
123

Graziela Simone Tonin
Bernardo Estácio
Alfredo Goldman
Eduardo Guerra (Eds.)

9th Brazilian Workshop, WBMA 2018
Campinas, Brazil, October 4, 2018
Revised Selected Papers

Agile Methods

Communications in Computer and Information Science 981

Communications
in Computer and Information Science 981

Commenced Publication in 2007
Founding and Former Series Editors:
Phoebe Chen, Alfredo Cuzzocrea, Xiaoyong Du, Orhun Kara, Ting Liu,
Krishna M. Sivalingam, Dominik Ślęzak, and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Takashi Washio
Osaka University, Osaka, Japan

Junsong Yuan
University at Buffalo, The State University of New York, Buffalo, USA

Lizhu Zhou
Tsinghua University, Beijing, China

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Graziela Simone Tonin • Bernardo Estácio
Alfredo Goldman • Eduardo Guerra (Eds.)

Agile Methods
9th Brazilian Workshop, WBMA 2018
Campinas, Brazil, October 4, 2018
Revised Selected Papers

123

Editors
Graziela Simone Tonin
Federal University of Fronteira Sul
Chapecó, Santa Catarina, Brazil

Bernardo Estácio
Farfetch
Porto, Portugal

Alfredo Goldman
University of Sao Paulo
Sao Paulo, São Paulo, Brazil

Eduardo Guerra
National Institute for Space Research
São José dos Campos, São Paulo, Brazil

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-030-14309-1 ISBN 978-3-030-14310-7 (eBook)
https://doi.org/10.1007/978-3-030-14310-7

Library of Congress Control Number: 2019932787

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-14310-7

Preface

The 9th Brazilian Workshop on Agile Methods (WBMA 2018) was held on October 4,
2018, in Campinas, São Paulo, Brazil. The workshop is the research track in the Agile
Brazil Conference. WBMA is an academic event that focuses on agile software
development. This year’s edition continued the history of success. Our past editions
received a significant number of paper submissions with a number of attendees
(students, researchers, and practitioners) from different countries. We repeated the
success this year and influenced, even more, the academic integration in an industry
context. We believe this integration creates ideas, opportunities, and innovations for all
involved. We received 18 submissions. All the accepted papers were peer-reviewed by
three referees and evaluated on the basis of technical quality, relevance, significance,
and clarity. The Organizing Committee decided to accept six full papers and one short
paper (40% acceptance rate). Accepted papers in this edition present empirical results
and literature reviews on agile requirements validation in Brazilian software devel-
opment companies, a survey on Brazilian software processes about whether to be agile
or not, an evaluation of an agile maturity model, strategies to increase customer value
in agile software development, a discussion toward an agile development environment,
and a report on Scrum in a strongly hierarchical organization. The Organizing
Committee awarded one prize in this edition, the best paper award. This CCIS volume
comprises peer-reviewed versions of six full papers and one short paper. The organizers
thank the Program Committee members for their contributions, and would especially
like to thank all those who submitted papers, even though only a fraction could be
accepted. We also thank Springer for producing these high-quality proceedings of
WBMA 2018.

November 2018 Bernardo Estácio
Graziela Simone Tonin

Organization

WBMA 2018 was organized by the Agile Alliance, supported by FAPESP - process
number 2018/13056-8 (Foundation for Research Support of the State of São Paulo)
and Agile Brazil in cooperation with Springer.

Executive Committee

Conference Chairs

Graziela Simone Tonin Federal University of Fronteira Sul, Brazil
Bernardo Estácio Farfetch, Portugal

Local Chairs

Alfredo Goldman University of São Paulo, Brazil
Eduardo Guerra National Institute for Space Research, Brazil

Program Committee

Conference Chairs

Graziela Simone Tonin Federal University of Fronteira Sul, Brazil
Bernardo Estácio Farfetch, Portugal

Local Chairs

Alfredo Goldman University of São Paulo, Brazil
Eduardo Guerra National Institute for Space Research, Brazil

Program Committee

Adolfo Neto Technological University of Paraná, Brazil
Alexandre Vasconcelos Federal University of Pernambuco, Brazil
Anh Nguyen Duc University College of Southeast, Norway
Carolyn Seaman University of Maryland Baltimore County, USA
Célio Santana Federal University of Pernambuco, Brazil
Fábio Levy Siqueira University of São Paulo, Brazil
Gustavo Pinto Federal University of Paraiba, Brazil
Hermano Moura Federal University of Pernambuco, Brazil
Hugo Sereno Ferreira University of Porto, Portugal
Jutta Eckstein jeckstein.com, Germany
Liliane Fonseca Federal University of Pernambuco, Brazil
Graziela Simone Tonin Federal University of Fronteira Sul, Brazil

Rafael Prikladnicki Pontifical Catholic University of Rio Grande do Sul,
Brazil

Rafaela M. Fontana Federal University of Paraná, Brazil
Raquel Aparecida Pegoraro Federal University of Fronteira Sul, Brazil
Rodrigo Santos Federal University of the State of Rio de Janeiro, Brazil
Tiago Silva Da Silva Pontifical Catholic University of Rio Grande do Sul,

Brazil
Viviane Santos Federal University of Paraíba, Brazil
Wylliams Santos University of Pernambuco, Brazil
Xiaofeng Wang Free University of Bozen-Bolzano, Italy

Sponsoring Institutions

FAPESP (Foundation for Research Support of the State of São Paulo) and Agile Brazil.

VIII Organization

Keynotes

Cultivating Your Personal Design Heuristics

Rebecca Wirfs-Brock

Wirfs-Brock Associate
rebecca@wirfs-brock.com

The ouroboros is an image of a serpent shaped into a circle, clinging & to or devouring
its own tail in an endless cycle of self-destruction, self-creation, and self-renewal.
Becoming a good software designer sometimes feels like that. How can we get better?
By becoming more aware of our design heuristics and continuing to cultivate and refine
them. Heuristics aid in design, guide our use of other heuristics, and even determine our
attitude and behavior. For example, as agile software designers we value frequent
feedback and decomposing larger design problems into smaller, more manageable
chunks that we design and test as we go. We each have our own set of heuristics that
we have acquired through reading, practice, and experience. This talk introduces simple
ways to record design heuristics and how to share them with others. You can grow as a
designer by examining and reflecting on the decisions you make and their impacts,
becoming more aware of seemingly minor decisions that were more important than you
thought, and putting your own spin on the advice of experts. While we may read
others’ design advice—be it patterns or stack overflow replies, the heuristics we’ve
personally discovered on our own design journey may be even more important.

Sustainable Development with Agile:
“Keeping Your Architecture Clean”

Joseph W. Yoder

The Refactory Inc.
joe@joeyoder.com

Being Agile, with its attention to extensive testing, frequent integration, and focusing
on important product features, has proven invaluable to many software teams. When
building complex systems, it can be all too easy to primarily focus on features and
overlook software qualities, specifically those related to the architecture and dealing
with technical debt. Some believe that by simply following Agile practices—starting as
fast as possible, keeping code clean, and having lots of tests—a good clean architecture
will magically emerge. While an architecture will emerge, if there is not enough
attention paid to it and the code, technical debt and design problems will creep in until
it becomes muddy, making it hard to deliver new features quickly and reliably. It is
essential to have a sustainable architecture that can evolve through the project lifecycle.
Sustainable architecture requires ongoing attention, especially when there are evolving
priorities, a lot of technical risk, and many dependencies. This session will discuss
elements of sustainable development specifically for dealing with technical debt. The
discussion will include: choices of which problems need to be solved (upstream, how
to define stories, priorities, etc); - how this development is done (downstream); - how to
observe the necessary bugs and improvements in the team’s backlog.

Contents

Full Papers

Agile Requirements Validation in Brazilian Software Development
Companies: A Survey . 3

Rodrigo Cursino, João Farias, Maria Lancastre, and Wylliams Santos

Are We Agile or Not? A Survey on Brazilian Software Processes 19
Luiz Otávio Aléssio Cesa, Rafaela Mantovani Fontana, Sheila Reinehr,
and Andreia Malucelli

A Tool to Measure TDD Compliance: A Case Study with Professionals 34
Altieres de Matos, Reginaldo Ré, and Marco Aurélio Graciotto Silva

Evaluation of an Agile Maturity Model: Empirical Evidences
for Agility Assessments . 49

Adriana Corrêa Rodrigues and Rafaela Mantovani Fontana

Strategies to Increase Customer Value in Agile Software Development 63
Fernando Sambinelli and Marcos A. F. Borges

Towards an Agile Development Environment . 80
Marcelo Lessa Ribeiro and Itana Maria de Souza Gimenes

Short Paper

Scrum in a Strongly Hierarchical Organization . 97
Fernando Rodrigues de Sá, Everton Luiz de Resende Lucas,
and Adelmo Dias de Oliveira

Author Index . 103

Full Papers

Agile Requirements Validation
in Brazilian Software Development

Companies: A Survey

Rodrigo Cursino1,2(B), João Farias2(B), Maria Lancastre1(B),
and Wylliams Santos1(B)

1 University of Pernambuco, Recife, Pernambuco, Brazil
{rbc,mlpm}@ecomp.poli.br, wbs@upe.br

2 CESAR, Recife, Pernambuco, Brazil
jgfarias42@gmail.com

Abstract. Background: In Agile Software Development context,
Requirements Engineering (RE) is an important process that happens
continuously during the iterations of a product. To be able to deliver
value, the teams should perform requirements validation to assure that
they meet user’s expectations, and also foster the collaboration between
stakeholders and developers. Despite this understanding, there are still
few studies that provide empirical data that make it possible to gen-
eralize the aspects, practices, and difficulties found by the teams that
perform validation of agile requirements. Goal: The goal of this work is
to understand how the requirements validation activities are being put
in practice by companies of the Brazilian software industry that adopt
agile methodologies. Method: We carried out an online survey, involving
117 participants. Our instrument focused on identifying the most used
requirements artefacts, and what are the main difficulties in adopting
these practices. Results: The results of our study reported that (i) user
stories and prototypes are the most used artefacts, (ii) teams usually
validate requirements by running systematic refinement meetings, and
(iii) the development team and Product Owner are the most popular
roles that attend to these sessions. Conclusion: The analysis reveals
that agile teams are running requirements validation sessions as part of
their development processes but they still face general RE problems, like
the lack of stakeholders engagement or stakeholders that have different
business visions of the same product. These results also contribute with
information that allows future studies focused on the improvement of
agile requirements validation.

Keywords: Requirements engineering · Requirements validation ·
Agile software development · Survey research

1 Introduction

When the Manifesto for Agile Software Development (ASD) was created, the
authors looked for new ways to develop software, considering a new context
c© Springer Nature Switzerland AG 2019
G. S. Tonin et al. (Eds.): WBMA 2018, CCIS 981, pp. 3–18, 2019.
https://doi.org/10.1007/978-3-030-14310-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14310-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-14310-7_1

4 R. Cursino et al.

where the use of systems was increasingly growing and the requirements were
more complex [1,6].

ASD methodologies focus on valuing people’s work, understanding how to
increase and improving the collaboration of the customers, stakeholders and
development teams; and on delivering software with quality and value [1,19].
Other key aspect is the ability to quickly adapt to changes in requirements [10].

In this context, in order to succeed in adopting these practices, it is fun-
damental that teams carry out the activities and techniques of Requirements
Engineering (RE). According to Pohl [15], RE is the most important phase of
Software Engineering and it aims to define requirements that meet the expec-
tations of stakeholders, considering constraints and different points of view. To
make the definition of software requirements effective, it comprises several sub-
processes, including elicitation, prioritization, and validation.

In ASD, these subprocesses happen continuously throughout the product
development rather than in an initial phase [17,18]. The idea is that they are
done in small cycles with the aim of maturing the requirements that will be
implemented by the development team [12,16].

The requirements validation subprocess have a great importance in the ASD
because it aims to ensure that the documented requirements are in accordance
with the desires and needs of the stakeholders, as well as contribute to the
early detection of errors related to the ambiguity and incompleteness of the
requirements [15]. Validation activities also create opportunities for collaboration
among stakeholders.

Despite understanding the importance of this subprocess, there are still few
studies that provide empirical data that make it possible to generalize the
aspects, practices, and difficulties found by the teams that perform validation
of agile requirements [8,17]. Besides that, Wagner et al. state that the general
knowledge on the current state of practice in RE is limited [21].

Consequently, the purpose of this work is to understand how the require-
ments validation activities are being put in practice by teams that adopt agile
methodologies by carrying out an online survey with companies of the Brazilian
software industry.

The reminder of this paper proceeds as follows. Section 2 presents related
work. Section 3 details the methodology applied for conducting the study.
Section 4 presents the results. Conclusions and future work are presented in
Sect. 5.

2 Related Work

Wagner et al. [21] conducted a survey to define the state of the practice and
contemporary problems in Agile RE. They build an empirical basis supported
by the responses of representatives from 92 different organisation. In general,
they found that “Agile RE is in several aspects not so different from RE in other
development processes.” Besides that, they observed that the main problems in
Agile RE are about unclear requirements and communication flaws.

Agile Requirements Validation in Brazilian Software Companies 5

Furthermore, Schön et al. [18] conducted a systematic literature reviews
(SLR) about Agile RE. They aimed to gather the state of the art of the lit-
erature related to RE, by looking at stakeholder and user involvement in agile
methodologies. They identified 27 relevant studies and concluded that continu-
ous communication and collaboration are the most frequent used approach to
involve stakeholder in Agile RE. Besides that, they also observed that a variety
of different artefacts are applied to Agile RE. The most popular ones are the
user stories and prototypes.

Inayat et al. [11] also performed a SLR, focused on understanding of RE
practices in agile methods. They identified 21 papers that revels 17 practices of
Agile RE. Their findings also suggest that Agile RE as a research context needs
additional attention and more empirical studies to better understand the impact
of agile requirements engineering practices.

Ramesh et al. [17] conducted a qualitative study into Agile RE. They anal-
ysed data from 16 US software development organisations and found that inten-
sive communication between the developers and customers is the most important
RE practice.

After analysing all these related works, it is possible to observe that there
is a lack of empirical studies focused on understanding the state of practice
of agile requirements validation subprocess in Brazilian software development
companies. Based on that, the research team decided to explore this opportunity.

3 Survey Design

Survey is a method of research aiming to gather data from a large population
of interest. Despite being extensively used in software engineering, survey-based
research faces several challenges [14]. In this sense, this research is supported on
the guideline for conducting surveys in software engineering proposed by Lin̊aker
et al. [13].

The goal of this online survey is to better understand how the requirements
validation activities are being put in practice by teams that adopt agile method-
ologies. It focus in companies that are from the Brazilian software industry.

3.1 Research Questions

To fulfil this overall objective, we formulated the research questions, as follows:

– RQ01. What are the techniques and practices used by them teams to perform
agile requirements validation?

– RQ02. Who are the stakeholders involved in the requirements validation activ-
ities?

– RQ03. Which are the problems faced by the teams when performing require-
ments validation activities?

– RQ04. What are the most popular artefacts applied to Agile RE?

6 R. Cursino et al.

3.2 Target Audience

Since this study is related to requirements validation in the context of agile
software development, the target audience considers professionals from compa-
nies that apply agile methodologies as part of their development processes. Also,
these practitioners are members of the development team, business team or play
a management role. The roles that the audience can play in their teams are listed
in Table 1. In addition, the target audience is part of companies or organisations
that are in the Brazilian software industry.

Table 1. Teams and roles considered as target audience.

Team Roles

Development - Developer

- Tester/QA

- Designer

- Scrum Master

- DevOps

Business - Business Analyst

- Product Owner

Management - Project Manager

- Agile Coach

- Team Leader

3.3 Survey Instrument

A web-based questionnaire with a total of 23 questions was implemented to col-
lect data. These questions were divided in the following groups: (i) demographics,
(ii) agile RE artefacts, (iii) techniques and practices of requirements validation
and (iv) problems faced when validating requirements. Table 2 summarises the
designed questions.

The first group aims at capturing data about the respondents and their com-
panies/organisations. With this data we are able to understand, for example, the
experience with agile development and the roles played by the participants. Also,
the size of the company and its maturity on the adoption of agile methodologies.

The questions of group two were designed to collect data about the arte-
facts used by the agile teams to document the requirements; and which of these
artefacts are focus of validation.

The third one gathers data about the techniques and practices used to vali-
date the requirements. Besides that, they aim at understanding when the vali-
dation sessions happens; and how the incidents found during these sessions are

Agile Requirements Validation in Brazilian Software Companies 7

reported. Also, they focus at finding out the stakeholders who usually participate
of requirements validation sessions.

Finally, the last group of questions focus on collecting data about the prob-
lems faced on running requirements validation sessions and the most common
errors found during this activity.

Table 2. A summary view of the questionnaire.

Group Id Question Type

Demographics Q01 What is your name? Open

Q02 What is your email address? Open

Q03 What are the roles do you play in your current job? Closed (MC)

Q04 How long have you be working with agile methodologies? Closed (SC)

Q05 What is the size of your company? Closed (SC)

Q06 How do you see the adoption of agile methodologies in

your company?

Closed (SC)

...

Q10 In which Brazilian state is your company located? Closed (SC)

Agile RE

artefacts

Q11 What are the requirements artefacts used by your team? Closed (MC)

Q12 What are the requirements artefacts that are focus of

validation?

Closed (MC)

Requirements

validation

practices

Q13 What are the requirements validation techniques used in

your project?

Closed (MC)

Q14 When does the requirements validation sessions take

place?

Closed (MC)

...

Q17 Who are the stakeholders who usually participate of

requirements validation sessions?

Closed (MC)

Q18 How important is the participation of the following

stakeholders in the requirements validation process?

Likert

...

Q20 Could you briefly describe how the activities or

requirements validation sessions are performed in your

project?

Open

...

Problems on

requirements

validation

Q22 Choose at least 4 types of errors found in the validation

of requirements and classify them according to their

criticality

Likert

Q23 Select 4 reasons that most commonly lead to problems in

requirements validation activities

Closed (MC)

The questionnaire contains a mix of open-ended and closed-ended questions.
For the closed ones, the answers can be mutually exclusive single choice answers
(SC) or multiple choice answers (MC). We also turn available for most of the
closed MC questions the other option. This way, the respondents can enter their
specific answers. In Q18 we used the Likert Level of Importance scale [20]: 1 -
Not at all important; 2 - Low importance; 3 - Very important; 4 - Extremely

8 R. Cursino et al.

important. We also added the option 5, so that the respondents can select it
if the role is not present in their projects. Regarding the open questions, the
respondents answer them in their own words without any required standard.

Q01 and Q02 aim to gather the participants name and email. These questions
are optional and the captured data was used only when researchers needed to
clarify any of the answers. For the analysis of the questions Q11 and Q12, we
present a list of RE artefacts practitioners are meant to typically use in practice.
This list emerged from the results of important SLRs with regards on RE prac-
tices in agile methods [11,18]. The same approach was used to question Q23.
The options were selected from the results of SLRs [11,18] and other studies
[12,22].

At the survey’s landing page, we describe in details the goals of this research.
Also, the estimated time to have the survey complete was communicated; as well
as the researchers email to be used in case of any questions. Also, the survey
was paginated, so that the respondents can answer few questions per page and
have the sense of progress.

Pretest. Before running the survey, we carried out a pilot study using the
questionnaire with a small number of participants from the target audience.
This allowed us to identify some adjustments in the writing of some questions,
rewrite some answers that were not so clear to understand and also balance the
number of questions per page. Also, it was possible to measure the average time
spent to respond the survey, which was 11 min.

3.4 Data Collection

This study used the accidental sampling design [13]. This means that the cri-
terion for selecting the samples is the convenience. In this case, the researchers
recruited subjects from their professional connections.

Each researcher prepared an invitation list including contacts from different
companies and projects that use agile methodologies. Another criteria used to
make these lists was to select people from different regions, so that we can have
representatives from all around Brazil. Also, the survey was shared with agile
methodologies user groups by using their email lists and social networks.

The data collection phase was from 2017-11-08 to 2018-04-11. Also, Survey-
Monkey1 was the tool used to build the survey and collect the data.

4 Results

In the following subsections we summarise the results of the online survey, based
on the research questions. In addition, we present in Subsect. 4.1 the results
related to the study population, characterising the respondents and their organ-
isations.

1 https://www.surveymonkey.com/mp/aboutus/.

https://www.surveymonkey.com/mp/aboutus/

Agile Requirements Validation in Brazilian Software Companies 9

4.1 Demographic Data

In total, 117 participants have completed the survey. They are from organisa-
tions from all the 5 regions of Brazil. We can find in Fig. 1(a) that most of
the respondents are from companies located at the northeast (46,79%). With
25,69%, the southeast is the second region with more participants. Together, the
other 3 regions were responsible for 27,52% of the collected data.

Fig. 1. Distribution of respondents per Brazilian regions and their experience with
agile methodologies.

In Fig. 1(b) we can observe that 44.33% of the respondents have more than 5
years of experience with agile methodologies. Also, 34.56% have from 2 to 5 years.
Based on that, it is possible to characterise that this survey have experienced
respondents. Only 20.35% of the participants have until 2 years of practices in
agile.

In question Q03, the participants were asked to select all the roles they play
in their projects. Figure 2 illustrates that Developer, Project Manager (PM),
Scrum Master and Tester were the most selected roles. It is expected given
that those (except PM) are the main roles of Scrum methodology [19]. Besides
these roles, there was a good number of answers related to Business Analyst
and Requirements Analyst. This is an important result since these roles are
central in the requirements validation process. They usually are the authors of
the requirements.

Regarding the size of the organisations, we classified them as small, medium
and large. For this grouping we used the number of employees. Companies with
up to 49 employees were considered small, with 50 to 99 were considered medium
and with more than 100 were considered large. Based on Fig. 3(a) we can observe
that 67.89% of them are large companies, 25.69% are small and only 6.42% are
medium organisations.

In Fig. 3(b) we can observe the respondents perception regarding the agile
methodologies adoption by their companies (per company size). We can see
that there is an agile adoption-level balance regardless of company size. The

10 R. Cursino et al.

Fig. 2. Roles played by the respondents.

highlights are about the higher full adoption level in small companies (39%) when
comparing to the medium (29%) and small (24%) sizes. This can be possible since
it is easier to make small groups of people adherent to those methodologies. Also,
we can notice that for medium (43%) and large (35%) companies the adoption
is in large scale, but there is still plenty of room for improvement.

Fig. 3. Size of the companies and their level of agile adoption.

Figure 4(a) illustrates the distribution of the companies by sector. The major-
ity of the respondents are from private companies (70.64%). The other 29.36%
are from public organisations, most of them from universities and government
companies. Those institutions can be classified in different types. Based on
Fig. 4(b), we can observe that the majority of them are based on projects
(38.53%) or product (33.94%). Companies are also software houses (11.01%)
or base their operation in consulting (5.50%). The other data (11.01%) is about
mainly to participants that works on educational institutes.

Agile Requirements Validation in Brazilian Software Companies 11

Fig. 4. Distribution of companies per sector and their types.

4.2 RQ01 - Techniques and Practices of Agile Requirement
Validation

The respondents were asked to select the practices and techniques they use to
operate the agile requirements validation. Based on Fig. 5, we can observe that
the majority runs requirements refinement sessions in a systematic way. Also,
an important highlight is that informal reviews are still a common practice used
to validate requirements. In these cases, the authors run the reviews with one
or many stakeholders.

The practitioners also carry out requirements workshop at the beginning of
their projects; and the teams create check-lists considering quality criteria to
use them to validate agile requirements. The less selected options were related
to the use of INVEST [22] best practices to support the user story writing and
validation.

Fig. 5. Practices and techniques for agile requirements validation.

Bugs or improvements are some of the possible results of a requirements
validation session. According to Fig. 6, the teams deal with these change request
in a sort of different ways. They usually recorded the results as part of the
meeting notes. So that, the author can work later to adjust the requirements.

12 R. Cursino et al.

There are teams that fix the requirements by adding new acceptance criteria to
the user stories. Other practice found in the results is about adjustment that are
performed during the validation session. Also, there are few teams that do not
record the results.

Fig. 6. The ways the teams record the requirements validation session results.

After the adjustments are done, the teams need to follow-up the updated
requirements. Figure 7 reveals that most of the teams use the iteration planning
meeting to look into the new versions of the documents. If the changes are minor,
there is no need to set up a session to review them. Another practice is review
the changes at the beginning of a recurrent refinement session. Also, depending
on the impact of the updates, the team can set a new validation session. Also,
there are teams that do not perform follow-up sessions.

Fig. 7. How to the teams follow-up the updated requirements.

Those practices and sessions used to validate the requirements take place
in different moments of the development cycles. The collected data reveals the
following moments:

– During the development of the functionality. The validation happens when
the development team needs information or have questions about the require-
ments. So that, they collaborate with the business team;

– As part of the iteration planning meetings. These meetings are already a
ceremony present on the agile methodologies. The team and the stakeholders
interacts to have the requirements refined and ready to be developed;

– During the current development iteration, however with a focus on refining
requirements from the product backlog. This allow the authors to validate
the requirements, look for improvements and understand any technical limi-
tation in advance. This way, the requirements are stabilise before the planning
meetings.

Agile Requirements Validation in Brazilian Software Companies 13

4.3 RQ02 - Stakeholders Involved in Agile Requirement Validation

This study also captured data about which are the stakeholders involved in those
requirements validation sessions. We can observe on Fig. 8 that developers and
Product Owners are the top 2 voted. Also, client, business analyst, Scrum Master
and testers had more than 30 votes each. These are the stakeholders that perform
requirements validation. In case the clients are not available, the Product Owner
or business analyst are responsible to share their vision and priorities.

These results make sense and fit with other studies [2,9,18] that say the ASD
projects usually are formed by two teams: development (developers, testers and
Scrum Masters) and business (business analysts, client and Product Owner).
They also state that the collaboration between these teams are fundamental to
make sure all the different visions of the product are considered [3,5] and the
requirements can be refined in a way to get them mature enough to be part of
a development iteration.

Fig. 8. Stakeholders involved in agile requirements validation.

