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Preface

Purpose and Content of the Book

This handbook comprises recent developments in a new research field of the ripple
effects in supply chains (SC). The chapters of this handbook are written by leading
experts in SC risk management and resilience. For the first time, the chapters
present a multiple-faceted view of the ripple effect in SCs, while considering
organization, optimization, and informatics perspectives. The ripple effect occurs
when an SC disruption cascades downstream, rather than remaining localized, and
impacts the performance of the SC. The ripple effect considers structural network
dynamics in the SC that is initiated by a severe disruption (or a series of disruptions)
and describes the propagation of this disruption downstream the SC in terms of
switching off some nodes and arcs in the network, e.g., due to material shortage.
The impacts of the ripple effect might include lower revenues, delivery delays, loss
of market share and reputation, or decreases in stock returns—the costs of these
negative impacts can be devastating.

This book offers an introduction to the ripple effect in the supply chain for larger
audience. The book delineates major features of the ripple effect and methodologies
to mitigate the supply chain disruptions and recover in case of severe disruptions.
The book reviews recent quantitative literature that tackled the ripple effect and
gives a comprehensive vision of the state of the art and perspectives. The
methodologies comprise mathematical optimization, simulation, control theoretic,
and complexity and reliability research. The book observes the reasons and miti-
gation strategies for the ripple effect in the supply chain and presents the ripple
effect control framework that is comprised of redundancy, flexibility, and resilience.
Even though a variety of valuable insights has been developed in the said area in
recent years, some crucial research avenues have been identified for the near future.

The book is expected to furnish fresh insights for supply chain management and
engineering regarding the following questions:
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• In what circumstance does one failure cause other failures?
• Which structures of the supply chain are especially prone to the ripple effect?
• What are the typical ripple effect scenarios and what is the most efficient way to

respond to them?

Given these reflections, numerous ways to apply quantitative analysis to ripple
effect modelling arise. Several research gaps might be addressed by the ability to
dynamically change parameters during experiments and to observe how these
changes impact performance in real time, e.g., considering:

• disruption propagation in the supply chain;
• dynamic recovery policies;
• gradual capacity degradation and recovery;
• multiple performance impact dimensions including financial, customer and

operational performance.

Distinctive Features

• It considers ripple effect in the supply chain from interdisciplinary perspective.
• It offers an introduction to the ripple effect mitigation and recovery policies in

the framework of disruption risk management in the supply chains for larger
audience.

• It integrates management and engineering perspectives on disruption risk
management in the supply chain.

• It presents innovative optimization and simulation models for real-life man-
agement problems.

• It considers examples from both industrial and service supply chains.
• It reveals decision-making recommendations for tackling disruption risks in the

supply chain in proactive and reactive domains.

Target Audience

Management and engineering graduate and Ph.D. students, supply chain and
operations management professionals, industrial engineers, operations and supply
chain risk researchers.

Berlin, Germany Dmitry Ivanov
Nantes, France Alexandre Dolgui
St. Petersburg, Russia Boris Sokolov
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Introduction

Chapters in this Book

The Chapter “Ripple Effect in the Supply Chain: Definitions, Frameworks and
Future Research Perspectives” by Dmitry Ivanov, Alexandre Dolgui, and Boris
Sokolov begins the book. This chapter aims to delineate both major features of the
ripple effect and methodologies for mitigating SC disruptions and recovering from
severe disruptions. It presents an overview of the causes of the ripple effects and
mitigation strategies. A framework for ripple effect control, comprised of redun-
dancy, flexibility, and resilience, is developed. In addition, though a variety of
valuable insights has been garnered in recent years, new research avenues and
ripple effect taxonomies are identified for the near future. Special focus is directed
toward SC risk analytics and the ripple effect in SCs.

Next, in the Chapter “A Multi-portfolio Approach to Integrated Risk-Averse
Planning in Supply Chains under Disruption Risks”, Tadeusz Sawik suggests a
methodical approach to time- and space-integrated decision-making. In the context
of SC disruptions, the portfolio is defined as the allocation of demand for parts
among suppliers or the allocation of demand for products among production
facilities. A disruptive event is assumed to impact both primary suppliers of parts
and the firm primary assembly plant. Considering the integration of mitigation and
recovery decisions over time and space, the author shows that the primary portfolios
to be implemented before a disruptive event are optimized simultaneously via
recovery portfolios for the aftermath period as well as the portfolios of both parts
suppliers and product manufacturers in different geographic regions. Risk-averse
solutions are obtained through conditional cost-at-risk and conditional service-
at-risk measures. The findings indicate that when the objective is to optimize ser-
vice level with no regard to costs, both supply and demand portfolios are more
diversified. The author concludes that the proposed multi-portfolio approach
enables time- and space-integrated decision-making that may help to better mitigate
the impact of disruption propagation on SC performance, i.e., the ripple effect.
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Virginia L. M. Spiegler, Mohamed M. Naim, and Junyi Lin focus their Chapter
on “The Rippling Effect of Non-linearities”. Using control theoretic tools, they
show that nonlinearities can lead to unexpected dynamic behaviors in the SC that
could then either trigger disruptions or make the response and recovery process
more difficult. This chapter is particularly relevant for researchers wanting to learn
more about the different types of nonlinearities that can be found in the SC, the
existing analytical methods for dealing with each type of nonlinearity, and the
potential direction of future research based on current knowledge in this field.

Jennifer Blackhurst and Kevin Scheibe devote their Chapter “Systemic Risk and
the Ripple Effect in the Supply Chain” on the concept of systemic risk coupled with
the impact of the ripple effect in the SC. They describe the dimensions of systemic
risks as part of the nature of disruption, SC structure and dependence, and man-
agerial decision-making. Moreover, the authors discuss interrelations between the
ripple and bullwhip effects. The authors conclude that because disruptions fre-
quently ripple through a system, a systemic risk perspective is crucial for under-
standing not only the nature of the disruption but also the effects of the structure
of the SC and the consequences of choices made by decision makers.

In their Chapter “Leadership for Mitigating Ripple Effects in Supply Chain
Disruptions: A Paradoxical Role”, Iana Shaheen, Arash Azadegan, Robert Hooker,
and Lorenzo Lucianetti analyze how leaders’ adaptive decision-making
(ADM) affects the extent of operational performance damage caused by different
forms of SC disruptions. SC disruptions often sever multiple value-generating
streams, creating a ripple effect across organizations. Reestablishing production
links in a web of interorganizational exchanges requires careful examination of
what is at stake for purchasing and supply managers. Using paradox and leadership
theories, they offer hypotheses related to unexpected, complicated, and enduring SC
disruptions. By empirically testing the hypotheses using secondary (financial) and
primary (managerial assessment) data from a cross-section of 251 manufacturing
firms, they show a concave curvilinear relationship between leader’s ADM and
operational damage from SC disruptions, suggesting that moderate levels of ADM
are optimal. Higher ADM is particularly effective for diminishing ripple effects in
the face of infrequent disruptions. On the other hand, low ADM is more effective in
the face of unexpected and complicated disruptions.

In their Chapter “A Model of an Integrated Analytics Decision Support System
for Situational Proactive Control of Recovery Processes in Service-Modularized
Supply Chain”, Dmitry Ivanov and Boris Sokolov consider the challenge recovery
process, a disruptive event, planning of the recovery control policy, and imple-
mentation of this policy in the SC. These events are distributed in time and subject
to SC structural and parametrical dynamics. In other words, environment, SC
structure and the SC’s operational parameters may change in the period between the
planning of the recovery control policy and its implementation. As such, situational
proactive control with combined use of simulation optimization and analytics is
proposed to improve processes of transition between a disrupted and a restored SC
state. Implementation of situational proactive control can reduce investments in
robustness and increase resilience by obviating time traps in problems of transition
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process control. This chapter presents a decision support system model for situa-
tional proactive control of SC recovery processes based on a combination of
optimization and analytics techniques. More specifically, three dynamic models are
developed and integrated with each other, i.e., a model of SC material flow control,
a model of SC recovery control, and a model of SC recovery control adjustment.
The given models are developed within a cyber-physical SC framework based on
an approach of service modularization.

In their Chapter “Bullwhip Effect of Multiple Products with Interdependent
Product Demands”, Srinivasan Raghunathan, Christopher S. Tang, and Xiaohang
Yue present a study that extends current theory to provide insights for a firm that
manufactures multiple products in a single product category with interdependent
demand streams. This study finds that interdependency between demand streams
plays a critical role in determining the existence and magnitude of the bullwhip
effect. More importantly, the authors show that interdependency impacts whether
the firm should manage ordering and inventory decisions at the category level or at
the product level, and whether the bullwhip effect measure computed at the cate-
gory level is informative or not.

The Chapter “Performance Impact Analysis of Disruption Propagations in the
Supply Chain” by Dmitry Ivanov, Alexander Pavlov, and Boris Sokolov develops a
method for quantifying the ripple effect in the SC with consideration of recovery
policy. The performance impact index developed is then used to compare sales
(revenue) in different SC designs to measure the estimated annual magnitude of the
ripple effect. First, optimal SC recovery for two disruption scenarios is computed.
Second, the performance impacts of disruptions for six proactive SC designs are
assessed. Finally, the performance impact indexes of different SC designs are
compared and conclusions are drawn about the ripple effect in these SC designs
along with recommendations for the selection of a proactive strategy. The perfor-
mance impact index developed can be used to assess how different markets are
exposed to the ripple effect and how different SC designs can be compared
according to their resilience to severe disruptions.

In their Chapter “Ripple Effect Analysis of a Two-Stage Supply Chain Using
Probabilistic Graphical Model”, Seyedmohsen Hosseini and MD Sarder develop a
new methodology to control and monitor the ripple effect in SCs by analyzing the
ripple effect in a two-stage SC. This probabilistic graphical model is capable of
capturing disruption propagation that can transfer from upstream suppliers to
downstream end customer in the SC.

Dmitry Ivanov’s Chapter “Entropy-Based Analysis and Quantification of Supply
Chain Recoverability” addresses the problem of designing resilient SCs at the
semantic network level. The entropy method is used to show the interrelations
between SC design and recoverability. Easy-to-compute quantitative measures are
proposed to estimate SC recoverability. For the first time, an entropy-based SC
analysis is brought into correspondence with consideration of SC structural
recoverability and flexibility downstream in the SC. Exact and heuristic
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computation algorithms are suggested and illustrated. This approach and recover-
ability measure can be applied in selecting a resilient SC design according to
potential recoverability.

In their Chapter “New Measures of Vulnerability within Supply Networks: A
Comparison of Industries”, James P. Minas, N.C. Simpson, and Ta-Wei (Daniel)
Kao point out that one distinct element of SC risk is the potential for detrimental
material to propagate through the SC undetected, eventually exposing unsuspecting
consumers to defective products. Based on methods inspired by epidemiology, new
measures for quantifying this risk are proposed. The authors apply these measures
to real-life supply networks from eight industries to compare their relative levels of
risk across a 17-year time horizon. The results indicate that while aggregate SC risk
has increased over time, both the level and sources of risk differ markedly by
industry.

Dmitry Ivanov and Maxim Rozhkov study capacity disruption and recovery
policy impacts on SC performance in their Chapter “Disruption Tails and Revival
Policies in the Supply Chain”. A discrete-event simulation methodology is used for
analysis with real company data and real disruptions. Two novel findings are
presented. First, disruption-driven changes in SC behavior may result in backlog
and delayed orders, the accumulation of which in the post-disruption period we call
“disruption tails”. The transition of these residues into the post-disruption period
causes post-disruption SC instability, resulting in further delivery delays and
non-recovery of SC performance. Second, a smooth transition from a contingency
policy through a special “revival policy” to the normal operation mode enables
partial mitigation of the negative effects of the disruption tails. These results suggest
three managerial insights. First, contingency policies need to be applied during the
disruption period to avoid disruption tails. Second, recovery policies need to be
extended toward integrated consideration of both the disruption and the
post-disruption periods. Third, revival policies need to be developed for the tran-
sition from the contingency to the disruption-free operation mode. A revival policy
is intended to mitigate the negative impact of the disruption tails and stabilize SC
control policies and performance. The experimental results suggest a revival policy
should be included in an SC resilience framework if performance cannot be
recovered fully after capacity recovery.

In their Chapter “Managing Disruptions and the Ripple Effect in Digital Supply
Chains: Empirical Case Studies”, Ajay Das, Simone Gottlieb, and Dmitry Ivanov
analyze the impact of accelerating digitalization on SC risk management. Digital
technologies, such as big data analytics, Industry 4.0 applications, additive manu-
facturing, blockchain, advanced tracking and tracing technologies, and enterprise
resource planning software systems are considered. Empirical evidence on the
interrelations between digital technologies and the risk of SC disruptions, as well as
the influence of the one on the other, are analyzed based on the findings from the
multiple case studies. These findings are comprised of the insights and managerial
recommendations of experts from multiple industries. The empirical analysis is
guided by hypotheses and a conceptual framework based on extant theory.

xx Introduction



Rameshwar Dubey devotes his Chapter “Resilience and Agility: The Crucial
Properties of Humanitarian Supply Chain” to theorizing and testing the impact of
agility and resilience on humanitarian supply chain performance. Supply chain
agility and resilience are explained based on the existing literature and further tested
the theory using confirmatory factor analysis. The multivariate statistical analyses
suggest that supply chain agility is an important property of pre-disaster perfor-
mance, and supply chain resilience is an important property of the post-disaster
performance.

The chapter “Digital Supply Chain Twins: Managing the Ripple Effect
Resilience, and Disruption Risks by Data-Driven Optimization, Simulation, and
Visibility” is written by Dmitry Ivanov, Alexandre Dolgui, Ajay Das, and Boris
Sokolov. The impact of digital technology, Industry 4.0, blockchain, and data
analytics on the ripple effect and disruption risk management in SCs is studied in
this chapter. This chapter does not pretend to be encyclopedic, but rather seeks to
advance the knowledge we have to further research on the relationship between
digitalization and SC disruptions risks based on recent literature and case studies. It
then presents an SC risk analytics framework and explains the concept of digital SC
twins. It analyzes perspectives and future transformations that can be expected in
the transition towards cyber-physical SCs. It shows how digital technologies and
smart operations can help to integrate resilience and lean thinking into a re-
sileanness framework for a “Low-Certainty-Need” (LCN) SC.

Introduction xxi



Ripple Effect in the Supply Chain:
Definitions, Frameworks and Future
Research Perspectives

Dmitry Ivanov, Alexandre Dolgui and Boris Sokolov

Abstract This chapter aims at delineating major features of the ripple effect and
methodologies to mitigate the supply chain disruptions and recover in case of severe
disruptions. It observes the reasons and mitigation strategies for the ripple effect in
the supply chain and presents the ripple effect control framework that is comprised
of redundancy, flexibility and resilience. Even though a variety of valuable insights
has been developed in the given area in recent years, new research avenues and
ripple effect taxonomies are identified for the near future. Two special directions are
highlighted. The first direction is the supply chain risk analytics for disruption risks
and the data-driven ripple effect control in supply chains. The second direction is the
concept of low-certainty-need (LCN) supply chains.

1 Ripple Effect in the Supply Chain: Basic Definitions

1.1 Supply Chain Risks and Ripple Effect

Disruptions are considered high-impact-low-frequency events (e.g. fire or tsunami) in
the supply chain (SC) that change the SCs structural design and significantly impact
performance. The propagation of a disruption through anSCand its associated impact
is called the ripple effect. A ripple effect is distinct from the well-known bullwhip
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effect. It manifests when the impact of an SC disruption cannot be localized or being
contained to one part of the SC and cascades downstream, resulting in a high-impact
effect on SC performance (Dolgui et al. 2018). The ripple effect considers structural
network dynamics in the SC while bullwhip effect characterizes the oscillations
in operational parameters. The ripple effect is initiated by a severe disruption and
describes the propagation of this disruption downstream the SC, e.g. in terms of
propagation of the demand fulfilment downscaling as a result of a severe disruption.
In more severe cases, the ripple effect can be manifested in temporary switching
off some nodes and arcs in the network, e.g. due to material shortage. The bullwhip
effect, on the contrary, is launched by a small operational deviation and is expected
to be amplified in the upstream direction.

While the reasons for bullwhip effect have been extensively studied over the past
two decades, the ripple effect is quite a new phenomenon and analysis its impacts
deserve more research attention. These impacts might include lower revenues, deliv-
ery delays, loss of market share and reputation and stock return decreases—the cost
of all of which could be devastating.

Consider an example. On 17 October 2016 as a result of an incorrect maintenance
operation on a pipeline at BASF facility in Ludwigshafen (Germany), there was an
explosion and subsequent fires at North Harbor, a terminal for the supply of raw
materials such as naphtha, methanol and compressed liquefied gases. More than 2.6
million tons of goods are handled there each year and an average of seven ships a
day moor at its docks. Two steam crackers, the starting point for producing basic
chemicals, needed to be stopped because they could no longer be supplied, and
22 were only partially working. The two steam crackers could have been restarted
two days later, but only in May 2017 was the concept for reconstruction released
whereby the reconstruction should be completed by September 2017. Restricted
production output, a daily revenue decrease of 10–15% as compared to the previous
year during the disruption period, impact on the basic chemicals division (about 21%
of sales), delivery delays, limited access to key raw materials, exhausted product
inventories and a forecasted impact on 6% of BASFs annual earnings were some
of the consequences of this incident (Dolgui et al. 2018, and references within).
Logistics was temporarily shifted from ships and pipelines to trucks and trains. BASF
was in close contact with its customers to keep them informed about the current
availability of products to minimize the impact on customer deliveries. Because of
BASF integrated “Verbundsystem” (networking system), comprised of various plants
and delivery systems for feedstocks, the incident had an impact along the global SC.
This high and long-term impact is the so-called ripple effect (Ivanov et al. 2014a, b).

BASF built a resilient SC, which is why the economic consequences of the afore-
mentioned incident were considerably smaller than expected. BASF took process
safety and risk prevention measures that included globally valid guidelines and
requirements for buildings, etc. and practical security trainings for employees and
support staff. Along with process safety and risk prevention measures, BASF has
global emergency response management. This management consists of the integra-
tion ofworldwide group companies, joint ventures, partners, suppliers and customers.
Emergency phones and an integrated network of control centres (e.g. internal/external
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Fig. 1 Supply chain operational and disruption risks (Ivanov 2018b)

fire departments and rescue service) also enable this global emergency responseman-
agement to work even more closely together. BASF was prepared for the incident in
October 2016, but there is still long-term impact.

The BASF example shows the importance of SC risk management and the threats
that severe disruptions may influence the SC performance. Risk management in the
SC became one of the most important topics in research and practice over the last
decade. A number of books (Handfield and McCormack 2008; Kouvelis et al. 2012;
Waters 2011; Gurnani et al. 2012; Heckmann 2016; Mistree et al. 2017; Khojasteh
2017; Ivanov 2018b; Sawik 2018) and literature review papers (Klibi et al. 2010;
Simangunsong et al. 2012; Ho et al. 2015; Fahimnia et al. 2015; Snyder et al. 2016;
Dolgui et al. 2018) provide insightful overviews and introductions to different aspects
of this exciting field.

Recent literature introduced different classifications of SC risks (Chopra and
Sodhi 2004; Tang andMusa 2011; Ho et al. 2015; Quang and Hara 2018; Macdonald
et al. 2018) (see Fig. 1).

Risks of demand and supply uncertainty are related to random uncertainty and
business-as-usual situation. Such risks are also known as recurrent or operational
risks. SC managers achieved significant improvements at managing global SCs and
mitigating recurrent SC risks through improved planning and execution (Chopra and
Sodhi 2014).

From 2000 thru 2018, SC disruptions (e.g. because of both natural and man-
made disasters, such as on 11 March 2011 in Japan, floods in Thailand in 2011,
fire in the Phillips Semiconductor plant in New Mexico, etc.) occurred in greater
frequency and intensity, and thus with greater consequences (Chopra and Sodhi
2014; Simchi-Levi et al. 2014). Hendricks and Singhal (2005) quantified the negative
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Fig. 2 Operational and disruption risks in supply chains (Ivanov et al. 2019)

effects of SC disruption through empirical analysis and found 33–40% lower stock
returns relative to their benchmarks over a 3-year time period that started one year
before and ended two years after a disruption.

1.2 Disruption Risks and the Ripple Effect

Disruption risks represent a new challenge for SC managers who face the ripple
effect (Liberatore et al. 2012; Ivanov et al. 2014a, b; Levner and Ptuskin 2018;
Ivanov 2018a; Dolgui et al. 2018; Ivanov andDolgui 2018; Ivanov et al. 2018; Ivanov
et al. 2019; Ivanov and Rozhkov 2017; Hosseini et al. 2019) subject to structural
disruptions in the SC, unlike the parametrical deviations in the bullwhip effect
(Fig. 2).

In the last two decades, considerable advancements have been achieved in research
regarding the mitigation of inventory and production shortages and response to
demand fluctuations. In particular, the bullwhip effect in the SC has been exten-
sively considered in this domain subject to randomness uncertainty with the help of
stochastic and simulation models.

The differences between the bullwhip effect and ripple effect are presented in
Table 1 (Dolgui et al. 2018, 2019).

The Bullwhip effect considers weekly/daily demand and lead-time fluctuations
as primary drivers of the changes in the supply chain which occur at the parametric
level and can be eliminated in a short-term perspective. In recent years, the research
community has started to investigate severe supply chain disruptions with long-term
impacts that can be caused, for example, by natural disasters, political conflicts,
terrorism, maritime piracy, economic crises, destroying of information systems, or
transport infrastructure failures. We refer to these severe natural and man-made dis-
asters as the ripple effect in the supply chain where changes in the supply chain
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Table 1 Ripple effect and bullwhip effect (Dolgui et al. 2018)

Feature Ripple effect Bullwhip effect

What uncertainty? Hazard, deep uncertainty Random uncertainty

What risks? Disruption, exceptional risks
(e.g. a plant explosion)

Operational, recurrent risks
(e.g. demand fluctuation)

What can be disturbed? Structures and critical
performance (such as supplier
unavailability or revenue)

Operational parameters such
as lead time and inventory

How are deviations prevented? Proactive redundancy and
flexibility

Information coordination

What happens after the
disturbance?

Short-term stabilization and
middle- and long-term
recovery; high coordination
efforts and investments

Short-term coordination to
balance demand and supply

What is performance impact? Output performance can
decrease, such as in annual
revenues or profits

Current performance can
decrease such as in daily or
weekly stock out/overage
costs

occur at the structural level and recovery may take mid- and long-term periods of
time with significant impact on output performance such as annual revenues. In this
setting, supply chain disruption management can be considered a critical capability
which helps to create cost-efficient supply chain protection and implement appropri-
ate actions to recover supply chain disruptions and performance.

Most studies on supply chain disruption consider how changes to some variables
are rippling through the rest of the supply chain and impacting performance. Studies
by Ivanov et al. (2014a, b) and Dolgui et al. (2018) suggest considering this situation
as the ripple effect in the supply chain, as an analogy to computer science, where the
ripple effect determines the disruption-based scope of changes in the system.

The ripple effect in the supply chain occurs if a disruption cannot be localized
and cascades downstream impacting supply chain performance such as sales, stock
return, service level and costs (Ivanov et al. 2014a, 2015; Dolgui et al. 2018; Ivanov
2018a). The methodical elaborations on the evaluation and understanding of low-
frequency-high-impact disruptions are therefore vital for understanding and further
development of network-based supply concepts (Tomlin 2006; Liberatore et al. 2012;
Sawik 2016).

Details of empirical or quantitative methodologies differ across the works on
supply chain disruption management, but most share a basic set of attributes:

• a disruption (or a set of disruptions)
• impact of the disruption on operational and strategic economic performance
• stabilization and recovery policies.

Within this set of attributes, most studies on supply chain disruption consider
how changes to some variables are rippling through the rest of the supply chain and
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Fig. 3 Disruption
propagation in the supply
chain (Ivanov et al. 2019)

impacting performance.We suggest considering this situation, the ripple effect in the
supply chain, as an analogy to computer science, where the ripple effect determines
the disruption-based scope of changes in the system.

The ripple effect is a phenomenon of disruption propagations in the supply chain
and their impact on output supply chain performance (e.g. sales, on time delivery and
total profit). It may havemore serious consequences than just short-term performance
decrease. It can result inmarket share losses (e.g. Toyota lost itsmarket leader position
after tsunami in 2011 and needed to redesign supply chain coordination mechanism).
The ripple effect is also known as “domino effect” or “snowball effect”. The reasons
for ripple effect are not difficult to find.With increasing supply chain complexity and
consequent pressure on speed and efficiency, an ever-increasing number of industries
come to be distributed worldwide and concentrated in industrial districts. In addition,
globalized supply chains depend heavily on permanent transportation infrastructure
availability.

The ripple effect describes disruption propagation in the supply chain, impact of
a disruption on supply chain performance and disruption-based scope of changes in
supply chain structures and parameters.

Following a disruption, its effect ripples through the supply chain. The missing
capacities or inventory at the disrupted facility may cause missing materials and
production decrease at the next stages in the supply chain. Should the supply chain
remain in the disruption model longer than some critical period of time (i.e. time-to-
survive (Simchi-Levi et al. 2015)), critical performance indicators such as sales or
stock returns may be affected.

Ripple effects are not an infrequent occurrence. In many examples, supply chain
disruptions go beyond the disrupted stage; i.e. the original disruption causes disrup-
tion propagation in the supply chain, at times still higher consequences are caused
(Fig. 3).

The studies by Liberatore et al. (2012), Ivanov et al. (2014a, b, 2016, 2017b), Han
and Shin (2016), Sokolov et al. (2016), Mizgier (2017), Schmitt et al. (2017), Ivanov
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Table 2 Ripple effect reasons and countermeasures (based on Dolgui et al. 2018)

Reason SCM impact Ripple effect impact Countermeasures

Leanness Single sourcing In the non-disrupted
scenario, it is irrational to
avoid lean practices. At the
same time, a capacity
disruption may result in the
ripple effect and
performance decrease.
Recommendation to use
capacity buffers or a backup
facility as additional
capacity reserves

Multiple/dual
sourcing/backup suppliers

Low inventory Risk mitigation inventory

Inflexible
capacity

Postponement

Complexity Globalization Without a coordinated
contingency policy,
disruption recovery and
performance impact
estimation can be very long
lasting and expensive.
Coordinated control
algorithms are needed to
monitor SC behaviour,
identify disruptions and
adjust order allocation rules
using a coordinated
contingency policy

Geographical sourcing
diversification

Decentralization Global SC contingency
plans

Multistage SCs Supplier segmentation
according to disruption
risks

(2017, 2018b), Levner and Ptuskin (2018), Dolgui et al. (2018), Pavlov et al. (2018),
Scheibe and Blackhurst (2018), Akkermans and vanWassenhove (2018) extensively
analysed SC ripple effect, its reasons and efficient countermeasures. These findings
are summarized in Table 2.

First, literature provides evidence that disruption duration and propagation impact
SC performance. Second, proactive strategies such as backup facilities and inventory
have positive impacts concerning both performance and prevention of disruption
propagation. Third, the speed of recovery plays an important role in mitigating the
performance impact of disruptions. Fourth, an increase in SC resilience implies
significant cost increases in the SC.

1.3 Ripple Effect and Supply Chain Structural Dynamics

Ripple effect causes structural changes in the SC. The main supply chain features are
the multiple structure design and changeability of structural parameters because of
objective and subjective factors at different stages of the supply chain life cycle. In
other words, supply chain structural dynamics is constantly encountered in practice
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Fig. 4 Supply chain multi-structural composition and structural dynamics (based on Ivanov et al.
2010)

(Ivanov and Sokolov 2010; Ivanov et al. 2010). Figure 4 depicts major structures
and their changes in dynamics. The composition of different structures at different
point in time results in supply chain multi-structural macrostates S. Multi-structural
macrostates describe supply chain design evolution over time due to planned (con-
trollable) and uncertain factors.

The multi-dimensional dynamic space along with coordinated and distributed
decision-making guides us in understanding modern supply chains as multi-
structural dynamic systems (Ivanov et al. 2010).
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Fig. 5 Supply chain structural dynamics control (Ivanov 2018b)

1.4 Supply Chain Performance, Resilience and Ripple Effect
Control

One of the main objectives of supply chain management is to increase total supply
chain performance, which is basically referred to as supply chain effectiveness (i.e.
sales and service level) and efficiency (supply chain costs). At the same time, the
achievement of planned performance can involve the impact of disruptions in a real-
time execution environment. Supply chain execution is subject to uncertainty at the
planning stage and disruption at the execution stage. Cost efficiency comes with
a huge hidden expense should a major disruption (i.e. a more severe impact than a
routine disturbance) occur. This requires supply chain protection against and efficient
reaction to disturbances and disruptions. Therefore, supply chains need to be planned
to be stable, robust and resilient enough to (1) maintain their basic properties and
ensure execution; and (2) be able to adapt their behaviour in the case of disturbances
in order to achieve planned performance using recovery actions.

Decisions in supply chain structural dynamics control can be roughly classified
into proactive and reactive stages (Fig. 5).

Resilient supply chain design extends traditional supply chain design approaches
with regard to the incorporation of redundancies such as backup facilities, inventory
and capacity flexibility. These redundancies create, at the proactive planning stage,
some flexibility that can be used at the reactive control stage in the case of disruptions
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Fig. 6 Resilience control elements (Ivanov 2018b)

in supply chain structures in order to recover system performance and operational
processes.

In Fig. 6, we summarize relations of redundancy, robustness, resilience and flex-
ibility (see also Ivanov and Sokolov 2013 and Ivanov 2018b).

There is a strong and growing literature on robustness and resilience as two fun-
damental concepts to analyse SC performance with severe uncertainty consideration
and with regards to scattered disruptive events resulting in SC structural dynamics.
An SC is called robust if it is able to absorb disturbances and continue execution with
minimal impact on performance. The performance of such an SC is insensitive to
the negative impacts of disruptions (Ivanov and Sokolov 2013; Han and Shin 2016).
Robustness is typically guaranteed by some redundancy such as structural diversifi-
cation, flexible response options and system adaptation condition improvement. At
the same time, wemay distinguish between being safe and performing safely. In con-
trast to robustness that considers proactive redundancy (e.g. buffer capacities, backup
suppliers, or risk mitigation inventory) at the pre-disruption stage, resilience deals
with the system’s ability to sustain or restore its functionality and performance fol-
lowing a significant change in the system and environment conditions (Aven 2017).
SC resilience encompasses both proactive and reactive stages. As such, an integration
of pro- and reactive decisions is important for increasing SC resilience by utilizing
the synergetic effects between mitigation and contingency policies.

In Fig. 7, we summarize the relationships between redundancy, robustness, flexi-
bility and resilience.

According to the ripple effect control framework (Dolgui et al. 2018) and other
literature on the disruption propagation in the SC (e.g. Scheibe and Blackhurst 2018,
Wang and Zhang 2018), disruption risks and their propagation in the SC are mainly
caused by single sourcing, low riskmitigation inventory, overutilization of capacities,
low-level safety technologies and missing contingency plans.
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Fig. 7 Ripple effect control elements (Dolgui et al. 2018)

The width of the ripple effect and how it impacts economic performance is reliant
on redundancies such as inventory or capacity buffers, also called robustness reserves,
and on the speed and extent of recovery measures. As a result, it is necessary that, in
the proactivemode, risk and SC resilience are assessed and incorporated at the design
and planning stages. In the reactive mode, operationalization of contingency plans,
such as alternative suppliers or shipping routes, must occur quickly in the control
stage. This ensures quick stabilization and recovery, which is required to maintain
supply continuity and prevent long-term impact. In order to assess the impact of the
disruption on the SC, and both the costs and effects of material flow redirection,
companies require a tool supported by collaboration and SC visibility solutions to
implement these recovery policies.

Ripple effect control in the SC requires two critical capacities: resistance and
recovery. For resistance, which is the SCs ability to protect against disruptions and
reduce impact once the disruption occurs, some redundancy such as backup sourc-
ing, risk mitigation inventory or capacity flexibility must be built in at the proactive
stage. For recovery, this redundancy must be activated jointly with reactive contin-
gency plans with regards to risk mitigation inventory, capacity flexibility and backup
sources.

Recent literature has identified different methods to strengthen supply chains to
mitigate uncertainty impacts and ensure supply chain robustness. Different robust-
ness reserves can include material inventory, capacities buffers, etc. For this issue,
valuable approaches and models for supply chain design and planning under uncer-
tainty were elaborated. Increase in inventory, additional production capacities and
alternative transportation methods or backup facilities would increase costs. At the
same time, these so-called redundant elements would potentially lead to an increase
in sales and service level. The robustness elements would also reduce the risk of
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perturbations which may influence schedule execution. Therefore, target objectives
(e.g. on-time delivery) can be better achieved. This will positively influence sales
and service level. Redundancy elements may also increase supply chain flexibility
and have positive effects on both service level and costs. The resilient state of a sup-
ply chain requires a balanced robustness and flexibility which allows for achieving
maximum performance with disruption risk considerations at acceptable redundancy
costs.

2 Taxonomies of the Ripple Effect

2.1 Classification of the Ripple Effect Analysis Problems

Analysis of literature allows identification of several problem classes and datasets;
it is recommended to analyse these using optimization, simulation, or hybrid simu-
lation–optimization techniques. The literature has been analysed regarding the mod-
elling techniques used, the problems addressed, the performance measures and the
scope of the ripple effect analysis. More specifically, the following characteristics
have been analysed to derive the classifications following a standard problem classifi-
cations in supply chainmanagement at design, planning and control decision-making
levels (Ivanov et al. 2019): (i) supply chain structural and operational parameters at
the supply chain design level, (ii) inventory, sourcing, shipment and production con-
trol policies at the supply chain planning level and (iii) recovery policies at the supply
chain control level. The following classification has been obtained (Fig. 8).

Let us consider these three classes of the ripple effect analysis in detail.

2.1.1 Problem Class 1. Static Ripple Effect Analysis

The models in the problem class allow computation of the performance impact of
disruption and recommendation of a resilient supply chain design based on aggregate
location and flow data subject to cost minimization or profit maximization. This
problem class considers the following dataset:

Parameters:

• Possible site locations and connections (nodes and paths) with backups
• Discrete and limited number of time periods
• Deterministic or stochastic demand in periods
• Production, storage and shipment capacities in periods
• Lead time and service levels
• Operational costs
• Variables
• Location opening or closure
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Fig. 8 Three problem classes in the ripple effect analysis

• Beginning and ending inventory in periods
• Production, shipment, setup, holding, delay, lost sales, fixed, processing, ordering,
backordering quantities in periods.

Performance impact: service level, costs, lost sales at the end of planning horizon.
Mathematical network optimization has been typically used for this class. Those

models are placed at the supply chain design level and help to analyse the impact
of the disruption on the supply chain performance by deactivating some structural
elements on changing some operational parameters (e.g. capacity) and observing the
resulting changes on costs or sales. This analysis is helpful at the strategic decision-
making level. At the same time, those models do not take into account the dynamics
of inventory, sourcing, shipment and production control policies.
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2.1.2 Problem Class 2. Dynamic Ripple Effect Analysis

The models in the problem class allow supply chain behaviour to be analysed over
time, computation of the performance impact of the disruption and recommendation
of a resilient supply chain design based on detailed and real-time data and control
policies subject to a variety of financial, customer and operational performance indi-
cators. In addition to the more detailed data from the Class 1 dataset, this problem
class considers additional logical and randomness constraints such as randomness
in disruptions, inventory, production, sourcing and shipment control policies, and
gradual capacity degradation and recovery. For problems in this class, simulation
has been dominantly applied. Since simulation studies on the ripple effect deal with
time-dependent parameters, duration of recovery measures and capacity degradation
and recovery, they have earned an important role in academic research. Simulation
has the advantage that it can extend handling of the complex problem settings in
Class 1 with situational behaviour changes in the system over time.

2.1.3 Problem Class 3. Dynamic Ripple Effect Analysis with Recovery
Considerations

The models in the problem class extend Classes 1 and 2 through recovery policy
considerations. Independent of proactive or reactive policy domination, optimiza-
tion and simulation techniques can mutually enhance each other. For problems in
this class, a combination of network optimization and simulation (e.g. simulation
runs over optimization results) can be recommended. The research considering the
recovery stage is still new and requires an extension. We consider the problem class
3 as an especially promising future research avenue.

2.2 Literature Classification Taxonomy

Ivanov and Dolgui (2018) proposed the following literature classification taxonomy
(Table 3).

2.2.1 Semantic Level: Structural Properties, Complexity Role
and Critical Nodes

Disruptions and the resulting ripple effect cause SC structural changes, and it is also
referred to as SC structural dynamics. Structural SC properties have been recognized
to have a crucial impact on the ripple effect and SC robustness and resilience. A body
of literature has been established that examines the impacts of different structural
variations on SC performance for various risk attitudes in a decision maker, ranging
from risk neutral to risk-averse. This literature at the structural level targets semantic
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Table 3 Literature classification scheme

Analysis
levels

Proactive
stage

Reactive stage

Network
structure and
variety

I Complexity A, B, C, D, E,
F

I Complexity A, B, C, D, E,
FCentralization Centralization

1 Diversification 7 Diversification

Localization Localization

II Complexity A, B, C, D, E,
F

II Complexity A, B, C, D, E,
FCentralization Centralization

2 Diversification 8 Diversification

Localization Localization

Process
flexibility

I Backup/dual s. A, B, C, D, E,
F

I Backup/dual s. A, B, C, D, E,
FPostponement Postponement

3 Product subst. 9 Product subst.

Coordination Coordination

II Backup/dual s. A, B, C, D, E,
F

II Backup/dual s. A, B, C, D, E,
FPostponement Postponement

4 Product subst. 10 Product subst.

Coordination Coordination

Parametric
redundancy

I Inventory A, B, C, D, E,
F

I Inventory A, B, C, D, E,
FCapacity Capacity

5 Lead time 11 Lead time

II Inventory A, B, C, D, E,
F

II Inventory A, B, C, D, E,
FCapacity Capacity

6 Lead time 12 Lead time

Legend:
I—Supply Chain Structural Design
II—Supply Chain Process Planning and Control
1–12—Research field numbers
A–F—Methodologies:
A—Mathematical Optimization (deterministic mixed-integer, stochastic, robust, goal and fuzzy
optimization)
B—Simulation (discrete-event simulation, agent-based simulation, system dynamics)
C—Game Theory (cooperative/non-cooperative, dynamic differential and symmetric/asymmetric
(incomplete information) games)
D—Control Theory (optimal control, model-predictive control, feedback control)
E—Reliability Theory (probabilistic, statistical, logic and graph models)
F—Hybrid Methodology
Coding example for IvanovD., Sokolov, B., & Pavlov, A. (2014b). Optimal distribution (re)planning
in a centralized multi-stage network under conditions of ripple effect and structure dynamics.
European Journal of Operational Research, 237(2), 758–770:
10 – II – Ba – F:AD—this study focuses on the SC planning level and the impact of backup sourcing
at the process recovery stage using a hybrid optimization-control theory methodology
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network analysis in order to identify underlying interdependencies between network
graph forms and SC robustness, flexibility, adaptability and resilience.

The semantic network analysis literature pertains to the dependencies of SC
robustness and resilience on the structural complexity that increases uncertainty and
disruption risk propagation. The quantitative methodologies used mostly include
mathematical optimization, simulation, graph theory, game theory, control theory,
complexity theory, financial analysis and reliability theory. The major findings in
this research stream pose the impact of different structural SC designs, e.g. in terms
of the critical nodes on disruption-based SC structural and performance dynamics.
The issues of segmentation, diversification, backup suppliers, facility fortification,
globalization and localization are considered important managerial levers to increase
SC resilience at the proactive and reactive stages. In summary, structural variety and
recoverability can be considered a major SC resilience driver, as identified at the
semantic structural analysis level.

2.2.2 Process Level

Flexibility has beenmostly analysed at the process level. The literaturemostly focuses
on product and process flexibility to ensure SC robustness and resilience. The litera-
ture recognizesflexibility as amajor driver of resilient SCs.Thepapers in this research
stream investigate the use of flexible production and sourcing processes to achieve
SC robustness and resilience under disruptions. The coping strategies, the authors
indicate, consider dual and multiple sourcing whereby the focus of analysis includes
a tremendous variety of proactive and reactivemeasures such as backup supplier con-
tracts, pricing policy adjustment, advanced, spot and contingency purchasing, risk
mitigation inventory, capacity reservations, product flexibility and postponement and
collaboration and visibility.

Flexibility is the central theme of the research conducted at the process level
referring to the ability of production, sourcing and transportation systems in the
SC to change (adapt) in dynamic environments. The methodologies used include
mathematical optimization, discrete-event simulation, game theory and real options.
Backup and dual sourcing, postponement, product substitution, production capacity
flexibility and coordination have been identified asmajor elements of the contingency
processes and SC resilience drivers to be addressed at the process management level.
Increasing SC resilience is considered in the flexibility framework in light of some
process redundancy (e.g. a more expensive backup source) as opposed to process
leanness.

2.3 Control Level

The research focus at the control level is directed at process parameters such as
inventory, capacity utilization and lead time. High inventory, capacity reservations
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and lead-time reservesmay help to increase SC resilience, butmight negatively affect
efficiency. Parametric redundancy is a central research category at the control level.
Insufficient redundancy is risky. Redundancy is costly. This trade-off presents a cen-
tral issue in the research at the parametric redundancy control level. High inventory,
capacity reservations and lead-time reserves may help in increasing SC resilience,
but they negatively influence SC efficiency. The methodologies used in this research
area include mathematical optimization, discrete-event simulation, system dynamics
and control theory.

3 Future Research Perspectives on the Ripple Effect

While ripple effect anddisruption risks have attracted considerable research attention,
this research domain seems to be at the beginning stage of development. Some future
research avenues are summarized in this section.With regards to the current research,
we refer the readers to recent state-of-the-art survey in the given domain for more
detailed analysis (Klibi et al. 2010; Ho et al. 2015; Fahimnia et al. 2015; Snyder et al.
2016; Ivanov et al. 2017; Dolgui et al. 2018).

3.1 Supply Chain Risk Analytics, Digitalization and Industry
4.0

Innovations in digital technologies influence the development of new paradigms,
principles and models in SCs. The Internet of Things (IoT), cyber-physical systems,
additive manufacturing and smart, connected products, facilitate the development
of Industry 4.0-driven digital SC. Such technology advances are facilitated by the
advent of big data analytics and advanced tracking and tracing technologies. Accom-
panying such technological advances are similar advances in organizational practice
and culture, shaped by socio-technical considerations of new technology use. The
dynamic nature of digitalization demands research that can help analyse, understand
and evaluate its drivers, facilitators and performance outcomes. Such outcomes could
range from time competitiveness to risk management and resilience.

The impact of digitalization on resilient operations and the SC can be quite com-
plex. Consider some interplays. Risk in the SC can be mitigated by the descriptive
and predictive use of big data analytics in gaining visibility and forecast accuracy,
reduction in information disruption risks and improved contingency plan activation.
Reductions in supply and time risks can be achieved by using advanced trace &
tracking systems leading to real-time coordinated activation of contingency policies.

SCs typically hedge against disruptions by means of risk mitigation inventory,
capacity reservations and backup sources. Such protection is expensive to maintain
(in anticipation) and deploy. Blockchain digitalization could help reduce risk and
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associated preventive costs, if a record of activities and data needed for recovery
exists for synchronized contingency plans. Similarly, additive manufacturing can
reduce the need for risk mitigation inventory and capacity reservations, as well as
diminish the need for expensive backup contingent suppliers. The decentralized con-
trol principles in Industry 4.0 systems make it possible to diversify risks and reduce
the need for structural SC redundancy with the help of manufacturing flexibility. Big
data analytics and advanced trace & tracking systems in general, and Blockchain
technology in particular, can help us to trace the roots of disruptions, to observe dis-
ruption propagation (i.e. the ripple effect) (Dolgui et al. 2018; Ivanov 2018a), to select
short-term stabilization actions based on a clear understanding of what capacities and
inventories are available (emergency planning), to develop mid-term recovery poli-
cies, and to analyse the long-term performance impact of ripples effects. Additive
manufacturing has a potential to reduce disruption propagation in the SC, since the
number of SC layers and the resulting complexity would be reduced. Resilience may
improve, resultantly.

Initial efforts to understand the impact of digital technologies on the SC risk
management are underway. However, both conceptual and granular understandings
of the contribution and the interplay of different digital technologies in regard to
specific SC and operations resilience and sustainability requires further analysis.

The impact of digitalization and Industry 4.0 on the ripple effect and disruption
risk control analytics in the SC is therefore a promising research avenue. The purpose
of the research in the given area is to investigate the interplay between digitaliza-
tion, SC resilience and SC risks. The scope synthesizes research from two distinct
areas, i.e. the impact of digitalization on logistics, and the impact of supply chain
management on risk control. As such, the topics of this domain connect business,
information, engineering and quantitative analysis perspectives on digitalization to
control and the supply chain risks issues. Such studies would connect business,
information, engineering and analytics perspectives on digitalization and SC risks
in order to bring the discussion further with the help of a conceptual framework
for researching the relationships between digitalization and SC disruptions risks.
Examples of the questions to be answered are, e.g. (1) what relations exist between
big data analytics, Industry 4.0, additive manufacturing, advanced trace & tracking
systems and SC disruption risks; (2) how digitalization can contribute to enhancing
ripple effect control; and (3) what digital technology-based extensions can trigger
the developments towards SC risk analytics.

At the proactive level, optimization and simulation models produce notable
insights for managers and can be applied where the probability of disruption can
be roughly estimated. On the one hand, big data analytics and advanced trace and
tracking systems may help in predicting disruptions and providing more accurate
data to build sophisticated disruption scenarios for resilient SC design analysis. Dig-
ital technologies open new problems for resilient SC design. For example, additive
manufacturing changes SC designs whereby new resilient sourcing problems may
arise. This area can further be enhanced using collaborative purchasing platforms.

At the reactive level and with regards to mitigation strategies and identifying dis-
ruption impact on finance and operational performance, digital technologies can be
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extensively used to obtain real-time information on the scope and scale of disrup-
tions, their propagation in the SC and to simulate possible recovery strategies. In
addition, at the reactive level, adaptation is necessary for achieving desired output
performance by ensuring the possibility of changing SC plans and inventory policies.
Adaptation processes in ripple effect control can be supported by feedback and adap-
tive control methods using decentralized agent techniques with the help of digital
technologies. Visualizing these processes through virtual reality-supported simula-
tion has not yet been done extensively to model the ripple effect in the supply chain.
For this, simulation models, along with new digital technologies, can improve tools
which are already used in developing SC agility and visibility in terms of disruption
velocity.

3.2 Low-Certainty-Need Supply Chains

Uncertainty and risk predictions are commonly researched in studies of SC disrup-
tion management, mostly assuming known disruptive event or disruption scenario
probability. The resulting resource allocation and costs have frequently resulted in
expensive systems which help businesses cope with uncertainty. Without undermin-
ing the importance of further developing this common perspective, new approaches
need to be developed that focus on the reduction of SC behaviour dependence on
environmental changes.

The unpredictability of the occurrence of disruption and its magnitude suggests
that designing SCs with a low need for “certainty” may be as important, if not more
so, than predetermined pre-disruption strategies. While the problem of disruption
impact investigation with disruption probability estimations has attracted consider-
able research attention, some fundamental issues in this research stream need to be
pointed out, such as fair probability estimation of rare events, consideration of only
“known” events and the exclusion of “unknown” events, and the consideration of
mainly the direct effects of disruptions in model outputs rather than disruption prop-
agation chains and the resulting indirect effects (Ivanov 2019; Pavlov et al. 2019;
He et al. 2018; Mizgier 2017; Macdonald et al. 2018). Such new perspectives in
SC disruption management can be placed under the umbrella of low-certainty-need
(LCN) SCs. The ultimate objective of the LCNSCs is to develop the ability to operate
according to planned performance regardless of environmental changes.

In the given research domain, the task is first to identify the characteristics of
the LCN framework and its management. For example, structural variety, process
flexibility and parametrical redundancy are identified as key LCN SC characteristics
that ensure disruption resistance as well as recovery resource allocation, and that
allow for SC operation in a broad range of environmental states. Two efficiency
capabilities of the LCN SC, i.e. low need for uncertainty consideration in planning
decisions and low need for recovery coordination efforts need to be investigated.
The LCN SC does not necessarily imply higher costs, but rather seeks an efficient
combination of lean and resilient elements. The results of this research would allow
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Table 4 Research gaps at semantic, process and control levels

Analysis levels Research gaps

Semantic level The semantic network analysis pertains to the dependencies of SC robustness
and resilience on structural network properties. Which structural SC designs,
e.g. in terms of the critical nodes, can help to increase SC robustness and
reduce the need for disruption-driven process changes? How can
segmentation, diversification, backup suppliers, facility fortification,
globalization and localization be applied to increase SC resilience whilst
remaining lean and efficient? Which SC design patterns can provide quicker
and more efficient recoverability?

Process level Backup and dual sourcing, postponement, product substitution, production
capacity flexibility and coordination are major elements of contingency
processes and drivers of SC resilience. How can process redundancy be
allocated to increase SC robustness and reduce the need for disruption-driven
process changes? How can process redundancy (e.g. a backup source) be
applied whilst remaining lean and efficient? Which reactive process
flexibility policies can help in efficient SC recovery?

Control level High inventory, capacity reservations and lead-time reserves may help in
increasing SC resilience, but they negatively influence SC efficiency. How
can parametric redundancy be applied to increase SC robustness and
resilience whilst remaining lean and efficient? Which reactive control
policies can help in efficient SC recovery?

the identification of an LCN SC framework as well as missing themes and new
research questions which contribute to a better understanding of SC disruption risk
management and control.

Table 4 summarizes the research gaps identified at semantic, process and control
levels with regards to the LCN framework.

As shown in Table 4, a number of research gaps can be identified that motivate
the development of the LCN SC framework. First, structural SC design patterns need
to be identified that allow for both efficient robustness and recoverability. Second,
process flexibility policies need to analysedwhich enable the reduction of disruption-
driven process changes and efficient SC recovery. Finally, at the control level, the
efficient usage of parametric redundancy and the development of reactive control
policies are also research gaps that drive the pursuit to establish the LCN SC frame-
work.

3.3 Proactive Planning, Network Redundancy Optimization
and Situational Recovery Control

The research in ripple effect control needs to be united by three basic principles of
system-cybernetic research. The first principle is the integratedmodelling of resilient
network structures. New principles and methods of SC structural dynamics control
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will be developed using a variety of methodologies for multi-criteria network synthe-
sis and analysis. A particular focus will be directed towards the deployment of post-
disruption management, and understanding which factors fit the particular dynamics
the SC structures confront. The second principle is the proactive planning and net-
work redundancy optimization. The given paradigm combines both SC robustness
(i.e. the ability to absorb disturbances and continue execution with minimal impact
on performance), monitoring (i.e. real-time disruption identification and data-driven
replanning preparation) and resilience (i.e. the ability to sustain and restore SC func-
tionality using recovery and adaptation policies).

The third principle is the situational proactive control.Adisruptive event, planning
of the recovery control policy and implementation of this policy are distributed in
time and subject to SC structural and parametrical dynamics. In other words, both
environment, SC structures and its operational parameters may change in the period
between the planning of the recovery control policy and its implementation. As
such, situational proactive control with a combined usage of simulation–optimization
and analytics are needed to improve the transition processes from a disrupted to a
restored SC state. This allows reducing investments in robustness and increasing
resilience by obviating the transition process control problems. A combination of
these three principles builds a framework of future decision-support systems for SC
disruption riskmanagementwhich utilizes twomajor ideas, i.e. (i) low-certainty-need
SC designs and network redundancy optimization with an optimal combination of
robustness and adaptation elements to ensure both efficient and resilient SCs and (ii)
integrated SC ripple effect modelling with simulation, optimization and analytics
components to support situational forecasting, predictive simulation, prescriptive
optimization and adaptive learning.

3.4 Empirical Research and Simulation

Even if simulation and optimization studies provide valuable insights on preventing
and mitigating the ripple effect in the SC, there is a lack of practical validation. Only
a few studies incorporated real company data. At the same time, empirical research
in SC management has also developed a variety of valuable approaches and methods
to tackle the ripple effect. In this setting, combined empirical simulation, studies
are encouraged. An example of an area for such integrated research is coordinated
contingency plans. In addition, identification of information patterns needed to make
decisions on ripple effect identification and recovery policies would be in the scope
of this research (Macdonald et al. 2018).
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3.5 Complexity Theory, Dynamics, Performance Analysis
and Control

For dealing with the ripple effect in the SC, complexity management and system
modelling might provide a theoretical basis. Based on Ashby’s principle of requisite
variety, the problem of a system under control and uncertainty implies an area under
control and area under uncertainty, according to the perspective of complexity man-
agement. The system control can be adapted by widening one area and narrowing the
other (Ivanov and Sokolov 2010; Ivanov 2010). Therefore, the connection between
the system and the environmental spaces are categorized according to amplifica-
tion of control variety or attenuation of environmental variety. A balance of control
and disruption impact and maintenance of planned execution processes and a cost-
efficient, fast recovery post-disruption can be achieved by amplifying the variety of
the control area and reducing the area of uncertainty.

Further research can be initiated in this area as it regards to structural network
properties and the identification of structural patterns in SC design which cause
a greater or lesser ripple effect. In addition, the ripple effect and the impact of
recovery and proactive strategies within one feedback framework including planning
and adaptation control loops are revealed by applying methods of dynamic control
theory.

Analysis of short-term and long-term impacts of the ripple effect on the SC and
the creation of a performance measurement system is a promising research avenue.
Even though some key performance indicators have been presented in literature
episodically, there is a lack of systematic performance management techniques for
the ripple effect in the SC.

3.6 Disruptions and Perishable Products

Generally, inventory constitutes an SC resilience drive in literature. In the case of SCs
for perishable products, there are limits to inventory holding durations because of
the short storage and expiration periods. The resilience of these kinds of SCs may be
affected by the risk of goods write-off and customer segmentation by requirements
for freshness. Safety stock reductions and an increase in transport frequency result
from the constraints inherent with product perishability. However, when disruption
risks are considered thismay lead to an increase in safety stock. The bounded capacity
of suppliers should also be analysed. Since customer demand tends to be vulnerable,
there might be different requirements for the freshness of products and penalties
when product is unavailable or freshness is decreased. Further, in perishable product
SCs, issues of batching usually carry more weight.
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3.7 Competition and Behavioural Aspects

Since severe disruptionsmay influence competition in themarkets, a research agenda
on the ripple effect needs to include this factor. In addition, managerial decisions are
of a behavioural nature and subject to individual risk perceptions. Agent-based mod-
elling can be applied to a broader scope of these problems. These principles may
include collaboration (trust and information sharing) and an SC risk management
culture (e.g. leadership and risk-averse behaviour). In this setting, agent-based mod-
elling would be a suitable method for enhancing the existing simulation impact on
SC ripple effect research in regard to non-engineering SC resilience principles.

3.8 Ripple Effect Visualization

Visualizing the ripple effect is an obvious next step for simulation features. Yet, it
has not been very frequently used for modelling the ripple effect in the SC. Given
this, simulation models would enhance the existing tools in SC agility and visibility
concerning disruption velocity.

3.9 Closed-Loop SCs, Sustainability and Humanitarian
Logistics

Resilience has a number of intersections with SC sustainability. Since SCs have
become more and more global, these network structures build the backbone of the
modern economy and directly influence such sustainability issues as employment
rates, natural resource consumption, etc. SC sustainability issues include an assess-
ment of SC design resilience and efficient SC structure reconfiguration in the case
of disruptions from the perspectives of environmental, political and society impacts.

Disruptions in the reverse part of closed-loop SCs, as well as disruption-based
reverse logistics flows have rarely been analysed. Approaches for analysing the dis-
ruptions in the reverse part of the closed-loop SCs (e.g. a temporary unavailability
of a warehouse for collecting the used batteries for electric cars) in regard to (i) their
impact on overall SC performance as well as to (ii) proactive and reactive policies
with consideration of inventory control policies and sustainable manufacturing con-
cepts are yet to be developed. In addition, disruptions in a region frequently result
in both humanitarian catastrophe and industrial disruptions at the same time. In this
setting, limited resources need to be fairly allocated to both human life rescue and
the stabilization of everyday life and recovery of the industrial sector.
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3.10 Human Aspects

Finally, yet importantly—the area of human factors needs to be developed in future.
Our perception (partially derived from the experiments and literature) is that in a
short-term perspective, SC adaptability to the disrupted mode is low and recovery
actions are at the beginning of their implementation, which causes high coordination
efforts. This means a very stressful time for SC recovery teams. It follows that the
better the preparation, the less stressful and the more efficient the recovery work will
be.

4 Data-Driven Ripple Effect Control: Towards Supply
Chain Risk Analytics

Analysis of current and future research trend in ripple effect allows formulating two
important insights which lead the discussion further towards SC risk analytics as
shown in Sects. 4.1 and 4.2.

4.1 From Competition Between the Supply Chains
to Competition Between the Information Services
and Analytics Algorithms

The company is as good as the SC behind it. Today and looking at the near future,
the SC will be as good as the digital technology behind it. Consider two examples
to support this proposition. The first is the logistics service provider UPS. UPS and
SAP developed a joint technology which allows UPS to manufacture items using
3D printing directly at the distribution centres (UPS 2018). The second example is
Blockchain technology. Contracts in SCs often involve multi-party agreements, with
regulatory and logistic constraints. Further complexities may arise from operations
in different jurisdictions, as well as dynamic features embedded in the contracts.
The flow of information in an SC plays a critical role in the efficiency of the opera-
tions. Regulatory processes (e.g. customs) can be expedited by improving confidence
in documentations. This, in turn, will reduce waste, risk and insurance premiums.
IBM and Maersk are collaborating to create trust and transparency in global SCs
(IBM 2018). They are developing a distributed contract collaboration platform using
Blockchain technology. Maersk estimates that shipping a single container of flower
from Kenya to Rotterdam requires nearly 200 communications. In their approach,
each distinct entity involved in the transaction is allowed to access this system. Ship-
ping from the port of Mombasa requires signatures from three different agencies
and six documents: the smart contract will automatically generate after the sys-
tem receive the signatures. Simultaneously, when the documents about inspection,
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sealing of refrigerator, pick up by the trucker and approval from customs communi-
cated to the port of Mombasa is uploaded, all the participants can see the data in the
meantime, allowing the related entity to prepare for the container.

These and further recent examples of digital technology applications to SCs allow
for the new proposition that the competition is not between SCs, but rather between
SC services and the analytics algorithms behind the SCs based on cyber-physical
system approach.

According to Zhuge (2011), the evolution from the cyberspace and systems to
the cyber-physical-social space and systems can be described by three extensions. It
distinguishes two types of cyberspaces: the first one allows users to read the infor-
mation in the cyberspace like the web, and the other one allows users to read and
write information in the cyberspace. Both rely on humans to add information to the
cyberspace in order to share it with others.

The first extension to this basic concept depicts the extension of the cyberspace to
the physical space through various sensors. Any significant information in the physi-
cal space can be automatically sensed, stored and transmitted through the cyberspace.
Internet of Things can be considered as a kind of cyber-physical space.

The second extension is that user behaviours can be sensed and feedback to the
cyberspace for analysing the patterns of behaviours, and humans can remotely control
the actuators to behave in the physical space through the cyberspace. This enables the
cyberspace to adapt his services according to the feedback since behaviour change
may indicate some psychological change.

In the third extension, i.e. the cyber-physical system, not only the individual’s
behaviours, but also social interactions can be feedback into the cyberspace for fur-
ther processing. Users are considered with their social characteristics and relations
rather than as isolated individuals. Sensors are limited in their ability to collect all
information in the physical space, so users still need to directly collect the signifi-
cant information in the physical space and then put them into the cyberspace after
analysis (including experiment). Users can also manipulate physical objects in the
physical space, which can also be feedback into the cyberspace to reflect the real-time
situation]. Users’ status, interests and knowledge evolve with social interaction and
operations in the cyberspace.

The afore-mentioned analysis canbepresented as digital cyber-physical SC frame-
work (Fig. 9).

According toWaller and Fawcett (2013) and KPMG (2017), the application areas
of SC analytics can be classified into four areas, i.e.

• Descriptive and diagnostic analysis,
• Predictive simulation and prescriptive optimization,
• Real-time control and
• Adaptive learning.

Examples of SC and operations analytics applications include logistics and SC
control with real-time data, inventory control and management using sensing data,
dynamic resource allocation in Industry 4.0 customized assembly systems, improv-
ing forecasting models using Big Data, machine learning techniques for process
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Fig. 9 Service and material flow coordination in the cyber-physical supply chain

control, SC visibility and risk control, optimizing systems based on predictive infor-
mation (e.g. predictive maintenance), combining optimization and machine learning
algorithms and simulation-based modelling and optimization for stochastic systems.

Success in SC competition will become more and more dependent on analyt-
ics algorithms in combination with optimization and simulation modelling. Initially
intended for process automation, business analytics techniques now disrupt markets
and business models and have a significant impact on SCM development. As such,
new disruptive SC business models will arise where SCs will be understood not as
rigid physical systems with a fixed and static allocation of some processes to some
firms. Instead, different physical firms will offer services of supply, manufactur-
ing, logistics and sales which will result in a dynamic allocation of processes and
dynamic SC structures. Recent literature documented the possibility of modelling
such integrated service-material flow SCs (Ivanov et al. 2014c, Yang et al. 2017).

