, we test a 3-factor solution and a 2-factor solution to see
which one is more useful.

An EFA model is estimated with factanal(x, factors=K), where K is the
number of factors to fit. For a 2-factor solution, we write:
> factanal(brand.sc[, 1:9], factors =2)
...
Loadings:

Factor1 Factor2
perform 0.600
leader 0.818
latest -0.451
fun -0.137 -0.382
serious 0.686
bargain 0.803
value 0.873 0.117
trendy -0.534
rebuy 0.569 0.303
...

We have removed all of the information except for the loadings because those are
the most important to interpret (see “Learning More” in this chapter for material that
explains much more about EFA and the output of such procedures). Some of the
factor loadings are near zero, and are not shown; this makes EFA potentially easier
to interpret than PCA.

In the2-factor solution, factor 1 loads stronglyon “bargain” and “value,” and therefore
might be interpreted as a “value” factor while factor 2 loads on“leader” and “serious”
and thus might be regarded as a“category leader” factor.

This is not a bad interpretation, but let’s compare it to a 3-factor solution:

> factanal(brand.sc[, 1:9], factors =3)
...
Loadings:

Factor1 Factor2 Factor3
perform 0.607
leader 0.810 0.106

210 8 Reducing Data Complexity

latest -0.163 0.981
fun -0.398 0.205
serious 0.682
bargain 0.826 -0.122
value 0.867 -0.198
trendy -0.356 0.586
rebuy 0.499 0.296 -0.298

The 3-factor solution retains the “value” and “leader” factors and adds a clear “latest”
factor that loads strongly on “latest” and “trendy.” This adds a clearly interpretable
concept to our understanding of the data. It also aligns with the bulk of sugges-
tions from the scree and eigen tests, and fits well with the perceptual maps we saw
in Sect. 8.2.4, where those adjectives were in a differentiated space. So we regard
the 3-factor model as superior to the 2-factor model because the factors are more
interpretable.

8.3.3 EFA Rotations

Aswe described earlier, a factor analysis solution can be rotated to have new loadings
that account for the same proportion of variance. Although a full consideration of
rotations is out of scope for this book, there is one issue worth considering in any
EFA: do you wish to allow the factors to be correlated with one another or not?

Youmight think that one should let the data decide. However, the question of whether
to allowcorrelated factors is less a question about thedata than it is about your concept
of the underlying latent factors. Do you think the factors should be conceptually
independent, or does it make more sense to consider them to be related? An EFA
rotation can be obtained under either assumption.

The default in factanal() is to find factors that have zero correlation (using a
varimax rotation). In case you’re wondering how this differs from PCA, it differs
mathematically because EFA finds latent variables that may be observed with error
(see [145]) whereas PCA simply recomputes transformations of the observed data.
In other words, EFA focuses on the underlying latent dimensions, whereas PCA
focuses on transforming the dimensionality of the data.

Returning to our present data, we might judge that value and leader are reasonably
expected to be related; in many categories, the leader can command a price premium,
and thus we might expect those two latent constructs to be negatively correlated
rather than independent of one another. This suggests that we could allow correlated
factors in our solution. This is known as an oblique rotation (“oblique” because the
dimensional axes are not perpendicular but are skewed by the correlation between
factors).

A common oblique rotation is the “oblimin” rotation from the GPArotation pack-
age [11] (install if necessary). We add that to our 3-factor model with rotation="
oblimin":

8.3 Exploratory Factor Analysis 211

> library(GPArotation)
> (brand.fa.ob <- factanal(brand.sc[, 1:9], factors=3, rotation="oblimin"))
...
Loadings:

Factor1 Factor2 Factor3
perform 0.601
leader 0.816
latest 1.009
fun -0.381 0.229
serious 0.689
bargain 0.859
value 0.880
trendy -0.267 0.128 0.538
rebuy 0.448 0.255 -0.226
...
Factor Correlations:

Factor1 Factor2 Factor3
Factor1 1.0000 -0.388 0.0368
Factor2 -0.3884 1.000 -0.1091
Factor3 0.0368 -0.109 1.0000
...

When we compare this oblimin result to the default varimax rotation above, there are
two main differences. First, the loadings are slightly different for the relationships
of the factors to the adjectives. However, the loadings are similar enough in this case
that there is no substantial change in how we would interpret the factors. There are
still factors for “value,” “leader,” and “latest.”

Second, the result includes a factor correlation matrix showing the relationships
between the estimated latent factors. Factor 1 (value) is negatively correlated with
Factor 2 (leader), r = −0.39, and is essentially uncorrelated with Factor 3 (latest),
r = 0.037.

The negative correlation between factors 1 and 2 is consistent with our theory that
brands that are leaders are less likely to be value brands, and thus we think this is a
more interpretable result. However, in other cases a correlated rotation may or may
not be a better solution than an orthogonal one; that is largely an issue to be decided
on the basis of domain knowledge and interpretive utility rather than statistics.

In the output above, the item-to-factor loadings are displayed. In the returned model
object, those are present as the $loadings element. We can the visualize item-
factor relationships with a heatmap of $loadings:
> library(gplots)
> library(RColorBrewer)
> heatmap .2(brand.fa.ob$loadings ,
+ col=brewer.pal(9, "Greens") , trace="none" , key=FALSE , dend="none",
+ Colv=FALSE , cexCol = 1.2 ,
+ main="\n\n\n\n\nFactor loadings for brand adjectives")

The result is Fig. 8.8, which shows a distinct separation of items into 3 factors, which
are roughly interpretable as value, leader, and latest.Note that the itemrebuy,which
reflects stated intention to repurchase, loads on both Factor1 (value) and Factor2
(leader). This suggests that in our simulated data, consumers say they would rebuy
a brand for either reason, because it is a good value or because it is a leader.

Another useful graphic for factor analysis models is a path diagram, which shows
latent variables and the individual items that load on them.

212 8 Reducing Data Complexity

Fig. 8.8 A heatmap of
item-factor loadings

The semPlot package (install if needed) will draw a visual representation of a
factor analysis model. We use the procedure semPaths() to draw the paths. It is
a complex command and we add several arguments as explained below:
> library(semPlot)
> semPaths(brand.fa.ob , what="est", residuals=FALSE ,
+ cut=0.3, posCol=c("white", "darkgreen") , negCol=c("white", "red"),
+ edge.label.cex =0.75 , nCharNodes =7)

First we will explain the semPaths() call. We plotted the brand.fa.obmodel
as fit above. To draw the loading estimates, we requested what="est". We omit
the residual estimates for manifest variables (an advanced topic we don’t cover
in this book) using residuals=FALSE. Then we cut loadings with absolute
magnitude < 0.3 by adding cut=0.3 and the options posCol=c("white",
"darkgreen") and negCol=c("white", "red"). The posCol argument
says that positive loadings < 0.3 should be colored white (and thus not appear in
the output), while loadings > 0.3 should be darkgreen. The negCol argument
similarly excludes or colors red the loadings < 0. We adjust the loadings’ text
size with edge.label.cex, and create room to spell out full variable names with
nCharNodes.

The result is shown in Fig. 8.9. Luckily, interpreting the path diagram is easier than
the code to create it! Latent variables are shown at the top and are traditionally
drawn with circles; these correspond to the three factors. Manifest variables appear
in squares at the bottom; these are the observed variables that load on the factors. The
strength of loading is shown on the path from each factor to its manifest variables,
with positive loading in green and negative loading in red (and with a negative sign).

We will see many more examples of path diagrams when we explore confirmatory
factor analysis and structural equation models in Chap.10.

Overall, the result of the EFA for this data set is that instead of using 9 distinct
variables, we might instead represent the data with 3 underlying latent factors. We

8.3 Exploratory Factor Analysis 213

Fig. 8.9 A path diagram for
the factor analysis solution,
which clearly displays the
three factors and their item
loadings (|loadings| < 0.3
are excluded). The graphic is
generated with
semPaths() from the
semPlot package

have seen that each factor maps to 2–4 of the manifest variables. However, this only
tells us about the relationships of the rating variables among themselves in our data;
in the next section, we use the estimated factor scores to learn about the brands.

8.3.4 Using Factor Scores for Brands

In addition to estimating the factor structure, EFA will also estimate latent factor
scores for each observation. In the present case, this gives us the best estimates of
each respondent’s latent ratings for the “value,”“leader,” and “latest” factors. We can
then use the factor scores to determine brands’ positions on the factors. Interpreting
factors eliminates the separate dimensions associated with the manifest variables,
allowing us to concentrate on a smaller, more reliable set of dimensions that map to
theoretical constructs instead of individual items.

Factor scores are requested from factanal() by adding the scores=... argu-
ment. We request Bartlett scores (see ?factanal), and extract them from the
factanal() object using $scores, storing them as a separate data frame:

> brand.fa.ob <- factanal(brand.sc[, 1:9], factors=3, rotation="oblimin",
+ scores="Bartlett")
> brand.scores <- data.frame(brand.fa.ob$scores) # get the factor scores
> brand.scores$brand <- brand.sc$brand # get the matching brands
> head(brand.scores)

Factor1 Factor2 Factor3 brand
1 1.6521364 -0.6886749 0.5256104 a
2 -1.4005333 -1.6681901 -0.6764121 a
...

The result is an estimated score for each respondent on each factor and brand. If we
wish to investigate individual-level correlates of the factors, such as their relationship
to demographics or purchase behavior, we could use these estimates of factor scores.
This can be very helpful in analyses such as regression and segmentation because
it reduces the model complexity (number of dimensions) and uses more reliable
estimates (factor scores that reflect several manifest variables). Instead of nine items,
we have three factors.

214 8 Reducing Data Complexity

Fig. 8.10 A heatmap of the
latent factor scores for
consumer brand ratings, by
brand

To find the overall position for a brand, we aggregate() the individual scores by
brand as usual:
> brand.fa.mean <- aggregate (. ∼ brand , data=brand.scores , mean)

We clean this up by assigning names for the rows (brands) and columns (factors):

> rownames(brand.fa.mean) <- brand.fa.mean [, 1] # brand names
> brand.fa.mean <- brand.fa.mean[, -1]
> names(brand.fa.mean) <- c("Leader", "Value", "Latest") # factor names
> brand.fa.mean

Leader Value Latest
a 0.23158792 -1.06993703 0.39326652
b 0.09686823 1.51913070 0.72391174
...

Finally, a heatmap graphs the scores by brand:

> heatmap .2(as.matrix(brand.fa.mean),

+ col=brewer.pal(9, "GnBu"), trace="none", key=FALSE , dend="none",

+ cexCol =1.2, main="\n\n\n\n\nMean factor score by brand")

The result is Fig. 8.10. When we compare this to the chart of brand by adjective in
Fig. 8.2, we see that the chart of factor scores is significantly simpler than the full
adjective matrix. The brand similarities are evident again in the factor scores, for
instance that f and g are similar, as are b and c, and so forth.

We conclude that EFA is a valuable way to examine the underlying structure and rela-
tionship of variables. When items are related to underlying constructs, EFA reduces
data complexity by aggregating variables to create simpler, more interpretable latent
variables.

In this exposition, we have only explored a small number of the possibilities for
factor analysis; to learn more, see Sect. 8.7. You will also want to review Chap.10,
which considers the closely related topic of confirmatory factor analysis (CFA). CFA
does not attempt to find a factor structure as EFA does, but rather assesses how well
a proposed structure fits one’s data.

8.4 Multidimensional Scaling 215

8.4 Multidimensional Scaling

Multidimensional scaling (MDS) is a family of procedures that can also be used
to find lower-dimensional representations of data. Instead of extracting underlying
components or latent factors, MDS works instead with distances (also known as
similarities). MDS attempts to find a lower-dimensional map that best preserves all
the observed similarities between items.

If you have similarity data already, such as direct ratings of whether one product is
like another, you can apply MDS directly to the data. If you have other kinds of data,
such as the brand rating data we’ve considered in this chapter, then youmust compute
the distances between points before applying MDS. If you have metric data—where
you consider the units of measurement to have interval or ratio properties—then you
might simply calculate euclidian distances with the default dist() command, as
we do for the mean ratings computed above:
> brand.dist <- dist(brand.mean)

A procedure to find an MDS solution for a distance matrix from metric data is
cmdscale():
> (brand.mds <- cmdscale(brand.dist))

[,1] [,2]
a -7.570113e -01 1.4619032
b 5.586301e -01 -2.1698618
...

The result of cmdscale() is a list of X andY dimensions indicating 2-dimensional
estimated plot coordinates for entities (in this case, brands). We see the plot locations
for brands a and b in the output above. Given those coordinates, we can simply
plot() the values and label them:
> plot(brand.mds , type="n")
> text(brand.mds , rownames(brand.mds), cex=2)

In this code, plot(..., type="n") tells R not to plot symbols. Instead, we
add the brand labels to the plot with text(x, labels). The result is Fig. 8.11.
The brand positions are grouped nearly identically to what we saw in the perceptual
map in Fig. 8.7.

8.4.1 Non-metric MDS

For non-metric data such as rankings or categorical variables, you would use a differ-
ent method to compute distance and an MDS algorithm that does not assume metric
distances.

For purposes of illustration, let’s convert the mean ratings to rankings instead of
raw values; this will be non-metric, ordinal data. We apply rank() to the columns
using lapply() and code each resulting column as an ordinal factor variable using
ordered():

216 8 Reducing Data Complexity

Fig. 8.11 A metric
multidimensional scaling
chart for mean brand rating,
using cmdscale(). The
brand positions are quite
similar to those seen in the
biplot() in Fig. 8.7

> brand.rank <- data.frame(lapply(brand.mean , function(x) ordered(rank(x))))
> str(brand.rank)
’data.frame’: 10 obs. of 9 variables:
$ perform: Ord.factor w/ 10 levels "1"<"2"<"3"<"4" <..: 1 10 8 2 4 5 9 6 7 3
$ leader : Ord.factor w/ 10 levels "1"<"2"<"3"<"4" <..: 3 9 10 2 7 8 6 5 4 1
...

To find distances between the ranks, we use an alternative to dist(), daisy()
from the cluster package (see Sect. 11.3.2), which can handle non-metric data
such as rank ordering. In daisy(), we compute distance with the gower metric,
which handles mixed numeric, ordinal, and nominal data:
> library(cluster)
> brand.dist.r <- daisy(brand.rank , metric="gower")

Now that we have a distance matrix we apply the non-metric MDS function
isoMDS() to scale the data. Then we plot the result:

> brand.mds.r <- isoMDS(brand.dist.r)
initial value 9.063777
...
converged
> plot(brand.mds.r$points , type="n")
> text(brand.mds.r$points , levels(brand.sc$brand), cex=2)

The plot() and text() commands are slightly different than those we saw above
for cmdscale(), because isoMDS() returns coordinates in the $pointsmatrix
within its object.

The resulting chart is shown in Fig. 8.12. Compared to Fig. 8.11, we see that brand
positions in the non-metric solution are more diffuse. The X axis is arbitrarily
reversed, which is not important. Still, the nearest neighbors of brands are largely
consistent with the exception of brands h and i, which are separated quite a bit more
than in themetric solution. (This occurs because the rank-order procedure loses some
of the information that is present in the original metric data solution, resulting in a
slightly different map.)

We generally recommend principal component analysis as a more informative pro-
cedure than multidimensional scaling for typical metric or near-metric (e.g., survey

8.4 Multidimensional Scaling 217

Fig. 8.12 A non-metric
multidimensional scaling
chart for mean brand ratings
expressed as ordinal ranks,
obtained using daisy() to
find distances and
isoMDS() for non-metric
scaling. The brand groupings
are similar to but more
diffuse than those in Fig. 8.11

Likert scale) data. However, PCAwill not work with non-metric data. In those cases,
multidimensional scaling is a valuable alternative.

MDS may be of particular interest when handling text data such as consumers’
feedback, comments, and online product reviews, where text frequencies can be
converted to distance scores. For example, if you are interested in similarities between
brands in online reviews, you could count how many times various pairs of brands
occur together in consumers’ postings. The co-occurrence matrix of counts—brand
A mentioned with brand B, with brand C, and so forth—could be used as a measure
of similarity between the two brands and serve as the distance metric in MDS (see
[147]).

8.5 Key Points

Investigation of one’s data complexity has several benefits. It allows inspection of the
underlying dimensional relationships among variables, investigation of how observa-
tions such as brands or people vary on those dimensions, and estimation of a smaller
number of more reliable dimensional scores. The following key points will assist
you to investigate the underlying dimensions of your data.

Principal Component Analysis

• Principal component analysis (PCA) finds linear functions that explain maximal
variance in observed data. A key concept is that such components are orthogonal
(uncorrelated). The basic R command is prcomp() (Sect. 8.2.1).

• A common use for PCA is a biplot of aggregate scores for brands or people to
visualize relationships. When this is done for attitudinal data such as brand ratings
it is called a perceptual map. This is created by aggregating the statistic of interest
by entity and charting with biplot() (Sect. 8.2.2).

218 8 Reducing Data Complexity

• Because PCA components often load on many variables, the results must be
inspected cautiously and in terms of relative position. It is particularly difficult
to read the status of individual items from a PCA biplot (Sect. 8.2.5).

Exploratory Factor Analysis

• Exploratory factor analysis (EFA) models latent variables (factors) that are not
observed directly but appear indirectly as observed manifest variables. A key
procedure is factanal() (Sect. 8.3.1).

• A fundamental decision in EFA is the number of factors to extract. Common
criteria involve inspection of a scree plot and extraction of factors such that all
eigenvalues are greater than 1.0. There are useful tools to determine the number
of factors in nFactors, but the final determination depends on one’s theory and
the utility of results (Sect. 8.3.2).

• EFA uses rotation to adjust an initial solution to one that is mathematically equiv-
alent but more interpretable according to one’s aims. Another key decision in EFA
is whether one believes the underlying latent variables should be uncorrelated
(calling for an orthogonal rotation such as varimax) or correlated (calling for
an oblique rotation such as oblimin) (Sect. 8.3.3).

• After performing EFA, you can extract factor scores that are the best esti-
mates for each observation (respondent) on each factor. These are present as
$scores in factanal() objects if you request them with the scores argu-
ment (Sect. 8.3.4).

Multidimensional Scaling

• Multidimensional scaling (MDS) is similar to principal component analysis but
is able to work with both metric and non-metric data. MDS requires a distance
score obtained from dist() for metric data or a procedure such as daisy()
for non-metric data. MDS scaling is then performed by cmdscale() for metric
data or isoMDS() (or other options) for non-metric data (Sect. 8.4).

8.6 Data Sources

Dataonbrandperception is generally collected through anonline survey administered
to a respondent panel. In some cases, a surveymight instead be administered on paper
or through a digital intercept format, such as a pop-up survey on a web site or on a
mobile device. For general considerations with online surveys, see Sect. 7.7. In this
chapter, we consider methods both to analyze the data and to ensure that items relate
to one another as intended (see also Chap.10).

8.7 Learning More* 219

8.7 Learning More*

Principal component analysis. There is a large literature describing many proce-
dures, options, and applications for each of the analyses in this chapter. With per-
ceptual mapping, a valuable resource is Gower et al. [79] which describes common
problems and best practices for perceptual maps. Jolliffe (2002) provides a compre-
hensive text on the mathematics and applications of principal component analysis
[108].

Factor analysis.The literature on factor analysis is particularly voluminous although
it often references statistics packages other than R. A good conceptual overview of
exploratory factor analysis with procedural notes (but not R specific) is Fabrigar and
Wegener (2011), Exploratory Factor Analysis [55]. A modestly more technical vol-
ume that covers exploratory and confirmatory models together, with a social science
(psychology) point of view, is Thompson (2004), Exploratory and Confirmatory
Factor Analysis [187]. For examination of the mathematical bases and procedures
of factor analysis, a standard text is Mulaik (2009), Foundations of Factor Analysis
[145].

The psych package [163] presents many additional tools and methods for factor
analysis, especially in the context of traditional psychometric instruments such as
surveys in general and tests of aptitude or personality. The fa() function in psych
offers an alternative to the standard factanal() procedure with more options and
more complete assessment of exploratory factor analysis models.

A companion to exploratory factor analysis is confirmatory factor analysis, whichwe
discuss in Chap.10. Whereas EFA infers factor structure from a data set, CFA tests a
proposed model to see whether it corresponds well to observed data. A common use
of EFA is to select items that load highly on underlying dimensions of interest. CFA
allows you to confirm that the relationships between items and factors are maintained
in new data sets.

Multidimensional scaling. There are many uses and options for multidimensional
scaling beyond those considered in this chapter. A readable introduction to the meth-
ods and applications is Borg, Groenen, and Mair (2018), Applied Multidimensional
Scaling [16]. The statistical foundations and methods are detailed in Borg and Groe-
nen (2005), Modern Multidimensional Scaling [15].

8.8 Exercises

8.8.1 PRST Brand Data

For these exercises (and the exercises in Chap.10), we use a simulated data set for
four fictitious consumer electronic device brands: Papa, Romeo, Sierra, and Tango

220 8 Reducing Data Complexity

(abbreviated PRST). The brands have been rated by consumers on nine adjectives,
each using a 7-point rating scale. The adjectives are “Adaptable,” “Best Value,”
“Cutting Edge,” “Delightful,” “Exciting,” “Friendly,” “Generous,” “Helpful,” and
“Intuitive.” You will examine the relationships among the adjectives and the brands,
considering both the statistical analyses and possible brand strategy.

First we load the data from the web site, or from a local file (change the directory as
needed for your system0:

> prst1 <- read.csv("https://goo.gl/z5P8ce") # web site
prst1 <- read.csv("chapter8 -brands1.csv") # or a local file
> summary(prst1)

Adaptable BestValue CuttingEdge Delightful
Min . :1.000 Min . :1.000 Min . :1.00 Min . :1.000
1st Qu .:4.000 1 st Qu .:3.000 1 st Qu .:3.00 1 st Qu .:3.000
Median :4.000 Median :4.000 Median :4.00 Median :4.000
Mean :4.255 Mean :3.849 Mean :4.07 Mean :3.983

...

8.8.2 Exercises

Basic Concepts

1. Summarize the PRST data. Should the data be rescaled?
2. Rescale the PRST data with a “Z score” procedure and examine the rescaled data.

Does this confirm your decision in the previous exercise about whether to rescale
the data?

3. Plot a correlation matrix for the adjective ratings. How many factors does it
suggest?

4. Aggregate the mean of each adjective rating by brand. Plot a heatmap for the
mean ratings by brand.

Principal Components Analysis

5. Extract the principal components in the PRST data. How many components are
needed to explain the majority of variance in the PRST data? Visualize that.

6. Using principal components for themean adjective ratings, plot the brands against
the first two components. How do you interpret that? Now plot against the second
and third components (hint: see ?biplot.princomp). Does this change your
interpretation? What does this tell you about interpreting PCA results?

7. (Thought exercise without code.) Suppose you are the brand manager for Sierra,
and you wish to change your position versus the market leader, Tango. What are
some strategies suggested by the PCA positions?

Exploratory Factor Analysis

8. Consider an exploratory factor analysis (EFA) for the PRST adjective ratings.
How many factors should we extract?

8.8 Exercises 221

9. Find an EFA solution for the PRST data with an appropriate number of factors
and rotation. What factor rotation did you select and why?

10. Draw a heatmap of the EFA factor loadings. Also draw a path diagram for the
EFA solution.

11. Find the mean factor scores for each brand and plot a heatmap of them.
12. (Thought exercise without code.) Compare the factor score heatmap for PRST

brands to the PCA interpretations in Exercise6 above. Does the heatmap suggest
different directions for the brand strategy for Sierra versus Tango?

Multidimensional Scaling

13. Plot a multidimensional scaling (MDS)map for the PRST brands using themean
adjective ratings. Which brands are most similar and most different?

14. (Thought exercise without code.)How does the MDS map relate to the PCA and
EFA positions in the exercises above? What does it suggest for the strategy you
considered in Exercise6 above?

Chapter 9
Additional Linear Modeling Topics

As we noted in Chap.7, the range of applications and methods in linear modeling
and regression is vast. In this chapter, we discuss four additional topics in linear
modeling that often arise in marketing:

• Handlinghighly correlatedobservations,whichpose aproblemknownas collinear-
ity, asmentioned in Sect. 7.2.1. In Sect. 9.1we examine the problem in detail, along
with ways to detect and remediate collinearity in a data set.

• Fitting models for yes/no, or binary outcomes, such as purchasing a product. In
Sect. 9.2 we introduce logistic regression models to model binary outcomes and
their influences.

• Finding a model for the preferences and responses of individuals, not only for
the sample as a whole. In marketing, we often wish to understand individual
consumers and the diversity of behavior and product interest among people. In
Sect. 9.3 we consider hierarchical linear models (HLM) for consumer preference
in ratings-based conjoint analysis data.

• Inmarketing, hierarchicalmodels of individual preference aremost often estimated
using Bayesian methods. In Sect. 9.4 we continue the discussion of HLM by intro-
ducing hierarchical Bayesian (HB) methods, and we apply HB for ratings-based
conjoint analysis.

Except for the two HLM sections, these topics are not especially closely related
to one another; unlike other chapters in this book, they may be read independently
within this chapter. Still, each section builds on models presented earlier in the book
and will extend your knowledge of issues and applications for linear modeling. More
importantly, each is a foundational part of a compete toolbox for marketing analysis.

© Springer Nature Switzerland AG 2019
C. Chapman and E. M. Feit, R For Marketing Research and Analytics, Use R!,
https://doi.org/10.1007/978-3-030-14316-9_9

223

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14316-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-14316-9_9

224 9 Additional Linear Modeling Topics

9.1 Handling Highly Correlated Variables

Wehavementioned several times (as in Sect. 7.2.1) that highly correlated explanatory
variables cause problems with linear models. In this section, we examine why that
is the case and strategies to address the problem.

We consider a question that might arise with the retail sales data in Chap. 4, which
simulated summaries of 12 month online and in-store transactions by customer (see
Sect. 4.1). The question is this: which variables are most predictive of online spend-
ing? If we wished to increase online spending by customers, which factors might we
consider?

9.1.1 An Initial Linear Model of Online Spend

Either create the simulated retail sales data (Sect. 4.1) or load it from the book’s
website:
> cust.df <- read.csv("http://goo.gl/PmPkaG")
> summary(cust.df)

cust.id age credit.score email distance.to.store
Min. : 1.0 Min. :19.34 Min. :543.0 no :186 Min. : 0.2136
1st Qu.: 250.8 1st Qu .:31.43 1st Qu .:691.7 yes :814 1st Qu.: 3.3383

...

Now we use lm() to model spend as a function of all other variables (online.
spend∼.). We omit customers with zero online spend; having exactly zero spend is
probably related to different factors than positive spend, and we are interested here
in the associations for those who spend anything. We also index [, -1] to omit
the customer ID column:
> spend.m1 <- lm(online.spend ~ .,
+ data=subset(cust.df[, -1], online.spend > 0))
> summary(spend.m1)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.718948 33.537665 0.200 0.8413
...
online.visits -0.072269 0.204061 -0.354 0.7234
online.trans 20.610744 0.667450 30.880 <2e-16 ***
store.trans 0.135018 3.211943 0.042 0.9665
store.spend 0.001796 0.078732 0.023 0.9818
sat.service 5.638769 3.016181 1.870 0.0623 .
...
Multiple R-squared: 0.9831 , Adjusted R-squared: 0.9827

We have omitted much of the summary to show a few key points. First, online
spend is closely related the number of online transactions (coefficient = 20.6) but
not the number of online visits. That is puzzling. Second, the model accounts for
almost all the available variance, R2 = 0.98. These results should cause concern.
Because online transactions are dependent on visits, shouldn’t those two variables
show a similar pattern? How could we be so lucky as to fit a model that nearly
perfectly predicts online spending (insofar as it is assessed by R2)? And notice that
the standard error on store.trans is quite large, showing that its estimate is very
uncertain.

9.1 Handling Highly Correlated Variables 225

Fig. 9.1 Visualization of the customer data using scatterplotMatrix(). Several variables
have extreme skew and other pairs are nearly perfectly correlated; both situations pose problems
for linear modeling

If we turn to data visualization using scatterplotMatrix() (Sect. 7.2.1), we
see some problems:

> library(car)
> scatterplotMatrix(cust.df)

The result in Fig. 9.1 shows variables with extreme skew and pairs of variables that
are very highly correlated.

Our first step to remediate the situation is to transform the data using a Box-Cox
transformation. Building on the transformation routines we saw in Sect. 4.5.5, we
write a short function that uses BoxCox.lambda() from the forecast pack-
age to select the transformation lambda automatically [103]. At the same time, we
standardize the data with scale() (Sect. 7.3.3):

226 9 Additional Linear Modeling Topics

> autoTransform <- function(x) {
+ library(forecast)
+ return(scale(BoxCox(x, BoxCox.lambda(x))))
+ }

We select the complete cases from our data frame, dropping the customer ID column
([, -1]) because it is not a predictor. Then we take only the rows with positive
online spend.We create a vector to index all the columns except email (which is not
numeric), and then lapply() the autoTransform() function to each numeric
column:
> cust.df.bc <- cust.df[complete.cases(cust.df), -1]
> cust.df.bc <- subset(cust.df.bc, online.spend > 0)
> numcols <- which (colnames(cust.df.bc) != "email")
> cust.df.bc[, numcols] <- lapply(cust.df.bc[, numcols], autoTransform)

The result is a data framewith standardized, more normally distributed values, which
we can check with summary() and scatterplotMatrix():
> summary(cust.df.bc) # output not shown
> scatterplotMatrix(cust.df.bc) # output not shown

We refit the model using the transformed data:

> spend.m2 <- lm(online.spend ~ ., data=cust.df.bc)
> summary(spend.m2)
...
online.visits -0.0003913 0.0126165 -0.031 0.975
online.trans 0.9960378 0.0126687 78.622 <2e-16 ***
..
Multiple R-squared: 0.9925 , Adjusted R-squared: 0.9923

The coefficients are smaller now because the data have been standardized. Trans-
forming and standardizing the data, although a good idea, have not changed the
unbelievable estimate that online spend is highly related to transactions yet unre-
lated to visits. Indeed, the full model is no better than one that simply predicts
spending from the number of transactions alone (see Sect. 6.5.1 on using anova()
to compare models):

> spend.m3 <- lm(online.spend ~ online.trans , data=cust.df.bc)
> anova(spend.m3, spend.m2)
...

Res.Df RSS Df Sum of Sq F Pr(>F)
1 416 3.1539
2 407 3.1139 9 0.040001 0.5809 0.8129

The small difference between the model fits is reflected in the high p-value (p =
0.8129), and thus the null hypothesis of no difference between the models cannot be
rejected.

The problem here is collinearity: because visits and transactions are so highly related,
and also because a linear model assumes that effects are additive, an effect attributed
to one variable (such as transactions) is not available in the model to be attributed
jointly to another that is highly correlated (visits). This will cause the standard errors
of the predictors to increase, which means that the coefficient estimates will be
highly uncertain or unstable. As a practical consequence, this may cause coefficient
estimates to differ dramatically from sample to sample due to minor variations in the
data even when underlying relationships are the same.

9.1 Handling Highly Correlated Variables 227

9.1.2 Remediating Collinearity

The degree of collinearity in data can be assessed as the variance inflation factor
(VIF). This estimates how much the standard error (variance) of a coefficient in a
linear model is increased because of shared variance with other variables, compared
to the situation if the variableswere uncorrelated or simple single predictor regression
were performed.

We assess VIF in the spend.m2 model using vif() from the car package:

> library(car)
> vif(spend.m2)

age credit.score email distance.to.store
1.094949 1.112784 1.046874 1.297978

online.visits online.trans store.trans store.spend
8.675817 8.747756 125.931383 123.435407

...

A common rule of thumb is that V IF > 5.0 indicates the need to mitigate collinear-
ity. In spend.m2, the VIF indicates that collinearity should be addressed for the
online... and store... variables.

There are three general strategies for mitigating collinearity:

• Omit variables that are highly correlated.
• Eliminate correlation by extracting principal components or factors for sets of
highly-correlated predictors (see Chap.8).

• Use a method that is robust to collinearity, i.e., something other than traditional
linear modeling. There are too many options to consider this possibility exhaus-
tively, but one method to consider would be a random forest approach, which only
uses a subset of variables at a time (see Sect. 11.4.2).

Another option for the present data would be to construct a new measure of interest
that combines the collinear variables (such as spend per transaction). For purposes
here, we explore the first two options above and create models spend.m4 and
spend.m5.

We omit highly correlated variables for model spend.m4 by excluding online.
trans and store. trans, using - in the formula:

> spend.m4 <- lm(online.spend ~ . -online.trans -store.trans ,
+ data=cust.df.bc)
> vif(spend.m4)
...

online.visits store.spend sat.service sat.selection
1.026148 1.215208 1.507866 1.509001

> summary(spend.m4)
...

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.0923395 0.0435047 -2.123 0.0344 *
age -0.0333779 0.0178813 -1.867 0.0627 .
credit.score -0.0084524 0.0180637 -0.468 0.6401
emailyes 0.1099655 0.0476011 2.310 0.0214 *
distance.to.store 0.0001702 0.0189271 0.009 0.9928
online.visits 0.9295374 0.0174184 53.365 <2e-16 ***
store.spend 0.0092463 0.0189552 0.488 0.6260
...
Multiple R-squared: 0.8791 , Adjusted R-squared: 0.8767

228 9 Additional Linear Modeling Topics

The VIF is now acceptable and we see that online visits are now the best predictor
of online spend once we’ve left out online transactions. We can see that email status
and age are also slightly related to online spend.

Another approach is to use the principal components of the correlated data. As you
will recall from Chap.8, principal components are uncorrelated (orthogonal). Thus,
PCA provides a way to extract composite variables that are guaranteed to be free of
collinearity with other variables that are included in the same PCA.

We use PCA to extract the first component for the online variables, and then do this
again for the store variables, and add those two initial components to the data frame:

> pc.online <- prcomp(cust.df.bc[, c("online.visits", "online.trans")])
> cust.df.bc$online <- pc.online$x[, 1]
> pc.store <- prcomp(cust.df.bc[, c("store.trans", "store.spend")])
> cust.df.bc$store <- pc.store$x[, 1]

Then we fit a new model:
> spend.m5 <- lm(online.spend ~ email + age + credit.score +
+ distance.to.store + sat.service +
+ sat.selection + online + store ,
+ data=cust.df.bc)
> summary(spend.m5)
...

Estimate Std. Error t value Pr(>|t|)
...
(Intercept) -3.928e-02 2.410e-02 -1.630 0.1039
emailyes 4.678e-02 2.638e-02 1.773 0.0769 .
age -1.695e-02 9.882e-03 -1.715 0.0871 .
...
online -7.019e-01 6.933e-03 -101.247 <2e-16 ***
...
Multiple R-squared: 0.9631 , Adjusted R-squared: 0.9623

> vif(spend.m5)
email age credit.score distance.to.store

1.039458 1.081430 1.103206 1.224019
sat.service sat.selection online store

1.508487 1.509001 1.032362 1.228073

VIF poses no problem in this model, and we see that online spend is still associ-
ated primarily with online activity (as captured in the first component of the PCA
model, online) and perhaps slightly with email status and age. One caution when
interpreting results that use principal components as explanatory variables is that the
components have arbitrary numerical direction; the negative coefficient for online
here does not imply that online activity results in lower sales.

Although this result—that online sales relate primarily to online activity—may at
first appear to be uninteresting, it is better to have an obvious result than an incorrect
result. This result might prompt us to collect other data, such as attitudes about
our website or online shopping, to build a more complete understanding of factors
associated with online spending.

9.2 Linear Models for Binary Outcomes: Logistic Regression 229

9.2 Linear Models for Binary Outcomes: Logistic
Regression

Marketers often observe yes/no outcomes: did a customer purchase a product? Did
she take a test drive? Did she sign up for a credit card, or renew her subscription,
or respond to a promotion? All of these kinds of outcomes are binary because they
have only two possible observed states: yes or no.

At first it is tempting to fit such a model with a typical linear regression model as we
saw in Chap.7, predicting the outcome (1 = yes, 0 = no) as a linear combination
of the features. That is not incorrect to do, but a more flexible and useful way to fit
such outcomes is with a logistic model (also called a logit model for reasons we’ll
discuss below).

9.2.1 Basics of the Logistic Regression Model

The core feature of a logistic model is this: it relates the probability of an outcome
to an exponential function of a predictor variable. We’ll illustrate that and show
the formula in a moment, but before examining that, let’s consider why those are
desirable properties and are improvements on a basic linear model.

By modeling the probability of an outcome, a logistic model accomplishes two
things. First, it more directly models what we’re interested in, which is a probability
or proportion, such as the likelihood of a given customer to purchase a product, or
the expected proportion of a segment who will respond to a promotion. Second, it
limits the model to the appropriate range for a proportion, which is [0, 1]. A basic
linear model as generated with lm() does not have such a limit and could estimate
a nonsensical probability such as 1.05 or −0.04.

We ask indulgence to consider the formula here because it is instrumental in under-
standing how the model works. The equation for the logistic function is:

logistic : p(y) = evx

evx + 1
(9.1)

In this equation, the outcome of interest is y, and we compute its likelihood p(y)
as a function of vx. We typically estimate vx as a function of the features (x) of a
product, such as price. vx can take any real value, so we are able to treat it as a
continuous function in a linear model. In that case, vx is composed from one or more
coefficients of the model and indicates the importance of the corresponding features
of the product.

This formula gives a value between [0, 1]. The likelihood of y is less than 50%
when vx is negative, is 50% when vx = 0, and is above 50% when vx is positive. We

230 9 Additional Linear Modeling Topics

compute this first by hand, and then switch to the equivalent, built-in plogis()
function:
> exp(0) / (exp(0) + 1) # computing logistic by hand; could use plogis ()
[1] 0.5
> plogis(-Inf) # infinitely low = likelihood 0
[1] 0
> plogis (2) # moderate probability = 88% chance of outcome
[1] 0.8807971
> plogis (-0.2) # weak likelihood
[1] 0.450166

Such a model is known as a logit model, which determines the value of vx from the
logarithm of the relative probability of occurrence of y:

logit : vx = log

(
p(y)

1 − p(y)

)
(9.2)

Again, R includes a built-in function qlogis() for the logit function:

> log (0.88 / (1 -0.88)) # moderate high likelihood
[1] 1.99243
> qlogis (0.88) # equivalent to hand computation
[1] 1.99243

In practice, the expressions logit model and logistic regression are used
interchangeably.

9.2.2 Data for Logistic Regression of Season Passes

We considered an amusement park example in Chap. 7. Suppose that we now have
data on the the sales of season tickets to the park. The data consist of a table of season
ticket pass sales (with values of yes or no), on the basis of two factors: the channel
used to extend the offer (email, postal mail, or in-person at the park) and whether
it was promoted in a bundle offering the season ticket with another feature such as
free parking, or not. The marketing question is this: are customers more likely to
purchase the season pass when it is offered in the bundle (with free parking), or not?

In this section, we see how to simulate such data, and how to create a full data frame
from tabulated data. If you wish to load the data from the website instead of working
through the data creation, you can retrieve it with:

> pass.df <- read.csv("http://goo.gl/J8MH6A")
> pass.df$Promo <- factor(pass.df$Promo , levels=c("NoBundle", "Bundle"))
> summary(pass.df)

Channel Promo Pass
Email: 633 NoBundle :1482 NoPass :1567
Mail :1328 Bundle :1674 YesPass :1589
Park :1195

Note that the second command above is required for reasons we describe in
Sect. 9.2.5. Be sure to run it after loading the CSV and check that the summary()
matches the above.

We encourage you to read the rest of this simulation section and the R language
lessons it contains. But if you loaded the data and prefer to skip ahead to analysis,
you could continue with Sect. 9.2.6.

9.2 Linear Models for Binary Outcomes: Logistic Regression 231

9.2.3 Sales Table Data

Suppose that we have been given sales data as shown in Table9.1.

Table 9.1 Counts of sales of season tickets broken out by promotion status (bundled or not bundled
with a promotion), and channel by which a customer was reached (mail, at the park, by email)

Bought season pass (count):
Bundle NoBundle

Mail 242 359
Park 639 284

Email 38 27

Did not buy season pass (count):
Bundle NoBundle

Mail 449 278
Park 223 49

Email 83 485

There are several ways to analyze tabular data as shown in Table 9.1, including chi-
square analysis (Sect. 6.2), but a versatile approach when the data set is not too large
is to convert it to long form and recreate a data frame of individual observations. This
lets us use a full range of approaches such as linear modeling with minimal hassle.

To convert the data into such format, we first recreate the cross-tab data table in R.
We begin this by reading the values from Table9.1 one column at a time, putting
them into a vector:
> pass.tab <- c(242, 639, 38, 359, 284, 27, 449, 223, 83, 278, 49, 485)

Next we add dimensions to the vector, which reformats it as a 3 × 2 × 2 array, and
set it to be an object of class "table":

> dim(pass.tab) <- c(3, 2, 2)
> class(pass.tab) <- "table"

We add the marginal labels to the table by setting its dimnames attribute:

> dimnames(pass.tab) <- list(Channel=c("Mail", "Park", "Email"),
+ Promo=c("Bundle", "NoBundle"),
+ Pass=c("YesPass", "NoPass"))

We describe more about class, table, and dimnames in optional Sect. 9.2.4
below. For now, we inspect the resulting table and confirm that it matches Table 9.1:

> pass.tab
, , Pass = YesPass

Promo
Channel Bundle NoBundle

Mail 242 359
Park 639 284
Email 38 27

...

We now have the data in R and are ready to create a full data frame from the table.
Before that, we take a brief detour into the R language to understand the commands
we just used.

232 9 Additional Linear Modeling Topics

9.2.4 Language Brief: Classes and Attributes of Objects*

In this optional section, we explore how the R language understands data types. If
you just want to continue with the logistic regression model, you could skip ahead
to Sect. 9.2.5.

Every object in R has an associated class, which functions use to determine how
to handle the object. For example, a vector of real numbers has a class of numeric,
while a data frame is a data.frame. The class of an object may be inspected
directly by class():

> class(c(1, pi, exp(1)))
[1] "numeric"
> class(data.frame (1:10))
[1] "data.frame"

When we examine str(), the first thing listed is the class of the object and its raw
values:
> str(pass.tab)
table [1:3, 1:2, 1:2] 242 639 38 359 284 27 449 223 83 278 ...
- attr(*, "dimnames")=List of 3
..$ Channel: chr [1:3] "Mail" "Park" "Email"
..$ Promo : chr [1:2] "Bundle" "NoBundle"
..$ Pass : chr [1:2] "YesPass" "NoPass"

This code shows that pass.tab is an object of class table that comprises values
242 639

The is.*() set of functions tests whether an object is of some class (abbreviated
here with *). For example:

> is.table(pass.tab)
[1] TRUE
> is.character(pass.tab)
[1] FALSE

Class membership is non-exclusive. For example, tables are composed of counts,
and counts are numeric:
> is.numeric(pass.tab)
[1] TRUE

The as.*() functions attempt to treat (convert, or coerce) objects as other classes:

> as.numeric(pass.tab)
[1] 242 639 38 359 284 27 449 223 83 278 49 485

> as.character(pass.tab)
[1] "242" "639" "38" "359" "284" "27" "449" "223" "83" "278" "49" "485"

This shows how we could extract the vector of counts from our park table, and how
we might reformat them as character strings for printing, chart labeling, and similar
purposes.

In addition to class, objects can have other attributes. An attribute is a property
of an object other than its data, and typically tells R something important about the
object. Common attributes that we have used throughout the book are names for the
names of columns, dim for the dimensions of a matrix or data frame, and class to
specify the type of object. Each of these can be queried for an object:

9.2 Linear Models for Binary Outcomes: Logistic Regression 233

> names(pass.tab)
NULL
> dim(pass.tab)
[1] 3 2 2
> class(pass.tab)
[1] "table"

In this case, the names for pass.tab are NULL because it is not a data frame or
other object for which names are useful. However, we see that it has dim and class
attributes. A table also has names for its rows and columns, which are known as
dimnames:
> dimnames(pass.tab)
$Channel
[1] "Mail" "Park" "Email"
$Promo
[1] "Bundle" "NoBundle"
...

Thus, Channel, the first dimension of the table, has elements "Mail", "Park",
and "Email".

You can see all the attributes of an object with attributes():

> attributes(pass.tab)
$dim
[1] 3 2 2
$class
[1] "table"
...

Attributes may be changed using the assignment operator (<-). We often use this
feature to set names of data frames, using names(DATA) <- c("name1",
"name2", ...). In the code above, we converted pass.tab from a simple
vector to a table by assigning class(pass.tab) <- "table" and setting its
dim attribute. As you might imagine, this must be done very carefully! Setting an
inappropriate class or dimension of an object will render it useless (but you can
usually just change it back to make things work again).

We’ll see another use for classes in Sect. 12.3.3, where we use objects’ classes to
determine how to handlemultiple data types inside a function. To learnmore about the
R class and attribute system, review the R language reference [158] and Wickham’s
Advanced R [197].

9.2.5 Finalizing the Data

We have the data in a table pass.tab, which is suitable for analysis as is. How-
ever, because most data sets come in the form of an extended data frame with one
observation per respondent, we expand it from a table to a complete data frame so
the analysis will match typical data structures.

We use expand.dft() from the vcdExtra package [66] to expand the table to
a data frame:

234 9 Additional Linear Modeling Topics

> library(vcdExtra) # install if needed
> pass.df <- expand.dft(pass.tab)
> str(pass.df)
’data.frame’: 3156 obs. of 3 variables:
$ Channel: Factor w/ 3 levels "Email","Mail" ,..: 2 2 2 2 2 2 2 2 2 2 ...
$ Promo : Factor w/ 2 levels "Bundle","NoBundle": 1 1 1 1 1 1 1 1 1 1 ...
$ Pass : Factor w/ 2 levels "NoPass","YesPass": 2 2 2 2 2 2 2 2 2 2 ...

We now have a data frame with 3156 observations for whether a customer purchases
a Pass, by Channel, with and without promotion (Promo).

We can use table() on this data to create cross-tabs other than those in Table 9.1.
For example, to see purchases of a pass (Pass) by promotion bundle (Promo):
> table(pass.df$Pass , pass.df$Promo)

Bundle NoBundle
NoPass 755 812
YesPass 919 670

Statisticalmodeling is a detail-oriented process, and before building amodel from the
data, there is oneminor detail to attend to: the factors inpass.df are alphabetized—
which is how R handles factor names by default—but that is counterintuitive. We
might think that NoBundle should have a lower implicit value (such as “bundle =
0”) than Bundle (which might be “bundle= 1”). However, in the table we just saw,
NoBundle appears in the second column because it has a higher value thanks to
alphabetic ordering.

In a regression model, that would mean that a positive effect of Bundlewould have
a negative value (think about it). Rather than having to remember such convoluted
logic (“we see a negative effect for no bundle, which really means a positive effect
for bundle after we reverse the signs …”), it is easier just to set the order straight by
reassigning that variable with the factor levels in the order we want:
> pass.df$Promo <- factor(pass.df$Promo , levels=c("NoBundle", "Bundle"))
> table(pass.df$Pass , pass.df$Promo)

NoBundle Bundle
NoPass 812 755
YesPass 670 919

With the data ordered sensibly (Bundle > NoBundle, YesPass > NoPass), we pro-
ceed with modeling.

9.2.6 Fitting a Logistic Regression Model

A logistic regression model in R is fit as a generalized linear model (GLM) using
a process similar to linear regression that we saw in Chap.7 with lm(), but with
the difference that a GLM can handle dependent variables that are not normally
distributed. Thus, generalized linear models can be used to model data counts (such
as number of purchases) or time intervals (such as time spent on a website) or binary
variables (e.g., did/didn’t purchase). The common feature of all GLMmodels is that
they relate normally distributed predictors to a non-normal outcome using a function
known as a link. This means that they are able to fit models for many different
distributions using a single, consistent framework.

9.2 Linear Models for Binary Outcomes: Logistic Regression 235

In the present case, we model a binary outcome, and the appropriate distribution is a
binomial distribution (see Sect. 6.3). There are multiple functions and packages that
can estimate a GLM in R, but the most common is the glm(...) function. glm()
takes an argument family= that specifies the distribution for the outcome variable.
For a binary outcome, set family= binomial. The default link function for a
binomial model is the logit function that we saw in Sect. 9.2.1, so we do not have to
specify that. (But, as an example, if we wished to use a probit link function instead,
we could specify family= binomial(link= "probit"), and similarly for
other link functions.)

Our marketing question was, “does the promotion bundle have an effect on season
pass sales?” andwemodel this initiallywith a logistic regression ofPass onPromo,
using glm(..., family=binomial) and syntax otherwise identical to lm():
> pass.m1 <- glm(Pass ~ Promo , data=pass.df, family=binomial)

The initial model appears to confirm that the bundle is effective:
> summary(pass.m1)
...
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.19222 0.05219 -3.683 0.000231 ***
PromoBundle 0.38879 0.07167 5.425 5.81e-08 ***
...

There is a positive coefficient for the bundle condition, and the effect is statistically
significant.

What does a coefficient of 0.3888 mean? We can use it to calculate the association
of pass sales to the promotion bundle factor, by examining the ratio of success
(using plogis()) to non-success (1 − success). A manual way to do this is to use
plogis() directly:
> plogis (0.3888) / (1-plogis (0.3888)) # ratio of outcome % to alternative %
[1] 1.475209

This shows that the effect of Bundle is an estimated odds ratio of 1.475, meaning
that customers are 1.475 times more likely to purchase the pass when it is offered in
the bundle. Another way to think about this is that the bundle increases the purchase
likelihood by 47.5%. An easier and equivalent way to calculate this is to exponentiate
the coefficient:
> exp (0.3888) # identical
[1] 1.475209

We can find the odds ratios from the model by extracting the coefficients with
coef() and using exp():
> exp(coef(pass.m1))
(Intercept) PromoBundle

0.8251232 1.4751962

We can obtain a confidence interval for the odds ratio using exp(confint
(model)):
> exp(confint(pass.m1))

2.5 % 97.5 %
(Intercept) 0.744749 0.9138654
PromoBundle 1.282055 1.6979776

236 9 Additional Linear Modeling Topics

The odds ratio for the promotion bundle is estimated to be 1.28–1.70, a significant
positive effect. This demonstrates that the promotion is highly effective, right? Not
necessarily, because the effects are estimated under the assumption that the model
is the one we want to interpret. But is the model Pass ∼ Promo really the one we
should interpret?

9.2.7 Reconsidering the Model

If we explore the data further, we notice something interesting. Consider a table of
season pass purchases by channel:

> table(pass.df$Pass , pass.df$Channel)
Email Mail Park

NoPass 568 727 272
YesPass 65 601 923

The channel that was most successful in selling season tickets was at the park,
regardless of whether the promotion was offered.

A good way to visualize tables is with mosaic plots, which lay out “tiles” whose
areas correspond to counts in a table. The vcd package [140] provides several ways
to create mosaic plots (including the rather obvious mosaic() function). We use
a so-called doubledecker plot here as it makes the relationships particularly clear in
the present data:

> library(vcd) # install if needed
> doubledecker(table(pass.df))

The result is shown in Fig. 9.2, where we see that the three channels have some-
what different effects. Sales of season passes are very successful at the park, and
very unsuccessful by email. This implies that our model Pass ∼ Promo may be
inadequate and needs to account for the effect of Channel.

We model a main effect of channel by adding + Channel to the model formula:

> pass.m2 <- glm(Pass ~ Promo + Channel , data=pass.df, family=binomial)
> summary(pass.m2)
...

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.07860 0.13167 -15.787 < 2e-16 ***
PromoBundle -0.56022 0.09031 -6.203 5.54e-10 ***
ChannelMail 2.17617 0.14651 14.854 < 2e-16 ***
ChannelPark 3.72176 0.15964 23.313 < 2e-16 ***
...

The resulting model now estimates a strong negative contribution of the promotion
bundle. We compute the odds ratios and their confidence intervals:

> exp(coef(pass.m2))
(Intercept) PromoBundle ChannelMail ChannelPark

0.1251054 0.5710846 8.8125066 41.3371206
> exp(confint(pass.m2))

2.5 % 97.5 %
(Intercept) 0.09577568 0.1606189
PromoBundle 0.47793969 0.6810148
ChannelMail 6.65770550 11.8328173
ChannelPark 30.42959274 56.9295369

9.2 Linear Models for Binary Outcomes: Logistic Regression 237

Channel
Promo

Email
NoBundle Bun

Mail
NoBundle Bundle

Park
NoBundle Bundle

YesPass

NoPass

Pass

Fig. 9.2 A mosaic plot created with doubledecker() [140] for sales of season passes by
channel and promotion in simulated amusement park data. Season passes (“YesPass,” plotted as
dark areas) are sold most frequently at the park and least frequently by email. The promotion bundle
(“Bundle,” the second columnwithin each channel) is associatedwith higher sales through the email
channel, but lower sales in regular mail and at the park, thus showing an interaction effect

In this model, promotion is associated with a 32–53% lower likelihood (reflecting
the values 1.0–0.681 to 1.0–0.477) of purchasing a season pass. On the other hand,
offers in person at the park are associated with season ticket sales 30–56x higher in
this model.

But is this the appropriatemodel?Shouldwealso consider an interaction effect,where
Promo might have a different effect by Channel? Our data exploration suggests
a possible interaction effect, especially because of the dramatically different pattern
for the influence of Bundle in the Email channel in Fig. 9.2.

We add an interaction term using the : operator, as noted in Sect. 7.5:
> pass.m3 <- glm(Pass ~ Promo + Channel + Promo:Channel ,
+ data=pass.df, family=binomial)
> summary(pass.m3)
...

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.8883 0.1977 -14.608 < 2e-16 ***
PromoBundle 2.1071 0.2783 7.571 3.71e-14 ***
ChannelMail 3.1440 0.2133 14.743 < 2e-16 ***
ChannelPark 4.6455 0.2510 18.504 < 2e-16 ***
PromoBundle:ChannelMail -2.9808 0.3003 -9.925 < 2e-16 ***
PromoBundle:ChannelPark -2.8115 0.3278 -8.577 < 2e-16 ***
...

The interaction of promotion with channel is statistically significant, and is strongly
negative for themail and in-park channels, as opposed to the baseline (omitted) email
channel in these simulated data.

In the odds ratios, we see that the promotion is only 2–11% as effective through the
mail and in-park channels as it is in email (the omitted reference level):

238 9 Additional Linear Modeling Topics

> exp(confint(pass.m3))
Waiting for profiling to be done ...

2.5 % 97.5 %
...
PromoBundle:ChannelMail 0.02795867 0.09102369
PromoBundle:ChannelPark 0.03135437 0.11360965

Wenowhave amuch better answer to our question. Is the promotion bundle effective?
It depends on channel. There is good reason to continue the promotion campaign
by email, but its success there does not necessarily imply the bundle promotion will
work at the park or through a regular mail campaign. In case you’re wondering
how the statistical model is advantageous to simply interpreting Fig. 9.2, one answer
is that the model estimates confidence intervals and statistical significance for the
effect.

9.2.8 Additional Discussion

Before moving to the topic of hierarchical models, we have a few observations for
the current section:

• Although we performed logistic regression here with categorical predictors (factor
variables) due to the structure of the amusement park sales data, we could also
use continuous predictors in glm(). Just add those to the right hand side of the
model formula as we did with lm() in Chap.7.

• We saw that the estimated effect of promotion in these data was positive when we
estimated one model, yet negative when we estimated another, and this shows that
it is crucial to explore data thoroughly before modeling or interpreting a model.
For most marketing data, nomodel is ever definitive. However, though careful data
exploration and consideration of multiple models, wemay increase our confidence
in our models and the inferences drawn from them.

• The data here are an example of Simpson’s paradox, which is when the estimate
of an aggregate effect is misleading and markedly different than the effect seen in
underlying categories. A famous example occurred in graduate admissions at the
University of California at Berkeley, where an apparent bias in admissions was
due instead to the fact that different departments had different overall admissions
rates and numbers of applicants [12]. In R, the Berkeley data are available as the
table UCBAdmissions in the standard datasets package.

Logistic regression is a powerful method and one that is a particularly good fit for
many marketing problems that have binary outcomes. To learn more, see Sect. 9.8.
For modeling product choice among sets of alternatives, we cover choice models in
Chap.13.

9.3 Hierarchical Models 239

9.3 Hierarchical Models

InChap.7we sawhow to estimate a linearmodel for data for a sample of respondents.
What if we want to estimate the coefficients in the model for each respondent? As
marketers, it can be very useful to determine individual-level effects such as which
customers are more interested in a product or service, who among them wants which
features, and who is most or least price sensitive. We can use such information to see
the diversity of preference or for purposes such as customer targeting or segmentation
(see Chap.11).

To estimate both a population-level effect and an individual-level effect, we can use
a hierarchical linear model (HLM). The model is hierarchical because individual
responses are governed by a lower-level linear model and coefficients for each indi-
vidual follow a distribution across the population (the upper-level model). There are
various algorithms to fit such models, but the general approach is that the algorithm
fits the overall model to all the data, and then attempts to determine best fit for each
individual within that overall estimate (and repeats as necessary).

In general, a data set for HLM at an individual level needs multiple observations per
individual. Such observations may come from responses over time (as in transactions
or a customer relationship management system) or from multiple responses at one
time (as in a survey with repeated measures). We consider the case of conjoint
analysis, where a respondent rates multiple items on a survey at one time.

How is this different from simply adding the individual, store, or other grouping
variable as a factor variable in the model? The key difference is that a factor variable
would add a single term that adjusts themodel up or down according to the individual.
In HLM, however, we can estimate every coefficient—or any that we wish—for each
individual.

There are other uses for hierarchical models besides customer-level estimation. For
example, one might wish to estimate differences by a factor such as geographic
region, store, salesperson, product, or promotion campaign. Each of these might
provide many responses that could be grouped and allow estimation of a group-level
effect within an overall hierarchy. We can’t cover every application of HLM here—
hierarchical models are the subject of entire books (e.g., Gelman and Hill [72])—yet
we hope this discussion will help you to understand when and how they may be
useful, and how to begin with them in R.

9.3.1 Some HLM Concepts

A few words of jargon are required. Hierarchical models distinguish two types of
effects. One type is fixed effects, which are effects that are the same for every respon-
dent. In a standard linear model (Chap.7) all effects are fixed effects. For instance, in
Sect. 9.1.2, we saw that online spend was highly associated with online transactions

240 9 Additional Linear Modeling Topics

and slightly associated with age. Both of those estimates are fixed effects that predict
the same pattern of association for everyone in the sample.

An HLM also estimates random effects, which are additional adjustments to the
model coefficients estimated for each individual (or group). These are known as
“random” because they are estimated as random variables that follow a distribution
around the fixed estimates. However, for the estimate of each individual, they are
best estimates according to the model, not random guesses in that sense.

Such models are also known as multilevel models, where individuals and the full
sample are at different levels. They are a subset of models known as mixed effect
models, where mixed reflects the fact that the total effect for each respondent has (at
least) two effects that are combined: the overall fixed effect plus the individual-level
random effect.

A final variation onmixed effects models is a nested model, where a factor of interest
might occur only within subgroups of the total sample. For example, if we consider
sales in response to different promotions that each occur at different stores, we might
model both the effect of store (as a random effect, such that there are different sales
intercepts for different stores) and the effect of promotion within store as a nested
effect. We do not examine a nested model here, yet they may be also be fit using the
lme4 package used below.

9.3.2 Ratings-Based Conjoint Analysis for the Amusement
Park

For a hierarchical model, we return to the fictional amusement park from Sect. 7.1.
The park is now considering designs for a new roller coaster and hopes to find out
which roller coaster features appeal to its customers. They are considering coasters
with various possible levels of maximum speed (40, 50, 60 or 70mph), height (200,
300, or 400 feet), construction type (wood or steel), and theme (dragon or eagle). The
stakeholders wish to know which combination of features would be most popular
according to customers’ stated preference.

One way to examine this is a survey that asks customers to rate different roller
coasters (illustrated with photographs or videos for more realism). For example:

On a 10 point scale, where 10 is the best and 1 is the worst, how would you rate a roller
coaster that is made of wood, is 400 feet high, has a maximum speed of 50mph, with a
dragon theme?

Customers’ ratings could be analyzed with a linear model where the ratings are
predicted from the different features of the roller coasters. This would tell us the
contribution of each feature to the total rating.

Additionally, we wish to understand these preferences at an individual level, such
that we can see the distribution of preference or identify individuals for potential

9.3 Hierarchical Models 241

marketing actions. Todo this,weuse a hierarchical linearmodel (HLM) that estimates
both the overall fixed effect and the individual level random effect.

In the following section we simulate consumers’ ratings for such a survey. The code
is brief and illustrative of the data, but if you wish to skip the simulation, you can
load the data from the book’s website:
> conjoint.df <- read.csv("http://goo.gl/G8knGV")
> conjoint.df$speed <- factor(conjoint.df$speed)
> conjoint.df$height <- factor(conjoint.df$height)
> summary(conjoint.df)

resp.id rating speed height const
Min. : 1.00 Min. : 1.000 40: 800 200:1400 Steel :1400
1st Qu.: 50.75 1st Qu.: 3.000 50:1200 300:1200 Wood :1800

...

Given this data, you may skip to Sect. 9.3.4.

9.3.3 Simulating Ratings-Based Conjoint Data

In this section we simulate responses for a hypothetical conjoint analysis survey
with 200 respondents who each rate the same set of 16 roller coaster profiles. If you
have worked through the data simulation in previous chapters, this code should be
relatively simple in structure, although a few functions are new.

We set the structure: 200 respondents who rate 16 designs, each with 4 roller coaster
attributes:
> set.seed (12814)
> resp.id <- 1:200 # respondent ids
> nques <- 16 # number of conjoint ratings per respondent
> speed <- sample(as.factor(c("40", "50", "60", "70")), size=nques ,
+ replace=TRUE)
> height <- sample(as.factor(c("200", "300", "400")), size=nques , replace=
+ TRUE)
> const <- sample(as.factor(c("Wood", "Steel")), size= nques , replace=TRUE)
> theme <- sample(as.factor(c("Dragon", "Eagle")), size=nques , replace=TRUE)

In this example we assume that all respondents rate the same set of designs. Depend-
ing on your study’s goal, you might instead want to have a different, random set for
each respondent. A single set of designs is convenient for printed surveys, while an
online study could easily have a different set for every respondent; we will see an
example in Chap.13.

Next we create a model matrix for the combinations of features to rate. We draw
multivariate random normal values for respondents’ preferences using mvrnorm()
from the MASS package [192]:
> profiles.df <- data.frame(speed , height , const , theme)
> profiles.model <- model.matrix(~ speed + height + const + theme ,
+ data=profiles.df)
> library(MASS) # a standard library in R
> weights <- mvrnorm(length(resp.id),
+ mu=c(-3, 0.5, 1, 3, 2, 1, 0, -0.5),
+ Sigma=diag(c(0.2, 0.1, 0.1, 0.1, 0.2, 0.3, 1, 1)))

model.matrix() converts the list of design attributes (profiles.df) into
coded variables; it is similarly used by functions such as lm() to convert factors

242 9 Additional Linear Modeling Topics

into variables for regression equations. You can compare profiles.model to
profiles.df to see how this works. We use mvrnorm() to draw unique pref-
erence weights for each respondent. Estimating those later is the key feature that
distinguishes a hierarchical model from a standard linear model.

Given the designs to be rated and individuals’ preferences, we compile the simulated
individual ratings. For each respondent, we multiply the preference weights by the
designmatrix to get the total preference (utility) for each design, adding some random
noise with rnorm(). We convert the utility to a 10-point rating scale using cut()
(see Sect. 12.4.1), and add the respondent’s result to the overall data frame:

> conjoint.df <- NULL # make sure there ’s no data yet
> for (i in seq_along(resp.id)) {
+ # create one respondent ’s ratings of the 16 items , plus error
+ utility <- profiles.model %*% weights[i,] + rnorm (16) # preference
+ rating <- as.numeric(cut(utility , 10)) # put on a 10-point scale
+ conjoint.resp <- cbind(resp.id=rep(i, nques), rating , profiles.df)
+ conjoint.df <- rbind(conjoint.df, conjoint.resp)
+ }

Building a data frame using rbind() repeatedly instead of preallocating a whole
matrix is not efficient, but it is easy to understand and it is fast enough for this data
set. For large data sets, it would be better to preallocate the data frame for the size
needed and fill in the rows. With a bit of matrix manipulation, one might instead
create the whole data frame at once; but a simple, readable method like the one here
may be more effective overall if it’s easier and more reliable to code.

9.3.4 An Initial Linear Model

We begin as always with a quick summary of our conjoint data to check it (create
or load the data as described in Sect. 9.3.2 if needed):
> summary(conjoint.df)

resp.id rating speed height const
Min. : 1.00 Min. : 1.000 40: 800 200:1400 Steel :1400
1st Qu.: 50.75 1st Qu.: 3.000 50:1200 300:1200 Wood :1800

...

Ratings of the designs range from 1 (strongly disprefer) to 10 (strong prefer). We
also see the counts of the features that were shown in various combinations: speed,
height, const and theme.

Our goal is to determine how the four features relate to the ratings. At an aggregate
level, we might use by() to find the average rating for levels of each attribute. For
example, the averages by height are:

> by(conjoint.df$rating , conjoint.df$height , mean)
conjoint.df$height: 200
[1] 3.657857

conjoint.df$height: 300
[1] 7.254167

conjoint.df$height: 400
[1] 5.05

9.3 Hierarchical Models 243

The average rating for designs with 300 foot height is 7.25 points on the 10-point
scale, compared to 3.66 and 5.05 for heights of 200 and 400 feet. So, respondents
prefer the middle of our height range.

We could examine each individual feature in that way, but a more comprehensive
linear model considers all of the effects in combination. To start, we’ll estimate a
regular linear model without a hierarchical component using lm() (Chap. 7):

> ride.lm <- lm(rating ~ speed + height + const + theme , data=conjoint.df)
> summary(ride.lm)
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.07307 0.08102 37.932 < 2e-16 ***
speed50 0.82077 0.10922 7.515 7.35e-14 ***
speed60 1.57443 0.12774 12.326 < 2e-16 ***
speed70 4.48697 0.15087 29.740 < 2e-16 ***
height300 2.94551 0.09077 32.452 < 2e-16 ***
height400 1.44738 0.12759 11.344 < 2e-16 ***
constWood -0.11826 0.11191 -1.057 0.291
themeEagle -0.75454 0.11186 -6.745 1.81e-11 ***
...

In this abbreviated output, the coefficients indicate the association with preference
(the rating). The highest rated roller coaster on average would have a top speed of
70mph, a height of 300 ft, steel construction, and the dragon theme (steel and dragon
because wood and eagle have negative values). We estimate an overall rating for this
most-desired coaster; it would be the intercept + speed70 + height300 (steel and
dragon are included in the intercept), or 3.07 + 4.49 + 2.94 = 10.46 points on our
10-point rating scale.

But wait! That’s not possible; our scale is capped at 10 points. This shows that simply
interpreting the “average” result can be misleading. The coefficients are estimated on
the basis of designs that mostly combine both desirable and undesirable attributes,
and are not as reliable at the extremes of preference. Additionally, it could happen
that few people prefer that exact combination even though the individual features are
each best on average.

Consider that the coefficient for constWood is near zero. Are people indifferent
between wood and steel coasters, or do they have strong preferences that cancel out
when averaged? If people are strongly but almost equally divided, that’s important
for us to know as marketers; it might suggest that we construct different rides that
appeal to two different groups. On the other hand, if they are truly indifferent, we
could choose between steel and wood on the basis of cost and other factors.

To understand our respondents better, we turn next to a hierarchical model that will
estimate both the overall average preference level and individual preferences within
the group.

244 9 Additional Linear Modeling Topics

9.3.5 Initial Hierarchical Linear Model with lme4

The linear model ride.lm has only fixed effects that are estimated at the sample
level. In a hierarchical linear model, we add one or more individual-level effects to
those.

The simplest HLM allows individuals to vary only in terms of the constant intercept.
For example, we might expect that individuals vary in their usage of a rating scale
such that some will rate our roller coaster designs higher or lower than the average
respondent. This would be an individual-level random effect for the intercept term.
To estimate anHLMwith fixed effects plus a per-respondent intercept, we change the
lm()model from above in three ways. First, instead of lm(), we use a hierarchical
estimation function, lmer() from the lme4 package [8].

Second, in the formula for lmer(), we specify the term(s) for which to estimate
random effects. For the intercept, that is signified as simply “1”. Third, we specify
the grouping variable, for which a random effect will be estimated for each unique
group. In our conjoint data, the group in the set of responses for a single respondent,
which is identified in the data frame by respondent number, resp.id. With lme4,
we specify the random effect and grouping variable with syntax using a vertical
bar (“|”) as + (predictors | group), or in this case for the intercept only,
+ (1 | resp.id).

We estimate this model using lme4, where the only difference from the call to lm()
above is the addition of a term for random intercept by respondent:
> library(lme4)
> ride.hlm1 <- lmer(rating ~ speed + height + const + theme + (1 | resp.id),
+ data=conjoint.df)
> summary(ride.hlm1)
...
Scaled residuals:

Min 1Q Median 3Q Max
-3.3970 -0.6963 0.0006 0.6700 3.3689

Random effects:
Groups Name Variance Std.Dev.
resp.id (Intercept) 0.3352 0.5789
Residual 3.5358 1.8804

Number of obs: 3200, groups: resp.id, 200

Fixed effects:
Estimate Std. Error t value

(Intercept) 3.07307 0.08759 35.08
speed50 0.82077 0.10439 7.86
speed60 1.57443 0.12209 12.90
speed70 4.48697 0.14421 31.11
height300 2.94551 0.08676 33.953
height400 1.44738 0.12195 11.87
constWood -0.11826 0.10696 -1.11
themeEagle -0.75454 0.10692 -7.06
...

In this output, we see that the fixed effects are identical to those estimated by lm()
above. But now we have also estimated a unique intercept term adjustment for each
respondent. The output section labeled “Random effects” shows 3200 total obser-
vations (survey questions) grouped into 200 respondents for which a random effect
was estimated (such as the effect for (Intercept)).

9.3 Hierarchical Models 245

fixef() is an easy way to extract just the fixed (population level) effects:

> fixef(ride.hlm1)
(Intercept) speed50 speed60 speed70 height300 height400 ...

3.0730724 0.8207718 1.5744257 4.4869715 2.9455084 1.4473848 ...

The 200 respondent-level random effect estimates for intercept, which summary
(ride.hlm1) does not display because there could be many of them, are accessed
with ranef() (and we additionally use head() to shorten the output):

> head(ranef(ride.hlm1)$resp.id)
(Intercept)

1 -0.65085634
2 -0.04821158
3 -0.31186866
...

The complete effect for each respondent comprises the overall fixed effects that
apply to everyone, plus the individually-varying random effects (in this case, just the
intercept). Those are accessed using coef():

> head(coef(ride.hlm1)$resp.id)
(Intercept) speed50 speed60 speed70 height300 height400 constWood ...

1 2.422216 0.8207718 1.574426 4.486971 2.945508 1.447385 -0.1182553 ...
2 3.024861 0.8207718 1.574426 4.486971 2.945508 1.447385 -0.1182553 ...
3 2.761204 0.8207718 1.574426 4.486971 2.945508 1.447385 -0.1182553 ...
...

It is possible to estimate random effects for multiple grouping factors (hierarchical
levels), so these effects must be extracted using the name of the grouping variable,
which is $resp.id.

In coef(ride.hlm1)$resp.id, each respondent has the overall sample-level
value of the effect on all coefficients except for intercept, and the final intercept
coefficient is the same as the fixed effect plus the random effect. For example, for
respondent 1, the intercept is 3.07 (fixef) −0.65 (ranef) = 2.42 (coef) .

9.3.6 Complete Hierarchical Linear Model

The most common hierarchical model in marketing practice is to estimate a random
effect parameter for every coefficient of interest for every respondent. This is easy
to do with the lme4 syntax; simply add all the variables of interest to the predictors
in the random effects specification (predictors | group).

For the conjoint data, we write the random effects part of the formula as (speed +
height + const + theme | resp.id). Before estimating that model, we
should note that this is a much more complex model than the intercept model above.
Whereas the random intercept-only HLM estimated 8 fixed parameters and 200
random effects, the full model will estimate 8 fixed effects plus 8 ∗ 200 random
effects. And it will do this for a total data frame of 3200 observations.

This fact has two implications. First, the estimation can be rather slow, taking several
minutes for the present model at the time of writing. Second, there are so many

246 9 Additional Linear Modeling Topics

parameters that even 3200 observations is not a lot, and one can expect some difficulty
finding a stable converged model.

With those facts in mind, we estimate the full model as follows (this will take some
time, perhaps several minutes):
> ride.hlm2 <- lmer(rating ~ speed + height + const + theme +
+ (speed + height + const + theme | resp.id),
+ data=conjoint.df,
+ control=lmerControl(optCtrl=list(maxfun =100000)))

Compared tomodelride.hlm1 above, thismodel has two changes. First, we added
all four roller coaster factors to be estimated for random effects. This will give us
individual estimates of preference for every feature, for each respondent. Second,
we added a control argument to lmer(), which increases the maxfun number
of iterations to attempt convergence from 10,000 iterations (the default) to 100,000.
This allows the model to converge better, although it may issue warnings in some
cases that depend on the package versions. (If so, ignore the warnings for now. Our
discussion here is for illustration, not for an important business decision. For a model
of importance, we recommend to run to convergence when possible.)

When you run into warnings, we suggest five potential remedies. First, increase the
control maxfun argument by a factor of 2, 5, or 10 to see if convergence results
(and repeat that if necessary). Second, check whether the max|grad| (maximum
absolute value of the gradient in the optimization function; cf. [8]) is small, such
as max < 0.001; if so, you may be okay. Alternatively, if max >> .01, such as
max = 0.10, increase the iterations. Third, do a web search for the warnings you
receive and consider the suggestions offered onRdiscussion forums. Fourth, consider
using a different optimization function (seelme4 documentation [8]). Fifth, consider
collecting more data, or evaluate your data for internal consistency. Again, we skip
these steps now primarily for convenience.

Fixed effects are extracted with fixef():
> fixef(ride.hlm2)
(Intercept) speed50 speed60 speed70 height300 height400 ...

3.0730724 0.8207718 1.5744257 4.4869715 2.9455084 1.4473848 ...

This part of the ride.hlm2 model is identical to the model estimated for ride.
hlm1 above, so the coefficients are identical.

The random effects now include an estimate for each parameter for each respondent.
Again, because we grouped by resp.id and could have had multiple grouping
factors, we request the $resp.id portion of the random effects using ranef():
> head(ranef(ride.hlm2)$resp.id)

(Intercept) speed50 speed60 speed70 height300 height400
1 -1.1199669 -0.20604116 -0.12507852 0.10294441 0.10742922 -5.078259e-05
2 -1.0104411 0.24975639 -0.08224947 0.16263447 0.05610835 1.073264e+00
3 -1.0352138 -0.21870807 0.31082408 -0.29288315 0.34166414 -1.136045e-01
4 ...

Notice that the random intercepts are no longer identical to those estimated in model
ride.hlm1, because we added seven explanatory variables and the predicted out-
come rating points are distributed differently across the predictors.

We obtain the total coefficients for each respondent with coef():

9.3 Hierarchical Models 247

> head(coef(ride.hlm2)$resp.id)
(Intercept) speed50 speed60 speed70 height300 height400 constWood

1 1.953106 0.6147306 1.449347 4.589916 3.052938 1.4473340 0.1060565
2 2.062631 1.0705282 1.492176 4.649606 3.001617 2.5206483 1.4178031
3 2.037859 0.6020637 1.885250 4.194088 3.287173 1.3337803 0.4858069
...

Notice that the coefficients forconstWoodvarywidely across respondents.Respon-
dent 2 has a strong preference forwood over steel (1.42), while respondent 1 is almost
indifferent (0.11). Histograms of the coefficients for each respondent can illustrate
these large differences between customers, as we will illustrate in Sect. 9.4.3.

As a final sanity check to confirm that the model matches expectations, we choose a
respondent (ID 196) and see that the coefficients are indeed the sum of the fixed and
random effects:
> fixef(ride.hlm2) + ranef(ride.hlm2)$resp.id[196,]

(Intercept) speed50 speed60 speed70 height300 height400 constWood ...
196 2.143066 0.7534546 1.271102 4.594398 2.949586 1.212745 2.580267 ...
> coef(ride.hlm2)$resp.id[196,]

(Intercept) speed50 speed60 speed70 height300 height400 constWood ...
196 2.143066 0.7534546 1.271102 4.594398 2.949586 1.212745 2.580267 ...

In this code, the random effect and coefficient values for respondent 196 are retrieved
by indexing that row within the corresponding $resp.id matrix.

9.3.7 Conclusion for Classical HLM

This concludes our discussion of classical hierarchical models; in the next section,
we consider the Bayesian approach to HLM, which uses the same general conceptual
model but a different estimation method.

In this section, we hope to have convinced you that, when you have multiple obser-
vations for an individual or other grouping factor of interest, you should consider a
hierarchical model that estimates both sample-level and individual- or group-level
effects. Thesemodels are relatively straightforward to estimate using thelme4 pack-
age.

Besides customer-level models, which are most common in marketing, other factors
for which one might wish to estimate a hierarchical model include store, country,
geographic region, advertising campaign, advertising creative, channel, bundle, and
brand.

