
Digital Supply Chain Twins: Managing
the Ripple Effect, Resilience,
and Disruption Risks by Data-Driven
Optimization, Simulation, and Visibility

Dmitry Ivanov, Alexandre Dolgui, Ajay Das and Boris Sokolov

Abstract The quality of model-based decision-making support strongly depends
on the data, its completeness, fullness, validity, consistency, and timely availability.
These requirements on data are of a special importance in supply chain (SC) riskman-
agement for predicting disruptions and reacting to them. Digital technology, Industry
4.0, Blockchain, and real-time data analytics have a potential to achieve a new quality
in decision-making support when managing severe disruptions, resilience, and the
Ripple effect. A combination of simulation, optimization, and data analytics consti-
tutes a digital twin: a newdata-driven vision ofmanaging the disruption risks in SC.A
digital SC twin is a model that can represent the network state for any given moment
in time and allow for complete end-to-end SC visibility to improve resilience and
test contingency plans. This chapter proposes an SC risk analytics framework and
explains the concept of digital SC twins. It analyses perspectives and future trans-
formations to be expected in transition toward cyber-physical SCs. It demonstrates a
vision of how digital technologies and smart operations can help integrate resilience
and lean thinking into a resileanness framework “Low-Certainty-Need” (LCN) SC.
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1 Introduction

Digital technologies catalyze the development of new paradigms, principles, and
models in supply chain management (SCM). The Internet of Things (IoT), cyber-
physical systems, and smart, connected products, facilitate the development of digital
supply chains (SC) and smart operations (Fazili et al. 2017; Liao et al. 2017; Qu et al.
2017; Strozzi et al. 2017; Tran-Dang et al. 2017; Yang et al. 2017;Minner et al. 2018;
Panetto et al. 2019). Recent surveys by Addo-Tenkorang and Helo (2016), Oester-
reich and Teuteberg (2016), Gunasekaran et al. (2016, 2017, 2018), Nguyen et al.
(2018), Moghaddam and Nof (2018), Choi et al. (2018), Ben-Daya et al. (2018) pro-
posed classifications of different digital technologies and discussed their potential
impacts on SCM.Such digital technologies include big data analytics, advancedman-
ufacturing technologies with sensors, decentralized agent-driven control, advanced
robotics, augmented reality, advanced tracking and tracing technologies, and additive
manufacturing.

The increasing interest in the digital data applications to SCM is not surprising.
The quality ofmodel-based decision-making support strongly depends on the data, its
completeness, fullness, validity, consistency, and timely availability. These require-
ments on data are of a special importance in SC risk management for predicting
disruptions and reacting to them (Ivanov 2018b). Digital technology, Industry 4.0,
Blockchain, and real-time data analytics have a potential to achieve a new quality
in decision-making support when managing severe disruptions, resilience, and the
Ripple effect (Frazzon et al. 2018, Ivanov et al. 2017, 2019a).

A combination of simulation, optimization, and data analytics constitutes a digi-
tal twin: a new data-driven vision of managing the disruption risks in SC. A digital
SC twin is a model that can represent the network state for any given moment in
time and allow for complete end-to-end SC visibility to improve resilience and test
contingency plans (Ivanov 2018c). This chapter proposes an SC risk analytics frame-
work and explains the concept of digital SC twins. It analyses perspectives and future
transformations to be expected in transition toward cyber-physical SCs. It demon-
strates a vision of how digital technologies and smart operations can help integrate
resilience and lean thinking into a resileanness framework “Low-Certainty-Need”
(LCN) SC (Ivanov and Dolgui 2019).

The investigation of the interrelations between digital technology and SC risks
is still at a preliminary the beginning stage of its development and requires new
conceptual frameworks and taxonomies (Ivanov et al. 2019a). This chapter seeks
to move the discussion forward and develop a framework for a detailed analysis of
SC digital technology and disruption risk effects manifested at times in structural
dynamics (Ivanov et al. 2010) and the ripple effect (Ivanov et al. 2014a, b, 2016;
Sokolov et al. 2016; Elluru et al. 2017; Dolgui et al. 2018; Ivanov and Rozhkov
2017; Pavlov et al. 2018; He et al. 2018; Ivanov 2018a, b; Dolgui et al. 2019a;
Pavlov et al. 2019). Despite initial efforts to unearth new insights about the impact of
digital technologies on SC risks (Tupa et al. 2017; Ivanov et al. 2017; Papadopoulos
et al. 2017; Schlüter et al. 2017; Ivanov et al. 2019a; Baryannis et al. 2018; Dolgui
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et al. 2019b, c; Dubey et al. 2019), the understanding of individual and interactive
contributions on specific SC disruption risk management and ripple effects remains
limited. This study closes this research gap by a combinatorial examination of the
results gained from two isolated areas, i.e., the SC digitalization and managing the
disruption risks in the SC. In particular, the focus of this chapter is directed on the
data-driven decision-support systems to improve SC resilience andmanage the ripple
effect and disruption risks.