In new disruptive SC business models SCs will no more be understood as a
rigid physical system with a fixed and static allocation of some processes to some
firms. Instead, different physical firms will offer services of supply, manufacturing,
logistics and sales which will result in dynamic allocation of processes and dynamic
SC structures. Indeed, this idea is not really new.We can recall the virtual enterprises
concept developed about 15–20 years ago (Camarinha-Matos and Macedo 2010).

The SCs in virtual enterprises were expected to be formed dynamically thru so-
called competence cell or agents networking (Teich 2003, Ivanov et al. 2004, Teich
and Ivanov 2012, Ivanov and Sokolov 2012a, b). In essence, the suppliers were
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integrated in a tool that contained their technological processes and the related oper-
ational parameters (e.g. costs and lead time). A customer was able to place an order
specification and an automatic algorithm was able to find the suppliers needed to
be networked to fulfil this customer order. So while the individual contributors (e.g.
robots, sensors, RFID—radio-frequency identification, agents, modular factories,
etc.) are not really new, they are becoming more practical and companies more
receptive to using them to stay competitive.

4.2 Risk Analytics in the Digital SC: Data-Driven Decision
Analysis, Modelling, Control and Learning Systems

With the help of optimization and simulation approaches, current research gener-
ates new knowledge about the influence of disruption propagation on SC output
performance considering disruption location, duration and propagation and recov-
ery policies. New digital technologies create new challenges for the application of
quantitative analysis techniques to SC ripple effect analysis and open new ways and
problem statements for these applications.

In the past decades, simulation and optimization have played significant roles in
solving complex problems. Successful examples include production planning and
scheduling, SC design and routing optimization, to name a few. However, many
problems remain challenging because of their complexity and large scale, and/or
uncertainty and stochastic nature. In addition, the major application of optimization
and simulation methods in the last decades was seen in decision support, mean-
ing that decision makers were to manually provide the model input and interpret
the model output. On the other hand, the rapid rise of business analytics provides
exciting opportunities for Operations Research and the reexamination of these hard
optimization problems, as well as newly emerging problems.

The modelling stage is devoted to predictive simulation and prescriptive opti-
mization. Disruption scenario simulation, SC design optimization and recovery opti-
mization belong to major decisions to be supported at this level. Structural dynamics
control approach in combination with mathematical optimization can be used. Real-
time control area contains supply flow real-time control, disruption identification and
real-time performance and recovery control. Feedback control can be applied in this
domain with modifications.

It is commonly known that feedback control in socio-organizational differs from
technical systems where the feedback can be implemented almost immediately. In
socio-organizational systems, the feedback information first needs to be evaluated
by managers and the adjustment decisions need to be coordinated among different
department in the firms or even cross-organizational. As such, the differences in the
system states can be observed between the system state at the moment of starting
to prepare the adjustment decisions on the basis of the feedback information and
the system state at the moment of decision implementation. In other words, delayed
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feedbacks occur due to system inertia. The correction (adaptation) decisions need to
be implemented at the object or system which is different from the object or system
that has been considered for the reconfiguration decision planning.

Finally, the learning stage is comprised of risk mitigation learning, disruption
recovery learning and disruption pattern recognition. A combination of control algo-
rithms and artificial intelligence can provide a number of new insights in the given
area.

Consider some practical examples. Sourcing, manufacturing, logistics and sales
data are distributed among very different systems, such as ERP, RFID, sensors and
Blockchain. Big data analytics integrates this data to information used by AI algo-
rithms in the cyber SC and managers in the physical SC. As such, a new generation
of simulation and optimizationmodels is arising. The pervasive adoption of analytics
and its integration with Operations Research shows that simulation and optimization
are key, not only in the modelling of physical SC systems, but also in the modelling
of cyber SC systems and learning from them.

PwC is working with a large car company looking to introduce autonomous vehi-
cles for the public (Wilkinson 2018). Part of this work employs deep reinforcement
learning to develop rules. Together with simulation, deep reinforcement learning is
used to determine “optimal” decision rules that allow the vehicles to maximize effi-
ciency while also satisfying customer trip demand. The software environment for
the project uses the extensible and practical environment of AnyLogic multimethod
simulation software to lever the capabilities of DL4 J for the deep learning environ-
ment. Autonomous cars are becoming more common and the features are already in
many consumer cars. These examples show that artificial intelligence becomes more
pervasive in the real world with every project, and necessarily it must be part of the
simulation.

With regards to SC risks, Resilience360 at DHL allows comprehensive disruption
risk management by mapping end-to-end SC, building risk profiles and identifying
critical hotspots in order to initiate mitigation activities and alert in near-real-time
mode on incidents that could disrupt the SC (DHL 2018). RiskMethods GmbH
developed a software for proactive SC risk management that contains modules “Risk
radar”, “Impact analyzer” and “Action planner” for risk monitoring, impact assess-
ment and planning of the mitigation actions (RM 2018).

As such, a new generation of simulation and optimization models can be observed
that extends the decision-support systems (DSS) towards decision analysis, mod-
elling, control and learning systems (DAMCLS). A DAMCLS example for ripple
effect control in the SC that combines a simulation, optimization and data analytics
is shown in Fig. 10.

The DAMCLS system for SC risk analytics aims at proactive, resilient SC design
in anticipation of disruptions and structural–parametrical adaptation in the case of
disruptions. The decision-support system is based on a concept that combines sim-
ulation, optimization and data analytics. The simulation–optimization part of the
system is intended to provide proactive, resilient SC optimization and simulation of
SC dynamic behaviour in the event of possible disruptions or disruption scenarios.
In addition, this supports reactive, predictive simulation of disruption impacts on SC
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Fig. 10 Concept of a decision-support system for supply chain risk analytics

performance and of recovery policies which are subsequently optimized in a pre-
scriptive manner using an analytical model. The data analytics part of the system
is applied to disruption identification in real time using process feedback data, e.g.
from sensors and RFID. In addition, this aims at automated data input of disruption
data into the reactive simulation model for recovery policy simulation and optimiza-
tion. Finally, data analytics is used as data-driven learning system at the proactive
stage, helping to generate adequate disruption scenarios for resilient SC design and
planning.
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AMulti-portfolio Approach to Integrated
Risk-Averse Planning in Supply Chains
Under Disruption Risks

Tadeusz Sawik

Abstract This chapter presents a multi-portfolio approach for the time and space
integrated decision-making in a supply chain under disruption risks. In the context
of supply chain disruptions, the portfolio is defined as the allocation of demand for
parts among suppliers or the allocation of demand for products among production
facilities. A disruptive event is assumed to impact both primary suppliers of parts and
the firm primary assembly plant. Then, the firm selects recovery suppliers, recovery
plants along with transshipment of parts from disabled primary plant to recovery
plants and production and inventory planning in recovery plants. The mitigation and
recovery decisions are integrated over time and space: the primary portfolios to be
implemented before a disruptive event are optimized simultaneously with recovery
portfolios for the aftermath period as well as the portfolios for both part suppliers
and product manufacturers in different geographic regions are determined simultane-
ously. Using conditional cost at risk and conditional service at risk as risk measures,
the risk-averse solutions are obtained. The solution results are compared for different
demand patterns. The findings indicate that when the objective is to optimize service
level with no regard to costs, both supply and demand portfolios are more diversified.
The findings also demonstrate that the developed multi-portfolio approach leads to
computationally efficient stochastic MIP models with a very strong LP relaxation.
The proposed multi-portfolio approach that allows for the time and space integrated
decision-making may help to better mitigate the impact of disruption propagation on
supply chain performance, i.e., the ripple effect.
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1 Introduction

In global supply chains,material flows aremore often being subject to unexpected dis-
ruptions and the resulting losses due to the shortage ofmaterial supplies may threaten
the financial state of firms. For example, the disruptive events in the automotive and
electronics supply chains that occurred in 2011 (the Great East Japan earthquake
and tsunami in March and Thailand’s floods in October) resulted in huge losses in
automotive and high-tech industry, e.g., Marszewska (2016), Matsuo (2015), Park
et al. (2013). In order to reduce potential losses, different disruption management
strategies are applied in practice. Whenever a primary supplier is hit by a disruption,
recovery of disrupted primary supplier can be supported by the firm (e.g., the case
of Toyota helping supplier of automotive semiconductors, Renesas Electronics after
the earthquake in 2011, Matsuo 2015, and after the Kumamoto earthquake in 2016,
Marszewska 2016) or the firm selects an alternate (recovery) supplier, non-disrupted
or disrupted less severely than the primary supplier. Similarly, when a disruptive
event hits the firm primary production facility, then, a reasonable disruption man-
agement strategy would be to move production to alternate production facilities of
the firm.

Supply chain disruptions rarely occur as isolated events. Therefore, they must
be contained before they propagate through the supply chain and create greater
losses, see Blackhurst et al. (2011). Supply chain disruption propagation in Scheibe
and Blackhurst (2018) was defined as the spread of the disruption effects beyond
the initial disruption location. In the literature, supply chain disruption propagation
is also known as domino effect, snowball effect, andmore recently as the ripple effect,
e.g., Basole and Bellamy (2014), Dolgui et al. (2018), Ivanov (2018), Ivanov et al.
(2014a, b), Liberatore et al. (2012). The ripple effect depends on the supply chain
resilience (Ivanov 2018): multiple sourcing, prepositioning of emergency inventory,
suppliers and plants fortification, production, and logistics flexibility are typical
factors that might help to mitigate the impact of the ripple effect. In order to contain
disruptions and prevent them from spreading through the supply chain, the decision-
making on disruption management should be better coordinated and both proactive
and reactive decisions integrated over time and space.

This chapter presents a multi-portfolio approach for the time and space integrated
decision-making in a supply chain under disruption risks to better mitigate the impact
of disruption propagation on supply chain performance, i.e., the ripple effect. In the
context of supply chain disruptions, the portfolio is defined as the allocation of
demand for parts among suppliers or the allocation of demand for products among
production facilities. A disruptive event is assumed to impact both primary suppliers
of parts and the firmprimary assembly plant. Then the firm selects recovery suppliers,
recovery plants along with transshipment of parts from the disabled primary plant
to recovery plants and production and inventory planning in recovery plants. The
proactive and reactive decisions are integrated over time and space: the primary
portfolios to be implemented before a disruptive event is optimized simultaneously
with recovery portfolios for the aftermath period aswell as the portfolios for both part
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suppliers and product manufacturers in different geographic regions are determined
simultaneously. The portfolio approach to supply chain disruption management, first
proposed for the selection of primary suppliers to mitigate the impact of disruption
risks, Sawik (2011b, 2013a), was next enhanced for the selection of primary and
recovery suppliers, Sawik (2017), and recently (Sawik 2018a, c, 2019) also for the
selection of recovery assemblyplants. In addition, dynamic supply portfolio approach
was proposed in Sawik (2011c, 2018b) to simultaneously mitigate the impact of the
low probability and high impact supply disruptions and the high probability and low
impact supply delays.

The chapter is organized as follows. The review of relevant literature is presented
in Sect. 2. The problem of selecting primary and recovery suppliers and assembly
plants subject to partial disruptions is briefly described in Sect. 3. Stochastic mixed-
integer programs for the integrated risk-averse supply, production, and inventory
planning in a supply chain under disruption risks are developed in Sect. 4. Numerical
examples are provided in Sect. 5 and final conclusions and directions for further
research are presented in Sect. 6.

2 Literature Review

The supply chain disruption management utilizes various quantitative methods to
optimize disruption mitigation and recovery strategies. Typical methods include
scenario-based stochastic programming, mixed- integer programming, fuzzy set the-
ory, game theory, control theory, simulation, genetic algorithms, etc. Reviews of liter-
ature on supply chain disruptions and recoverywere presented in Snyder et al. (2016),
where scholarly works were discussed and organized into six categories: evaluating
supply disruptions; strategic decisions; sourcing decisions; contracts and incentives;
inventory; and facility location. A systematic literature review and a comprehen-
sive analysis of the decision-making models for supply chain risk was presented in
Rajagopal et al. (2017). Stochastic programming and mixed-integer linear program-
ming was found to be the commonly studied modeling methods. The literature on
disruption recovery in supply chains was recently reviewed in Ivanov et al. (2017).
The paper structured and classified existing research streams and application areas
of different quantitative methods subject to different disruption risks and recovery
measures.

Typical relevant works are briefly reviewed below.An interestingmodel for severe
disruptions was proposed in MacKenzie et al. (2014) and applied to a simulation
based on the Great East Japan earthquake and tsunami in 2011. In the model a dis-
ruption simultaneously impacts several suppliers. The model incorporated decisions
made by both suppliers and firms during the disruption of random duration. The deci-
sions may include whether or not suppliers move production to an alternate facility,
hold parts inventory; a firm purchases parts from alternate suppliers that are not
impacted, helps a primary supplier recover more quickly or holds finished products
inventory.
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In Meena et al. (2014), the problem of determining the number of suppliers under
risks of supplier failure due to catastrophic events was studied. A simple heuristic
algorithmwas proposed to determine the number of suppliers to minimize total costs
subject to a target service level and to maximize the service level subject to a total
costs constraint.

In Namdar et al. (2018), a scenario-based stochastic mixed-integer programming
model was developed for single and multiple sourcing in the presence of disruption
and operational risks. To achieve supply chain resilience under disruptions, backup
supplier contracts, spot purchasing, and collaboration and visibility were considered.

In Ruiz-Torres et al. (2013), the optimal supply allocation and contingency plan-
ning in supply networks made up of multiple suppliers with different cost and relia-
bility characteristics, and a set of separate demand points was considered. Suppliers
have production flexibility that allows them to deliver a contingency quantity in case
other suppliers fail. The problem objective was to minimize the total network costs
and was formulated as a mixed-integer program.

A bi-objective mixed possibilistic, two-stage stochastic programming model was
developed in Torabi et al. (2015) to address supplier selection and order allocation
problem to build the resilient supply base under operational and disruption risks. To
enhance the resilience level, the model applies several proactive strategies, suppliers’
business continuity plans, fortification of suppliers, and contracting with backup
suppliers.

In Yoon et al. (2018), a bi-objective stochastic mixed-integer programmingmodel
that integrates supplier selection and risk mitigation strategy selection was proposed.
The authors suggested that a combination of upstream and downstream risk mitiga-
tion strategies should be jointly considered with supplier selection rather than con-
sidering these decisions separately. A similar integrated approach was also proposed
in Sawik (2013b, 2014, 2015, 2016).

Most approaches, including the abovementioned, used in supply chain disrup-
tion management assume that some estimation of disruptive events probability and
potential losses are available. At the same time, a fair probability estimation of rare
events is a complicated problem and even small errors in those estimations may
significantly impact the modeling results. In Simchi-Levi et al. (2015), a novel risk-
exposure model was proposed for analyzing operational-disruption risk with no need
to estimate the probability of any specific disruptive events. The model is capable
of assessing the impact of a disruption originating anywhere in a supply chain and
has been applied by Ford Motor Company to identify risk exposures, evaluate risk
mitigation actions, and develop optimal contingency plans.

3 Selection of Supply and Demand Portfolios

In this section the problem of integrated selection of primary and recovery supply,
demand, and transshipment portfolios under disruption risks are presented.
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Table 1 Notation

Indices

i = supplier, i ∈ I

j = assembly plant, j ∈ J

k = region, k ∈ K

l = disruption level, l ∈ Li , i ∈ I , l ∈ L j , j ∈ J

s = disruption scenario, s ∈ S

t = planning period, t ∈ T

Input Parameters

ξ = per unit product inventory holding cost

ζ = per unit and per period penalty cost of delayed demand for products

η = per unit penalty cost of unfulfilled demand for products

c j = per period capacity of non-disrupted plant j

csj t = capacity in period t of plant j under disruption scenario s

dt = demand for products in period t

ei = per unit price of parts purchased from supplier i

fi = fixed ordering cost for supplier i

ε j = additional per unit production cost at recovery plant j > 1

ϕ j = fixed production setup cost at recovery plant j > 1

g j = per unit transshipment cost from primary plant j = 1 to plant j > 1

pil = probability of disruption level l for supplier i

π jl = probability of disruption level l for plant j

pk = regional disruption probability for region k

ts = start time period of disruption event s

γil = fraction of an order delivered by supplier i under disruption level l

γs
i = fraction of an order delivered by supplier i under scenario s

δ jl = fraction of capacity of plant j available under disruption level l

δsj = fraction of capacity of plant j available under scenario s

τi j = delivery lead time from supplier i to plant j

σ j = transshipment time from primary plant j = 1 to plant j > 1

θis = time to recover of supplier i from disruption under scenario s

ϑ js = time to recover of plant j from disruption under scenario s

ρis = cost to recover of supplier i from disruption under scenario s

� js = cost to recover of plant j from disruption under scenario s

Consider a supply chain in which a single producer assembles one product type in
several assembly plants to meet customer demand, using a critical part type that can
be manufactured and provided by several suppliers. (for notation used, see Table 1).

Let I = {1, . . . ,m} be the set ofm suppliers, J = {1, . . . , n}, the set of n assembly
plants, and T = {1, . . . , h}, the set of h planning periods.

If we denote by dt the demand for product in period t , then Dt = ∑
t ′∈T :t ′≤t dt ′ is

the cumulative demand for products by period t and D = ∑
t∈T dt is the total demand
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for the entire planning horizon. If we assume that one part is required to produce one
product, then demand for parts is identical with demand for products.

Let j = 1 be the primary plant, where the total demand for products, D, is initially
assigned.

The suppliers of parts and assembly plants are located in different geographic
regions, subject to potential regional disasters that may result in complete shutdown
of all suppliers and plants in the same region simultaneously. Denote by I k and
J k , respectively the subsets of suppliers and plants in region k ∈ K , and by pk , the
regional disruption probability for region k.

In addition, each supplier i ∈ I is subject to random local disruptions of different
levels, l ∈ Li = {0, . . . , Li }, where disruption level refers to the fraction of an order
that can be delivered, e.g., Sawik (2015). Level l = 0 represents complete shutdown
of a supplier, i.e., no order delivery, while level l = Li represents normal conditions
with no disruption, i.e., full order delivery.Denote by pil , the probability of disruption
level l for supplier i , and by γil , the fraction of an order that can be delivered by
supplier i under disruption level l (fulfillment rate)

γil =
⎧
⎨

⎩

0 if l = 0
∈ (0, 1) if l = 1, . . . , Li − 1
1 if l = Li .

(1)

Similarly to suppliers, each plant j ∈ J is subject to random local disruptions

of different levels, l ∈ L j = {0, . . . , L j }, where disruption level refers to available
fraction of full capacity, c j , available per period under normal conditions. Level l = 0

represents complete shutdown of an assembly plant, while level l = L
j
represents

normal conditions, i.e., full capacity, c j , available. Denote by π jl , the probability of
disruption level l for plant j , and by δ jl , the fraction of available capacity of plant j
under disruption level l.

δ jl =

⎧
⎪⎨

⎪⎩

0 if l = 0

∈ (0, 1) if l = 1, . . . , L
j − 1

1 if l = L
j
.

(2)

The total number of all potential scenarios is
∏

i∈I (Li + 1)
∏

j∈J (L
j + 1). Each

scenario s ∈ S is represented by an (m + n)- dimensional vectorλs = {λ1s, . . . ,λms,

λm+1,s, . . . ,λm+n,s}, where λis ∈ Li is the disruption level of supplier i ∈ I and
λm+ j,s ∈ L j is the disruption level of plant j ∈ J , under scenario s ∈ S. Disruption
s is assumed to occur in period ts , and the corresponding suppliers i ∈ I (such that

λis < Li ) and plants j ∈ J (such thatλm+ j,s < L
j
) are assumed to be simultaneously

hit by the disruption.
The probability Ps of disruption scenario s ∈ S is Ps = ∏

k∈K Pk
s , where Pk

s is
the probability of realizing disruption scenario s in region k (see Sawik 2015)
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Pk
s =

⎧
⎪⎪⎨

⎪⎪⎩

(1 − pk)(
∏

i∈I k
∏

l∈Li :λis=l pil)(
∏

j∈J k
∏

l∈L j :λm+ j,s=l π jl),

if
∑

i∈I k λis + ∑
j∈J k λm+ j,s > 0

pk + (1 − pk)(
∏

i∈I k pi0)(
∏

j∈J k π j0),

if
∑

i∈I k λis + ∑
j∈J k λm+ j,s = 0.

(3)

When supplier i is hit by disruption at level l, its recovery process to normal
conditions takes T T R(i, l) time periods (time to recover) and let CT R(i, l) be the
firm’s portion of cost to recover. For each supplier i , denote by θis and ρis , respec-
tively, time to recover and firm’s portion of cost to recover from disruption under
scenario s

θis = T T R(i, l); i ∈ I, s ∈ S : l = λis (4)

ρis = CT R(i, l); i ∈ I, s ∈ S : l = λis . (5)

Similarly, when plant j is hit by disruption at level l, its recovery process to normal
conditions takes PRT ( j, l) time periods (plant recovery time) and cost PRC( j, l)
(plant recovery cost). For each plant j , denote by ϑ js and ρ js , respectively time to
recover and cost to recover from disruption under scenario s

ϑ js = PRT ( j, l); j ∈ J, s ∈ S : l = λm+ j,s (6)

� js = PRC( j, l); j ∈ J, s ∈ S : l = λm+ j,s . (7)

The orders for parts are assumed to be placed at the beginning of the planning
horizon, and under normal conditions the parts ordered from supplier i are delivered
to assembly plant j in period τi j , where τi j is the total of manufacturing lead time
and transportation time. Denote by σ j transshipment time from the primary plant
j = 1 to recovery plant j .

The firmwhomoves production to an alternate assembly plant j incurs a fixed cost
ϕ j and encounters additional per unit cost of production ε j , and per unit cost, g j , of
transshipment of parts from the primary plant, where ϕ1 = 0, ε1 = 0 and g1 = 0. A
recovery plant can be a disrupted primary plant j = 1 with reduced capacity during
recovery process and then with its full capacity or a new plant, non-disrupted or
disrupted less severely than the primary plant.

The following assumptions are made to formulate the problem.

• Each supplier has sufficient capacity to meet total demand for parts.
• One unit of a critical part is needed to assemble one unit of product.
• If supplier i ∈ I (assembly plant j ∈ J ) is hit by disruption s in period ts , its
recovery process starts in period ts + 1, so that the disrupted supplier (disrupted
plant) returns to its full capacity in period t = ts + θis (t = ts + ϑ js).

• A single disruption scenario is assumed to realize over the entire planning horizon.
Multiple disruptions, one after the other in a series, during the recovery process
are not considered.
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• Period-dependent demand for products is considered that should be satisfied during
the planning horizon using buildup inventory of products and a penalty cost is
charged for demand fulfilled with delay and not fulfilled at all.

• A recovery supplier can be a disrupted primary supplier after its recovery to full
capacity or a new supplier.

• A recovery assembly plant can be a disrupted primary assembly plant during and
after its recovery to full capacity or a new assembly plant.

4 Risk-Averse Decision-Making

In this section, two stochasticMIPmodels Support_CV(c) and Support_CV(sl) are
proposed for integrated, risk-averse selection of primary and recovery supply port-
folios, recovery demand and transshipment portfolios, and production and inventory
planning. The objective is to reduce the risk of worst-case cost by minimizing con-
ditional cost at risk, CVaRc, and reduce the risk of worst-case service level by max-
imizing conditional service at risk, CVaRsl , respectively. Problems Support_CV(c)
and Support_CV(sl) are stochastic multi-portfolio selection problems in which pri-
mary and recovery supply, demand and transshipment portfolios are simultaneously
selected for all potential disruption scenarios (for definitions of first- and second-
stage variables, see Table 2). The portfolios are defined below.

The primary supply portfolio

(v1, . . . , vm),

specifies supplies of parts from the primary suppliers to primary assembly plant
j = 1, where

vi ∈ [0, 1]; i ∈ I,
∑

i∈I
vi = 1.

The recovery supply portfolio for scenario s

(V s
1 j , . . . , V

s
mj ); j ∈ J,

specifies supplies of parts from recovery suppliers to recovery assembly plants,
where

V s
i j ∈ [0, 1]; i ∈ I, j ∈ J,

∑

i∈I
(γs

i vi +
∑

j∈J

V s
i j ) = 1,

∑
i∈I γs

i vi denotes delivery of parts from the primary suppliers to primary plant.
The recovery transshipment portfolio for scenario s

(ws
1, . . . ,w

s
n),
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Table 2 Two-stage problem variables

First-Stage Variables

ui ∈ {0, 1}, such that the value 1 means that supplier i is selected as a primary supplier; otherwise

ui = 0 (primary supplier selection)

vi ∈ [0, 1], fraction of total demand for parts, ordered from the primary supplier i , to be delivered

to primary plant j = 1 (primary supply portfolio)

Second-Stage Variables

qsj ∈ {0, 1}, such that the value 1 means that assembly plant j is selected as a recovery plant under

disruption scenario s; otherwise qsj = 0 (recovery plant selection)

rsj ∈ [0, 1], fraction of total demand for products to be completed by recovery plant j under disru-

ption scenario s (recovery demand portfolio)

Us
i ∈ {0, 1}, such that the value 1 means that supplier i is selected as a recovery supplier under

disruption scenario s; otherwise Us
i = 0 (recovery supplier selection)

V s
i j ∈ [0, 1], fraction of total demand for parts, ordered from recovery supplier i to recovery plant

j , under disruption scenario s (recovery supply portfolio)

ws
j ∈ [0, 1], fraction of total demand for parts, transshipped from the primary plant j = 1 to reco-

very plant, j , under scenario s, where ws
1 represents parts that remain in the primary plant j = 1

(recovery transshipment portfolio)

xsjt ≥ 0, production in plant j in period t under disruption scenario s (production planning)

yst ≥ 0, inventory of products at the beginning of period t under disruption scenario s (inventory

planning)

zst ≥ 0, shortage of products at the beginning of period t under disruption scenario s (inventory

planning)

Auxiliary Variable

ast ∈ {0, 1}, such that value 1 means that there exists inventory of products at the beginning of

period t under disruption scenario s

bst ∈ {0, 1}, such that value 1 means that there exists shortage of products at the beginning of

period t under disruption scenario s

μs
i ∈ {0, 1}, such that the value 1 means that ui = Us

i = 1; otherwise μs
i = 0 (elimination of

double fixed ordering costs)

specifies transshipment of parts from the primary assembly plant to recovery
plants, where

ws
j ∈ [0, 1]; j ∈ J,

∑

j∈J

ws
j =

∑

i∈I
γs
i vi −

∑

t∈T :t<ts

xs1t/D,

and
∑

t∈T :t<ts
xs1t denotes production at primary assembly plant j = 1, before

disruption.
The recovery demand portfolio for scenario s

(r s1, . . . , r
s
n),
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specifies an allocation of unfulfilled demand for products among recovery plants,
where

r sj ∈ [0, 1]; j ∈ J,
∑

t∈T :t<ts

xs1t/D +
∑

j∈J

r sj = 1.

Models Support_CV(c) and Support_CV(sl) presented below are deterministic
equivalent mixed-integer programs of the two-stage stochastic mixed-integer pro-
grams with recourse (e.g., Birge and Louveaux 2011). The primary supply port-
folio selection variables, ui , vi , are referred to as first-stage decisions, and the
scenario-dependent recovery supply, demand and transshipment portfolio selection
variables, Us

i , V s
i j , q

s
j , r sj and ws

j , and production and inventory planning vari-
ables, xsjt , yst , zst , ast , bst , are referred to as recourse or second-stage decisions (cf.
Table 2).

Support_CV(c): Selection of Supply, transshipment and demand portfolios
with production and inventory planning to minimize CVaR of cost

Minimize
CVaRc = VaRc + (1 − α)−1

∑

s∈S
PsCs (8)

subject to
Primary supply portfolio selection constraints

∑

i∈I
vi = 1 (9)

vi ≤ ui ; i ∈ I (10)

Recovery supply and demand portfolio selection constraints

V s
i j ≤ Us

i ; i ∈ I, j ∈ J, s ∈ S (11)

V s
i j ≤ qs

j ; i ∈ I, j ∈ J, s ∈ S (12)

r sj ≤ qs
j ; j ∈ J, s ∈ S (13)

ws
j ≤ qs

j ; j ∈ J, s ∈ S (14)
∑

i∈I
(γs

i vi +
∑

j∈J

V s
i j ) = 1; s ∈ S (15)

∑

t∈T :t<ts

xs1t/D +
∑

j∈J

r sj = 1; s ∈ S (16)

∑

i∈I
V s
i j + ws

j = r sj ; j ∈ J, s ∈ S (17)

∑

j∈J

ws
j =

∑

i∈I
γs
i vi −

∑

t∈T :t<ts

xs1t/D; s ∈ S (18)
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μs
i ≤ (ui +Us

i )/2; i ∈ I, s ∈ S. (19)

Production capacity constraints

xs1t ≤ c1; t ∈ T, s ∈ S : t < ts (20)

xsjt ≤ csjtq
s
j ; j ∈ J, t ∈ T, s ∈ S : t ≥ ts (21)

∑

t∈T :t≥ts

xsj t/D ≤ r sj ; j ∈ J, s ∈ S. (22)

Supply-transshipment production coordinating constraints

∑

t ′∈T :t ′≤t

xs1t ′ ≤
∑

i∈I :τi1≤t−1

γs
i vi +

∑

i∈I :ts+θis+τi1≤t−1

V s
i1

−(if t ≤ t̄s then 0 else
∑

j∈J : j>1

ws
j );

t ∈ T, s ∈ S (23)
∑

t ′∈T :t ′≤t

xsj t ′ ≤
∑

i∈I :ts+θis+τi j≤t−1

V s
i j + (if t ≤ t̄s + σ j then 0 else ws

j );

j ∈ J, t ∈ T, s ∈ S : j > 1, (24)

where t̄s = max{ts,maxi∈I τi1} and, t̄s + 1, is the start period of transshipment
of parts to recovery plants.

Product inventory constraints

yst+1 − zst+1 =
∑

j∈J

∑

t ′∈T :t ′≤t

xsj t ′ − Dt ; t ∈ T, s ∈ S (25)

yst+1 ≥
∑

j∈J

∑

t ′∈T :t ′≤t

xsj t ′ − Dt ; t ∈ T, s ∈ S (26)

zst+1 ≥ Dt −
∑

j∈J

∑

t ′∈T :t ′≤t

xsj t ′ ; t ∈ T, s ∈ S (27)

ast + bst ≤ 1; t ∈ T, s ∈ S (28)

yst /D ≤ ast ; t ∈ T, s ∈ S (29)

zst /D ≤ bst ; t ∈ T, s ∈ S (30)

ysh+1 = 0; s ∈ S. (31)

Risk constraints:
- the tail cost for scenario s, Cs , is defined as the nonnegative amount by

which cost in scenario s exceeds VaRc,
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Cs ≥
∑

i∈I
( fi (ui +Us

i − μs
i ) + ρisU

s
i + ei (γ

s
i vi +

∑

j∈J

V s
i j ))/D

+
∑

j∈J

(g jw
s
j + (ϕ j + � js)q

s
j +

∑

t∈T
ε j x

s
j t )/D

+
∑

t∈T
(ξyst + ζzst )/D + ηzsh+1/D − VaRc; s ∈ S (32)

Non-negativity and integrality conditions

Cs ≥ 0; s ∈ S (33)

ast ∈ {0, 1}; t ∈ T, s ∈ S (34)

bst ∈ {0, 1}; t ∈ T, s ∈ S (35)

qs
j ∈ {0, 1}; j ∈ J, s ∈ S (36)

r sj ∈ [0, 1]; j ∈ J, s ∈ S (37)

ui ∈ {0, 1}; i ∈ I (38)

vi ∈ [0, 1]; i ∈ I (39)

Us
i ∈ {0, 1}; i ∈ I, s ∈ S (40)

V s
i j ∈ [0, 1]; i ∈ I, j ∈ J, s ∈ S (41)

ws
j ∈ [0, 1]; j ∈ J, s ∈ S (42)

xsjt ≥ 0; j ∈ J, t ∈ T, s ∈ S (43)

yst ≥ 0; t ∈ T, s ∈ S (44)

zst ≥ 0; t ∈ T, s ∈ S (45)

μs
i ∈ {0, 1}; i ∈ I, s ∈ S, (46)

where

csjt =
{

δsj c j , if ts ≤ t ≤ ts + ϑ js − 1
c j , if t ≤ ts − 1, t ≥ ts + ϑ js .

(47)

δsj = δ j,λm+ j,s , and λm+ j,s is disruption level of plant j under scenario s.

Equation (9) is the primary supply portfolio selection constraint and Eq. (10)
ensures that demand for parts cannot be assigned to nonselected primary suppli-
ers. Equations (11) and (12) ensure that the unfulfilled demand for parts cannot be
assigned to nonselected recovery suppliers and cannot be ordered for nonselected
recovery plants, respectively. Equation (13) ensures that the unfulfilled demand for
products cannot be assigned to nonselected recovery plants, and Eq. (14) ensures that
parts from the primary plant cannot be transshipped to nonselected recovery plants.
Equations (15) and (16) are the recovery supply portfolio and the recovery demand
portfolio selection constraints, respectively. The supply and demand portfolio flow
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conservation constraints (17) ensure that for each recovery plant, the recovery sup-
plies and transshipment of parts are in balance with the demand for products to be
fulfilled by that plant. The balance constraints for parts, (18), ensure that the total
transshipments of parts from the primary supplier are equal to the partially fulfilled
supplies from the primary suppliers less the usage of parts for production before
disruption. Equation (19) ensures that each supplier selected to both primary and
recovery portfolio is charged exactly once with fixed ordering cost in the objective
function. Equations (20) and (21) ensure that before a disruptive event, the produc-
tion at primary plant in every period cannot exceed its capacity, and after a disruptive
event, the production at each selected recovery plant in every period cannot exceed
the plant available capacity, respectively. Equation (22) guarantees that the total pro-
duction at each recovery plant cannot exceed the assigned portion of total demand
for products.

The supply-transshipment-production coordinating constraints (23)–(24) ensure
that

In primary assembly plant, the cumulative demand for parts cannot exceed the
cumulative deliveries from the primary and recovery suppliers, less transshipment
of parts to recovery plants, if t > t̄s , Eq. (23),

In recovery assembly plants, the cumulative demand for parts cannot exceed the
cumulative deliveries from recovery suppliers, plus transshipment of parts from the
primary plant, if t > t̄s + σ j , Eq. (24).

The product inventory constraints (25)–(27) ensure that inventory or shortage of
products in period t + 1 are, respectively, positive or negative difference between
cumulative production and demand by period t . Equations (28)–(30) indicate that in
each period, there is either inventory or shortage or production and demand are in
balance. Finally, Eq. (31) ensures that no inventory of products remains at the end of
the planning horizon.

The cost per product (see (32)), consists of different fixed and variable cost per
product. The fixed cost includes the cost of ordering parts from the primary and recov-
ery suppliers, cost of recovery processes of suppliers and plants, and cost of moving
production from the primary to recovery plants, The variable cost includes the cost of
purchasing parts from the primary and recovery suppliers, cost of transshipment of
parts, cost of additional production cost in recovery plants, cost of holding inventory
of products, cost of penalty for demand fulfilled with delay, and cost of penalty for
unfulfilled demand.

Notice that the supply and demand portfolio selection constraints form an embed-
ded network flow problem, (see Fig. 1). In particular, Eqs. (17) and (18) are flow
conservation constraints under scenario s for each node j (assembly plant) and node
j = 1 (primary assembly plant), respectively. γs

i vi represents flow of parts from sup-
plier i (source node) to primary plant j = 1 (sink/transshipment node), V s

i j represents
flow of parts from recovery supplier i (source node) to recovery plant j (sink node)
andws

j represents flow of parts from the primary plant j = 1 (transshipment node) to
recovery plant j (sink node). Finally, r sj represents outflow of products from recovery
plant j .
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Fig. 1 Primary (γs
i vi ) and recovery (V s

i j , w
s
j ) flow of parts, and products (rsj )

Support_CV(sl): Selection of Supply, transshipment and demand portfolios
with production and inventory planning to maximize CVaR of service level
Maximize

CVaRsl = VaRsl − (1 − α)−1
∑

s∈S
PsSs (48)

subject to (9)–(31), (34)–(47) and
Risk constraints:
- the tail service level for scenario s, Ss , is defined as the nonnegative

amount by which VaRsl exceeds service level in scenario s,

Ss ≥ VaRsl + zsmax/D − 1; s ∈ S (49)

Ss ≥ 0; s ∈ S, (50)

where, zsmax = maxt∈T zst , is the maximum shortage of products under disrup-
tion scenario s.

In the proposed models, CVaR is represented by auxiliary functions (8) and (48),
where α ∈ (0, 1) is the confidence level, VaR(c) (VaRsl ) is the targeted cost (targeted
service level) such that for a given confidence level α, for 100α% of the scenarios,
the outcome is below VaR(c) (above VaRsl ).
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In the risk-averse decision-making, the confidence level α is fixed by the decision
maker to control the risk of losses due to supply disruptions. Thehigher the confidence
level α, the more risk aversive is the decision maker and the smaller percent of the
highest cost (lowest service) outcomes are focused on. The decision maker is willing
to accept only solutions for which the total probability of scenarios with cost greater
than VaRc (service smaller than VaRsl ) is not greater than 1 − α.

Worst-case service level

Proposition 1 The lowest service level, SL, can be calculated as below.

SL = min{SL1/D, SL2/D}. (51)

SL1 = D − ∑
t∈T :t≤t SL dt , is the greatest unfulfilled demand due to non available

production capacity in disabled plants, where

t SL = max
s∈S {ts + max

j∈J
(max(max

i∈I {θis + τi j },ϑ js,σ j ))},

is the longest time required to resume production after disruption.
SL2 = min j∈J

∑
t∈T :t>maxs∈S{ts+max(maxi∈I {θis+τi j },ϑ js ,σ j )} c j , is minimum produc-

tion capacity available after recovery.

Proof 1 The lowest service level is associated with worst-case disruption scenario
s ∈ S for which primary supplier and primary assembly plant are both shutdown by
disruption at time ts before any production was started. Then, production resumes
at plant j with the latest recovery time (after ts + ϑ js periods), after the latest
delivery of parts by a recovery supplier (i.e., after ts + maxi∈I {θis + τi j } peri-
ods) and after transshippment of parts from the primary plant (i.e., after ts + σ j

periods), whichever occurs later. Thus,
∑

t∈T :t≤t SL dt , is the maximum shortage
due to disruption, i.e., shortage of products under worst-case scenario. On the
other hand, the lowest service level is associated with minimum recovery capac-
ity. The smallest recovery capacity of plant j is determined by the number of peri-
ods,

∑
t∈T :t>maxs∈S{ts+max(maxi∈I {θis+τi j },ϑ js ,σ j )}, remaining for production after its full

recovery.

5 Computational Examples

The basic input data for the computational examples presented in this section are
available in Sawik (2018a, b, 2019). Although the input data are hypothetical, their
relations to each other are real and in part, they have been taken from a real case study.
In particular, the case studies of Toyota supply chain disruption and recovery after
the Great East Japan earthquake and tsunami of March 11, 2011 (e.g., Marszewska
2016;Matsuo 2015; Park et al. 2013) have been analyzed.Moreover, demand patterns
are based on a real-world data from a high-tech manufacturer (Sawik 2011a). The
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Table 3 Input parameters

m = 4 suppliers, n = 2 plants, h = 30 planning periods

K = {1, 2} two geographic regions

I 1 = {1, 2}, J 1 = {1, 2} two suppliers and two plants in region k = 1

I 2 = {3, 4} two suppliers in region k = 2

Total demand for parts/products D = 300000

Demand per period for parts/products

Constant demand pattern: dt = 10000,∀t ∈ T

Increasing demand pattern:

d = (0, 2, 7, 0, 10, 8, 6, 0, 9, 8, 9, 11, 2, 5, 5, 10, 11, 13, 17, 7, 17, 13, 18, 10, 7, 19, 28, 18, 15, 15) × 1000

Decreasing demand pattern:

d = (0, 23, 21, 14, 15, 20, 13, 9, 18, 18, 16, 7, 10, 12, 11, 10, 5, 5, 2, 13, 9, 10, 9, 0, 6, 8, 0, 3, 7, 6) × 1000

Disruption levels

Li = 3 four disruption levels for each supplier i ∈ I

L
j = 1 two disruption levels for each plant j ∈ J

Local disruption probability for suppliers:

pi0 = 0.1(1 − pi3) complete shutdown (level l = 0)

pi1 = 0.3(1 − pi3) major disruption (level l = 1)

pi2 = 0.6(1 − pi3) minor disruption (level l = 2)

pi3 ∈ [0.75, 0.95]; i ∈ I 1, pi3 ∈ [0.65, 0.75]; i ∈ I 2 non disruption (level l = 3)

Local non disruption probability for plants: π1 = 0.75, π2 = 0.85

Regional disruption probability: p1 = 0.001, p2 = 0.01

Fulfillment rates of suppliers:

γi0 = 0 ∀i ∈ I , γi3 = 1 ∀i ∈ I

γi1 ∈ [0.01, 0.50] ∀i ∈ I 1 γi1 ∈ [0.01, 0.30] ∀i ∈ I 2, γi2 ∈ [0, 51, 0.99] ∀i ∈ I 1 γi2 ∈ [0, 31, 0.99] ∀i ∈ I 2

Plant capacity:

c1 = 10000, c2 = 5000

Cost parameters:

e = (14, 12, 8, 9), f = (8000, 6000, 12000, 13000)

ε2 = 1, ϕ2 = 100, g2 = 0.1, ξ = maxi∈I ei /10 = 1.4, ζ = 10, η = 100

CT R(i, l)=if l = 0 then 100000 fi ; if l = 1 then 10000 fi ; if l = 2 then 1000 fi ∀i ∈ I

P RC(1, 0) = PRC(2, 0) = 10000

Time parameters:

τ1 j = τ2 j = 2, τ3 j = τ4 j = 4,∀ j ∈ J , σ2 = 2

T T R(i, l)=if l = 0 then 12; if l = 1 then 10; if l = 2 then 8 ∀i ∈ I

P RT (1, 0) = 10, PRT (2, 0) = 5

computational experiments were performed using theAMPL programming language
and the Gurobi 7.5.0 solver on a MacBookPro laptop with Intel Core i7 processor
running at 2.8GHz and with 16GB RAM. The basic input parameters are shown in
Table 3.
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In order to emphasize the impact of disruptions on the primary assembly plant
j = 1, the plant has greater capacity and is modeled to be less reliable than plant
j = 2 (c1 = 10000 > c2 = 5000, π1 = 0.75 < π2 = 0.85).

The total number of all potential disruptive events was (L + 1)m(L1 + 1)(L2 +
1) = (44)(22) = 1024. In the computational examples, a disruption scenario was
defined as a combination of disruptive event and its start time. The start time ts of
each disruptive event was assumed to be not greater than the maximum delivery lead
time to primary assembly plant j = 1, maxi∈I (τi1) = 4. Thus ts ∈ {1, 2, 3, 4}, and
the total number of all potential scenarios to be considered was 1024×4=4096,
since each disruptive event s = 1, . . . , 1024 may occur at four different start times.
Notice that γs

i = 1, if ts > τi1, i.e., full order is delivered by supplier i , if disruption
occurs after delivery lead time to primary assembly plant.

The probability Ps of realizing each disruption scenario s ∈ S was calculated as
follows:
Ps = 0.1P1

s P
2
s for s ≤ 1024,

Ps = 0.2P1
s−1024P

2
s−1024 for 1025 ≤ s ≤ 2048,

Ps = 0.3P1
s−2048P

2
s−2048 for 2049 ≤ s ≤ 3072, and

Ps = 0.4P1
s−3072P

2
s−3072 for 3073 ≤ s ≤ 4096,

where probabilities Pk
s ; k = 1, 2, s ≤ 1024 were obtained using formula (3).

Notice that disruptive events with later start times were modeled to be more likely.
The solution results are summarized in Tables 4 and 5, respectively, for model

Support_CV(c) and Support_CV(sl). The tables show primary supply portfo-
lio and expected demand portfolios for different values of confidence level α =
0.5, 0.75, 0.9, 0.95, 0.99. The solution values, CVaR and VaR, are presented along
with the associated expected values of cost per product,

E(c) =
∑

s∈S
Ps

∑

i∈I
( fi (ui +Us

i − μs
i ) + ρisU

s
i + ei (γ

s
i vi +

∑

j∈J

V s
i j ))/D

+
∑

s∈S
Ps

∑

j∈J

(g jw
s
j + (ϕ j + � js)q

s
j +
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h+1/D, (52)

and expected service level,

E(sl) = 1 −
∑

s∈S
Psz

s
max/D, (53)

as well as with solution value of LP relaxation of stochastic MIP models Sup-
port_CV(c) and Support_CV(sl). Table 4 shows that while CVaR, VaR, and E(c)
increasewith the confidence levelα, the expected service level, E(sl), decreases as the
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Table 4 Solution results for model Support_CV(c)

Confidence level α 0.50 0.75 0.90 0.95 0.99

Constant demand pattern

Var.=365531, Bin.=56064, Cons.=693807, Nonz.=7804322a

CVaR 64.20 92.25 104.80 120.01 136.71

VaR 34.53 69.26 87.49 90.87 134.92

Exp.Cost E(c), (52) 49.32 59.67 71.63 72.67 90.40

Exp.Service E(sl), (53)×100% 87.90 85.02 81.69 81.84 80.22

Primary Supply Portfolio: 1(5)

Supplier(% of total demand)b 2(8) 2(5) 2(4) 2(13) 2(100)

3(78) 3(82) 3(83) 3(74)

4(9) 4(13) 4(13) 4(13)

Exp.Recovery Demand Portfolio: 1(90)

Plant (% of total demand)c 2(10)

LPd 63.95 92.06 104.46 119.34 134.96

Increasing demand pattern

Var.=596787, Bin.=207504, Cons.=1003583, Nonz.=9671394a

CVaR 39.00 57.45 67.71 83.54 96.41

VaR 19.39 46.61 51.57 53.43 94.58

Exp.Cost E(c), (52) 29.19 44.27 47.78 50.77 56.00

Exp.Service E(sl), (53)×100% 93.42 82.47 80.90 79.45 79.83

Primary Supply Portfolio: 2(9) 2(3) 2(4) 2(16) 2(100)

Supplier(% of total demand)b 3(83) 3(88) 3(87) 3(75)

4(8) 4(9) 4(9) 4(9)

Exp.Recovery Demand Portfolio: 1(89)

Plant (% of total demand)c 2(10)

LPd 38.85 56.85 67.37 82.08 94.80

Decreasing demand pattern

Var.=375267, Bin.=59824, Cons.=699143, Nonz.=7778870a

CVaR 96.97 125.04 137.69 152.87 169.64

VaR 67.46 100.42 120.41 123.80 167.86

Exp.Cost E(c), (52) 82.21 98.35 104.28 106.33 128.97

Exp.Service E(sl), (53)×100% 69.12 64.52 62.99 62.59 60.58

Primary Supply Portfolio: 1(5)

Supplier(% of total demand)b 2(8) 2(5) 2(3) 2(14) 2(100)

3(78) 3(82) 3(84) c(76)

4(9) 4(13) 4(13) 4(10)

Exp.Recovery Demand Portfolio: 1(89) 1(90) 1(89) 1(90) 1(87)

Plant (% of total demand)c 2(10) 2(10) 2(10) 2(10) 2(13)

LPd 96.80 124.85 137.36 152.20 167.90
aVar.= total number of variables, Bin.=number of binary variables,

Cons.=number of constraints, Nonz.=number of nonzero coefficients
b1(v1 × 100), 2(v2 × 100), 3(v3 × 100), 4(v4 × 100)
c1(

∑
s∈S Psrs1 × 100), 2(

∑
s∈S Psrs2 × 100)

dLP relaxation solution value of (8)
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Table 5 Solution results for model Support_CV(sl)

Confidence level α 0.50 0.75 0.90 0.95 0.99

Constant demand pattern

Var.=365531, Bin.=56064, Cons.=693807, Nonz.=7544834a

CVaR 82.55 71.83 70.17 69.10 68.32

VaR 93.33 78.33 71.67 70.00 68.33

Exp.Service E(sl), (53)×100% 87.94 82.70 82.67 82.34 82.16

Exp.Cost E(c), (52) 534.65 554.09 553.47 556.06 556.38

Primary Supply Portfolio: 1(33) 1(28) 1(30) 1(25) 1(28)

Supplier(% of total demand)b 2(27) 2(25) 2(21) 2(27) 2(27)

3(13) 3(21) 3(24) 3(21) 3(21)

4(27) 4(26) 4(25) 4(27) 4(24)

Exp.Recovery Demand Portfolio: 1(89) 1(92) 1(90)

Plant (% of total demand)c 2(10) 2(8) 2(10)

LPd 82.55 71.83 70.17 69.10 68.32

Increasing demand pattern

Var.=596787, Bin.=207504, Cons.=1003583, Nonz.=9332090a

CVaR 91.24 89.14 87.12 86.27 84.96

VaR 93.33 93.33 88.67 86.67 85.00

Exp.Service E(sl), (53)×100% 93.55 93.55 90.66 88.78 87.10

Exp.Cost E(c), (52) 513.63 513.62 516.70 519.23 521.70

Primary Supply Portfolio: 1(35) 1(35) 1(31) 1(32) 1(33)

Supplier(% of total demand)b 2(32)

3(11) 3(11) 3(17) 3(16) 3(12)

4(22) 4(22) 4(20) 4(20) 4(23)

Exp.Recovery Demand Portfolio: 1(88) 1(89)

Plant (% of total demand)c 2(10) 2(11)

LPd 91.24 89.14 87.12 86.27 84.96

Decreasing demand pattern

Var.=375267, Bin.=59824, Cons.=699143, Nonz.=7513406a

CVaR 63.99 53.69 51.92 51.10 50.31

VaR 74.33 61.00 53.67 52.00 50.33

Exp.Service E(sl), (53)×100% 69.16 63.92 63.87 63.62 63.32

Exp.Cost E(c), (52) 569.41 588.41 588.60 590.24 593.00

Primary Supply Portfolio: 1(33) 1(26) 1(30) 1(27) 1(26)

Supplier(% of total demand)b 2(28) 2(26) 2(21) 2(22) 2(28)

3(12) 3(23) 3(24) 3(23) 3(21)

4(27) 4(25) 4(25) 4(28) 4(25)

Exp.Recovery Demand Portfolio: 1(88) 1(90)

Plant (% of total demand)c 2(10) 2(10)

LPd 63.99 53.69 51.92 51.10 50.31
aVar.= total number of variables, Bin.=number of binary variables,

Cons.=number of constraints, Nonz.=number of nonzero coefficients
b1(v1 × 100), 2(v2 × 100), 3(v3 × 100), 4(v4 × 100)
c1(

∑
s∈S Psrs1 × 100), 2(

∑
s∈S Psrs2 × 100)

dLP relaxation solution value of (48)



54 T. Sawik

decision maker becomes more risk aversive with respect to cost. Similar results for
model Support_CV(sl) are shown in Table 5. While CVaR, VaR, and E(sl) decrease
with the confidence level α, E(c) increases as the decision maker becomes more risk
aversive with respect to the service level.

Table 4 indicates that the primary supply portfolio for model Support_CV(c)
becomes less diversified as the confidence level increases and for the highest α =
0.99 a single supplier i = 2 is selected only, the cheapest among the most reliable
suppliers. In contrast, for model Support_CV(sl), a diversified supply portfolio with
all suppliers is selected for all confidence levels, see Table 5. The expected recovery
demand portfolios are similar for both models and all confidence levels, with the
primary plant j = 1 selected as a major recovery supplier.

For model Support_CV(c) and three different demand patterns, Fig. 2 presents
expected cumulative production at each plant j ∈ J , by each period,

∑

s∈S
Ps

∑

t ′∈T :t ′≤t

xsj t ′ ; t ∈ T,

and expected shortage of products, at the end of each period,

∑

s∈S
Psz

s
t+1; t ∈ T,

associatedwith the risk-averse solution forα = 0.99. In addition, Fig. 2 shows cumu-
lative demand for products by each period t ∈ T ,

Dt =
∑

t ′∈T :t ′≤t

dt ′ .

For the top 100(1 − α)% = 1% of the worst-case scenarios s ∈ S with cost,
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( fi (ui +Us

i − μs
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+
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+
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exceeding VaRc, Fig. 3 presents expected worst-case cumulative production at each
plant j ∈ J , by each period,

∑
s∈S:C s>0 Ps

∑
t ′∈T :t ′≤t x

s
j t ′

∑
s∈S:C s>0 Ps

; t ∈ T,

and expected worst-case shortage of products, at the end of each period,



A Multi-portfolio Approach to Integrated Risk-Averse Planning … 55

Fig. 2 Expected cumulative production and shortage of products for model Support_CV(c), α =
0.99: a constant demand pattern, b increasing demand pattern, c decreasing demand pattern
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∑
s∈S:C s>0 Psz

s
t+1∑

s∈S:C s>0 Ps
; t ∈ T .

Similar diagrams for model Support_CV(sl), three different demand patterns
and α = 0.99 are shown in Figs. 4 and 5. Figure4 presents expected cumulative
production at each plant and expected shortage of products and Fig. 5 shows expected
worst-case cumulative production,

∑
s∈S:S s>0 Ps

∑
t ′∈T :t ′≤t x

s
j t ′

∑
s∈S:S s>0 Ps

; t ∈ T,

and expected worst-case shortage of products,

∑
s∈S:S s>0 Psz

s
t+1∑

s∈S:S s>0 Ps
; t ∈ T,

for the top 100(1 − α)% = 1% of the worst-case scenarios s ∈ S with service level,
1 − zsmax/D, below VaRsl .

Comparison of solution results for different demand patterns demonstrate that
decreasing demand pattern with the most demand for products concentrated at the
beginning of the planning horizon leads to highest cost and lowest service level
for both expected and expected worst-case scenarios, see Tables 4 and 5 and Figs.
2, 3, 4, and 5. In contrast to increasing demand pattern, for which the impact of
disruption risks can be mitigated much better. Comparison of solution results for the
two different models indicate that when the primary objective is to optimize service
level with no regard to costs, both supply and demand portfolios are more diversified.
Both demand for parts and unfulfilled demand for products are more evenly allocated
among all primary suppliers and recovery plants, respectively.

For comparison, Fig. 6 presents expected results for model Support_CV(c) and
the lowest confidence levelα = 0.5.Thefigure demonstrates that for the risk-aversive
primary supply portfolio focusing on the highest 50% of cost outcomes, i.e., oriented
more on business as usual, the expected results are better than for amore risk-aversive
portfolio, i.e., for a higher confidence level. Clearly, the best-expected results can be
achieved for the risk-neutral decision-making, i.e., for α = 0.

Proven optimal solutions were obtained for all examples with CPU time rang-
ing from around 100s for model Support_CV(sl) to over 600s for model Sup-
port_CV(c).
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Fig. 3 Expected worst-case cumulative production and shortage of products for model Sup-
port_CV(c), α = 0.99: a constant demand pattern, b increasing demand pattern, c decreasing
demand pattern
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Fig. 4 Expected cumulative production and shortage of products for model Support_CV(sl),
α = 0.99: a constant demand pattern, b increasing demand pattern, c decreasing demand pattern
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Fig. 5 Expected worst-case cumulative production and shortage of products for model Sup-
port_CV(sl), α = 0.99: a constant demand pattern, b increasing demand pattern, c decreasing
demand pattern
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Fig. 6 Expected cumulative production and shortage of products for model Support_CV(c), α =
0.5: a constant demand pattern, b increasing demand pattern, c decreasing demand pattern
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6 Conclusions

The proposed multi-portfolio approach for the time and space integrated supply
chain disruption management may help to better mitigate the ripple effect. Due to an
embedded network flow structure, the proposed stochastic MIP models have a very
strong LP relaxation and as a result proven optimal solutions can be obtained in a
very short CPU time using commercially available MIP solvers.

The future research should concentrate on relaxations of the various simplified
assumptions used to formulate the problem. A straightforward enhancement is a
multiple part type and product types setting with subsets of suppliers available for
each part type and assembly plants for each product type. A partial recovery can
also be considered with the fraction of capacity recovered and available in each
period. Moreover, different recovery modes with different recovery time and cost
can be selected by the decision maker. In the scenario analysis, a disruptive event
is assumed to hit the corresponding suppliers and assembly plants simultaneously.
In order to more precisely account for the ripple effect, i.e., the disruption propaga-
tion from its initial location, disruption of different supply chain members should
be delayed by disruption propagation time. Thus, instead of a common disruption
start time, each disruption scenario should be associated with different start times,
for different locations of impacted suppliers and plants. Then some estimation of the
disruption propagation time would be needed. The proposed scenario-based model-
ing approach also assumes that some estimation of disruptive events probability and
potential losses is available. However, a fair probability estimation of rare events is
a complicated problem and even small errors in those estimations may significantly
impact the modeling results. The future research should concentrate on developing
the probability-independent approaches for supply chain disruption management
(e.g., Simchi-Levi et al. 2015). For example, by focusing on worst-case scenarios
only, in particular when the ripple effect is considered.

Acknowledgements The author wishes to thank the editors for their invitation to contribute to this
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The Rippling Effect of Non-linearities

Virginia L. M. Spiegler, Mohamed M. Naim and Junyi Lin

Abstract Non-linearities can lead to unexpected dynamic behaviours in supply
chain systems that could then either trigger disruptions or make the response and
recovery process more difficult. In this chapter, we take a control-theoretic perspec-
tive to discuss the impact of non-linearities on the ripple effect. This chapter is
particularly relevant for researchers wanting to learn more about the different types
of non-linearities that can be found in supply chain systems, the existing analytical
methods to deal with each type of non-linearity and future scope for research based
on the current knowledge in this field.

1 Introduction

As a result of globalisation and increasing competitive pressures, modern supply
chains have gone through a leaning and lengthening process (Christopher and Peck
2004) and now back to reshoring (Gray et al. 2013). The managers have attempted to
optimise supply chains by reducing holding inventory, outsourcing noncore activities,
cutting the number of suppliers and sourcingglobally, forgetting that theworldmarket
is an erratic and unpredictable place (Kearney 2003). In addition to this, current
trade restrictions as a result of protectionist political environment emerging in North
America and Europe introduce additional uncertainty and complexity into supply
chains, which are more vulnerable to disruptions than ever before (Manners-Bell
2018).
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The resulting complex business environment has increased the importance of han-
dling riskswhich can emerge from the customers, suppliers,manufacturing processes
and control systems (Spiegler et al. 2012) and of designing ripple effect mitigation
strategies through agile and resilient practices (Dolgui et al. 2018). Increased com-
plexity also means that supply chain researchers can no longer disregard capacity
limitations, restrictive policies and other system constraints, i.e. that the real world is
non-linear. Non-linearities can introduce unexpected behaviour in a system causing
instability and uncertainty (Wang andDisney 2012; Spiegler et al. 2016b), therefore it
is important to understand how control systems can be designed to influence dynamic
behaviours and how non-linearities impact the performance of supply chains.

When looking at supply chain problems, the researchers have created a number of
production and inventory models to represent the flows of information and material
between different supply chain players. There are a number of research streams
that deal with such problems such as Markov demand process, Bayesian approach,
moving average or ARIMA process (Zhao et al. 2016), mixed-integer programming,
stochastic programming, simulation (via system dynamics, agent-based modelling,
discrete event), graph theory (Dolgui et al. 2018) and control theory (via feedback
control and optimal control mechanism) (Dolgui et al. 2018; Zhao et al. 2016). The
latter approach concerns determining transient responses and systems stability, i.e.
understanding and controlling supply chain dynamics. These dynamics are normally
driven by the application of different control system policies and can be considered
as a source of disruption depending on the control system design (Colicchia et al.
2010). Moreover, a number frameworks exist for tackling the ripple effect in the
supply chain dynamics, control and disruption management domain (Ivanov et al.
2014).

In this chapter, we will discuss the impact of non-linearities on the ripple effect
from a control structure perspective, by revisiting the literature on non-linear control
theory application in supply chain management. As Ivanov and Sokolov (2013)
pointed out ‘useful tools for quantitative analysis of control and systems theory
for a wide supply chain management research community remain undiscovered’.
This chapter reviews new research techniques and recent progress in the analytical
understanding of how non-linearities influence dynamic behaviours and affect the
performance of the supply chains. We start by introducing different types of non-
linearities and their typical effect on system transient output response. Then, we
suggest the existingmethods to analyse each typeof non-linearity anddetail a selected
number of mathematical approaches that can be used alongside simulation methods
to explore the hidden dynamics caused by such non-linearities. Next, we discuss
the applications of these methods and compile key findings on the rippling effect of
non-linearities. Finally, the chapter concludes with a future research agenda.
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2 Types of Non-linearities

A non-linear system is one whose performance does not obey the principal of super-
position. Thismeans that the output of a non-linear system is not directly proportional
to the input and the variables to be solved cannot be expressed as a linear combina-
tion of the independent parts (Rugh 2002). In supply chain systems, non-linearities
can naturally occur due to the existence of physical and economic constraints, for
instance, fixed and variable capacity constraints in the manufacturing and shipping
processes, resource availability, variable delays andvariable control parameters, trade
and infrastructure constraints (Spiegler et al. 2016b).