4.4 RQ03 - Problems Faced When Performing Requirements
Validation Activities

Question Q22 inquired the respondents to inform which are the common types
of errors found during validation sessions of agile requirements and to classify
them by criticality (the available options were Low, Medium, and High). Table 3
displays the types of error in descending order of criticality (the weighted average
(WA) was calculated by assigning the value 1 to Low, 2 to Medium and value 3
to High).

Based on the set of pre-defined most common problems on agile requirements
validation listed in Subsect. 3.3, the respondents were asked to rank the 4 most
critical ones they face in practice. Figure 9 display the compiled ranking.

The top 2 items are related to stakeholders. The first is about the lack of
client or their representatives availability. This result is also a problem present
in other studies that aims to understand common problems in RE [7,8]. The
second one refers to stakeholders with different views of the product. It can lead
to discussions that should have been conducted prior to requirements validation.

14 R. Cursino et al.

Table 3. Most critical errors found during requirements validation sessions.

Errors Low Med High Total WA

The requirement gives scope for
multiple interpretations

6 17 47 70 2.59

The requirement is very large,
making it more complex

6 21 42 69 2.52

The user story and complementary
artefacts (prototype, for example)
differ on the requirement

7 19 37 63 2.48

The requirement is conflicting with
another already existing

5 28 32 65 2.42

The requirements do not describe all
flows

10 16 34 60 2.4

The prototype does not easily
illustrate the desired interaction

6 31 25 62 2.31

The user story description does not
contain the benefit and goal to be
achieved

17 17 28 62 2.18

The requirement is not easy to
estimate

14 30 20 64 2.09

A single user story contains more
than one functionality

15 30 18 63 2.05

The prototype does not illustrate all
the flows and messages on the screen

20 29 13 62 1.89

Spelling mistakes 41 20 3 64 1.41

Also, a common problem selected by the respondents is regarding the moment
the validation session takes place. It usually happens when the requirements are
already part of a development iteration. Consequently, this context can lead to
rework. Fernández et al. [7] also list it as a general problem in RE.

There are other problems that had basically the same amount of votes: the
lack of qualification to run requirements validation sessions; the results of these
sessions are not easily available to the team; the requirements still have primary
errors that could be fixed prior to the validation meetings; or the sessions’ results
are not used to enhance the requirements.

The less voted problems were: the validation activity is not part of the devel-
opment process, so that no time is allocated for it; and the teams consider
requirements validation a repetitive and tedious activity. Based on these two
results, we can infer that the agile teams are engaged on validation sessions and
that this activity is present in their set of practices.

Agile Requirements Validation in Brazilian Software Companies 15

Fig. 9. Most common problems faced on agile requirements validation.

4.5 RQ04 - Most Popular Artefacts of Agile RE

In Fig. 10 we can see the word cloud with all the agile RE artefacts and the
number of times they were cited by the respondents. User stories, prototypes
and acceptance criteria are the most popular ones. This result is in accordance
with other studies that also list these artefacts as the most used in ASD [17,18].

Acceptance test is also one of the most cited. Ramesh et al. [17] state that
some organisations treat these tests as part of the requirements specification and
also use them as another means for software validation. Besides that, mind map
and personas had some votes.

Fig. 10. Most popular artefacts used in agile RE.

Despite all these agile RE artefacts are used by the teams, only part of
them are focus of validation. Figure 11 reveals that prototypes, user stories and
acceptance criteria are the most present on the sessions.

16 R. Cursino et al.

Fig. 11. Requirements artefacts target of validation.

5 Conclusions

In this article, we contributed to enhance the understanding about how Brazilian
practitioners carry out requirements validation activities in their agile projects.
Our analysis uses data provided by 117 participants from organisations from
all the five regions of Brazil. The investigation was conducted to identify the
practices used by them teams when performing agile requirements validation:
(i) understand who are the stakeholders that usually attend to these sessions;
(ii) analyse the problems faced by the teams when performing requirements
validation; and (iii) list what are the most popular artefacts applied to Agile
RE.

The survey revealed that agile teams carry out requirement validation dur-
ing systematic refinement meetings or by running informal reviews between the
requirement author and a group of stakeholders. Also, the results of these ses-
sions are reported as part of the meeting notes and the needed adjustments are
performed by the author in a different moment. New versions of the requirement
are usually validated as part of the iterations planning meetings.

The analysis also stated that development team and Product Owner are the
most popular roles that attend to these sessions. Also, there is a presence of
clients and business analyst. This results are in accordance with other empirical
studies that also assert theses roles.

Although the agile teams are running requirements validation sessions as
part of their development processes, this survey revealed that they still face
general RE problems, like the lack of stakeholders engagement or changes in
requirements due to late discussions about different points of view of stakeholders
[4,7,8]. Another important problem is about the moment the validation sessions
happens. If it is carried out too late on the process, the requirements will not be
stable enough to be developed and can lead to rework and wast problems. These
results reinforce the importance of stakeholders and customer collaboration.

This survey’s results also confirm what other studies [17,18] already stated:
user stories, prototypes and acceptance criteria are the most popular require-
ments artefacts used on agile development context.

Agile Requirements Validation in Brazilian Software Companies 17

Although our study has contribute to a better understanding on agile require-
ment validation, we are aware that it has limitations. Our results are based on
a reasonable but still limited number of respondents. Also, they are not equally
distributed in all Brazilian regions. They are condensed mainly in companies
from the northeast and southeast. Also, the majority of respondents are from
private companies (70.64%). We can not say reliably how the picture would be if
we have more representatives from public organisations. In addition, we cannot
state how generalisable the results are, since we still are not able to estimate the
representativeness of our population.

As future work, we believe this survey can be replicated to reach a broad
and representative population; so that it can support the generalisation of the
results. It should consider balance the number of participants from all the regions
of Brazil. Also, invite more people from public organisations to contribute with
the survey. Finally, future studies can be conducted with focus on analysing
further why the problems faced when validating agile requirements happens and
understand ways to mitigate them.

References

1. Beck, K., et al.: Manifesto for agile software development (2001)
2. Cao, L., Ramesh, B.: Agile requirements engineering practices: an empirical study.

IEEE softw. 25(1) (2008)
3. Cohn, M.: User Stories Applied: For Agile Software Development. Addison-Wesley

Professional, Boston (2004)
4. Cursino, R., Ferreira, D., Lencastre, M., Fagundes, R., Pimentel, J.: Gamification

in requirements engineering: a systematic review. In: 11th International Conference
on the Quality of Information and Communications Technology (QUATIC). IEEE
(2018)

5. da Silva, K.M.B., dos Santos, S.C.: Critical factors in agile software projects accord-
ing to people, process and technology perspective. In: 2015 6th Brazilian Workshop
on Agile Methods (WBMA), pp. 48–54. IEEE (2015)

6. Dyb̊a, T., Dingsøyr, T.: Empirical studies of agile software development: a system-
atic review. Inf. Softw. Technol. 50(9), 833–859 (2008)

7. Fernández, D.M.: Supporting requirements engineering research that industry
needs: the naming the pain in requirements engineering initiative. arXiv preprint
arXiv:1710.04630 (2017)

8. Fernández, D.M., et al.: Naming the pain in requirements engineering. Empirical
softw. eng. 22(5), 2298–2338 (2017)

9. Heikkilä, V.T., Damian, D., Lassenius, C., Paasivaara,M.: A mapping study on
requirements engineering in agile software development. In: 2015 41st Euromicro
Conference on Software Engineering and Advanced Applications (SEAA), pp. 199–
207. IEEE (2015)

10. Hoda, R., Salleh, N., Grundy, J., Tee, H.M.: Systematic literature reviews in agile
software development: a tertiary study. Inf. Softw. Technol. 85, 60–70 (2017)

11. Inayat, I., Salim, S.S., Marczak, S., Daneva, M., Shamshirband, S.: A systematic
literature review on agile requirements engineering practices and challenges. Com-
put. Hum. Behav. 51, 915–929 (2015)

http://arxiv.org/abs/1710.04630

18 R. Cursino et al.

12. Leffingwell, D.: Agile Software Requirements: Lean Requirements Practices for
tEams, Programs, and the Enterprise. Addison-Wesley Professional, Boston (2010)

13. Lin̊aker, J., Sulaman, S.M., de Mello, R.M., Höst, M., Runeson, P.: Guidelines for
conducting surveys in software engineering. Technical report (2015)

14. Molleri, J. S., Petersen, K., Mendes, E.: Survey guidelines in software engineering.
In: Proceedings of the 10th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement - ESEM 2016, pp. 1–6 (2016)

15. Pohl, K.: Requirements Engineering Fundamentals: A Study Guide for the Certified
Professional for Requirements Engineering Exam-foundation Level-IREB Compli-
ant. Rocky Nook Inc, San Rafael (2016)

16. Pressman, R.S.: Software Engineering: A Practitioner’s Approach, 10th edn.
McGraw-Hill Education, New York (2016)

17. Ramesh, B., Cao, L., Baskerville, R.: Agile requirements engineering practices: an
empirical study. Inf. Syst. J. 20(5), 449–480 (2010)

18. Schön, E.-M., Thomaschewski, J., Escalona, M.J.: Agile requirements engineering:
a systematic literature review. Comput. Stand. Interfaces 49, 79–91 (2017)

19. Schwaber, K., Beedle, M.: Agile Software Development with Scrum, vol. 1. Prentice
Hall, Upper Saddle River (2002)

20. Vagias W.M.: Likert-type scale response anchors. Clemson (SC): Clemson Inter-
national Institute for Tourism and Research Development, Department of Parks,
Recreation and Tourism Management (2006)

21. Wagner, S., Fernández, D.M., Felderer, M., Kalinowski, M.: Requirements engineer-
ing practice and problems in agile projects: results from an international survey.
arXiv preprint arXiv:1703.08360 (2017)

22. Wake, B.: INVEST in Good Stories: The Series (2017). (acessado em 25 de Maio
de 2018)

http://arxiv.org/abs/1703.08360

Are We Agile or Not? A Survey
on Brazilian Software Processes

Luiz Otávio Aléssio Cesa1, Rafaela Mantovani Fontana1(B), Sheila Reinehr2,
and Andreia Malucelli2

1 Federal University of Paraná,
R. Dr. Alcides Vieira Arcoverde, 1225, Curitiba, PR, Brazil

{luiz.otavio,rafaela.fontana}@ufpr.br
2 Pontifical Catholic University of Paraná,

R. Imaculada Conceição, 1155, Curitiba, PR, Brazil
sheila.reinehr@pucpr.br, malu@ppgia.pucpr.br

Abstract. How many software practitioners use agile methods in
Brazil? We currently have little knowledge about Brazilian developers
profile and about the software processes applied. One of the issues that
remain unanswered is whether these practitioners are using agile software
processes or not. With the aim to start filling this gap, we conducted a
study with the objective to identify whether Brazilian software practi-
tioners are agile. Our research approach was the survey as the method for
collecting data. We applied a clustering algorithm to analyze data and
characterize the software process, and text mining techniques to identify
respondents perceptions of their software processes. Our results show a
preliminary profile for Brazilian software processes and practitioners pos-
itive and negative perceptions about these processes. We contribute with
a method to characterize agile, traditional and hybrid software processes.

Keywords: Agile software development · Practitioners survey ·
Software process

1 Introduction

How many software practitioners use agile methods – or “are agile” – in Brazil?
Actually, we know very little about it. Softex (Association for Promoting the
Excellence of Brazilian Software) performed the last government research on
software and information technology (IT) services more than five years ago.
They characterized the industry (number of people, revenues, among others),
and mapped competencies, human resources and tendencies [25]. However, this
census did not include information that is specific to software development com-
panies, e.g., how people develop software or, more specifically, whether agile
methods have spread in Brazil.

This research project is supported by CNPQ (National Council for Scientific and Tech-
nological Development) – Process Number 408976/2016-0.

c© Springer Nature Switzerland AG 2019
G. S. Tonin et al. (Eds.): WBMA 2018, CCIS 981, pp. 19–33, 2019.
https://doi.org/10.1007/978-3-030-14310-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14310-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-14310-7_2

20 L. O. A. Cesa et al.

Recent world-wide surveys have been describing developers’ profiles and prac-
tices [26,27]. These researches are important because they describe current soft-
ware development situation providing basis for decision makers in companies and
for new studies in academy. Nevertheless, only about 2% of these results rep-
resent Brazilian situation. In academic literature, recent surveys we found with
Brazilian practitioners have presented specific aspects of software development
[1,14,15] but no information about software process was provided.

To start filling this gap, this study presents preliminary findings of a survey
that aims at mapping whether we are agile – or not – in Brazil. The research
question that drives our study is “what is the percentage of Brazilian software
developers that use agile methods?”. When conducting this research, we kept in
mind two issues that differ from other surveys. The first was conceiving a short
questionnaire that could be answered in two minutes, to increase the probability
of getting bigger sample sizes [2]. The second was creating a way to identify
whether practitioners’ processes are agile without asking them specifically which
software process models they are using. We have recent evidence that, in practice,
software processes are a mix of methods [7,9], thus our research captures the
essence of software process avoiding bias due to respondent’s judgment.

Facing the challenges of creating a survey to be quickly answered and not ask-
ing respondent which his/her software process is, we ended up with findings not
only related to the data collected, but we also provide a methodological contri-
bution on software process mapping. Next section describes related work, Sect. 3
describes the challenge on defining a few characteristics to identify whether the
software process is agile or not. Section 4 describes our research approach. Next,
we present our results and, finally, discussions and conclusions.

2 Related Work

Although big companies around the world commonly perform practitioners’ sur-
veys about software development in general [26,27], recent academic surveys
have been focusing on specific aspects of the practices or methods applied in
software development.

The work of [10], for example, investigated software testing practices in
Canada. They described the results obtained from 246 responses from local
practitioners. The contributions of the authors were describing latest trends in
software testing industry and pointing out strengths and weaknesses.

Other examples of industry surveys are described by [11] and [12]. The work
by [11] investigated agile requirement engineering practices and their importance.
Their results were based on 136 practitioners’ responses mainly from US, Poland,
UK, India and Germany. The study by [12] described practitioners’ knowledge
and perceptions of technical debt effects. They surveyed 184 practitioners from
Brazil, Finland and New Zealand. These studies aimed at describing specific
aspects (such as testing, requirements, technical debt) of software engineering in
different countries, providing an international view of a few elements.

Differently, the work presented by [7] is a world-wide survey, but they investi-
gated software practices in general to characterize hybrid software development.

Are We Agile or Not? A Survey on Brazilian Software Processes 21

They identified used approaches, how they are combined and how contextual
factors influence the combination of different approaches for development.

Regional surveys investigating software practices in general are scarcer. We
found the work by [13], which described software engineering practices in Turkey.
They got 202 responses for a questionnaire with 46 questions, mainly based on
Software Engineering Body of Knowledge (SWEBOK). Their findings included
a general description of software development sectors, measurement methods,
efforts employed in each phase of development cycle, software process models
used, among others.

In Brazil, specific studies are also found, such as the one by [14], which
complies a survey that described agile software development adoption, the one
by [1], which presented critical success factors for software projects and the one
by [15], with results from a survey about the use of Unified Modeling Language
(UML) and model-driven approaches in embedded software development.

Our study contributes to the literature by presenting general findings for
Brazilian software development sector and thus identifying whether practitioners
use agile methods or not. Next section describes the foundation to our approach.

3 The Challenge on How to Identify an Agile Process

The simplest way to identify whether practitioners use agile methods or not is
asking them: “are you agile?”. The answer is not simple, though. Most software
processes are not a pure application of a single method [7], once organizations
customize their development processes – adopting and abandoning practices –
very easily [8].

To accomplish the challenge on conducting a survey that identifies software
processes, we decided thus not asking people which development methods they
use. Instead, we defined our survey constructs [16] based on the literature that
evaluates agile methods adoption.

The first reference to evaluate agility are the Agile Manifesto Principles [28].
According to these principles, agile software development must satisfy customers,
accept requirements changes, deliver working software frequently, make devel-
opers and customers work together, build projects with motivated individuals,
stimulate face-to-face conversation, measure progress with working software, pro-
mote sustainable development, stimulate technical excellence, allow team’s self-
organization and promote a reflective work process.

Some researchers have been working on agility assessment models, with the
aim to evaluate agile adoption. These models also allow characterizing agility
because they define how – in practice – agility could be identified in real teams.
We analyzed four models: Sidky et al.’s [20], Qumer and Henderson Sellers’ [19],
Özcan-Top and Demirörs’ [17,18] and Fontana’s [21].

Sidky et al. [20] present the agility measurement index (SAMI). It is a five-
level maturity model to determine the highest level of agility for a project or orga-
nization. For each level, more than forty agile practices are distributed through
five agile principles: embrace change to deliver customer value, plan and deliver

22 L. O. A. Cesa et al.

software frequently, human-centric, technical excellence and customer collabora-
tion.

With a similar foundation as Sidky’ model, Qumer and Henderson-Sellers [19]
present the Agile Adoption and Improvement Model (AAIM). The model identi-
fies six stages for agile improvement, based on agile principles. Each stage defines
a group of practices to be implemented starting with an “Agile Infancy”, passing
through “Agile Initial”, “Agile Realization”, “Agile Value”, “Agile Smart”, and
getting to an “Agile Progress”.

Özcan-Top and Demirös [18] present the Software Agility Assessment Model
(AgilityMOD). The content in their paper is complemented by a technical report
[17]. This model was developed based on ISO/IEC 15504 International Standard.
They defined aspects attributes grouped into agility levels. Each aspect attribute
is related to agile principles and are defined as: “Performing Aspect Practices”,
in the first level; “Simple” and “Iterative”, in the second level; “Technically
Excellent”, in the third level; and “Learning” for the fourth level. The agility of
one aspect is, then, evaluated in a four-point scale: “Not implemented”, “Ad-
hoc”, “Lean” and “Effective”, which are the agility levels.

The most recent work we found was the one presented by Fontana et al. [21].
The authors proposed the Agile Compass, a tool to identify maturity in agile
software development teams. This tool was developed based on an empirical
study that identified the evolvement of nine agile teams. Their proposal is not
based on levels, but on outcomes that teams should pursue. There is therefore
no specific path to maturity. Authors identified seven categories of outcomes:
practices learning, team conduct, pace of deliveries, features disclosure, software
product, customer relationship and organizational support.

We have extracted from each of these authors the characteristics of agility,
by analyzing how they defined a mature team, that is, a team that is actually
agile, as described in Table 1. We also analyzed the agile principles defined in
the Agile Manifesto [28] and chose three of them. The characteristics of Sidky
et al. [20] were not included because they proposed more than 40 items do
define agility and it would go against our purpose of a short questionnaire. As
our proposal was to create a short survey, we selected only the characteristics
that were straightforward to be evaluated and did not involve discussions about
organizational culture and personnel issues.

By combining the characteristics of agility selected from these studies, we
identified that they were related to four main aspects of the software process:
requirements definition (based on characteristics 1, 6, and 10), software docu-
mentation (based on characteristic 3), development activities planning (based
on characteristics 5 and 8) and delivery of working software (based on charac-
teristics 2, 4, 7, and 9).

We understand that the essence in the difference between traditional and
agile processes is the moment when each of these aspects are emphasized during
software development, as dynamism is one of the key differences between the
two approaches [23]. We then based our survey in this assumption, as explained
in the next section.

Are We Agile or Not? A Survey on Brazilian Software Processes 23

Table 1. Characteristics for agility evaluation from literature.

Author Characteristic Selected (id)

Agile Manifesto Accept changes in requirements X (1)

Foster delivery of working software frequently X (2)

Face-to-face communication as the effective way to

conveying information

X (3)

Özcan-Top and Demirörs Develop work products in an iterative and

incremental way

X (4)

Communicate effectively

Balance the predictive work and adaptive work X (5)

Employ minimally sufficient ceremony

Incorporate agile engineering methods/practices to

the aspect practices

Integrate tools to aspects to improve the

productivity

Support collaborative work and shared

responsibility

Adopt agile leadership styles and adjust the

behaviors towards mistakes of people

Encourage people in the organization to participate

in learning, teaching and improvement

Collect measures to support learning and

improvement

Qumer and Henderson-Sellers Does the method accommodate expected or

unexpected changes? (Flexibility)

X (6)

Does the method produce results quickly? (Speed) X (7)

Does the method follow the shortest time span, use

economical, simple and quality instruments for

production? (Leanness)

Does the method apply updated prior knowledge

and experience to create a learning environment?

(Learning)

Does the method exhibit sensitiveness?

(Responsiveness)

X (8)

Fontana et al. The team improves its own work processes

Metrics are used for improvement and learning

The team makes decisions about the project and

about the process

The team wished to learn and improve technically

The team delivers within the due date X (9)

The team accepts changes to requirements

throughout the project

X (10)

The team worries about the quality of the source

code

The team uses tools to make development more

effective

The customer trusts in team’s work

The organization prioritizes agility as the strategy

for software development

24 L. O. A. Cesa et al.

4 Research Approach

The objective of this study was identifying the percentage of Brazilian software
practitioners using agile software development methods. The research approach
was the survey, defined by [16] as a method that collects information from indi-
viduals to contribute to knowledge in a particular area of interest. Our results
are descriptive, as we aim at describing the distribution of a phenomenon – agile
methods usage, in a population – software development practitioners [16].

According to Forza [16], conducting a survey must include the following sub-
processes that lead to getting the desired results: (1) translating the theoretical
domain into the empirical domain; (2) designing and pilot testing; (3) collecting
data for theory testing; (4) data analysis process; and (5) the process of inter-
preting the results and writing the report. Next subsections describe how the
first four of these subprocesses were performed in this study.

4.1 Translation of the Theoretical Domain into the Empirical
Domain

As described in Sect. 3, we investigated studies that defined how to character-
ize and evaluate agility [18–21], besides considering the definitions of the Agile
Manifesto principles [28]. Our unit of analysis was the software development
practitioner, as a representative of the method used inside companies.

We avoided asking respondents which methods or approaches they use for
software development, as evidences from modern software development show
that processes and practices are mixed and combined [7,9]. Asking a respondent
to classify its own process would lead to potentially subjective decisions when
answering the questionnaire. For example, does the simple definition of sprints
in a software project planning characterize the use of Scrum? An inexperienced
developer could say that yes, but the reality might not be that. This is the
reason we based our questionnaire in studies that characterize and evaluate
agility despite of the method used.

From these theoretical and empirical references, we extracted a minimum
number of items that could in a straightforward way to characterize agility and
allow our respondents to quickly answer our questions. We based our definitions
on the premise of creating a short questionnaire that could be answered in two
minutes. As stated by Pfleeger and Kitchenham [3, p. 21], “it is important to
keep in mind that the number of questions you can realistically ask in a survey
depends on the amount of time respondents are willing to commit to it”. We
wanted to potentially increase sample size by creating a questionnaire that could
be answered by more people [2].

Section 3 showed the characteristics extracted from each author and how
they were combined to create the questionnaire. Respondents were asked to
place these aspects in specific moments in their software processes, using as a
reference the moment when software is coded. The final questionnaire was really
short, comprising:

Are We Agile or Not? A Survey on Brazilian Software Processes 25

1. In which state of Brazil do you work at?
2. How many years of experience do you have with software development?
3. What is your educational level?
4. What is your gender?
5. In the software project you are currently working, please identify in which

moment the following activities happen (before coding, throughout coding,
after coding, or do not know):
(a) Requirements definition
(b) Software documentation
(c) Development activities planning
(d) Delivering working software

6. Summarize the positive aspects of your software process using 5 key-words
(open-ended question)

7. Summarize the negative aspects of your software process using 5 key-words
(open-ended question).

4.2 Design and Pilot Testing

The questionnaire was designed and pilot-tested in two steps: a focus group and
a pilot study. For the focus group, the first version was created, printed and
tested with 10 master and doctorate students. They evaluated language, form
and response time. The suggestions were accepted and the tested version was
completely changed to the final version.

This final version was created on-line and pilot-tested with 25 software prac-
titioners in authors’ colleagues network. In addition to answering the questions
of the questionnaire, we asked them to tell us whether their processes were agile,
traditional or hybrid. We did it to test the clustering techniques we were plan-
ning to apply for data analysis (see Sect. 4.4). The responses were processed, and
data analysis was tested. The question on which process the respondent used was
removed for the questionnaire to be distributed.

4.3 Collecting Data

Sampling is a concern in surveys, as samples must be representative of the whole
population. Ideally, all surveys should use random samples, as they are the only
format that create statistically valid results [2]. In this study it was not possible
as we do not have access to the whole population (all software developers in
Brazil), thus we applied a non-probabilistic convenience sample.

Convenience samples are those that represent people that are available and
willing to take part of the survey [2]. We used social networks and personal con-
tacts to propagate the call for respondents. We made our questionnaire available
on-line for two weeks.

26 L. O. A. Cesa et al.

4.4 Data Analysis

We applied three different types of data analysis: clustering, descriptive statis-
tics and text mining. The clustering technique was applied to group respondents
according to similar software processes. We analyzed the moment in which the
respondent defined requirements, documented software, planned activities and
delivered software. Responses were grouped using the k-means algorithm through
R language (libraries RWeka and cluster). We defined three resulting clusters,
and, for each cluster, we used a histogram to identify how answers were dis-
tributed in the different moments (before, throughout or after coding).

We chose to create three clusters to possibly accommodate agile processes,
traditional processes1 and a third group that could show up with different char-
acteristics (such as the hybrid processes defended by [7]).

The text mining technique was used to analyze the two open-ended ques-
tions. The answers given by respondents to the positive and negative aspects of
their software processes were analyzed using a frequency of terms analysis (by
using the tm library from R language). We first analyzed the frequency of terms
individually and then the frequency of bi-grams. Individual terms analysis allows
us to identify most cited terms and then the analysis of related bi-grams eases
the understanding of the context where terms were cited in responses.

4.5 Threats to Validity

There are four types of validity to be dealt with in survey studies. The face valid-
ity guarantees that the measure reflects the content of the concept in question
[22]; the content validity, which is a “subjective assessment of how appropriate
the instrument seems to a group of reviewers” [4, p. 22]; the criterion validity,
which compares the instrument against one that is considered the “gold stan-
dard” [4, p. 22]; and the construct validity that concerns “how an instrument
behaves when used” [4, p. 22]. In this research, content and construct validity
were tested in the focus group and in the pilot-test. Criterion validity could not
be measured, as we do not have a “gold standard” as reference.