This chapter does not pretend to be encyclopedic and rather highlights the research
that examines the relationships between SC digitalization and SC disruptions risks.
The objective is to identify the perspectives of digital SC twins that can be leveraged
to direct future research in exploring how digital technologies affect ripple effect and
performance of the SCs, and how they can be used to manage the disruption risks
and to improve resilience. More specifically, this study seeks to answer the following
questions:

• What relationships exist between big data analytics, Industry 4.0, additive manu-
facturing, Blockchain, and advanced trace and tracking systems and SC disruption
risks?

• How digitalization can contribute to enhancing ripple effect mitigation and anal-
ysis?;

• What digital technology-based extensions are needed in applications of quantita-
tive analysis to ripple effect in the SC to emerge with digital supply chain twins?

2 Digital Supply Chain Technologies

Digitalizationmeans using digitized data and digital technologies not only to improve
processes, functions, and activities, but also to change processes to achieve a cer-
tain benefit. The objective is to enhance revenue streams and create new business
opportunities (Hagberg et al. 2016). Digitalization of operations aims to improve
production and SC capability and flexibility through real-time communication and
intelligent, high-resolution data systems (Reddy et al. 2016). Digitalization is a con-
tinuing transformation toward a digital supply chain, and progressively changes most
enterprise processes.

This section reviews recent literature in four elements identified in recent surveys
on digitalization applications to SCM, i.e.,

• Big data analytics
• Industry 4.0
• Additive manufacturing
• Advanced tracking and tracing technologies, Blockchain.

In each of these groups, we describe the respective technology and its recent
applications to SCM.
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2.1 Big Data Analytics and Artificial Intelligence

Big data analytics (BDA) and artificial intelligence (AI) bring a completely new
potential benefit to data-driven SC risk management. Big data has been characterized
in the literature by 5Vs: volume, variety, velocity, veracity, and value (Wamba et al.
2015, 2017). Veracity and value are particularly important since data analysis shows
the real value of big data.

Big data analytics (BDA) is based on knowledge extraction from vast amounts
of data, facilitating data-driven decision-making. The more the data from the actual
production process is recorded, the more important it becomes to evaluate this data
volume with the help of BDA applications. ERP systems are generally not suited
to this task. One challenge is that internal and external data from smart, networking
products are frequently unstructured. The resulting solution is a repository that stores
different data streams in their original formats. From there, the data canbe reformatted
and examined with descriptive, diagnostic, predictive, and prescriptive data analytics
tools.

Descriptive analysis records the condition, the environment, and the function-
ing of the products. Diagnostic analysis analyses the reasons for reduced product
performance or failure. Predictive analysis recognizes patterns that signal upcom-
ing events. Prescriptive analytics identifies measures to solve issues and improve
outcomes (Porter and Heppelmann 2015).

Analytics employs mathematical and statistical tools to collect, store, accumulate,
and analyze big data volumes. The applications themselves are not new, but it is the
combination with big data that brings new added value and competitive advantage.
What is new is the rapid pace at which data can be captured in real time. This, in
turn, extends the type and richness of data sets, and offers an unprecedented oppor-
tunity for investigation. Additionally, the nature of the investigation has changed.
Technological tools are continuously supplied with data, and become more intel-
ligent by using self-learning algorithms. For example, predictive analytics involves
self-learning algorithms that identify and analyze relationships among variables, and
develop outcomes such as buyer behavior forecasts. Active human involvement is not
required in this process As a result, BDA becomes an active participant in the inves-
tigation process, and can create new knowledge about unknown or buried patterns
and effects. Large-scale investigations detect such patterns, turning volume data into
precise insights (Sanders 2016).

BDA has undoubtedly been the most elaborated area of digital technology appli-
cation to SCM over the last decade. Johnson et al. (2016) and Simchi-Levi and Wu
(2018) analyzed the application of BDA to retail. Nguyen et al. (2018) noted that opti-
mization is themost popular approach in prescriptive analytics application to logistics
and transportation area. Retailers strive to grow revenue, margins, and market share.
Price optimization models calculate the variance of demand with price changes, and
combine this information with relevant cost and inventory data to recommend prices
that could maximize revenue and profits. BDA applications to SCM can also be
seen in procurement processes, manufacturing shop floors, promotion actions in the
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omnichannelmodel, routing optimization, real-time traffic operationmonitoring, and
proactive safety management (Addo-Tenkorang and Helo 2016; Gunasekaran et al.
2016, 2017; Nguyen et al. 2018; Zhong et al. 2017). Nguyen et al. (2018) identified
some additional areas where BDA can be applied to SCM in the near future. These
areas include quality control in manufacturing, dynamic vehicle routing, in-transit
inventory management in logistics/transportation, and order picking and inventory
control systems in warehousing. Niesen et al. (2016) and Papadopoulos et al. (2017)
observed that BDA can help improve SC risk management and disaster resistance.
Baryannis et al. (2018) summarized recent AI applications to SC risk management
and identified some future research directions in risk identification, assessment, and
response. Priori et al. (2018) applied machine learning to the dynamic selection of
replenishment policies according to SC environmental dynamics. Cavalcantea et al.
(2019) developed a supervised machine learning approach to data-driven simulation
of resilient supplier selection in digital manufacturing.