Since the variety of possible non-linearities in supply chain systems is extremely
wide, it may be worthwhile to classify them into different categories, for which
appropriate analytical methods will be suggested. The first research found on cat-
egorisation of non-linearities in business system dynamics research were done by
Mohapatra (1980) who identified three types of non-linearities: limiting functions,
table functions and product operators. He also recommends some techniques to deal
with such properties, including the omission of redundant functions, linearisation
through averaging, best-fit line approximations and small perturbation theory. In the
control systems literature, non-linearities are more extensively classified as inherent
or intentional, continuous or discontinuous and single- or multiple-valued (Cook
1986; Vukic et al. 2003), as in Fig. 1.

Inherent non-linearities are intrinsic to the nature of the system and arise from
the system’s hardware and motion. They are normally undesirable and need to be
compensated for by the system designer. Intentional non-linearities are artificial and
deliberately introduced by the designer in order to improve system performance
(Cook 1986). Normally in supply chain systems, non-linearities are intrinsic to the
system due to physical and economic constraints. These non-linearities may or may
not be considered in the system modelling depending on the degree of accuracy and
complexity necessary for the supply chain design. On the other hand, supply chain
designers may want to include non-linearities that do not exist in reality for the sake
of improving certain performance measures. This type of research has only recently
been considered (Spiegler et al. 2018) but yet to be duly explored. Other studies have
shown that while the presence of non-linearities may worsen some performance
measures, they may improve others. For example, Evans and Naim (1994)—demand
amplification versus service level, Grübbstrom andWang (2000)—complexity of the

Fig. 1 Types of
non-linearities

Nonlinearities

DiscontinuousContinuous

Single-valued

Multi-valuedInherent 

Intentional 
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production plan versus production cost,Wikner et al. (2007)—lead-time expectations
versus dynamic behaviour in the system.

Continuous and discontinuous non-linearities are associated with the rate of
change between input and output. Table1 contains examples of discontinuous (the
first four rows) and continuous (the last two rows) non-linearities found in production

Table 1 Non-linearities in production and inventory control systems

Non-linearity Block diagram symbol Typical output
response

Input–output profile

Fixed capacity
constraint
(discontinuous,
single-valued)

x1(t)

x2

y

y

t x1

y

Non-negativity
constraint
(discontinuous,
single-valued)

x1(t)

0

y

y

t

y

x1

Variable capacity
constraint
(discontinuous,
multiple-valued)

x1(t)

x2(t)

y

y

t

y

x1

Rounding
(discontinuous,
single-valued)

x1(t)
y

y

t

y

x1

Time-varying
parameter (continuous,
single-valued)

xx1(t)

x2(t)

y

y

t

y

x1

Time-varying
parameter (continuous,
multiple-valued)

xx1(t)

x2(t)

y

y

t

y

x1



The Rippling Effect of Non-linearities 69

and inventory control models for supply chain management and their block diagram
symbol, typical output response given a sinusoidal input and the rate of change
between output and input. A feature of the outputs in continuous functions is that
they are smooth enough to possess convergent expansions at all points and therefore
can be linearised. Examples include any adaptive control system, where certain con-
trol parameters, instead of being fixed, vary depending on the state of other variables
(Vukic et al. 2003). Sharp changes in output values or gradients indicate discontinu-
ities. The most common type of discontinuous non-linearity is the piecewise linear
functions, which consist of a set of linear relations for different regions.

In the case of single-valued non-linearities, the output is a result of the current
value of the input, whereas two ormore values of output may be possible for the same
input value in the case of multiple-valued non-linearities. The multiple values of the
output will depend on the previous history of the input; thus such non-linearities
are said to possess memory. The last column of Table1 demonstrates the difference
between these characteristics. Multiple-valued functions are often used in engineer-
ing to model hysteresis of magnetic and elastic materials and mechanical backlash
of friction gears (Cook 1986). In business studies, this kind of non-linear behaviour
has been described in economics (Göcke 2002), for instance between buying/selling
states and price (Cross et al. 2009) and unemployment and economy growth rate
(Lang and de Peretti 2009). In supply chain management research, multi-valued non-
linearities are not so commonly reported. They have been used to model switching of
certain operation strategies depending on cost directions. Examples include investi-
gations on changes in global sourcing (Kouvelis 1998) and manufacturing strategies
(Kogut and Kulatilaka 1994) depending on foreign exchange rate directions. From a
purely production-inventory control system perspective, this kind of effect has been
identified in outbound shipments which depend on relational fluctuations between
inventory levels and current demand (Spiegler et al. 2016b). The normal thinking is
that independent of demand growing direction, the order quantities placed to suppli-
ers or shipped to customers will always match demand. However, when a variable
capacity is put in place, these outputs can result in a complex multiple-valued non-
linear behaviour.

3 Methods for the Analysis of Non-linearities

When confronted with a non-linear system, the first approach is to linearise it. The
rationale for this is that techniques to analyse linear systems are much more estab-
lished and better understood than non-linear control theory methods (Vukic et al.
2003). Linearisation is generally considered as an appropriate choice when the solu-
tion can be obtained in thismanner.While linear system theory iswell acknowledged,
the literature in non-linear theory is less conclusive when it comes to generality and
applicability (Rugh 2002). Because of a lack of common terminology and lack of
detailed research methods in the non-linear control systems literature, the complete
catalogue of all the existing methods and their applicability in the analysis of non-
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linear feedback systems are laborious. Table2 presents a list of the methods that
have been sufficiently acknowledged in the literature and whose full details were
accessible.

There are a number of methods for system linearisation such as small perturba-
tion theory, describing function and averaging or best-fit line approximations. The
former allows the system with continuous non-linearities to be analysed through
successive approximations in the form of power series around a specific operating
point (Cook 1986). If the system can be represented by the Taylor series or Volterra
series, then it can be approximated using perturbation theory (Odame and Hasler
2010). The Volterra series is often compared with Taylor series but it is also suit-
able to approximate outputs with memory, which means that the Volterra series can
mimic systemswhere the output depends on past inputs so they are suitable for multi-
valued non-linearities (Rugh 2002). The describing function method is attributed to
as a quasi-linearisation, since the approximation process of the non-linear system is
for specific inputs. For instance, sinusoidal inputs are more often used since the fre-
quency response approach is a powerful tool for the analysis and design of systems
(Gelb 1968). Averaging and best-fit line techniques produce rough estimations and
can be a simpler alternative for comprehending more complex systems in a quali-
tative manner (Mohapatra 1980). However, whenever precision and reliability are
needed these methods should be avoided (Vukic et al. 2003).

Then there are graphical techniques, such as the phase plane analysis. However,
this technique is limited to second-order systems (Vukic et al. 2003). The point
transformation method allows periodicity and stability of piecewise linear systems
to be investigated by studying the behaviour of trajectories that cross repeatedly from
one region to another (Cook 1986), but it can be complicated for high order systems.
There are also exact solutions for a finite number of non-linear control systems with
low order (Vukic et al. 2003), making its application very limited. More complex and
sophisticated techniques such as the one developed by Johansson (2003) are used
for stability analysis of piecewise linear systems by combining Lyapunov functions
and convex optimisation process.

Finally, there is a simulation, which although is a very helpful technique, it should
be in principle used as a complementary tool to the above analytical methods. Sim-
ulation has many advantages, offering a ‘middle ground between pure mathematical
modelling, empirical observation and experiments for strategic issues in supply chain
research’ Größler and Schieritz (2005). Because simulation is a numerical technique
that allows the analysis of complex models, it does not require specific mathematical
forms that are analytically solvable.

In the next subsection, we provide instructions on how to adopt the following
linearisation methods: describing functions, small perturbation theory with Taylor
and Volterra series expansion. These methods were chosen given their wide appli-
cability, versatility and power in uncovering hidden dynamics caused by different
types of non-linearities and in tracing the transient behaviour, which is necessary to
estimate the system’s performance. In supply chain systems, the understanding of
transient responses can elucidate the occurrence of disruptions and how to mitigate
its cascading effects on other supply chain members.
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Table 2 Summary of methods used to analyse non-linear systems

Method of analysis Applications Considerations

Linearisation methods Small perturbation
theory with Taylor
series expansion

Continuous Single-
valued

Assumption that the
amplitude of the
excitation signal is
small. Local stability
analysis only

Describing function Continuous,
Discontinuous
Single-valued,
Multi-valued

Less accurate when
non-linearities contain
higher harmonics.
Analysis of systems
with periodic or
Gaussian random
input only

Small perturbation
theory with
Volterra/Wiener series
expansion

Continuous
Multi-valued

Assumption that the
amplitude of the
excitation signal is
small. Difficulty in
calculating the kernels
and operators of the
system, making it
impractical for high
order systems

Averaging and best-fit
line approximations

Continuous,
Discontinuous
Single-valued,
Multi-valued

Gross approximation
of real responses. Only
when better estimates
are not possible

Graphical and simple
methods

Phase plane and
graphical solutions

Continuous,
Discontinuous
Single-valued,
Multi-valued

Limited to 1st and 2nd
order systems only

Point transformation
method

Discontinuous
Single-valued,
Multi-valued

Piecewise linear
systems only. For high
order systems,
automated numerical
methods must be
employed

Exact solutions Direct solution Continuous
Single-valued

Limited to a finite
number of equations

Stability method Lyapunov-based
stability analysis for
piecewise linear
systems

Discontinuous Only
single-valued
examples were found

Piecewise linear
systems only.
Computation can be
complex depending on
the system

Simulation Numerical and
simulation solution

Continuous,
Discontinuous
Single-valued,
Multi-valued

Can be time
consuming.
Dependent on
computer and software
calculations capacity
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3.1 Describing Function

The describing function method is a quasi-linear representation for a non-linear
element subjected to a specific input. This is a method that attempts to estimate the
output properties, such as frequency, amplitude and stability, after being affected by
a non-linear component (Gelb 1968). This method is also used to predict limit cycles
or sustained oscillations (Spiegler and Naim 2017).

The basic idea of the describing function is to express a non-linear element in
the form of a transfer function, or a gain, determined from its effects on a particular
input signal. For asymmetric non-linearities, or symmetric non-linearities subjected
to biased inputs, at least two terms of the describing function are needed: one that
expresses the change in the output amplitude (NA) and another that considers the
change in the output mean (NB). This leads to the so-called dual-input describing
function (Vukic et al. 2003; Cook 1986). Another effect caused by this type of non-
linearity is the possible change in phase angle (φ) of the output response in relation
to its input. Next, we give an example of how sinusoidal describing functions can be
determined.

Consider the input to the non-linearity:

x1(t) = A.cos(ωt) + B (1)

where ω is the angular frequency and ω = 2π/T . The output y can be approximated
to

y(t) = NA.A.cos(ωt + φ) + NB .B (2)

In order to determine the terms of the describing function (NA, NB and φ) the
series has to be expanded and its first harmonic coefficients must be determined. The
Fourier series expansion method is used to represent the output y such as

y(t) ≈ b0 + a1cos(ωt) + b1sin(ωt) + a2cos(2ωt) + b2sin(2ωt) + · · ·

y(t) ≈ b0 +
∞∑

k=1

[akcos(k.ωt) + bksin(k.ωt)] (3)

where the Fourier coefficients are given by

ak = 1

π

∫ π

−π

y(t)cos(k.ωt)dωt (4)

bk = 1

π

∫ π

−π

y(t)sin(k.ωt)dωt (5)

b0 = 1

2π

∫ π

−π

y(t)dωt (6)
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The non-linear function y is then approximated to the first harmonic, resulting in:

y(t) = b0 + a1cos(ωt) + b1sin(ωt) = b0 +
√
a21 + b21 .cos(ωt + φ) (7)

where φ = arctan
(
b1
a1

)

In this way, the two terms of the describing function can be determined as

NA =
√
a21 + b21

A
(8)

NB = b0
B

(9)

For single-valued non-linearities, the coefficient b1 will be equal to zero and
therefore, the phase angle φ will be also zero. In case of dynamic multi-valued non-
linearities, the describing function will be in the form of NA(A, ω). Normally, a plot
of NA(A, ω) versus φ(A, ω) for various values of A and ω are used to understand
such complex non-linearities (Gelb 1968).

Examples of supply chain applications of such methods can be found in Spiegler
et al. (2016b); Spiegler and Naim (2017); Wang et al. (2015); Spiegler et al. (2016a);
Lin et al. (2018). By replacing the different describing function values in the system
transfer functions, these studies were able to determine the effect of non-linearities
on the system’s natural frequency, damping ratio and stability.

3.2 Small Perturbation Theory with Taylor Series Expansion

The Taylor series can be used for approximating the response of a non-linear system
to a given input if the output of this system depends strictly on the input at that
particular time.

Given a system with single-valued continuous non-linearity

ẋ = f (x, u)

y = h(x, u) (10)

where x is the state vector, ẋ is the time derivative of the state vector, y is the
output vector and u is the input vector, we can derive an approximate linear system
about a nominal operating state space x∗ and for a given input u∗ by using small
perturbation theory with Taylor series expansion. The linearisation process involved
in this approach is such that departures from a steady-state point are small enough
to produce transfer function coefficients. Hence, by assuming a small amplitude of
the excitation signal, the non-linear differential equations are replaced by a set of
linearised differential equations with coefficients dependent upon the steady-state
operating point.
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The first-order Taylor series approximation of the non-linear state derivatives
leads to the following linearised function:

�ẋ = A�x + B�u (11)

�y = C�x + D�u (12)

where �x = x − x∗, �ẋ = d�x
dt , �y = y − y∗, �u = u − u∗ and A, B, C, D can

be found through the following partial derivatives:

(
A B
C D

)
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ f1(x∗,u∗)
∂x1

· · · ∂ f1(x∗,u∗)
∂xn

∂ f1(x∗,u∗)
∂u1

· · · ∂ f1(x∗,u∗)
∂uk

...
. . .

...
...

. . .
...

∂ fn(x∗,u∗)
∂x1

· · · ∂ fn(x∗,u∗)
∂xn

∂ fn(x∗,u∗)
∂u1

· · · ∂ fn(x∗,u∗)
∂uk

∂h1(x∗,u∗)
∂x1

· · · ∂h1(x∗,u∗)
∂xn

∂h1(x∗,u∗)
∂u1

· · · ∂h1(x∗,u∗)
∂uk

...
. . .

...
...

. . .
...

∂hm (x∗,u∗)
∂x1

· · · ∂hm(x∗,u∗)
∂xn

∂hm (x∗,u∗)
∂u1

· · · ∂hm (x∗,u∗)
∂uk

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13)

where n is the number of state variables, m is the number of outputs and k is the
number of inputs.

The nominal operating point (x∗, u∗) normally corresponds to the equilibrium or
resting points where all state derivatives are equal to zero and they can be found by
applying the final value theorem:

x∗ = lim
t→∞ x(t) = lim

s→0
s.X (s) (14)

for a constant input u.
The reader can refer to the works of Spiegler et al. (2016b), Jeong et al. (2000),

Wang and Gunasekaran (2017), Lin et al. (2018a) for application of this method in
supply chainmodels. After linearisation is performed, it is possible to find the system
transfer function and system design will follow linear control system theory.

3.3 Small Perturbation Theory with Volterra–Wiener Series
Expansion

The Volterra series has the ability to deal with multi-valued non-linearities by cap-
turing memory effects. The output from the Volterra series depends on the previous
history of the input to the system.Hence, a continuousmulti-valued non-linear output
can be approximated to
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y(t) = h0 +
∫

R

h1(τ1)x(t − τ1)dτ1 +
∫

R

h2(τ1, τ2)x(t − τ1)x(t − τ2)dτ1dτ2 + ...

= h0 +
N∑

n=1

∫

R

hn(τ1, ..., τn)
N∏

j=1

x(t − τ j )dτ j (15)

where h0 is a constant and for n=1, 2...N , the function hn(τ1, ..., τn) is referred as
nth-order Volterra kernel. Note that when h0 = 0 and N = 1, the formula describes
the system’s impulse response by a convolution of x(t). Volterra extended the linear
system representation to non-linear systems by adding a series of non-linear integral
operators.

The convergence of the Volterra series is comparable to the convergence of the
Taylor series expansion of a function which often allows only for small deviations
from the starting point. However, the type of convergence required is very rigorous
since not only the error has to approach zero with increasing number of terms, but
also the derivatives of the error. Hence, the estimation of Volterra coefficients are
generally performed by estimating the coefficients of an orthogonalised series, e.g.
the Wiener series, and then recomputing the coefficients of the original Volterra
series. The readers can refer to Rugh (2002) for more details. No application of this
method was found in the supply chain management literature.

4 The Effects of Non-linearities

In recent years, the researchers have put an effort in shaping stability regions of non-
linear supply chain systems and understanding the factors which will lead to chaotic
behaviours. These studies made contributions in explaining and tackling uncertain-
ties, dynamics and disruptions in complex supply chain systems, since they eluci-
dated how non-linearities can change a system’s transient response bymonitoring the
variation in terms of output’s amplitude, mean and phase and consequently its reper-
cussion on the system’s natural frequency and damping ratio. Figure2 illustrates a
few examples on the effect of some non-linearities (maximummanufacturing capac-
ity and variable delay in filling order from the model in Spiegler et al. 2016b) on the
system’s step response. The figure demonstrates how simplistic linear assumptions
can be and that indeed non-linearities can make significant changes to responses’
amplitude and settling time. Another observation is that non-linearities affect dif-
ferent performances in different ways. For instance, while the maximum production
capacity seems to diminish inventory levels, it helps to decrease the amplification in
manufacturing order rate (bullwhip). The variable delay in filling orders will have
more negative impact on the outbound shipment rate than on the inventory response.
When both non-linearities are considered at the same time, outbound shipments’
amplitude and recovery time is further worsened. Response and recovery time as
well as over/undershoot are good indicative of the system’s resilience (Spiegler et al.
2012) and the diminishment in this performance can affect other players in the supply
chain.
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Table3 summarises the current understanding of some types of non-linearities and
their impact on the ripple effect. Discontinuous, single-valued non-linearities such as
maximumcapacity constraints, buying quantity constraints and non-negativities have
been predominantly studied by describing function methods (Spiegler et al. 2016b;
Spiegler and Naim 2017; Wang et al. 2015; Spiegler et al. 2016a; Lin et al. 2018).
This method enabled understanding of the impact of such non-linearities on system
output responses, for example manufacturing and supplier orders and production
rates. Although this non-linearity does not provoke a shift in the output phase, it will
change the output’s mean and amplitude. These distortions increase complexity of
supply chain dynamics making it difficult for supply chains to respond and recover
from disruptions, therefore potentially aggravating the ripple effect. For instance,
studies on fixed manufacturing capacity suggest that this non-linearity decreases the
amplification of manufacturing orders, consequently decreasing the Bullwhip effect.
However, its impact of the manufacturing output mean can slow down the ripple
effect mitigation process. In the case of asymmetrical non-linearities, such as in
Lin et al. (2018), the output will be relative depending on the relationship between
the minimum (non-negative) and maximum capacity constraints. If the mean of the
orders received is less than half of the maximum capacity, then the non-negative
order boundary dominates. This leads to the increase in average inventory level and
orders, therefore increasing costs. If the mean of the desired orders exceeds half of
the maximum capacity, then the dominant impact on system dynamics will be the
capacity constraint rather than the non-negative order low boundary. Under such
condition, mean gain will increase with demand amplitude, leading to the decrease
in average inventory level and orders, therefore increasing the risk of disruption.

Describing functions have also been used to analyse discontinuous multi-valued
non-linearities such as variable shipment constraints due to changes in customer
orders and inventory levels (Spiegler et al. 2016b; Spiegler and Naim 2017; Spiegler
et al. 2016a). For low-frequency orders, this dynamic capacity constraint can decrease
the output’s amplitude and mean and shift the output’s phase making the output
response lagbehind the input.Hence, disruptions are less likely to affect supply chains
with high- andmedium-frequencydemands.Ripple effectmitigation strategieswould
include encouraging high- frequency purchasing by developing resilient demand
management strategies. In Lin et al. (2018, 2018a), a similar non-linearity is applied
to switch between ‘push’ and ‘pull’ production modes, but the authors decided to
evaluate both modes separately through transfer function analysis. This analysis was
not able to capture the effect of the switch non-linearity, but the authors were able
to conclude that when the upstream operates in make-to-stock mode, other capacity
constraints can reduce the bullwhip effect at the expense of increased inventory
variability, therefore at the expense of decreased resilience.

Only single-valued continuous non-linearities have been identified in the produc-
tion and inventory control literature, therefore only Taylor series expansion has been
applied as small perturbation method to predict non-linear responses of continuous
constraints, such as time-varying delays, resource depletion and real lead-time esti-
mation (Spiegler et al. 2016b; Jeong et al. 2000; Wang and Gunasekaran 2017; Lin
et al. 2018a). In Spiegler et al. (2016b); Jeong et al. (2000); Lin et al. (2018a), the
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Fig. 2 Example of non-linearity effects on transient responses
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non-linear differential equation involved more than one variable, hence, the impact
on the output’s amplitude and mean will depend on the input and parameter set-
tings. However, linearisation with Taylor series expansion enabled determination of
parameter settings that minimise operational disruptions and increase supply chain
resilience. In the case of Wang and Gunasekaran (2017), the non-linear differential
equation is used to represent the depletion in resources that will certainly have a
negative impact on production rate and therefore on the ripple effect. The analysis
of this non-linearity can shed light on how to best allocate scarce resources to ensure
seamless flows of information and material.

It is worth mentioning that other authors have used analytical methods to analyse
non-linearities such as averaging (Wikner et al. 1992; Naim et al. 2017) and stability
methods (Wang and Disney 2012;Wang et al. 2014), which even though was not able
to capture the effect of non-linearities on system’s responses, it allowed establishing
parameter settings thatminimise cost and disruptions andmeet stability requirements
indispensable for supply chain resilience.

5 Conclusion and Future Scope

This chapter has revisited the literature of non-linear control theory application in
supply chain management. The chapter instructed readers on the different types
of non-linearities that can commonly appear in supply chain systems and provoke
undesirable dynamic behaviours. A number of methods and references to their appli-
cation have been introduced and key findings on the rippling effect of non-linearities
have been discussed. From the main points discussed in this chapter, we outline the
following directions for future research:

1. Supply chain structural development: There is an opportunity to explore the
effect of different capacity constraints to devise tactical and strategic plans regard-
ing potential adjustments in supply chain structure such as investment in infras-
tructure and resource efficiency and flexibility. Previous research suggests that
adequate capacity levels can help attain desired supply chain performance, there-
fore a performance-based structure plan can help companies to make right invest-
ments depending on their focus: customer service, cost efficiency, risk manage-
ment and so on. For ripple effect mitigation, this performance-based structure
plan should include all members of the supply chain.

2. Supply chain design development: There is an important avenue for future
research regarding the deliberate employment of non-linearities for improved
system’s design. Computer simulation enabled the researchers to increase model
accuracy and validation to better represent reality. However, the analytical meth-
ods here presented bring us one step forward in unravelling the mechanisms of
non-linear supply chain dynamics. This knowledge can be used as a advantage in
the improvement of the supply chain performance, from operational, economic
and environmental viewpoints.
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3. Continuous, multi-valued non-linearities: Despite not being referenced in the
supply chain literature, continuous non-linearities with memory can appear in
supply chain models, for example in circular economy supply chains where there
is uncertainty of the volume, timing and quality of both demand and returns,
therefore multiple inputs should be considered. Hence, future research can build
on previous efforts and discoveries to identify new non-linearities in supply chain
systems to investigate which limitations and constraints they represent and their
effect on system’s dynamics.

4. Discontinuous, multi-valued non-linearities: Limited study has explored the
multi-valued discontinuous non-linearities analytically, even though some
insights are obtained by the simulation approach. Discontinuous non-linearities
with memory are very common in supply chain systems. For example, the ship-
ment constraint in assemble-to-order systems due to the limited customer order
decoupling point (CODP) inventory. Also, the constrained remanufacturing order
rate in hybrid manufacturing/remanufacturing systems, driven by the availability
of recoverable inventory (limited returned products), is also a multi-valued non-
linearity. Future research should analytically predict its impact on ripple effect and
suggest the corresponding control strategies in mitigating the unwanted dynamic
behaviour.

5. Effect of lead-time disturbances: Most research in the application of both linear
and non-linear control theories in supply chainmanagement focus on understand-
ing the impact of demanduncertainty and on improving demand forecastingmeth-
ods. Lead-time fluctuations can lead to performance degradation and increased
production costs, just as demand uncertainties can Dolgui et al. (2013) and distur-
bances and uncertainties in production and supply lead times are reported to be
themain sources of supply chain risk Colicchia et al. (2010). Supply chain control
theorists have avoided tackling lead-time disturbance under the assumption that
models become non-linear.
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Systemic Risk and the Ripple Effect
in the Supply Chain

Kevin P. Scheibe and Jennifer Blackhurst

Abstract Supply chains are highly complex systems, and disruptions may ripple
through these systems in unexpected ways, but they may also start in unexpected
ways. We investigate the causes of ripple effect through the lens of systemic risk. We
derive supply chain systemic risk from the finance disciplinewhere sources of risk are
found in systemic risk-taking, contagion, and amplification mechanisms. In a supply
chain context, we identify three dimensions that influence systemic risk, the nature
of a disruption, the structure, and dependency of the supply chain, and the decision-
making.Within these three dimensions, there are several factors including correlation
of risk, compounding effects, cyclical linkages, counterparty risk, herding behavior,
and misaligned incentives. These factors are often invisible to decision makers, and
they may operate in tandem to exacerbate ripple effect. We highlight these systemic
risks, and we encourage further research to understand their nature and to mitigate
their effect.

1 Introduction

There is no doubt regarding the complexity of today’s supply chains. Academic
literature, consulting reports, and popular press all discuss the challenges associated
with handling disruption events in supply chains that span the globe. A company is
only as robust as its supply chain, and risk management is becoming increasingly
important as companies extend their global reach. Similarly, a survey of global firms
noted that disruptions in the supply chain have a significant impact on performance
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(Levi et al. 2013). As such, understanding and managing supply chain disruptions
has become a key focus for companies (Blackhurst et al. 2008).

Global supply chains are complex in many ways including the sheer number of
connections, as well as the fact that total visibility within these systems is difficult.
Indeed, many of the intricacies of the structure and relationships in a supply chain
are often unknown or partially known at best. Moreover, supply chain complexity is
increasing due to a number of reasons including the following:

• Increased dependencies amongst partners in the supply chain.
• Increased changes in supply chain design.
• Increased new product introductions coupled with increased customization of
products.

• Increased number of partners in the supply chain.
• Decreased transparency in supply chain relationships (Levi et al. 2013).

Companies often have little to no visibility of supply chain design past tier 1
suppliers. In other words, a firm may know whom their direct supplier are, but they
may not know the suppliers to those suppliers. Likewise, they may be unaware of
the partnerships and competitive relationships that exist upstream in their supply
chain. All of these factors increase the complexity of supply chains and as a result,
vulnerability to disruption events interrupts the flow of goods and services.

As an example of a disruption hitting a supply chain, many reports note the
Japanese earthquake in 2011, the largest earthquake to hit Japan in 1500 years of
recorded history (Sheffi 2015). Reports track the impacts of the earthquake on com-
panies such as Nissan (Levi et al. 2013) and Intel (Sheffi 2015). Other well-known
disruptions include floods in Thailand or Hurricane Sandy in the United States in
2012 (Bhatia et al. 2013). These high-impact disruptions are well known as they
affect many companies in a supply chain. In addition, the impact of the disruption
propagates to other areas and partners in a supply chain. This propagation is termed
the “ripple effect” of the disruption in the supply chain (Ivanov et al. 2014).

These “low probability/high impact” events such as the 2011 Japanese earth-
quake are considered to be a primary cause of ripple effect (Ivanov et al. 2014).
However, we contend that also seemingly small disruptions can grow and propa-
gate throughout the supply chain with devastating impacts. These disruptions may
not make popular press outlets, but the effects can still be large and impactful. In
addition, unlike low probability events, many “high probability/low impact events”
are actually much larger than ever anticipated. One such example is demonstrated
in a recent conversation with a manager at a global aerospace firm headquartered
in the United States. The discussion centered around dynamically managing safety
stock in real time and in response to current events in the supply chain. While low
probability/high-impact events were discussed, it was also noted that the everyday
glitches (or high probability/low-impact events) in the supply chain can have a sig-
nificant and negative impact. A recent shortage of screws costing less than $100.00
USD each cost the company over $2 million USD in lost sales. In this example, a
seemingly small disruption rippled out from a point of origin to other parts of the
supply chain with noticeably growing impact.
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In this chapter, we expand on the concept of ripple effect and focus on potential
causes through the lens of systemic risk. Specifically, we identify each of the three
dimensions of systemic risk: (1) the nature of a disruption, (2) the structure and
dependency within the supply chain, and (3) the decision-making of supply chain
managers. Within these dimensions, we discuss six factors: (1) correlation of risk,
(2) compounding effects, (3) cyclical linkages, (4) counterparty risk, (5) herding
behavior, and (6) misaligned incentives that influence the ripple effect. We first
describe ripple effect. Next, we discuss the origin of systemic risk in the world of
finance. This is followed by defining supply chain systemic risk, its dimensions, and
factors. We then describe how each factor can influence ripple effect. Finally, we
discuss implications for managers and call for more research in this area.

2 Ripple Effect

Ripple effects have been discussed inmany different disciplines and share the similar
characteristic of the continued propagation of an effect within a system. For example,
it has been shown that moods can be passed among members of a group in a form of
emotional contagion (Barsade 2002). Customer loyalty is also contagious with happy
customers making new customers by sharing their positive experiences throughword
of mouth (Gremler and Brown 1999). The price of houses is influenced by other
house prices (Meen 1999). The happiness a pet brings to its owner will extend to
non-pet owners and beyond (Wood et al. 2007). When an error is introduced in
software development, the effect will cascade throughout the code well beyond the
originating module (Black 2001, 2006; Haney 1972; Yau et al. 1978).

Within the context of the supply chain, Ivanov, Sokolov, and Dolgui define the
ripple effect as “the impact of a disruption on the SC performance and disruption-
based scope of changes in the SC structures and parameters” (Ivanov et al. 2014).
It is also known as the domino effect (Dolgui et al. 2018). Dolgui et al. (2018)
differentiate between ripple effect and bullwhip effect in terms of frequency and
severity of disruptions. They contend that a ripple effect occurs with low frequency
andhigh intensity,while the bullwhip effect has a higher frequency and lower severity.
The ripple effect has also been described by Hearnshaw and Wilson (2013) in terms
of cascading failures in the supply chain.

However, as laid out in the introduction, we believe that the bullwhip effect is one
type of ripple effect, and that frequency and intensity are not distinctions of the two.
In fact, we argue that it is possible for small disruptions to gain intensity and become
very problematic based on how the supply chain system responds. It is due to the
highly connected and interdependent nature of relationships in the supply chain that
create this environment. Because the dependence of one partner on another may be
large, there is a systemic nature to supply chain risk where a disruption can occur
not only at one specific point in the supply chain but ripple, extend, and intensify to
other parts of the supply chain.
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Moreover, the lack of visibility into the depths of the supply chain as well as
the fact that a company’s partners may be part of other, unknown supply chains can
create higher levels of risk not previously studied. We discuss the impact of systemic
risk on ripple effect of disruption events in the supply chain.

3 Systemic Risk

The concept of systemic risk comes from finance and economics, and there is a
growing body of literature investigating the causes and effects of systemic risk in the
finance literature. In fact, Basole and Bellamy (2014) study risk diffusion in supplier
networks and note the finance literature for insights in studying the propagation of
risks such as contagion stemming from shocks in financial networks and the impact
of different forms of systemic risk on financial stability.

Systemic risk is “the risk or probability of breakdowns in an entire system, as
opposed to breakdowns in individual parts or components, and is evidenced by co-
movements (correlation) among most or all the parts” (Kaufman and Scott 2003).
Similarly, Acharya (2009) discusses systemic risk where one bank’s failure propa-
gates as a contagion causing the failure of many banks in the financial system. Agca
et al. (2017) note that supply chains are a mechanism through which disruptions (in
the context of financial shocks) can spread. In this regard, the intersection of systemic
risk and supply chains is interesting and timely.

In their survey of financial systemic risk literature, Benoit et al. (2017) group
research by the sources of systemic risk. The three groups are:

1. Systemic risk-taking—why financial institutions take risks that are large and
connected or correlated.

2. Contagionmechanisms—how losses spill over fromone part of a financial system
to another.

3. Amplification mechanisms—why small disruptions or shocks can have much
larger impacts.

The concept of systemic risk is likened to understanding the fragility of a net-
work—consideration of where the system is susceptible to the ripple effect of a
disruption. We use systemic risk as a lens though which to examine and understand
supply chain risk and the ripple effect of a disruption.

3.1 Dimensions of Supply Chain Systemic Risk

Scheibe andBlackhurst (2018) link systemic risk to supply chain ripple effect through
a qualitative study investigating 21 companies in 7 supply chains, at 3 levels each.
In this research, 3 aggregate dimensions of systemic risk factors that influence the
ripple effect emerged:
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• Nature of the disruption
• Supply chain structure and dependence
• Managerial decision-making.

Under each of the three dimensions are systemic risk themes. First, under the
dimension of understanding the nature of the disruption, we discuss the conception
of correlation of risk and the compounding effects of a disruption as it ripples through
the supply chain. Next, under the dimension of the structure of the supply chain and
the dependence within that structure, we discuss the interesting phenomenon of
cyclical linkages (a type of structure that impacts the ripple effect) and counterparty
risk (hidden relationships and dependency that increase risk exposure). Finally, under
the dimension ofmanagerial decision-making in the supply chain, we discuss herding
behaviors and the influence of misaligned incentives.

3.1.1 Nature of Disruption

The first of the three aggregated dimensions is the nature of the disruption itself.
Disruptions will vary in frequency and severity, and the disruptions themselves have
characteristics that will influence the way in which they will ripple through a system.
Specifically, disruptions are influenced by the correlation of risks and the way in
which some types of disruptions have a compounding effect.

Correlation of Risk

When Chopra and Sodhi (2004) described different risk mitigation strategies, they
depicted how it would be possible to reduce some risks and increase others. For
example, a company could add inventory and that would have a small reduction of
risk in disruptions, a greater reduction in delay risk, a small reduction in procurement
risk and capacity risk, but would increase inventory risk. This is shown in Table 1
and is an excellent example of the correlation of risk events in a supply chain. Risks
cannot be considered in isolation, and supply chain managers must understand the
related nature of the risks, or they may inadvertently cause a disruption while trying
to mitigate the risk of a disruption in another area.

Ackermann et al. (2007) notes that it is the interaction of risks that can cause the
most damage. Therefore, the managers must consider more than just individual risks
themselves. In fact, one risk can reinforce the likelihood of another risk occurring.
The managers should be continually looking for and understanding these interac-
tions by employing the functional expertise of many within the company. In other
words, managing the ripple effect in the supply chain should span beyond functional
boundaries.

Moreover, the managers should look to new technologies and the use of ana-
lytics to understand risk correlations. For example, Sheffi (2015, p. 207) notes the
emergence of firms like Verisk Analytics who “use data science to find possible
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Table 1 Mitigation strategies from Chopra and Sodhi (2004)
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correlations between various incidents and impending geopolitical events that may
disrupt businesses.” Many firms are creating and enhancing in-house systems lever-
aging analytics.

Compounding Effects

The compounding effect of risk is similar to the concept of flutter in the physical
sciences. A classic example of flutter is the “Galloping Gertie” (Kambhu et al. 2007)
where the Tacoma Narrows Bridge, a suspension bridge spanning a part of the Puget
Sound in Washington, was subjected to strong winds and began to twist and vibrate
until it collapsed into the water. By itself, the wind was not enough to destroy the
bridge, but as the bridge oscillated, the vibrations fed on themselves and worsened.
This cyclical compounding effect, in combination with shock and contagion, is in
great part responsible to the collapse of the stock market and the resulting Great
Depression.

The bullwhip effect is a classic example of the compounding nature of disruptions
(Fig. 1). Small variations in demand can grow in intensity up the supply chain,
particularly when there is information lag. Another contribution to the compounding
nature of disruptions is the decisions made by actors in the supply chain. This is
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Fig. 1 Bullwhip effect

especially true when the decisions are self-preserving and potentially at the cost of
the other actors. When decision makers engage in protectionist or even opportunist
type decisions, the disruption may grow as it is passed onto supply chain partners
and suppliers. A company may decide to increase inventory to withstand a particular
disruption but by doing so, they encourage ripple effect.

We encourage managers to monitor and understand the impact of these com-
pounding effects where a seemingly minor disruption can cause massive damage.
Sheffi (2015, p. 161) notes that while firms have visibility of tier 1 partners, there is
little visibility into “deep-tier” supply chain partners and warn of “the impact of a
disrupted supplier ripples outward from the supplier to more distant customers.”

3.1.2 Supply Chain Structure and Dependence

The second aggregate dimension in systemic risk is the structure of the supply chain
and the dependencies of the partners. When supply chains are tightly coupled with
high levels of dependencies, they are more susceptible to disruptions. Basole and
Bellamy (2014) note that network structure influences the rate at which risk ripples
through the supply network like a line of dominos (Fig. 2).

Interestingly, technology has enabled supply chain partners to become more
dependent upon each other, which can increase efficiencies, but also increase the
risk of ripple effect. Scheibe and Blackhurst (2018) found two factors that greatly
influenced the systemic risk nature of ripple effects in supply chains, cyclical link-
ages, and counterparty risk.
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Fig. 2 Dominos

3.1.3 Cyclical Linkages

To explain cyclical linkages, let us note that it is not uncommon for final/assembled
products to have subassemblies. Consider the simple example in Fig. 3 where A
supplies a part to B. B then takes the part that was supplied by A and modifies it and
sends it on to C, which does the same and sends it to D. D takes the subassembly,
modifies it, and finally ships it toAwhere itmay be put into final assembly. Therefore,
if there is a disruption in A, the cyclical nature of this supply chain will cause A to
experience the disruption not only in the first round but also in the second. If there
are additional loops in subassembly modification, this problem will only increase.
This possibility of structure increasing risk exposure is discussed through the lens
of systemic risk by Eisenberg and Noe (2001) by looking at risk prorogation in a
financial network. The same logic applies in a supply chain context, especially in
industries where circular linkages are common and perhaps not readily visible.

Ackermann et al. (2007) note that circular linkages can cause vicious cycles where
a risk event evolves into a self-sustaining disaster. The managers must be vigilant in
understanding these structural pitfalls in their supply chains.

3.1.4 Counterparty Risk

A supplier to a company may be a supplier to a competitor or even a company in a
different industry. As such, a supply chain supply partner may be a part of multiple
supply chains. In financial systemic risk literature, Acharya and Engle (2009) state
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Fig. 3 Cyclical linkages

that “a party to a financial contract may sign a second, similar contract with someone
else—increasing the risk that it may be unable to meet its obligations on the first
contract. So, the actual risk on one deal depends on what other deals are being
done.” This exemplifies counterparty risk. It occurs when one partner in a supply
chain is affected by the decision of other partners in hidden ways.

Consider Fig. 4. Two separate supply chains share a common partner, Company
A. In supply chain 1 (SC1), a supplier to Company A experiences some kind of
disruption and are not able to supply product. This will cause a disruption to ripple
through SC1. However, since Company A is engaged in both SC1 and supply chain
2 (SC2), it is possible that it will need to refocus efforts to mitigate the disruption
in SC1. This might be done by reallocating resources that might have been used in
SC2, thus the ripple of the disruption in SC1 can also be felt in SC2 even though
the actual disruption did not occur in SC2. It is unknown whether the disruption
will ripple in SC2 based on the disruption in SC1. Several factors will influence the
ripple. For example, if the customer of Company A in SC1 is significant, then they
may be motivated to shift resources from SC2 to satisfy the needs of the customer
in SC1. However, if the partners in SC2 are more important, then the ripple may
never be felt in SC2 but would be exacerbated in SC1. This is almost impossible to
proactively plan for this type of disruption because it is difficult enough to knowone’s
own supply chain beyond the first tier, let alone an entirely different supply chain
that may be shared by common partners. Therefore, it is important for suppliers to
maintain some level of agility to be able to overcome these unforeseen disruptions.

This risk is particularly interesting as it has not been discussed in the supply
chain literature. We believe that counterparty risk is a source of great and not-well-
understood danger. Counterparty risk is a risk that needs to be better understood.
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Fig. 4 Counterparty risk



Systemic Risk and the Ripple Effect in the Supply Chain 95

However, we warn that this is much more than understanding one’s own supply
chain. Rather, understanding one’s supply chain partners and with whom they are
connected and exposed to risk. Sheffi (2015) notes that the detection of disruptions
in deep-tier or hidden parts of the supply chain is essential. Again, this is a prime
opportunity for supply chain analytics.

3.1.5 Managerial Decision-Making

Herding

Herding behavior (Fig. 5) occurs when firms behave in a similar fashion after a
disruption occurs. The reaction to a disruption will most likely be to protect their own
interests, but in doing so, they can increase the effect of the disruption. For example,
when a fire occurred in a memory manufacturer in China, the prices of memory
soared as suppliers all competed for the remaining stock of memory remaining in the
market. As memory was purchased to increase the safety stock levels in individual
companies, the entire supply chain suffered. Organizations thatmay not have actually
needed the memory still purchased it just to be safe.

Here, the manager should understand trends and risk event worldwide to get
ahead of herding disasters. Certainly, risk hedging is a part of this, but we caution the
managers to think “bigger” and perhaps include these conversations in new product
development initiatives or even redesign initiatives. We also wonder whether being
“ahead of the curve” on herding decisions could be used as a competitive advantage
in the supply chain. If a shortage onmaterial or part is looming, could a firm purchase
inventory ahead of the need? If a logistics channel is challenged, could capacity be

Fig. 5 Heard of Lamas
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purchased in advance? Of course, that may not address the danger of herding. It
would simply be an attempt to be in the front of the heard.

Misaligned Incentives

Misaligned incentives occur when individuals, groups, divisions, or organizations
are rewarded for behaviors that would conflict with others within and across orga-
nizations. For example, consider a company with separate division of warehousing
and logistics. If a company wants to reward keeping costs low, a conflict will exist.
For a warehouse to keep costs low, a manager would want to keep the inventory
levels as low as possible which would require more frequent shipping. However, for
the shipping manager to keep costs low, it would be better to wait to optimally fill
trucks before they left dock. Thus, cost savings from one division would come at the
expense of the other. From an organizational perspective, it would be better for both
warehousing and shipping to find a happy medium where both would incur greater
costs, but the savings to the entire company would be higher (Fig. 6). This problem
exists not only within an organization, but across organizations, and that makes it
even more difficult to see, where information may not be shared (Narayanan and
Raman 2004).

Managers should remember that looking at the whole system is important. While
tactical or lower level incentives are critical to measure performance, do they link up
to the strategic and long-term goals of the firm?

4 Discussion and Conclusions

We end this chapter with an interesting example of the ripple effect and systemic risk
related to the 2011 earthquake. Sheffi (2015) studied this event from the point of view
of General Motors. General Motors had estimated that 390 parts might be disrupted
based on their knowledge of their supply chain and the extent of the disaster.However,
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that estimate was greatly underestimated due to hidden impacts and relationships in
the supply chain. In fact, over 6,000 parts were affected.

The challenge that systemic risk presents with ripple effect is that each of the
dimensions is influential and is often unseen, but it is the combination of dimension
that really drives ripples throughout a system. It is important for firms to be aware
of the interconnectedness of the three dimensions and that the systemic risk themes
rarely occur in isolation. The literature often discusses disruptions from a natural
disaster perspective, but these disruptionsmay occur as a consequence of the structure
of the supply chain or the choices made by managers.

Researchers are attempting to focus on the relationship between these dimensions,
but given the complexity of supply chains, the hidden nature of many risks, and the
unexpected interactions of these dimensions, it is common to only address one or
two of the risk factors at a time. There still remains a tremendous amount of research
investigating how these systemic risk factors interact, and how that affects the ripple
effect, supply chain robustness, and resiliency, and how riskmanagers can adequately
plan for and mitigate the effect of disruptions.

We present risk types along the following three interrelated dimensions: Nature
of the Disruption, Structure and Dependence of the Supply Chain, and Managerial
Decision Making (Fig. 7).

Nature of the Disruption:
In this dimension, we discuss the conception of correlation of risk and the com-
pounding effects of a disruption as it ripples through the supply chain. With regards
to the correlation of risk, we encourage the managers to build cross-functional teams
to understand the impact of risk events on each other. For example, if a supply man-
ager institutes a JIT policy on key inventory items to reduce the risk of obsolesce
and high inventory cost, this might increase the risk of customer shortages and high
expediting costs if there is a disruption in the supply chain. We also encourage the
use of analytics to understand the nuances and links between risk types. With regards
to the compounding effects, much attention is given to large and well-known events
such as earthquakes. While it is important to manage these risks, the smaller every-
day occurrences have the potential to grow and ripple through the supply chain. As
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such, the managers must be ever vigilant with planning frameworks for high impact,
low probability events but also the flexibility and resources for the high probability,
low-impact events that can escalate is not addressed.

Structure of the Supply Chain
Modern supply chains are information driven. The world continues to increase in
connectivity. Industry 4.0 is driving real-time data analysis, and this allows supply
chains to become extremely efficient. However, this efficiency may come at a cost.
In one respect, it is as though the dominos are being placed even closer together,
so when one begins to topple, it becomes nearly impossible to prevent others from
falling as well.

In this dimension, we not also discuss the structure of the supply chain but also
the dependence within that structure. Here, the concepts of cyclical linkages (a type
of structure that impacts the ripple effect) and counterparty risk (hidden relation-
ships and dependency that increase risk exposure) are presented. We encourage the
managers to strive to better understand the structure and links within the supply
chain. From supply management frameworks and mapping exercises to more exten-
sive deep dives into the supply chain and employing supply chain risk monitoring
firms. Not only is your supply chain susceptible to disruptions from your partners
and suppliers, but it could also be exposed to disruptions in entirely different supply
chains. We believe that this dimension is the least understood dimension and poses
the highest threat to firms. Academic research in this area is encouraged to under-
stand and manage these risk types. We have been able to demonstrate its existence,
but more research should be devoted to this effect.

Managerial Decision-making
In this dimension, we discuss herding behaviors and the impact of misaligned incen-
tives. We encourage the managers to leverage improved decision-making for a com-
petitive advantage and work to truly align incentives across the supply chain. The
mangers ought to consider a bigger picture, but that also presents its own problems.
We had several conversations with a large organization developing highly complex
products. This manufacturer had 300 tier 1 suppliers, and 3000 tier 2 and above.
Some of their tier 1 was also their tier 2, 3, and 4. They had no clear picture of how
exposed their product was based upon disruption events. They told us that when the
tsunami hit Japan, they went to their tier 1 suppliers to see if they were going to be
affected. They even looked into their tier 2, and they determined they were okay, only
to find they had a tier 4 supplier that was greatly affected, and this rippled through
the system and did, indeed, affect the company’s products.

The concept of supply chain ripple effect has grown in popularity over the last few
years. Because disruption will ripple through a system, a systemic risk perspective
is crucial to understand not only the nature of the disruption but also the effects of
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the structure of the supply chain and the consequences of choices made by decision
makers. Researcher and practitioners should expand their risk analysis to consider
the effects of systemic risk and how it influences the ripple effect.
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Leadership For Mitigating Ripple Effects
in Supply Chain Disruptions:
A Paradoxical Role

Iana Shaheen, Arash Azadegan, Robert Hooker and Lorenzo Lucianetti

Abstract For leadership, responding to supply chain disruptions can be paradoxical.
Supply chain disruptions can rattle the stability and operational norms of a company
and its stakeholders. Without an unwavering effort to contain the damage, such dis-
ruptions can easily propagate and become even more damaging. This assertion sug-
gests that decisive leadership is fit for the purpose. However, supply chain disruptions
often sever multiple value-generating streams, creating a ripple effect across organi-
zations. Re-establishing production links in a web of inter-organizational exchanges
requires careful examination of what is at stake by purchasing and supply managers.
This alternative assertion suggests that an adaptive leader is fit for the purpose. The
concurrent need for decisiveness in leadership and adaptiveness in leadership can
be paradoxical. In this study, we explore this issue by assessing how leader’s adap-
tive decision-making (ADM) affects the extent of operational performance damage
caused by different forms of supply chain disruptions. Using paradox and leadership
theories, we offer hypotheses related to unexpected, complicated and enduring sup-
ply chain disruptions.We empirically test our hypotheses using secondary (financial)
and primary (managerial assessment) data from a cross-section of 251manufacturing
firms. Results show a concave curvilinear relationship between leader’s ADM and
operational damage from supply chain disruptions, suggesting that moderate levels
of ADM are optimal. Higher ADM is particularly effective to diminish ripple effects
in the face of rare disruptions. Instead, low ADM is more effective in the face of
unexpected and complicated disruptions.

I. Shaheen (B) · R. Hooker
University of South Florida Tampa, Tampa, Florida, USA
e-mail: ianalukina@usf.edu

A. Azadegan
Rutgers Business School New Brunswick, Piscataway Township, New Jersey, USA

L. Lucianetti
University of Chieti and Pescara, Pescara, Italy

© Springer Nature Switzerland AG 2019
D. Ivanov et al. (eds.), Handbook of Ripple Effects in the Supply Chain,
International Series in Operations Research & Management Science 276,
https://doi.org/10.1007/978-3-030-14302-2_5

101

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14302-2_5&domain=pdf
mailto:ianalukina@usf.edu
https://doi.org/10.1007/978-3-030-14302-2_5


102 I. Shaheen et al.

1 Introduction

Disruptions have the ability to cause notable damage to a supply chain.As of late, sup-
ply chain disruptions have become seeminglymore commonplace (Bode andWagner
2015). Today’s globally interconnected, time-sensitive, and efficiency focused oper-
ations set the stage for disruptions to disperse and affect multiple entities (Brandon
et al. 2014; Ivanov et al. 2014). Disruptionsmay significantly impact the supplyman-
agement function, because failures in handling the disruption in one company can
easily spill-over effects to others (Sokolov et al. 2016). The “ripple” is characterized
by disruption’s cascading effect downstream, impacting supply chain performance
(Dolgui et al. 2018). UPSCapital Report 2014 survey shows thatmore than half of the
surveyed firms had suppliers who could not continue supplying within a reasonable
time frame if they suffered a disaster in one location (Dittmann 2014). These fac-
tors place pressure on supply chain executives. While unforgiving to poor decisions,
supply chain supply chain disruptions require the short-order assembly of resources
alongside prudent decisions to prevent the disruption from further propagation and
to re-establish organizational norms. By definition, supply chain disruptions create
unstructured, vague, and urgent dilemmas for leaders and arise from the intricate
interactions among suppliers that make supply chains more vulnerable (Azadegan
and Jayaram 2018; MacDonald and Corsi 2013; Wagner and Bode 2006).

Leadership plays a critical role in addressing supply chain disruptions. The busi-
ness scene is replete with cases where an unwavering leader organized resources,
directed efforts, and motivated members to rally in front of disruptive events (Howell
and Shea 2006). In contrast, the absence of a decisive leader has led to mismanage-
ment of response and recovery efforts and caused further disorganization and damage
(Shaw and Goda 2004). Some believe that errors and omissions by leaders are the
second major source of harmful outcomes during disruptions (Dynes et al. 1981).

It is unclear as to how leaders are best to deal with supply chain disruptions.
Contrasting leadership approaches have been shown to be effective in the face of
similar disruptions. For example, consider the now classic case of responding to a
major product recall by Johnson and Johnson. James Burke, the company’s chair-
man, made a decisive move to replace the entire stock of Tylenol tablets off of the
market. This bold move costs more than $100 million but saved the company’s rep-
utation and potentially many lives (Prokesh 1986). Burke was widely admired for
his “take charge” leadership style. This contrasts with how PepsiCo’s CEO, Craig
Weatherup, addressed a similar product contamination crisis. In 1993, reports from
several sources surfaced that syringes had been found in cans of Diet Pepsi. Instead
of jumping in with a reflexive response to recall products, Weatherup pulled com-
pany executives together and formed a crisis response team to carefully analyze all
potential means for foreign objects to enter the production stream across the value
chain (Novak 2009). This thorough and prudent assessment allowed him to appear
on national TV with visual evidence that cast heavy doubts on the legitimacy of the
reported cases.
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Leadership in the face of supply chain disruptions can be challenging. On the
one hand, there is need for decisiveness in action to effectively contain the situation
(Shaheen et al. 2017; Eisenstat et al. 2008). A strong and unbending leader that
can set the agenda and enforce strict protocols seems well suited for the purpose
(Özçelik and Cenkci 2014). Indeed, crisis managers have often been recognized
because they confidently “took charge” and unwaveringly led the organization (James
and Wooten 2005; Yukl 2005). On the other hand, supply chain disruptions can be
ambiguous and complicated. Given the tangled and complex nature of supply chains,
leaders must carefully consider pertinent facts, intricacies of the issues, and potential
ramifications of their decisions. Like Weatherup, leaders are often admired because
of their considerate and adaptive approach in such settings.

Whether decisiveness or adaptiveness is more effective for a leader facing sup-
ply chain disruptions is unclear. Whereas decisiveness relates to uncompromising
sternness on one’s attitude and the manner in approaching a disruption, adaptiveness
implies flexibility in decision-making by consideringmultiple views.We explore this
tension by delving into how a leader’s adaptive decision-making (ADM) affects the
outcome of various types of supply chain disruptions. ADM is the leader’s capacity
to adjust thoughts and behaviors so as to enact appropriate responses to evolving sit-
uations (Hannah et al. 2013). In this perspective, we consider ADM as a continuum
ranging from leader decisiveness (i.e., a resolute and stern leader) to leader adap-
tiveness (i.e., a flexible and integrative leader). We ask: How does a leader ADM
help (or hinder) response and recovery efforts in the face of different forms of supply
chain disruptions? We leverage theories in paradox and leadership to explain how
leadership can be effective in the face of supply chain disruptions.

2 Leadership and Supply Chain Disruptions—A Literature
Review

By now, it is well established that supply chain disruptions can be challenging and
harmful (Hendricks and Singhal 2003). However, not all of such disruptions cause the
same level of harm, nor they do create the same type of challenge for leaders (Ketchen
et al. 2014). A review of the literature suggests that among the primary differentia-
tors of supply chain disruptions is the extent to which they are (i) unexpected (ii)
complicated, and (iii) rare (Craighead et al. 2007). Unexpected supply chain disrup-
tions are those that happen without pre-warning or act unpredictably as they unfold
(Cunha et al. 2006). Unexpected supply chain disruptions are challenging because
they leave no preparation time to collect information or to prepare for the ensuing
damage (Ansoff 1975). For instance, General Motors management had a 30-minute
alert before a tornado touched down on their plant in Oklahoma City causing exten-
sive damage to the paint shop, body shop, and powerhouse (Sheffi and Rice 2005).
Complicated disruptions are those that sever numerous value adding streams across
organizations. The great Japan Tsunami of 2011 was quite complicated for the auto
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industry as it affected amultitude of parts suppliers andmanufacturers while simulta-
neously severed transportation and distribution links (Park et al. 2013). Finally, rare
supply chain disruptions are unique in the sense of offering no past experience that
parallels them such that the firm can draw lessons from (Lampel et al. 2009). This
lack of familiarity lowers the organization’s confidence in their ability to effectively
deal with the situation. For example, the West Coast Port slowdown in 2015 was a
rare disruption, creating issues for companies not prepared to deal with the long-term
impact of being left without access to Californian ports of entry (Soergel 2016). In
the remainder of the manuscript, we delve in-to how these different forms of supply
chain disruptions affect organizations and how leadership can address them.

Table 1 provides a selective group of literature about leadership as explored in
related streams. This literature review suggests that there is a diversion in interpreta-
tion between crisis management and supply chain management literature. Whereas
the former group highlights leader’s resolute decision making to address the crisis
(i.e., decisiveness), the latter emphasizes the need to be prudent and to recognize
the intricacies of the supply system through analytical thinking and integration (i.e.,
adaptiveness). Rooted in disaster studies, crisis and humanitarian research views
addressing the needs of human victims as a principal objective of leadership. Instead,
rooted in operations management, supply chain research views the restoration of pro-
duction systems as an essential responsibility for the leader. As interpreted by supply
chains researchers, an effective leader not only addresses the needs of any potential
victim (e.g., an employee, consumer, or supplier personnel), but also is responsible
for alleviating the bottom line financial or reputational effects of the supply chain
disruption.

The dichotomy between leader decisiveness and adaptiveness becomes more con-
founding as supply chain disruptions becomemore challenging. Earlier we explained
how challenging disruptions come in (a) unexpected, (b) complicated, and (c) endur-
ing forms. Supply chain disruptions become even more difficult as they take on one
or more of these forms. In the next section, we explore how such paradoxical phe-
nomena can be explained. We then offer hypotheses on how leader ADM can be
effective in facing disruptions with different characteristics.

3 Theory—Supply Chain Disruptions as Paradox
and Leadership ADM

Paradox involves the simultaneous presence of contradictory and mutually exclusive
elements (Poole and Van de Ven 1989). The common features of supply chain dis-
ruptions—urgency, ambiguity, and high stakes—also severely constrain the leader’s
ability to assess information andmake decisions effectively (Pearson andClair 1998).
This creates consternations for the leader. As Dutton (1986) notes, it may be impos-
sible to achieve a full understanding of the nature, underlying reasons, and conse-
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Table 1 Key findings from crisis leadership and supply chain leadership literature

Crisis leadership literature Emphasis on

Authors (year) Key findings Decisiveness Prudence

House (1971) A decisive decision making
style is important in leadership
contexts

I

Mulder et al. (1971) Naval officers with directive
and autocratic capabilities are
more effective during
emergency situations

I

Roberts and Bradley (1988) During crisis, the charismatic
leadership provides only limited
results

I

Pillai and Meindl (1998) Employees’ perceptions of
crisis management were
negatively related to
charismatic leadership

I

Hunt et al. (1999) During a crisis,
crisis-responsive charismatic
leaders are important

I

Shenkman (2000) One of the qualities of a great
president during crisis is
decisiveness and quick response

I

James and Wooten (2005) Effective crisis leadership
involves the leaders’ ability to
make wise and rapid decisions

I

Yukl (2005) Strong and decisive leadership
appears to be especially
important when crisis exists

I

Van Wassenhove (2006) When facing a humanitarian
crisis, leaders often need to take
actions quickly

I

Ginter et al. (2006) When responding to crisis, high
reliability team need to have
clear and decisive leaderships

I

Cavanaugh et al. (2008) As the damage cause by
disruption grows, the need for a
decisive and determined leader
grows

I

Peterson and Van Fleet (2008) Nonprofit firms prefer leaders
to use directive behavior over
supportive behavior in a crisis

I

(continued)
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Table 1 (continued)

Crisis leadership literature Emphasis on

Authors (year) Key findings Decisiveness Prudence

Tatham and Kovács (2010) An effective crisis manager
needs to emphasize immediate
results and decisiveness over
inclusiveness

I

Bechky and Okhuysen (2011) During emergencies, SWAT
team officers are required to
reinforce task activities, and
make timely decisions

I

Van Wart et al. (2011) Decisiveness is one of the top
two competencies for
emergency managers

I

Stern (2013) Leaders need to make crucial
decisions in a timely fashion
under difficult conditions

I

DuBrin (2014) Directive and decisive leaders
are generally successful in
extreme contexts

I

Haddon et al. (2015) During financial crisis,
employees expect leaders to
take actions quickly and
provide rapid response

I

Supply chain leadership literature I

Spekman et al. (1998) Supply chain managers’ trust
and commitment contribute to
performance as the elements of
collaboration

I

Gammelgaard and Larson 2001 Listening/team work are the top
skills for supply chain leaders,
while performance under
pressure is lower in ranking

I

Harvey and Richey (2001) Analytical, Practical, and
Creative Intelligence are key
capabilities for global supply
chain manager

I

Parker and Anderson (2002) Supply chain manager should
be an integrator who
coordinates activities from
product concept to delivery
across firm

I

van Hoek et al. 2002 Supply chain managers need to
concentrate on self-motivation
and adaptability toward the
change

I

(continued)
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Table 1 (continued)

Crisis leadership literature Emphasis on

Authors (year) Key findings Decisiveness Prudence

Williams et al. (2002) In eSC, autocratic/participative
leaders are ineffective. Instead,
transformational leader is cost
effective

I

Mangan and Christopher (2005) The key skills for supply chain
manager included analytical,
interpersonal, leadership and
change management

I

Richey et al. (2006) Supply chain managers with
high adaptability can drive firm
competitive advantage and
performance

I

Hult et al. (2007) Transformational leadership has
a stronger relationship than
transactional leadership on
outcomes

I

Defee et al. 2009 Transformational supply chain
leaders showed higher
performance by incorporating
the behaviors of all supply
chain members

I

Fawcett et al (2010) Supply chain manager needs to
not only understand the key
supply chain functions, but also
keep them rolling in synch

I

Cousins et al. (2006) Supply chain managers need to
acquire strategic skills that add
value and enable effective
alignment with business

I

Youn et al. (2012) Integrative leadership with
shared goals improves
intangible and value-based
supply chain performance goals

I

Overstreet et al. (2013) Positive relationship between
transformational leadership and
organizational performance

I

Ellinger et al. (2013) Managing changes and
complexities and providing
leadership are fundamental to
the success of supply chain
managers

I

(continued)
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Table 1 (continued)

Crisis leadership literature Emphasis on

Authors (year) Key findings Decisiveness Prudence

Essex et al. (2016) Supply chain manager needs to
fully understand the processes
of reconfiguration, integration
and learning

I

Wilson and Barbat (2015) Supply chain manager is a
relationship manager who is
employed to resolve problems
and create value

I

Ambulkar et al. (2016) Supply chain managers should
have a greater level of ability to
acquire, disseminate, and
integrate external knowledge

I

Shou and Wang (2017) Supply chain manager
competences include
generic/functional skills, SCM
qualifications, expertise, and
industry skills

I

quences involved in a crisis. Nevertheless, the high stakes involved require the leader
to generate the best course of action.