If this section has inspired you to consider adding hierarchical modeling to your
toolbox, see “Learning More” (Sect. 9.8) for pointers to other resources.

9.4 Bayesian Hierarchical Linear Models*

This is an optional section that you may skip if you are not interested in the Bayesian
approach to estimate hierarchical models.

248 9 Additional Linear Modeling Topics

Hierarchical models may be fit with classical estimation procedures (such as the
lme4 package we saw above) yet they are particularly well-suited to Bayesian
estimation. The method we use here is known as a hierarchical Bayes approach;
hierarchical because it models individuals in relationship to an overarching distri-
bution, and Bayes because it uses Bayesian estimation techniques to fit the models
(see Sects. 6.6.1 and 6.6.2 for an introduction).

In this section,weapply ahierarchicalBayes (HB)method to estimate thehierarchical
linear model for ratings-based (metric) conjoint analysis, using the same data set that
we analyzed with classical hierarchical models in Sect. 9.3 above. Before continuing
this section you should:

• Review the concepts ofBayesian linearmodels andMCMCestimation inSect. 7.5.4

• Review the concepts of hierarchical linear models in Sects. 9.3 and 9.3.1

• Review the description of the amusement park conjoint analysis data in Sect. 9.3.2

Download the simulated amusement park conjoint analysis data as follows, or see
Sect. 9.3.2:
> conjoint.df <- read.csv("http://goo.gl/G8knGV")
> conjoint.df$speed <- factor(conjoint.df$speed)
> conjoint.df$height <- factor(conjoint.df$height)
> summary(conjoint.df)

resp.id rating speed height const
Min. : 1.00 Min. : 1.000 40: 800 200:1400 Steel :1400
1st Qu.: 50.75 1st Qu.: 3.000 50:1200 300:1200 Wood :1800

...

9.4.1 Initial Linear Model with MCMCregress()*

We start by estimating a non-hierarchical model using Bayesian methods, which
allows us to check that our basic estimation procedures areworking beforewe attempt
a complex model. We model respondents’ ratings of roller coaster designs as a
function of roller coaster features using MCMCregress() to fit a simple linear
model as we did in Sect. 7.5.4:
> library(MCMCpack)
> set.seed (97439)
> ride.mc1 <- MCMCregress(rating ~ speed + height + const + theme ,
+ data=conjoint.df)
> summary(ride.mc1)
...

Mean SD Naive SE Time -series SE
(Intercept) 3.0729 0.08112 0.0008112 0.0008112
speed50 0.8208 0.11061 0.0011061 0.0011126
speed60 1.5754 0.12889 0.0012889 0.0012889
speed70 4.4873 0.15002 0.0015002 0.0015002
height300 2.9444 0.09122 0.0009122 0.0009337
height400 1.4461 0.12934 0.0012934 0.0013367
constWood -0.1187 0.11310 0.0011310 0.0011310
themeEagle -0.7533 0.11308 0.0011308 0.0011308
sigma2 3.8705 0.09737 0.0009737 0.0009737
...

The overall effects are nearly identical to those estimated by the classical linear
models in Sect. 9.3.5, which is it should be. We changed the estimation routine

9.4 Bayesian Hierarchical Linear Models* 249

by using MCMCregress, but we did not change the model. With sufficient data,
Bayesian and frequentist estiamtes will be nearly identical for the same model. Now
that we’ve confirmed that our esimation algorithm is working, we are ready to add
the hierarchical component to the model.

9.4.2 Hierarchical Linear Model with MCMChregress()*

We estimate a hierarchical model using MCMChregress(fixed, random,
group, data, r, R). Note the h for hierarchical buried in that function name.
This is a slightly different syntax than lme4 uses (as we reviewed in Sect. 9.3.5), as
it separates the fixed and random effect specifications. The key arguments we use
here are:

fixed : formula for fixed effects at the higher level that are the same for all
respondents

random : formula for random effects that are estimated for each respondent
group : name of the column with identifiers that group observations for the

random effects
data : the data frame with observations
r, R : pooling arguments. We’ll just set them for now; see below for detail

For fixed effects we specify the primary model to estimate: rating∼ speed +
height + const + theme. For random effects, the most common models in
marketing estimate all parameters of the model for every respondent, so we specify
random = ∼ speed + height + const + theme. Because we are esti-
mating by individual, group is the respondent identifier, "resp.id".

Estimation of this model may take several minutes to run. Here is the final code:

> set.seed (97439)
> ride.mc2 <- MCMChregress(fixed = rating ~ speed + height + const + theme ,
+ random = ~ speed + height + const + theme ,
+ group="resp.id", data=conjoint.df, r=8, R=diag (8))

Running the Gibbs sampler. It may be long , keep cool :) ...

While themodel runs, let’s examine the two argumentsr andR. A hierarchical model
assumes that each respondent has a set of preferences (coefficients) drawn from a
larger distribution that defines the range of possible preferences. The model is slow
because it makes thousands of estimates of both the individuals’ coefficients and the
higher-order distributions that best describe those individuals.

Of course there are only a few observations for each respondent, and a model for a
single person can not be estimated very well with such limited data. To improve esti-
mation, the MCMCmodel pools information across respondents, allowing estimates
to be more or less similar to one another based on the data. If several respondents
dislike a feature, it’s more likely (but not certain) that another randomly selected

250 9 Additional Linear Modeling Topics

respondent will also dislike it; this expected similarity is used to improve estimates
given sparse data.

That degree of pooling across respondents is adjusted by the final two arguments r
and R. For most analyses, you can set r equal to the number of parameters in your
model and R equal to a diagonal matrix with values along the diagonal equal to the
number of parameters in your model, and the algorithm will determine the optimal
level of pooling from the data. This can be done with the simple function diag(K),
where K is the same number as r. However, if you plan to run hierarchical Bayesian
models regularly, you will wish to learn more about pooling; check the references in
Sect. 9.8.

By now, MCMChregress() from above should have finished, and we can review
its result:
> str(ride.mc2)
List of 2
$ mcmc : mcmc [1:1000 , 1:1674] 3.04 2.87 2.9 3.06 2.98 ...
..- attr(*, "dimnames")=List of 2
.. ..$: NULL
.. ..$: chr [1:1674] "beta.(Intercept)" "beta.speed50" "beta.speed60" "

beta.speed70" ...
..- attr(*, "mcpar")= num [1:3] 1001 10991 10

$ Y.pred: num [1:3200] 4.94 2.69 5.73 6.24 4.67 ...

The output of MCMChregress is a list with two items. The first item in this list is an
mcmc object containing the draws from the posterior distribution of the parameters. A
notable thing is that ride.mc2$mcmc contains 1674 columns. Why so many? The
model estimates a set of 8 coefficients—the preferences for each attribute of our roller
coasters—for every one of the 200 respondents. That’s 1600 parameters plus a few
more that describe the overall population distribution. For each of those parameters,
it drew 1000 estimates from the posterior distribution for every respondent (see
Sect. 6.6.2).

Let’s look at the first 8 columns, estimated coefficients for the overall, population-
level preferences:
> summary(ride.mc2$mcmc[,1:8])
...

Mean SD Naive SE Time -series SE
beta.(Intercept) 3.0739 0.1694 0.005356 0.005457
beta.speed50 0.8168 0.1398 0.004422 0.004422
beta.speed60 1.5691 0.1618 0.005117 0.005569
beta.speed70 4.4849 0.1862 0.005889 0.005889
beta.height300 2.9474 0.1235 0.003904 0.003681
beta.height400 1.4578 0.1796 0.005680 0.005680
beta.constWood -0.1128 0.1952 0.006172 0.005615
beta.themeEagle -0.7542 0.1857 0.005871 0.005871
...

These estimates are nearly identical to the result of non-hierarchical MCMCregress
in model ride.mc1 above. speed70 is still preferred and worth 4.5 points on our
rating scale, preference for wood construction is near zero, and so forth.

Let’s look at an example respondent; we pull and summarize the posterior draws
for the parameters that are associated with respondent 196. We do this by finding
columns that are named with “196” (the resp.id that we want). We accomplish
that by indexing the columns with the results of the grepl() function that identifies

9.4 Bayesian Hierarchical Linear Models* 251

elements of a character vector (in this case, column names) containing a particular
string:

> summary(ride.mc2$mcmc[, grepl(".196", colnames(ride.mc2$mcmc), fixed=TRUE)
])

...
Mean SD Naive SE Time -series SE

b.(Intercept).196 -1.03806 0.6780 0.02144 0.02144
b.speed50 .196 0.44049 0.5434 0.01718 0.01718
b.speed60 .196 0.10442 0.6335 0.02003 0.02003
b.speed70 .196 0.03807 0.7167 0.02266 0.02357
b.height300 .196 -0.35414 0.5441 0.01721 0.01797
b.height400 .196 -0.55132 0.7357 0.02327 0.02327
b.constWood .196 2.57915 0.8370 0.02647 0.02647
b.themeEagle .196 -1.41955 0.8220 0.02599 0.02599
...

Respondent 196 strongly prefers wood coasters; her ratings for them are 2.5 points
higher on our 10 point scale than those for steel construction (the default level). On
the other hand, she dislikes the eagle-themed design, rating it −1.4 points lower
on average than the dragon theme. These preferences are rather different than the
population averages above.

How could we use this information? The ideal roller coaster for respondent 196,
according to her responses, would be a dragon-themed wood coaster with a top speed
of 50mph and a height of 200 feet (the default level not shown). Although individual
customization is impractical for roller coasters, a plausible marketing use would be
to segment respondents’ preferences to determine a mix of coasters (see Chap.11).
For instance, we might ask which new coaster would maximize preference over and
above the coasters the park already has; in otherwords, we could investigate a product
line extension. More immediately, if we have respondents’ contact information, we
could tailor marketing communications to this and similar respondents and tell them
about wooden coasters at the park.

The MCMC output also informs our confidence of estimates. One could use the
standard error of the mean estimate, but we recommend instead to use the values
from the Quantiles section of the output. Let’s look at the population estimates
again, but focus on the quantiles::

> summary(ride.mc2$mcmc[,1:8])
...
2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
beta.(Intercept) 2.7389 2.9594 3.0764 3.18818 3.4099
beta.speed50 0.5421 0.7251 0.8114 0.91274 1.0801
beta.speed60 1.2604 1.4636 1.5725 1.68365 1.8804
beta.speed70 4.1213 4.3599 4.4834 4.60792 4.8599
beta.height300 2.7114 2.8642 2.9501 3.03263 3.1779
beta.height400 1.0898 1.3429 1.4589 1.58500 1.8017
beta.constWood -0.5219 -0.2464 -0.1105 0.01628 0.2698
beta.themeEagle -1.0999 -0.8745 -0.7571 -0.63284 -0.3609

This tells us that the fixed effect estimate for speed70 had a value between 4.12–
4.86 in 95% of the draws from the posterior distribution. Thus, we can use these
values to express the credible interval for the parameters we report. An advantage
of Bayesian statistics is that confidence in estimates can be stated directly, without
resorting to discussion of null hypotheses.

252 9 Additional Linear Modeling Topics

9.4.3 Inspecting Distribution of Preference*

We wondered above whether respondents were just indifferent to wooden versus
steel coasters, or had significant differences. To investigate this in the estimated
model, we need to do a bit of work. First, we extract out all the coefficients labeled
b.constWood, which are the individual-level estimates for preference for wood
construction. There are 200 columns for these coefficients, one for each customer in
our data set.

Those values each represent a difference for the individual relative to the overall popu-
lation, sowe add the values to the baseline population estimate,beta.constWood.
Because we have 1000 sets of estimates from the MCMC draws, we compute the
total (individual plus population mean) for each of the 1000 draws from the posterior
distribution, and summarize those totals. (Do not summarize first and then add.)

Although this process may sound complex, it is accomplished in a single, albeit
cryptic, command:
> ride.constWood <- summary(ride.mc2$mcmc[, grepl("b.constWood",
+ colnames (ride.mc2$mcmc))]
+ + ride.mc2$mcmc[, "beta.constWood"])

Deconstructing this code, it finds the columns in mcmc draws with “b.constWood” in
their names; those are the individual differences in preference. It adds the population
value, beta.constWood, to obtain the total preference for each respondent. Then
it summarizes the result. (You might try parts of this code in the R console to see
how this works.)

The result is that ride.constWood contains estimates from the posterior distri-
bution for individual-level preference of wood over steel coasters. We plot these to
see the distribution of individuals’ preferences for wood coasters:
> hist(ride.constWood$statistics [,1],
+ main="Preference for Wood vs. Steel",
+ xlab="Rating points", ylab="Count of Respondents", xlim=c(-4,4))

We compare that to the distribution of preference for 60mph speed (versus baseline
40mph):
> ride.speed60 <- summary(ride.mc2$mcmc[,grepl("b.speed60",
+ colnames (ride.mc2$mcmc))]
+ + ride.mc2$mcmc[,"beta.speed60"])
> hist(ride.speed60$statistics [,1],
+ main="Preference for 60mph vs. 40mph",
+ xlab="Rating points", ylab="Count of Respondents", xlim=c(-4,4))

The resulting charts are shown in Fig. 9.3. In the first, we see a wide range across
individuals in preference of wood versus steel construction; some respondents have
negative preference for wood, and thus prefer steel, while others prefer wood. The
magnitude is very strong for some, corresponding to a difference in rating of up to
4 points. By comparison, in the second chart, preference for 60mph coasters over
40mph is less diverse; all respondents prefer the faster speed.

This degree of variation among respondents is known as heterogeneity, and in
addition to estimating the parameters (coefficients) for the population (beta.

9.4 Bayesian Hierarchical Linear Models* 253

<predictor name> as we saw above), MCMC hregress() also estimates
their variance and covariance across the population of respondents. The results
are named VCV. <predictor name>. <predictor name> in the output,
where “VCV” abbreviates variance covariance. When the two predictor names are
the same, this gives the variance estimate for a single parameter; when they are
different, it is the covariance of two parameters.

For example, we can find the population mean and variance of the wood and 60mph
parameters:
> summary(ride.mc2$mcmc[,c("beta.constWood", "VCV.constWood.constWood",
+ "beta.speed60","VCV.speed60.speed60")])
...

Mean SD Naive SE Time -series SE
beta.constWood -0.1128 0.1952 0.006172 0.005615
VCV.constWood.constWood 2.3458 0.3749 0.011855 0.014056
beta.speed60 1.5691 0.1618 0.005117 0.005569
VCV.speed60.speed60 0.5782 0.1351 0.004273 0.004939
...

The estimated variance for constWood is quite large at 2.34, demonstrating that
there is large heterogeneity between respondents in preference for wooden roller
coasters. On the other hand, the variance of the estimates for speed60 is much
smaller at 0.58. This reflects the difference in distributions that we saw in the his-
tograms in Fig. 9.3.

You might wish to predict respondents’ interest in one or more fully-specified roller
coaster designs, as opposed to interest in individual features. Such assessment is
typical in conjoint analysis to predict product interest and is often known as mar-
ket simulation. However, there is not yet an appropriate predict() function for
MCMC models as there is for lm(). To obtain estimates of overall preference for a
design, there are two choices. One option is to calculate the net level of interest by
adding the columns of the MCMC draws that match your design (plus the baseline
population estimates), and then summarize the level of interest for each respon-
dent. Another option is to use a market simulation routine that compares preference
between choices, such as the relative preference for your design versus some other

Preference for Wood vs. Steel

Rating points

C
ou

nt
 o

f R
es

po
nd

en
ts

0
5

10
15

20
25

30

Preference for 60mph vs. 40mph

Rating points

C
ou

nt
 o

f R
es

po
nd

en
ts

−4 −2 0 2 4 −4 −2 0 2 4

0
10

20
30

40

Fig. 9.3 Histogramsof individual respondent preferences in a ratings-based conjoint analysismodel

254 9 Additional Linear Modeling Topics

design; an example is available in Chapman et al. [33]. We discuss preference share
estimation further in Chap.13.

One other thing we should mention with regard to this model—as is illustrated
in our data simulation and Fig. 9.3 as well as in the model’s assumptions—is that
individuals’ estimates (random coefficients) are assumed to follow a multivariate
normal distribution. Thismeans that themodel assumesmost people’s preferences are
in themiddle of the distribution,with fewer respondentswho have strong preferences.
If you have reason to suspect that there are separate groups with divergent and strong
preferences, you might consider a mixture or latent class model, which is outside the
scope of this chapter (see [168], Chap. 5).

We hope this introduction to hierarchical Bayesian models has demonstrated their
value in understanding individual customers. Hierarchical modeling has become
widespread in marketing because it allows us both to obtain model estimates at an
individual level and to understand the diversity across customers. We’ll have more
to say about such models for conjoint analysis, in the form of choice-based con-
joint analysis, in Chap. 13. These models are also common in customer-relationship
management (CRM) applications, where the goal is to estimate a likely response or
outcome of some sort for individual customers. We suggest to consider a Bayesian
approach anytime that you are interested to fit a linear model.

9.5 A Quick Comparison of the Effects*

This is an optional section for those who completed both of the previous sections. In
those sections we modeled the same data set using classical methods (Sect. 9.3) and
Bayesianmethods (Sect. 9.4).We saw that the estimates of the fixed effects are nearly
identical in the two models (Sect. 9.4.1). What about the random, individual-level
effects? How similar are they?

Before examining those effects, let’s try to apply a bit of intuition to the problem.
First, we might consider that the fixed effects, even with 3200 total observations are
not exactly identical between the two methods. Second, we should expect that the
individual-level effects, with only 16 observations per respondent would have much
more variance (because variance is inversely proportional to the square root of the
number of observations). When we consider that we are estimating 8 random effects
per respondent given only 16 observations, we should expect a lot of uncertainty in
the estimates. Third, we should understand that neither model can be regarded as
true, but only expected to be (one hopes) an unbiased estimate.

To compare the models here, you need to fit both the ride.hlm2 and ride.mc2
models as we did above (Sects. 9.3.6 and 9.4.2, respectively).

We’ve seen that the mean fixed effect estimates are quite similar. We can check that
visually by plotting the eight parameters of each against those from the other model.

9.5 A Quick Comparison of the Effects* 255

Fig. 9.4 Fixed effects from
the two hierarchical linear
models, classical and
Bayesian. The Bayesian
method estimates (y-axis;
estimated using MCMCpack)
are nearly identical to the
classical method estimates
(x-axis; estimated using
lme4) for these simulated
data

0 1 2 3 4

0
1

2
3

4

fix.hlm2

fix
.h

b

First we get the fixed effects from each, then we plot them against one another and
add a 45◦ line to see how closely they align.

> fix.hlm <- fixef(ride.hlm2)
> fix.hb <- colMeans(ride.mc2$mcmc[, 1:8])
> plot(fix.hlm , fix.hb)
> abline (0,1)

Figure9.4 shows that the fixed effects are nearly identical in the two models. Note
that we use the abbreviation “HLM” to refer to the model estimated by lme4 in
order to distinguish it from “HB” for the Bayesian model, although both models are
hierarchical linear models yet estimated with different methods.

The random effects have to be compared within respondent. We’ll do this for just
one respondent, ID 196 who we considered above. First, let’s just consider the mean
estimates of each random effect. We extract those using ranef() for the lme4
model (Sect. 9.3.6) and colMeans() to take the mean effect estimated in the draws
of the MCMC model (Sect. 9.4.2):
> ranef(ride.hlm2)$resp.id[196,]

(Intercept) speed50 speed60 speed70 height300 height400
196 -0.9300065 -0.0673172 -0.3033236 0.1074266 0.004077387
-0.2346401

constWood themeEagle
196 2.698522 -1.438104
> colMeans(ride.mc2$mcmc[, grepl (".196", colnames(ride.mc2$mcmc),
+ fixed=TRUE)]) b.(Intercept).196

b.speed50 .196 b.speed60 .196 b.speed70 .196
-1.03806213 0.44049447 0.10441996 0.03807113

b.height300 .196 b.height400 .196 b.constWood .196 b.themeEagle .196
-0.35414215 -0.55131679 2.57914806 -1.41954714

There are some overall similarities in the two sets of estimates for respondent 196,
such as the strong negative effect for the eagle theme, relative to the same fixed effect,
and strong positive for a wooden roller coasts. However, there are small to modest

256 9 Additional Linear Modeling Topics

differences in some of the mean estimates. The MCMC process should prompt you
to recall that Bayesian methods estimate not only a point estimate (the mean effect
estimate reported above), but also a posterior distribution that reflects uncertainty.

Onemight compare estimates in variousways; in this case,we compare themvisually.
We’ll do this by overlaying distribution curves for the two sets of estimates. In the case
of the HB estimates, we have 1000 MCMC draws for each parameter, so we plot the
density() estimate of those draws. For the HLM estimates, we construct a similar
density estimate in the following way: we obtain the mean effect from ranef() and
the standard deviation of the estimation from the “postVar” (variance) attribute of
the ranef() random effect estimates for one respondent, and use those parameters
to draw random points from that distribution.

Doing this process one time—plotting the density of the MCMC draws and then
adding a distribution plot for themean and standard deviation of the HLMestimate—
would give us a comparison of one set of parameters such as the preference for one
speed or design. We iterate that to compare multiple parameters. We do that for
parameters 2–5, the first four non-intercept parameters, as follows:
> par(mfrow=c(2,2)) # make a 2x2 plot surface

> plot.xlim <- c(-3, 3) # define limits for the x-axis

> for (i in 2:5) { # first four parameters only , for convenience

+ # plot the MCMC density for random effect i

+ mcmc.col <- which(grepl(".196", colnames (ride.mc2$mcmc), fixed=TRUE))[i]

+ plot(density(ride.mc2$mcmc[, mcmc.col]), xlab="",

+ ylim=c(0, 1.4) , xlim=plot.xlim ,

+ main=paste("HB & lmer density:",

+ colnames(ride.mc2$mcmc)[mcmc.col]))

+ # add the HLM density for random effect i

+ hlm2.est <- ranef(ride.hlm2)$resp.id[196, i] # mean estimate

+ hlm2.sd <- sqrt(attr(ranef(ride.hlm2 , condVar=TRUE)$resp.id ,

+ "postVar")[, , 196][i, i])

+ seq.pts <- seq(from=plot.xlim[1], to=plot.xlim[2], length.out =1000) # range

+ # .. find density at x-axis points using dnorm () and add that to the plot

+ points(seq.pts , dnorm(seq.pts , mean=hlm2.est , sd=hlm2.sd),

+ col="red", pch=20, cex =0.05)

+ legend("topright", legend=c("red = lmer", "black = HB"),

+ text.col=c("red", "black"))

+ }

This code is lengthy but should not be difficult for you to deconstruct by this point.
The two significant new elements here are that it uses attr(..., "postVar")
to obtain the variance of the random effect estimate for the HLM model, and uses
dnorm() to obtain a density estimate for 1000 points thatmatch theHLMparameter
distribution estimate, which it adds to the plot with points().

The resulting chart in Fig. 9.5 shows that the density estimates from the two methods
are largely overlapping. It is also congruent with our intuition above, as the results
are different but not enormously so, and there is no reason to suspect either method is
highly discrepant because the distributions are generally similar in range and central
tendency, with just slightly higher variance in the MCMC estimates. Of course this
is a comparison of only four parameters for a single respondent.

We could compare similarly across all 200 respondents, either graphically or sta-
tistically, but will leave that as an exercise for the reader. If we did so, what would

9.5 A Quick Comparison of the Effects* 257

HB & lmer density: b.speed50.196
D

en
si

ty

red = lmer
black = HB

−3 −2 −1 0 1 2 3

−3 −2 −1 0 1 2 3−3 −2 −1 0 1 2 3

−3 −2 −1 0 1 2 3

0.
0

0.
4

0.
8

1.
2

0.
0

0.
4

0.
8

1.
2

0.
0

0.
4

0.
8

1.
2

0.
0

0.
4

0.
8

1.
2

HB & lmer density: b.speed60.196

D
en

si
ty

red = lmer
black = HB

HB & lmer density: b.speed70.196

D
en

si
ty

red = lmer
black = HB

HB & lmer density: b.height300.196

D
en

si
ty

red = lmer
black = HB

Fig. 9.5 A comparison of the estimates for four of the model parameters for respondent ID 196 in
the MCMC and lmer results. The estimates for each respondent have substantial uncertainty but
the distributions are generally similar and largely overlapping

we expect to see? Given that the fixed effects are nearly identical, we would expect
that deviations between the models in the random effects would be close to zero
and symmetric around zero. If you want to try this on your own, we can give you a
preview: the median difference between the models’ mean estimates of the random
effects, across all 200 individuals, for the 8 parameters, ranges from −0.015–0.020,
with a median of 0.003.

Given that the models are similar but not identical, you might wonder which is
better, the classical or the Bayesian? The models themselves do not answer that;
you would need to consider your assumptions, the degree to which you believe each
model is appropriate (see Sect. 6.6.1), and if possible, which works better for your
situation in regards to other metrics such as external validity. As we have noted, the
models tend to show increasingly similar estimates with larger samples, while the
Bayesian methods may yield more intuitive or useful estimates with small numbers
of observations.

258 9 Additional Linear Modeling Topics

9.6 Key Points

We covered a lot of material in this chapter. Following are some important lessons.
Collinearity

• Collinearity occurs when two or more variables are highly associated. Includ-
ing them in a linear model can result in confusing, nonsensical, or misleading
results, because the model cannot differentiate the contribution from each of them
(Sect. 9.1).

• The variance inflation factor (VIF) provides a measure of shared variance among
variables in a model. A rule of thumb is that collinearity should be addressed for
a variable when V IF > 5 (Sect. 9.1.2).

• Common approaches to fixing collinearity include omitting highly-correlated vari-
ables, and using principal components or factor scores (see Chap.8) instead of
individual items (Sect. 9.1.2).

Logistic Regression

• Logistic regression relates a binary outcome such as purchase to predictors thatmay
include continuous and factor variables, by modeling the variables’ association
with the probability of the outcome (Sect. 9.2.1).

• A logistic regression model, also known as a logit model, is a member of the gen-
eralized linear models family, and is fit using glm(, family=binomial)
(Sect. 9.2.6).

• Coefficients in a logitmodel can be interpreted in terms of odds ratios, the degree to
which they are associatedwith the increased or decreased likelihood of an outcome.
This is done simply by exponentiating the coefficients with exp() (Sect. 9.2.6).

• Astatistically significant result does not alwaysmean that themodel is appropriate.
It is important to explore data thoroughly and to construct models on the basis of
careful consideration (Sect. 9.2.7).

Hierarchical Linear Models

• In common marketing discussion, a hierarchical model estimates both group level
effects and individual differences in effects. Such models are popular in marketing
because they provide insight into differences among customers (heterogeneity)
and distribution of preference. Hierarchical linear models (HLM) are exemplified
when we estimate the importance of effects for individuals as well as for an overall
population (Sect. 9.3).

• Effects that are associated with all observations are known as fixed effects, and
those that differ across various grouping levels are known as random effects
(Sect. 9.3.1).

• These models are also known as mixed effect models, because the total effect for
each person is composed of the effect for the overall population (the fixed effect)
plus the per-individual (random) effect. We estimated an HLM using lmer()
from the lme4 package (Sect. 9.3.5).

9.6 Key Points 259

• The difference between estimating hierarchical effects, as opposed to including
the grouping variable as a factor in a standard linear model, is that a hierarchical
model estimates every specified effect for each individual or group, not only a
single adjustment term.

• The formula for a mixed effect model includes a grouping term, + (... |
group). Common models have a different intercept by group using
(1 | group) or different intercepts and slopes for predictors within each group
using (predictor | group) (Sects. 9.3.5, 9.3.6). To estimate an individual-
level model, the grouping term is typically the respondent identifier.

• Hierarchical models can be used to group observations at other levels than the
individual level. For example, we might wish to group by store, advertising cam-
paign, salesperson, or some other factor, if we want to estimate effects that are
specific to such a grouping (Sect. 9.3.7).

• A common marketing application of HLM is conjoint analysis, to estimate both
overall preference and individual differences in preference. In this chapter, we
demonstrated ratings-based, or metric conjoint analysis (Sect. 9.3.2).

Bayesian Methods for Hierarchical Linear Models

• Hierarchical models in marketing are often estimated with Bayesian methods that
are able to pool information and produce best estimates of both group and indi-
vidual effects using potentially sparse data (Sect. 9.4.2).

• ABayesian hierarchical linear model can be estimated using MCMChregress()
in the MCMCpack package (Sect. 9.4.2).

• Model coefficients from a hierarchical model are inspected using summaries of
the many estimates that are collected in an mcmc object (Sects. 9.4.2, 9.4.3).

9.7 Data Sources

In this final section, we offer some advice for where you might find similar data
within your own organization.

In Sect. 9.1, we reanalyzed the data from Chap.4, which describes customers online
and offline transactions. In Sect. 9.2, we analyze data describing what promotional
offers have been made to customes and whether they have redeemed those offers.
This type of data is typically pulled from the customer relationship management
(CRM) system or “customer 360” database, which is a central repository for all data
describing interactions between the company and its customers. The CRM system
draws this data from other systems such as the point-of-sale (cash register) system,
the online retail system, the digital analytics platform, the email automation, records
of directmail, etc. If your company doesn’t have a central CRMsystem, then youmay
need to pull this data together by contacting the owners of individual systems and
then using tools like merge() in R. This is tedious and time-consuming work, so be
thankful if your company has invested in a central database for customer analytics!

260 9 Additional Linear Modeling Topics

The direct ratings of product profiles analyze in Sects. 9.3 and 9.4, are nearly always
collected by surveying customers. They are typically collected online, using a general
web survey platform such as Qualtrics, Google Forms, or SurveyMonkey. Depend-
ing on the goals of the study, this survey can be emailed to existing customers or
sent through a survey research panel that specializes in finding broader samples of
consumers (including non-customers). In-person surveys are often executed by hav-
ing a researcher intercept respondents in a public place and hand each resopndent a
tablet to complete the survey online. Collecting this data is a very easy project for a
first-time analyst; students can easily collect conjoint data as part of a term project.

An alternative to metric conjoint is choice-based conjoint where respondents chose
from set of product profiles. We introduce choice-based conjoint in Chap.13. Choice
surveys require a more complex design and are often collected using or a more
specialized platform, such as Sawtooth Software or Conjoint.ly.

One consideration in collecting conjoint data is to ensure that respondents understand
the product options and are able to rate their preferences reliably. Commonly, we
would educate respondents about the product features within the survey, or would
collect data during an in-person, studywhere the product concepts are presented using
images or prototypes and discussed by a group of consumers. This latter option is
similar to a focus group with an additional data collection exercise. That format has
the advantage of simultaneously collecting qualitative data that help us to understand
the quantitatively-measured preferences. Some drawbacks are that in-person sam-
ples are expensive, potentially less representative, and subject to group-influence
effects. We also caution against providing cusotmers with too much information
about product options (i.e. more than they would typically get when shopping.) Elea
once participated in a study where the engineer who developed a new feature pre-
sented it to respondents. After this appealing “sales pitch,” nearly all the respondents
indicated unreasonably strong preferences for this feature.

9.8 Learning More*

The topics in this chapter are drawn from the vast range of topics related to linear
modeling, and the best general recommendation is to learn about those topics broadly,
as in Harrell (2015) on strategies and issues for effective regression modeling [92]
and Dobson and Barnett (2018) on general linear models [43]. The following notes
provide further guidance on specific topics.

Collinearity. The best way to learn more about collinearity and how to detect and
address it is to become more fluent in linear modeling in general. Good texts for
learning broadly about regression modeling are Harrell [92], and Fox and Weisberg
[62].

Logistic regression. Logistic regression models are especially common in health
sciences (modeling improvement after treatment, for instance), and much of that

9.8 Learning More* 261

literature is approachable for marketers with modest translation. Hosmer et al. [99]
is a standard text on such models and demonstrates the importance of model build-
ing and assessment. Binary outcomes are also often the subject of models in the
machine learning community. We consider machine learning models in the context
of classification in Chap. 11. A general text on those methods is Kuhn and Johnson
[123].

Hierarchicalmodels. The best overall didactic text on hierarchicalmodels isGelman
and Hill [72], which provides outstanding conceptual explanation and a breadth of
models with detailed code in R. The one, comparatively minor limitation of Gelman
and Hill is that its level of detail and discussion can make it difficult to determine
what to do when confronted with an immediate modeling need.

Support for hierarchical models (also known as mixed effectsmodels) is an evolving
area in R. Besides the lme4 package that we used, another common package is
nlme, which has a somewhat dated companion book, Pinheiro and Bates [153]. A
more up-to-date and didactic text is Galecki and Burzykowski [69].

Bayesian hierarchical models. We have provided only an introduction to hierarchi-
cal Bayes models and their importance, and have not covered the implementation
issues and problems that may arise. To learn more about such models, there are tech-
nical introductions at varying levels of mathematical sophistication from Kruschke
[120], Gelman et al. [73], and Rossi, Allenby and McCullough [168]. Gelman and
Hill [72] discusses hierarchical models from both Bayesian and non-Bayesian per-
spectives, with examples in R.

ManyBayesian texts, including several of those noted above, discuss the implementa-
tion ofMCMCsamplers (as inMCMCpack). There is a caveat: they showhow towrite
an MCMC sampler in detail, such as the internal workings of MCMChregress().
That is a valuable and reusable skill but a very technical one. For some readers, it
may be similar to having an automotive engineer teach you how to drive a sedan; it
is highly informative but occasionally overwhelming.

MCMCpack includes functions for several other families of Bayesian models. A
general framework that handles both mixed effects and multiple response data, using
the MCMC approach, is available in the MCMCglmm package [86]. If you want
to do hierarchical logistic regression in a Bayesian framework, you could consider
MCMCglmm.

9.9 Exercises

9.9.1 Online Visits and Sales Data for Exercises

For exercises regarding collinearity and logistic regression, we will use a simulated
data set that represents customer transactions together with satisfaction data, for web

262 9 Additional Linear Modeling Topics

Table 9.2 Variables in the chaper9-sales data set

Variable Description Variable Description

acctAge Tenure of the
customer, in months

visitsMonth Visits to the web site,
in the most recent
month

spendToDate Customer’s total
lifetime spending

spendMonth Spending, most recent
month

satSite 1–10 satisfaction
rating with the web
site

satQuality Rating for satisfaction
with product quality

satPrice Rating for satisfaction
with prices

satOverall Overall satisfaction
rating

region US geographic region coupon Whether coupon was
sent to them for a
particular promoted
product

purchase Whether they
purchased the
promoted product
(with or without
coupon)

site visits and purchases. The variables are described in Table 9.2. We load the data
locally or from the online site:

> # sales.data.raw <- read.csv("chapter9 -sales.csv") # local
> sales.data.raw <- read.csv("https://goo.gl/4Akgkt") # online
> summary(sales.data.raw)

acctAge visitsMonth spendToDate spendMonth ...
Min. : 1.00 Min. : 1.000 Min. : 6.0 Min. : 4.0 ...
1st Qu.: 8.00 1st Qu.: 6.000 1st Qu.: 28.0 1st Qu.: 9.0 ...
Median :13.00 Median : 7.000 Median : 45.0 Median : 17.0 ...

9.9.2 Exercises for Collinearity and Logistic Regression

Collinearity

1. In the sales data, predict the recent month’s spending (spendMonth) on the
basis of the other variables using a linear model. Are there any concerns with
the model? If so, fix them and try the prediction again.

2. How does the prediction of the recent month’s sales change when the variables
are optimally transformed? Which model—transformed or not—is more inter-
pretable?

3. Fit the linear model again, using a principal component extraction for satisfac-
tion. What is the primary difference in the estimates from the previous models?

9.9 Exercises 263

4. (Thought exercise without code.)When themodel is fit withregion as a predic-
tor, it may show theWest region with a large—possibly even the largest—effect.
Yet it is not statistically significant whereas smaller effects are. Why could that
be?

Logistic Regression

5. Using logistic regression, what is the relationship between the coupon being sent
to some customers and whether the purchased the promoted product?

6. How does that model change if region, satisfaction, and total spending are added
as predictors?

7. Is there an interaction between the coupon and satisfaction, in their relationship
to purchase of the promoted product?

8. What is the best estimate for howmuch a coupon is related to increased purchase,
as an odds ratio? Explain the meaning of this odds ratio using non-technical
language.

9. What is the change in purchase likelihood, in relation to a change of 1 unit of
satisfaction? (Hint: what is a unit of satisfaction in the model?) Approximately
how many points would “1 unit” be, on the survey’s 1–10 rating scale?

10. (Thought exercise without code.) Considering the product strategy, what ques-
tions are suggested by the apparent relationship between satisfaction and pur-
chase? What possible explanations are there, or what else would you wish to
know?

9.9.3 Handbag Conjoint Analysis Data for Exercises

In the remaining exercises, we consider a metric (ratings-based) conjoint exercise
for handbags, using a new data set. Each of 300 simulated respondents rated the
likelihood to purchase each of 15 handbags, which varied according to Color (black,
navy blue, and gray), Leather finish (matte or shiny patent), Zipper color (gold or
silver), and Price ($15, $17, $19, or $20). We load the data:
> # conjoint.df <- read.csv("chapter9 -bag.csv") # local
> conjoint.df <- read.csv("https://goo.gl/gEKSQt") # online
> summary(conjoint.df)

resp.id rating price color ...
Min. : 1.00 Min. : 2.000 Min. :15.00 black: 900 ...
1st Qu.: 75.75 1st Qu.: 4.000 1st Qu .:15.00 gray :1500 ...

9.9.4 Exercises for Metric Conjoint and Hierarchical Linear
Models

11. Using the handbag data, estimate the likelihood to purchase as a function of the
handbags’ attributes, using a simple linear model.

264 9 Additional Linear Modeling Topics

12. Now fit the ratings conjoint model as a classical hierarchical model, fitting indi-
vidual level estimates for each attribute’s utility.

13. What is the estimated rating for a black bag with matte finish and a gold zipper,
priced at $15? (Careful!)

14. Which respondents are most and least interested in a navy handbag?
15. Fit the hierarchical model again, using a Bayesian MCMC approach. How do

the upper level estimates compare with those from the classical model?

Chapter 10
Confirmatory Factor Analysis
and Structural Equation Modeling

In this chapter, we discuss structural equation models in R. We show how R can be
used for both covariance-based and partial least squares modeling, and present basic
guidelines for model assessment. We also demonstrate the power of R to simulate
data and use such simulation to inform our expectations.

Structural models are helpful when your modeling needs meet any of these condi-
tions: you need to evaluate interconnections of multiple data points that do not map
neatly to the division between predictors and an outcome variable (as would be the
case in linear modeling); you wish to include unobserved latent variables such as
attitudes and estimate their relationships to one another or to observed data; or you
wish to estimate the overall fit between observed data and a proposed model with
latent variables or complex connections. From this point of view, structural models
are closely related to both linear modeling because they estimate associations and
model fit, and to factor analysis because they use latent variables.

The uses for structuralmodels inmarketing follow from those needs. For example, the
models can be used to determine whether concepts on a survey match assumptions,
for instance to assess whether items are in fact related to an underlying construct as
one hopes; this is an extension of factor analysis (see Chap. 8). With regards to latent
variables, the models can be used to estimate the association between outcomes such
as purchase behavior and underlying attitudes that influence those, such as satisfac-
tion and brand perception. An evenmore complexmodel would be one where several
latent variables are simultaneously associated with one another in multiple ways. For
example, brand perception, purchase intent, willingness to pay, and satisfaction all
relate to one another as latent constructs, and also relate in multiple ways to observed
consumer behaviors such as purchases.

We assume in this chapter that the reader is familiar with structural models and
primarily wishes to learn the R approach to them. The topic is too complex for a
single chapter although we attempt to present an overview that is understandable for
any analyst. Section10.1 provides a conceptual introduction for readers new to the
area; experienced analysts may wish to skip to Sect. 10.1.1.

© Springer Nature Switzerland AG 2019
C. Chapman and E. M. Feit, R For Marketing Research and Analytics, Use R!,
https://doi.org/10.1007/978-3-030-14316-9_10

265

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14316-9_10&domain=pdf
https://doi.org/10.1007/978-3-030-14316-9_10

266 10 Confirmatory Factor Analysis and Structural Equation Modeling

10.1 The Motivation for Structural Models

The real world rarely divides into nicely controlled experiments and marketers are
often interested to test complexmodels.Consider a consumer’s likelihood to purchase
a newproduct. The likelihoodwill be influencedbymany factors such as prior product
experience, perception of brand and features, price sensitivity, promotional effects,
and so forth.

Imagine that we are brand managers interested in the impact of brand perception
on likelihood to purchase. One approach to assess this might be to collect survey
data on stated likelihood to purchase the product and attitudes about the brand. In
schematic terms, wemight model this as a linear relationship (Chap.7): purchase ∼
perception. Yet whether we find an effect or not, our model is open to the challenge
that there are many other possible variables that we didn’t assess. Perhaps an effect
we thought we found was due to prior experience and not to brand; or perhaps we
didn’t find an effect because we failed to account for a promotional campaign that
influences the relationship.

Even imperfect assessment of those additional influences can improve our under-
standing. In a statistical model, any unbiased—even if incomplete—capture of vari-
ancewill improve other parts of themodel. For instance, wemight only care about the
relationship between brand perception on likelihood to purchase; yet if our model
also includes promotion and prior brand experience, it will capture some of the
variance due to those factors and give us a better, more realistic estimate for the
relationship between brand and purchase. Including those influences will make us
and our stakeholders more confident.

A common way to test complex models of this kind in marketing is structural equa-
tion modeling (SEM). It is impossible to model every possible influence in a market,
and we don’t recommend trying. Yet with SEM, it is feasible to do several things
that improve our models: to include multiple influences, to posit unobserved con-
cepts that underlie the observed indicators (i.e., constructs such as brand preference,
likelihood to purchase, and satisfaction), to specify how those concepts influence
one another, to assess the model’s overall congruence to the data, and to determine
whether the model fits the data better than alternative models.

As we will show, this is done by creating a graphical path diagram of influences
and then estimating the strength of relationship for each path in the model. Such
paths often concern two kinds of variables: manifest variables that are observed,
i.e., that have data points, and latent variables that are conceived to underlie the
observed data. For example, in the first model we examine, product involvement is
conceived as a latent factor that underlies several other latent factors such as image
involvement, and those factors in turn are observed as manifest variables on survey
items. The set of relationships among the latent variables is called the structural
model, while the linkage between those elements and the observed,manifest variables
is the measurement model.

10.1 The Motivation for Structural Models 267

Structural models pose many potential pitfalls and have a great deal of specialized
jargon. We attempt to use a minimum of technical jargon in this chapter, yet we urge
you not to use this chapter as your only guide to such models. Despite that warning,
we believe that the chapter demonstrates the power and importance of such models
and will prepare you to learn more about them.

Structural equation models (SEM) are similar to linear regression models (Chap. 7)
but differ in three regards. First, as noted above, SEM assesses the relationships
among many variables, with models that may be more complex than simply pre-
dictors and outcomes. Second, whereas linear regression only models existing,
observed variables, SEM allows modeling of latent variables that represent underly-
ing constructs that are conceived asmanifested imperfectly, perhaps throughmultiple
indicators, in the observed data. Third, SEM allows relationships to have multiple
“downstream” effects. For example, experience with a product (a stated variable on
a survey) might related to brand perception (a latent construct expressed in several
survey items) which then relates to willingness to pay (a latent construct) which
relates observed behavior to purchase or not at a particular price point (perhaps in
transaction data or as a stated choice on a survey item).

Finally, we close this introduction with a warning: with this potential for such con-
nections among latent variables, it is tempting to interpret structural models as being
about causation and many analysts, stakeholders, and even authors of academic
papers do this. We believe that it is possible to use these models as part of causal
reasoning but to do so requires attention to issues and models that are well outside
the scope of this book. In general, however, we recommend that you consciously
avoid all discussion of causation, and instead talk about relationships or association
among the latent variables.

10.1.1 Structural Models in This Chapter

In examiningR’s capabilities to specify, test, and visualize structural equationmodels
(SEM), we present two examples: a confirmatory factor analysis (CFA) model that
evaluates an assessment scale for product involvement, and a more general SEM
that models the likelihood to repurchase a product, as related to quality, value, price,
and customer satisfaction of a prior purchase. In each case, we demonstrate how to
simulate data for test purposes, how to specify and fit the proposed model, and how
to assess the proposed model.

We also show two different SEM approaches: themost common but more demanding
covariance based (CB-SEM) approach, and the more flexible partial least squares
(PLS-SEM) approach. We start with CB-SEM because it is virtually synonymous
with “SEM” in the literature, especially outside marketing. Nevertheless, PLS-SEM
is often able to fit models in situations where CB-SEM fails and has become popular
for marketing applications in the past decade, so we demonstrate it as well.

268 10 Confirmatory Factor Analysis and Structural Equation Modeling

Several R packages are able to fit SEMs. In this chapter, we demonstrate
CB-SEM using the lavaan package [166] (where lavaan abbreviates “latent
variable analysis”) because of its simplicity for model specification and its rich
set of available tools for data simulation, model comparison, and visualization. Then
we demonstrate PLS-SEM with the semPLS package.

10.2 Scale Assessment: Confirmatory Factor Analysis
(CFA)

We start by considering a survey scale that assesses product involvement, using
the survey items shown in Table 10.1 [32]. This survey scale reflects a theoretical
model in which product involvement is a hierarchical construct comprising three
factors: general involvement with a product category, involvement with the choices
and features of the product, and involvement with the category in terms of personal
image.

On the survey, three subscales reflect those factors and could lead to higher or lower
scores depending on how consumers view a product. For instance, as marketers
we would expect digital cameras to engage consumers in terms of their technical
features and thus to score high on feature involvement. By contrast, clothing is a
key component of personal image, and could be expected to score high on image
involvement. Either category might be high or low on general involvement according
to the interests of a specific respondent. To consider other categories, a generic good
such as paper might show low consumer involvement on all three factors, while
automobiles might be relatively high on all three. This model was proposed as an
alternative to a single factor model of product involvement, where involvement is
simply high or low overall with no differentiation between factors such as feature or
image involvement.

The three factor model here was named PIES as an abbreviation of the “Product
Involvement and Enthusiasm Scale” [32]. It could be used in many marketing situa-
tions. For instance, if we assess that our product category is high on feature involve-
ment, we might develop communication and positioning strategies that emphasize
technical specifications. It may also be used to inform targeting: if we determine that
a given demographic group views our category as important to their personal image,
then we might target them with campaigns that highlight our product in terms of
personal image.

The PIES structural model proposes four latent (unobserved) constructs that under-
lie product involvement: a general involvement factor (here abbreviated as “Gnr”),
a choice/feature factor (hereafter “Feature” or “Ftr”), an image (“Img”) factor, and
a higher-order PIE factor (product involvement and engagement) that is conceived
as the underlying level of interest underlying the other three factors. This hierar-
chical factor model is shown in Fig. 10.1. The relationships among these are linear

10.2 Scale Assessment: Confirmatory Factor Analysis (CFA) 269

Gnr Ftr Img

PIE

Fig. 10.1 PIES latent construct (factor) model, showing three factors of product involvement
(General involvement = Gnr, Feature = Ftr, and Image = Img). These three latent factors relate
to a higher-order, overall latent construct for involvement, PIE. None of these latent constructs is
directly observed; for the observational model, see Fig. 10.2

relationships of unobserved, latent variables that match a particular theory about
product involvement (and whose relationship we will specify and test below).

The three involvement factors and the higher-order PIE factor are modeled as latent
variables that are not directly observed but are instead conceived to influence the
survey items that manifest them. On the survey, each factor is represented by a
subscale comprising several items, as shown in Table 10.1.

Table 10.1 The hierarchical product involvement (PIES) scale, showing the subscales (factors)
and items. The survey would be given for a specific product category, filling in the blanks with a
descriptive phrase such as “digital cameras” or “diet soda.” From [32]

Item Text Reversed?

General scale

i1 are not very important to me Yes

i2 I never think about Yes

i3 I am very interested in

Feature scale

i4 In choosing a I would look for some specific features or
options

i5 If I chose a new I would investigate the available choices in
depth

i6 Some are clearly better than others

i7 If I were choosing a , I would wish to learn about the available
options in detail

Image scale

i8 When people see someone’s , they form an opinion of that
person

i9 A expresses a lot about the person who owns it

i10 You can learn a lot about a person by seeing the person’s

i11 It is important to choose a that matches one’s image

270 10 Confirmatory Factor Analysis and Structural Equation Modeling

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11

Gnr Ftr Img

PIE

Fig. 10.2 The complete PIES model with latent factors and manifest scale items

In the hierarchical model, the overall PIE factor does not directly influence any items
on the scale. Rather, it influences the other three factors as a higher order latent
variable. The complete structural model, showing the hierarchical relation of the
latent constructs and the manifest scale items that are observed for each construct, is
shown in Fig. 10.2.

An analyst’s question with PIES—and the question for the PIES authors in the cited
paper—might be this: is the PIES scheme a good model for some set of survey
responses for the items in Table 10.1? If we confirm that PIES is a good model,
we will be much more confident in using this survey data to draw inferences about
product involvement than if we had not assess the model. We show how SEM in R
can address that question.

To do this, we use a particular application of SEM known as confirmatory factor
analysis (CFA). In CFA, one specifies the factor structure and asks, “How well does
the proposed model agree with the structure of the data?” We also address a closely
related question, “Is that model better than some other specified model?”

10.2.1 Simulating PIES CFA Data

To demonstrate CFA, we create a simulated data set with known factor structure that
corresponds to the PIES model in Table 10.1. We use this data to demonstrate how
to assess a CFA model (which ordinarily would be done with data collected from
respondents). Then we evaluate alternative models and discuss the importance of
model comparison in CFA.

10.2 Scale Assessment: Confirmatory Factor Analysis (CFA) 271

If you prefer to download the data for the CFA example:
> piesSimData <- read.csv("http://goo.gl/yT0XwJ")
> summary(piesSimData)

i1 i2 i3 i4 i5
Min. :1.000 Min. :1.000 Min. :1.00 Min. :1.000 Min. :1.000
1st Qu .:4.000 1st Qu .:3.000 1st Qu .:3.00 1st Qu .:3.000 1st Qu .:3.000
Median :4.000 Median :4.000 Median :4.00 Median :4.000 Median :4.000
Mean :4.339 Mean :4.104 Mean :4.11 Mean :4.039 Mean :3.999
...

Once you have the data, you may proceed to Sect. 10.2.2. Otherwise, continue here;
data generation for CFA turns out to be rather easy.

We use the lavaan package for core SEM (and CFA) functionality including data
simulation and model fitting [166], and extend its capabilities for model comparison
and visualization using two other packages, semTools [112] and semPlot [53].
Our first step is to install those packages and make them available in R:
> install.packages(c("lavaan", "semTools", "semPlot"))
> library(lavaan)
> library(semTools)
> library(semPlot)

In lavaan, a structural model may be specified using syntax that is rather similar to
R’s linear model formulas (Sect. 7.3). We specify two models here: (1) a structural
model that we fit to the data and whose structure we wish to assess, and (2) a data
model that we use only to generate simulated data for test purposes. The structural
model is specified according to the model as shown in Fig. 10.2, written as a simple
string that lavaan will parse:
> piesModel <- " General =~ i1 + i2 + i3
+ Feature =~ i4 + i5 + i6 + i7
+ Image =~ i8 + i9 + i10 + i11
+ PIES =~ General + Feature + Image "

In SEM code we read the “=∼” symbol as “is manifested by,” which means that it
is estimated to be a single variable that is a composite of the three items (with some
degree of unreliability or error in each). Each line in this formula defines a new latent
variable—General, Feature, and so forth—that does not appear in the data set
but which lavaanwill estimate for us based on the observed items i1, i2, etc. We
can then use these latent variable in other parts of the formula to express additional
relationships. For instance, in this code the latent variable PIES relates in turn to
the other latent variables General, Feature, and Image. Such relationships of
latent variables are a key differentiator between SEM and regular linear modeling.

The piesModel formulas say that PIES is manifested by three factors: General,
Feature, and Image. Each of those is manifested by 3 or 4 of the items i1 through
i11 as defined in Table 10.1.1

Next we simulate data similar to what might come from a PIES survey of consumers.
(Of course if you only test a model against real data, then these data generation steps

1If you are experienced with other SEM software, you may wonder about details such as the need
to fix a path for each factor and to specify error terms. Those are automatically handled by lavaan
with defaults that are appropriate for many situations (for instance, having uncorrelated errors and
fixing the first manifest variable path to 1.0).

272 10 Confirmatory Factor Analysis and Structural Equation Modeling

are not required.) We define our data simulation model using the same SEM syntax,
but add factor loading coefficients for the items and subfactors in order to specify
the structural relationships. We use factor loadings that approximate those reported
by the PIES authors [32]:
> piesDataModel <- " General =~ 0.9*i1 + 0.7*i2 + 0.5*i3
+ Feature =~ 0.3*i3 + 0.7*i4 + 0.9*i5 + 0.5*i6 + 0.9*i7
+ Image =~ 0.2*i3 + 0.8*i8 + 0.9*i9 + 0.8*i10 + 0.7*i11
+ PIES =~ 0.7*General + 0.8*Feature + 0.8*Image"

We generate a data set with that factor structure by setting a random number seed and
usingsimulateData(MODEL, sample.nobs), wheresample.nobs is the
number of observations, or N. We choose N=3600 to approximate data reported in
the PIES paper:
> set.seed (10001) # another island Zip code
> piesSimData.norm <- simulateData(piesDataModel , sample.nobs =3600)
> print(head(piesSimData.norm), digits =2)

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11
1 -0.16 2.07 1.14 -1.746 -1.68 -1.79 -1.46 -0.032 1.82 0.610 -0.032
2 -0.38 2.27 0.79 0.922 0.23 0.35 0.51 0.963 -1.11 -0.037 0.792
3 -0.65 -3.00 0.25 -0.077 -0.35 0.12 -1.63 -0.766 -0.22 -1.220 0.462
...

Each row here represents a set of hypothetical survey responses from one respondent.
Note that the generated data is continuous (drawn from a normal distribution with
decimal values), so it is not yet appropriate for PIES; as survey responses, PIES items
are 1–7 Likert-type scores [32].

In order to convert the continuous data to discrete survey data, we use the function
cut(DATA, breaks=K) that divides continuous data into K groups, expressed
as K factor levels (see Sect. 12.4.1 for more on cut()). We could do this separately
for each of the 11 columns of data, but it is more instructive to do it in a way that is
generalizable. That involves a few conceptual steps.

We use cut() to convert a vector of continuous numeric data into seven factors,
using labels=FALSE to keep the result as integers instead of labeled, nominal
values. Thenwe enclose that in an anonymous function that can be used repeatedly by
apply(). We apply() that anonymous recoding function to each of the columns
of our data set using the list version of apply (lapply()), and assemble the resulting
set of discrete numeric vectors into a new data.frame. That comes together in
amazingly compact R code (you should spend time deconstructing and tinkering
with it to see how this works):
> piesSimData <- data.frame(lapply(piesSimData.norm ,
+ function(x) { cut(x, breaks=7, labels=FALSE) }))

We now perform our usual data quality checks:
> library(car)
> some(piesSimData)

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11
11 3 3 4 2 2 5 3 2 4 3 4
709 3 3 3 5 4 3 3 3 4 4 4
1392 4 3 3 3 4 4 3 4 4 5 4
...
> library(psych)
> describe(piesSimData)

10.2 Scale Assessment: Confirmatory Factor Analysis (CFA) 273

vars n mean sd median trimmed mad min max range skew kurtosis se
i1 1 3600 4.34 1.00 4 4.32 1.48 1 7 6 -0.07 -0.01 0.02
i2 2 3600 4.10 1.05 4 4.09 1.48 1 7 6 -0.01 -0.07 0.02
i3 3 3600 4.11 1.02 4 4.10 1.48 1 7 6 -0.01 -0.13 0.02
...

The data set now comprises discrete values from 1–7, averaging about 4, with
good distribution properties (no skew, sd around 1, and so forth). We visualize
the relationships among the items using scatterplotMatrix() from the car
package [62], selecting a subset of the items—two items from each factor—to make
inspection easier:
> library(car)
> library(RColorBrewer)
> scatterplotMatrix(piesSimData[, c(1, 2, 4, 5, 8, 9)],
+ col=brewer.pal(3, "Paired"), ellipse=TRUE)

The result is shown in Fig. 10.3. In looking at the scatter plots, we see the situation
as expected: items are discrete (as shown in the density plots on the diagonal), and
items have higher correlation within a subscale (as in the off-diagonal plots for i1
vs. i2) than they do across scales (such as i1 vs. i4).

Because this data reflects a factor model, we may also do a quick inspection of the
apparent factor structure. Although we use CFA to do a strong test of factor structure,
it is useful to perform a brief check using the factanal() command to perform
an exploratory factor analysis (EFA, see Sect. 8.3):
> factanal(piesSimData , factors =3)
...
Loadings:

Factor1 Factor2 Factor3
i1 0.138 0.119 0.675
i2 0.614
i3 0.277 0.362 0.476
i4 0.151 0.608
i5 0.126 0.715 0.102
i6 0.519
i7 0.133 0.678 0.154
i8 0.665 0.137 0.128
i9 0.706 0.138 0.130
i10 0.655 0.117 0.145
i11 0.632 0.126
...

We see three plausible factors comprising items i8–i11, i4–i7, and i1–i3 respectively,
aswewould expect (the factor order is irrelevant). As a reminder, the EFAmodel does
not test or confirm the PIES model; that is what CFA does. Instead, EFA reassures
us that the data look reasonable before proceeding.

To recap, the simulated data—created using just 4 commands in R—have the kind
of structure that might be expected from a consumer survey using the items in
Table 10.1. We now proceed to the CFA.

10.2.2 Estimating the PIES CFA Model

CFA assessment begins by defining the model that we wish to evaluate. In this case,
wemodel the threePIES factors (latent variables),General,Feature, andImage

274 10 Confirmatory Factor Analysis and Structural Equation Modeling

Fig. 10.3 Scatterplot matrix for selected items in the simulated PIES data. Individual items have
discrete values that approximate a normal distribution (in the density plots on the diagonal). Items
are all positively correlated. Items within a proposed factor, such as i1 and i2, show stronger
association than those in differing factors

as manifest in items i1–i11. We then model the overall PIES latent variable as
the composite of the other three factors (see Sect. 10.2.1 for an explanation of the
formula syntax here):

> library(lavaan)
> piesModel <- " General =~ i1 + i2 + i3
+ Feature =~ i4 + i5 + i6 + i7
+ Image =~ i8 + i9 + i10 + i11
+ PIES =~ General + Feature + Image "

We fit this model to data using cfa(MODEL, data=DATA) and inspect the result
withsummary(FIT, fit.measures=TRUE). Theoutput of summary(FIT)
is lengthy in this case so we abbreviate it:

> pies.fit <- cfa(piesModel , data=piesSimData)
> summary(pies.fit , fit.measures=TRUE)
lavaan 0.6-3 ended normally after 41 iterations

10.2 Scale Assessment: Confirmatory Factor Analysis (CFA) 275

...
Number of observations 3600

...
Comparative Fit Index (CFI) 0.975
Tucker -Lewis Index (TLI) 0.966

...
Root Mean Square Error of Approximation:

RMSEA 0.041
90 Percent Confidence Interval 0.036 0.045
P-value RMSEA <= 0.05 1.000

Standardized Root Mean Square Residual:

SRMR 0.030

Parameter Estimates:
...
Latent Variables:

Estimate Std.Err z-value P(>|z|)
General =~

i1 1.000
i2 0.948 0.042 22.415 0.000
i3 1.305 0.052 25.268 0.000

Feature =~
i4 1.000
i5 1.168 0.037 31.168 0.000
i6 0.822 0.033 25.211 0.000
i7 1.119 0.036 31.022 0.000

Image =~
i8 1.000
i9 0.963 0.028 34.657 0.000
i10 0.908 0.027 33.146 0.000
i11 0.850 0.027 31.786 0.000

PIES =~
General 1.000
Feature 0.875 0.057 15.355 0.000
Image 0.932 0.060 15.628 0.000

...

The CFA output establishes that the three-factor hierarchical model fits the data
well. In the upper portion of the summary, we see that fit indices are strong (e.g.,
CFI=0.975) and residuals are low (e.g., RMSEA=0.041). The lower part of the
summary shows that model parameters for the paths of latent variables to items, and
for the upper-level PIES factor to the three subfactors, are all significant (“P(>|z|)”
= 0), are similar to one another in magnitude (ranging 0.822–1.305), and are not far
from 1.0 (a good thing because the items are intended to be used in simple additive
subscales).

If thesewere real data, the CFAwould establish both that the PIES hierarchical model
fits well and—because the factor-item loadings are around 1.0—that it is reasonable
to add up the items as a simple sum to form subscale scores, as is common for such
surveys (instead of computing weighted factor scores).

The final model with fitted parameter estimates is plotted with the semPaths()
command from the semPlot package. We use the argument edge.label.cex
to scale the parameter font to be smaller and more readable. Many R packages use
“cex” (character expansion) to rescale the font for some element of the plot (in this
case, edge labels, i.e., parameter estimates). Setting cex>1.0 enlarges a font; cex<
1.0 shrinks it. If you’re looking for a way to rescale a font, try searching for “cex” in
a plot routine’s help file. The model is drawn as follows:

276 10 Confirmatory Factor Analysis and Structural Equation Modeling

0.82 0.85

0.87

0.91

0.93

0.95 0.961.00 1.00 1.00

1.00

1.121.171.31

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11

Gnr Ftr Img

PIE

Fig. 10.4 Coefficients for the PIES structural model, using simulated consumer survey responses

> library(semPlot)
> semPaths(pies.fit , what="est", fade=FALSE , residuals=FALSE ,
+ edge.label.cex =0.75)

The result is Fig. 10.4. This figure expresses some of the crucial information from
the longer CFA text output above, in a more readable way. The graphical version
makes it easy to see the relationships between the latent and manifest variables and
to browse the coefficient values.

10.2.3 Assessing the PIES CFA Model

The PIES model fits the data extremely well. If this were real data, we’d be done,
right?

No! A common error with SEM is to propose a model, fit the data, and then assert on
the basis of fit indices that the model is “good.” The problem is that some other, and
perhaps more reasonable, model might be just as good or even better. Thus, there
is an important second stage: establish that the proposed model fits better than a
reasonable alternative model.

We test the PIES hierarchical model (“PIES 3+1”) against two alternatives. The first
is a single factor alternative where one underlying involvement factor manifests in
all items (as in Fig. 10.5), which we call “PIES 1.” PIES 1 is a simpler model that
proposes product involvement to be a single latent factor; if it fits the data as well
as PIES 3+1 then we could reject the more complex model and use this simple one
instead. It is a good alternative to the hierarchical model both because it is simpler
and because it focuses on the top level of the hierarchy, assessing whether it is
advantageous to add the complications of the subfactors in PIES 3+1.

The second alternative we consider is an uncorrelated three-factor model, where
three independent factors are manifest in the three respective sets of items (shown in

10.2 Scale Assessment: Confirmatory Factor Analysis (CFA) 277

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11

PIE

Fig. 10.5 A one-factor alternative model, PIES 1, in which a single latent factor of product involve-
ment is manifest in all of the items, with no subfactors. We use this to test a simpler model than
PIES 3+1 and determine whether it fits the data just as well

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11

Gnr Ftr Img

Fig. 10.6 A three-factor alternative, PIES 3. To differentiate this from the PIES 3+1 model, the
latent factor correlations here are constrained to show weak association among the factors. This
allows us to test a model where the factors express largely separate constructs as opposed to closely
related ones

Fig. 10.6), or “PIES 3.” This omits the top level, overall factor from the hierarchy and
focuses on the three subfactors, asking whether they are better conceived as being
separate instead of relating to a hierarchical model. If the PIES 3 model fit as well as
PIES 3+1, we could reject the complication of the hierarchical model and consider
using the subscales as independent, largely unrelated assessment measures.

We specify and fit a one-factor model for PIES 1 using lavaan as follows:
> piesModelNH1 <- " PIES =~ i1 + i2 + i3 + i4 + i5 + i6 +
+ i7 + i8 + i9 + i10 + i11 "
> pies.fit.NH1 <- cfa(piesModelNH1 , data=piesSimData)

This may issue warnings due to poor fit. Because we are interested in the comparison
rather than the one-factor model in itself, we will ignore those.

There is a complication in asserting the PIES 3 model. We can see in Fig. 10.6 that
the number of paths and manifest variables in PIES 3 is the same as in the baseline

278 10 Confirmatory Factor Analysis and Structural Equation Modeling

3+1 hierarchical model (Fig. 10.2) because we allow the factors to be associated with
one another. Because it estimates the same number of paths among all the variables,
the global fit index for PIES 3 would be identical to that of PIES 3+1. To differentiate
the models, it is necessary to constrain the PIES 3 model in some other way.

How shouldwe constrain PIES 3?Because PIES 3 asserts that the 3 factors are largely
independent and not part of a larger hierarchy, it implies that their intercorrelations
should be relatively low. Thus, we could constrain the latent variable correlations to
a small value such that they are not reasonably part of a hierarchy. A correlation of
zero is unreasonable as it implies absolutely no relationship.2 Instead of zero, we
fix the non-hierarchical model to have correlation of 0.1 between the latent vari-
ables; this reflects an expectation of modest association that is too weak to justify a
hierarchical model.

In lavaan we add the fixed relationships to the PIES 3 model syntax as additional
lines and fit the model to the simulated data:
> piesModelNH3 <- " General =~ i1 + i2 + i3
+ Feature =~ i4 + i5 + i6 + i7
+ Image =~ i8 + i9 + i10 + i11
+ General ~~ 0.1*Feature
+ General ~~ 0.1*Image
+ Feature ~~ 0.1*Image "
> pies.fit.NH3 <- cfa(piesModelNH3 , data=piesSimData)

In this model specification, the “∼∼” operator specifies a correlation between vari-
ables. By using a fixed value 0.1, we specify that the value of the correlation should
not be estimated but should be constrained to 0.1. The PIES 3 model requires that
correlation be small among the latent factors, so we set the three possible correlations
(General∼Feature, General∼Image, and Feature∼Image) to our chosen value of 0.1.

The semTools package provides a command to compare CB-SEM (and therefore
CFA) models: compareFit(MODEL1, MODEL2, ...). This reports individ-
ual fit measures for each model along with pairwise model comparisons. Our PIES
models are nested, meaning that one might start with the hierarchical model and
then fix some of the paths coefficient to derive the three-factor model (specifically,
constraining the factor correlations to 0.1), and again could fix some paths to derive
the single factor model (specifically, setting the factor correlations to 1.0 so that they
are identical and thus a single factor).

Here is the comparison of all three models:
> library(semTools)

> summary(compareFit(pies.fit.NH1 , pies.fit.NH3 , pies.fit))

################### Nested Model Comparison #########################
chi df p delta.cfi

pies.fit - pies.fit.NH3 222.43 3 <.001 0.0222

pies.fit.NH3 - pies.fit.NH1 2774.50 0 <.001 0.2812

#################### Fit Indices Summaries ##########################

2Always be wary of models that assert or test independence; a well-known phenomenon in human
research is that within a given domain, “everything correlates with everything else.” Paul Meehl
referred to this as the “crud” factor in research, and showed that it leads to research that finds
“significant” associations everywhere [137].

10.2 Scale Assessment: Confirmatory Factor Analysis (CFA) 279

chisq df pvalue cfi tli aic bic rmsea srmr

pies.fit.NH1 3284.581 44 .000† .672 .589 108812.709 108948.860 .143 .102

pies.fit.NH3 510.078 44 .000† .953 .941 106038.205 106174.356 .054 .078

pies.fit 287.649 41 .000† .975† .966† 105821.776† 105976.494† .041† .030†

To interpret the comparisons, we start by inspecting the second half of the report,
the “Fit Indices Summaries.” For the non-hierarchical three-factor model PIES 3
(pies.fit.NH3), the fit was strong (e.g., CFI=0.953, RMSEA=0.054). If that
were the only model that we tested, we would have concluded that it was an excellent
fit.Yetwhenwe compare thePIES3+1model,pies.fit, the fit indices are stronger
(CFI=0.975, RMSEA=0.041). The stronger fit indices are indicated by the dagger
symbol (“†”).

Is PIES 3+1 stronger than PIES 3? We turn to the upper portion of the report to
examine the model comparison. The first line of output (“pies.fit - pies.fit.NH3”)
reports the Chi-square test of the difference between the two models: Chisq =
222.43, d f = 3. This is a strong and statistically significant difference, p < .001.
We also see in the results that the one-factor model PIES 1was a poor fit (CFI=0.672
in the fit index summary) and much worse in comparison to PIES 3+1 than even the
non-hierarchical PIES 3 model. (In Sect. 11.3.5 we will also see how to interpret the
bic values for model comparison.)

What does this tell us? For our data—which of course were simulated to fit the 3+1
model—the three-factor hierarchical model was an excellent fit in itself and was
better than two reasonable alternative models. If this were the case in real data (as
claimed in [32]), it would establish a strong argument for the model.

What does this mean for us as marketers? It means that, if we saw such results in a
product category of interest to us, we would not assume that product involvement is a
unitary, single factor. Instead, we would wish to use the somewhat more informative
and differentiated hierarchical model that assess overall product interest alongside
measures of feature and image involvement. Additionally, because the overall model
fits the data well, it tells us that the 3+1model is a good representation of associations
in the data (relative to plausible alternatives). This enhances our confidence that the
survey items really do assess what we intend.

We note two important lessons. First, the simulated data is useful to examine the
likelihood of being able to support a model. Simulated data showed us that the non-
hierarchical PIES 3 model could fit the data well—if interpreted on its own—even
when the PIES 3+1 model was “true” given the data simulation process. Such tests
with simulated data inform us about the power needed for model comparison.

Second, we see that simply establishing strong fit for a model is not enough; we
also need to establish superiority over alternative models. If we only tested the non-
hierarchical three-factor PIES 3 model, we might have concluded that it was an
excellent model. Yet when we compare it to the PIES 3+1 hierarchical model, we
find the latter is a better fit to the data.Wewill encounter this again when we consider
more general SEM models.

280 10 Confirmatory Factor Analysis and Structural Equation Modeling

Formarketers, there is another implication: whenwe devise a survey scale, we should
test the assumed factor model to ensure that it meets our expectation. Imagine that
we write a survey that asks about product preferences in four areas: performance,
price, appearance, and quality. If each area has a few survey items and we add them
together—as is common with surveys—then we are implicitly asserting a four factor
model for our survey. Before we use those added-up scores, we should check our
assumption about factors. Does our model match the data as we believe it should?
If not, we might draw very misleading conclusions from the data. Test the model! R
and lavaan make it easy to do this in just a few lines of code.

10.3 General Models: Structural Equation Models

We now consider a more general form of structural models, where latent constructs
may influence one another in more complex ways. We consider an example from
Iacobucci [104] concerning customer satisfaction ratings and their effect on stated
intention to repurchaseHP printers. The data consisted of responses to 15 satisfaction

Table 10.2 A 15-item survey of purchase satisfaction, perceived value, and repurchase intent. Item
(variable) names are listed in the first column. Each division (Quality, Cost, Value, etc.) represents
a latent factor manifest in the three following items. From Iacobucci [104]

Item Text

Quality

q1 The quality of the HP printer I bought is excellent

q2 HP printers are known to be highly reliable

q3 I’m sure my HP printer will last a long time

Cost

c1 The HP printer was reasonably priced

c2 HP sets fair prices for its products

c3 The 88HP printers are no more expensive than others

Value

v1 I feel like I got good value for this purchase

v2 The quality of the printer is worth its cost

v3 I could tell my boss this purchase was good value

CSat

cs1 I am very satisfied with my newly purchase HP printer

cs2 My printer is better than I expected it would be

cs3 I have no regrets about having bought this printer

Repeat

r1 I would buy another HP if I had to buy another printer

r2 I would buy other HP products

r3 I would tell my friends and coworkers to buy HPs

10.3 General Models: Structural Equation Models 281

Quality

Cost Value CSat Repeat

Fig. 10.7 A model of repeat purchase intent. In this model, the cost of a product is associated
with both perception of value and intent to repurchase, while perception of quality relates to both
perceived value and satisfaction, which is then associated with repurchase. From Iacobucci [104]

items, where there were 3 items each for factors of Quality, Cost (fair pricing), Value,
Customer Satisfaction (CSat), and Repeat purchase intention.

The survey items, the variable names we use for them, and the higher-order latent
factors (Quality, Cost, and so forth) are shown in Table 10.2.

The proposed structural model for the associations among the latent variables is
shown in Fig. 10.7. For brevity, we omit consideration of the measurement model
and the individual items for each factor.

Asmarketers, if we had collected consumer data from a survey such as this, wewould
have two goals. First, as we did with CFA above, we would wish to ascertain whether
our proposed model of influence—for example, that perception of cost is associated
with both perception of value and intent to repurchase, as shown in Fig. 10.7—is an
adequate model for the data we have collected. Second, if themodel fits the data well,
we would answer questions about the relationships: how much does perception of
quality relate to satisfaction? Is quality more important than perceived value? What
is the largest determinant of stated intent to purchase again? And so forth.

To explore how to do this, we follow the same process as with CFA above. Specifi-
cally, we use a covariance-based SEM with four steps:

1. Define the structural model to be tested
2. Create simulated data that we use for illustration and debugging
3. Fit the model to the data
4. Compare the model to a simpler, alternative model

As always, simulating the data in step 2 is illustrative here; you would use your own
data instead, although we believe additional simulation is useful.

282 10 Confirmatory Factor Analysis and Structural Equation Modeling

10.3.1 The Repeat Purchase Model in R

We begin by specifying the structural model that we wish to assess. This consists of
a left-hand name of each latent factor, followed by the “is manifested by” symbol,
“=∼” with the latent variables that it influences and its observed manifest variables
(in this case, the 15 items from the customer survey). For convenience, we write the
latent variables with capitalized names, andmanifest items in lower case. In lavaan
this is:
> satModel <- " Quality =~ CSat + Value + q1 + q2 + q3 + 0*Cost
+ Cost =~ Value + Repeat + c1 + c2 + c3
+ Value =~ CSat + v1 + v2 + v3
+ CSat =~ Repeat + cs1 + cs2 + cs3
+ Repeat =~ r1 + r2 + r3 "

We read the first line as saying, “Quality influences CSat andValue, and ismanifested
as items q1, q2, and q3.” Notice that we specify a fixed loading of zero between
Cost and Quality. That reflects Iacobucci’s report that those factors had near zero
relationship (specifically, correlation of −0.03, [104], p. 676). Also, we are not
interested in their relationship in this model and constraining the relationship may
prevent spuriousmodel effects.3 Continuingwith themodel,we read “Cost influences
Value and Repeat purchase intention, and is manifested on items c1, c2, and c3,” and
similarly for the other lines.

Next we obtain simulated data to use. If you prefer to load the data instead of simu-
lating it:

> satSimData <- read.csv("http://goo.gl/MhghRq")
> summary(satSimData)

q1 q2 q3 c1 c2
Min. :1.00 Min. :1.000 Min. :1.000 Min. :1.00 Min. :1.000
1st Qu .:3.00 1st Qu .:3.000 1st Qu .:3.000 1st Qu .:3.00 1st Qu .:3.000
Median :4.00 Median :3.000 Median :4.000 Median :4.00 Median :4.000
Mean :3.95 Mean :3.535 Mean :3.805 Mean :4.34 Mean :4.185
...

Once you have the data, you may proceed to Sect. 10.3.2. Otherwise, continue with
the following; once again, data simulation is surprisingly straightforward.
Using the loadings reported by Iacobucci ([104], p. 677), we write the data model
as:
> satDataModel <- " Quality =~ 0.59*CSat + 0.56*Value +
+ 0.9*q1 + 0.9*q2 + 0.9*q3 + 0*Cost
+ Cost =~ -0.5*Value + -0.29*Repeat +
+ 0.9*c1 + 0.9*c2 + 0.9*c3
+ Value =~ 0.06*CSat + 0.9*v1 + 0.9*v2 + 0.9*v3
+ CSat =~ 0.48*Repeat + 0.9*cs1 + 0.9*cs2 + 0.9*cs3
+ Repeat =~ 0.9*r1 + 0.9*r2 + 0.9*r3 "

Then we simulate the data for N=200 respondents, and convert to Likert type scaled
values using the same approach as in Sect. 10.2.1:

3In general, fixing parameters is not recommended; the whole point of SEM is to estimate param-
eters. However, in some cases, especially with smaller samples as we consider here, it may help to
focus a model on the influences under consideration if one constrains factors. It is possible with
lavaan to constrain to any value, not just 0.

10.3 General Models: Structural Equation Models 283

> set.seed (33706) # continuing the island tour
> satData.norm <- simulateData(satDataModel , sample.nobs =200)
> satSimData <- data.frame(lapply(satData.norm ,
+ function(x) { as.numeric(cut(x, breaks =7)) }))

We omit here the data quality checks (see Sect. 10.2.1), but it is a good idea for you
to inspect those.

10.3.2 Assessing the Repeat Purchase Model

To fit the model, we use sem(MODEL, DATA) and add an argument, std.lv=
TRUE, to standardize the latent variables because we are interested to compare rela-
tive influence strength (the alternative is to treat them in terms of the unit scales of
the observed items, which might be of interest for CFA). In the abbreviated output,
we see a strong model fit (CFI=0.998 and low residuals):

> sat.fit <- sem(satModel , data= satSimData , std.lv=TRUE)
> summary(sat.fit , fit.measures=TRUE)
lavaan 0.6-3 ended normally after 24 iterations
...