Generalization is also a concern in surveys. Although [22] states that increas-
ing the absolute number of respondents in the sample does not increase gener-
alization, it is know that the more respondents, the lower the error rate in the
results. With about a hundred respondents, we consider that the results of this
study represent practical relevance, which means that it matters to practitioners
[5]. This study presents preliminary results, as we wish to continue collecting
data to compare with the findings here presented. This is one of the strategies
that can be applied to assure practical relevance in a research [6].

5 Results

We received 129 valid responses. Respondents were 81% male and 19% female.
Their educational level was 2% high school, 40% undergraduate, 11% MBA
1 As opposed to agile, traditional processes could also be called plan-driven processes,
such as stated by [23].

Are We Agile or Not? A Survey on Brazilian Software Processes 27

(Master Business Administration), 34% attended post-graduation courses, 11%
had master degree and 2% doctoral degree. Their experience with software devel-
opment was 20% up to 2 years; 26% from 3 to 5 years; 28% from 6 to 10 years;
26% from 11 to 20 years and 5% more than 20 years. Considering their location
in Brazil, they are distributed in ten different states, as shown in Table 2.

Table 2. Distribution of respondents in Brazil.

State Percentage (%)

PR 48

MG 22

SP 15

SC 5

PE, DF, RS, AL, MS, PA 10

Our driving objective in this study was to discover the percentage of soft-
ware developers that use agile methods in Brazil. As explained in Sect. 4, we
identified it by asking about some dynamics in their software processes. The
responses were then clustered in three groups according to the similarity of the
answers practitioners gave regarding the moment in which they define require-
ments, document the software, plan activities and deliver software. As a result of
the clustering algorithm, we got 54% of respondents in Group 1, 26% in Group
2 and 20% in Group 3. The characteristics of each group are as follows.

Figure 1 shows the results for Group 1. The answers in this cluster reported to
define requirements mainly before coding (96% of respondents). They document
software mainly throughout coding (64%), but also before coding (36%). Regard-
ing the planning of development activities, they reported to perform mostly
before coding (69%) and some throughout coding (31%). Their software deliv-
ery is mainly performed after coding (60%), but also throughout coding (38%).

The second group that resulted from the clustering analysis presents a dif-
ferent behavior (see Fig. 2). They reported to define requirements mainly before
coding (82%), and some of them throughout coding (18%). Their software doc-
umentation is performed mainly after coding (71%). On respect to development
activities planning, respondents said that it is done mainly before coding (68%)
and a few throughout coding (26%). For them, software is delivered mainly after
coding (76%), and some reported to do it throughout coding (21% of responses).

Group 3 (Fig. 3) presents another configuration of responses distribution. On
respect to requirements definition, they reported to do it mainly throughout
coding (80% of responses). Software is documented either throughout coding
(52%) and after coding (40%). Activities are planned also throughout coding
(56%) and before coding (40% of responses). For this group, software is delivered
mainly throughout coding (84%).

According to the characteristics of these groups, by comparing the different
moments when activities are performed, we observe clear evidences of the essence

28 L. O. A. Cesa et al.

Fig. 1. The moment when practitioners perform their software process activities in
Group 1.

Fig. 2. The moment when practitioners perform their software process activities in
Group 2.

of their software processes. Group 1 is the hybrid group, mainly because there
is a distribution of requirements and planning before and throughout coding.
Delivery is also performed throughout and after coding. Group 2 is the traditional
group, with the evidences of requirements and planning being performed mainly
before coding, and delivery mainly after coding. The agile group is the Group

Are We Agile or Not? A Survey on Brazilian Software Processes 29

Fig. 3. The moment when practitioners perform their software process activities in
Group 3.

3, with requirements definition mainly throughout coding, activities planning
before and throughout coding, and software delivery mainly throughout coding.

As Group 1 was the one with more respondents, we conclude, then, that we
have mainly software development practitioners working with hybrid processes
in Brazil (54%), then with traditional processes (26%) and the least number of
practitioners are the ones that work with agile processes (20%).

We also asked respondents about positive and negative aspects of their pro-
cesses. We analyzed the responses for each of the groups separately so that we
could then better characterize them, as shown in the next subsection.

5.1 Perceptions on the Software Process

Positive and negative aspects of software processes were pointed out by respon-
dents through keywords. We considered the terms that appeared the most, the
top-3 frequencies. Table 3 shows terms frequencies for hybrid processes, Table 4
shows for traditional processes and Table 5 for agile processes.

We can notice that positive aspects of hybrid processes are mainly related
to documentation and agility/agile. In the analysis of software process activi-
ties moments (Sect. 5) this group pointed out to document software before and
throughout coding, which is shown here to be positive for practitioners. By
analyzing related bi-grams, we observe that practitioners value consistent and
viable documentation and various aspects related to agility (projects, delivery,
flexibility, quality, etc.). We also found positive key-words related to delivery,
quality, customer, team and planning. The main negative aspect pointed out
by the hybrid group was “lack”. In this case, the analysis of the bi-grams was

30 L. O. A. Cesa et al.

important to understand which kind of lacks they feel. The main complaints were
lack of communication, experience, feedback, management, staff and visibility.

Table 3. Most frequent terms for hybrid processes. Between brackets, the number of
occurrences. Terms were translated from Portuguese to English.

Hybrid

Positive Negative

documentation(11), agile(10),
agility(10), delivery(7),
quality(7), customer(6),
team(6), planning(6)

lack(7), development(6), scope(6),
process(6), requirements(6),
time(6), documentation(5),
change(5), tests(5)

Table 4. Most frequent terms traditional processes. Between brackets, the number of
occurrences. Terms were translated from Portuguese to English.

Traditional

Positive Negative

agility(8), delivery(8), agile(5), customer(4),
quality(4)

lack(9), low(3), documentation(3),
requirements(3), tests(3)

For the traditional processes group, the positive aspects are mainly related
to agility/agile and delivery. It seems to be contradictory that people that use
traditional processes value agility. But this is probably due to the fact that people
do mix processes and present some evidences of trial to be agile. By analyzing
related bi-grams, we could notice that practitioners related agile and agility to
collaboration, reliability, delivery, focus. Other positive aspects also mentioned
were focusing at customer and quality. As negative aspects for the traditional
group, we identified “lacks”, but, differently of hybrid processes, the terms that
appeared were lack of empathy, capacity, knowledge, control, documentation,
metrics, quality assurance, resources. The “low” term was referred to quality
and resilience.

For the agile processes group, the most frequent positive aspects were also
related to agility and delivery. Related bi-grams show terms as adaptive agile,
agile delivery, dynamics, fast delivery, value delivery, among others. Negative
terms appeared mainly related to documentation (missing of documentation,
late documentation, stress related to documentation, time to document). By
combining this data with the moments when they perform they activities, we
see software being documented throughout and after coding, which seems to be
negative for this group. There were also complaints of “lack”: of knowledge, staff,
information, planning and requirements. The only group where “bugs” appeared
in negative aspects was the agile one. Other terms are presented in Table 5.

Are We Agile or Not? A Survey on Brazilian Software Processes 31

Table 5. Most frequent terms for agile processes. Between brackets, the number of
occurrences. Terms were translated from Portuguese to English.

Agile

Positive Negative

agility(7), delivery(5), agile(4),
development(4)

documentation(7), lack(7), time(4),
bugs(3), team(3), indefiniteness(3),
requirements(3), rework(3),
risks(3), tests(3)

6 Discussion and Conclusions

The objective of this study was to identify the percentage of software develop-
ment practitioners that use agile methods in Brazil. We identified that this is the
least used method, reported by 20% of participants, as opposed to traditional
methods, reported by 26%, and the most used, the hybrid process, reported by
54% of respondents.

To accomplish this objective, we did not ask practitioners whether they were
agile. We instead asked objective questions about activities in their software
processes and inferred their characteristics based on a clustering analysis. We
also searched for positive and negative aspects of different process configurations.

Our results are in accordance with evidences that software processes are
highly customized [8,9]. We saw most respondents taking part of a hybrid process
that presents agile and traditional characteristics. It is an evidence that we are
probably living what Boehm and Turner [23] previewed more than a decade
ago, a balance and integration of agile and plan-driven methods. Despite of the
process model used, agility was pointed out as a positive aspect in all of them,
evidencing the willing to be agile.

Some years ago, the work by [14] showed that the usage of agile methods
was rising, as also stated by agile industrial surveys [29]. With our results we
consider people are using agile, but not as the “silver bullet”. Agile practices are
mixed with traditional ones because software development practitioners actually
focus on having the job done [24].

Our results are limited to our sample. As we stated, we consider these as
preliminary results, as we wish to collect more responses for this survey and com-
plete and compare data. Nevertheless, these findings show evidence of Brazilian
software processes and provide basis for other academic studies that might wish
to better understand the dynamics of the aspects we investigated in the software
process. Our method to characterize the software process could also be replicated
and retested in other configurations.

32 L. O. A. Cesa et al.

References

1. Dal Forno, G.M.B., Muller, F.M.: Fatores Cŕıticos em Projetos de Desenvolvimento
de Software. In: Pretexto 2017, vol. 18, no. 2, pp. 100–105 (2017). https://doi.org/
10.21714/pretexto.v18i2.5295

2. Pfleeger, S.L., Kitchenham, B.A.: Principles of survey research - part 5: populations
and samples. Softw. Eng. Notes 27(5), 17–20 (2002)

3. Pfleeger, S.L., Kitchenham, B.A.: Principles of survey research - part 3: construct-
ing a survey instrument. Softw. Eng. Notes 27(2), 20–24 (2002)

4. Pfleeger, S.L., Kitchenham, B.A.: Principles of survey research - part 4: question-
naire evaluation. Softw. Eng. Notes 27(3), 20–23 (2002)

5. Kitchenham, B.A., et al.: Preliminary guidelines for empirical research in software
engineering. IEEE Trans. Softw. Eng. 28, 721–734 (2002). https://doi.org/10.1109/
TSE.2002.1027796

6. Lee, A.S., Mohareji, K.: Linking relevance to practical significance. In: Proceed-
ings of the 45th Hawaii International Conference on System Sciences, Maui, 4–7
January, pp. 5234–5240 (2012). https://doi.org/10.1109/HICSS.2012.416

7. Kuhrman, M., et al.: Hybrid software and system development in practice: water-
fall, scrum and beyond. In: Proceedings of the 2017 International Conference on
Software and System Process, ICSSP 2017, France, pp. 30–39 (2017). https://doi.
org/10.1145/3084100.3084104

8. Bustard, D., Wilkie, G., Greer, D.: The maturation of agile software development
principles and practice: observations on successive industrial studies in 2010 and
2012. In: Proceedings of the International Conference and Workshops on the Engi-
neering of Computer Based Systems, Scottsdale, AZ, pp. 139–146. IEEE (2013)

9. Campanelli, A.S., Camilo, R.D., Parreiras, F.S.: The impact of tailoring criteria
on agile practices adoption: a survey with novice agile practitioners in Brazil. J.
Syst. Softw. 137, 366–379 (2018). https://doi.org/10.1016/j.jss.2017.12.012

10. Garousi, V., Zhi, J.: A survey of software testing practices in Canada. J. Syst.
Softw. 86(5), 1354–1379 (2013). https://doi.org/10.1016/j.jss.2012.12.051

11. Ochodek, M., Zopczyńska, S.: Perceived importance of agile requirements engi-
neering practices - a survey. J. Syst. Softw. 143, 29–43 (2018). https://doi.org/10.
1016/j.jss.2018.05.012

12. Holvitie, J., et al.: Technical debt and agile software development practices and
processes: an industry practitioner survey. Inf. Softw. Technol. 96, 141–160 (2018).
https://doi.org/10.1016/j.infsof.2017.11.015

13. Garousi, V., Coskunçay, A., Betin-Can, A., Demirörs, O.: A survey of software
engineering practices in Turkey. J. Syst. Softw. 108, 148–177 (2015). https://doi.
org/10.1016/j.jss.2015.06.036

14. Melo, C., et al.: The evolution of agile software development in Brazil. J. Braz.
Comput. Soc. 19, 523–552 (2013). https://doi.org/10.1007/s13173-013-0114-x

15. Agner, L.T.W., Soares, I.W., Stadzisz, P.C., Simão, J.M.: A Brazilian survey on
UML and model-driven practices for embedded software development. J. Syst.
Softw. 86(4), 997–1005 (2013). https://doi.org/10.1016/j.jss.2012.11.023

16. Forza, C.: Survey research in operations management: a process-based perspective.
Int. J. Oper. Prod. Manag. 22(2), 152–194 (2002)

17. Özcan-Top, Ö., Demirörs, O.: Software agility assessment reference model v 3.0
(Agility MOD). Technical report METU/II-TR-2014-39 (2014)

https://doi.org/10.21714/pretexto.v18i2.5295
https://doi.org/10.21714/pretexto.v18i2.5295
https://doi.org/10.1109/TSE.2002.1027796
https://doi.org/10.1109/TSE.2002.1027796
https://doi.org/10.1109/HICSS.2012.416
https://doi.org/10.1145/3084100.3084104
https://doi.org/10.1145/3084100.3084104
https://doi.org/10.1016/j.jss.2017.12.012
https://doi.org/10.1016/j.jss.2012.12.051
https://doi.org/10.1016/j.jss.2018.05.012
https://doi.org/10.1016/j.jss.2018.05.012
https://doi.org/10.1016/j.infsof.2017.11.015
https://doi.org/10.1016/j.jss.2015.06.036
https://doi.org/10.1016/j.jss.2015.06.036
https://doi.org/10.1007/s13173-013-0114-x
https://doi.org/10.1016/j.jss.2012.11.023

Are We Agile or Not? A Survey on Brazilian Software Processes 33

18. Özcan-Top, Ö., Demirörs, O.: Assessing software agility: an exploratory case study.
In: Mitasiunas, A., Rout, T., O’Connor, R.V., Dorling, A. (eds.) SPICE 2014.
CCIS, vol. 477, pp. 202–213. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-13036-1 18

19. Qumer, A., Henderson-Sellers, B.: A framework to support the evaluation, adoption
and improvement of agile methods in practice. J. Syst. Softw. 81(11), 1899–1919
(2008). https://doi.org/10.1016/j.jss.2007.12.806

20. Sidky, A., Arthur, J., Bohner, S.: A disciplined approach to adopting agile prac-
tices: the agile adoption framework. Innov. Syst. Softw. Eng. 3(3), 203–216 (2007).
https://doi.org/10.1007/s11334-007-0026-z

21. Fontana, R.M., Reinehr, S., Malucelli, A.: Agile compass: a tool for identifying
maturity in agile software-development teams. IEEE Softw. 32(6), 20–23 (2015).
https://doi.org/10.1109/MS.2015.135

22. Bryman, A.: Social Research Methods, 4th edn. Oxford University Press, New York
(2012)

23. Boehm, B., Turner, R.: Balancing agility and discipline: evaluating and integrating
agile and plan-driven methods. In: Proceedings of the 26th International Confer-
ence on Software Engineering, 23–28 May, pp. 718–719 (2004). https://doi.org/10.
1109/ICSE.2004.1317503

24. Adolph, S., Krutchen, P., Hall, W.: Reconciling perspectives: a grounded theory
of how people manage the process of software development. J. Syst. Softw. 85,
1269–1286 (2012). https://doi.org/10.1016/j.jss.2012.01.059

25. Softex: Software e servićos de TI: A Indústria Brasileira em Perspectiva (2012).
http://www.softex.br/inteligencia/. Accessed 9 July 2018

26. Stackoverflow: Developers survey results (2018). https://insights.stackoverflow.
com/survey/2018/. Accessed 9 July 2018

27. O’Reilly: O’Reilly Software Development Salary Survey (2017). https://www.
oreilly.com/ideas/2017-software-development-salary-survey. Accessed 9 July 2018

28. Agile Manifesto Principles (2001). http://agilemanifesto.org/principles.html.
Accessed 9 July 2018

29. Version One: 12th State of Agile Survey (2018). http://stateofagile.versionone.
com/. Accessed 12 July 2018

https://doi.org/10.1007/978-3-319-13036-1_18
https://doi.org/10.1007/978-3-319-13036-1_18
https://doi.org/10.1016/j.jss.2007.12.806
https://doi.org/10.1007/s11334-007-0026-z
https://doi.org/10.1109/MS.2015.135
https://doi.org/10.1109/ICSE.2004.1317503
https://doi.org/10.1109/ICSE.2004.1317503
https://doi.org/10.1016/j.jss.2012.01.059
http://www.softex.br/inteligencia/
https://insights.stackoverflow.com/survey/2018/
https://insights.stackoverflow.com/survey/2018/
https://www.oreilly.com/ideas/2017-software-development-salary-survey
https://www.oreilly.com/ideas/2017-software-development-salary-survey
http://agilemanifesto.org/principles.html
http://stateofagile.versionone.com/
http://stateofagile.versionone.com/

A Tool to Measure TDD Compliance:
A Case Study with Professionals

Altieres de Matos1, Reginaldo Ré2(B), and Marco Aurélio Graciotto Silva1,2

1 Graduate Program in Informatics (PPGI),
Federal University of Technology – Paraná (UTFPR),

Cornélio Procópio, Paraná, Brazil
altitdb@gmail.com

2 Department of Computing (DACOM),
Federal University of Technology – Paraná (UTFPR),

Campo Mourão, Paraná, Brazil
{reginaldo,magsilva}@utfpr.edu.br

Abstract. Context: There are several studies related to Test Driven
Development (TDD), but many with divergences of results due to the
short time to perform the experiments. Moreover, the environment where
they are carried out is generally academic. On the other hand, the envi-
ronment requires tools not used by practitioners or imposes many tech-
nical and training requirements for their application. Goal: The goal of
this paper is to provide a tool that supports the evaluation of the TDD
process in the software industry and academia settings. The tool focuses
on analyzing the effects of verification, validation and test (VV&T). In
addition, the compliance of TDD usage in software development was
evaluated. Method: This study made use of the Goal Question Met-
ric (GQM) paradigm to characterize a set of objectives using metrics
towards TDD effects on software quality. A case study was conducted
with IT professionals to evaluate the tool developed. Results: Consid-
ering the existing tools that perform TDD compliance assessment, the
Butterfly tool was developed to enable the evaluation of the TDD lifecy-
cle as the developer performs the coding of the software. With this tool
it is possible to analyze the compliance of TDD usage during software
development. Conclusions: The tool allows to measure the effects of
TDD when developing software, which will support in the characteriza-
tion of TDD contributions and interventions applied to software quality
in future works.

Keywords: Test driven development · Agile software development ·
TDD conformance · TDD lifecycle · Software measurement

1 Introduction

Test Driven Development (TDD) provides developers with the ability to write
small pieces of software based on software requirements, implementing test cases
c© Springer Nature Switzerland AG 2019
G. S. Tonin et al. (Eds.): WBMA 2018, CCIS 981, pp. 34–48, 2019.
https://doi.org/10.1007/978-3-030-14310-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14310-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-14310-7_3

A Tool to Measure TDD Compliance: A Case Study with Professionals 35

before production code [9,20]. Thus, each piece of code and its respective auto-
matic test is written in a cycle [9]. This style of development enables developers
to stay focused on requirements sets, ensuring that every piece of written pro-
duction code is covered by automated tests [9,20].

TDD is considered an agile practice related to quality [6,13]. With the intro-
duction of TDD in eXtreme Programming (XP) and its frequent use in con-
junction with the Scrum agile method [12], TDD has gained popularity [2,6].
However, despite its adoption in software industry, several aspects regarding
TDD, such as conformance and software testing activities, are not focused by
the research community [16].

The motivation of this study lies in the fact that the software industry
and academia are not strongly connected and do not have high collaboration
between them [5]. In the software testing domain, one of the main problems is
that researchers are not worried about solving problems of the software indus-
try [10]. Several reasons regarding this have been discussed by software engi-
neering researchers, from the difference of objectives between the two parties to
challenges of scalability and applicability of problems [10].

One of the current discussions in the area of software testing is the compul-
sory testing of software in the scope of software development [5,18]. Another
motivating factor is the increase in the interest of professionals in test automa-
tion [18]. In contrast, there are factors that limit the adoption of TDD in the
software industry: (i) increased development time, (ii) insufficient experience
and knowledge about TDD, (iii) lack of upfront design, (iv) insufficient devel-
oper testing skills, (v) lack of adherence to the TDD protocol, (vi) limitations
regarding TDD implementation related to domain and tools, and (vii) legacy
code [7]. In addition to these factors, it is observed that, currently, the adoption
of agile methods requires that the responsibility for software quality be made
beyond the quality team [8]. If, in agile methods, it is argued that teams have
autonomy and that they are responsible for the software, it is sensible to give
them greater responsibility for software quality, rather than delegating such a
role integrally to a distinct part (such as a quality assurance team).

Although global software development industry and the software research
academy have a large number of members, collaboration between the two is
low [10]. In 2017, the state of the art software testing considered that performing
manual or automatic testing became mandatory for the production of software
products [5]. In this way, adopting TDD makes it possible to go further [20]. TDD
provides the industry the possibility to improve adherence to proper software
testing activities, minimizing the chances of skimping on the implementation of
test cases after writing production code [20].

This study aims to provide a tool to support the evaluation of the TDD pro-
cess in the academia and software industry. A fundamental aspect of the study is
the application in the software industry encompassed in the agile context along
with the use of the iterative model. The tool allows the real-time analysis of cod-
ing performed by developers, classifying their actions regarding editing test cases
and code and, considering such actions, classify the development cycle/iteration

36 A. de Matos et al.

in: (i) test-addition, (ii) test-first, (iii) test-last, (iv) test driven development,
(v) refactoring e (vi) unknown. Thus, conformance to TDD can be evaluated
through the classifications and other measurements regarding testing activities,
such as test coverage and quantity of implemented test cases.

Some studies that evaluate TDD usage in the software industry and TDD
conformance are described in Sect. 2. Considering their findings and the limi-
tations regarding tool support for TDD adoption, the tool, named Butterfly, is
described in Sect. 3. Afterwards, in Sect. 4, it was provided details of the case
study used to evaluate the developed tool, describing the results in Sect. 5 and
discussing how the tool can influence the community in Sect. 6. Conclusions and
next steps regarding the investigation on the integration of TDD and software
testing within the industry setting are presented in Sect. 7.

2 Related Work

Test Driven Development (TDD) [3] is an iterative software development tech-
nique [9,19]. In the TDD process, each new iteration consists of the implemen-
tation of a feature [9]. Three phases make up the TDD process: (i) writing the
unit test, (ii) implementing the production code, and (iii) refactoring [9,19]. The
iteration begins with writing the unit test, followed by the implementation phase
of the production code, and finalizing itself in the refactoring phase [9,19]. The
iteration is terminated when all phases of the process are executed and the unit
tests are successfully executed [9]. The main rule of TDD is: “If you can’t write
a test for what you are about to code, then you shouldn’t even be thinking about
coding” [11].

TDD and some of its effects have been extensively studied [9]. Considering
the objective of this study, it was focused on related work regarding TDD confor-
mance, helping developers with the use of TDD and improving software design,
so that it was possible to obtain the best solution for the desired scenario [17].

In the study by Kou et al. [15], the authors presented a tool that allows auto-
mated recognition of TDD. The so called Zorro system allows the operational
definition of TDD practices to be verified. The automated recognition of TDD
can bring several benefits to the community, either to support TDD practices or
to assist in empirical studies on the effectiveness of TDD. The study described
how the analysis can be performed with the Zorro system, in addition to two
empirical assessments. The first controlled experiment aimed to ensure that the
collected and analyzed information was appropriate and effective. In the second
controlled experiment conducted by the authors, they aimed to obtain better
data about the strengths and limitations of Zorro for TDD inference. A third
controlled experiment was conducted in order to address a validity threats. Thus,
the authors did not use students as subjects, as in the two previous controlled
experiments, besides not using the classroom environment. Instead, the authors
run the controlled experiment with professionals of the software industry. The
study fostered the possibility of tool evolution, in order to improve its ability
to recognize TDD processes, in addition to providing information in a clear and

A Tool to Measure TDD Compliance: A Case Study with Professionals 37

objective way. It also made it possible to evaluate the effects of TDD in the
medium and long term with respect to software quality.

In the study by Becker et al. [4], the authors presented the Besouro tool,
which is an improved version of their previous TDD automatic recognition tools
and studies. The following tools were used: (i) TestFirstGauge, (ii) TDDGuide,
(iii) Zorro and (iv) SEEKE. The authors compared them with other existing
tools and commented on the new features existing in the Besouro, some of them
being built with private (closed-source) components. The Besouro tool shares
several concepts used in the Zorro tool of the study by Kou et al. [15]. To verify
the effectiveness of the tool, the authors performed a controlled experiment that
was defined through the GQM model (goal, question and metrics). Given this
model, the authors defined the following objective: “Analyze the variations of
an operational definition of TDD to evaluate with respect to TDD compliance
criteria from the perspective of the developers in the context of programming
activities”. The authors considered the Besouro tool as a potential system for
conducting quantitative TDD studies.

In the study by Fucci et al. [9], the authors presented an extensive study
on TDD processes. As a goal, the authors sought to find out the impact of the
effects that the TDD process characteristics can have on the external quality
of the software and the productivity of the developers. The authors identified
four characteristics in the TDD process, detailed in Table 1: (i) granularity, (ii)
uniformity, (iii) sequence and (iv) refactoring effort.

Table 1. Characteristics corresponding to TDD processes [9].

Characteristic Definition

(i) Granularity Characterized by a short development process, where
each cycle typically lasts between 5 and 10 min

(ii) Uniformity Characterized by development cycles that last
approximately the same time

(iii) Sequence Indicates the prevalence of the test-first (TF)
sequence during the development process

(iv) Refactoring effort Indicates the prevalence of refactoring activity in the
development process

The authors conducted a quasi-experiment in the context of the software
industry. For the production of the data, the authors performed four workshops
with themes on unit tests, TDD, TF, TL and iterative process of unit tests.
Each workshop lasted five days. To obtain the data of the development cycles,
the authors used the tool Besouro [4]. The data generated by the tool were used
to calculate metrics that represent the TDD characteristics described in Table 1.
Within their study, it was possible to conclude that the benefits of TDD are not
only provided by the dynamics of test first (TF). TDD as a process encourages

38 A. de Matos et al.

developers to follow fine and steady steps by improving the focus and flow of
development [9].