One way to work through contradictions is to separate the tensions by splitting the
explanations (Poole andVandeVen1989). For instance, if “a” and “b” are antithetical,
one should first focus on explaining “a”, and then on “b” to enable a more workable
certainty (Lewis 2000). By examining them separately, new perspectivesmay emerge
which can help generate a meaning that could accommodate contradictions (Lüscher
and Lewis 2008).

We base our analysis on adaptive decision making (ADM), a leadership trait that
helps capture the observed dichotomy (Bauer et al. 2013; Payne et al. 1993). ADM
is a leader’s capability to adjust thoughts and behaviors so as to enact appropriate
responses to evolving situations (Hannah et al. 2013). Leaders who apply ADM
emphasize seeking different views, re-examining their assumptions, and consider-
ing new ways of looking at problems. There are trade-offs to ADM (Payne et al.
1993). Extensive ADM can lead to better quality decisions, at the expense of more
comprehensive selection process, which can be taxing on leadership and on firm
resources. Instead, limited ADM can lead to exacting and unyielding decisions that
make them easier to follow and implement. Management literature has investigated
the effectiveness of ADM (e.g., Bauer et al. 2013). However, whether ADM can be
helpful in the face of crises or supply chain disruptions is unclear. The section below
explains the effect of ADM in more detail.
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3.1 Leader ADM and Supply Chain Disruptions

There is evidence in support of both leadership decisiveness and adaptiveness in fac-
ing crises (Lukina et al. 2017;Dooley andLichtenstein 2008). For instance, in support
of decisiveness, Eisenstadt et al. (2008) explain how uncompromisingmanagers, that
refuse to lower their expectations, are able to lead their companies through difficult
situations. Jim Collins, in his highly acclaimed book “Good to Great”, argues for a
leader’s fierce resolve as a key ingredient to enhance company performance (Collins
2005). In support of adaptiveness, Heifetz et al. (2009) suggest that leaders can be
effective by recognizing and incorporating input from employees. Yukl and Mahsud
(2010) suggest that success in facing external crises requires collective learning and
collaboration bymanymembers of the organization. Crisis leaders that can encourage
and facilitate these processes can be more effective

At first glance, these two perspectives sound contrary. However, a more careful
assessment of the literature suggests that the concern may be in extensive use of
either decisiveness or adaptiveness. To start, crises occur under high stress, high
stakes conditions where response efforts need to be definitive so as to leave no doubt
on how to take action (Boin and Lagadec 2000). Resources need to be applied in a
precise manner to ward off the crisis from spreading and to avoid wasted effort. Too
much emphasis on adaptiveness (i.e., on gathering input and seeking different views)
can take away from taking action and lead to “paralysis through analysis.” There
are also strong organizational pressures that work against too much contemplation
over alternative courses of action. For instance, there may be heavy concerns over
the potential for further damage caused by the disruption or other secondary “after-
shock” events that may follow. Finally, there is also strong evidence that leaders limit
their information input when facing threats (Deverell 2010). Based on experimental
research on corporate response to threats, Staw et al. (1981) show how decision-
makers narrow their attention to a few more important issues. In this process, leaders
tend to simplify and reduce the number of information channels they access, to lower
their reliance on multiple inputs (Seeger et al. 2003).

On the other hand, too much emphasis on decisiveness can also be detrimental to
how the crisis is handled (Deverell 2010). A number of empirical studies highlight
the downsides of extensive focus on leadership decisiveness. Bechky and Okhuysen
(2011) highlight the importance of seeking multiple views and examining work
arrangements in organizations that are routinely facedwith unpredictable and instable
situations. Bigley and Roberts (2001) find that fire department leaders, who assess
the situation and identify contingencies, instead of deterministically approaching
the issue can enhance their team’s performance. Van Vugt et al. (2004) find that the
procedural focus on leader decisiveness (i.e., autocratic style) can have a destabilizing
influence on the organization.

These studies echo the dichotomy noted in the earlier section from theoretical
explanations and literature reviews on leadership during crises. While leader deci-
siveness and leader adaptiveness are not fundamentally disadvantageous, too much
emphasis on either may limit the effectiveness of the organization’s response effort.
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The above observations suggest that a moderate level of ADM, one that consid-
ers the need for decisiveness, while recognizing the need for input from multiple
sources may offer the best advantage for the company. Whereas extensive ADM can
lead to better quality decisions, it is at the expense of more comprehensive selection
process, which can be taxing on managerial attention and firm resources. Instead,
limited ADM can lead to exacting and unyielding decisions that make them easier
to follow and implement. Management literature has investigated the effectiveness
of ADM (e.g., Bauer et al. 2013). We capture this relationship by suggesting for a
curvilinear (u-shaped) relationship between leader ADM and damage from supply
chain disruptions.

3.2 Leader ADM and Unexpected Supply Chain Disruptions

Unexpected disruptions are challenging because they leave no time for the company
to gather information or to prepare for the ensuing damage (Yang and Xie 2000).
Since there is limited warning, by the time sufficient information about the event
becomes available, there may be no time left to adequately develop an effective
response strategy (Stamatis 2003). For example, in the face of hurricane Katrina,
many suppliers and manufacturers were caught by surprise, which paralyzed their
response systems (Sheffi 2015).

Companies facing unexpected supply chain disruptions can benefit by using a
decisive leader. Given their ambiguous nature, how unexpected disruptions are inter-
preted can be quite subjective. This can lead to multiple, and possibly, divergent
interpretations on how response efforts should be managed (Tukiainen et al. 2010).
Under these circumstances, a key priority for the leader is tomaintain cohesion among
the parties involved, even at the expense of placing constraints on how thoroughly
decisions are examined. Leader’s unwavering resolve and confidence are necessary
to tame doubters and skeptics. Another common fallout of unexpected disruptions
is confusion among the rank-and-file. If their confusion grows into “paralysis,” it
can cause other issues and may generate surprises of its own. Confusion between
trade-partners (buyers and suppliers) can undermine cooperative efforts between
their personnel and make their relationships fray (Floricel and Miller 2001). Litera-
ture confirms the points offered above: that response to unexpected disruptions can
be made more effective by having a leader that displays determination and resolve
(Geraldi et al. 2010).

The above factors suggest that, with rising unexpectedness in supply chain dis-
ruptions, leader decisiveness becomes more effective. Therefore, we posit that with
rising unexpectedness in supply chain disruptions, low-to-moderate levels of ADM
become effective in minimizing damage from supply chain disruption.
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3.3 Leader ADM and Complicated Supply Chain Disruptions

Supply chain disruptions become complicated when either more members of the
supply chain are affected, or when multiple value streams (i.e., goods, information
or finances) are severed. Complicated supply chain disruptions are challenging not
only because there are multiple issues that have to be simultaneously addressed, but
also because the issues are likely to be inter-related and interconnected (Cunha et al.
2006). Precipitating (initial) failures can lead to secondary failures causing further
damage (Sundnes and Birnbaum 2003). The multiplicity and interaction of issues
mean that company resources and management attention are often divided in trying
to tackle several problems and their potential ramifications all at once.

As disruptions becomemore complicated, it becomes more difficult for the leader
to appraise the likely outcomes of every step taken in response to the disruption. Care-
ful assessment of complicated disruptions helps with assigning roles and responsi-
bilities in the response effort. The careful assessment also helps consider intricacies
to better prioritize tasks and to place resources where necessary. For instance, as
members responsible for implementing solutions in one part of the chain take action,
they affect the decisions and actions in other parts of the chain.

Careful assessment of complicated disruptions helps with leader effectiveness.
Considering the full extent of the effects that the supply chain disruption is helpful
because it allows the leader to incorporate multiple issues and interaction of the
complicated supply chain disruption. Instead, a partial understanding of the situation
can lead to decisions that may not resolve all aspects of the disruption. Svensson
labels this as “holistic vulnerability approach,” or the ability to consider a system-
wide view of the disruption (Svensson 2000). In contrast, an “atomistic vulnerability
approach” is constrained to a minor and limited part of the supply chain (Manuj and
Mentzer 2008). A holistic view allows for properly placing company resources in
front of the more urgent, or more damaging facets of the disruption.

Literature in crisis leadership offers further support to the above. Leaders that
appreciate the complicated nature of problems (i.e., pragmatic leaders) tend to per-
formbetter than others in the face of complicated situations (Hunter et al. 2009). Inter-
estingly, results from a simulated experiment suggest that pragmatic leaders actually
improve their performancewhen facedwithmore complicated settings (Bedell-Avers
et al. 2008). In short, a thorough assessment of the situation by the leader can make
company response efforts more effective in the face of complicated supply chain
disruptions.

The above factors suggest that, with rising complicatedness in supply chain dis-
ruptions, leader adaptiveness becomes more effective. We posit that with rising com-
plicatedness in supply chain disruptions, moderate-to-high levels of ADM become
effective in minimizing damage from supply chain disruption.



112 I. Shaheen et al.

3.4 Leader ADM and Rare Supply Chain Disruptions

Familiar disruptions reside in the organization’s task domains and can be more easily
recalled, making them easier to manage (Kovoor-Misra 2002). In contrast, rare dis-
ruptions offer no previous experience that parallels them. The right counter-measure
is yet to be identified. As such, the firm cannot draw ideas from its memory on
how to tackle rare disruptions (Lampel et al. 2009). There are no existing plans for
delegation or prioritization of tasks in addressing rare disruptions. Organization’s
personnel have no clear-cut way to approach the disruption.

Previous research shows that reliable information about the extent of disruption
can improve the overall performance of a company (Li et al. 2017). This is particularly
important for facing rare disruptions. Given the extensive ambiguity of rare supply
chain disruptions, inclusion and involvement of others can lead to better decisions.
Careful assessment of rare disruptions seems necessary because the firm needs to
compensate for its lack of understanding of the intricacies of the disruption. Careful
assessment helps surface the nuances associated with a rare disruption so as to better
prioritize tasks and to place resources where necessary.

The above suggests that a focus towards amore careful review of the ramifications
of decisions may prove to be more effective in the face of rare disruptions. This
suggests that leader adaptiveness can be effective with rising rarity of supply chain
disruptions.

4 Methodology

4.1 Sample and Data Collection

The data was gathered through a mixture of primary and secondary data sources.
Primary data was collected to measure leadership competencies during supply chain
disruptions frommanufacturers using an onlineQualtrics survey. Secondary datawas
obtained through COMPUSTAT and used to measure industry related variables and
firm performance used as controls. Three follow-ups netted useful survey responses
from a cross-section of 286 firms, resulting in a nearly 30% response rate. Missing
data resulted in 35 responses being discarded.

4.2 Variables and Measures

The unit of analysis is firm response to supply chain disruptions. The supply chain,
leadership, and operations literature were screened to identify relevant scales for
the constructs used the study. For all constructs, multi-item 7-point Likert scale
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(1-strongly disagree, 7–strongly agree) described in the following paragraphs were
used.

Measurement of ADM was conducted using a three-item scale. The respondents
were asked to evaluate their leader’s adaptiveness by indicating howmuch they agree
that their leader “suggests different angles,” “seeks different views,” and “suggests
new ways.” Characteristics of major supply chain disruptions were measured using
three variables: unexpected, complicated, and enduring disruption.

Monitoring the performance of any production system should include both inter-
nal and external measure of performance (Stank, Crum, and Arango 1999). Thus,
our operational damage scale consisted of seven items, including sales, access to
technology, delivery reliability. In this context, we were interested in how the sup-
ply chain disruption negatively affected (directly and indirectly) the organization’s
response and recovery efforts. We asked respondents to evaluate the negative effect
of the disruption, (7 point Likert 1-strongly disagree, 7–strongly agree). The reli-
ability of the scale for the outcome variable (operational damage) was acceptable
(Cronbach’s alpha of 0.89), suggesting that operational damage can be considered
as a unidimensional construct in the analyses.

Control Variables. We controlled for factors that could influence firm’s operational
damage in facing supply chain disruptions, as informed by prior literature on supply
chain disruptions (Muffet-Willett and Kruse 2009; Sarros and Santora 2001). Sta-
tistical controls included firm size and financial performance, industry membership,
the dynamism of firms’ business context, the frequency of disruptions, and leader-
ship characteristics. COMPUSTATwas used for financial data on public firms (fiscal
years 2009, 2010, and 2011), while survey responses were used for private firms.

5 Analyses and Results

Multiple regression analysis was employed to test the proposed model. First, we
explored the direct effects of ADM on operational damage. The results were found
to be significant (β= 0.121, p < 0.05). They suggest that ADM is helpful in a leader’s
overall response to supply chain disruptions. However, in line with the argument
for H1, ADM can be detrimental at extremely low or extremely high levels. At
either extreme, ADM is associated with more operational damage from supply chain
disruption. The summary of results is available in Table 2.

Second we addressed the effect of ADM on operational damage in the face of
unexpected supply chain disruptions, suggesting that the effect of low-to-medium
level ADM on limiting disruption damage becomes stronger with increased supply
chain disruption unexpectedness. The results demonstrate significance (β = 0.061,
p < 0.05). In the face of high unexpectedness of supply chain disruptions, limited
ADMismore effective. ExtensiveADMismore effective for supply chain disruptions
with low unexpectedness. Here again, the subtleties of the resulting curvilinear rela-
tionship suggest that ADM is not as effective at extremely limited levels. Therefore,
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Fig. 1 Triangular model of adaptive decision making in facing supply chain disruptions

decisive decision-making may be more optimal for supply chains caught off-guard
by a highly unexpected disruption.

Third, we tested the relationship between ADM and operational damage when
moderated by supply chain disruption complicatedness. The results were significant
(β = 0.048, p < 0.05), but not supported. The results suggest that more compli-
cated supply chain disruptions limit the effectiveness of ADM. The effectiveness of
extensive ADM, meanwhile, is reduced. The curvilinear nature of the results indi-
cates that ADM is particularly ineffective at extremely low levels. Figure 3 shows
the relationship between ADM and operational damage moderated by complicated-
ness. Therefore, limited ADM in the face of complicated supply chain disruptions is
advised, making decisive decision-making the preferable leadership approach under
such circumstances (Table 3).

Finally, we examined the role of rarity on ADM and operational damage from
supply chain disruptions. The results showed significance (β=−0.056, p < 0.05). As
related to the unfamiliarity of supply chain disruptions, use of limited ADM leads to
lower operational damage in the face of familiar duration disruptions (Fig. 4). This
argues for decisive action being taken to limit operational damagewhen the disruption
is familiar. However, in the face of rare disruptions, use of extensive ADM leads to
lowering of operational damage, suggesting that prudent leadership may be the more
preferable approach. The relationship between ADM and operational damage is
graphically depicted on Fig. 1.
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Table 3 Summary of results

Hypothesis Result Implications

H1: Leader ADM carries a
u-shaped relationship with
operational damage from
supply chain disruptions such
that moderate level of ADM is
associated with lower damage
as compared to limited and
extensive levels of ADM

Supported
(β = 0.121, p < 0.05)

Findings suggest moderation
is the best policy for leaders
facing SC disruptions.
Leaders that avoid
extremes—be they in hasty
decisiveness or cautious
prudence—seem to help their
organizations minimize the
detrimental effects of SC
disruptions

H2: Unexpected disruptions
moderate the curvilinear
association between leader
ADM and SC disruption
damage such that, with rising
SC disruption unexpectedness,
low—to-moderate levels of
ADM lower the SC disruption
damage

Supported
(β = 0.061, p < 0.05)

The fact that unexpectedness,
complicatedness, and rarity
of SC disruption require
variations on leadership
emphasis is a manifest to the
multifaceted and
multidimensional
characteristic of SC
disruptions. Each SC
disruption has the potential to
be a uniquely unusual event
such that the leader would
need to customize the
recognition, response and
recovery efforts

H3: Complicated disruptions
moderate the curvilinear
association between leader
ADM and damage from SC
disruptions such that, with
rising SC disruption
complicatedness, moderate to
high levels of ADM become
more effective in minimizing
the SC disruption damage

Supported
(β = 0.048, p < 0.05)

H4: Rare disruptions moderate
the curvilinear association
between leader ADM and
damage from SC disruptions
such that, with rising SC
disruption rarity, moderate to
high levels of ADM become
more effective in minimizing
the SC disruption damage

Supported
(β = −0.056, p < 0.05

5.1 Robustness Tests for Inverted U-Shaped Relationships

In order to address the validity of inverted U-shaped relationship between ADM and
operational damage, several measures were taken. First, following previous studies,
all continuous variables were mean centered to minimize multicollinearity as well
as provide robustness for a U-shaped curve (Aiken and West 1991).
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Additionally, we employed an approach suggested byWales et al. to further assess
the validity of the inverted-U shaped relationship between ADM and operational
damage (Wales et al. 2013; Lind and Mehlum 2010). Without these tests, it is chal-
lenging to determine whether the extreme point (or the inflection point) is within the
bounds of the data. First, we begin with a Wald test to assess the joint significance of
the direct and squared terms of logistics integration. The results confirmed that both
terms are jointly statistically significant [F (2, 249)= 3.65; Prob > F= 0.001]. Then,
the Sasabuchi test was used to estimate whether the effect of ADM on operational is
increasing at low values of ADM and the effect of ADM on operational damage is
decreasing at high values of ADM. It is essential to examine slopes at these bounds
to confirm that the inverted U-shaped relationship is representative of the data and
not a statistical artifact. Overall test of presence of a U-shaped relationship shows
significance (t-value = 2.07; P < = 0.05). Furthermore, significant values of lower
and upper bound slopes indicate the presence of a U-shaped relationship (Lower
bound slope = −0.717; t-value = −2.65; P < 0.001; Upper bound slope = 0.375;
t-value = 2.07; P < 0.05). Finally, to validate that the extreme point of the curve is
within the upper and lower bounds of ADM, Fieller approach was applied. If the
confidence intervals are within the bounds of the low and high values of ADM, it
offers support for the presence of a U-shaped relationship in the data. The estimated
extreme point is 4.94, which is positioned within the upper and lower bounds of
ADM (95% Fieller interval for extreme point: [4.17; 6.63]).

6 Discussion

In this study, we assessed the impact of leadership traits that can induce a ripple
effect during supply chain disruptions. We consider ADM as a continuum spanning
both high and low levels of adaptiveness. Results of the study confirmed our primary
hypotheses that a moderate level of ADM is optimal in relationto operational damage
from the ripple effects in supply chain disruptions.When faced with rare disruptions,
higher ADM is particularly effective. However, low ADM is more effective in the
face of unexpected and complicated disruptions.

6.1 Empirical and Theoretical Contributions

Recent research supply chain management and crisis has recognized supply disrup-
tion management as an important area of research (Schoenherr et al. 2012). The true
test of a supply chain leader is during challenging times. At no time is this better man-
ifest than during supply chain disruptions, when the inter-organizational dynamics
are further complicated by the time-pressures, ambiguities and high stakes associ-
ated with the disruption (Dooley and Lichtenstein 2008). Such situations amplify
decision-making behavior and associated ramifications.
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Our findings suggest that moderation is the best policy for leaders facing supply
chain disruptions. Leaders that avoid extremes—be they in hasty decisiveness or
cautious prudence—seem to help their organizationsminimize the detrimental effects
of supply chain disruptions. Moderation, leadership that simultaneously considers
the need for quick and effective alongside thoughtful consideration for the potential
ramification of their actions across the supply chain, seems most effective in the face
of supply chain disruptions. These findings fall in line with that from a few studies
in similar contexts (e.g., Van Wart and Kapucu 2011). Related to supply chains,
Williams et al. (2002) find that neither autocratic nor participative leadership styles
are more effective than the other. Instead, leaders whose key approach is adaptable
are shown to be effective.

A second contribution of this paper is in highlighting the unique characteristics
of supply chain disruptions. As we noted earlier, literature on crisis leadership has
historically been dominated by research on community and humanitarian related
disasters (e.g., Patton 2015; Quarantelli 1997). While insightful, results from these
studies may not be fully compatible with the intricacies of supply chain disrup-
tions, nor with the possible leadership styles necessary to address them. The fact that
unexpectedness, complicatedness, and duration of supply chain disruption require
variations on leadership emphasis is a manifest to the multifaceted and multidimen-
sional characteristic of supply chain disruptions. Each supply chain disruption has
the potential to be a uniquely unusual event such that the leader would need to cus-
tomize the recognition, response, and recovery efforts to reduce the ripple effect.
This further supports the idea that ADM be matched to the type of supply chain
disruption being dealt with to help minimize damage from the ripple effect.

Leadership traits tend to be thought of in terms of positive capabilities, or ones
that allow the individual to promote better decisions even in the face of uncertainty
(Simpson et al. 2002). However, there are potential downsides to any particular trait
that is being considered. Our findings suggest that it is the responsibility of the leader
in charge at “ground zero” of the supply chain disruption to adapt and improvise
when responding to a supply chain disruption. The goal is to reduce the ripple in the
downstream supply chain. Relatedly, we contribute to the literature on leadership in
the face of complicated settings. Leadership, by its nature, is a complicated activity
(Hunt 2004). This study is one of few empirical examinations that allows for a test
of some of the central ideas developed by the paradox perspective (Denison et al.
1995). Our findings support the general implication of the paradox perspective in
that more effective leaders generally display a more complicated and varied set of
behaviors.

Finally, critiques of leadership theories highlight the shortcomings of the litera-
ture by focusing primarily on charismatic and other vision-laden leaderships. Yukl
(2005) notes the importance of highlighting the task and strategic-oriented behav-
iors of leaders. Hunt (2004), who has extensively chronicled leadership, explains:
“When between one-third and one-half of recent scholarly leadership articles are
devoted to transformational leadership… one wonders whatever happened to plain,
unadorned leadership directed toward task completion” (p. 1524). Moreover, miss-
ing from many leadership studies is sufficient specification of situational variables
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and facilitating conditions. Our study contributes to the leadership field of study by
offering insights on the potential significance of considering adaptive leadership.
This is particularly impactful for supply chain management, which can be extremely
dynamic and turbulent.

6.2 Practical Implications

Our contribution to practice is in detailing how the intricate nature of supply chain
disruptions creates thought-provoking challenges for leadership. As of late, many
organizations have emphasized how they should prepare for and minimize the ripple
effect of risks due to supply chain disruptions. However, the manner in which actual
supply chain disruptions are to be handled is not as prominent of a topic within
the supply chain management literature. Moving beyond the preparatory and risk
mitigating stages of disruption management, this study offers explanation on how
outstanding supply chain management leadership in the face of supply chain disrup-
tions may decide and direct the organization through and past the danger introduced.

Thefindings above are particularly important to supply chainmanagement leaders,
as it is likely that many managers would have inclinations towards one particular
style over another. It is increasingly clear that supply chains established during more
stable times need to be reshaped for operation in an era of increased volatility. Supply
chain leaders should be able to synthesize external and internal data and rapidly take
action to minimize the impact of a disruption (Culp 2013). Each leader, perhaps even
innately, has a preference towards being decisive or prudent. AsDevitt andBorodzicz
(2008) note, “Leaders managing crises under stressful situations are likely to revert
to the style which they are most comfortable.” In fact, the urge to leverage the
most comfortable approaches become stronger as the challenge posed by the crises
increases in intensity (Deveitt and Borodzicz 2008). As evidenced here, this can be
detrimental in the face of supply chain disruptions, which requires blending different
leadership styles. For example, in 2012 the auto industry was rocked by a shortage
of a specialty resin because the key supplier experienced a devastating explosion in
its plant. It took the supplier six months to restart production, during which time the
downstream production facilities of Ford and other major automakers were severely
disrupted. If Ford supply managers were adaptive and decisive, they would have
detected the risk exposure and associated production bottleneck and proactively
worked with the supplier to fast-track its plans to bring online a new plant (Simchi-
Levi et al. 2014). The challenge for most leaders is to behave confidently in uncertain
times, yet do so with as much information and intelligence as they can generate.

One of the contributions of particular note from this study for managers is the
notion of leadership under complicated supply chain disruptions. Contrary to find-
ings from studies outside of the supply chain context (e.g., Strange and Mumford
2002) we find that leaders demonstrating prudent decisionmaking do indeed perform
better with regards tominimizing operational damage. The ability of a leader to adapt
to a changing and complicated environment is a key foundation of crisis leadership
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in supply chain management. For example, supply managers’ adaptability (achieved
in this case by adjusting workforce skills and processes) allowed Toyota to quickly
restore the supply of brake-fluid-proportioning valves (P-valves) after a major dis-
ruption (Simchi-Levi et al. 2014). Far too often are examples of crisis leaders that
foreclose on options, cutting off or ignoring points of information when making vital
decisions. This is undesirable, especially as crisis decision making requires an abil-
ity to think quickly and rationally, as well as to act. The consequence of muddled
thinking or ignoring key situational factors can result in further disaster.

6.3 Future Research and Limitations

This study explored leadership approaches related to ADM in response to varying
types of disruptions. The results of this study need to be considered alongside their
limitations. We recognize the limitations of empirically based studies. For example,
the responses garnered from this research were from managers working for Italian-
based organizations. While these managers were spread across 25 multi-national
companies with international supply chains that may be from numerous countries,
future research should look at a broader array of countries.

While past research in SCM has focused extensively on overarching strategic
aspects of the discipline (Giunipero and Eltantawy 2004), more recent research has
called for attention to be paid to the “people” dimensions that contribute to supply
chain functions (Wieland et al. 2016). To date, little research has examined the dif-
ferences between leadership in supply chains, versus in other management contexts.
We would echo the words of Thornton et al. (2016), who points out that “Without
a savvy leader, the needs of supply chain management may be overlooked because
they have no advocate to push their orientation within the firm.” As supply chain
managers continue to assume executive roles in the upper echelons of the corporate
hierarchy, pointing to the increasing strategic importance of supply chain manage-
ment (Wagner and Kemmerling 2015), wewould argue for the need for future studies
examining aspects of leadership within supply chain management.

Another direction for future research is consideringwhethermoderation policy for
leaders facing SC disruptions can affect SC efficiency. Previous research highlighted
that various SCM decisions are rooted in the efficiency thoughts and resilience is fre-
quently considered as a trade-off with the efficiency (Ivanov andDolgui 2018).While
leaders that avoid extremes may improve SC resilience, they might also decrease SC
efficiency since the decision-making speed decreases. Ivanov andDolgui (2018) offer
several opportunities for future exploration, time-to-recover being among those areas
needing more attention. For example, the relationship between lead time extensions
and efficiency within the SC resilience context is fertile ground for future analysis.
Simulation experiments, but also, observational techniques could be useful methods
for examining such relationships.

Since there is no universal, ideal prescription of management response to supply
chain disasters, another important consideration is that each disruption can have a
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notably different set of characteristics and therefore a uniquely designed combination
of countermeasures to address them. For example, cultural aspects may be a factor,
as certain cultures and communities celebrate decisive assertiveness and dominant
styles of leadership. Others yearn for more modest servant leaders if they are willing
to tolerate leaders at all. Societal and organizational expectations of leaders vary
enormously from setting to setting, according to the requirements of context. In
virtually every society and setting, we require leaders to be alternately collaborative
and competitive.

The findings from this study represent the first known effort examining ADM to
various SC disruptions. Given the noted variability of disruptions, opportunities for
future research might include an examination of more specific disruption types com-
mon to supply chain management. These could include stock-outs, product recalls,
and others, which can have disastrous effects that ripple throughout the supply chain.
Also, while this study measured leadership via a survey in combination with archival
financial measures, future work may utilize other methods. For example, the deduc-
tive case-based analysis might be particularly useful for delving more deeply into
contextual factors impacting leadership and ADM. Future researchers might also
want to look at leadership and ADM across the various stages of response to a dis-
ruption, i.e., prevention, mitigation, response, and recovery (Shaheen et al. 2018).
Additionally, the regulatory concerns of certain countries might partially impact
the speed of a response. Leadership under conditions where the public-private part-
nership has an extensive role may be of importance to managers coping with SC
disruptions.

7 Conclusion

It only takes an instant for a smoothly running supply chain to be stricken by dis-
aster. In these critical moments, the right leadership approach can impact the level
of turmoil the organization, and connected supply chain stakeholders must suffer
through. Such inter-organizational exchanges drive the right level of ADM, in terms
of decisive speedversusmethodical prudence.Using paradox and leadership theories,
this research revealed how different forms of ADM impacts the extent of operational
damage under various types of SC disruptions.While prior research tends to describe
quick responding, visionary leaders as ideal in crises situations, our research demon-
strates that in the face of different SC disruptions, leadership is indeed paradoxical.
Clearly, our research demonstrates the importance of leadership for the supply chain
research and practitioner communities.
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AModel of an Integrated Analytics
Decision Support System for Situational
Proactive Control of Recovery Processes
in Service-Modularized Supply Chain

Dmitry Ivanov and Boris Sokolov

Abstract In the supply chain (SC) recovery process, a disruptive event, planning
of the recovery control policy and implementation of this policy are distributed
in time and subject to SC structural and parametrical dynamics. In other words,
environment, SC structure and its operational parameters may change in the period
between the planning of the recovery control policy and its implementation. As
such, situational proactive control with combined use of simulation-optimization
and analytics is proposed in the paper to improve processes of transition between a
disrupted and a restored SC state. Implementation of situational proactive control can
reduce investments in robustness and increase resilience by obviating the time traps
in transition process control problems. This chapter develops a model of a decision
support system for situational proactive control of SC recovery processes based on
a combination of optimization and analytics techniques. More specifically, three
dynamic models are developed and integrated with each other, i.e. a model of SC
material flow control, a model of SC recovery control and a model of SC recovery
control adjustment. The given models are developed within a cyber-physical SC
framework based on the service modularization approach.

1 Introduction

Supply chain (SC) vulnerability and disruption management have become a promi-
nent research domain over the last two decades. Literature differentiates preparedness
and recovery decisions (Sheffi 2005; Ivanov 2017; Dolgui et al. 2018; Ivanov 2018;
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Yoon et al. 2018). Recovery processes usually follow the disruption and are deployed
on the basis of proactive contingency plans and a recovery forecast (Tomlin 2006;
Ho et al. 2015; Pavlov et al. 2018; Macdonald et al. 2018).

The existing decision support systems utilize the power of optimization and sim-
ulation techniques to support decision-makers in protecting the SC using optimal
contingency plans such as risk mitigation inventory, capacity reservations, backup
sourcing and combinations thereof (Gupta et al. 2015; Behzadi et al. 2017; Ivanov
et al. 2017a, b, c; Sawik 2017; He et al. 2018; Ivanov 2019; Pavlov et al. 2019).
In addition, recovery process simulation has recently been introduced in research
(Ivanov et al. 2013, 2014a, b, 2016c, 2018b; Schmitt et al. 2017; Scheibe and Black-
hurst 2018).

A disruptive event, planning of the recovery control policy and implementation
of this policy are distributed in time and subject to SC structural and parametrical
dynamics during a SC recovery process (Xia et al. 2004; Shao and Dong 2012; Sheffi
2015; Ivanov 2018). In other words, the environment, SC structures and operational
parameters may change in the period between the planning of the recovery control
policy and its implementation. This fact represents a gap in current research which
mostly relies on recovery models based on recovery forecasting. The missing incor-
poration of real-time data about process execution in the recovery control deployment
models reduces their value and efficiency. There are only a few works on recovery
process scheduling (Ivanov et al. 2018a).

At the same time, recent studies have provided evidence of the technical applica-
bility and effectiveness of such techniques by using SC eventmanagement techniques
(Meyer et al. 2014; Sommerfeld et al. 2018). T&T systems and feedback control can
be supported by RFID technology (Dolgui and Proth, 2010) and SC event manage-
ment systems. Both RFID and SC event management systems can be used to effec-
tively communicate disruptions to the other tiers and to help revise initial processes
and schedules, respectively (Dolgui and Proth 2010; Zelbst et al. 2012). A critical
issue in this area is detecting disruptions and their scope in real time. Embedding SC
visualization and identification technology is crucial for its successful application in
practice (Meyer et al. 2014). However, those studies are rather context-specific and
did not provide a model of an integrated proactive-reactive decision support system
for situational proactive control of SC recovery processes.

As such, situational proactive control with combined use of simulation-
optimization and analytics is proposed in the paper to improve the transition processes
between disrupted and restored SC states. Implementation of situational proactive
control can reduce investments in robustness and increase resilience by obviating
transition process control problems. This paper develops a model of an integrated
proactive-reactive decision support system for situational proactive control of SC
recovery processes based on combination of optimization and analytics techniques.
More specifically, three dynamic models of a service-analytics decision support sys-
tem for supply chain recovery control are developed and integrated with each other,
i.e. a model of SC material flow control, a model of SC recovery control and a
model of SC recovery control adjustment. The given models are developed within a
cyber-physical SC framework based on service-oriented approach.
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The rest of this study is organized as follows. Section 2 presents the problem of
situational proactive control. The decision support framework is shown in Sect. 3.
Section 4 is devoted to mathematical models of recovery control. The paper is con-
cluded in Sect. 5 with a summary of the findings and a description of limitations and
future research avenues.

2 Problem of Situational Proactive Control

The SC recovery process includes some events which start with the disruption and are
continued into planning of the recovery control policy (e.g. based on a contingency
plan), and the implementation of this policy through its deployment and control
(Fig. 1).

It can be observed in Fig. 1 that the aforementioned events are distributed in time.
In this time, the SC is subject to structural and parametrical dynamics. In other words,
the environment, SC structures and operational parameters may change in the period
between start of the planning of the recovery control policy and its implementation.
The recovery process is planned at the point of time “start of recovery planning”
subject to the deployment at the point of time “start of recovery implementation”
considering as inputs the SC structure at the point of time “start of recovery plan-
ning”, the internal parameters in this structure (e.g. available capacity and inventory),
the external parameters (e.g. demand) and the forecasted states of those inputs at the
point of time “start of recovery implementation”. More specifically, the time gap
between the events “start of recovery planning” and “start of recovery implementa-
tion” is responsible for the situation in which the actual SC structure and the internal
and external parameters may be quite different compared to those forecasted. As
such, new methods are needed to obviate the time traps in transition process control
problems (Dunke et al. 2018).

As such, the incorporation of real-time data about process execution in recovery
control deployment models is necessary to increase their value and efficiency. Such
an incorporation is needed both for data updating and the adjustment of the recovery
control policy during its planning and realization.

Fig. 1 Supply chain recovery process
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3 Cyber-Physical SC Framework and Decision Support
System Concept

Success in SC competition becomemore andmore dependent on analytics algorithms
in combination with optimization and simulation modelling. Initially intended for
process automation, business analytics techniques now disrupt markets and business
models and have had a significant impact on the development of SCM. As such,
new disruptive SC business models will arise where SCs are understood not as rigid
physical systems with a fixed and static allocation of some processes to some firms
(Ivanov et al. 2019; Panetto et al. 2019). Instead, different physical firms will offer
services of supply,manufacturing, logistics and saleswhichwill result in the dynamic
allocation of processes and dynamic SC structures (Fig. 2).

A new generation of simulation and optimizationmodels extends decision support
systems (DSS) towards decision analysis, modelling, control and learning systems
(DAMCLS). Recent literature documented the possibility of modelling such inte-
grated service-material flow SCs (Ivanov et al. 2014c; Yang et al. 2017) and service
modularization in the SC (Giannakis et al. 2018).

Fig. 2 Cyber-physical SC framework based on a service modularization approach
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4 Model of Decision Support System

Recall Sect. 2 and the three kinds of models that need to be developed and integrated,
i.e. a model of SC material flow control, a model of SC recovery control and a model
of SC recovery control adjustment. The given models are developed within a cyber-
physical SC framework based on a service-oriented approach, as described in Sect. 3.

The SC is modelled as a networked, controlled system described through a
dynamic interpretation of the service execution (Ivanov and Sokolov 2013; Ivanov
et al. 2016a, b). Three joint models of process control are proposed. Control model
(M1) is first used to describe the schedule of the material flows control process, and
then another control model (M2) is used to describe the recovery process. Subse-
quently, the model (M3) is introduced to describe the adjustment of the recovery
process.

General assumptions and parameters

• Consider a set of customer orders Aν (ν = 1, . . . , S).
• Denote D(o, j)

νχ as services in the SC material flow process (marked as (o)), where
χ = 1, . . . , Γ is the running index of the service. Services are logically arranged
in the sequence in which they need to be executed to fulfil the customer order.

• Consider a set of SC elements (e.g. factories, warehouses) M ={
M ( j), j ∈ N , N = 1, . . . , n

}
that can execute services.

• Denote M ( f, j)
r as SC elements to be recovered.

• Denote D( f, j)
νχ as services in the recovery process (marked as (f )), each of which

also belongs to order Aν .
• a(o)

i and a( f )
i are the planned processing volumes of the services.

• Denote ε(t) as an element of the matrix of time-spatial constraints (ε(t) = 1,
if t k0 < t ≤ t kf , ε(t) = 0 otherwise), where k are the numbers of time windows
available for service execution.

• If a service is completed, a channel to the next stage appears. Denote the set
of these vendor–buyer relations in the SC as B = {B(μ), μ ∈ N̄ ), where the
subscript η is used for the immediate product acceptor. If a relation exists, the

flows P (i, j) =
{
P (i, j)

<χ,ρ>, χ = 1, . . . , si , ρ = 1, . . . , pi
}
. appear, where ρ = 1,…,

pi is the enumeration of flows.
• Denote M (p, j)

δ as SC elements for the adjustment of the recovery policy.
• Denote D(p, j)

rk as services in the recovery adjustment process (marked as (p)),
where r = 1, . . . , R j is the number of the recovery process and k is the index of
a recovery adjustment service).

• Setup times are independent and included in the processing time.
• Costs are assumed to be a linear function of processed volumes.
• Denote u( f, j)

νχμ as the actual intensity of service execution at M ( f, j)
r with regard

to the service D(o, j)
νχ and e( j)

r , V ( j)
r , Φ

( j)
r as the maximal processing intensity of

the service D( f, j)
νχ at M ( f, j)

r , maximal capacity of Mj and maximal productivity of
M ( f, j)

r before the recovery, correspondingly; ē( j)
r , V̄ ( j)

r , Φ̄
( j)
r are given variables
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characterizing the same domains but after the recovery; b(k)
rδ is the intensity of the

service processing at M (p, j)
δ , which is required for the service D(p, j)

rk with regards
to the recovery of M ( f )

j .
• Let t be the current instant of time, T = (T0, T f ] the recovery horizon (e.g. time-
to-recover, cf Fig. 1) and T0 (T f ) the start (end) instant of time for the recovery
horizon, respectively.

• β
(o, j)
νχ (τ ) are given time functions for assessing the operated volume of the service
D(o, j)

νχ or penalties for non-fulfilment.
• α

( f, j)
νχr are penalty functions which are assumed to be known and characterize the

time points when penalties increase because supply terms are broken.

In order to describe the execution of services, let us introduce the following state
variables:

x (o, j)
νχ , x ( f, j)

νχ which characterize the fulfilment of the services D(o, j)
νχ ,D( f, j)

νχ in the
order A(o, j)

ν at Mj ,
x ( f, j)
r which characterizes the total employment time of M ( f, j)

r ,
x (p,1)
rk (t) which characterizes the current state of D(p, j)

rk and
x (p,2)
r (t) which is an auxiliary variable characterizing the current state of the

service processing. Its value is numerically equal to the time interval that has elapsed
since the end of the recovery of M ( f, j)

r ;

Decision variables and goals

Let us introduce the control variables:
u(o, j)

νχμ (t) is a control that is equal to 1 if the service D(o, j)
νχ is executed at Mj ,

otherwise u(o, j)
νχμ (t) = 0. w( f, j)

νχμ is control variable that is equal to 1 if the service
D( f, j)

νχ is executed at M ( f, j)
r and is equal 0 otherwise.

ν̃
( f, j)
νχr is an auxiliary control variable that is equal to 1 if the execution of service

D( f, j)
νχ has been fully completed and is equal 0 otherwise.
ν

(p,2)
χ r (t) is secondary control variable that is equal to 1 at the instant of time

t if a transition (i.e. recovery) from characteristics (e( j)
r , V ( j)

r , Φ
( j)
r ) to new ones

(ē( j)
r , V̄ ( j)

r , Φ̄
( j)
r ) occurs; otherwise ν

(p,2)
χ r (t) = 0;

ν
(p,1)
rδ k (t) is a control that is equal to 1 if the recovery service D(p, j)

rk for M ( f, j)
r is

executed at M (p, j)
δ ; otherwise ν

(p,2)
rδ k (t) = 0;

ν
(p,2)
r (t) is an auxiliary control that is equal to 1 if the recovery process of M ( f, j)

r

is completed; otherwise ν
(p,2)
r (t) = 0.

The model helps to coordinate three processes during the recovery period, i.e.

• an optimal process recovery,
• a SC material flow control under recovery during the recovery time and
• the recovery adjustment process.

Goals are measured by the order delivery times to customers and the volume of
the orders delivered. These goals correspond to practical key performance indicators
(KPI) of customer service level and delivery reliability. Customer service level is
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measured by a function of the actual delivery times. All the orders have to be com-
pleted by the time Tf . Otherwise, penalties for delivery breaks or backlog appear,
subject to the known penalty functions α

( f, j)
νχr and βiηρ(τ ), respectively. The reliabil-

ity of delivery is measured by the volumes x (o, j)
νχ of the delivered jobs subject to the

planned volumes (i.e. the fullness of the order completing).

4.1 Mathematical Model of the Material Flow Control
Process (Model M1)

The execution dynamics of services D(i)
μ can be expressed as (1)

dx (o, j)
νχ

dt
=

m j∑

μ=1

u(o, j)
νχμ , (1)

The economic sense of (1) consists of the representation of the service execution
dynamics in which process non-stationary and execution dynamics are reflected. The
state variable x(t) accumulates the executed volume of the considered service. The
control actions are constrained as follows:

n j∑

ν=1

sν∑

χ=1

u(o, j)
νχμ (t) ≤ 1, ∀μ;

m j∑

μ=1

u(o, j)
νχμ (t) ≤ 1, ∀ν, ∀χ; (2)

n∑

j=1

u(o, j)
νχμ [

∑

α∈Γ −
iμ1

(a(o)
iα − x (o)

iα ) +
∏

β∈Γ −
iμ2

(a(o)
iβ − x (o)

iβ )] = 0 (3)

m j∑

μ=1

u(o, j)
νχμ [(a(o, j)

ν(χ−1) − x (o, j)
ν(χ−1)) + (a( f, j)

νχ − x ( f, j)
νχ )] = 0; (4)

0 ≤ u(o, j)
νχμ (t) ≤ 1, ∀ν, ∀χ, ∀μ; (5)

u(o, j)
νχμ (t) ∈ {0, 1}, (6)

where Γ −
iμ1

, Γ −
iμ2

are the sets of service numbers which immediately precede a
service, subject to completion of all the predecessor services or at least one of these
services, respectively. Equation (2) shows that only one service can be executed at
a SC element at a time. Constraint (3) brings the natural time logic into the model
and determines the precedence relations. Constraint (4) determines the possibility of
the delivery of the product ρ-flow to the η-customer. Constraints (5)–(6) reflect the
intensity of service processing.
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According to Eq. (6), the control contains the values of the Boolean variables. In
order to assess the results of order execution, we define the following initial and end
conditions:

x (o, j)
νχ (T ( j)

0 ) ∈ 0; (7)

x (o, j)
νχ (T ( j)

f ) = a(o, j)
νχ , ∀ν, ∀χ. (8)

The constraints (7) reflect that, in the beginning, the volume of executed services
is equal to zero (if a certain volume of orders is to be transferred from the previous
planning period to the beginning of the current planning period, then this should be
reflected in (7)). The conditions (8) reflect the desired end state. The right parts of
Eq. (8) are predetermined at the planning stage subject to the volumes (i.e. lot-sizes)
of each order.

According to the problem statement, let us introduce the following performance
indicators:

J (o, j)
1 =

n j∑

ν=1

sν∑

χ=1

m j∑

μ=1

t ( j)f∫

t ( j)o

β(o, j)
νχ (τ )u(o, j)

νχμ (τ )dτ ; (9)

J (o, j)
2 = 1

2

n j∑

ν=1

sν∑

χ=1

(a(o, j)
νχ − x (o, j)

νχ (t ( j)f ))2. (10)

The indicator J1 (9) refers to penalties for breaking delivery terms. The goal
indicator J2 (10) characterizes the accuracy of the end conditions’ accomplishment,
i.e. the service level.

Corollary 1 Constraints (10) ensure that all orders are fully completed, i.e. the
planned service level can be reached.

Proof Analysis of constraints (3) shows that control u(t) switches on
only when the necessary predecessor services have been executed.
m j∑

μ=1
u(o, j)

νχμ [(a(o, j)
ν(χ−1) − x (o, j)

ν(χ−1)) = 0 guarantees the total processing of the pre-

decessor services and
m j∑

μ=1
(a( f, j)

νχ − x ( f, j)
νχ )] = 0 of the current services. Herewith,

constraints (3) determine the possibility of delivery to the customer B̄(η) according
to the product flow P ( j,η)

<si ,ρ> with the use of M ( j). The proof is complete.



A Model of an Integrated Analytics Decision Support System … 137

4.2 Mathematical Model of the Recovery Control Process
(Model M2)

Let us describe the execution of services in the recovery process as follows:

dx ( f, j)
νχ

dt
=

R j∑

r=1

u( f, j)
νχr ; (11)

dx ( f, j)
r

dt
=

n j∑

ν=1

s j∑

χ=1

w( f, j)
νχr ; (12)

dx ( f, j)
r

dt
= ν̃( f, j)

νχr . (13)

The control actions are constrained as follows:

0 ≤ u( f, j)
νχr (t) ≤ [eνχr (1 − ν(p,2)

r ) + ēνχrν
(p,2)
r ]w( f, j)

νχr ; (14)

n j∑

ν=1

sν∑

χ=1

V ( j)
νχ w( f, j)

νχr ≤ V ( j)
r (1 − ν(p,2)

r ) + V̄ ( j)
r ν(p,2)

r ; (15)

n j∑

ν=1

sν∑

χ=1

u( f, j)
νχr (t) ≤ Φ( j)

r (1 − ν(p,2)
r ) + Φ̄( j)

r ν(p,2)
r ; (16)

ν̃( f, j)
νsν (a( f, j)

νsν − x ( f, j)
νsν ) = 0; (17)

R j∑

r=1

w( f, j)
νχr (a( f, j)

ν(χ−1) − x ( f, j)
ν(χ−1)) = 0; (18)

R j∑

r=1

w( f, j)
νχr (t) ≤ 1, ∀χ, ∀ν; (19)

0 ≤ w( f, j)
νχr (t) ≤ 1. (20)

Constraints (14)–(16) reflect the possibilities of service processing with regards
to M ( f, j)

r before and after recovery. Constraint (14) describes the joint functioning
of the SC process to be changed and the recovery process. Constraints (17) and
(18) determine the processing consequence of the services D( f, j)

νχ , D( f, j)
ν(χ−1) subject

to the corresponding services D(o, j)
νχ , D(o, j)

ν(χ−1) of the material flow control process.
Constraints (19) and (20) imply that at the given instant of time the processing of the
service D( f, j)

νχ can be executed only at M ( f, j)
r .

Boundary conditions (21)–(24) specify the values of variables x ( f, j)
νχ , x ( f, j)

r at the
beginning and the end of the planning period t ( j)0 i t ( j)f and can be written as follows:
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x ( f, j)
νχ (t ( j)0 ) = 1; (21)

x ( f, j)
r (t ( j)0 ) = 0; (22)

x ( f, j)
νχ (t ( j)f ) = a( f, j)

νχ ; (23)

x ( f, j)
r (t ( j)f ) ∈ R1. (24)

Their meaning is similar to those in the model M1. The performance indicators
are defined in the form of Eqs. (25)–(28):

J ( f, j)
1 =

R j−1∑

r=1

R j∑

r1=r+1

t ( j)f∫

t ( j)o

(x ( f, j)
r (τ ) − x ( f, j)

r1 (τ ))2dτ ; (25)

J ( f, j)
2 =

n j∑

ν=1

sν∑

χ=1

R j∑

r=1

t ( j)f∫

t ( j)o

α( f, j)
νχr (τ )w( f, j)

νχr (τ )dτ ; (26)

J ( f, j)
3 = 1

2

n j∑

ν=1

sν∑

χ=1

(a( f, j)
νχ (τ ) − x ( f, j)

νχ (t ( j)f ))2; (27)

J ( f, j)
4 =

R j∑

r=1

(T ( j) − x ( f, j)
r (t ( j)f ))2; (28)

Indicator (25) estimates the equal recovery volumes at different SC elements.
Indicator (26) characterizes the accuracy of the end conditions’ accomplishment, i.e.
the service level. Indicator (27) refers to penalties for breaking delivery terms or any
other penalties due to disruptions, i.e. the delivery reliability. Indicator (28) estimates
the total processing of the orders affected by recovery.

4.3 Mathematical Model of the Adjustment of Recovery
Control Process (M3)

The model presented in this subsection is similar to the models M1 and M2. This
model describes the recovery process adjustment basedon feedback information from
RFID, sensors and T&T systems concerning changes in the SC and the environment.
The mathematical model of recovery control can be presented as (29)–(30):

dx (p,1)
rk

dt
=

 j∑

δ=1

brδkν
(p,1)
rδk ; (29)
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dx (p,2)
r

dt
= ν(p,2)

r . (30)

The control actions are constrained as follows:

R j∑

r=1

ν
(p,1)
rδ k (t) ≤ c(p,1)

δ j , ∀δ, ∀k; (31)

 j∑

δ=1

ν
(p,1)
rδ k (t) ≤ 1, ∀δ, ∀k, k = 1, . . . , K (r)

j ; (32)

 j∑

δ=1

ν
(p,1)
rδ k (a(p,1)

r(k−1) − x (p,1)
r(k−1)) = 0; (33)

ν(p,2)
r (a(p,1)

r K j
− x (p,1)

r K j
) = 0; (34)

0 ≤ ν
(p,1)
rδ k (t) ≤ 1; 0 ≤ ν(p,2)

r (t) ≤ 1 (35)

Constraints (31) reflect the possibilities of the performing recovery services D(p, j)
rk

subject to the recovery of M ( f, j)
r . Constraints (32) set the requirement that the recov-

ery service D(p, j)
rk can be performed only by one of M (p, j)

δ available for the recovery.
Constraints (33) determine the prioritizing of the services D(p, j)

rk and D(p, j)
r(k−1), asso-

ciated with recovery of M ( f, j)
r . Constraints (34) define the end time of the recovery

process of M ( f, j)
r . Constraints (35) set the domain of control actions ν

(p,1)
rδ k (t) and

ν
(p,2)
r (t) possible values. The end conditions are identical to those in model M2. The
performance indicator is defined as (36):

J (p,1)
1 =

 j∑

δ=1

Rν∑

r=1

K j∑

k=1

⎡

⎢⎢
⎣

⎛

⎜⎜
⎝

t ( j)f∫

t ( j)0

(
λ1c

(p, j)
rδ k (τ ) + λ2β

(p, j)
r k (τ )

)
ν

(p,1)
rδ k dτ

⎞

⎟⎟
⎠ + λ3

1

2

(
a(p,1)
r k − x (p,1)

r k

)2

⎤

⎥⎥
⎦;

(36)

where c(p, j)
rδ k (τ ) are the costs of recovery and λ are the weight coefficients. Indicator

(36) estimates the total processing quality of services D( f, j)
νχ . This indicator also

enables estimation of total recovery cost, ongoing service of the modernized process,
and total penalty for the schedule violation within the process recovery. These values
can be calculated using the first component of indicator (36). The terminal (second)
component of indicator (36) estimates the accuracy of the confirmation for the end
conditions.

The recovery control process can now be formulated as the following problem of
optimal programcontrol (OPC): this is necessary to find an allowable controlu(t), t ∈
(T0, T f ] that ensures the vector constraint functions q(1)(x,u) = 0, q(2)(x,u) ≤ 0
(2)–(6), (14)–(20) and (31)–(35) aremet for themodel governed by (1), (11)–(13) and
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(29)–(30) and guides the dynamic system (i.e. the SC) ẋ = f(x, u, t) from the initial
state to the specified final state. In terms of OPC, the program control of services
execution is simultaneously the optimal recovery process. The formulated model
is a linear, non-stationary, finite-dimensional controlled differential system with the
convex area of admissible control. Note that this is a standard OPC problem; see (Lee
and Markus 1967). This model is linear in the state and control variables, and the
objective is linear. The transfer of non-linearity to the constraint ensures convexity
and allows the use of interval constraints. For such kind of models, both sufficient
and necessary optimality conditions have been proven (Dolgui et al. 2019).

It can be observed that the elaborated multi-level modelling complex can be
applied for investigation and solution of different problem domains in the analysis
and synthesis of SCs with regard to different, interlinked processes. The integration
and coordination of the models is ensured by the following basic components:

• M2 influences the M1 model through the constraints (3). A service D(o, j)
νχ in the

unchanged process can start only after completing the previous service D(o, j)
ν(χ−1) in

this process and the service D( f, j)
νχ in the coordinated process;

• M3 influences M2 through Eqs. (14)–(16).
• TheM1model influences theM2 andM3models through the conjunctive variables
by the OPC problem solution with the help of the local cut method (Ivanov and
Sokolov 2013).

The conducted investigations of the proposedmodels show that the use of the goal
indicators (9)–(10), (25)–(28) and (36) makes it possible to model other factors with
regard to SC effectiveness and efficiency. For example, with the use of the c(p, j)

rδk (τ ),
the following can be explicitly reflected:

• Changes in the costs of SC recovery regarding SC evolution in dynamics; and
• Changes in total SC costs regarding themutual influences of interlinked processes.

The elaborated models can also be applied to simulate different scenarios of
recovery and the corresponding impact on SCperformance. The analytical optimality
properties of the model presented as well as the efficient computational algorithm
have been previously presented and proven in the studies (Ivanov and Sokolov 2013;
Ivanov et al. 2016a, b; Ivanov et al. 2018a). We omit their detailed presentation in
this paper.

5 Conclusions

During the SC recovery process, a disruptive event, planning of the recovery control
policy and implementation of this policy are distributed in time and subject to SC
structural and parametrical dynamics. In other words, the environment, SC structures
and operational parameters may change in the period between the planning of the
recovery control policy and its implementation.
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As such, situational proactive control with combined use of simulation-
optimization and analytics has been proposed in the paper to improve the transition
processes from a disrupted to a restored SC state. Implementing situational proac-
tive control reduces investments in robustness and increases resilience by obviating
the transition process control problems. This paper developed a model for an inte-
grated proactive-reactive decision support system for situational proactive control of
SC recovery processes based on a combination of optimization and analytics tech-
niques. More specifically, three dynamic models were developed and integrated with
each other, i.e. a model of SC material flow control, a model of SC recovery control
and a model of SC recovery control adjustment. The given models are developed
within a cyber-physical SC framework based on a service-oriented approach.

Advantages of the proposed approach are evident in two areas. On the one hand,
continuous optimization is a convenient engineering tool to model service-oriented,
cyber-physical SCs since the services and their accumulation over time can be easily
described with the help of continuous state and control variables. On the other hand,
dynamic description of the SC recovery process with the help of optimal control
enables the incorporation of these results into an axiomatic of feedback control
which uses the same methodological principles.

Some limitations of this study and future research can be considered in light
of the technical integration of data analytics into the framework and the models
developed. The models themselves need to be adapted for individual applications for
which specific algorithmsneed to be developed, analytically analyzed, andpractically
implemented.

Acknowledgements This research was partially supported by the grant of the Russian Foundation
for Basic Research project No. 18-07-01272 and State project No. 0073-2019-0004

References

Behzadi, G., O’Sullivan,M. J., Olsen, T. L., Scrimgeour, F.,&Zhang,A. (2017). Robust and resilient
strategies for managing supply disruptions in an agribusiness supply chain. International Journal
of Production Economics, 191, 207–220.

DHL (2018). Retrived February 4, 2018, from https://resilience360.com/.
Dolgui, A., & Proth, J. M. (2010). Supply chain engineering: Useful methods and techniques.
London: Springer.

Dolgui, A., Ivanov, D., & Sokolov, B. (2018). Ripple effect in the supply chain: An analysis and
recent literature. International Journal of Production Research, 56(1–2), 414–430.

Dolgui, A., Ivanov, D., Sethi S., & Sokolov, B. (2019). Scheduling in production, supply chain
and Industry 4.0 systems by optimal control: fundamentals, state-of-the-art, and applications.
International Journal of Production Research, 57(2), 411–432.

Dunke, F., Heckmann, I., Nickel, S., & Saldanha-da-Gama, F. (2018). Time traps in supply chains:
I optimal still good enough? European Journal of Operational Research, 264, 813–829.

Giannakis,M., Doran, D.,Mee, D., Papadopoulos T., &DubeyR. (2018). The design and delivery of
modular legal services: Implications for supply chain strategy. International Journal ofProduction
Research. https://doi.org/10.1080/00207543.2018.1449976.

https://resilience360.com/
https://doi.org/10.1080/00207543.2018.1449976


142 D. Ivanov and B. Sokolov

Gupta, V., He, B., & Sethi, S. P. (2015). Contingent sourcing under supply disruption and compe-
tition. International Journal of Production Research, 53(10), 3006–3027.

He, J., Alavifard, F., Ivanov, D., & Jahani, H. (2018). A real-option approach to mitigate disruption
risk in the supply chain. Omega. https://doi.org/10.1016/j.omega.2018.08.008.

Ho, W., Zheng, T., Yildiz, H., & Talluri, S. (2015). Supply chain risk management: A literature
review. International Journal of Production Research, 53(16), 5031–5069.

Ivanov, D., Dolgui, A., Sokolov, B. (2019). The impact of digital technology and Industry 4.0 on
the ripple effect and supply chain risk analytics. International Journal of Production Research,
57(3), 829–846.

Ivanov, D., & Sokolov, B. (2013). Dynamic coordinated scheduling in the supply chain under a
process modernization. International Journal of Production Research, 51(9), 2680–2697.

Ivanov, D., Sokolov, B., & Pavlov, A. (2013). Dual problem formulation and its application to
optimal re-design of an integrated production-distribution network with structure dynamics and
ripple effect considerations. International Journal of Production Research, 51(18), 5386–5403.

Ivanov D., Sokolov B., & Dilou Raguinia, E.A. (2014a). Integrated dynamic scheduling of mate-
rial flows and distributed information services in collaborative cyber-physical supply networks.
International Journal of Systems Science: Services & Logistics, 1(1), 18–26.

Ivanov D., Sokolov B., & Dolgui A. (2014b). The Ripple effect in supply chains: Trade-off
‘efficiency-flexibility-resilience’ in disruption management. International Journal of Production
Research, 52(7), 2154–2172.

Ivanov D., Sokolov, B., & Pavlov, A. (2014c). Optimal distribution (re)planning in a centralized
multi-stage network under conditions of ripple effect and structure dynamics. European Journal
of Operational Research, 237(2), 758–770.

Ivanov, D., B. Sokolov, A. Pavlov, A. Dolgui, & D. Pavlov. (2016a). Disruption-driven supply chain
(re)-planning and performance impact assessment with consideration of pro-active and recovery
policies. Transportation Research: Part E, 90, 7–24.

Ivanov, D., Sokolov, B., Dolgui, A., Werner, F., & Ivanova, M. (2016b). A dynamic model and an
algorithm for short-term supply chain scheduling in the smart factory Industry 4.0. International
Journal of Production Research, 54(2), 386–402.

Ivanov, D., Dolgui A., & Sokolov B. (2016c). Robust dynamic schedule coordination control in the
supply chain. Computers and Industrial Engineering, 94(1), 18–31.

IvanovD. (2017)Simulation-based ripple effectmodelling in the supply chain. International Journal
of Production Research, 55(7), 2083–2101.

Ivanov D., Tsipoulanidis A., & Schönberger J. (2017a). Global supply chain and services manage-
ment (1st ed). Springer.

Ivanov, D., Dolgui A., Sokolov B., & Ivanova M. (2017b). Literature review on disruption recovery
in the supply chain. International Journal of Production Research, 55(20), 6158–6174.

Ivanov D., Pavlov A., Pavlov D., & Sokolov B. (2017c). Minimization of disruption-related return
flows in the supply chain. International Journal of Production Economics, 183, 503–513.

Ivanov, D. (2018). Structural dynamics and resilience in supply chain risk management. New York:
Springer.

Ivanov, D., Dolgui, A., & Sokolov, B. (2018a). Scheduling of recovery actions in the supply chain
with resilience analysis considerations. International Journal of Production Research, 56(19),
6473–6490.

Ivanov, D., Sethi S., Dolgui A., & Sokolov, B. (2018b). A survey on the control theory applications
to operational systems, supply chain management and Industry 4.0. Annual Reviews in Control,
46, 134–147.