Number of observations 200

Estimator ML
Minimum Function Test Statistic 85.454
Degrees of freedom 84
P-value (Chi -square) 0.435

...
User model versus baseline model:

Comparative Fit Index (CFI) 0.998
...
Root Mean Square Error of Approximation:

RMSEA 0.009
90 Percent Confidence Interval 0.000 0.040
P-value RMSEA <= 0.05 0.993

Standardized Root Mean Square Residual:
SRMR 0.052

...

We plot the resulting structural coefficients for the proposed model with argu-
ments for structural=TRUE to suppress the loadings for the manifest items
and nCharNodes=7 to put the full factor names in the latent variable circles:

> semPaths(sat.fit , what="est", fade=FALSE , residuals=FALSE ,
+ layout="tree", structural=TRUE , nCharNodes =7, edge.label.cex=1)

The result is Fig. 10.8. Not surprisingly, the simulated data show effects close to what
we specified (but not exactly the same, which demonstrates that model recovery is
not perfect).

As we have already seen, a great fit in CB-SEM is not enough! We still need to
compare our proposed model to one or more plausible alternative models, in order
to demonstrate that our proposal is superior to other reasonable models.

How do we define an alternative model? It depends on your goal and theory. In
some cases, you might wish to compare to a simpler model, in order to show that
relationships are more complex or to fit a more precise model. In other cases, you
could compare to an existing model from the literature or previous research. In still

284 10 Confirmatory Factor Analysis and Structural Equation Modeling

0.24 0.34−0.40

0.44

−0.52

0.61

Quality

Cost Value CSat Repeat

Fig. 10.8 Coefficient estimates for the repeat purchase model, using simulated data

others, you might show that a proposed complex model is too complex, and that a
simpler model is more effective. As a general principle, we prefer to show that a
model is better than a simpler model with fewer paths, and just as good as (i.e., not
significantly worse than) a more complex model with a larger number of paths.

In the present case, our full model proposes that Quality and Cost do not have
a simple relationship with single variables but are associated with multiple other
variables. For instance, Cost influences not only perception of Value but also the
likelihood of Repeat purchase. An alternative is a simpler, more obvious model,
where each is associated with only a single other variable, such as Cost affecting
Value but not directly influencing Repeat. To support our more complex model,
we wish to show that the simpler model is inadequate. Thus, we define an alternative
model where each latent variable only influences one other variable, giving us a
model with 2 fewer paths as shown in Fig. 10.9. The alternative model specification
in lavaan is:
> satAltModel <- " Quality =~ CSat + q1 + q2 + q3 + 0*Cost
+ Cost =~ Value + c1 + c2 + c3
+ Value =~ CSat + v1 + v2 + v3
+ CSat =~ Repeat + cs1 + cs2 + cs3
+ Repeat =~ r1 + r2 + r3 "

We fit the alternative model to the simulated data with sem() and compare that fit
to the proposed model with compareFit():
> satAlt.fit <- sem(satAltModel , data=satSimData , std.lv=TRUE)
> summary(compareFit(sat.fit , satAlt.fit , nested=TRUE))
################### Nested Model Comparison #########################

chi df p delta.cfi
sat.fit - satAlt.fit 37.51 2 <.001 0.0495

#################### Fit Indices Summaries ##########################
chisq df pvalue cfi tli aic bic rmsea srmr

sat.fit 85.454 84 .435† .998† .997† 9174.942† 9293.681† .009† .052†
satAlt.fit 122.962 86 .006 .949 .937 9208.449 9320.592 .046 .095

10.3 General Models: Structural Equation Models 285

Quality

Cost Value CSat Repeat

Fig. 10.9 An alternative structural model for repeat purchase influence, omitting the direct asso-
ciations of cost with repeat purchase and of perceived quality with value

Once again we see that—taken on its own—the alternative model appears to be a
good fit to the data (e.g., CFI=0.95, RMSEA=0.046) yet the proposed model is
significantly better, showing Chi-square (d f = 2)=37.51 for the model difference,
p < .001, and stronger fit indices with lower residuals.

If these were results from real data, we could draw a few conclusions. First, the
model shows good fit to the observed (in this case, simulated) data, so we are able
to interpret the results. Second, it is better than a simpler alternative model, which
argues that our model is not an arbitrarily good fit but is preferable to a plausible
alternative. Most importantly, we would use the coefficient estimates in the model
to answer our substantive questions about the associations of the latent factors with
the outcomes of interest to us as marketers. However, we omit this step here because
we’ve done this several times for other models and it does not further advance our
knowledge of R; see Iacobucci (2009) for conclusions in this case [104].

10.4 The Partial Least Squares (PLS) Alternative

The first two models we have considered in this chapter exemplify covariance-based
structural equation modeling (CB-SEM). Such models attempt to account for as
much of the total covariance in the data as possible, among all observed and latent
variables. CB-SEM requires that a data set complies with relatively strict assump-
tions about data distributions (continuous data, normally distributed residuals), the
number of indicators per factor (generally three or more), reliability of indicators,
and sample size (some authorities recommend several hundred, although it is pos-
sible that samples of N=100 or even N=50 may be adequate when measures are
very reliable; see Iacobucci [105]). When such assumptions are met, CB-SEM is a
powerful tool that tests a model rigorously, assesses overall strength of the model,
and allows for model comparison.

286 10 Confirmatory Factor Analysis and Structural Equation Modeling

When data do not comply with the assumptions of CB-SEM or come from a mod-
est sample size with potentially less reliable indicators, an alternative is partial
least squares structural equation modeling (PLS-SEM). PLS-SEM is often able to
yield estimates of path coefficients in models where CB-SEM would fail. However,
PLS-SEM does not allow one to say much about model fit or comparative strength;
there is no accepted measure of global “goodness of fit” that is comparable across
models. Thus, we recommend CB-SEM when possible; but when CB-SEM fails,
PLS-SEM may still give useful estimates of model influences.

In this section, we demonstrate PLS-SEM for the repeat purchase model that we
examined above. We will see that PLS-SEM can estimate parameters with a sample
where CB-SEM fails, but with greater uncertainty about the model’s results.

10.4.1 PLS-SEM for Repeat Purchase

We conduct PLS with the semPLS package; install that for the following examples.
We continue with the example from Iacobucci [104] of the influence of customer
satisfaction and perceived value on intended repeat purchase of a computer printer.
You may review that model—and find steps to create simulated data that we use
here—in Sect. 10.3 above.

Let’s see why PLS-SEM can be useful. Our simulated dataset (satSimData) has
N=200 observations, which was modeled successfully with CB-SEM. What if the
samplewere smaller?Let’s takeN=50 rows and try tofit theCB-SEMmodel to those:
> set.seed (90704)
> satSimData2 <- satSimData[sample(nrow(satSimData), 50),]
> describe(satSimData2)

vars n mean sd median trimmed mad min max range skew kurtosis se
q1 1 50 3.80 1.39 4 3.75 1.48 1 7 6 0.26 -0.23 0.20
...

> sat.fit2 <- sem(satModel , data= satSimData2 , std.lv=TRUE)
Warning messages:
1: In lav_model_vcov(lavmodel = lavmodel , lavsamplestats = lavsamplestats , :

lavaan WARNING: could not compute standard errors!
...

Model estimation with lavaan fails because we do not have enough data.4 If you
inspect the model object, you will see extreme and nonsensical values:
> summary(sat.fit2 , fit.measures=TRUE)
lavaan 0.6-3 ended normally after 9279 iterations
...

Comparative Fit Index (CFI) 0.727
...
Latent Variables:

Estimate Std.Err z-value P(>|z|)
...

Cost =~
Value -0.003 NA
Repeat -0.011 NA
c1 0.014 NA
c2 57.951 NA

4The small sample exacerbates another reason for estimation difficulty: our data is highly collinear
due to the factor structure imposed when we simulated it to match the report by Iacobucci [104].

10.4 The Partial Least Squares (PLS) Alternative 287

...
Variances:

Estimate Std.Err z-value P(>|z|)
.q1 1.540 NA

...
.c1 1.515 NA
.c2 -3356.511 NA

...

It is unreasonable to think that one survey item about cost (c1) has nearly zero
relationship while another (c2) is thousands of times more strongly related
(57.29/0.014), or that one has thousands of times as much variance as another. This
indicates model instability as the message from lavaan warned us.

We will try PLS-SEM instead. The first step is to define a measurement model that
links underlying latent variables to their observed manifest variables such as survey
items, and then to define a structural model that links latent variables to one another.
In lavaan these were combined into a single step (cf. Sect. 10.3.1) but with the
semPLS package they are separate.

Whereas lavaan uses a formula syntax to define relationships among variables,
semPLS uses a matrix format. In this format, each row represents one “arrow” in
a model. The first column of the row represents the from variable while the second
column represents the to variable. Thus, an arrow from Quality to the manifest
variable q1 would be represented as a matrix line ("Quality", "q1").

The matrix definition is not as difficult as it may sound; we need only list the from
and to entries in a simple format. Referring to the model in Sect. 10.3.1, we define
the measurement model (latent to observed variables) model as:
> satPLSmm <- matrix(c(
+ "Quality", "q1",
+ "Quality", "q2",
+ "Quality", "q3",
+ "Cost", "c1",
+ "Cost", "c2",
+ "Cost", "c3",
+ "Value", "v1",
+ "Value", "v2",
+ "Value", "v3",
+ "CSat", "cs1",
+ "CSat", "cs2",
+ "CSat", "cs3",
+ "Repeat", "r1",
+ "Repeat", "r2",
+ "Repeat", "r3"), ncol=2, byrow=TRUE)

The structural model presents the latent variable relationships using the same kind
of matrix format. Referring to the model shown in Fig. 10.7 we write:
> satPLSsm <- matrix(c(
+ "Quality", "CSat",
+ "Quality", "Value",
+ "Cost", "Value",
+ "Cost", "Repeat",
+ "Value", "CSat",
+ "CSat", "Repeat"), ncol=2, byrow=TRUE)

We now fit the PLS model using the simulated 50-respondent data set. We use
plsm(data, strucmod, measuremod) from semPLS to create a PLS
model using the structural and measurement model matrices that we defined. Then
we use sempls(model, data) to estimate the model parameters:

288 10 Confirmatory Factor Analysis and Structural Equation Modeling

> library(semPLS)

> satPLS.mod <- plsm(data=satSimData2 , strucmod=satPLSsm , measuremod=satPLSmm)

> satPLS.fit <- sempls(model=satPLS.mod , data=satSimData2)

All 50 observations are valid.

Converged after 14 iterations.

Tolerance: 1e-07

Scheme: centroid

We can now inspect the results. To begin, we examine the fit between the latent
variables and the manifest observations (items), i.e., the estimated factor structure,
using plsLoadings(MODEL). We see that the items have positive and moderate
to high loadings, and are similar in magnitude within each latent variable:

> plsLoadings(satPLS.fit)
Cost Quality Value CSat Repeat

c1 0.39
c2 0.82
c3 0.78
q1 . 0.54 . . .
...

Each of latent variables has a moderate to strong loading with its manifest variables,
so we are reassured that the model reflects those relationships. If a latent variable
failed to load significantly—for example, with factor loadings below 0.3 for any
manifest variable, or below 0.5 for all of its manifest variables—then we would be
concerned about the model, sample size, or reliability of the measures and would
conduct further investigation (or, at aminimum, replicate the results, as in Sect. 10.4.3
below).

We now use pathCoeff(MODEL) to examine the structural coefficients between
latent variables, which is what we most care about:
> pathCoeff(satPLS.fit)

Cost Quality Value CSat Repeat
Cost . . -0.196 . -0.393
Quality . . 0.323 0.400 .
Value . . . 0.062 .
CSat 0.231
Repeat

We see that cost has a negative influence on perceived value and likelihood to repeat
purchase, while customer satisfaction has a positive influence on repeat purchase.

10.4.2 Visualizing the Fitted PLS Model*

This section is optional because it detours into modest additional requirements and
file handling.

As we have seen, it is convenient to plot the results of structural models and interpret
coefficients and models visually. For the PLS model, we can plot the structural
coefficients using pathDiagram(MODEL, FILE, full=FALSE, ...) but
this does not immediately create a plot within R. Instead, it outputs a .dot file that
is then processed by the freely available Graphviz software package to produce a
corresponding image as aPDFfile [71].Graphviz is available at http://www.graphviz.
org.

http://www.graphviz.org
http://www.graphviz.org

10.4 The Partial Least Squares (PLS) Alternative 289

Cost

Value

-0.2 Repeat
-0.39

Quality

0.32
CSat

0.4

0.06

0.23

Fig. 10.10 PLS estimate for the repeat purchase model (with N=50)

Once Graphviz is installed, a PDF output file with the paths and coefficients for a
fitted PLS model objected may be created with pathDiagram:

> pathDiagram(satPLS.fit , file = "satPLSstruc", full = FALSE , digits = 2,
+ edge.labels = "values", output.type = "graphics", graphics.fmt = "pdf")

The result is shown in Fig. 10.10. Comparing the values to those obtained from the
full sample with CB-SEM (Fig. 10.8) we see that the coefficients are identical in
direction (positive or negative) and similar in relative magnitude.

Because PLS models do not assess global model fit, there is not a general way to
compare CB-SEM and PLS-SEM results apart from interpreting the models and
their implications, so it is not advisable to compare the coefficients directly between
Figs. 10.8 and 10.10.

10.4.3 Assessing the PLS-SEM Model

Unlike CB-SEM, PLS-SEM models do not have a summary metric that allows
global model assessment and comparison [90]. Instead, at a minimum we recom-
mend three steps:

• Examine the model’s coefficients for intelligibility, as we did in Sect. 10.4.1
• Examine the overall R2 for themodel, and determine (largely subjectively)whether
sufficient variance is explained to be useful

• Bootstrap the model to examine coefficient stability

It is easy to find R2 for each of the latent variables using the rSquared(MODEL)
function:
> rSquared(satPLS.fit)

R-squared
Cost .
Quality .
Value 0.18
CSat 0.18
Repeat 0.26

A problem with R2 is that there is no general standard for whether the values are
adequate. R2 is ameasure of overall variance explainedwithin each part of themodel,
but its interpretation is dependent on what you might expect for a given type of data
(in other words, it depends on your experience with models in a domain) and it can

290 10 Confirmatory Factor Analysis and Structural Equation Modeling

be increased simply by adding variables (i.e., overfitting). There are various rules
of thumb for interpreting R2, but they are domain specific. If we use the standards
for interpreting correlation coefficients in behavioral data, where r = 0.3 indicates
a moderately strong correlation (Sect. 4.5), then R2 > 0.09 could be a reasonable
goal for a moderately strong association in the model, assuming that you have been
parsimonious in selecting the number of associated variables.

We recommend a more general approach that does not rely on R2 and instead uses a
bootstrap process to assess coefficient stability. In semPLS, this may be done with
the bootsempls() command. We fit the PLS model object to 500 resampled sets
of observations:
> set.seed (04635)
> satPLS.boot <- bootsempls(satPLS.fit , nboot =500, start="ones")
Resample: 500 Done.
Warning message:
In bootsempls(satPLS.fit , nboot = 500, start = "ones") :

There were 445 apparent convergence failures;
these are discarded from the 500 bootstrap replications returned.

> summary(satPLS.boot , type = "bca", level = 0.9)
Call: bootsempls(object = satPLS.fit , nboot = 500, start = "ones")

Lower and upper limits are for the 90 percent bca confidence interval

Estimate Bias Std.Error Lower Upper
lam_1_1 0.3920 0.00340 0.2337 -0.15589 0.63826
lam_1_2 0.8232 -0.00815 0.0936 0.53064 0.89002
...
beta_1_3 -0.1964 -0.06409 0.1206 -0.33148 0.18705
beta_2_3 0.3231 -0.00695 0.1489 0.09514 0.54770
beta_2_4 0.3996 0.05201 0.1064 -0.10458 0.51023
beta_3_4 0.0623 -0.00157 0.1614 -0.28754 0.29319
beta_1_5 -0.3935 -0.00866 0.1400 -0.53876 -0.00396
beta_4_5 0.2312 -0.00520 0.1533 -0.14174 0.42047

In examining the results, we see two indications of problems: a warning that approx-
imately 90% of the PLS iterations failed to converge, and several model coefficients
(such as the beta values that reflect the structural model) whose upper and lower
bounds include 0, and for which we therefore do not have even directional confi-
dence.

We can see the problems visually using a parallel plot. This plots all bootstraps
estimates of the structural coefficients so we can see the spread in estimates; we use
reflinesAt=0 to add a reference line at 0 in order to see direction, and include
varnames to label the Y axis with friendly names:

> parallelplot(satPLS.boot , reflinesAt = 0, alpha =0.8,
+ varnames=attr(satPLS.boot$t, "path")[16:21] ,
+ main="Path coefficients in 500 PLS bootstrap iterations (N=50)")

The resulting plot is shown in Fig. 10.11, where the grey lines represent individual
bootstrap estimates and the red lines showmedian (solid line) and outer 95%observed
intervals (dotted lines). The estimates fluctuatewidely formost of the coefficients.We
read this by looking at the spread of estimates along each of the horizontal grid lines
representing one model coefficient. For example, the influence of Cost on Repeat
purchase is generally estimated to be strongly negative, but several of the estimates
hold the relationship to be strongly positive. Additionally, 2 of the 6 coefficient ranges
straddle the zero line and thus are not “significantly” different from zero.

10.4 The Partial Least Squares (PLS) Alternative 291

Path coefficients in 500 PLS bootstrap iterations (N=50)

Cost −> Value

Quality −> Value

Quality −> CSat

Value −> CSat

Cost −> Repeat

CSat −> Repeat

Min Max

Fig. 10.11 Bootstrapped coefficients for the PLS model, showing divergent estimates for N=50
observations. Each line plots the six estimated coefficients for one complete bootstrap iteration. The
model is unstable with the small sample and 445 of 500 bootstrap iterations failed to converge, so
these results come from the other 55 iterations

The convergence problems and bootstrap ranges demonstrate that estimates in our
PLS model with N=50 are unstable. However, whether they are useful in a given
situation is a judgment call. Depending on the question at hand and the risks involved,
an analyst might conclude that the estimates are not adequately reliable—or alterna-
tively might conclude that, although the instability is not ideal, the estimates are still
useful because they are more informative than nothing.

10.4.4 PLS-SEM with the Larger Sample

Is PLS-SEM more stable with the larger sample? We can examine that quickly for
the full dataset from Sect. 10.3.1 with no need to respecify the model. The analysis is
identical, except for using the full data (satSimData) in the modeling commands:

> satPLS.modF <- plsm(data=satSimData , strucmod=satPLSsm , measuremod =satPLSmm)

> satPLS.fitF <- sempls(model=satPLS.mod , data=satSimData)

All 200 observations are valid.

Converged after 7 iterations.

Tolerance: 1e-07

Scheme: centroid

292 10 Confirmatory Factor Analysis and Structural Equation Modeling

We see that the path coefficients for the N=200 data are similar to the N=50
estimates, but the coefficients are somewhat different:
> pathCoeff(satPLS.fitF)

Cost Quality Value CSat Repeat
Cost . . -0.27 . -0.32
Quality . . 0.30 0.34 .
Value . . . 0.22 .
CSat 0.29
Repeat

As before, we check PLS-SEM stability with a bootstrap. We repeat the procedure
from Sect. 10.4.3, this time with the model for the full dataset:
> set.seed (04635)
> satPLS.bootF <- bootsempls(satPLS.fitF , nboot =500, start="ones")
Resample: 500 Done.
> parallelplot(satPLS.bootF , reflinesAt = 0, alpha =0.8,
+ varnames=attr(satPLS.bootF$t, "path")[16:21] ,
+ main="Path coefficients in 500 PLS bootstrap iterations (N=200)")

The bootstrap with full N=200 data converged on all 500 iterations (as opposed to
almost 90% failures to converge with N=50 above). The parallel plot of estimates
in Fig. 10.12 shows bootstrap coefficient values that are grouped much more tightly
(the gray lines) and confidence intervals that do not cross zero (red lines).

These are results that we could use more confidently than we obtained for N=50.
Either way, PLS-SEM opens up the opportunity for that decision. With the bootstrap

Path coefficients in 500 PLS bootstrap iterations (N=200)

Cost −> Value

Quality −> Value

Quality −> CSat

Value −> CSat

Cost −> Repeat

CSat −> Repeat

Min Max

Fig. 10.12 Bootstrapped coefficients for the PLS model with a larger sample, showing tighter
estimates with N=200 observations

10.4 The Partial Least Squares (PLS) Alternative 293

we were able to find instability with the smaller sample but stability for the larger.
With such capability we canmake an informed choice about whether to use imperfect
results.

10.5 Key Points

Wehave seen two examples of complexmodels inmarketing applications: to examine
whether a survey instrument has good factor structure, and to estimate the relationship
in survey data between customer satisfaction and intent to repurchase a product.
Additionally, we saw how such models may be estimated in both covariance and
partial least squares approaches.

The following suggestions will help you to succeed at this kind of modeling:

• Learn about structural models and their assumptions; do not fit them blindly. If
you become discouraged by mathematical treatments, keep looking; the concepts
can be challenging but there are excellent and readable expositions such as Kline
[116].

• A structural equation model (SEM) relates observed manifest variables—such as
data points or survey responses—to underlying latent variables. It estimates the
strength of associations in a proposed model, as well as the degree to which the
model fits the observed data.

• SEM may be used to check the factor structure of survey items and their relation-
ships to proposed latent variables; this is known as confirmatory factor analysis
(CFA). A good practice in survey research is to assess those relationships; do not
simply assume that survey items relate to one another or to latent constructs as
expected (Sect. 10.2).

• SEM can also be used to test more complex models than CFA, in which latent
variables affect one another and are related to multiple sets of manifest variables.

• Two general approached to SEM are the covariance-based approach (CB-SEM),
which attempts to model the relationships among the variables at once and thus
is a strong test of the model, and the partial least squares approach (PLS-SEM),
which fits parts of the data sequentially and has less stringent requirements.

• After you specify aCB-SEMmodel, simulate a data set usingsimulateData()
from lavaan with reasonable guesses as to variable loadings. Use the simulated
data to determine whether your model is likely to converge for the sample size you
expect.

• Plot your specified model graphically and inspect it carefully to check that it is the
model you intended to estimate.

• Whenever possible, specify one or two alternative models and check those in
addition to yourmodel. Before accepting a CB-SEMmodel, usecompareFit()
to demonstrate that your model fits the data better than alternatives.

• If you have data of varying quality, nominal categories, small sample, or problems
converging a CB-SEM model, consider partial least squares SEM (PLS-SEM).

294 10 Confirmatory Factor Analysis and Structural Equation Modeling

• For PLS-SEM, use a bootstrap procedure (such as bootsempls() in the
semPLS package) to examine the stability of coefficients.

10.6 Learning More*

Structural models are a complex topic, and this chapter is intended primarily to
demonstrate R’s capability for experienced SEM users while inspiring others to
learn more. To use SEM well, you will need substantial background in addition to
this overview. For CB-SEM, an excellent text is Kline’s Principles and Practice of
Structural Equation Modeling [116]. Kline presents a social science perspective that
is similar to many marketing applications, especially for application to survey data.

A guide to SEM models in R using the lavaan package is Beaujean [9]. The
combination of Kline’s Principles [116] for general concepts along with Beaujean’s
guide to implementation in R would provide a thorough grounding in SEM with R.

As you learn more about structural models, you will encounter SEM traditions that
reflect a diversity of statistical foundations and applications. One difference involves
model specification. The Lisrel tradition—named after one of the first SEM soft-
ware programs [110, 111]—is exemplified in Iacobucci’s article [104] and presents
models in terms of matrix algebra and Greek lettering. This is a very precise way
to specify models but is difficult for non-specialists. An alternative is the Mplus
tradition—also named after a software program—which uses simpler equation style
specifications. We generally recommend marketers to start with the latter kind of
model specification, as we did in the present chapter.

PLS-SEM is popular for marketing applications but, unlike the case with CB-SEM,
to date there have been few sources to learn about it. A paper from Hair et al.
describes how to do PLS-SEM appropriately [90]. At the time of writing, other
general references on PLS-SEM included a textbook [91] and a paper presenting an
overview of marketing applications [96].

In R, there are several packages available for SEM. In this chapter we used the
lavaan package [166] for CB-SEM and the semPLS package [141] for PLS-SEM.
One of the earliest andwidely used packages for SEM is thesem package [63], which
has many examples available online for various models and situations (e.g., [61]).
The OpenMx Project provides a powerful system for SEM in the OpenMx package
[14].

10.7 Exercises 295

10.7 Exercises

10.7.1 Brand Data for Confirmatory Factor Analysis
Exercises

For the CFA exercises, we will use a second simulated sample for “PRST” ratings
(see Sect. 8.8). The structure is identical to the data set in those exercises, but it is a
new sample and omits product brand. First we load the data from a local or online
location:
> prst2 <- read.csv("https://goo.gl/BTxyFB") # online
prst2 <- read.csv("chapter10 -cfa.csv") # local alternative
> summary(prst2)

Adaptable BestValue CuttingEdge Delightful
Min. :1.00 Min. :1.00 Min. :1.000 Min. :1.000 ...
1st Qu .:3.00 1st Qu .:3.00 1st Qu .:3.000 1st Qu .:3.000 ...
Median :4.00 Median :4.00 Median :4.000 Median :4.000 ...
Mean :4.13 Mean :3.73 Mean :3.812 Mean :4.277 ...

10.7.2 Exercises for Confirmatory Factor Analysis

1. Plot a correlationmatrix for the adjectives in the new data set,prst2. Is it similar
in structure to the results of exploratory factor analysis in Sect. 8.8?

2. Using the EFA model from the Sect. 8.8 exercises as a guide, define a lavaan
model for a 3-factor solution. Fit that model to the prst2 data for confirmatory
factor analysis, and interpret the fit. (Note: in the lavaanmodel, consider setting
the highest-loaded item loading to 1.0 for each factor’s latent variable; this can
help anchor the model. Also note that Adaptable may need to load on two
factors.)

3. Plot the 3-factor model.
4. Now find an alternative 2-factor EFA model for the prst1 exploratory data.

Define that as a CFAmodel for lavaan and fit it to the new prst2 confirmatory
data. Youwill need to define amodel that you think is a reasonable 2-factormodel.

5. Compare the 2-factor model fit to the 3-factor model fit. Which model is prefer-
able?

10.7.3 Purchase Intention Data for Structural Equation
Model Exercises

For these exercises, we use a new simulated data set tomodel likelihood to purchase a
new product. Respondents have rated the new product on three of the same adjectives
used in the PRST exercises above: Ease of Use, Cutting Edge, and Best Value.
Additionally, there are ratings for satisfactionwith the previousmodel of the product,

296 10 Confirmatory Factor Analysis and Structural Equation Modeling

likelihood to purchase the new product, and satisfaction with the new product’s cost.
This gives a total of six manifest items. In the exercises, you will define structural
models using those items along with latent variables, and assess fit with the data.
First, load the data:
> intent.df <- read.csv("https://goo.gl/6U5aYr") # online
intent.df <- read.csv("chapter10 -sem.csv") # local alternative
> summary(intent.df)

iCuttingEdge iEaseOfUse iBestValue iPreviousModelRating
Min. : 1.000 Min. : 1.000 Min. : 1.000 Min. : 1.000 ...
1st Qu.: 5.000 1st Qu.: 4.750 1st Qu.: 4.000 1st Qu.: 4.000 ...
Median : 6.000 Median : 6.000 Median : 6.000 Median : 5.000 ...
Mean : 6.072 Mean : 5.643 Mean : 5.645 Mean : 5.355 ...

In this data set, all column names begin with the letter “i,” such as “iCuttingEdge.”
This is to help distinguish the survey items (manifest variables) from latent variables
that you will define for the SEM models.

10.7.4 Exercises for Structural Equation Models and PLS
SEM

Structural Equation Models

6. Define an SEM model for the product ratings in intent.df using lavaan
syntax. The model has three latent variables: ProductRating, PurchaseInterest,
and PurchaseIntent. The core idea is that ProductRating points to PurchaseIn-
terest, and that points further to PurchaseIntent. ProductRating is manifest as the
items iCuttingEdge, iEaseOfUse, and iBestValue. PurchaseInterest
combines ProductRating with the manifest item iPreviousModelRating.
PurchaseIntent combines PurchaseInterest with item iCost and the manifest
rating item iPurchaseIntent. Your question is this: what are themost impor-
tant items related to the latent variable for purchase intent? Define this model and
fit it to the intent data.

7. Nowdefine a simplermodel and compare it. For the simplermodel, defineProduc-
tRating as manifest in iBestValue and iEaseOfUse. PurchaseIntent should
combine ProductRating with iCost and iPurchaseIntent. There will be
no PurchaseInterest latent variable. Fit this model, and visualize and interpret the
result. What are the drivers of purchase intent here? Is this model preferable to
the previous model? (Note: the question of whether it is better depends on inter-
pretation, not an assessment of fit; the models use different variables, so most fit
indices are not directly comparable.)

8. (Stretch exercise.) Define a few other plausible models. Does one of them fit the
data better? Should you therefore conclude that it is the right model?What would
be your next steps, if you wanted to assert that?

10.7 Exercises 297

Partial Least Squares SEM

For these exercises, use the intent.df data as in the SEM exercises above.

9. Sample N=30 observations from the purchase intent data, and fit the shorter
SEM model from Exercise 7 to those data using regular, covariance-based SEM
(i.e., sem()). (Note: results may vary by the random sample you take.) What
do you observe? How do the estimates compare to the full sample results above?

10. Use Partial Least Squares SEM to estimate themodel. Howdo the results of PLS-
SEM compare to the covariance-based SEM estimates for drivers of purchase
intent?

11. Using the N=30 sample, bootstrap the PLS-SEM estimates for 200 runs. How
large are the ranges for the parameter estimates? What does that tell you about
the stability of results from this sample?

12. Take a larger sample for N=200 and repeat the PLS-SEM bootstrap. How stable
are the estimates with the larger sample? How do the estimated ranges of values
compare to those from the N=30 sample?

13. (Stretch exercise that requires you to explore some new R graphing commands.)
A PLS-SEM bootstrap object collects all of the bootstrapped estimates for
the model parameters. Compare the N=30 versus N=200 bootstraps with a
graph for the best estimate and 95% observed intervals. Where do the estimates
mostly agree or substantially disagree? (Hint: there are many ways to visual-
ize the results. One approach is to compile the estimates for both sets and use
stat_summary() from the ggplot2 package.)

Chapter 11
Segmentation: Clustering
and Classification

In this chapter, we tackle a canonical marketing research problem: finding, assessing,
and predicting customer segments. In previous chapters we’ve seen how to assess
relationships in the data (Chap.4), compare groups (Chap.5), and assess complex
multivariate models (Chap.10). In a real segmentation project, one would use those
methods to ensure that data has appropriate multivariate structure, and then begin
segmentation analysis.

Segmentation is not a well-defined process and analysts vary in their definitions of
segmentation as well as their approaches and philosophy. The model in this chapter
demonstrates our approach using basic models in R. As always, this should be sup-
plemented by readings that we suggest at the end of the chapter.

We start with a warning: we have definite opinions about segmentation and what
we believe are common misunderstandings and poor practices. We hope you’ll be
convinced by our views—but even if not, the methods here will be useful to you.

11.1 Segmentation Philosophy

The general goal of market segmentation is to find groups of customers that differ in
important ways associated with product interest, market participation, or response to
marketing efforts. By understanding the differences among groups, a marketer can
make better strategic choices about opportunities, product definition, and positioning,
and can engage in more effective promotion.

© Springer Nature Switzerland AG 2019
C. Chapman and E. M. Feit, R For Marketing Research and Analytics, Use R!,
https://doi.org/10.1007/978-3-030-14316-9_11

299

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14316-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-14316-9_11

300 11 Segmentation: Clustering and Classification

11.1.1 The Difficulty of Segmentation

The definition of segmentation above is a textbook description and does not reflect
what ismost difficult in a segmentation project: finding actionable business outcomes.
It is not particularly difficult to find groups within consumer data; indeed, in this
chapter we see several ways to do this, all of which “succeed” according to one
statistical criterion or another. Rather, the difficulty is to ensure that the outcome is
meaningful for a particular business need.

It is outside the range of this book to address the question of business need in gen-
eral. However, we suggest that you ask a few questions along the following lines.
If you were to find segments, what would you do about them? Would anyone in
your organization use them? Why and how? Are the differences found large enough
to be meaningful for your business? Among various solutions you might find, are
there organizational efforts or politics that would make one solution more or less
influential than another?

There is no magic bullet to find the “right” answer. In computer science the no free
lunch theorem says that “for both static and time-dependent optimization problems,
the average performance of any pair of algorithms across all possible problems is
identical [204].” For segmentation this means that there is no all-purpose method or
algorithm that is a priori preferable to others. This does not mean that the choice of a
method is irrelevant or arbitrary; rather, one cannot necessarily determine in advance
which approach will work best for a novel problem. As a form of optimization,
segmentation is likely to require an iterative approach that successively tests and
improves its answer to a business need.

Segmentation is like slicing a pie, and any pie might be sliced in an infinite number
of ways. Your task as an analyst is to consider the infinity of possible data that
might be gathered, the infinity of possible groupings of that data, and the infinity of
possible business questions that might be addressed. Your goal is to find a solution
within those infinities that represents real differences in the data and that informs
and influences real business decisions.

Statistical methods are only part of the answer. It often happens that a “stronger”
statistical solution poses complexity that makes it impossible to implement in a
business context while a slightly “weaker” solution illuminates the data with a clear
story and fits the business context so well that it can have broad influence.

To maximize chances of finding such a model, we recommend that an analyst
expects—and prepares management to understand—two things. First, a segmenta-
tion project is not a matter of “running a segmentation study” or “doing segmentation
analysis on the data.” Rather, it is likely to takemultiple rounds of data collection and
analysis to determine the important data that should be collected in the first place, to
refine and test the solutions, and to conduct rounds of interpretation with business
stakeholders to ensure that the results are actionable.

11.1 Segmentation Philosophy 301

11.1.2 Segmentation as Clustering and Classification

In this chapter, we demonstrate several methods in R that will get you started with
segmentation analysis. We explore two distinct yet related areas of statistics: clus-
tering or cluster analysis and classification. These are the primary branches of what
is sometimes called statistical learning, i.e., learning from data through statistical
model fitting.

A key distinction in statistical learning is whether the method is supervised or unsu-
pervised. In supervised learning, a model is presented with observations whose
outcome status (dependent variable) is known, with a goal to predict that outcome
from the independent variables. For example, wemight use data from previous direct
marketing campaigns—with a known outcome of whether each target responded or
not, plus other predictor variables—to fit a model that predicts likelihood of response
in a new campaign. We refer to this process as classification.

In unsupervised learning we do not know the outcome groupings but are attempting
to discover them from structure in the data. For instance, we might explore a direct
marketing campaign and ask, “Are there groups that differ in how and when they
respond to offers? If so, what are the characteristics of those groups?” We use the
term clustering for this approach.

Clustering and classification are both useful in segmentation projects. Stakeholders
often view segmentation as discovering groups in the data in order to derive new
insight about customers. This obviously suggests clustering approaches because the
possible customer groups are unknown. Still, classification approaches are also useful
in such projects for at least two reasons: there may be outcome variables of interest
that are known (such as observed in-market response) that one wishes to predict
from segment membership, and if you use clustering to discover groups you will
probably want to predict (i.e., classify) future responses into those groups. Thus, we
view clustering and classification as complementary approaches.

A topic we do not address is how to determine what data to use for clustering, the
observed basis variables that go into the model. That is primarily a choice based
on business need, strategy, and data availability. Still, you can use the methods here
to evaluate different sets of such variables. If you have a large number of measures
available and need to determine which ones are most important, the variable impor-
tance assessment method we review in Sect. 11.4.3 might assist. Aside from that, we
assume in this chapter that the basis variables have been determined (and we use the
customer relationship data from Chap.5).

There are hundreds of books, thousands of articles, and scores of R packages for
clustering and classification methods, all of which propose hundreds of approaches
with—as we noted above—no single “best” method. This chapter cannot cover clus-
tering or classification in a comprehensive way, but we can give an introduction that
will get you started, teach you the basics, accelerate your learning, and help you
avoid some traps. As you will see, in most cases the process of fitting such models
in R is extremely similar from model to model.

302 11 Segmentation: Clustering and Classification

11.2 Segmentation Data

We use the segmentation data (object seg.df) from Chap.5. If you saved that data
in Sect. 5.1.4, you can reload it:

> load("~/segdf -Rintro -Ch5.RData")

> seg.raw <- seg.df

> seg.df <- seg.raw[, -7] # remove the known segment assignments

Otherwise, you could download the data set from the book website:

> seg.raw <- read.csv("http://goo.gl/qw303p")

> seg.df <- seg.raw[, -7] # remove the known segment assignments

As youmay recall fromChap.5, this is a simulated data with four identified segments
of customers for a subscription product, and contains a few variables that are similar
to data from typical consumer surveys. Each observation has the simulated respon-
dent’s age, gender, household income, number of kids, home ownership, subscription
status, and assigned segment membership. In Chap. 5, we saw how to simulate this
data and how to examine group differences within it. Other data sources that are
often used for segmentation are customer relationship management (CRM) records,
attitudinal surveys, product purchase and usage, and most generally, any data set
with observations about customers.

The original data seg.raw contains “known” segment assignments that have been
provided for the data from some other source (as might occur from some human
coding process). Because our task here is to discover segments, we create a copy
seg.df that omits those assignments (omitting column 7), so we don’t accidentally
include the known values when exploring applying segmentation methods. (Later,
in the classification section, we will use the correct assignments because they are
needed to train the classification models.)

We check the data after loading:

> summary(seg.df)

age gender income kids ownHome ...

Min. :19.26 Female :157 Min. : -5183 Min. :0.00 ownNo :159 ...

1st Qu .:33.01 Male :143 1st Qu.: 39656 1st Qu .:0.00 ownYes :141 ...

We use the subscription segment data in this chapter for two purposes: to examine
clusteringmethods that find intrinsic groupings (unsupervised learning), and to show
how classification methods learn to predict group membership from known cases
(supervised learning).

11.3 Clustering

We examine four clustering procedures that are illustrative of the hundreds of avail-
ablemethods. You’ll see that the general procedure for finding and evaluating clusters
in R is similar across the methods.

11.3 Clustering 303

To begin, we review two distance-based clustering methods, hclust() and
kmeans(). Distance-based methods attempt to find groups that minimize the dis-
tance betweenmemberswithin the group, whilemaximizing the distance ofmembers
from other groups. hclust() does this by modeling the data in a tree structure,
while kmeans() uses group centroids (central points).

Then we examine model-based clustering methods, Mclust() and poLCA().
Model-based methods view the data as a mixture of groups sampled from different
distributions, but whose original distribution and group membership has been “lost”
(i.e., is unknown). These methods attempt to model the data such that the observed
variance can be best represented by a small number of groups with specific distri-
bution characteristics such as different means and standard deviations. Mclust()
models the data as a mixture of Gaussian (normal) variables, while poLCA() uses
a latent class model with categorical (nominal) variables.

11.3.1 The Steps of Clustering

Clustering analysis requires two stages: finding a proposed cluster solution and eval-
uating that solution for one’s business needs. For each method we go through the
following steps:

• Transform the data if needed for a particular clustering method; for instance, some
methods require all numeric data (e.g.,kmeans(),Mclust()) or all categorical
data (e.g., poLCA()).

• Compute a distance matrix if needed; somemethods require a precomputedmatrix
of similarity in order to group observations (e.g., hclust()) .

• Apply the clustering method and save its result to an object. For some meth-
ods this requires specifying the number (K) of groups desired (e.g., kmeans(),
poLCA()).

• For some methods, further parse the object to obtain a solution with K groups
(e.g., hclust()).

• Examine the solution in the model object with regards to the underlying data, and
consider whether it answers a business question.

As we’ve already argued, the most difficult part of that process is the last step: estab-
lishing whether a proposed statistical solution answers a business need. Ultimately,
a cluster solution is largely just a vector of purported group assignments for each
observation, such as “1, 1, 4, 3, 2, 3, 2, 2, 4, 1, 4” It is up to you to figure out
whether that tells a meaningful story for your data.

A Quick Check Function

We recommend that you think hard about how you would know whether the
solution—assignments of observations to groups—that is proposed by a clustering
method is useful for your business problem. Just because some grouping is proposed

304 11 Segmentation: Clustering and Classification

by an algorithm does not mean that it will help your business. One way we often
approach this is to write a simple function that summarizes the data and allows quick
inspection of the high-level differences between groups.

A segment inspection function may be complex depending on the business need and
might even include plotting as well as data summarization. For purposes here we use
a simple function that reports the mean by group. We use mean here instead of a
more robust metric such as median because we have several binary variables and
mean() easily shows the mixture proportion for them (i.e., 1.5 means a 50% mix
of 1 and 2). A very simple function is:

> seg.summ <- function(data , groups) {

+ aggregate(data , list(groups), function(x) mean(as.numeric(x)))

+ }

This function first splits the data by reported group (aggregate(…, list
(groups), …)). An anonymous function (function(x) …) then converts
all of a group’s data to numeric (as.numeric(x)) and computes its mean().
Here’s an example using the known segments from seg.raw:

> seg.summ(seg.df, seg.raw$Segment)

Group.1 age gender income kids ownHome subscribe

1 Moving up 36.33114 1.30 53090.97 1.914286 1.328571 1.200

2 Suburb mix 39.92815 1.52 55033.82 1.920000 1.480000 1.060

3 Travelers 57.87088 1.50 62213.94 0.000000 1.750000 1.125

4 Urban hip 23.88459 1.60 21681.93 1.100000 1.200000 1.200

This simple function will help us to inspect cluster solutions efficiently. It is not
intended to be a substitute for detailed analysis—and it takes shortcuts such as treat-
ing categorical variables as numbers, which is inadvisable except for analysts who
understand what they’re doing—yet it provides a quick first check of whether there
is something interesting (or uninteresting) occurring in a solution.

With a summary function of this kind we are easily able to answer the following
questions related to the business value of a proposed solution:

• Are there obvious differences in group means?
• Does the differentiation point to some underlying story to tell?
• Do we see immediately odd results such as a mean equal to the value of one data
level?

Why not just use a standard R function such as by() or aggregate()? There are
several reasons. Writing our own function allows us to minimize typing by providing
a short command. By providing a consistent and simple interface, it reduces risk of
error. And it is extensible; as an analysis proceeds, we might decide to add to the
function, expanding it to report variance metrics or to plot results, without needing
to change how we invoke it.

11.3 Clustering 305

11.3.2 Hierarchical Clustering: hclust() Basics

Hierarchical clustering is a popular method that groups observations according to
their similarity. The hclust() method is one way to perform this analysis in R.
hclust() is a distance-based algorithm that operates on a dissimilarity matrix, an
N-by-N matrix that reports a metric for the distance between each pair of observa-
tions.

The hierarchical clustering method beings with each observation in its own cluster.
It then successively joins neighboring observations or clusters one at a time accord-
ing to their distances from one another, and continues this until all observations
are linked. This process of repeatedly joining observations and groups is known as
an agglomerative method. Because it is both very popular and exemplary of other
methods, we present hierarchical clustering in more detail than the other clustering
algorithms.

The primary information in hierarchical clustering is the distance between obser-
vations. There are many ways to compute distance, and we start by examining the
best-known method, the Euclidean distance. For two observations (vectors) X and
Y , the Euclidean distance d is:

d =
√∑

(X − Y)2 (11.1)

For single pairs of observations, such as X = {1, 2, 3} and Y = {2, 3, 2} we can
compute the distance easily in R:

> c(1,2,3) - c(2,3,2) # vector of differences
[1] -1 -1 1

> sum((c(1,2,3) - c(2,3,2))^2) # the sum of squared differences
[1] 3

> sqrt(sum((c(1,2,3) - c(2,3,2))^2)) # root sum of squares
[1] 1.732051

When there are many pairs, this can be done with the dist() function. Let’s check
it first for the simple X,Y example, using rbind() to group these vectors as
observations (rows):

> dist(rbind(c(1,2,3), c(2,3,2)))

1

2 1.732051

The row and column labels tell us that dist() is returning a matrix for observation
1 (column) by observation 2 (row).

A limitation is that Euclidean distance is only definedwhen observations are numeric.
In our data seg.df it is impossible to compute the distance between Male and
Female (a fact many people suspect even before studying statistics). If we did not
care about the factor variables, then we could compute Euclidean distance using only
the numeric columns.

306 11 Segmentation: Clustering and Classification

For example, we can select the three numeric columns in seg.df, calculate the
distances, and then look at a matrix for just the first 5 observations as follows:

> d <- dist(seg.df[, c("age", "income", "kids")])

> as.matrix(d)[1:5, 1:5]

1 2 3 4 5

1 0.000 13936.531 5313.626 31559.178 29870.205

2 13936.531 0.000 8622.906 45495.698 43806.727

3 5313.626 8622.906 0.000 36872.800 35183.828

4 31559.178 45495.698 36872.800 0.000 1688.977

5 29870.205 43806.727 35183.828 1688.977 0.000

As expected, the distance matrix is symmetric, and the distance of an observation
from itself is 0.

For seg.df we cannot assume that factor variables are irrelevant to our cluster
definitions; it is better to use all the data. The daisy() function in the cluster
package [133] works with mixed data types by rescaling the values, so we use that
instead of Euclidean distance:

> library(cluster) # daisy works with mixed data types
> seg.dist <- daisy(seg.df)

We inspect the distances computed by daisy() by coercing the resulting object to
a matrix and selecting the first few rows and columns:

> as.matrix(seg.dist)[1:5, 1:5]

1 2 3 4 5

1 0.0000000 0.2532815 0.2329028 0.2617250 0.4161338

2 0.2532815 0.0000000 0.0679978 0.4129493 0.3014468

3 0.2329028 0.0679978 0.0000000 0.4246012 0.2932957

4 0.2617250 0.4129493 0.4246012 0.0000000 0.2265436

5 0.4161338 0.3014468 0.2932957 0.2265436 0.0000000

The distances look reasonable (zeroes on the diagonal, symmetric, scaled [0, 1]) so
we proceed to the hierarchical cluster method itself, invoking hclust() on the
dissimilarity matrix:

> seg.hc <- hclust(seg.dist , method="complete")

We use the complete linkage method, which evaluates the distance between every
member when combining observations and groups.

A simple call to plot() will draw the hclust object:

> plot(seg.hc)

The resulting tree for all N=300 observations of seg.df is shown in Fig. 11.1.
A hierarchical dendrogram is interpreted primarily by height and where observa-
tions are joined. The height represents the dissimilarity between elements that are
joined. At the lowest level of the tree in Fig. 11.1 we see that elements are com-
bined into small groups of 2–10 that are relatively similar, and then those groups are

11.3 Clustering 307

12
8

13
7

10
2

10
1

10
7 17

3
21

9
29

8
25

6
28

7 6
5

17
2

14
1

12
1

12
9

89 25
7

24
2

27
8

29
4 28
3

28
8 18

5
20

4
21

5
53

13
0

25
8

20 27
1 27
6

26
1

29
3 19

9
22

3
10

8
19

4
22

4 8
4 95

19
1

20
6

18
6

35 24
9

15
4

22
7

21
8

22
9

20
5

21
2

21
7 11
1

26
2

13
3

14
7

14
6

14
9

11
7

14
2

12
4

13
4

13
2

13
8

82 24
6 49 23
3 32 63

88
26

6
29

2 24
8

26
0

28
2 42 25
5

28
1 4 48 30 24
4 13 28
9

23
7

27
7

25
4

12
24

3
24

5 69 26
8

27
2 66 29
7

28
5

25
1

28
4 27

0
67 27
5 61 9 38 64 71 98 28
0 29 25
9

15
5

15
9

22
1

20
0

22
0

18
0

16
6

17
8

20
1 21
0

16
2

15
1

18
1 20

7
18

3
22

8
18

2
18

8
16

9
18

7
16

1
19

7
15

7
17

1
21

3 51 72 4
0

24
7 24 97 24
0

27
9 68 5 47 2
2

27
3 25

55 27
4 11
8

14
5

12
2

15
0 23

1
39 13

9 19
0

19 83 29
6

10 25
2

17 28
6 18 16
8 8

1 92 73 21 87 2
6

24
1 2

65
91 96

23
2

30
0 9

0
52 23
6 41 43
6

99 37 14 16
75 23
8 2

26
4

15 80 33 57
50

14
4

12
0

12
5

18
9

16
7

22
6 18

4
22

5
15

3
16

0
17

6
21

1
21

4
16

5
21

6
11 79 19
5

29
5 3

17
5

26
9 15

6
17

9
19

2
15

2
20

8
19

6
20

3
19

8
17

0
17

7
16

3
16

4
20

2
20

9
17

4
19

3
23

0
11

2
11

5
10

9
12

6
12

7
13

1
14

3
10

3
11

3
10

5
14

0
11

9
14

8
10

6
12

3
13

5
7

11
6

11
0

13
6

10
4

11
4 27 58 23
9

25
0

23 23
4

76
23

5
54 78 60 94

56
34 25
3

8
26

7
22

2
93 28 15
8 44 31 62

1
45 77 70 74 29
0 59 10
0

86 36 26
3

85 29
1 46 29
9

0.
0

0.
2

0.
4

0.
6

0.
8

Cluster Dendrogram

hclust (*, "complete")
seg.dist

H
ei

gh
t

Fig. 11.1 Complete dendrogram for the segmentation data, using hclust()

successively combined with less similar groups moving up the tree. The horizon-
tal ordering of branches is not important; branches could exchange places with no
change in interpretation.

Figure11.1 is difficult to read, so it is helpful to zoom in on one section of the chart.
We can cut it at a specified location and plot just one branch as follows. We coerce it
to a dendrogram object (as.dendrogram(…)), cut it at a certain height (h=…)
and select the resulting branch that we want (…$lower[[1]]).

> plot(cut(as.dendrogram(seg.hc), h=0.5)$lower [[1]])

The result is shown in Fig. 11.2, where we are now able to read the observation labels
(which defaults to the row names—usually the row numbers—of observations in the
data frame). Each node at the bottom represents one customer, and the brackets show
how each has been grouped progressively with other customers.

We can check the similarity of observations by selecting a few rows listed in Fig. 11.2.
Observations 101 and 107 are represented as being quite similar because they are
linked at a very low height, as are observations 278 and 294. On the other hand,
observations 173 and 141 are only joined at the highest level of this branch and thus
should be relatively dissimilar. We can check those directly:

> seg.df[c(101, 107),] # similar
age gender income kids ownHome subscribe

101 24.73796 Male 18457.85 1 ownNo subYes

107 23.19013 Male 17510.28 1 ownNo subYes

> seg.df[c(278, 294),] # similar
age gender income kids ownHome subscribe

278 36.23860 Female 46540.88 1 ownNo subYes

294 35.79961 Female 52352.69 1 ownNo subYes

308 11 Segmentation: Clustering and Classification

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

12
8

13
7

10
2

10
1

10
7

17
3

21
9

29
8

25
6

28
7 65 17
2

14
1

12
1

12
9 89 25
7

24
2

27
8

29
4

28
3

28
8

Fig. 11.2 A close up view of the left-most branch from Fig.11.1

> seg.df[c(173, 141),] # less similar
age gender income kids ownHome subscribe

173 64.70641 Male 45517.15 0 ownNo subYes

141 25.17703 Female 20125.80 2 ownNo subYes

The first two sets—observations that are neighbors in the dendrogram—are similar
on all variables (age, gender, income, etc.). The third set—observations taken from
widely separated branches—differ substantially on the first four variables.

Finally, we might check one of the goodness-of-fit metrics for a hierarchical clus-
ter solution. One method is the cophenetic correlation coefficient (CPCC), which
assesses how well a dendrogram (in this case seg.hc) matches the true distance
metric (seg.dist) [181]. We use cophenetic() to get the distances from the
dendrogram, and compare it to the dist() metrics with cor():

> cor(cophenetic(seg.hc), seg.dist)

[1] 0.7682436

CPCC is interpreted similarly to Pearson’s r . In this case, CPCC > 0.7 indicates
a relatively strong fit, meaning that the hierarchical tree represents the distances
between customers well.

11.3.3 Hierarchical Clustering Continued: Groups from
hclust()

How do we get specific segment assignments? A dendrogram can be cut into clus-
ters at any height desired, resulting in different numbers of groups. For instance, if
Fig. 11.1 is cut at a height of 0.7 there are K=2 groups (draw a horizontal line at

11.3 Clustering 309

12
8

13
7

10
2

10
1

10
7 17

3
21

9
29

8
25

6
28

7 6
5

17
2

14
1

12
1

12
9

89 25
7

24
2

27
8

29
4 28
3

28
8 18

5
20

4
21

5
53

13
0

25
8

20 27
1 27
6

26
1

29
3 19

9
22

3
10

8
19

4
22

4 8
4 95

19
1

20
6

18
6

35 24
9

15
4

22
7

21
8

22
9

20
5

21
2

21
7 11
1

26
2

13
3

14
7

14
6

14
9

11
7

14
2

12
4

13
4

13
2

13
8

82 24
6 49 23
3 32 63

88
26

6
29

2 24
8

26
0

28
2 42 25
5

28
1 4 48 30 24
4 13 28
9

23
7

27
7

25
4

12
24

3
24

5 69 26
8

27
2 66 29
7

28
5

25
1

28
4 27

0
67 27
5 61 9 38 64 71 98 28
0 29 25
9

15
5

15
9

22
1

20
0

22
0

18
0

16
6

17
8

20
1 21
0

16
2

15
1

18
1 20

7
18

3
22

8
18

2
18

8
16

9
18

7
16

1
19

7
15

7
17

1
21

3 51 72 4
0

24
7 24 97 24
0

27
9 68 5 47 2
2

27
3 25

55 27
4 11
8

14
5

12
2

15
0 23

1
39 13
9 19

0
19 83 29

6
10 25
2

17 28
6 18 16
8 8

1 92 73 21 87 2
6

24
1 2

65
91 96

23
2

30
0 9

0
52 23
6 41 43
6

99 37 14 16
75 23
8 2

26
4

15 80 33 57
50

14
4

12
0

12
5

18
9

16
7

22
6 18

4
22

5
15

3
16

0
17

6
21

1
21

4
16

5
21

6
11 79 19
5

29
5 3

17
5

26
9 15

6
17

9
19

2
15

2
20

8
19

6
20

3
19

8
17

0
17

7
16

3
16

4
20

2
20

9
17

4
19

3
23

0
11

2
11

5
10

9
12

6
12

7
13

1
14

3
10

3
11

3
10

5
14

0
11

9
14

8
10

6
12

3
13

5
7

11
6

11
0

13
6

10
4

11
4 27 58 23
9

25
0

23 23
4

76
23

5
54 78 60 94

56
34 25
3

8
26

7
22

2
93 28 15
8 44 31 62

1
45 77 70 74 29
0 59 10
0

86 36 26
3

85 29
1 46 29
9

0.
0

0.
2

0.
4

0.
6

0.
8

Cluster Dendrogram

hclust (*, "complete")
seg.dist

H
ei

gh
t

Fig. 11.3 The result of cutting Fig. 11.1 into K=4 groups

0.7 and count how many branches it intersects; each cluster below is a group), while
cutting at height of 0.4 defines K=7 groups.

Because a dendrogram can be cut at any point, the analyst must specify the number
of groups desired. We can see where the dendrogram would be cut by overlaying its
plot()withrect.hclust(), specifying the number of groupswewant (k=…):

> plot(seg.hc)

> rect.hclust(seg.hc, k=4, border="red")

The K=4 solution is shown in Fig. 11.3.

We obtain the assignment vector for observations using cutree():

> seg.hc.segment <- cutree(seg.hc, k=4) # membership vector for 4 groups
> table(seg.hc.segment)

seg.hc.segment

1 2 3 4

124 136 18 22

We see that groups 1 and 2 dominate the assignment. Note that the class labels (1, 2, 3,
4) are in arbitrary order and are not meaningful in themselves. seg.hc.segment
is the vector of group assignments.

We use our custom summary function seg.summ(), defined above, to inspect the
variables in seg.df with reference to the four clusters:

> seg.summ(seg.df, seg.hc.segment)

Group.1 age gender income kids ownHome subscribe

1 1 40.78456 2.000000 49454.08 1.314516 1.467742 1

2 2 42.03492 1.000000 53759.62 1.235294 1.477941 1

3 3 44.31194 1.388889 52628.42 1.388889 2.000000 2

4 4 35.82935 1.545455 40456.14 1.136364 1.000000 2

310 11 Segmentation: Clustering and Classification

Subscribe: No Subscribe: Yes

Fe
m

al
e

M
al

e

Fig. 11.4 Plotting the 4-segment solution from hclust() by gender and subscription status, with
color representing segment membership. We see the uninteresting result that non-subscribers are
simply divided into two segments purely on the basis of gender

We see that groups 1 and 2 are distinct from 3 and 4 due to subscription sta-
tus. Among those who do not subscribe, group 1 is all male (gender=2 as in
levels(seg.df$gender)) while group 1 is all female. Subscribers are differ-
entiated into those who own a home (group 3) or not (group 4).

Is this interesting from a business point of view? Probably not. Imagine describing
the results to a set of executives: “Our advanced hierarchical analysis in R examined
consumers who don’t yet subscribe and found two segments to target! The segments
are known as ‘Men’ and ‘Women.”’ Such insight is unlikely to win the analyst a
promotion.

We confirm this with a quick plot of gender by subscribe with all of the
observations colored by segment membership. To do this, we use a trick: we convert
the factor variables to numeric, and call the jitter() function to add a bit of noise
and prevent all the cases from being plotted at the same positions (namely at exactly
four points: (1, 1), (1, 2), (2, 1), and (2, 2)). We color the points by segment with
col=seg.hc.segment, and label the axes with more meaningful labels:

> plot(jitter(as.numeric(seg.df$gender)) ~

+ jitter(as.numeric(seg.df$subscribe)),

+ col=seg.hc.segment , yaxt="n", xaxt="n", ylab="", xlab="")

> axis(1, at=c(1, 2), labels=c("Subscribe: No", "Subscribe: Yes"))

> axis(2, at=c(1, 2), labels=levels(seg.df$gender))

The resulting plot is shown in Fig. 11.4, where we see clearly that the non-subscribers
are broken into two segments (colored red and black) that are perfectly correlated
with gender. We should point out that such a plot is a quick hack, which we suggest
only for rapid inspection and debugging purposes.

11.3 Clustering 311

Why did hclust() find a result that is so uninteresting? That may be answered
in several ways. For one thing, machine learning techniques often take the path
of least resistance and serve up obvious results. In this specific case, the scaling in
daisy() rescales variables to [0, 1] and thiswillmake two-category factors (gender,
subscription status, home ownership) more influential. Overall, this demonstrates
why you should expect to try several methods and iterate in order to find something
useful.

11.3.4 Mean-Based Clustering: kmeans()

K-means clustering attempts to find groups that are most compact, in terms of the
mean sum-of-squares deviation of each observation from the multivariate center
(centroid) of its assigned group. Like hierarchical clustering, k-means is a very
popular approach.

Because it explicitly computes a mean deviation, k-means clustering relies on
Euclidean distance. Thus it is only appropriate for numeric data or data that can
be reasonably coerced to numeric. In our seg.df data, we have a mix of numeric
and binary factors. Unlike higher-order categorical variables, binary factors can be
coerced to numeric with no alteration of meaning.

Although it is not optimal to cluster binary values with k-means, given that we have
a mixture of binary and numeric data, we might attempt it. Our first step is to create
a variant of seg.df that is recoded to numeric. We make a copy of seg.df and
use ifelse() to recode the binary factors:

> seg.df.num <- seg.df

> seg.df.num$gender <- ifelse(seg.df$gender =="Male", 0, 1)

> seg.df.num$ownHome <- ifelse(seg.df$ownHome=="ownNo", 0, 1)

> seg.df.num$subscribe <- ifelse(seg.df$subscribe=="subNo", 0, 1)

> summary(seg.df.num)

age gender income kids

Min. :19.26 Min. :0.0000 Min. : -5183 Min. :0.00

1st Qu .:33.01 1st Qu .:0.0000 1st Qu.: 39656 1st Qu .:0.00

Median :39.49 Median :1.0000 Median : 52014 Median :1.00

...

There are several ways to recode data, but ifelse() is simple and explicit for
binary data.

We now run the kmeans() algorithm, which specifically requires specifying the
number of clusters to find. We ask for four clusters with centers=4:

> set.seed (96743)

> seg.k <- kmeans(seg.df.num , centers =4)

We use our custom function seg.summ() to do a quick check of the data by
proposed group, where cluster assignments are found in the$cluster vector inside
the seg.k model:

312 11 Segmentation: Clustering and Classification

Fig. 11.5 Boxplot of
income by cluster as found
with kmeans()

1 2 3 4

0e
+0

0
2e

+0
4

4e
+0

4
6e

+0
4

8e
+0

4
1e

+0
5

Cluster

In
co

m
e

> seg.summ(seg.df, seg.k$cluster)

Group.1 age gender income kids ownHome subscribe

1 1 56.37245 1.428571 92287.07 0.4285714 1.857143 1.142857

2 2 29.58704 1.571429 21631.79 1.0634921 1.301587 1.158730

3 3 44.42051 1.452632 64703.76 1.2947368 1.421053 1.073684

4 4 42.08381 1.454545 48208.86 1.5041322 1.528926 1.165289

Unlike with hclust()we now see some interesting differences; the groups appear
to vary by age, gender, kids, income, and home ownership. For example, we can
visually check the distribution of income according to segment (which kmeans()
stored in seg.k$cluster) using boxplot():

> boxplot(seg.df.num$income ~ seg.k$cluster , ylab="Income", xlab="Cluster")

The result is Fig. 11.5, which shows substantial differences in income by segment.
Note that in clustering models, the group labels are in arbitrary order, so don’t worry
if your solution shows the same pattern with different labels.

We visualize the clusters by plotting them against a dimensional plot. clusplot()
will perform dimensional reduction with principal components or multidimensional
scaling as the data warrant, and then plot the observations with cluster membership
identified (see Chap.8 to review principal component analysis and plotting). We
use clusplot from the cluster package with arguments to color the groups,
shade the ellipses for group membership, label only the groups (not the individual
points) with labels=4, and omit distance lines between groups (lines=0):

> library(cluster)

> clusplot(seg.df, seg.k$cluster , color=TRUE , shade=TRUE ,

+ labels=4, lines=0, main="K-means cluster plot")

11.3 Clustering 313

Fig. 11.6 Cluster plot
created with clusplot()
for the four group solution
from kmeans(). This
shows the observations on a
multidimensional scaling
plot with group membership
identified by the ellipses

−4 −2 0 2 4

−3
−2

−1
0

1
2

3

K−means cluster plot

Component 1

C
om

po
ne

nt
 2

These two components explain 48.49 % of the point variability.

1

2 3

4

The code produces the plot in Fig. 11.6, which plots cluster assignment by color and
ellipses against the first two principal components of the predictors (see Sect. 8.2.2).
Groups 3 and 4 are largely overlapping (in this dimensional reduction) while group
1 and especially group 2 are modestly differentiated.

Overall, this is a far more interesting cluster solution for our segmentation data than
the hclust() proposal. The groups here are clearly differentiated on key variables
such as age and income. With this information, an analyst might cross-reference the
group membership with key variables (as we did using our seg.summ() function)
and then look at the relative differentiation of the groups (as in Fig. 11.6).

This may suggest a business strategy. In the present case, for instance, we see that
group1 ismodestlywell-differentiated, andhas the highest average income.Thatmay
make it a good target for a potential campaign. Many other strategies are possible,
too; the key point is that the analysis provides interesting options to consider.

A limitation of k-means analysis is that it requires specifying the number of clusters,
and it can be difficult to determine whether one solution is better than another. If we
were to use k-means for the present problem, we would repeat the analysis for k=3,
4, 5 and so forth, and determine which solution gives the most useful result for our
business goals.

One might wonder whether the algorithm itself can suggest how many clusters are
in the data. Yes! To see that, we turn next to model-based clustering.

314 11 Segmentation: Clustering and Classification

11.3.5 Model-Based Clustering: Mclust()

The key idea for model-based clustering is that observations come from groups
with different statistical distributions (such as different means and variances). The
algorithms try to find the best set of such underlying distributions to explain the
observed data. We use the mclust package [64, 178] to demonstrate this.

Such models are also known as “mixture models” because it is assumed that the data
reflect amixture of observations drawn from different populations, althoughwe don’t
know which population each observation was drawn from. We are trying to estimate
the underlying population parameters and the mixture proportion. mclust models
such clusters as being drawn from a mixture of normal (also known as Gaussian)
distributions.

As you might guess, because mclustmodels data with normal distributions, it uses
only numeric data. We use the numeric data frame seg.df.num that we adapted
for kmeans() in Sect. 11.3.4; see that section for the code if needed. The model is
estimated with Mclust() (note the capital letter for the fitting function, as opposed
to the package name):

> library(mclust)

> seg.mc <- Mclust(seg.df.num)

> summary(seg.mc)

--

Gaussian finite mixture model fitted by EM algorithm

--

Mclust VEV (ellipsoidal , equal shape) model with 3 components:

log.likelihood n df BIC ICL

-5137.106 300 73 -10690.59 -10690.59

Clustering table:

1 2 3

163 71 66

This tells us that the data are estimated to have 3 clusters (components) with the sizes
as shown in the table. Mclust() compared a variety of different mixture shapes
and concluded that an ellipsoidal model (modeling the data as multivariate ellipses)
fit best.

We also see log-likelihood information, which we can use to compare models. We
try a 4-cluster solution by telling Mclust() the number of clusters we want with
the G=4 argument:

> seg.mc4 <- Mclust(seg.df.num , G=4)

> summary(seg.mc4)

...

Mclust VII (spherical , varying volume) model with 4 components:

log.likelihood n df BIC ICL

-16862.69 300 31 -33902.19 -33906.18

Clustering table:

1 2 3 4

104 66 59 71

11.3 Clustering 315

Forcing it to find 4 clusters resulted in quite a different model, with lower log-
likelihood and a different multivariate pattern (spherical). Although we cannot be
sure from the counts, they suggest that one of the groups in the 3-cluster solution
may have been simply split into two.

11.3.6 Comparing Models with BIC()

We compare the 3-cluster and 4-cluster models using the Bayesian Information Cri-
terion (BIC) [159] with BIC(model1, model2):

> BIC(seg.mc, seg.mc4)

df BIC

seg.mc 73 10690.59

seg.mc4 31 33902.11

The difference between the models is greater than 20,000. The key point to interpret-
ing BIC is to remember this: the lower the value of BIC, on an infinite number line,
the better. BIC of −1000 is better than BIC of −990; and BIC of 60 is better than
BIC of 90. The three cluster model is highly preferred with these reformatted data.

There is one important note when interpreting BIC in R: some functions return the
negative of BIC, which would then have to be interpreted in the opposite direc-
tion (i.e., higher is better). We see above that BIC() reports positive values while
Mclust() output shows values in the negative direction. If you are ever unsure of
the direction to interpret, use the BIC() function and interpret as noted (lower val-
ues are better). Alternatively, you could also check the log-likelihood values, where
higher log-likelihood values are better (e.g., −1000 is better than −1100). Those
are shown in the individual Mclust() model summaries (and we see, in this case
that the 3-cluster solution with log-likelihood −5137 is preferable to the 4-cluster
solution with log-likelihood −16862).

With that in mind, differences in BIC may be interpreted as shown in Table 11.1.
Comparing the present models, we see that the Mclust() solution with 3 clusters
(BIC=10690) is a much stronger fit than the model with 4 clusters (BIC=33902)
because it is much lower. That doesn’t mean that the 3-cluster model is correct;
there’s no absolute standard for such a statement. Rather, it means that between just
these two models, as found by Mclust(), the 3-cluster solution has much stronger
evidence based on the data.

You can also run a more exhaustive search to examine all possible solutions up to
9 clusters, across the various mixture models that Mclust() understands (which
are beyond our scope to explain in detail here; see [178]). Use mclustBIC() to
obtain that:

316 11 Segmentation: Clustering and Classification

Table 11.1 Interpretation of the Bayesian Information Criterion (BIC) when comparing two mod-
els. Lower BIC is better, and the difference in BIC indicates the strength of evidence. Adapted from
Raftery [159], p. 139

BIC difference Odds of model superiority Strength of the evidence

0–2 50–75% Weak

2–6 75–95% Positive

6–10 95–99% Strong

>10 >99% Very strong

> mclustBIC(seg.df.num)

fitting ...

|===|

100%

Bayesian Information Criterion (BIC):

EII VII EEI VEI EVI VVI EEE

1 -37594.16 -37594.16 -11369.71 -11369.71 -11369.71 -11369.71 -11261.94

2 -36337.62 -36278.17 -11312.03 -11228.35 NA NA -11302.11

3 -35132.35 -34841.45 NA -10822.91 NA NA NA

4 -34321.30 -33902.19 NA NA NA NA NA

...

EVE VEE VVE EEV VEV EVV VVV

1 -11261.94 -11261.94 -11261.94 -11261.94 -11261.94 -11261.94 -11261.94

2 NA NA NA -11293.12 -11174.77 NA NA

3 NA NA NA NA -10690.59 NA NA

...

Top 3 models based on the BIC criterion:

VEV ,3 VEI ,3 VEV ,2

-10690.59 -10822.91 -11174.77

In these results, we see that the “VEV” method suggesting 3 clusters was the best fit
to the data—among the solutions that could be found—with the highest-valued BIC
(desirable because of the negative direction reported here) of −10690.59.

Will the 3-cluster solution provide useful insight for the business? We check the
quick summary and plot the clusters:

> seg.summ(seg.df, seg.mc$class)

Group.1 age gender income kids ownHome subscribe

1 1 44.68018 1.472393 52980.52 1.171779 1.865031 1.245399

2 2 38.02229 1.000000 51550.98 1.422535 1.000000 1.000000

3 3 36.02187 2.000000 45227.51 1.348485 1.000000 1.000000

> library(cluster)

> clusplot(seg.df, seg.mc$class , color=TRUE , shade=TRUE ,

+ labels=4, lines=0, main="Model -based cluster plot")

The plot is shown in Fig. 11.7.

When we compare the Mclust() solution to the one found by kmeans(), there
are arguments for and against each. The 4-cluster k-means solution had much crisper
differentiation on demographics (Sect. 11.3.4). On the other hand, the most clearly
differentiated segment (segment 2; cf. Fig. 11.6) had the lowest income and thus
might be more difficult to sell to (or not—it depends on the product or service).

Looking closely at the Mclust() solution, we see that there is a great degree
of overlap, with only one of the groups showing much differentiation (group 1).

11.3 Clustering 317

−3 −2 −1 0 1 2 3 4

−3
−2

−1
0

1
2

3

Model−based cluster plot

Component 1

C
om

po
ne

nt
 2

These two components explain 48.49 % of the point variability.

1

2

3

Fig. 11.7 A cluster plot using clusplot() for the 3-cluster model from Mclust(). The
three groups show little differentiation on the first two multivariate dimensional components
(X and Y axes)

They are almost concentric and nested. Also, the demographic differences reported
in seg.summ() are not particularly interesting. Everyone in Groups 2 and 3 is a
non-subscriber, Group 2 is all male, while Group 3 is all female, and there are no
subscribers in Groups 2 or 3. The latter point could be useful; if the groups could be
predicted (seeSect. 11.4 on classificationbelow), thenwemight identify target groups
to approach or avoid because of their low subscriber numbers. Alternatively, that may
turn out to be a feature of the data that is identified by the clustering algorithm—there
are subscribers and non-subscribers!—that turns out to be uninteresting. As always,
the ultimate value depends on additional investigation, along with consideration of
one’e strategy, business case, and modes available to target respondents, and the
statistical solution in itself. The statistics provide information about how customers
are similar and different, not a definitive answer.

11.3.7 Latent Class Analysis: poLCA()

Latent class analysis (LCA) is similar to mixture modeling in the assumption that
differences are attributable to unobserved groups that one wishes to uncover. In
this section we take a look at the poLCA package for polytomous (i.e., categorical)
LCA [130].

Whereas mclust and kmeans() work with numeric data, and hclust()
depends on the distance measure, poLCA uses only categorical variables. To demon-
strate it here, we adopt an opposite strategy from our procedure with k-means and
mclust and convert our data seg.df to be all categorical data before analyzing it.

There are several approaches to convert numeric data to factors, but for purposes
here we simply recode everything as binary with regards to a specified cutting point
(for instance, to recode as 1 for income below some cutoff and 2 above that). In the

318 11 Segmentation: Clustering and Classification

present case, we split each variable at the median() and recode using ifelse()
and factor() (we’ll see a more general approach to recoding numeric values with
cut() in Sect. 12.4.1):

> seg.df.cut <- seg.df

> seg.df.cut$age <- factor(ifelse(seg.df$age < median(seg.df$age), 1, 2))

> seg.df.cut$income <- factor(ifelse(seg.df$income < median(seg.df$income),

+ 1, 2))

> seg.df.cut$kids <- factor(ifelse(seg.df$kids < median(seg.df$kids), 1, 2))

> summary(seg.df.cut)

age gender income kids ownHome subscribe

1:150 Female :157 1:150 1:121 ownNo :159 subNo :260

2:150 Male :143 2:150 2:179 ownYes :141 subYes: 40

With the data in place, we specify the model that we want to fit. poLCA can estimate
complexmodels with covariates, but for the present analysis we onlywish to examine
the effect of cluster membership alone. Thus, we model the dependent variables (all
the observed columns)with respect to themodel intercepts (i.e., the cluster positions).
We use with() to save typing, and ∼1 to specify a formula with intercepts only:

> seg.f <- with(seg.df.cut ,

+ cbind(age , gender , income , kids , ownHome , subscribe)~1)

Next we fit poLCA models for K=3 and K=4 clusters using poLCA(formula,
data, nclass=K):

> library(poLCA)

> set.seed (02807)

> seg.LCA3 <- poLCA(seg.f, data=seg.df.cut , nclass =3)

...

> seg.LCA4 <- poLCA(seg.f, data=seg.df.cut , nclass =4)

...

poLCA() displays voluminous information by default, which we have omitted.

Which model is better? We use str(seg.LCA3) to discover the bic value within
the object (as shown in the printed output from poLCA()). Comparing the two
models:

> seg.LCA4$bic

[1] 2330.043

> seg.LCA3$bic

[1] 2298.767

The 3-cluster model shows a lower BIC by 32 and thus a substantially stronger fit to
the data (see Table 11.1). As we’ve seen, that is not entirely conclusive as to business
utility, so we also examine some other indicators such as the quick summary function
and cluster plots:

> seg.summ(seg.df, seg.LCA3$predclass)

Group.1 age gender income kids ownHome subscribe

1 1 28.22385 1.685714 30075.32 1.1285714 1.285714 1.271429

2 2 54.44407 1.576923 60082.47 0.3846154 1.769231 1.105769

3 3 37.47652 1.277778 54977.08 2.0793651 1.325397 1.079365

> table(seg.LCA3$predclass)

11.3 Clustering 319

1 2 3

70 104 126

> clusplot(seg.df, seg.LCA3$predclass , color=TRUE , shade=TRUE ,

+ labels=4, lines=0, main="LCA plot (K=3)")

> seg.summ(seg.df, seg.LCA4$predclass)

Group.1 age gender income kids ownHome subscribe

1 1 36.62554 1.349593 52080.13 2.1951220 1.349593 1.113821

2 2 53.64073 1.535714 60534.17 0.5178571 1.785714 1.098214

3 3 30.22575 1.050000 41361.81 0.0000000 1.350000 1.000000

4 4 27.61506 1.866667 28178.70 1.1777778 1.066667 1.333333

> table(seg.LCA4$predclass)

1 2 3 4

123 112 20 45

> clusplot(seg.df, seg.LCA4$predclass , color=TRUE , shade=TRUE ,

+ labels=4, lines=0, main="LCA plot (K=4)")

The resulting plots from clusplot() are shown in Fig. 11.8.

We interpret the LCA results by looking first at the cluster plots (Fig. 11.8). At a high
level, it appears that “Group 2” is similar in both solutions. The primary difference is
that “Group 3” buried inside the overlapping ellipses in the 4-cluster solution could
be viewed as being largely carved out of two larger groups (Groups “2’ and “3” as
labeled in the 3-cluster solution). This is an approximate interpretation of the data
visualization, not a perfect correspondence.

Does the additional group in the 4-cluster solution add anything to our interpretation?
Turning to the quick summary from seg.summ() in the code block, we see good
differentiation of groups in both models. One argument in favor of the 4-cluster solu-
tion is that Group 3 has no subscribers (as shown by the mean in the seg.summ()
results) and is relatively well-identified (mostly younger women with no kids); that
might make it an appealing group either for targeting or exclusion, depending on
one’s strategy. In either case, for these data the differentiation appears to be clearer

−3 −2 −1 0 1 2 3 4

−3
−2

−1
0

1
2

3

LCA plot (K=3)

Component 1

C
om

po
ne

nt
 2

These two components explain 48.49 % of
 the point variability.

1

2

3

−2 0 2

−2
−1

0
1

2
3

LCA plot (K=4)

Component 1

C
om

po
ne

nt
 2

These two components explain 48.49 % of
 the point variability.