2.2 Industry 4.0

The intelligent networking of machines and processes with the help of digital tech-
nologies is creating autonomous, Internet-linked, self-regulating production systems,
popularly termed as Industry 4.0. Industry 4.0 seeks to visualize and predict the per-
formance of processes, plants, SCs, and product properties on the basis of informa-
tion available in real time (Ivanov et al. 2019b). For this purpose, smart sensors are
applied to capture and communicate information and requirements comprehensively
to any recipient in real time. Production models are implemented in the form of so-
called cyber-physical production systems. Such cyber-physical production systems
collect data via production-integrated sensors and measurement systems in real time,
store and evaluate data, and interact actively with the physical, human, and digital
world. Intra and external connectivity are provided by IoT via digital communication
devices.

Industry 4.0 is a global phenomenon. There is no unique or circumscribed set of
technologies or practices that define Industry 4.0. Most research considers factory
concepts that share attributes of smart networking (Strozzi et al. 2017). The vision of
Industry 4.0 is that the product to be manufactured carries all the relevant informa-
tion about its production requirements. In addition, integrated production installa-
tions become self-organized through the collaboration of productionmachines, trans-
port equipment, tools, and logistical components that can communicate with each
other and exchange data via embedded systems. Digital technologies enable flexible
decision-making by providing real-time data in all areas of the SC (Bonfour 2016,
p.20). Digitalization and Industry 4.0 offers information and coordination based
competitive advantage, generates new employment opportunities, and increases vis-
ibility and control in supply chains. However, it requires long-term commitment, and
guarantees about data security (Porter and Heppelmann 2015).

Industrial robots are a part of Industry 4.0, found mainly in series production and
warehousing applications. Robots perform high precision tasks independently as also
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support employees in their work, by handing over tools, for example. Their use accel-
erates, facilitates, and simplifies production activities. Unlike conventional industrial
robots, which require time-consuming training, flexible robots learn quickly from
people. They communicate with one another via the cloud, and support optimal pro-
duction planning. In practice, however, questions still remain on several issues such
as the ownership of cloud data among SC partners, or machine intercommunication
protocols (Andelfinger and Hänisch 2017).

2.3 Additive Manufacturing

Additive manufacturing technology is a design-driven manufacturing process in
which components are produced from material layers on the basis of 3D data sets
and a virtual blueprint. “3D printing” is often used as a synonym. The use of different
materials and the elimination of previously required special tools are an advantage.
Furthermore, the rapid design and manufacturing process allows considerable time
savings compared to conventional product development cycles (Zhang and Jung
2018, pp. 3–5). Great freedom of design, low material waste, and the feasibility of
economically manufactured, individualized products make additive manufacturing
attractive for many industries. The method is currently used primarily in rapid pro-
totyping, but increasingly so in series production too (Li et al. 2017). Khajavi et al.
(2014), Holmström and Gutowski (2017), Feldmann and Pumpe (2017), Li et al.
(2017) described the applications of additive manufacturing to operations and SCM.
Those applications reach from spare part logistics to redesigning global SC produc-
tion and sourcing strategy. The core of additive manufacturing applications to SCM
is the usage of 3D printers at different stages in the SC to increase manufacturing
flexibility, achieve shorter lead times, increase product individualization, and reduce
inventory. However, mass production volumes are not commercially possible yet.

2.4 Blockchain and Advanced Tracking and Tracing
Technologies

Capturing and sharing information in real time is critical to detecting faults and
their extent, as well as in planning SC recovery (Sheffi 2015). Tracking and tracing
(T&T) systems aim at timely identification of deviations or danger of deviations in
SCs, analysis of such deviations, alerts about disruptions that have occurred or may
occur, and elaborating control actions to recover SC operability.