Ivanov, D. (2019). Disruption tails and revival policies: A simulation analysis of supply chain
design and production-ordering systems in the recovery and post-disruption periods. Computers
and Industrial Engineering, 127, 558–570.

Li, T., Sethi, S., & Zhang, J. (2017). Mitigating supply uncertainty: The interplay between diversi-
fication and pricing. Production and Operations Management, 26(3), 369–388.

Lee, E. B., & Markus, L. (1967). Foundations of optimal control theory. New York: Wiley.

https://doi.org/10.1016/j.omega.2018.08.008


A Model of an Integrated Analytics Decision Support System … 143

Macdonald, J. R., Zobel, C. W., Melnyk, S. A., & Griffis, S. E. (2018). Supply chain risk and
resilience: Theory building through structured experiments and simulation. International Journal
of Production Research. https://doi.org/10.1080/00207543.2017.1421787.

Meyer, G. G., Buijs, P., Szirbik, N. B., & Wortmann, J. C. (Hans). (2014). Intelligent products
for enhancing the utilization of tracking technology in transportation. International Journal of
Services & Production Management, 34(4), 422–446.

Panetto H., Iung B., Ivanov D., Weichhart G., Wang X. (2019). Challenges for the cyber-physical
manufacturing enterprises of the future. Annual Reviews in Control. https://doi.org/10.1016/j.
arcontrol.2019.02.002.

Pavlov, A., Ivanov, D., Dolgui, A., & Sokolov, B. (2018). Hybrid fuzzy-probabilistic approach
to supply chain resilience assessment. IEEE Transactions on Engineering Management, 65(2),
303–315.

Pavlov, A., Ivanov, D., Pavlov, D., & Slinko, A. (2019). Optimization of network redundancy and
contingency planning in sustainable and resilient supply chain resource management under con-
ditions of structural dynamics. Annals of Operations Research. https://doi.org/10.1007/s10479-
019-03182-6.

RM. (2018). Retrieved February 10, 2018, from https://www.riskmethods.net/en/software/
overview.

Sawik, T. (2017). A portfolio approach to supply chain disruption management. International Jour-
nal of Production Research, 55(7), 1970–1991.

Scheibe, K. P., & Blackhurst, J. (2018). Supply chain disruption propagation: A systemic risk
and normal accident theory perspective. International Journal of Production Research, 56(1–2),
43–59.

Schmitt, T.G., Kumar, S., Stecke,K. E., Glover, F.W.,&Ehlen,M.A. (2017).Mitigating disruptions
in a multi-echelon supply chain using adaptive ordering. Omega, 68, 185–198.

Shao, X. F., & Dong, M. (2012). Supply disruption and reactive strategies in an assemble-to-order
supply chainwith time-sensitive demand. IEEETransactions onEngineeringManagement, 59(2),
201–212.

Sheffi, Y. (2005). The resilient enterprise: Overcoming vulnerability for competitive advantage.
Cambridge, MA: MIT Press.

Sheffi, Y. (2015). Preparing for disruptions through early detection.MIT SloanManagement Review,
57, 31.

Sommerfeld, D., Teucke, M., & Freitag, M. (2018). Effects of sensor-based quality data in automo-
tive supply chains–a simulation study. In: M. Freitag, H. Kotzab, J. Pannek (Eds.) Dynamics in
logistics. LDIC 2018, Bremen 20–22, 2018 (pp. 289–297). Lecture Notes in Logistics. Springer,
Cham.

Theorin, A., Bengtsson, K., Provost, J., Lieder, M., Johnsson, C., Lundholm, T., & Lennartson, B.
(2017). An event-driven manufacturing information system architecture for Industry 4.0. Inter-
national Journal of Production Research, 55(5), 1297–1311.

Tomlin, B. T. (2006). On the value of mitigation and contingency strategies for man–aging supply
chain disruption risks. Management Science, 52(5), 639–657.

UPS (2018). Retrieved February 11, 2018, from https://www.youtube.com/watch?v=
aYoNd2nQqLg.

Wilkinson G. (2018). Integrating artificial intelligence with simulation modeling. Retrieved Febru-
ary 11, 2018, from https://www.anylogic.com/blog/.

Xia, Y., Yang,M. H., Golany, B., Gilbert, S. M., &Yu, G. (2004). Real-time disruption management
in a two-stage production and inventory system. IIE Transactions, 36(2), 111–125.

Yang, Y., et al. (2017).Mitigating supply chain disruptions through interconnected logistics services
in the physical internet. International Journal of Production Research, 55(14), 3970–3983.

Yoon, J., Talluri, S., Yildiz, H., Ho, W. (2018). Models for supplier selection and risk mitigation: A
holistic approach. International Journal of Production Research, 56(1).

https://doi.org/10.1080/00207543.2017.1421787
https://doi.org/10.1016/j.arcontrol.2019.02.002
https://doi.org/10.1007/s10479-019-03182-6
https://www.riskmethods.net/en/software/overview
https://www.youtube.com/watch?v=aYoNd2nQqLg
https://www.anylogic.com/blog/


144 D. Ivanov and B. Sokolov

Zelbst, P. J., Green, K. W., Sower, V. E., & Reyes, P. M. (2012). Impact of RFID on manufacturing
effectiveness and efficiency. International Journal of Services & Production Management, 32(3),
329–350.



Bullwhip Effect of Multiple Products
with Interdependent Product Demands

Srinivasan Raghunathan, Christopher S. Tang and Xiaohang Yue

Abstract The bullwhip effect has been studied extensively by researchers using
analytical and empirical models based on a single product. We extend the current
theory to provide insights for a firm that manufactures multiple products in a single
product category with interdependent demand streams.We find that interdependency
between demand streams plays a critical role in determining the existence andmagni-
tude of the bullwhip effect. More importantly, we show that interdependency impacts
whether the firm should manage ordering and inventory decisions at the category
level or at the product level, and whether the bullwhip effect measure computed at
the category level is informative or not.

1 Introduction

Risk management in supply chains has become one of the most important
topics in research and practice over the last decades. Several books (Handfield and
McCormack 2008;Kouvelis andDong 2011;Waters 2011;Gurnani et al. 2012; Sodhi
and Tang 2012; Heckmann 2016; Khojasteh 2017; Ivanov 2018) and review articles
(Klibi et al. 2010; Simangunsong et al. 2012; Ho et al. 2015; Fahimnia et al. 2015;
Gupta et al. 2016) provide insightful overview and introduction to different aspects
of this important field. The risks in a supply chain can be categorized into two types:
disruption risk and operational risk.
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Recent literature and management practices provide evidence that accounting for
risk is essential to provide practically relevant problem statements and decision-
oriented solutions. Recent literature suggests that firms should consider both oper-
ational risks and disruption risks (Chopra et al. 2007) because these risks impact
supply chain performance such as sales, stock return, service level, and costs, as
evidenced from disruptions caused by incidents such as 2011 earthquake in Japan,
2011 floods in Thailand, and fire in the Phillips Semiconductor plant in NewMexico.
Also, some researchers (e.g., Hendricks and Singhal 2005) have quantified the nega-
tive effects of supply chain disruption through empirical analysis and found 33–40%
lower stock returns relative to their benchmarks over a 3-year time period that started
1 year before and ended 2 years after a disruption. Disruption risk represents a
new challenge for supply chain managers who face the “ripple effect” (Ivanov et al.
2014a, b, 2017; Ivanov 2017; Dolgui et al. 2018). The ripple effect deals with struc-
tural disruptions in the supply chain,while the bullwhip effect dealswith parametrical
deviations in the supply chain.

The bullwhip effect examines weeks/daily demand and lead time fluctuations as
primary drivers of the changes in the supply chain. It occurs at the parametric level
and it can be mitigated so that the operations can be restored on a short-term basis. In
recent years, the research community has started to investigate severe supply chain
disruptions caused by natural disasters, political conflicts, terrorism,maritime piracy,
economic crises, destroying of information system or transportation infrastructure
failures. Some researchers (Ivanov 2018) refer to these severe natural and man-made
disasters as the ripple effect in the supply chain where changes in the supply chain
occur at the structural level and recovery may take mid and long-term periods with
significant impact on output performance such as annual revenues.

Despite the difference between the ripple effect and the bullwhip effect, there is
a linkage between them. Although we focus on how to mitigate the impact of the
bullwhip effect of multiple products in a single product category with interdependent
product demand streams in this chapter, our model and analysis can be used to exam-
ine the ripple effect if we view different products as country-specific products. Then,
as the demand for a country-specific product is disrupted due to an economic crisis
occurred in one country, the implication of this disruption can affect the demand for
other products associated with other countries especially when the world economies
are connected. From this vantage point, our bullwhip effect can be interpreted at a
“higher” level so that the net effect is akin to the ripple effect. For this reason, we
shall focus our discussion on the bullwhip effect in the remaining of this chapter,
even though the result can be interpreted as the ripple effect in the context of a supply
chain that produces country-specific products where each of the products is subject
to uncertain disruptions arising from different counties.

In the bullwhip effect literature, the seminal work of Lee et al. (1997) examined
different drivers of the bullwhip effect—i.e., the amplification of variance of demand
as it propagates upstream through the supply chain. Lee et al. employed the autore-
gressive model of order one (AR (1)) in their analysis of bullwhip effect of a single
product. Subsequent papers examined bullwhip effect using a variety of demand
models, forecasting methods, and inventory policies, but they focused primarily in
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the single product setting (e.g., Graves 1999; Chen et al. 2000; Aviv 2003; Zhang
2004a; Miyaoka and Hausman 2004; Zhang 2004b; Gilbert 2005; Gaur et al. 2005;
Chen and Lee 2009).1 Empirical results have been mixed about the prevalence of
bullwhip effect. Using firm-level data, Bray and Mendelson (2012) found that two-
thirds of the publicly traded firms exhibit bullwhip effect, but using industry-level
data, Cachon et al. (2007) found no significant bullwhip effect in many industries.
Chen and Lee (2012) analytically showed that time and product aggregation can
mask the bullwhip effect, while Bray and Mendelson reached similar conclusions
using empirical data. The current theory of supply chain bullwhip effect has been
developed using single product models. Chen and Lee considered multiple products
to examine the impact of product aggregation, but do not model or analyze interde-
pendency among individual product demand streams. In this work, we extend the
current theory to provide new insights for a firm that manufacturers multiple products
with interdependent demands in a product category.

Themotivation for thiswork stems fromproduct proliferation commonly observed
in most industries. Product proliferation occurs when a firm introduces multiple
variants or brands of the same core product. The dramatic increase in product variety
over the last three decades in numerous product categories has beenwell documented
by Cox and Alm (1998) and Aichner and Colletti (2013). A large product variety
is observed also among contract manufacturers in industries such as electronics and
automobiles, who supply components to multiple original equipment manufacturers.
Product proliferation poses operational challenges to firms for a variety of reasons.
For instance, because the different product variants within a product category are
(imperfect) substitutes of each other, their demands tend to be interdependent in
the sense they are not only contemporaneously correlated in a given time period
but also serially correlated across time periods. The contemporaneous correlation is
natural because these are variants of the same product. The serial correlation across
different products arises because of consumer-driven factors and firm-driven factors.
For example, the well-known variety seeking behavior of some consumers results
in those consumers switching the product variant they buy over time (for example,
switching from Kellogg’s Corn Flakes in one week to Rice Krispies in the following
week). Furthermore, firms may promote different product variants at different time
periods which can also contribute to serial correlation (for example, distributing
coupons for Corn Flakes in one month and for Rice Krispies in the followingmonth).
On the operational side, while some firms manage forecasting, production, ordering,
and inventory of these products at the individual product level, some others manage
them at the product category level. Though these aspects capture the essence of many
current real-world scenarios, they have not been adequately addressed in the extant
bullwhip effect literature.2

1See Wang and Disney (2016) for a comprehensive review of the bullwhip effect literature.
2There is extensive literature on aggregate and individual product-level forecasting, commonly
known as top-down and bottom-up forecasting, in the operationsmanagement literature (e.g., Sbrana
and Silvestrini 2013, Chen andBlue 2010 are some recent studies that compare the forecast accuracy
of top-down and bottom-up approaches).
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We employ a vector autoregressive model of order one (VAR(1)) that captures
the interdependency among product demands across periods using cross-correlation
coefficient and interdependency within a period using contemporaneous (or spatial)
correlation coefficient, in addition to the within product demand dependency using
autocorrelation coefficient.3 VAR(1) model is a natural extension of the widely used
AR(1) model to model demands of multiple products, and has been studied and
applied in a variety ofmultiproduct demand forecasting contexts (Box andTiao 1977;
Tiao and Box 1981; Tiao and Tsay 1983; Chen and Blue 2010; Sbrana and Silvestrini
2013).4 In this chapter, we first derive the bullwhip effect formula by assuming that
the firmmanages the ordering and inventory decisions at the product level and use the
formula to obtain the impacts of key model parameters. The well-known result that
an increase in the autocorrelation coefficient amplifies the bullwhip effect (Lee et al.
1997) continued to hold in theVAR(1)model, butmore importantly, the result extends
to the cross-correlation coefficient. The impact of contemporaneous correlation and
number of products on the bullwhip effect depend critically on whether the cross-
correlation is positive or negative. When the cross-correlation is negative (positive),
we show that an increase in contemporaneous correlation decreases (increases) the
bullwhip effect, and an increase in the number of products increases (decreases) the
bullwhip effect. That is, demand pooling and negative contemporaneous correlation
do not necessarily mitigate the product-level bullwhip effect.

Subsequently, we derive the bullwhip effect formula when the firm manages the
ordering and inventory decision at the product category level.We show that category-
level bullwhip effect is increasing in the autocorrelation, cross-correlation, contem-
poraneous correlation, and the number of firms.Therefore, the conventional intuitions
about the impact of these factors on the bullwhip effect persist at the category-level
bullwhip measure. Furthermore, we also show that the bullwhip effect when the firm
manages at the category level is identical to the bullwhip effect that is computed (or
measured) by aggregating the demand and order data for all products even though
the ordering and inventory decisions are made at the individual product level. This
result demonstrates that correct implications cannot be derived based on the aggre-
gate bullwhip effect measure without knowledge about how the products are actually
managed within the firm.

Finally, we compare the product level and category-level bullwhip effects.
Whether the category-level bullwhip effect is greater than or smaller than the product-
level bullwhip effect depends critically on the cross-correlation coefficient—the
product-level bullwhip effect is smaller (larger) than the category-level bullwhip
effect when the cross-correlation coefficient is highly positive (negative). Therefore,

3This work is based on Raghunathan et al. (2017). All proofs of propositions are available in
Raghunathan et al. (2017).
4While we do not have firm-level data to test whether the VAR(1) model fits brand demand streams,
an examination of the data contained in the Compustat database shows that the VAR(1) model
provides a statistically significant fit for the cost of goods sold (a widely used proxy for demand in
the bullwhip effect literature) of firms within an industry. Furthermore, Chen and Blue (2010) gave
an example of a semiconductor manufacturer where the VAR(1) model is appropriate to model the
demand data of two product variants.
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for a multiproduct firm, from the bullwhip effect point of view, the cross-correlation
plays a vital role in the firm’s choice regarding category-level verses product-level
management of ordering and inventory decisions. Furthermore, the cross-correlation
also plays a role in determining whether the bullwhip effect measured using aggre-
gate data masks or exaggerates the underlying bullwhip effect if the firm adopts
product-level management.

2 The Model

We consider a manufacturer who produces and sells n ≥ 2 products in a product
category. The demand for product i in period t takes on the following form:

Dit = d + ρDi(t−1) + γ

n∑

j=1

Dj (t−1)

n
+ εi t (1)

where Dit is product i’s demand in period t, D(t−1) =
n∑
j=1

Dj (t−1) is the product

category’s demand in period t-1, ρ is the autocorrelation coefficient, γ is the cross-
correlation coefficient, εi t is the error term which is identically normally distributed
with mean zero and variance σ 2 for all i and t, εi t for a given i is independent
across time, and the contemporaneous correlation coefficient between εi t and ε j t is
ω, ∀i �= j. Of course, -1/(n-1) < ω < 1 to ensure variance positivity. Thus, the
demand streams for the products can be expressed as the following VAR(1) process:
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The manufacturer procures the raw materials required for production from a sup-
plier. Without loss of generality, we assume that each unit of a product requires one
unit of rawmaterial.We consider two potential replenishment strategies that theman-
ufacturer could adopt. Under the product-level replenishment strategy, the ordering,
replenishment, and inventory decisions are managed separately for each product, as
if there is a separate upstream supply chain for each product. Under the category-
level replenishment strategy, the decisions are made for the whole product category,
as if there is a single upstream supply chain for all products combined. Regardless of
the replenishment strategy used, we assume that the manufacturer adopts the optimal
state-dependent base-stock policy to determine the order quantity (Lee et al. 1997;
Chen et al. 2000).

The key aspects of the replenishment process are the following. Let L denote
the replenishment lead time of raw materials, which we assume to be the same for
all products. At the beginning of period t, the demands for all products in (t-1) are
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observed, and all orders made in period t-L are received from the supplier. Then,
either an order zit for product i (for a total of n orders) or a single order of zt for the
entire product category is placed with the supplier depending on the replenishment
strategy used by the manufacturer. The production of products occurs during the
period and demands for all products are realized and satisfied at the end of t. There is
no system capacity constraint, no order batching, and free return of excess inventory.
Inventory-related costs are proportional and are identical across products. Since the
focus of this study is demand interdependency, we abstract away many operational
details. For instance, we assume symmetric products to eliminate the impact of
product-specific characteristics from our findings.

Finally, we impose the following stationarity condition to make the demand pro-
cess covariance stationary.

Stationarity Assumption: |ρ| < 1 and |ρ + γ | < 1.

3 Derivation and Analysis of the Bullwhip Effect

Suppose the manufacturer uses the product-level replenishment strategy. Then, to
compute the optimal base-stock level for a product, we need the expected value and
variance of its demand over lead time L. This requires the forecasts, over the lead
time, for not only the product’s own demand but also the category demand. The joint
demand process is used to performminimummean square error (MMSE) forecasting
update.

The joint demand process is derived as follows. Using (1), we compute the cate-
gory demand Dt to be the following.

Dt =
n∑

i=1

Dit == nd + (ρ + γ )D(t−1) +
n∑

i=1

εi t (3)

Note that the category demand follows the AR(1) process. Now, we can express
the firm demand and the category demand jointly as the following 2 × 2 VAR(1)
process:

[
Dit − μD

Dt − nμD

]
=

[
ρ γ

/
n

0 ρ + γ

][
Di(t−1) − μD

Dt−1 − nμD

]
+

[
εi t∑n
i=1 εi t

]
, (4)

where μD = d
/

(1 − ρ − γ ).

Let τ ≥ 0 be an integer, πk = (ρ+γ )k+1−ρk+1

γ
and Πτ =

τ∑
k=0

πk . The future demand

for product i at period (t + τ),Di(t+τ ), can be expressed as a function of last observed
product demand Di(t-1) and category demand D̄t−1, and future errors such as:
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The optimal MMSE τ-period-ahead forecast is given by the conditional expecta-
tion of future demand Dt+τ given Di(t-1) and D̄t−1. The above joint demand system
yields the following MMSE forecasting equations:

E
(
Di(t+τ)|Di(t−1), D(t−1)

) = μD + ρτ+1(Di(t−1) − μD
) + (
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/
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)

(5)

The lead time demand forecast can then be obtained from summing the τ-period-
ahead forecasts such as
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So, the optimal base-stock level for product i for period t, S∗
i t , is given by
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whereK represents the service-level coefficient. Therefore, the optimal order quantity
z∗
i t is given by

z∗
i t = S∗
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i(t−1) + Di(t−1)
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(6)
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Using the variances of z∗
i t and Dit , we can compute the formula for the bullwhip

effect associated with product i. Lemmas 1 and 2 provided in the appendix derives
these variances. The bullwhip effect is commonly measured according to either the
(unconditional) variance of order quantity minus variance of demand, which we refer
to as the bullwhip difference, or according to the (unconditional) variance of order
quantity divided by variance of demand, which we refer to as bullwhip ratio. Since
the upstream supply chain costs (e.g., inventory holding costs) are proportional to
the square root of the order variance for a given demand model (Chen and Lee 2012),
bullwhip difference measure is useful when absolute costs associated with the bull-
whip are desired.On the other hand, the ratiomeasure is usefulwhen percentage costs
associated with the bullwhip effect are desired. We examine the bullwhip difference
in detail first, followed by an examination of the bullwhip ratio.

3.1 Product-Level Bullwhip Effect: Bullwhip Difference

Define the following for notational convenience and expositional clarity.

θ =
(
1 − 1

n

)
(1 − ω);

M(λ) = 2λ
(
1 − λL+1

)(
1 − λL+2

)

(1 − λ)
(
1 − λ2

) σ 2

Proposition 1 The product-level bullwhip difference is given by

BW E product
di f f = Var

(
z∗
i t

) − Var(Dit ) = θM(ρ) + (1 − θ)M(ρ + γ ) (7)

Equation (7) is a generalization of the bullwhip difference derived by Lee et al.
(Equation (3.5)) for a single product AR(1) demand model. If γ = 0, Eq. (7) reduces
to Lee et al.’s equation.We note that the product-level bullwhip difference is a convex
linear combination of M(ρ) and M(ρ + γ ). M(λ) is the bullwhip difference in the
case of anAR(1) demand streamwith autocorrelation coefficient λ. Since theVAR(1)
demand model we examine can be viewed as a linear combination of two AR(1)
models—one with an autocorrelation coefficient of ρ + γ representing the category
demand and the other with an autocorrelation coefficient of γ representing the own
demand—onecould interpretM(ρ) andM(ρ + γ ) as the bullwhip contributionof the
product’s own demand stream and that of the category demand stream, respectively.
The parameter θ indicates the relative influence of the product’s own demand stream
vis-à-vis that of the category demand stream in determining a product’s bullwhip,
reflecting the differential effects of these two streams on a product’s demand. Clearly,
an increase in n or a decrease in ω increases the relative influence of the firm’s own
demand process on the bullwhip difference. When n increases or ω decreases, the
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variance of the category demand per product decreases because of the increase in the
demand pooling effect, reducing the relative influence of the category demand on
the product’s bullwhip effect. When n approaches infinity, the influence of category
demand stream and interdependency on a product’s bullwhip vanishes.

Equation (7) reveals that a positive autocorrelation coefficient is not sufficient to
ensure that bullwhip effect exists; bullwhip exists only when M(ρ)

M(ρ+γ )
>

(
1 − 1

θ

)
.

A set of sufficient conditions for the product-level bullwhip effect to exist are ρ >

0 and ρ + γ > 0. These conditions represent an extension of Lee et al. who show
that a positive autocorrelation coefficient is sufficient for the existence of bullwhip
effect in the single product case.

Proposition 2 Suppose ρ, ρ + γ > 0. Then, (i) BW E product
di f f is increasing in ρ, (ii)

BW E product
di f f is increasing in γ , (iii) BW E product

di f f is decreasing in n if and only if

γ > 0, and (iv) BW E product
di f f is increasing in ω if and only if γ > 0.

Proposition 2(i) generalizes the well-known impact of autocorrelation on the bull-
whip difference in the single product scenario to themultiproduct scenario with inter-
dependent demands—an increase in autocorrelation amplifies the firm-level bullwhip
difference in bothmodels, assuming bullwhip effect exists. The result that an increase
in cross-correlation also amplifies the product-level bullwhip difference is new to
the literature. Interestingly, an increase in the number of products does not always
decrease the product-level bullwhip difference. One effect of an increase in the num-
ber of products is that it decreases the variance of the category demand because of
demand pooling, and one would expect this effect to decrease the product’s bullwhip
difference. However, we find that an increase in the number of products has an oppos-
ing effect also on a product’s bullwhip difference in our context of interdependent
demands—an increase in the number of products decreases the influence of category
demand and increases the influence of product’s own demand in the product’s bull-
whip. Whether the former effect or the latter effect dominates depends on whether
M(ρ) < M(ρ + γ ). Only when γ > 0, M(ρ) < M(ρ + γ ), implying that the
sign of cross-correlation can fundamentally alter the impact of number of products
on a product’s bullwhip effect. The explanation for the impact of ω on the product-
level bullwhip difference stated as Proposition 2(iv) is analogous to the explanation
regarding the impact of n. In essence, the conventional intuition that a decrease in
contemporaneous correlation or an increase in number of products enhances the
demand pooling effect and reduces variance of the category demand, and hence has
a mitigating effect on the bullwhip difference does not hold if the cross-correlation
is negative.
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3.2 Category-Level Bullwhip Difference: Impact of Product
Aggregation

Recent research on bullwhip effect has shown that measuring the bullwhip effect
using aggregate data instead of individual product-level data generally masks the
underlying bullwhip effect (Chen and Lee 2012). This study assumes that ordering
decisions are made separately for each product, but the bullwhip effect measurement
is done using aggregate data. In our context, product aggregation can be viewed
from two perspectives. The first perspective is the one used by the prior literature,
i.e., the manufacturer uses product-level replenishment strategy but the measure-
ment of bullwhip effect is made using aggregate data. The other perspective is that
the manufacturer uses category-level replenishment strategy and the measurement is
also done using category-level data. The distinction between these two perspectives
is important because the implications that can be drawn from the measured bullwhip
are very different under the two perspectives. Under the first perspective, any incor-
rect implication we draw about the underlying bullwhip effect is attributed solely to
the measurement problem. On the contrary, under the second perspective, the impli-
cations relate to the underlying replenishment strategy used by the manufacturer.

If themanufacturer uses product-level replenishment strategy, using (6), we obtain
the total order quantity as

n∑

i=1

z∗
i t =

n∑

i=1

[
ρ

(
1 − ρL+1

1 − ρ

)(
Di(t−1) − Di(t−2)

)

+ (
γ
/
n
)
ΠL

(
Dt−1 − Dt−2

) + Di(t−1)

]

= (ρ + γ )
(
1 − (ρ + γ )L+1

)

1 − (ρ + γ )

(
Dt−1 − Dt−2

) + Dt−1.

Hence, the bullwhip difference measured using the aggregate data is computed as

Var

(
n∑

i=1
z∗
i t

)
− Var

(
Dit

)
.

On the other hand, if the manufacturer uses category-level replenishment strategy,
the bullwhip difference is computed using the variance of the order quantity for
the category, which is now determined using the optimal base-stock level for the
whole category, and the variance of the category demand. Since the category demand
follows an AR(1) process (recall Eq. (3)), we can compute the bullwhip difference
using Eq. (3.5) of Lee et al. In the following result, we show that regardless of the
replenishment strategy used, the category-level bullwhip difference is given by the
following result.

Proposition 3 Under both product-level replenishment and category-level replen-
ishment strategies, the category-level bullwhip difference is given by
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BWEcatgeory
di f f = (1 − θ)n2M(ρ + γ ) (8)

The finding that category-level bullwhip difference is the same regardless of the
replenishment strategy used demonstrates that appropriate implications cannot be
derived based on the category-level bullwhip difference without knowledge about
how the products are managed within the firm. Specifically, if the manufacturer uses
category-level replenishment strategy, then the category-level bullwhip difference
is informative in the sense it reveals the true underlying bullwhip effect; on the
other hand, if the manufacturer uses product-level replenishment strategy, then the
category-level bullwhip difference is uninformative in the sense it may not reveal
the true underlying bullwhip effect. It is easy to verify that if ρ + γ > 0, then
category-level bullwhip effect exists.

Proposition 4 Suppose ρ + γ > 0. Then, (i) BW Ecatgeory
di f f is increasing in ρ,

(ii) BW Ecatgeory
di f f is increasing in γ , (iii) BW Ecatgeory

di f f is increasing in n, and (iv)

BW Ecatgeory
di f f is increasing in ω.

Proposition 4 is not surprisingwhenwe recognize that the variance of the category
demand is increasing in all the parameters stated in the proposition.More importantly,
contrasting Proposition 4 with Proposition 2 reveals that the counterintuitive impacts
of n andω on the product-level bullwhip effect when cross-correlation is negative are
reversed at the category level. This result suggests that the impact of interdependency
on the bullwhip difference is nontrivial and depends critically on the replenishment
strategy used.

A key question is how product aggregation affects the bullwhip difference. To
see the impact of aggregation, we compare the total bullwhip difference for all
the products combined under the two replenishment strategies. Thus, we compare
BWEcatgeory

di f f with n ∗ BWE product
di f f since BWE product

di f f is identical for each of the n
products.

Proposition 5 BWEcatgeory
di f f < n ∗ BWE product

di f f if and only if M(ρ)

M(ρ+γ )
> 1 + nω

1−ω
.

Clearly, the category-level bullwhip difference can be higher or lower than
the product-level bullwhip difference. If the category-level bullwhip difference is
smaller (larger) than the product-level bullwhip difference, and themanufacturer uses
the product-level replenishment strategy, then aggregation masks (exaggerates) the
underlying bullwhip difference. If the category-level bullwhip difference is smaller
(larger) than the product-level bullwhip difference, then using the category-level
replenishment strategy rather than the product-level replenishment strategymitigates
(amplifies) the true bullwhip effect.

Figure 1 illustrates Proposition 5 assuming that bullwhip exists both at the product
and category levels. In figure, the unshaded regions represent the parameter space
where either the stationarity assumption does not hold or the bullwhip does not exist
at the category level. Figure 1 reveals that the total bullwhip difference is likely to be
smaller at the category level than product level when n is high, ω is negative, and γ

is not too high. On the other hand, the total bullwhip difference is likely to be smaller
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(b) n=5;ω=0.2
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(a) n=2;ω=-0.2
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(b) n=2;ω=0.2

Fig. 1 Comparison of Product-level and Category-level Bullwhip Difference (Notes: L = 2. σ 2 =
1. Shaded region is the relevant and feasible region of comparison (i.e., 0 < ρ < 1 and 0 < ρ +γ < 1).
BWEcatgeory

di f f ≤ n ∗ BWE product
di f f in the darkly shaded region. BWEcatgeory

di f f > n ∗ BWE product
di f f

in the lightly shaded region.)

at the product level than category level when n is high, ω is positive, and γ is not too
low.

3.3 Bullwhip Ratio

Bullwhip ratio is useful when cost implications of bullwhip effect are analyzed on
a percentage basis, as mentioned in the previous section. Moreover, the bullwhip
ratio is independent of the demand error variance σ 2, thus normalizing the effect of
inherent demand variability on the bullwhip effect.
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Proposition 6 (i) The product-level bullwhip ratio is given by BW E product
ratio =

Var(z∗
i t)

Var(Dit )
= 1 + θM(ρ)/σ 2+(1−θ)M(ρ+γ )/σ 2

(
θ

(1−ρ2)
+ (1−θ)

(1−(ρ+γ )2)

) . (ii) The category-level bullwhip ratio is

given by BW Ecategory
ratio =

Var

(
n∑

i=1
z∗
i t

)

Var(Dit)
= 1 + (

1 − (ρ + γ )2
)
M(ρ + γ )/σ 2.

Note that M(.)/σ 2 is independent of σ 2. We find that the impacts of model
parameters on the bullwhip ratio, both at product level and at category level, are

non-monotonic. Specifically, we find that for x ∈ {ρ, γ, n, ω}, ∂BWE product
ratio

∂x > 0

if and only if BWE product
ratio <

(
∂Var(z∗

i t)
∂x

)
/
(

∂Var(Dit )

∂x

)
. Similarly, for x ∈ {ρ, γ },

∂BWEcategory
ratio

∂x > 0 if and only if BWEcategory
ratio <

⎛

⎝
∂Var

(
n∑

i=1
z∗
i t

)

∂x

⎞

⎠/
(

∂Var(Dit)
∂x

)
. This

finding suggests that if the rate of increase in demand variance is significantly higher
than the rate of increase in order variance with respect to a parameter, then the bull-
whip ratio is likely to be decreasing in that parameter. This result is somewhat similar
to Proposition 9 of Chen and Lee (2012) which shows that bullwhip ratio approaches
one (i.e., bullwhip ratio is masked) as number of products aggregated approaches
infinity if the ratio of the order variance to the demand variance approaches zero.

Proposition 7 BWEcatgeory
ratio < BWE product

ratio if and only if M(ρ)

M(ρ+γ )
>

1−(ρ+γ )2

1−ρ2 .

Proposition 7 is qualitatively similar to Proposition 5. Specifically, it reveals that
aggregation does not necessarilymask (ormitigate) the bullwhip ratio nor exaggerate
(or amplify) the bullwhip ratio, as found for the case of bullwhip difference. Further-
more, M(ρ)

M(ρ+γ )
needs to be sufficiently large for masking or mitigation to occur under

both ratio and difference measures of bullwhip effect. In contrast to bullwhip dif-
ference, n and ω do not affect the impact of aggregation on bullwhip ratio. Figure 2
illustrates Proposition 7. We find that the category-level bullwhip ratio is smaller
(larger) than the product-level bullwhip ratio in most of the parameter space where
γ is negative (positive).

(Notes: L = 2. σ 2 = 1. Shaded region is the relevant and feasible region of
comparison (i.e., 0 < ρ < 1 and 0 < ρ + γ < 1). BWEcatgeory

ratio < n ∗ BWE product
ratio

in the darkly shaded region. BWEcatgeory
ratio > n ∗ BWE product

ratio in the lightly shaded
region.)

4 Managerial Implications and Conclusion

Our findings have significant implications for academics as well as practitioners.
From an academic research perspective, our findings reveal that the impact of the
demand interdependency on the bullwhip effect is non-trivial and it can be counterin-
tuitive. The findings are important because, on one hand, they cannot be obtained or
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Fig. 2 Comparison of
Product-level and
Category-level Bullwhip
Ratio
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inferred through an analysis of single product demand models or multiproduct mod-
els with independent demand streams, but, on the other hand, many real-world sup-
ply chains manage interdependent products. Furthermore, managing products with
interdependent demands as one category is a natural and widely practiced strategy
in modern supply chains. However, the extant bullwhip effect literature has exam-
ined aggregation solely from a measurement perspective. The multiproduct demand
model presented in this chapter provides preliminary insights into the impacts of
category management practice on the bullwhip effect. Further examination of multi-
product supply chains seems warranted to obtain a much richer and more complete
understanding of the bullwhip phenomenon in modern supply chains.

From a practitioner perspective, our findings imply that category-level replenish-
ment is not always better than product-level replenishment from a bullwhip effect
standpoint, despite the benefits demand pooling associated with category manage-
ment may offer. The nature of the demand interdependency across product demands
(i.e., the sign and the magnitude of the cross-correlation coefficient) determines
whether category-level management is better than product-level management. In
general, a negative cross-correlation tends to favor the category-level management.
Furthermore, the implications practitioners should draw and bullwhip management
strategies they should choose to adopt based on bullwhip estimates depend not only
on the level at which the bullwhip is measured but also how the replenishment deci-
sions are made within the firm.Measuring the bullwhip effect at the product category
level is informative only if the firmmanages the ordering process at the category level
and is uninformative if the firm manages the replenishment process at the product
level.

Thefindings also have implications to firms’ other strategies related to the different
brands or product variants to the extent the nature of cross-correlation is the result
of these strategies. For instance, suppose brand-level promotion induces a negative
cross-correlation between demand streams. Then, our results suggest that category-
level replenishment process is likely to be better than brand-level replenishment
process from a bullwhip perspective. In this case, applying a uniform marketing and
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replenishment strategies regarding the level at which products are managed could be
sub-optimal.

Finally, this chapter provides potentially new insights into the reasons for the
observation of mixed results regarding the presence of bullwhip effect at the firm
and industry levels. For instance, Cachon et al. (2007) reported that bullwhip effect
is noticeably absent in the US economy as a whole. Subsequently, many researchers
have attributed data aggregation as an explanation for this finding (Chen and Lee
2012; Bray and Nicholson 2012). We suspect that products of firms within the same
industry will likely have interdependent demand streams because they are likely
to be competing or complementary products. Therefore, we hypothesize that such
interdependencies could be an important contributing factor for the mixed results.
An empirical study that tests this hypothesis will be a valuable complement to our
study.
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Performance Impact Analysis
of Disruption Propagations in the Supply
Chain

Dmitry Ivanov, Alexander Pavlov and Boris Sokolov

Abstract Despite a wealth of literature on disruption considerations in the supply
chain (SC), a method for quantification of the ripple effect that describes disruption
propagation in the SC has not yet been developed. In addition, there are only a
few studies that incorporate recovery into the performance impact assessment. This
chapter develops amethod to quantify the ripple effect in the SCwith recovery policy
considerations. We study a four-stage SC over time and consider both performance
impact assessment and recovery decisions. The performance impact index developed
is used to compare sales (revenue) in different SC designs to measure the estimated
annual magnitude of the ripple effect. First, we compute optimal SC replanning for
two disruption scenarios. Second, we estimate the performance impact of disruptions
for six proactive SC designs. Finally, we compare the performance impact index
of different SC designs and draw conclusions about the ripple effect in these SC
designs along with recommendations for the selection of a proactive strategy. The
performance impact index developed can be used to analyze how different markets
are exposed to the ripple effect and how to compare different SC designs according
to their resilience to severe disruptions.

1 Introduction

Systemic approaches to risk management in the supply chain (SC) became a visible
research topic over the past decade. Fires, explosions, tsunami, and strikes at produc-
tion plants, distribution centers, and transportation channels are typical disruptions
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in supply chains (SC). The ripple effect in the SC occurs if a disruption cannot be
localized and cascades downstream impacting SC performance (Ivanov et al. 2014a).
Methodical elaborations on the evaluation and understanding of low-frequency-high-
impact disruptions are, therefore, vital for understanding and further development of
network-based supply concepts (Tomlin 2006; Stecke and Kumar 2009; Liberatore
et al. 2012; Sawik 2016; Ivanov and Rozhkov 2017).

It has been extensively documented in literature that severe disruptionsmay ripple
quickly through global SCs and cause losses in SC performance that can bemeasured
by such KPIs (key performance indicators) as revenues, sales, service level, and total
profits (Schmitt and Singh 2012; Simchi-Levi et al. 2015; Snyder et al. 2016; Schmitt
et al. 2017; Ivanov 2018). Such risks are a new challenge for research and industry
who face the ripple effect that arises from vulnerability, instability, and disruptions in
SCs (Liberatore et al. 2012; Ivanov et al. 2014a, b; Ho et al. 2015; Ivanov et al. 2017a,
b, c).As an opposite to thewell-knownbullwhip effect that considers high-frequency-
low-impact operational risks, the ripple effect describes low-frequency-high-impact
disruptive risks (Ivanov et al. 2014a; Simchi-Levi et al. 2015; Sokolov et al. 2016;
Snyder et al. 2016; Han and Shin 2016, Ivanov et al. 2017b; Sawik 2017; Cavalcantea
et al. 2019; Hosseini et al. 2019a, b).

Recent studies have extensively considered disruption risks in light of the impact
of disruption propagation (Wilson 2007; Lim et al. 2013; Ivanov et al. 2013, 2014b;
Paul et al. 2014; Ivanov 2017). Previous studies also suggested several measures
for quantifying disruption risks (Zobel 2011; Basole and Bellamy 2014; Han and
Shin 2016; Lin et al. 2017). However, single-stage disruptions have mostly been
considered. Disruption propagation has been ignored and a method for ripple effect
quantification has not yet been developed. In addition, there are only a few studies
that incorporate the recovery stage into the performance impact assessment. We are
not aware of any published research that considers ripple effect quantification with
SC recovery considerations.

The objective of this study is to quantify the ripple effect in the SC with recovery
considerations. The remainder of this paper is organized as follows. Section 2 ana-
lyzes recent literature. Section 3 considers the methodology and modeling approach.
Section 4 is devoted to themodel presentation and experimental calculation. Section 5
considers the performance impact assessment and managerial insights. The paper
concludes by summarizing the most important findings and outlining future research
needs.

2 Literature Review

We structure the literature review according to performance impact assessment tech-
niques and engineering methodologies to model severe SC disruptions. Two engi-
neering methodologies—optimization and simulation—dominate studies on SC per-
formance impact assessment in light of severe disruptions (Blackhurst et al. 2018;
Ivanov 2019; Pavlov et al. 2019; He et al. 2018; Talluri et al. 2013; Käki et al. 2015;
Hosseini and Barker 2016; Dolgui et al. 2019; Ojha et al. 2018; Pavlov et al. 2018).
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Petri nets have been applied to analyze disruption propagation through the SC and
to evaluate the performance impact of disruptions (Wu et al. 2007). They allow the
study of how changes disseminate through a SC and calculate the impact of the
attributes by determining the states that are reachable from a given initial marking
in a SC. Wilson (2007) considered transportation disruptions in a multistage SC in
order to reveal the ripple effect’s impact on fulfilment rate and inventory fluctuations.
The findings suggest that transportation disruptions between the Tier-1 supplier and
the warehouse have the greatest performance impact.

Tuncel and Alpan (2010) extended the body of knowledge by incorporating mul-
tiple disruption scenarios (disruptions in demand, transportation, and quality). In
addition, this study also considers recovery actions and the performance impact of
such mitigation strategies. Carvalho et al. (2012) presented a simulation study for
a four-stage automotive SC. Focusing on the research question of how different
recovery strategies influence SC performance in the event of disruptions, the authors
analyzed two recovery strategies and six disruption scenarios. The scenarios differ in
terms of presence or absence of a disturbance and presence or absence of amitigation
strategy. The performance impact was analyzed according to the lead time ratio and
total SC costs.

Ivanov et al. (2014b) used a hybrid optimization-control model for simulation
of SC recovery policies for multiple disruptions in different periods in a multistage
SC. The developed approach allows simultaneous performance impact analysis of
SC disruptions and recovery policies simulation. Basole and Bellamy (2014) used
the measure “number of healthy nodes” to quantify the level of risk diffusion as the
relation of the number of healthy nodes at time t to the network size.

With regards to robustness and resilience analysis, Nair and Vidal (2011) studied
SC robustness against disruptions using graph-theoretical topology analysis. They
studied twenty SCs which were subjected to random demand. The performances of
the SCs were evaluated by considering varying probabilities of the random failures
of nodes and targeted attacks on nodes. Furthermore, the analysis of the study also
included the severity of these disruptions by considering the downtime of affected
nodes. The results were obtained using multi-agent simulation. Furthermore, the
authors went into detail on the impact of SC structural design on robustness in the
presence of both demand and disruption uncertainty.

Zhao et al. (2011) quantified network connectivity and accessibility with the help
of the largest connect component and average and maximum path length. Zobel
(2011) computed predicted resilience assuming a sudden onset disruption and lin-
ear recovery behavior. Zobel (2014) extended to more generalized case considering
nonlinearity and average loss per time unit.

Simchi-Levi et al. (2015) developed a risk-exposure index for the case of an
automotive SC. The index computation is based on two models—time-to-recovery
and time-to-survive—in order to the assess performance impact of a disruption in the
SC. Raj et al. (2015) analyzed SC resilience based on a survival model to represent
a time period from the system failure to operate to the time the system returns to
its function (i.e., recovery). The input to the model is a failure event; the output of
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the model is the recovery time. The model allows a quantitative measurement of SC
resilience in terms of recovery time.

Sokolov et al. (2016) quantified the ripple effect in the SCwith the help of selected
indicators from graph theory and developed a static model for performance impact
assessment of disruption propagation in a distribution network. Han and Shin (2016)
evaluated the structural robustness of the SC in random networks and compared this
with the likelihood of network disruption resulting from random risk.

Ivanov et al. (2016) extended the performance impact assessment and SC plan
reconfiguration with consideration of the duration of disruptions and the costs of
recovery. They analyzed seven proactive SC structures, computed recovery policies
to re-direct material flows in the case of two disruption scenarios, and assessed the
performance impact for both service level and costswith the help of a SC (re)planning
model containing elements of control theory and linear programming. This study
reveals the impact of different parametrical and structural resilience measures on
SC service level and efficiency. In the current paper, we use the basic model and
the proactive strategies for SC design in Sect. 4 in order to analyze the performance
impact of the ripple effect in Sect. 5.

The reliability of amultistage SC is evaluated byLin et al. (2017) as the probability
that market demand, and therefore sufficient commodity delivery, can be met by the
SC through multiple stations of transit within the appropriate time frame. In this
study, system reliability acts as the delivery performance index and is assessed by
the number of minimal paths. Ivanov et al. (2018) developed a control-theoretic
method to assess SC resilience with the consideration of recovery policies using
attainable sets.

From the given literature, it can be observed that the scope of SC rippling and its
impact on economic performance depends both on robustness reserves (e.g., redun-
dancies like inventory or capacity buffers), flexibility in products and processes,
disruption duration, and the speed and scale of recovery measures. Despite signifi-
cant advancements in this research field, ripple effect assessment with SC recovery
considerations is still an under-researched area and presents a promising field for
future research.

3 Problem Statement and Research Methodology

We study a four-stage SC over time and consider both performance impact assess-
ment and recovery decisions. The SCD comprises Tier 2 suppliers, Tier 1 suppliers,
assembly plants, and markets. The disruptions and recovery policies are consid-
ered as given scenarios, the production and transportation quantities are the decision
variables, and SC sales (revenue) is the KPI for measuring the estimated annual
magnitude of the ripple effect.

The optimization model is developed to replan SC flows to maximize SC sales.
The model aims to find the aggregate product flows to be moved from suppliers
through the intermediate stages to the markets subject to revenue maximization (i.e.,
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lost sales minimization) under (i) constrained capacities and processing rates, (ii) SC
disruptions, and (iii) SC recovery for a multi-period case.

The modeling approach is the optimization-based simulation that allows simulta-
neous re-computing of the material flows in a multistage SC after a disruption and a
comparison of the performance impact of different SCDs. Based on the optimization
results, the performance impact of disruptions is computed.

For the computation of performance impact, we suggest introducing an index of
performance impact (PI) that represents the relation between the planned KPI in a
disruption-free mode and the real KPI in the disruption case (Eq. 1):

P I = K P Iplan
K P Idisruption

(1)

Such an index can be computed for each i-node in the SC, i = 1,…. N. Subse-
quently, we can compute a product of the i-PIs in order to calculate the overall PI in
the SC (Eq. 2):

P Igeneral =
N∏

i=1

P I (2)

The organization of the rest of this manuscript is as follows. First, we compute
optimal SC replanning for two disruption scenarios and KPI. In order to make the
PI analysis more depictive, we restrict ourselves to the analysis of estimated annual
magnitude in terms of the revenue at markets. Second, we perform the first step
for six proactive strategies in SC design. Finally, we compare the PI of seven SC
designs (i.e., the initial SC design and six proactive strategies) and draw conclusions
on the ripple effect in these SC designs along with recommendations on the proactive
strategy.

4 Mathematical Model

The SC design model can be represented as follows (Table 1).
Objective function

Jχ2 =
p∑

ρ=1

λρ

nχ∑

i=1

Lχ∑

k=1

g−
χ iρk; (3)

The objective function describes throughput maximization (i.e., sales indicator).
Constraints:
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Table 1 Supply chain design formalization

Notation Meaning

Structure

Xχ (t) = {Aχ i (t), i ∈ Nχ } Set of nodes in the SC design in the χ disruption
scenario at the point of time t, where N is the set of
node numbers

Eχ (t) = {eχ i j (t) ∈ {0, 1}, i, j ∈ Nχ } Set of arcs in the SC design in the χ disruption
scenario

Parameters

Wχ (t) = {wχ i jρ(t), i, j ∈ Nχ , ρ ∈ P} Set of operational characteristics for the production,
transportation (if i �= j) or processing at warehouse
(if i = j) in the χ disruption scenario

Vχ i (t) Maximum warehouse throughput capacity at the
node Aχ i

ωχ i jρ(t) Maximum transportation channel throughput
capacity for the commodity ρ between Aχ i and Aχ j

ψχ iρ(t) Maximum inbound throughput capacity for the
commodity ρ in Aχ i

φχ iρ(t) Maximum outbound throughput capacity for the
commodity ρ in Aχ i

Iχk Total ordered quantity from all suppliers in the
period number k

γρ Importance of the commodity ρ

λρ Urgency of the commodity ρ

εi j (t) Preset matrix time function of time-spatial
constraints; we have εi j (t) = 1, if the channel
between Ai and Aj is available and not disrupted
within the given period of time, and εi j (t) = 0,
otherwise

Indexes

k = {1, 2, . . . , Lχ } A number of the planning period in the planning
horizon T = (t0, t f ]

T = (t0, t f ] Planning horizon

ρ ∈ P = {1, 2, . . . , p} A number of the commodity in the SC

Decision Variables

xχ i jρk Amount of commodity ρ transmitted from Aχ i to

Aχ j and received at Aχ j at time interval number k

yχ jρk Amount of commodity ρ to be stored at the
warehouse Aχ i at time interval number k

gχ jρk Amount of commodity ρ to be delivered to Aχ j at
time interval k

zχ jρk Amount of commodity ρ at Aχ j to be returned (as
caused by the missing capacity of SC nodes and
channels) at time interval number k
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Iχ iρk + yχ iρ(k−1) +
∑

j∈N−
χ ik

ωχ j iρk · uχ j iρk + φ+
χ iρk · ϑ+

χ iρk =

= φ−
χ iρk · ϑ−

χ iρk +
∑

j∈N+
χ ik

ωχ i jρk · uχ i jρk + yχ iρk) + zχ iρk (4)

(
∑

j∈N+
χ ik

xχ i jρk−
∑

j∈N−
χ ik

xχ j iρk) + (yχ iρk) − yχ iρ(k−1)) + (g−
χ iρk − g+

χ iρk) + zχ iρk = Iχ iρk (5)

0 ≤ xχ i jρk ≤ ωχ i jρk · (tk − tk−1), 0 ≤
p∑

ρ=1

yχ iρk) ≤ Vχ i , 0 ≤ g−
χ iρk ≤ φ−

χ iρk · (tk − tk−1),

0 ≤ g+
χ iρk ≤ φ+

χ iρk · (tk − tk−1), zχ iρk ≥ 0. (6)

Equations (4) and (5) describe the flow balances of the product ρ subject to the
node Aχ i and ensure that the sum of the outgoing flow (subscript (-)), inventory, and
return flow should equal the incoming flow (subscript (+)). Equation (6) contains
capacity and nonnegativity constraints.

5 Experimental Results

We consider a four-stage SC in the automotive industry. Two Tier 2 suppliers deliver
speedometers to a Tier 1supplier that supplies two assembly plants with cockpits.
The assembly plants deliver cars to one of two markets. SC structural elements can
become fully or partially unavailable for a certain period of time. This capacity
reduction may have performance impact on sales in the markets.

For computational experiments, the following data set was used (Table 2).
In the first scenario, which we call “optimistic”, a disruption at assembly plant

#2 happens in the second period and destroys the capacity of this plant 100%. This
disruption lasts two periods. In period #4, the capacity of this production plant is
recovered 100%. In addition, in period #3 a fire at the Tier 2 supplier #1 happens that
makes deliveries from this supplier to the Tier 1 supplier in period #3 impossible.
In the next period, deliveries can run in normal mode again. Finally, due to strikes
at a railway company in periods #4 and #6, the transportation channels between the
assembly plant #1 and market #1 and between the Tier 2 supplier #2 and the Tier 1
supplier become unavailable, respectively (see Fig. 1).

In Fig. 1, the following parameters are represented:

• Tier 2 supplier #1: node #1
• Tier 2 supplier #2: node #2
• Tier 1 supplier: node #3
• Assembly plant #1: node #5
• Assembly plant #2: node #6
• Market #1: node #8
• Market #2: node #9
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Table 2 Input data

Parameter Value

Number of periods 6

Demand distribution over six periods Market 1: 250-240-230-240-250-240
Market 2: 220-210-200-210-220-210

Delivery quantity to Tier 1 supplier From supplier #1: 400 units in each period
From supplier #2: 100 units in each period

Maximum processing throughput capacities at
plants

Tier 1 supplier: 550 units a period
Assembly plants: 300 units a period each

Maximum transportation throughput capacity Channel Tier 2 supplier #1 to the Tier 1
supplier: 500 units a period,
Channel Tier 2 supplier #2 to the Tier 1
supplier: 150 units a period,
Channel Tier 1 supplier to the assembly plant
#1: 300 units a period,
Channel Tier 1 supplier to the assembly plant
#2: 250 units a period,
Channel assembly plant #1 to the market #1:
280 units a period,
Channel assembly plant #2 to the market #2:
240 units a period,

Maximum warehouse storage capacities Tier 2 supplier #1: 150 units per period
Tier 2 supplier #2: 70 units per period
Tier 1 supplier: 250 units per period
Assembly plant #1: 100 units a period
Assembly plant #2: 100 units a period
Market #1: 50 units a period
Market #2: 50 units a period

Price of the final product. $ 65

Bill-of-material factor 1:1, i.e., one speedometer is needed for one
cockpit, and one cockpit is needed for one car

Maximum processing throughput capacities are marked in rectangles, maximum
transportation throughput capacities are presented on the arcs, and maximum storage
capacities are depicted in triangles. The disruptions are marked red. In Fig. 2, the
so-called “pessimistic scenario” is shown.

The following alternative proactive strategies for SC design can be considered:

1. Increase in the flexibility of supplier #2 so that it delivers, under normal con-
ditions, 100 units in each period and can extend the quantity to 400 units if
needed

2. New backup supplier is introduced at the Tier 1 stage
3. A backup assembly plant is introduced
4. Multiple sourcing strategy with alternative transportation channels
5. Increase in warehouse storage and processing capacity
6. Increase in transportation channel throughput capacity
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Fig. 1 “Optimistic” disruption scenario

Fig. 2 “Pessimistic” disruption scenario
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Fig. 3 Possible extensions to SC structure (Ivanov et al. 2016)

Fig. 4 Replanning results for optimistic scenario

The summary of these measures is shown in Fig. 3.
In regard to the processing and transportation throughput capacity of new SC

design elements, we assume the following: throughput capacity of new transporta-
tion channels is 120% of the processing throughput capacity of the outgoing node;
processing capacity at node #4 is 250 units in each period, and processing capacity
at node #7 is 150 units in each period.

In Fig. 4, the result of optimal replanning for the initial SC design (cf. Figures 1
and 2) subject to the given data set (cf. Table 2) is presented.

In Fig. 3, the production and shipment quantities of the speedometers, cockpits,
and cars are depicted and marked green, red, and blue, respectively. The yellow
triangles show the storage capacities and their actual utilization. The grey rectangles
depict the manufacturing maximum and used processing capacity, respectively. The
numbers on the arcs represent themaximum transportation capacities and their actual
utilization. The red nodes and channels are disrupted. The yellow arrows at nodes
#8 and #9 depict the delivered quantity of goods at the markets.
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Table 3 Performance impact of different proactive policies in optimistic scenario

№ Performance
indicators

SC designs in optimistic scenario

Initial Proactive SC designs

1 2 3 4 5 6

1 Revenue in the
disruption
scenario

139100 140075 140530 139100 139100 140985 142610

2 Maximum
revenue in
disruption-free
scenario

176800 176800 176800 176800 176800 176800 176800

3 Value of lost
sales

37700 36725 36270 37700 37700 35815 34190

Table 4 Performance impact of different proactive policies in pessimistic scenario

№ Performance
indicators

SC designs in optimistic scenario

Initial Proactive SC designs

1 2 3 4 5 6

1 Revenue in the
disruption
scenario

83200 83200 83200 85800 88400 85800 88400

2 Maximum
revenue in
disruption-free
scenario

176800 176800 176800 176800 176800 176800 176800

3 Value of lost
sales

93600 93600 93600 91000 88400 91000 88400

In Tables 3 and 4 and Figs. 5 and 6, the planning results are summarized for two
scenarios.

It can be observed from Tables 3 and 4 and Figs. 5 and 6 that structural changes
significantly impact SC performance. The highest revenue of $140,985 in the opti-
mistic scenario can be achieved if we apply the SC design according to proactive
strategy #5, i.e., an increase in warehouse storage and processing capacity is needed.

The highest revenue of $85,800 in the pessimistic scenario can be achieved if we
apply the SC design according to proactive strategies #4 and #6, i.e., introduction of
alternative transportation channels or/and increase in transportation capacity of the
existing channels. To make a final decision, the costs of these proactive measures
need to be analyzed.

Further, it can be observed that lost sales are much higher in the “pessimistic”
scenario. Such a scenario comparison allows the drawing of conclusions on the per-
formance impact of disruptions at different parts in the SC. For example, the Tier
2 supplier #1 (node #1), the production plant #1 (node #5), and the transportation
channel between the node #5 and node #8 need to be considered as critical ele-
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Fig. 6 Lost sales impact of disruptions

ments in the SC design. According to the study of Simchi-Levi et al. (2015), dual
sourcing policies, risk-sharing contracts, and continuous capacity monitoring can be
recommended for these SC elements.

6 Performance Impact of the Ripple Effect and Managerial
Insights

Now, we use the computation results from Sect. 4 and compute the PI index using
Eqs. 1 and 2. The diagrams with the computational results for seven SC design for
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both scenarios can be found in an online supplement. First, we compute PI for two
markets individually using Eq. 1. In the next step, we aggregate these partial PI to
general PI using Eq. 2. We consider SC sales (revenue) as the KPI for measuring the
estimated annual magnitude of the ripple effect. Tomake the analysis more depictive,
we restrict ourselves to the PI consideration at the markets without PI analysis at the
intermediate stage in the SC. This is an admissible restriction since the revenue KPI
is directly related to the market stage in the SC. The results of PI computation are
shown in Table 5.

Let us present these results graphically and analyze their managerial implications
(Figs. 7, 8 and 9).

Table 5 andFigs. 7, 8 and 9 can be used as a dashboard for SCdesign comparison in
regard to the ripple effect. The results can also help to analyze the disruption impact
at different markets individually in order to derive recommendations for securing
supplier and customer satisfaction. For the given data set it can be observed that the
SC for market #2 (node #9) is much more resilient and was less exposed to the ripple
effect compared to market #1 (node #8). In both scenarios, the PI in regard to market
#2 (node #9) does not exceed 1.51 while the maximum PI in regard to market #1
(node #8) is 6.04.



176 D. Ivanov et al.

Ta
bl
e
5

PI
co
m
pu

ta
tio

n
re
su
lts

In
iti
al

SC
D
1

SC
D
2

SC
D
3

SC
D
4

SC
D
5

SC
D
6

M
ax
im

um
re
ve
nu
e
m
ar
ke
t#

8
in

di
sr
up
tio

n-
fr
ee

sc
en
ar
io

94
25
0

94
25
0

94
25
0

94
25
0

94
25
0

94
25
0

94
25
0

R
ev
en
ue

m
ar
ke
t#

8
in

th
e
op

t.
di
sr
up

tio
n
sc
en
ar
io

81
90
0

82
22
5

82
47
0

81
90
0

81
90
0

82
22
5

82
47
0

P
I
m
ar
ke
t
#8

in
th
e
op

t.
di
sr
up

ti
on

sc
en

ar
io

1,
15
07
94

1,
14
62
45

1,
15
07
94

1,
15
07
94

1,
15
07
94

1,
14
62
45

1,
14
28
4

R
ev
en
ue

m
ar
ke
t#

8
in

th
e
pe
ss
.d

is
ru
pt
io
n
sc
en
ar
io

28
60
0

15
60
0

15
60
0

15
60
0

15
60
0

15
60
0

15
60
0

P
I
m
ar
ke
t
#8

in
th
e
pe
ss
.d

is
ru

pt
io
n
sc
en

ar
io

3,
29
54
55

6,
04
16
67

6,
04
16
67

6,
04
16
67

6,
04
16
67

6,
04
16
67

6,
04
16
67

M
ax
im

um
re
ve
nu
e
m
ar
ke
t#

9
in

di
sr
up
tio

n-
fr
ee

sc
en
ar
io

82
55
0

82
55
0

82
55
0

82
55
0

82
55
0

82
55
0

82
55
0

R
ev
en
ue

m
ar
ke
t#

9
in

th
e
op

t.
di
sr
up

tio
n
sc
en
ar
io

57
20
0

57
85
0

57
85
0

57
20
0

57
20
0

58
76
0

59
93
0

P
I
m
ar
ke
t
#9

in
th
e
op

t.
di
sr
up

ti
on

sc
en

ar
io

1,
44
31
82

1,
42
69
66

1,
42
69
66

1,
44
31
82

1,
44
31
82

1,
40
48
67

1,
37
74
4

R
ev
en
ue

m
ar
ke
t#

9
in

th
e
pe
ss
.d

is
ru
pt
io
n
sc
en
ar
io

54
60
0

67
60
0

67
60
0

70
20
0

72
80
0

70
20
0

72
80
0

P
I
m
ar
ke
t
#9

in
th
e
pe
ss
.d

is
ru

pt
io
n
sc
en

ar
io

1,
51
19
05

1,
22
11
54

1,
17
59
26

1,
17
59
26

1,
13
39
29

1,
17
59
26

1,
13
39
29



Performance Impact Analysis of Disruption Propagations … 177

0 

1 

2 

3 

4 

5 

6 

7 

8 

PI market #8 in the 
opt. disruption 

scenario

PI market #8 in the 
pess. disruption 

scenario

PI market #9 in the 
opt. disruption 

scenario

PI market #9 in the 
pess. disruption 

scenario

Total PI in the pess. 
disruption scenario

Total PI in the opt. 
disruption scenario

Individual and overall PI of the ripple effect

Initial SCD 1 SCD 2 SCD 3 SCD 4 SCD 5 SCD 6

Fig. 9 Comparison of individual and total PI computation

In the case of the optimistic scenario, the lowest ripple effect can be observed in
SC design #6 both at the market #1 (node #8) and at the market #2 (node #9), PI =
1.14284 and PI = 1.3744, respectively. In the case of the pessimistic scenario, the
lowest ripple effect can be observed in the initial SC design at market #1 (node #8, PI
= 3.295455), while at market #2 (node #9), minimum PI= 1.133929 for SC designs
#4 and #6.