1

2

3

4

Fig. 11.8 3-cluster and 4-cluster latent class solutions for seg.df found by poLCA()

320 11 Segmentation: Clustering and Classification

than the solutions we found above with Mclust; this demonstrates the value of
trying multiple approaches.

As a final note on model-based clustering (and many other clustering methods such
as kmeans()), the solutions are partially dependent on the random number seed. It
can be useful to run the models with different random seeds and compare the results.
This brings us to our next topic: comparing cluster solutions.

11.3.8 Comparing Cluster Solutions

One question we’ve avoided until now is this: given that we know the real group
membership in seg.df, how does it compare to the clustering methods’ results?
The question is not as simple as counting agreement for two reasons. First, it is not
obvious how to match one cluster solution to another because the order of group
labels is arbitrary. “Group 1” in one solution might well be called “Group 2” or
“Group C” in another solution.

Second, if we solve the matching problem we still need to adjust for chance agree-
ment. Is an agreement rate of 90% good? It depends on the base rate. If you are
attempting to predict the gender of each person in a random sample of Japanese
citizens, then 90% accuracy is much better than chance (which would be roughly
51%, the proportion of women). On the other hand, if you are attempting to predict
whether each respondent speaks Japanese, then 90% accuracy is terrible (just assign-
ing everyone to “Yes” would achieve nearly perfect prediction, because the true rate
is over 99%).

The mclust package provides tools to solve both issues. mapClass() solves the
matching problem. It examines all permutations of how two sets of class assignments
might be related and selects a mapping that maximizes agreement between the two
assignment schemes. adjustedRandIndex() likewise matches two assignment
schemes and then computes the degree of agreement over and above what might
be attributed to “chance” by simply assigning all observations to the largest group
[102, 161]. Its magnitude may be interpreted similarly to a standard r correlation
coefficient.

We use table() to look at the cross-tabs between the LCA 3-cluster and 4-cluster
solutions found above:

> table(seg.LCA3$predclass , seg.LCA4$predclass)

1 2 3 4

1 13 0 12 45

2 0 104 0 0

3 110 8 8 0

It would appear that observations assigned to “Group 1” in the 3-cluster solution are
split between Groups 1, 3, and 4 in the 4-cluster solution, while “Group 3” maps

11.3 Clustering 321

closely to “Group1” (in the 4 class solution) and “Group2” is predominantly the same
in both. However, matching groups manually is sometimes unclear and generally
error-prone. Instead, we usemapClass(a, b) and adjustedRandIndex(a,
b) to compare agreement between the two solutions:

> library(mclust)

> mapClass(seg.LCA3$predclass , seg.LCA4$predclass)

$aTOb

$aTOb$‘1‘

[1] 4

$aTOb$‘2‘

[1] 2

$aTOb$‘3‘

[1] 1

... # [similarly for mapping b to a, omitted]
> adjustedRandIndex(seg.LCA3$predclass , seg.LCA4$predclass)

[1] 0.7288822

This tells us that “1” in the LCA3 model (a) maps best to “4” in the LCA4 model
(b), and so forth. The adjusted Rand index of 0.729 indicates that the match between
the two assignment lists is much better than chance. From a business perspective, it
also tells us that the 3-cluster and 4-cluster differ modestly from one another, which
provides another perspective on choosing between them.

By comparison, R makes it easy to see what happens if we were to test a random
assignment scheme:

> set.seed (11021)

> random.data <- sample(4, length(seg.LCA4$predclass), replace=TRUE)

> adjustedRandIndex(random.data , seg.LCA4$predclass)

[1] 0.002292031

In this case, the adjusted Rand index is near zero, because the match between the
clusters is no better than random chance.

Finally we compare the LCA 4-cluster solution to the true segments in seg.raw:

> table(seg.raw$Segment , seg.LCA4$predclass)

1 2 3 4

Moving up 50 4 8 8

Suburb mix 62 29 2 7

Travelers 0 79 1 0

Urban hip 11 0 9 30

> adjustedRandIndex(seg.raw$Segment , seg.LCA4$predclass)

[1] 0.3513031

With a Rand index of 0.35, the LCA solution matches the true segment assignments
moderately better than chance alone. In many cases, of course, one would not have
identified clusters for comparison; but when they are available from other projects
or previous efforts, it is helpful to examine correspondence in this way.

322 11 Segmentation: Clustering and Classification

11.3.9 Recap of Clustering

We’ve covered four statistical methods to identify potential groups of observations
in a data set. In the next section we examine the problem of how to predict (classify)
observations into groups after those groups have been defined. Beforewemove to that
problem, there are two points that are crucial for success in segmentation projects:

• Different methods are likely to yield different solutions, and in general there is no
absolute “right” answer. We recommend to try multiple clustering methods with
different potential numbers of clusters.

• The results of segmentation are primarily about business value, and solutions
should be evaluated in terms of both model fit (e.g., using BIC()) and business
utility. Although model fit is an important criterion and should not be overlooked,
it is ultimately necessary that an answer can be communicated to and used by
stakeholders.

11.4 Classification

Whereas clustering is the process of discovering group membership, classification
is the prediction of membership. In this section we look at two examples of classi-
fication: predicting segment membership, and predicting who is likely to subscribe
to a service.

Classification uses observations whose status is known to derive predictors, and then
applies those predictors to new observations. When working with a single data set it
is typically split into a training set that is used to develop the classificationmodel, and
a test set that is used to determine performance. It is crucial not to assess performance
on the same observations that were used to develop the model.

A classification project typically includes the following steps at a minimum:

• A data set is collected in which group membership for each observation is known
or assigned (e.g., assigned by behavioral observation, expert rating, or clustering
procedures).

• The data set is split into a training set and a test set. A common pattern is to select
50–80% of the observations for the training set (67% seems to be particularly
common), and to assign the remaining observations to the test set.

• A prediction model is built, with a goal to predict membership in the training data
as well as possible.

• The resulting model is then assessed for performance using the test data. Per-
formance is assessed to see that it exceeds chance (base rate). Additionally one
might assess whether the method performs better than a reasonable alternative
(and simpler or better-known) model.

11.4 Classification 323

Classification is an even more complex area than clustering, with hundreds of meth-
ods and hundreds of R packages, thousands of academic papers each year, and enor-
mous interest with technology and data analytics firms. Our goal is not to cover all of
that but to demonstrate the common patterns in R using two of the best-known and
most useful classification methods, the naive Bayes and random forest classifiers.

11.4.1 Naive Bayes Classification: naiveBayes()

A simple yet powerful classificationmethod is theNaive Bayes (NB) classifier. Naive
Bayes uses training data to learn the probability of class membership as a function
of each predictor variable considered independently (hence “naive”). When applied
to new data, class membership is assigned to the category considered to be most
likely according to the joint probabilities assigned by the combination of predictors.
Several R packages provide NB methods; we use the e1071 package from the
Vienna University of Technology (TU Wien) [139].

The first step in training a classifier is to split the data into training and test data,
which will allow one to check whether the model works on the test data (or is instead
overfitted to the training data). We select 65% of the data to use for training with the
sample() function, and keep the unselected cases as holdout (test) data. Note that
we select the training and test cases not from seg.df, which omitted the previously
known segment assignments, but from the full seg.raw data frame. Classification
requires known segment assignments in order to learn how to assign new values.

> set.seed (04625)

> train.prop <- 0.65

> train.cases <- sample(nrow(seg.raw), nrow(seg.raw)*train.prop)

> seg.df.train <- seg.raw[train.cases ,]

> seg.df.test <- seg.raw[-train.cases ,]

We then train a naive Bayes classifier to predict Segment membership from all other
variables in the training data. This is a very simple command:

> library(e1071)

> (seg.nb <- naiveBayes(Segment ~ ., data=seg.df.train))

...

Y

Moving up Suburb mix Travelers Urban hip

0.2512821 0.3025641 0.2615385 0.1846154

Conditional probabilities:

...

gender

Y Female Male

Moving up 0.6530612 0.3469388

Suburb mix 0.4576271 0.5423729

Travelers 0.4705882 0.5294118

Urban hip 0.3333333 0.6666667

...

324 11 Segmentation: Clustering and Classification

Examining the summary of the model object seg.nb, we see how the NB model
works. First, the a priori likelihood of segment membership—i.e., the estimated odds
of membership before any other information is added—is 25.1% for the Moving up
segment, 30.2% for the Suburb mix segment, and so forth. Next we see the proba-
bilities conditional on each predictor. In the code above, we show the probabilities
for gender conditional on segment. A member of the Moving up segment has a
probability of being female of 65.3% in the training data.

The NB classifier starts with the observed probabilities of gender, age, etc., condi-
tional on segment found in the training data. It then uses Bayes’ Rules to compute
the probability of segment, conditional on gender, age, etc. This can then be used to
estimate segment membership in new observations such as the test data. You have
likely seen a description of how Bayes’ Rule works, and we will not repeat it here.
For details, refer to a general text on Bayesian methods such as Kruschke [120].

Using the classifier model object seg.nb we can predict segment membership in
the test data seg.df.test with predict():

> (seg.nb.class <- predict(seg.nb, seg.df.test))

[1] Suburb mix Travelers Suburb mix Suburb mix Suburb mix Suburb mix

[7] Moving up Suburb mix Suburb mix Suburb mix Travelers Moving up

...

We examine the frequencies of predicted membership using table() and prop.
table():

> prop.table(table(seg.nb.class))

seg.nb.class

Moving up Suburb mix Travelers Urban hip

0.2285714 0.3047619 0.3428571 0.1238095

A cluster plot of these segments against their principal components is created with
the following code and shown in Fig. 11.9. In this case we remove the known segment
assignments from the data using [, -7] because we are using the NB classifica-
tions:

> clusplot(seg.df.test[, -7], seg.nb.class , color=TRUE , shade=TRUE ,

+ labels=4, lines=0,

+ main="Naive Bayes classification , holdout data")

How well did the model perform? We compare the predicted membership to the
known segments for the 35% holdout (test) data. First we see the raw agreement rate,
which is 80% agreement between predicted and actual segment membership:

> mean(seg.df.test$Segment==seg.nb.class)

[1] 0.8

As we saw in Sect. 11.3.8, instead of raw agreement, one should assess performance
above chance. In this case, we see that NB was able to recover the segments in the
test data imperfectly but substantially better than chance:

11.4 Classification 325

Fig. 11.9 A cluster plot for
the naive Bayes classifier for
segment membership
predicted in holdout (test)
data

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

Naive Bayes classification, holdout data

Component 1

C
om

po
ne

nt
 2

These two components explain 45.71 % of the point variability.

Moving up

Suburb mix

Travelers

Urban hip

> library(mclust)

> adjustedRandIndex(seg.nb.class , seg.df.test$Segment)

[1] 0.5626787

We compare performance for each category using table(). The resulting table is
known in machine learning as a confusion matrix:

> table(seg.nb.class , seg.df.test$Segment)

seg.nb.class Moving up Suburb mix Travelers Urban hip

Moving up 13 10 0 1

Suburb mix 3 29 0 0

Travelers 5 2 29 0

Urban hip 0 0 0 13

The NB prediction (shown in the rows) was correct for a majority of observations
in each segment, as shown in the diagonal. When we examine individual categories,
we see that NB was correct for every proposed member of the Urban hip segment
(13 correct out of 13 proposed), and for nearly 90% of the Suburb mix proposals (29
correct out of 32). However, it incorrectly classified 12 of the actual 41 Suburb mix
respondents into other segments, and similarly failed to identify 1 of the true Urban
hip segment.

This demonstrates the asymmetry of positive prediction (making a correct claim of
inclusion) versus negative prediction (making a correct claim of exclusion). There is
likely to be a different business gain for identifying true positives and true negatives,
versus the costs of false positives and false negatives. If you have estimates of these
costs, you can use the confusion matrix to compute a custom metric for evaluating
your classification results.

326 11 Segmentation: Clustering and Classification

As we did for clustering, we check the predicted segments’ summary values using
our summary function. However, because we now have labeled test data, we can also
compare that to the summary values using the true membership:

> # summary data for proposed segments in the test data
> seg.summ(seg.df.test , seg.nb.class)

Group.1 age gender income kids ownHome subscribe Segment

1 Moving up 34.29258 1.125000 51369.52 2.2916667 1.416667 1.250000 1.541667

2 Suburb mix 41.24653 1.562500 58095.10 2.1875000 1.562500 1.000000 1.906250

3 Travelers 55.08669 1.444444 58634.10 0.0000000 1.666667 1.166667 2.666667

4 Urban hip 23.36047 1.461538 22039.69 0.8461538 1.307692 1.153846 4.000000

> seg.summ(seg.df.test , seg.df.test$Segment)

Group.1 age gender income kids ownHome subscribe Segment

1 Moving up 36.88989 1.190476 53582.16 1.4761905 1.333333 1.190476 1

2 Suburb mix 39.61984 1.487805 56341.99 2.2439024 1.585366 1.048780 2

3 Travelers 58.57245 1.448276 59869.24 0.0000000 1.689655 1.206897 3

4 Urban hip 23.71537 1.428571 22700.06 0.9285714 1.357143 1.142857 4

Overall, we see that the summary of demographics for the proposed segments (the
first summary above) is very similar to the values in the true segments (the second
summary). Thus, although NB assigned some observations to the wrong segments,
its overall model of the segment descriptive values—at least at the mean values—is
similar for the proposed and true segments. By making such a comparison using the
test data, we gain confidence that although assignment is not perfect on a case by
case basis, the overall group definitions are quite similar.

For naive Bayes models, predict() can estimate not only the most likely segment
but also the odds ofmembership in each segment, using thetype="raw" argument:

> predict(seg.nb, seg.df.test , type="raw")

Moving up Suburb mix Travelers Urban hip

[1,] 4.070780e-01 5.928052e-01 4.848358e-05 6.832328e-05

[2,] 2.715183e-04 2.422066e-03 9.973064e-01 6.143554e-32

[3,] 2.671393e-01 7.326897e-01 1.710510e-04 2.844967e-40

[4,] 2.237216e-01 7.746457e-01 1.632613e-03 7.568258e-37

[5,] 2.255663e-01 7.740280e-01 4.057610e-04 9.030641e-11

...

This tells us that Respondent 1 is estimated to be about 59% likely to be a member
of Suburb mix, yet 40% likely to be in Moving up. Respondent 2 is estimated nearly
100% likely to be in Travelers. This kind of individual-level detail can suggest which
individuals to target according to the difficulty of targeting and the degree of certainty.
For high-cost campaigns, we might target only those most certain to be in a segment;
whereas for low-cost campaigns, we might target people for second-best segment
membership in addition to primary segment assignment.

We conclude that the naive Bayes model works well for the data analyzed here, with
performance much better than chance, overall 80% accuracy in segment assignment,
and demographics that are similar between the proposed and actual segments. It also
provides interpretable individual-level estimation of membership likelihood.

Of course there are times when naive Bayes may not perform well, and it’s always
a good idea to try multiple methods. For an alternative, we next examine random
forest models.

11.4 Classification 327

11.4.2 Random Forest Classification: randomForest()

A random forest (RF) classifier does not attempt to fit a single model to data but
instead builds an ensemble of models that jointly classify the data [21, 129]. RF does
this by fitting a large number of classification trees. In order to find an assortment
of models, each tree is optimized to fit only some of the observations (in our case,
customers) using only some of the predictors. The ensemble of all trees is the forest.

When a new case is predicted, it is predicted by every tree and the final decision is
awarded to the consensus value that receives the most votes. In this way, a random
forest avoids dependencies on precise model specification while remaining resilient
in the face of difficult data conditions, such as data that are collinear or wide (more
columns than rows). Random forest models perform well across a wide variety of
data sets and problems [58].

In R, a random forest may be created with code very similar to that for naive Bayes
models. We use the same seg.df.train training data as in Sect. 11.4.1, and
call randomForest() from the (surprise!) randomForest package to fit the
classifier:

> library(randomForest)

> set.seed (98040)

> (seg.rf <- randomForest(Segment ~ ., data=seg.df.train , ntree =3000))

...

OOB estimate of error rate: 24.1%

Confusion matrix:

Moving up Suburb mix Travelers Urban hip class.error

Moving up 29 19 0 1 0.40816327

Suburb mix 20 35 3 1 0.40677966

Travelers 0 3 48 0 0.05882353

Urban hip 0 0 0 36 0.00000000

There are two things to note about the call to randomForest(). First, random
forests are random to some extent, as the name says. They select variables and subsets
of data probabilistically. Thus, we use set.seed() before modeling. Second, we
added an argument ntree=3000 to specify the number of trees to create in the
forest. It is sometimes suggested to have 5–10 trees per observation for small data
sets like the present one.

randomForest() returns a confusionmatrix of its own based on the training data.
How can it do that? Remember that RF fits many trees, where each tree is optimized
for a portion of the data. It uses the remainder of the data—known as “out of bag” or
OOB data—to assess the tree’s performance more generally. In the confusionmatrix,
we see that the Travelers and Urban hip segments fit well, while the Moving up and
Suburb mix segments had 40% error rates in the OOB data. This is an indicator that
we may see similar patterns in our holdout data.

What does a random forest look like? Figure11.10 shows two trees among those we
fit above (using visualization code from Patrick Caldon [26]). The complete forest

328 11 Segmentation: Clustering and Classification

comprises 3000 such trees that differ in structure and the predictors used. When an
observation is classified, it is assigned to the group that is predicted by the greatest
number of trees within the ensemble.

A cluster plot of predicted segment membership is shown in Fig. 11.11, where we
omit the known segment assignments in column 7 of seg.df.test because we
want to see the differences on the baseline variables on the basis of segments identified
in the RF model:

> seg.rf.class <- predict(seg.rf, seg.df.test) # predicted classes
> library(cluster)

> clusplot(seg.df.test[, -7], seg.rf.class , color=TRUE , shade=TRUE ,

+ labels=4, lines=0, main="Random Forest classification , holdout data")

The RF clusters in Fig. 11.11 are quite similar in shape to those found by naive Bayes
in Fig. 11.9, with respect to the principal components axes.

It is possible to inspect the distribution of predictions for individual cases. Add the
predict.all=TRUE argument to the predict() call to get the estimate of
every tree for every case in the test data. These are saved in the $individual
element of the result object, where each row collects the predictions for one case,
across all trees (on the columns). To see how this works, we apply() the table()
function—wrapping prop.table() around it for proportions—to summarize the
first five cases’ predictions, as follows. Your proportions may differ slightly, depend-
ing on the random number seed:

Example: Tree 987

income

kids

kids

ownHome

gender

U
rb

an
 h

ip

age

U
rb

an
 h

ip
Tr

av
el

er
s

Tr
av

el
er

s
U

rb
an

 h
ip

age

age

ownHome

gender

gender

M
ov

in
g

up
M

ov
in

g
up

income

income

S
ub

ur
b

m
ix

M
ov

in
g

up

age

Tr
av

el
er

s
S

ub
ur

b
m

ix
Tr

av
el

er
s

Tr
av

el
er

s

age

kids

kids

kids

M
ov

in
g

up
S

ub
ur

b
m

ix

subscribe

kids

ownHomeincome

M
ov

in
g

up
M

ov
in

g
up

M
ov

in
g

up
S

ub
ur

b
m

ix
M

ov
in

g
up

M
ov

in
g

up

gender

S
ub

ur
b

m
ix

subscribe

age

ownHomekids

M
ov

in
g

up
S

ub
ur

b
m

ix
M

ov
in

g
up

S
ub

ur
b

m
ix

M
ov

in
g

up
S

ub
ur

b
m

ix

Example: Tree 1245

income

income

gender

income

Tr
av

el
er

s

income

U
rb

an
 h

ip
Tr

av
el

er
s

U
rb

an
 h

ip

kids kids

age

age

income

age

M
ov

in
g

up
S

ub
ur

b
m

ix
S

ub
ur

b
m

ix
Tr

av
el

er
s

income

kids

age

incomesubscribe

age

income

M
ov

in
g

up
M

ov
in

g
up

S
ub

ur
b

m
ix

M
ov

in
g

up
M

ov
in

g
up

age

S
ub

ur
b

m
ix

M
ov

in
g

up
S

ub
ur

b
m

ix

kids

S
ub

ur
b

m
ix

M
ov

in
g

up
S

ub
ur

b
m

ix

age

income

age

subscribe age

ownHome

S
ub

ur
b

m
ix

M
ov

in
g

up
M

ov
in

g
up

age

S
ub

ur
b

m
ix

Tr
av

el
er

s
S

ub
ur

b
m

ix
Tr

av
el

er
s

kids

income

ageincome

M
ov

in
g

up
S

ub
ur

b
m

ix
S

ub
ur

b
m

ix
M

ov
in

g
up

age

incomeincome

ownHome

M
ov

in
g

up

income

M
ov

in
g

up
S

ub
ur

b
m

ix
M

ov
in

g
up

S
ub

ur
b

m
ix

age

M
ov

in
g

up
S

ub
ur

b
m

ix
S

ub
ur

b
m

ix

Fig. 11.10 Two examples among the 3000 trees in the ensemble found by randomForest()
for segment prediction in seg.df. The trees differ substantially in structure and variable usage.
No single tree is expected to be a particularly good predictor in itself, yet the ensemble of all trees
may predict well in aggregate by voting on the assignment of observations to outcome groups

11.4 Classification 329

Fig. 11.11 A cluster plot for
the random forest solution
for segment membership
predicted in holdout (test)
data

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

Random Forest classification, holdout data

Component 1

C
om

po
ne

nt
 2

These two components explain 45.71 % of the point variability.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Moving up

Suburb mix

Travelers

Urban hip

> seg.rf.class.all <- predict(seg.rf, seg.df.test , predict.all=TRUE)

> apply(seg.rf.class.all$individual [1:5,], 1,

+ function(x) prop.table(table(x)))

$‘2‘

x

Moving up Suburb mix Travelers Urban hip

0.40766667 0.45533333 0.04166667 0.09533333

$‘3‘

x

Moving up Suburb mix Travelers Urban hip

0.081000000 0.492333333 0.424333333 0.002333333

...

Cases 2, 3, 4, and 6 are each assigned to the Suburb mix segment as the most likely
class, although only cases 4 and 6 are assigned with an overall majority of the votes
(proportion > 0.5). Case 7 is assigned to the Urban hip segment as the most likely,
although with only an estimated 37% likelihood of that being its true class. This kind
of probabilistic estimate is very valuable when you can multiply it by an estimated
cost or value of targeting a group.

The proposed and actual segments are quite similar in themean values of the variables
in our summary function:

> seg.summ(seg.df.test , seg.rf.class) # proposed segments
Group.1 age gender income kids ownHome subscribe Segment

1 Moving up 34.51905 1.142857 51794.56 2.57142857 1.476190 1.285714 1.666667

2 Suburb mix 40.57766 1.476190 57643.68 1.59523810 1.523810 1.000000 1.809524

3 Travelers 59.26118 1.464286 59812.04 0.03571429 1.714286 1.214286 2.892857

4 Urban hip 24.37450 1.500000 21842.73 1.00000000 1.285714 1.142857 3.857143

> seg.summ(seg.df.test , seg.df.test$Segment) # actual segments

330 11 Segmentation: Clustering and Classification

Group.1 age gender income kids ownHome subscribe Segment

1 Moving up 36.88989 1.190476 53582.16 1.4761905 1.333333 1.190476 1

2 Suburb mix 39.61984 1.487805 56341.99 2.2439024 1.585366 1.048780 2

3 Travelers 58.57245 1.448276 59869.24 0.0000000 1.689655 1.206897 3

4 Urban hip 23.71537 1.428571 22700.06 0.9285714 1.357143 1.142857 4

As suggested by the OOB assessment we saw above for the training data, a confusion
matrix reveals which segments were predicted more accurately:

> mean(seg.df.test$Segment==seg.rf.class)

[1] 0.7238095

> table(seg.df.test$Segment , seg.rf.class)

seg.rf.class

Moving up Suburb mix Travelers Urban hip

Moving up 9 11 1 0

Suburb mix 11 28 1 1

Travelers 0 3 26 0

Urban hip 1 0 0 13

The segment comparison using mean(.. == ..) calculates that RF correctly
assigned 72% of cases to their segments, and the confusion matrix using table()
shows that incorrect assignments were mostly in the Moving up and Suburb mix
segments.

Finally, we note that the RF model performed substantially better than chance:

> library(mclust)

> adjustedRandIndex(seg.df.test$Segment , seg.rf.class)

[1] 0.4527604

11.4.3 Random Forest Variable Importance

Random forest models are particularly good for one common marketing problem:
estimating the importance of classification variables. Because each tree uses only a
subset of variables, RF models are able to handle very wide data where there are
more—even many, many more—predictor variables than there are observations.

An RF model assesses the importance of a variable in a simple yet powerful way:
for each variable, it randomly permutes (sorts) the variable’s values, computes the
model accuracy in OOB data using the permuted values, and compares that to the
accuracy with the real data. If the variable is important, then its performance will
degrade when its observed values are randomly permuted. If, however, the model
remains just as accurate as it is with real data, then the variable in question is not
very important [21].

To estimate importance, run randomForest() with the importance=TRUE
argument. We reset the random seed and run RF again:

11.4 Classification 331

> set.seed (98040)

> (seg.rf <- randomForest(Segment ~ ., data=seg.df.train , ntree =3000,

importance=TRUE))

...

> importance(seg.rf)

Moving up Suburb mix Travelers Urban hip

age 59.926151 44.013275 122.6900323 86.496891

gender 13.161197 -3.690088 -3.6665717 9.174039

income 22.259442 17.992316 15.8721495 78.262846

kids 18.263661 14.264086 55.5604028 6.410428

ownHome 4.124127 -9.036638 22.6148866 19.842501

subscribe 18.588573 9.460176 0.4312472 -4.130187

MeanDecreaseAccuracy MeanDecreaseGini

age 129.354271 62.321942

gender 7.757333 3.356217

income 67.554326 36.212893

kids 53.827310 20.634224

ownHome 15.964989 4.941645

subscribe 17.858784 3.010284

The upper block shows the variable importance by segment. We see for example that
age is important for all segments, while gender is not very important. The lower
block shows two overall measures of variable importance, the permutation measure
of impact on accuracy (MeanDecreaseAccuracy), and an assessment of the vari-
able’s ability to assist classification better than chance labeling (MeanDecreaseGini,
a measure of Gini impurity [21]).

The randomForest package includes varImpPlot() to plot variable impor-
tance:

> varImpPlot(seg.rf, main="Variable importance by segment")

The result is Fig. 11.12. The most important variables in this data set are age,
income, and kids.

We plot the importance for variables by segment with information from
importance(MODEL). The variable-by-segment data are in the first 4 columns
of that object (as shown in the code output above). We transpose it to put segments
on the rows and use heatmap.2() to plot the values with color:

> library(gplots)

> library(RColorBrewer)

> heatmap .2(t(importance(seg.rf)[, 1:4]),

+ col=brewer.pal(9, "Blues"),

+ dend="none", trace="none", key=FALSE ,

+ margins=c(10, 10),

+ main="Variable importance by segment"

+)

The result is Fig. 11.13. We used the gplots package for heatmap.2(), and
RColorBrewer to get a color palette. In the call to heatmap.2(), we specified
col=brewer.pal(9, "Blues") to get 9 shades of blue, dend="none",
trace="none", key=FALSE to turn off some plot options we didn’t want
(dendrograms and a legend), and margins=c(10, 10) to adjust the margins
and make the axes more readable.

332 11 Segmentation: Clustering and Classification

gender

ownHome

subscribe

kids

income

age

20 40 60 80 100 120

MeanDecreaseAccuracy

subscribe

gender

ownHome

kids

income

age

0 10 20 30 40 50 60

MeanDecreaseGini

Variable importance by segment

Fig. 11.12 Variable importance for segment classification from randomForest()

Fig. 11.13 A heatmap of
variable importance by
segment, produced with
randomForest() and
heatmap.2(). Darker
shades signify higher
importance for the variable
(column) in differentiating a
segment (row)

in
co

m
e

ow
nH

om
e

ge
nd

er

su
bs

cr
ib

e

ki
ds ag
e

Travelers

Urban hip

Suburb mix

Moving up

Variable importance by segment

Figure11.13 highlights the importance of age in predicting all of the segments, the
importance of income to predict Urban hip, of kids to predict Travelers, and the
relatively low importance of the other predictors.

11.5 Prediction: Identifying Potential Customers*

We now turn to another use for classification: to predict potential customers. An
important business question—especially in high-churn categories such as mobile
subscriptions—is how to reach new customers. If we have data on past prospects
that includes potential predictors such as demographics, and an outcome such as
purchase, we can develop a model to identify customers for whom the outcome is

11.5 Prediction: Identifying Potential Customers* 333

most likely among new prospects. In this section, we use a random forest model and
attempt to predict subscription status from our data set seg.df.

As usual with classification problems, we split the data into a training sample and a
test sample:

> set.seed (92118)

> train.prop <- 0.65

> train.cases <- sample(nrow(seg.df), nrow(seg.df)*train.prop)

> sub.df.train <- seg.df[train.cases ,]

> sub.df.test <- seg.df[-train.cases ,]

Next, we wonder how difficult it will be to identify potential subscribers. Are
subscribers in the training set well-differentiated from non-subscribers? We use
clusplot() to check the differentiation, removing subscribe from the data
with [, -6] and using it instead as the cluster identifier:

> clusplot(sub.df.train[, -6], sub.df.train$subscribe , color=TRUE , shade=TRUE ,

+ labels=4, lines=0, main="Subscriber clusters , training data")

The result in Fig. 11.14 shows that the subscribers and non-subscribers are not well
differentiated when plotted against principal components (which reflect almost 56%
of the variance in the data). This suggests that the problem will be difficult!

Fig. 11.14 Cluster plot for
the subscribers and
non-subscribers. The two
groups show little
differentiation on the
principal components, which
suggests that classifying
respondents into the groups
and predicting subscribers
could be difficult

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

Subscriber clusters, training data

Component 1

C
om

po
ne

nt
 2

These two components explain 55.83 % of the point variability.

subNosubYes

334 11 Segmentation: Clustering and Classification

We fit an initial RF model to predict subscribe:

> library(randomForest)

> set.seed (11954)

> (sub.rf <- randomForest(subscribe ~ ., data=sub.df.train , ntree =3000))

...

OOB estimate of error rate: 14.87%

Confusion matrix:

subNo subYes class.error

subNo 166 4 0.02352941

subYes 25 0 1.00000000

The results are not encouraging. Although the error rate might initially sound good
at 14.9%, we have 100% error in predicting subscribers (subYes) with all 25 mis-
classified in the OOB data.

Why?This demonstrates the class imbalanceproblem inmachine learning.Whenone
category dominates the data, it is very difficult to learn to predict other groups. This
frequently arises with small-proportion problems, such as predicting the compara-
tively rare individuals who will purchase a product, who have a medical condition,
who are security threats, and so forth.

A general solution is to balance the classes by sampling more from the small group.
In RF models, this can be accomplished by telling the classifier to use a balanced
group when it samples data to fit each tree. We use sampsize=c(25, 25) to
draw an equal number of subscribers and non-subscribers when fitting each tree
(selecting N=25 each because we have that many subscribers in the training data;
these are sampled with replacement so trees are not all identical):

> set.seed (11954)

> (sub.rf <- randomForest(subscribe ~ ., data=sub.df.train , ntree =3000,

+ sampsize=c(25, 25)))

Call:

randomForest(formula = subscribe ~ ., data = sub.df.train , ntree = 3000,

sampsize = c(25, 25))

Type of random forest: classification

Number of trees: 3000

No. of variables tried at each split: 2

OOB estimate of error rate: 29.74%

Confusion matrix:

subNo subYes class.error

subNo 128 42 0.2470588

subYes 16 9 0.6400000

Although our overall error rate is higher at 29.7%, we are successfully predicting
36% (i.e., 1-0.64) of the subscribers in the OOB data, which is greatly improved over
zero.

We use predict() to apply the RF model to the holdout data and examine the
confusion matrix:

> sub.rf.sub <- predict(sub.rf, sub.df.test)

> table(sub.rf.sub , sub.df.test$subscribe)

sub.rf.sub subNo subYes

subNo 79 9

subYes 11 6

11.5 Prediction: Identifying Potential Customers* 335

The model correctly predicts 6 of the 15 subscribers in the holdout data, at a cost of
incorrectly predicting 11 others as subscriberswho are not. Thatmay be an acceptable
tradeoff if we are trying to identify prospects who are worth an effort to reach. For
instance, in the present case, calling all prospects would result in 15/105 successes
(14% success rate), while calling the suggested ones would result in 6/17 successes
(35%). The ultimate value of each strategy—to call of them or not—depends on the
cost of calling versus the value of successful conversion.

Another way to look at the result is this: those that the model said were non-
subscribers were almost 90% correct (79 correct out of 88). If the cost to target
customers is high, it may be very useful to predict those not to target with high
accuracy.

Is the model predicting better than chance? We use adjustedRandIndex()
to find that performance is modestly better than chance, and we confirm this with
cohen.kappa() in the psych package, which provides confidence intervals:

> adjustedRandIndex(sub.rf.sub , sub.df.test$subscribe)

[1] 0.1928668

> library(psych)

> cohen.kappa(cbind(sub.rf.sub , sub.df.test$subscribe))

Call: cohen.kappa1(x = x, w = w, n.obs = n.obs , alpha = alpha)

Cohen Kappa and Weighted Kappa correlation coefficients and confidence

boundaries

lower estimate upper

unweighted kappa 0.025 0.26 0.5

weighted kappa 0.025 0.26 0.5

With an adjusted Rand Index = 0.19 and Cohen’s kappa = 0.26 (confidence interval
0.025–0.50), the model identifies subscribers in the test data modestly better than
chance.

How could we further improve prediction? We would expect to improve predictive
ability if we had more data: additional observations of the subscriber group and
additional predictor variables. We have described prediction using a random forest
model, but there are many other approaches such as logistic regression (Sect. 9.2)
and other machine learning algorithms (see Sect. 11.7).

With a difficult problem—predicting a low incidence group, in data where the groups
are not well-differentiated, and with a small sample—the random forest model per-
formsmodestly yet perhaps surprisinglywell. There are nomagic bullets in predictive
modeling, but if you use the many tools available in R, avoid pitfalls such as class
imbalance, and interpret results in terms of the business action, you will have good
odds to achieve positive results.

336 11 Segmentation: Clustering and Classification

11.6 Key Points

We addressed segmentation through the lenses of clustering and classification, each
of which is a large area of statistics with active research. We examined several
varieties of clustering methods and compared them. Once segments or groups are
identified, classification methods can help to predict group membership status for
new observations.

• The most crucial question in a segmentation project is the business aspect: will
the results be useful for the purpose at hand? Will they inspire new strategies for
marketing to customers? It is important to try multiple methods and evaluate the
utility of their results (cf. Sect. 11.1.1).

• Distance-based clustering methods attempt to group similar observations. We
examined hclust() for hierarchical clustering (Sect. 11.3.2) and kmeans()
for k-means grouping (Sect. 11.3.4). Distance-based measures rely on having a
way to express metric distance, which is a challenge for categorical data.

• Model-based clustering methods attempt to model an underlying distribution
that the data express. We examined mclust for model-based clustering of data
assumed to be a mix of normal distributions (Sect. 11.3.5), and poLCA for latent-
class analysis with categorical data (Sect. 11.3.7).

• Afeature of somemodel-basedmethods is that they propose thenumber of clusters,
unlike distance-basedmeasures inwhich the analystmust choose anumber.We saw
how to interpret the number of clusters for the mclust procedure (Sect. 11.3.5).

• The Bayesian Information Criterion (BIC) can identify models with the best sta-
tistical fit (Sect. 11.3.5).We recommend that the ultimate decision to use a model’s
solution be made on the grounds of both statistics (i.e., excellent fit) and the busi-
ness applicability of the solution (i.e., actionable implications).

• With classification models, data should be split into training and test groups, and
models validated on the test (holdout) data (Sect. 11.4).

• We examined naive Bayes models (naiveBayes(), Sect. 11.4.1) and random
forest models (randomForest(), Sect. 11.4.2). These—and many other clas-
sification methods—have quite similar syntax, making it easy to try and compare
models.

• A useful feature of random forest models is their ability to determine vari-
able importance for prediction, even when there are a large number of variables
(Sect. 11.4.3).

• A common problem in classification is class imbalance, where one group domi-
nates the observations andmakes it difficult to predict the other group.We saw how
to correct this for random forest models with the sampsize argument, resulting
in a more successful predictive model (Sect. 11.5).

11.7 Learning More* 337

11.7 Learning More*

We covered the basics of clustering and classification in this chapter. There are
many places to learn more about those methods and related statistical models. A
recommended introduction to the field of statistical learning is James et al., An
Introduction to Statistical Learning (ISL) [107]. A more advanced treatment of the
topics in ISL is Hastie et al., The Elements of Statistical Learning [95].

For cluster analysis, a readable text is Everitt et al., Cluster Analysis [54]. An intro-
duction to latent class analysis is Collins and Lanza, Latent Class and Latent Tran-
sition Analysis [37]. If you often use random forests, the package randomForest
Explainer can assist with understanding variable importance in greater
depth [151].

R has support for a vast number of clustering algorithms that we cannot cover
here, but a few are worth mentioning. Mixture modeling is an area with active and
exciting work. In addition to mclust that we covered above, other packages of
note are flexmix [84, 127], which fits more generalized models, and BoomMix
[177], which findsmixtures using a variety of models (normal, Poisson, multinomial,
Markov, and others). For very large datasets, the clara algorithm in the standard
cluster package is a good starting point.

For classification and especially prediction, in addition to ISL noted above, an
applied, practitioner-friendly text is Kuhn and Johnson’s Applied Predictive Mod-
eling. If you do classification in R, you owe it to yourself and your stakeholders to
examine the caret package from Kuhn et al. [122]. caret provides a uniform
interface to 149 machine learning and classification algorithms (as of writing time)
along with tools to assess performance and streamline other common tasks.

A resource for data when practicing clustering and classification is the mlbench
package [128].mlbench provides data sets from a variety of applications in agricul-
ture, forensics, politics, economics, genomics, engineering, and other areas (although
not marketing).

Marketing segmentation has developed approaches and nuances that differ from the
typical description in statistics texts.An excellent,modern introduction to concepts of
marketing segmentation, with code in R, is Dolnicar, Grün, and Leisch,Market Seg-
mentation Analysis [44]. Beyond routine segmentation, there are advancedmodels to
consider. For instance, in addition to the static, cross-sectional models considered in
this chapter (where segmentation examines data at just one point in time), one might
wish to consider dynamic models that take into account customer lifestyle changes
over time. An overview of diverse approaches in marketing is Wedel and Kamakura,
Market Segmentation: Conceptual and Methodological Foundations [195].

There are various ways to model changes in class membership over time. One
approach is latent transition analysis (LTA), described in Collins and Lanza [37].
At the time of writing, LTA was not supported by a specific package in R, but

338 11 Segmentation: Clustering and Classification

Hwan Chung provided non-package R code at https://www.msu.edu/~chunghw/
Downloads/R/LTA_R.html. Another approach is a finite state model such asMarkov
chain model (cf. Ross [165]). An alternative when change over time is metric (i.e.,
is conceptualized as change in a dimension rather than change between groups) is
to use longitudinal structural equation modeling or latent growth curve models. A
starting point is the growth() function in the lavaan package that we examined
in Chap.10.

Finally, a generalized approach that is popular for clustering is cluster ensemble anal-
ysis. An ensemble method creates multiple solutions and determines group mem-
bership by likelihood or consensus among the solutions. Cluster ensembles are con-
ceptually similar to random forest models for classification that we examined in this
chapter. A package for cluster ensemble analysis is clue [98].

11.8 Exercises

11.8.1 Music Subscription Data for Exercises

Besides the datawe provide here, these exercises could be adapted to experimentwith
many other data sets from this book, as well as various online sources of machine
learning data. At the time of writing, there were more than 450 data sets available
in the University of California, Irvine, repository at https://archive.ics.uci.edu/ml/
datasets.html.

As written, these exercises use a simulated CRM data set that comprises customer
information for an imagined music subscription service. Load the data as follows:

> seg.ex.raw <- read.csv("https://goo.gl/s1KEiF") # original with segments
> seg.ex <- seg.ex.raw # copy without segments
> seg.ex$Segment <- NULL

> summary(seg.ex.raw)

age sex householdIncome milesDrive kidsAtHome

Min. :20.00 Male :480 Min. : 11042 Min. : 0 Min. :0.000

1st Qu .:28.00 Female :415 1st Qu.: 34383 1st Qu .:10085 1st Qu .:0.000

...

commuteCar drivingEnthuse musicEnthuse subscribeToMusic

Min. :0.000 Min. :1.000 Min. :1.000 subNo :808

1st Qu .:0.000 1st Qu .:3.000 1st Qu .:3.000 subYes: 87

...

Segment

CommuteNews :170

KidsAndTalk :125

LongDistance: 50

MusicDriver :260

NonCar :205

Quiet : 85

The variables comprise the following: age in years; sex as male or female;
householdIncome in US dollars; milesDrive, annual total miles driven in
a car; kidsAtHome, number of children under 18 years old living at home;
commuteCar, whether they regularly commute by car; drivingEnthuse,

https://www.msu.edu/~chunghw/Downloads/R/LTA_R.html
https://www.msu.edu/~chunghw/Downloads/R/LTA_R.html
https://archive.ics.uci.edu/ml/datasets.html
https://archive.ics.uci.edu/ml/datasets.html

11.8 Exercises 339

reported enthusiasm for driving, according to a survey response, reported on a
scale from 1–7 (highest); musicEnthuse, enthusiasm for music on the same 1–7
scale; subscribeToMusic, whether the respondent subscribes to our service;
Segment, a known assignment to one of our six customer segments, based on prior
research.

As we noted in the chapter, you must take care not to include known results when
fitting a machine learning model. In the data assignments above, we keep the known
segment assignments in the data frame seg.ex.raw, and create seg.ex as a copy
without the known segment assignments. Take care to use the appropriate data in the
exercises.

11.8.2 Exercises

Clustering

1. In the chapter, we suggested writing a small function to quickly examine group
differences. Develop a summary function for the seg.ex data. Demonstrate its
basic usage.

2. Using hierarchical clustering, cluster the seg.ex data. Cut it into a specific
number of segments, and visualize those. How many segments did you choose
and why?

3. Are the hclust() results in Exercise 2 interesting? Show a plot that demon-
strates why or why not.

4. Using kmeans(), find a four group solution for the data. (You’ll need to do
some data conversion first.) Is the solution interesting? Plot two of the continuous
variables by segment.

5. Plot the clusters fromExercise 4 byprincipal components of the data set. Interpret
the plot.

6. Use Mclust() to fit a model-based cluster solution for the music subscription
data. How many clusters does it suggest? Are they well-differentiated? How do
they compare to the k-means solution from Exercise 4?

7. Mclust() can also fit a specified number of clusters (parameter “G”). Fit
solutions for G=2 and G=4 clusters. When fit to the data, are they much worse
than a G=3 solution?

8. Prepare the data for poLCA, recoding variables to binary factors, splitting as
follows: age: less than 30, versus 30+. Household income: less than 55,000,
versus greater. Kids at home: 0, versus more than 0. Music enthusiasm: a score
of 5 or higher, versus less than that. We will not use miles driven or driving
enthusiasm for this exercise.

9. Fit polytomous latent class models for 3-class and 4-class solutions to the data.
Visualize them.Howdifferent are the two solutions in respondents’ assignments?
Which one ismore useful? (Note: solutions depend in part on the randomnumber
sequence.)

340 11 Segmentation: Clustering and Classification

Classification

10. Split the music subscription data set—with the segment assignments—into
65%/35% sets for classification model training and assessment. Compare the
two sets. Are they suitably similar? (Note: be sure to set a random number seed
for replicability.)

11. Fit a naive Bayes model to predict segment membership Segment from the
other variables in the training data. Check its performance on the test data. Does
it perform better than chance?

12. Fit a random forest model to predict segment membership. What is its out of bag
error rate? Did you do anything to control class imbalance?

13. With the random forest model from Exercise 12, predict segments in the test
data. Compare those to the actual segments. Does it predict segmentmembership
better than chance?

14. In the random forest model, which variables are most important for predicting
segment membership?

15. Predict subscription status subscribeToMusic in the data, using a random
forest model. How well does the model predict the test data? Which variables
are most important?

16. (Stretch exercise.) Use the hotel satisfaction data from the exercises in Chap.7.
Model something interesting in that data set, using either clustering or classifi-
cation approaches (or both). How do you evaluate your model’s performance?
Fit a reasonable alternative model. Is your model preferable to the alternative?

Chapter 12
Association Rules for Market Basket
Analysis

Many firms compile records of customer transactions. These data sets take diverse
forms including products that are purchased together, services that are tracked over
time in a customer relationship management (CRM) system, sequences of visits and
actions on a Web site, and records of customer support calls. These records are very
valuable to marketers and inform us about customers’ purchasing patterns, ways
in which we might optimize pricing or inventory given the purchase patterns, and
relationships between the purchases and other customer information.

Such records may comprise an enormous number of data points yet with relatively
little information in each observation. This means that simple analyses such as cor-
relation and linear regression are not applicable because those methods assume com-
plete or near-completemeasurement for each case. For example, consider the number
of products in a typical supermarket. Most items are not purchased with most other
items in any transaction because there are so many possible combinations.

In this chapter we examine a strategy to extract insight from transactions and co-
occurrence data: association rule mining. Association rule analysis attempts to find
sets of informative patterns from large, sparse data sets. We demonstrate association
rules using a real data set of more than 80,000market basket transactions with 16,000
unique items [23]. We then examine how rule mining is potentially useful with non-
transactional data and we use association rules to explore patterns in the subscription
data from Chap.5.

We develop the methods here from an exploratory point of view, to gain insight and
form hypotheses about relationships in the data. Although it is out of scope for this
chapter, if one is interested to demonstrate that the insights apply to new data or are
stable over time, the same methods might be used with split samples and replication
techniques (see Kuhn and Johnson [123] for an introduction to such approaches in
general).

© Springer Nature Switzerland AG 2019
C. Chapman and E. M. Feit, R For Marketing Research and Analytics, Use R!,
https://doi.org/10.1007/978-3-030-14316-9_12

341

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14316-9_12&domain=pdf
https://doi.org/10.1007/978-3-030-14316-9_12

342 12 Association Rules for Market Basket Analysis

12.1 The Basics of Association Rules

The basic idea of association rule mining is this: when events occur together more
often than one would expect from their individual rates of occurrence, such co-
occurrence is an interesting pattern. For example, consider sales of sweet relish
and hot dogs (summertime treats in the US). Imagine that hot dogs are sold in 5%
of supermarket transactions during a summer month, while relish is sold in 3% of
transactions. Are they related?

Suppose we just take the data for every sale that includes hot dogs, which is 5%
of transactions. If the proportion of those hot dog sales that have relish is 3%, then
there is no relationship because that is what we would expect for relish from the
overall data, regardless of what else is sold. However, if relish is sold in 25% of
the transactions that have hot dogs, that is quite different than the base rate and is
evidence of an association.

There are some terms to understand for association rules. An association is simply
the co-occurrence of two or more things. Hot dogs might be positively associated
with relish, hot dog buns, soda, potato chips, and ketchup. An association is not
necessarily strong. In a store such as Costco that sells everything from hot dogs
to (sometimes) grand pianos, everything sold is associated with everything else but
most of those associations are weak. A set of items is a group of one or more items,
and might be written as {item1, item2, ...}. For instance, a set might be {relish} or
{hot dogs, soda, potato chips}.

A transaction is a set of items that co-occur in an observation. In marketing, a
common transaction is the market basket, the set of things that are purchased or
considered for purchase at one time. Any data points that co-occur are considered to
be a transaction, even if using the term “transaction” seems unusual in the context.
For example, the set of web pages that a user visits during a session would be a
transaction in this sense.

A rule expresses the incidence across transactions of one set of items as a condition of
another set of items. The association of relish, conditional on hot dogs, is expressed
in the rule {relish} ⇒ {hot dogs}. Rules may express the relationship of multiple
items; for instance, {relish, ketchup, mustard, potato chips}⇒ {hot dogs, hamburger
patties, hot dog buns, soda, beer}. A condition in this sense does not imply a causal
relationship, only an association of some strength, whether strong or weak.

Metrics. Association rules are expressed with a few common metrics that reflect the
rules of conditional probability. The support for a set of items is the proportion of
all transactions that contain the set. If {hot dogs, soda} appears in 10 out of 200
transactions, then support ({hotdogs, soda}) = 0.05. It does not matter if those 10
transactions contain other items; support is defined separately for every unique set
of items.

Confidence is the support for the co-occurrence of all items in a rule, condi-
tional on the support for the left hand set alone. Thus, con f idence(X ⇒ Y) =

12.1 The Basics of Association Rules 343

support (X ∩ Y)/support (X) (where “∩” means “and”). How does that work?
Consider the rule {relish} ⇒ {hot dogs}. If {relish} occurs in 1% of transactions
(in other words, support ({relish}) = 0.01) and {relish, hot dogs} appears in 0.5%,
then con f idence({relish} ⇒ {hotdogs}) = 0.005/0.1 = 0.5. In other words, hot
dogs appear alongside relish 50% of the time that relish appears.

Note that “confidence” in this context carries no implication about hypothesis testing,
confidence intervals, or the like; it is only ameasure of conditional association. Confi-
dence is also not symmetric; unless support (X) = support (Y), con f idence(X ⇒
Y) �= con f idence(Y ⇒ X).

Perhaps the most popular measure is lift, the support of a set conditional on the
joint support of each element, or li f t (X ⇒ Y) = support (X ∩ Y)/(support (X)
support (Y)). To continue the hot dog example, if support ({relish}) = 0.01,
support ({hotdogs}) = 0.01, and support ({relish, hotdogs}) = 0.005, then
li f t ({relish ⇒ hotdogs}) = 0.005/(0.01 ∗ 0.01) = 50. In other words, the com-
bination {relish, hot dogs} occurs 50 times more often than we would expect if the
two items were independent.

These three measures tell us different things. When we search for rules we wish to
exceed aminimum threshold on each: to find item sets that occur relatively frequently
in transactions (support), that show strong conditional relationships (confidence), and
that are more common than chance (lift). As we will see, in practice an analyst sets
the level of required support to a value such as 0.01, 0.10, 0.20 or so forth as is
meaningful and useful for the business in consideration of the data characteristics
(such as the size of the item set). Similarly, the level of required confidence might
be high (such as 0.8) or low (such as 0.2) depending on the data and business. For
lift, higher values are generally better and certainly should be above 1.0, although
one must be mindful of outliers with huge lift.

We use the R package arules to illustrate association rules [88]. arules encap-
sulates many popular methods for mining associations and provides extensions for
visualization [89]. Readers who are interested in the algorithms that generate asso-
ciation rules should review the references in the primary arules documentation
[87, 88].

12.2 Retail Transaction Data: Market Baskets

The first two data sets we examine contain supermarket transaction data. We first
examine a small data set that is included with the arules package. This data set
is useful despite its small size because the items are labeled with category names,
making them easier to read. Then we turn to a larger data set from a supermarket
chain whose data is disguised but is more typical of large data sets.

344 12 Association Rules for Market Basket Analysis

12.2.1 Example Data: Groceries

We illustrate the general concepts of association rules with the Groceries data set
in the arules package. This data set comprises lists of items purchased together
(that is, market baskets), where the individual items have been recorded as category
labels instead of product names. You should install the arules and arulesViz
packages before proceeding.

We load the package and data, and then check the data as follows:

> library(arules)
> data("Groceries")
> summary(Groceries)
transactions as itemMatrix in sparse format with
9835 rows (elements/itemsets/transactions) and
169 columns (items) and a density of 0.02609146

...
> inspect(head(Groceries , 3))

items
1 { citrus fruit , semi -finished bread , margarine , ready soups}
2 { tropical fruit , yogurt , coffee}
3 { whole milk}

The summary() shows us that the data comprise 9835 transactions with 169 unique
items. Using inspect(head(Groceries)) we see a few examples from the
baskets. For example, the second transaction includes fruit, yogurt, and coffee, while
the third transaction is just a container of milk. In this output, notice that the item
sets are structured with brackets, a visual clue that they reflect a new “transactions”
data type that we examine in more detail below.

We now use apriori(data, parameters=...) to find association rules
with the “apriori” algorithm [18, 88]. At a conceptual level, the apriori algorithm
searches through the item sets that occur frequently in a list of transactions. For each
item set, it evaluates the various possible rules that express associations among the
items at or above a particular level of support, and then retains the rules that show
confidence above some threshold value [17].

To control the extent that apriori() searches, we use the parameter=list()
control to instruct the algorithm to search rules that have a minimum support of
0.01 (1% of transactions) and extract the ones that further demonstrate a minimum
confidence of 0.3. The resulting rule set is assigned to the groc.rules object:

> groc.rules <- apriori(Groceries , parameter=list(supp =0.01 , conf=0.3,
+ target="rules"))
Apriori

Parameter specification:
confidence minval smax arem aval originalSupport maxtime support

0.3 0.1 1 none FALSE TRUE 5 0.01
minlen maxlen target ext

1 10 rules FALSE

Algorithmic control:
filter tree heap memopt load sort verbose

0.1 TRUE TRUE FALSE TRUE 2 TRUE

Absolute minimum support count : 98

set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[169 item(s) , 9835 transaction(s)] done [0.00s].

12.2 Retail Transaction Data: Market Baskets 345

sorting and recoding items ... [88 item(s)] done [0.00s].
creating transaction tree ... done [0.01s].
checking subsets of size 1 2 3 4 done [0.00s].
writing ... [125 rule(s)] done [0.00s].
creating S4 object ... done [0.00s].

The rules have been found and saved to an object that we shall inspect in a moment.
Note that the values for the support and confidence parameters are found
largely by experience (in other words, by trial and error) and should be expected
to vary from industry to industry and data set to data set. We arrived at the values
of support=0.01 and confidence=0.3 after finding that they resulted in a
modest number of rules suitable for an example. In real cases, you would adapt those
values to your data and business case (we will say more about this as we examine
additional data sets).

To interpret the results of apriori() above, there are two key things to examine.
First, check the number of items going into the rules, which is shown on the output
line “sorting and recoding items ...” and in this case tells us that the
rules found are using 88 of the total number of items. If this number is too small
(only a tiny set of your items) or too large (almost all of them) then you might wish
to adjust the support and confidence levels.

Next, check the number of rules found, as indicated on the “writing ...” line.
In this case, the algorithm found 125 rules. Once again, if this number is too low it
suggests the need to lower the support or confidence levels; if it is too high (such as
many more rules than items) you might increase the support or confidence levels.

Once we have a rule set from apriori(), we use inspect(rules) to examine
the association rules. The complete list of 125 from above is too long to examine
here, so we select a subset of them with high lift, lift > 3. We find that five
of the rules in our set have lift greater than 3.0:

> inspect(subset(groc.rules , lift > 3))
lhs rhs support confidence lift

1 { beef } = > { root vegetables } 0.01738688 0.3313953 3.040367
2 { citrus fruit ,

root vegetables } = > { other vegetables } 0.01037112 0.5862069 3.029608
3 { citrus fruit ,

other vegetables } => { root vegetables } 0.01037112 0.3591549 3.295045
4 { tropical fruit ,

root vegetables } = > { other vegetables } 0.01230300 0.5845411 3.020999
5 { tropical fruit ,

other vegetables } => { root vegetables } 0.01230300 0.3427762 3.144780

The first rule tells us that if a transaction contains {beef} then it is also relativelymore
likely to contain {root vegetables}—a category that we assume includes items such
as potatoes and onions. That combination appears in 1.7% of baskets (“support”),
and the lift tells us that combination is 3x more likely to occur together than one
would expect from the individual rates of incidence alone.

A store might form several ideas on the basis of such information. For instance, the
storemight create a display for potatoes and onions near the beef counter to encourage
shoppers who are examining beef to purchase those vegetables or consider recipes
with them. It might also suggest putting coupons for beef in the root vegetable area,

346 12 Association Rules for Market Basket Analysis

or featuring recipe cards somewhere in the store. We will see other ways to inspect
such data and develop ideas later in this chapter.

12.2.2 Supermarket Data

We now investigate associations in a larger set of retail transaction data from a Bel-
gian supermarket chain. This data set comprises market baskets of items purchased
together, where each record includes arbitrarily numbered items numbers without
item descriptions (to protect the chain’s proprietary data). This data set is made
publicly available by Brijs et al. [23].

First we use readLines(url) to get the data from the website where it is hosted:
> retail.raw <- readLines("http://fimi.ua.ac.be/data/retail.dat")

An alternative location on this book’s website is the following (see Appendix E for
more options):
> retail.raw <- readLines("http://goo.gl/FfjDAO")

As always, we check the head, tail, and summary:
> head(retail.raw)

[1] "0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 ... "

[2] "30 31 32 "

...

> tail(retail.raw)

...

[5] "39 48 2528 "

[6] "32 39 205 242 1393 "

> summary(retail.raw)

Length Class Mode

88162 character character

Each row in this object represents a single market basket of items purchased together.
Within each row, the items have been assigned arbitrary numbers that simply start at 0
in the first transaction and add new item numbers as needed for all later transactions.
The data comprise 88,162 transactions, where the first basket has 30 items (numbered
0–29, some truncated in the output here), the second has 3 items, and so forth. In
the tail(), we see that the last market basket had 5 items, most of which—items
32, 39, 205, and 242—have low numbers reflecting that those particular items first
appeared in transactions early in the data set.

In this text format, the data are not ready to mine; we must first split each of the
transaction text lines into individual items. To do this, we use strsplit(lines,
" "). This command splits each line wherever there is a blank space character
(" ") and saves the results to a list:
> retail.list <- strsplit(retail.raw , " ")

To label the individual transactions, we assign descriptive names using names()
and paste():
> names(retail.list) <- paste("Trans" , 1: length(retail.list), sep="")

12.2 Retail Transaction Data: Market Baskets 347

As usual, we check the data format again. Finally, we remove the retail.raw
object that is no longer needed:
> str(retail.list)
List of 88162
$ Trans1 : chr [1:30] "0" "1" "2" "3" ...
$ Trans2 : chr [1:3] "30" "31" "32"

...
> library(car)
> some(retail.list) # note: random sample ; your results may vary
$Trans3742
[1] "488" "1588" "2750" "2832" "4099"
...
> rm(retail.raw)

Using str() we confirm that the list has 88,162 entries and that individual entries
look appropriate. some() samples a few transactions throughout the larger set for
additional confirmation.

The transaction list could be used to find rules at this point, but we take an additional
step to convert it to a formal transactions object, which enhances the ways we can
work with the data and speeds up arules operations. To convert from a list to
transactions, we cast the object using as(..., "transactions"):
> retail.trans <- as(retail.list , "transactions") # takes a few seconds
> summary(retail.trans)
transactions as itemMatrix in sparse format with
88162 rows (elements/itemsets/transactions) and
16470 columns (items) and a density of 0.0006257289

most frequent items:
39 48 38 32 41 (Other)

50675 42135 15596 15167 14945 770058

element (itemset/transaction) length distribution:
sizes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3016 5516 6919 7210 6814 6163 5746 5143 4660 4086 3751 3285 2866 2620 2310
...

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 4.00 8.00 10.31 14.00 76.00

...
> rm(retail.list) # no longer needed

Looking at the summary() of the resulting object, we see that the transaction-by-
itemmatrix is 88162 rows by 16470 columns. Of those 1.4 billion intersections, only
0.06% have positive data (density) because most items are not purchased in most
transactions. Item 39 appears the most frequently and occurs in 50675 baskets or
more than half of all transactions. 3016 of the transactions contain only a single item
(“sizes” = 1) and the median basket size is 8 items.

12.3 Finding and Visualizing Association Rules

With the data in transaction format, we are ready to find rules. Aswe have seen briefly
already, the apriori(data, parameters=...) command finds association
rules [18]. For theBelgian supermarket data, we specifyparameter=list(...)
with values of minimum support = 0.001 and minimum confidence =
0.4. We assign the resulting rules to a new object:

348 12 Association Rules for Market Basket Analysis

> retail.rules <- apriori(retail.trans , parameter=list(supp =0.001 , conf =0.4))
...
set transactions ...[16470 item(s) , 88162 transaction(s)] done [0.36s].
sorting and recoding items ... [2117 item(s)] done [0.02s].
creating transaction tree ... done [0.06s].
checking subsets of size 1 2 3 4 5 6 done [0.15s].
writing ... [5944 rule(s)] done [0.01s].
creating S4 object ... done [0.02s].

This finds a set of 5944 rules that exceed the required levels of support and confidence.

To get a sense of the rule distribution, we load the arulesViz package and then
plot() the rule set, which charts the rules according to confidence (Y axis) by
support (X axis) and scales the darkness of points to indicate lift. The commands are
simply:
> library(arulesViz)
> plot(retail.rules)

The resulting chart is shown in Fig. 12.1. In that chart, we see that most rules involve
item combinations that occur infrequently (that is, they have low support) while
confidence is relatively smoothly distributed.

Simply showing points is not very useful, and a key feature with arules is interac-
tive plotting. In Fig. 12.1 there are some rules in the upper left with high lift. We can
use interactive plotting to inspect those rules. To do this, add interactive=TRUE
to the plot() command:
> plot(retail.rules , interactive=TRUE)

In interactive mode, you can examine regions of rules. To do so, click once in the
plot window at one corner of the area of interest, and then click again at the opposite
corner. You can use zoom in to magnify that region, or inspect to list the rules
in the region. When finished, click end.

Figure12.2 shows an interactive plotting session in RStudio where we seek rules
with high lift. To get Fig. 12.2 we previously selected the upper left region as was
shown in Fig. 12.1 and zoomed in on that region. Then we selected a few rules from
the zoomed-in area and clicked inspect to display them in the console. There were

Fig. 12.1 Plotting a large set
of rules for confidence (Y
axis) by support (X axis) and
lift (shade). There are a few
rules in the upper left with
exceptionally high
confidence and lift

Scatter plot for 5944 rules

50

100

150

200

250

300

lift0 0.1 0.2 0.3 0.4 0.5

0.4

0.5

0.6

0.7

0.8

0.9

1

support

co
nf
id
en

ce

12.3 Finding and Visualizing Association Rules 349

Fig. 12.2 Using plot(..., interactive=TRUE) to inspect rules of interest in interactive
mode. In this screenshot from RStudio, we zoomed into a small region to inspect() a subgroup
of the complete rule set. This reveals the selected rules in the console (lower left window)

7 rules in that subregion, as shown in the lower left console window. This revealed
one exceptionally high lift rule:

lhs rhs support confidence lift
1 {16431 ,

48} = > {16430} 0.001973639 0.9942857 205.770463

This rule tells us that the combination {16431, 48} occurs in about 0.2% of bas-
kets (support = 0.00197), and when it occurs it almost always includes {16430}
(confidence = 0.99). The combination occurs 200 times more often than we would
expect from the individual incidence rates of {16431, 48} and {16430} considered
separately (lift = 205).

Such information could be used in various ways. If we pair the transactions with
customer information, we could use this for targeted mailings or email suggestions.
For items often sold together, we could adjust the price and margins together; for
instance, to put one item on sale while increasing the price on the other. Or perhaps—
only somewhat facetiously—the cashiers might ask customers, “Would you like a
16430 with that?”

350 12 Association Rules for Market Basket Analysis

12.3.1 Finding and Plotting Subsets of Rules

A common goal in market basket analysis is to find rules with high lift. We can find
such rules easily by sorting the larger set of rules by lift. We extract the 50 rules
with highest lift using sort() to order the rules by lift and taking 50 from the
head():
> inspect(retail.hi)

lhs rhs support confidence lift count
[1] {696} = > {699} 0.001032191 0.5833333 338.3410 91
[2] {699} = > {696} 0.001032191 0.5986842 338.3410 91
[3] {1818 ,3311 ,795} = > {1819} 0.001088905 0.9056604 318.1069 96
[4] {3402} = > {3535} 0.001417844 0.7062147 305.2024 125
...

The count tells us how exactly how many transactions include each association; this
is the absolute support for the rule. The values of the lift and the relative, proportional
support are identical for a set of items regardless of the items’ order within a rule
(the left-hand or right-hand side of the rule). Thus the first two rules—which include
the same two items {696} and {699} on opposite sides of the conditional arrow—
are identical for support and lift. However, confidence reflects direction because it
computes occurrence the right-hand set conditional on the left-hand side set, and
differs slightly for the first two rules.

A graph display of rules may be useful to seek higher level themes and patterns. We
chart the top 50 rules by lift with plot(..., method="graph") and display
rules as the intersection of items by adding the graph option, control=list
(type="item")):
> plot(retail.hi , method="graph", control=list(type="items"))

The resulting chart is shown in Fig. 12.3. Each circle there represents a rule with
inbound arrows coming from items on the left-hand side of the rule and outbound
arrows going to the right-hand side. The size (area) of the circle represents the rule’s
support, and shade represents lift (darker indicates higher lift). Positioning of rules
on the graph may differ for your system, but the rule clusters should be similar.

Figure12.3 shows several patterns of interest. Items 696 and 699 form a tight set;
there are item clusters for {3402, 3535, 3537}, {309, 1080, 1269, 1378, 1379, 1380},
and so forth; and item 39 appears as a key item in two sets of items that otherwise
do not overlap. By exploring sets of rules with various levels of lift and support, and
with specific subsets of items (see the usage of %in% in arules help), an analyst
may be able to find patterns that suggest interesting hypotheses and trends. We will
see a further example of this for non-transactional data in Sect. 12.4 below.

12.3.2 Using Profit Margin Data with Transactions: An
Initial Start

An analyst will often wish to combine market basket transactions and rules with
other data; for instance, one might have information on item profitability (margin) or

12.3 Finding and Visualizing Association Rules 351

Fig. 12.3 A graph using
arulesViz of the top 50
association rules mined from
the retail market basket data
set. There are four distinct
sets of rules (arrows and
circular nodes), each relating
a set of 2-6 items (the integer
ID numbers). These rules
have lift of 232x or more in
the retail shopping data

Graph for 50 rules
size: support (0.001 − 0.002)

color: lift (232.725 − 338.341)

purchaser characteristics. In this section, we consider how to combine information
on item cost and margin with transaction data.

How canwe find the profit for a transaction? The answermay be complex and depend
on the details of a firm and its transaction data. Because the Belgian supermarket data
set does not include item price or cost, we simulate margin by items for illustration
purposes. We assume that each item has a single margin value; if we had access to a
firm’s complete data it would be better to use information about costs and prices by
date, along with discounts and other adjustments to estimate margin more accurately.

To simulate per-item margin data we first compile a list of the item names that we
need. We do this by converting the complete transaction set to list format and
then using unlist() to gather the individual items from the many transactions
into a single vector. We take the unique() values to remove duplicates, and then
sort() them:
> retail.itemnames <- sort(unique(unlist(as(retail.trans , "list"))))
> head(retail.itemnames); tail(retail.itemnames)
[1] "0" "1" "10" "100" "1000" "10000"
[1] "9994" "9995" "9996" "9997" "9998" "9999"

Items are not in numeric order because the item labels are character data and sort()
orders them alphabetically; this poses no problem here.

Next we generate the simulated margin data with one value for each item, using
rnorm()with ameanand standarddeviationof 0.30 currencyunits (such as AC0.30):

> set.seed (03870)
> retail.margin <- data.frame(margin=rnorm(length(retail.itemnames),
+ mean =0.30 , sd =0.30))
> quantile(retail.margin$margin)

0% 25% 50% 75% 100%
-1.1090452 0.1045897 0.3026245 0.5050533 1.5542344

352 12 Association Rules for Market Basket Analysis

Wemake those values indexable by item name by adding the list of items from above
as the rownames() for the random numbers:
> rownames(retail.margin) <- retail.itemnames
> head(retail.margin); tail(retail.margin)

margin
0 0.88340359
1 0.52964087
...
9999 0.6850124
> library(car); some(retail.margin)

margin
12336 0.18504274
...

In this format, we can look up the margin for an item—or set of items—using the
relevant item names. For example, we find the item margins and then their sum for
the basket {39, 48} as follows:
> retail.margin[c("39", "48") ,]
[1] 0.1217833 -0.2125105
> sum(retail.margin[c("39", "48") ,])
[1] -0.09072725

Item 39 has margin of 0.12, and the basket {39, 48} has total margin of −0.09.

To find the margin for a complete transaction—in this case, transaction #3 from the
Belgian data—there is one more step. We have to convert the transaction to list form
to find the items in it using as(..., "list"), at which point we can look up
the margins for those items:

> (basket.items <- as(retail.trans [3], "list")[[1]])
[1] "33" "34" "35"
> retail.margin[basket.items ,]
[1] 0.3817115 0.6131403 0.1979879
> sum(retail.margin[basket.items ,])
[1] 1.19284

12.3.3 Language Brief: A Function for Margin Using an
Object’s class*

This optional section expands on the margin example by writing a more complex
function. Along the way we will see one way to use objects’ classes and how to write
more error-resistant code. If you do not wish to dive deeply into programming, you
may safely skip this section.

Motivation. Using a simple index to look up the margin for items as we did above is
not very satisfactory because it depends on the exact format of the data, such as the
fact that it is given in a list format. If we ever change the format or wish to explore
margin for some other kind of data, it is necessary to find any code where data is
treated as a list and alter it. That process would be tedious and likely to introduce
errors.

A better solution is to write a function to look up margins. With a function, we can
performmore complex logic such as date lookups and volume or customer discounts.

12.3 Finding and Visualizing Association Rules 353

It also localizes all logic to a single place; if we call the function in each place that
we need a margin lookup, we only need to change the procedure in one place.

In this section we create a initial working version of a more general lookup function.
We also enhance the simple lookup capability in an important way: we make it work
for transactions and rule sets as well as item names. A user may call the function
with any of those data types and it will handle the data properly.

One way to make a function work for different kinds of input data is to use the R
class system to determine the data type. (More advanced programmers may note that
the approach here is a simple solution; a more complete solution—but well beyond
the scope of this book—is to implement S3 or S4 methods for each data class that a
function supports. For details on the various object-oriented programming paradigms
in R, see [30, 74, 191, 197].)

Our function takes the form retail.margsum(items, itemMargins),
where items may be any of the following:

• A character vector of item names such as c("39", "48"), of class
“character”

• One or more transactions such as retail.trans in our example above, of class
“transactions”

• A set of rules such as retail.hi in our example above, of class “rules”

By checking the class(), our function is able to extract items appropriately from
the data that a user provides, so the user will not have to extract item names from
different kinds of objects.

Before inspecting the retail.margsum() code, we note that it has three key
sections:

1. Convert the data we’re given to a list of item name sets
2. Check that those item names are in our margin data (itemMargins)
3. Look up the margins and sum them

Here is the complete code:

retail.margsum <- function(items , itemMargins) {
Input : " items " == item names , rules or transactions in arules format
" itemMargins", a data frame of profit margin indexed by name
Output : look up the item margins , and return the sum

check the class of "items" and coerce appropriately to an item list
if (class(items) == "rules") {

tmp.items <- as(items(items), "list") # rules ==> item list
} else if (class(items) == "transactions") {

tmp.items <- as(items , "list") # transactions ==> item list
} else if (class(items) == "list") {

tmp.items <- items # it’s already an item list!
} else if (class(items) == "character") {

tmp.items <- list(items) # characters ==> item list
} else {

stop("Don ’t know how to handle margin for class ", class(items))
}
make sure the items we found are all present in itemMargins
good.items <- unlist(lapply(tmp.items , function (x)

all(unlist(x) %in% rownames(itemMargins))))
if (!all(good.items)) {

354 12 Association Rules for Market Basket Analysis

warning("Some items not found in rownames of itemMargins . ",
"Lookup failed for element(s):\n",
which(!good.items), "\nReturning only good values.")

tmp.items <- tmp.items[good.items]
}

and add them up
return(unlist(lapply(tmp.items , function(x) sum(itemMargins[x,]))))

}

We explain the code in detail below, but first let’s see how it works. One way to use
it is to find margin for an item set with simple item names:

> retail.margsum(c("39", "48"), retail.margin)
[1] -0.09072725

Another use is to find margin for each entry in a list with multiple, separate item sets:

> retail.margsum(list(t1=c("39", "45"), t2=c("31", "32")), retail.margin)
t1 t2

0.9664982 0.2733963

It accepts one or more transaction objects:

> retail.margsum(retail.trans [101:103] , retail.margin)
Trans101 Trans102 Trans103

0.7171411 4.8989272 4.9470372

It also accepts sets of rules, such as our retail.hi set of the 50 highest list rules:

> retail.margsum(retail.hi , retail.margin)
[1] 0.9609471 0.9609471 1.9327917 0.7084729 0.7084729 1.9327917

...
[45] 0.1624291 0.5067865 0.5067865 0.5442604 0.5442604 0.6285698

It also includes error detection. For instance, it gives an error in case of incorrect
item names:
> retail.margsum(c("hello", "world"), retail.margin) # error!
NULL
Warning message:
In retail.margsum(c("hello", "world"), retail.margin) :

Some items not found in rownames of itemMargins

In the above case, it returns a value of NULL as shown on the first line of the output
because there was nothing valid to look up. However, if some of the data is bad while
other parts are good, it finds whatever is possible:

> retail.margsum(list(a=c("39" , "45") , b=c("hello" , "world") , c=c("31" , "32")),
+ retail.margin) # only the first and third are OK

a c
0.9664982 0.2733963
Warning message:
...

In this case, the second element in the input is bad, so the function omits that and
returns the sums for the other two item sets “a” and “c.”

Now let’s look at the function in detail to see how it works. In the first part of the
code we convert the items input to proper types, by checking the class() and
then applying an appropriate conversion:

12.3 Finding and Visualizing Association Rules 355

[function excerpt , don ’t run on its own]
if (class(items) == "rules") {

tmp.items <- as(items(items), "list") # rules ==> item list
} else if (class(items) == "transactions") {

tmp.items <- as(items , "list") # transactions ==> item list
...

} else {
stop("Don ’t know how to handle margin for class ", class(items))

}

In this part of the code, we use the if ... else if ... construct in R to check
types successively. It ends with a final else clause in case the data is a type the
function cannot handle. In that case, it calls stop(message) to issue an error
message to the user and exit the function.

The second part of our code checks that the sets of items are present in the
itemMargins data:
[function excerpt , don ’t run on its own]

good.items <- unlist(lapply(tmp.items , function (x)
all(unlist(x) %in% rownames(itemMargins))))

if (!all(good.items)) {
warning("Some items not found in rownames of itemMargins . ",

"Lookup failed for element(s):\n",
which(!good.items), "\nReturning only good values.")

tmp.items <- tmp.items[good.items]
}

This short code block has a few crucial elements. First it uses an anonymous function
to check that items names are present in itemMargins. It uses %in% to look up
each name from a single list element (with the names extracted by unlist(x))
and then uses all() to make sure that every one of the names is found successfully
(that is, that all of the %in%matches are TRUE). The result of this is a flag whether
a given element of tmp.items is good or not.

Then we use the unlist() function a second time to convert the individual
results from lapply() to a master vector, which indicates whether each indi-
vidual element of tmp.items is good or not. Finally, if any of the individual
item sets has an item that was not found (and therefore, using ! for binary nega-
tion, !all(good.items) is TRUE) then we issue a warning() to the user,
and retain only the good items for further processing. Unlike stop(), a function
continues after a warning() to the user.

The third and final part of our code looks up the items and returns the sum of their
margins:

[function excerpt , don ’t run on its own]
return(unlist(lapply(tmp.items , function(x) sum(itemMargins[x,]))))

That line unpacks as follows, starting from the innermost part. An anonymous func-
tion looks up rows in itemMargins, and then sums them. Those rows x are deter-
mined by the surrounding lapply() that iterates over the individual sets of items
that form the list tmp.items. Eachmember set of tmp.items has its items’ mar-
gins summed. Finally, the line calls unlist() in order to convert the lapply()
result—which is a list—to a more convenient vector.

356 12 Association Rules for Market Basket Analysis

But wait! That final, single line effectively delivers thewhole purpose of the function.
Whydidwehave towrite somuch else in the function? Isn’t that needless complexity?

The answer depends on the circumstance, but this function exemplifies a common
issue in programming: handling exceptions and doing error-checking is often the
most complex part of a programming task. Just as getting data into shape is often the
bulk of an analyst’s work, much of a programmer’s effort is to anticipate potential
data problems when writing code. It is a good practice to include error-checking as
we’ve done here. Don’t assume your data will always be good; check it! You’ll avoid
many headaches for yourself and your colleagues.

Once the skeleton of a profit margin function is in place, an analyst will start to many
uses for it. For example, one might use it on transactions to find the most valuable
customers, to find potential loss-leading items that are associated with other, higher
margin items, to find money-losing associations, and so forth. A simple function of
the kind herewould be a proof of concept; a next stepmight be to increase its precision
by including time series data, discounts, and other important factors specific to a firm
and category.

12.4 Rules in Non-transactional Data: Exploring Segments
Again

There are many uses of association rules beyond retail transactions such as we con-
sidered above. The idea of a “transaction” broadly speaking is simply an observation
of one or more data points that co-occur. For instance, when a user visits one or more
web pages during a browsing session, the pages would constitute a transaction in this
sense.

In the most general sense, one can consider any data points that occur together in a
record—such as any variables observed for a customer, user, or survey respondent—
to be a transaction. This means that association rules can be applied to other kinds
of data such as general data frames (with some limitations that we’ll discuss). In this
section, we examine association rules as a way to explore consumer segmentation.