T&T systems combine with radio-frequency identification (RFID) and mobile
devices to provide current information about process execution (Bearzotti et al. 2012).
T&T systems and feedback control can be supported by RFID technology (Dolgui
and Proth, 2010) and SC event management systems (Ivanov et al. 2013), effectively
communicating disruptions to the SC tiers and helping revise initial schedules (Dol-
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gui and Proth 2010; Zelbst et al. 2012). A critical issue is detecting disruptions and
their scope in real time. Embedding SC visualization and identification technology
is crucial for this, in practice.

In addition, emerging Blockchain applications in SCs promise enhanced scale and
scope of T&T systems together with creation of information pipeline systems and SC
finance applications (Hofmann et al. 2018). The central idea is to increase visibility
and efficiency based on dispersed, tamper-proof, and verifiable record-keeping in the
SC.

For example, IBM and Walmart are researching how to increase food SC safety
control using Blockchain technology (IBM 2017). Recently, the applications of
Blockchain technology have begun to revolutionize different aspects of SC and oper-
ationsmanagement for development of real time SC capabilities (Ivanov et al. 2019a;
Kshetri 2018; Saberi et al. 2018). The central idea is to increase visibility and effi-
ciency based on record-keeping in the SC. Blockchain applications to SCs become
more and more important to enhance the scale and scope of digital processes along
with creation of information pipeline systems and SC finance applications (Hofmann
et al. 2018). A Blockchain is a decentralized database that exists as copies in a net-
work of computers (Crosby et al. 2016). It is a chain of blocks, because the data and
information stored is captured in blocks.

Regulatory processes (e.g., customs) can be expedited using Blockchain by
improving confidence in documentations. This, in turn, can result in reductions in
wastage, risk, and insurance premiums. The list of all transactions is stored as copies
throughout all further evolvements on numerous computers (a network of even hun-
dreds of computers).

These and further recent examples of Blockchain technology applications to SCs
(Ivanov et al. 2019a; Saberi et al. 2018) support the new proposition that competition
is not between the SCs, but rather between the information services and analytics
algorithms behind the SCs. As such, SCs will no more be understood as a rigid
physical system with a fixed and static allocation of some processes to some firms.
Instead, different physical firms will offer services in supply, manufacturing, logis-
tics, and sales which will result in the dynamic allocation of processes and dynamic
SC structures forming a cyber-physical SC.

In practice, new cloud-based analytics platforms such as SupplyOn Industry 4.0
Sensor Clouds make it possible to control the SC in real time, and plan and adjust
processes using up-to-date information. By simply clicking on a container type, the
graphs indicate whether there has been a violation of the defined temperature or
humidity limits along the time axis. The data analysis in this chart allows a quick
identification of all orders where the lead time was exceeded, allowing for a quick
identification of questionable transports.

Summarizing, the following SC digitalization framework can be presented
(Fig. 1).

BDA, additive manufacturing, Industry 4.0, and advanced tracking and tracing
technologies can be considered as digital enablers of the four major SC processes in
theSCORmodel, i.e., plan, source,make anddeliver, respectively.Adigital versionof
the SCOR model would therefore consist of digital planning, digital manufacturing,
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Fig. 1 Digitalization framework of supply chain risk management (Ivanov et al. 2019a)

digital sourcing, and digital logistics. IoT, cloud technology, robots, and sensors
form the technical guts of a digital SC. This classification will be further used in the
paper for analysis of digitalization impacts on severe SC risks and the ripple effect.
For each of the areas, Fig. 1 suggests possible applications of digital technology
with regards to SC disruption risks. For example, additive manufacturing can reduce
supply risk by creating the opportunity to replace missing materials with the 3D
printed components. BDA can be used at the planning stage to identify supplier
risk exposure. T&T systems can help at the reactive stage to monitor and identify
disruptions. At the same time, it needs to be noted that digital technologies may have
multiple applications, which are not restricted to a particular SCOR process.

3 Impact of Digital Technologies on the Ripple Effect

3.1 Linking the Digital Supply Chain and Disruption Risks

Following the study by Ivanov et al. (2019a), Table 1 summarizes the major drivers
of digital technology applications to SCM, the respective enablers, opportunities and
challenges for SCM, as well as the impact on disruption risk management and the
ripple effect
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Specifically, digitalization’s impact on the ripple effect, that is, the magnitude and
reach (upstream and downstream) of a disruption in a part of the SC is elaborated in
Table 2.

It can be observed in Tables 1 and 2 that digitalization technologies generally
have a positive impact on the ripple effect, but may create a few challenges for ripple
effect mitigation and control. BDA, Industry 4.0, and additive manufacturing, have
mixed influences on the ripple effect, while advanced T&T systems have a positive
impact.