In total cumulative PI in the optimistic scenario, a large gap between theminimum
PI (i.e., initial SCD) and PI for other SC designs can be observed in Fig. 9. At the
same time, the total PI values in the pessimistic scenario are very close to each other
with a small advantage for SC design #6.

Therefore, PI computation supports the results of the optimization model
described in Sect. 4. For the considered example, it becomes obvious that market #1
(node #8) is highly exposed to the ripple effect in the negative scenario while market
#2 (node #9) shows disruption-resistance and performs in the pessimistic scenario
even better than in the optimistic one.

In the joint analysis of two markets, the initial SC design can be recommended
since it exhibits the lowest ripple effect. At market #8, risk-sharing contracts can
be recommended with the customers. In addition, storage capacity extensions and a
higher safety stocks can be applied in this market.

7 Conclusions

The experiments with the optimization model and PI index analysis depict how
disruption risks may result in the ripple effect and structure dynamics in the SC.
From the developed model and experiments, it can be observed how the scope of the
rippling and its performance impact depend on the SC design structure.
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The results of this study are twofold. First,with the help of the developed approach,
severe disruptions in the SC can be modeled subject to temporary unavailability of
some SC elements and their recovery. Second, a method to compare SC designs with
a performance impact assessment of the ripple effect has been developed.

The developed method of ripple effect evaluation helps to analyze effective ways
to recover and reallocate resources and flows in the SC and to select a resilient
SC design. As such, the model can be used by SC risk specialists to analyze the
performance impact of different resilience and recovery actions and adjust mitigation
and recovery policies with regard to critical SC design elements and SC planning
parameters.

In the future, PI computation can be extended in regard to multiple objectives. In
addition, PI can be evaluated individually at each SC echelon. Finally, markets can
be modeled as heterogeneous entities allowing for competitive elements.
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Ripple Effect Analysis of Two-Stage
Supply Chain Using Probabilistic
Graphical Model

Seyedmohsen Hosseini and MD Sarder

Abstract Supply chain disruptions are increasingly caused by growing global sup-
ply sourcing, complexity, and interconnectedness of supply chains (SCs). A key
challenge in the context of supply chain disruption management is to control and
monitor the ripple effect of SCs. The ripple effect occurs when the impact of disrup-
tion cannot be localized and propagates throughout the SC. Like the bullwhip effect,
the ripple effect can negatively impact performance both upstream and downstream
of SC entities. This work proposes a new methodology, based on a probabilistic
graphical model, to analyze the ripple effect in a two-stage SC. The probabilistic
graphical model developed is capable of capturing disruption propagation that can
transfer from upstream suppliers to downstream end customer in an SC.

1 Introduction

In recent years, supply chains (SCs) have become more susceptible to a variety of
disruptions, such as natural disasters, human-made accidents, malevolent attacks,
labor strikes, and common failures due to the complexity, globalization, and interde-
pendencies of supply networks. There are dozens of examples that show the vulner-
ability of SCs and the need for resilience planning in the supply chain management
(SCM). For example, Toyota, the world’s biggest-selling automaker, halted its pro-
duction for several days in the aftermath of the Japanese earthquakes and tsunami that
occurred in 2011. Honda also suspended its motorcycle production near the quake
city of Kumamoto in southern Japan for a week. Other automakers, such as Nissan,
were also forced to halt their production for at least several days: this imposes huge
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disruption costs. The impact of this natural disaster was not limited only to Japanese
automakers, but also negatively affected giant electronic companies. For example,
Sony was unable to continue the production of image sensors at one of its production
firms in Kummamoto due to structural and equipment damage. Many other semicon-
ductor manufacturers had to stop their production, because of the physical damage
to their manufacturing firms (Fortune 2016). In addition to domestic manufactures,
international automakers who received auto parts from Japanese suppliers were also
impacted by the Japanese earthquake and tsunami. Research also shows that there
were nearly as many disruptions in tiers two and three of the SC as in tier one, but
three-quarters of companies had novisibility into tier twoor beyond (Churchill 2018).
Matthew Grmwade, head of automotive at JLT, stated that new research shows that
automakers are not only facing serious challenges in terms of the growing number
of disruptive events to the SC industry, but in the diversity of these events as well.

Modern automotive SCs are vast, highly complex operations. It is impossible to
quickly and precisely assess affected ports, airports, and road networks to establish
the extent of possible disruption. As such, pre- and post-disruption resilience strate-
gies are required for complex supply networks. A comprehensive review of pre and
post-disaster resilience strategies can be found in (Hosseini et al. 2016; Hosseini and
Al Khaled 2016).

A key challenge in the context of supply chain risk management (SCRM) is
how to control the effect of disruption and its propagation through the SC. The
ripple effect occurs when the effect of disruption cannot be localized and its impact
propagates upstream and downstream through an SC. Although much research has
been conducted to measure disruption impact on suppliers, manufacturing firms, and
distribution centers, the ripple effect has not been studied enough. The incentive of
this chapter is tomodel and analyze the impact of the ripple effect using a probabilistic
graphical model (PGM). PGM is capable of capturing disruption propagation that
can transfer from upstream suppliers to downstream end customer in an SC.

2 Literature Review

Although SC disruption has been studied bymany scholars (Ivanov 2009; Ivanov and
Sokolov 2012; Ivanov et al. 2013; Ivanov et al. 2014a, b; Ivanov et al. 2015; Bode and
Wagner 2015; Ivanov 2016; Ivanov et al. 2016a, b, c, d; Ivanov et al. 2017a, b; Ivanov
et al. 2016a, b, c; Luangkesorn et al. 2016; Kondo 2018; He et al. 2018; Behdani and
Srinivasan 2017; Guo and Gen 2018; Ivanov 2018a, b; Dolgui et al. 2017; Ivanov
and Dolgui 2018; Cavalcantea et al. 2019; Hosseini et al. 2019a, b), the ripple effect
of disruption throughout an SC still merits more attention. Ivanov (2018b) developed
a discrete-event simulation model to simulate disruption propagation in multistage
SC with consideration of capacity disruptions. Ivanov et al. (2018) investigated the
ripple effect on digital manufacturing and Industry 4.0. The authors examined the
relationship between big data analytics, additive manufacturing, Industry 4.0, and
SC disruption risks; and how digitalization contributes to enhancing ripple effect
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control. Ivanov et al. (2014a, b) developed a framework to quantify the ripple effect
using control theory. The proposed framework also includes the following states:
(i) measuring the ripple effect using control theory, (ii) mitigating uncertainty at the
planning state, (iii) monitoring process execution, (iv) response of process execution
in case of disruptions, and (v) recovery and minimizing the long-term impact of
disruptions. Ivanov et al. (2013) developed a multi-objective optimization model
for multi-commodity production distribution of a multistage centralized network.
The authors studied the impact of different disturbances on distribution execution.
Ivanov et al. (2016d) studied different recovery policies in the presence of the ripple
effect in a time-critical SC. The results of their studies propose optimal proactive
and reactive strategies to tackle the ripple effect from the perspectives of flexibility
and resilience. Ivanov et al. (2015) examined integrated SC planning with multiple
products, suppliers, transit nodes, and customers in amulti-periodmode. The authors
quantified the ripple effect on SC planning decisions by using dynamic optimal
control theory. The interval of structure constancy has been used in their work to
model the ripple effect. Sokolov et al. (2016) measured the ripple effect in SCs from
a structural point of view. The authors proposed a multi-criteria approach based on
integrating the static and dynamic structure of an SC using optimal control theory
and an AHP approach.

Levner andPtuskin (2018) presented optimizationmodels based on entropy theory
to quantify the ripple effect on SC systems. The proposed entropy-based optimization
model was used to evaluate the economic loss imposed on SCs by natural disaster
leading to ripple effect. The main advantage of their entropy-based methodology is
that it simplifies the hierarchal tree model of the SC, while preserving information
about risk.

Ivanov (2018a, b) studied the behavior of production-ordering systems with dis-
ruption consideration and recovery strategies in the post-disruption period, and the
influence of severe disruptions on a production and distribution network design. The
author developed a discrete-event simulation model using anyLogistix software. The
author found that SC behavioral changes caused by disruption could result in delayed
orders. Additionally, the author found that isolated distribution networks could be
subject to more severe decreases in performance in the event of SC disruptions.

3 Theory of Probabilistic Graphical Models

PGM, also known as a Bayesian network, is structured based on Bayes’ theorem
and graph theory. PGM is a powerful technology, which can handle risk assessment
problems that involve uncertainty. PGM is capable of combining both historical data
and expert knowledge to describe causality relationships between a target variable
and causal factors. PGM has been used in different disciplines as a decision-making
tool to manage uncertainty and provide risk assessment. The application of PGM in
SCRM and resilience can be found in (Hosseini and Barker 2016a, b; Hosseini et al.
2016b; Hosseini 2016; Hosseini and Sarder 2019).
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A PGM is a directed acyclic graph with a set of nodes (variables) and a set of
arcs. The relationship between the nodes can be expressed in terms of joint prob-
ability distribution using a conditional probability. A PGM can be mathematically
represented by a graphG, G = (V, E), where V = {Y1,Y2, . . . ,Yn} is a set of nodes
and E = {< Y1,Y2 >,< Y1,Y3 >, . . . , < Yi ,Y j >} is a set of arcs. Yi is node i or
random variable i, < Yi ,Y j >∈ E represents the dependency or causal relationship
between Yi and Y j . If there is an outgoing arc from node Yi to Y j , Yi → Y j , then
Y j is called the parent node of Yi and Yi is the child of node Y j . The directed arcs
encode the conditional probability that exists between Yi and Y j . According to the
chain rule, the joint probability distribution of all nodes (variables) can be written as
the product of the conditional probability of each node (variable):

P(Y1,Y2, . . . ,Yn) =
n∏

i=1

P(Yi |Y1,Y2, . . . ,Yi−1) (1)

where n is the number of variables (nodes) in PGM, i = 1, 2, . . . , n. By assuming
that the marginal probability distribution of node Yi is conditioned on the probability
of its parent nodes set π(Yi ), where

π(Yi ) ⊆ {Y1,Y2, . . . ,Yi−1}, Eq. (1) can be rewritten as follows:

P(Y1,Y2, . . . ,Yn) =
n∏

i=1

P(Yi |π(Yi )) (2)

where n represents the number of nodes in PGM, i = 1, 2, . . . , n. An illustrative
example of PGM with five nodes Y1,Y2, . . . ,Y5 and a set of arcs is represented in
Fig. 1. In this example, Y1 and Y2 are root nodes as they do not have parents, Y5 is
leaf node, as it does not have any children, and Y3 and Y4 are both intermediate nodes
as they have both parent and child nodes. The joint probability distribution of this
PGM can be written as follows:

P(Y1,Y2,Y3,Y4,Y5) = P(Y1)P(Y2)P(Y3|Y1)P(Y4|Y2,Y3)P(Y5|Y4) (3)

The marginal distribution of each node can be calculated based on full joint
probability distribution. For example, the probability distribution of Y3 is calculated
using a marginalization technique, as shown in Eq. (4):

P(Y3) =
∑

Y1,Y2,Y4,Y5

(Y1)P(Y2)P(Y3|Y1)P(Y4|Y2,Y3)P(Y5|Y4) (4)

The probability of Y3 can be further rewritten, as shown in Eq. (5), using a local
marginalization technique.
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Fig. 1 An illustrative
example of PGM with five
nodes

P(Y3) =
(

∑

Y1

P(Y1)P(Y3|Y1)
(

∑

Y4

(
∑

Y2

P(Y4|Y2,Y3)P(Y2)

(
∑

Y5

P(Y5|Y4
))))

(5)

4 Ripple Effect Analysis

This section aims to simulate and analyze the ripple effect on a two-stageSC.Todo so,
we use causal inference to model ripple effect and disruption propagation. In PGM,
we can enter all evidence, such as supplier disruption, and use propagation to update
the marginal probabilities of all unobserved variables, such as the manufacturer.
This can yield an exceptionally powerful method of analysis to measure the impact
of supplier disruption onmanufacturers. To perform inference analysis, we first enter
an observation, in this case that supplier is disrupted, and propagate the impact of
that observation on the entire SC using a Dynamic Discretization algorithm (DDA).
See Fenton and Neil (2013) for an overview of the DDA method.

Let us consider a two-stage SC with four suppliers and two manufacturers, as
represented in Fig. 2. The prior probability of suppliers and marginal probability
distributions of manufacturers are also shown in Fig. 3. To demonstrate, the prior
probability of supplier 1 being operational or disrupted is 90 and 10%, while this
probability for supplier 2 is 85 and 15%, respectively. The probability that manufac-
turer 1 is operational or disrupted is 85 and 15%, respectively.

To analyze the ripple effect of supplier disruption on manufacturers, we made
an observation for each supplier. We set the probability of each supplier to be fully
disrupted (1005) and propagated the impact of that observation on manufacturers
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Fig. 2 A PGM with four suppliers and two manufacturers

Fig. 3 Prior probabilities of suppliers and marginal distribution probabilities of manufacturers
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Fig. 4 Marginal distribution probability of manufactures when supplier 1 is fully disrupted

using DDA by updating the marginal distribution probability of the manufacturer
variables. It is clear that when we make an observation for suppliers by setting the
probability of disruption to 100%, the disruption probability of the manufacturers
will increase. The ripple effect of a supplier disruption on a manufacturer can be
quantified as the marginal probability disruption of that manufacturer under prior
inference analysis and the marginal probability of that manufacturer after inference
analysis, when the prior disruption probability of the supplier is set to 100%. For
example, we performed inference analysis of supplier 1 by making an observation
that this supplier was fully disrupted (probability of disrupted state of supplier 1 =
100%).

Figure 4 represents the inference analysis of supplier 1, where supplier 1 is
assumed to be fully disrupted. As shown in Fig. 4, the disruption probability of
manufacturers 1 and 2 increases to 30.66 and 35.10%, respectively. It is notable
that the disruption probability of manufacturers 1 and 2 in the base model is 15 and
12.75%, respectively.

The results of inference analysis of disruption at supplier 2 on manufacturers
are shown in Fig. 5. From the inference analysis illustrated in Fig. 5, it is evident
that the disruption probability of manufacturers 1 and 2 increase to 41 and 31.14%,
respectively. Table 1 lists the disruption probabilities of both manufacturers when
each supplier is fully disrupted. Notably, supplier 2 has the highest disruption impact
on manufacturer 1 (by 22.23%), while supplier 1 has the highest disruption impact
on manufacturer 2 (by 23.35%).

The marginal distribution probability of manufacturers 1 and 2 when supplier 3
is fully disrupted is shown in Fig. 6.
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Fig. 5 Marginal distribution probability of manufacturers when supplier 2 is fully disrupted

Table 1 Comparison between base model and inference model of manufacturers given disruption
of different suppliers

Supplier 1

Base model Inference model

Manufacturer 1 Manufacturer 2 Manufacturer 1 Manufacturer 2

15% 12.75% 30.66% 35.10%

Supplier 2

Base model Inference model

Manufacturer 1 Manufacturer 2 Manufacturer 1 Manufacturer 2

15% 12.75% 41.10% 31.14%

Supplier 3

Base model Inference model

Manufacturer 1 Manufacturer 2 Manufacturer 1 Manufacturer 2

15% 12.75% 37.23% 26.84%

Supplier 4

Base model Inference model

Manufacturer 1 Manufacturer 2 Manufacturer 1 Manufacturer 2

15% 12.75% 36.34% 31.31%

5 Conclusions

SC managers face continuous challenge from a growing number of disruptive events
due to global sourcing, interconnected SC structures, and SC structural complexity.
Disruption management in SCs has become a critical issue in the context of SCM.
A key issue in SC disruption management is to analyze and manage the propagation
impact of disrupted suppliers on downstream SC entities. In reality, the disruption of



Ripple Effect Analysis of Two-Stage Supply Chain … 189

Fig. 6 Marginal distribution probability of manufacturers when supplier 3 is fully disrupted

a supplier may propagate through the SC and negatively impact other entities, such
as manufacturers, distributors, and retailers. It is important to identify those suppliers
whose disruption could potentially have a higher disruption impact on other entities,
particularly manufacturers. In this study, propagation analysis of suppliers in a two-
stage SC is studied using inference analysis. Inference analysis in a PGM with four
suppliers and two manufacturers has been performed to identify which supplier has
the highest disruption propagation impact on manufacturers. By identifying and
fortifying critical suppliers, the chance of continuous operations during and in the
aftermath of disruption can be increased significantly.
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Entropy-Based Analysis
and Quantification of Supply Chain
Recoverability

Dmitry Ivanov

Abstract The problem of designing resilient supply chains at the semantic network
level is considered. The entropy method is used to show the interrelations between
supply chain design and recoverability. Easy-to-compute quantitative measures are
proposed to estimate supply chain recoverability. For the first time, entropy-based
supply chain analysis is brought into correspondence with supply chain structural
recoverability and flexibility considerations downstream the supply chain. An exact
and a heuristic computation algorithm are suggested and illustrated. The developed
approach and recoverability measure can be used to select a resilient supply chain
design in terms of potential recoverability.

1 Introduction

Designing the resilient supply chains has become a crucial research avenue over the
last decade. In essence, themain research thread is to identify supply chain structures,
which are robust and/or recoverable in the event of severe disruptions such as facility
breakdowns, strikes, supplier bankruptcies, or financial crises. Significant research
advancements have been achieved in this area at the semantic network level, design,
planning, and control levels (Martel and Klibi 2016; Mistree et al. 2017; Ivanov
2018). While design, planning, and control levels deal with both structural param-
eters (i.e., the facility locations and connections in between them) and operational
parameters (i.e., demand, capacity, and lead time, to name a few), the semantic net-
work level considers the structural domain only. The target of the analysis at the
semantic network level is to identify major interdependencies between the network
graph forms and the supply chain robustness, flexibility, adaptability, and resilience
(Zobel 2014; Ivanov 2017; Giannoccaro et al. 2017; Ivanov et al. 2017a, b; Dolgui
et al. 2018).
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Linking supply chain complexity and disruption risk resistance has become more
and more important (Nair and Vidal 2011; Scheibe and Blackhurts 2018; Levner
and Ptuskin 2018; Birkie et al. 2017; He et al. 2018). Blackhurts et al. (2005), Ho
et al. (2015), Jain et al. (2017), Ivanov et al. (2017a) underline that global sourc-
ing, product individualization, and cross-channel logistics strategies increase supply
chain complexity. Scheibe and Blackhurst (2018) identified SC structure as one of
three major drivers of disruption propagations in the SC. Complex networks become
more vulnerable to sever disruptions, which change the supply chain structures and
are involved with supply chain structural dynamics (Ivanov et al. 2010; Ivanov and
Sokolov 2010; Mistree et al. 2017; Ivanov 2018). Moreover, the ripple effect in the
supply chain complicates disruption management (Liberatore et al. 2012; Ivanov
et al. 2014a, b; Ivanov 2017).

As an opposite to the well-known bullwhip effect that considers high-frequency-
low-impact operational risks, the ripple effect studies low-frequency-high-impact
disruptive risks (Ivanov et al. 2014a; Simchi-Levi et al. 2015; Aqlan and Lam 2015;
Sokolov et al. 2016; Snyder et al. 2016; Han and Shin 2016; Sawik 2017). The ripple
effect describes the impact of disruption propagation in the supply chain on structural
dynamics and performance. Recent studies extensively considered disruption risks
in light of the impact of disruption propagation (Wilson 2007; Ivanov et al. 2014b;
Paul et al. 2014; Ivanov 2017; Scheibe and Blackhurst 2018; Levner and Ptuskin
2018; Ivanov 2019; Altay et al. 2018; Käki et al. 2015; Lücker and Seifert 2017).
Previous studies also suggested several measures to quantify disruption risks (Zobel
2011; Basole and Bellamy 2014; Han and Shin 2016; Lin et al. 2017; Dolgui et al.
2019). However, single-stage disruption has mostly been considered, and disruption
propagation in light of supply chain complexity has been neglected.

In addition, recoverability of the supply chain plays an important role in supply
chain resilience and in mitigating the ripple effect. The disruption profile constituted
in the work by Sheffi and Rice (2005) includes eight phases: preparation actions, the
disruptive event, the first response, the initial impact, the full impact, the recovery
preparations, and the recovery and long-term impact. That is why the recoverability
is an important part of supply chain resilience. Ivanov et al. (2017b) revealed several
major recovery policies in the supply chain. One of them is the backup sourcing and
shipment activation in the event of disruption and the resulting structural changes in
the supply chain. This study focuses on the said recovery policy and brings it into
correspondence to supply chain complexity.

Complexity quantification can be achieved by means of “entropy” which was first
introduced by Shannon andWeaver (1963) and applied to supply chain domain in the
studies by Harremoës and Topsøe (2001), Isik (2010), Allesina et al. (2010), Ivanov
and Arkhipov (2011a), Ivanov and Arkhipov (2011b), Yu and Xiao (2014), Yuming
(2015), Levner and Ptuskin (2015, 2018).

Levner and Ptuskin (2018) addressed ripple effect analysis using entropy mea-
sure from the environmental risk perspective and underlined that it would be “more
practicable to study the harmful impact of the environmental risks in more general
framework,” i.e., in combination with other risk types and classes (Quang and Hara
2018). This study closes the research gap described above and develops a quantita-
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tive entropy-based measure to analyze supply chain recoverability in event of facility
disruptions. For the first time, entropy-based supply chain analysis will be brought
into correspondence with supply chain structural recoverability and flexibility con-
siderations downstream the supply chain. An exact and a heuristic computation algo-
rithm will be suggested and illustrated.

The rest of this paper is structured as follows. Section 2 is devoted to literature
analysis. Themethod for a recoverability potential assessment is presented in Sect. 3.
The exact computation algorithm is presented and illustrated numerically in Sect. 4.
Section 5 considers the heuristic method. Section 6 summarizes the outcomes of this
study and discusses its limitations and future research avenues (Hosseini and Barker
2016).

2 State of the Art

2.1 Entropy-Based Studies

Harremoës and Topsøe (2001) developed an entropy-based approach to examining
the vulnerability of supply network nodes using maximum entropy (Hosseini and
Barker 2016). They tested the entropic approach on a real-world healthcare supply
chain and successfully extracted the most dangerous risks in the supply chain. Isik
(2010) applied the entropy concept to measure complexity associated with informa-
tion and material flows.

Allesina et al. (2010) developed eight indexes based on entropy to measure the
level of complexity in the supply chain by mapping the exchanges of goods between
the different actors in the network. The impact of possiblemodifications of the supply
chain structure can be evaluated using these tools, providing an evaluation of the
different structural dynamics scenarios. Ivanov and Arkhipov (2011a) and Ivanov
and Arkhipov (2011b) applied the entropy model to the analysis of supply chain
adaptation potential. They considered supply chains in virtual enterprises which are
formed through the dynamic selection of partners from a pool of available suppliers
(the so-called structural–functional reserve) in the supply chain. They also developed
some modifications in regard to real-scale supply chain structures.

Yu and Xiao (2014) used the entropy principles for evaluation, analysis, and
data processing in problems related to supply chain resilience and risk management.
Levner and Ptuskin (2015, 2018) applied the entropy concept to identify vulnerable
supply chain nodes and to measure the impact of environmental risks, respectively.
The study by Yuming (2015) explored supply chain flexibility from the dimensions
of resources and time when the supply chain is coordinated. Resource allocation
with the entropy concept in the event of supply chain coordination was proposed. The
entropy-based analysis allows estimation of resource output elasticity and timeoutput
elasticity. The paper also proposed a method of measuring supply chain flexibility
by integrating resource flexibility and time flexibility. Levner and Ptuskin (2018)
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addressed the ripple effect analysis using entropy measure from the environmental
risk perspective.

2.2 Related Studies to Quantify the Supply Chain Disruption
Risk Resistance

In a study byNair andVidal (2011), 20 supply chains subject to random demandwere
analyzed using graph-theoretical topology analysis to study the robustness of those
supply chains in the event of disruptions. In consideration of varying probabilities
of the random failure of nodes during targeted attacks, the authors evaluated the
performance of the supply chains. The assessment of severity of the disruptions
included the downtime of the nodes affected. The conclusions of the studywere based
on multi-agent simulation, and the authors detailed the impact of the supply chain
structural design on robustness when both demand and disruption were uncertain.

Assuming a sudden onset disruption and linear recovery behavior, Zobel (2011)
estimated supply network resilience, while Zobel (2014) extended the study to a
general case which accounted for nonlinearity and average loss per unit time. Using
the largest connected component and average and minimum path length, Zhao et al.
(2011) quantified network connectivity and accessibility. On the other hand, Basole
andBellamy (2014) quantified the level of risk diffusion as the number of functioning
nodes at time t relative to the size of the network using the “number of healthy
nodes” as a measure. In the study by Simchi-Levi et al. (2015), a risk exposure index
was developed for an automotive supply chain. The index was computed using two
models, time to recovery and time to survive, and the impact of a disruption on the
supply chain’s performance was then assessed.

Using a survival model to illustrate the time fromwhen a system failed to the time
when it resumed functioning (i.e., recovery), supply chain resilience was analyzed in
the study by Raj et al. (2015). The input to the model was the event of failure, while
the output was recovery time, which allowed the resilience of the supply chain to
be measured in terms of recovery time. Using several indicators from graph theory,
Sokolov et al. (2016) developed a model to assess and quantify, using connectivity,
reachability, complexity, and centralization as metrics, the performance impact of
the ripple effect in a distribution network.

Considering supply chain structural dynamics in a multistage network with cross-
docking terminals, the study by Ivanov et al. (2016) presented a method of quan-
tification for the financial impact of disruptions on the supply chain, and then rec-
ommended the use of hybrid optimal control, a linear programming model which
considers several structural constancy intervals. The supply chain structure remained
stable between these intervals, while structural changes occurred during the transition
to the next structural constancy interval. The authors modeled the structural dynam-
ics of the supply chain with optimal control, and performed optimization between
intervals with a linear programming model with two-side constraints.
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In random networks, the study by Han and Shin (2016) evaluated the structural
robustness of the supply chain and compared this robustness to the random risk of
network disruption. Lin et al. (2017) assessed the reliability of a multistage supply
chain using the probability that market demand can be met if multiple stations of
transit are usedwith the appropriate time frame,where system reliability, acting as the
delivery performance index, is assessed by the number ofminimal paths. Pavlov et al.
(2018) developed a hybrid fuzzy-probabilistic approach to supply chain resilience
estimation with structural dynamics and ripple effect consideration. The genome
method was applied with the objective of including the structural properties of the
supply chain design into resilience assessment.A supply chain design resilience index
was developed that can be used as a method of comparing different supply chain
designs regarding the resilience both to disruption propagation and with recovery
consideration. Moreover, the developed approach allows the identification of groups
of critical suppliers whose failure interrupts the supply chain operation.

3 Method to Quantify Supply Chain Recoverability

We apply the method of network adaptation potential analysis (Ivanov and Arkhipov
2011a; Ivanov and Arkhipov 2011b). The supply chains are functionally and struc-
turally complex and are multistage systems. A recovery policy in the supply chain
is formed through dynamic selection of backup sources and paths in the network
which results in a higher number of possible alternative recovery trajectories. The
realization of such alternative recovery strategies allows a flexible reaction to the
disrupted supply chain’s structural changes. Thus, even at the planning stage, the
supply chain design should be considered “branchy”.

The introduction of alternative recovery structures into the supply chain results
in different levels of structural complexity. The assessment of this structural charac-
teristic can be intuitively related to the quantity and variety of supply chain recovery
trajectories, the quantity of polytypic actions, the variety of logical connections
between them, the existence of “branching” or structure decoupling points, and the
possibility of choosing between alternative variants of supply chain recoverability.
In this paper, the approach to the above-described assessment issue, called supply
chain recoverability potential, will be considered.

The recoverability potential concept can be formulated as follows. The recov-
erability potential is the supply chain’s structural property which is characterized
by the decoupling or branching degree of the supply chain recovery policy and the
possibility to adapt to a real execution environment.

Quantitative estimation of recoverability potential serves for the analysis of the
determination of a number of elements in the supply chain design, their variety, and
the interrelations between them with regard to the potential ability of a supply chain
to survive in the presence of disruption, i.e., to have at least one undisrupted path to
the end stage in the supply chain, e.g., customers or markets.
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4 Exact Method

4.1 Computational Method

Taking into account the semantic affinity of complexity, uncertainty, and recover-
ability, the measure of a complex system state’s relative variety, i.e., the entropy is
suggested for the quantitative estimation of the supply chain’s recoverability poten-
tial. Assume that the supply chain network structure is designed and can be divided
into t layers, i.e., supplier, factories, and retailers. It is possible to choose between
nt supply chain elements within each t-layer. The probability p of choosing any path
in the supply chain network is equal. Recovery paths are designed according to the
set system of logic links according to the recovery policies. Then network struc-
ture complexity, as a measure of subject possibilities and equivalent to a variety of
choices of alternative sets, can be estimated with the indicator known as entropy H
of a complex system:

H = −
N∑

i=1

pi ln pi (1)

where pi is the probability of i-state of system or in our case, the selection probability
of i-recovery trajectory, i = 1, 2, …, N. First, in order to compute the entropy index
H, the probabilities of each recovery path in the supply chain should be determined,
and, second, the logarithm of this probability should be found. This will be explained
in more detail further in the paper using a numerical example (see Fig. 1).

As the entropy assessment of supply chain complexity is performed as a basis for
the estimation of further recoverability potential, any of the log bases can be used.
We use the natural (normal) ln because it is the most convenient way to compute
experiments in entropy as shown in Shannon and Weaver (1963).

It is not difficult to compute the index of network entropy when the network is
set up and the hypothesis about the choice of equally probable operations at each
planning stage is accepted. As a result, an estimation can be received that indirectly
characterizes the network recoverability potential. Let us present a simple example
(see Fig. 1).

Let a supply chain design have the structure presented in Fig. 1. The downstream
supply chain design includes three layers: a cross-docking hub, two distribution
centers, and five retailers. For this type of the network, the entropy index is H = 1.6
according to Eq. (1). There are two options to transit from the first layer (i.e., the hub)
to the second layer (i.e., the distribution centers). Therefore, the probability of each
path selection in between the first and second layers is 0.5. In considering the upper
node of the second layer, there are three alternative links to reach the third layer, i.e.,
the retailers. Therefore, the probability of each path selection from this node to the
retailers at the third layerwill be approximately 0.33. Hence, the selection probability
of each of the three alternative ways through the upper node of the second layer is
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Fig. 1 Example of the supply chain design structure

p = 0.5 * 0.33 = 0.165. Now, the logarithm from this probability can be taken: ln
0.165 = −1.8. We get 0.165 * (−1.8) = −0.3. As three alternative links exist, −
0.3 × 3 = −0.9. Analogously, in considering the bottom node of the second layer,
there are two alternative links to reach the third layer. Therefore, the probability for
each will be 0.5. Hence, the selection probability of each of the two ways through
the bottom node of the second layer is p= 0.5 * 0.5= 0.25. Now, the logarithm from
this probability can be taken: ln0.25 = −1.39. We get 0.25 * (−1.39) = −0.35. As
two alternative links exist, we then consider H = −(−0.35 × 2) = 0.7. The sum H
of the two nodes in the first stage is, therefore, 0.9 + 0.70 = 1.6.

The maximum recoverability value for a network with a set number of supply
chain elements at each stage will obviously be achieved when all the variants of
transitions from i-operation elements to (i + 1)-operation elements are admissible
and equally probable, i.e., in the case of a complete bipartite graph (see Fig. 2). For
this case, we will have Hmax = 2.3.

In analyzing a real supply chain, it is useful to have relative (normal) estimations
H (o) = H/Hmax as well as absolute estimations of a variety level (entropy) H. For
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Fig. 2 Supply chain design structure as a complete bipartite graph

the network in Fig. 1, the relative estimation of entropy is H (o) = 1.6/2.30 = 0.7.
Absolute estimations allow us to compare supply chain design structures that differ
in the quantity of the supply chain stages, the quantity of elements at different stages,
and a variety of links between elements. Relative estimations characterize, in essence,
the degree of affinity between the variety of links in a concrete supply chain to the
maximum value.

However, index (1) does not reflect one important requirement for the supply
chain structural recoverability, i.e., the maintenance of a high service level and the
required higher recoverability due to higher flexibility downstream in the supply
chain, which is important for supply chain adaptation possibilities on the customer
side. Let us introduce another supply chain structure, but with the same number of
elements and links (see Fig. 3).

The entropy index for both supply chain design structures presented in Figs. 2 and
3 are identical and equalH = 2.30. At the same time, these two structures essentially
differ, because the recovery path selection variety changes in different ways while
moving downstream in the network.
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Fig. 3 Modified supply chain design structure

An extended recoverability estimation can be concluded after several transforma-
tions of Eq. (1) by presenting the i-trajectory selection probability as the multiplica-
tion of its unit probabilities pi= pi1 x pi2 x…..x piT . Equation (1) will be transformed
as shown in Eq. (2):

H = −
N∑
i=1

pi1xpi2x . . . xpiT ln(pi1xpi2 . . . xpiT ) =
N∑
i=1

pi1xpi2x . . . xpiT ln(pi1xpi2 . . . xpiT ) =

N∑
i=1

⎛

⎜⎜⎝
T−1∏
k=0
k �=t
N

pik xpil ln pil +
T−1∏
k=0
k �=t
T−1

pik xpi2 ln pi2+ . . . +
T−1∏
k=0
k �=t
T−1

pik xpik ln pik

⎞

⎟⎟⎠ =

∑
i=1

∑
t=0

(∏
k=0

pik

)
x(pit ln pit )

(2)
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It can be observed in Eq. (2) that the supply chain recovery variety is expressed
through the probabilities of a trajectory unit selection. This allows us to introduce
weights which reflect the subjective considerations of the selection variety value
at each interval of structural constancy. We will designate these weights as wt and
consider them normal, that is, 0 ≤ wt ≤ 1,

∑
wt = 1. Let us name the obtained

estimation the supply chain-weighted variety (the weighted entropy) and denote it
as Hw (Eq. 3):

HW = −
N∑

i=1

T−1∑

t=0

wt

⎛

⎜⎝
T−1∏

k=0
k �=t

pik

⎞

⎟⎠x(pit ln pit ) = −
N∑

i=1

T−1∏

t=0

pit

T−1∑

t=0

wt ln pit (3)

The index of weighted variety (Eq. 4) can also be called the supply chain absolute
recoverability potential: we denote it as A and A = Hw.

For a supply chain design with the maximum value of weighted entropy (i.e., the
supply chain network structure with initial functionality and the maximum number
of equally probable recovery paths), Eq. (3) becomes simpler (Eq. 4):

Hmax
w = −

T−1∑

t=0

wt ln pit (4)

Let us consider the following estimation as the indicator of the supply chain
relative recoverability (Eq. 5):

A(0) = Hw

Hmax
w

(5)

The recoverability potential index is sensitive to changes in the supply chain node
structure, the allocation of these knots within intervals of structural constancy, and
the variety of recovery path selection.

4.2 Numerical Example

To illustrate the proposed technique, we use the supply chain design structures shown
in Figs. 1, 2, and 3. The corresponding values of the necessary estimations of net-
work variety and recoverability potential are shown in Table 1. The weights wt are
considered in direct proportion to the t layer number (i.e., the layers downstream
in the supply chain and closer to the customers get higher weights subject to the
requirement of a higher service level).

It can be observed that the recoverability potential A(0) of the supply chain design
structures shown in Figs. 2 and 3 is equal and is greater compared to that of struc-
ture 1a. In addition, the indicator Hw shows a higher responsiveness and agility in
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Table 1 Examples of supply chain variety and adaptation potential estimations for different net-
work structures

Supply chain
design structure

Variety
estimations, H,
(Hmax)

Weighted
variety
estimation
(absolute
recoverability
potential), A =
Hw

Maximum
estimation of
weighted
variety, Hmax

w

Relative
recoverability
potential
estimation, A(o)

Figure 1 1.6; (2.30) 0.94 1.31 0.72

Figure 2 2.30; (2.30) 1.31 1.31 1.00

Figure 3 2.30; (2.30) 0.99 0.99 1.00

the structure as shown in Fig. 2 (see Eqs. 3–5). The higher value of the indicator
Hw indicates that supply chain recoverability increases downstream in the supply
chain, that is, the variety of recovery paths increases downstream in the supply chain
and extends flexibility and responsiveness in the parts of the supply chain near the
customers.

The final selection of the supply chain design with recoverability considerations
should be performed on the basis of economic efficiency and recoverability potential
indicators. In addition, if a supply chain design structure is economically preferable,
but lacks the recoverability in event of severe structural disruptions, additional links
can be introduced in the supply chain to increase the flexibility. For example, tech-
nology standardization at production plants can be performed so that each of them
would be able to produce different (or at least two) product families.

5 Heuristic Method

Equations (1)–(5) are rather simple and can be easily applied in software. However,
in the case of complex network models, technical computation difficulties may arise
since the number of trajectories in the network can become astronomical. In addition,
individual trajectory selection probabilities in complex networks are rather small
and, as it is known, arithmetical calculations with small values can lead to serious
errors. This is why it is suggested to carry out the recoverability adaptation potential
calculations on the basis of network model decomposition.

The analysis of various supply chain design structures shows that the operations
within a supply chain layer often does not influence other operational blocks. Such a
situation occurs when all the possible links between the elements of adjacent supply
chain layers exist. Let us show several examples. We analyze a supply chain design
structure as illustrated in Fig. 4.

The selection of a node at one supply chain layer into the recovery path does
not influence the probability of selecting any node in the subsequent layer into the



204 D. Ivanov

Fig. 4 Example of a four-layer supply chain

Fig. 5 Example of a four-layer supply chain with auxiliary element A

same recovery path. In this case, the auxiliary “dividing” block can be introduced
between the layers, which include one element that divides the supply chain into two
fragments (Fig. 5).
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The recoverability adaptation potential estimation is then approximately equal to
the fragment potential sum. For supply chain designs that have themaximum number
of links, this equality is exact, and it is possible to present this formally. The auxiliary
action A in Fig. 5 divides the supply chain into two fragments, I, II. The supply chain
and its fragment recoverability potentials are as follows: Hmax = lnN = 4.394, HI =
ln9 = 2.197, andHII = ln9 = 2.197. We can observe that the equation Hmax = HI +
HII holds true. When the recoverability potentials of the fragments are different, an
approximation should take place. The analysis of different supply chain structures
showed that computational accuracy with network model decomposition is sufficient
to carry out a real data analysis. Hence, it can be concluded that the recoverability
adaptation potential estimation of supply chain design structure fragments can be
used to simplify practical computations.

6 Conclusion

The problem of designing resilient supply chains at the semantic network level has
been considered in this study. The entropy method was used to reveal the interrela-
tions between supply chain design and recoverability. An entropy-based quantitative
measure has been suggested to estimate supply chain recoverability. For the first
time, the entropy-based supply chain analysis is brought into correspondence with
supply chain structural dynamics. An exact and a heuristic computation algorithm
are suggested and illustrated. The developed approach and recoverability measure
can be used to select a resilient supply chain design.

Advantages of the developed method are the simplicity of recoverability index
computations as well as the numerous applications to real-life problems due to the
higher abstraction level of the model developed. The nodes in the network can be
considered suppliers, logistics, production companies, or even a production line
resource allowing almost any level of abstraction in the analysis.

In terms of the limitations of this study, it should be noted that homogenous goods
downstream in the supply chain have been considered. The bill-of-material consid-
erations in the upstream supply chain would make it necessary to adapt this concept.
Regarding the absolute and relative recoverability potential estimation, it should be
noted that the relative estimations with the maximum variety of links are identical
and equal to 1, no matter howmany stages the supply chain has. This limits the appli-
cation possibilities to a certain extent, but nevertheless, they still retain an analytical
role, supplementing absolute adaptation potential estimations. The proposed supply
chain adaptation potential indicators can be used as criteria for selecting supply chain
design structures at the configuration stage with consideration of severe disruption
risks and supply chain structural dynamics. Future research can include the introduc-
tion of bill-of-material considerations and case-study applications of the developed
method to reveal specific aspects relevant for different industries and services.
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New Measures of Vulnerability Within
Supply Networks: A Comparison
of Industries

James P. Minas, N. C. Simpson and Ta-Wei (Daniel) Kao

Abstract Modern supply chains have become increasingly complex and intercon-
nected, raising concerns as to the potential loss of system-wide resilience. One distinct
element of supply chain risk is the potential for detrimental material to propagate
through the supply chain undetected, eventually exposing unsuspecting consumers
to defective products. In this chapter, based on methods inspired by epidemiology,
we propose new measures for quantifying this risk. We then apply these measures to
real-life supply networks from eight industries to compare their relative levels of risk
across a 17-year time horizon. Our results indicate that while in aggregate supply
chain risk has increased overtime, both the level and sources of risk differ markedly
by industry.

1 Introduction

Recent history has witnessed the growth of complex supply chain networks, creat-
ing a web of supply-related partnerships that spans almost all regions of our planet.
Managing risk across these emergent systems begins with effective means of measur-
ing and expressing potential threats therein. The purpose of this study is to develop
better measures for the comparative assessment of supply chain risk, using methods
inspired by epidemiology. Once formulated, we apply these measures to authentic
supply chain network structures from various industries across a 17-year timeline.
Whole industries are found to vary in their structural vulnerability to the random
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Fig. 1 Three domains contributing to the development of new measures for complex supply net-
work analysis

malignancy of a single network member, although complexity is clearly on the rise
throughout. We begin this exploration with greater detail of the motivation of the
study, including a brief review of related literature.

1.1 Motivation

Biological models of contagion offer insight into the spread of disruption across com-
plex environments, and will provide the greatest motivation for the new measures
presented here. However, the allegory of contagion in the context of supply chains
highlights the broader phenomenon of diffusion, and thus there are several related
domains that indirectly inform this project, as pictured in Fig. 1. For example, both
the propagation of risk across a complex supply network and the underlying risk of
disease exposure are related to the older framework of reliability theory. In the disrup-
tive context, the outcome of interest is the probability of ‘success’ of the disruption
(as opposed to success of the system), yet the underlying structure of quantifiable risk
spreading across points of contact is suggestive of reliability modeling. Similarly,
information diffusion through social networks, such as Twitter posts and reposts dur-
ing Hurricane Sandy (Yoo et al. 2016), evokes both the dynamics of diffusion across
a connected population and the broader context of collective behavior.

In supply chain management, partnerships effectively create populations at risk
of cascading disruption, which spreads in a fashion evocative of both information
diffusion and epidemics. We examine eight such populations, arrayed in what we
call industry ego networks, each being a combined set of all companies within a
given industry (the egos), and every other company in any industry with which
an ego company has at least one direct or indirect supply relationship. Much of the
extant literature examining authentic supply chain structure focuses on one particular
industry exclusively such as automotive retailing (Dong et al. 2015) or automotive
manufacturer (Choi and Hong 2002). Generalizing findings such as these in the
future will partially depend on better understanding of how supply chain structure
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Fig. 2 The eight industry ego networks of 2014

may vary between industries, and thus the choice of eight such settings in this study.
Figure 2 displays the combined membership of all eight industry ego networks as
they appeared in the year 2014.

1.2 Related Literature

Network science offers a theoretical lens to study supply chains as complex net-
works, where entities exhibit adaptive action in response to changes in other entities
and the whole network (Choi et al. 2001; Pathak et al. 2007). Studies adopting this
lens have related network structure through a variety of measures to a range of out-
comes in a variety of industries. Earlier investigations often focus on links between
network structure and firm performance in a positive sense, particularly as determi-
nants of innovation. For instance, Ahuja (2000) examines the international chemical
industry and finds that both direct and indirect ties in collaboration networks have
positive impacts on innovation, but structural holes have the opposite effect. Grewal
et al. (2006) examine relationships among projects and find structural embedded-
ness has a strong and significant effect on project success. Phelps (2010) find that
ego network density strengthens the influence of technological diversity. Bellamy
et al. (2014) focus on supply alliance networks in the electronics industry and show
centrality has a significant effect on a focal firm’s innovation output, while network
efficiency reinforces the relationship between supply network accessibility and inno-
vation output. Using data from biopharmaceutical firms, Mazzola et al. (2015) find
that a firm’s eigenvector centrality and structural holes impose opposite effects on
new product development, while their interaction with open innovation flow is a pos-
itive influence. Carnovale and Yeniyurt (2014) show that betweenness centralities
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of both focal firm and partners have significant effects on new manufacturing joint
venture formation. In 2015, they identify the effects of ego network structures on
ego network innovation (Carnovale and Yeniyurt 2015). Kim (2017) show the inter-
connections among direct major customers have a negative impact on a supplier’s
profitability. Recently, De Stefano and Montes-Sancho (2018) find that positional
embeddedness of partners engaged in environmental R&D cooperation enhances the
influence of that cooperation on product performance.

A complex network perspective also allows for a holistic assessment of determi-
nants of supply chain disruption (Basole and Bellamy 2014b; Dolgui et al. 2018),
although work with this focus is somewhat more recent. Basole and Bellamy (2014a)
use visualization techniques to create graphical representations of the electronic
industry’s supply chain network. The network visualizations are then used to identify
and analyze disruption risk sources, characterized by a variety of measures includ-
ing traditional social network constructs such as betweenness centrality. Kim et al.
(2015) compare four fundamental supply network structures and show that node
(facility) and arc (transportation) level disruptions do not necessarily create net-
work level disruptions. Sokolov et al. (2016) consider structural network measures
together with dynamic performance measures in their multi-criteria model for the
design of resilient supply chains. Earlier models of financial risk diffusion, analo-
gous to the epidemiology-inspired approach presented in this chapter, include Gai and
Kapadia’s (2010) analytical model of contagious default in financial networks and
Battison et al. (2007) model of bankruptcy propagation in production networks. Use
of epidemiology-type diffusion models in supply chain management includes agent-
based simulation models applied to theoretical small-world and scale-free topologies
(Basole and Bellamy’s 2014b) and to the electronic industry’s supply chain network
(Basole et al. 2016). However, both these studies differ from our work in that they
calculate the health state of the entire network while we are concerned with the prob-
ability of a defect or disruption reaching the consumer level. Our study also differs
from this previous work in that we consider authentic supply chain networks from
multiple industries over multiple years, thus allowing for a comparative analysis of
risk between industries overtime.

2 Epidemics in a Supply Chain Context

Biological epidemics provide an intriguing allegory for supply chain risk, as they
embody the problem of complex patterns of contact enabling a detrimental condition
to propagate. In this study, we explore the framework of the archetypical SIR model
in epidemiology, as it might assist in characterizing risk exposure in supply networks.
The origins of the SIR model are widely attributed to the early work of Kermack and
McKendrick (1927), and many of its derivatives in the setting of epidemiology are
discussed in the review of Hethcote (2000). In this section, we first explore the basic
SIR framework in the context of a supply network, and then formulate the related
measures of risk exposure that we will apply to assess eight industries in Sect. 3.
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Fig. 3 An example of infectious versus susceptible and immune nodes in a supply network

2.1 The SIR Model

The SIR model is a compartmental model of epidemiology, dividing a population into
three groups. In the SIR model, these compartments are those individuals who are
susceptible (S) to a disease, those who are currently infected with that disease (I) and
those who have recovered and now immune, or removed in the sense that they have
died from the disease (R). Two important framework parameters are β, the probability
of an individual of susceptible status (S) contracting the disease upon exposure to
an infected individual, and U, the transition rate of an individual from infected status
(I) to that of recovered/removed (R). The three categories are illustrated in context
of directed supply network in Fig. 3.

While biological infection provides an intuitive analogy when modeling how
suppliers may transmit disruption to buyers, it is important to note some differences
in the two cases. In epidemiology, the SIR framework is predominantly dynamic
in nature, as it attempts to predict how many people would be members of each
category throughout the timeline of a potential epidemic. Supply chain ‘contagion’
does follow epidemiology in the sense that disruption moves in ‘waves’, where the
first wave represents the progression of defective material from a source to any
stage directly downstream, and subsequent waves represent these undetected flaws
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traveling farther down the supply chain. Indeed, any firm or stage downstream of
a defective source is the equivalent of susceptible, and the probability β, the risk
of infection, is analogous to the risk of Type II errors on behalf of a susceptible
buyer’s inbound and outbound quality control programs. However, supply chain
analysis departs from epidemiology on the issue of outcome of interest. In the case
of epidemiology, focus is on the growth and decline of the categories within a given
interval of time, particularly the risk that the infectious category may grow at a rate
that crests in a network-wide epidemic. In the case of supply chain risk analysis, the
focus shifts to the purpose of the supply chain, its ultimate product, and market. In
this context, the issue of how much of the network ‘population’ is infected is not
as salient as the risk that the infection penetrates a subset of network nodes, those
nodes that release the detrimental material to inflict harm on unsuspecting consumers.
Logically adapting the SIR model to this shift in the domain is discussed next.

2.2 Formulating the SIR Framework in the Context
of Supply Chains

Consider an industry that sells output to consumers, supported by supply chains of
major partners who may or may not belong to that same industry. The consolidated
set of the industry members (or ego nodes) and their respective upstream supply
chains are known as the industry ego network in this study, as described earlier in
Sect. 1. In this context, the model relies on two environmental parameters:

Let β ij = the probability of detrimental material from supplier i being incorporated
into the output of buyer j.
Let �i = the probability that firm i will spontaneously create material detrimental to
the supply chain.

β ij is the ‘infection rate’ between firms i and j. This rate represents the risk of a Type
II error in the buyer i’s inbound quality control program, allowing transmission of
detrimental material from upstream. �i refers to the origin of detriment, analogous
to the probability that firm i is ‘patient zero’, or the source of an outbreak. To express
the network’s general vulnerability, information on network structure is introduced
next:

Let {Z} be the set of all ego nodes, or industry members whose output is sent directly
to consumers.
Let {Si} be the set of suppliers of firm i.
Let ei = the risk that firm i’s output is detrimental. ei is calculated by:

ei = 1 −
⎛
⎝(1 − Ωi )

∏
∀ j∈{Si }

(1 − βi j e j )

⎞
⎠
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Conceptually, ei is the most elemental construct in this study, and its calculation
is evocative of system reliability: the probability that firm i’s output is detrimental
is the complement of the joint probability that firm i did not spontaneously produce
detrimental material nor did it unknowing assimilate detrimental material from one
or more of its suppliers. Risk element ei is then used in building several broader
expressions of risk:

Let CT L = the consumer threat level, a measure of the risk that detrimental material
will reach the industry’s consumer market. CT L is calculated by:

CT L = 1 −
∏

∀ j∈{Z}
(1 − e j )

LetCT L(k) = the consumer threat level posed by firm k, or a measure of the risk that
detrimental material will reach the industry’s consumer market given that Ωk = 1
and Ω j = 0 for all ∀ j �= i

Finally, we define Mean CTL as a summary measure of network vulnerability,
calculated by averaging the values of CT L(k) for all firms k in the industry network.

2.3 Interpreting the SIR-Related CTL Measures

Figure 4 illustrates the distinction between ego versus non-ego susceptible nodes
in the case of two different infectious nodes within Fig. 3 network. Figure 4 also
illustrates that, in the case of any given node, the consumer threat level of a node
may be readily apparent, as in the case of node j; or considerably less transparent, as
in the case of node k. In the case of node j, assuming all connections bear the same
risk of successful transmission β =5%, then CLT(j) = 1−(1−β)3 =14.3%. Making
the same assumption for node k, CLT(k) = 1- ((1−β)6 *(1−((1−(1−β3)2) β2))2) =
26.5%.

Up until this point, we have explained the risk under study as a passage of defective
material through successive stages of a supply chain, as this application is the most
suggestive of the spread of disease. It should be noted, however, that these constructs
have an equally useful alternate interpretation: measures of the risk of visible supply
chain disruption. In this interpretation, �i is defined as the probability of complete
failure of firm i as a supplier, and β ij is the risk that firm j cannot switch suppliers
or implement any contingency plan before it fails to meet its obligations due to the
outage at firm i. Measure ei becomes the combined risk that firm i will fail in its role
in the supply chain for any reason and CLT(i) expresses the likelihood the consumer
will witness an outage at the downstream end of the supply chain, given firm i does
fail. It should also be noted that these expressions can be interpreted as explicit
probabilities provided that ego-level firms have no connections amongst each other,
consistent with the illustration in Fig. 4. This is not a confining assumption, in that it
is reasonable to expect that ego-level firms, marketing the supply network’s ultimate
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Fig. 4 An example of infectious nodes j and k with associated susceptible ego and non-ego nodes

product to the consumer, are most likely to be commercial rivals. However, this does
depend on how the ego-level industry is defined in the data, and in the event of one
or more supply relationships within downstream industry, these measures become
upper bounds on the exact risk. Employing the model in this fashion is similar to use
of the PERT methodology, which has been providing convenient lower bounds on
project deadline risk since its debut in Miller (1962).

3 Measuring Consumer Threat Level Across Eight
Industries

3.1 Data and Methodology

To demonstrate our proposed measures in the context of authentic supply chain net-
works, our data source consists of major supply partnerships reported under Financial
Accounting Standard (FAS) 131, which requires every publicly traded supplier in
the US to report any firm accounting for at least 10% of its sales. Over 76,000 1-year
relationships reported between 1998 and 2014 were retrieved from Compustat and
manually cleaned and supplemented with the four-digit SIC code for each of the
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18,000 + companies cited. From this, eight industry ego networks were extracted
for each year of the 1998–2014 timeline, resulting in a total of 8*17 = 136 networks.
This process begins by selecting a particular four-digit SIC code as the ego industry,
and extracting all firms within an annual data set identified by that code, creating set
{Z} as discussed in the previous section. The ego network is then generated from
this set by retrieving all suppliers of {Z}, and then all suppliers of those suppliers,
continuing until no additional direct or indirect supply relationships can be detected
in the data. The union of these eight subgraphs in 2014 was presented earlier in Fig. 2,
as the upstream supply networks of the eight industries contain some connections
across the subgraphs. In contrast, Fig. 5 illustrates the same eight subgraphs as true
ego networks, with node color delineating supply tier within the subgraph. It is appar-
ent from Fig. 5 alone that the nature of supply chain structure varies dramatically
between industries. The largest industry network in terms of population is Electric
Services (SIC: 4911), but this same industry conspicuously lacks a significant ‘main
component’, the largest interconnected portion of the network graph. In contrast,
Pharmaceutical Preparations (SIC: 2834) provides the second largest ego industry
network but with a prominent main component. While Motor Vehicles and Passenger
Car Bodies (SIC: 3711) provides an ego network that is unremarkable in population
size, it is dramatically dense, having by far the highest ratio of connections to nodes.

Upon extraction of all 136 ego networks as ‘edge files’, delineating the supply
network structure as a set of paired connections, each file was evaluated for the risk
measures described in Sect. 2, programmed in VBA in conjunction with Microsoft
Excel.

3.2 Results and Discussion

Table 1 provides both the Mean Consumer Threat Level (Mean CTL) and the Max-
imum Consumer Threat Level (Max CTL(k)) for each industry at three points along
the timeline, calculated with a uniform infection level parameter (β) of 0.05 for all
linkages.

Across the observations in Table 1, all industries except for Prepackaged Software
(SIC: 7372) have a Mean CTL greater than 0.05, the value of the original parameter
β. Since Mean CTL represents average risk of consumer level exposure to disruption
and β is the probability of disruption spreading one stage downstream from a supplier
to a buyer, this result indicates that seven of the eight industries possess supply chain
network structures that propagate risk with respect to their downstream ego nodes.
Figures 6 and 7 illustrate the variation in Mean CTL and Max CTL(k) in 2014. While
the majority of industries haveMean CTL values in the 0.06–0.069 range, the notable
exception is Motor Vehicles & Passenger Car Bodies (SIC: 3711) with a Mean CTL
of 0.143, more than double that of the next highest industry. This elevated Mean
CTL is a result of how densely interconnected the Motor Vehicles & Passenger Car
Bodies supply network is, creating multiple paths from a problematic supplier to the
consumer level.
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Fig. 5 Gallery of eight industry ego networks from 2014. Ego nodes appear in red

It can be seen in Table 1 and Fig. 7 that the 2014 Max CTL(k) varies widely
by industry, with values ranging from 0.098 to 0.774. Again, the industry with the
highest Max CTL(k) is Motor Vehicles & Passenger Car Bodies, where the measure
can be interpreted as a 5% chance of defective material being transmitted across
any link in the network yields an approximately 77% risk that such material from
firm k, Tenneco Inc., reaches the consumer level unimpeded. This extremely high
CTL(k) is a function of Tenneco Inc.’s position in the supply chain network, where it
supplies multiple buyers, as highlighted in Fig. 8. At the other end of the spectrum,
Electronic Parts & Equipment (5065) and Prepackaged Software (SIC: 7372) have
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Fig. 7 2014 Maximum Consumer Threat Level (Max CTL (k)) by Industry for β = 0.05

both the lowest Mean CTL and Max CTL(k). These conditions are not owed to the
relatively small size of these networks, as seen in Fig. 5, but rather to the dominance
of structural holes throughout the underlying network structure, where the exclusive
nature of most supply relationships produces chains of dependencies without the
interconnections needed to propagate risk from one source.

Figure 9 illustrates the Mean CTL time series in terms of the mean of all eight
industries, flanked by the data specific to the industries with the highest and lowest
levels of this measure. It is apparent from the Fig. 9 industry aggregate that Mean
CTL has increased between 1998 and 2014, rising from its lowest levels in 2001.
However, this trend is not uniform across all industries. Motor Vehicles & Passenger
Car Bodies reflects this trend, but at a much steeper rate of increase, almost doubling
Mean CTL over the 17-year time horizon, largely on the momentum of a trend that
starts in 2004. In contrast, Prepackaged Software (SIC: 7372) posts a slight decrease
in Mean CTL across the same timeline, and is the only industry with a Mean CTL
less then β throughout most of that interval, indicating that this industry’s network
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Max CTL(k)

Fig. 8 Motor Vehicles & Passenger Car Bodies (SIC: 3711) in 2014 with the Max CTL(k) firm
highlighted. Ego nodes appear in red

structure mitigates the risk of disruption proceeding to the ego level, as opposed to
propagating it. However, it should not be assumed that high values of CTL are the
only measures that reflect risk in this context. The firm k associated with Max CTL(k)
can be interpreted as a supply network’s most vulnerable point, in terms of protecting
its end product. Table 2 provides both the identity and the industry of that specific
threat, year by year, for the Prepackaged Software industry.

Although Prepackaged Software generally measured the lowest for Mean and
Max CTL(k), throughout the timeline, Table 2 displays the irony that this industry
had the highest annual ‘churn’ in both the exact location of that threat in the network
and in the supporting industry it represents. This issue of churn in the identity of
firm k of Max CTL(k) has important implications for the ego industry, in that low
churn implies the location of this vulnerability is more predictable from year to
year, and thus protective measures against this structural weakness in the supply
network might be developed and moved into place. An example of low churn is, in
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Table 2 Identity and industry of node with Maximum Consumer Threat Level (MaxCTL(k))within
Prepackaged Software (7372) industry ego supply network

Year Company name Industry CTL(i) @ β

= 0.05

1998 Rainmaker Systems Inc Computer Programming, Data
Processing, and Other
Computer-Related Services

0.143

1999 Aquantive Inc Advertising 0.098

2000 Data Return Corp Computer-Integrated Systems
Design

0.185

2001 Securelogic Corp Prepackaged Software 0.098

2002 Moduslink Global Solutions Computer Programming, Data
Processing, and Other
Computer-Related Services

0.098

2003 Nvidia Corp Semiconductors and Related
Devices

0.098

2004 Nvidia Corp Semiconductors and Related
Devices

0.098

2005 Akamai Technologies Inc Computer Programming, Data
Processing, and Other
Computer-Related Services

0.050

2006 Digital River Inc Computers and Computer
Peripheral Equipment and
Software

0.143

2007 Digital River Inc Computers and Computer
Peripheral Equipment and
Software

0.143

2008 Digital River Inc Computers and Computer
Peripheral Equipment and
Software

0.143

2009 Digital River Inc Computers and Computer
Peripheral Equipment and
Software

0.265

2010 Seagate Technology PLC Computer Storage Devices 0.143

2011 American Assets Trust Inc Real Estate Investment Trusts 0.143

2012 Seagate Technology PLC Computer Storage Devices 0.143

2013 Rally Software Dev Corp Prepackaged Software 0.226

2014 Kilroy Realty Corp Real Estate Investment Trusts 0.185
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Fig. 9 Timeline of Mean Consumer Threat Level (Mean CTL) for β = 0.05, 1998–2014

fact, the Motor Vehicles & Passenger Car Bodies industry, where the designation of
Max CTL(k) has been shared between six companies in 17 years, almost invariably
from the closely related Motor Vehicle Parts and Accessories (SIC: 3714) industry.
Further, the maximum threat arises from the same supplier, Tenneco Inc., for the last
6 years of the timeline and from one other firm, Dura Automotive Systems, for 6
of the 9 years from 1998 to 2007. In contrast, Table 2 shows how concurrently the
spikes in Prepackaged Software’s otherwise low CTL levels are inflicted by twice as
many different firms, whose origins switch between nine different industries. This
phenomenon where the highest risk firm in the Prepackaged Software industry is
a ‘moving target’ suggests challenges for identifying and managing sources of risk
when compared to the more static case of the Motor Vehicles & Passenger Car Bodies
industry.