Even with a number of tools designed to recognize the TDD lifecycle pro-
cesses, no completely open source tools for this purpose in the community was
found. There is also the need for effective analysis and summarization of data
generated by the tools. Building an open-source tool free of private components
is a differential against existing tools in the community, providing an increase in
the maintainability and easing the evolution of the tool.

3 Butterfly Tool

To develop the Butterfly tool it was necessary to evolve heuristics used to
classify the actions performed by developers during the development cycle. The
heuristics were based on those presented by Fucci et al. [9] and Kou et al. [15].

3.1 Actions

To define each heuristic, it was necessary to classify the actions that are often
executed by developers. In Table 2 each action and its respective interpretation
are presented. Five essential actions were considered to produce the necessary
heuristics to classify each scenario used in the software development cycle. The
Test Creation action comprises creating an automated test case, either before or
after writing the production code. The Test Pass action refers to the execution
of one or more automated test cases successfully. The Test Failure action, con-
trary to the Test Pass action, is related to the execution of one or more failed
automated test cases. The Test Editing action covers the inclusion, change, or
removal of source code from existing automated test cases. The Code Editing
action, similarly to the Test Editing action, corresponds to the inclusion, modi-
fication, and removal of production source code.

Table 2. Development lifecycle actions.

Action Definition

Test Creation Characterized by the creation of automatic test
cases

Test Pass Characterized by the execution of test cases
that result in success

Test Failure Characterized by running test cases that result
in failure

Test Editing Characterized by adding, changing or removing
code from test cases

Code Editing Characterized by adding, changing or removing
production source code

A Tool to Measure TDD Compliance: A Case Study with Professionals 39

3.2 Categories

For the development of the Butterfly tool, the heuristics underwent changes,
as presented in Table 3. To define the heuristics it was necessary to evaluate in
detail the life cycle of each development. The new heuristic model consists of 6
categories and 16 types of episodes. For this new model, the Production category
was removed and a new category was added, called Test Driven Development. In
this new category you can evaluate the entire red-green-refactoring life cycle of
TDD. Like the other tools, Butterfly also considers the end of the development
cycle as the Test Pass action. The tool includes the following categories: Test
Addition (TA), Test-first (TF), Test-last (TL), Refactoring (RF), Test Driven
Development (TDD) and Unknown (UK).

Table 3. Heuristics used to infer the classification of the development cycle.

Type Definition

Test
Addition

TA1. Test Creation → Test Pass

TA2. Test Creation → Test Failure → Test Editing → Test Pass

Test-first TF1. Test Creation → Code Editing → Test Pass

TF2. Test Creation → Test Failure → Code Editing → Test Pass

TF3. Test Creation → Code Editing → Test Failure → Code Editing
→ Test Pass

Test-last TL1. Code Editing → Test Creation → Test Pass

TL2. Code Editing → Test Creation → Test Failure → Test Editing
→ Test Pass

Refactoring RF1. Code Editing → Test Pass

RF2. Code Editing → Test Failure → Code Editing → Test Pass

RF3. Test Editing → Test Pass

RF4. Test Editing → Test Failure → Test Editing → Test Pass

Test Driven
Development

TDD1. Test Creation → Test Failure → Code Editing → Test Pass

TDD2. Test Creation → Test Failure → Code Editing → Test Pass
→ Test Editing → Test Pass

TDD3. Test Creation → Test Failure → Code Editing → Test Pass
→ Test Editing → Test Failure → Test Editing → Test Pass

TDD4. Test Creation → Test Failure → Code Editing → Test Pass
→ Code Editing → Test Failure → Code Editing → Test Pass

Unknown UK1. None of the above → Test pass

Test Addition. It is understood by the addition of new test cases. In this
category there is no change in production source code, only in test source code.
The possible flows are seen in the Fig. 1. The first flow corresponds to a test case

40 A. de Matos et al.

which was added and that did not fail when executed. The second flow considers
that, after adding the test case, it failed and had to be edited until eventually
passing.

Fig. 1. Test addition flows.

Test-First. In this category, the test case must be created before the corre-
sponding production code. The possible flows are demonstrated in Fig. 2. The
first scenario considers that, after test case and code creation, the test case
passed. In the second scenario, the test case is created and executed (probably
due to the absence of the corresponding production code), then the production
code is edited until the test case finally pass. The third flow is similar to the
second, but without the execution of the test case just after its creation.

Fig. 2. Test-first flows.

A Tool to Measure TDD Compliance: A Case Study with Professionals 41

Test-Last. In this category, the test case must be created after the production
code is created. The possible flows are demonstrated in Fig. 3. In the first flow,
production code and test code are created and the test case pass. In the second
flow, the test case fails, which requires further modification of the tests until it
eventually pass.

Fig. 3. Test-last flows.

Refactoring. In this category, it can be performed refactoring for production or
test source code. It also comprehends activities associated with the improvement
of the source code, whether it is carried out in the production code or in test
cases. The possible flows are presented in Fig. 4. Two flows are associated with
production code improvement, where test cases can pass after code editing or, in

Fig. 4. Refactoring flows.

42 A. de Matos et al.

case of failure, further code editing is required. Respectively, there are two flows
associated with test case improvement, where test cases are under modification.

Test Driven Development. In this category, it must be performed the test
case creation before creating production source code. After the production code
is created, it is necessary to perform the refactoring of the production and test
source code. The possible flows are presented in Fig. 5. The first flow represents

Fig. 5. Test driven development flows.

A Tool to Measure TDD Compliance: A Case Study with Professionals 43

the traditional TDD cycle, in which test case is created, it fails, production
code is created and modified until the test case pass, and code is improved
(by refactoring), always considering the results of test cases execution. In the
second flow, instead of improving the production code, the code for test cases is
improved (for instance, considering a coverage criteria). Finally, the third flow
is a combination of the both, improving production code and test cases.

Unknown. In order for this category to be classified by the tool, none of the
known categories is achieved. In this way, everything that does not contemplate
the heuristics of Table 3 will be classified as Unknown.

3.3 Environment

The tool can be used by developers who use the Eclipse Integrated Development
Environment (IDE), which is compatible with the Oxygen and Photon versions.
It requires Java Runtime Environment (JRE) and Java Development Kit (JDK)
in version 8 or higher. The tool for running the automatic tests should be version
4 or higher of JUnit. The Butterfly tool is available on Github1.

4 Case Study

To evaluate the tool the GQM (Goals, Questions and Metrics) paradigm was
used. It consists of a mechanism to define and evolve a set of objectives using
metrics [1]. According to some authors, the GQM approach is recommended for
the definition of experimental studies [14,21] (Table 4).

Table 4. GQM - goals, questions and metrics.

Goals Questions Metrics

G1: Evaluate the
compliance of the TDD
process within iterative
software development

Q1. Is it possible to sort
the actions of the episodes
in the categories of
Test-addition, Test-first,
Test-last, Test driven
development, Refactoring,
and Unknown?

M1. Number of
classifications
M2. Number of
actions
M3. Number of
unit tests
M4. Test
coverage

1 https://github.com/altitdb/butterfly.

https://github.com/altitdb/butterfly

44 A. de Matos et al.

4.1 Instrumentation

The development environment used by the participants has Java in version 8,
IDE Eclipse Oxygen and JUnit 4. The results were generated by the Butterfly
tool installed in the participants Eclipse. Each participant was responsible for
sending the project data created during the experiment. The application chosen
for development was the Bowling Game, which is often used for studies regarding
TDD. The Bowling Game is responsible for calculating the score of a player in
a bowling game according to the requirements specified in Table 5.

Table 5. Bowling game requirements.

R1 The score of the game can be consulted at any time

R2 The game consists of 10 rounds

R3 The player is entitled to two shots to reach the maximum
score (10) on each round

R4 If on the first shot the maximum score is reached (strike), the
player will not be entitled to the second shoot

R5 If in both shot the maximum score is reached (spare), the
player will have as bonus the score obtained in the next move

R6 The strike score bonus is the value of the next two moves

R7 The player will have two extra shots if he strikes in the tenth
round

R8 If he reaches the spare in the two shots after the tenth round,
the player will be entitled to one extra shot

4.2 Subjects

The study was attended by professionals working in an organization focused on
software development for the financial market with about 450 professionals in
the area of Information Technology (IT). Among the professionals, 7 (seven)
participated. Participants belong to a team of professionals who have completed
advanced IT courses, such as Systems Analysis and Development, Computer Sci-
ence, Information Systems, Computer Science and Software Engineering. They
perform the role of Systems Analyst within the organization and are knowledge-
able with Java language, Eclipse development IDE, test automation tools and
TDD.

4.3 Execution

The execution was organized in three phases: (i) installation and training of
the Butterfly tool, (ii) development of the Bowling Game and (iii) sending the
results. In phase (i), the professionals installed the tool in the Eclipse IDE and
received the training to learn how the tool should be handled. In phase (ii) the

A Tool to Measure TDD Compliance: A Case Study with Professionals 45

professionals developed the Bowling Game using the Java language, test tool
JUnit and TDD. For each Bowling Game requirement, it is expected that a set
of development activities are performed, from which the development cycles can
be detected. No minimum or maximum time was set for the development of the
game. In phase (iii) the professionals sent the developed game and the results to
the authors by email for evaluation.

5 Results

Considering the purpose of this study, a new tool, called Butterfly, was devel-
oped. It is an evolution of Besouro tool (which, in turn, was an evolution of the
Zorro tool). The main differences, as shown in Table 6, are related to compliance
verification with respect to TDD and implementation dependencies.

Table 6. Comparison of automatic TDD recognition systems.

Tool Dependencies Compliance User feedback Compliance
report

Zorro [15] Hackystat,
SDSA, Jess

Context-sensitive
compliance

No No

Besouro [4] Listeners,
JESS, VCS

Varying, according to the
implemented component

Yes No

Butterfly Listeners,
VCS

Standard implementation
according to
pre-established heuristics

Yes Yes

The tool developed in this study aims to measure compliance and evaluate the
TDD life cycle, which was limited or not possible using in other tools. Butterfly
allows to check whether the developer is using TDD correctly, or if is only using
TDD phases such as Test-first and Refactoring. Considering the features from
Table 6, the following differences can be highlighted:

– Dependencies: In the previous tools, some dependencies were fundamental to
the operation of the tool. For instance, the Jess tool was one of the main
components required by them, but it was not free for commercial use. This
led to its removal from the Butterfly tool, replacing its functionality by new
code written by the authors.

– Compliance: Actions described in the literature were considered, and it no
longer varies according to contexts or implementations as performed in the
previous tools.

– User feedback: It was kept as in the Butterfly tool, given its importance
in classifying actions that are not considered correct, making it possible to
improve the tool in the future.

– Compliance report: A novelty in the Butterfly tool is the summarization of
the actions performed by the user. With this report it is possible to analyze
the percentage of use of the user’s actions.

46 A. de Matos et al.

A case study was conducted to validate the use of the developed tool. In
Table 7, it is presented a summary of the measurements taken from the execu-
tions for each developer during the execution of the empirical study described in
Sect. 4. For metrics, the following definitions are adopted: classifications (M1) as
the number of episodes classified by the tool according to the categories defined
in Table 3; actions (M2) as the amount of actions carried out by each developer,
as presented in Table 2; unit tests (M3) as the amount of automated test cases
created by the developers; and test coverage (M4) as the percentage of produc-
tion code that was covered by the unit tests with respect to control-flow criterion
(statements coverage).

Table 7. Measurements regarding usage of Butterfly tool.

Developer Classifications
(M1)

Actions
(M2)

Unit tests (M3) Test coverage (M4)

D1 38 311 12 92

D2 32 223 6 100

D3 63 692 21 90.6

D4 88 505 13 99.7

D5 35 356 10 96.2

D6 119 732 29 95.2

D7 21 262 10 100

Average 56.57 440.14 14.42 96.24

Median 38 356 12 96.2

Metrics M1 and M2 are directly linked to the activity development effort
while metrics M3 and M4 can be used to diagnose testing activities. Comparing
the measurements with manual analysis of the code produced by the developers,
There is no disagreement with the measurements (and classifications) made by
the tool against the actions carried out by the user.

6 Discussion

Using the tool, it was possible to evaluate the TDD life cycle, evaluating the red-
green-refactoring cycle as a whole and separately. The granularity, uniformity,
sequence and effort of refactoring, which were presented in the Table 1, can be
measured individually or in combination. Furthermore, providing facilities that
can summarize the results generated by users actions facilitates the analysis
of long-term empirical studies or with a large amount of user participation.
Therefore, the tool enable to further evaluate development activities, and to
try out new approaches within each process of the TDD life cycle, being able
to evaluate the effects within a single TDD phase or for the complete TDD
iteration. For instance, the inclusion of the use of test criteria in the TDD cycle

A Tool to Measure TDD Compliance: A Case Study with Professionals 47

is being evaluated, and this study provides a tool that will help evaluate this
inclusion, so that gains are obtained and threats removed or mitigated.

Making the tool open-source gives researchers the possibility of new imple-
mentations without the need to learn new frameworks. In order for the exten-
sibility of the tool to be carried out, only knowledge in the Java language is
necessary.

7 Conclusion

In this study, it was presented the Butterfly tool, which is a tool built with the
purpose of analyzing the process of developing iterative software by classifying
it into categories. Each category has a set of heuristics, which are responsible for
determining in which category the user’s actions meet. The categories offered
by the tool are: Test Addition, Test-first, Test-last, Test Driven Development,
Refactoring, and Unknown.

To perform the tool evaluation the GQM paradigm was used, allowing to
elaborate objectives, questions and metrics for the purpose of evaluating exper-
imental studies. The Butterfly tool serves the purpose of this study, which is
to evaluate the compliance of the TDD process in the development of iterative
software. With the established metrics it is possible to verify that the actions
and episodes generated were categorized in an expected way. There were no
divergences between developers and the categorization performed by the tool.

Finally, a tool that can support empirical studies about TDD was developed,
easing the analysis of the information generated. The Butterfly tool was pro-
vided on Github2, so that the source code can be used by researchers or by the
community at large. The tool is also open to further improvements, and the
community can contribute using the open source format.

References

1. Basili, V.R.: Software modeling and measurement: the goal/question/metric
paradigm. Technical report CS-TR-2956, UMIACS-TR-92-96, p. 24. University
of Maryland, College Park, MD, USA, September 1992. http://www.cs.umd.edu/
∼basili/publications/technical/T78.pdf

2. Beck, K.: eXtreme Programming Explained: Embrace Change. Addison-Wesley,
Boston (1999)

3. Beck, K.: Test-Driven Development: By Example. Addison-Wesley Professional,
Boston (2002)

4. Becker, K., de Souza Costa Pedroso, B., Pimenta, M.S., Jacobi, R.P.: Besouro: a
framework for exploring compliance rules in automatic TDD behavior assessment.
Inf. Softw. Technol. 57, 494–508 (2015)

5. Briand, L., Bianculli, D., Nejati, S., Pastore, F., Sabetzadeh, M.: The case for
context-driven software engineering research: generalizability is overrated. IEEE
Softw. 34(5), 72–75 (2017)

2 https://github.com/altitdb/butterfly.

http://www.cs.umd.edu/~basili/publications/technical/T78.pdf
http://www.cs.umd.edu/~basili/publications/technical/T78.pdf
https://github.com/altitdb/butterfly

48 A. de Matos et al.

6. Causevic, A., Punnekkat, S., Sundmark, D.: TDDHQ: achieving higher quality test-
ing in test driven development. In: Euromicro Conference Series on Software Engi-
neering and Advanced Applications, pp. 33–36, Santander, Spain (2013)

7. Causevic, A., Sundmark, D., Punnekkat, S.: Factors limiting industrial adoption
of test driven development: a systematic review. In: International Conference on
Software Testing, Verification and Validation, pp. 337–346. IEEE, Berlin, Germany
(2011)

8. Causevic, A., Shukla, R., Punnekkat, S., Sundmark, D.: Effects of negative testing
on TDD: an industrial experiment. In: Baumeister, H., Weber, B. (eds.) XP 2013.
LNBIP, vol. 149, pp. 91–105. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38314-4 7

9. Fucci, D., Erdogmus, H., Turhan, B., Oivo, M., Juristo, N.: A dissection of the
test-driven development process: does it really matter to test-first or to test-last?
Trans. Softw. Eng. 43(7), 597–614 (2017)

10. Garousi, V., Felderer, M., Kuhrmann, M., Herkiloglu, K.: What industry wants
from academia in software testing?: Hearing practitioners’ opinions. In: Interna-
tional Conference on Evaluation and Assessment in Software Engineering, pp. 65–
69. ACM, Karlskrona, Sweden (2017)

11. George, B., Williams, L.: A structured experiment of test-driven development. Inf.
Softw. Technol. 46(5), 337–342 (2004)

12. Hammond, S., Umphress, D.: Test driven development: the state of the practice.
In: Smith, R.K., Vrbsky, S.V. (eds.) ACM Annual Southeast Regional Conference,
pp. 158–163. ACM, Tuscaloosa, Alabama, USA (2012)

13. Janzen, D., Saiedian, H.: Test-driven development concepts, taxonomy, and future
direction. Computer 38(9), 43–50 (2005)

14. Juristo, N., Moreno, A.M.: Basics of Software Engineering Experimentation.
Kluwer Academic Publishers, Dordrecht (2001)

15. Kou, H., Johnson, P.M., Erdogmus, H.: Operational definition and automated infer-
ence of test-driven development with Zorro. Ann. Softw. Eng. 17(1), 57–85 (2010)

16. Offutt, J.: Why don’t we publish more TDD research papers? Softw. Test. Verif.
Reliab. 28(4), e1670 (2018)

17. Pachulski Camara, B.H., Graciotto Silva, M.A.: A strategy to combine test-driven
development and test criteria to improve learning of programming skills. In: Tech-
nical Symposium on Computing Science Education, pp. 443–448. ACM, Memphis,
TN, USA (2016)

18. Raulamo-Jurvanen, P., Mäntylä, M., Garousi, V.: Choosing the right test automa-
tion tool: a grey literature review of practitioner sources. In: International Con-
ference on Evaluation and Assessment in Software Engineering, pp. 21–30. ACM,
Karlskrona, Sweden (2017)

19. Shelton, W., Li, N., Ammann, P., Offutt, J.: Adding criteria-based tests to test
driven development. In: International Conference on Software Testing, Verification
and Validation, pp. 878–886. IEEE, Montreal, QC, Canada (2012)

20. Spinellis, D.: State-of-the-art software testing. IEEE Softw. 34(5), 4–6 (2017)
21. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experi-

mentation in Software Engineering: An Introduction. Kluwer Academic Publishers,
Sweden (2000)

https://doi.org/10.1007/978-3-642-38314-4_7
https://doi.org/10.1007/978-3-642-38314-4_7

Evaluation of an Agile Maturity Model:
Empirical Evidences for Agility

Assessments

Adriana Corrêa Rodrigues and Rafaela Mantovani Fontana(B)

Federal University of Paraná, UFPR,
R. Dr. Alcides Vieira Arcoverde, 1225, Curitiba, PR 81520-260, Brazil

{adriana.rodrigues,rafaela.fontana}@ufpr.br

Abstract. Software process reference models (such as Capability Matu-
rity Model Integration – CMMI–DEV) have been used for years for soft-
ware process evaluation and improvement. However, when a team uses
agile methods for software development, these models hinder sustain-
ing agility in higher maturity levels. This is the reason why some agile
maturity models have been proposed in the last years. Although there are
some models suggested in literature, few studies actually evaluate these
models with real teams. The objective of this study is thus to evaluate an
agile maturity model – the Agile Compass – creating empirical results for
agile teams in the process improvement field. We conducted this research
with two field studies in two different agile teams: an ethnographic study
and a focus group. Our findings confirmed the need for empirical valida-
tion of academically–proposed models. The Agile Compass was effective
in creating a maturity picture for the teams, but both teams seemed to
prefer a more “objective” evaluation.

Keywords: Maturity model · Process improvement ·
Agility assessment · Agile software development

1 Introduction

Maturity models are used in software engineering with the aim to drive software
development processes improvement. This improvement means creating prod-
ucts with more quality, in a defined and predictable work process. Currently, the
family of standards ISO/IEC 330xx [1] and the Capability Maturity Model Inte-
gration for Development (CMMI-DEV) [2] are references to guide improvements
in software processes.

When a software development team uses agile methods, development process
tend to value – as the Agile Manifesto [3] states – individual and interactions
more than processes and tools; working software more than comprehensive docu-
mentation; customer collaboration more than contract negotiation and respond-
ing to changes more than following a plan. In this context, software improvement
initiatives may follow the traditional reference models, but with implications. As
c© Springer Nature Switzerland AG 2019
G. S. Tonin et al. (Eds.): WBMA 2018, CCIS 981, pp. 49–62, 2019.
https://doi.org/10.1007/978-3-030-14310-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14310-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-14310-7_4

50 A. Corrêa Rodrigues and R. Mantovani Fontana

traditional reference models use process definition and control to reach maturity
in software development, it usually implies that agility might be hindered in
higher maturity levels [4,5].

Some researchers have been proposing agile maturity models [6,8,10]. These
models adapt improvement guidelines to the values and principles stated by
agile methods. Although a number of models have been proposed with differ-
ent structures, only few of them are empirically evaluated [10] and we do not
know whether they are applicable in real teams. Even agility assessment models
proposed in industry have shown not to be effective on aiding agile adopters to
improve their agility [13].

Empirical evaluations, though, are essential for researchers to understand the
applicability of the solutions they propose and create agile maturity models that
effectively aid improving agility. These models should fit for the purpose of being
actually used in industry [11,13].

This study aims at evaluating one of the agile maturity models, the Agile
Compass, proposed by Fontana et al. [12]. The Agile Compass is a tool that
allows assessing maturity in agile software development teams without the need
of extensive process definition and control. It defines agile software development
maturity as a set of outcomes that are pursued by teams and the assessment is
performed with a check-list and meetings for discussion.

With the general objective of evaluating the Agile Compass, we defined three
specific objectives: to evaluate its efficacy to measure maturity, to evaluate the
utility of the model and to identify practitioners perceptions. Our results interest
to industry practitioners, as we show how to conduct an agility assessment in
two different ways. The findings also interest to academics, as we (1) applied
two research methods for an agile maturity model evaluation and (2) found
evidence about the issues that could be improved for the creation of new and
more practical agile maturity models.

This paper is organized as follows: Sect. 2 describes related work and Sect. 3
briefly describes the Agile Compass. Next, Sect. 4 describes our research app-
roach, Sect. 5 describes results and, finally, we discuss findings and conclude the
paper.

2 Related Work

Maturity models for agile software development have been proposed for years.
More than a dozen models are described by academic works [11] and, in industry,
tens of options may be found [7]. However, few of them are created based on
empirical work and even less of them have their assessment evaluated academi-
cally. It has been a concern in recent works to apply these models in real teams
and understand usages and advantages [13].

The evaluation of these models must be performed by in-depth studies, so
that assessed teams get observed and empirical results uncovered. The work
by Özcan-Top and Demirörs [14], for example, describes the application of the

Evaluation of an Agile Maturity Model 51

Software Agility Assessment Model (AgilityMOD). As a result, authors identi-
fied some necessary improvements such as redundancies, missing practices, and
excess of practices.

The study described by Gren et al. [15] evaluates the Agile Measurement
Index (SAMI), proposed by Sidky et al. [16]. The authors found out that,
although the SAMI model evaluated agility according to the number of prac-
tices adopted, teams use practices that are not related to agile principles and,
thus, this measurement may not be valid. They conclude that it is not easy
to assess agility with a quantitative measurement and that behavior evaluation
might give a better understanding of the agility situation in a team.

The model we chose to evaluate in this study does not provide a quantita-
tive measurement and also does not identifies practices adopted. Next section
describes how the Agile Compass [12] assesses agile maturity.

3 The Agile Compass

The Agile Compass is a model created with empirical data from nine different
agile teams, as described in Fontana et al. [12]. It defines agile maturity as a
search for outcomes. Teams may use different practices, techniques and methods
to pursue these outcomes.

The assessment is based on the evaluation whether the outcomes were accom-
plished by the team. Figure 1 shows the outcomes and the categories in which
they are organized.

The practices learning category comprises outcomes that teams pursue when
they decide to change the way they work. The team conduct category represents
how the team evolves behavior in the use of agile methods. The deliveries pace
shows how deliveries evolve as the team matures. The features disclosure cate-
gory comprises the outcomes pursued by teams as they evolve the way require-
ments are elicited. The software product category represents the outcomes teams
accomplish when they try to improve the software product. The customer rela-
tionship comprises outcomes pursued by teams when they implement practices
to improve their relationship with the customer and, last but not least, the
organizational support, represents the organization position on respect to agile
adoption.

For the assessment, each of these outcomes is described by a statement and
by two or three check-list items. The authors [12] propose that team members
evaluate together this check-list and discuss which outcomes have been par-
tially or fully accomplished. This discussion may also lead to a plan of action
for agility improvement. Figure 1 shows in gray the outcomes accomplished by
mature teams and next section describes our research approach to evaluate this
assessment method.

4 Research Approach

The objective of this research was to evaluate the Agile Compass as a maturity
assessment tool for agile software development teams. This study is a Design

52 A. Corrêa Rodrigues and R. Mantovani Fontana

Fig. 1. The Agile Compass outcomes and categories. Adapted from [12].

Science Research (DSR), which one of the objectives is to “evaluate an instanti-
ation of a designed artifact to establish its utility and efficacy (or lack thereof)
for achieving its stated purpose” [19, p. 425]. The designed artifact is the Agile
Compass to be evaluated in an ex-post evaluation in naturalistic settings (clas-
sification given by Venable et al. [19]).

Based on the guideline to evaluate efficacy and utility, the specific objectives
we defined were:

– Evaluating Agile Compass efficacy on assessing maturity;
– Evaluating Agile Compass utility on assessing maturity; and
– Evaluating team members perception on the tool usage.

We evaluated the Agile Compass Assessment in two teams. The methods
chosen to accomplish this objective were, in the first team, the ethnographic
study and, in the second team, the focus group.