We use the simulated consumer segmentation data from Sect. 5.1.4. If you saved the
data in that chapter (Sect. 5.1.4), reload it now. We suggested a file destination as
file="∼ /segdf-Rintro-Ch5.RData". If you saved there, you can retrieve
the data with:
> load("∼/segdf -Rintro -Ch5.RData")

Alternatively, run the code in that chapter (Sects. 5.1.1–5.1.4) or download the file
from this book’s website:
> seg.df <- read.csv("http://goo.gl/qw303p")

After loading the data, check that it matches expectations:

12.4 Rules in Non-transactional Data: Exploring Segments Again 357

> summary(seg.df)
age gender income kids ownHome ...

Min . :19.26 Female :157 Min . : -5183 Min . :0.00 ownNo :159 ...
1st Qu .:33.01 Male :143 1 st Qu .: 39656 1 st Qu .:0.00 ownYes :141 ...

12.4.1 Language Brief: Slicing Continuous Data with cut()

Association rules work with discrete data yet seg.df includes three continuous
(or quasi-continuous) variables: age, income, and kids. It’s necessary to convert
those to discrete factors to use with association rules in the arules package.

We could add factor variables as new columns appended to the original data frame.
However, we use that data frame elsewhere in this book and thus prefer instead to
make a copy and and alter it:

> seg.fac <- seg.df

Now we replace age, income, and kids with recoded factors (specifically, using
the ordered factor class to code these data as ordinal values). cut(data,
breaks, labels) transforms numeric data to a factor variable. breaks=...
specifies either the number of bins or specific cut points, and labels=... specifies
the text for a factor’s category labels. We transform age as follows:

> seg.fac$age <- cut(seg.fac$age ,
+ breaks=c(0,25,35,55,65,100),
+ labels=c("19-24", "25-34", "35-54", "55-64", "65+"),
+ right=FALSE , ordered_result=TRUE)

This recodes age from an integer value into an ordered factor with 5 levels: 19–24,
25–34, and so forth. The argument right=FALSE ensures that continuous values
have closed intervals on the left, giving us [25−34) instead of (25−34]. We set
ordered_result=TRUE to specify that the resulting factor is ordinal. We check
the data and see that the recode was successful:
> summary(seg.fac$age)
19 -24 25 -34 35 -54 55 -64 65+

38 58 152 38 14

Next we convert income and kids similarly:

> seg.fac$income <- cut(seg.fac$income ,
+ breaks=c(-100000 , 40000 , 70000 , 1000000),
+ labels=c("Low", "Medium", "High"),
+ right=FALSE , ordered_result=TRUE)
> seg.fac$kids <- cut(seg.fac$kids ,
+ breaks=c(0 , 1 , 2 , 3 , 100),
+ labels=c("No kids", "1 kid", "2 kids", "3+ kids"),
+ right=FALSE , ordered_result=TRUE)
> summary(seg.fac)

age gender income kids ownHome subscribe
19 -24: 38 Female :157 Low : 77 No kids :121 ownNo :159 subNo :260
25 -34: 58 Male :143 Medium :183 1 kid : 70 ownYes :141 subYes : 40

...

All variables are now coded as categorical factors and the seg.fac data frame is
suitable for exploring associations.

358 12 Association Rules for Market Basket Analysis

Fig. 12.4 The distribution
of rules inferred from the
segmentation data set

Scatter plot for 579 rules

1

2

3

4

5

6

lift0.2 0.4 0.6 0.8

0.4

0.5

0.6

0.7

0.8

0.9

1

support

co
nf
id
en

ce

12.4.2 Exploring Segment Associations

A data frame in suitable discrete (factor) format can be converted to use in arules
by using as(..., "transactions") to code it as transaction data:

> library(arules)
> library(arulesViz)
> seg.trans <- as(seg.fac , "transactions")
> summary(seg.trans)
transactions as itemMatrix in sparse format with
300 rows (elements/itemsets/transactions) and
22 columns (items) and a density of 0.3181818

...

Rules are generated in the same way as for market basket data. We use apriori()
and specify support=0.1 and conf=0.4. This finds 579 association rules:

> seg.rules <- apriori(seg.trans , parameter=list(support =0.1, conf=0.4,
+ target="rules"))
...
> summary(seg.rules)
set of 579 rules ...

A default plot of the resulting seg.rules object is:

> plot(seg.rules)

This products Fig. 12.4, where we see a few rules with high confidence shown in
the upper left region. If we add the interactive=TRUE option for plot() (not
shown; see Sect. 12.3 for an explanation), we could explore those interactively to
find the following rules with both high confidence and high lift:

> plot(seg.rules , interactive=T)
...

lhs rhs support confidence lift
1 { age =19 -24} = > { Segment=Urban hip } 0.1266667 1.0000000 6.000000
2 { age=19-24,

income=Low } = > { Segment=Urban hip } 0.1266667 1.0000000 6.000000
3 { age=19-24,

ownHome=ownNo } = > { Segment=Urban hip } 0.1000000 1.0000000 6.000000

12.4 Rules in Non-transactional Data: Exploring Segments Again 359

4 { age=19-24,
subscribe=subNo } = > { Segment=Urban hip } 0.1000000 1.0000000 6.000000

...

These show an association of age and other variables with membership in the Urban
hip segment.

A graph plot visualizes clusters of rules to reveal higher-level patterns. We extract
the top 35 highest-lift rules and visualize them as a graph:
> seg.hi <- head(sort(seg.rules , by="lift") , 35)

> inspect(seg.hi)

lhs rhs support confidence ...

[1] { age =19 -24} = > { Segment=Urban hip } 0.1266667 1.0000000 ...

...

> plot(seg.hi , method="graph" , control=list(type="items")) # orientation varies

The resulting chart is shown in Fig. 12.5 (orientation of the chart may vary for you).
There are two dominant clusters: a large cluster with many rules and relatively high
lift that involve ages 19–24, no home ownership, lower income, and so forth; and
a smaller cluster involving late middle-age consumers without kids in the travelers
segment.

One might do further explorations by selecting additional sets of rules beyond the
head() of the sorted rules. To do this, sort() the rules by lift (or other parameter
as desired) and then index the rules you want. To examine the next 25 rules after the
first 35 considered above:
> seg.next <- sort(seg.rules , by="lift")[36:60]
> plot(seg.next , method="graph", control=list(type="items")) # not shown

We omit the resulting chart in this case, which shows patterns involving factors such
as the suburban mix segment and home ownership.

Fig. 12.5 Example of using
a graph plot to explore rule
clusters for the segmentation
data set

Graph for 35 rules
size: support (0.1 − 0.167)

color: lift (3.75 − 6)

360 12 Association Rules for Market Basket Analysis

The patterns demonstrate that association rules can be useful to seek patterns in such
non-transactional data. A key point is that this is primarily an exploratory exercise. It
is useful if it reveals interesting patterns for further investigation. One should confirm
any such inferences before drawing final conclusions.

12.5 Key Points

Association rules are a powerful way to explore the relationships in a data set. The
following points summarize some key suggestions from this chapter.

• Association rules are commonly used with sparse data sets that have many obser-
vations but little information per observation. Inmarketing, this is typical ofmarket
baskets and similar transaction data. (Sect. 12.1)

• The arules package is the standard R package for association rules. arules
provides support for handling sparse data and finding rules and the arulesViz
package provides visualization methods.

• Core metrics for evaluating association rules are support (frequency), confidence
(co-occurrence), and lift (co-occurrence above the rate of association by pure
chance). There is no absolute value required of them except that lift should be
somewhat greater than 1.0 (or possibly very much less than 1.0, showing that the
non-association is unexpected, as in fraud detection). Interpretation depends on
experience with similar data and the usefulness for a particular business question
(Sect. 12.1).

• A typical workflow for association rules (Sects. 12.2.1 and 12.2.2) is:

– Import the raw data and use as(data, "transactions") to transform
it to a transactions object for better performance.

– Use apriori(transactions, support= , confidence= ,
target="rules") to find a set of association rules.

– Plot the resulting rule withplot(..., interactive=TRUE) and inspect
the rules (Sect. 12.3)

– Look for patterns by selecting subsets of rules, such as those with highest lift,
and use plot(..., method="graph") for visualization (Sect. 12.3.1)

• Data such as item profit margin may be used to extend analyses and look at the
potential business impact of acting on particular rules (Sect. 12.3.2)

• Association rule mining can also be a useful exploratory technique for mining
non-transactional data such as consumer segmentation data (Sect. 12.4).

• We used R functions cut() to slice continuous data (Sect. 12.4.1) and class()
to determine an object’s data type (Sect. 12.3.3)

• When you write a custom function, use warning() to report potential issues and
violations of data assumptions (Sect. 12.3.3), and use stop() when a condition
means that the function should not continue.

12.6 Learning More* 361

12.6 Learning More*

An approachable text for association rules is [185]. In that text, Chap. 6 discusses
the fundamental concepts and algorithms of association rules, and Chap.7 develops
more advanced concepts and applications. Vipin Kuman, one of that text’s authors,
has published online materials related to the book and association rules, at http://
www-users.cs.umn.edu/~kumar/dmbook/index.php.

The arules package is notable for its rich ecosystem of tools such as the
arulesViz package that we used for charting. Other options include sequence
mining and naive Bayes algorithms in addition to the standard apriori algorithm.
For an overview of the arules ecosystem, see [87] and the vignettes that come
with arules. The latest developments are available from the first author Michael
Hahsler’s site, http://michael.hahsler.net/.

Association rules have also been extended to the analysis of behavioral sequences,
the topic of Chap. 14. We briefly discuss association sequences in Sect. 14.7 and
provide an example in that chapter’s code file.

12.7 Exercises

12.7.1 Retail Transactions Data for Exercises

For the exercises here, we use a data set of simulated transactions, plus another with
item costs andmargin, for a retail super center. This hypothetical store sells groceries
along with other consumer and household goods, as well as some items more typical
of home furnishing and big box stores, so the items range from very inexpensive
($0.09 USD) to quite expensive ($39009.00 USD).

We load the two data sets as follow, and additionally extract the item margins from
the cost data frame to a simple vector, in order to match the approach taken in the
chapter:

load from website . 11MB , may be slow
retail.raw <- readLines("https://goo.gl/wi8KHg")
retail.margin <- read.csv("https://goo.gl/Pidzpd")

or load locally , if downloaded
retail.raw <- readLines("retail -baskets.csv")
retail.margin <- read.csv("retail -margin.csv")
margin.short <- data.frame(retail.margin$margin)
rownames(margin.short) <- retail.margin$item

As always, we suggest to explore and summarize the data before starting analyses.

http://www-users.cs.umn.edu/~kumar/dmbook/index.php
http://www-users.cs.umn.edu/~kumar/dmbook/index.php
http://michael.hahsler.net/

362 12 Association Rules for Market Basket Analysis

12.7.2 Exercises

1. Convert the raw transaction lines, as read above, into a transactions object for
arules. How many unique items are there? What are the five most popular
items? What are the sizes of the smallest, largest, and median basket? (Hint: in
case of trouble, check the format of the raw item lines.)

2. Find association rules in the retail data. Aim for somewhere between 100 and
1000 rules (consider tuning the rule length, support, and confidence parameters).
Plot confidence versus support for the rules, and interpret that pattern.

3. Find the top 30 rules by lift and plot them. Which items are associated in the
group with highest single-item support? Which items are in the largest group by
total number of items?

4. In the chapter, we presented a function to calculate total margin for a set of rules.
Among all the transactions, what are the top 10 baskets with the highest total
margin?

5. Suppose we want to focus on the highest margin transactions. What proportion of
baskets have a total margin of $200 or more? What are the most common items
in those baskets? Plot the frequency of items that appear in 10% or more of those
baskets. (Hint: there is an arules function called itemFrequency().)

6. Add the item names to the plot axis for the previous exercise. (Hint: check
Sect. 3.4.1, and also examine plotting parameters cex.axis and las.)

7. The retail.margin data frame, as loaded above, has both price and margin. Calcu-
late the proportional margin for each item (margin divided by price). Plot those.
If you transformed them, what would be an appropriate transformation? Plot that
also.

8. (Stretch programming exercise). Write a function similar to retail.margsum
() but that returns both the total margin and the total price for a basket. Find the
top 10 baskets in terms of their margin to price ratio.

Chapter 13
Choice Modeling

Much of the data we observe in marketing describes customers purchasing products.
For example, as we discussed in Chap.12, retailers now regularly record the trans-
actions of their customers. In that chapter, we discussed analyzing retail transaction
records to determine which products tend to occur together in the same shopping
basket. In this chapter we discuss how to analyze customers’ product choices within
a category to understand how features and price affect which product a customer will
choose. For example, if a customer comes into the store and purchases a 30 oz. jar of
Hellman’s brand canola mayonnaise for $3.98, we can conceptualize this as the cus-
tomer choosing that particular type of mayonnaise among all the other mayonnaise
available at that store. This data on customers’ choices can be analyzed to determine
which features of a product (e.g., package size, brand, or flavor) are most attractive
to customers and how they trade off desirable features against price.

On the surface, this may sound quite similar to what we discussed in Chap. 7, where
we cover how to use linear models to identify drivers of outcomes. It is similar,
except that product choice data doesn’t fit well into the linear modeling framework,
because the outcomewe observe is not a number or a rating for each product. Instead,
we observe that the customer makes a choice among several options, each of which
has its own set of attributes. To accommodate this unique data structure, marketers
have adopted choice models, which are well-suited to understanding the relationship
between the attributes of products and customers’ choices among sets of products.
In this chapter, we focus on the multinomial logit model, the most frequently used
choice model in marketing.

While choice models are often used to analyze retail purchase data, there are some
settings where it is more difficult to collect data on customers’ product choices. For
example, when people shop for a car, they typically gather information from many
sources over several months, so it is more difficult to reconstruct the set of products
that they considered and the features and prices of those products. In these settings,
marketers turn to choice-based conjoint analysis, which is a survey method where
customers are asked to make choices among products with varying features and
prices. We analyze these survey choices using the multinomial logit model just as we

© Springer Nature Switzerland AG 2019
C. Chapman and E. M. Feit, R For Marketing Research and Analytics, Use R!,
https://doi.org/10.1007/978-3-030-14316-9_13

363

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14316-9_13&domain=pdf
https://doi.org/10.1007/978-3-030-14316-9_13

364 13 Choice Modeling

might analyze real purchases. In this chapter, our example focuses on choice-based
conjoint analysis, but the methods we describe could be applied to retail purchase
data as well.

13.1 Choice-Based Conjoint Analysis Surveys

Suppose an automotive company such as Toyota or Ford is designing a new line of
minivans and is trying to determine how large the minivan should be and what type
of engine it should have. To inform this decision it would be helpful to understand
how customers value those different features. Do customers like or dislike hybrid
engines? If they like them, howmuch more would they be willing to pay for a hybrid
engine? Are there segments of customers who like hybrid engines more than other
customers?

Conjoint surveys give marketers information about how customers choose products
by asking respondents to answer survey questions like the one shown in Fig. 13.1. In
this question, respondents are asked to choose from three product profiles, each
with a specific passenger capacity, cargo capacity, engine type, and price. The
product options in the survey are called alternatives and the product features are
called attributes. This conjoint analysis study has three alternatives in each question,
described by four attributes. Each attribute occurs at some level. For example, the
possible levels for cargo capacity in our example survey are 2 and 3 ft.

In a typical choice-based conjoint (CBC) survey, we ask respondents who are likely
buyers of minivans to answer a number of questions similar to the one in Fig. 13.1.
Each question has the same structure, but varies the levels of the attributes for the
alternatives.

In the next section, we generate hypothetical data from a conjoint survey where
each respondent answers 15 questions like the one in Fig. 13.1. Each question offers
the respondent 3 alternatives to choose from, so each respondent sees a total of

Which of the following minivans would you buy?
Assume all three minivans are identical other than the features listed below.

Option 1 Option 2 Option 3

6 passengers 8 passengers 6 passengers

2 ft. cargo area 3 ft. cargo area 3 ft. cargo area

gas engine hybrid engine gas engine

$35,000 $30,000 $30,000

I prefer (check one):

Fig. 13.1 An example choice-based conjoint survey question

13.1 Choice-Based Conjoint Analysis Surveys 365

15× 3 = 45 product profiles. Conjoint surveys often include more attributes, more
questions and more alternatives in each question; a typical study might have 5–10
attributes and include 10–20 questions for each respondent.

You may recall that we also discussed “conjoint analysis” in Chap. 9. In that chapter
we asked respondents to rate single products instead of having them choose among
sets of products. This is called “ratings-based conjoint” or “metric conjoint” and is
analyzed with linear models as we did in Chap.9. While asking respondents to give
ratings allows us to use a linear model instead of a choice model, rating profiles
is a more difficult task for the respondent. When was the last time you considered
whether a product was a 7 or an 8 on a 10-point scale? Choosing products as in
Fig. 13.1 is a natural task that consumers do every day. For this reason choice-based
conjoint surveys have become a standard tool in the arsenal of marketing researchers.
When marketers say “conjoint,” they often mean choice-based conjoint analysis.

The key difference between choice-based conjoint andmetric conjoint is the structure
of the data you collect. In the minivan CBC survey, each observation is a choice
among three alternatives with varying levels of the product attributes. The goal of
our analysis is to relate the choice to the product attributes. To do this we use a choice
model, which is tailored to this unusual data structure.

The next section, where we simulate CBC data, is written for readers who have some
knowledge of choice models already. We encourage those of you who are new to
choice modeling to download the data using the commands below and skip ahead to
Sect. 13.3. Those who are familiar with choice modeling might wish to work through
Sect. 13.2 to see how choice data is structured in R.
> cbc.df <- read.csv("http://goo.gl/5xQObB",
+ colClasses = c(seat = "factor", price = "factor",
+ choice="integer"))
> cbc.df$eng <- factor(cbc.df$eng , levels=c("gas", "hyb", "elec"))
> cbc.df$carpool <- factor(cbc.df$carpool , levels=c("yes", "no"))
> summary(cbc.df)

resp.id ques alt carpool seat cargo
Min. : 1.00 Min. : 1 Min. :1 yes :2655 6:3024 2ft :4501
1st Qu.: 50.75 1st Qu.: 4 1st Qu.:1 no :6345 7:2993 3ft:4499
Median :100.50 Median : 8 Median :2 8:2983
Mean :100.50 Mean : 8 Mean :2

...

13.2 Simulating Choice Data*

If you loaded the data above, you can skip this optional section and go to Sect. 13.3.

The first step in creating any conjoint survey is to decide on which product attributes
to include in the survey. Since this study focuses on size and engine type, we include
four attributes: number of seats in the minivan, the cargo capacity (measured by the
depth of the cargo area), the engine type and the price. We create a list in R called
attrib to store the attributes:

366 13 Choice Modeling

> attrib <- list(seat = c("6", "7", "8"),
+ cargo = c("2ft", "3ft"),
+ eng = c("gas", "hyb", "elec"),
+ price = c("30", "35", "40"))

Each element of this list is a character vector indicating levels of the attribute to
include in the survey.

The next step is to generate part worths for the attributes. Part worths are conceived
to be latent values a customer places on levels of an attribute when making choices.
Each attribute in the choice model is treated like a factor in a linear model. As we
discussed in Chap. 7, when we include a factor as a predictor in anymodel, that factor
has to be coded. In this chapter, we use dummy coding, so that one level of the factor
is considered the base level and the model includes coefficients that describe the part
worth or value of that factor over the base level. If this is puzzling, you might review
Sect. 7.4 on including factors as predictors in a linear model.

We designate the first level of each attribute to be the base level. We create names
for the coefficients by looping over the attribute list, dropping the first level of the
attribute, and then concatenating the name of the attribute and the level designation:

> coef.names <- NULL
> for (a in seq_along(attrib)) {
+ coef.names <- c(coef.names ,
+ paste(names(attrib)[a], attrib [[a]][-1], sep=""))
+ }
> coef.names
[1] "seat7" "seat8" "cargo3ft" "enghyb" "engelec" "price35"
[7] "price40"

Now we have a vector of 7 coefficient names.

To generate the simulated data we assume that the average part worths in the popu-
lation are:
> mu <- c(-1, -1, 0.5, -1, -2, -1, -2)
> names(mu) <- coef.names
> mu

seat7 seat8 cargo3ft enghyb engelec price35 price40
-1.0 -1.0 0.5 -1.0 -2.0 -1.0 -2.0

You can see that we’ve given names to the elements of the mu. While this isn’t
absolutely necessary, by keeping everything labeled using R’s built in names, the
output is easier to read.

We assume that each respondent has his or her own unique part worth coefficients
and that these follow a multivariate normal distribution in the population with a
covariance matrix Sigma:
> Sigma <- diag(c(0.3, 1, 0.1, 0.3, 1, 0.2, 0.3))
> dimnames(Sigma) <- list(coef.names , coef.names)
> Sigma["enghyb", "engelec"] <- Sigma["engelec", "enghyb"] <- 0.3

The last line above creates a correlationbetween thepartworth forengelec (electric
engine) and enghyb (hybrid engine), so respondents who have a stronger preference
for engelec over enggas will also have a stronger preference for enghyb over
enggas.

13.2 Simulating Choice Data* 367

With mu and Sigma in hand, we generate each respondent’s part worth coefficients
using the mvrnorm function from the MASS package. We create a vector of respon-
dent IDs for the 200 respondents (resp.id) and a factor variable indicatingwhether
each respondent intends to use the minivan to carpool (carpool).
> set.seed (33040)
> resp.id <- 1:200 # respondent ids
> carpool <- sample(c("yes", "no"), size=length(resp.id), replace=TRUE ,
+ prob=c(0.3, 0.7))
> library(MASS)
> coefs <- mvrnorm(length(resp.id), mu=mu, Sigma=Sigma)
> colnames(coefs) <- coef.names

Finally, we adjust the part worths for respondents who use the minivan to carpool:
> coefs[carpool=="yes", "seat8"] <- coefs[carpool=="yes", "seat8"] + 2
> coefs[carpool=="yes", "seat7"] <- coefs[carpool=="yes", "seat7"] + 1.5

coefs is now amatrix where each row contains the part worths for each respondent.
To get a better sense of what we have done, you could type head(coefs) or, better
yet, head(cbind(carpool, coefs)). You can also use the by() command
(Sect. 3.4.5) to compute mean part worths for those who do and do not carpool. Just
keep in mind that these coefficients are parameters of the model we plan to simulate
from, not the final observed data.

With coefs in hand, we are ready to generate our survey questions and the observed
responses. Our survey includes 15 questions that each ask the respondent to choose
from 3 alternative minivans. We set the number of questions and alternatives as
variables (nques and nalt) so that we might easily change the size of the survey
in the future:
> nques <- 15
> nalt <- 3

Next, we create a master list of all possible minivan profiles by passing the attrib
list to expand.grid(), which we discuss below:
> profiles <- expand.grid(attrib)
> nrow(profiles)
[1] 54
> head(profiles)

seat cargo eng price
1 6 2ft gas 30
2 7 2ft gas 30
3 8 2ft gas 30
4 6 3ft gas 30
5 7 3ft gas 30
6 8 3ft gas 30

As you can see, profiles has 54 rows, representing all possible combinations of
3 levels of seating capacity, 2 levels of cargo capacity, 3 levels of engine and 3 levels
of price (3× 2× 3× 3 = 54). We can convert profiles to dummy coding using
model.matrix().
> profiles.coded <- model.matrix(~ seat + cargo + eng + price ,
+ data=profiles)[, -1]
> head(profiles.coded)

seat7 seat8 cargo3ft enghyb engelec price35 price40
1 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0
3 0 1 0 0 0 0 0
4 0 0 1 0 0 0 0
5 1 0 1 0 0 0 0
6 0 1 1 0 0 0 0

368 13 Choice Modeling

profiles.coded now contains 54 rows, one for each possible combination of
features, that are coded using the dummy coding scheme.

We haven’t yet reviewed expand.grid() and model.matrix(); they are util-
ity functions for handling factor variables. They are used under the hood in linear
modeling routines such as lm() and predict() (Chap. 7). Because choice mod-
els are a variant of linear models, we can use these to generate our choice data.
The only adjustment we need to make is to remove the intercept from the result of
model.matrix() because choice models typically do not include intercepts.

Now that the respondent part worth coefficients are in coefs and the set of all
possible minivan profiles is in profiles.coded, we are ready to generate our
hypothetical survey questions and responses and store them in a data frame called
cbc.df. For each of the 200 respondents, we choose nques*nalt (or 15× 3 =
45) profiles at random from the list of all possible profiles in profiles.coded.
The profiles indicated by the vector profiles.i are the profiles that we show
respondent i in the survey: the first 3 profiles are the alternatives shown in choice 1,
the next 3 profiles are the alternatives for choice 2, and so forth.

We compute each respondent’s expected utility for each profile by multiplying
the respondent’s coefs by the coded product profile. (This happens in the line
utility <- profiles.coded[profiles.i,]%*%coefs[i,] in the
code below. We then compute choice probabilities for each alternative in the
question according to the multinomial logit probabilities, computed as
probs <- exp(wide.util)/rowSums(exp(wide.util)).We then take
a random draw to determine which of the nalt products the customer chooses
choice <- apply(probs, 1, function(x) sample(1:nalt,
size=1, prob=x)). Finally, we append the choices and profiles to the cbc.df
data frame. All of these steps are repeated for each respondent.
> cbc.df <- data.frame(NULL)
> for (i in seq_along(resp.id)) {
+ profiles.i <- sample (1: nrow(profiles), size=nques*nalt)
+ utility <- profiles.coded[profiles.i,] %*% coefs[i,]
+ wide.util <- matrix(data=utility , ncol=nalt , byrow=TRUE)
+ probs <- exp(wide.util) / rowSums(exp(wide.util))
+ choice <- apply(probs , 1, function(x) sample (1:nalt , size=1, prob=x))
+ choice <- rep(choice , each=nalt)==rep(1:nalt , nques)
+ conjoint.i <- data.frame(resp.id=rep(i, nques),
+ ques = rep(1:nques , each=nalt),
+ alt = rep(1:nalt , nques),
+ carpool = rep(carpool[i], nques),
+ profiles[profiles.i,],
+ choice = as.numeric(choice))
+ cbc.df <- rbind(cbc.df, conjoint.i)
+ }
> # Tidy up, keeping cbc.df and attrib
> rm(a, i, resp.id, carpool , mu, Sigma , coefs , coef.names ,
+ conjoint.i, profiles , profiles.i, profiles.coded , utility ,
+ wide.util , probs , choice , nalt , nques)

The code above leverages R’s vector and matrix operations quite extensively. Going
through it carefully and figuring out how each step works may take some time,
but it will help you understand R’s matrix computations and give you a clearer
understanding of the assumptions of the multinomial logit model. At the core, this
model is very similar to a linear model; the equation for utility is, in fact, a linear

13.2 Simulating Choice Data* 369

model. What makes a choice model distinct is that the utility is not observed
directly;we only observewhich product the respondent chooses. Thiswhywehaven’t
stored the utility in our synthetic data in cbc.df.

In the code above, we have generated data from a choice model called a hierarchical
multinomial logit model. Hierarchical refers to the fact that there is a different set of
coefficients for each respondent and that those coefficients follow an “upper level”
model for the population. In our code, the parameters of the upper level model aremu,
Sigma and the adjustments wemade for people who use their minivan to carpool. At
the “lower level,” the choices of an individual consumer follow a multinomial logit.
The hierarchical multinomial logit model has become the workhorse of choice-based
conjoint and is incorporated into commercial software for conjoint analysis such as
Sawtooth Software and JMP. In this chapter, we begin by analyzing the data using
the simpler multinomial logit model in Sect. 13.3, and then estimate the hierarchical
multinomial logit model in Sects. 13.4 and 13.5.

13.3 Fitting a Choice Model

The simulated choice-based conjoint data is in the cbc.df data frame.

> head(cbc.df)
resp.id ques alt carpool seat cargo eng price choice

19 1 1 1 yes 6 2ft gas 35 0
12 1 1 2 yes 8 3ft hyb 30 0
4 1 1 3 yes 6 3ft gas 30 1
1 1 2 1 yes 6 2ft gas 30 0
23 1 2 2 yes 7 3ft gas 35 1
31 1 2 3 yes 6 2ft elec 35 0

The first three rows in cbc.df describe the first question that was asked of respon-
dent 1, which is the question shown in Fig. 13.1. The choice column shows that
this respondent chose the third alternative, which was a 6-passenger gas engine mini-
van with 3ft of cargo capacity at a price of $30000 (represented in $1000s as “30”).
resp.id indicates which respondent answered this question, ques indicates that
these first three rows were the profiles in the first question and alt indicates that the
first row was alternative 1, the second was alternative 2 and the third was alternative
3. (The row numbers all the way to the left in the output are not very meaningful.
They indicate the profile number from our master list of 54 profiles that were used to
generate the question; R carried this information over when we generated the data.)
The variable choice indicates which alternative the respondent chose; it takes the
value of 1 for the profile in each choice question that was indicated as the preferred
alternative.

The cbc.df data frame organizes the data in what is sometimes called “long”
format, where each profile is on its own line and there is a column that indicateswhich
question the profilewas displayed in. This is generally our preferred format for choice
data, since it allows you to have a different number of profiles in each question by
including additional rows.However, there are several other popular formats including

370 13 Choice Modeling

a “wide” format, where each row corresponds to a different question and another
format where the profiles are stored separately from the choices.

Because there is no standard format for choice data, when you work with different
R packages or use data collected with other software systems, you need to pay close
attention to how the package you are using expects the data to be formatted. Fortu-
nately, there are R functions that can be helpful when reformatting data including
base functions such as reshape(). You should never have to resort to tedious man-
ual reformatting using a spreadsheet tool. Often someone else has written reliable
R code to do the reformatting. For example, Rcbc [33] provides a helpful set of
utilities for converting from the format used by Sawtooth Software into the format
used by the ChoiceModelR package.

13.3.1 Inspecting Choice Data

Once you have your data properly formatted, it is tempting to estimate a complete
choice model immediately. Popular choice modeling software packages make easy
to fit a model without even doing basic descriptives on the data. Don’t fall into this
trap! As with any other modeling, it is important to first get an understanding of the
data using basic descriptives. We start with summary:
> summary(cbc.df)

resp.id ques alt carpool seat cargo
Min. : 1.00 Min. : 1 Min. :1 yes :2655 6:3024 2ft :4501
1st Qu.: 50.75 1st Qu.: 4 1st Qu.:1 no :6345 7:2993 3ft:4499
Median :100.50 Median : 8 Median :2 8:2983
Mean :100.50 Mean : 8 Mean :2
3rd Qu .:150.25 3rd Qu.:12 3rd Qu.:3
Max. :200.00 Max. :15 Max. :3

...

We see how many times each level of each attribute appeared in the questions (about
3000 times for three-level attributes and about 4500 times for two-level attributes).
However, a more informative way to summarize choice data is to compute choice
counts, which are cross tabs on the number of times respondents chose an alternative
at each feature level. We can do this easily using xtabs(), covered in Chap.5:
> xtabs(choice ~ price , data=cbc.df)
price

30 35 40
1486 956 558

Respondents chose aminivan at the $30Kprice pointmuchmoreoften than they chose
minivans priced at $35K or $40K. If we compute counts for the cargo attribute, we
find that the choices were more balanced between the two options, suggesting that
cargo was not as important to customers as price:
> xtabs(choice ~ cargo , data=cbc.df)
cargo
2ft 3ft

1312 1688

We encourage you to compute choice counts for each attribute before estimating a
choice model. If you find that your model’s estimates or predicted shares are not

13.3 Fitting a Choice Model 371

consistent with the raw counts, consider whether there could be a mistake in the
data formatting. Many times, a junior analyst has come to one of us saying, “The
predictions from my choice model don’t make sense to the client,” and our first
question is always, “Have you looked at the raw choice counts?”

Often this reveals a mistake, but when there is no mistake, it can be helpful to show
the clients the raw choice counts to help them understand that your model predictions
are based on how people responded in the survey. With that warning, we can now
estimate our first choice model. By fitting a choice model, we can get a precise
measurement of how much each attribute is associated with respondents’ choices.

13.3.2 Fitting Choice Models with mlogit()

We use the mlogit package, which you may need to install with install.
packages(). mlogit estimates the most basic and commonly-used choice
model, the multinomial logit model. This model is also called the conditional logit.
For faster computationwith largemodels, youmight consider themnlogit package
as an alternative.

mlogit requires the choice data to be in a special data format created using the
mlogit.data() function. You pass your choice data to mlogit.data, along
with a few parameters telling it how the data is organized. mlogit.data accepts
data in either a “long” or a “wide” format and you tell it which you have using the
shape parameter. Thechoice,varying and id.var parameters indicatewhich
columns contain the response data, the attributes and the respondent ids, respectively.

> library(mlogit)
> cbc.mlogit <- mlogit.data(data=cbc.df, choice="choice", shape="long",
+ varying =3:6, alt.levels=paste("pos" ,1:3),
+ id.var="resp.id")

The resultingcbc.mlogit is anmlogit.dataobject that can be used to estimate
a model with mlogit(). The syntax for mlogit uses formula notation similarly
to other functions for regression models in R:

> m1 <- mlogit(choice ~ 0 + seat + cargo + eng + price , data = cbc.mlogit)
> summary(m1)
...
Frequencies of alternatives:

pos 1 pos 2 pos 3
0.32700 0.33467 0.33833
...
Coefficients :

Estimate Std. Error t-value Pr(>|t|)
seat7 -0.535280 0.062360 -8.5837 < 2.2e-16 ***
seat8 -0.305840 0.061129 -5.0032 5.638e-07 ***
cargo3ft 0.477449 0.050888 9.3824 < 2.2e-16 ***
enghyb -0.811282 0.060130 -13.4921 < 2.2e-16 ***
engelec -1.530762 0.067456 -22.6926 < 2.2e-16 ***
price35 -0.913656 0.060601 -15.0765 < 2.2e-16 ***
price40 -1.725851 0.069631 -24.7856 < 2.2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ? 1

Log -Likelihood: -2581.6

372 13 Choice Modeling

The output also looks quite similar to what we have seen for other models. At the
bottom of the output is a table of the estimated part worth coefficients for the pop-
ulation. The Estimate lists the estimated parameter for each level; these must be
interpreted relative to the base levels of each attribute. For example, the estimate for
seat7 measures the attractiveness of 7 passenger minivans relative to 6 passen-
ger minivans. The negative sign tells us that, on average, our simulated customers
preferred 6 seat minivans to 7 seat minivans. Estimates that are larger in magnitude
indicate stronger preferences, so we can see that customers strongly disliked electric
engines (relative to the base level, which is gas) and disliked the $40K price (rela-
tive to the base level price of $30). These parameter estimates are on the logit scale
(Sect. 9.2.1) and typically range between −2 and 2.

The Std. Error column gives a sense of how precise the estimate is, given the
data, along with a statistical test of whether the coefficient is different than zero. A
non-significant test result indicates that there is no detectible difference in preference
for that level relative to the base level. Just as with any statistical model, the more
data you have in you conjoint study (for a given set of attributes), the smaller the
standard errors will be. Similarly, if there are many attributes and levels in a study
(for a fixed number of respondents answering a survey of a given length), the part
worth estimates will be very imprecise. We’ll discuss more what this means for an
analysis in Sect. 13.6.

You may have wondered why we included 0 + in the formula for m1, indicating
that we did not want an intercept included in our model. We could estimate a model
with an intercept:
> m2 <- mlogit(choice ~ seat + cargo + eng + price , data = cbc.mlogit)
> summary(m2)
...
Coefficients :

Estimate Std. Error t-value Pr(>|t|)
pos 2:(intercept) 0.028980 0.051277 0.5652 0.5720
pos 3:(intercept) 0.041271 0.051384 0.8032 0.4219
seat7 -0.535369 0.062369 -8.5840 < 2.2e-16 ***
seat8 -0.304369 0.061164 -4.9763 6.481e-07 ***
cargo3ft 0.477705 0.050899 9.3854 < 2.2e-16 ***
enghyb -0.811494 0.060130 -13.4956 < 2.2e-16 ***
engelec -1.529423 0.067471 -22.6677 < 2.2e-16 ***
price35 -0.913777 0.060608 -15.0769 < 2.2e-16 ***
price40 -1.726878 0.069654 -24.7922 < 2.2e-16 ***
...
Log -Likelihood: -2581.3
McFadden R^2: 0.21674
Likelihood ratio test : chisq = 1428.5 (p.value = < 2.22e-16)

Whenwe include the intercept,mlogit adds two additional parameters that indicate
preference for the different positions in the question (left, right ormiddle in Fig. 13.1):
pos2:(intercept) indicates the relative preference of the second position in the
question (versus the first) and pos3:(intercept) indicates the preference for
the third position (versus the first.) These are sometimes called alternative specific
constants or ASC’s to differentiate them from the single intercept in a linear model.

In a typical conjoint analysis study, we don’t expect that people will choose aminivan
because it is on the left or the right in a survey question! For that reason, we would
not expect the estimated alternative specific constants to differ from zero. If we found

13.3 Fitting a Choice Model 373

one of these parameters to be significant, that might indicate that some respondents
are simply choosing the first or the last option without considering the question.

In this model, the intercept parameter estimates are non-significant and close to zero.
This suggests that it was reasonable to leave them out of our first model, but we can
test this formally using lrtest():
> lrtest(m1, m2)
Likelihood ratio test

Model 1: choice ~ 0 + seat + cargo + eng + price
Model 2: choice ~ seat + cargo + eng + price

#Df LogLik Df Chisq Pr(>Chisq)
1 7 -2581.6
2 9 -2581.3 2 0.6789 0.7122

This function performs a statistical test called a likelihood ratio test, which can be
used to compare two choice models where one model has a subset of the parameters
of another model. Comparing m1 to m2, results in a p-value (Pr(>Chisq)) of
0.7122. Since the p-value is much greater than 0.05, we can conclude that m1 and
m2 fit the data equally well. This suggests that we don’t need the alternative specific
constants to fit the present data.

There are a few occasions where alternative specific constants do make sense. In
some conjoint studies, the respondent is presented with several “fixed” alternatives.
Option 1might be a salad, option 2might be a sandwich and option 3might be a soup.
In each question, the attributes of those options vary, but the respondent is always
asked to chose from one salad, one sandwich and one soup. Similarly, there might
be a study of commuters’ choice of transportation alternatives where alternative 1 is
always a bus, alternative 2 is always a train and alternative 3 is always driving. In
such cases, you should include the alternative specific constants, but in the majority
of conjoint analysis surveys in marketing, alternative specific constants aren’t used.

You don’t have to treat every attribute in a conjoint study as a factor. As with linear
models, some predictors may be factors while others are numeric. For example, we
can includeprice as a numeric predictorwith a simple change to themodel formula.
In themodel formula, we convert price to character vector usingas.character
and then to a number using as.numeric. (If you use as.numeric without
as.character first, price will be converted to the values 1, 2 and 3 due to
the way R stores factors internally. Converting to a character first results in values of
30, 35 and 40.)
> m3 <- mlogit(choice ~ 0 + seat + cargo + eng
+ + as.numeric(as.character(price)),
+ data = cbc.mlogit)
> summary(m3)
...
Coefficients :

Estimate Std. Error t-value Pr(>|t|)
seat7 -0.5345392 0.0623518 -8.5730 < 2.2e-16 ***
seat8 -0.3061074 0.0611184 -5.0084 5.488e-07 ***
cargo3ft 0.4766936 0.0508632 9.3721 < 2.2e-16 ***
enghyb -0.8107339 0.0601149 -13.4864 < 2.2e-16 ***
engelec -1.5291247 0.0673982 -22.6879 < 2.2e-16 ***
as.numeric(as.character(price)) -0.1733053 0.0069398 -24.9726 < 2.2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’0.1 ‘ ’ 1

Log -Likelihood: -2582.1

374 13 Choice Modeling

Theoutput nowshows a single parameter for price. The estimate is negative indicating
that people prefer lower prices to higher prices. A quick likelihood ratio test suggests
that the model with a single price parameter fits just as well as our first model.

> lrtest(m1, m3)
Likelihood ratio test

Model 1: choice ~ 0 + seat + cargo + eng + price
Model 2: choice ~ 0 + seat + cargo + eng + as.numeric(as.character(price))

#Df LogLik Df Chisq Pr(>Chisq)
1 7 -2581.6
2 6 -2582.1 -1 0.9054 0.3413

Given this finding, we choose m3 as our preferred model because it has fewer param-
eters.

13.3.3 Reporting Choice Model Findings

It is often difficult, even for those with training in choice models, to interpret choice
model part worth estimates directly. The coefficients are on an unfamiliar scale and
they measure relative preference for the levels, which can make them difficult to
understand. So, instead of presenting the coefficients, most choice modelers prefer to
focus on using themodel tomake choice share predictions or to computewillingness-
to-pay for each attribute.

Willingness-to-Pay

In a model like m3 where we estimate a single parameter for price, we can compute
the average willingness-to-pay for a particular level of an attribute by dividing the
coefficient for that level by the price coefficient.

> coef(m3)["cargo3ft"]/(-coef(m3)["as.numeric(as.character(price))"]/1000)
cargo3ft
2750.601

The result is a number measured in dollars, $2,750.60 in this case. (We divide by
1000 because our prices were recorded in 1000’s of dollars.) Willingness-to-pay is
a bit of a misnomer; the proper interpretation of this number is that, on average,
customers would be equally divided between a minivan with 2 ft of cargo space and
a minivan with 3 ft of cargo space that costs $2,750.60 more. Another way to think
of it is that $2,750.60 is the price at which customers become indifferent between the
two cargo capacity options. This same willingness to pay value can be computed for
every attribute in the study and reported to decision makers to help them understand
how much customers value various features.

Simulating Choice Shares

While willingness-to-pay is more interpretable than attribute coefficients, it can still
be difficult to understand. Many analysts prefer to focus exclusively on using the
model to make share predictions. A share simulator allows you to define a number of
different alternatives and then use the model to predict how customers would choose

13.3 Fitting a Choice Model 375

among those new alternatives. For example, you could use themodel to predict choice
share for the company’s new minivan design against a set of key competitors. By
varying the attributes of the planned minivan design, you can see how changes in the
design affect the choice share.

Unfortunately, there isn’t a handy predict() function for mlogitmodel objects,
as there are for many other types of model objects. Luckily, it isn’t too difficult to
write our own:
> # Predicting shares

> predict.mnl <- function(model , data) {

+ # Function for predicting shares from a multinomial logit model

+ # model: mlogit object returned by mlogit ()

+ # data: a data frame containing the set of designs for which you want to

+ # predict shares. Same format as the data used to estimate model.

+ data.model <- model.matrix(update(model$formula , 0 ~ .), data = data)[,-1]

+ utility <- data.model%*%model$coef

+ share <- exp(utility)/sum(exp(utility))

+ cbind(share , data)

+ }

In a moment, we’ll walk through this code more carefully, but first let’s see how
it works. The comments tell us that the function takes two inputs: a model object
returned from mlogit() and a data frame containing the set of designs for which
you want to predict shares. We already have several model objects, so all we need to
do is create new data. One way to do this is to create the full set of possible designs
using expand.grid() and select the designs we want by row number:
> (new.data <- expand.grid(attrib)[c(8, 1, 3, 41, 49, 26),])

seat cargo eng price
8 7 2ft hyb 30
1 6 2ft gas 30
3 8 2ft gas 30
41 7 3ft gas 40
49 6 2ft elec 40
26 7 2ft hyb 35

We then pass these designs topredict.mnl() to determinewhat customerswould
choose if they had to pick among these 6 minivan alternatives:
> predict.mnl(m3, new.data)

share seat cargo eng price
8 0.11268892 7 2ft hyb 30
1 0.43263922 6 2ft gas 30
3 0.31855551 8 2ft gas 30
41 0.07216867 7 3ft gas 40
49 0.01657221 6 2ft elec 40
26 0.04737548 7 2ft hyb 35

The model-predicted shares are shown in the column labeled share and we can
see that among this set of products, we would expect respondents to choose the 7
seat hybrid engine minivan with 2 ft of cargo space at $30K a little more than 11%
of the time. If a company was planning to launch a minivan like this, they could use
the model to see how changing the attributes of this product would affect the choice
shares. Note that these share predictions are always made relative to a particular set
of competitors; the share for the first minivan would change if the competitive set
were different.

For those who are new to choice models, we should caution against using share
predictions based on survey data as a market share forecast. While these share pre-

376 13 Choice Modeling

dictions are typically a good representation of how respondents would behave if they
were asked to choose among these 6 minivans in a new survey, that predicted survey
response might not translate directly to sales in the marketplace. Customers might
not be able to find the product in stores or they may react differently to the features
when they see them in the showroom. We generally recommend that the analyst be
careful to communicate this by labeling the predicted shares as “survey shares” or
“preference shares” to alert others to this distinction. If you estimate a multinomial
logit model using retail purchase data, as we discussed earlier, you would not need
to make this caveat, as your predictions would be based on real-world purchases.

We could compute shares using model m1, which treated price as a factor rather than
a continuous variable:
> predict.mnl(m1, new.data)

share seat cargo eng price
8 0.11273356 7 2ft hyb 30
1 0.43336911 6 2ft gas 30
3 0.31917819 8 2ft gas 30
41 0.07281396 7 3ft gas 40
49 0.01669280 6 2ft elec 40
26 0.04521237 7 2ft hyb 35

We see that the predicted shares are almost identical, confirming our previous con-
clusion that m3 is very similar to m1. (Comparing predicted shares is not the best
way to compare two models. For a formal comparison of models, we recommend
lrtest().)

Now that we have seen how predict.mnl() works, let’s take a closer look at the
code for the function. Ignoring the comments, the code is just four lines. We repeat
them here so that we can discuss each line, but you don’t need to type them into the
console again. On the first line, we convert the data, which is stored as factors, to a
coded matrix:
data.model <- model.matrix(update(model$formula , 0 ~ .), data = data)[,-1]

We do this using two functions from base R for working with formulas. The function
model.matrix, whichwe saw earlier in the chapter, converts the data from factors
to coded effects. It requires the right-hand side of the formula from model, which
we obtain using the update function for formulas. We also have to remove the first
column of the result of model.matrix, because our choice model doesn’t have
an intercept. On the next line, we compute the utility for each product by multiplying
the coded data by the model coefficients using matrix multiplication:

utility <- data.model %*% model$coef

The result is a utility value for each product in the set based on its attributes. Finally,
we convert that to shares using the multinomial logit equation:

share <- exp(utility) / sum(exp(utility))

The function then returns the shares alongwith the product design data. (Experienced
choice modelers will notice that we are slightly abusing terminology when we call
this utility. More precisely this should be called the deterministic portion of
the utility, since it doesn’t include the error term. We do not include a stochastic

13.3 Fitting a Choice Model 377

Fig. 13.2 Sensitivity plot
showing how share for the
planned design changes as
we change each attribute,
relative to a set of competing
designs. The planned design
is a 7-passenger hybrid
minivan with 2 ft. of cargo
space offered at $30000

6 7 8 2ft 3ft gas hyb elec 30 35 40

C
ha

ng
e

in
 S

ha
re

 fo
r

B
as

el
in

e
P

ro
du

ct

−
0.

05
0.

00
0.

05
0.

10

component in the share simulator, because we want to report the expected average
shares across many choices.)

Sensitivity Plots

Often a product design team has a particular product design in mind and wants to
know how share would change if they were to change their design. For example,
suppose the minivan designers plan to build a 7-passenger hybrid minivan with 2 ft
of cargo space and sell it at $30K. The model can be used to predict how share
would change if different levels of the attributes were included (while keeping the
competitive set fixed.) The plot in Fig. 13.2 shows how share would change if we
changed each of the attributes of the design, one at a time. We see that changing
the planned 7-seat design to a 6-seat design would increase share by just under
0.07. Increasing the price to $35K would decrease share by about 0.06. This gives
the design team an at-a-glance picture of how changes in their design affect choice
share.

Producing this plot using R is relatively simple: we just need loop through all the
attribute levels, compute a share prediction and save the predicted share for the target
design. Since this is an analysis we do regularly, we wrote a function to do it.
> sensitivity.mnl <- function(model , attrib , base.data , competitor.data) {
+ # Function for creating data for a share -sensitivity chart
+ # model: mlogit object returned by mlogit () function
+ # attrib: list of vectors with attribute levels to be used in sensitivity
+ # base.data: data frame containing baseline design of target product
+ # competitor.data: data frame containing design of competitive set
+ data <- rbind(base.data , competitor.data)
+ base.share <- predict.mnl(model , data)[1,1]
+ share <- NULL
+ for (a in seq_along(attrib)) {
+ for (i in attrib [[a]]) {
+ data[1,] <- base.data
+ data[1,a] <- i
+ share <- c(share , predict.mnl(model , data)[1,1])
+ }
+ }
+ data.frame(level=unlist(attrib), share=share , increase=share -base.share)
+ }

378 13 Choice Modeling

Using sensitivity.mnl, we create the plot in Fig. 13.2 with four commands:

> base.data <- expand.grid(attrib)[c(8),]
> competitor.data <- expand.grid(attrib)[c(1, 3, 41, 49, 26),]
> (tradeoff <- sensitivity.mnl(m1, attrib , base.data , competitor.data))

level share increase
seat1 6 0.17831027 0.06557671
seat2 7 0.11273356 0.00000000
...
price3 40 0.02211862 -0.09061494
> barplot(tradeoff$increase , horiz=FALSE , names.arg=tradeoff$level ,
+ ylab="Change in Share for Baseline Product")

13.3.4 Share Predictions for Identical Alternatives

Occasionally, you may want to predict shares for two designs that are identical in
terms of the attributes that you’ve included in your conjoint study. For example, you
might be planning to offer a design that is the same as a competitor. A naive analyst
might include both designs in a set to estimate with predict.mnl() and there is
nothing to stop one from doing that:

> new.data.2 <- expand.grid(attrib)[c(8, 8, 1, 3, 41, 49, 26),]
> predict.mnl(m1, new.data .2)

share seat cargo eng price
8 0.10131227 7 2ft hyb 30
8.1 0.10131227 7 2ft hyb 30
1 0.38946350 6 2ft gas 30
3 0.28684152 8 2ft gas 30
41 0.06543701 7 3ft gas 40
49 0.01500162 6 2ft elec 40
26 0.04063181 7 2ft hyb 35

However, these share predictions may be considered unrealistic. When we estimate
shares from m1 with just one copy of design 8, we get a share of about 0.113. With
two copies of the same design, each alternative is predicted to get a share of about
0.101 for a total of 0.202 between the two of them. It seems quite unreasonable
that people would be more likely to choose a 7-passenger, 2 ft, hybrid at $30K just
because there are two of them in the choice set. Beyond that, the relative shares of all
the other vehicles have remained the same, including the higher-priced 7 passenger
hybrid (design 26 in the last row). Why wouldn’t design 8 steal more share from
design 26 than from the other non-hybrid vehicles?

While this is confusing, multinomial logit models make predictions in this way.
Much has been written about this property of the multinomial logit model and there
are many arguments about whether it is desirable. In fact, the property has been
given a name: the independence of irrelevant alternatives or IIA property. It is also
sometimes called the “red bus/blue bus problem” based on an classic example that
involves predicting share for two different color buses that have otherwise identical
features. Predictions from the multinomial logit model for two identical alternatives
or even two nearly-identical alternatives will exhibit this property.

More sophisticated hierarchical models, which we discuss in Sect. 13.5, relax this
property somewhat, although they still may make predictions for similar or identical

13.3 Fitting a Choice Model 379

alternatives that seem unreasonable [46]. There are a number of proposed meth-
ods to estimate choice models that do not have the IIA property including nested
logit, generalized logit, and multinomial probit. If you need to predict shares for
nearly-identical designs, we encourage you to review those alternatives. However,
the majority of marketers today use either the multinomial logit or the hierarchical
multinomial logit model, and—we hope—try to avoid including identical or nearly
identical designs when estimating shares.

13.3.5 Planning the Sample Size for a Conjoint Study

A crucial issue in planning a successful conjoint analysis study is to decide how
many respondents should complete the survey. To see how sample size affects the
model estimates and share predictions, let’s estimate a model using just the data from
the first 25 respondents. We do this by creating small.conjoint, which is an
mlogit.data object with just the first 25× 15× 3 = 1125 rows of our original
cbc.df data, corresponding to the survey responses for the first 25 respondents.
> small.cbc <- mlogit.data(data=cbc.df [1:(25*15*3) ,],
+ choice="choice", shape="long",
+ varying =3:6, alt.levels=paste("pos", 1:3),
+ id.var="resp.id")
> m4 <- mlogit(choice ~ 0 + seat + cargo + eng + price , data = small.cbc)

If we take a look at the coefficient estimates for m4 and compare them to the coeffi-
cient estimates for m1 (above), we can see that the estimated coefficients for m4 are
similar, but the standard errors for the coefficients are more than three times as big,
reflecting the fact that with less data, our estimates of the model coefficients are less
precise.
> summary(m4) # larger standard errors
...

Estimate Std. Error t-value Pr(>|t|)
seat7 -0.74326 0.17767 -4.1833 2.873e-05 ***
seat8 -0.15180 0.16859 -0.9004 0.3679142
cargo3ft 0.45613 0.14459 3.1546 0.0016071 **
enghyb -0.59674 0.16838 -3.5440 0.0003941 ***
engelec -1.62677 0.19764 -8.2311 2.220e-16 ***
price35 -0.81508 0.17304 -4.7105 2.471e-06 ***
price40 -1.71390 0.20304 -8.4410 < 2.2e-16 ***
...

The standard errors are also higher for the attribute-levels that are least often chosen,
including the engelec and price40 coefficients. In general, standard errors for
less-frequently chosen attributes will be higher. One method for planning sample
sizes focuses on reducing the standard errors of the estimates to acceptable levels.
We discuss this further when we discuss the design of conjoint surveys in Sect. 13.6.

We can also compare predictions between m1 and m4:
> cbind(predict.mnl(m4, new.data), predict.mnl(m1, new.data))

share seat cargo eng price share seat cargo eng price
8 0.10876219 7 2ft hyb 30 0.11273356 7 2ft hyb 30
1 0.41536666 6 2ft gas 30 0.43336911 6 2ft gas 30
3 0.35686673 8 2ft gas 30 0.31917819 8 2ft gas 30
41 0.05615650 7 3ft gas 40 0.07281396 7 3ft gas 40

380 13 Choice Modeling

49 0.01470947 6 2ft elec 40 0.01669280 6 2ft elec 40
26 0.04813846 7 2ft hyb 35 0.04521237 7 2ft hyb 35

Here we find that the two models make similar share predictions. This illustrates the
fact that comparing share predictions is not the ideal way to compare two different
conjoint survey designs. When we look at the standard errors for the coefficients, we
see the difference between m1 and m4 more clearly.

If we looked at the standard errors of the share predictions, they would be more
precise for m1, but we can’t see that here because there are no standard errors reported
for shares. While it is possible to compute standard errors for share predictions, it
requires using the “delta method” or a bootstrapping strategy, both of which are
difficult to do outside of a programming environment like R. So, among those who
do not use R, it is uncommon to report standard errors or estimates of uncertainty
for share predictions.

This is unfortunate; decision makers often see only the point estimates for share
predictions and are not informed about the confidence intervals of those shares. An
ambitious reader might write code to produce intervals for share predictions from
the multinomial logit model, but we will hold off on estimating intervals for share
predictions until we review choice models in a Bayesian framework in Sect. 13.5.

13.4 Adding Consumer Heterogeneity to Choice Models

Up to this point, we have focused on the multinomial logit model, which estimates
a single set of part worth coefficients for a whole sample. In this section, we look
at a model that allows for each respondent to have his or her own coefficients.
Different people have different preferences, andmodels that estimate individual-level
coefficients can fit data better and make more accurate predictions than sample-level
models (see [168]). If you are not familiar with hierarchical models, you should
review the basics in Sect. 9.3.

To estimate a model where each respondent has his or her own part worths, it is
helpful to have multiple observations for each respondent. This is not a problem in a
typical conjoint analysis study because each respondent answers multiple question.
However, it can be a problem when estimating choice models using retail purchase
data, because many people only make a single purchase. Most conjoint analysis
practitioners routinely estimate heterogeneous choice models with conjoint survey
data and it is easy to do this in R. In this section, we show how to estimate hierarchical
choice models using mlogit, which uses frequentist methods. In Sect. 13.5, we
show how to estimate heterogeneous choice models using Bayesian methods.

13.4 Adding Consumer Heterogeneity to Choice Models 381

13.4.1 Estimating Mixed Logit Models with mlogit()

The statistical term for coefficients that vary across respondents (or customers) is
random coefficients or random effects (see Sect. 9.3.1). To estimate a multinomial
logit model with random coefficients using mlogit, we define a vector indicating
which coefficients should vary across customers.mlogit requires a character vector
the same length as the coefficient vectorwith a letter code indicatingwhat distribution
the random coefficients should follow across the respondents: ‘n’ for normal, ‘l’ for
log-normal, ‘t’ for truncated normal, and ‘u’ for uniform. For this analysis, we assume
that all the coefficients are normally distributed across the population and call our
vector m1.rpar.
> m1.rpar <- rep("n", length=length(m1$coef))
> names(m1.rpar) <- names(m1$coef)
> m1.rpar

seat7 seat8 cargo3ft enghyb engelec price35 price40
"n" "n" "n" "n" "n" "n" "n"

We pass this vector to mlogit as the rpar parameter, which is short for “random
parameters”. In addition, we tell mlogit that we have multiple choice observations
for each respondent (panel=TRUE) and whether we want to allow the random
parameters to be correlated or independant. For this first run, we assume that we do
not want random parameters to be correlated (correlation=FALSE), a setting
we reconsider below.
> m1.hier <- mlogit(choice ~ 0 + seat + eng + cargo + price ,
+ data = cbc.mlogit ,
+ panel=TRUE , rpar = m1.rpar , correlation = FALSE)

Thealgorithm to estimate the heterogeneous logitmodel is computationally intensive,
so it may take a few seconds to run. Once it finishes, you can look at the parameter
estimates using summary():
> summary(m1.hier)
...
Coefficients :

Estimate Std. Error t-value Pr(>|t|)
seat7 -0.642241 0.070893 -9.0593 < 2.2e-16 ***
seat8 -0.390021 0.070460 -5.5353 3.106e-08 ***
enghyb -0.926145 0.067456 -13.7296 < 2.2e-16 ***
engelec -1.831864 0.083439 -21.9544 < 2.2e-16 ***
cargo3ft 0.550838 0.058459 9.4226 < 2.2e-16 ***
price35 -1.081310 0.070874 -15.2567 < 2.2e-16 ***
price40 -1.991787 0.085312 -23.3471 < 2.2e-16 ***
sd.seat7 -0.651807 0.101906 -6.3961 1.594e-10 ***
sd.seat8 0.995007 0.093397 10.6535 < 2.2e-16 ***
sd.enghyb 0.159495 0.137950 1.1562 0.247607
sd.engelec 0.973303 0.099850 9.7476 < 2.2e-16 ***
sd.cargo3ft 0.307194 0.131109 2.3430 0.019127 *
sd.price35 -0.260907 0.121369 -2.1497 0.031579 *
sd.price40 0.418148 0.128104 3.2641 0.001098 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Log -Likelihood: -2498.5

random coefficients
Min. 1st Qu. Median Mean 3rd Qu. Max.

seat7 -Inf -1.0818780 -0.6422410 -0.6422410 -0.2026039 Inf
seat8 -Inf -1.0611428 -0.3900209 -0.3900209 0.2811010 Inf
cargo3ft -Inf 0.3436387 0.5508377 0.5508377 0.7580366 Inf
enghyb -Inf -1.0337226 -0.9261449 -0.9261449 -0.8185673 Inf
engelec -Inf -2.4883466 -1.8318636 -1.8318636 -1.1753805 Inf

382 13 Choice Modeling

price35 -Inf -1.2572890 -1.0813097 -1.0813097 -0.9053304 Inf
price40 -Inf -2.2738236 -1.9917870 -1.9917870 -1.7097505 Inf

The results show 14 estimated parameters, which is twice as many as we had in
m1. These parameters describe the average part worth coefficients across the popula-
tion of respondents (labeled seat7, seat8, etc.) as well as how those parameters
vary across the population (reported as standard deviations and labeled sd.seat7,
sd.seat8, etc.)

The standard deviation parameter estimates indicate that there is a lot of heterogeneity
in preference for 7 or 8 seats over 6 seats. For example, the estimate of sd.seat8 is
about 0.995—larger than the mean estimate for the level of−0.39—which suggests
that some people prefer 6 seats to 8, while others prefer 8. Another way to see this
is in the output section labeled random coefficients, which shows the range
of respondent-level coefficients. For seat8, the first quartile is −1.06 (indicating
a preference for 6 seats) and the 3rd quartile is 0.281 (indicating a preference for
8 seats). Because we specified the random coefficients as normally distributed, the
model assumes that the majority of respondents are in the middle, slightly preferring
6 seats to 8. Given that there is a large fraction of respondents who prefer 8 seats,
it may make sense for the company to offer a minivan with 6 seats and a minivan
with 8 seats. To tell that for certain, you could make several share predictions and
compare the potential increase in market share to the costs of offering both options.

You might notice that some of the standard deviation estimates such as sd.seat7
are reported with negative values, which is impossible. This is an artifact of the
estimation routine, which occasionally reverses the sign. To check them, you may
use the stdev() function instead:
> stdev(m1.hier)

seat7 seat8 cargo3ft enghyb engelec price35 price40
0.6518068 0.9950068 0.3071936 0.1594949 0.9733032 0.2609073 0.4181480

There is one additional feature we can add to the random coefficients model using
mlogit(). Model m1 assumed that there were no correlations between the ran-
dom coefficients, meaning that if one person prefers 8 seats over 6, we would not
expect that they also prefer 7 seats over 6. Including correlations in the random
coefficients allows us to determine, based on the data, whether people who like one
attribute also tend to like another attribute. This is easily done by including
correlations = TRUE as a parameter in the call to mlogit or by using the
update function provided by mlogit.
> m2.hier <- update(m1.hier , correlation = TRUE)
> summary(m2.hier)
...
Coefficients :

Estimate Std. Error t-value Pr(>|t|)
seat7 -0.6571127 0.0730592 -8.9942 < 2.2e-16 ***
seat8 -0.4336405 0.0754669 -5.7461 9.132e-09 ***
enghyb -0.9913358 0.0731532 -13.5515 < 2.2e-16 ***
engelec -1.8613750 0.0855809 -21.7499 < 2.2e-16 ***
cargo3ft 0.6021314 0.0623728 9.6537 < 2.2e-16 ***
price35 -1.1819210 0.0770295 -15.3437 < 2.2e-16 ***
price40 -2.1749326 0.0960858 -22.6353 < 2.2e-16 ***
seat7.seat7 0.6830318 0.1046707 6.5255 6.776e-11 ***
seat7.seat8 1.0089934 0.1092730 9.2337 < 2.2e-16 ***
seat7.cargo3ft -0.0624345 0.0962322 -0.6488 0.5164737

13.4 Adding Consumer Heterogeneity to Choice Models 383

seat7.enghyb -0.3517319 0.1146392 -3.0682 0.0021538 **
seat7.engelec -0.1946944 0.0859581 -2.2650 0.0235131 *
seat7.price35 0.1318172 0.0973219 1.3544 0.1755947
...

The model m2.hier now includes many more parameters, so many that we have
truncated the output. The additional parameters are the variance and covariance
parameters between the random coefficients. seat7.seat7 is the variance of the
seat7 random coefficient and seat7.seat8 is our estimate of the covariance
between preference for 7 seats and preference for 8 seats. The estimate is significant
andpositive, indicating that peoplewhoprefer 7 seats also tend to prefer 8 seats. Toget
a better sense of the strength of this association, we can extract the covariance matrix
using cov.mlogit and then convert it to a correlation matrix using cov2cor
from base R.

> cov2cor(cov.mlogit(m2.hier))
seat7 seat8 cargo3ft enghyb engelec ... price35

seat7 1.0000000 0.774540837 -0.1116303 -0.313095351 -0.4886197 ... 0.24366546
seat8 0.7745408 1.000000000 0.1364164 -0.001877182 -0.2351177 ... -0.07335863
cargo3ft -0.1116303 0.136416377 1.0000000 0.498038677 -0.6257625 ... -0.03750020
enghyb -0.3130954 -0.001877182 0.4980387 1.000000000 0.1096523 ... 0.16249428
engelec -0.4886197 -0.235117662 -0.6257625 0.109652292 1.0000000 ... -0.24671982
price35 0.2436655 -0.073358628 -0.0375002 0.162494277 -0.2467198 ... 1.00000000
price40 0.1318966 0.034897989 0.3074710 -0.026541375 -0.4260211 ... 0.54721196
...

This matrix shows that the correlation between the part worth for 7 seats and the
part worth for 8 seats is 0.77, a strong association. In real data, it is common to find
correlations between levels of the same attribute; if an attribute is important to a
respondent, then he or she will likely have parameters with larger absolute values
for all the levels of that attribute. For this reason, we strongly recommend that you
include correlations in all random coefficients choice models. When you review the
estimates of those models, you should review both the mean part worth coefficients,
which represent the average value that respondents place on each attribute, and the
variance and covariances in preferences across the population.

We should emphasize that these model estimates are conditional on our assumption
that decision makers’ coefficients are normally distributed. Truncated normal distri-
butions or uniform distributions should be considered in situations where the range
of feasible values of the coefficients are bounded, e.g. when it should be assumed
that everyone prefers a particular attribute. Recent research has investigated other
specifications of heterogeneity, such as the generalized multinomial logit model [59]
which is available in the gmnl package.

384 13 Choice Modeling

13.4.2 Share Prediction for Heterogeneous Choice Models

Reporting share predictions for heterogeneous choice models is largely the same as
for standard choice models. The key difference is in how those share predictions are
computed. The model assumes that there is a population of respondents, each with
different part worth coefficients. So, when we compute shares, we need to compute
the choice shares for many different respondents and then average over those to get
our overall share predictions.You can see howwedo this by comparing our prediction
function for the hierarchical multinomial logit model to the prediction function we
had for the standard multinomial logit.

> predict.hier.mnl <- function(model , data , nresp =1000) {
+ # Function to predict shares of a hierarchical multinomial logit model
+ # model: mlogit object returned by mlogit ()
+ # data: a data frame containing the set of designs for which you want to
+ # predict shares. Same format at the data used to estimate model.
+ # Note that this code assumes all model parameters are random
+ data.model <- model.matrix(update(model$formula , 0 ~ .), data = data)

[,-1]
+ coef.Sigma <- cov.mlogit(model)
+ coef.mu <- model$coef [1:dim(coef.Sigma)[1]]
+ draws <- mvrnorm(n=nresp , coef.mu, coef.Sigma)
+ shares <- matrix(NA, nrow=nresp , ncol=nrow(data))
+ for (i in 1:nresp) {
+ utility <- data.model%*%draws[i,]
+ share = exp(utility)/sum(exp(utility))
+ shares[i,] <- share
+ }
+ cbind(colMeans(shares), data)
+ }

The key difference is that we now compute the shares for each of nresp=1000
newly sampled, representative respondents. The part worths for these respondents
are drawn from a multivariate normal distribution with mean set at our estimated
value of mu and covariance equal to our estimated value of Sigma (draws <-
mvrnorm(n=nresp, coef.mu, coef.Sigma). The computation for each
respondent is exactly the same as our computation in predict.mnl. Once we have
the shares for all of the representative respondents, we average across respondents
to get our overall share predictions.

We compute shares using predict.hier.mnl just as we did before with
predict.mnl. It may take a moment, because we are doing 1000 times more
computation.

> predict.hier.mnl(m2.hier , data=new.data)
colMeans(shares) seat cargo eng price

8 0.08959674 7 2ft hyb 30
1 0.46390066 6 2ft gas 30
3 0.34231092 8 2ft gas 30
41 0.05370156 7 3ft gas 40
49 0.01797406 6 2ft elec 40
26 0.03251606 7 2ft hyb 35

If you compare these share predictions to those we got with predict.mnl(m1,
data=new.data), you will see that they are similar, but not quite the same. For
example, the electric minivan in the second-to-last row gets slightly more share with
the heterogeneous model. Models that account for heterogeneity often predict that
“niche” products attract a slightly larger share because the model accounts for the

13.4 Adding Consumer Heterogeneity to Choice Models 385

fact that there are a small number of respondents who find those “niche” designs very
attractive. These models do not strictly follow the IIA property (see Sect. 13.3.4); if
two similar products appeal to the same subset of customers, they will compete more
closely with each other than with other products.

The share predictions produced by predict.hier.mnl are still based on the
point estimates of coef.Sigma and coef.mu. So, while we have accounted
for consumer heterogeneity in these predictions, we still haven’t accounted for our
uncertainty in the parameter estimates. This makes it difficult to determine what
would be a (statistically) meaningful difference in share for two alternative designs.
While it is possible to estimate prediction intervals for these models in the frequentist
framework, it is easier to do so in a Bayesian framework. We address prediction
intervals for shares in the next section where we review Bayesian choice models.

13.5 Hierarchical Bayes Choice Models

In this section, we show how to estimate choice models with heterogeneity using
Bayesian methods and point out advantages (and some disadvantages) of the
Bayesian approach.

Moving into the Bayesian framework can be somewhat confusing, both because the
Bayesian approach to estimation is different and because Bayesians often use differ-
ent language to describe the same thing. Those who use the classical methods often
refer to the model we estimated in the previous section as the “random-coefficients
multinomial logit” or “mixed logit” model. Bayesians tend to refer to these same
models (and some extensions of them) as hierarchical Bayes multinomial logit.

There are several available packages for estimating choice models using Bayesian
methods. The MCMCpack package we used in Chap.7 includes a function called
MCMCmnl to estimate non-hierarchical multinomial choice models [134]. To
estimate the hierarchical choice model here, we use the ChoiceModelR package
[179], which builds on the bayesm package [167].

13.5.1 Estimating Hierarchical Bayes Choice Models with
ChoiceModelR

Unfortunately, there isn’t a universal standard for how choice data is stored and
we have to reorganize our data slightly to use ChoiceModelR. ChoiceModelR
requires the data to be stored in a “long” data frame where each row is an alternative
(as we have already in cbc.df), but it requires the selected alternative to be stored
as an integer number on the first row of each choice task, with zeros in the remaining
rows. It turns out that it takes just a few lines of code to create the new choice data.

386 13 Choice Modeling

> choice <- rep(0, nrow(cbc.df))
> choice[cbc.df[,"alt"]==1] <- cbc.df[cbc.df[,"choice"]==1,"alt"]
> head(choice)
[1] 3 0 0 2 0 0

Since there are three alternatives in each question, the first element of choice
indicates that the respondent chose the third alternative in the first choice task; the
second and third elements for choice are left as zeros. Similarly, the fourth elements
indicates that the respondent chose the second alternative in the second choice task,
and the next two elements are zeros.

ChoiceModelR automatically codes factors but it uses a different scheme than
mlogit. To be consistent with the models we’ve run before, we’ll go ahead and
code the factors manually ourselves using model.matrix.

> cbc.coded <- model.matrix(~ seat + eng + cargo + price , data = cbc.df)
> cbc.coded <- cbc.coded[, -1] # remove the intercept

Finally, we can create a new data frame that combines the coded attributes and the
choice back together with the resp.id, ques and alt (which are the first three
columns in cbc.df).
> choicemodelr.data <- cbind(cbc.df[,1:3], cbc.coded , choice)
> head(choicemodelr.data)

resp.id ques alt seat8 enghyb engelec cargo3ft price35 price40 choice
19 1 1 1 0 0 0 0 1 0 3
12 1 1 2 1 1 0 1 0 0 0
4 1 1 3 0 0 0 1 0 0 0
1 1 2 1 0 0 0 0 0 0 2
23 1 2 2 0 0 0 1 1 0 0
31 1 2 3 0 0 1 0 1 0 0

The function we use to estimate the hierarchical Bayes choice model is choicemo
delr(), which requires the data to be organized in exactly the format above: a
number indicating which respondent answered the question, a number indicating
which question the profile belongs to, and a number indicating which alternative this
was, and then the attributes followed by the choice. The choice is stored as an integer
number in the first row of each question.

A key advantage of the hierarchical Bayes framework is that it allows you relate a
customer’s part worths for the attributes to characteristics of the customer (sometimes
called “demographics,” although this is a very poor name as we discuss later.) In our
data set, we happen to knowwhether each customer uses his or her car to carpool and
it seems quite reasonable that people who carpool might have different part worths
than people who don’t carpool. To figure out whether this is true, we estimate amodel
where the part worths are a function of the respondent characteristics, following a
linear model. Of course, this means we need to pass the data on the respondent
characteristics to choicemodelr(), which expects this data to be formatted as
a matrix with one row for each respondent and one column for each respondent
characteristic.
> carpool <- cbc.df$carpool[cbc.df$ques ==1 & cbc.df$alt ==1]=="yes"
> carpool <- as.numeric(carpool)
> choicemodelr.demos <- as.matrix(carpool , nrow=length(carpool))
> str(choicemodelr.demos)
num [1:200 , 1] 1 0 0 0 1 0 0 1 0 0 ...

13.5 Hierarchical Bayes Choice Models 387

Note that each row in choicemodelr.demos represents a respondent and not a
question or an alternative, and so we have 200 rows. A value of 1 indicates that the
respondent does use their car to carpool and a value of 0 indicates that they don’t.

With this bit of data re-organization done, we can call choicemodelr():

> library(ChoiceModelR)
> hb.post <- choicemodelr(data=choicemodelr.data , xcoding=rep(1, 7),
+ demos=choicemodelr.demos ,
+ mcmc=list(R=20000 , use =10000),
+ options=list(save=TRUE))

In addition to the data and the demos, there are a couple of additional parameters
of choicemodelr that control the estimation routine. The xcoding parameter
tells choicemodelr how you want the attributes coded; by setting this to a vector
of 1s, we indicate that we’ve already done the coding. The mcmc and options
parameters control several aspects of the algorithm, which we discuss below. You
can always type ?choicemodelr for more details, although the help files might
be more helpful to experienced Bayesian modelers than to novices.

While we recommend ChoiceModelR, there are a few aspects that make it less
“R-like” than some packages. For example, choicemodelr() does not use R’s
formula notation or the built-in functions for coding factors. It relies on the order of
the columns in the data frame, rather than using column names. The package does
not include common utility functions like summary() and predict(). Because
R is open source, it is up to each package development team to decide how they want
to structure their functions and how consistent the package is with other R functions.
While it sometimes requires a bit of work to figure out how a particular package
works, it is difficult to complain too much, since the package was donated by the
developers. If there is some functionality you’d like to see in a package, you can
always write it yourself and then suggest to the package developers that they include
your extension in their next release. (The name and email address of every package’s
maintainer are available in the package listing on CRAN.)

If you ran the code above, you probably noticed that it took a long time to run and
produced a lot of output about its process.We omitted that output here. In the graphics
window, you might have noticed something similar to Fig. 13.3.

What is Fig. 13.3? The focus of Bayesian inference is on generating a posterior
distribution for the parameters of a model. The posterior distribution samples the
likely values of a model, given the observed data. Most Bayesian routines like
choicemodelr produce a set of random draws from the posterior distribution.
Figure13.3 is called a trace plot and it shows the posterior draws that have been
produced so far by the estimation routine.

Without getting into the details of how andwhy these algorithmswork, it is important
to know that they don’t always start out producing posterior draws. There is typically
a burn-in period, where the algorithm settles into the posterior distribution. Before
we use draws from the distribution, we have to throw out these initial burn-in draws.
The trace plot allows us to see where the burn-in period ends. Judging from Fig.13.3

388 13 Choice Modeling

0 5000 10000 15000 20000

−
3

−
2

−
1

0
1

2

Rep

M
u

Fig. 13.3 Trace plot of posterior draws for a hierarchical Bayes choice model produced by
choicemodelr()

the algorithm seems to have settled in after the first 1000 draws, because that is where
the lines plotting the estimated values settle into a stable, horizontal pattern (apart
from noise).

We used two other arguments with choicemodelr(). The mcmc=list
(R=20000, use=10000) argument tells choicemodelr that we want to pro-
duce 20000 posterior draws and that we want to use only the last 10000 (giving us
a wide margin on the burn-in). The options=list(save=TRUE) argument
tells choicemodelr() to save those last 10000 posterior draws. By default,
choicemodelr() saves every tenth draw, so it actually stores 1000 posterior
draws.

When choicemodelr() finishes, the posterior draws are saved to the object we
specified, hb.post, which becomes a list with four elements:

> names(hb.post)
[1] "betadraw" "deltadraw" "compdraw" "loglike"

The key parameters of the model are the average and the variance of the part worths
across the population. We can access one posterior draw of these parameters by
selecting an element of hb.post$compdraw. We arbitrarily look at draw 567.

> hb.post$compdraw [[567]]$mu
[1] -0.6565015 -0.4263809 -1.1496282 -1.8733265 0.5620929 -1.2089470
[7] -2.5772394

These are the average population part worths and you can compare them to the
parameters we estimated with mlogit(). The parameters above come in the same
order as the first 7 parameters estimated by mlogit(). For example, the average
part worth for seat7 was -0.642 when we estimated it with mlogit() and for
this posterior draw we get a value of -0.657 from choicemodelr().