In the context of network evolution,Mean CTL andMaxCTL(k) can provide addi-
tional insight into supply network vulnerability when considered jointly. Figure 10
provides a scatterplot of each year in the Motor Vehicles & Passenger Car Bodies
timeline, where Mean CTL and Max CTL(k) provide the x and y coordinate. The
resulting pattern reveals that while Motor Vehicles & Passenger Car Bodies has
experienced distinct growth in Mean CTL over this time period, its Max CTL(k) lev-
els behave quite differently. Rather, Max CTL(k) level is stable from 1998 to 2007,
exhibits a sharp increase in 2008, and the restabilizes at a higher level for 2009–2014.
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Fig. 10 Mean versus Max CLT(k) for the Motor Vehicles & Passenger Car Bodies (3711) Industry
Ego Supply Network, 1998–2014

This analysis suggests further opportunity for investigation of this industry structure,
particularly in 2007–2009, as this stepwise increase is unlikely to be the result of
random force. Indeed, the time period of the transition suggests economic reces-
sion, and inspection of the data suggests a marked increase in the focal industry’s
dependence on fewer but more broadly shared suppliers after this period.

It should be noted that not all industry ego networks exhibit a reaction to economic
recessionary periods. Figure 11 provides contrast, where a similar scatterplot of the
Crude Petroleum and Natural Gas industry (SIC:1311) exhibits steady simultaneous
increases in bothMeanCTL andMaxCTL(k) over the 17-year horizon, with no visible
disturbances associated with the time period around 2008. Crude Petroleum and
Natural Gas have the distinction of being one of only three industry ego networks in
the data set that experienced substantive growth in size, increasing 76% between 1998
and 2014. However, this condition is not likely a determinant of the pattern produced
in Fig. 11, in that the two other industries with similar growth patterns, Electronic
Parts & Equipment (93% growth in size) and Prepackaged Software (112%) share
yet a third pattern of no distinct trends in either Mean CTL or Max CTL(k) over
the same 17-year period. This further underscores the need to better understand the
structural differences between industries to further understanding of how to better
protect their supply chains.



New Measures of Vulnerability Within Supply Networks … 225

Fig. 11 Mean versus Max CLT(k) for the Crude Petroleum and Natural Gas (1311) Industry Ego
Supply Network, 1998–2014

4 Summary and Conclusions

In this chapter, we consider how supply chain network structure contributes to defect
or disruption propagation. Given that in recent years supply chains have grown in
both size and complexity, it is critical that we are able to understand and manage
the resultant risks. Our proposed measure Consumer Threat Level (CTL) is a novel
approach to quantifying the risk of defective material reaching the consumer market.
CTL is a function of supply chain relationships and can be calculated as a firm-level
measure, that is, the risk of consumer exposure to detrimental material from a given
firm. Alternately Mean CTL can be calculated and used as a summary measure of a
given supply chain network’s vulnerability. We applied our CTL metrics to authentic
supply chain networks from eight industries across a 17-year time horizon, which
provided a series of insights summarized in Table 3.

The results of our empirical investigation indicate that overall the risk of consumer
exposure to defects or disruptions as measured byCTL has increased overtime. How-
ever, both risk levels and sources of risk differ markedly by industry, with the most
dramatic increases in risk seen in the Motor Vehicles & Passenger Car Bodies indus-
try. Our method for quantifying this consumer level risk is an important contribution
in that it allows for objective comparison of relative risk between firms and between
industries, as well as measurement of changes in risk overtime. However, the under-
lying reasons for differences in and evolution of supply chain network structures and
resultant consumer threat levels remain open questions that merit further inquiry.
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Table 3 Summary of insights and corresponding managerial implications

Observations from this study Managerial implications

Supply chain vulnerability, as revealed by CTL
measurement, is not uniform across industries

Best practices in risk mitigation are likely to
vary between industries. Practices should not
be transferred between industries with the
expectation of similar results

Mean CTL is higher than the baseline risk of
‘infection’, β, for most industries

Supply chain partnerships are trending toward
the sharing of suppliers between downstream
firms, often indirectly through one or more
intervening tiers. This sharing between
downstream rivals may pose risks beyond
those discussed here

When assessing an industry ego network, Max
CTL(k) is typically several times greater than
Mean CTL

It is not uncommon for a supply network to
have a particularly vulnerable area, centered
around one firm more deeply ingrained in
partnerships throughout. Maintaining
awareness of this location is vital for all
downstream planners, and the measures
discussed here offer a convenient means of
monitoring such

Industries with more favorable CTL measures
do not necessarily possess a stable source of
Max CTL(k)

The most vulnerable area of a supply network
will shift dynamically if its partnerships are
likewise changing through time. In some
industries, the greatest risk may not be from
the absolute size of potential threat, but from
an inability to anticipate the source. Stable
partnerships through time mitigate this
difficulty throughout any network
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Disruption Tails and Revival Policies
in the Supply Chain

Dmitry Ivanov and Maxim Rozhkov

Abstract We study capacity disruption and recovery policy impacts on supply
chain (SC) performance. Discrete event simulation methodology is used for anal-
ysis with real company data and real disruptions. Two novel findings are shown.
First, disruption-driven changes in SC behaviour may result in backlog and delayed
orders, the accumulation of which in the post-disruption period we call ‘disruption
tails’. A transition of these residues into the post-disruption period causes the post-
disruption SC instability, resulting in further delivery delays and non-recovery of
SC performance. Second, a smooth transition from the contingency policy through a
special ‘revival policy’ to the normal operation mode allows the negative effects of
the disruption tails to be partially mitigated. These results suggest three managerial
insights. First, contingency policies need to be applied during the disruption period
to avoid disruption tails. Second, recovery policies need to be extended towards an
integrated consideration of both disruption and the post-disruption periods. Third,
revival policies need to be developed for the transition from the contingency to the
disruption-free operation mode. A revival policy intends to mitigate the negative
impact of the disruption tails and stabilize the SC control policies and performance.
The experimental results suggest the revival policy should be included in the SC
resilience framework if the performance cannot be recovered fully after the capacity
recovery.
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1 Introduction

Disruptions in supply chain (SC) capacities may happen at both production factories
and at logistics facilities, such as distribution centres (DC) (Snyder and Daskin 2005;
Tang 2006; Klibi et al. 2010; Simangunsong et al. 2012; Simchi-Levi et al. 2015;
Gunasekaran et al. 2015; Sokolov et al. 2016; Tukamuhabwa et al. 2015; Spiegler
et al. 2016; Kamalahmadi and Mellat-Parast 2016; Fahimnia et al. 2016; Jain et al.
2017; Rezapour et al. 2017; Ivanov 2018a; Dolgui et al. 2018; Ivanov et al. 2019).
Disruption risks can be caused by natural or man-made catastrophes, political crises,
strikes or legal disputes. These disruptions are rarely localized at the disrupted node
and frequently propagate in the SC causing the ripple effect (Liberatore et al. 2012;
Ivanov et al. 2014a, b; Han and Shin 2016; Scheibe and Blackhurst 2018; Ivanov
2018a, b, Namdar et al. 2018; Levner and Ptuskin 2017; Dolgui et al. 2018; Ivanov
et al. 2019; Ivanov and Dolgui 2018).

In regard to the disruption risks, resilient production backup and contingency
inventory control policies became a visible research avenue over the last decade
(Snyder and Daskin 2005; Tomlin 2006; Song and Zipkin 2009; Yang et al. 2009;
Ivanov et al. 2010; Federgruen and Yang 2011; Atan and Snyder 2012; Lim et al.
2012; Kouvelis and Li 2012; Schmitt and Singh 2012; Ivanov and Sokolov 2013; Qi
2013; Kim and Tomlin 2013; Hishamuddin et al. 2013; Raj et al. 2015; Choi et al.
2016; Ivanov et al. 2016; Govindan et al. 2016; Sawik 2017; Mizgier 2017; Schmitt
et al. 2017; Dubey et al. 2017; Namdar et al. 2018; Sawik 2018; He et al. 2018;
Dolgui et al. 2019; Pavlov et al. 2019). Despite significant progress in theoretical
studies and empirical principles to manage severe disruptions in the SC at proactive
and reactive stages, recent literature has usually assumed an immediate transition to
a normal operation mode at the time of capacity recovery. Moreover, a full system
stabilization after the capacity recovery has typically been assumed without consid-
ering any residual effects such as delayed orders and backlogs accumulated over the
destabilized system states during the disruption time.

This study closes the research gap described above with the objective of revealing
the dependencies between SC disruptions, contingency policies and transition to
the post-disruption operation mode. First, the analysis is conducted in regard to
disruption-driven changes in SC behaviour resulting in delayed orders and backlogs,
the accumulation of which can be considered ‘disruption tails’. The influence of
these tails during the post-disruption time in the course of transition into the normal
operation mode is investigated. A comparison of SC operation with and without
contingency policy is performed to compare the impact of disruption tails on SC
operational and financial performance. Second, a comparison of SC operational and
financial performance between an immediate deactivation of the contingency plans
and installation of the normal operation policies after capacity recovery and usage
of the revival policy is studied. These experiments aim at providing managerial
insights on the application of contingency production and inventory control policies
during the disruption period and revival policies during the transition time to normal
operation after capacity recovery.
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The rest of this study is organized as follows. Section 2 describes recent literature
on recovery policies in the SC and simulation studies on SC disruptions. Section 3
is devoted to case study presentation and research methodology description. Experi-
mental settings with production and distribution disruptions are the focus of Sects. 4
and 5, respectively. Section 6 concludes the paper by summarizing themost important
insights, limitations of this study and future research avenues.

2 State of the Art

2.1 Recovery Policies in the Supply Chain

SC resilience has been a prominent research topic for the last 10 years. Proactive
and reactive resiliency policies have been developed with the aim of protecting the
SC from disruption before it happens, and ensuring mitigation of the disruption after
it happens (Ho et al. 2015; Snyder et al. 2016; Ivanov 2017). Given the nature of this
study, this literature analysis is focused on contingency inventory control policies
and backup sourcing when used during the recovery phase.

Assigning customers to disruption-prone locations to minimize total SC costs,
Snyder and Daskin (2005) optimized SC design. To analyse the dynamic effects of
inventory buffers when suppliers are unreliable, Federgruen and Yang (2011) created
a general periodic review model. To capture the trade-off between inventory policies
and disruption risks for an unreliable, dual sourcing supply network, Iakovou et al.
(2010) studied a single period stochastic inventory model for both capacitated and
incapacitated cases, and evaluated different contingency strategies. In a study byShao
and Dong (2012), an assemble-to-order system with a backup source is analysed.
This system offers on-time delivery and a policy inwhich customers are compensated
for waiting in each period of disruption. The results of the study imply that at the start
of an SC disruption a backup source strategy is preferable, while a compensation
strategy is preferable as time goes on. In the specific example considered, a dynamic
mixed strategy with customer choices is better than a backup sourcing strategy. The
manufacturer’s decision regarding which reactive strategy to choose is determined
according to backup costs and customer sensitivity.

Considering supplier capacity constraints, Costantino et al. (2012) created an
agile reconfiguration approach to resilient SC design. Using diagraph modelling and
integer linear programming, this approach optimizes SC design. In the study by
Benyoucef et al. (2013), SC design is considered in the case of unreliable suppliers,
subject to minimization of fixed location, inventory and safety stock costs at distri-
bution centres, and ordering and transportation costs throughout the SC. Ivanov et al.
(2013) combined linear programming and optimal program control in a model that
included SC reconfiguration as a reaction to disruptions.

Hu et al. (2013) studied the incentives, whether ex ante (prior to disruption) or ex
post (after disruption), which drive a supplier’s investment in capacity restoration.
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According to their findings, the ex ante commitment is weakly preferred by both the
buyer and the supplier when the buyer provides incentives. According to Kim and
Tomlin (2013), if recovery capacity is the only option, then firms, in a decentralized
setting, overinvest in capacity, which results in higher system availability at a higher
cost. Yet, when it is possible to invest in both, then firms tend to underinvest in
preventing failure and overinvest in recovery capacity.

In the study by Qi (2013), a continuous review inventory model including random
disruptions for the main supplier was developed. Considering transportation disrup-
tion, Hishamuddin et al. (2013) showed a recovery model of a two-echelon serial
SC, which allowed the determination of optimal ordering and production quantities
during the recovery period. This minimized total costs.

Considering structural dynamics, Ivanov et al. (2014b) constructed amulti-period,
multi-commodity SC model, the formulation of which distributes static as well as
dynamicparameters between the linear programmingand controlmodels. In the study
by Ivanov et al. (2016), an approach for analysing several proactive SC structures,
determining recovery policies to redirect material flows in two disruption scenarios,
and measuring the performance impact on service levels and costs was developed.
Dupont et al. (2017) applied a mixed-integer linear programming method to develop
a model for helping an SC manager to select a supplier portfolio with disruption
risk considerations. Their study allows consideration of the risk sensitivity (i.e. risk
aversion and loss aversion) of the SC manager in the modelling process.

While the Dupont et al. study (2017) considers deterministic demand, Sawik
(2013) developed a stochastic programming model for supplier selection and order
allocation in light of disruption risks, and conceptualized a portfolio approach to
SC disruption management (Sawik 2017). Sawik’s works also consider an SC man-
ager’s risk sensitivity. Khalili et al. (2017) analysed integrated production–distribu-
tion planning in the SC considering excessive capacities at the production plants,
backup routes for shipments and pre-positioning of emergency inventory in distri-
bution centres. They also proposed a new indicator for optimizing the SC resilience
level based on restoration of lost capacities.

Amiri-Aref et al. (2018) studied a multi-period location-inventory optimization
problem in a multi-echelon SC characterized by uncertain demand and a multi-
sourcing. The authors integrated inventory planning decisions made under a reorder
point order-up-to-level (s, S) policy, with the location-allocation design decisions
to cope with demand uncertainty. A two-stage stochastic mathematical model that
maximizes the total expected supply chain network profit is proposed. The results
show the efficiency of the linear approximation of the (s, S) policy at the strategic level
to produce robust design solutions under uncertainty. Further insights from this study
underline the sensitivity of the design solution to the demand type and the impact
of the inventory holding costs and backorder costs, especially under non-stationary
processes.
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2.2 Simulation Studies in Supply Chain Disruptions

Considering severe SC disruptions for resilience analysis and using discrete event
simulation, Carvalho et al. (2012) analysed the behaviour of an SC in four stages
considering several recovery strategies and the performance of the SC during dis-
ruption. The scenarios the authors studied were different in terms of whether or not
there was a disturbance and whether or not a mitigation strategy was in place. The
ARENA-based simulation model they developed provided for the determination of
lead time rations and total SC costs. In the study by Schmitt and Singh (2012), disrup-
tion risk was measured by using ‘weeks of recovery’ as a proxy for the amplification
of disruption. The scenarios developed were both proactive and reactive and satisfied
demand by making use of another network location, obtaining material or transport
from other sources or routes and retaining inventory reserves along the whole SC.
Utilizing the duration and likelihood of closure in a completely observed, exogenous
Markov chain model, Lewis et al. (2013) studied risks of disruption at ports of entry.
The periodic review inventory control model that the authors developed implies that
in the scenarios developed operating margins could either decrease 10% as a result
of relatively long port of entry closures or, without contingency plans, be eliminated
entirely. In addition, anticipated holding and penalty costs could increase by 20%
when port of entry utilization is expected to increase.

In a four-stage SC created in the software any Logistix, Ivanov et al. (2017a, b, c)
used simulation to study the SC’s dynamic behaviour and the impact of disruptions
on performance. The authors observed the ripple effect as well as studied proactive
and reactive strategies. The results of the study imply that disruptions upstreammore
often lead to the ripple effect when there is a single source policy in place, and safety
stock should be increased at facilities downstream from elements of the SC that are
risky. In addition, ripple effect propagation towards the customers is decreased when
inventory levels are higher in the downstreamSC.However, increasing safety stock at
disruption-risky facilities must be carefully considered, since when disruption-risky
facilities cannot perform outbound operations then this will not effectively decrease
the ripple effect. This study also pointed out that the ripple effect impacts service
level and order fulfilment more than the duration of the disruption, which indicates
that dual sourcing at the bottlenecks of SCs, as well as large inventory holdings
downstream from facilities that are disruption risky are of greater importance than
quick investments in fast recovery.

A multi-stage SC with suppliers, factory, distribution centres and customers was
studied by Ivanov (2017b). As in previous studies, the findings show a time lag
between the start of recovery and the impact of that recovery on the closing of the
service-level gap: proactive SC policies must account for the duration of disruptions.
Using AnyLogic, Ivanov and Rozhkov (2017) analysed how capacity disruptions
impact the performance of policies for ordering and production in a real-life retail
SC with considerations of product perishability. The findings of the study imply that
SCmanagers should consider the effects of ‘postponed redundancy’when theydesign
resilient SCs. The effect is concernedwith how redundant production ordering system
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behaviour during the period of disruption impacts the production ordering system
post-disruption. Redundant behaviour during the disruption period might include
redundant production or deliveries which are downstream from the affected part of
the SC, or redundant order allocations for upstream facilities which are disrupted.
In addition, the authors created and tested a coordinated SC production ordering
contingency policy in and after the disruption in order to decrease the negative effects
of ‘postponed redundancy’.

Schmitt et al. (2017) investigated adjustments in order policies in the framework
of a four-stage assembly SC. Simulation experiments revealed that longer lasting
impacts occur from disruptions at echelons close to ultimate consumption. More-
over, the results show that expediting inventories in the disrupted mode can trigger
unintended bullwhip effects, and hurt rather than help overall performance. As an
alternative, dynamic order-up-to policies perform more promisingly as an adaptive
mitigation tool. Trucco et al. (2017) analysed an Italian FMCG supply chain and sim-
ulated its resilience in AnyLogic. The results suggest that it is important to develop
coordinated control strategies in the event of severe supply chain disruptions. These
results are in line with the insights provided in the study by Schmitt et al. (2017),
Ivanov and Rozhkov (2017) and Ivanov (2019).

3 Case Study Description and Methodology

3.1 Case Studies

Two case studies are considered in this paper in regard to both production and distri-
bution capacity disruptions that occurred in reality and forwhich the authors observed
real company operational policies and performance.

3.1.1 Production Capacity Disruption

An FMCG company, which produces juices and beverages in Russian contracted
and proprietary plants, is the first case study (Ivanov and Rozhkov 2017). The data
of the company, covering a period from 2013–2015, was gathered in 2016. The data
is primarily concerned with the plants the company owned and the plants which it
subcontracted. This includes real and forecasted demand data, collected from internal
company report, as well as inventory, production and shipment control data were
obtained by observing the management information system in a joint analysis with
factory and DC department managers.

The study concerns part of the FMCG SC. It is a two-stage SC with five DCs and
one factory. This factory delivers the product ‘juice’, which has an average shelf life
of 270–360 days, to the DCs. Product perishability is a key factor of the SC. Demand
forecasts are the basis for ordering at the DCs, and the inventory policy is (Q, s, r).
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The inventory level y is forecasted for n periods at each period r . Subject tominimum
reorder quantity Q, a new order, size Or , with a planned delivery period r + n is
placed when y is less than reorder point s. The planning is made for n+m−1 periods
when production is only possible for each m period. For all customers, shipments
follow a first expired first out (FEFO) policy.

Decreases in safety stock and increases in the frequency of transportation are the
typical results of the limits of product perishability. Subject to minimum service
level, with a targeted service level of 98.5%, the SC planning accounts for the risk
of writing off products. The other constraints on shelf life are taken from contract
agreements with major food retail companies which operate in Russia (ranging from
62 to 70%). By considering the risk of production capacity disruption, safety stock
may be increased. The factory’s production capacity is subject to random disruptions.
Disruptions of production capacity occurred often in 2015 and 2016, which caused
interruptions of deliveries from plants to DCs. These interruptions lasted anywhere
from 2 days to 3 weeks.

The primary focus of this study is how disruptions of production capacity impact
SC performance, accounting for a two-component demand structure and limited
expiration dates. A discrete event simulation model was developed in AnyLogic to
show the SC dynamics and ascertain reorder, production, and shipment numbers and
times from theDCs to the factory. Each shipment, disruption and recovery ismodelled
as an event, while information exchange between DCs and the factory are obtained
from state charts and messages. In Appendix 1, the mathematical formulation of this
model can be found.

The planning algorithms account for the fact that the stock deteriorates and the
batch, which is ready to ship now, might be unusable in a few weeks. A week is
the basic time unit. It is assumed that plans are made each week. However, several
parameters are measured in days. Heuristics were developed, tried out and imple-
mented for daily usewith the help of the analysts of the company’s SC. As is common
for the food industry, the demand model is subject to randomness and seasonal fac-
tors, which according to the company’s data cause demand variations of 50% within
the planning horizon. When demand rises or falls by 20%, it is possible to have
long term, 4-week duration demand changes. It is possible to describe both factors
of demand variation according to uniform or triangular distribution. Along with an
aggregation of historic demand from 60 periods, uniform distribution was used in
the study experiments. The ordering policy is similar to an economic lot schedul-
ing model’s basic planning process (Wagner and Whitin 1958). Differences include
remaining shelf life, based on Nahmia’s (1980) mathematical approach, and consid-
eration of the demand structure. In the simulation model, demand non-stationarity
is an individual function, and 13 periods constitute the model year. The seasonal
demand coefficient k is defined using a basic demand level for each period r. The
planning of production was found on a discrete event simulation approach: when a
DC’s inventory reaches reorder point, then another production order is made. The
size of the order is a multiple of the minimum lot size, and cannot be cancelled. The
planning of production accounts for lead time from factory to DC. When a batch’s
computed production period is met, then orders enter the queues in the system. This
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applies to all products. If an order remains in the queues longer than the DC’s plan-
ning horizon, then the order goes out of the system, but this does not result in lost
order costs. If the waiting time constraint is reached, then the order is moved to the
production module. The start times of processing are based on the production week
computed. Schedule smoothing, or early production, is not allowed.

The setups of production utilize time and cost containment. Simultaneously, infre-
quent setups can cause delivery delays and increased variability in lead times. In
the model, setups are controlled in planned and disrupted modes. Without capacity
disruption, the planned mode uses lot-size-based planning. This means that if five
orders for one product, each for 10,000 product units, are in waiting in the queue
with a minimum lot size of 40,000 units, then four of the five orders will be batched
and produced together as one lot. After this, the setup which was planned will be
completed.

When there is a capacity shortage as a result, e.g. of a demand peak or disruption,
then flexible setup rules are followed. The queue size, parameter QC, is monitored.
The inventory of raw material in the system of production has no limit. First, in the
sequence, the allocated order Or or Or is sent forward in the queue μr . The time
for manufacture tm is calculated on the basis of a function of order quantity Or and
production capacity K .

At the end, the analysis of SC resilience is made according to random disruptions
which cause a decrease of 50% in production capacity (cf. Eq. 2). In the model,
disruptions are random events. Normal distribution governs the intervals between
disruptions tdp and their duration tds . This hypothetical assumption of normal distri-
bution for the occurrence of disruption and recovery period is in part proved by real
data.

3.1.2 Distribution Capacity Disruption

The second case study is based on another company that produces non-perishable
products for four regional markets. Without loss of generality, a fragment of the SC
considered comprises three production plants and four regional distribution centres
(DCs) (Fig. 1).

The DC in region 1 crashed due to construction quality problems. A huge amount
of inventory was destroyed. At the day of the DC disruption, the experts estimate
that the reconstruction of the DC will take about 4 months.

The following data (but not limited to) has been collected at the company:

• SC design: locations of SC elements (factories and DCs) and links in between
them.

• Demand in the markets and its uncertainty.
• Parameters of SC elements (e.g. production capacities, throughputs, prices and
costs).

• Operating policies of SC elements (e.g. inventory control policy, production con-
trol policy, shipment control policy and sourcing control policy).
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Fig. 1 Supply chain design structure

This data was observed for a period of 3 years. Moreover, we observed the actual
sales and service-level data following the disruption at the DC described. A drastic
decrease was observed in both sales and service-level dynamics.

The following control algorithms are implemented in the simulation model.
Demand in the markets is considered as an aggregated, normally distributed demand
of all customers in this region characterized by a seasonal component subject to four
periods. Weekly order placements from the markets to the DCs are considered.

A continuous review system is applied at the DCs. Backordering is allowed so that
no orders can be lost. For simplification, an average lead time from DC to the market
is considered: it is assumed that all customers within the region can be reached during
this lead time. According to demand generation algorithms, orders are placed at the
DCs. Subject to inventory-on-hand, safety stock, lead times, reorder point, and the
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target inventory, shipments to the markets and replenishment from the factories is
controlled.

A transportation order aggregation period of 5 days with the less-than-truckload
(LTL) control policy has been considered. Transportation time has been considered as
a normally distributed value. (cf. TableA2 inAppendix 2). Each factory is considered
as a single-stage continuous production system with fixed production time and no
setups. Production capacity is limited by the unit production time. For example, a
production time of 0.4 days for m3 means maximum daily capacity of 2.5 m3 at a
factory.Without loss of generality, no further batching rules are considered. Multiple
sourcing control with the preference ‘closest location’ is used. The algorithm decides
where to source the demand from the paths ‘Markets—DCs’ and ‘DCs—Factories’
subject to closest facility location with available inventory.

A set of key performance indicators (KPI) has been established to analyse the
simulation results. The expected lead time (ELT) service level is the ratio of orders
delivered within the ‘Expected lead time’ to total orders. The expected lead time is a
parameter that is set up for eachmarket. Itmeasures the timebetween the placement of
an order at a DC and receiving the goods from the DC. Current backlog orders depict
the currently unprocessed number of orders, i.e. the orders which were received but
have not been shipped yet. It is updated on a daily basis when incoming orders are
received, a new shipment is sent, incoming orders are lost, or an incoming shipment
is processed (in accordance with processing time set for the facility). Delayed orders
show statistics on the quantity of orders, which failed to arrive within the specified,
expected lead time. The data is updated each time an order is delayed.

For the problem considered above, a discrete event simulation model and a net-
work optimization model have been developed in anyLogistix (see Appendix 2).
anyLogistix is a simulation and optimization tool developed by the AnyLogic Com-
pany. The optimization functionality of anyLogistix is implemented on the CPLEX
basis in a network optimization module. Simulation functionality in anyLogistix is
based on discrete event simulation with agents that can be used either in a standard
setting or be customized in AnyLogic. anyLogistix allows a wide range of experi-
ments in regard to facility location planning, multi-stage and multi-period SC design
and planning, inventory control, transportation control and sourcing analysis in both
deterministic and stochastic settings. Variation and comparison experiments can be
performed. Modelling of the SC disruptions is implemented using events and state
change diagrams.

3.2 Research Methodology

Because the problem statements concerning disruption propagation deal with time-
dependent settings which include dynamic inventory control, transportation control,
sourcing control and production control policies, the simulation methodology for the
given problem domain has earned an important role in academic research (Ivanov
2017). In comparison to analytical closed-form analysis, simulation has the advan-
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tage that it can handle complex problem settings with situational behaviour changes
in the system over time. This is inevitable in considering dynamic changes in SC
organizational and parametrical structures (Ivanov et al. 2010).

In this study, we use discrete event simulation methods. For validation, the net-
work optimization with and without disruption consideration has been performed
in CPLEX using anyLogistix optimization and simulation software. The optimiza-
tion experiments allowed a determination of the aggregate annual throughputs which
are used for validation of the simulation results. The simulations in anyLogistix are
run over the optimization results and include additional, time-dependent inventory,
production, transportation and sourcing control policies which are difficult to imple-
ment at the network optimization level. In addition, analytical computations using
standard inventory control models have been done. For verification, the following
methods have been used: simulation run over network optimization results, output
data analysis in the logfiles and testingwith the help of deterministic demand and lead
time data. Moreover, replications and a warming up time with some initial inventory
have been applied for the testing. The disruptions have been scheduled in the middle
of the simulation period in order to avoid the ‘noise’ of the simulation experiment
start. Variation experiments to validate the simulation model have been performed.
In particular, mean and standard deviation of demand, safety stock and production
capacity have been varied to confirm model robustness.

The first stage of the experiments contains production disruption analysis with a
focus on contingency inventory control policy impacts. The second part of the exper-
iments addresses DC disruptions focusing on analysis of survival policy impacts.

At both stages mentioned above, the analysis is conducted in regard to disruption-
driven changes in SC behaviour resulting in delayed orders and backlogs the accu-
mulation of which can be considered ‘disruption tails’. The influence of these tails
at the time of post-disruption in the course of transition into the normal operation
mode is investigated. A comparison of SC operations with and without contingency
policy will be made to compare the impact of disruption tails on SC performance.
A comparison of SC performance between an immediate deactivation of the con-
tingency plans and installation of the normal operation policies after the capacity
recovery and usage of the revival policy will be performed. These experiments aim
at providing managerial insights on the application of contingency production and
inventory control policies during the disruption period and revival policies at the
transition time to normal operation after capacity recovery.

The contingency plan includes the installation of additional links in the SC which
lead from the factories directly to the market 1. This implies a longer lead time (cf.
Table A2 in Appendix).

The revival policy includes the contingency plan and additional elements such as:

• backup contractors,
• capacity flexibility (capacities of own plant in region 1) and
• using capacity of other own plants in neighbourhood countries.

that are activated during the disruption period to support the contingency plan actions.
The details of revival policy activation will be given in Sect. 5.
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Fig. 2 Dynamics of customer order fulfilment

4 Production Disruptions Experiments

4.1 No Contingency Inventory Control Policy

In Fig. 2, the simulated dynamics of customer order fulfilment is presented subject
to the model and data in Appendix 1.

In period #110, the disruption begins and continues for 26 weeks, and then
30 weeks of a recovery period follow. The DC’s inventory is accessible through
period #117, because immediately before the disruption period a delivery was com-
pleted from the factory to the DC. Because 50% of the capacity remains operable,
we know that in periods #120 and #122, two small deliveries from the factory to the
DCwere made. Higher inventory costs result from several delayed production orders
being shipped to the DC after the capacity recovery. Following this, the intensity of
the order allocations changes again. The result of the high inventory levels is that
write risks are increased and the system attempts to allocate fewer order for produc-
tion. Penalties may occur if deliveries are delayed, e.g. inventory becomes zero in
period #165. This indicates lost sales. This in turn shows that both product shortages
and write-off risks are caused by production capacity disruptions.

Given the higher inventory costs caused by the shipment of the delayed production
orders, write-off risks are increased and the system tries to allocate fewer production
orders, as stated. These SC dynamics can be called ‘postponed redundancy’. This
refers to how the production ordering system behaviour in the after-disruption period
is impacted by redundant production ordering systembehaviour during the disruption
period (Ivanov and Rozhkov 2017). Examples of redundant SC behaviour during the
disruption periodmight include redundant production or deliveries downstream from
the disruption, or redundant order allocations made to facilities upstream from the
disruption.

Following production capacity disruption and stabilization, the increases in lost
orders rise significantly in several periods after capacity disruption. Nearly directly
following production disruption, there is an increase in delayed orders. The period
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Fig. 3 Impact of waiting order cancellation

of stabilization, the start of which is closely connected to inventory reaching its
maximum level in the SC, lasts longer for lost than delayed orders.

The SC’s average inventory does not fall to zero during disruption because the
factory remains capable of operating at 50%production capacity.A peak in inventory,
related to disruption tails, occurs following the recovery of capacity. As a result, we
understand that when there are increases in delayed orders while there are stabilized
service levels, then there will be a significant increase in inventory in the SC soon
after.

4.2 Contingency Inventory Control Policy

Measures can be taken to mitigate increases in inventory while the SC recovers.
Particularly, it is recommended to cancel each waiting production order in the period
of capacity recovery. Essentially, the orders which are waiting in the queue in the
recovery period have a delay of at least one period. However, those orders which
are allocated should remain. The results of this hypothesis simulation are shown in
Fig. 3.

By making a comparison of Figs. 2 and 3, we understand that cancelling the
waiting orders during the period of capacity recovery means that overstocking and
write-off risks can be avoided. The inventory level is not greater than disruption-
free mode levels. As a result, we surmise that the impact of disruption tails can be
mitigated by a contingency production-inventory control policy, i.e. cancelling the
waiting orders in the production-inventory system.
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5 Distribution Centre Disruption Experiments

Simulation experiments have been conducted subject to the following three settings:

• without the contingency policy,
• with the contingency policy that implies an installation of additional links in the SC
from the factories to themarket 1 (cf Fig. 1) (These links are activated immediately
after the DC1 disruption and function until the DC1 recovery.),

• with the contingency and revival policy that includes such emergency sources as
backup contractors, capacity flexibility (capacities of own plant in region 1) and
using capacity of other own plants in neighbourhood countries.

In line with the study by Ivanov (2017), we assume a time lag between the disruption,
activating the contingency policy capacities and the first effects of these contingency
policy operations. The emergency sources operate according to the following logic:
no initial inventory is available; 2 days after the DC1 disruption, the emergency
sources start producing for the market 1; first deliveries to the market 1 arrive in
about 18–20 days after the disruption date.

The results are shown in Figs. 4 and 5.
Figures 4 and5depict the dynamics of order fulfilment and service level (measured

in orders; the diagram represents the average) following the disruption on day 91 and
lasting until the DC1 recovery on day 213. The delayed and backlog orders can be
observed in the cases without any contingency policy and with the contingency even
in the post-disruption period representing the disruption tails. The revival policy
helps to improve the service level and reduce the impacts of the disruption tail in
terms of delayed and backlog orders in the post-recovery period.

When observing Figs. 4 and 5, an increase in service level, a reduction in the
number of delayed orders during the disruption period and an elimination of delayed
orders after the disruption recovery can be observed with a transition from the case
without contingency policy, through the introduction of the contingency policy, to
the usage of the revival policy. The revival policy allows stabilization of the order
fulfilment dynamics resulting in a positive effect on service-level performance. The
delayed orders accumulated over the disruption period do not influence SC oper-
ations and performance since new contracting plants compensate for this with the
help of additional production capacity. This allows the service level to recover faster
as compared to the usage of recovery policy only (Figs. 4 and 5). This observation
provides the evidence of disruption tail mitigation with the help of a revival policy
based on a production capacity increase in the post-disruption period. It indicates
the necessity of considering not only contingency recovery policies, but also the
revival policies in the SC which may align normal operation policy and deactivation
of the contingency policies. The insights gained recommend inclusion of the revival
policy in the SC resilience framework (Fig. 6).

The disruption profile constituted in the work by Sheffi and Rice (2005) includes
eight phases: preparation actions, the disruptive event, the first response, the initial
impact, the full impact, the recovery preparations and the recovery and long-term
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(a) service level dynamics without contingency and revival policy

(b) service level dynamics with contingency policy

(c) service level dynamics with contingency and revival policy

Fig. 4 Service-level dynamics. a service-level dynamics without contingency and revival policy
b service-level dynamics with contingency policy c service-level dynamics with contingency and
revival policy
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(a) Order fulfillment dynamics without contingency and revival policy

(b) Order fulfillment dynamics with contingency policy

(c) Order fulfillment dynamics with contingency and revival policy

Fig. 5 Order fulfilment dynamics. a Order fulfilment dynamics without contingency and revival
policy b Order fulfilment dynamics with contingency policy c Order fulfilment dynamics with
contingency and revival policy
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Fig. 6 Extended supply chain resilience framework (extended from Sheffi and Rice 2005)

impact. Our experimental results suggest including the revival policy into the SC
resilience framework if the performance cannot be recovered fully after the capacity
recovery. The revival policy extends the SC resilience framework at the stage of
transition from recovery to post-disruption period. The rationale for inclusion of a
revival policy into the SC resilience framework is the fact that an immediate tran-
sition from the contingency plan during the disruption and recovery period to the
normal operation mode may be complicated by disruption tails. In addition, of the
companies operated with forecasted recovery dates, the inertness of the decisions
on activation and deactivation of contingency plans frequently leads to disruption
tails. The disruption tails represent residue from the disruption period, such as back-
log and delayed orders, which may influence SC operations and performance in the
post-disruption mode. The revival policy intends to mitigate the negative impact of
these disruption tails and stabilize the SC control policies and long-term performance
impact.

6 Conclusion

Despite significant progress in theoretical studies and empirical principles for man-
aging severe disruptions in the SC at proactive and reactive stages, recent literature
has mostly assumed an immediate transition to a normal operation mode at the time
of capacity recovery. Moreover, full system stabilization after capacity recovery has
been assumed without considering any residue, such as delayed orders accumulated
over the destabilized system states during the disruption time. The experiments per-
formed allowed revelation of the disruption tails, which are the repercussions of the
backlogs and delayed orders accumulated over the disruption period.
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Post-disruption instability, i.e. the disruption tails in the SC has been observed in
this study as a consequence of the production ordering behaviour during the disrup-
tion period. Disruption tails occur in two cases. The first reason for disruption tails is
non-coordinated inventory and production control policies, i.e. if DCs and customers
continue placing new orders even if the production capacity is disrupted. A transition
of backlog and delayed order residues into the post-disruption period destabilizes
the SC resulting in further delivery delays and non-recovery of the operational and
financial SC performance. These orders are accumulated in the waiting lines of pro-
duction systems and increase the delays and backlogs. After the capacity recovery,
the production system needs to produce both the backlog and new incoming orders.
If the recovered production capacity is lower than the total of the backlog and new
incoming orders, this results in new delays and backlogs. If the recovered production
capacity is sufficient to cover both the total of the backlog and new incoming orders,
this results into disproportionally high delivery quantities at the DCs. In turn, the
DCs stop ordering because of the high inventory, and this results in some periods
having new shortages. The second reason for disruption tails is the inertness of the
decisions on activation and deactivation of contingency plans. An immediate deac-
tivation of the contingency plans and installation of the normal operation policies
after capacity recovery in the presence of the delayed orders and backlogs also results
in the destabilization of inventory and production systems and in the new delayed
orders and backlogs.

Two case studies with different settings, perishable and non-perishable products,
and different data sets have been considered and the experiments with both case stud-
ies confirmed the disruption tails existence. With the results gained, this study closes
the research gap described above with the objective of revealing the dependencies
between SC disruptions, contingency policies and transition to the post-disruption
operation mode.

The results obtained suggest two managerial insights. First, contingency produc-
tion and inventory control policies need to be applied during the disruption period.
Moreover, recovery policies should not be limited to the disruption period only, they
should also consider the post-disruption period. Second, special actions need to be
developed for the transition time from the contingency plan to the disruption-free
operationmode.We call these actions ‘revival policy’. The experimental results argue
in favour of revival policies to mitigate the impact of the disruption tails. Moreover,
a revival policy extends the SC resilience framework at the stage of transition from
recovery to post-disruption period.

We provide examples of contingency policies for production factory and DC
disruptions as well as for the revival SC policy. Disruption tails can be reduced
by applying a contingency policy during the disruption time when the production
control system cancels excessive DC orders waiting in the production system queues
because of disrupted manufacturing capacities. Alternatively, the DCs need to adjust
their ordering policy subject to the reduced production capacity to avoid long waiting
times and the resulting delayed orders, backlogs, service-level reductions and the
production-inventory control system destabilization after the capacity recovery. As
an example of the revival policy, an increase in SC production capacity has been
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suggested by means of contracting additional plants prior to normal contingency
recovery policy deactivation. This allows avoidance of the disruption tails in the
post-disruption period.

Concerning the limitations of this study, the contextual insights gained experi-
mentally need to be pointed out. Further research might include analysis of other
industries and datasets. Moreover, analytical studies are needed to provide more
generalizable theoretical results and practical recommendations, i.e. in the area of
recovery policies with the post-disruption period considerations.

Appendix 1. Mathematical Model for Section 4

Indices

α Priority customer index

β Non-priority customer index

f Actual demand index

r Period index, r ∈ [1; T ])
ST Standard deviation index

l Trend variation index

i, j Products 1 and 2, respectively

g Distribution centre number, g ∈ [1;G])

z DC order index n ∈ [1; N ], where N is total number of
DC orders

ω Current forecasting period, ω ∈ [r; r + LT + m − 1]

w Index of products with expired date

h Index of setups at the factory, h ∈ [1; Nch]

ds Disrupted

ch Setup
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Parameters

T Number of planning periods in planning horizon

G Number of DCs

d Basis demand in a r-period, in units

k Seasonal demand coefficient in a r-period

δST Demand standard deviation r-period

δl Demand trend parameter for the length of r-periods

dfr Actual demand in a r-period, in units

ν Priority customer rate

s Reorder point, in units

Q Minimum reorder quantity, in units

LT Lead time, in periods

m Frequency of batch setups in the factory, in periods

pα Minimum requirement on the rest product freshness
for α-customers

K Maximum production capacity per period, in units

B Minimum batch size, in units

QC Maximum production order queue length, in orders

tch Setup time

tdp Disruption time

tds Disruption duration, in periods

ξ Capacity reduction coefficient, in units

ch Unit inventory holding costs per period, in $

ctr Unit transportation costs per delivery, in $

cfix Fixed production costs, in $ per capacity unit

cch Setup costs, in $

p Unit price, in $

u Penalty for non-delivered products, in $

SLmin Minimum service level, %

η Shelf life
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Variables

O Order quantity from DC to factory, in units

F Production date for a z-batch, period

H Total holding costs

T Total transportation costs

W Total write-off costs

U Total penalty costs

M Total manufacturing costs

TC Total costs

μ Processing queue length, in units

tm Production time for a batch, in periods

y Inventory in a r-period

Objective function

minTC =H + T + W +U + M =
Total supply chain costs

=H =
1200∑

r=1

5∑

g=1

ch · ygir +
1200∑

r=1

5∑

g=1

ch · ygjr+

Total inventory holding costs

+T =
Ni∑

n=1

5∑

g=1

ctr · Lg ∗ Og
in +

N j∑

n=1

5∑

g=1

ctr · LT g · Og
jn+

Total transportation costs

+W =
∑1200

r=1

∑5

g=1
p · ygwir +

∑1200

r=1

∑5

g=1
p · ygw jr+

Total wri te − of f costs

+U =
∑1200

r=1

∑5

g=1
ugir +

∑1200

r=1

∑5

g=1
ugjr+

Total penalty costs

+M =
∑Ni

ch

h=1
cch+

∑1200

r=1
c f i x · K

Total manu f acturing costs (1)

Constraints

Kds = K · ξ (2)

∀SLg ≥ SLmin (3)

μ jr > QC1 (4)
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μ jr − μir > QC2 (5)

Oi ≥ Bi (6)

si, j ∈ int (7)

si, j ≥ 0 (8)

Two-stage, multi-period SC planning with multiple constraints on production
capacity, setups, shipments and inventory control is the object under investigation.
A two-product system with independent seasonal stochastic demand with high vari-
ability is analysed. The planning horizon is 7 weeks. Production planning decisions
include inventory dynamics at the DC. We consider both product availability and
‘freshness’ level requirements in service levels although customers are segmented
according to their freshness requirements.

The fixed parameters include minimum order size and inventory level at DCs,
minimum production batch size, queue size limits, setup time, production capacity,
wastage, inventory holding, production, setup and transportation costs. Also included
are the mean demand and its standard deviation, shelf life and freshness threshold,
production order allocation interval, penalties, mean and standard deviation of time
duration and interval of capacity breakdown, and the remaining capacity percentage
after the disruption.

Production constraints include minimum lot size, maximum capacity and setup
time. Inventory constraints are comprised of minimum inventory levels (i.e. reorder
point expressed in days of supply availability) and minimum order size. Outbound
deliveries from distribution centres follow the FEFO rule. A continuous review sys-
tem with fixed order quantity and pull production strategy is considered.

The objective is to minimize total system costs while maintaining the required
service level. Total costs are computed as a sum of total holding costs, transportation
costs, write-off costs, penalty costs and manufacturing costs (Eq. 1). Unit inventory
holding costs ch and transportation costs ctr are used to compute total costs. In a
case of inventory with expired date yw, write-off costs increase proportionally to the
purchasing prices p. If the customer order size exceeds the inventory at DC, a penalty
u is applied. Manufacturing costs depend on the number of setup and fixed costs for
capacity units, cfix.

Service level is calculated as a ratio of products shipped divided by products
ordered with no backlogging within model period. SC performance is therefore
measured with the help of total costs and service level. Total cost metrics are com-
prised of inventory holding costs at the DCs, write-off costs, transportation costs,
production costs and penalties. Holding costs are computed subject to interest rates.
Write-off costs are computed based on the product costs. Transportation costs depend
on the distance, order quantity and shipment tariff. Production costs include fixed
equipment-related costs (proportional to the capacity units) and setup costs. Penalties
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are applied if the order size from the key customer exceeds the available delivery
quantity. Service level is computed as a ratio of the delivered and ordered products.

According to Eq. (2), production capacity can be reduced by a disruption coeffi-
cient ξ . By default, the following parameters are used: mean interval is 100 periods
and mean duration of disruption is 20 periods. Standard deviations are 50 and 10
periods, respectively. At the end of the disruption period, the capacity K returns to
normal.

Equation (3) sets the constraint on minimum service level. In the considered
practical case, 98.5% has been used as the reference value for minimum service
level. Equations (4) and (5) definemaximum queue lengths in the production system.
According to Eq. (6), production quantity can equal or exceed minimum batch size.
Equations (4)–(6) define the rules for production setups. Equations (7) and (8) are
binary and non-negativity constraints on the reorder point for products i and j.

Empirical data revealed the average weekly demand of 2,500 units. The basic
demand in the model is 2,541 units multiplied by the seasonal factor. The period
demand dr is therefore defined according to Eq. (9).

dr = k ∗ d (9)

The actual demand dfr may vary in a period with a standard deviation δSTr subject
to uniform distribution. Additionally, period demand may be corrected by a trend
δlr of demand increase or decrease for the length of four periods. Therefore, actual
period demand dfr is generated according to Eq. (10):

d f r = dr ∗ δSTr ∗ δlr (10)

Demand is divided into two customer groups, i.e. α customers have higher priority
than β customers. Demand share of α customers is defined by parameter ν according
to Eq. (11).

d f rα = d f r ∗ ν ; d f rβ = d f r ∗ (1 − ν) (11)

DC operations are modelled using a multi-agent approach. We considered a set
Z of production batches that are sorted upwards according to production dates Fz

Parameters ρα and ρβ . Then, we defined the minimum requirements for the rest
shelf life for both customer groups. Let us consider current forecasting period ω

(ω ∈ [r; r + n + m − 1]) in order to define the general outbound delivery planning
algorithm for key customers and each period as follows:

f or zi ∈ Z

i f Fzi > ω − ρα ∗ η

i f zi > dωα

zi = zi − dωα
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Table A1 Input data

Parameters Parameter value

Minimum days of supply 14

Minimum order size in product units 10,000

Rolling planning horizon, in periods 7

Minimum period between production order allocations, in periods 1

Production capacity, product units per period 40,000

Minimum reorder quantity 10,000

Lead time, in periods 2–3

Maximum production capacity per period, in units 40,000

Minimum batch size, in units 20,000

Setup time, periods 0.08

Setup costs per period, in $ 7,500

Mean of the interval between capacity disruptions, in periods 100

Standard deviation of the interval between capacity disruptions, in periods 50

Mean of disruption duration, in periods 20

Capacity reduction coefficient, in % 50

Minimum service level, % 98.5

Shelf life, in periods 36

dωα = 0

else

dωα = dωa − zi
else

next.

The algorithm described above allows for consideration of both inventory dynam-
ics and expected shelf life of future deliveries.

The experiments have been performed on the following parameter setting
(Table A1).
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Appendix 2. Mathematical Model for Section 5

Indices

f Actual demand index

α α-service level

r Period index, r ∈ [1; T ])
ST Standard deviation index

λ Market number, λ ∈ [1; Λ]

i Production facility number, i ∈ [1; H ]

j Distribution centre number, j ∈ [1;G])

t Running time index

T Length of the planning horizon

Parameters

T Number of planning periods in planning horizon

G Number of DCs

H Number of factories

Λ Number of markets

D Mean weekly demand in a r-period, in units

q Mean basis demand, in units

k Seasonal demand coefficient in a r-period

δST Weekly demand standard deviation in a r-period

K Maximum production capacity per day, in units

B Maximum storage capacity at the DCs per day, in units

Lin Maximum inbound processing capacity at the DCs
per day, in units

Lout Maximum outbound processing capacity at the DCs
per day, in units

ξ Capacity reduction coefficient, in units

ch Unit inventory holding costs per day, in $

ctr Unit transportation costs per delivery, in $

cfix Fixed site costs, in $ per day

cman Own manufacturing costs, in $ per unit

csub Subcontracting manufacturing costs, in $ per unit

cin Inbound processing costs, in $ per unit

cout Outbound processing costs, in $ per unit

cdown Penalty for demand non-fulfilment, in $ per unit

p Unit price, in $
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Variables

P Production quantity at the factory, in units per day

S Selling quantity in the markets, in units

Xin Processed inbound quantity at the DC, in units per day

Xout Processed outbound quantity at the DC, in units per day

Q Shipment quantities in between the factory, DC, and
the markets, in units per day

H Total inventory holding costs, in $

T Total transportation costs, in $

W Total processing costs, in $

F Total fixed costs, in $

M Total manufacturing costs, in $

U Total penalty for delayed delivery, in $

TC Total costs, in $

y Inventory in a r-period, in units

d Distance, in km (computed based on real routes)

Objective function

max Prof i t = Revenue − TC = (p · S) − (H + T + W +U + M + F), (1)

where

H =
T∑

t=1

G∑

j=1

ch · ygjt

T otal inventory holding costs

T =
G∑

j=1

N∑

i=1

ctr · di j · Qi j +
N∑

i=1

Λ∑

λ=1

ctr · dλi · Qiλ

Total transportation costs

W =
G∑

j=1

(cin + cout )

Total processing costs

F =
G∑

j=1

c f i x +
N∑

i=1

c f i x

T otal f i xed costs
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Table A2 Experimental settings

Parameter Values

Mean basis weekly demand in the market 1, in m3 6,000

Mean basis weekly demand in the markets 2–4, in m3 4,000

Number of periods 4

Period length, in months 3

Seasonal demand coefficients for four periods 1.00–1.25–0.75–1.0

Standard deviation of weekly demand, in m3 25% from the mean

Expected lead time in the markets, in days 7

Lead time in between two SC stages within a region, in days 1

Mean lead time in between two SC stages from different regions, in days 5

Standard deviation lead time in between two SC stages from different
regions, in days

2

Reorder point at the DC1, the factories and emergency plants, in m3 10,000

Target inventory level at the DC1, the factories and emergency plants, in
m3

20,000

Safety stock at the DC1, in m3 6,000

Reorder point at the DCs 2–4, in m3 7,000

Target inventory level at the DCs 2–4, in m3 14,000

Initial inventory at the DCs 2–4 and factories, in m3 10,000

Initial inventory at the DC1, in m3 20,000

Production time for product unit, in days, in m3 0.001

Maximum production capacity at own factory, in m3 per period 90,000

Maximum production capacity at emergency sources, in m3 per period 10,000

Recovery time after a disruption, in months 4

Time between the disruption and activating the contingency policy such
as subcontractor, milk producer capacity and own factories abroad, in
days

20

Mean lead time to the market 1 in the disruption period, in days 8

Standard deviation lead time to the market 1 in the disruption period, in
days

2

F =
N∑

i=1

csub · Pi +
N∑

i=1

cman · Pi

T otal manu f acturing costs

U =
Λ∑

λ=1

cdown

T otal penalty costs

Demand constraints
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Q jλt ≥ dtλ

Dr = k · qλ

D f r = Dr · σ ST
r

Shipment constraints

Qi jt ≤ Xout
t

Qλ j t ≤ y jt

Capacity constraints

Pit ≤ Kit · ξ

Constraints on inventory holding and processing at the DCs

y j ≤ Bj · ξ

Xout
t+1 ≤ Lout

Xin
t+1 ≤ Lin

The experiments have been performed with the following parameters (Table A2).
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Managing Disruptions and the Ripple
Effect in Digital Supply Chains:
Empirical Case Studies

Ajay Das, Simone Gottlieb and Dmitry Ivanov

Abstract This chapter studies the impact of accelerating digitalization on supply
chain risk management. The interrelationships between digital technologies and sup-
ply chain disruption risk are analyzed usingmultiple case studies from various indus-
tries. The empirical analysis guided a conceptual framework based on extant theory
and specific hypotheses. The chapter concludes with a discussion of research oppor-
tunities for future study. In particular, the discussion involves perspectives and future
transformations that can be expected in the transition toward cyber-physical supply
chains.

1 Introduction

To keep pace with current trends, companies and supply chains develop products
and processes that meet new requirements in terms of productivity, sustainability,
competitiveness, and risk management. Digitalization strategies and technologies
are being increasingly identified, evaluated, tested, and applied to meet such require-
ments. Disruptive innovations such as Blockchain, Industry 4.0, and additive man-
ufacturing catalyze the development of new paradigms, principles, and models in
supply chain management (SCM) (Ivanov et al. 2013; Ivanov 2017). The Internet
of Things (IoT), cyber-physical systems, and smart, connected products, facilitate
the development of digital supply chains (SC) and smart operations (Fazili et al.
2017; Liao et al. 2017; Ivanov et al. 2016; Ivanov and Dolgui 2019; Panetto et al.
2019; Dolgui et al. 2019a, 2019b; Ivanov et al. 2018; Qu et al. 2017; Strozzi et al.
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2017; Tran-Dang et al. 2017; Yang et al. 2017; Rossit et al. 2018; Saberi et al. 2018).
Recent surveys by Addo-Tenkorang and Helo (2016), Gunasekaran et al. (2016,
2017, 2018), Nguyen et al. (2018), Moghaddam and Nof (2018), Choi et al. (2018),
and Ben-Daya et al. (2018) proposed classifications of different digital technologies,
and discussed potential impacts on SCM. Such digital technologies include big data
analytics, advanced manufacturing technologies with sensors, decentralized agent-
driven control, advanced robotics, augmented reality, advanced tracking and tracing
technologies, and additive manufacturing.

While the individual technology contributing elements (e.g., robots, sensors,
RFID—radio frequency identification, agents, modular factories, etc.) are not really
new, they are becoming more practical, and companies are becoming more recep-
tive to their adoption. In addition, attempts to interconnect and integrate such local
solutions, using current advances in data processing technologies, can be observed
in practice. Digitalization demands change in existing operations. As such, it calls
for new principles and models to support SC risk management (SCRM) in the future
(Ivanov 2018a, b; Ivanov et al. 2017).

The investigation of the interrelations between digital technology and SC risks is
still at a preliminary stage, and requires new conceptual frameworks and taxonomies
(Schlüter et al. 2017; Ivanov et al. 2019). Papadopoulos et al. (2017) pointed out that
data analytics can help in improving SC risk management and disaster resistance.
Choi and Lambert (2017) and Choi et al. (2017) provided evidence of how data ana-
lytics can be used to improve resilience of SC operations by utilizing firms’ databases
and large volumes of data to predict risks, assess vulnerability, and enhance their SCs.
Simchi-Levi et al. (2015) presented a data-driven system to analyze supplier expo-
sure in the automotive sector. Ivanov et al. (2019) showed that data analytics can
be used at the planning stage to identify supplier risk exposure and can help at the
reactive stage to monitor and identify disruptions. They proposed a framework of
integrated cyber-physical SC simulation and optimization and related this framework
to system-cybernetics principles. Their result echo those in the study by Choi (2018)
that presented a new practical perspective on how big data related technologies can
be used for global SCs with a systems of systems(SoS) mind-set. Baryannis et al.
(2018) summarized recent AI applications to SC risk management and shoed some
future research directions in risk identification, assessment, and response. Priore et al.
(2018) applied machine learning to the dynamic selection of replenishment policies
according to SC environmental dynamics.

This chapter seeks to move the discussion forward and develop a framework for
a detailed analysis of SC digital technology and disruption risk effects (Ivanov et al.
2014a, b; Sokolov et al. 2016; Dolgui et al. 2018; Pavlov et al. 2018) using a multiple
case study methodology (Blackhurst et al. 2011).
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2 Empirical Analysis

This section develops hypotheses regarding the mutual interrelations of digital SC
and the ripple effect, and analyzes these empirically. The first set of hypotheses
(H1–H3) focuses on disruption risks in SCM assuming that supplier disruptions are
more likely to occur than other risks. The ripple and bullwhip effects are typical man-
ifestations to be analyzed within this hypothesis set. Causes of disruption, disruption
management experience and risk mitigation methods, and disruption recovery are
therefore examined in hypotheses H1, H2, and H3.

Hypotheses H4 and H5 are developed to explore the application of digital tech-
nologies in practice. The opportunities and benefits of digital technologies are often
emphasized in literature. However, such are often surmised or anecdotal. Applica-
tions of digital technology may be different in reality and might be characterized by
many challenges and obstacles.

The third set of hypotheses (H6–9) deals with the obvious gap in knowledge
about the influence of digital technologies on SCRM. The contribution of digital
technologies in creating a resilient SC in the pre- and post-disruption stages, their
impact on SC efficiency, and the role of digital technologies to ripple effect control in
SCRM are important research questions. The following hypothesis examines these
questions:

• Hypothesis H1: Supplier disruptions have a higher likelihood of appearance, rel-
ative to other types of disruptions.

• Hypothesis H2: Disruptions have a serious impact on a large part of the SC.
• Hypothesis H3: Flexible SC networks are associated with successful SCRM.
• Hypothesis H4: SCRM opportunities and potential benefits become visible
through the use of digital technologies.

• Hypothesis H5: Obstacles to implementation and data security concerns are the
most likely impediments to the use of digital technologies.

• Hypothesis H6: Digital technologies contribute to SC resilience by improving
risk mitigation capabilities at the pre-disruption stage.

• Hypothesis H7: Digital technologies contribute to SC resilience by improving
disruption recovery capabilities at the post-disruption stage.

• Hypothesis H8: Digital technologies in SCRM are associated with SC efficiency.
• Hypothesis H9: Digital technologies contribute to ripple effect control in SCRM.

The above hypotheses emerge in a conceptual framework that broadly examines
the impact of digital technologies on SCRM. Figure 1 organizes the SCM factors,
disruption risks, and digital technologies into a suggested framework. The generic
framework refined and validated during the course of this study, intends to provide
managerial guidance for the creation of successful SCRM through the use of digital
technologies.
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Disruption risks
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influence SCM
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and impact (Ripple effect)

- SC resilience 
(Risk mitigation and 
disruption recovery)

- SC efficiency

- ERP systems
- Big data analytics
- Industry 4.0
- Additive manufacturing
- Tracking and tracing

Fig. 1 Conceptual framework

3 Case Studies

3.1 Sample Selection

The interviewed persons in this research were key decision-makers in their firms’
SCRM and have extensive experience in dealing with disruptions. The data were
collected through semi-structured interviews in order to achieve a certain degree of
comparability, and at the same time ensure an unimpeded flow of narration. This
method combines the flexibility of an open interview with the focus of a structured
survey. Open-ended questions were used to collect qualitative text data, offering
participants opportunity to elaborate and contextualize their experiences with risk
management. Structured questions provided ranking options. Interview questions
were formulated based on identified gaps in the literature and resultant hypothe-
ses. The collected information analyzed in the context of the hypotheses and the
conceptual framework (Fig. 1).

Experts in SCRMwere approached via email and asked to share their experiences
through a developed questionnaire provided in English (cf. Appendix). A total of nine
completed questionnaires were collected within a period of 4 months. Data confiden-
tiality and respondent anonymity were assured and implemented. The first phase of
data collection therefore obtained preliminary but detailed knowledge through filled
out questionnaires. The second phase of data collection obtained secondary data from
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public databases to triangulate the interview data. Follow-up phone interviews were
then conducted to gain more in-depth knowledge.

Construct validity was pursued using a variety of approaches. The research and
interview questions were elaborated in exchange with academics. The result of the
first interviews was discussed in order to adjust the interview questions where neces-
sary. Support for internal validity was provided by the triangulation process together
with comparisons with existing literature. External validity was examined using a
multiple case study approach. Support for both internal and external validities mate-
rialized from the comparative case studies. Each case had been carefully selected to
meet either similarity or variance goals, subsequently investigated with within-case
and cross-case analyses. In addition, a tested and refined interview protocol (ques-
tionnaire) provided added reliability. To further ensure a high degree of reliability and
traceability of the data, additional questions were asked by telephone in the second
phase of the interview, duly transcribed into text format.

The data analysis was conducted by analyzing the individual cases and comparing
them with one another. As part of the within-case analysis, each case or respective
company, and the related data were analyzed individually. In the cross-case analysis,
the questionnaire responses were reviewed across the entire sample. Cases were
compared to identify similarities and differences. The aim was to find recurring
patterns and make qualitative statements.

3.2 Cases

Nine case studies from medium-sized to large companies from various industries
were created based on the in-depth interviews. A majority of the companies are
from the automotive and semiconductor industry, as these industries, in particular,
are expected to have an SC network also in high-risk areas such as Japan, which
is frequently affected by extreme nature events. The other case studies are from
the climate systems, food retail, rail vehicles drive systems, and consulting industry
(Tables 1, 2, and 3).