Structuring analysis in terms of the supply chain operations reference (SCOR)
model, sourcing and production activities involving additive manufacturing and
Industry 4.0 imply higher exposure to external risks and ripple effect. This could
be due to an increase in complexity and probable reduction in time and demand
risks due to higher flexibility and shorter lead times. Higher supply risks can be
encountered if a disruption happens in the upstream SC since there is no intermedi-
ate inventory in between the stages. Delivery process risks in the SC are alleviated
by big data analytics due to better SC visibility and forecast accuracy, reduction in
information disruption risks, and better quality of contingency plan activation. For
integrated SC planning, reductions in supply and time risks can be achieved by using
advanced T&T systems that enable real-time coordination and timely activation of
contingency policies.

At the proactive stage, SCs are typically protected from disruptions by employ-
ing risk mitigation inventory, capacity reservations, and backup sources. This is
expensive, especially if no disruption happens. Blockchain could help reduce these
inefficiencies if we are able to create a record of activities and data needed for recov-
ery in terms of synchronized contingency plans. Additive manufacturing can reduce
the need for risk mitigation inventory and capacity reservations as well as for the
backup contingent suppliers. The decentralized control principles in Industry 4.0
systems make it possible to diversify the risks and reduce the need for structural SC
redundancy, using manufacturing flexibility.

At the reactive stage, if a disruption happens, the contingency plans from proac-
tive stage can be deployed faster and implemented effectively if SC visibility were
increased. BDA and advanced T&T systems in general, and Blockchain technol-
ogy in particular, can help us to trace the roots of disruptions, to observe disruption
propagation (i.e., the ripple effect), to select short-term stabilization actions based
on a clear understanding of what capacities and inventories are available (emergency
planning), to develop amid-term recovery policy and to analyze the long-term perfor-
mance impact of the ripple effect. Additive manufacturing has the potential to reduce
disruption propagation in the SC, since the number of SC layers and the resulting
complexity would be reduced.
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Fig. 3 Low-certainty-need
supply chain framework
(Ivanov and Dolgui 2018)

4 Supply Chain Resileanness: Low-Certainty-Need (LCN)
Framework

4.1 Conceptual Framework

The LCN SC framework (Ivanov and Dolgui 2018) suggests approaching SC disrup-
tion risk and the ripple effect field from another perspective. Rather than opposing
the efficiency and resilience, we suggest considering their mutual intersections to
enhance each other based on synergetic effects in terms of SC resileanness.

Major costs of disruptionmanagement are seen in disruption prediction, protective
redundancy, and reactive capabilities as a result of a higher need for certainty and the
resulting higher redundancy and recovery efforts. As such, we suggest studying these
areas from the perspective of efficiency and resilience complementarity (Fig. 3).

According to Fig. 3, structural complexity, process inflexibility and non-flexible
usage of resources, and insufficient parametric redundancy increase uncertainty and
disruption risk propagation in the SC. The ultimate objective of the LCN SC design
is to develop the ability to operate according to planned performance regardless of
environmental changes. As such, the LCNSCdesign possess two critical capabilities,
i.e.,

• low need for uncertainty consideration in planning decisions and
• low need for recovery coordination efforts.

Structural variety, process flexibility, and parametrical redundancy ensure dis-
ruption resistance and recovery resource allocation and allow for SC operation in a
broad range of environmental states. This means that planning activities in the LCN
SCs do not heavily rely on uncertainty prediction and proactive protection invest-
ments. Similarly, recovery coordination efforts are reduced to a minimum. Note that
the LCN SC design does not necessarily imply higher costs, but rather seeks for an
efficient combination of lean and resilient elements.

Let us discuss the principles of implementing the LCN SC framework in practice
using digital technology.
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4.2 Process and Resource Utilization Flexibility

Process and resource utilization flexibilitymeans in a wider sense an establishment of
universal, very flexible workstations such as those postulated in Industry 4.0 systems.
Similar, the usage of universal materials can be considered with regards to recovery
flexibility in the SC.Additivemanufacturing technology can also positively influence
product and process flexibility resulting in a combination of efficiency and resilience.
Additive manufacturing can reduce the need for backup contingency suppliers. The
decentralized control principles in Industry 4.0 systems make it possible to diversify
the risks with the help ofmanufacturing flexibility increases. New research directions
can be seenwith regards to the impact of the digitalization on the SC design resilience
(Ivanov et al. 2019a). For example, BigData analytics and advancedTrace&Tracking
systems in general, and Blockchain technology in particular, can help to trace the
roots of disruptions, to observe disruption propagation (i.e., the ripple effect), to select
short-term stabilization actions based on a clear understanding of what capacities
and inventories are available (emergency planning), to develop a mid-term recovery
policy, and to analyze the long-term performance impact of the ripple effect. Additive
manufacturing has the potential to reduce disruption propagation in the SC since the
number of SC layers and the resulting complexity would be reduced.