Evaluation of an Agile Maturity Model 53

4.1 The Ethnographic Study

According to Bryman [17] an ethnographic study is an “observation research”.
When it is in a structured form, comprises “direct observation of behaviour and
the recording of that behaviour in terms of categories that have been dived
prior to the start of data collection” [17, p. 270]. Our observation in the first
team comprised an observation schema in which we watched the Agile Compass
Assessment meeting and reported the types of interactions among team members
every time it changed (without a fixed timebox). The coding we used were:

1. The team is discussing about the action plan to improve process;
2. The team is discussing whether a specific outcome was accomplished;
3. The team is discussing which practices they use to fill out an outcome;
4. Discussion related to the topic;
5. Discussions not related to the topic;
6. Critics among team members;
7. General lack of interest/tiredness/silence/confusion;

The observation schema was based on the suggestions given by Bryman [17]
and helped us identifying team behaviour during the assessment, as we did not
interfere in the dynamics of the discussions.

After the assessment meeting finished, we asked team members to answer a
questionnaire with questions to capture their perceptions about the tool. They
evaluated the following statements and marked their opinion, in a 5-point Likert
scale (“completely disagree”, “partially disagree”, “neutral”, “partially agree”
or “completely agree”):

– For efficacy evaluation:
• The Agile Compass represents effectively what is maturity for agile soft-

ware development
• The Agile Compass helps me understanding my team’s maturity in agile
• The Agile Compass enables the comparison of maturity between different

teams
– For utility evaluation:

• The Agile Compass helps my team to evolve practices towards maturity
• The Agile Compass helps my team to evolve behaviours towards maturity
• I could accomplish the same improvement results in other ways

4.2 The Focus Group

The focus group is a research method that aims at understanding how people
feel or think on respect to a matter, an idea, a product or a service [20]. This
method comprises five main characteristics: (1) a small group that (2) presents
certain properties, (3) that provide qualitative data, (4) in a focused discussion
(5) to help understanding a topic of interest.

These properties apply to our study, in the second studied team, in the
following way:

54 A. Corrêa Rodrigues and R. Mantovani Fontana

1. A software development team;
2. That use agile methods;
3. Which will attend to an Agile Compass Assessment session;
4. Guided and analyzed by the researcher;
5. To identify the tool’s efficacy and utility.

The steps for the execution of the focus group were defined according to the
work by Romain [21]: Preparation, Phase 1 and Phase 2. Preparation comprised
defining the protocol for the study, preparing necessary material (printed Agile
Compass check-lists, pens, etc) and setting the meeting schedule with the com-
pany. Phase 1 comprised a meeting in which we presented the Agile Compass for
team members, explaining each of the categories and outcomes, and each indi-
vidual filled out an Agile Compass checklist with his own opinion. In Phase 2, we
conducted a second meeting – the focus group – when all results from previous
phase were compiled, shown to all team members and, in a guided discussion,
they arrived to a consensus about the agility assessment. In Phase 2, we also
observed discussions using the structured schema described in the ethnographic
study, coding team behavior for each 3–5 min.

All meetings were recorded with participants authorization. The recordings
were used to remember specific points in the discussions. After the assessment
session, we asked team members to fill out the same evaluation form as the
ethnographic study, providing us a view of their perception about the tool.

4.3 Threats to Validity

This study is a qualitative research and, as such, presents specific validity and
reliability issues [17] that were addressed in our protocol in the following ways.
Regarding external reliability (the degree to which a study may be replicated),
we have based our protocol in scientific method literature and described our
research steps. On respect to internal reliability (the members of a research may
agree with results), we have created research reports after conducting the field
studies and presented them to key participants, so that they could verify whether
our conclusions met their perceptions.

Regarding internal validity (whether there is a good match between
researchers’ observations and theoretical ideas) and external validity (which is
the degree to which results may be generalized) we consider further field studies
may be performed to confirm or refute our findings.

5 Results

Our study was conducted with two different software development teams. The
first team worked in a Brazilian company that develops software for the govern-
ment sector, with about 1500 employees and 25 years in the market. The team
had 6 people. They were already using the Agile Compass to assess maturity in
the teams, and we conducted this study in their second assessment session.

Evaluation of an Agile Maturity Model 55

For the focus group, we contacted four different companies to perform the
study, but only one accepted, which is the second team. They worked in a multi-
national company with about 2000 employees in Brazil. The team developed
configurations in a human resources system, used by the company. The team
had 10 people, with 8 of them in Brazil and 2 of them in USA.

Next subsections present the results for each of the studies.

5.1 Agile Compass Observation: Ethnographic Study

As explained in Sect. 4.1, we observed an Agile Compass assessment session.
The session took 55 min, was guided by the team’s agile coach and we did not
interfere in the dynamics of the meeting (only solving some doubts about the
tool).

The method for conducting the assessment was created by their agile coach.
She created a spreadsheet with the Agile Compass check-list and, for each cat-
egory, for each outcome, she asked the team whether the check-list item was
verified in the team. The whole team responded together and they arrived to
a consensus at the time. They did not discuss improvements needed nor plans
of action because the company used the Agile Compass exclusively to measure
agility adoption.

This is the reason they created indicators. Each check-list item marked had a
value of 1. A fully accomplished outcome had a value of 3. Results were plotted
in a graphic that allowed the team to visualize its accomplished outcomes and
compare with other assessment sessions. Figure 2 shows the graphic created by
the team’s agile coach. The resulting assessment of the session we observed is in
orange line, compared with a previous session, green line, and mature outcomes
in blue bars.

Fig. 2. The result of the Agile Compass assessment in the first team. X axis shows
Agile Compass outcomes and Y axis the indicator from 0 to 3. Figure provided by the
team’s agile coach. (Color figure online)

Figure 2 shows that the team, in the moment of the session, had fully or par-
tially accomplished mature outcomes in the practices learning category and also
in the team conduct category (see first eight outcomes in X axis). They were still

56 A. Corrêa Rodrigues and R. Mantovani Fontana

on the way to get to mature outcomes on deliveries pace, as their deliveries still
got late (see next four outcomes). Regarding features discovery – represented by
next three outcomes on X axis, the team had partially accomplished the mature
outcome (requirements discovery). On respect to software product (next four
outcomes), almost all mature outcomes had been accomplished, and for cus-
tomer relationship and organizational support, mature outcomes had partially
been accomplished (last eight outcomes).

As we performed a structured observation, we made notes (using the codes
described in Sect. 4.1) to identify how the team used the session time. The team
spent 47% of the time with discussions whether an outcome was accomplished;
37% discussing practices they were using; and 4% of the time with related topics.
The other 5% was distributed among plan of action, other unrelated topics and
lack of interest.

During the observation, we also made notes on the issues discussed. We saw
they felt difficulties in understanding some statements in the Agile Compass
check-list and that some of the items they felt did not apply to the team (for
example, outcomes that they do not have control over, such as organizational
support). We also felt some embarrassment when exposing negative situations
(such as lack of management support).

On respect to how the team evaluated the Agile Compass session, their
responses to our questionnaire are shown in Fig. 3 (one of the team members
did not respond). We can observe that the majority of the team believes the
Agile Compass represents what is maturity in agile software development, helps
understanding team’s situation, helps comparison among teams and helps the
team to evolve practices and behavior. Nevertheless, they also state that these
results could be accomplished with other tools.

Agile Compass Efficacy, Utility and Team’s Perception: The findings
from ethnographic study have shown that the Agile Compass was effective on
allowing the maturity assessment in the team. Although there were some doubts
on the statements defined in the check-list, the team arrived to a consensus and
could define whether an outcome was accomplished or not. The graphic in Fig. 2
represents the agility assessment in the team. On respect to the utility, we could
see the tool being useful to assess maturity, but not to guide improvements, as
the team almost did not discuss on how to improve results. When we presented
the study report to the agile coach, she said that they were not using the Agile
Compass with this objective. They wanted a tool to measure agility and compare
teams. On respect to team perception, we observe a positive opinion about the
tool, approving its efficacy and utility.

5.2 Agile Compass Application: Focus Group Study

The main characteristic of the focus group is that it is guided by the researcher.
Thus, differently from the ethnographic study, we conducted the assessment in
this team, as suggested by the Agile Compass authors [12] and as applied in
Romain [21].

Evaluation of an Agile Maturity Model 57

Fig. 3. The evaluation of the first team on the Agile Compass (number of responses).

In a first meeting, we explained the Agile Compass and collected individual
team members forms. In these forms, they individually checked out the items
from the Agile Compass which they verified in their team. This section took
40 min. We then consolidated all responses in a single spreadsheet, with the same
layout as the Agile Compass, as shown in Fig. 4. In each cell (that represents an
outcome) we show which team members (P1, P2, P3, ...) marked an item.

In the second meeting, the two members located in USA did not participate.
In this session, we presented the spreadsheet with all members responses con-
solidated and, going through each one, we stimulated a discussion asking why
people marked a specific item, whether all the others agreed and, then finally
whether the outcome was accomplished. If the team did not see the outcome as
accomplished, it was left blank in the spreadsheet. If they agreed the outcome as
partially accomplished, it was set in light gray, and, if they found the outcome as
fully accomplished, it was filled in dark gray. We set an asterisk in the outcomes
considered mature, for the team to have a reference during the discussions. This
session took one hour.

The maturity situation of the team, in the moment of the session, is shown
in Fig. 4. We see here a team starting the agile transformation. On respect to
practices learning, outcomes had partially been accomplished, but discussions
showed the team was on the way to improve and fully accomplish them. On
respect to team conduct, the team was a “confident team” on the way to be an
“assertive team”. However, they still presented characteristics of a “responsive
team”, as this outcome was partially accomplished. Regarding deliveries, they
still got late – this is the situation shown by the fully-accomplished outcome
“expected frequent deliveries”. On respect to features disclosure, the team still

58 A. Corrêa Rodrigues and R. Mantovani Fontana

defined requirements in traditional ways, shown by the outcome “requirements
discovery” not even partially accomplished. Team focus on software product was
still maturing, as mature outcomes in this category were partially accomplished
(note the outcome “Awareness of failure” fully accomplished, which means the
team is aware that needs to improve). The team was experiencing a strong orga-
nizational support for the agile transformation, as mature outcomes had already
been accomplished for the categories customer relationship and organizational
support.

During the discussions, team members pointed out difficulties in filling the
check-list (some of them understood that they necessarily had to mark an item
for all outcomes) and misunderstandings on statements of the check-list. They
also discussed the practices they were using to set an outcome as accomplished
or not. They also mentioned they felt the need for a more “objective” way to
see the results, such as with indicators. Nevertheless, the team supervisor agreed
with the maturity situation we uncovered during the assessment session.

Fig. 4. Results for the Agile Compass assessment in Team 2.

From the codes we made notes during the structured observation, we have a
situation similar to the first team. Most of the time, the team spent discussing
whether a result was accomplished (41%). The team also pointed out practices
being used (27% of the time). Discussions related to plans of action and related to
the topic summed up 14%. We observed critics in the team (1%) and a significant
lack of interest (14%).

As in Team 1, we collected team members perceptions on the Agile Compass
as a tool for assessing maturity. Only five of the ten team members responded
to our survey. Figure 5 shows the results. Most part of the team have no opinion
whether the tool represents the maturity in agile software development. They are
divided on respect to the efficacy of the tool on helping the team to understand its
situation and on the utility to compare different teams. They agree the tool helps

Evaluation of an Agile Maturity Model 59

evolving team’s practices and behavior. We also see they are divided regarding
whether they could reach the same assessment results in other ways.

Fig. 5. The evaluation of the second team on the Agile Compass (number of responses).

Agile Compass Efficacy, Utility and Team’s Perception: The findings
from the focus group have shown that the Agile Compass could provide a matu-
rity picture of the team, but the assessment session needs some improvements, as
the team pointed out some check-list items they did not understand. Individual
evaluations of the tool show that they did not realize their maturity situation,
probably because they missed a quantitative indicator. Nevertheless, they found
the tool useful to stimulate discussions that may lead to improvements in prac-
tices and behavior. The lack of interest during the assessment session probably
shows that some team members were not willing to participate in the research.

6 Discussion

The objective of this research was to evaluate the Agile Compass as a maturity
assessment tool in agile software development teams. We evaluated Agile Com-
pass assessment sessions in two teams, using two different methods. For the first
team, we observed a session conducted by the team, through an ethnographic
study. For the second team, we invited them to participate in the research and
conducted a focus group for guiding the assessment session.

We found the tool was effective and useful on assessing maturity in the two
teams. We could draw a picture of their maturity situation and both teams
agreed the tool would help accomplish improvements in agile software develop-
ment. However both of them missed a quantitative approach to see their maturity

60 A. Corrêa Rodrigues and R. Mantovani Fontana

situation. Most agile maturity models, as shown in Fontana et al. [11], define
their assessment procedures by using quantitative indicators. The Agile Compass
approach is qualitative and both teams disliked this subjective approach. When
we performed the study, the first team had already created their own “transla-
tion” from the subjective evaluation of outcomes to a quantitative indicator, by
plotting results in a graph. The second team showed during the discussions that
would like to see a more “objective” picture of their maturity situation.

Although recent studies have shown difficulty in quantitatively measuring
agility [15], it seems that quantitative indicators are needed by practitioners.
Contextual and time-consuming assessments do not full-fill organizations needs
[13,15] and we, as academics, need to find light and quantitative ways to provide
a measurement for agility [22].

Other issues we observed in these field studies were the language and the pro-
cedure defined by the assessment tool. Both teams had doubts on understanding
some items in the Agile Compass. When designed artifacts are academically
proposed [19], researchers make efforts to evaluate the validity and reliability
of their research results. Nevertheless, researches that aim at having practical
findings may also be useful [19]. Although the Agile Compass had been academ-
ically validated [12], real practitioners usage pointed out other issues that must
be considered.

Related work in literature have been confirming the importance of empirically
evaluating agile maturity assessment models. Özcan-Top and Demirörs [9,14]
evaluate the model they purpose by verifying whether the agility assessment is
understood by participants and useful for improvement. They identified their
model was effective for its purpose and, as in our work, they also collected
the perception of the practitioners on improvements that could be made in the
model.

Another evaluation of an agile maturity model is presented by Gren et al.
[15]. They, on the other hand, found the evaluated model was not successful
on measuring agility. The model they evaluated considered the implementation
of practices to evaluate agility and they found it was not useful. They argued
that “teams can use agile practices without having them aligned with the agile
principles” [15, p. 40] and, thus, practices adoption does not measure agility
level. They concluded their study confirming the need to validate current agile
maturity models instead of proposing new ones [11,15].

These findings evidence the need for empirical studies validating academi-
cally created tools. Even though they have been scientifically tested, these tools
need to be refined by practitioners usage, as language and procedures for the
assessment are only tested in real settings.

7 Conclusions

This study aimed at evaluating an agile maturity assessment tool – the Agile
Compass. Two different teams had their assessment sessions evaluated, using
two empirical methods, the ethnographic study and the focus group.

Evaluation of an Agile Maturity Model 61

Findings have shown the tool was effective on evaluating team’s maturity,
but teams still pointed out the need for quantitative indicators for maturity
assessment. We also observed the importance of empirical studies to validate
academically created tools, to adequate language and usage procedures.

Our results are limited to the teams we studied, as a characteristic of qual-
itative and in-depth researches [17]. The study protocol should be replicated in
other teams with other contexts to confirm or refute our findings.

References

1. ISO/IEC - International Organization for Standardization/ International Electri-
cal Committee. ISO/IEC 33001:2015. Information technology - Process assess-
ment - Concepts and terminology (2015). https://www.iso.org/standard/54175.
html. Accessed July 2018

2. CMMI Product Team. CMMI for Development, Version 1.3 (CMU/SEI-2010-TR-
033). Software Engineering Institute, Carnegie Mellon University (2010). http://
www.sei.cmu.edu/library/abstracts/reports/10tr033.cfm. Accessed July 2018

3. Beck, K., et al.: Manifesto for Agile Software Development (2001). http://
agilemanifesto.org/. Accessed July 2018

4. Paulk, M.: Extreme programming from a CMM perspective. IEEE Softw. 18(6),
19–26 (2001). https://doi.org/10.1109/52.965798

5. Lukasiewicz, K., Miler, J.: Improving agility and discipline of software development
with the Scrum and CMMI. IET Softw. 6(5), 416–422 (2012). https://doi.org/10.
1049/ietsen.2011.0193

6. Schweigert, T., Nevalainen, R., Vohwinkel, D., Korsaa, M., Biro, M.: Agile maturity
model: oxymoron or the next level of understanding. In: Mas, A., Mesquida, A.,
Rout, T., O’Connor, R.V., Dorling, A. (eds.) SPICE 2012. CCIS, vol. 290, pp.
289–294. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30439-
2 34

7. Schweigert, T., Vohwinkel, D., Korsaa, M., Nevalainen, R., Biro, M.: Agile matu-
rity model: a synopsis as a first step to synthesis. In: McCaffery, F., O’Connor,
R.V., Messnarz, R. (eds.) EuroSPI 2013. CCIS, vol. 364, pp. 214–227. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39179-8 19

8. Özcan-Top, Ö., Demirörs, O.: Assessment of agile maturity models: a multiple case
study. In: Woronowicz, T., Rout, T., O’Connor, R.V., Dorling, A. (eds.) SPICE
2013. CCIS, vol. 349, pp. 130–141. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38833-0 12

9. Özcan-Top, Ö., Demirörs, O.: A reference model for software agility assessment:
agilitymod. In: Rout, T., O’Connor, R.V., Dorling, A. (eds.) SPICE 2015. CCIS,
vol. 526, pp. 145–158. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19860-6 12

10. Leppänen, M.: A comparative analysis of agile maturity models. In: Pooley, R.,
et al. (eds.) Information Systems Development: Reflections, Challenges and New
Directions, pp. 329–343. Springer, New York (2013). https://doi.org/10.1007/978-
1-4614-1951-5 27

11. Fontana, R.M., Albuquerque, R., Luz, R., Moises, A.C., Malucelli, A., Reinehr,
S.: Maturity models for agile software development: what are they? In: Larrucea,
X., Santamaria, I., O’Connor, R.V., Messnarz, R. (eds.) EuroSPI 2018. CCIS, vol.
896, pp. 3–14. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97925-
0 1

https://www.iso.org/standard/54175.html
https://www.iso.org/standard/54175.html
http://www.sei.cmu.edu/library/abstracts/reports/10tr033.cfm
http://www.sei.cmu.edu/library/abstracts/reports/10tr033.cfm
http://agilemanifesto.org/
http://agilemanifesto.org/
https://doi.org/10.1109/52.965798
https://doi.org/10.1049/ietsen.2011.0193
https://doi.org/10.1049/ietsen.2011.0193
https://doi.org/10.1007/978-3-642-30439-2_34
https://doi.org/10.1007/978-3-642-30439-2_34
https://doi.org/10.1007/978-3-642-39179-8_19
https://doi.org/10.1007/978-3-642-38833-0_12
https://doi.org/10.1007/978-3-642-38833-0_12
https://doi.org/10.1007/978-3-319-19860-6_12
https://doi.org/10.1007/978-3-319-19860-6_12
https://doi.org/10.1007/978-1-4614-1951-5_27
https://doi.org/10.1007/978-1-4614-1951-5_27
https://doi.org/10.1007/978-3-319-97925-0_1
https://doi.org/10.1007/978-3-319-97925-0_1

62 A. Corrêa Rodrigues and R. Mantovani Fontana

12. Fontana, R.M., Reinehr, S., Malucelli, A.: Agile compass: a tool for identifying
maturity in agile software-development teams. IEEE Softw. 32(6), 20–23 (2015).
https://doi.org/10.1109/MS.2015.135

13. Adalı, O.E., Özcan-Top, Ö., Demirörs, O.: Evaluation of agility assessment tools:
a multiple case study. In: Clarke, P.M., O’Connor, R.V., Rout, T., Dorling, A.
(eds.) SPICE 2016. CCIS, vol. 609, pp. 135–149. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-38980-6 11

14. Özcan-Top, Ö., Demirörs, O.: Assessing software agility: an exploratory case study.
In: Mitasiunas, A., Rout, T., O’Connor, R.V., Dorling, A. (eds.) SPICE 2014.
CCIS, vol. 477, pp. 202–213. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-13036-1 18

15. Gren, L., Torkar, R., Feldt, R.: The prospects of a quantitative measurement
agility: a validation study on an agile maturity model. J. Syst. Softw. 107, 38–
49 (2015). https://doi.org/10.1016/j.jss.2015.05.008

16. Sidky, A., Arthur, J., Bohner, S.: A disciplined approach to adopting agile prac-
tices: the agile adoption framework. Innov. Syst. Softw. Eng. 3(3), 203–216 (2007).
https://doi.org/10.1007/s11334-007-0026-z

17. Bryman, A.: Social Research Methods, 4th edn. Oxford University Press, New York
(2012)

18. Schwartzman, H.B.: Ethnography in Organizations. Qualitative Research Methods
Series, vol. 27. Sage Publications, Thousand Oaks (1993)

19. Venable, J., Pries-Heje, J., Baskerville, R.: A comprehensive framework for eval-
uation in design science research. In: Peffers, K., Rothenberger, M., Kuechler, B.
(eds.) DESRIST 2012. LNCS, vol. 7286, pp. 423–438. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29863-9 31

20. Krueger, R.A.: Focus Groups: A Practical Guide for Applied Research, 5th edn.
Sage Publications, Thousand Oaks (2015)

21. Romain, G.: Characterizing the presence of agility in large-scale agile software
development. Masters thesis presented in the Faculty of Computer Science of the
Pontifical Catholic University of Rio Grande do Sul (PUCRS) (2015)

22. Buglione, L.: Light maturity models (LMM): an Agile application. In: Profes 2011:
Proceedings of the 12th International Conference on Product Focused Software
Development and Process Improvement (2011)

https://doi.org/10.1109/MS.2015.135
https://doi.org/10.1007/978-3-319-38980-6_11
https://doi.org/10.1007/978-3-319-38980-6_11
https://doi.org/10.1007/978-3-319-13036-1_18
https://doi.org/10.1007/978-3-319-13036-1_18
https://doi.org/10.1016/j.jss.2015.05.008
https://doi.org/10.1007/s11334-007-0026-z
https://doi.org/10.1007/978-3-642-29863-9_31

Strategies to Increase Customer Value in Agile
Software Development

Fernando Sambinelli(&) and Marcos A. F. Borges

University of Campinas, Limeira, SP 13484-332, Brazil
180172@g.unicamp.br, marcosborges@ft.unicamp.br

Abstract. Nowadays, the software industry is widely applying agile methods.
However, while agile principles emphasize the development of software that
delivers “customer value” as a key determinant to success in new products and
service designs, there are still a few studies that demonstrate how this occurs in
practice. In this study, strategies to increase customer value are discussed in
literature, especially in the context of Agile Software Development. The results
of systematic literature review were validated and added to an industrial
inventory. Based on these investigations, 15 strategies to increase customer
value have been identified and detailed at the level of approaches, techniques,
tools and metrics. The results obtained reinforce the complexity and the need for
new empirical studies on the subject, mainly to investigate the key success
factors and main challenges for the adoption of these strategies, as well as the
positive and negative impacts caused by their implementations in practice.

Keywords: Agile methods � Customer value � Product development

1 Introduction

In the first principle of the Agile Manifesto [1], which represents the fundamental
milestone of Agile Software Development (ASD), it is possible to observe the priority
given to customer satisfaction through the early and continuous delivery of “valuable
software” [2]. Likewise, the Lean Thinking principles, which originated at Toyota and
influenced the ASD, point out the need to increase customer value, eliminating the
waste of conducting activities or processes that do not generate value [3].

The concept of “value” is referenced in literature as complex, difficult to under-
stand, conceptualize and model [4, 5]. It has different meanings in specific contexts and
there are many ways of describing it [6]. Neither is it a static concept, but it evolves
constantly and is influenced by the experiences and needs of customers. Despite these
challenges, a deeper view of how value is perceived and created would allow these
processes to be more effective [7, 8]. The customer value takes into account the
perspective of a company’s customers, considering what they want and believe to
acquire by buying and using a product or service [9].

The primary goal of any business organization is to create customer value. Deliv-
ering this value and maintaining the flow of customer value in a sustainable and ever-
growing form has been the focus and need of most companies worldwide [10] -
including in the software industry [11]. However, the challenges of the practical

© Springer Nature Switzerland AG 2019
G. S. Tonin et al. (Eds.): WBMA 2018, CCIS 981, pp. 63–79, 2019.
https://doi.org/10.1007/978-3-030-14310-7_5

http://orcid.org/0000-0001-8653-027X
http://orcid.org/0000-0003-3580-5178
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14310-7_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14310-7_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14310-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-14310-7_5

application of strategies to increase customer value are currently present in the devel-
opment of software with low value and underutilized products [12]. Research has
reported, in the context of the introduction of agile methods, in the early 2000s that 64%
of user-requested features in internal software development projects (non-commercial
products) were never, or rarely, used [13]. In some more recent case studies, wastes of
up to 50% of developers’ time with activities that did not generate any customer value
and the development of functions that were not necessary or of little customer value
were identified [14]. In addition, decision-making about which software products are to
be implemented in companies are often based on ineffective criteria, such as personal
opinion of members of executive committees or influenced by the person with the
highest salary [15]. In ASD, despite the priority given to the construction of software
delivered by customer value, the agile development processes do not contemplate any
specific strategy to follow the delivery results of customer value, allowing each team to
choose whether or not to adopt any given strategies to achieve this goal.

Many studies have been published in recent years related to ASD, but their con-
tributions address specific or comparative agile methods with other development
processes [16]. However, few studies have been devoted to understanding the concept
of customer value in a comprehensive and detailed way in software development [17,
18]. The studies have not yet identified which strategies are used to increase customer
value among software development companies that adopt ASD, they only mention the
creation of value ASD brings [18]. However, somehow these companies have been
practicing and pursuing strategies to extract the maximum possible value from their
products and services to their customers, in order to continue existing in an environ-
ment of constant market changes and global competition [19].