13.5 Hierarchical Bayes Choice Models 389

There is one key difference between this model and the model we estimated with
mlogit(). The parameters above represent the average part worth parameters
among respondents who do not use their car to carpool. The hierarchical Bayes
model also includes a set of “adjustments” for people who carpool; we can look
at the 567th draw of these adjustment factors by looking at the appropriate row of
hb.post$deltadraw.
> hb.post$deltadraw [567,]
[1] 1.63415698 1.78079508 -0.04400289 -0.12966126 0.02713614 -0.21926035
[7] -0.19518696

You can see that there are huge adjustments in the part worths for the first two
parameters: seat7 and seat8. The average part worth for 7 seats (versus the base
level of 6) for people who carpool is −0.657+ 1.634 = 0.977. This means that on
average people who carpool actually prefer 7 over 6 seats while people who don’t
carpool prefer 6 seats on average. This is a potentially critical insight for product
designers that we completely missed when we used the mixed logit model with
mlogit. You may not see a major difference in share predictions between these two
models, but the insight you get from reviewing the parameters can be quite valuable.

We caution readers that this potential insight comes at a cost. We had to estimate 7
additional parameters to describe the population.Adding a large number of additional
parameters can make the burn-in period longer and it can add to uncertainty to the
parameter estimates. We suggest you only include respondent characteristics that
you believe should be related to the part worths. In this case, it seems reasonable
that minivan preferences should be different for people who carpool. In general,
covariates that are directly related to product usage are ideal. There are also potential
issues with the scaling of these respondent characteristics; binary indicators tend to
work well as they avoid these scaling issues. It is generally a bad idea to include
general demographic variables like age, race or gender, just because you have them.
Often demographic variables are not associated with product preferences [57]. For
this reason, we avoid referring to covariates as “demographics.”

We also have a set of parameters that describe the variance in part worths across the
population. We can pull out the 567th draw from hb.post:
> hb.post$compdraw [[567]]$rooti

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1.011972 -0.04367931 -0.045915749 0.1129225 0.005337426 -0.081773492
[2,] 0.000000 0.81711384 0.003180727 0.1535246 0.161135551 -0.192515134
[3,] 0.000000 0.00000000 1.011131267 -0.6173136 0.216005822 -0.011914137
[4,] 0.000000 0.00000000 0.000000000 0.8302175 -0.018093331 -0.002099283
[5,] 0.000000 0.00000000 0.000000000 0.0000000 1.146767704 -0.023986760
[6,] 0.000000 0.00000000 0.000000000 0.0000000 0.000000000 1.332875325
[7,] 0.000000 0.00000000 0.000000000 0.0000000 0.000000000 0.000000000
...

This set of parameters is actually stored as theCholesky root of the covariancematrix.
This is thematrix equivalent of a square root andwe can recover the covariancematrix
by “squaring” rooti with crossprod():
> crossprod(hb.post$compdraw [[567]]$rooti)

[,1] [,2] [,3] [,4] [,5]
[1,] 1.024087812 -0.044202250 -0.046465463 0.11427448 0.005401327
[2,] -0.044202250 0.669582906 0.004604584 0.12051469 0.131432954
[3,] -0.046465463 0.004604584 1.024504812 -0.62888172 0.218677697

390 13 Choice Modeling

[4,] 0.114274477 0.120514688 -0.628881721 1.10665848 -0.123023753
[5,] 0.005401327 0.131432954 0.218677697 -0.12302375 1.388055204
[6,] -0.082752504 -0.153734971 -0.008904404 -0.03317798 -0.061500274
[7,] 0.014590162 0.073588053 -0.233576644 0.47484770 0.281647756
...

The diagonals of this matrix describe the variance across the population in the part
worths and if you compare them to the estimates we got with mlogit, you will
find that variation across the population is generally smaller, particularly for the first
two parameters that describe preferences for number of seats. The reason for this is
that the new model accounts for some of the differences between individuals who
carpool versus not, so the remaining unexplained variation between respondents is
smaller.

In addition to population level parameters, we look at posterior draws of the
individual-level parameters:

> head(hb.post$betadraw [,,567])
[,1] [,2] [,3] [,4] [,5] [,6] ...

[1,] 1.0112255 0.6282393 -0.2210578 -0.01774596 0.8777881 -0.8889406 ...
[2,] -2.1737290 1.2036846 -2.2063721 -3.21025972 0.3277637 -2.8757266 ...
[3,] -2.4349625 -1.5172192 -0.7548992 -0.76935985 -0.2273173 -1.2754315 ...
...

Each row of this output represents the part worths for each person, which you can
see vary widely. For example, for this posterior draw the first respondent really likes
7 seats over 6 or 8, since 1.011 is larger than 0 or 0.628. The second respondent
prefers 8 seats over 6 or 7. You could plot histograms of these part worth values to
get a sense for how preferences vary across the population.

Up to this point, we’ve been talking about a single draw from the posterior (number
567). But if you look at hb.post$betadraw, you can see that there are 1000
posterior draws of the 7 part worths for each of 200 respondents.

> str(hb.post$betadraw)
num [1:200 , 1:7, 1:1000] 0.816 -1.083 -2.306 -0.91 2.043 ...

To fully characterize the posterior and our uncertainty about these parameters, we
need summarize all of the posterior draws. Unfortunately, choicemodelr does
not provide convenient summaries, but for the respondent-level betadraws, we
can find the posterior means using apply.

> beta.post.mean <- apply(hb.post$betadraw , 1:2, mean)
> head(beta.post.mean)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.6333957 0.26137739 -0.4483550 -1.426702 1.1568186 -0.4751817
[2,] -2.1134244 0.64602926 -1.0926311 -1.916450 0.9893599 -1.4853397
[3,] -1.9297260 -2.10100104 -0.9827285 -1.413800 0.4395638 -1.4189584
...

The values in beta.post.mean show our best estimate for each individual’s
part worths. While it is possible to obtain individual-level estimates using classical
methods, it is much more common to for Bayesian choice modelers to focus on
individual-level parameters.

It is also important to recognize thatwith just 15 choice questions for each respondent,
there is still a great deal of uncertainty about those individual-level part worths. We

13.5 Hierarchical Bayes Choice Models 391

can get a sense for howmuch uncertainty there is by looking at the posterior quantiles
of the part worths for each respondent. We compute the 5th and 95th quantiles of the
individual betadraws, then display the mean and quantiles for the first respondent:

> beta.post.q05 <- apply(hb.post$betadraw , 1:2, quantile , probs=c(0.05))
> beta.post.q95 <- apply(hb.post$betadraw , 1:2, quantile , probs=c(0.95))
> rbind(q05=beta.post.q05[1,], mean=beta.post.mean[1,], q95=beta.post.q95

[1,])
[,1] [,2] [,3] [,4] [,5] [,6]

q05 -0.5380902 -1.1223590 -1.5063476 -2.876466010 0.05096963 -1.5266892
mean 0.6333957 0.2613774 -0.4483550 -1.426702290 1.15681862 -0.4751817
q95 1.8404189 1.5819603 0.6093953 0.001986669 2.36650000 0.6431527
...

These numbers represent how much uncertainty we have in our estimates of the first
respondent’s part worth estimates. Roughly, the range of likely values for respondent
1’s preference for 7 seats over 6 (the first parameter) is about−0.538–1.840. In other
words, given this data, we can say that our best guess is that respondent 1 prefers
7 seats (i.e., has a positive coefficient), but it is quite possible that the respondent
prefers 6 (i.e., has a negative coefficient). This is a huge amount of uncertainty that
we need to account for when making share predictions.

13.5.2 Share Prediction for Hierarchical Bayes Choice
Models

The 1000 posterior draws in hb.post$betadraw give us a sense of the range
of part worth values that each respondent might have and we can use these draws
to figure out the likely range of shares that we might get for new vehicle designs.
For each posterior draw, we can compute the shares for a new set of product designs
based on the values of the part worth coefficients for that draw. Each time we do
this, the shares we obtain represent a a posterior draw for the shares. (Being able to
compute posterior draws for any function of the parameters in this way is one of the
great advantages of Bayesian MCMC.) We can compute the shares for a number of
different posterior draws (selected at random from the draws that we produced when
we called choicemodelr) and then analyze the range of shares that we get.

We create a function for computing shares that loops over both the respondents and
the posterior draws:

> predict.hb.mnl <- function(betadraws , data) {
+ # Function to predict shares from a hierarchical multinomial logit model
+ # model: mlogit object returned by mlogit ()
+ # data: a data frame containing the set of designs for which you want to
+ # predict shares. Same format at the data used to estimate model.
+ data.model <- model.matrix(~ seat + eng + cargo + price , data = data)
+ data.model <- data.model[,-1] # remove the intercept
+ nresp <- dim(betadraws)[1]
+ ndraws <- dim(hb.post$betadraw)[3]
+ shares <- array(dim=c(nresp , nrow(data), ndraws))
+ for (d in 1: ndraws) {
+ for (i in 1:nresp) {
+ utility <- data.model%*%betadraws[i,,d]
+ shares[i,,d] = exp(utility)/sum(exp(utility))
+ }
+ }

392 13 Choice Modeling

+ shares.agg <- apply(shares , 2:3, mean)
+ cbind(share=apply(shares.agg , 1, mean),
+ pct=t(apply(shares.agg , 1, quantile , probs=c(0.05, 0.95))),
+ data)
+ }

The inner loop in this function for i in 1:nresp computes the shares for each
respondent for a given posterior draw. The outer loop for d in 1:ndraws loops
over the posterior draws. (If there were too many posterior draws, we could also use
a random subset of them.) The function stores the share estimates for each user for
each draw in shares. In the last few lines, the function averages the shares across
respondents resulting in an estimate of the shares for each posterior draw. We then
compute the mean as well as the quantiles of those posterior draws to get a sense for
the likely range of shares.

When we compute the shares in this function, we use the estimated individual-level
part worths for the respondents in our data, which iswhatmost analysts do in practice.
In contrast, when we computed share predictions in the previous section using the
output from mlogit(), we sampled new representative respondents based on our
estimates of the population mean and covariance. We should point out that it is
possible to use the same approach with a Bayesian choice model, using the posterior
draws of mu, delta and rooti and sampling a new set of respondents from the
multivariate normal distribution. This would require a relatively small change to
predict.hb.mnl.

Whenwe applypredict.hb.mnl to the designs in new.data, we get both point
estimates and ranges of potential shares for each design:
> predict.hb.mnl(hb.post$betadraw , new.data)

share pct.5% pct .95% seat cargo eng price
8 0.09920353 0.086505556 0.11352010 7 2ft hyb 30
1 0.45300946 0.428510287 0.47765666 6 2ft gas 30
3 0.32986260 0.305608282 0.35368987 8 2ft gas 30
41 0.06947448 0.056391010 0.08434871 7 3ft gas 40
49 0.01357954 0.009832746 0.01800444 6 2ft elec 40
26 0.03487038 0.028179167 0.04215179 7 2ft hyb 35

There is quite a bit of uncertainty in these share predictions.Our “best guess” estimate
of the shares for the 6-passenger base engine minivan (number 1 in the second row)
is 45.3%, but it could be as low as 42.9% or as high as 47.8%. Understanding
the uncertainty in our model predictions helps in interpreting differences in share.
For example, if we make a minor change such that 6-passenger gas minivan share
increases to 46.0%, we would recognize that this change in share is well within the
prediction error of our model, and we probably shouldn’t make strong statements
that one design will do better than the other in the marketplace. But if we change
the seating to 7 passenger for that vehicle, the predicted share is 30.2% with a range
of 28.2–32.1%. Because the prediction intervals do not overlap, we can say that the
7-passenger version of the design has significantly lower share, knowing that we are
not over-interpreting the limited data that we have.

Given how easy it is to compute these share prediction ranges, we think it is sur-
prising how rarely practitioners report prediction intervals of choice model shares.
Many conjoint analysis studies unfortunately report only point estimates of share

13.5 Hierarchical Bayes Choice Models 393

predictions. This leaves decision makers blind to the possibility that the share pre-
dictions they are relying on may not be very accurate. In extreme cases, when there
are many attributes in the model and very few choice questions, one may find that the
prediction intervals are extremelywide. This is an indication that there isn’t sufficient
data to make precise predictions and suggests that one might wish to collect more
or different data. In the next section, we discuss the design of choice-based conjoint
surveys.

13.6 Design of Choice-Based Conjoint Surveys*

Once you start looking at parameter estimates and share predictions for your choice
models, you may start to wonder how you can make your parameter estimates and
prediction intervals tighter. The easiest way to do this is to increase the amount of
data you collect, either by increasing the number of respondents or increasing the
number of questions that you ask each respondent. If you were to recreate data as
we’ve used in this chapter with 1000 respondents instead of 200, you would see
that the standard deviations for the parameter estimates and the prediction intervals
would be smaller (as is true for any model).

A good way to assess sample sizes before fielding a conjoint analysis project is to
simulate data from known parameters, estimate the model from the synthetic data,
and examine the resulting prediction intervals. This would only require a few changes
to the code presented in this chapter. Such analysis can help you determine howmany
respondents you need for a given number of attributes and levels, or, as is more often
the case, how many attribute and levels you can afford given your available budget
for collecting data.

Beyond getting more data, choosing the right questions to ask can also result in
more precise parameter estimates and share predictions. The selection of questions
to include in the conjoint survey is example of an experimental design problem.

If you review the code in Sect. 13.2, you will notice that when we generated the
conjoint questions we selected a different set of minivan profiles at random to create
the choice questions for each respondent. This approach works well and is robust,
as long as you can give a different set of questions to each respondent. If your
survey platform is limited so that every respondent must answer the same questions,
a randomdesignwill not be very efficient. There are several other approaches you can
use that can improve upon selecting questions randomly. Themain design approaches
are the following.

• Random designs use a randomly-selected set of profiles in each question.
• Fractional factorial designs are based on the assumption that there are no interac-
tions between different attributes (e.g., there isn’t some additional boost to having

394 13 Choice Modeling

8-seats combined with 3 ft of cargo space). Many of the advantages of fractional
factorial designs, such as orthogonality, are only beneficial in the context of linear
models and not choice models. However, fractional factorial designs are occasion-
ally used in practice because they are readily available and were once the standard
approach for conjoint analysis surveys. These designs are often constrained so that
every respondent answers the same questions, or such that there are only a few
survey versions.

• Optimal designs are created by selecting a set of questions thatminimizes the stan-
dard error of the estimated parameters (called D-Optimal designs) or minimizes
the standard error of share predictions (called G-Optimal designs). These designs
are created by starting with an arbitrary design and then iteratively changing ques-
tions and assessing whether those changes make the sampling error or posterior
intervals smaller. The routines may not always produce the true optimal design,
but they can often improve substantially on the starting design. These designs may
also be constrained so that every respondent answers the same question.

• There are a number of heuristic conjoint design strategies that aren’t based a
formal theory, but have produced good quality predictions in the past.

• Adaptive designs select successive choice questions based on the respondent’s
answers as he or she takes the survey. For instance, a survey might ask about
preferred options and then focus on the features that a respondent identifies as
important. One approach is called fast-polyhedral conjoint design [189]. Another
method is Adaptive Choice-Based Conjoint (ACBC) from Sawtooth Software
[174].

There is much debate in the conjoint analysis community about which of these
methods is the best. While we can’t answer that, we can say that each has worked
well in at least some conditions. A common mistake when comparing these conjoint
design methods is to look at whether different methods result in different point
estimates of the share predictions (either in-sample or for holdout questions). Since
many of these methods produce similar point estimates for shares, that is a poor way
to compare different experimental design strategies. A better approach is to compare
the prediction range between approaches. Better designs produce smaller prediction
ranges, meaning that there will be less uncertainty in predictions.

Unfortunately, there aren’t yet readily-available tools for the design of choice exper-
iments in R. The AlgDesign package can produce fractional factorial and optimal
designs, but it isn’t customized for choice models and the package is no longer being
maintained. For our own work, we tend to use random designs (which are easy to
produce in R) or use other software to create designs. JMP includes routines for
creating D-Optimal designs for choice models. Sawtooth Software offers a variety
of heuristic and adaptive design strategies for choice models.

13.7 Key Points 395

13.7 Key Points

• Choice models are used to understand how product attributes drive customers’
choices. Themost popular choicemodel in practice is themultinomial logit model.
This model can be estimated using frequentist methods with mlogit or using
Bayesian methods with MCMCmnl (Sect. 13.3).

• Choice data can be stored in “long” or “wide” formats and there is no universal
standard for how the data should be organized. Before you use any choicemodeling
package, read the documentation carefully to understand how the package expects
the data to be formatted (Sect. 13.3).

• Before analyzing any choice data, it is useful to compute raw choice counts for
each attribute. This can be done very easily using xtabs (Sect. 13.3.1).

• Estimating a choice model is similar to estimating simpler linear models. The
key output of the estimation is a set of parameters that describe how much each
attribute is associated with the observed choices.

• Choice models can include both factors and numeric attributes in the choice alter-
natives. When you use a factor as a predictor, the factor has to be dummy coded,
just as it would for a linear model. With dummy coding, the estimates are inter-
preted as the preference for a particular level of the attribute relative to the base
level of the attribute (Sect. 13.3).

• Most choice models do not include intercepts. When a choice models does include
intercepts, there is an intercept for each alternative in the choice questions; these
are called alternative specific constants or ASCs (Sect. 13.3).

• When reporting choice models, it is best to focus on reporting share predictions
from the model because parameter estimates are difficult for non-experts to inter-
pret. If you model price as a numeric predictor, you can also report the willingness
to pay for each attribute (Sect. 13.3.3).

• Heterogeneous choice models allow each respondent to have individually esti-
mated part worths. This may result in share predictions that are slightly (and
appropriately) higher for “niche” products (Sect. 13.4.2).

• Hierarchical choice models can be estimated using frequentist methods with
mlogit and with Bayesian methods using choicemodelr (Sects. 13.4 and
13.5).

• Bayesianmethods produce draws from the posterior distribution of the parameters.
To understand the uncertainty in the parameters (given the data), examine the range
of the posterior draws. To find the uncertainty in predicted shares, compute the
share values for each posterior draw of the estimated parameters. The range of
share estimates indicates the uncertainty in share predictions (Sect. 13.5).

• Bayesian methods allow you to incorporate an upper level model that relates
respondent characteristics to attribute preferences. Good candidates for respon-
dent characteristics are binary variables that describe product usage. (Sect. 13.5).

• In general, if you collect more data, your estimates of the parameters will be more
precise and your prediction intervals will be smaller. Prediction intervals can also
be made smaller by selecting better choice questions. There are several alternative
approaches to choosing profiles to include in choice questions (Sect. 13.6).

396 13 Choice Modeling

13.8 Data Sources

Data for choice-based conjoint analysis is commonly collected through an online
survey, authored using a survey platform that supports the specialized layout and
randomization requirements for a CBC study. Large research suppliers often have
proprietary systems for authoring CBC surveys. Several commercially available sur-
vey platforms, such as SurveyGizmo andQualtrics, support CBC surveys. These tend
to have various limitations with regards to experimental design, survey layout, and
analyses. Sawtooth Software is a specialist provider for conjoint analysis survey tools
that supports a large range of options (with corresponding platform complexity).

Unfortunately there is no common standard for formatting CBC data; many survey
platforms have unique data file formats. As we’ll see, different R packages also use
slightly different formats. Depending on your choice of a survey platform andRpack-
age, you may need to reshape your data. Our examples in this chapter demonstrate
proper formats for the relevant R packages (Sects. 13.3, 13.3.2, and 13.5.1).

13.9 Learning More*

In this chapter, we have given a brief overview of choice modeling in the context
of conjoint analysis surveys, with examples of how to estimate choice models in R.
For those who want to learn more about choice modeling, there are many additional
resources, although no single text covers everything of importance.

For those who are interested strictly in conjoint surveys, Orme’s Getting Started
with Conjoint Analysis [149] offers an accessible introduction to how conjoint sur-
veys are constructed and analyzed in practice while Louvier, Hensher, and Swait’s
Stated ChoiceMethods [131] provides amore extensive (but slightly dated) overview
of the topic, including coverage of several variations on non-hierarchical multino-
mial logit models and how to create fractional factorial designs. Rossi, Allenby,
McCulloch’s Bayesian Statistics and Marketing provides technical coverage of the
multinomial and hierarchical multinomial logit model from the Bayesian perspective
and describes the bayesm package that ChoiceModelR uses heavily.

As we mentioned in the introduction, there are uses of choice models other than
choice-based conjoint analysis surveys. One broad application area is the model-
ing of consumers’ transportation choices. Kenneth Train (2009) offers an clear and
concise overview of discrete choice methods [190] and their use in transportation
economics, including coverage of both the mixed logit and hierarchical Bayes logit
models; it is an ideal introduction for those using hierarchical choicemodels in nearly
any context. Train also covers a number of alternative choice models including the
nested logit model and the multinomial probit model. While there are advantages
and disadvantages to each of these models, they are all based on the same premise

13.9 Learning More* 397

that customers choose among a set of products based on part worths of the attributes
of those products.

Another major application for choice models in marketing is to understand how con-
sumers choose products in retail stores, such as grocery stores. Using data collected
by grocery store scanners where customers are tracked over multiple visits (called
scanner panel data), one can assemble observations that are nearly identical in struc-
ture to conjoint data [85]. Many marketing academics have used choice models with
such data to assess the relationship between marketing actions such as price, pro-
motion, and in-store display, and customers’ product and brand choices. Much work
has been published on extending these models to accommodate different types of
consumer behavior such as stockpiling goods, learning about products, strategically
trying new products, and changes in preferences over time.

13.10 Excercises

For the exercises in this chapter, we use a simulated conjoint data set where
we observe respondents choices from among sets of sportscars. The attributes of
sportscars in this data are number of seats, convertible top, transmission type and
price. The data also includes a segment variable that indicates which sportscar seg-
ment each respondent belongs to.

You can load the data by typing:

sportscar <- read.csv("https://goo.gl/8g7vtT")

1. Data inspection:

• Use summary to identify the levels of each attribute in the data.
• What was the price of the chosen alternative in the last question in the data
frame?

• Use xtabs() to determine the number of times a sportscar with automatic
transmission was chosen. How does this compare to the number of times a
sportscar with a manual transmission was chosen? What does that tell you
about consumer preferences?

2. Fitting and interpreting a choice model:

(a) Fit a (non-hierarchical) choice model to predict choice as a function of all
four attributes. Don’t forget to convert the data to an mlogit.data object
before passing it to mlogit. Also, be sure to remove the intercept in the
model formula. Report the estimated coefficients and their standard errors.

(b) What is the ideal sportscar for the respondents based on this model. That is,
what is most desirable level of each feature? You may have to look at both
the model coefficients and the data summary to figure this out.

(c) Which coefficient is the most precisely estimated?

398 13 Choice Modeling

(d) Is it reasonable to charge $5000 for a convertable top? Hint: Compute the
WTP for convertible top and compare it to $5000.

(e) Use the predict.mnl() function from the chapter to predict shares for
the following set of sportscars:

newcars <- data.frame(seat=factor(c("2","4", "5")),
trans=factor(c("manual", "automatic", "automatic")),
convert=factor(c("no", "yes", "no")),
price=c(40, 37, 35))

Note that it is very important that the factors in the newcars data frame
have exactly the same levels as the factors in the data frame used to estimate
the model.

(f) Use the sensitivity.mnl() function from the chapter to produce a
sensitivity plot for the first sportscar in newcars. What suggestions would
youmake on changing the features of the product to get highermarket share?

3. In the previous question, you fit a choice model using all the respondents and so
your estimates represented the average preferences across the entire population
of customers. Fit another choice model using just the customers from the racer
segment and predict shares for newcars. Are your predictions different than
what you found in the previous question?

4. Estimate a hierarchicalmultinomial logitmodel using the sportscar data, using the
rpar input to the mlogit() function. Assume all the parameters are normally
distributed. Which parameter has the greatest variation across respondents?

5. Estimate a hierarchical model using the Bayesian ChoiceModelR function.
Don’t forget youwill have to re-format thedata to be suitable for ChoiceModelR
as described in Sect. 13.5.1. Use the segment variable for the demographics. Are
the parameter estimates similar to those obtained with mlogit()?

Chapter 14
Behavior Sequences

Marketers often wish to understand sequences of customer behavior. If customers
visit one web page, do they visit another? If they purchase one product, do they
later purchase another? If they have some particular product experience, how does
that change their subsequent product or market behavior? There is a vast array of
analytical and statistical methods to address such questions, ranging from time series
analysis to Markov models, from causal modeling to dynamic clustering.

In this chapter, we examine patterns in a public web server log. We explore web
logs because they are a common source of behavioral sequence data. However, we
approach the topic generically rather than using web analytics packages as such (see
Sect. 14.7). In the first part of the chapter, we review functions to process an actual
web log. Then we introduce Markov chains to model behavioral transitions (such
as page-to-page navigation). These methods apply many kinds of marketing (and
non-marketing) behavioral data.

As you will see, the analysis of a real data set may require a substantial amount of
data cleaning. This is a reality that we have deemphasized in previous chapters. In
this chapter, we focus on details of the original data and the structures needed for the
analytic functions. This leads us to introduce important new programming topics—in
particular, date and time functions and regular expressions—and to see additional
applications for methods covered in earlier chapters.

14.1 Web Log Data

Aweb server log compiles all the requests from users’ web browsers. These typically
reflect loading a web page with text contents (such as HTML pages) and graphical
elements (such as GIF and JPG images on a page), along with interactive elements
such as shopping cart updates. The logs identify each request’s Internet address

© Springer Nature Switzerland AG 2019
C. Chapman and E. M. Feit, R For Marketing Research and Analytics, Use R!,
https://doi.org/10.1007/978-3-030-14316-9_14

399

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14316-9_14&domain=pdf
https://doi.org/10.1007/978-3-030-14316-9_14

400 14 Behavior Sequences

(IP address, often called the host)with a timestamp, alongwith the pages and graphics
that are requested. This allows us to identify events for each user (host) and assemble
them in order, yielding sequences.

Similar sequence datamight come frommanyother data sources. Thesemight include
store transactions over time, eye tracking data, CRM (customer relationship man-
agement) system events, credit or loyalty card transactions, hotel or air reservations,
or ticket sales. Such data may also arise from non-marketing situations, such as med-
ical records (e.g., a sequence of diagnoses and/or treatments), gene expression data,
email threads, and governmental data such as arrest records, border crossings, and
voting records (we’re not specifically advocating collecting or inspecting these kinds
of data, just noting them).

14.1.1 EPA Web Data

Because web logs provide deep insight into a firm’s business and its customers,
there are few examples available for public usage. We will use a government web
server log that has been made public, and that is otherwise substantively similar to a
private web log. These data comprise requests to an HTTP (web) server for the US
Environmental Protection Agency (EPA) and are available for redistribution [19].
We have decompressed the data, and corrected a few minor formatting issues with
the text delimiters.

We recommend that you work through the data processing steps in the following
section, because we introduce several new R topics, including functions to work
with date and time data, regular expressions to match text strings, and sorting data.

However, if you prefer, you can download the final data from the book’s website.
The data structure is modestly complex, with a mix of character, numeric, factor,
ordered factor, and time data. This would be complex to adapt from CSV data, so
we use R’s capability to read a formatted RDS (R data serialization) object with
the readRDS() function. This loads an object with all of its attributes intact.

If you download the file from https://goo.gl/s5vjWz and save it somewhere (such as
“ /Downloads/”), you can read it with a simple readRDS() assignment:
> epa.df <- readRDS("~/Downloads/rintro -chapter14 -epa.rds")

To download directly from the web, R needs to know additionally to read from a web
address (url()) and to decompress the data (gzcon()):
> epa.df <- readRDS(gzcon(url("https://goo.gl/s5vjWz")))

In either case, check the data after it is loaded:
> summary(epa.df)

host timestamp request status
host1986: 294 Length :47748 Length :47748 http200 :36712 ...
host1032: 292 Class :character Class :character http304: 5300 ...

https://goo.gl/s5vjWz

14.1 Web Log Data 401

bytes rawhost datetime
Min. : 0 Length :47748 Min. :1995 -08 -29 23:53:25 ...
1st Qu.: 231 Class :character 1st Qu.:1995 -08 -30 10:58:37 ...
reqtype pagetype page
GET :46014 gif :22418 Length :47748 ...
HEAD: 106 html : 8687 Class :character ...

You might also wish to install two packages that we will use— clickstream and
superheat—if you don’t already have them:

> install.packages(c("clickstream", "superheat"))
Installing packages into ?/Users/chris/Library/R/3.5/library? ...

After this, skim the following data processing sections to understand what these
variables represent and to review a few analyses and visualizations. Then continue
with the session analytics in Sect. 14.3.2.

14.1.2 Processing the Raw Data

In this and the next few sections, we walk through the data cleaning process starting
with raw server logs (as opposed to skipping ahead to the final, processed data as
noted in the previous section). First, we load the raw log in text format and name the
columns, as described by Bottomley [19]:

> epa.df.raw <- read.table("https://goo.gl/LPqmGb", sep=" ",
+ header=FALSE , stringsAsFactors = FALSE)
> # name the columns
> names(epa.df.raw) <- c("host", "timestamp", "request", "status", "bytes")
> str(epa.df.raw)
’data.frame’: 47748 obs. of 5 variables:
$ host : chr "141.243.1.172" "query2.lycos.cs.cmu.edu" ...
$ timestamp: chr "[29:23:53:25]" "[29:23:53:36]" ...
$ request : chr "GET /Software.html HTTP/1.0" ...
$ status : int 200 200 200 200 200 200 200 200 200 200 ...
$ bytes : chr "1497" "1325" "1014" "4889" ...

As with many raw data sources, several steps are needed to make it more usable, and
we perform those in the following sections. To some extent, the steps are unique to
web server logs and this data set. However, they provide opportunity to introduce
topics that are useful for handling date, time, and text data.

14.1.3 Cleaning the Data

We begin by making a copy of the raw data under the principle of never changing the
original data (see Sect. 7.3.3). After that, we backup the host data—users’ Internet
(IP) addresses—asrawhost, and create a disguised alternative that simply numbers
them. A simple way to do this is using factor(), which uses sequential integers
to index the arbitrary labels for categorical data. Given those arbitrary integer values,
we add the prefix “host” using paste0(), a variant of paste() (Sect. 3.4.4) that
omits the default blank space separation character.

402 14 Behavior Sequences

> epa.df$rawhost <- epa.df.raw$host
> epa.df$host <- factor(paste0("host", as.numeric(factor(epa.df$rawhost))))
> head(epa.df$host)
[1] host195 host1888 host2120 host2273 host2273 host2273
2333 Levels: host1 host10 host100 host1000 host1001 host1002 ... host999

Why do we create host instead of just using the IP addresses? Because these
addresses may be regarded as private identifiers that we don’t need for routine anal-
ysis. It’s good practice to disguise such data and not to use it during general analysis,
reserving access of the original, private details only when they are actually needed.
For example,wemight use those to determineusers’ country location (as inSect. 14.8,
Exercise 7). If we didn’t need the information,we could remove it from the data frame
by reassigning the column a NULL value using the command epa.df$rawhost
<- NULL, or simply overwrite host without creating rawhost.

14.1.4 Handling Dates and Times

Sequence data commonly includes dates and times, and these are among the most
challenging data types in R. There are multiple, quite confusing systems for defining
dates and times, and it can be difficult to convert them to a standardized format. One
difficulty is that dates and times may be written in different ways, and we must tell R
how to decode them. Looking at the timestamp column in the EPA data (see the
results of str(epa.df.raw above), we see entries such as “[29:23:53:25]”.
Referring to the data source [19], this represents the day of the month in August 1995
(the 29th) and the time on that day (23:52:25).

One R command to convert times is the strptime() command, which takes
three arguments: the data to convert, a format string defining the data layout,
and the timezone of the observations. In this case, our data lack the year and
month, so we first append those to the data using paste0("1995:08", ...).
Using substr(..., start, end) we add the data from characters 2 to 12—
the day of the month and time—omitting the initial and final “[]” characters. This
gives a complete date and time string, such as “1995:08:29:23:52:25”.

With the data in this fully specified format—year, month, day, and time—we
define a conversion template for strptime() to extract the relevant pieces
(year, month, day, etc.) Referring to ?strptime, we define the conversion using
"%Y:%m:%d:%H:%M:%S", specifying the year, month, day of the month, hour,
minute, and second, respectively. We add the timezone “America/New_York” for the
data, based on the server’s location in Raleigh, North Carolina [19].

Putting all of that together—removing the [] brackets with substr(), adding
the year and month, converting with strptime(), and adding the time zone—we
convert the times:
> epa.df$datetime <- strptime(paste0("1995:08:",
+ substr(epa.df.raw$timestamp , 2, 12)),
+ "%Y:%m:%d:%H:%M:%S", tz="America/New_York")

14.1 Web Log Data 403

Next we use thePOSIXct format, which internally represents the date as the number
of seconds elapsed since the beginning of 1970 (which could be negative). This is a
common data format, and makes the data compatible with plotting commands later:

> epa.df$datetime <- as.POSIXct(epa.df$datetime)

The times are now in a clean format with time zone information:
> head(epa.df$datetime)
[1] "1995 -08 -29 23:53:25 EDT" "1995 -08 -29 23:53:36 EDT" ...

14.1.5 Requests and Page Types

Examining the users’ browser requests, we see a common structure. Each request
consists of an action request (e.g., to “get” a page), the page or file requested, and
the communication protocol (“HTTP/1.0”):

> head(epa.df$request)
[1] "GET /Software.html HTTP/1.0"
[2] "GET /Consumer.html HTTP/1.0" ...

Wewill extract the pages and actions from this. First,we eliminate the communication
protocol because it never varies. The function sub(pattern, replacement)
replaces a search string in character data; we replace each occurrence of “HTTP/1.0”
with an empty string:

> epa.df$request <- sub(" HTTP/1.0", "", epa.df.raw$request)
> head(epa.df$request)
[1] "GET /Software.html" "GET /Consumer.html" ...

Next we determine the browser action. This is most commonly a GET request
(retrieve content from the server), but also may be a POST (send data) or HEAD (get
information about a page’s content—such as its length—without loading the page
itself). To do this, we first create a new column reqtype to code the request type for
each line. Then we search each request for the relevant commands, using grepl()
(which searches for the presence of a particular text string) and update reqtype
accordingly:

> epa.df$reqtype <- NA
> epa.df$reqtype[grepl("POST ", epa.df.raw$request)] <- "POST"
> epa.df$reqtype[grepl("GET ", epa.df.raw$request)] <- "GET"
> epa.df$reqtype[grepl("HEAD ", epa.df.raw$request)] <- "HEAD"
> epa.df$reqtype <- factor(epa.df$reqtype)
> table(epa.df$reqtype)

GET HEAD POST
46014 106 1622

Because we started by specifying reqtype as NA, we can easily determine whether
our recoding covered all of the data. In this case, we see no entryNA in thetable(),
confirming that the data were all coded appropriately. As expected, most of the
requests were GET requests for content that users clicked on.

Similarly, it is helpful to examine the content (technically, the file) that a user
requested. Consider the typical structure of a traditional web page: it has content

404 14 Behavior Sequences

(generally in an HTML file) along with images (typically GIF and JPG files) and
documents (such as PDF files). To understand users’ behavior we will be interested
primarily in their patterns of accessing the HTML files, which provide the primary
content and link to one another. Image files may be downloaded with those, but are
less interesting for understanding the sequence of behavior. In order to filter that
data, we code each request for the type of file that was requested:

> epa.df$pagetype <- "other"
> epa.df$pagetype[grepl("\\.gif", epa.df.raw$request ,
+ ignore.case=TRUE)] <- "gif"
> epa.df$pagetype[grepl("\\. html", epa.df.raw$request ,
+ ignore.case=TRUE)] <- "html"
> epa.df$pagetype[grepl("\\.pdf", epa.df.raw$request ,
+ ignore.case=TRUE)] <- "pdf"
> epa.df$pagetype <- factor(epa.df$pagetype)
>
> table(epa.df$pagetype)

gif html other pdf
22418 8687 16536 107

Note here that we are using a very simple regular expression with grepl() to find
the file type of interest. A regular expression (also known as a regex) is a structured
way to find strings that follow a specific pattern—such as being all numbers or having
the structure of a standard file name. A complete explanation of regexes is beyond
our scope here, and in fact is the subject of several books, such as [80]. In R, see
?regex for a starting point.

In the present data, by searching for “\\.gif”, we are asking grepl() to determine
whether “.gif” appears inside each request. The backslashes are used to note that the
period character “.” should not be interpreted as a special character. By default, a
period is used in a regex to match any character, but in this case, we want to match an
actual period. We add the argument ignore.case=TRUE in order to match upper
or lower case, such as “gif” or “GIF”.

What were the “other” page types?We usesome() from the car package to sample
them (your results will vary; try the command a few times):

> some(epa.df$request[epa.df$pagetype=="other"])
[1] "GET /OWPubs/"
[2] "GET /"
[3] "POST /cgi -bin/waisgate/134.67.99.11= earth1 =210=/usr1 ...
[4] "GET /OSWRCRA/non -hw/indust/"
[5] "GET /waisicons/eye2.xbm" ...

We see that many of the “other” types are unspecified directories, while some are
links to other types of servers (e.g., the antiquated Gopher protocol), and other file
types (e.g., XBM graphics). Deeper investigation might reveal that some of these are
actually page requests, and, if so, could be categorized as HTML requests. For our
purposes here, we simply leave them uncategorized.

Nowwe find the actual page or file that the user requested. We do this by copying the
request to a new column page, and using sub(..., "") to remove “GET”,
“POST”, or “HEAD”:
> epa.df$page <- epa.df$request
> epa.df$page <- sub("GET ", "", epa.df$page)
> epa.df$page <- sub("HEAD ", "", epa.df$page)
> epa.df$page <- sub("POST ", "", epa.df$page)

14.1 Web Log Data 405

> head(epa.df$page)
[1] "/Software.html" "/Consumer.html"
[3] "/News.html" "/"
[5] "/icons/circle_logo_small.gif" "/logos/small_gopher.gif"

14.1.6 Additional HTTP Data

Finally, web logs include data about whether a request was successful, such as the
well-known “404 Not Found” error for a missing page, and the size of the data sent.
We add these as the request status and number of bytes transmitted.We add theHTTP
status as an ordered factor variable, where the sequential, alphabetical order has
meaning and is not simply a nominal label. The order has meaning because status
values of 400 or higher indicate errors.

> epa.df$status <- ordered(paste0("http", epa.df.raw$status))
> epa.df$bytes <- as.numeric(epa.df.raw$bytes)
Warning message:
NAs introduced by coercion
> summary(epa.df)

host timestamp request status
host1986: 294 Length :47748 Length :47748 http200 :36712
host1032: 292 Class :character Class :character http304: 5300
host2247: 266 Mode :character Mode :character http302: 4506
host1439: 263 http404: 611

...
bytes rawhost datetime

Min. : 0 Length :47748 Min. :1995 -08 -29 23:53:25
1st Qu.: 231 Class :character 1st Qu.:1995 -08 -30 10:58:37
Median : 1260 Mode :character Median :1995 -08 -30 13:57:46

...
reqtype pagetype page
GET :46014 gif :22418 Length :47748
HEAD: 106 html : 8687 Class :character
POST: 1622 other :16536 Mode :character
NA’s: 6 pdf : 107

We already see some interesting results, such as hundreds of “404 page not found”
errors in the status column. Next we investigate the frequencies of events in the
data set.

14.2 Basic Event Statistics

Many behavioral questions involve frequencies of events: which actions are most
common? How do they change over time? What errors occur? Which customers are
most active? We examine each of these in our web log data.

14.2.1 Events

Which behaviors—in this case, page requests—are most common? We count the
events using table(), then sort() them by frequency, and display the top 10

406 14 Behavior Sequences

results using head(). To specify the direction for sorting, we add decreasing=
TRUE to the sort() command.
> head(sort(table(epa.df$page), decreasing = TRUE), 10)
/icons/circle_logo_small.gif 3203
/ 2381
/logos/small_gopher.gif 1851
/logos/us-flag.gif 1817 ...

The most common requests are for .gif files, such as logos that might be used on
many pages. However, to understand customers’ interests, it is more informative to
understand page interaction, so we repeat the table, filtering for HTML requests:
> head(sort(table(epa.df$page[epa.df$pagetype=="html"]),
+ decreasing = TRUE), 10)

/Rules.html /Software.html /docs/WhatsNew.html
312 169 159

/Info.html /Offices.html /docs/Internet.html ...
151 139 137 ...

Themost commonly requested pages involve EPA rules, software, and “what’s new.”

14.2.2 Events by Time

When are our users most active? Because we took care in Sect. 14.1.4 to code the
times, we can easily plot frequency of events versus time. The ggplot2 package
understands standard date and time data as coordinates.
> library(ggplot2)
> p <- ggplot(epa.df, aes(x=datetime)) +
+ geom_density()
> p

The geom_density() function draws a smoothed histogram for the frequency.
The resulting figure is simple and usable, but it may be improved:
> library(scales) # install if needed
> p <- ggplot(epa.df, aes(x=datetime , fill=I("lightblue"))) + # color
+ geom_density(alpha =0.5, bw = "SJ-dpi", adjust =2.0) + # granular
+ scale_x_datetime(breaks = date_breaks("2 hours"),
+ date_labels = "%b %d %H:%M") + # axis labels
+ theme(axis.text.x = # rotate
+ element_text(angle = 45, vjust = 1, hjust = 1)) +
+ ylab("HTTP Requests (proportion)") + # label axes
+ xlab("Date / Time")
> p

The result is shown in Fig. 14.1. If you look closely, you will see that the core of
this command is the same as the previous, very short code block, with several addi-
tional features. First, we fill the shape with “lightblue” color. We adjust the density
smoothing using a different smoothing estimation method, “SJ-dpi” and increase
the level of smoothing with adjust=2.0 (higher values producemore smoothing).
Instead of a solid fill, we request a semi-transparent fill with alpha=0.5.

Next, we format the chart information to be more readable. We request X axis labels
at 2 h increments and format their appearance using scale_x_datetime() (see

14.2 Basic Event Statistics 407

0e+00

1e−05

2e−05

Aug
 30

 00
:00

Aug
 30

 02
:00

Aug
 30

 04
:00

Aug
 30

 06
:00

Aug
 30

 08
:00

Aug
 30

 10
:00

Aug
 30

 12
:00

Aug
 30

 14
:00

Aug
 30

 16
:00

Aug
 30

 18
:00

Aug
 30

 20
:00

Aug
 30

 22
:00

Aug
 31

 00
:00

Date / Time

H
TT

P
 R

eq
ue

st
s

(p
ro

po
rti

on
)

Fig. 14.1 Web requests by time in the EPA data

help for details on the format string). We rotate the X axis labels to 45◦ with the
element_text(angle=...) option. Finally we add xlab() and ylab()
axis labels.

Not surprisingly, we see that the server is busiest during daytime hours, and there is an
additional peak around midnight. We might use such data to inform decisions about
when to staff a call center, update files, or set shipping times. Also, it suggests patterns
that might be explored in qualitative research such as interviews or observation.

14.2.3 Errors

All of us have experienced web pages that cannot be found. An important task for
website developers is to track errors so that they can be identified and eliminated.
How do we find those errors in the EPA data?

First, we flag the requests that resulted in an error, which is easily identified by
an HTTP status of 400 or higher. Then we count the occurrences with table()
and sort() them as above:
> err.page <- epa.df$page[epa.df$status >= "http400"]
> head(sort(table(err.page), decreasing = TRUE))
err.page

/waisicons/unknown.gif /Region5/images/left.gif
206 83

/Region5/images/up.gif /Region5/images/epalogo.gif ...
83 82 ...

408 14 Behavior Sequences

The most common errors appear to involve GIF images. The administrators might
need to upload those images to the relevant folders, or update the links from pages.

14.2.4 Active Users

One of the most common engagement metrics is the count of active users. In some
data sets, you may have an identifier for the user, such as a user name or loyalty card
number. In the EPA data, the disguised host name (IP address) is the best available
identifier. One approach is to count the number of unique identifiers:

> length(unique(epa.df$host))
[1] 2333

In reporting or interpreting such a metric, we should remember that the user-
to-identifier mapping is imprecise. In these data, some users may have multiple
addresses because they use multiple networks or devices. Also, some addresses may
have multiple users, such as people using a single WiFi access point. More gener-
ally, log in user names, phone numbers, and loyalty cards are often shared among
household (and even non-household) members.

Who are the most active users? table() will count them. Then we can plot the
counts and find the top 10 users:

> host.tab <- sort(table(epa.df$host), decreasing = TRUE)
> plot(host.tab)
> head(host.tab , 10)
host1986 host1032 host2247 host1439 host1028 host1656 host1511 host924 ...

294 292 266 263 248 176 174 172 ...

The resulting plot is shown in Fig. 14.2. As is typical in such data, the pattern is
roughly anti-logarithmic; a small proportion of users account for most transactions.
(Try plotting the log() of the table to see a more linear relationship.)

0
50

15
0

25
0

ho
st

.ta
b

host1986 host82 host7 host233 host64 host32 host5

Fig. 14.2 Total page requests by user. A small number of users request many pages

14.3 Identifying Sequences (Sessions) 409

14.3 Identifying Sequences (Sessions)

When working with any sequence data, an important decision must be made: among
sequential actions, what counts as a sequence? For example, suppose you are inter-
ested in retail shopping behavior. Do you want to model what someone purchased in
a single visit? Or all visits in a week? A month? A year? In their lifetime?

In the case of online behavior, it is common to assume that a sequence of interest,
called a session, comprises all behaviors within a single period of time that is demar-
cated by a gap of inactivity from other sessions. For example, we might assume that
if a user is active in two periods of time, with a gap between the periods of more than
15 or 30 or 60 min, then those are two distinct sets of behaviors.

In the EPA data, we need to identify those sessions. We’ll look at the time gap
between successive behaviors, assessing activity on a scale of minutes. For other
data, you might use day, months, or years. For example, a model of engagement
in an amusement park might logically use a scale of days (e.g., if we had data on
in-park activities for our customers in Sect. 7.1). A model of personal banking and
finance might be on the scale of years, while applications to personal health behavior
(such as identifying the connection between behavior X and outcome Y) might use
lifetime data.

Our discussion here is lengthy and may seem somewhat tedious. However, we dis-
cuss the process in detail for several reasons. First, there are important new func-
tions, including order() to sort data, cumsum() for cumulative (running) totals,
and rle() to count repetitions of values. Second, it demonstrates the importance
of paying attention to small details such as offsetting indices when comparing sets
of rows. Finally, it provides a structure that could be easily modified for other data,
where you might care about sequence boundaries that are determined by other vari-
ables or by different gaps in time.

14.3.1 Extracting Sessions

We find sessions in epa.df in the following way: sort the behaviors in order of the
user (host) as the primary sort key, and the timestamp (datetime) as the secondary
key, and then split the data by time gaps. In R, sorting is commonly accomplished as a
two step process. First, use order() to determine the appropriate order of elements
according to the sort criteria, and then use indexing to put the object into that order.
Note that—unlike sorting in a spreadsheet or other applications— order() does
not change the order of your data. It just tells you what the ordering is.

Here’s a simple example. We create a vector x of unordered numbers. order(x)
tells us the position of each element that would put them into order (increasing order,
by default):

410 14 Behavior Sequences

> x <- c(22, 46, 66, 11, 33, 55)
> order(x)
[1] 4 1 5 2 6 3
> x[order(x)]
[1] 11 22 33 46 55 66

The command order(x) reports that the first element of the ordered version would
be element 4 of x, followed by element 1, and so forth. This is what we need to create
an index of x that will put it into the correct order, x[order(x)]. To order by
more than dimension, list them separated by commas.

For the EPA data, we order by host and then datetime and save the result as
a new data frame. It is not strictly required to save the result, but it simplifies the
syntax for repeatedly using it later. (An alternative would be to index epa.df each
time we need it in sorted order.)
> epa.ordered <- epa.df[order(epa.df$host , epa.df$datetime),]

You should inspect head(epa.ordered, 50) or tail() to confirm the order.
Next we find time gaps between successive rows:
> epa.ordered$time.diff <-
+ c(NA,
+ as.numeric(
+ epa.ordered$datetime [2: nrow(epa.ordered)] -
+ epa.ordered$datetime [1:(nrow(epa.ordered) -1)],
+ units="mins")
+)

This is a long single line of code, but it is not complex if we break it down. First
of all, it has the structure of comparing each row to the previous row, which it
accomplishes by comparing rows 2:nrow(...) to rows 1:(nrow(...)-1).
For data coded as timestamps (see Sect. 14.1.4), R can calculate differences. In this
case, we calculate the difference in units of minutes, and find that by subtracting
rows 1:(nrow(...)-1) from rows 2:nrow(). Next we assign those as a new
columntime.diff, but first add a difference of NA at the beginning.Why?Because
our calculation applies starting from the second row, and the first row has no time
difference from anything else.

Finally, we need to inspect the gaps between rows and identify which of them denote
new sessions. There are three cases that could indicate a new session: (1) the first
row of data, which is a new session by definition; (2) a different user (host) than
the previous row; (3) the same user as the previous row, but with a time gap that
exceeds a specific cutoff value.

For these data, we will define the cutoff time as 15 min between behaviors, assuming
that if someone is inactive for that long and then return, they are likely to be doing
a new task. This should be set according to your business question. Apart from
assuming a cutoff interval, the choice might be informed by qualitative research and
observation, or by quantitative analysis, such as the empirical distribution of gaps or
the degree to which models using various assumptions about the gaps are effective
at predicting behavior.

We set our assumed gap interval in minutes, and add a column newsession to
track whether each row is part of a new session versus the previous row:

14.3 Identifying Sequences (Sessions) 411

> session.time <- 15 # exceed (mins) ==> new session
> epa.ordered$newsession <- NA # is this row a new session?
> epa.ordered$newsession [1] <- TRUE # row 1 is always a new session

We determine for each row whether it has either a new user host or a time gap
greater than session.time:

> epa.ordered$newsession [2: nrow(epa.ordered)] <-
+ ifelse(epa.ordered$host [2: nrow(epa.ordered)] !=
+ epa.ordered$host [1:(nrow(epa.ordered) -1)], # hosts differ
+ TRUE , # so diff session
+ epa.ordered$time.diff [2: nrow(epa.ordered)] >=
+ session.time) # else base on time

As with our time calculation above, this is a long line of code comparing rows
2:nrow() to previous rows 1:(nrow()-1). The core is an ifelse(test,
yes, no) statement that assigns a value of TRUE in the case of a new session, or
FALSE otherwise (ifelse() is discussed in Sect. 2.7.1). In pseudocode, it says
this:
> newsession[currentrow] <-
+ if(host[currentrow] != host[previousrow],
+ then: newsession <- TRUE
+ else: newsession <- time.diff >= session.time

We take advantage of the fact that a boolean test in R returns TRUE and FALSE
values for us; the ifelse() “no” (i.e., “else”) clause simply assigns the direct
value of comparing time.diff to session.time.

At this point we have a flag that identifies whether each row is part of a new session:

> epa.ordered [1:20, c("host", "datetime", "newsession")]
host datetime newsession

33393 host1 1995 -08 -30 16:03:45 TRUE
12383 host10 1995 -08 -30 11:07:35 TRUE
12388 host10 1995 -08 -30 11:07:50 FALSE
...
12462 host10 1995 -08 -30 11:09:01 FALSE
13891 host10 1995 -08 -30 11:32:21 TRUE
13895 host10 1995 -08 -30 11:32:27 FALSE
...

We see, for example, that “host10” was active from 11:07 to 11:09, and then had a
break for 23 min. The next row at 11:32 is identified as starting a new session.

R treatsTRUE as a value of 1, and FALSE as a value of 0, sowe can count and number
the sessions by taking a running total of newsession. The function cumsum()
gives a running total:

> epa.ordered$session <- cumsum(epa.ordered$newsession)

Note that time.diff would have incorrect values wherever the log changes from
one user to another; there is no in-session time difference from what another user
did. We clean those up by assigning NA values for the time difference at the start of
every session.

> epa.ordered$time.diff[epa.ordered$newsession ==1] <- NA # new sessions

Finally, we inspect the data using summary() (omitted here) and sample some of
the rows:

412 14 Behavior Sequences

> epa.ordered [1:100 , c(1, 7, 11:13)]
host datetime time.diff newsession session

33393 host1 1995 -08 -30 16:03:45 NA TRUE 1
12383 host10 1995 -08 -30 11:07:35 NA TRUE 2
12388 host10 1995 -08 -30 11:07:50 0.25000000 FALSE 2
...
12462 host10 1995 -08 -30 11:09:01 0.03333333 FALSE 2
13891 host10 1995 -08 -30 11:32:21 NA TRUE 3
13895 host10 1995 -08 -30 11:32:27 0.10000000 FALSE 3
...

14.3.2 Session Statistics

If you have skimmed the chapter so far, it’s time to load the data (Sect. 14.1.1). We
will review a few basic descriptive statistics for sessions.

We saw in Sect. 14.2.4 that there are 2333 unique users in the EPA data. How many
unique sessions are there? There are several equivalent ways to determine that:

> sum(epa.ordered$newsession)
[1] 3314
> sum(is.na(epa.ordered$time.diff))
[1] 3314
> max(epa.ordered$session)
[1] 3314

This reveals some redundancy in the data frame, which is often a good thing because
it helps us check that our code is correct.

How many requests are there per session? A naive answer would simply divide the
requests by sessions:

> nrow(epa.ordered) / sum(epa.ordered$newsession)
[1] 14.40797

However, as analysts we should always wonder about the distribution of such data.
Remember that we have the counter session that is unique for each session
(Sect. 14.3.1), and the data are ordered by that. To find the number of requests that
occur within each session, we need to count them. The rle(x) function does this; it
counts the number of times that a particular value is repeated in a row. We use this to
count the number of times that a particular session identifier is observed sequentially.

> session.length <- rle(epa.ordered$session)$lengths
> table(session.length)
session.length

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ...
357 251 129 114 103 115 460 147 126 106 77 101 92 84 64 52 53 54 54 ...
> plot(table(session.length))

The resulting plot is shown in Fig. 14.3.

As usual, we are also interested in the summary of the distribution:

> summary(session.length)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 4.00 8.00 14.41 18.75 228.00

14.3 Identifying Sequences (Sessions) 413

0
10

0
20

0
30

0
40

0

session.length

ta
bl

e(
se

ss
io

n.
le

ng
th

)

1 16 33 50 67 84 107 129 155 228

Fig. 14.3 Frequency of session length (in number of requests per session) for the complete EPA
data. There is a spike for sessions with length 7

We see in the summary() that the median session length is 8 requests, but Fig. 14.3
shows a spike at the most common value of 7 requests. Why is that? Let’s examine a
few sessions of length 7. To do that, we need a way to select the rows that are part of
sessions of length 7. We’ve already seen that rle() tells us the lengths of sessions.
However, for a session of a given length, it simply reports that length—i.e., for a
session with 10 requests, rle() just reports “10”. It would be more convenient if it
repeated that 10 times, because then it would align with the requests themselves. We
can obtain that by using rep() with session.length: create a vector where
each length is repeated exactly its own number of times:
> (sesslen <- rep(session.length , session.length))

[1] 1 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
[19] 13 13 13 13 13 13 13 13 13 48 48 48 48 48 48 48 48 ...

That vector is now the same length as the rows in the data frame. For each row in the
data frame, it answers the question, “what is the length of the session that includes
this row?”

Given that, we are able to sample a few sessions with length 7, and examine the
requests. We use the %in% operator to find sessions that match a random sample of
desired sessions (sesssamp):
> set.seed (98245)
> sesssamp <- sample(unique(epa.ordered$session[sesslen ==7]) , 10)
> epa.ordered[epa.ordered$session %in% sesssamp , c("session", "page")]

session page
17495 124 /
17499 124 /logos/small_gopher.gif
17500 124 /icons/circle_logo_small.gif
17501 124 /logos/small_ftp.gif
17503 124 /icons/book.gif
17504 124 /icons/ok2 -0.gif
17505 124 /logos/us-flag.gif
39953 604 /
39969 604 /icons/circle_logo_small.gif
39971 604 /logos/small_gopher.gif
...

Ah! So many sessions have length 7 because the root page (“/”) had 6 GIFs and
each one of them was loaded by the browser as a separate request. That is not very

414 14 Behavior Sequences

0
20

0
40

0
60

0
80

0

session.length.html

ta
bl

e(
se

ss
io

n.
le

ng
th

.h
tm

l)

1 8 17 27 37 59 130

Fig. 14.4 Frequency of session lengths after filtering for only HTML requests. The spike at length
7 in Fig. 14.3 is no longer observed

interesting because it is so repetitive.We filter for just theHTML requests and inspect
the session lengths again:

> session.length.html <-
+ rle(epa.ordered$session[epa.ordered$pagetype =="html"])$lengths
> plot(table(session.length.html))

The result is shown in Fig. 14.4 and makes more sense. It is a nearly perfect power-
law relationship (Sect. 4.5.4), with a session length of just 1 page request as the most
common observation.

14.4 Markov Chains for Behavior Transitions

We are now ready to explore sequences of user behavior. As we noted in the chapter
introduction, there are many approaches to modeling such data. In this section, we
introduce Markov chains (MCs) to model transitions between behavioral states. In
our view, Markov chains have an unwarranted reputation for complexity. We believe
their practical application can be straightforward. At the same time, MC methods
and literature offer many options for more complex analyses when needed.

Youmight recall the term“Markov chain” fromour discussion ofBayesian estimation
methods (Sect. 6.6.2). In this chapter, forget about that! Although there is a deep
connection—Markov chains are often used as part of a computational apparatus
to determine parameters in Bayesian estimation—for purposes of this chapter, we
recommend to keep the concepts separate. A Markov chain (MC) may be regarded
as an interpretable behavioral state transition mechanism, whereas a Markov chain
Monte Carlo (MCMC) procedure is a computational process used for other purposes
(for more, see [73]). In short, this chapter is about MC, not MCMC.

14.4 Markov Chains for Behavior Transitions 415

14.4.1 Key Concepts and Demonstration

A Markov chain (MC) has two essential elements: a set of states, and a matrix of
transition probabilities that define the odds of moving between states. For exam-
ple, consider marriage. There are several possible states: {unmarried}, {married},
{divorced}, and {widowed}. Each of those has some probability, i.e., the proportion
of the population who is in that state. We might also define or estimate a transition
matrix for moving among those states. For example, the probability of moving from
{married} to {divorced} in one year might be p=0.02 (for opposite-sex couples
in the United States), while the probability of transitioning from {unmarried} to
{divorced} is p=0, because one must first go through the state of being {married}.
We may use an MC estimation method to infer such transition probabilities from
observed data.

Let’s consider such states in the context of web pages. Suppose we have 3 web pages
on a site, and observe that 70% of users start on Page 1, 20% on Page 2, and 10% on
Page 3. We represent that in R as a vector of starting probabilities:

> p.start <- c(0.7, 0.2, 0.1)

That establishes the first necessity of anMC, the states. Next we define the transition
probabilities among the pages. Usually we would determine or estimate these from
observations, but for this example we predefine them in order to see how the process
works:
> p.trans <- matrix(c(0.1, 0.5, 0.2,
+ 0.6, 0.4, 0.8,
+ 0.3, 0.1, 0.0), nrow=3, byrow=TRUE)

If someone is at Page 1 (first column) then the odds for their next page after clicking
are p=0.1 to remain at Page 1 (matrix position [1, 1]), p=0.6 to move to Page 2
(position [2, 1]) and p=0.3 for Page 3 (position [3, 1]).

Note on the Transition Matrix Layout (especially for experienced Markov chain
users). Compared to many common expositions of Markov chains, we use a trans-
posed matrix here for the transition probabilities, where the states transition from
the column to the row. We present it this way in order to match the order used in
the clickstream package later in this chapter. In general, one should carefully
checkwhether a transitionmatrix should be read as representing row-to-column tran-
sition order (the most common case in MC literature) or column-to-row transition.

We compute the probabilities for page locations after one user step by (matrix-) mul-
tiplying the transitional probabilities p.trans by the initial state odds p.start:

> p.trans %*% p.start # one click from start
[,1]

[1,] 0.19
[2,] 0.58
[3,] 0.23
>

After 1 click among our pages, 19% of users would be at Page 1, 58% at Page 2, and
23% at Page 3. It may help to check one of the results manually. We can compute

416 14 Behavior Sequences

the Page 1 proportion after one click as follows: 70% start on Page 1 and remain on
Page 1 with p=0.1; another 20% start on Page 2 and transition to Page 1, p=0.5;
and 10% start on Page 3 and move to Page 1, p=0.2. In R:

> 0.7*0.1 + 0.2*0.5 + 0.1*0.2 # manual calc , transition to page 1
[1] 0.19

That is the same as we see for the first element in the matrix multiplication above.
To obtain the state probabilities after a second click, we multiply by the transition
matrix again:

> p.trans %*% p.trans %*% p.start # two clicks from start
[,1]

[1,] 0.355
[2,] 0.530
[3,] 0.115

An interesting property of some Markov chains—known as regular chains—is that
their long-range predictions become stable after multiple steps and are independent
of the starting position. To determine this, we may examine exponential powers of
the transition matrix, multiplying it by itself many times to see whether the results
are stable. We can exponentiate a transition matrix T to some high power, such as
T 100 using the expm package [78]:

> library(expm) # matrix exponentiate , install if needed
> p.trans %^% 100 # 100 steps

[,1] [,2] [,3]
[1,] 0.325 0.325 0.325
[2,] 0.525 0.525 0.525
[3,] 0.150 0.150 0.150

We find that, regardless of the originating page (the column, in this layout), 32.5%
of users will end up on Page 1, 52.5% on Page 2, and 15% on Page 3 (the rows) after
100 steps. We can check that by estimating the state from quite different starting
points:

> p.trans %^% 100 %*% c(1,0,0) # starting from all page 1
[,1]

[1,] 0.325
[2,] 0.525
[3,] 0.150
> p.trans %^% 100 %*% c(0.333 , 0.334, 0.333) # starting equal 3 pages

[,1]
[1,] 0.325
[2,] 0.525
[3,] 0.150

14.4.2 Formatting the EPA Data for clickstream Analysis

In this section, we use the clickstream package [175] to find transition proba-
bilities in the EPA data. As usual, the first step is to format the data as expected by
the package. The clickstream package expects data to be formatted such that all
events for onesequence appear on a single line, such as “user1, page2, page2, page1,
page3”. We start by loading the package:

> library(clickstream) # install first , if needed

14.4 Markov Chains for Behavior Transitions 417

One choice is whether to model all data or not. In the case of the EPA data, there are
6565 unique pages (length(unique(epa.df$page))). A matrix with 6565
columns transitioning to 6565 rowswould be both computationally difficult aswell as
nearly impossible to interpret. We limit ourselves to analysis of the 20 most common
pages. We find those page names and filter the data to HTML pages that are in the
top 20:

> # .. for simplicity here , restrict to top 20 most frequent pages
> top.pages <- names(head(sort(table(epa.df$page[epa.df$pagetype=="html"]),
+ decreasing = TRUE), 20))
> epa.html <- subset(epa.ordered , pagetype=="html" & page %in% top.pages)

At this point, we have events in multiple rows per session. We split() the data by
session and then remove any sessions of length 1 (this is not strictly required, but
there is little point modeling transition probabilities in sessions with no transition):

> # split the sessions
> epa.session <- split(epa.html , epa.html$session)
> # .. optional , remove any of length 1
> epa.stream.len <- lapply(epa.session , nrow)
> epa.session <- epa.session[epa.stream.len > 1]

We check the data to see that the sessions are correctly split, and find N = 521
sessions:
> str(head(epa.session))
List of 6
$ 13:’data.frame ’: 3 obs. of 13 variables:
..$ host : Factor w/ 2333 levels "host1","host10" ,..: 10 10 10
..$ timestamp : chr [1:3] "[30:15:55:42]" "[30:16:10:08]" "[30:16:10:16]"
..$ request : chr [1:3] "GET /docs/WhatsNew.html" "GET /Offices.html" "GET

/Offices.html"
...
> length(epa.session)
[1] 521

One decision we have to make with sequence data is whether and how to identify end
states. With web data, a session eventually ends; in an e-commerce application, users
make a purchase or not; in medical applications, a patient may manifest a symptom
or disease. If the end state is of specific interest for the analytical question, you may
need to append the outcome to the sequence. In the present case, we will assume that
it is of interest—for example, to gain insight into user retention—and add an “END”
state to each sequence, denoting where their session ended.

Now we are able to compile the events onto individual lines for each session. To do
this, we iterate over the sessions, and for each one we aggregate a line comprising
the user identifier (host), the sequence of events (multiple page entries), and a
final end state:
> epa.stream <- unlist(lapply(epa.session ,
+ function(x)
+ paste0(unique(x$host), ",",
+ paste0(unlist(x$page), collapse=","),
+ ",END")))

Reviewing that command, it breaks down as follows. First of all, we use lapply()
with an anonymous function (Sect. 2.7.2) to process each of the sessions in
epa.session. That function has two parts. In the inner part, we unlist()
all the individual pages and combine them into a single character string, using the

418 14 Behavior Sequences

collapse option of paste0() (which is a variation of paste() with no extra
spaces; see Sect. 3.4.4). Then we use paste0() again to add the host identifier
in front of the set of pages, and “END” at the end. After doing that for every session,
we finally unlist() all of them. This gives a vector with individual lines for each
session:
> head(epa.stream)
13 "host1006 ,/docs/WhatsNew.html ,/Offices.html ,/Offices.html ,END"
17 "host101 ,/Info.html ,/Research.html ,END" ...

As it happens, clickstream removes all characters from page names other than
letters and numbers. However, this can make the directory structure difficult to read.
We avail ourselves of regex capability (Sect. 14.1.5) to replace all of the “/” and “.”
characters with unique combinations. The gsub(find, replace, x) function
will replace all matching text in a character vector. We replace “/” with “ii” and
“.html” with nothing (“”); it is redundant because every page is HTML. Before
altering the data, we use grepl() to make sure that “ii” is unique and not already
part of any page names:
> any(grepl("ii", epa.stream)) # before gsub , does ii appear?
[1] FALSE

We are safe to use “ii”, so we use gsub() to make the replacement:
> epa.stream <- gsub("/", "ii", epa.stream)
> epa.stream <- gsub(".html", "", epa.stream , fixed=TRUE)

Because “.” is a special regex pattern that matches any single character, we need to
tell gsub() to match the actual period in “.html”. The option fixed=TRUE is one
way to accomplish this, as it matches an exact string. The converted data still have a
readable structure (with some squinting):
> head(epa.stream)
13 "host1006 ,iidocsiiWhatsNew ,iiOffices ,iiOffices ,END"
17 "host101 ,iiInfo ,iiResearch ,END" ...

Finally, we import the data into a clickstream object. To do that, we write the
data to a temporary file (created with the tempfile() function) and read it from
there with readClickstreams():
> click.tempfile <- tempfile ()
> writeLines(epa.stream , click.tempfile)
> epa.trans <- readClickstreams(click.tempfile , header = TRUE)

As always, we check the first few and last few results to see whether something went
wrong:
> head(epa.stream)
13 "host1006 ,iidocsiiWhatsNew ,iiOffices ,iiOffices ,END"
17 "host101 ,iiInfo ,iiResearch ,END"
...
> head(epa.trans)
$host1006
[1] "iidocsiiWhatsNew" "iiOffices" "iiOffices" "END"
$host101
[1] "iiInfo" "iiResearch" "END"
...
> tail(epa.stream)
...
3298 "host987 ,iidocsiiWelcomeiiEPA ,iiPIC ,END"
3310 "host996 ,iiRules ,iiInitiatives ,END"
> tail(epa.trans)

14.4 Markov Chains for Behavior Transitions 419

...
$host987
[1] "iidocsiiWelcomeiiEPA" "iiPIC" "END"
$host996
[1] "iiRules" "iiInitiatives" "END"

At this point, the epa.trans object is ready for clickstream analysis.

14.4.3 Estimating the Markov Chain

With the data formatted, estimating the Markov chain is straightforward. The main
choice is the order—the number of states considered in the transitionmatrix—thatwe
wish to consider. In general, we recommend to start analysis with an order of 1, where
the next state (i.e., page) depends only on the current state. That is computationally
simple and easy to interpret. After that, consider higher order models (Sect. 14.4.5).
We fit the MC model with order 1 using fitMarkovChain():
> epa.mc <- fitMarkovChain(epa.trans , order =1)

The observed transitionmatrix is in the @transitions slot of the epa.mc object:
> epa.mc@transitions
$‘1‘

END iiInfo iiInitiatives iiNews iiOffices
END 0 0.24358974 0.19696970 0.36923077 0.39743590
iiInfo 0 0.11538462 0.03030303 0.07692308 0.01282051
iiInitiatives 0 0.02564103 0.07575758 0.04615385 0.03846154
iiNews 0 0.10256410 0.01515152 0.03076923 0.02564103
iiOffices 0 0.07692308 0.03030303 0.04615385 0.10256410
...

We read column-to-row (per clickstream order) and find that users transition
{Info→ Info} with p=0.115, {Info→News} with p=0.102, {News→ Info} with
p=0.0769, {Offices → END} with p=0.397, and so forth.

One thing we can immediately read from the transition matrix is which pages are
most associated with leaving the site—the pages with high values for transition to
“END.” If we have a goal of user retention, these would be pages to examine for user
frustration, errors, or other design problems.

Are you surprised that this step was so easy? A winemaker acquaintance of Chris’s
once told him that winemaking is 95% janitation (cleaning crushing equipment,
tanks, barrels, bottles, etc). The same is true for much data analysis: 95% of the
effort is cleaning the data. Fitting the model is often a simple step.

14.4.4 Visualizing the MC Results

A transition matrix is easy to inspect and interpret as a heat map. We suggest
the superheat package to visualize it [6] (heatmap.2() would also work;

420 14 Behavior Sequences

see Sect. 8.1.2). We first extract the transition matrix to a separate object in order
to use gsub() to fix the “/” structure that we disguised earlier. We transpose the
transition matrix using t() because row-to-column is easier to read on a heat map:
> epa.mc.mat <- t(epa.mc@transitions [[1]]) # t() because easier to read
> dimnames(epa.mc.mat)[[1]] <- gsub("ii", "/", dimnames(epa.mc.mat)[[1]])
> dimnames(epa.mc.mat)[[2]] <- gsub("ii", "/", dimnames(epa.mc.mat)[[2]])

We use superheat() with options to resize and rotate the labels, a red color
scheme (higher red saturation for larger transition probabilities), and clustering the
results into pages with similar transition patterns. We set a random number seed
because the layout is partially determined at random:
> library(superheat) # install if needed
> set.seed (70510)
> superheat(epa.mc.mat[-1,], # remove transitions from "END"
+ bottom.label.size = 0.4,
+ bottom.label.text.size = 3.5,
+ bottom.label.text.angle = 270,
+ left.label.size = 0.3,
+ left.label.text.size = 4,
+ heat.col.scheme = "red",
+ n.clusters.rows = 5, n.clusters.cols = 5,
+ left.label = "variable", bottom.label = "variable",
+ title="Transitions , in sequences of top 20 pages (Row -to-Col)")

Note that we remove the first row of the transition matrix epa.mc.mat[-1,]
because “END” never transitions to any other page. The result is shown in Fig. 14.5,
and reveals several patterns, such as the close relationship between the “WhatsHot”
and “Internet” pages, a strong association of “efhome” (the unitary page in the next-
to-last column cluster) as a destination from “docs/major” and “Software”, and a few
clusters of similar pages.

Another useful way to view MC transitions is with a graph layout. The
clickstream package provides a plot() method to do this, given a fitted MC
object. For a cleaner graph, we request transitions with a minimum probability of
0.25:
> set.seed (59911)
> plot(epa.mc, minProbability =0.25) # layout varies; partially random

This gives Fig. 14.6, which reveals associated pages and common paths to “END.”

14.4.5 Higher Order Chains and Prediction

What if we want to model transitions from multiple pages? We fit a Markov chain
with a higher order parameter. This requires filtering the data to relevant sessions
that have a sufficient number of events. For example, to model transitions after
two pages, the sessions must have length 3 or greater. In a higher-order model,
transition matrices cannot be directly observed from the data but are estimated from
the observations using a linear optimization method (see ?fitMarkovChain). In
this case, we take a subset of epa.trans, selecting sessions with 3 pages or more
using lapply(..., length) >= 4 (using 4 instead of 3 because of the END
state), and fit a second order model by setting order=2:

14.4 Markov Chains for Behavior Transitions 421

Fig. 14.5 Heatmapof theEPATop20pageMarkov chain transitions usingsuperheat, clustering
the rows and columns. Note that the transition matrix here is read as transitioning from the row to
the column, as is traditional for Markov chains

> epa.trans.ge3 <- epa.trans[lapply(epa.trans , length) >= 4]
> epa.mc2 <- fitMarkovChain(epa.trans.ge3 , order =2)

This yields two@transitionmatrices, inwhich a state’s likelihood is proportional
to the summed product of the respective transition odds for the two previous states
(see ?‘predict,MarkovChain-method‘). The proportionality is relative to
potential absorbing states, amore complex topic than space allows here; cf.Grinstead
and Snell, Sect. 11.2 [81].

Apart from inspecting the transitionmatrices, we use them to predict states that might
follow a particular sequence. Consider sequence 160 in our data, which happens to
have length of 10 page views. First we review the sequence and, for convenience,
copy it to a new clickstream sequence object:

> epa.trans [160]
$host1632
[1] "iiRules" "iidocsiimajor" "iidocsiiInternet"
[4] "iidocsiiGovernment" "iiinformation" "iidocsiiWelcomeiiEPA"
[7] "iiPIC" "iiRules" "iiRules"

[10] "iiInitiatives" "END"
> epa.ex <- new("Pattern", sequence=head(unlist(epa.trans [160]) , -1))

Notice a new use of indexing: we selected head(..., -1) to get all of the
sequence except the final observation (because that is “END” and doesn’t lead to
any other states).

422 14 Behavior Sequences

Fig. 14.6 Graph of the EPA Top 20 page transitions in the Markov chain model, for transition
probabilities ≥ 0.25, using the default plot() method from clickstream

We use predict() to predict the next page (“ dist=1” means a distance of one
page):

> predict(epa.mc2 , epa.ex, dist =1)
Sequence: iiRules
Probability: 0.2858429 ...

The next page is most likely to be “Rules”, with probability 0.286. We could predict
additional pages after that, if we wished, such as the next 4 likely pages:

> predict(epa.mc2 , epa.ex, dist =4) # most just end up with "END"
Sequence: iiRules END
Probability: 0.0730788 ...

After one or twopages, sequences are likely to arrive at the end state. This is consistent
with the paths shown for the first order model in Fig. 14.6. End states may dominate
the model for a simple reason: there may be only one or a few end states, but many
other states lead to them. Thus, transitions to the relatively small number of end
states will have higher probabilities. If you are interested in transitions among the
other states (pages), it may be helpful to do a parallel analysis without the end states.

14.5 Discussion and Questions 423

14.5 Discussion and Questions

What kinds of actions might we take with this kind of information? As always, it
depends on the business goals, but as a starting point, we would ask questions such
as these:

1. Are there pages missing that we would expect to see? If so, they may be insuffi-
ciently exposed in the site design, and might benefit from promotion (or, possibly
fixing broken links).

2. Are there links that are surprising? For instance, does it make sense for
our intended site experience that “Initiatives” leads most strongly to “Rules”
(Fig. 14.5), and similarly for other links? Do those patterns suggest a need to
clarify or reorganize the site, or to share common design elements among them?

3. When pages cluster in a common origination or destination group (Fig. 14.5),
should they have a common navigation structure (such as site menu)? Is that
actually the case in the page design?

4. Are the observed clusters desirable—in which case we might, for example, wish
to ensure consistency of the navigation experience—or are the groupings unde-
sirable, suggesting that we should change the navigation paths, menus, or other
elements to differentiate them?

5. Do the clusters suggest state transitions where pages may indicate user flow
into different tasks with related pages? (See both Figs. 14.5 and 14.6.) Is there
any logical progress or grouping? For example, in Fig. 14.6 there seem to be
groups related to general overviews of information (WhatsNew, WhatsHot) and
to specific programs and detailed information (Press, Offices, Initiatives, etc).
These suggest high-level areas for site design in consideration of user tasks.

6. After we identify transitions of interest, are they present less often or more often
than we wish, in the overall user data? How should we change the site in view of
our goals?

7. If we model end states—such as a purchase or leaving the site—which pages lead
to those states? Do those suggest errors or problems with the design? Do they
suggest interventions for promotion or retention?

We use this kind of information along with qualitative observation, such as usability
lab tests, to examine and better understand users’ needs. This is quite valuable to
determine where the site contents and structure might be improved, where pages
should be promoted, and where we need to reconcile or differentiate pages and
designs.

424 14 Behavior Sequences

14.6 Key Points

• In this chapter, we examined sequential patterns of movement across discrete
states. This kind of analysis may be applied to web site behavior, yet it is also
applicable to many kinds of sequence data, such as historical purchasing patterns,
life events, biomedical data, and others.

• This chapter demonstrates the most complex data cleaning process in this text.
Real-world data needs careful, stepwise processing with careful consideration and
inspection along the way. Throughout the chapter, we limited analyses to relevant
data such as “GET” events and HTML page requests (Sects. 14.1.5 and 14.4.2).

• When text data represents dates or times, it requires careful translation to a native R
data format. The relatively simple but rigidstrptime() command (Sect. 14.1.4)
can do this for user-defined patterns. Other packages provide more comprehensive
and flexible options (see Sect. 14.7).