4.3 Non-expensive Parametric Redundancy

Non-expensive parametric redundancy targets the efficient reservations of capacity,
inventory, and lead time. More specifically, those reservations need to be considered
not as a non-used redundancy, but rather for use in normal operation modes as well.
Network redundancy optimization can be viewed as a new research topic in this area.
Another aspect of parametric redundancy is its efficient allocation. A new research
direction extending the existing value-stream mapping techniques toward the SC
resilience can be considered. Efficient redundancy can be implemented by using
additive manufacturing that helps to reduce the need for risk mitigation inventory
and capacity reservations. Finally, new material classification schemes need to be
developed subject to material criticality and risk exposure in terms of the efficient
and resilience SC design.
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Fig. 4 Service and material flow coordination in the cyber-physical supply chain

5 Digital Supply Chain Twin: Data-Driven Optimization
and Simulation to Manage the Disruption Risks

5.1 Supply Chains as Cyber-Physical Systems

Today and looking at the near future, the SC will be as good as the digital technology
behind it. The recent examples of digital technology applications to SCs allow for
the new proposition that the competition is not between SCs, but rather between SC
services and the analytics algorithms behind the SCs. The services may be ordered
in packages or as individual modules (Fig. 4).

Examples of SC and operations analytics applications include logistics and SC
control with real-time data, inventory control, and management using sensing data,
dynamic resource allocation in Industry 4.0 customized assembly systems, improv-
ing forecasting models using Big data, machine learning techniques for process
control, SC visibility, and risk control, optimizing systems based on predictive infor-
mation (e.g., predictive maintenance), combining optimization andmachine learning
algorithms, and simulation-based modeling and optimization for stochastic systems.

Success in SC competition will become more and more dependent on analyt-
ics algorithms in combination with optimization and simulation modeling. Initially
intended for process automation, business analytics techniques now disrupt mar-
kets and business models and have a significant impact on SCM development. As
such, new disruptive SC business models will arise where SCs will be understood
not as rigid physical systems with a fixed and static allocation of some processes to
some firms. Instead, different physical firms will offer services of supply, manufac-
turing, logistics, and sales which will result in a dynamic allocation of processes and
dynamic SC structures. Recent literature documented the possibility of modeling
such integrated service-material flow SCs (Ivanov et al. 2014c).
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Fig. 5 Digital supply chain risk analytics framework

5.2 Supply Chain Digital Twins

Dunke et al. (2018) underline that digitalization and Industry 4.0 may significantly
influence the optimization techniques in the SC domain as well as disruption prop-
agation impacts on SC performance. With the help of optimization and simulation
approaches, current research generates new knowledge about the influence of disrup-
tion propagation on SC output performance considering disruption location, duration
and propagation, and recovery policies. New digital technologies create new chal-
lenges for the application of quantitative analysis techniques to SC ripple effect
analysis and open new ways and problem statements for these applications.

In the past decades, simulation and optimization have played significant roles in
solving complex problems. Successful examples include production planning and
scheduling, SC design, and routing optimization, to name a few. However, many
problems remain challenging because of their complexity and large scale, and/or
uncertainty and stochastic nature. In addition, the major application of optimization
and simulation methods in the last decades was seen in decision support, mean-
ing that decision makers were to manually provide the model input and interpret
the model output. On the other hand, the rapid rise of business analytics provides
exciting opportunities for Operations Research and the reexamination of these hard
optimization problems, as well as newly emerging problems (Fig. 5).

Sourcing, manufacturing, logistics, and sales data are distributed among very
different systems, such as ERP, RFID, sensors, and Blockchain. Big data analyt-
ics integrates this data to information used by AI algorithms in the cyber SC and
managers in the physical SC. As such, a new generation of simulation and optimiza-
tion models is arising. The pervasive adoption of analytics and its integration with
Operations Research shows that simulation and optimization are key, not only in the
modeling of physical SC systems, but also in the modeling of cyber SC systems and
learning from them.

An example of a decision-support system that combines a simulation, optimiza-
tion, and data analytics is shown in Fig. 6.
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Fig. 6 Concept of a decision-support system for supply chain risk analytics (Ivanov et al. 2019a)

The decision-support system for SC risk analytics aims at proactive, resilient SC
design in anticipation of disruptions and structural–parametrical adaptation in the
case of disruptions. The decision-support system is based on a concept that combines
simulation, optimization, and data analytics.The simulation–optimization part of the
system is intended to provide proactive, resilient SC optimization and simulation of
SC dynamic behavior in the event of possible disruptions or disruption scenarios. In
addition, this supports reactive, predictive simulation of disruption impacts on SC
performance and of recovery policies which are subsequently optimized in a pre-
scriptive manner using an analytical model. The data analytics part of the system
is applied to disruption identification in real time using process feedback data, e.g.,
from sensors and RFID. In addition, this aims at automated data input of disruption
data into the reactive simulation model for recovery policy simulation and optimiza-
tion. Finally, data analytics is used as data-driven learning system at the proactive
stage, helping to generate adequate disruption scenarios for resilient SC design and
planning.