The research reported in this article was carried out in order to accumulate current
knowledge about several strategies to increase customer value in the context of ASD
and to identify themes for future research. The question of research (QR) addressed in
this work is: How are the strategies currently practiced in the software market to
increase customer value in ASD? The QR was detailed in three other questions:

• QR1: What are the main characteristics of the strategies to increase the customer
value considered by agile software development teams?

• QR2: What are the main approaches, techniques and tools used by agile teams to
maximize customer value?

• QR3: What are the customer value metrics in use by agile teams?

The study focused on two main cores: an extensive literature analysis and an
industrial inventory. One of the main objectives of the literature analysis was to dis-
cover the theoretical models and strategies to increase customer value in software
industry. The results of the literature review were systematically evaluated, synthesized
and presented [20]. The industrial inventory was based on experience reports presented
at the main agile global conferences provided by the Agile Alliance1. Thus, the study

1 A global non-profit organization, founded by some of the consignees of the Agile Manifesto as well
as some additional people, promoter of international agile conferences and supporter of several
initiatives of the agile communities. Website at: http://www.agilealliance.org.

64 F. Sambinelli and M. A. F. Borges

http://www.agilealliance.org

provides extensive knowledge about what the academic (research) is proposing and the
current state of these strategies in the industry.

This paper was organized as follows: Sect. 2 is a summary of the main theoretical
interpretations for customer value present in literature; in Sect. 3, the research setting is
described; Sect. 4 presents the outcomes of the literature analysis and industrial
inventory; Finally, in Sect. 5, the results of this study as well as its limitations are
discussed.

2 Models of Customer Value

The value management literature organizes the concept of value into two main cate-
gories: customer value and stakeholder value [21]. The customer value takes into
account the perspective of a company’s customers, considering what they want and
believe to acquire by buying and using a product or service [9]. The concept of value to
stakeholders analyzes the value created by a product or service beyond the limit of the
business-to-customer relationship and may also consider: suppliers, shareholders,
employees, regulatory agencies and many other stakeholders. These multiple per-
spectives added to the customer’s vision can be analyzed to increase the delivered
value [9]. However, the focus on customer value is pointed out as primary and a
priority to all stakeholders, since it is the basic premise for developing and maintaining
a new product or service [22, 23]. The customer value is the source of all other values
[9, 24].

The work of [9], depicted in Fig. 1, synthesizes the theoretical customer value
models in three main groups: value components models (VCM), benefit-cost ratio
models (BCM) and means-ends models (MEM). In VCM, the main elements used in
value studies, according to [25], are classified as follows: value of endearment or
“desire”, value of exchange and utility value. The author states that each decision to
purchase products or services includes one of these values cited, or a combination of all
these elements. The estimated value invokes the buyer’s desire to own because of the
property (exchange value) and the exchange value explains why the product interests
the buyer, how and when the buyer will use the product (utility value). The utility value
describes the performance and physical characteristics of the product. In VCM, the
emphasis of the customer value is on the functions and features that a product or
service can offer. An example of VCM known in literature is the Kano Model [26].

In BCM, customer value is defined as the difference between the customer per-
ceptions of benefits received and sacrifices incurred in [27]. Customer benefits include

Fig. 1. Theoretical models of CV identified as [9].

Strategies to Increase Customer Value in Agile Software Development 65

tangible and intangible attributes of the product or service offering, and the sacrifice
component includes both monetary and non-monetary factors, such as the time and
effort required to acquire and use the product [9], for example. Similarly, [28] defines
customer value as the relationship between customer satisfaction and the resources
needed to satisfy it. These needs are many and diverse, and a balance is needed
between their satisfaction and the resources invested. The fewer the resource used or
the greater the satisfaction of the need, the greater the value.

MEMs are based on the assumption that customers acquire and use products or
services to achieve favorable ends. This view is prevalent in consumer behavior lit-
erature, in particular, in which customer value is defined in terms of personal values,
mental images or cognitive representations underlying clients’ needs and goals [29].
In MEM theory, according to [27], the links between product attributes, the conse-
quences produced by consumption and the personal values of consumers underlie their
decision-making processes. Means are products or services, and ends are personal
values considered important to consumers. In MEMs, a product or service represents “a
complex set of value satisfactions” for buyers, who attribute value to the product or
service according to the perceived ability to meet their needs [30]. Another important
point of interpretation in the MEM is that the customer value that matters most is the
value in the customer’s experience and not the value in the product [31–33]. Several
researchers argue that the resulting customer experience is the essence of value
proposition [34].

In addition to the three fundamental groups of customer value models, which have
been described by [9], there are at least three complementary viewpoints from which
customer value might be interpreted, namely: the value exchange model [35], the value
buildup model [36, 37] and the dynamics of customer value [38]. None of these
different complementary views is able to reflect the richness and complexity of the
customer value itself, so [9] propose a integrated model of these complementary
groupings in order to give more freedom in the bid value decision.

3 Research Setting

The processes of literature analysis and industrial inventory were based on the
guidelines of [20] for performing systematic literature review (SLR), with two
researchers conducting these processes. A review protocol was designed to guide the
work and consists of three phases: (I) review planning in which objectives were
established and the review protocol was designed; (II) execution of literature analysis,
or industrial inventory; (III) reports on the results. The sections below describe the
search settings during the first two phases of the protocol, focused on SLR planning
and execution.

3.1 Literature Analysis

The literature analysis study presented here is focused on bringing together current
knowledge on strategies to increase customer value in the context of the ASD.

66 F. Sambinelli and M. A. F. Borges

To ensure the relevance and validity of the results, research was carried out in
studies published during the years 2012–2017. The search was conducted using six
electronic multidisciplinary databases specialized in the field of computer science and
business administration: ABI/Inform (ProQuest), Academic Search Premier (EBSCO),
Emerald Journals (Emerald), Science Direct (Elsevier), ACM, and IEEE Xplore.
Table 1 shows the search terms and electronic databases used in the literature analysis.
Key words related to customer value were used: value creation, business value and
customer value. In terms of the search we chose to execute two search strings, one that
used a generic term for ASD (“agile”) and another containing the specific variations of
the main agile methods such as “scrum” and “extreme programming”. The term “lean”
was applied and considered as an option of variation of agile method in order to cover
possible differences of theoretical interpretation between Lean Software Development
and ASD [39, 40]. We did not search for studies such as prefaces, article summaries,
general presentations, interviews, short articles, special presentations or tutorials: these
were excluded from the analysis.

A data extraction form is designed to collect individual information from studies.
Ten criteria for quality selection and evaluation were also created to ensure the ade-
quate quality of the studies that were finally included in the research material.
Examples of inclusion criteria are: study focus, date of publication and clarity of
results. The quality assessment generated a score based on the following items:
description of the objective and context, research projects, data collection and analysis,
justification of findings and conclusions, applicability of results, reduction of threats
and use of references. The quality assessment forms were modified for different types
of study included in the analysis: quantitative empirical studies, qualitative empirical
studies, non-empirical studies and experience reports.

The steps applied to the literature review process are summarized in Fig. 2. A total
of 79 studies were evaluated, of which 60 were accepted and included in the research
material. The rest of the studies were excluded from the research material because they
did not exceed the minimum quality threshold (at least half of the maximum score in
the quality assessment). After applying all inclusion and exclusion criteria, 16 journal

Table 1. Search terms and databases for SLR.

Termos de Busca Base de Dados

(‘value creation’ OR ‘business value’ OR ‘customer value’)
AND (agile AND ‘software development’)

(‘value creation’ OR ‘business value’ OR ‘customer value’)
AND (‘scrum’ OR ‘extreme programming’ OR ‘lean’ OR
‘crystal’ OR ‘feature driven development’ OR ‘dynamic systems
development’ OR ‘adaptive software development’ OR ‘kanban’)
AND (‘software development’)

ABI/Inform (ProQuest)
Academic Search
Premier (EBSCO)
Emerald Journals
(Emerald)
Science Direct (Elsevier)
ACM
IEEE Xplore

Strategies to Increase Customer Value in Agile Software Development 67

articles and conference articles were considered relevant as they focused on strategies
to increase customer value in the ASD. No experience reports were identified.

3.2 Industrial Inventory

The industrial inventory focused on gaining a better understanding of the adoption of
strategies to increase customer value in the ASD and to identify how these strategies
are implemented in practice. To achieve these objectives, a secondary data analysis was
performed on a set of experience reports in which the application of the strategies to
increase customer value in the ASD is clearly evident.

To obtain the necessary secondary data, the related experience reports published at
major agile conferences between 2012 and 2017 (including the XP Conference and
Agile Conference series) that are publicly available online by the Agile Alliance were
collected. The keyword “value” was used as the search term. This more generic form of
the term was chosen because of the lack of a more robust search engine in the Agile
Alliance’s work base, which allowed for the concatenation of terms and operators. This
strategy resulted in a larger sum of identified work than would likely occur if the search
engine allowed more specific filters. However, this did not affect the final result of this
survey. It only increased the necessary work effort.

As in the literature analysis, a data extraction form is designed to collect infor-
mation individually, from the reports. Selection and evaluation criteria were also cre-
ated to ensure the appropriate quality of the experience reports that were finally
included in the research material. Inclusion criteria were, for example, study focus, date
of publication, and clarity of results. The quality assessment included the following
items: description of the objective and context; set of observations; analysis of
observations; justification of the findings and conclusions; applicability of results and
use of references.

The steps for analyzing the secondary data based on experience reports are
described in Fig. 3. In the search process, 78 experience reports were identified. After
applying the inclusion and exclusion criteria, including quality assessment, 8 agile
conference experience reports were found to be relevant because they focused on the
proposed scope for this industrial inventory and were therefore included as secondary
studies for analysis.

Fig. 2. Steps for literature review process.

68 F. Sambinelli and M. A. F. Borges

4 Results

In this section, we present the strategies to increase customer value in the ASD found in
literature analysis and in the industrial inventory. The synthesis of the components of
these strategies was organized in three subdivisions: characteristics of strategies;
approaches, techniques and tools; and customer value metrics.

4.1 Characteristics of Strategies

The theoretical models of value definition contain a broad set of perspectives on this
subject. The three fundamental groupings of these models, proposed by [9] and
described in Sect. 2, are used to interpret the main characteristics of strategies to
increase customer value. They are observed, directly or indirectly, in all articles
selected for this study. The strategies identified, in some cases, may be associated with
more than one theoretical model. The model to which it was more associated was
chosen.

Table 2 summarizes a first set of papers identified in the literature analysis, which
use the VCM perspective to justify and interpret customer value [41–46]. In this way, it
is the functionalities of the software that have the customer value. They are the ones
that will awaken in the customer the desire to have that product or service. It will be for
them that the value of exchange and utility will be evaluated. Therefore, the prioriti-
zation of software requirements has to play a key role as a strategy to increase customer
value. Only product features that have the highest customer value must be developed or
at least should be built before the lower value functionalities. Consequently, the
planning of releases for software versions should consider this order of priority. On the
other hand, the challenges to achieve this goal are mainly in the interdependencies of
the requirements and the teams involved in building the solution. In addition, the
dissemination of project measurement information is described by [46] as fundamental
to promote in the customers a greater awareness of the products and to empower the
software development teams, through the increase of transparency, resulting in the
increase of the customer value of the products created.

The interpretive basis of customer value in the BCMs considers in particular the
relationship between the benefits perceived by customers and the costs (or sacrifices)
needed to obtain them. They appear in a second group of literature analysis articles [14,
47–50], which are described in Table 3. The papers discuss strategies and approaches
to planning and managing the benefits and costs of software products. They describe

Fig. 3. Steps for literature review process in experience reports.

Strategies to Increase Customer Value in Agile Software Development 69

ways of measuring the benefits, especially the natural difficulty of quantifying them,
and discuss some cultural changes necessary to make concern about customer value
relevant to organizations [47].

Finally, in the last grouping of the literature analysis are the works aligned with the
MEM perspective [51–54]. MEMs are based on the assumption that customers pur-
chase and use products or services to achieve favorable ends. Thus, a product or service
represents a complex set of value satisfactions for buyers who attribute value to the

Table 2. Literature analysis: strategies based on VCM.

Strategy Implementation of the strategy Article

Prioritize features to be
developed

- Automate the prioritization of requirements to
reduce conflicts between stakeholders

[41]

- Recommend to the representative of the customer
(product owner) a functional prioritization that
reduces the interdependence between the
requirements

[42]

- Team should seek to understand the technical
dependencies and risks associated with each
functionality, relate the guidelines obtained by a
previous business plan, consider the context of
outsourcing, and then plan for development

[43]

Plan the roadmapping
considering value

- Multifunctional team must prioritize the
functionalities of software versions based on a deep
understanding of customer needs, not strictly the
product, and a long-term vision

[44]

Reduce dependencies
between multiple teams

- Team must seek synchronization between teams
and product optimizations that reduce cycle time for
the customer

[45]

Increase the visibility of
products and services

- By disseminating information on project
measurements, promoting customer awareness and
empowering development teams

[46]

Table 3. Literature analysis: strategies based on BCM.

Strategy Implementation of the strategy Article

Seeking to maximize the result of the
relation between benefit and cost

- Strictly quantify benefits, not
just costs
- Improve efficiency in cost management

[48,
49]
[14]

Consider in organizational performance
assessments the value created for
customers through the products

- Promote together with leadership a
change in the organizational culture on
the perception of how value is created

[47]

Seek increased client satisfaction - Junction of the organizational culture
of agility and maturity of processes

[50]

70 F. Sambinelli and M. A. F. Borges

product or service according to the perceived ability to meet their needs in their context
of use. In this group of literature analysis articles, continuous experimentation is pre-
sent in all works as a strategy to increase customer value. Continuous experimentation
refers to constant testing of the value of products as an integral part of the development
process in order to produce more customer value. In this approach, product features are
viewed as hypotheses to be tested by experimentation with customers.

The work of [16] uses the Software Value Map (SVM) developed by [55] to
understand how agile teams and product owners interpret and prioritize value in
development projects. In the SVM, the elements of the VCM are present, such as, to
cite a similar case, the valorization of functionalities and non-functional requirements,
as well as the elements of the BCM such as, in a similar way, the revenues and costs of
the product, hedonic and competitiveness. [16] used sixteen aspects of value to rep-
resent four perspectives of value, not restricting the view of the client. The researchers
concluded that “delivering the project on schedule” is the highest priority aspect in the
ASD. However, depending on the market segment, the value order of priority may
change. In this study, the users were not consulted, which could bring a greater
understanding on this topic. Table 4 describes the characteristics of the strategies based
on MEM and SVM identified in the papers selected for analysis of the literature.

The selected experience reports present some characteristics and implementations
on strategies to increase customer value in the ASD. The three theoretical models
groups proposed by [9], VCM, BCM, and MEM, could be identified in the studies

Table 4. Literature analysis: strategies based on MEM and SVM.

Strategy Implementation of the strategy Article

Apply continuous cycles of
experimentation and learning to find
out what customers want. (MEM)

- Collect feedbacks directly from
customers. Observe the application
usage by customers

[52]

- Flexible the productive process to
accommodate changes resulting from
the feedbacks of use of the applications.
Monitor the technological and
behavioral changes of the client

[51]

- Seek to know deeply the customers
and the domain of the application. Find
suitable metrics for customer value

[54]

- Make decision about product aimed at
data and information

[53]

Focus on the most important aspects of
value for the customer’s market
segment. (SVM)

- Identify the most important value
aspects and apply the most relevant
agile practices to enable them. Be aware
that the customer value of software can
be interpreted by the team differently
from the client

[16]

Strategies to Increase Customer Value in Agile Software Development 71

[56–59] as was also found in the literature review. Table 5 describes the strategies
identified. In some reports, highlighted in Table 6, however, the strategies relate the
implementation of the people management [60], project management [61, 62] and
strategic management [63] with the increase in customer value.

A new grouping was suggested to classify and analyze some experience reports:
managerial emphasis. All of them share the idea of applying management as a means of
increasing customer value. In Table 6 are grouped the experience reports that evi-
denced the managerial emphasis to increase the customer value. The report [61]
comments on the lessons learned from the introduction of a pre-project phase, applied
during the sales process that resulted in greater project management effectiveness and,
consequently, increased customer value. Improvement in project management, as a
means to maximize customer value, is also cited by [62], which describes the effects of
Kanban technique application and related metrics. [60] reports on some experiments
conducted to study the consequences of frequent and planned changes to the members
of agile teams, named by the author as dynamic reteam. According to the report, there
was a positive effect on the increase of the motivation of the people and in the orga-
nizational learning and, consequently, they were able to increase the customer value of
the products. In the experience report of [63], the creation of a visibility room and a
structured project monitoring and review process resulted in a better strategic alignment
of demands and an increase in product customer value.

Table 5. Experience reports: approaches to increase customer value.

Theory Strategy Implementation of the strategy Article

VCM Prioritize the most useful features
to be developed and validated
frequently by the client

- The team should apply the Lean
Thinking principles associated
with some agile techniques to
assist in the prioritization of the
functionalities

[56]

BCM Seek the maximum functional and
non-functional quality of the
product, without leaving aside,
the management of the invested
resources

- Project leaders must consistently
perform product requirement
management

[57]

MEM Apply continuous cycles of
experimentation and learning to
find out what customers want

- Collecting of feedbacks directly
from customers. Observe the
application usage by customers

[58]

- Conduct continuous product
experimentations guided by
single value propositions

[59]

72 F. Sambinelli and M. A. F. Borges

4.2 Approaches, Techniques and Tools

From the literature analysis and from the industrial inventory, the results could be
summarized using a high-level perspective in relation to the approaches, techniques,
and tools used by the strategies to increase customer value in the context of the ASD.
Figure 4 shows a mental map with the organization of articles and experience reports
by the value definition models proposed by [9] and by the conceptual emphases of the
approaches, techniques and tools identified.

Figure 4 shows that agile techniques, ceremonies, or artifacts, in their classic forms
or adaptations, are recommended in all value definition models. Depending on the
objective pursued by the strategy, specific agile techniques or rituals are used as a
priority, for example in MEM strategies, the importance of short development cycles
(sprints) to obtain user feedback is reinforced [51, 54]. Among the strategies associated
with BCM, the agile splitting user stories technique was used to factorize the
requirements in order to facilitate the prioritization of the higher customer value
functionalities [42]. This finding, on one hand, corroborates with the results of the
study [16] that found out that there is a variable influence of each agile practice in
relation to the increase in customer value. On the other hand, they are always associated
with other techniques and tools that are not classified as agile or, in some cases,

Table 6. Experience reports: managerial emphasis as strategy to increase customer value.

Theory Strategy Implementation of the strategy Article

Project
management

Improve the efficiency of
project management (time,
cost and scope)

- Introduce a pre-project phase,
involving the potential customer
and the development team to
improve the efficiency of project
management. The new phase
seeks to explain ASD to the
potential customer, “discover the
product” and understand the
“psychology” of the customer.
Improved project management
results in increased customer
satisfaction and, consequently,
increases the customer value

[61]

Improve predictability and
productivity

- Cycle time management and
reduction of work in progress
increases the delivered customer
value and speed of delivery

[62]

People
management

Increase the motivation of
development team members
and organizational learning

- The customer value of software
products is made feasible and
improved through motivated and
constantly learning people

[60]

Strategic
management

Increase the strategic
alignment of software
development projects

- The strategic alignment of all
the company’s projects
maximizes the customer value

[63]

Strategies to Increase Customer Value in Agile Software Development 73

adaptations of classical agile practices [45]. Some techniques of Lean Thinking were
found among the works, among them, for example, Kanban [62], map value flow [56]
and minimum feasible product [52, 59].

4.3 Customer Value Metrics

Some metrics to quantify the customer value were found in literature analysis and
industrial inventory concentrated on few publications. A total of 20 metrics were
summarized and detailed in relation to their objectives in Table 7. The metrics found
are derived from the strategies proposed in these publications. Therefore, in some
cases, they may be associated with more than one theoretical model. The model more
strongly associated with each strategy was chosen. The articles related to the MEM
emphasized the importance of the metrics, mainly, to help in the interpretation of the
experiments in their use of the products by the consumers, that is, the value recognized
by them. However, the work was not explicit in indicating which metrics were
employed. In Table 7 we used the metric identification structure of the Goal-Question-
Metric approach [64] to give greater clarity of the objectives of each metric proposed
by the respective authors.

In most of the selected experience reports, as was found in the literature analysis, no
customer value metrics were found. Only two reports [61, 62], which emphasized the
improvement of project management as a strategy to increase customer value, report
metrics inherent to the managerial approach given by the authors. [61] indirectly
describe time and cost control without citing specific metrics. The author indicates the
volume of functionality delivered to the client as a project management efficiency
metric. The experience report of [62] points to metrics related to Lean Thinking and
Kanban such as cycle time, number of functionalities in development (working in
progress), and system throughput rate, however, both reports do not detail the mea-
surement process, nor how the measurements on the value delivered to customers are
applied. Therefore, it is difficult to confirm the effectiveness of the results of the
strategies applied to increase customer value, whether positive or negative.

Fig. 4. Map of approaches, techniques and tools identified

74 F. Sambinelli and M. A. F. Borges

5 Conclusions and Limitations of the Study

As a general answer to the research question that addresses this study: “How are the
strategies currently practiced in the software market to increase CV in the ASD?”, it
was concluded that no study could be found that indicated clearly and deeply what are
the strategies to increase customer value in the ASD. Although some studies provide

Table 7. Customer value metrics in the context of the ASD.

Theory Purpose of the
measurement

Question to be answered Metric Article

VCM Give flexibility to
prioritize the
features with
higher customer
value

What is the level of
interdependence of the
product features?

- Total dependence for
functionality

[42]

Reduce delivery
time for features
with higher
customer value

How long does it take,
on average, to deliver a
feature requested by the
user until it’s available
for use?

- Cycle time [45]

BCM Manage the
customer value of
the product under
development

How are we delivering
customer value?

- Total benefit and cost
points, benefit and cost
performance index,
benefit x cost index,
return on investment and
productivity of benefit
points

[48, 49]

Increase the
performance of
delivery of
customer value

How effective are we at
increasing customer
value?

- Productivity of value
points, operating
expenses by period,
amount of work in
progress, cycle time,
number of critical
defects per period,
average time to stabilize
a release and % of the
estimated scope
delivered

[14]

MEM Enhance product
customer value

Does the user recognize
the value delivered?

- Metrics based on
consumer feedback,
collected during trials
and established by teams
according to context.
They should describe the
behavior of the
consumer during the use
of the product

[51, 53, 54]

Strategies to Increase Customer Value in Agile Software Development 75

initial contributions as recommendations and results of some strategies, a key impli-
cation for research is that further research is still needed, especially through empirical
studies. It was found that, with very few exceptions, most of the studies analyzed
consider the increase of customer value a high-level perspective. The limitations of the
studies analyzed in relation to these strategies implied little or no knowledge about the
effective results of their adoptions by the agile teams. Added to this, the lack of
customer value measurement methods and metrics prevented any evidence of resulting
gains.

It was possible to identify some elements and characteristics that describe the main
strategies to maximize customer value in use by the software industry today. The main
points identified during this study were organized into three categories: (1) character-
istics and strategies of the strategies; (2) approaches, techniques and tools; (3) customer
value metrics. However, when compared to the possibilities indicated by the customer
value theories in literature, the initiatives are limited and little explored, possibly due to
the lack of more empirical knowledge of the key factors for successful deployments
and the real impacts they can provide. These issues present themselves as opportunities
for future research.

Although the industrial inventory has been conducted from a diverse set of com-
panies, their external validity should be discussed in the interpretation of the study
results. Some companies were actively reporting their experiences, while many com-
panies associated with the Agile Alliance did not contribute any reports. The compa-
nies that provided the material of the reports of experiences are large companies and
represent a specialized knowledge in their sectors. However, the results can still be
validated and specified using a larger sample of companies. Despite the above, we were
able to discover elements and characteristics of the strategies to increase customer
value and to find some evidence of its applications in agile teams.