• Regular expressions (regexes) provide very powerful processing for text data with
identifiable structure.We decoded a regex that parses HTTP requests and identifies
the specific page names (Sect. 14.1.5) and used another one for text substitutions
(Sect. 14.4.2).

• Log data often needs to be divided into sessions, where events represent actions
taken by one user in a specific block of time. It can be difficult and somewhat
arbitrary to determine the boundaries of sessions—how much inactivity is long
enough? The rle() function is especially useful to find repeating values (e.g.,
recurrent identifiers) that help to identify sessions. We found session boundaries
with a combination of users’ identifiers along with time gaps between actions
(Sect. 14.3.1).

• Markov chains are a good initial choice for a method to analyze transitions
among different behavior states (Sect. 14.4). A Markov chain proposes a tran-
sition matrix that defines the odds of moving from one state to another. We used
the clicksteam package to estimate a transition matrix for the Top 20 pages in
the EPA data. Because a web site may have hundreds, thousands, or millions of
pages, one may need to reduce the state space before modeling (Sect. 14.4.2).

• One decision is whether to model end states, such as leaving the site or purchasing
an item. These are often of high interest because they reveal where a site may be
working poorly (or well) relative to our goals (Sect. 14.4.2). However, end states
may also be dominant and lead to uninteresting predictive modeling (Sect. 14.4.5).

• Heatmaps are useful to visualize transition matrices. They are even more useful
when the rows and columns are clustered to reveal groupings of items whose
transition patterns are similar. The clustering options in superheat can reveal
common patterns of page transitions (Sect. 14.4.4).

• Higher orderMarkov chains may be used to predict states from a series of multiple
previous states (Sect. 14.4.5). To fit them, youmay need to filter the data to a subset
with sequences of sufficient length.

• In the clickstream package, predict(object, startPattern)may
be used to predict the next state, or multiple successive states, for a given pattern
(Sect. 14.4.5).

14.7 Learning More* 425

14.7 Learning More*

As mentioned in the chapter introduction, we purposely avoided packages that are
specific to web log analysis in order to learn several new techniques and to develop
general methods that apply to other kinds of sequences. However, if you do much
work with web logs, you may wish to use dedicated tools. If your server uses Google
Analytics, you will wish to check the RGoogleAnalytics package [152] among
others. Mark Edmondson, author of googleAnalyticsR [50], describes several
options to use Google Analytics with R at https://goo.gl/njr723.

If your platform uses AdobeAnalytics, review theRSiteCatalyst package [150]
maintained by Randy Zwitch. RSiteCatalyst includes tools to access data from
your Adobe Analytics account including data on visitors, sites, and segments, and to
perform reporting.

We briefly examined date and time data, as well as regular expressions. If you often
use datawith times or dates, youwill want to examine thelubridate package [82].
When working with text data, regular expressions (regexes) are extremely powerful.
If you often handle text, you’ll wish to developmodest fluencywith regexes. They can
be complex to debug, and their implementation inR differs in several ways fromother
platforms. To be effective, you will wish to use a combination of R documentation,
texts such as Goyvaerts and Levithan [80], and sites that allow you to test and debug
the expressions, such as https://regex101.com [42].

We used Markov chains to examine page-to-page transitions. There is a large lit-
erature on Markov processes that one might consider for further analyses. Gagniuc
(2017) provides a readable and code-oriented introduction to Markov models [68].
Another excellent introduction is Chap. 11 of Grinstead and Snell [81], which is
offered both freely online and in print [81]. One might also consider whether there
are groups with different patterns; sequence data may reflect underlying unobserved
hidden states (such as customer segments or types) with differing transition matri-
ces. Hidden Markov models (HMMs) may be used to models such groups and their
sequence patterns. Netzer, Lattin, and Srinivasan (2008) describe the application of
HMMs to customer relationship data [146]. Another approach is to cluster the user
sequences; clickstream provides clusterClickstreams() for K-means
clustering of sequences [175], and the ClickClust package offers a model-based
clustering approach [138].

An alternative to Markov chain analysis is association sequence mining. That
approach does not use transition matrices but attempts to find sequences that occur
more often than random chance, similar to the association rule mining approach we
discussed in Chap. 12. The R package arulesSequences implements sequen-
tial rule mining [24]. In the healthcare domain, Reps et al. (2012) used associa-
tion sequence analysis to examine longitudinal relationships among illnesses, treat-
ments, and outcomes in UK medical records [162]. If you find association rules
appealing, the online code for this chapter has an example analysis of the EPA data
with arulesSequences.

https://goo.gl/njr723
https://regex101.com

426 14 Behavior Sequences

If you are primarily analyzing life stage changes—which in marketing might involve
changes in behavior due to lifestyle events such as graduation, marriage, relocation,
parenting, group affiliations, or prior product experience—the TraMineR package
[67] provides useful visualization tools.We find it especially helpful when examining
changes in group composition over time.

Finally, if you do a lot of work with sequence data, you may wish to investigate a par-
allel and vast ecosystemof additional R resources for bioinformatics, where sequence
analysis is used for genomic and other biomedical analyses. Bioconductor is a
set of more than 1000 R packages to work with genomic data [13]. The tools to
understand gene expression (i.e., genetic event sequences) may be particularly use-
ful. Note, however, that translation to other domains can be challenging with those
packages; much of the jargon and many specifics of the tools and data sets refer
to bioinformatic tasks. Jones and Pevzner [109] is an approachable and interesting
introductory text in this area (although not specific to R or Bioconductor).

14.8 Exercises

In these exercises, we try to expand your horizons in the final two questions, which
propose larger-scale projects.

1. Plot the number of bytes requested by user in the EPA data. Should the values be
transformed? Why or why not? If so, plot them with and without the transforma-
tion, and discuss the differing interpretation.

2. There is one value for “total number of bytes downloaded” that is especially
frequent in the EPA data. For example, in the previous exercise it appears as a
spike in the plot. What value is it? Why it is frequent?

3. Omit the end states from the sequences and repeat the Markov chain analysis.
Are there differences in your interpretation of the result?

4. Now model the sequences using the top 40 pages instead of top 20 (and without
end states). How do you need to change the visualizations to be more useful?

5. (Thought exercise without code.) Suppose the EPA asked you to consult on their
web site. They give you the present data as background, and suggest that you will
be able to collect the same kind of data again, and that you also might be able
to collect additional variables. Assume that you can collect up to 10 additional
variables. Based on the analyses in this chapter and other chapters in this book,
what other data would you wish to have, and why?

6. (This is a more extensive, full project with a different data set.)Additional web log
data sets are available, as of publication date, at http://ita.ee.lbl.gov/html/traces.
html. Choose one of the data sets there and repeat the analyses in this chapter. For
modest size, we suggest the San Diego Supercomputer Center (SDSC) data set
[154], although you might also wish to try one of the larger data sets. (Note: the
SDSC data set is also available at https://goo.gl/jpWMVh.) If you use the SDSC

http://ita.ee.lbl.gov/html/traces.html
http://ita.ee.lbl.gov/html/traces.html
https://goo.gl/jpWMVh

14.8 Exercises 427

data, note that the host address has two parts: “N+H”, where “N” is a particular
network and “H” is a machine (host) within that network. It is a unique identifier.

7. (Stretch exercise: the longest one in the book, which requires detailed program-
ming and determining on your own how to use two new packages.) Using the IP
addresses in the EPAdata, find the geographic location of the requestingmachines
and plot them on a choropleth map (Sect. 3.4.6). Because online services to look
up data can be slow, cache lookup results locally, such that if you run the proce-
dure again, it loads a local file instead of looking up results. (Hint: check out the
packages iptools and rgeolocate, and the function file.exists().)

Conclusion

We covered many topics in this book, from basic programming to Bayesian methods.
As a final note, we would like to summarize key suggestions and lessons that apply
to everything we discussed.

1. Summarize, explore, and visualize data before starting to build models. It is easy
to overlook bad data points …especially if you don’t even look (Sects. 3.3.3, 3.5,
9.2.7).

2. Model building is an interactive process. Start with a simple model and build
on it progressively, assessing at each stage whether a more complex model is an
improvement (Sects. 6.5.3, 7.3, and 7.5.3).

3. Human behavior and marketing data often yield observations that are correlated,
yet high correlationmaymake a statisticalmodel unstable. Consider reducing data
to key dimensions before modeling, and assess models for collinearity (Sects. 8.2
and 9.1).

4. It is important to understand and to report the uncertainty in any statistic that you
estimate from sampled data. Report confidence intervals whenever possible. This
can often be done with a minimum of statistical jargon by using graphics (Sects.
6.5.2, 6.6.4, and 7.3).

5. Statistical significance is a necessary condition for a model to be interesting, yet
it does not imply that a model is appropriate, useful, or even the best-fitting.
When possible, compare alternative models and evaluate a model in terms of its
usefulness to answer important questions (Sects. 9.2.7, 11.3.1, 11.3.6).

6. Hierarchical models that estimate differences by individual, sample, or group are
often very useful in marketing, and are not as complex as they might seem at first.
Once you know how to estimate basic linear models in R, it is relatively easy
to start considering hierarchical models. These may be fit with either traditional
maximum likelihood or Bayesian methods (Sects. 9.3, 9.4, and 13.4).

7. Don’t simply assume that a data set, especially from a consumer survey, reflects
underlying concepts as expected. Methods such as factor analysis and struc-
tural equation modeling make it possible to assess latent variables and determine
whether a model fits your data (Sects. 8.3 and 10.1).

© Springer Nature Switzerland AG 2019
C. Chapman and E. M. Feit, R For Marketing Research and Analytics, Use R!,
https://doi.org/10.1007/978-3-030-14316-9

429

https://doi.org/10.1007/978-3-030-14316-9

430 Conclusion

Perhaps our most important point is this: R is a dynamic ecosystem and there is
always more to learn. As you work with R over the years, consider how you might
contribute.Whether you teach a colleague, contribute code, share data sets externally,
or simply ask great questions, you can give back to the R community. If we each do
that, we all benefit from more useful and powerful tools. And that means we will do
better, more satisfying work for our organizations, firms, colleagues, and customers.

Appendix A
R Versions and Related Software

R is available in several versions. Just as R packages are contributed by authors who
like to share their innovations, others have adapted R itself for commercial purposes
and to work with other programming tools.

Our recommended installation depends on your background:

• For new or casual Windows programmers: R base + RStudio.
• For Mac users: R base, and optionally RStudio or one of the editors below.
• For new or casual Linux users: R base + RStudio.
• For experienced Windows programmers: R base + your favorite editor, RStudio,
or Microsoft Open R.

• For Emacs users: R base + Emacs Speaks Statistics.
• For Java, C, or C++ programmers: R base + your favorite editor, or Eclipse +
StatET.

• For instructors and students: any of the above, or R Commander, Deducer, or
Rattle.

These notes are current as of the time of writing (2018) although the R landscape is
rich and evolving.

A.1 R Base

R base is generic R. In Windows, it runs as a graphical user interface (GUI) program
like other applications, with relatively limited capability for code editing and plots.
R users onWindows will want to supplement R base with a programming editor such
as RStudio or another choice noted below.

For Mac users, the GUI version is more sophisticated than on Windows and features
syntax highlighting, plot exporting, and other features. Figure A.1 shows R on aMac
OS X system with highlighted syntax, direct execution of code from the editor in

© Springer Nature Switzerland AG 2019
C. Chapman and E. M. Feit, R For Marketing Research and Analytics, Use R!,
https://doi.org/10.1007/978-3-030-14316-9

431

https://doi.org/10.1007/978-3-030-14316-9

432 Appendix A: R Versions and Related Software

Fig. A.1 R base GUI on Mac OS X, showing syntax-aware editing, plot window, and the console

the R console, and integrated plotting. Mac users may be satisfied with the default
R GUI for simple and moderate-sized projects.

On Linux, R runs as a terminal (command line) program. Much R development
occurs first on Linux, and Linux is a great system to run R. However, you will also
want RStudio or another code editing option, as R base has no GUI support on Linux.

R is available at the Comprehensive R Archive Network (CRAN): http://cran.r-
project.org. R has also been widely ported to other operating systems. You can find
many versions as well as source code at CRAN.

A.2 RStudio

RStudio is a separate application that works with R to provide an integrated devel-
opment environment (IDE), similar to other language platforms such as Eclipse and
Microsoft Visual Studio. Unlike Eclipse and Visual Studio, RStudio is tailored to R
and is less complex for new and casual programmers.

Someof the appealing features ofRStudio are the syntax-aware editor that shows code
elements with highlighting, an object inspector that allows you to look at memory
contents, an integrated debugger, plot exporting, and an easily navigable layout for
help content, files, package installation, andmultiple code windows. RStudio exports
plots to the clipboard and resizes them nicely, which is very helpful when copying
plots into office software such as Microsoft Office and Google Docs.

http://cran.r-project.org
http://cran.r-project.org

Appendix A: R Versions and Related Software 433

Fig. A.2 RStudio showing the syntax-aware editor, the console, object inspector, and plot window

An exceptional feature of RStudio is its integration of tools for code management,
documentation, and reproducible research. RStudio integrates Sweave to create
documents that mix LATEX with R code, results, and graphics, along with the flexible
and easy to use knitr system [70, 206]. These markup tools allow an analyst to
create reports and documentation that combine readable text with actual R com-
mands used to perform the analysis. RStudio supports code projects with version
control using Git and Subversion [70]. See Appendix B for a quick introduction to
reproducibility in RStudio.

To use RStudio, you first install R base as above (Sect.A.1) and then install the
RStudio application from http://www.rstudio.com. Figure A.2 shows the RStudio
interface on a Mac laptop.

A.3 ESS: Emacs Speaks Statistics

Emacs Speaks Statistics (ESS) [169] is a set of extensions to the Emacs text editor
[183] to interface with R and other statistics programs. Emacs is a powerful edit-
ing platform that includes a Lisp-based programming language. ESS extends that
interface to R with syntax coloring, plot display, and other IDE functions.

ESS is available for Windows, Mac, and Linux from http://ess.r-project.org/. There
are several software prerequisites such asEmacs and anXWindowsystem, depending
on your operating system. Installing those is straightforward onMacOSXandLinux,

http://www.rstudio.com
http://ess.r-project.org/

434 Appendix A: R Versions and Related Software

Fig. A.3 ESS with the code
editor above and R console
below. Plots open in a
separate window

but rather more complex in Windows as they require adding the Linux-like Cygwin
system to Windows. Figure A.3 presents a screenshot of ESS on Mac OS X [77].

If you know Emacs already, ESS may be your environment of choice. On the other
hand, if you do not know Emacs, it may be frustrating; Emacs has its own set of
keystrokes for many commands functions and although those are elegant and effi-
cient, they may seem antiquated and non-obvious (the reference card at http://ess.r-
project.org/refcard.pdf provides a sample of those).

A.4 Eclipse + StatET

If youhave professional programming experience in Java orC++, youmaybe familiar
with Eclipse. The StatET plug-in for Eclipse adds functionality for R, including
integration of the R console into Eclipse, browsing R memory objects, plots, and
interface between R and the Eclipse debugger. It is similar to RStudio in its feature
set for R, although the overall Eclipse environment is more complex.

Eclipse + StatET is available by installing Eclipse from http://www.eclipse.org and
then adding the StatET plug-in from http://www.walware.de/goto/statet. Figure A.4
shows Eclipse “Kepler” + StatET 3.3 running on OS X. Warning: setting up StatET
is modestly complex with several steps in strictly dependent order; we recommend
to search online for the latest instructions for your platform.

http://ess.r-project.org/refcard.pdf
http://ess.r-project.org/refcard.pdf
http://www.eclipse.org
http://www.walware.de/goto/statet

Appendix A: R Versions and Related Software 435

Fig. A.4 Eclipse + StatET, showing the code editor, R console, and integrated plot display

Eclipse provides powerful code editing capability needed by professional program-
mers and integrates with other coding tools such as Git. However, some users find
StatET integration to be finicky and less performant than RStudio. We recommend
Eclipse + StatET if you are a programmer looking for more code editing power than
RStudio, or if you already use Eclipse.

A.5 Microsoft R

Microsoft acquiredRevolutionAnalytics in 2015andbeganofferingbothopen source
and licensed versions of R. Microsoft Open R is an open source, freely available ver-
sion of R with enhancements to support higher performance computation as well as
replicable computing with package versioning. It is available for Windows, Mac OS
X, and Linux systems. Microsoft also offers hosted, licensed versions of R known
as Microsoft Machine Learning Server. At the time of writing, Machine Learn-
ing Server supported both Python and R languages and libraries. The Microsoft
Visual Studio development environment and the free Visual Studio Code editor also
support R.

436 Appendix A: R Versions and Related Software

A.6 Other Options

Wewill not attempt to compile every offering of interest in the R ecosystem, and any
such list would rapidly be obsolete. Still, there are a few offerings that we believe
deserve attention for various readers.

A.6.1 Text Editors

Many programming editors support R with either standard or user-provided tem-
plates that provide syntax highlighting and other features. If you have a favorite
programming editor, the odds are good that someone has written a language defi-
nition for it to work with .R files. Your editor may even be able to send commands
directly to R; if not, the process of copy + switch window + paste into R console is
typically only 3 keystrokes—and was our standard solution for many years.

Multiplatform editors that support R include Bluefish, Eclipse + StatET (Sect.A.4),
Emacs+ESS (Sect.A.3), KomodoEdit+SciViews-K,RStudio (Sect.A.2), Sublime
Text, UltraEdit, Vim, and Visual Studio Code. The supported platforms vary and
usually include include Windows, Mac OS X, and popular Linux distributions.

For Windows, other editors with R support include Crimson Editor, TextPad, Tinn-R
(built especially for R), Visual Studio, and WinEdt using the RWinEdt R package
(an editor especially appealing to LATEX users).

For Mac, in addition to the multiplatform editors above, the popular TextMate editor
has an R definition, as does the Kate editor.

For Linux, the lightweight gedit editor has a plugin for R (Rgedit) with console
integration, and the Kate editor has R syntax support.

A.6.2 R Commander

R Commander [60] provides a GUI for R with menus and other enhancements for
basic statistics. It is often used in introductory courses with undergraduates and
provides easy access to functions such as loading data, running descriptive statistics,
doing basic inferential statistics such as t-tests and ANOVA, fitting common models
such as linear regression and factor analysis, and plotting.

Appendix A: R Versions and Related Software 437

RCommander is designed explicitly to be a tool to helpGUIusers—general computer
users and analysts who use other software such as SPSS—make the transition to R.
It shows the commands that it runs and resists going much beyond the basics, due
to its goal to assist users to transition to full command-line and script usage. More
details are available at http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/.

A.6.3 Rattle

Rattle is a GUI for R that is intended to help newcomers to R perform data mining
tasks easily and quickly [203]. Rattle is menu-driven and includes commands for
loading and handling data, transforming data, descriptive statistics, and a variety of
data mining tasks such as visualization (using ggplot2), clustering, supervised and
unsupervised machine learning, and decision trees.

Rattle is available for Windows, Mac OS X, and Linux systems at http://rattle.
togaware.com/, and is detailed in Williams [202]. Rattle may be particularly appeal-
ing to analysts who work in teams with members who vary in R skills, yet wish to
share analyses and common data sets.

A.6.4 Deducer

Deducer is a GUI for R that features general data handling and basic analytic tasks
(similar toRCommander, Sect.A.6.2)with a spreadsheet-like interface for inspecting
and manipulating data. In addition to general functionality designed for newcomers
to R, Deducer offers extensions for regression analysis, factor analysis, clustering,
and other multivariate procedures that are intended to enhance productivity for more
experienced R users. Deducer uses JGR, the Java GUI for R, and runs on Windows,
Mac OS X, and Linux. It is available at http://www.deducer.org/.

http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/
http://rattle.togaware.com/
http://rattle.togaware.com/
http://www.deducer.org/

Appendix B
An Introduction to Reproducible Results
with R Notebooks

When an analysis includes more than a few simple steps, it becomes difficult to
remember what you’ve done and even more difficult for others to understand it. In
the worst case, you might perform analyses with undocumented console commands
or out-of-sequence commands run from a code file. In that case, the code file doesn’t
reflect the true sequence, and the results may be non-reproducible. If you run the code
again, you may get a different answer because the steps are in a different order. This
has reached the level of scandal among academic researchers in many disciplines
(cf. [76]).

We recommend that you start early in your R career to ensure that your analyses are
completely reproducible. Luckily, the R community has demonstrated leadership in
addressing these issues and provided many powerful tools that can help. We cannot
detail all of them here, but some of the available options are:

• .R code files. As noted in Sect. 2.3, we recommend as part of minimal R hygiene
to regularly save the exact commands that you use in a .R file, and periodically
run them from the top with a clean workspace.

• Sweave. Sweave provides integration between R and LATEX mathematical author-
ing and typesetting tools [126]. Sweave allows authoring of a LATEX document
with embedded R code, whose results are included (often said to be“knitted”) into
the resulting PDF document. Although LATEX is extremely powerful (for example,
this book is written and typeset with LATEX), it is also complex for beginners. If you
need an extremely professional and meticulously typeset document, especially for
repeated reports or journal articles, Sweave may appeal to you.

• R Markdown. R Markdown is similar to Sweave in offering integrated R code,
output, and formatted text, but uses a substantially simpler set of formatting com-
mands (with correspondingly less control over output). Instead of learning LATEX,
you can format text with simple codes such as **[text]**, where the asterisks
denote bolded output: [text]. R Markdown can be used to create everything from
simple web pages with R results to entire books [70, 207].

© Springer Nature Switzerland AG 2019
C. Chapman and E. M. Feit, R For Marketing Research and Analytics, Use R!,
https://doi.org/10.1007/978-3-030-14316-9

439

https://doi.org/10.1007/978-3-030-14316-9

440 Appendix B: An Introduction to Reproducible Results with R Notebooks

• R Notebooks. Offered in RStudio, R Notebooks provide R Markdown live inside
the RStudio environment.With an RNotebook, you can write R code and explana-
tory text, and see it integrated in realtime with output results and graphics in RStu-
dio. In the following section, we will demonstrate some of the basic features of
R Notebooks. Although we focus here on RStudio notebooks, similar capabilities
are found in other coding tools such as Jupyter Notebooks [117]. For classroom
usage, we provide a simple R Notebook for homework exercises on the book’s
website (see also Sect. 2.11).

If you decide to use an R editor other than RStudio (see Appendix A), this Appendix
should still encourage you, as many of these options noted below will be available
using RMarkdown and knit capabilities (perhaps with less integration than RStudio).
Check the documentation for your preferred R environment, with attention to options
for “markdown” and “knit”.

For the remainder of this Appendix, we discuss R Notebooks. For further discussion
of the other options above, see Sect.C.5.

B.1 R Notebooks

An R Notebook allows you to include all of the following in a single, integrated
document:

• R code, organized into delineated “chunks” with a shaded background
• R text output, as would be shown in the R console, placed below the corresponding
code chunk

• R graphics, putting the plots
• Text with formatting. This text can be whatever you would like. You might doc-
ument what you’ve done, or—very powerfully—use it to write the deliverable
report for your analysis.

• Other code and output. R Notebooks understand several other programming lan-
guages besides R, such as C++, SQL, and the Stan statistical modeling language.
These details are out of scope for this appendix, but we would note one feature in
particular: if you set up a SQL database connection, you can use RStudio to write
and see the results of SQL queries. See [171] for more.

R Notebooks offer several options to save your results, in addition to showing the
integrated code and results in RStudio. A formatted notebook with your text, code,
and graphics can be saved to a PDF document, an HTML web page, or a Microsoft
Word document. This is a great way to share your exact work with colleagues or
professors!

Appendix B: An Introduction to Reproducible Results with R Notebooks 441

Fig. B.1 The default template for an R Notebook in RStudio (as of Version 1.0.153)

B.1.1 A Basic R Notebook

To create an R Notebook, launch RStudio and select File—New File—R Notebook.
The default R Notebook template will appear as an untitled document, as shown in
Fig.B.1.

In Fig.B.1, we note a few features of notebooks. At the top is a sectionwith document
settings, demarcated with three dashes, specifying the title (“R Notebook”, which
you may edit) and the targeted output format (HTML). Below that, there are two
paragraphs of text, followed by an R code chunk with a gray background.

The R code chunk may contain any R commands, and they will be executed when
the green “Run” (triangular) icon is clicked (or choose Code—Run Region—Run
Current Chunk from the menu or shortcut keys). When we run the chunk in the
default notebook, it plots the cars data set and shows the result inline in RStudio,
as shown in Fig.B.2.

B.1.2 Saving and Sharing

When you wish to share an analysis, there are several options. With colleagues or a
professor, you might wish to share the notebook code itself. To do so, save the file
(File—Save) and then share the resulting .Rmd file. As long as your colleague has

442 Appendix B: An Introduction to Reproducible Results with R Notebooks

Fig. B.2 Inline plot shown in the notebook by clicking the green “Run current chunk” icon

access to any data files you may be using, she will be able to recreate your exact
results in the notebook.

You might also wish to share the results formatted as a deliverable. For instance, you
might write a complete report in text blocks in your notebook, with interspersed R
results and charts. The Preview button at the top of the Notebook window allows
output to various formats. Note that the Preview button may change its name to Knit
at times, for reasons we will not detail.

Click Preview and save the file (take care about the target directory, as it may default
to an undesired high-level folder). RStudio will format the notebook in HTML and
display the result, as shown in Fig.B.3. You may share this document by looking in
the folderwhere you saved the notebook, and find the filewith extension.nb.html.
You could place that file on a web server or send to a colleague to view in a web
browser.

In professional settings, you might wish to create a document that is compatible with
Microsoft Office. An R Notebook can create a Microsoft Word style .docx file,
with R results, graphics, and formatting. In RStudio, look to the right of the Publish
(or Knit) button at the top of the editor window, and click on the drop-down icon
(downward-pointing triangle). Select Knit to Word.

This will create a document in your target folder with the name of the notebook
and a .docx extension (and might also open Word or another .docx viewer).The

Appendix B: An Introduction to Reproducible Results with R Notebooks 443

Fig. B.3 HTML file created by the “Preview” command; it automatically includes the written text,
R code chunks, R output, and charts

default notebook in .docx format is shown in LibreOffice (an open source office
suite) in Fig.B.4. You may edit these documents just like any other office document.
Just be careful not to overwrite any edits if you update the notebook in the future; we
recommend to do editing in theRNotebook so everything is in sync and reproducible.

For classroom usage, we suggest sharing your notebook in PDF format. This can
be done by selecting Knit to PDF from the Knit or Preview button at the top of the
RStudio editing window. An example of the output is shown in Fig.B.5.

Note that all of the options for reproducible formats—notebooks, HTML, Word
format, and PDF—may require installation of additional packages the first time you
create such documents. RStudio should install the packages automatically. If your
output does not appear the first time, try knitting the output again after package
installation.

B.1.3 Brief Formatting Options

The default document shown in Fig.B.2 demonstrates a few features of RMarkdown:
the title (line 2), square brackets ([and]) that specify text linked to a URL (line

444 Appendix B: An Introduction to Reproducible Results with R Notebooks

Fig. B.4 The default notebook shown in office suite format (.docx output), as viewed in Libre-
Office version 5.3.4.2

6) and asterisks (*...*) to italicize text (lines 8, 14, and 16). We see the results of
those in the HTML document in Fig.B.3 and the Word document in Fig.B.4.

Additional features ofRMarkdown include bolded text (bounded bydouble asterisks,
...), section and subsection headers, bulleted and numbered lists, inclusion
of image files, and equations written in LATEX syntax, among other options. For an
overview, see the quick reference in RStudio (Help | Markdown Quick Reference).
For more details on the power of R Markdown see Gandrud [70], and Xie [207].

Finally, youmayPublish a document directly fromRStudio to various online hosting
services.Discussion of those options is beyondour scope here.As aminor caution,we
would note that, depending on the setup, and published documents may be publicly
visible, so review these processes with care if that is a concern.

B.2 Final Note on Reproducibility

It is difficult to overstate the advantages of working with R Notebooks (or another
variety of reproducible research noted above). They allow you to document your
analysis as you work on it, making it easier to debug or to understand in the future.
It is easy to run an entire notebook from the top to ensure that the steps are correct
and in order. You can share a notebook with colleagues to collaborate or demonstrate
your work. And finally, they make it easy to publish results to the web or as drafts
of deliverable Word documents.

Appendix B: An Introduction to Reproducible Results with R Notebooks 445

Fig. B.5 The default notebook shown in PDF format. This appears in the RStudio PDF viewer
after selecting Knit to PDF, and saves in PDF format to your working directory

As a basic level, this kind of workflow minimizes the risk of copy and paste errors,
as well as accidental execution of commands out of order. As you become more
proficient, it may allow easy automation of reporting. For example, if you have
a standard monthly report, you might write it once as an R Notebook, and then
just change the data file source for each month with no need to rewrite any of the
subsequent analysis.

Appendix C
Scaling Up

As you develop R skills, you will wish to take on larger projects that stretch R in
various ways. You might wish to work with diverse data sources, larger data, greater
computational power, or automated reporting. In this appendix we provide brief
introductions to R packages and other resources that may be of assistance.

The resources outlined here are especially subject to change as these are dynamic
areas of development in the R community. Thus, we provide general guidance here
rather than detailed exposition. R code in this appendix is provided for illustration
only, not as complete working code.

C.1 Handling Data

C.1.1 Data Wrangling

Two of the most useful packages for data handling are data.table [47] and
dplyr [201]. Each of them is so useful that we considered using it for data handling
throughout this book. We ultimately decided that it was preferable to handle data
using the standard approaches of base R, because that approach is most stable over
time, and is universally available and understood within the R community (Sect. 1.5).
Still, we recommend that you consider the advantages of data.table and dplyr
as your R fluency develops.

data.table [47] supplies an alternative to data frames with higher performance,
more efficient memory usage, faster read-write capability, enhanced indexing capa-
bility, and the ability to query data with more complex logic. If you use large
data sets in memory, or find that data manipulation is slow, consider moving your
data to data.table (see also Sects.C.2 and C.3 below). Transitioning code from
data.frame to data.table is often quite smooth, as the data.table syntax
is very similar to data.frame.

© Springer Nature Switzerland AG 2019
C. Chapman and E. M. Feit, R For Marketing Research and Analytics, Use R!,
https://doi.org/10.1007/978-3-030-14316-9

447

https://doi.org/10.1007/978-3-030-14316-9

448 Appendix C: Scaling Up

dplyr [201] attempts to be a complete data handling solution that implements
a more consistent, efficient, and higher order grammar for data operations. dplyr
provides standardmethods for selecting, filtering, recoding, and performing common
aggregation tasks on data, and works with both in-memory and database sources (see
Sect.C.1.4).

C.1.2 Microsoft Excel: readxl

The readxl package[199] provides the capability to read data from Microsoft
Excel spreadsheets using syntax based on the familiar read.csv() command. For
example, consider data on US corporate financials that is provided in XLS format
by Aswath Damodaran at New York University [41], hosted at http://pages.stern.
nyu.edu/~adamodar/New_Home_Page/datacurrent.html. If we download the file for
“Price and Value to Sales Ratios andMargins by Industry Sector” to the local Down-
loads folder, then we can read it using the read_excel() function as follows:

> library(readxl)

> psdata <- as.data.frame(read_excel(

+ path="~/Downloads/psdata.xls",

+ sheet=1, skip =7))

> head(psdata)

Industry Name Number of firms Price/Sales Net Margin EV/Sales

1 Advertising 40 1.0158827 0.05447810 1.663870

2 Aerospace/Defense 87 1.8427984 0.07218634 2.088553

3 Air Transport 17 0.9361391 0.07027801 1.558021

...

When importing Excel data, check carefully that you are importing variables in the
correct format; columnswith special formattingmight need to be convertedmanually.

The gdata package provides an alternative way to read Excel files [194]. Another
option to import data from Excel files is to use ODBC functionality (as described
below for connecting to SQL databases, Sect.C.1.4).

C.1.3 SAS, SPSS, and Other Statistics Packages: foreign

The foreign package [155] provides the capability to read data in a variety of
other formats including those used by Minitab, Octave, SAS, SPSS, Stata, and other
systems. Because commercial software may change data formats between versions,
it may not work with all data files. Users of SPSS and Stata could also review the
memisc package [51], which supports a broader set of SPSS and Stata files.

Following is sample code that uses foreign and read.spss() to load the
“tenure” data set provided in SPSS format with Singer and Willet, Applied Lon-
gitudinal Data Analysis [180]. In this case, we load the data from a local file;
a download is available from links at http://gseacademic.harvard.edu/alda/.

http://pages.stern.nyu.edu/~adamodar/New_Home_Page/datacurrent.html
http://pages.stern.nyu.edu/~adamodar/New_Home_Page/datacurrent.html
http://gseacademic.harvard.edu/alda/

Appendix C: Scaling Up 449

> library(foreign)

> tenure.df <- read.spss("~/Downloads/aldaspss/tenure_orig.sav",

+ to.data.frame=TRUE)

> summary(tenure.df)

ID TIME CENSOR

Min . : 111 Min . :1.000 Min . :0.0000

1st Qu .: 9989 1 st Qu .:4.000 1 st Qu .:0.0000

Median :19067 Median :6.000 Median :0.0000

Mean :20433 Mean :5.669 Mean :0.3615

3rd Qu .:30135 3 rd Qu .:7.000 3 rd Qu .:1.0000

Max . :50310 Max . :9.000 Max . :1.0000

If you are familiar with SAS or SPSS, you may appreciate the detailed task com-
parisons and guidance in Muenchen’s book, R for SAS and SPSS Users [143]. For
Stata users, check Muenchen and Hilbe, R for Stata Users [144]. The R.matlab
package works with MATLAB files.

As always, a general option is to export data from another system to a CSV file or to
a database (see Sect.C.1.4) and import that into R.

C.1.4 SQL: RSQLite, sqldf and RODBC

Many analysts are familiar with the Structured Query Language (SQL) for data
processing, and R provides capabilities for SQL. We differentiate two aspects of
SQL: the SQL language, and SQL data sources.

SQL language. A full SQL instance (using SQLite, http://www.sqlite.org/) may be
run inside R through the RSQlite package [106]. This allows access to nearly all
the features of a complete SQL database.

A particularly easy way to access the SQL SELECT statement for R data frames
is with the sqldf package [83]. For instance, referring to the corporate finance
data loaded in Sect.C.1.2 above, we can select firms in the data set with a forward
price-earnings ratio greater than 100 using a SELECT statement:
> sqldf("SELECT *

+ FROM psdata

+ WHERE ‘Net Margin ‘ > 0.25")

Industry Name Number of firms Price/Sales

1 Bank (Money Center) 11 3.647450...

2 Financial Svcs . (Non -bank & Insurance) 264 2.821212 ...

3 Tobacco 24 5.838507 ...

Note that the SQL language understands a period (“.”) very differently than R—in R,
a period is a symbol that is generally used like any letter or number in an object name,
but in SQL it signifies a database to table relationship. The backtick character (‘)
may be used inside the quoted SQL statement to delimit column names that contain
periods, spaces, or other problematic characters (such as the spaces in this data set).
If you use sqldf often, you might wish to change such column names (Sect. 3.3.3).

SQL data sources. Remote SQL databases and tables can be accessed directly
from R using either the odbc package [97] or RODBC package [164]. ODBC

http://www.sqlite.org/

450 Appendix C: Scaling Up

(open database connectivity) protocol allows access to many different database sys-
tems using a standard interface. There are several steps to setting up an ODBC
connection. First, you configure ODBC access permission on the data system that
will serve the data (such as a MySQL, Oracle, or Microsoft SQL system). Second,
you configure a data source name (DSN) in your operating system to connect to
the ODBC remote system. Finally, you tell R to connect to the DSN and pull data
from it.

The process of setting up an external database with a DSN lies outside the scope of
this book; you could seek assistance from a database administrator for those steps.
For purposes here, wewill illustrate with RODBC using a previously-established local
DSN called “mydata”. We can connect to it and get data in R using an SQL query
passed to the external database:

> library(RODBC)

> sqlconn <-odbcConnect("mydata", uid="username" , pwd="****")

> mysqldata <- sqlQuery(sqlconn , "select * from MyTable")

> close(sqlconn)

There is extensive support for querying the database for table information, and for
sending SQL commands to perform complex queries. For more details, see the exten-
sive RODBC vignette at http://cran.r-project.org/web/packages/RODBC/vignettes/
RODBC.pdf [164].

For databases that are too large to fit into memory, the biglm package noted in
Sect.C.2 provides the capability to fit regression models from multiple smaller
chunks. As we noted in Sect.C.1.1, the dplyr package provides access to data
in databases along with other performance and syntax enhancements.

C.2 Handling Large Data Sets

By default, R holds data objects in system random access memory (RAM). However,
you might need to work with a data set too large to fit in memory. There are a few
strategies to handle these situations:

• Observation sampling. This is often the best choice to handle large data; for many
purposes it is not necessary to fit a model to all observations. For instance, a linear
model fit to 100,000 rows appropriately sampled from a data set of 100 million
rows will give a model very close to that of the full sample model (if other general
assumptions about model suitability and sampling are met). One way to do this
in R is to use readlines() or scan() to read a smaller block of lines from
a CSV file, keep some of those observations according to a uniform probability
distribution (runif()), and iterate until the entire file has been sampled. If the
data are in a database, sampling might instead be done in SQL, with the caution
that some SQL systems have poor implementations of pseudorandom number
generators; check your SQL implementation documentation.

http://cran.r-project.org/web/packages/RODBC/vignettes/RODBC.pdf
http://cran.r-project.org/web/packages/RODBC/vignettes/RODBC.pdf

Appendix C: Scaling Up 451

• Compact storage. This is a feasible option when a data set does not dramati-
cally exceed RAM and especially when it is sparse (i.e., when a relatively small
number of cells in a matrix are non-zero). The Matrix package [7] imple-
ments sparse matrices, and some packages such as glmnet [65] can fit mod-
els to sparse objects. See the glmnet vignette (http://www.stanford.edu/~hastie/
glmnet/glmnet_alpha.html#spa) for an example.

• Disk-augmentedmemory. Thebigmemory package [115] implements compact
storage with the option to manage large objects transparently by keeping portions
of them outside RAM in one or more disk files; it will swap portions of objects into
memory as needed. Related packages such as biganalytics [52] implement
models that work with these bigmemory objects.

• Database storage. If the data are stored in a database, then you may be able to use
observations directly from there with an RODBC or similar database connection
(see Sect.C.1.4). The biglm package [132] works with data sets that exceed
memory size by estimating regression models progressively using blocks of data.

The choice among these methods depends on the problem at hand.We highly recom-
mend first to consider sampling observations such that the data will fit in memory;
this is fastest and allows the full range of options in R for model fitting and esti-
mation. Sampling also allows bootstrap estimation of stability and easily affords
cross-validation samples. It is crucial to ensure that a random sample of the data
is taken appropriately. Two issues to consider in particular are whether the random
number generation approach scales appropriately and whether there is order bias, as
would be produced, for instance, by sampling from the top until some number of
rows has been collected.

When it is more suitable to work with as large a sample as possible, we look to
database and memory augmentation options according to the precise model support
that is needed.

C.3 Speeding Up Computation

Someanalyses take a very long time to complete.One ofChris’s projects, for instance,
involved repeatedly running code that took several days per iteration on a typical
workstation. However, R does not have to be slow. At Google, for example, R is
deployed in applications that use Google data centers to reduce the runtime in some
cases by more than 99% (Stokely, Rohani, and Tassone, 2011 [184]). The key to
performance is to optimize code and to use more powerful server infrastructure
when needed.

We outline here a few strategies in order of progressive complexity to handle slow
code (and see also the following Sect.C.3.2 on enhancing the R engine).

http://www.stanford.edu/~hastie/glmnet/glmnet_alpha.html#spa
http://www.stanford.edu/~hastie/glmnet/glmnet_alpha.html#spa

452 Appendix C: Scaling Up

C.3.1 Efficient Coding and Data Storage

A good place to begin when code is slow is to use Rprof() to profile one’s code
and see which parts use the most time to execute, and then optimize those. There are
four common bottlenecks for R code:

• Reinventing the wheel is when a programmer writes code for something that
already exists. Examples include writing code for tasks such as search and replace
(try gsub()), vector-to-matrix expansion (expand.grid()), or finding the
maximum column by row (max.col()). If you have code that seems like it
should occur commonly enough to have a common solution, the odds are that
an efficient alternative exists; the trick is to find that solution. We recommend to
consult with other R users about ways to optimize the code. For instance, the R
language forums at Stack Overflow are a good source.

• for loops can be problematic on several fronts. If you have slow code and
it involves a for loop, think hard about whether it could be vectorized with
apply() and anonymous functions or has parts that could be speeded up with
common code as noted above. Matloff’s The Art of R Programming is a good start-
ing point to learn about more efficient R coding [135]. Wickham’s Advanced R
focuses on the advantages and practice of functional programming that helps with
efficient and effective programming [197]. for loops are also good candidates for
parallel computation; see Sect.C.3.2 below.

• Data frames are another source of slow R execution, especially for large data
structures. There are many non-obvious occasions that cause R to create a copy
of a data frame, which can take a long time in itself and force time-consuming
memory cleanup by the system. If you work with large data sets, consider using
data.table or dplyr objects instead of data frames (see Sect.C.1.1).

• Compiled code can be faster than interpreted R code. Starting with version 2.13,
R provides the compiler package (which comes with R, not downloaded sep-
arately) that can do partial compilation of code, which is sometimes faster in R.
It is easy to try for slow code. A more comprehensive but complex solution is to
rewrite parts of your code in C++ or another language, compile it, and call the
compiled code from R. See Eddellbuettel, 2013, Seamless R and C++ Integration
with Rcpp for instructions on how to do this with the Rcpp package [49].

C.3.2 Enhancing the R Engine

Another way to increase computation power and speed is to enhance or replace your
R engine. We describe a few options for both local (workstation) and server-based
solutions.

One approach is to make R more powerful on your workstation by increasing its
mathematics performance, and to use parallel computation where possible:

Appendix C: Scaling Up 453

• BLAS. Like all statistical computing packages, R uses linear algebra heavily. Your
operationsmay be speeded up significantly—sometimes by a factor of 5 ormore—
by using a basic linear algebra subprograms (BLAS) system that is optimized for
your computer’s processor and operating system. This area is evolving rapidly so
we suggest doing a web search for “BLAS for R” and reading recent articles for
your system (Windows, Linux, Mac).

• Parallelization. parallel, foreach. If you have already optimized code as
noted above (Sect.C.3.1) and still seek a modest amount of additional speed—say,
2x-10x improvement in speed—then parallel processing may help. There are two
general options here: using multiple processor cores on a single machine using
multicore processors, and using multiple machines with networked communica-
tion. The parallel package (which comes with R) provides options for both,
using multicore versions of apply(), such as mclapply() to use multiple
cores and makeCluster() to network multiple machines for parallel process-
ing (which can be complex, especially in secure computing environments). The
foreach package [25] provides a relatively simple way to parallelize computa-
tion inside a for() loop across multiple processors or machines. Two important
things to consider are whether your code can run in independent, parallel blocks,
and whether you need special handling of independent random number streams.
See the CRANHigh-Performance and Parallel Computing task page (http://cran.r-
project.org/web/views/HighPerformanceComputing.html) for the latest informa-
tion and list of packages that support parallel computing.

• Microsoft R offers open source and commercial versions of R with enhance-
ments for larger data and higher performance computing. See Sect.A.5 for more
information.

The ultimate computational power in R comes from multi-machine, server-based,
and cloud-hosted solutions:

• Multi-machine parallelism. See the discussion above of workstation-based par-
allelization for options to deploy simple network-based combinations of worksta-
tions.

• Microsoft Machine Learning Server is a licensed platform that supports R
and Python, to be deployed with on-premises servers. See Sect.A.5 for more
information.

• Cloud computing. For maximum computing power, Amazon Web Services,
Google Cloud Platform, and Microsoft Azure offer cloud-based hosting for R,
where you can choose to run an R model on dozens, hundreds, or thousands of
high-powered servers simultaneously. RStudio Cloud is an offering whose inter-
face is similar to the RStudio desktop IDE. If you are interested in cloud solutions
for performance (as opposed to convenience), a general strategy is to design your
code for parallel computing, as described in the Parallelization notes above, and
then port it to a cloud system. Because this is a rapidly changing area, the best
bet to learn more is a web search for recent documentation and tutorials, such as
“R on Google Cloud” or “RStudio Cloud.”

http://cran.r-project.org/web/views/HighPerformanceComputing.html
http://cran.r-project.org/web/views/HighPerformanceComputing.html

454 Appendix C: Scaling Up

One thing to remember is that runtime speed is not the bestmeasure ofRperformance;
you also need to account for development and maintenance time. If it takes 3h
to develop and deploy a cloud solution for a process that would run in 2h on a
workstation, the cloud solution is a net loss in performance.

C.4 Time Series Analysis, Repeated Measures,
and Longitudinal Analysis

We have not covered time series analysis in this book due to space, yet it is strongly
supported in R. The array of available options is, like most things in R, diverse and
somewhat confusing. Here are a few pointers to get started.

A first thing to know is that the default time series objects in R (created with ts())
assume equal spacing of observations. They work well for regular intervals such
as daily measurements or quarterly financials, but do not handle irregularly spaced
observations such as transactions or typical longitudinal behavior or survey waves.
For such observations, we recommend to start with the zoo package [208], which
handles irregularly (and regularly) spaced data, and adds many features for time
series analysis.

A text that covers the basics of time series with a progressive, hands-on approach and
approachable mathematics is Cowpertwait and Metcalfe (2009), Introductory Time
Series with R [38].

The literature on time series analysis is, not surprisingly, especially large in the
areas of finance and econometrics. For mathematically oriented readers, those areas’
textbooks and R packages provide a rich set of resources. Less complex time series
models are often used in the biological and related physical sciences such as marine
biology and environmental science, and thesemay be useful tomarketers with a bit of
imaginative translation. For example, a model of the change in fish population after
a habitat cleanup might use R code that is almost identical to a model of unit sales
in response to a promotion. Pointers to resources in all of these areas are on CRAN
in the Time Series view, http://cran.r-project.org/web/views/TimeSeries.html.

Longitudinal analysis is the study of outcomes with repeated observations over time.
At a conceptual level, this differs from time series analysis in that there is relatively
less emphasis on the time component itself as a predictor or covariate, and more
emphasis on understanding the individual (customer, respondent, system, etc.) that
is being measured. Longitudinal models are an example of repeated measures mod-
els. In R, many of the basic linear modeling packages include options for repeated
measures and other forms of longitudinal measures. One place to start is with mixed
effects models (Sect. 9.3.1) where it it possible to specify effects for time or obser-
vation block.

http://cran.r-project.org/web/views/TimeSeries.html

Appendix C: Scaling Up 455

A special case of longitudinal analysis common in marketing is the family of
so-called “buy ’til you die” models (BTYD) for customer transactions [56]. Several
implementations of BTYD for non-contractual purchase models are implemented in
the BTYD package [48].

C.5 Automated and Interactive Reporting

An especially attractive benefit of R is the ability to automate work, and there are
tools available to automate not only analyses but also reporting. In the R and statis-
tics community, such solutions are commonly described as “reproducible research”
where the data, code, and written output are bundled together. For example, some
statistics journals require that articles be written with all analytic code embedded in
the article, including code that creates charts and tables, such that a typeset article
is produced directly from the code with no human copy-and-paste or inclusion of
independently created tables or graphics. In marketing, we think of this more as
“automated reporting,” yet the concepts and tools are identical.

We discuss R Notebooks—an RStudio feature for combined code editing and repro-
ducible results—in Appendix B. This section discusses more general options for
reporting. Because R is a general purpose programming language, in principle you
could write any automated output system you might want. However, we suggest a
few tools to consider first:

• Markdown and knitr. The RStudio environment provides a simple way to
combine the output of R code and graphics with arbitrary text to create an HTML
document, using the knitr package [206] and integrated RStudio publishing
tools. Using the example grocery data that we saw in Chap.12, the follow-
ing code snippet loads the arules package and data, and uses R commands to
describe the data and display a chart:

‘‘‘{r setup , echo=FALSE , results="hide", message=FALSE}

require(arules)

data(Groceries)

‘‘‘

Our data from the __supeRmarket__ chain comprises ‘r nrow(Groceries) ‘ cash

register transactions covering ‘r ncol(Groceries) ‘ categories of items.We

see the top 20 best selling items in the following chart:

‘‘‘{r plot example , echo=FALSE}

itemFrequencyPlot(Groceries , topN =20)

‘‘‘

Whole milk is the most popular single category in our data , although less

popular than the combination of soda and bottled water.

In this code, the sections between‘‘‘marks are executed asRcodewith the results
either shown (as for the itemFrequencyPlot) or not. Other text is arbitrary
but may be interspersed with the output of R commands using the ‘ marker and

456 Appendix C: Scaling Up

Fig. C.1 An example of HTML output using knitr to combine R output and graphics with
explanatory text

marked up with font styles using codes such as __ (bold). The resulting HTML
output from this code snippet is shown in Fig.C.1.

Markdown can also produce documents in PDF orMicrosoft Word formats. When
creating a new file in RStudio, simply choose the appropriate template (menu
sequence: File | New File | R Markdown ...), or select “Knit to PDF” or “Knit to
Word” from a markdown document’s Knit menu.

• LATEX output with Sweave(). R provides rich tools for those who are familiar
with LATEX, including the Sweave() command [126] that can produce a PDF
document from a single file that mixes R code and LATEX markup. The markup
language with LATEX is substantially more complex than that used by knitr but
it has more powerful options and capabilities (for instance, this book is written in
LATEX).

• odfWeave. Another option to create documents that are compatible withMicrosoft
Word and Open Office Writer is the odfWeave package [121]. odfWeave uses
markup styles based onSweave but produces an open document format (ODF)file

Appendix C: Scaling Up 457

Fig. C.2 An interactive web application using R and Shiny, reproduced from http://shiny.rstudio.
com/gallery/kmeans-example.html. This example shows the result of k-means clustering of the
iris data set. The model is run in response to a user’s selection in the control boxes and the chart
is updated automatically

instead of a PDFfile. ODFfiles can be read bymost office software packages.Word
document output is also available from Markdown (see above) and R Notebooks
(Appendix B.1.2).

• officer. The officer package offers a more programmatic route to create
Microsoft Word or PowerPoint documents [75]. In officer, R commands are
used to add elements to documents. This is overly complex for ad hoc document
creation, yet can be very valuable for automated production of repetitive reports
using code.

• Interactive applications: Shiny. For interactive web-based applications, such
as reporting dashboards, consider Shiny from RStudio. Shiny uses a web server
(hosted locally on your network or as a cloud service fromRStudio) to host R code
and produce interactive graphics. For details, a tutorial, and examples, see http://
shiny.rstudio.com. An example of an interactive cluster analysis session is shown
in Fig.C.2.

http://shiny.rstudio.com/gallery/kmeans-example.html
http://shiny.rstudio.com/gallery/kmeans-example.html
http://shiny.rstudio.com
http://shiny.rstudio.com

Appendix D
Packages Used

We have used many packages in this book and provide a reference to them here with
brief notes. Following are tables that arrange the packages by general topic (statistics
models, graphics, and so forth). For each package, we note the name, a comment on
its purpose or use aswe see it, and a reference to one ormore placeswherewemention
it. The comments on usage are admittedly brief for some packages that are complex
and defy summarization. In some cases, we only mentioned a package briefly in the
text, yet we reference it here because it is helpful to augment and contrast the other
tools presented.

Packages that we particularly recommend or use often are in bold font, such as
cluster. In a few instances, we list a package in more than one category. The list
is far from complete for R overall because there are thousands of packages available.

Most of the packages in this list can be installed from CRAN with the typical pack-
age installation routine (install.packages("NAME")), although a few are
included in the standard R system (cluster, compiler, foreign, lattice,
MASS, Matrix, parallel) and may be accessed with library() with no
additional installation required. Details of package availability change often; check
CRAN (http://cran.r-project.org) for the latest information.

The lists here reflect the contents of this book and its aim to provide an introduction
to R. Thus, although we recommend the packages here, the topic areas are not meant
to be comprehensive guides to the R packages available in their areas. CRAN task
views http://cran.r-project.org/web/views/) provide more systematic guidance to the
packages for specific topics and applications.

D.1 Core and Classical Statistics

Thefollowingpackagesaddstatisticalestimationroutines foravarietyofmodels rang-
ing from assessment of binomial variables (binom) to complex hierarchical mod-
els(lme4).

© Springer Nature Switzerland AG 2019
C. Chapman and E. M. Feit, R For Marketing Research and Analytics, Use R!,
https://doi.org/10.1007/978-3-030-14316-9

459

http://cran.r-project.org
http://cran.r-project.org/web/views/
https://doi.org/10.1007/978-3-030-14316-9

460 Appendix D: Packages Used

Package Brief summary Section
binom [45] Additional options for binomial models, tests, and confidence

intervals
6.3.2

car [62] Tools for interpreting and visualizing regression
models, plus other utilities; source of some()
and scatterplotMatrix()

3.1.2, 10.2.1

e1071 [139] Assorted econometrics and machine learning extensions; we use
it for naive Bayes classification with naiveBayes()

11.4.1

expm [78] Exponential functions for matrices 14.4.1
lme4 [8] Estimating linear mixed-effects models for nested effects 7.8, 9.3
MASS [192] A diverse collection of utility, machine learning, and statistics

functions and data sets to accompany Venables and Ripley [192]
7.8

multcomp [100] Multiple comparisons for linear models 6.5.2
psych [163] Methods for psychometrics and survey analysis, especially for

factor analytic and item response models; we scratch the surface
with the describe() command

3.3, 4.6.2

zoo [208] Methods and classes for irregularly and regularly spaced time
series

C.4

D.2 Graphics

Weused the following packages to produce the graphics in the book. The list includes
packages that make particular tasks easy (such as rworldmap), that handle spe-
cific families of models (arulesViz, semPlot), and that are powerful and broad
(lattice, ggplot2).

Package Brief summary Section
arulesViz [89] Visualization for association rules of transactional data and

market baskets; works with the arules package
12.3

beanplot [114] Violin plots which are an attractive alternative to boxplots 3.4.2
coefplot [125] Plot confidence intervals for coefficients from

linear models
7.3

corrplot [196] Enhanced graphics for correlation matrices 4.5.2
ggplot2 [198] Grammar of graphics implementation for sophisticated

plotting
6.6.4

gplots [193] Assorted plotting routines, including enhanced
heatmaps (heatmap.2()) and color interpolation
(colorpanel())

8.1.2, 4.5

lattice [173] Trellis-based plots that build on core plotting capabilities 5.2.3
RColorBrewer [148] Optimized color palettes for continuous and categorical

data
3.4.6, 8.1.2

rworldmap [182] Straightforward choropleth maps for the whole world
or regions

3.4.6

semPlot [53] Draw structural diagrams for exploratory and confirmatory
factor analysis and structural equation models

8.3.3, 10.2.2

superheat [6] Heatmaps formatrices, withmany options to style, cluster,
and smooth results

14.4.4

TraMineR [67] Mining and visualizing discrete sequence data 14.7
vcd [140] Visualize categorical data, such as mosaic

and doubledecker plots
9.2.7

Appendix D: Packages Used 461

D.3 Bayesian Methods

A general, nearly all-purpose Bayesian estimation engine in R is MCMCpack. Other
packages in this table add utilities (e.g., BayesFactor), models (e.g., e1071),
and marketing applications (bayesm).

Package Brief summary Section
BayesFactor [142] Easy to use functions to estimate and compare Bayesian linear models 6.6.2
bayesm [167] Hierarchical Bayesian models for marketing applications; a companion to

Rossi, Allenby, and McCulloch [168]
binom [45] Additional options for binomial models, tests, and confidence intervals 6.3.2
BoomMix [177] Bayesian methods for mixture model analysis 11.7
MCMCpack [134] A core estimation engine for Bayesian models using Markov chain Monte

Carlo method; very fast posterior sampling implemented in C++
6.6.2, 7.5.4

D.4 Advanced Statistics

These packages focus on specific statistical problems such as working with sparse
or very large data sets (e.g., biglm), add capabilities to base models (e.g.,
GPArotation), or add specific models such as structural equation model esti-
mation (e.g., lavaan, semPLS).

Package Brief summary Section
biganalytics [52] Basic statistics and handling for bigmemory objects

(very large datasets)
C.2

biglm [132] Fit linear models to data that is too large for memory, either from
databases or bigmemory objects

C.2

ClickClust [138] Model-based clustering for clickstream data 14.7
clickstream [175] Markov chain analysis for clickstream data 14.4.2
forecast [103] Models and extensions for forecasting, especially

with time series data. We use BoxCox() to perform data transforma-
tion

9.1

glmnet [65] Regularization and lasso fitting for generalized linear
models; also works with sparse data (very large matrices)

C.2

gmnl [94] Estimation of hierarchical multinomial logit models
including the generalized multinomial logit model [59]

13.3.2

GPArotation [11] Additional rotation methods for factor analysis,
with multiple variants of both oblique and orthogonal
rotations

8.3.3

lavaan [166] Estimate structural equation (SEM) and confirmatory
factor analysis (CFA) models

10.2.1, 10.2.2

mlogit [39] Estimate multinomial logit models by maximum
likelihood including hierarchical models

13.3.2, 13.3.2

mnlogit [93] Estimate multinomial logit models using faster algorithms than
mlogit

13.3.2

nFactors [160] Find the number of factors for factor analysis 8.3.2
OpenMx [14] Another powerful engine to estimate structural equation and confirma-

tory factor models; an alternative to lavaan
10.6

sem [63] Basic structural equation models (SEM); an alternative
to lavaan

10.6

semPLS [141] Estimate structural equation models using partial least
squares (PLS)

10.4.1

semTools [112] Compare structural equation models 10.2.3

462 Appendix D: Packages Used

D.5 Machine Learning

There are hundreds of packages for R that relate to machine learning. The following
are ones that we use to illustrate various applications of machine learning and to
estimate specific models. Moving from breadth to specificity of application, the
packages cluster, randomForest, and arules are especially helpful to be
familiar with. The caret package provides a structured way to use and evaluate a
large array of machine learning procedures.

Package Brief summary Section
arules [88] Association rules for transaction and market basket analysis 12.2
arulesSequences [24] Association rules for sequence data such as web logs 14.7
caret [122] Provides a systematic interface to access, use, and evaluate

hundreds of machine learning models and their fit for your
problem

11.7

cluster [133] Basic functions for clustering data, representing multiple
approaches

11.3

clue [98] Cluster ensemble analysis for clustering 11.7
e1071 [139] Assorted econometrics andmachine learning extensions; we

use it for naive Bayes classification with naiveBayes()
11.4.1

flexmix [84, 127] Flexible mixture modeling for latent classes 11.7
mclust [64, 178] Model-based clustering for finite mixture models 11.3.5
mlbench [128] Benchmark data sets for machine learning 11.7
poLCA [130] Latent class analysis and clustering for data with categorical

observations
11.3.7

randomForest [129] Random forest classification and variable importance 11.4.2

D.6 Data Handling

In Appendix C we described options to work with databases and data from other
software programs, and to increase R performancewith large data sets. The following
table summarizes those packages.

Appendix D: Packages Used 463

Package Brief summary Section
biglm [132] Fit linear models to data that is too large for memory C.2
bigmemory [115] Tools to work with very large data sets that exceed memory size C.2
data.table [47] A powerful alternative to standard data frames; higher perfor-

mance plus advanced query and indexing options including keys
C.2, C.1.1

dplyr [201] A higher-order approach to common data handling tasks, includ-
ing querying, recoding, and accessing data in databases

C.1.1

foreign [155] Read data from SAS, SPSS, and other systems C.1.3
gdata [194] Import data, especiallyMicrosoft Excel files, andmanipulate data

format
C.1.2

glmnet [65] Regularization and lasso fitting for general linear models; also
works with sparse data (very large matrices)

C.2

googleAnalyticsR [50] Access Google Analytics data in R 14.7
lubridate [82] Easier handling of date and time data 14.7
Matrix [7] Handling for sparse and dense matrices to reduce memory,

increase performance, and access linear algebra optimizations
C.2

memisc [51] Work with survey data, handle common survey metadata such as
variable labels and codebooks, import data from SPSS and Stata,
and simulate data

C.1.3

odbc [97] Connect and query databases that support ODBC C.1.4
R.matlab [10] Work with MATLAB files C.1.3
RGoogleAnalytics [152] Functional wrappers for Google Analytics API 14.7
RODBC [164] Another way to connect and query databases that support ODBC C.1.4
RSiteCatalyst [150] Access Adobe Analytics data in R 14.7
RSQLite [106] Host a complete SQL database instance within R C.1.4
sqldf [83] Run SQL queries on data frames C.1.4

D.7 Other Packages

These packages provide access to higher performance and automated reporting, along
with various other capabilities.

Package Brief summary Section
Bioconductor [13] A separately maintained collection of more than 1000 packages for working—

mostly, but not exclusively—with bioinformatics data
14.7

compiler [156] Compile functions for (sometimes) more efficient processing C.3.1
datasets [156] A diverse collection of interesting and illustrative datasets 9.2.7
knitr [206] Produce reports in HTML and other formats that combine text with output from

R, such as computations and graphics. RStudio [172] provides direct knitr inte-
gration.

C.5

odfWeave [121] Creates open document format (ODF) files such as word processing documents
that include results, graphics, and tables from R

C.5

officer [75] Create and manipulate Microsoft Word and PowerPoint documents with R code C.5
parallel [156] Run R processes such as apply() in parallel across multiple processor cores or

workstations
C.3.2

randomForest
Explainer [151]

Assess and visualize variable importance in random forest models 11.7

Rcpp [49] Use C++ with R for faster processing and data exchange C.3.1
Sweave() [126] Produces LATEX documents and PDFs with inline results and charts from R (and

is not technically a package on its own, but is built into R in the standard utils
package)

C.5

vcdExtra [66] Additional tools to assist with visualizing categorical data; use use
expand.dft() to convert a table to a complete data frame

9.2.5

Appendix E
Online Materials and Data Files

The dedicated website for this book is http://r-marketing.r-forge.r-project.org. All
data files and .R code files are available there and it is the source for news and updates
for the book.

At the website, code files are available in the /code directory, specifically: http://
r-marketing.r-forge.r-project.org/code.

Data files are available in the /data folder: http://r-marketing.r-forge.r-project.org/
data. These may be downloaded directly to your local system individually or all at
once in a .ZIP file, and also may be downloaded programmatically using the code in
each chapter.

All data sets made available for download are simulated, not real data, except for the
supermarket transaction records provided by Brijs et al. [23] and EPA web logs from
Bottomley [19]. See Sect. 1.6.2 for discussion of why we use simulated data.

E.1 Data File Structure

The data files are organized as follows:

• File names ending with “.csv” are comma-separated value (CSV) text files, and
may be read with the read.csv() function (Sect. 2.6.2).

• The supermarket transaction file name endswith “.dat” and is a text file delimited
with spaces. This may be read with readLines() (Sect. 12.2.2).

• “…” in Tables E.1 and E.2 below refers to the data folder http://r-marketing.r-
forge.r-project.org/data, which should be used as a prefix to the file names.

Typical examples of reading thedatafiles are as follows. First, if youhavedownloaded
a file to a local directory, you can read it using its local path:

> satData <- read.csv("~/Downloads/rintro -chapter2.csv")

© Springer Nature Switzerland AG 2019
C. Chapman and E. M. Feit, R For Marketing Research and Analytics, Use R!,
https://doi.org/10.1007/978-3-030-14316-9

465

http://r-marketing.r-forge.r-project.org
http://r-marketing.r-forge.r-project.org/code
http://r-marketing.r-forge.r-project.org/code
http://r-marketing.r-forge.r-project.org/data
http://r-marketing.r-forge.r-project.org/data
http://r-marketing.r-forge.r-project.org/data
http://r-marketing.r-forge.r-project.org/data
https://doi.org/10.1007/978-3-030-14316-9

466 Appendix E: Online Materials and Data Files

To read from the website, you could use the goo.gl short version, starting with
"https://":

> satData <- read.csv("https://goo.gl/UDv12g")

Alternatively, use the full URL as shown in Table E.1:

> satData <- read.csv(

"http://r-marketing.r-forge.r-project.org/data/rintro -chapter2.csv")

E.2 Data File URL Cross-Reference

In the R code listings in the book chapters, we provide short goo.gl URLs in
order to save typing. Table E.1 lists the data sets used in each chapter and the
corresponding R code files, and cross-references the short names with the corre-
sponding complete, long, direct URL addresses. Table E.2 does the same for data
sets used exclusively in chapter exercises. For the long URLs, replace "..." with
"http://r-marketing.r-forge.r-project.org/data/".

Update on Data Locations

Although we use R Forge for the book’s website, which has been stable over time,
all sites are liable to change. If you suspect the site no longer functions, send mail to
cnchapman+bookupdate@gmail.com for an automated message with news,
or do a web search for the authors.

Appendix E: Online Materials and Data Files 467

Ta
bl
e
E
.1

D
at
a
us
ed

in
te
xt

D
at
a

Sh
or
tU

R
L

L
on
g
U
R
L
(r
ep
la
ce

“.
..
”
as

ab
ov
e)

Se
ct
io
ns

Sh
or
ts
at
is
fa
ct
io
n
su
rv
ey

g
o
o
.
g
l
/
U
D
v
1
2
g

.
.
.
/
r
i
n
t
r
o
-
c
h
a
p
t
e
r
2
.
c
s
v

2.
2

W
ee
kl
y
st
or
e
da
ta

g
o
o
.
g
l
/
Q
P
D
d
M
l

.
.
.
/
r
i
n
t
r
o
-
c
h
a
p
t
e
r
3
.
c
s
v

3.
1

C
us
to
m
er

tr
an
sa
ct
io
n
da
ta

g
o
o
.
g
l
/
P
m
P
k
a
G

.
.
.
/
r
i
n
t
r
o
-
c
h
a
p
t
e
r
4
.
c
s
v

4.
1,

9.
1

C
on

su
m
er

se
gm

en
ta
tio

n
su
rv
ey

g
o
o
.
g
l
/
q
w
3
0
3
p

.
.
.
/
r
i
n
t
r
o
-
c
h
a
p
t
e
r
5
.
c
s
v

5.
1,

6.
1,

11
.2
,1

2.
4

A
m
us
em

en
tp

ar
k
sa
tis
fa
ct
io
n
su
rv
ey

g
o
o
.
g
l
/
H
K
n
l
7
4

.
.
.
/
r
i
n
t
r
o
-
c
h
a
p
t
e
r
7
.
c
s
v

7.
1

B
ra
nd

pe
rc
ep
tio

n
ra
tin

gs
g
o
o
.
g
l
/
I
Q
l
8
n
c

.
.
.
/
r
i
n
t
r
o
-
c
h
a
p
t
e
r
8
.
c
s
v

8.
1

A
m
us
em

en
tp

ar
k
se
as
on

tic
ke
ts
al
es

g
o
o
.
g
l
/
J
8
M
H
6
A

.
.
.
/
r
i
n
t
r
o
-
c
h
a
p
t
e
r
9
.
c
s
v

9.
2.
2

R
at
in
gs
-b
as
ed

(m
et
ri
c)

co
nj
oi
nt

an
al
ys
is

g
o
o
.
g
l
/
G
8
k
n
G
V

.
.
.
/
r
i
n
t
r
o
-
c
h
a
p
t
e
r
9
c
o
n
j
o
i
n
t
.
c
s
v

9.
3.
2

Pr
od
uc
ti
nv
ol
ve
m
en
ts
ur
ve
y

g
o
o
.
g
l
/
y
T
0
X
w
J

.
.
.
/
r
i
n
t
r
o
-
c
h
a
p
t
e
r
1
0
p
i
e
s
.
c
s
v

10
.2

Sa
tis
fa
ct
io
n
an
d
re
pu

rc
ha
se

su
rv
ey

g
o
o
.
g
l
/
M
h
g
h
R
q

.
.
.
/
r
i
n
t
r
o
-
c
h
a
p
t
e
r
1
0
s
a
t
.
c
s
v

10
.3

Su
pe
rm

ar
ke
tt
ra
ns
ac
tio

n
da
ta
[2
3]

g
o
o
.
g
l
/
O
4
9
5
R
V

f
i
m
i
.
u
a
.
a
c
.
b
e
/
d
a
t
a
/
r
e
t
a
i
l
.
d
a
t

12
.2
.2

A
lte

rn
at
iv
e
fo
r
su
pe
rm

ar
ke
td

at
a,
w
ith

pe
rm

is
si
on

[2
2]

g
o
o
.
g
l
/
F
f
j
D
A
O

.
.
.
/
r
e
t
a
i
l
.
d
a
t

12
.2
.2

C
ho

ic
e-
ba
se
d
co
nj
oi
nt

an
al
ys
is

g
o
o
.
g
l
/
5
x
Q
O
b
B

.
.
.
/
r
i
n
t
r
o
-
c
h
a
p
t
e
r
1
3
c
o
n
j
o
i
n
t
.
c
s
v

13
.2

E
PA

w
eb

se
rv
er

lo
g
[1
9]

g
o
o
.
g
l
/
L
P
q
m
G
b

.
.
.
/
e
p
a
-
h
t
t
p
-
c
o
p
y
.
t
x
t

14
.1
.1

D
at
a
fil
es

an
d
do
w
nl
oa
d
U
R
L
s
fo
r
pr
im

ar
y
an
al
ys
es

in
th
e
te
xt

an
d
ac
co
m
pa
ny
in
g
co
de

fil
es

468 Appendix E: Online Materials and Data Files

Ta
bl
e
E
.2

D
at
a
us
ed

in
ex
er
ci
se
s

D
at
a

Sh
or
tU

R
L

L
on
g
U
R
L
(r
ep
la
ce

“.
..
”
as

ab
ov
e)

Se
ct
io
ns

E
-c
om

m
er
ce

tr
an
sa
ct
io
ns

g
o
o
.
g
l
/
h
z
R
y
F
d

.
.
.
/
e
c
o
m
m
e
r
c
e
-
d
a
t
a
.
c
s
v

3.
8,

4.
10
,5

.6
,6

.9

H
ot
el
sa
tis
fa
ct
io
n
ra
tin

gs
g
o
o
.
g
l
/
h
z
R
y
F
d

.
.
.
/
e
c
o
m
m
e
r
c
e
-
d
a
t
a
.
c
s
v

7.
9

E
le
ct
ro
ni
c
de
vi
ce

br
an
ds

(s
am

pl
e
1)

g
o
o
.
g
l
/
z
5
P
8
c
e

.
.
.
/
c
h
a
p
t
e
r
8
-
b
r
a
n
d
s
1
.
c
s
v

8.
8,

10
.7

O
nl
in
e
vi
si
ts
an
d
sa
le
s

g
o
o
.
g
l
/
4
A
k
g
k
t

.
.
.
/
c
h
a
p
t
e
r
9
-
s
a
l
e
s
.
c
s
v

9.
9

H
an
db
ag

co
nj
oi
nt

an
al
ys
is

g
o
o
.
g
l
/
g
E
K
S
Q
t

.
.
.
/
c
h
a
p
t
e
r
9
-
b
a
g
.
c
s
v

9.
9

E
le
ct
ro
ni
c
de
vi
ce

br
an
ds

(s
am

pl
e
2)

g
o
o
.
g
l
/
B
T
x
y
F
B

.
.
.
/
c
h
a
p
t
e
r
1
0
-
c
f
a
.
c
s
v

10
.7

Pu
rc
ha
se

in
te
nt

g
o
o
.
g
l
/
6
U
5
a
Y
r

.
.
.
/
c
h
a
p
t
e
r
1
0
-
s
e
m
.
c
s
v

10
.7

M
us
ic
su
bs
cr
ip
tio

n
se
gm

en
ts

g
o
o
.
g
l
/
s
1
K
E
i
F

.
.
.
/
m
u
s
i
c
-
s
u
b
.
c
s
v

11
.8

R
et
ai
lt
ra
ns
ac
tio

ns
g
o
o
.
g
l
/
w
i
8
K
H
g

.
.
.
/
r
e
t
a
i
l
-
b
a
s
k
e
t
s
.
c
s
v

12
.7

R
et
ai
li
te
m

m
ar
gi
ns

g
o
o
.
g
l
/
P
i
d
z
p
d

.
.
.
/
r
e
t
a
i
l
-
m
a
r
g
i
n
.
c
s
v

12
.7

Sp
or
ts
ca
r
co
nj
oi
nt

an
al
ys
is

g
o
o
.
g
l
/
8
g
7
v
t
T

.
.
.
/
s
p
o
r
t
s
c
a
r
_
c
h
o
i
c
e
_
l
o
n
g
.
c
s
v

13
.1
0

E
PA

w
eb

se
rv
er

lo
g
(s
am

e
as

ab
ov
e,

re
us
ed

in
ex
er
ci
se
s)
[1
9]

g
o
o
.
g
l
/
L
P
q
m
G
b

.
.
.
/
e
p
a
-
h
t
t
p
-
c
o
p
y
.
t
x
t

14
.8

Fi
le
na
m
es

an
d
do
w
nl
oa
d
U
R
L
s
fo
r
da
ta
se
ts
us
ed

in
ch
ap
te
r
ex
er
ci
se
s

References

1. Agresti, A. (2012). Categorical data analysis (3rd ed.). New Jersey: Wiley.
2. Agresti, A., & Coull, B. A. (1998). Approximate is better than "exact" for interval estimation

of binomial proportions. The American Statistician, 52(2), 119–126.
3. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on

Automatic Control, 19(6), 716–723.
4. Albert, J., & Rizzo, M. L. (2012). R by example. Berlin: Springer.
5. Association for Computing Machinery, (1999). ACM honors Dr. John M. Chambers of Bell

Labs with the 1998 ACM software system award for creating “S System” software. http://
www.acm.org/announcements/ss99.html.

6. Barter, R., & Yu, B. (2017). superheat: A graphical tool for exploring complex datasets using
heatmaps. https://CRAN.R-project.org/package=superheat, R package version 0.1.0.

7. Bates, D., & Maechler, M. (2018). Matrix: Sparse and dense matrix classes and methods.
http://CRAN.R-project.org/package=Matrix, R package version 1.2-14.

8. Bates, D., Maechler, M., Bolker, B., & Walker, S. (2018). lme4: Linear mixed-effects models
using Eigen and S4. http://CRAN.R-project.org/package=lme4, R package version 1.1-17.

9. Beaujean, A. A. (2014). Latent variable modeling using R: A step-by-step guide. Abingdon:
Routledge.

10. Bengtsson, H. (2016). R.matlab: Read and write MAT files together with R-to-MATLAB con-
nectivity. http://CRAN.R-project.org/package=R.matlab, R package version 3.6.1.

11. Bernaards, C. A., & Jennrich, R. I. (2005). Gradient projection algorithms and software for
arbitrary rotation criteria in factor analysis. Educational and Psychological Measurement, 65,
676–696.

12. Bickel, P., Hammel, E., & O’Connell, J. (1975). Sex bias in graduate admissions: Data from
Berkeley. Science, 187(4175), 398–404.

13. Bioconductor, (2018). Bioconductor: Open source software for bioinformatics. https://www.
bioconductor.org/.

14. Boker, S., Neale, M., Maes, H., Wilde, M., Spiegel, M., Brick, T., et al. (2011). OpenMx:
an open source extended structural equation modeling framework. Psychometrika, 76(2),
306–317.

15. Borg, I., &Groenen, P. J. (2005).Modern multidimensional scaling: Theory and applications.
Berlin: Springer.

16. Borg, I., Groenen, P. J., & Mair, P. (2018). Applied multidimensional scaling and unfolding
(2nd ed.). Berlin: Springer.

17. Borgelt, C. (2002). The apriori algorithm for finding association rules. http://www.borgelt.
net/docs/apriori.pdf, last retrieved October 11, 2014.

18. Borgelt, C., Kruse, R., & (2002). Induction of association rules: apriori implementation.
Compstat,. (2002).Proceedings in Computational Statistics (pp. 395–400). Heidelberg: Phys-
ica Verlag.

19. Bottomley, L, (1995). Epa-http. http://ita.ee.lbl.gov/html/contrib/EPA-HTTP.html.

© Springer Nature Switzerland AG 2019
C. Chapman and E. M. Feit, R For Marketing Research and Analytics, Use R!,
https://doi.org/10.1007/978-3-030-14316-9

469

http://www.acm.org/announcements/ss99.html
http://www.acm.org/announcements/ss99.html
https://CRAN.R-project.org/package=superheat
http://CRAN.R-project.org/package=Matrix
http://CRAN.R-project.org/package=lme4
http://CRAN.R-project.org/package=R.matlab
https://www.bioconductor.org/
https://www.bioconductor.org/
http://www.borgelt.net/docs/apriori.pdf
http://www.borgelt.net/docs/apriori.pdf
http://ita.ee.lbl.gov/html/contrib/EPA-HTTP.html
https://doi.org/10.1007/978-3-030-14316-9

470 References

20. Bowman,D.,&Gatignon,H. (2010).Market response and marketing mix models. Foundations
and trends in marketing. The Netherlands: Now Publishers Inc.

21. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
22. Brijs, T. (2014). Retail transaction data. Personal Communication, September 17, 2014.
23. Brijs, T., Swinnen, G., Vanhoof, K., & Wets, G. (1999). Using association rules for product

assortment decisions: A case study. In Proceedings of the Fifth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery
(pp. 254–260).

24. Buchta, C., Hahsler, M., & with contributions from Diaz, D. (2018). arulesSequences: Min-
ing frequent sequences. https://CRAN.R-project.org/package=arulesSequences, R package
version 0.2-20.