At the proactive level, mathematical programming models produce notable
insights for managers and can be applied where the probability of disruption can
be roughly estimated. On the one hand, big data analytics and advanced trace and
tracking systems may help in predicting disruptions and providing more accurate
data to build sophisticated disruption scenarios for resilient SC design analysis. Dig-
ital technologies open new problems for resilient SC design. For example, additive
manufacturing changes SC designs whereby new resilient sourcing problems may
arise. This area can further be enhanced using collaborative purchasing platforms.
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At the reactive level and with regards to mitigation strategies and identifying
disruption impact onfinance andoperational performance, digital technologies canbe
extensively used to obtain real-time information on the scope and scale of disruptions,
their propagation in the SC and to simulate possible recovery strategies. In addition,
at the reactive level, adaptation is necessary for achieving desired output performance
by ensuring the possibility of changing SC plans and inventory policies. Adaptation
processes in ripple effect control can be supported by feedback and adaptive control
methods using decentralized agent techniques with the help of digital technologies
(Levalle andNof 2017). Visualizing these processes through virtual reality-supported
simulation has not yet been done extensively to model the ripple effect in the supply
chain. For this, simulation models, along with new digital technologies, can improve
tools which are already used in developing SC agility and visibility in terms of
disruption velocity.

A combination of simulation and optimization can extend the scope of both.
Combining the methods enables:

• Network optimization to minimize total SC cost.
• Dynamic analysis of ordering, production, inventory, and sourcing control policies
using simulation.

Simulation is a newer tool and especially powerful when combined with opti-
mization.More SCmanagers are now adopting the practice of using these techniques
together.

What can a typical SC simulation-optimization model include, and what factors
can it account for when working on risk analysis?

Network design and geographical information
Network design, with regard to the geographical location of sites, is the core of
most SC simulation models. GIS maps are used in simulation models to locate the
sites, and calculate distances, routes, and travel times along real roads. In addition
to geospatial calculations, they provide visualization and transparency in a model.

Operational parameters
Inventory control policies, back-order rules, production batching, and scheduling
algorithms, as well as shipment rules and policies, need to be defined in the model
and balanced against each other for both normal and disrupted operation modes.
Modern SC simulation tools enable visual modeling of these policies and do not
require programming skills.

Disruptions and recovery
The duration of random or scheduled disruption events can be modeled with the
probability distribution. As to recovery, analysts can set individual recovery policies
for different sites and define the rules of policy activation depending on when the
event occurs, the expected duration, and the severity of the disruption.

Performance impact
The direct impact of the ripple effect is reflected in changes to KPIs. Revenue, sales,
service level, fill rate, and costs are typically calculated. Unlike analytical models
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Fig. 7 Supply chain digital twin (Ivanov 2018c)

that usually focus on a particular metric (e.g., costs/profit), simulation enables the
simultaneous measurement of all metrics in the same model. Their values can be
checked at any chosen moment of the time period modeled. This way, disruption
duration can be modeled, performance impact measured, and mitigation policies
evaluated for efficiency.

A simulation model that considers all of these factors can be the basis for building
a successful digital twin of a physical SC that can be used for complex analysis
of SC risks, the development of contingency plans, and more efficient operational
management.

A digital SC twin can support decision-making about the physical SC on the basis
of data. At each point of time, the digital twin mirrors the physical SC: the actual
transportation, inventory, demand, and capacity data and can be used for planning
and real-time control decisions. The combination of simulation, optimization, and
data analytics constitutes a full stack of technologies which can be used to create an
SC digital twin—a model that always represents the state of the network in real time
(Fig. 7).

As stated, a digital twin reflects the current state of an SC, with the actual trans-
portation, inventory, demand, and capacity data. For example, if there is a strike at an
international logistics hub, this disruption can be spotted by a risk data monitoring
tool and transmitted to the simulation model as a disruptive event. Then, simulation
in the digital twin can help forecast possible disruption propagation and quantify
its impact. In addition, simulation enables efficient testing of recovery policies and
the adaptation of contingency plans—for example, alternative network topologies
and backup routes can be reconsidered on the fly. These screenshots are taken from
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any Logistix™ software and show the map-based model animation and the model-
building editor.

The output data from a digital twin simulation can be transferred to an ERP
system or a business intelligence (BI) tool to analyze the performance impact of
the disruptions. Additionally, a simulation model can activate BI algorithms. For
example, if the service level in a simulation model decreases to a certain level, the
digital twin might activate a BI algorithm to search for the cause of the problem.
Interacting with other SCM tools, a digital twin provides a control tower for end-to-
end SC visibility.