References

1. Beck, K., et al.: O Manifesto para Desenvolvimento Ágil de Software. http://www.
manifestoagil.com.br/

2. Conboy, K.: Agility from first principles: reconstructing the concept of agility in information
systems development. Inf. Syst. Res. 20, 329–354 (2009)

3. Poppendieck, M.: Principles of lean thinking. IT Manag. Sel. 18, 1–7 (2011)
4. Andreu, L., Sánchez, I., Mele, C.: Value co-creation among retailers and consumers: new

insights into the furniture market. J. Retail. Consum. Serv. 17, 241–250 (2010)
5. Lin, C., Sher, P.J., Shih, H.: Past progress and future directions in conceptualizing customer

perceived value. Int. J. Serv. Ind. Manag. 16, 318–336 (2005)
6. Salleh, C.N., Yahya, Y., Alaa, M., Altemimi, H., Mukhtar, M.: Value co-creation:

embedding the value elements in critical success factor for e-government system
development. In: 2010 International Symposium on Information Technology, pp. 1–5.
IEEE (2010)

7. Racheva, Z., Daneva, M., Sikkel, K., Buglione, L.: Business value is not only dollars –

results from case study research on agile software projects. In: Ali Babar, M., Vierimaa, M.,
Oivo, M. (eds.) PROFES 2010. LNCS, vol. 6156, pp. 131–145. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13792-1_12

76 F. Sambinelli and M. A. F. Borges

http://www.manifestoagil.com.br/
http://www.manifestoagil.com.br/
http://dx.doi.org/10.1007/978-3-642-13792-1_12

8. Barney, S., Aurum, A., Wohlin, C.: A product management challenge: creating software
product value through requirements selection. J. Syst. Archit. 54, 576–593 (2008)

9. Khalifa, A.S.: Customer value: a review of recent literature and an integrative configuration.
Manag. Decis. 42, 645–666 (2004)

10. Mohammed, I.R., Shankar, R., Banwet, D.K.: Creating flex-lean-agile value chain by
outsourcing. Bus. Process Manag. J. 14, 338–389 (2008)

11. Boehm, B.W.: Value-based software engineering: overview and agenda. In: Biffl, S., Aurum,
A., Boehm, B., Erdogmus, H., Grünbacher, P. (eds.) Value-Based Software Engineering,
pp. 3–14. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-29263-2_1

12. Poppendieck, M., Poppendieck, T.: Implementing Lean Software Development: From
Concept to Cash. Addison-Wesley, Boston (2007)

13. Johnson, J.: ROI, It’s Your Job, Alghero, Itália (2002)
14. Pass, S., Ronen, B.: Reducing the software value gap. Commun. ACM 57, 80–87 (2014)
15. Forrester: Continuous Delivery: A Maturity Assessment Model. Cambridge, EUA (2013)
16. Alahyari, H., Berntsson Svensson, R., Gorschek, T.: A study of value in agile software

development organizations. J. Syst. Softw. 125, 271–288 (2017)
17. Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A decade of agile methodologies:

towards explaining agile software development. J. Syst. Softw. 85, 1213–1221 (2012)
18. Racheva, Z., Daneva, M., Sikkel, K.: Value creation by agile projects: methodology or

mystery? In: Bomarius, F., Oivo, M., Jaring, P., Abrahamsson, P. (eds.) PROFES 2009.
LNBIP, vol. 32, pp. 141–155. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02152-7_12

19. Fitzgerald, B., Stol, K.J.: Continuous software engineering: a roadmap and agenda. J. Syst.
Softw. 123, 176–189 (2017)

20. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in
software engineering. Engineering 2, 1051 (2007)

21. Reichheld, F.F.: Loyalty and the renaissance of marketing. Mark. Manag. 2, 10–20 (1994)
22. Gilb, T.: Value Planning. Kolbotn, Norway (2017)
23. Kelly, A.: Continuous Digital: An Agile Alternative to Projects. Lean Publishing (2017)
24. Lemon, K.N., Rust, R.T., Zeithaml, V.: What drives customer equity? Mark. Manag. 10, 20–

25 (2001)
25. Kaufman, J.J.: Value Management: Creating Competitive Advantage. Crisp Publications,

Menlo Park (1998)
26. Lin, F.-H., et al.: Empirical research on Kano’s model and customer satisfaction. PLoS ONE

12, e0183888 (2017)
27. Huber, F., Herrmann, A., Morgan, R.E.: Gaining competitive advantage through customer

value oriented management. J. Consum. Mark. 18, 41–53 (2001)
28. Thiry, M.: A Framework for Value Management Practice. Project Management Institute

(2013)
29. de Chernatony, L., Harris, F., Dall’Olmo, F.R.: Added value: its nature roles and

sustainability. Eur. J. Mark. 34, 39–56 (2001)
30. Lin, P.-C., Huang, Y.-H.: The influence factors on choice behavior regarding green products

based on the theory of consumption values. J. Clean. Prod. 22, 11–18 (2012)
31. Fenwick, N., Matzke, P., Shey, H., Wang, C., Klehm, R., McPherson, I.: The 2016 Guide to

Digital Predators, Transformers, and Dinosaurs (2016). https://www.forrester.com/report/
The+2016+Guide+To+Digital+Predators+Transformers+And+Dinosaurs/

32. Lanning, M.J.: Delivering Profitable Value: A Revolutionary Framework to Accelerate
Growth, Generate Wealth, and Rediscover the Heart of Business. Perseus Books, New York
(1998)

Strategies to Increase Customer Value in Agile Software Development 77

http://dx.doi.org/10.1007/3-540-29263-2_1
http://dx.doi.org/10.1007/978-3-642-02152-7_12
http://dx.doi.org/10.1007/978-3-642-02152-7_12
https://www.forrester.com/report/The%2b2016%2bGuide%2bTo%2bDigital%2bPredators%2bTransformers%2bAnd%2bDinosaurs/
https://www.forrester.com/report/The%2b2016%2bGuide%2bTo%2bDigital%2bPredators%2bTransformers%2bAnd%2bDinosaurs/

33. Verhoef, P.C., Lemon, K.N., Parasuraman, A., Roggeveen, A., Tsiros, M., Schlesinger, L.
A.: Customer experience creation: determinants, dynamics and management strategies.
J. Retail. 85, 31–41 (2009)

34. Covin, J.G., Garrett, R.P., Kuratko, D.F., Shepherd, D.A.: Value proposition evolution and
the performance of internal corporate ventures. J. Bus. Ventur. 30, 749–774 (2015)

35. Vargo, S.L., Maglio, P.P., Akaka, M.A.: On value and value co-creation: a service systems
and service logic perspective. Eur. Manag. J. 26, 145–152 (2008)

36. McKean, J.: Customers are People: The Human Touch. Wiley, Chichester (2002)
37. Gentile, C., Spiller, N., Noci, G.: How to sustain the customer experience. Eur. Manag. J. 25,

395–410 (2007)
38. Schneider, B., Bowen, D.E.: Understanding customer delight and outrage. Sloan Manag.

Rev. 41, 35–45 (1999)
39. Kaikkonen, H., Härkönen, J., Haapasalo, H., Rodríguez, P.: Supporting lean software

enterprises with agile development methods identifying the relationship between lean and
agile. Parallel Cloud Comput. Res. 2, 1–12 (2014)

40. Larman, C., Vodde, B.: Scaling Lean & Agile Development: Thinking and Organizational
Tools for Large-Scale Scrum. Addison-Wesley Professional, Boston (2008)

41. Anand, R.V., Dinakaran, M.: Handling stakeholder conflict by agile requirement prioriti-
zation using Apriori technique. Comput. Electr. Eng. 61, 126–136 (2017)

42. Scheerer, A., Bick, S., Hildenbrand, T., Heinzl, A.: The effects of team backlog
dependencies on agile multiteam systems: a graph theoretical approach. In: 2015 48th
Hawaii International Conference on System Sciences, pp. 5124–5132. IEEE (2015)

43. Daneva, M., et al.: Agile requirements prioritization in large-scale outsourced system
projects: an empirical study. J. Syst. Softw. 86, 1333–1353 (2013)

44. Komssi, M., Kauppinen, M., Töhönen, H., Lehtola, L., Davis, A.M.: Roadmapping
problems in practice: value creation from the perspective of the customers. Requir. Eng. 20,
45–69 (2015)

45. Vlietland, J., van Solingen, R., van Vliet, H.: Aligning codependent Scrum teams to enable
fast business value delivery: a governance framework and set of intervention actions. J. Syst.
Softw. 113, 418–429 (2016)

46. Staron, M., Meding, W.: MetricsCloud: scaling-up metrics dissemination in large
organizations. Adv. Softw. Eng. 2014, 1–12 (2014)

47. Cedergren, S., Larsson, S.: Evaluating performance in the development of software-intensive
products. Inf. Softw. Technol. 56, 516–526 (2014)

48. Hannay, J.E., Benestad, H.C., Strand, K.: Earned business value: see that you deliver value
to your customer. IEEE Softw. 34, 58–70 (2017)

49. Torrecilla-Salinas, C.J., Sedeño, J., Escalona, M.J., Mejías, M.: Estimating, planning and
managing Agile Web development projects under a value-based perspective. Inf. Softw.
Technol. 61, 124–144 (2015)

50. Tuan, N.N., Thang, H.Q.: Combining maturity with agility. In: Proceedings of the Fourth
Symposium on Information and Communication Technology - SoICT 2013, pp. 267–274.
ACM Press, New York (2013)

51. Ehrenhard, M., Wijnhoven, F., van den Broek, T., Zinck Stagno, M.: Unlocking how start-
ups create business value with mobile applications: development of an App-enabled
Business Innovation Cycle. Technol. Forecast. Soc. Change 115, 26–36 (2017)

52. Fagerholm, F., Sanchez Guinea, A., Mäenpää, H., Münch, J.: The RIGHT model for
continuous experimentation. J. Syst. Softw. 123, 292–305 (2017)

53. Vidgen, R., Shaw, S., Grant, D.B.: Management challenges in creating value from business
analytics. Eur. J. Oper. Res. 261, 626–639 (2017)

78 F. Sambinelli and M. A. F. Borges

54. Lindgren, E., Münch, J.: Raising the odds of success: the current state of experimentation in
product development. Inf. Softw. Technol. 77, 80–91 (2016)

55. Khurum, M., Gorschek, T., Wilson, M.: The software value map - an exhaustive collection
of value aspects for the development of software intensive products. J. Softw. Evol. Process.
25, 711–741 (2013)

56. Man, Y., Oren, I.: Developing Avionic Products Using Lean-Agile at Elbit Systems (2017)
57. Koski, A., Mikkonen, T.: Taming a Monster: Tackling the Emergent Issues Encountered in

Mission Critical System Development (2017)
58. Edwards, K.: Partnering to Improve Usability (2017)
59. Wang, X., Khanna, D., Mondini, M., Pantiuchina, J., Stillittano, G.: Experiment with MVPs:

The First “Startuppuccino” Steps to a Lean Edtech Startup (2017)
60. Helfand, H.: Dynamic Reteaming: How We Thrive by Rebuilding Teams (2016)
61. Silva, J.: Lean Sales Up – Making value from product conception (2015)
62. Singh, P., Vacanti, D.S.: Ultimate Kanban: Scaling Agile Without Frameworks at Ultimate

Software (2016)
63. Barrett, S.: The Final Frontier Aligning the enterprise’s direction and your crew’s efforts

(2017)

Strategies to Increase Customer Value in Agile Software Development 79

Towards an Agile Development
Environment

Marcelo Lessa Ribeiro(B) and Itana Maria de Souza Gimenes

Departamento de Informática, Universidade Estadual de Maringá,
Maringá, PR, Brazil

mlessaribeiro@gmail.com, itana@gmail.com

http://din.uem.br

Abstract. The demand for software engineering support environment
was evident since the 70s. It was necessary to control the integration
between processes, tools and developers in order to increase software
quality and productivity. Research projects produced several environ-
ments which introduced important concepts such as central artefact
repository, well-defined and enactable software processes, as well as sup-
porting tools. Later, agile methods emerged as a solution to overcome
strict software processes, however it also demanded support tools to facil-
itate its adoption in software organizations. Several works report the use
of agile practices and support tools, however, they do not bring about
the structure of a software engineering environment that integrates the
managerial cycle and agile practices. This paper presents the design of
a software engineering environment which is based on Application Life
Cycle (ALM) and SCRUM principles integrated with management and
construction tools. The proposed design was validated with practition-
ers and a comparison with previous development environment is also
presented. This work contributes to support novel enterprises to set up
a work environment for agile practices.

Keywords: Agile methods · Agile practices ·
Software engineering environment

1 Introduction

The demand for software engineering support environment was evident since
the 70s [1]. It was necessary to control the integration between processes, tools
and developers in order to increase software quality and productivity. Research
projects produced several environments which introduced important concepts
such as central artefact repository, well-defined and enactable software processes,
as well as supporting tools such as configuration and version management [2].

Another important concept in this context was Application Life Cycle Man-
agement (ALM). It is a model that covers software activities from conception to
maintenance [3]. ALM brings about concepts to support the articulation between
managerial tasks and the technical development operations [4] in a similar way
c© Springer Nature Switzerland AG 2019
G. S. Tonin et al. (Eds.): WBMA 2018, CCIS 981, pp. 80–94, 2019.
https://doi.org/10.1007/978-3-030-14310-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14310-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-14310-7_6

Towards an Agile Development Environment 81

to software process but more flexible. ALM help us to think on how the research
developed in the software engineering environment context can be applied to
support agile methods.

Agile methods emerged as a solution to overcome strict software processes,
however it also demanded support environment to facilitate its adoption in soft-
ware organizations [5,6]. Agile methods need supporting tools to control its
inherent nature of constantly evolve and test software as well the cooperation
between developers and customers throughout the software life cycle [4].

Software industry had to look for new managerial approaches and tools which
also included the reuse of previous concepts developed within software engineer-
ing environments. Thus, the design of a support environment for agile methods
requires a research that takes into account the experiences of both industry and
academic research [4]. The evidences provided by industry are extremely relevant
in the context of agile methods [7].

Several works report the use of agile practices and supporting tools, how-
ever, they do not bring about the structure of a supporting software engineering
environment that integrates a managerial cycle such as ALM and agile practices
[8–11].

This paper presents the design of a software engineering environment, named
Agile Development Environment (ADE), which is based on ALM and SCRUM
principles integrated with management and construction tools. SCRUM is used
because it has been considered technically efficient and it has been widely used in
industry [12,13]. ALM principles were adopted because it offers flexible concepts
that join governance, development and maintenance of software [14,15].

The organization of this paper is as follows: Sect. 2 presents the background
for the research developed; Sect. 3 presents the specification of the proposed
environment, named Agile Development Environment (ADE); Sect. 4 presents
the ADE evatuation; and, Sect. 5 presents the conclusions.

2 Background

The work presented in this paper is supported by the research developed in
three main areas: agile methods, software engineering environments and ALM.
The principles originated from these areas together with the current state of
agile practices in software industry form the basis of ADE design.

Agile methods represent a breakthrough in software development as it
opposes to traditional methods and have been progressively adopted by software
industry. These methods admit that software changes are part of the software
process instead of eliminating them based on planning and a rigorous process
[16]. They believe in the client satisfaction through the delivery of small and
frequent versions of products.

Several agile methods have been developed such as SCRUM, Extreme Pro-
gramming, Crystal and FDD. SCRUM [17] has been pointed out as one of the
most popular method in industry [13]. Its main focus is on agile project manage-
ment in iterative cycles that can be flexibly combined with software development

82 M. L. Ribeiro and I. M. de Souza Gimenes

techniques. Therefore, we selected SCRUM as the basis for the ADE software
process.

The most used practices in the context of agile methods selected to design
ADE were based on Extreme Programming and the investigations of [9,13,18].
The practices are: Test Driven Development (TDD); Continuous Integration;
Continuous Delivery; Refactoring; Code Revision; Code Quality Analysis; and,
User’s stories.

Our challenge is to reflect on the research work carried in context of Soft-
ware Engineering Environments (SEE) and Process-centred Software Engineer-
ing Environment (PSEE) in order to propose the design of a support environment
to fulfil the basic needs of agile methods mainly focusing on small companies that
face the need to define low cost supporting tools to develop their projects.

The need for well-defined processes and tools to support software develop-
ment is recognized since the 70s [1]. This led to the proposal of several SEE [19].
One of the key issues in SEE is how to provide tool integration [20]. A common
approach to this issue is to view integration in four dimensions [20,21] as fol-
lows: (i) Data integration; (ii) control integration; (iii) process integration; and,
presentation. The environments which provide support for automated process
definition and execution are named PSEE [2,22–24].

Software industry faced difficult to adopt SEE and PSEE due to the common
agreement needed to reach standards like PCTE. In addition, it was difficult to
find universal software process programming language and process enactment
machines.

ALM is a similar concept to software process as in PSEE [14,15]. It is based on
a cycle that involves governance, development and maintenance [25]. However,
ALM focus on the development cycle: requirement, design, coding, test and
project management [26].

Thus, ADE adopts the concept of ALM because it is more flexible and com-
patible with agile methods than the rigorous process automation conceived in
PSEE.

3 ADE

The ADE design is based on the following principles: (i) SCRUM as a method
for project management; (ii) ALM as the development cycle; (iii) the dimensions
of tool integration defined in [21] which consists of process, data and control.

SCRUM was adopted because it is the most used management method in
industry software [13]. It has been reported that this method facilitates activity
control, resource optimization and realistic estimations [12].

ALM brings about principles of life cycle management that includes gover-
nance, development and maintenance [14,15]. ALM also promotes project man-
agement based on agile methods [6].

Tool integration aims to promote the systematic use of tools and agile prac-
tices which are essential to automate the development process [27]. The dimen-
sions of tool integration considered are: data, control and process [21,28]. The

Towards an Agile Development Environment 83

data dimension will support the exchange of artefact between tools; the con-
trol dimension articulates the sequence of tool invocation when possible; and,
the process will guide the SCRUM managerial activities as well as the technical
tasks.

3.1 ADE Architecture

The main practices selected to compose ADE correspond to functionalities con-
sistently applied in agile development. They are: project management; versioning
control; code revision; continuous integration; and, code quality analysis. Each
of these practices constitutes an element of the ADE architecture to which there
is a correspondent support tool.

The logical architecture of ADE, as presented in Fig. 1, shows the relation-
ship between its elements. This architecture was designed to integrate the Project
Management support with tools that automate the main practices of the envi-
ronment. These practices are described as follows.

Fig. 1. Overview of ADE architecture

Project Management: responsible for the management of the development
activities. It supports the definition of the overall development process. In the
case of ADE the high level activities are based on SCRUM from which smaller
tasks are created. ADE functionalities include: effort estimate; task time record-
ing; functionality priorization.

Versioning Control: it is responsible for the source code versioning, the tracing
of updates and version recovery. The code is traced based on the commits carried
out by the version control tool.

84 M. L. Ribeiro and I. M. de Souza Gimenes

Code Revision: responsible for supporting the revision of code for the identi-
fication of eventual errors or improvements required [29].

Continuous Integration: it does the continuous integration of code produced
by the developers so that overall code is continuous generated. Each code inte-
gration interacts with the compiler to build a new system version. In addition,
it triggers the automated testing tools to detect errors [30].

Code Quality Analysis: responsible for monitoring the quality of the source
code to produce metrics such as: coupling, cohesion, duplicated code, technical
debt, test coverage and development patterns. The analysis of these metrics
support decision making.

Persintence: it facilitates the artefact persistence. It is represented as one ele-
ment; however, each correspondent tool has its own storing mechanism that can
be a database or the file system. Thus ADE does not adopt a common database;
when necessary data are exchanged is carried out at the file system level using
XML.

3.2 The ADE Software Process

The ADE software process is based on SCRUM. It defines the sequence of steps
to be followed by the development team to conceive and develop a software
system as shown in Fig. 2. The software process is graphically represented by a
UML activity diagram. The activities are: Backlog definition; Sprint definition;
Sprint execution; Delivery of Sprint results; and, Process revision. These steps
are described as follows.

Fig. 2. ADE software process

Step 1 – Backlog definition - it is divided into 3 tasks: analysis, Backlog
creation and Backlog priorization. The analysis aims to understand the target

Towards an Agile Development Environment 85

software so that the Product Owner (PO) can have a vision of its requirements.
These requirements are expressed as users’ stories where each story represents a
functionality. These stories are represented as a task in the project management
supporting tool. The task can be divided into smaller ones. The Backlog is
composed of the defined stories. At the end, the stories are prioritized and the
sequence of the tasks execution is defined.

Step 2 – Sprint definition - this step undertakes a Sprint planning meeting
in which the PO, the SRUM master and the development team select the tasks,
defined the project management tool, to compose the Sprint backlog. These
tasks are then estimated based on the Planning Poker Technique. Each task is
updated registering its estimation. In addition, the development team defines
how the task will be implemented and the team member associated with it. The
Sprint backlog establish the functionalities which is to be delivered by the sprint.

Step 3 – Sprint Execution - this step executes the Sprint Backlog. The
control of the Sprint Backlog is undertaken through daily meetings between
the SCRUM master and the development team in order to identify. Finally, the
identification and analysis of problems that might occur with the Sprint delivery
is carried out.

To implement each task of the Backlog five steps are executed as represented
in Fig. 3: implementation, automated testing, manual testing, code revision and
integration. These steps are summarized as follows.

– Implementation: the respective story is codified according to the decision
taken in Step 2.

– Automated testing: it undertakes the automated testing of the code gener-
ated. An iteration between these steps must occur to increase the test coverage
thus increasing software quality and reducing defects [31,32].

– Manual testing: in this step manual tests of the implemented functionality
are undertaken to ensure the quality of the software. The code revision tool
can support the identification of the parts of the code impacted by the error
detection.

– Code revision: every code developed must be revised by a team member
different from the one who developed it in order to increase the chances of
identify errors. The project management tool helps to guarantee the correct
participant assignment. This tool also helps to highlight the updated code.

– Continuous integration: the produced code must be integrated with the
existing ones to generate a new software baseline. This step is undertaken
automatically. In addition, the integrator will dispatch the analysis of code
quality which includes out the test coverage analysis, duplication quantity,
software complexity, amount of comments, technical debt, amount of com-
ments and code patterns. The result of the analysis must be available for the
development team.When the quality rules fail the integrator automatically
creates a task in the project manager.

Step 4 – Delivery of Sprint results – at the Sprint end a new version of
the software containing the new functionalities is generated. This is undertaken
by the integration team.

86 M. L. Ribeiro and I. M. de Souza Gimenes

Fig. 3. Sprint execution

Step 5 – Process revision – the last step of the process is the Sprint
retrospective. It supports the PO, the SCRUM master and the development
team to revise eventual problems that still remains in the Sprint execution, such
as problems with communication with client, requirement misunderstanding,
bad task estimation and increase of technical debt. Thus, this step supports
an inspection that can lead to process adaptation that might improve the next
Sprint. At the end of Step5, if there are tasks to be carried out in the project
management tool, another Sprint cycle is started.

3.3 An Example of ADE Instantiation

ADE design has presented the main conceptual elements of its architecture.
However, it has to be instantiated with tools, according to the organization
resources and culture. This section presents an ADE instantiation populated
with free software tools.

The tools were selected based on the agile methods literature review, such as
SonarQube [33], Gerrit [34] and Redmine [13]. The relationship between these
tools is shown in Fig. 4.

Table 1 presents the elements and the correspondent tool adopted to instan-
tiate ADE.

4 ADE Evaluation

The ADE evaluation is composed of two parts. The first is a comparison between
ADE and main aspects proposed in previous PSEE. The second part is an empir-
ical qualitative study which aims to provide preliminary evidences of ADE fea-
sibility.

Towards an Agile Development Environment 87

Fig. 4. Example of ADE instantiation

Table 1. ADE elements and correspondent tools

Elements Tools

Project management Redmine

Versioning control Git

Code revision Gerrit

Continuous integration Jenkins

Code quality analysis Sonar qube

4.1 Comparison Between ADE and PSEE

The parameters selected to compare ADE to PSEE proposed in the literature
are: process definition; team management; tool integration; data integration; con-
figuration and version management; and, evolvability. As a result, are presents
the similarities and differences analyzed.

Process Definition and Evolution

– PSSE Proposes a Process Modelling language (PML) to specify the process
and an engine to execute it.

– ADE Adopts the Scrum process and uses a Project management tool where
the activities are specified but do not control the process execution. The
maintenance of the activities is controlled by the project manager.

Team Management

– PSSE Team allocation is specified in the software process.
– ADE Team allocation is specified in the project management tool according

to the SCRUM responsibilities.

88 M. L. Ribeiro and I. M. de Souza Gimenes

Tool Integration

– PSSE The tools are invocated according to the process definition throughout
the process execution.

– ADE Tools are invocated by the developers or predefined scripts according
to the tool kit used.

Data Integration

– PSSE The development artefacts are stored in a central repository according
to predefined patterns that can be identified by all tools.

– ADE The development artefacts are stored in the file system or databases
and the tools are responsible for filter mechanisms that might be necessary.

Configuration and Version Management

– PSSE Adopt configuration and version management mechanism proper of
the environment as a horizontal tool.

– ADE Uses configuration and version management tools well known in the
market and do not suppose internal mechanisms.

Evolvability

– PSSE The capacity of evolution depends on the conformity of the tools to
the process and central repository patterns.

– ADE There is flexibility of tool aggregation because it is based on the file
level or databases and tool invocation.

The information provided in this sub section reveals that a strict process
specification and an automated process execution were not adopted within the
agile context. The tool market has been driven by flexibility and tool indepen-
dence. Data are exchanged at the file level using XML format and filters. In
addition, project management tools have become increasingly important and
are the main mechanism for registering the process activities. The emphasis of
the technical tools has been on the implementation, test and code analysis due
to the agile method principles. Concepts like configuration and version manage-
ment developed within the SEE research context have become a standard.

4.2 Qualitative Empirical Study

This study is based on concepts of Grounded Theory such as Coding as proposed
by [35] that complements the sequential strategy of mixed-methods according
to [36–38]. The relevant concepts of the study are represented through codes
identified in the specialist answers.

Coding is part of the procedures to provide basis for conceptualization, reduc-
ing data and elaborating categories according to data properties and dimensions
[39]. In this study it was used Open Coding and Axial Coding [35].

The main objective of the study is to analyze the ADE design as a feasible
mechanism to support the development of software based on agile methods.

Towards an Agile Development Environment 89

Result Analysis. The study sample consists of seven specialists selected based
on their experience in industry developing projects with agile methods. The
participants involved 7 software practioners working in industry distributed,
according to their graduation level, as follows: one master student (14.3%), 5
with specialization degree (71.4%); and one doing specialization (14.3%).

An electronic form composed of seven questions was elaborated. Each partic-
ipant received an email with the form access information and the study instru-
mentalization.

The tool used to organize and codify the data collected from specialist
was Dedoose. The procedure used was open coding. Next, codes were catego-
rized based on axial coding and graphically represented. Three code categories
emerged: Utilization provides benefits; possible improvements and difficulties of
adoption. Figure 5 presents the Category Utilization provides benefits and their
refinements which indicate that, according to the participants ADE: Contributes
to productivity; Supports project management; Increases the chances of obtain-
ing quality software; Process is complete and Tool integration is effective.

Fig. 5. Graphical representation of codes related to the Category Utilization provides
benefits

Regarding to Possible Improvements, as shown in Fig. 6, the participants
mainly pointed out that ADE could include New tools, such as tools to trace
requirements and support deployment. Second, it was suggested that ADE
should provide mechanisms for Learning with the Sprint results, thus supporting
continuous learning.

The category Process is complete includes codes such as include tasks to
support pair programming and move people around to support crossed training
between areas of knowledge.

90 M. L. Ribeiro and I. M. de Souza Gimenes

Fig. 6. Graphical representation of codes related to the Category Possible improve-
ments

Regarding the category Difficult to implement participants pointed out, as
shown in Fig. 7: Cultural, Lack of knowledge and Resistance to change.

Amongst the Cultural aspects, participants mentioned the difficulties of the
organizations to understanding the tasks of code revision and automated tests
as contributions to improve performance and quality instead of resource waste.

In addition, participants mentioned the difficulty of contracting specialists
with the ability of creating testing scenarios and modeling business requirements
to facilitating test automation.

It was also reported the Resistance to change of professional behavior due to
previous concepts established in the organizations.

Threats to Validity. The threats considered relevant were:

– Numbers of participants: 7 (seven) is considered as a small sample. This is
compensated by the knowledge of specialist.