25. Calaway, R., Microsoft., & Weston, S. (2017). foreach: Foreach looping construct for R.
http://CRAN.R-project.org/package=foreach, R package version 1.4.4.

26. Caldon, P. (2013). to.dendrogram. http://stats.stackexchange.com/a/45161.
27. Callegaro, M., Baker, R. P., Bethlehem, J., Göritz, A. S., Krosnick, J. A., & Lavrakas, P. J.

(2014). Online panel research: A data quality perspective. New Jersey: Wiley.
28. Callegaro, M., Manfreda, K. L., & Vehovar, V. (2015). Web survey methodology. Thousand

Oaks: Sage.
29. Chambers, J. (2008). Software for data analysis: Programming with R. Berlin: Springer.
30. Chambers, J.M. (2004).Programming with data: A guide to the S language (corrected (edition

ed.). Berlin: Springer.
31. Chang, W. (2018). R graphics cookbook (2nd ed.). Massachusetts: O’Reilly Media.
32. Chapman, C. N., Love, E., Staton, M., & Lahav, M. (2014). The development of a hierarchical

and universal scale for product involvement: The product involvement and engagement scale
(“PIES”), available from first author.

33. Chapman, C. N., Bahna, E., Alford, J. L., & Ellis, S. (2018). Rcbc: Marketing research
tools for choice-based conjoint analysis. http://r-marketing.r-forge.r-project.org/code/Rcbc.
R, version 0.30.

34. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). New Jersey:
Lawrence Erlbaum Associates.

35. Cohen, J. (1994). The earth is round (p < .05). American Psychologist, 49(12), 997.
36. Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/corre-

lation analysis for the behavioral sciences (3rd ed.). New Jersey: Lawrence Erlbaum.
37. Collins, L. M., & Lanza, S. T. (2010). Latent class and latent transition analysis: With appli-

cations in the social, behavioral, and health sciences. New Jersey: Wiley.
38. Cowpertwait, P. S., &Metcalfe, A.V. (2009). Introductory time series with R. Berlin: Springer.
39. Croissant, Y. (2018). mlogit: Multinomial logit models. https://CRAN.R-project.org/

package=mlogit, R package version 0.3-0.
40. Dalgaard, P. (2008). Introductory statistics with R. Berlin: Springer.
41. Damodaran, A. (2018). Damodaran online. http://pages.stern.nyu.edu/~adamodar/.
42. Dib, F. (2018). Regular expressions 101. https://regex101.com.
43. Dobson, A. J., & Barnett, A. G. (2018). An introduction to generalized linear models (4th

ed.). United Kingdom: Chapman & Hall.
44. Dolnicar, S., Grün, B., & Leisch, F. (2018). Market segmentation analysis: Understanding it,

doing it, and making it useful. Berlin: Springer.
45. Dorai-Raj, S. (2014). binom: Binomial confidence intervals for several parameterizations.

http://CRAN.R-project.org/package=binom, R package version 1.1-1.
46. Dotson, J. P., Howell, J. R., Brazell, J. D., Otter, T., Lenk, P. J., MacEachern, S., et al.

(2018). A probit model with structured covariance for similarity effects and source of volume
calculations. Journal of Marketing Research, 55(1), 35–47.

47. Dowle, M., Short, T., Lianoglou, S., & Srinivasan, A. (2018). data.table: Extension of
data.frame. http://CRAN.R-project.org/package=data.table, W with contributions from R.
Saporta & E. Antonyan. R package version 1.9.2.

https://CRAN.R-project.org/package=arulesSequences
http://CRAN.R-project.org/package=foreach
http://stats.stackexchange.com/a/45161
http://r-marketing.r-forge.r-project.org/code/Rcbc.R
http://r-marketing.r-forge.r-project.org/code/Rcbc.R
https://CRAN.R-project.org/package=mlogit
https://CRAN.R-project.org/package=mlogit
http://pages.stern.nyu.edu/~adamodar/
https://regex101.com
http://CRAN.R-project.org/package=binom
http://CRAN.R-project.org/package=data.table

References 471

48. Dziurzynski, L., Wadsworth, E., Fader, P., Feit, E. M., McCarthy, D., Hardie, B., et al. (2014).
BTYD: Implementing buy’til you die models. R Package Version, 2, 3.

49. Eddelbuettel, D. (2013). Seamless R and C++ integration with Rcpp. Berlin: Springer.
50. Edmondson, M. (2018). googleAnalyticsR. https://cran.r-project.org/web/packages/

googleAnalyticsR/vignettes/googleAnalyticsR.html.
51. Elff, M. (2017). memisc: Tools for management of survey data, graphics, programming,

statistics, and simulation. http://CRAN.R-project.org/package=memisc, R package version
0.99.14.9.

52. Emerson, J.W., &Kane,M. J. (2016). biganalytics: A library of utilities for big.matrix objects
of package bigmemory. http://CRAN.R-project.org/package=biganalytics, R package version
1.1.14.

53. Epskamp, S. (2017). semPlot: Path diagrams and visual analysis of various SEM packages’
output. http://CRAN.R-project.org/package=semPlot, R package version 1.1.

54. Everitt, B. S., Landau, S., Leese, M., & Stahl, D. (2011). Cluster analysis (5th ed.). Wiley
series in probability and statistics. New Jersey: Wiley.

55. Fabrigar, L. R., & Wegener, D. T. (2011). Exploratory factor analysis. Oxford: Oxford Uni-
versity.

56. Fader, P. S., & Hardie, B. G. (2009). Probability models for customer-base analysis. Journal
of Interactive Marketing, 23(1), 61–69.

57. Fennell, G.,Allenby,G.M.,Yang, S.,&Edwards,Y. (2003). The effectiveness of demographic
and psychographic variables for explaining brand and product category use. Quantitative
Marketing and Economics, 1(2), 223–244.

58. Fernández-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2014). Do we need hun-
dreds of classifiers to solve real world classification problems? Journal of Machine Learning
Research, 15, 3133–3181.

59. Fiebig, D. G., Keane, M. P., Louviere, J., & Wasi, N. (2010). The generalized multinomial
logit model: Accounting for scale and coefficient heterogeneity. Marketing Science, 29(3),
393–421.

60. Fox, J. (2005). Getting started with the R commander: A basic-statistics graphical user inter-
face to R. Journal of Statistical Software, 14(9), 1–42.

61. Fox, J. (2006). Teacher’s corner: structural equation modeling with the sem package in R.
Structural Equation Modeling, 13(3), 465–486.

62. Fox, J., & Weisberg, S. (2011) An R companion to applied regression (2nd edn.). Thousand
Oaks: Sage. http://socserv.socsci.mcmaster.ca/jfox/Books/Companion.

63. Fox, J., Nie, Z.,&Byrnes, J. (2017). sem: Structural equation models. http://CRAN.R-project.
org/package=sem, R package version 3.1-9.

64. Fraley, C., &Raftery, A. E. (2002).Model-based clustering, discriminant analysis, and density
estimation. Journal of the American Statistical Association, 97(458), 611–631.

65. Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear
models via coordinate descent. Journal of Statistical Software, 33.

66. Friendly, M. (2017). vcdExtra: vcd extensions and additions. http://CRAN.R-project.org/
package=vcdExtra, R package version 0.7-1.

67. Gabadinho, A., Ritschard, G., Studer, M., & Müller, N. S. (2009). Mining sequence data in
R with the TraMineR package: A users guide for version 1.2.

68. Gagniuc, P. A. (2017). Markov chains: From theory to implementation and experimentation.
New Jersey: Wiley.

69. Gałecki, A., & Burzykowski, T. (2013). Linear mixed-effects models using R: A step-by-step
approach. Berlin: Springer.

70. Gandrud, C. (2015). Reproducible research with R and RStudio (2nd ed.). United Kingdom:
Chapman & Hall/CRC.

71. Gansner, E. R., &North, S. C. (2000). An open graph visualization system and its applications
to software engineering. Software: Practice and Experience, 30(11), 1203–1233.

72. Gelman, A., & Hill, J. (2006). Data analysis using regression and multilevel/hierarchical
models. Cambridge: Cambridge University Press.

https://cran.r-project.org/web/packages/googleAnalyticsR/vignettes/googleAnalyticsR.html
https://cran.r-project.org/web/packages/googleAnalyticsR/vignettes/googleAnalyticsR.html
http://CRAN.R-project.org/package=memisc
http://CRAN.R-project.org/package=biganalytics
http://CRAN.R-project.org/package=semPlot
http://socserv.socsci.mcmaster.ca/jfox/Books/Companion
http://CRAN.R-project.org/package=sem
http://CRAN.R-project.org/package=sem
http://CRAN.R-project.org/package=vcdExtra
http://CRAN.R-project.org/package=vcdExtra

472 References

73. Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013).
Bayesian data analysis (3rd ed.). United Kingdom: Chapman & Hall.

74. Genolini, C. (2008). A (not so) short introduction to S4. Technical report.
75. Gohel, D. (2018). officer: Manipulation of microsoft word and powerpoint documents. https://

CRAN.R-project.org/package=officer, R package version 0.3.2.
76. Goodman, S. N., Fanelli, D., & Ioannidis, J. P. (2016). What does research reproducibility

mean? Science Translational Medicine, 8(341), 341ps12–341ps12.
77. Goulet, V. (2018). Emacs modified for macOS. https://vigou3.github.io/emacs-modified-

macos/.
78. Goulet, V., Dutang, C., Maechler, M., Firth, D., Shapira, M., & Stadelmann, M. (2017). expm:

Matrix exponential, log, etc. https://CRAN.R-project.org/package=expm, R package version
0.999-2.

79. Gower, J., Groenen, P. J., Van de Velden, M., & Vines, K. (2010). Perceptual maps: The good,
the bad and the ugly. Technical Report. ERIM Report Series Reference No. ERS-2010-011-
MKT, Erasmus Research Institute of Management.

80. Goyvaerts, J., & Levithan, S. (2012). Regular expressions cookbook: Detailed solutions in
eight programming languages. Massachusetts: O’Reilly Media.

81. Grinstead, C. M., & Snell, J. L. (1997). Introduction to probability. Providence: American
Mathematical Society.

82. Grolemund, G., & Wickham, H. (2011). Dates and times made easy with lubridate. Journal
of Statistical Software, 40(3):1–25. http://www.jstatsoft.org/v40/i03/.

83. Grothendieck, G. (2017). sqldf: Perform SQL selects on R data frames. http://CRAN.R-
project.org/package=sqldf, R package version 0.4-11.

84. Grün, B., & Leisch, F. (2008). FlexMix version 2: Finite mixtures with concomitant variables
and varying and constant parameters. Journal of Statistical Software, 28(4), 1–35. http://www.
jstatsoft.org/v28/i04/.

85. Guadagni, P. M., & Little, J. D. (1983). A logit model of brand choice calibrated on scanner
data. Marketing Science, 2(3), 203–238.

86. Hadfield, J. D. (2010). MCMC methods for multi-response generalized linear mixed mod-
els: The MCMCglmm R package. Journal of Statistical Software, 33(2), 1–22. http://www.
jstatsoft.org/v33/i02/.

87. Hahsler, M., Grün, B., & Hornik, K. (2005) arules: A computational environment for mining
association rules and frequent item sets. Journal of Statistical Software, 14.

88. Hahsler, M., Buchta, C., Grün, B., Hornik, K., Johnson, I., & Borgelt, C. (2018a). arules:
Mining association rules and frequent itemsets. http://CRAN.R-project.org/package=arules,
R package version 1.6-1.

89. Hahsler,M., Tyler, G.,&Chelluboina, S. (2018b). arulesViz: Visualizing association rules and
frequent itemsets. http://CRAN.R-project.org/package=arulesViz, R package version 1.3-1.

90. Hair, J. F., Sarstedt, M., Ringle, C. M., & Mena, J. A. (2012). An assessment of the use
of partial least squares structural equation modeling in marketing research. Journal of the
Academy of Marketing Science, 40(3), 414–433.

91. Hair, J. F, Jr., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2016). A Primer on Partial Least
Squares Structural Equation Modeling (PLS-SEM) (2nd ed.). Thousand Oaks: Sage.

92. Harrell, F. E. (2015). Regression modeling strategies: With applications to linear models,
logistic and ordinal regression, and survival analysis (2nd ed.). Berlin: Springer.

93. Hasan, A., Zhiyu, W., & Mahani, A. S. (2016). mnlogit: Multinomial logit model. https://
CRAN.R-project.org/package=mnlogit, R package version 1.2.5.

94. Hasan, A., Zhiyu, W., & Mahani, A. S. (2018). gmnl: Multinomial logit models with random
parameters. https://CRAN.R-project.org/package=gmnl, R package version 1.1-3.1.

95. Hastie, T., Tibshirani, R., & Friedman, J. (2016). The elements of statistical learning: Data
mining, inference, and prediction (2nd ed.). Berlin: Springer.

96. Henseler, J., Ringle, C., & Sinkovics, R. (2009). The use of partial least squares pathmodeling
in international marketing. Advances in International Marketing (AIM), 20, 277–320.

https://CRAN.R-project.org/package=officer
https://CRAN.R-project.org/package=officer
https://vigou3.github.io/emacs-modified-macos/
https://vigou3.github.io/emacs-modified-macos/
https://CRAN.R-project.org/package=expm
http://www.jstatsoft.org/v40/i03/
http://CRAN.R-project.org/package=sqldf
http://CRAN.R-project.org/package=sqldf
http://www.jstatsoft.org/v28/i04/
http://www.jstatsoft.org/v28/i04/
http://www.jstatsoft.org/v33/i02/
http://www.jstatsoft.org/v33/i02/
http://CRAN.R-project.org/package=arules
http://CRAN.R-project.org/package=arulesViz
https://CRAN.R-project.org/package=mnlogit
https://CRAN.R-project.org/package=mnlogit
https://CRAN.R-project.org/package=gmnl

References 473

97. Hester, J., & Wickham, H. (2018). odbc: Connect to ODBC compatible databases (using the
DBI interface). https://CRAN.R-project.org/package=odbc, R package version 1.1.6.

98. Hornik, K. (2005). A CLUE for CLUster ensembles. Journal of Statistical Software, 14(12),
99. Hosmer, D. W, Jr., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression (3rd

ed.). New Jersey: Wiley.
100. Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric

models. Biometrical Journal, 50(3), 346–363.
101. Hubbard,R.,&Armstrong, J. S. (2006).Whywedon’t really knowwhat statistical significance

means: Implications for educators. Journal of Marketing Education, 28(2), 114–120.
102. Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2(1), 193–

218.
103. Hyndman, R. J. (2018). forecast: Forecasting functions for time series and linear models.

http://CRAN.R-project.org/package=forecast, with contributions from G. Athanasopoulos,
S. Razbash, D. Schmidt, Z. Zhou, Y. Khan, C. Bergmeir, E. Wang, F. Yasmeen, R. Core Team,
R. Ihaka, D. Reid, Y. Tang, & Z. Zhou. R package version 8.4.

104. Iacobucci, D. (2009). Everything you alwayswanted to know about SEM (structural equations
modeling) but were afraid to ask. Journal of Consumer Psychology, 19(4), 673–680.

105. Iacobucci, D. (2010). Structural equations modeling: Fit indices, sample size, and advanced
topics. Journal of Consumer Psychology, 20(1), 90–98.

106. James, D. A., Wickham, H., James, D. A., Falcon, S., the authors of SQLite, (2018). RSQLite:
SQLite interface for R. http://CRAN.R-project.org/package=RSQLite, R package version
2.1.1.

107. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical
learning: With applications in R. Berlin: Springer.

108. Jolliffe, I. T. (2002). Principal component analysis (2nd ed.). Berlin: Springer.
109. Jones, N. C., & Pevzner, P. (2004). An Introduction to bioinformatics algorithms. Cambridge:

MIT Press.
110. Jöreskog, K. G. (1973). Analysis of covariance structures. In P. R. Krishnaiah (Ed.), Multi-

variate analysis (Vol. 3, pp. 263–285). New York: Academic.
111. Jöreskog, K.G.,&Sörbom,D. (1996). LISREL 8:User’s reference guide. Scientific Software,.

International.
112. Jorgensen, T. D., Pornprasertmanit, S., Miller, P., Schoemann, A., & Rosseel, Y. (2018).

semTools: Useful tools for structural equation modeling. http://CRAN.R-project.org/
package=semTools, R package version 0.5-0.

113. Kahle, D., & Wickham, H. (2016). ggmap: A package for spatial visualization with Google
Maps and OpenStreetMap. http://CRAN.R-project.org/package=ggmap, R package version
2.6.1.

114. Kampstra, P. (2014). beanplot: Visualization via Beanplots (like Boxplot/Stripchart/Violin
Plot). https://CRAN.R-project.org/package=beanplot, R package version 1.2.

115. Kane,M. J., Emerson, J., &Weston, S. (2013). Scalable strategies for computingwithmassive
data. Journal of Statistical Software, 55(14), 1–19. http://www.jstatsoft.org/v55/i14/.

116. Kline, R. B. (2015). Principles and practice of structural equation modeling (4th ed.). New
York: Guilford Press.

117. Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B. E., Bussonnier, M., Frederic, J. et al.
(2016). Jupyter notebooks-a publishing format for reproducible computational workflows. In
Proceedings of the international conference on electronic publishing (ELPUB).

118. Knuth, D. (1997). The art of computer programming, Vol 2: Seminumerical algorithms (3rd
edn.). Boston: Addison-Wesley.

119. Kruschke, J. K. (2010). What to believe: Bayesian methods for data analysis. Trends in
Cognitive Sciences, 14(7), 293–300.

120. Kruschke, J. K. (2015). Doing bayesian data analysis: A tutorial with R, JAGS, and Stan (2nd
ed.). Cambridge: Academic.

121. Kuhn,M. (2014). odfWeave: Sweave processing of Open Document Format (ODF) files. http://
CRAN.R-project.org/package=odfWeave, R package version 0.8.4. With contributions from
S. Weston, N. Coulter, P. Lenon, Z. Otles, & the R. Core Team.

https://CRAN.R-project.org/package=odbc
http://CRAN.R-project.org/package=forecast
http://CRAN.R-project.org/package=RSQLite
http://CRAN.R-project.org/package=semTools
http://CRAN.R-project.org/package=semTools
http://CRAN.R-project.org/package=ggmap
https://CRAN.R-project.org/package=beanplot
http://www.jstatsoft.org/v55/i14/
http://CRAN.R-project.org/package=odfWeave
http://CRAN.R-project.org/package=odfWeave

474 References

122. Kuhn, M. (2018). caret: Classification and regression training. http://CRAN.R-project.org/
package=caret, R package version 6.0-80.

123. Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. Berlin: Springer.
124. Lander, J. P. (2017). R for everyone: Advanced analytics and graphics (2nd ed.). Boston:

Addison-Wesley.
125. Lander, J. P. (2018). coefplot: Plots coefficients from fitted models. http://CRAN.R-project.

org/package=coefplot, R package version 1.2.6.
126. Leisch, F. (2002). Sweave: Dynamic generation of statistical reports using literate data analy-

sis. In W. Härdle & B. Rönz (Eds.), Compstat 2002: Proceedings in computational statistics
(pp. 575–580). Heidelberg: Physica Verlag.

127. Leisch, F. (2004). FlexMix: A general framework for finite mixture models and latent class
regression in R. Journal of Statistical Software, 11(8), 1–18. http://www.jstatsoft.org/v11/
i08/.

128. Leisch, F., & Dimitriadou, E. (2010). mlbench: Machine learning benchmark problems. R
package version 2.1-1.

129. Liaw, A., & Wiener, M. (2002). Classification and regression by randomforest. R News, 2(3),
18–22, http://CRAN.R-project.org/doc/Rnews/.

130. Linzer, D. A., & Lewis, J. B. (2011). poLCA: An R package for polytomous variable latent
class analysis. Journal of Statistical Software, 42(10), 1–29. http://www.jstatsoft.org/v42/
i10/.

131. Louviere, J. J., Hensher, D. A., & Swait, J. D. (2000). Stated choice methods: Analysis and
applications. Cambridge: Cambridge University Press.

132. Lumley, T. (2016). biglm: Bounded memory linear and generalized linear models. http://
CRAN.R-project.org/package=biglm, R package version 0.9-1.

133. Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., & Hornik, K. (2018). Cluster: Cluster
analysis basics and extensions, R package version 2.0.7-1.

134. Martin, A. D., Quinn, K. M., & Park, J. H. (2011). MCMCpack: Markov chain monte carlo
in R. Journal of Statistical Software, 42(9), 22. http://www.jstatsoft.org/v42/i09/.

135. Matloff, N. S. (2011). The art of R programming: A tour of statistical software design. San
Francisco: No Starch Press.

136. McElreath, R. (2016). Statistical rethinking: A bayesian course with examples in R and Stan
(Vol. 122). Boca Raton: CRC Press.

137. Meehl, P. E. (1990). Why summaries of research on psychological theories are often uninter-
pretable. Psychological Reports, 66(1), 195–244.

138. Melnykov, V. (2016). ClickClust: An R package for model-based clustering of categorical
sequences. Journal of Statistical Software, 74(9), 1–34. https://doi.org/10.18637/jss.v074.
i09.

139. Meyer, D., Dimitriadou, E., Hornik, K.,Weingessel, A., Leisch, F., Chang, C. C. et al. (2017a).
e1071: Misc functions of the department of statistics (e1071), TU Wien. http://CRAN.R-
project.org/package=e1071, R package version 1.6-8.

140. Meyer, D., Zeileis, A., & Hornik, K. (2017b). vcd: Visualizing categorical data. R package
version 1.4-4.

141. Monecke, A., & Leisch, F. (2012). semPLS: Structural equation modeling using partial least
squares. Journal of Statistical Software, 48(3), 1–32. http://www.jstatsoft.org/v48/i03/.

142. Morey, R.D.,&Rouder, J. N. (2018).BayesFactor: Computation of Bayes factors for common
designs. http://CRAN.R-project.org/package=BayesFactor, R package version 0.9.12-4.2.

143. Muenchen, R. A. (2011). R for SAS and SPSS users (2nd ed.). Berlin: Springer.
144. Muenchen, R. A., & Hilbe, J. M. (2010). R for stata users. Berlin: Springer.
145. Mulaik, S. A. (2009). Foundations of factor analysis (2nd edn.). Statistics in the Social and

Behavioral Sciences. United Kingdom: Chapman & Hall/CRC.
146. Netzer, O., Lattin, J. M., & Srinivasan, V. (2008). A hidden Markov model of customer

relationship dynamics. Marketing Science, 27(2), 185–204.
147. Netzer, O., Feldman, R., Goldenberg, J., & Fresko, M. (2012). Mine your own business:

Market-structure surveillance through text mining. Marketing Science, 31(3), 521–543.

http://CRAN.R-project.org/package=caret
http://CRAN.R-project.org/package=caret
http://CRAN.R-project.org/package=coefplot
http://CRAN.R-project.org/package=coefplot
http://www.jstatsoft.org/v11/i08/
http://www.jstatsoft.org/v11/i08/
http://CRAN.R-project.org/doc/Rnews/
http://www.jstatsoft.org/v42/i10/
http://www.jstatsoft.org/v42/i10/
http://CRAN.R-project.org/package=biglm
http://CRAN.R-project.org/package=biglm
http://www.jstatsoft.org/v42/i09/
https://doi.org/10.18637/jss.v074.i09
https://doi.org/10.18637/jss.v074.i09
http://CRAN.R-project.org/package=e1071
http://CRAN.R-project.org/package=e1071
http://www.jstatsoft.org/v48/i03/
http://CRAN.R-project.org/package=BayesFactor

References 475

148. Neuwirth, E. (2014). RColorBrewer: ColorBrewer palettes. http://CRAN.R-project.org/
package=RColorBrewer, R package version 1.1-2.

149. Orme, B. K. (2014). Getting started with conjoint analysis: Strategies for product design and
pricing research (3rd ed.). Research Publishers.

150. Paling, W., Zwitch, R., & Joseph, J. (2018). RSiteCatalyst: R client for adobe analytics API.
https://cran.r-project.org/web/packages/RSiteCatalyst/index.html.

151. Paluszynska, A., & Biecek, P. (2017). randomForestExplainer: Explaining and visu-
alizing random forests in terms of variable importance. https://CRAN.R-project.org/
package=randomForestExplainer, R package version 0.9.

152. Pearmain,M.,Mihailowski,N., Prajapati,V., Shah,K.,&Remy,N. (2014).RGoogleAnalytics:
R wrapper for the Google analytics API. https://developers.google.com/analytics/solutions/
r-google-analytics.

153. Pinheiro, J. C.,&Bates,D.M. (2000).Mixed-effects models in S and S-PLUS. Berlin: Springer.
154. Polterock, J., Braun, H. W., & Claffy, K. (1995). SDSC-HTTP. San Diego Supercomputer

Center, http://ita.ee.lbl.gov/html/contrib/SDSC-HTTP.html.
155. R Core Team, (2018a). foreign: Read data stored by Minitab, S, SAS, SPSS, Stata, Systat,

Weka, dBase, ... http://CRAN.R-project.org/package=foreign, R package version 0.8-70.
156. RCore Team, (2018b).R: A language and environment for statistical computing. R foundation

for statistical computing, Vienna, Austria. http://www.R-project.org/.
157. R Core Team, (2018c). R data import/export (version 3.5.0). Technical report, R Core Team.

http://cran.r-project.org/doc/manuals/r-release/R-data.html.
158. R Core Team, (2018d). R language definition (version 3.5.0). Technical report, R Core Team.
159. Raftery, A. E. (1995). Bayesianmodel selection in social research. Sociological Methodology,

25, 111–164.
160. Raiche, G. (2010). An R package for parallel analysis and non graphical solutions to the

Cattell scree test. http://CRAN.R-project.org/package=nFactors, R package version 2.3.3.
161. Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of

the American Statistical Association, 66(336), 846–850.
162. Reps, J., Garibaldi, J. M., Aickelin, U., Soria, D., Gibson, J. E., & Hubbard, R. B. (2012).

Discovering sequential patterns in aUKgeneral practice database.Proceedings of 2012 IEEE-
EMBS International Conference on Biomedical and Health Informatics (pp. 960–963).

163. Revelle, W. (2018). psych: Procedures for psychological, psychometric, and personality
research. Evanston: Northwestern University. http://CRAN.R-project.org/package=psych, R
package version 1.8.4.

164. Ripley, B.,&Lapsley,M. (2017).RODBC: ODBC database access. R package version 1.3-15.
165. Ross, S. M. (2014). Introduction to probability models (11th ed.). Cambridge: Academic.
166. Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statis-

tical Software 48(2):1–36, http://www.jstatsoft.org/v48/i02/.
167. Rossi, P. (2017). bayesm: Bayesian inference for marketing/micro-econometrics. http://

CRAN.R-project.org/package=bayesm, R package version 3.1-0.1.
168. Rossi, P. E., Allenby, G. M., & McCulloch, R. E. (2005). Bayesian statistics and marketing.

New Jersey: Wiley.
169. Rossini, A., Heiberger, R., Hornik, K., Maechler, M., Sparapani, R., Eglen, S. et al. (2017).

ESS – Emacs speaks statistics. The ESS developers (17th ed.).
170. Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes factors

for ANOVA designs. Journal of Mathematical Psychology.
171. RStudio, (2018a). knitr language engines. Technical report. Boston: RStudio. http://

rmarkdown.rstudio.com/authoring_knitr_engines.html.
172. RStudio, (2018b). RStudio: Integrated development environment for R. Boston: RStudio.

http://www.rstudio.org/, version 1.1.447.
173. Sarkar, D. (2008). Lattice: Multivariate data visualization with R. Berlin: Springer.
174. Sawtooth Software, (2014). Adaptive choice-based conjoint technical paper. http://www.

sawtoothsoftware.com/downloadPDF.php?file=acbctech2014.pdf.

http://CRAN.R-project.org/package=RColorBrewer
http://CRAN.R-project.org/package=RColorBrewer
https://cran.r-project.org/web/packages/RSiteCatalyst/index.html
https://CRAN.R-project.org/package=randomForestExplainer
https://CRAN.R-project.org/package=randomForestExplainer
https://developers.google.com/analytics/solutions/r-google-analytics
https://developers.google.com/analytics/solutions/r-google-analytics
http://ita.ee.lbl.gov/html/contrib/SDSC-HTTP.html
http://CRAN.R-project.org/package=foreign
http://www.R-project.org/
http://cran.r-project.org/doc/manuals/r-release/R-data.html
http://CRAN.R-project.org/package=nFactors
http://CRAN.R-project.org/package=psych
http://www.jstatsoft.org/v48/i02/
http://CRAN.R-project.org/package=bayesm
http://CRAN.R-project.org/package=bayesm
http://rmarkdown.rstudio.com/authoring_knitr_engines.html
http://rmarkdown.rstudio.com/authoring_knitr_engines.html
http://www.rstudio.org/
http://www.sawtoothsoftware.com/downloadPDF.php?file=acbctech2014.pdf
http://www.sawtoothsoftware.com/downloadPDF.php?file=acbctech2014.pdf

476 References

175. Scholz, M. (2016). R package clickstream: Analyzing clickstream data with Markov chains.
Journal of Statistical Software, 74(4), 1–17. https://doi.org/10.18637/jss.v074.i04.

176. Schwarz, J., Chapman, C., Feit, E. M. (Forthcoming). Python for marketing research and
analytics. New York: Springer.

177. Scott, S. L. (2014). BoomMix. https://sites.google.com/site/stevethebayesian/
googlepageforstevenlscott/boom.

178. Scrucca, L., Fop, M., Murphy, T. B., & Raftery, A. E. (2017). mclust 5: Clustering, classi-
fication and density estimation using Gaussian finite mixture models. The R Journal, 8(1),
205–233. https://journal.r-project.org/archive/2017/RJ-2017-008/RJ-2017-008.pdf.

179. Sermas, R. (2012). ChoiceModelR: Choice modeling in R. http://CRAN.R-project.org/
package=ChoiceModelR, R package version 1.2.

180. Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis: Modeling change
and event occurrence. Oxford: Oxford University Press.

181. Sokal, R. R., & Rohlf, F. J. (1962). The comparison of dendrograms by objective methods.
Taxon, 11(2), 33–40.

182. South, A. (2011). rworldmap: A new R package for mapping global data. The R Journal, 3(1),
35–43. http://journal.r-project.org/archive/2011-1/RJournal_2011-1_South.pdf.

183. Stallman, R. M. (1981). EMACS: The extensible, customizable self-documenting display
editor. In Proceedings of the ACM Conference on Text Processing, Association for Computing
Machinery (Vol. 16).

184. Stokely, M., Rohani, F., & Tassone, E. (2011). Large-scale parallel statistical forecasting
computations in R. In JSM (Joint Statistical Meetings) Proceedings, Section on Physical and
Engineering Sciences, Alexandria.

185. Tan, P. N., Steinbach, M., Karpatne, A., & Kumar, V. (2018). Introduction to data mining
(2nd ed.). London: Pearson.

186. Teetor, P. (2011). R Cookbook. Massachusetts: O’Reilly Media.
187. Thompson, B. (2004).Exploratory and confirmatory factor analysis: Understanding concepts

and applications. Massachusetts: American Psychological Association.
188. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society Series B (Methodological), 267–288.
189. Toubia,O., Simester,D. I., Hauser, J. R.,&Dahan, E. (2003). Fast polyhedral adaptive conjoint

estimation. Marketing Science, 22(3), 273–303.
190. Train, K. E. (2009). Discrete choice methods with simulation. Cambridge: Cambridge Uni-

versity Press.
191. Venables, W., & Ripley, B. D. (2000). S programming. Berlin: Springer.
192. Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). New

York: Springer.
193. Warnes, G. R., Bolker, B., Bonebakker, L., Gentleman, R., Liaw, W. H. A., Lumley, T. et al.

(2016). gplots: Various R programming tools for plotting data. http://CRAN.R-project.org/
package=gplots, R package version 3.0.1.

194. Warnes, G. R., Bolker, B., Gorjanc, G., Grothendieck, G., Korosec, A., Lumley, T. et al.
(2017) gdata: Various R programming tools for data manipulation. http://CRAN.R-project.
org/package=gdata, R package version 2.18.0.

195. Wedel,M.,&Kamakura,W.A. (2000).Market segmentation: Conceptual and methodological
foundations (2nd edn.). International series in quantitative marketing. Dordrecht: Kluwer
Academic.

196. Wei, T. (2017). corrplot: Visualization of a correlation matrix. http://CRAN.R-project.org/
package=corrplot, R package version 0.84.

197. Wickham, H. (2014). Advanced R. United Kingdom: Chapman & Hall/CRC.
198. Wickham, H. (2016). ggplot2: Elegant graphics for data analysis (2nd ed.). Berlin: Springer.
199. Wickham, H., & Bryan, J. (2018). readxl: Read excel files. https://CRAN.R-project.org/

package=readxl, R package version 1.1.0.
200. Wickham, H., & Grolemund, G. (2016). R for data science: Import, tidy, transform, visualize,

and model data. Massachusetts: O’Reilly Media.

https://doi.org/10.18637/jss.v074.i04
https://sites.google.com/site/stevethebayesian/googlepageforstevenlscott/boom
https://sites.google.com/site/stevethebayesian/googlepageforstevenlscott/boom
https://journal.r-project.org/archive/2017/RJ-2017-008/RJ-2017-008.pdf
http://CRAN.R-project.org/package=ChoiceModelR
http://CRAN.R-project.org/package=ChoiceModelR
http://journal.r-project.org/archive/2011-1/RJournal_2011-1_South.pdf
http://CRAN.R-project.org/package=gplots
http://CRAN.R-project.org/package=gplots
http://CRAN.R-project.org/package=gdata
http://CRAN.R-project.org/package=gdata
http://CRAN.R-project.org/package=corrplot
http://CRAN.R-project.org/package=corrplot
https://CRAN.R-project.org/package=readxl
https://CRAN.R-project.org/package=readxl

References 477

201. Wickham, H., Francois, R., Henry, L., Müller, K., & RStudio. (2018). dplyr: A grammar of
data manipulation. http://CRAN.R-project.org/package=dplyr, R package version 0.7.6.

202. Williams, G. (2011). Data mining with rattle and R: The art of excavating data for knowledge
discovery. Berlin: Springer.

203. Williams, G. J. (2009). Rattle: A data mining GUI for R. The R Journal, 1(2), 45–55.
204. Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE

Transactions on Evolutionary Computation, 1(1), 67–82.
205. Wong, D. M. (2013). The wall street journal guide to information graphics: The dos and

don’ts of presenting data, facts, and figures. New York: WW Norton & Company.
206. Xie, Y. (2015). Dynamic documents with R and knitr (2nd ed.). United Kingdom: Chapman

& Hall/CRC.
207. Xie, Y. (2016).Bookdown: Authoring books and technical documents with R Markdown. Boca

Raton: CRC Press.
208. Zeileis, A., & Grothendieck, G. (2005). zoo: S3 infrastructure for regular and irregular time

series. Journal of Statistical Software, 14(6), 1–27. http://www.jstatsoft.org/v14/i06/.
209. Zuur, A. F., Ieno, E. N., & Meesters, E. H. (2009). A beginner’s guide to R. Berlin: Springer.
210. Zwitch, R., Feit, E. M., & Chapman, C. (Forthcoming) Julia for marketing research and

analytics. New York: Springer.

http://CRAN.R-project.org/package=dplyr
http://www.jstatsoft.org/v14/i06/

Index

Symbols
%*%, 21, 29, 376, 416
% ∧ %, 416
<-, 15, 37, 80, 233
., 31, 145, 181, 224
:, 25, 43, 178, 179, 181, 186
|, 127
!, 28
==, 37, 116, 119, 120, 311, 324, 330

see also all.equal
??, 24, 25, 271
?, 23, 25
[[, 30
[, 21, 43
$, 33, 43, 80

A
abline, 71, 86, 164
aggregate, 16, 71–75, 120–124, 128,

130, 131, 154, 196, 202, 214, 304
Agreement, assessing, 320, 324

see also confusion matrix
see Rand index, adjusted

all.equal, 37
Analysis of Variance (ANOVA), 17, 142–

153, 172, 177, 186, 436
see also anova

Anonymous function, 40, 41, 61, 272, 304,
452

see also funtion
anova, 17

see also analysis of variance
to compare group means, 141, 146, 153
to compare models, 143, 172

any, 418
aov, 17, 141–146, 153, 177, 182

apply, 40, 41, 58, 60–62, 452, 453
apriori, 344, 345, 347, 358, 360, 361
arules, 343, 347, 350, 353, 357–358, 360,

361
arulesSequences, 425, 462
as.numeric, 22, 23, 89, 232, 242, 283,

304, 310, 368, 373
as.POSIXct, 403

see also date and time formats
Assignment, 15

see <-
Association rule mining, 341–345, 351, 356,

361
Association rules, 341–345, 347, 351, 356–

358, 360–362, 425, 460, 462
see also association sequence mining

Association sequence mining, 425
Attributes, 204, 206, 232, 233, 241, 363, 365,

372, 377, 386, 393, 397, 400
attributes, 197, 233
axis, 65, 66, 68

B
Base rate, 320, 322, 342

see also agreement, assessing
Basic LinearAlgebra Subprograms (BLAS),

453
Basis variables, in clustering, 301
Bayesian Information Criterion (BIC), 144,

315, 316, 336
see also model comparison

Bayesian methods, 108, 135, 138, 147, 152,
153, 183, 184, 186, 223, 248, 249,
251, 253–257, 259, 261, 264, 324,
380, 385, 391, 395, 414, 429, 461

© Springer Nature Switzerland AG 2019
C. Chapman and E. M. Feit, R For Marketing Research and Analytics, Use R!,
https://doi.org/10.1007/978-3-030-14316-9

479

https://doi.org/10.1007/978-3-030-14316-9

480 Index

choice models, 154, 185, 238, 363, 365,
368, 373–375, 379, 380, 383, 385, 391,
393–397

Hierarchical linear models, 154, 247,
248, 255, 258, 259

linear models, 153, 154, 183, 185, 248,
429, 461

reasons to use, 147, 185, 254
see also credible interval
see also Markov chain Monte Carlo

Bean plot, 131
see also beanplot

beanplot, 68, 131, 460
Behavior sequence, 399
BIC, 315

see also Bayesian information criterion
Binomial distribution, 52, 81, 82, 136, 138,

139
binom.test, 137, 138, 153
Bioconductor, 426, 463
Bootstrap, 6, 289–292, 294, 297, 451
Box-and-whiskers plot, 129–131

see also boxplot
Box-Cox transform, 102, 103, 107, 225
boxplot, 66–68, 129–131, 312
Box plot, 62

see also Bean plot
by, 71–73, 75, 120, 124, 130, 304

C
c, 20, 25, 42
cfa, 18, 274, 277, 278
chisq.test, 133–136, 153
Chi-square test, 134, 279
Choice-based conjoint analysis, 254, 364,

365, 396, 467
see Conjoint analysis, choice-based

ChoiceModelR, 370, 385–388, 390, 391,
395, 396, 398

class, 231–233, 352–354, 360
Classes, of objects, 22, 232, 233
Classification, 131, 146, 261, 299, 301, 302,

317, 322–325, 327, 328, 330–334,
336–338, 340, 460, 462

clickstream, 401, 415, 416, 418–422,
424, 425, 461

Cloud computing, 453
clusplot, 312, 313, 317, 319, 333
cluster, 306, 311, 312, 337, 459, 462
Clustering, 16, 131, 196, 197, 301–303, 305,

308, 311–315, 317, 320, 322, 323,
326, 336–340, 399, 420, 421, 424,
425, 437, 457, 461, 462

see also hclust
see also kmeans
see also mclust
see also poLCA

coef, 102, 235, 245, 246, 385
coefplot, 171, 180, 186, 460
Cohen’s rules of thumb, 97, 106

see correlation coefficient r
Collinearity, 97, 188, 223, 226–228, 258,

260–262, 429
colMeans, 60, 204, 255
colnames, 226, 250, 252, 255, 256, 367
colors, 63, 88, 99
Command line, working with, 3, 15, 27, 432,

437
Comma-Separated Value (CSV) file, 34, 36,

37, 75, 449, 450, 465
see also read.csv
see also write.csv

compiler, 452, 459, 463
Confidence interval, 17, 38, 96, 97, 106,

137–141, 144, 145, 152, 153, 155,
165, 166, 171, 182––184, 186, 235,
236, 238, 251, 290, 292, 335, 380,
429, 460, 461

plotting, 348
see also Credible interval

Confidence, of association rule, 343, 347,
360

confint, 138, 139, 166
Confirmatory factor analysis, 212, 214, 219,

267, 268, 270, 271, 273, 275, 276,
278, 281, 283, 293, 295, 460, 461

Confusion matrix, 324, 325, 327, 330, 334
Conjoint analysis

choice-based, 254, 260, 363–365, 369,
393, 396, 467

metric, 248, 259, 260, 263, 365, 467
Control structures, 39, 40, 114

see also for
see also functions
see also if

Cook’s distance, 169
corr, 98
Correlation analysis, 17, 33, 62, 102, 108
Correlation coefficient r , 96, 161

Cohen’s rules of thumb, 97, 106
see also cor
see also corrplot
see also cor.test

corrplot, 98, 99, 106, 161, 196, 460
cor.test, 97
CRAN, 13, 25, 147, 387, 432, 453, 454, 459

Index 481

Credible interval, 138, 151–153, 184, 186,
251

CSV file, 450
see comma-separated value file

cumsum, 409, 411
cut, 212, 242, 272, 318, 357, 360

D
daisy, 216–218, 306, 311
Database access, 425
Data download, 9

see web site, this book’s
Data exploration, recommended procedure,

71, 79, 95
Data frame, 20, 30–33, 37, 40, 43, 50, 51,

53, 54, 56–58, 60–62, 67, 73, 74, 80,
84, 86, 93, 94, 117–121, 123, 152,
158, 160, 161, 164, 168, 174, 175,
181, 183, 195, 213, 226, 228, 230–
234, 242, 244, 245, 249, 307, 314,
323, 339, 353, 356–358, 361, 362,
368, 369, 375, 377, 384–387, 392,
397, 398, 402, 410, 412, 413, 447,
449, 452, 463

data.frame, 31, 33, 42, 86, 195, 232, 272,
447

Data sets, 6, 9–11, 15–17, 27, 29, 31–33, 38,
42, 49, 50, 59–61, 67, 75, 76, 79, 80,
84, 87, 94, 95, 101, 103, 107, 109,
111, 112, 118–120, 122, 131, 134,
135, 158, 174, 188, 189, 193, 194,
198, 199, 209, 212, 219, 223, 231,
233, 239, 242, 248, 252, 254, 261–
263, 270–273, 285, 287, 293, 295,
296, 302, 322, 327, 331, 333, 337–
341, 343–346, 351, 358–361, 386,
397, 399, 401, 405, 408, 426, 429,
430, 437, 441, 447–452, 457, 460–
463, 465, 466, 468

amusement park conjoint analysis, 248
amusement park satisfaction, 467
automobile conjoint analysis, 16
customer segmentation, 111, 119, 239,
302, 307, 313, 356, 360, 467

EPA, 400, 402, 407–410, 412, 413, 416,
417, 424–427

grocery store transactions, 397
product involvement survey, 467
roller coaster conjoint analysis, 240, 241,
243, 244, 246, 248, 250, 251, 253

satisfaction and repeat purchase survey,
467

see also data sets, for exercises

see also data simulation
see also web site, this book’s

Data sets, for exercises
E-commerce, 9, 77, 108, 131, 154
electronic device brands, 219, 468
EPA web log (in exercises), 426, 465
Handbag conjoint analysis, 263, 468
hotel satisfaction, 188, 340, 468
music subscription segments, 338, 468
online visits and sales, 261, 468
purchase intent, 207, 265, 281, 295–297,
468

retail item margins (exercise set), 361,
468

retail transactions (exercise set), 361, 468
sports car conjoint analysis, 397, 468

Data simulation, 9, 49, 158, 241, 254, 268,
271, 272, 279, 282

data.table, 447, 452, 463
Date and time formats, 403

see alsoas.POSIXct, lubridate,
strptime

Deleting objects, see rm
Density, 64, 65, 77, 139, 150, 256, 344, 347,

358, 406
density function, 65
plot, 62, 68, 95, 150, 153, 161, 273, 274
see also Bean plot, geom_density

density, 65, 66, 256
describe, 58–61, 75, 118, 460
Descriptive statistics, 49, 58, 154, 412, 436

see also mean, median, sd
Diagnostic plots, for regression, 168, 169
dim, 50, 60, 232, 233
Dimensional reduction, 208, 312, 313

see also factor analysis
see also principal component analysis

dimnames, 231, 233
Discrete choice models, 396

see Conjoint analysis, choice-based
dist, 215, 216, 218, 305, 308, 422
Distance metrics, 217, 308

see also daisy, dist
Downloading data, 4, 10

see also database access
see also read.csv
see web site, this book’s

dplyr, 447, 448, 450, 452, 463
Driver analysis, 175

see linear model

E
ecdf, 71

482 Index

see empirical cumulative distribution
Eclipse, 14, 431, 432, 434–436
Editor, for code, 19, 42, 66, 431
Emacs

Emacs Speaks Statistics, 431, 433, 434,
436

Empirical cumulative distribution, 70, 71
Environmental Protection Agency (EPA),

web server data, 400, 465, 468
Errors, what to do, 10
Excel, Microsoft, 34, 36, 37, 448, 463
exp, 82, 235, 258
Exploratory factor analysis, 193, 206–210,

212–214, 218–221, 273, 295
expm, 416, 460

F
factanal, 209, 210, 213, 218, 219, 273

see also Factor analysis
factor, 51, 60, 318, 401
Factor analysis

confirmatory, 212, 214, 219, 267, 268,
270, 271, 273, 275, 276, 278, 281, 283,
293, 295, 460, 461

exploratory, 193, 206, 207, 209, 210,
213, 218–221, 273, 295, 460

Factor scores, 208, 213, 214, 218, 221, 258,
275

fitMarkovChain, 419–421
see also clickstream

Fixed effect, 239–241, 244–246, 249, 251,
254, 255, 257, 258, 454

see also mixed effects model
see also random effect

fixef, 245, 246
for, 40, 61, 113–115, 452, 453
Formula syntax, 122, 129, 181, 274, 287
Frequency, 34, 54, 64, 65, 77, 108, 109, 123,

124, 130, 134, 155, 217, 324, 360,
362, 371, 405, 406, 413, 414

see table
see also density
see Histogram

function, 38, 39, 41, 61, 117, 215, 225,
272, 282, 304, 328, 353–355, 368,
375, 377, 384, 391, 417

Functional programming, 40, 43, 117, 452
Functions, 20, 24, 37, 38, 40, 43, 54, 56, 57,

61, 66, 71, 86, 93, 106, 115, 117, 123,
143, 155, 157, 164, 185, 232, 235,
261, 315, 360, 370, 371, 376, 387,
434, 436, 452, 466

see also anonymous function
see also functional programming

G
Generalized LinearModel (GLM), 187, 234,

235, 461
ggplot, 152, 406
glm, 187, 235–238, 258
Google style guide for R, 8

see style guide for R
grepl, grepl, 250, 403, 404, 418
gsub, 418, 420, 452

H
head, 15, 51–53, 75, 89, 151, 175, 194, 213,

245, 246, 346, 350–352, 359, 367,
369, 385, 386, 390, 403, 406–408,
418, 448

heatmap.2, 197, 211, 214, 331, 332, 419,
421, 460

Heat maps, 419––421, 460
see also heatmap.2, superheat

Help file, 11, 19, 23, 25, 66, 86, 275, 387
see also ?

Hidden Markov Models (HMMs), 425
Hierarchical Bayes models, 154, 183, 254

for conjoint analysis, see Conjoint anal-
ysis

see also Hierarchical linear model
see also Markov chain Monte Carlo

Hierarchical linear model, 154, 223, 241,
244, 245, 248, 255, 258, 259, 261,
263

Bayesian:see Hierarchical Bayes models
High performance computing, 453

see also parallel computing
hist, 62–65, 76, 87, 102, 125, 140, 161,

252
Histogram, 62–67, 75, 87, 88, 102, 107, 108,

125, 126, 140, 247, 253, 390, 406
HTML, web page type, 399, 404, 406, 414,

417, 418, 424, 440–444, 455, 456,
463

HTTP, 400
error codes, 405, 407
see also web log
server, 400

I
if, 40, 112, 113, 115–118, 130, 138

see also ifelse

Index 483

ifelse, 40, 81, 116, 311, 318, 411
Import data, 448, 463

see also comma-separated value file
see also database access
see also Excel, Microsoft

Indexing, 21, 25, 26, 29, 32, 44, 45, 83, 89,
114, 119, 121, 151, 247, 250, 409,
421, 447, 463

Individual-level models, 259
see Hierarchical linear model

Installation, 432
of packages: see packages
of R, 13

install.packages, 15, 53, 59, 73, 271,
371, 401, 459

IP address, 400, 402, 408, 427
is.na, 28, 105, 412

see also missing values

J
jitter, 104, 198, 199, 310

K
Kappa, 335

see also missing values

L
lapply, 30, 61, 115, 215, 226, 272, 282,

355, 417, 420
Latent class analysis, 317, 319–321, 337,

462
see also poLCA

Latent variables, 206, 218, 269
lattice, 62, 76, 90, 107, 125, 128–131,

459, 460
lavaan, 18, 19, 268, 271, 274, 277, 278,

280, 282, 284, 286, 287, 293–295,
338, 461, 463

Legend, for plot, 89, 90
Leverage, 169, 368
library, 16–18, 53, 59, 73, 95, 98, 102,

105, 121, 125, 128, 139, 144, 148,
152, 161, 171, 180, 183, 196, 197,
209–212, 216, 225, 227, 233, 236,
241, 244, 248, 271–275, 278, 287,
306, 312, 314, 316, 318, 321, 323,
324, 327, 328, 330, 331, 334, 335,
344, 348, 352, 358, 367, 371, 387,
406, 416, 420, 448, 450, 459

Lift, 53, 343, 345, 348–350, 358–360, 362

Linear model, 148, 153, 154, 157, 160, 161,
164, 165, 167, 168, 170, 173, 177,
181–183, 185, 187, 189, 224, 226,
229, 234, 239, 243, 248, 258–260,
262, 263, 271, 363, 365, 366, 368,
369, 372, 373, 386, 394, 395, 450,
460, 461, 463

see also formula syntax
Linear regression, 102, 122, 158, 229, 234,

267, 341, 436
see linear model

list, 29, 72, 120, 351, 352
lm, 164, 168, 171, 177, 182–187, 224, 229,

234, 238, 241, 244, 253, 368
lme4, 240, 244–247, 249, 255, 258, 261,

459
lmer, 244, 246, 257, 258
load, 34, 35
log, 28, 53, 69, 70, 90, 91, 93, 106, 161,

408
see also Logarithmic distribution

Logarithmic distribution, 69, 97
see also transforming data

Logistic regression, 187, 223, 230, 232, 234,
238, 258, 260, 263, 335

Logit model, 230, 258, 363, 368, 369, 375,
376, 378, 380, 381, 383, 389, 391,
395, 396, 398, 461

see also multinomial logit model
see logistic regression

Lognormal distribution, 81, 82
Longitudinal data analysis, 448

M
Machine learning, 6, 25, 261, 311, 325, 334,

335, 337–339, 437, 460, 462
see classification
see clustering

Market basket analysis, 350, 462
see association rule mining

Markov chain Monte Carlo (MCMC), 183,
261

for Bayesian models, 183
see also MCMChregress
see also MCMCpack
see also MCMCregress

Matrix
Mathematics operators, 21, 25, 55

Matrix operators
expm, 416, 460

mclust, 314, 315, 317, 320, 321, 324, 330,
336, 337, 462

484 Index

MCMChregress, 249, 250, 259, 261
MCMC methods, see Markov chain Monte

Carlo
MCMCpack, 147, 183, 186, , 248, 255, 259,

261 385, 461
MCMCregress, 183, 184, 186, 248–250
mean, 33, 57, 58, 60, 72, 86, 122, 123, 130,

175, 195, 304, 330
median, 41, 56–58, 304, 318
Missing values, 27, 28, 31, 42, 50, 51, 118,

412
see also NA, is.na

Mixed effectsmodel, 240, 258, 259, 261, 454
mlogit, 371–373, 375, 379–381, 384, 388,

392, 395, 397, 398, 461
Model-based clustering, 303, 313, 314, 320,

336, 425, 461
see also mclust

Model comparison, 143, 144
for ANOVA, 143, 147
for linear model, 460
for structural equation model, 268
see also anova
see also Bayesian information criterion

Multidimensional scaling, 193, 215–219,
221, 312, 313

Multilevel model, 240
see Hierarchical linear model

Multinomial logitmodel, 363, 368, 369, 376,
378–381, 383, 384, 395, 396, 398,
461

N
NA, 27, 28, 31, 39, 42, 51, 83–85, 98, 118,

130, 403, 410, 411
see also missing values

naiveBayes, 323, 336, 460, 462
Naive Bayes classification, 323, 324, 460,

462
names, 30, 60, 232, 346, 366
NaN, 28
Nested model, 143, 153, 240

see also Hierarchical linear model
nrow, 50, 52, 53, 57, 61, 117, 286, 323, 333,

367, 368, 384, 386, 391, 410, 412,
415, 455

Null hypothesis, 134–137, 140, 143, 147,
166, 184, 226

O
Objects, 15, 21, 26, 29, 31, 34, 36, 42, 54,

60, 71, 115, 118, 160, 165, 168, 172,

182, 185, 218, 232, 352, 354, 375,
434, 450–452, 461

removing from memory; see also rm
Odds ratio, 235, 236, 258, 263
Online data, 4, 10, 49, 107

see web site, this book’s
order, 196, 409, 420
Outliers, detecting, 58, 59, 67, 139, 168–170,

183, 343

P
Packages, 4, 7, 9, 11, 15, 18, 23–25, 34, 39,

62, 76, 87, 90, 95, 147, 153, 184, 219,
235, 268, 271, 275, 294, 301, 323,
337, 344, 370, 385, 396, 399, 424–
427, 431, 443, 447, 451, 453, 454,
459, 461, 463

see also install.packages
see also library

Page transition, see Mrkov chain, transition
matrix

Parallel computing, 453
par, for multiple graphics, 77, 91, 93, 144,

168
Partial least squares, 265, 267, 286, 293, 297,

461
see structural equation model

paste, 71, 90, 346, 401, 418
paste0, 401, 402, 418
Path diagram, 211–213, 221, 266
Pearson’s r , 33, 96, 105, 109, 189, 308

see correlation coefficient r
Performance, enhancing, 29
plogis, 230, 235
plot(), 54, 55, 71, 76, 85–89, 91, 92, 100,

103, 106, 149, 168, 170, 183, 185,
201, 215, 216, 306, 309, 348, 350,
358, 360, 420, 422

Plotting, 62, 65, 91, 92
clusters, see also clusplot
histogram, see Histogram
of diagnostic plots, 168, 169
of heat maps, see Heat Maps
of linear model, 168
multiple plots, see par
see also plot

points, 86, 256
Poisson distribution, 53
poLCA, 303, 317–319, 336, 339, 462
POSIX, 403

see date and time formats
Posterior distribution, sampling, 183, 387

Index 485

see also Bayesian methods
see also Markov chain Monte Carlo

prcomp, 199, 201, 203, 217
predict, 174, 182, 185, 244, 253, 324,

326, 328, 334, 368, 375, 376, 378,
384, 385, 387, 392, 398, 421, 422,
424

Prediction, 157, 166, 167, 171, 172, 174,
187, 262, 320, 322, 325, 328, 335–
337, 371, 374–380, 382, 384, 385,
391–395, 398, 416

Principal component analysis, 193, 198, 201,
202, 216–219, 312

Program flow, 7, 116
see control structures

prop.table, 127, 128, 155, 324, 328
Pseudorandom numbers, 52, 117, 148, 450

see also random number generation
P-value, 97, 134–136, 138, 140, 165, 166,

171, 173, 176–178, 184, 185, 226,
275, 283, 373

see also Statistical significance

Q
qlogis, 230
qqnorm, 69, 70
qqplot, 70
quantile, 56, 57, 71, 151, 352
Quantile-quantile plot, 69

R
r , see Correlation coefficient r
Rand index, adjusted, 321, 335
Random effect, 240, 241, 244–246, 249,

254–257, 381
see also fixed effect
see also mixed effects model

randomForest, 327, 328, 330–332, 336,
462

Random forest, 326
see also randomForest
variable importance in, 330, 340

Random number generation, 52, 81, 118,
272, 450, 451

see also Pseudorandom numbers
see also rbinom
see also rlnorm
see also rnorm
see also rpois
see also sample

ranef, 245, 246, 255, 256
Ratings-based conjoint analysis, 223

see Conjoint analysis, metric
rbind, 242, 305
rbinom, 52, 81, 118
read.csv, 10, 15, 36, 37, 43, 49, 60, 76,

80, 112, 158, 188, 194, 220, 224, 230,
248, 262, 282, 295, 296, 302, 338,
356, 361, 365, 397, 448, 465

see also comma-separated value file
readRDS, 400
Regression, 25, 51, 79, 102, 150, 187, 190,

213, 223, 227, 234, 242, 260, 371,
437, 450, 451, 460

see linear model
Regular expressions (regex), 424

see also grep, grepl, gsub,
String handling

rep, 26, 42, 50, 413
repeat, 284, 290
Repeated measures, 239, 454
return, 39
Residuals

in linear model, 166, 168, 171, 183
in structural equation model, 212, 275,
283

Plotting, 168
rle, 409, 412, 413, 424
rlnorm, 81, 159
rm, 42
rnorm, 80–82, 118, 119, 160, 242, 351
rpois, 53, 118
RSiteCatalyst, 425, 463
RStudio, 11, 13, 14, 19, 24, 42, 44, 62, 348,

349, 431–436, 440–445, 453, 455–
457, 463

RStudio Cloud, 453

S
sample, 52, 81, 159, 272, 323
save, 34–36
save.image, 35, 36
Sawtooth Software, 260, 369, 370, 394, 396
scale, 175, 183, 185, 195, 203, 225, 406
sd, 38, 57, 61, 80, 118, 166, 175, 195, 273
Segmentation, 299

see clustering
SEM, 463

see structural equation model
semPLS, 268, 286–288, 290, 294, 461
seq, 26, 42, 57, 65, 114, 115
seq_along, 115, 118, 130
Sessions, of behavior sequences, extracting,

409

486 Index

set.seed, 52, 327
setwd, 34, 35
Significance tests, 135

see statistical significance
Similarity measures, see distance metrics
Simulating data, 49

see data simulation
Skew, in data, 59, 61, 69, 139, 225, 273
some, 53, 60, 121, 347, 404, 460
sort, 350, 351, 359, 405–407

see also order
Speed, of code, 243

see performance, enhancing
split, 417
Standardizing data, 175, 176, 180, 195, 226
Statistical significance, 97, 106, 135, 137,

138, 238, 429
Bayesian, see credible interval
see also confidence intervals
see also null hypothesis

step, 145, 146, 153, 182
Stepwise model selection, 153, 182
str, 22, 29, 32, 50, 54, 60, 75, 84, 106, 194,

232, 318, 347, 402
String handling, 400

see grep, grepl, gsub,
paste, paste0, Regular expres-
sions, strptime, substr

strptime, 402, 424
Structural equation model, 18, 212, 265–

268, 270–272, 276, 279–282, 293–
297, 338, 429, 460, 461

covariance based, 267, 268, 278, 283,
285, 286, 289, 293, 294

model comparison, 268, 271, 278, 285
partial least squares, 267, 268, 286, 287,
289, 291–294, 297

path diagrams, 211, 212
see also lavaan
see also semPLS

Structured Query Language (SQL), 449
see database access

Style guide for R, 8
subset, 345
substr, 402
sum, 73
summary, 9, 21, 30, 33, 44, 58, 60, 61, 75,

80, 84, 86, 130, 150, 160, 165–167,
175, 184, 185, 194, 226, 230, 242,
245, 274, 344, 346, 347, 370, 381,
387, 411, 413

superheat, 419–421, 424, 460
support, 344, 345, 347, 358

switch, 40
Synthetic data, 49

see data simulation

T
table, 54, 55, 123, 124, 127, 130, 134, 135,

231, 232, 234, 320, 324, 325, 328,
330, 403, 405, 407, 408

tail, 51, 53, 60, 346, 410
tempfile, 418
Temporary file, see tempfile
Time formats, see date and time formats
Time series, 356, 399, 454, 460, 461
Time zone, for dates and times, 403

see as.POSIXct
Transactions, 81

see association rule mining
Transforming data, 437

common transformations in marketing,
101

see also Box-Cox transform
Transition matrix, 415

see Markov chain
t.test, 139, 140, 153

V
Variable importance, 462

see random forest, variable importance
Variable names, 36, 38, 85, 99, 112, 114, 212,

281
Variable selection, 145, 146, 182, 270, 466

see also model comparison
see also random forest, variable impor-
tance

see stepwise model selection
Variance inflation factor, 227, 228, 258

see also vif
see also collinearity

Vector, 9, 15, 20–22, 25–27, 29–32, 34, 36,
38–44, 50–54, 56–58, 65, 71, 77, 80,
81, 83, 85, 86, 88–90, 105, 106, 114–
117, 121, 151, 174, 198, 226, 231–
233, 251, 272, 303, 305, 309, 311,
351, 353, 355, 361, 366–368, 373,
377, 381, 387, 409, 413, 415, 418,
452

vif, 227
see also variance inflation factor

Violin plot, 460
see bean plot

Index 487

W
Web log, 399, 400, 405, 425, 426, 462

see also HTTP
Web site

CRAN, 13, 25, 147, 387, 432, 453, 454,
459

R Project, 3
Stack Overflow, 25, 452
this book’s, 4, 6, 10, 15, 346, 356, 465

while, 39

Working directory, 35
see setwd

write.csv, 36, 43, 450
see also comma-separated value file

writeLines, 418

Z
Z score, 220

see Standardizing data

	Preface
	What’s New in the Second Edition
	Acknowledgements

	Contents
	Part I Basics of R
	1 Welcome to R
	1.1 What is R?
	1.2 Why R?
	1.3 Why Not R?
	1.4 When R?
	1.4.1 R Versus Python, Julia, and Others

	1.5 Which R? Base or Tidy?
	1.6 Using This Book
	1.6.1 About the Text
	1.6.2 About the Data
	1.6.3 Online Material
	1.6.4 When Things Go Wrong

	1.7 Key Points

	2 An Overview of the R Language
	2.1 Getting Started
	2.1.1 Initial Steps
	2.1.2 Starting R

	2.2 A Quick Tour of R's Capabilities
	2.3 Basics of Working with R Commands
	2.4 Basic Objects
	2.4.1 Vectors
	2.4.2 Help! A Brief Detour
	2.4.3 More on Vectors and Indexing
	2.4.4 aaRgh! A Digression for New Programmers
	2.4.5 Missing and Interesting Values
	2.4.6 Using R for Mathematical Computation
	2.4.7 Lists

	2.5 Data Frames
	2.6 Loading and Saving Data
	2.6.1 Image Files
	2.6.2 CSV Files

	2.7 Writing Your Own Functions*
	2.7.1 Language Structures*
	2.7.2 Anonymous Functions*

	2.8 Clean Up!
	2.9 Key Points
	2.10 Learning More*
	2.11 Exercises
	2.11.1 Preliminary Note on Exercises
	2.11.2 Exercises

	Part II Fundamentals of Data Analysis
	3 Describing Data
	3.1 Simulating Data
	3.1.1 Store Data: Setting the Structure
	3.1.2 Store Data: Simulating Data Points

	3.2 Functions to Summarize a Variable
	3.2.1 Discrete Variables
	3.2.2 Continuous Variables

	3.3 Summarizing Data Frames
	3.3.1 summary()
	3.3.2 describe()
	3.3.3 Recommended Approach to Inspecting Data
	3.3.4 apply()*

	3.4 Single Variable Visualization
	3.4.1 Histograms
	3.4.2 Boxplots
	3.4.3 QQ Plot to Check Normality*
	3.4.4 Cumulative Distribution*
	3.4.5 Language Brief: by() and aggregate()
	3.4.6 Maps

	3.5 Key Points
	3.6 Data Sources
	3.7 Learning More*
	3.8 Exercises
	3.8.1 E-Commerce Data for Exercises
	3.8.2 Exercises

	4 Relationships Between Continuous Variables
	4.1 Retailer Data
	4.1.1 Simulating the Data
	4.1.2 Simulating Online and In-store Sales Data
	4.1.3 Simulating Satisfaction Survey Responses
	4.1.4 Simulating Non-response Data

	4.2 Exploring Associations Between Variables with Scatterplots
	4.2.1 Creating a Basic Scatterplot with plot()
	4.2.2 Color-Coding Points on a Scatterplot
	4.2.3 Adding a Legend to a Plot
	4.2.4 Plotting on a Log Scale

	4.3 Combining Plots in a Single Graphics Object
	4.4 Scatterplot Matrices
	4.4.1 pairs()
	4.4.2 scatterplotMatrix()

	4.5 Correlation Coefficients
	4.5.1 Correlation Tests
	4.5.2 Correlation Matrices
	4.5.3 Transforming Variables Before Computing Correlations
	4.5.4 Typical Marketing Data Transformations
	4.5.5 Box-Cox Transformations*

	4.6 Exploring Associations in Survey Responses
	4.6.1 jitter()
	4.6.2 polychoric()*

	4.7 Key Points
	4.8 Data Sources
	4.9 Learning More*
	4.10 Exercises

	5 Comparing Groups: Tables and Visualizations
	5.1 Simulating Consumer Segment Data
	5.1.1 Segment Data Definition
	5.1.2 Language Brief: for() Loops
	5.1.3 Language Brief: if() Blocks
	5.1.4 Final Segment Data Generation

	5.2 Finding Descriptives by Group
	5.2.1 Language Brief: Basic Formula Syntax
	5.2.2 Descriptives for Two-Way Groups
	5.2.3 Visualization by Group: Frequencies and Proportions
	5.2.4 Visualization by Group: Continuous Data

	5.3 Key Points
	5.4 Data Sources
	5.5 Learning More*
	5.6 Exercises

	6 Comparing Groups: Statistical Tests
	6.1 Data for Comparing Groups
	6.2 Testing Group Frequencies: chisq.test()
	6.3 Testing Observed Proportions: binom.test()
	6.3.1 About Confidence Intervals
	6.3.2 More About binom.test() and Binomial Distributions

	6.4 Testing Group Means: t.test()
	6.5 Testing Multiple Group Means: Analysis of Variance (ANOVA)
	6.5.1 Model Comparison in ANOVA*
	6.5.2 Visualizing Group Confidence Intervals
	6.5.3 Variable Selection in ANOVA: Stepwise Modeling*

	6.6 Bayesian ANOVA: Getting Started*
	6.6.1 Why Bayes?
	6.6.2 Basics of Bayesian ANOVA*
	6.6.3 Inspecting the Posterior Draws*
	6.6.4 Plotting the Bayesian Credible Intervals*

	6.7 Key Points
	6.8 Learning More*
	6.9 Exercises

	7 Identifying Drivers of Outcomes: Linear Models
	7.1 Amusement Park Data
	7.1.1 Simulating the Amusement Park Data

	7.2 Fitting Linear Models with lm()
	7.2.1 Preliminary Data Inspection
	7.2.2 Recap: Bivariate Association
	7.2.3 Linear Model with a Single Predictor
	7.2.4 lm Objects
	7.2.5 Checking Model Fit

	7.3 Fitting Linear Models with Multiple Predictors
	7.3.1 Comparing Models
	7.3.2 Using a Model to Make Predictions
	7.3.3 Standardizing the Predictors

	7.4 Using Factors as Predictors
	7.5 Interaction Terms
	7.5.1 Language Brief: Advanced Formula Syntax*
	7.5.2 Caution! Overfitting
	7.5.3 Recommended Procedure for Linear Model Fitting
	7.5.4 Bayesian Linear Models with MCMCregress()*

	7.6 Key Points
	7.7 Data Sources
	7.8 Learning More*
	7.9 Exercises
	7.9.1 Simulated Hotel Satisfaction and Account Data
	7.9.2 Exercises

	Part III Advanced Marketing Applications
	8 Reducing Data Complexity
	8.1 Consumer Brand Rating Data
	8.1.1 Rescaling the Data
	8.1.2 Aggregate Mean Ratings by Brand

	8.2 Principal Component Analysis and Perceptual Maps
	8.2.1 PCA Example
	8.2.2 Visualizing PCA
	8.2.3 PCA for Brand Ratings
	8.2.4 Perceptual Map of the Brands
	8.2.5 Cautions with Perceptual Maps

	8.3 Exploratory Factor Analysis
	8.3.1 Basic EFA Concepts
	8.3.2 Finding an EFA Solution
	8.3.3 EFA Rotations
	8.3.4 Using Factor Scores for Brands

	8.4 Multidimensional Scaling
	8.4.1 Non-metric MDS

	8.5 Key Points
	8.6 Data Sources
	8.7 Learning More*
	8.8 Exercises
	8.8.1 PRST Brand Data
	8.8.2 Exercises

	9 Additional Linear Modeling Topics
	9.1 Handling Highly Correlated Variables
	9.1.1 An Initial Linear Model of Online Spend
	9.1.2 Remediating Collinearity

	9.2 Linear Models for Binary Outcomes: Logistic Regression
	9.2.1 Basics of the Logistic Regression Model
	9.2.2 Data for Logistic Regression of Season Passes
	9.2.3 Sales Table Data
	9.2.4 Language Brief: Classes and Attributes of Objects*
	9.2.5 Finalizing the Data
	9.2.6 Fitting a Logistic Regression Model
	9.2.7 Reconsidering the Model
	9.2.8 Additional Discussion

	9.3 Hierarchical Models
	9.3.1 Some HLM Concepts
	9.3.2 Ratings-Based Conjoint Analysis for the Amusement Park
	9.3.3 Simulating Ratings-Based Conjoint Data
	9.3.4 An Initial Linear Model
	9.3.5 Initial Hierarchical Linear Model with lme4
	9.3.6 Complete Hierarchical Linear Model
	9.3.7 Conclusion for Classical HLM

	9.4 Bayesian Hierarchical Linear Models*
	9.4.1 Initial Linear Model with MCMCregress()*
	9.4.2 Hierarchical Linear Model with MCMChregress()*
	9.4.3 Inspecting Distribution of Preference*

	9.5 A Quick Comparison of the Effects*
	9.6 Key Points
	9.7 Data Sources
	9.8 Learning More*
	9.9 Exercises
	9.9.1 Online Visits and Sales Data for Exercises
	9.9.2 Exercises for Collinearity and Logistic Regression
	9.9.3 Handbag Conjoint Analysis Data for Exercises
	9.9.4 Exercises for Metric Conjoint and Hierarchical Linear Models

	10 Confirmatory Factor Analysis and Structural Equation Modeling
	10.1 The Motivation for Structural Models
	10.1.1 Structural Models in This Chapter

	10.2 Scale Assessment: Confirmatory Factor Analysis (CFA)
	10.2.1 Simulating PIES CFA Data
	10.2.2 Estimating the PIES CFA Model
	10.2.3 Assessing the PIES CFA Model

	10.3 General Models: Structural Equation Models
	10.3.1 The Repeat Purchase Model in R
	10.3.2 Assessing the Repeat Purchase Model

	10.4 The Partial Least Squares (PLS) Alternative
	10.4.1 PLS-SEM for Repeat Purchase
	10.4.2 Visualizing the Fitted PLS Model*
	10.4.3 Assessing the PLS-SEM Model
	10.4.4 PLS-SEM with the Larger Sample

	10.5 Key Points
	10.6 Learning More*
	10.7 Exercises
	10.7.1 Brand Data for Confirmatory Factor Analysis Exercises
	10.7.2 Exercises for Confirmatory Factor Analysis
	10.7.3 Purchase Intention Data for Structural Equation Model Exercises
	10.7.4 Exercises for Structural Equation Models and PLS SEM

	11 Segmentation: Clustering and Classification
	11.1 Segmentation Philosophy
	11.1.1 The Difficulty of Segmentation
	11.1.2 Segmentation as Clustering and Classification

	11.2 Segmentation Data
	11.3 Clustering
	11.3.1 The Steps of Clustering
	11.3.2 Hierarchical Clustering: hclust() Basics
	11.3.3 Hierarchical Clustering Continued: Groups from hclust()
	11.3.4 Mean-Based Clustering: kmeans()
	11.3.5 Model-Based Clustering: Mclust()
	11.3.6 Comparing Models with BIC()
	11.3.7 Latent Class Analysis: poLCA()
	11.3.8 Comparing Cluster Solutions
	11.3.9 Recap of Clustering

	11.4 Classification
	11.4.1 Naive Bayes Classification: naiveBayes()
	11.4.2 Random Forest Classification: randomForest()
	11.4.3 Random Forest Variable Importance

	11.5 Prediction: Identifying Potential Customers*
	11.6 Key Points
	11.7 Learning More*
	11.8 Exercises
	11.8.1 Music Subscription Data for Exercises
	11.8.2 Exercises

	12 Association Rules for Market Basket Analysis
	12.1 The Basics of Association Rules
	12.2 Retail Transaction Data: Market Baskets
	12.2.1 Example Data: Groceries
	12.2.2 Supermarket Data

	12.3 Finding and Visualizing Association Rules
	12.3.1 Finding and Plotting Subsets of Rules
	12.3.2 Using Profit Margin Data with Transactions: An Initial Start
	12.3.3 Language Brief: A Function for Margin Using an Object's class*

	12.4 Rules in Non-transactional Data: Exploring Segments Again
	12.4.1 Language Brief: Slicing Continuous Data with cut()
	12.4.2 Exploring Segment Associations

	12.5 Key Points
	12.6 Learning More*
	12.7 Exercises
	12.7.1 Retail Transactions Data for Exercises
	12.7.2 Exercises

	13 Choice Modeling
	13.1 Choice-Based Conjoint Analysis Surveys
	13.2 Simulating Choice Data*
	13.3 Fitting a Choice Model
	13.3.1 Inspecting Choice Data
	13.3.2 Fitting Choice Models with mlogit()
	13.3.3 Reporting Choice Model Findings
	13.3.4 Share Predictions for Identical Alternatives
	13.3.5 Planning the Sample Size for a Conjoint Study

	13.4 Adding Consumer Heterogeneity to Choice Models
	13.4.1 Estimating Mixed Logit Models with mlogit()
	13.4.2 Share Prediction for Heterogeneous Choice Models

	13.5 Hierarchical Bayes Choice Models
	13.5.1 Estimating Hierarchical Bayes Choice Models with ChoiceModelR
	13.5.2 Share Prediction for Hierarchical Bayes Choice Models

	13.6 Design of Choice-Based Conjoint Surveys*
	13.7 Key Points
	13.8 Data Sources
	13.9 Learning More*
	13.10 Excercises

	14 Behavior Sequences
	14.1 Web Log Data
	14.1.1 EPA Web Data
	14.1.2 Processing the Raw Data
	14.1.3 Cleaning the Data
	14.1.4 Handling Dates and Times
	14.1.5 Requests and Page Types
	14.1.6 Additional HTTP Data

	14.2 Basic Event Statistics
	14.2.1 Events
	14.2.2 Events by Time
	14.2.3 Errors
	14.2.4 Active Users

	14.3 Identifying Sequences (Sessions)
	14.3.1 Extracting Sessions
	14.3.2 Session Statistics

	14.4 Markov Chains for Behavior Transitions
	14.4.1 Key Concepts and Demonstration
	14.4.2 Formatting the EPA Data for clickstream Analysis
	14.4.3 Estimating the Markov Chain
	14.4.4 Visualizing the MC Results
	14.4.5 Higher Order Chains and Prediction

	14.5 Discussion and Questions
	14.6 Key Points
	14.7 Learning More*
	14.8 Exercises

	 Conclusion
	 R Versions and Related Software
	A.1 R Base
	A.2 RStudio
	A.3 ESS: Emacs Speaks Statistics
	A.4 Eclipse + StatET
	A.5 Microsoft R
	A.6 Other Options
	A.6.1 Text Editors
	A.6.2 R Commander
	A.6.3 Rattle
	A.6.4 Deducer

	 An Introduction to Reproducible Results with R Notebooks
	B.1 R Notebooks
	B.1.1 A Basic R Notebook
	B.1.2 Saving and Sharing
	B.1.3 Brief Formatting Options

	B.2 Final Note on Reproducibility

	 Scaling Up
	C.1 Handling Data
	C.1.1 Data Wrangling
	C.1.2 Microsoft Excel: readxl
	C.1.3 SAS, SPSS, and Other Statistics Packages: foreign
	C.1.4 SQL: RSQLite, sqldf and RODBC

	C.2 Handling Large Data Sets
	C.3 Speeding Up Computation
	C.3.1 Efficient Coding and Data Storage
	C.3.2 Enhancing the R Engine

	C.4 Time Series Analysis, Repeated Measures, and Longitudinal Analysis
	C.5 Automated and Interactive Reporting

	 Packages Used
	D.1 Core and Classical Statistics
	D.2 Graphics
	D.3 Bayesian Methods
	D.4 Advanced Statistics
	D.5 Machine Learning
	D.6 Data Handling
	D.7 Other Packages

	 Online Materials and Data Files
	E.1 Data File Structure
	E.2 Data File URL Cross-Reference

	 References
	Index