6 Conclusions

The impact of digitalization and Industry 4.0 on the ripple effect in the SC has been
studied in this chapter. Despite some partial efforts to uncover new insights in the
impact of digital technologies on SC risks, the understanding of the individual con-
tribution and the interplay of different digital technologies on specific SC disruption
risk management and ripple effect is still vague. This study contributes to the body
of knowledge in the field by combining the results gained from two isolated areas,
i.e., the impact of digitalization on SCM, and managing the ripple effect in the SC.

Digitalization is expected to increasingly penetrate industry in the coming years,
greatly changing operating and business systems, and the economy. Such potential
offers new approaches to SC riskmanagement that bring both opportunities and chal-
lenges. The fusion of the digital worldwith industrial processes is the so-called digital
transformation. In addition to internal and cross-company processes in production
and logistics, this also applies to the products and services offered to customers that
need to be refined through the use of digital technologies. This chapter explained
digital technologies can be used inmanaging SCdisruption risks and the ripple effect.

The trend toward the application of digital technologies goes beyond the manu-
facturing company. The supplier network, the customer network, and the logistics
service providers must also install and develop digital technologies to make the
entire SC in nonstop delivery flexible. For this reason, the focus must be on risk
management for every SC actor in the event of more frequent incidents such as nat-
ural catastrophes or supplier disruptions. The sources and handling process of risks
need to be understood to facilitate the successful application of digital technologies.
Digital technologies can potentially offer SCs enormous benefits in terms of trans-
parency, visibility, cost reduction, efficiency, and resilience. However, there is still
great uncertainty about the application and acceptance of the technologies, as many
technologies are still in development, and industry standards are not yet established.

More specifically, this study found that at the proactive stage, digital technologies
increase demand responsiveness and capacity flexibility. This may have a positive
impact on reductions in risk mitigation inventory in ripple effect control. In addition,
shorter lead times due to additive manufacturing enhance the impact of digitalization
on inventory control. Industry 4.0 and additive manufacturing with the support of
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BDA and T&T technologies facilitate a new quality of proactive planning of risk
management infrastructure and increase the ability to reconfigure resources at the
recovery stage. At the reactive stage, Blockchain, T&T technologies, and BDA allow
a principally new quality of data coordination and SC visibility when simulating and
activating recovery policies.

In terms of the SCOR model, sourcing and production activities can be adversely
affected by additive manufacturing and Industry 4.0, which carry higher exposure to
external risks and ripple effect. A plausible explanation is the increase in complexity
and the reduction in time and demand risks that occur, driven in turn by greater flex-
ibility and shorter lead times. Higher supply risks can be encountered if a disruption
happens in the upstream SC, since there is no intermediate inventory in between
the stages. The risks in the delivery processes are influenced by big data analytics
with regards to a reduction in demand risks due to better SC visibility and forecast
accuracy, reduction in information disruption risks and better quality of contingency
plan activation. Reductions in supply and time risks in integrated SC planning can
be achieved by using Blockchain and advanced T&T systems that provide real-time
coordination while activating contingency policies. Designing a resilient SC can be
influenced by higher information risks, higher exposure to external risks and a reduc-
tion in time and demand risks on the basis of Industry 4.0 technology and additive
manufacturing.

A number of directions for simulation and optimization applications to SCM have
been identified for digital technology application. BDA and advanced T&T systems
may help in predicting disruptions and providing more accurate data to build sophis-
ticated disruption scenarios for resilient SC design analysis. Digital technologies
can be used extensively to obtain real-time information on the scope and scale of
disruptions, their propagation in the SC, and to simulate possible recovery strategies.
In addition, at the reactive level, adaptation is necessary for achieving the desired
output performance by ensuring the possibility of changing SC plans and inventory
policies. Adaptation processes in ripple effect control can be supported by feedback
and adaptive control methods using decentralized agent techniques with the help of
digital technologies. Visualizing these processes through virtual reality-supported
simulation has not yet been done extensively to model the ripple effect in the SC.

Future decision-support systems will extensively utilize digital technologies and
the digital SC twin, i.e., a computerized model of an SC updated with actual data in
real time.

Notwithstanding the rapid developments in SCs and their digital twins, a number
of questions arise:

• Is the SC as resilient as the digital technology behind it?
• If yes, what will provide the most competitive advantage in the future: physical
SCs or their digital twins?

• Will SC resilience be managed by human, artificial intelligence, or a hybrid of
both?

• What will be the role of future SC risk managers?
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There is much research and practical potential with regards to the questions stated
above. These can hopefully motivate new insightful developments in research on the
ripple effect and disruption risk.
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