– The level of knowledge required in the development of agile projects and
tools of the subjects was considered satisfactory for the technical analysis;
however a construct threat is the lack of tests to validate the questionnaire
understanding of the participants.

– Training was undertaken to reduce the stress effects on participants. Instru-
mentations were also sent by mail to them.

– The objective of the study was to work with post-graduated professional with
practical experience in the development of agile projects and development
tools. However, this turn out to be impossible. Thus, only a small sample was
possible.

Towards an Agile Development Environment 91

Fig. 7. Graphical representation of codes related to the Category Difficult to implement

Discussion. The analysis and interpretation of the study results led to three
categories and respective codes to summarize the evaluation of ADE feasibility.
In addition, the results contribute to identify limitations and propose improve-
ments.

The specialist stated ADE provides resources to support a manageable pro-
cess that can lead to the improvement of the software quality. Tool integration
is effective and can support the continuous evolution of the software.

5 Conclusions

This research presents the design of a software engineering environment within
the context of agile methods, named ADE.

The introduction of agile methods also need tools and support environment to
develop software in a manageable environment [6]. Previous development envi-
ronments were based on a strict software process that does not fit with the
flexibility of agile methods.

ADE is based on SCRUM as a management method for agile development due
its indication from the literature review and its dissemination in industry [12,13].
The practices selected to compose ADE were mainly based on [13] and [9]. In
addition, ADE apply principles of ALM to articulate SCRUM with development
practices because its concepts offer support to manage the software life cycle
taking into account governance, development and maintenance [14,15].

The research developed contributes to show how is the articulation of the
software process and agile practices, techniques and tools as well as showing
how previous research on PSEE influenced the current environment in industry.

The empirical qualitative study carried out indicates that ADE is feasible
and brings benefits to developers such as: promotes software quality; improves

92 M. L. Ribeiro and I. M. de Souza Gimenes

productivity; supports project management; supports tool integration and facil-
itates evolvability.

Additional contributions of the research on ADE design are:

– Presents a comparison between aspects of previous PSEE research and what
has actually been used in software industry.

– Constitutes a reference to small companies to set up a development environ-
ment because they do not have resources to invest on this kind of research.

Finally, we observed that it is surprising that 30 years after the emblematic
statement “Software Processes are Software too” [40], organizations still have
difficult to establish a minimal well-defined processe, even with the flexibility
of agile methods and the availability of software tools. Moreover, there is still
a lack of specialized professional abilities such as requirement specification and
testing automation.

References

1. Brown, A.W.: An examination of the current state of ipse technology. In: Pro-
ceedings of 15th International Conference on Software Engineering, pp. 338–347
(1993)

2. Finkelstein, A., Kramer, J., Nuseibech, B.: Software Process Modelling and Tech-
nology. Wiley, New York (1994)

3. Lacheiner, H., Ramler, R.: Application lifecycle management as infrastructure for
software process improvement and evolution: experience and insights from indus-
try. In: 37th EUROMICRO Conference on Software Engineering and Advanced
Applications, pp. 286–293 (2011)

4. Fuggetta, A., Di Nitto, E.: Software process. In: Proceedings of the on Future of
Software Engineering, pp. 1–12. ACM, New York (2014)

5. Beck, K.: Extreme Programming Explained: Embrace Change, 2nd edn. Addison-
Wesley, Boston (2004)

6. Franky, M.C.: Agile management and development of software projects based on
collaborative environments. In: SIGSOFT Software Engineering, pp. 1–6 (2011)

7. Gregory, P., Barroca, L., Taylor, K., Salah, D., Sharp, H.: Agile challenges in
practice: a thematic analysis. In: Lassenius, C., Dingsøyr, T., Paasivaara, M. (eds.)
XP 2015. LNBIP, vol. 212, pp. 64–80. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-18612-2 6

8. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through
Build, Test, and Deployment Automation. Addison-Wesley, Boston (2010)

9. Abrantes, J.F., Travassos, G.H.: Common agile practices in software processes. In:
International Symposium on Empirical Software Engineering and Measurement,
pp. 355–358 (2011)

10. Bass, J.M.: Influences on agile practice tailoring in enterprise software development.
In: Agile India, pp. 1–9 (2012)

11. Collins, E., Dias-Neto, A., de Lucena Jr., V.F.: Strategies for agile software testing
automation: an industrial experience. In: IEEE 36th Annual Computer Software
and Applications Conference Workshops, pp. 440–445 (2012)

12. Striebeck, M.: Ssh! we are adding a process... [agile practices]. In: AGILE 2006,
pp. 185–193 (2006)

https://doi.org/10.1007/978-3-319-18612-2_6
https://doi.org/10.1007/978-3-319-18612-2_6

Towards an Agile Development Environment 93

13. VersionOne 10th annual state of agile survery (2015). http://www.versionone.com
14. Chappel, D.: What is application lifecyle management? Technical report, David

Chappel & Associates (2014). http://www.davidchappell.com/writing/white
papers/What-is-ALM-Chappell.pdf

15. Rossman, B.: Application Lifecycle Management Activities, Methodologies, Disci-
plines, Tools, Benefits, ALM Tools and Products. Emereo Pty Ltd, London (2010)

16. Highsmith, J., Cockburn, A.: Agile software development: the business of innova-
tion. In: Computer, pp. 120–122 (2001)

17. Schwaber K., Sutherland J.: Scrum guide (2013). http://www.scrumguides.org/
docs/scrumguide/v1/Scrum-Guide-Portuguese-BR.pdf

18. Melo, C.O., Santos, V.A., Corbucci, H., Katayama, E., Goldman, A., Kon, F.:
Métodos Ágeis no brasil: Estado da prática em times e organizações (2012). http://
ccsl.ime.usp.br/agilcoop/artigos

19. Oinas-Kukkonen, H., Rossi, G.: On two approaches to software repositories and
hypertext functionality. J. Digit. Inf. (1999). https://journals.tdl.org/jodi/index.
php/jodi/article/view/14/13

20. Wasserman, A.I.: Tool integration in software engineering environments. In: Pro-
ceedings of the International Workshop on Environments on Software Engineering
Environments, pp. 137–149 (1990)

21. Thomas, I., Nejmeh, B.A.: Definitions of tool integration for environments. IEEE
Softw. 9, 29–35 (1992)

22. Gimenes, I.M.S., Weiss, G.M., Huzita, E.H.M.: Um Padrão para Definição de um
Gerenciador de Processos de Software. In: Jornadas Iberoamericanas de Ingenieria
de Requisitos y Ambientes de Software, Alajuela, Costa Rica (1999)

23. Bandinelli, S., Nitto, E.D., Fuggetta, A.: Supporting cooperation in the SPADE-1
environment. IEEE Trans. Softw. Eng. 841–865 (1996)

24. Fuggetta, A.: Functionality and architecture of PSEE. Inf. Softw. Technol. 38,
289–293 (1996)

25. Baessa, H.J.O.: Gestão do ciclo de vida das aplicações: análise do sap solution
manager. Master’s thesis, Instituto Superior de Estat́ıstica e Gestão de Informação
Universidade Nova de Lisboa (2011)

26. Kovair, M.: ALM and Integrated ALM (2016). http://www.kovair.com/What-are-
ALM-and-Integrated-ALM.pdf

27. Kravchik, M.: Application lifecycle management environments: past, present and
future. Master’s thesis, The Open University of Israel (2009)

28. Betemps, C.M.: Ambientes de desenvolvimento de software baseados em workflow.
Master’s thesis, Universidade Federal do Rio Grande do Sul (2003)

29. Sommerville, I.: Software Engineering. Addison-Wesley, Boston (2010)
30. Fowler, M.: Continuous integration (2006). http://martinfowler.com/articles/

continuousIntegration.html
31. Maximilien, E.M., Williams, L.: Assessing test-driven development at IBM. In:

25th International Conference on Software Engineering, pp. 564–569 (2003)
32. George, B., Williams, L.: A structured experiment of test-driven development. Inf.

Softw. Technol. 46, 337–342 (2004)
33. Ferenc, R., Lang, L., Siket, I., Gyimthy, T., Bakota, T.: Source meter sonar qube

plug-in. In: IEEE 14th International Working Conference on Source Code Analysis
and Manipulation, pp. 77–82 (2014)

34. Rigby, P., Cleary, B., Painchaud, F., Storey, M.A., German, D.: Contemporary peer
review in action: lessons from open source development. IEEE Softw. 29, 56–61
(2012)

http://www.versionone.com
http://www.davidchappell.com/writing/white_papers/What-is-ALM-Chappell.pdf
http://www.davidchappell.com/writing/white_papers/What-is-ALM-Chappell.pdf
http://www.scrumguides.org/docs/scrumguide/v1/Scrum-Guide-Portuguese-BR.pdf
http://www.scrumguides.org/docs/scrumguide/v1/Scrum-Guide-Portuguese-BR.pdf
http://ccsl.ime.usp.br/agilcoop/artigos
http://ccsl.ime.usp.br/agilcoop/artigos
https://journals.tdl.org/jodi/index.php/jodi/article/view/14/13
https://journals.tdl.org/jodi/index.php/jodi/article/view/14/13
http://www.kovair.com/What-are-ALM-and-Integrated-ALM.pdf
http://www.kovair.com/What-are-ALM-and-Integrated-ALM.pdf
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html

94 M. L. Ribeiro and I. M. de Souza Gimenes

35. Corbin, J.M., Strauss, A.: Basics of Qualitative Research: Techniques and Proce-
dures for Developing Grounded Theory, 3rd edn. Sage Publications, Beverley Hills
(2008)

36. Seaman, C.B.: Qualitative methods in empirical studies of software engineering.
IEEE Trans. Softw. Eng. 557–572 (1999)

37. Dyba, T., Prikladnicki, R., Rönkkö, K., Seaman, C., Sillito, J.: Qualitative research
in software engineering. Empirical Softw. Eng. 16, 425–429 (2011)

38. Creswell, J.W., Clark, V.L.P.: Designing and Conducting Mixed Methods Research,
2nd edn. Sage Publications, Beverley Hills (2010)

39. Broberg, L.L.: A grounded theory approach to examining design and usability
guidelines for four-year tribal college web sites. Ph.D. thesis (2011)

40. Osterweil, L.: Software processes are software too. In: Proceedings of the 9th Inter-
national Conference on Software Engineering, pp. 2–13 (1987)

Short Paper

Scrum in a Strongly Hierarchical
Organization

Fernando Rodrigues de Sá(B), Everton Luiz de Resende Lucas,
and Adelmo Dias de Oliveira

Centro de Computação da Aeronáutica de São José dos Campos,
Praça Marechal do Ar Eduardo Gomes, n◦ 50 - Vila das Acácias,

São José dos Campos, SP 12228-901, Brazil
{desafrs,evertonelrl,adelmoado}@fab.mil.br

Abstract. One of the duties of the Aeronautics Computing Center of
São José dos Campos, Organization of the Brazilian Air Force, is to
develop and operate Information Technology projects and applications
assigned to it. As a Military Organization, this Center is constitution-
ally organized based on hierarchy and discipline. For the management
of their projects, the software developers of this Military Organization
decided to use Scrum and its good practices. However, the use of an agile
framework implies in the horizontal interaction between the members of
a team, without any hierarchy between them. At first, the use of Agile
Methods in the military was opposed to the hierarchy, reflecting in the
relationship between people and the quality of the product. This work
aims to present the resources used for a healthy application of Agile
Methods in an environment strongly based on the hierarchy between
people, improving not only the relationship between them, but also the
quality of the products they develop.

Keywords: Agile Methods · Scrum ·
Hierarchical organizational structure

1 Introduction

Constituted by the Navy, the Army and the Air Force, the Brazilian Armed
Forces are permanent and regular national institutions, under the supreme
authority of the President of the Republic, and are destined to the defense of the
Motherland, to the guarantee of the constitutional powers and, at the initiative
of any of these, of law and order [1].

By normative force of the Constitution, these institutions are organized on
the basis of hierarchy and discipline. Their members form a special category of
servants of the Homeland and are called military.

The military hierarchy is the ordering of authority, at different levels, within
the structure of the Armed Forces. The ordination is done by posts or gradu-
ations; within the same post or graduation is done by seniority at the post or
c© Springer Nature Switzerland AG 2019
G. S. Tonin et al. (Eds.): WBMA 2018, CCIS 981, pp. 97–102, 2019.
https://doi.org/10.1007/978-3-030-14310-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14310-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-14310-7_7

98 F. R. de Sá et al.

graduation. Respect for the hierarchy is embodied in the spirit of compliance
with the sequence of authority [2].

Within the scope of the Brazilian Air Force, the Aeronautics Computing
Centers (CCA), organizations foreseen by Decree No. 7,069, of January 20, 2010,
have the purpose of managing the Information Technology systems and services
under their responsibility [3].

The Aeronautics Computing Center of São José dos Campos (CCA-SJ),
which originated from the former Nucleus of the Data Processing Center (NCPD)
of the Brazilian Aeronautics Institute of Technology (ITA), among its attribu-
tions and competencies, operates as an agency for IT systems and projects. To
this end, the CCA-SJ has in its military personnel the most diverse areas of
training related to IT careers, such as computer engineers, systems analysts,
computer technicians, among others.

Projects and systems developed by this CCA are aimed at various purposes,
including:

– archival and document management;
– command and control;
– visual scenarios for flight simulators;
– low cost flight simulators;
– among others.

To manage the development of its portfolio, the CCA-SJ adopts agile method-
ologies, such as Scrum. But in Scrum, the Development Teams are self-organized,
meaning no one tells you how the work should be done. These teams are struc-
tured and authorized to organize their own work. In addition, Scrum does not
recognize titles for members of its development teams. Therefore, there is no
hierarchy among the members of Scrum Teams [5].

CCA-SJ Development Teams are composed by military personnel, with
strong hierarchical links between them. They make part of Sections, which are
organized based on their assignments, such as software testing or database, for
example. In a Military Organization, these Sections are also organized hierar-
chically, within their organizational structure.

With this, a strong contradiction between the characteristics of the Scrum
and the militarism is perceived. While members of Scrum Teams are organized
horizontally, with no hierarchy between them, the military are organized into an
essentially vertical structure, with a strongly present hierarchy.

The use of Scrum in the CCA-SJ environment, even being an initiative from
members of Development Teams themselves, presents some conflicts that will be
discussed throughout this article. Based on these conflicts, militaries from CCA-
SJ are undertaking a work of change in their organizational culture to improve
the performance of the Teams.

In this way, the objective of this article is to present a story of experience
about Scrum in the CCA-SJ. This is a work in progress in order to adapt its use
within this Military Organization of the Brazilian Air Force.

Section 2 presents Problem Identification about the use of Scrum in the CCA-
SJ, the Problem Handling, the Action Plan, the Problem Solving and Trainings

Scrum in a Strongly Hierarchical Organization 99

for Development Teams. Section 3 presents the first results, once this is a work
in progress. Section 4 presents some final considerations about this article.

2 Scrum in the CCA-SJ

As mentioned in the previous section, the use of Scrum in the CCA-SJ started
as an initiative of militaries themselves working at development of projects and
systems.

For the adoption of Scrum, no training was carried out. Some military had
previous knowledge of the framework, learned at academic or business institu-
tions. With this, at the beginning of its adoption, the Scrum was applied in a
partial way, not contemplating all of its artifacts and ceremonies [4].

2.1 Problem Identification

In the middle of 2017, communication problems were identified between the
Development Team of one of the systems under the responsibility of the CCA-
SJ and the Section responsible for customer services.

With that, it was decided to include members from this Section in the Daily
Meetings, in order to solve this problem. In addition, specific works have been
done to identify the most significant aspects that have influenced communication
problems in order to mitigate them.

However, in the first quarter of 2018, a number of problems were identified
in this system, which resulted in delivery delays and malfunctioning.

2.2 Problem Handling

In the second quarter of 2018, it was decided to reorganize the development
team. From that moment, positive changes began to happen.

An Internal Commission for Implementation of a Project Management Office
(PMO) at the CCA-SJ was created in order to standardize project-related gov-
ernance processes and facilitate the sharing of resources, methodologies, tools
and techniques.

This Committee is composed of 3 ranked officers, one sublieutenant and one
civilian servant, with diverse knowledge in the area of IT and processes. PMO was
given the task of standardizing, monitoring and advising on the implementation
of CCA-SJ projects.

The first action of the PMO was to conduct an Organizational Climate Survey
with those military directly involved in the development of systems. This research
pointed to several factors that contribute to the low level of satisfaction of these
military, which influence productivity and quality of the products delivered to
the customers. Among those factors, the ones that most attracted the attention
of the PMO were:

– hierarchical decisions were made instead of technical decisions;

100 F. R. de Sá et al.

– several military was not worth for their work;
– low level of satisfaction in relationship with superiors;
– communication problems; and
– lack of support from the chain of command.

2.3 Action Plan

After the survey results analysis, an Action Plan was drawn up in order to miti-
gate the problems presented and allow the use of Scrum within this strongly hier-
archical environment. To allow Teams technical decisions, the following objec-
tives were defined:

– perform group dynamics; and
– guide Product Owners and Scrum Masters not to allow hierarchical decisions.

In order to better value military for their works, the following objectives were
defined:

– create a Career Plan for the CCA-SJ;
– promote meetings to present results;
– record development activities in the military’s curriculum; and
– issue certificates for performed jobs.

As to the low level of satisfaction in the relationship with superiors, the following
objective was defined:

– to hold weekly meetings with staff, addressing issues related to work environ-
ment.

The following objectives were established to solve internal communication prob-
lems:

– to perform group dynamics about communication; and
– to establish processes for information flow between Teams and Sections.

Finally, regarding the lack of support from the chain of command, the PMO itself
was in charge of identifying the needs of Teams and taking necessary actions.

2.4 Problem Solving

Monitoring meetings were estabilished so that Product Owners can update
projects statuses.

During the first monitoring meeting, problems with other projects were iden-
tified. It was also identified that the statuses of some projects were not presented
by Product Owners, but by the highest ranked military within the Development
Team.

The first two meetings were made with a month apart. Guidelines were issued
to standardizing processes, correcting problems, among others. It was identified
lacks of communication between Development Teams and upper echelons.

Scrum in a Strongly Hierarchical Organization 101

Prior to the third monitoring meeting, it was decided to make weekly meet-
ings following Scrum Daily Meetings format. PMO and Product Owners were
the participants. After that, Product Owners were well oriented and prepared
to present status of projects and also to address problems.

After that, communication channels were opened and informations flowed.
Problems started to be identified in advance, minimizing impacts due to delays
in solutions.

Thus, the PMO also decided to use Scrum to follow up projects and systems
under development in the CCA-SJ. By this way, another object was set: to run
weekly meetings with Product Owners and Scrum Masters.

Meetings with Product Owners are already performed. As for Scrum Masters,
they were invited to the following monitoring meetings. Weekly meetings will also
be done with Scrum Masters.

2.5 Trainings

The need for training was identified from the beginning, since Scrum was adopted
in the CCA-SJ only based on previous knowledge of some.

A partnership with ITA allows some CCA-SJ military to participate in a
dynamic for basic understandings of Scrum. The dynamic “Lego4Scrum” is deliv-
ered at the beginning of each semester to undergraduate and graduate students of
ITA’s Computer Engineering. Eventually, according to the availability of vacan-
cies, CCA-SJ’s military are invited to participate, In the first half of 2018, 18
(eighteen) have participated in the training.

However, this training is not enough, since it is only 3 hours long. In this way,
the PMO identified the need for other trainings, prioritizing the following: Agile
Coach, for 3 PMO members, and Professional Scrum Product Owner (PSPO),
aimed to 10 (ten) Product Owners of Development Teams.

It is expected that the Scrum and its good practices will be internalized in
the CCA-SJ.

3 Results

Although this is a work in progress, after the beginning of the Action Plan,
several improvements were identified in processes and even in the quality of
delivered products.

Once Development Teams started to make technical decisions, they have
afforded immediate results in software quality, better prioritization of User Sto-
ries, and better assistance to the chain of command.

A fraternization event was held at the end of june, with a lunch to all staff,
marking the end of first semester. In the event, several results were presented,
perspectives for the next semester, certificates were delivered to Development
Teams, among others. The result of the event was very positive and, together
with other actions being taken, the military feel more motivated and worth in

102 F. R. de Sá et al.

their work environment nowadays. It is still early to raise performance indicators,
but the expectation is for improved productivity.

With frequent meetings and the above mentioned fraternization event, supe-
riors are being encouraged to interact better with their subordinates.

Communication problems were minimized. Monitoring meetings and Weekly
Meetings with Product Owners allowed the chain of command better projects
monitoring. In addition, processes of communication between sections have been
improved.

The view of lack of support from the chain of command has been modified.
The truth is that there was a lack of transparency in some actions. Topics were
taken to weekly meetings. From then on, staff became more motivated to work.
The expected result is increased productivity.

4 Final Considerations

At the beginning of PMO works, based on the satisfaction survey conducted with
Development Teams, some factors were identified that had a negative influence
on the level of satisfaction of some military in their work environment, which
reflected the productivity of these military personnel and the quality of products.

These factors led PMO to draw up an Action Plan to allow the use of Scrum
within this strongly hierarchical environment.

Although it is work in progress, the performance of the PMO in the CCA-SJ
managed to minimize several of the problems identified.

Some results were obtained in a shorter period, mainly the improvement in
communication and motivation.

With the training planned for the second semester, it is expected the improve-
ment in the processes and the consequent increase in the quality of developed
products.

The next step is to provide trainings for Scrum Masters and Development
Teams, held by PMO. These trainings are planned to the end of october.

References

1. BRASIL: Constituição da República Federativa do Brasil de (1988)
2. BRASIL: Estatuto dos Militares. Lei 6.880 de 9 de dezembro de 1980 (1980)
3. BRASIL: ROCA 21–9/2011 Regulamento de Centro de Computação da Aeronáutica

(2011)
4. Cohn, M.: Desenvolvimento de Software com Scrum: aplicando métodos ágeis com

sucesso. Grupo A Bookman (2000)
5. Schwaber, K., Sutherland, J.: Um guia definitivo para o Scrum: As regras

do jogo (2013). https://www.scrumguides.org/docs/scrumguide/v1/Scrum-Guide-
Portuguese-BR.pdf

https://www.scrumguides.org/docs/scrumguide/v1/Scrum-Guide-Portuguese-BR.pdf
https://www.scrumguides.org/docs/scrumguide/v1/Scrum-Guide-Portuguese-BR.pdf

Author Index

Borges, Marcos A. F. 63

Cesa, Luiz Otávio Aléssio 19
Corrêa Rodrigues, Adriana 49
Cursino, Rodrigo 3

de Matos, Altieres 34
de Oliveira, Adelmo Dias 97
de Resende Lucas, Everton Luiz 97
de Sá, Fernando Rodrigues 97
de Souza Gimenes, Itana Maria 80

Farias, João 3

Graciotto Silva, Marco Aurélio 34

Lancastre, Maria 3

Malucelli, Andreia 19
Mantovani Fontana, Rafaela 19, 49

Ré, Reginaldo 34
Reinehr, Sheila 19
Ribeiro, Marcelo Lessa 80

Sambinelli, Fernando 63
Santos, Wylliams 3

	Preface
	Organization
	Keynotes
	Cultivating Your Personal Design Heuristics
	Sustainable Development with Agile: “Keeping Your Architecture Clean”
	Contents
	Full Papers
	Agile Requirements Validation in Brazilian Software Development Companies: A Survey
	1 Introduction
	2 Related Work
	3 Survey Design
	3.1 Research Questions
	3.2 Target Audience
	3.3 Survey Instrument
	3.4 Data Collection

	4 Results
	4.1 Demographic Data
	4.2 RQ01 - Techniques and Practices of Agile Requirement Validation
	4.3 RQ02 - Stakeholders Involved in Agile Requirement Validation
	4.4 RQ03 - Problems Faced When Performing Requirements Validation Activities
	4.5 RQ04 - Most Popular Artefacts of Agile RE

	5 Conclusions
	References

	Are We Agile or Not? A Survey on Brazilian Software Processes
	1 Introduction
	2 Related Work
	3 The Challenge on How to Identify an Agile Process
	4 Research Approach
	4.1 Translation of the Theoretical Domain into the Empirical Domain
	4.2 Design and Pilot Testing
	4.3 Collecting Data
	4.4 Data Analysis
	4.5 Threats to Validity

	5 Results
	5.1 Perceptions on the Software Process

	6 Discussion and Conclusions
	References

	A Tool to Measure TDD Compliance: A Case Study with Professionals
	1 Introduction
	2 Related Work
	3 Butterfly Tool
	3.1 Actions
	3.2 Categories
	3.3 Environment

	4 Case Study
	4.1 Instrumentation
	4.2 Subjects
	4.3 Execution

	5 Results
	6 Discussion
	7 Conclusion
	References

	Evaluation of an Agile Maturity Model: Empirical Evidences for Agility Assessments
	1 Introduction
	2 Related Work
	3 The Agile Compass
	4 Research Approach
	4.1 The Ethnographic Study
	4.2 The Focus Group
	4.3 Threats to Validity

	5 Results
	5.1 Agile Compass Observation: Ethnographic Study
	5.2 Agile Compass Application: Focus Group Study

	6 Discussion
	7 Conclusions
	References

	Strategies to Increase Customer Value in Agile Software Development
	Abstract
	1 Introduction
	2 Models of Customer Value
	3 Research Setting
	3.1 Literature Analysis
	3.2 Industrial Inventory

	4 Results
	4.1 Characteristics of Strategies
	4.2 Approaches, Techniques and Tools
	4.3 Customer Value Metrics

	5 Conclusions and Limitations of the Study
	References

	Towards an Agile Development Environment
	1 Introduction
	2 Background
	3 ADE
	3.1 ADE Architecture
	3.2 The ADE Software Process
	3.3 An Example of ADE Instantiation

	4 ADE Evaluation
	4.1 Comparison Between ADE and PSEE
	4.2 Qualitative Empirical Study

	5 Conclusions
	References

	Short Paper
	Scrum in a Strongly Hierarchical Organization
	1 Introduction
	2 Scrum in the CCA-SJ
	2.1 Problem Identification
	2.2 Problem Handling
	2.3 Action Plan
	2.4 Problem Solving
	2.5 Trainings

	3 Results
	4 Final Considerations
	References

	Author Index