Case A (Food Industry)
The food retail SC consists of up to three echelons. The hypermarket branch has
one federal distribution center, which is controlled by the hypermarket. Each of
the 93 hypermarkets has a bakery and salad shop. On the second SC stage there
are two federal distribution centers, which are shared with and controlled by the
supermarkets. The regional distribution network consists of six distribution centers,
also controlled by the supermarkets. The federal distribution centers specialize in
dry, fresh, and frozen products as well as fruit and vegetable products. Regional
distribution centers, on the other hand, have the entire product range. Three types
of warehouse processing are applied: cross-docking (the goods are pre-packed by
the vendor, no longer stored, but processed directly and delivered to the customer),
pick-by-line, and picking.
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Table 1 Overview of investigated companies

Case Industry Main product Country Company’s
size
(Employees)

Company
sales (2017)

A Food retail Food Russia >500 16–18 Billion
Euro as a
retail group
1.6–1.8
Billion Euro
as a
hypermarket
business
branch

B Semiconductor Automotive,
Power
Management
and
Multimarket,
Industrial
Power
Control, Chip
Card and
Security

Germany >500 7 Billion Euro

C Rail vehicles
drive systems

Mechanical
gears

Germany 50-500 50–100
Million Euro

D Automotive
supplier

Automotive
electronics

Germany >500 40, 5 Billion
Euro

E Aerospace,
automotive,
railway and
engineering

Supply chain
collaboration
Sourcing,
quality
solutions and
transport
management
Solutions

Germany 50–500 50 Million
Euro

F Semiconductor Chips, wafer Netherlands >500 8 Billion Euro

G Automotive
supplier

Automotive
electronics

Germany >500 120 Million
Euro

H Automotive Vehicles Germany >500 98 Billion
Euro

I Climate
systems

Air
conditioners,
heat pumps,
chillers

Netherlands 50-500 175–250
Million Euro
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Table 2 Overview of interviewed experts

Case Informant
(Professional
position)

Department Years of experience Specialization

A Supply Chain
Optimization
Manager

Department of
Supply Chain
Optimization and
Supplier
Relationship

1, 5 Supply Chain
Optimization,
Analytics, Supply
Chain Network
Optimization

B Head of Supply
Chain Innovation

Supply Chain
Innovation

>20 Principal Logistics
Systems

C Business Process
Manager

Large Traction
Drives
Technologies

>7 Process
Optimization

D Risk and Process
Manager

Risk and
Allocation
Management

7 Corporate Supply
Chain Management
and Risk &
Allocation
Management

E Manager
Consulting

Consulting 23 Automotive
industry,
IT Consulting,
Supplier Portal
Collaboration

F Vice President and
Business Unit
Supply Chain and
Operations
Manager

Supply Chain
Management

30 Global Operations
Management
Automotive

G Processes and
Tools Manager

Supply Chain
Management

15 Processes and
Tools Mexico

H Risk Manager Risk Management 20 Strategy
Purchasing and
Supplier Network,
Risk Management,
Crisis and
Insolvency
Management

I Supply Chain
Manager

Supply Chain
Management

15 Supply Chain
Optimization,
Supply and
Demand Planning
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Table 3 Reasons for experienced disruptions

Disruption type Causes for disruption

Supplier disruptions Single sourcing

Production capacity disruptions Production system inflexibility
Low data visibility
Missing buffers in capacity utilization
Force majeure
Single sourcing

Logistics disruptions Force majeure
Single sourcing

Demand disruptions Missing buffers in capacity utilization
Low data visibility
No real-time monitoring
Customers (first-tier) not knowing their demand because
their customers (original equipment manufacturer) do not
know their demand

Product/technology disruptions Complex mix of product specification and changing
customer requirements

Case B (Semiconductor industry)
The business processes in case B are based on the SCOR model: planning, sourcing,
making, delivery, and return. The company strives for a self-optimized SC with a
perfect mix of automated processes and human decision-making processes according
to the roadmap being descriptive, diagnostic, predictive, and prescriptive. Operations
vision and mission are communicated top-down throughout the operations commu-
nity. Operations strategy is documented in various ways to reach all levels. High-
level workshops every year and monthly board meetings ensure that all activities
from lighthouse projects to projects and to tasks are aligned with the strategy. The
SC has evolved from rigid patterns to a global and highly flexible supply network
as the smart factory approach has improved the manufacturing flexibility realized
through superior planning processes.

Case C (Rail vehicles drive systems industry)
The general European SC scope of the company C is component manufacturers,
proprietary value creation, bogie manufacturer, and vehicle manufacturer. Approx-
imately, ten main components are predominantly procured from Europe with one
supplier per component. The main component “gearing” is usually manufactured at
the company C’s own site (other business segments). Components are then delivered
to the bogie manufacturer. Some components are provided by the customer. The pro-
prietary value creation of company C consists of assembly, testing, and completion.
Bogiemanufacturers and vehicle manufacturers may be identical or separate in terms
of logistics or business.

Case D (Automotive supplier industry)
At the location surveyed, the group operates the world’s largest production plant for
automotive electronics. Products for eight different business units are manufactured
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there, from sensor systems and transmission controls to engine components. A total
of around 360,000 units leave the plant every day, which supplies major German and
international automobile manufacturers. The leading German automotive supplier
group has 427 locations in 56 countries with a total of more than 3000 suppliers.

E (Aerospace, automotive, railway, engineering consulting industry)
Case E is an SC collaboration platform that connects companies with their business
partners and assists their ERP systems. The dynamic corporate network connects
65,000 companies worldwide. Of these, 50,000 are suppliers who work with major
customers. The platform enables a quick reaction to market changes and fluctuations
and thus ensures the long-term success of the SC. The focus of company E is on the
manufacturing industry and covers industry-specific requirements of the aerospace,
automotive, railway, and engineering industries with consulting solutions.

Case F (Semiconductor industry)
Company F produces chips and wafers as automotive products for advanced driver
assistance systems, vehicle networking, or safety applications, for example. The
respondent of the semiconductor company limited the SC overview to the automo-
tive business. There are nine internal factories for wafers and chips and about ten
wafer foundry suppliers and ten chip suppliers. The number of material suppliers is
estimated at over 100.

Case G (Automotive supplier industry)
The Group’s site has one factory and one logistics center where electronics for the
automotive industry are produced. The German plant from which the expert was
interviewed has around 370 customers worldwide.

Case H (Automotive industry)
The Group has over 20 automotive plants worldwide. Most of the goods are procured
via single and global sourcing from5,000 suppliers. In addition, just-in-time and just-
in-sequence delivery concepts are applied. The interviewed expert does not focus the
SC overview on the own location, since the respondent is an SC risk manager for the
entire German automotive group.

Case I (Climate system industry)
Company I, headquartered in the Netherlands, has three suppliers from Asia. Prod-
ucts are air conditioning systems, heat pumps, and chillers for the market of air
conditioning solutions. There are five distribution centers in Europe, three of which
serve several countries. High running models are delivered directly from Asia to
all five distribution centers and low running models to the three main warehouses
supplying all of Europe.
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4 Evaluation

4.1 Disruption Causes, Concerns About Risks,
and Experiences with Disruptions

In order to examine the situation of the individual cases, concerns about disruption
risks in the SC are first surveyed. The twomost commonly cited concerns were exter-
nal and supplier risks. External risks, such as fire, floods at the site, severe weather
affecting the power supply, political instability, the risk of terrorism, or earthquakes
at the supplier were mentioned by the experts. In addition, there is a seasonal risk
for company I, which serves the climate solutions market. When summer is not hot,
a lot of stock goes unsold and ends up as overstocks, incurring costs. On the other
hand, when the summer is unexpectedly warm, the company can face shortage. Five
out of nine companies fear supplier disruptions due to changes in product quality or
supplier insolvency. Beside external and supplier risks, underestimation of demand,
logistics disruptions which occur on route to the site or to an external warehouse, and
time risks, such as the failure of bottleneck machines, production capacity disrup-
tions, and reliance on ocean freight were identified in the questionnaire responses.
The companies’ concerns are consistent with the categories identified in literature,
though information disruption and the ripple effect were not explicitly mentioned.

All respondents had experienced supplier disruptions, production capacity dis-
ruptions, logistics disruptions, and demand disruption. In every case, there were
supplier and production capacity disruptions with high to very high impact. Further
disruptions were referenced in terms of force majeure, tax, and regulation. Single
sourcing, missing buffers in capacity utilization, and low data visibility are the most
frequent causes of disruptions. Respondent B added product and technology dis-
ruptions caused by a complex mix of product specifications and changing needs in
customer product specifications.

Single sourcing, missing buffers in capacity utilization, and low data visibility are
themost frequent causes for disruptions.RespondentBaddedproduct and technology
disruptions caused by a complexmix of product specification and changing customer
product specification needs.

4.2 Disruption Effects on Supply Chain Processes

In assessing the impact of one type of disruption on another, almost all respondents
stated that an interruption in production capacity, and thus an interruption in delivery
to the customer, was caused by disruptions to suppliers and demand. To gain more
insight in empirical studies into measures to prevent the ripple and bullwhip effects,
the participants were asked their opinion on the integration of suppliers into their
risk management or on the establishment of a risk management system with their
suppliers. The riskmanager from companyH explains: “We only look at the risks that
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affect our direct suppliers (first-tier), because the next supplier level (second-tier) is
usually not known. It is not revealed by the first-tier supplier or it is disclosed, but
not recorded in our system. In principle, we cannot afford to monitor all value-added
levels on using our own resources. Our purchasing conditions also stipulate that first-
tier suppliersmust establish their own riskmanagement. In addition, ifwe handled the
riskmanagement of our suppliers, then theywould no longer be responsible suppliers
would be taken out of their responsibility if we handled their risk management and
supplierswere then no longer responsible for disruptions caused into our production.”

The risk manager also emphasized that any disruption in the supply of compo-
nents impedes the construction of a car, but not every component is equally critical.
Risk management must therefore be oriented particularly toward supply-relevant
components.

4.3 Risk Mitigation and Disruption Recovery Methods

In addition to the opinion on supplier integration in the company’s own risk man-
agement, the methods used for risk mitigation and disruption recovery are identified.
The participants were asked to describe a recent major SC disruption and how this
disruptive event was managed. Table 4 presents the experiences according to the type
of disruption.

The presentation of disruptions experienced supports hypothesis H1, as four out
of nine companies were affected by supplier disruptions. In most cases, it seemed
essential in terms of disruption recovery to have second-source suppliers or to be
able to replace missing parts with similar parts.

As an SCRM strategy, company C aims to reduce its risk exposure and avoid
repetition of previously experienced risks. However, general market risks can only
be influenced to a limited extent. The SCRM process of company H is carried out by
riskmanagement and crisis management departments: “Our classic riskmanagement
comprises the evaluation of the probability of risk occurrence and possible damage
potential. In addition, suppliers are evaluated both at the time of tender submission
and on an ongoing basis. The crisis management department reacts actively to dis-
ruptions. Financial losses, such as insolvencies, are dealt with, or in the event of fire
or flooding at the supplier, a task force team is sent into check fire protection condi-
tions or earthquake safety. In the event of supplier interruptions, the replenishment
times of the actual supplier and of other suppliers are assessed first. The crisis team
then ranks the damages at the supplier and implements measures for the most severe
damages. It is important to find the right balance between risk management and cri-
sis management. You can invest a lot of money in risk management so that nothing
happens, but at some point the marginal benefit will be small. Then it is better to
have a good crisis management team, because something can always happen. But
the right balance is gut feeling.”

Despite multiple sourcing and checking material requirements on a daily basis,
company D feels hardly able to protect itself against disruptions and a possible ripple
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effect, as other suppliers can barely help with the shortage of special materials. The
disruption recovery measures of company D in the event of a material shortage
begin with an allocation process of limited resources from all other locations of the
disturbed supplier and suppliers from the multiple sourcing strategies. The worst
case scenario is to be dependent on a broker as a last resort.

The responses about risk mitigation methods and disruption recovery measures
show that the focus is once again on dealing with supplier disruptions (H1) and that
an established crisis management team is necessary.

In order to further investigate the SCRM measures of the cases surveyed, the
participants were asked to describe what could have been done better in the event
of a disruption. Company B’s SC innovation manager, who experienced a fire at the
supplier’s production site, realized that a systematic SC incident management routine
was missing and this led to nontransparent information exchange and miscommuni-
cations. The respondent learned that a company’s roles and the human behavior of
both the company and their suppliers in disruption risk management have a signifi-
cant impact on final performance. The company has therefore implemented a formula
for considering the performance of human behavior in its discrete event simulation
model.

Further findings from the disruptions experienced are that (1) data accuracy in
the systems used is absolutely essential for enabling quick reactions on the customer
side (Case D), (2) coordination between different departments in large companies is
difficult (Case G), and (3) the management of a higher safety stock level in a central
warehouse is necessary to ensure a Europe-wide supply in case of material shortage
(Case I). The empirical data confirm how important it is to communicate clearly
within a company and to work closely with suppliers so that it is possible to react
quickly and flexibly depending on the type of disruption and minimize its effects on
overall SC performance. These findings reinforce hypothesis H3.

4.4 Chances of Digital Technologies in Supply Chain
Management

To explore digital technologies as resilience and efficiency drivers in SCM, the par-
ticipants were asked about the use of digital technologies in their company operations
and support in case of disturbances. Digital technologies were evaluated in terms of
utility on a scale from 1 (highest degree of utility) to 6 (lowest degree of utility),
and in terms of cost of implementation, using a scale from 1 (very high costs) to 6
(very low costs). Table 5 provides an overview of digital technologies used by the
participants. Empty fields in the table represent cases where respondents did not have
knowledge of costs, or do not apply the technology.

BDA and ERP systems are used by all nine companies surveyed while trace and
tracking systems were used by eight companies. These three technologies have high
utility for the participants, but are also associated with medium to high costs. Indus-
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Table 5 Digital technology application to SC disruption risk management

Case digital technology A B C D E F G H I Sum

Big data analytics ++ ++ ++ +++ ++ ++ ++ +++ +++ 9

Industry 4.0 applications + +++ ++ ++ + 5

Additive manufacturing
technology

+ +++ + + ++ 5

Advanced T&T
technologies

+++ ++ +++ +++ ++ +++ +++ ++ 8

ERP system +++ ++ +++ +++ +++ +++ +++ +++ +++ 9

Ranking 1–2: (+++) high degree of utility; ranking 3–4: (++) medium degree of
utility; ranking 5–6: (+) low degree of utility

Case digital technology A B C D E F G H I Sum

Big data analytics ++ ++ ++ +++ ++ ++ ++ +++ +++ 9

Additive manufacturing
technology

+ +++ +++ ++ 4

Advandced T&T
technologies

++ ++ +++ ++ +++ + + 7

ERP system +++ ++ +++ +++ + ++ +++ +++ 8

Ranking 1–2: (+++) high costs; ranking 3-4: (++) medium costs; ranking 5–6: (+)
low costs

try 4.0 applications and additive manufacturing technology are only used by five
companies. Apart from company D, which sees a very high utility in both applica-
tions, the other four companies evaluate these only with a medium to low degree
of usefulness, and generally see medium to high costs in the application of Indus-
try 4.0 applications and additive manufacturing technology. The interviewee from
the semiconductor industry reported that an advanced planning system, advanced
global detailed visibility, advanced detailed reporting, deep learning, simulation,
and advanced communication tools are also used in company B. Apart from deep
learning, the respondent evaluates the applications with high to very high utility, but
also with medium to high implementation and usage costs. The manager in consult-
ing, company E, highlighted the collaboration platform connecting customers with
suppliers, noting significant benefits for cooperating partners and medium imple-
mentation and usage costs. Cited advantages include the optimization of production
planning, support for operational demand processes, and transparency in the placing
of transport orders—enabling timely intervention that led to the avoidance of risks
and impending bottlenecks.

ERP systems, earlier mentioned as a common industry application, have also
been identified by seven companies as the most supportive technology for disruption
management. According to the respondents, ERP systemsmake it possible to redirect
the material flow of suppliers, warn of bottlenecks, and gain insight into stock levels.
ERP is also considered useful for SC analysis and mid-term demand planning.
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The business process manager of the company C stated: “ERP and trace and
tracking systems support operational disruption management. Big data analytics
are mainly used for strategic risk reduction by evaluating supplier performance
(especially quality performance). The main purpose of digitalization is to optimize
operational performance.”

The widespread use and evaluation of very high utility of digital technologies
certainly bring opportunities to implement them in SCRM. Analogous to findings in
the literature, empirical data confirm hypothesis H4, the opportunities, and potential
benefits of digital technologies.

4.5 Impact of Digital Technologies on Supply Chain
Resilience

To answer the research question regarding digitalization’s influence on SC’s
resilience, respondents reported on how digital technology supports, or could sup-
port, the process of risk mitigation and disruption recovery. Table 6 displays the
summary of the individual results (ranked from 0: low to 10: high).

In particular, T&T and ERP systems, but also BDA and Industry 4.0 applications
are seen to help increase SC resilience in the pre- and post-disruption phases, through
real-time monitoring. Visibility and predictability in the SC are achieved primarily
through BDA and ERP systems in both phases. ERP and also T&T systems provide
participant E with a clear overview of the current system status and the effects of
the management measures implemented. The ability to mitigate and resist risk is
supported by BDA that improve the reliability of material supply and by Industry 4.0
applications, improving the reliability of production systems. The ability to recover
from disruption is mainly driven by BDA, Industry 4.0 applications, and ERP sys-
tems. Rapid prototyping is also assessed as a factor increasing SC resilience in the
post-disruption stage. The importance and popularity as well as the inflexibility of
ERP systems in SCRM are once again emphasized by the following statement of
the respondent F: “Our ERP system (and the linked Advanced Planning Tool) is the
most important tool. All necessary information can be found here. It would help if we
could do a better scenario analysis (what-if analysis), but ERP systems are usually
not built for it.”

Besides the technologies used so far, respondent D would benefit from a risk pre-
warning system in SCRM, so that they can react quickly to earthquakes, hurricanes,
and capacity bottlenecks and form emergency teams.

Although individual answers do not provide fully conclusive results, it is notable
that additive manufacturing was almost never mentioned. Interviewee H said that
they do not know the technology well enough, but considers 3D printing to be
inconceivable in risk management and unhelpful in automotive production. Pos-
sible advantages are the production of small batches, customer-specific components,
or rare spare parts, but it might not be suitable for mass production, according to
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the interviewee. The insights offered by the respondents show that hypotheses H6
and H7 are supported. However, some digital technologies are still inflexible and not
yet mature, or companies have not yet had contact with additive manufacturing in a
way that best supports their company’s ability to minimize risks and recover from
disruptions.

The insights offered by the respondents generally support hypotheses H6 and H7.
However, some digital technologies are still immature and inflexible, or like additive
manufacturing, not tried out or well understood.

4.6 Contribution of Digital Technologies to Ripple Effect
Control in Supply Chain Disruption Risk Management

Since resilience contributes to ripple effect control, this section summarizes these
findings and supplements them with an explicit questioning of the participants about
their ripple control measures. BDA supports ripple effect control in both the pre- and
post-interruption phases. Participants emphasized the visibility and predictability of
SCs through data availability. Data enable better demand forecasting and reduce the
risk of demand interruptions. Real-time coordination allows faster decision-making,
which is critical for responding to disruptive events. According to the findings from
the literature, respondents find advanced T&T systems in combination with ERP
systems helpful for collecting real-time data. The possibility of real-time monitoring
reduces time risks caused by delays in the SC processes and enables better emergency
planning in the event of a malfunction.

The risk manager, company H, explains that BDA’s data helped him to react more
quickly when a plant caught fire. BDA informed him about the event one day earlier
than the media and gave him a decisive time advantage over competitors in buying
components from distributors before all products were sold out. The storm surge in
Fukushima, 2011, was also mentioned by interviewee H. As a rule, other stages of
the value chain are not known, but semiconductors that are not purchased directly
are an exception. This allowed the risk manager to react to the storm surge at an early
stage, to supply own suppliers with purchased products and thus to ensure the own
automobile production. A possible ripple effect could be prevented in this way.

Participants were concerned about data security not only in relation to BDA. At
this point, consulting manager (company E) emphasizes the advantages of the SC
collaboration platform. The data exchange is outsourced on the platform and no
access to the ERP systems of the customers and their suppliers is necessary. Data
provided visualizes the current future demand, the current stock situation of the
customer, and also simulates future shipments. According to the experiences of the
respondent, the increased SC transparency reduces the risks of demand and supply
interruptions as well as ripple effect risks and improves SC coordination and SC
performance.
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The ripple effect control and SCcollaboration of companyC are supported byERP
systems. Data availability enables preventive SCM and improved supplier selection.
Suppliers are integrated into theERP system through an interface that receives reports
on the quality of suppliers. If the supplier is involved and identifies possible quality
management deficiencies at an early stage, it is possible to reschedule production. In
addition, the main suppliers are audited regularly. Risks and possible measures are
jointly defined within the framework of process failure mode and effects analysis.

3D printing can assist companies in controlling the ripple effect through faster
response to demand fluctuations and other disturbances, and by reducing adverse
impacts through greater production flexibility and shorter lead times. However, addi-
tive manufacturing is not perceived as suitable for mass production in the empirical
study. This perception may be due to the focus on large companies in the study that
primarily produce in large batches. Empirical studies demonstrate the contribution
of digital technologies to ripple effect control. Nevertheless, many participants were
still concerned about data security.

5 Empirically Derived Contribution of Digital Technologies
in Supply Chain Disruption Risk Management

The hypotheses tested by questionnaires and supplemented by theory allow the fol-
lowing qualitative statements to be derived. Empirical data from multiple case stud-
ies prove the literature-based hypotheses in the segment of disruption risks in SCM
(Hypotheses H1-3) to be true. There is a clear focus on supplier disruptions in the
experiences of the participants and their risk management measures. Effective col-
laboration with suppliers, transparent exchange of information, and consideration
of the human behavior of all actors appear to be a key factor for successful risk
management.

The second segment of hypotheses (H4–5) studied the influence of digital tech-
nologies on SCM. BDA, Industry 4.0 applications, additive manufacturing technol-
ogy, T&T systems, and ERP systems were identified in the literature as main groups
of digital applications and could also be confirmed by the experiences of the par-
ticipants. Especially, BDA, ERP, and T&T systems appeared to be most useful. In
literature, however, the utilization and popularity of ERP systems have been underes-
timated. In the empirical analysis, ERP systems have been rated as the most common
and supportive application for dealing with disruptions. But it has also been discov-
ered that ERP systems are not flexible enough when it comes to rapid data changes.
The inflexibility of ERP systems could be a driving force behind the implementation
of new technologies. In Industry 4.0 applications and additive manufacturing tech-
nology, though, it is primarily the high costs of investment and use that are seen as
impediments. The cost factor and inestimable benefits discourage companies from
acquiring new digital technologies, even when the potential for considerable gain
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exists. Another finding from empirical data is the companies need for trust, which is
necessary for data exchange with external SC collaborators.

The impact of digital technologies on SCRM was analyzed in the third set of
hypotheses (H6–9). Digital technologies help to create resilient SCs by increasing
the ability to mitigate risks in the pre-disruption phase and recover from disruptions
in the post-disruptions phase, and enhance SC efficiency and ripple effect control.
Exploratory research confirmed the benefits of BDA, Industry 4.0 applications, T&T
systems, and ERP systems. In particular, digital technologies enable better forecast-
ing of disturbances, faster reaction to disruptive events, and improved SC collab-
oration. The uses, and more importantly, the advantages of additive manufacturing
technology, which are highlighted in the literature in terms of simplifying production
processes, attaining a competitive advantage or increasing production flexibility and
speed, were hardly mentioned. Related reasons could be that companies have not yet
had any contact with additive manufacturing technology, the technology does not fit
their business, or established systems fear business and SC redesign.

6 Conclusions

The study’s empirical analysis developing case studies from a series of interviews
with experts from various industries formed a basis for developing a conceptual
framework that integrates the various issues in digitalization in SCs. The examination
suggests that while most companies would have had experiences with disruptions,
supplier disruptions constitute themost severe and significant form of disruption. The
focus on supplier disruptions was also reflected in the riskmanagement measures and
the digital technologies used for this purpose. BDA, advanced T&T technologies,
and ERP systems are frequently used in the pre- and post-disruption phases.

Exploratory research has shown better forecasting of disturbances, faster response
to disruptive events, and improved SC collaboration through digital technologies.
ERP systems, BDA, T&T technologies, and Industry 4.0 applications, in particular,
enable the collection of real-time data and thus guarantee a resilient and efficient SC
as well as control of the ripple effect. However, the high costs for the implementation
and use of new digital technologies support the popularity of widely used ERP
systems despite their inflexibility. The high implementation costs, unsuitability for
mass production, and the immense task of SC redesign discourage companies from
3D printing, despite published benefits. Other challenges identified in the multiple
case study approaches are the need for standardized interfaces of digital technologies,
the need to take into account the human behavior of all actors, and the need for
trust between SC actors to enable efficient cooperation between SCs and transparent
exchange of information. These aspects seem to be key factors for successful risk
management, and should be actively considered by SC managers.
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Appendix Hypotheses and Corresponding Interview
Questions

Key element studied Hypotheses and corresponding interview
questions

Disruption risks in SCM

Disruptions (Causes, concerns, experiences) H1: Supplier disruptions have a higher
likelihood of appearance

What are the most important supply chain
disruption risks that your company is
concerned about?
Which disruption risks did your company
experience in the past?
What are the reasons for the disruptions
experienced at your company?

Disruption impacts (Ripple effect) H2: Disruptions have a serious impact on a
large part of the SC

Identify/estimate impact of one type of
disruption on another…e.g., supplier
disruptions led to production capacity
disruptions which led to ….
Which processes of your supply chain (e.g.,
outbound logistics) are mainly affected by
disruptions and what KPIs (e.g., on-time
delivery) do you use to measure the deviations
caused by disruptions?

Risk mitigation and disruption recovery H3: Flexible SC networks are required for
successful SCRM

Please describe how a recent major supply
chain disruption was managed.
Is there a disruption recovery process in your
company? How it looks like?
Have you experienced a supply chain disruption
that could have been better managed? Please
describe the situation and what you would do
differently next time.

Application of digital technologies in SCM

Chances of digital technologies H4: Chances become visible through the use of
digital technologies to date

(continued)
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(continued)

Key element studied Hypotheses and corresponding interview
questions

Which of the following digital technologies do
you use in your company’s supply chain
operations?
Which digital technology (if any) best supported
your managing a disruptive event, and how?

Challenges of digital technologies H5: Challenges in the use of digital
technologies are more likely to be associated
with obstacles to implementation and data
security concerns

Which functionality in the digital technology
was missing when you applied it to disruption
mitigation and recovery?
Has digital technology hindered you from
making a better decision in case of a disruptive
event? Can you describe the situation and the
obstacle of digital technology?

Impact of digital technologies on SCRM

Resilience by risk mitigation H6: Digital technologies contribute to create
resilient SCs by improving risk mitigation
capabilities at the pre-disruption stage

How digital technology does/could support
your risk mitigation process?
Do digital technologies help to increase SC
resilience at the pre-disruption stage?

Resilience by disruption recovery H7: Digital technologies contribute to create
resilient SCs by improving disruption recovery
capabilities at the post-disruption stage

How digital technology does/could support
your disruption recovery process?
Do digital technologies help to increase SC
resilience at the post-disruption stage?

Supply chain efficiency H8: Applying digital technologies in SCRM
increases SC efficiency

Do digital technologies help to increase SC
efficiency?

Ripple effect control H9: Digital technologies contribute to ripple
effect control in SCRM

Via additional questions by telephone
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Resilience and Agility: The Crucial
Properties of Humanitarian Supply
Chain

Rameshwar Dubey

Abstract In this chapter, we theorize and test a model to study the impact of agility
and resilience on humanitarian supply chain performance. Here, supply chain agility
and supply chain resilience are explained based on existing literature.We have under-
taken an extensive literature review to build up the theory and further tested the theory
using confirmatory factor analysis (CFA). The multivariate statistical analyses sug-
gest that supply chain agility is an important property of pre-disaster performance,
and supply chain resilience is an important property of the post-disaster performance,
in humanitarian supply chain network. The present study attempts to further existing
literature, and outlines limitations and further research directions.

1 Introduction

In recent years, the field of humanitarian supply chain design has attracted burgeon-
ing interest among academics and practitioners (Gunasekaran et al. 2018; Altay et al.
2018). Researchers have argued that the humanitarian supply chain may be guided
by similar theories to the commercial supply chain but humanitarian logistics and
supply chains require different approaches in order to manage (e.g., Oloruntoba and
Gray 2006;Wassenhove 2006; Kovacs and Spen 2007). The design of the humanitar-
ian supply chain is quite challenging as the impact of poor design is quite severe. The
aims of the humanitarian supply chain design are to move efficiently and effectively
different forms of food, medicines, and medical support to ensure quick recovery
(Holguin-Veras et al. 2012). The high failure rate of the humanitarian supply chain
network can be largely ascribed to the complexity in humanitarian supply chain.
The number of disasters is increasing globally, as in the number of lives affected
by disasters (Nagurney et al. 2011). Balcik and Beamon (2008) and Nagurney and
Qiang (2009) pointed out that the number of disasters and catastrophic events has
increased in last two decades and the impacts on human lives have also nearly dou-
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bled. However, although we can see a significant increase in the number of disasters
and their impacts on human lives, there is acute shortfall in the relief provided by the
various sectors that includes food, health, water and sanitation, shelter and non-food
items, and economic recovery and infrastructure needs (Nagurney et al. 2011).

While there is rich body of literature on humanitarian supply chain network design
(Maon et al. 2009; Nagurney et al. 2011; Vlachos et al. 2012; Bhattacharya et al.
2014), the extant literature has failed to reflect on the humanitarian supply chain
network properties. Childs (2013) attempted to explain the behavior of humanitarian
aid workers in assessing the level of risk using cultural theory. The current literature
on the humanitarian supply chain is either focusing on overviews or applications
of operational research tools in designing humanitarian supply chain networks. In
the past, behavioral operations management theory has not been explored fully in
explaining the complex nature of the disaster relief supply chain. Hence, in our
present study, our aim is to develop a disaster relief supply chain network and further
try to explain the properties of the humanitarian supply chain network using cultural
theory, and further test the impact of these supply chain properties on humanitarian
supply chain performance. The rest of the chapter is organized as follows. In second
section, we have outlined the state of the art and develop our theoretical framework.
Subsequent sections develop a research model based on this framework, describe the
construct operationalization and data collection method, present the data analysis
and the results of model testing, and discuss the findings and their theoretical and
managerial implications. This paper concludes with directions for further research.

2 Theoretical Framework

The foundation of our theoretical framework (see Fig. 1) comprises two elements:
supply chain network theory and cultural theory. In recent years, supply chain net-
work theory (Halldorsson et al. 2007; Hearnshaw and Wilson 2013) has emerged as
a powerful theory to explain supply chain network design (e.g., Braziotis et al. 2013;
Dai et al. 2014). We argue that supply chain network theory will provide an explana-
tion into the properties of the humanitarian supply chain network. We further argue
that the cultural theory will offer interesting insights to explain the complex nature
of the humanitarian supply chain network. Our theoretical framework is grounded in
the proposition that supply chain network properties are under the moderating effect
of organizational culture. In our present research, we have adopted the supply chain
design principles of Melnyk et al. (2014). Here, our framework has included all three
elements, i.e., (i) influencers, (ii) design decisions, and (iii) building blocks.
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Agility

Resilience

Disaster relief supply 
chain performance

Organizational 
culture

Fig. 1 Theoretical framework

2.1 Agility

Supply chain agility in recent years has attracted significant contributions; however,
supply agility as a property of the supply chain network was popularized by Lee
(2004). However, Christopher (2000) and Christopher and Towill (2001) attempted
in their research to provide a theoretical foundation to explain an agile supply chain.
Yusuf et al. (2004) further argue in their study how an agile supply chain can provide
a competitive edge to the organization. However, Oloruntoba and Gray (2006) argue
that agility in supply chain networks is crucial characteristics to move humanitarian
aid to disaster-affected victims. The humanitarian supply chains are particularly short
lived and quite unstable. Hence, in the absence of long-term planning, the humanitar-
ian supply chainsmust possess speed andflexibility to respond to the disaster-affected
victims with the necessary humanitarian aid, which includes health, food, water and
sanitation, shelter and non-food items, and other infrastructure needs (Dubey and
Gunasekaran 2016). There is a rich body of literature which has attempted to pro-
vide theoretical and functional definitions of the agile supply chain (e.g., Christopher
2000; Lee 2002, 2004; Swafford et al. 2006; Li et al. 2008, 2009; Dubey et al. 2018a,
b; Aslam et al. 2018); however, in humanitarian supply chain literature the concept of
agility is still underdeveloped. In the past, researchers have recognized the universal
need for building agility in humanitarian supply chain networks (e.g., Trunick 2005;
Wassenhove 2006; Kovacs and Spen 2007; Li et al. 2009; Holguin-Verras et al. 2012;
Cozzolino et al. 2012). Sometimes, agility can bemistaken with other similar but dif-
ferent concepts, such as adaptability, flexibility, and resilience (Charles et al. 2010).
Agility is the property of a supply chain network which enables the network to deal
with and take advantage of uncertainties and volatilities, while adaptability is used
for more profound medium-term changes. Flexibility, on the other hand, is the char-
acteristic of “agility” that enables supply chain networks to deal with uncertainties
and volatilities.
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2.2 Resilience

Scholars have attempted to provide an overview of resilience and the use of the term
in various contexts in the management literature (Bhamra et al. 2011; Ivanov et al.
2014, 2017, 2018; 2019; Ivanov and Dolgui 2018; Dolgui et al. 2018; Altay et al.
2018). Burnard and Bhamra (2011) attempted to develop a conceptual framework for
organizational resilience and offered further research directions. Sheffi (2005) has
attempted to offer another functional definition of supply chain resilience. Supply
chain resilience has been defined as the property of a supply chain network which
enables the supply chain network to regain its original configuration soon after the
decay of disturbing forces that include earthquakes, floods, hurricanes and tropical
storms, tornadoes, tsunamis, diseases, etc. Soon after a disaster, the resilience in the
humanitarian or disaster relief supply chain will determine the return to a normalcy
phase through collaboration among the various actors in the supply chain network
(Boin et al. 2010; World Economic Forum 2013; Ivanov et al. 2013; Ivanov and
Sokolov 2013). In recent years, Zobel (2011a) and Zobel and Khansa (2014) have
attempted to define disaster resilience and provided a quantitative model to assess
resilience in the disaster relief supply chain. Tierney and Bruneau (2007) proposed
“The Resilience Triangle” (see Fig. 2) which helps to analyze how various supply
chain strategies can reduce the size of the supply chain triangle. To further buttress
our resilience triangle concept we reviewed some existing literature (Bruneau et al.
2003; Tierney and Bruneau 2007; Zobel 2011b). Bruneau et al. (2003) introduced
the resilience triangle concept. To measure loss of resilience, Bruneau et al. (2003)
introduced a mathematical equation to determine the loss of resilience as

R =
∫ t

to
[100 − Q(t)]dt

Here, R = loss of resilience and Q (t) = quality of infrastructure as a function of
time.

When any disaster, in any form strikes, the quality of the infrastructure decreases,
as shown by dipping vertical line, and then is restored to normalcy as time passes
(shown along horizontal axis). Bruneau et al. (2003) argued that in order to improve
rapidity, the height of the triangle should be less [i.e., (to-t) → 0] or, in order to
reduce the depth, the resistance property in the supply chain network needs to be
built. This is termed as robustness and is one of the desired dimensions of resilience.
In simple language, an attempt needs to be made to decrease the area measured by

Fig. 2 Resilience triangle
[Adapted from Bruneau et al.
(2003)]

T (time)→ t 



Resilience and Agility: The Crucial Properties … 291

the triangle. This has been used in recent years to measure the resilience of physical
infrastructure elements such as hospitals (Zobel 2011a). In our present research, we
further use the modified TOSE resilience framework of Tierney and Bruneau (2007)
that includes technical domain, organizational resilience, societal perspective, and
economic resilience. Day (2014) attempted to explain the resilience property in a dis-
aster relief supply chain using complexity theory and a systems resilience approach.
Day (2014) identified three key elements in any resilient supply chain: (i) topology
(path lengths, redundancies, clustering, etc.); (ii) entities (nongovernmental orga-
nizations, military, third-party logistics providers, government agencies, military,
donors, media, etc.); and (iii) environment.

2.3 Organizational Culture

Mitra and Singhal (2008) have argued the importance of building integration in a
supply chain network. Further, Braunscheidel et al. (2010a) have stressed the impor-
tance of organizational culture on supply chain integration. Cadden et al. (2013)
further investigated the impact of culture on supply chain network design; however,
studies on the influence of organizational culture on supply chain network design or
any area of operations management are very limited (McDermott and Stock 1999).
Ravasi and Schultz (2006) argued that organizational culture is a set of shared mental
assumptions which guide the behavior of people in an organization. In our case, we
try to extend the definition of Ravasi and Schultz (2006) to the supply chain network.
We have attempted to extend Needle’s (1994) definition that organizational culture
is a set of values, beliefs, and principles of the humanitarian supply chain actors and
is a product of history, service, types of employees, management styles, and national
culture. Childs (2013) attempted to explain security strategies for humanitarian aid
workers using cultural theory. Douglas (1999) proposed a four culture theory which
is quite useful in explaining the behavior of disaster relief supply chain actors. Here,
we argue that organizational culture may have a moderation effect on disaster relief
supply chain network design and disaster relief supply chain performance. Further-
more, how culture moderation effects can influence the humanitarian supply chain
performance during the pre-disaster and post-disaster phases is explored.

2.4 Pre-disaster and Post-disaster Phase Performance
Measures

The United States Federal Emergency Management Agency (FEMA 2008) stated
that even a highly developed nation, the United States, is prone to disasters that
could be from chemicals, terrorist attacks, flood, etc. In response to a potential threat
and the magnitude of the impact that can be caused by these possible sources of
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disasters, the US Congress passed the Disaster Mitigation Act in 2000 (United States
Congress 2000). However, our aim is to understand how various bodies like FEMA
have formulated a structure to improve the preparedness level and make the response
action effective. It requires effort to pool the resources which includes identification
of thewarehouse location, sufficient support humanitarian aidworkerswith right kind
of attitude and skill, sufficiently large quantity of humanitarian aids, availability of
transport vehicles, and enough money to acquire any kind of resource when needed.

2.4.1 Pre-disaster Phase

The preparedness phase of the humanitarian supply chain network actors is critical
to the pre-disaster performance. It enables a reduction in the number and severity
of the disasters, through prevention and mitigation, as well as improved emergency
response, through preparation and planning.We argue that prevention/mitigation and
planning/preparedness may differ theoretically but sometimes there are significant
overlaps which contribute to the ultimate goal of vulnerability reduction. Hence, for
vulnerability reduction, policy development is a precursor to vulnerability assess-
ment. We therefore argue that agility in the humanitarian supply chain network may
prove to be highly beneficial in case of vulnerability reduction. We have argued
in the preceding section that dynamic sensing, dynamic flexibility, and dynamic
speed together constitute an agile humanitarian supply chain network. However, the
resilience property in this phase is also important in building robustness in the human-
itarian supply chain network. However, to make it simple, we propose to focus on the
agility property in the pre-disaster phase. Oloruntoba and Gray (2006) have argued
that agility in the humanitarian supply chain network enables preparation for disaster
to be made and further mitigates the vulnerability. We have outlined our pre-disaster
performance measures in Table 2.

2.4.2 Post-disaster Phase

The post-disaster phase includes the short-term response, and the recovery and recon-
struction phase in the long term. The recovery and reconstruction phase is the restora-
tion of all aspects of the disaster’s impact on a community, and the return of the local
economy to some sense of normalcy. The recovery phase can be broken down into
two periods. The short-term phase typically lasts from 6 months to at least a year. It
involves the delivery of immediate services to victims in the formofmedical aid, food,
drinking water, building materials to construct damaged infrastructure, clothing, and
other necessary materials. Communities must access and deploy a range of public
and private resources to enable a long-term recovery. Abidi et al. (2013, 2014) have
attempted to develop a framework for humanitarian supply chain performance mea-
surement that can be used to measure pre-disaster and post-disaster performances in
the humanitarian supply chain network. The performance measurement dimensions
are income from the community, fundraising expenses per household, donormanage-
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ment, donations per households, federated income per households, stock managed
by service agreements, donation-to-delivery to deliver, flexibility, cost-effectiveness,
stock efficiency, cost recovery, percent of goods delivered, etc. (Abidi et al. 2014).We
have outlined the modified items as per the context in India based on the pretesting
in Table 2.

3 Research Model and Hypotheses Development

Based on our theoretical proposition, organizational culture moderation between
supply chain agility, supply chain resilience, and disaster relief supply chain perfor-
mance, we develop a research model, as shown in Fig. 3 and propose six research
hypotheses.

3.1 Supply Chain Agility and Pre-disaster Performance

During a disaster, mostly due to the unavailability of the supply, emergency responses
get affected and result in increased human suffering and loss of life. Hence, it can be
argued that the effectiveness of themovement of humanitarian aid to disaster-affected

Agility 

Resilience 

Pre-disaster 
performance

Post-disaster 
performance

Organisational culture

Fig. 3 Research model
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victims, preparedness is vital. Duran et al. (2011) argued that in effective disaster
responses, the agility in mobilizing the supplies and the effectiveness in distributing
them is critical. However, the effectiveness of the responses is dependent on the
amount of preparedness. Oloruntoba and Gray (2006) argued in their research that
agility in humanitarian and disaster relief supply chain networks is a desired property,
as emergency responses are short and quite unpredictable. We therefore hypothesize
that:

H1: Agility in a disaster relief supply chain network has a positive impact on
pre-disaster relief supply chain performance.

3.2 Supply Chain Agility and Post-disaster Relief Supply
Chain

During the response phase, the agility in humanitarian and disaster relief supply
chain network is essential for the successful distribution of humanitarian aid to the
disaster-affected victims. The response time is critical to human life. Oloruntoba
and Gray (2006) have argued the need for agility in humanitarian and disaster relief
supply chain networks. Pettit andBeresford (2009) argued that right time, right place,
right condition, and right quantity are essential features of humanitarian logistics.
We therefore hypothesize:

H2: Agility in a disaster relief supply chain network has a positive impact on the
post-disaster relief supply chain performance.

3.3 Moderating Effects of Organizational Culture

Study on interaction effects of organizational culture with humanitarian and disas-
ter relief supply chain networks is underdeveloped (Richey 2009). Richey (2009)
argued that the disaster relief supply chain literature is still at a nascent stage and
there is an immense opportunity for empirical research. In the past, researchers from
the general management community have theorized and demonstrated that organi-
zational culture leads to adopting management practices consistent with the culture,
and that these practices are associated with organizational performance. However,
there is scant literature focusing on the impact of organizational culture in the opera-
tions and supply chain management literature (Braunscheidel et al. 2010b). In recent
years, the organization culture and its interaction effect on the supply chain network
have attracted significant contributions (e.g., Braunscheidel and Suresh 2009; Braun-
scheidel et al. 2010a; Cadden et al. 2013; Blome et al. 2013). We therefore argue that
organizational culture has a significant moderation effect on supply chain network
design. Based on the preceding discussion, we therefore hypothesize:
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H3: Organizational culture has a moderating effect on the link connecting agility
and pre-disaster performance.

H4: Organizational culture has a moderating effect on the link connecting agility
and post-disaster performance.

H5: Organizational culture has a moderating effect on the link connecting
resilience and post-disaster performance.

3.4 Resilience Supply Chain and Post-disaster Relief Supply
Chain

The resilience property of a disaster relief supply chain has attracted significant
contributions from researchers in recent years (e.g., Day 2014; Scholten et al. 2014;
Zobel and Khansa 2014). Bruneau et al. (2003) have further argued that the resilience
property has four dimensionswhich include robustness, redundancy, resourcefulness,
and rapidity. However, they have further debated using the resilience triangle, that
is, by improving robustness and rapidity, the resilience of the infrastructure can be
improved. Hence, when disaster strikes, robustness in the humanitarian supply chain
network mitigates severity and rapidity further helps to recover to the normalcy
phase. Zobel (2011b) further argued that inherent social resilience, which is difficult
to quantify has an important role to play during the post-disaster phase. We therefore
argue that resilience in a disaster relief supply chain network is a prerequisite for a
post-disaster relief supply chain network. Hence, we hypothesize:

H6: The resilience property in a disaster relief supply chain network has a positive
impact on post-disaster relief supply chain performance.

4 Research Design

4.1 Operationalization of Constructs

We used a survey-based approach to test our model and research hypotheses. A
questionnaire was developed by identifying relevant measures from an extensive
literature review. The questionnaire is consolidated into two sections.

Section 1
This section includes the name of the organization and information on individu-
als such as gender, age, number of years of experience, and awareness related to
humanitarian relief activities.

Section 2
This section includes questions related to agility, resilience, culture, and disaster
performance measures. The questions are mixed, and both positively and negatively
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worded questions are used to avoid bias. The objective of this section is to gage the
perception of the respondents, who are part of the humanitarian relief supply chain
network. The respondents were asked to give a rating on a five-point Likert scale
(i.e., 1 = strongly disagree, to 5 = strongly agree).

Some modifications were made in the existing constructs to make it suitable for
the disaster relief supply chain network. Since target organizations are the entities
or humanitarian supply chain actors which are part of disaster relief supply chain
network (i.e., nongovernmental organizations, military, government agencies, trans-
porters, local people, local police, donors, etc.), a panel consisting of experts in the
disaster relief supply chain network examined the validity of the items. For the pur-
pose of pretesting, 15 experts were identified from the databases of CILT India, the
Asian Council of Logistics Management and the CII Institute of Logistics. A few
changes to the scales were made in order to match the Indian context. Before consult-
ing these experts, we checked the background of the experts. One is a senior member
of theAsianCouncil ofLogisticsManagement andCILT.Hence, the close association
with these professional bodies has helped us to learn about their level of involvement
in past and current involvement in disaster relief activities. Some experts are edito-
rial board members of reputable journals like Journal of Humanitarian Logistics and
Supply Chain Management and Humanitarian Logistics Association. We ensured
that all the pretest candidates had the knowledge required to improve the quality of
our measurement. All the exogenous and endogenous constructs are operationalized
as shown in Table 1.

4.2 Data Collection

The structured questionnaire was e-mailed to senior members of the Asian Council
of Logistics Management, which is an Indian-based professional society based in
Kolkata, India, the CILT India, as well as the Indian Institute of Railway Logistics
and Materials Management, senior police officers of Maharashtra, Uttar Pradesh,
and Uttarakhand, reputable NGOs specially engaged in disaster management, logis-
tics service providers who specialize in humanitarian logistics, government depart-
ments, and academicians engaged in the disaster or humanitarian logistics field.
Over 1750 questionnaires were sent out of which 378 questionnaires were returned,
and 319 questionnaires were found suitable for further analysis. After following
up with respondents who did not respond to the earlier questionnaires, the number
increased to 350, which represents a 20% response rate. The frequency distribution
of the respondents is presented in Table 2. Information related to the number of
male/female respondents, age of respondents, and the number of years of experience
is not presented, as these variables are not considered in the proposed hypothesis
formulation.
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Table 1 Building blocks of research model and their items

Construct References Items

Agility in disaster relief
supply chain network

Li et al. (2009) • Dynamic sensing
• Dynamic flexibility
• Dynamic speed

Resilience in disaster relief
supply chain network

Tierney and Bruneau (2007),
Zobel and Khansa (2014)

• Robustness
• Redundancy
• Resourcefulness
• Rapidity
• Technical capabilities
• Organizational resilience
• Social dimensions which
include population and
local group which are either
vulnerable or adaptable to
disasters and hazards

• Economic ability to build
resources

Organizational culture Detert et al. (2000) • Truth and rationality among
supply chain partners

• Motivation toward
humanitarian work

• Cooperation
• Commitment
• Coordination
• Responsibility
• Orientation to work

Pre-disaster performance Abidi et al. (2013, 2014) • Availability of
humanitarian aid

• Right humanitarian aids
• Right place
• Right quantity
• Right quality

Post-disaster performance Abidi et al. (2013, 2014) • Right time
• Quick recovery
• Time taken to regain its
normal life

• Life saved
• Restoring communication
• Reconstructing roads and
bridges
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Table 2 Responded questionnaires

Departments Targeted
respondents

Questionnaires
received

%

Senior government
officers of India

140 15 10.71

Maharashtra state
police

Senior police
officers

75 15 20

UP state police Senior police
officers

150 25 16.70

Uttarakhand state
police

Senior police
officers

50 15 30

Asian Council of
Logistics
Management

Senior members 75 50 66.67

CILT India Fellows 25 20 80

Chartered
members

100 30 30

Indian Institute of
Railway Logistics
& Materials
Management

150 30 20

Goonj NGO 250 50 20

Hope Foundation 175 25 14.29

Blue Dart Senior managers 75 10 13.33

Corporate Disaster
Resource Network
(CDRN)—India

250 25 10

Indian Red Cross
Society

220 30 13.64

Academicians who
are engaged in
research related to
humanitarian
supply chain

15 10 66.67

Total 1750 350 20

4.3 Nonresponse Bias

A nonresponse bias test is highly recommended by statisticians for survey data,
regardless of the achieved response rate (e.g., Armstrong andOverton 1977; Barriball
andWhile 1999). There are various available nonresponse biasmethods or techniques
with different strengths and limitations. TheWave Analysis technique is used in this
study as it is (1) a widely used method, (2) inexpensive, (3) less time consuming, (4)
low in data requirements, and (5) reasonable and coherent within the paper context.
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It is also known as the linear extrapolation method (Armstrong and Overton 1977).
In our study, there were two mailing periods:

Wave 1: E-mail the online questionnaire accompanied by an information and consent
form and
Wave 2: Send a reminder to those who had not responded after 6 weeks.

The differences in the waves (wave 1 = initial respondents and wave 2 = late
respondents) were analyzed. The statistical difference was estimated using the t-
test, with a p-value of less than or equal to 0.05 being considered to be statistically
significant. In this case, it was found that the responses from the two waves were
not statistically significantly different from each other. It can therefore be concluded
that nonresponse bias is not a major issue in the study.

5 Data Analyses and Results

5.1 Assumptions Test

The indicators checked for constant variance, outliers, and normality. It is important
to check these properties, before one proceeds in evaluating the reliability and validity
of the measurement items or elements. We have checked the Mahalanobis distances
of the predicted variables to identify multivariate outliers (Cohen et al. 2013). It is
a very conservative approach, but highly useful in checking the normal distribution
of data (i.e., maximum magnitude of skewness and kurtosis. In our case, we found
these values to be 1.139 and 1.261, respectively, well within the limits recommended
by past researchers (univariate skewness < 2, kurtosis < 7) (Curran et al. 1996). The
plots as well as the statistics both suggest that the deviances are not significant. We
further checked multicollinearity using variance inflation factors (VIF). However, in
our case, the VIFs were slightly higher than 10. We also tested the moderation effect,
as the VIF tended to be high (see Baron and Kenny 1986). We used confirmatory
factor analysis (CFA) to establish the construct validity (i.e., convergent validity and
discriminant validity). We have presented the fit indices in the tabulated form as
follows:

From Table 3, we can see our goodness of fit indices were well within speci-
fied limits (Hu and Bentler 1999; Hooper et al. 2008). From this, we can conclude
that our research model (see Fig. 2) fits well with our collected data, using a struc-
tured questionnaire. To further check discriminant validity, we compared the squared
correlation between two latent constructs to the average variance extracted (AVE)
(Fornell and Larcker 1981). The split survey was adopted in our study to reduce the
likelihood of common method bias; however, common method bias still occurs. In
such a situation, we performedHarman’s single-factor test as suggested by Podsakoff
et al. (2003). We performed exploratory factor analysis by entering all the variables
in SPSS 20.0. The variables were further reduced to six latent factors using principal
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Table 3 Goodness of fit
indices

Index Observed value Recommended
value

Normed chi-square 1.73 <2a

Root mean square
error for
approximation
(RMSEA)

0.05 <0.08

Comparative fit
index (CFI)

1.3 >0.9

(aHooper et al. (2008) recommend a maximum value between 2
and 5. However, we have assumed a maximum cut-off limit as 2)

component analysis (PCA) (varimax rotation). The Kaiser–Meyer–Olkin measure of
sampling adequacy is 0.74. The extracted six latent factors had eigenvalues greater
than 1.0, covering nearly 67% of the total variance. The first latent factor had nearly
21.1% of the total variance, thus we can conclude that common method bias is not
a serious issue in our study.

The standard loadings were in all cases greater than 0.7 (see Table 4), with con-
siderably higher t-values (p < 0.01), scale composite reliability greater than 0.7 and
average variance extracted (AVE) greater than 0.5 (see Table 4). Therefore, we can
assume that our constructs of the research model (see Fig. 2) possess convergent
validity. From Table 5, we can see that the square root of the average variance
extracted is found to be greater than the square of the correlation between any two
constructs in a given column. This indicates that our constructs (see Fig. 2) possess
discriminant validity.

5.2 Hypotheses Tests

The research hypotheses were tested using regression analysis. We used multiple
regression analysiswhichmay be regarded as a conservativemethod in comparison to
the covariance-based approach or variance-based approach. In our case, we checked
our assumptions and we found that regression analysis can be used for testing our
research hypotheses. The hypotheses test results are presented in Table 6 as follows:

From Table 6, it can be seen that our six research hypotheses, which we identified
to test our researchmodel (see Fig. 2), are supported. The first hypothesis (H1), which
we have theorized based on our extensive literature review, explains nearly 7.3% of
the pre-disaster performance and the beta coefficient is 0.270 which is statistically
significant at p = 0.002, and suggests that agility in a humanitarian supply chain
network is a significant construct. The result of our statistical analysis has supported
the claim of past researchers (e.g., Oloruntoba and Gray 2006; Duran et al. 2011).
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Table 4 Overview of constructs and their items (factor loadings, composite reliability, average
variance extracted, and Cronbach’s alpha)

Constructs Items Factor loadings Cronbach’s
alpha

Agility in disaster relief
supply chain (X1)
CR = 0.775
AVE = 0.535

Dynamic sensing 0.726 0.722

Dynamic flexibility 0.722 0.731

Dynamic speed 0.746 0.721

Resilience in disaster
relief supply chain (X2)
CR = 0.904
AVE = 0.612

Robustness 0.711 0.716

Redundancy 0.759 0.711

Resource fullness 0.731 0.764

Rapidity 0.811 0.743

Social dimensions 0.911 0.711

Economic ability 0.756 0.734

Organizational culture
(X3)
CR = 0.807
AVE = 0.568

Truth and rationality
toward partners

0.759 0.711

Motivation 0.764 0.714

Cooperation 0.763 0.754

Commitment 0.745 0.789

Coordination 0.789 0.719

Responsibility 0.699 0.767

Pre-disaster performance
(Y1)
CR = 0.881
AVE = 0.712

Availability of
humanitarian aid

0.821 0.714

Right place 0.844 0.733

Right quantity 0.866 0.798

Post-disaster performance
(Y2)
CR = 0.862
AVE = 0.557

Right time 0.703 0.728

Quick recovery 0.660 0.720

Life saved 0.745 0.732

Time taken to regain its
normal life

0.878 0.715

Restoring communication 0.728 0.729

Note CR = (
∑

λi)2/((
∑

λi)2 + ∑
ε)), where λi denotes standard factor loadings and ε denotes

error

Table 5 Correlations among
constructs

Constructs X1 X2 X3 Y1 Y2

X1 0.731a

X2 0.097b 0.782a

X3 0.013b 0.202b 0.754a

Y1 0.04b 0.371b 0.000b 0.844a

Y2 0.098b 0.032b 0.053b 0.095b 0.746a

(arepresents
√
AVE and b(Coefficient of correlation)2)
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Table 6 Regression analysis output

Hypotheses R2 ß t-statistic Significance Supported/not
supported

H1: X1 →
Y1

0.073 0.270 3.203 0.002 Supported

H2: X1 →
Y2

0.034 0.173 2.136 0.035 Supported

H3: X1 * X3
→ Y1

0.070 0.056 3.120 0.002 Supported

H4: X1 * X3
→ Y2

0.071 0.045 3.146 0.002 Supported

H5: X2 * X3
→ Y2

0.137 0.067 4.4543 0.000 Supported

H6: X2 →
Y2

0.047 0.272 2.520 0.013 Supported

The second hypothesis (H2), which assumes that supply chain agility in a disaster
relief supply chain network, has a positive impact on post-disaster relief performance.
The link (X1 → Y2) explains nearly 3.4% of post-disaster performance and the beta
coefficient is 0.035, which is statistically significant at 0.035. The findings suggest
that though supply chain agility is an important property of the disaster relief supply
chain network, for pre-disaster performance rather than post-disaster performance.
The third, fourth, and fifth hypotheses results suggest that organizational culture
has an important role to play. The magnitudes of R2 and the beta coefficient were
significantly improved due to the moderation effect of organizational culture. These
results support the findings of (Braunscheidel and Suresh 2009; Braunscheidel et al.
2010b; Cadden et al. 2013). However, we believe that our findings are the first attempt
to test the theory in a humanitarian supply chain network. The sixth hypothesis (H6)
has been theorized based on our reviewof the extant literature. The statistical analyses
indicate that our hypothesis is supported. The link (X2→Y2) explains nearly 4.7%of
the total post-disaster performance. The beta coefficient is 0.272 which is significant
at p = 0.013. The result of our analysis is found to be consistent with (Day 2014).

5.3 Discussion

Our interest in investigating supply chain network theory and cultural theory in the
context to humanitarian supply chain network was triggered by two facets of the sup-
ply chain design principle of Melnyk et al. (2014) and Day (2014) in contributions
to the field of operations and supply chain management theory. The current litera-
ture on the humanitarian supply chain revolves around theory building. However,
the literature focusing on theory testing is scant. The humanitarian supply chain is
quite a complex field. Most of the time, partnerships are formed hastily, resulting in
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poor coordination and cooperation. This could explain the past failure of efforts in
humanitarian supply chains. Tatham and Kovács (2010) attempted to offer a solution
to hastily formed disaster relief supply chain networks through a swift trust mech-
anism. However, swift trust is one of the components of organizational culture and
it may differ from case to case. In the absence of any empirical study, we therefore
theorized our model based on commercial supply chain success and humanitarian
supply chain existing theories. In this way, we have attempted to answer pressing
calls, and the findings of our study have both theoretical andmanagerial implications.

5.3.1 Theoretical Contributions

By empirically validating a research model which we have derived through an exten-
sive literature review, this study offers two unique contributions to the current litera-
ture of humanitarian supply chain networks. First, as a novel contribution, we tested
the impact of cultural theory on humanitarian supply chain networks. In this way, we
have attempted to test the supply chain design principle of Melnyk et al. (2014), all
not an extension in the complete sense. Second, we have tested the existing theory in
the context of humanitarian supply chain. In this way, we have tested the theory using
survey methodology. We have recognized the pending calls of the supply chain and
operations management researcher in the context of the humanitarian supply chain,
which is still recognized as one of the nascent fields in operations and supply chain
management.

5.3.2 Managerial Implications

Many of our findings offer guidance to NGOs, government agencies, transporters,
local bodies, and the military. The moderating role of organization culture provides
clear direction in that truth and rationality toward partners, motivation, cooperation,
commitment coordination, and responsibility which have an important role to play
in building effective humanitarian supply chain networks. Agility in a supply chain
network which reflects building dynamic sensing, dynamic flexibility, and dynamic
speed in a supply chain network canhelp to improve the preparedness level and further
assist to mobilize the resources which are necessary in enhancing pre-disaster per-
formance. Similarly, focusing on robustness, redundancy, resources, rapidity, social
dimensions, and economic abilities in humanitarian supply chain networks will help
to improve post-disaster performance.We recognize that the idea of offeringmultiple
suggestions to stakeholders may be universally ill-advised because the present study
is based on samples collected from one country only.
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6 Conclusions

Drawing broadly on supply chain network theory, organizational culture and disas-
ter relief supply chain performance, and the extant literature on the humanitarian
supply chain, we have developed a research model and tested it empirically using a
data survey instrument. The hypotheses were identified from our theoretical model
(see Fig. 2) and tested statistically. The statistical analyses indicate that our model
constructs possess construct validity, and the goodness of fit indices further indicates
that our research model is sound. The hypothesis testing further confirmed that all
our six hypotheses are well supported. The study further supports the extant literature
and extends supply chain theory by empirically testing the research model.

6.1 Research Limitations

This study has its own limitations, as in other studies, but these limitations can
further provide future research directions. Here, the confounding variables were not
controlled. Second, the present analysis is basedon cross-sectional data. The causality
cannot be established based on cross-sectional data. Third, the present study has not
investigated top management commitment. Hence, the outcome of the study could
have been slightly different as top management commitment helps to translate the
vision into execution.

6.2 Further Research Directions

Based on study limitations and the findings of our study, we have outlined further
research opportunities, which can take the present study to the next level. The role
of leadership or top management commitment can offer a new perspective to our
research model (see Fig. 2). In the past, we have seen that most studies have either
used a case study or grounded theory approach to build theory andhave used extensive
literature reviews, to build theory and to further test it empirically. However, from the
methodological point of view, it is suggested that thorough integration of qualitative
research techniques such as case research, action research, ethnographic studies,
appreciative inquiry, etc., the theory can be built, and further, by using a structured
questionnaire, the developed theory can be further tested using a large sample size. In
this way, the current body of operations and supply chain literature can be extended.

Note: This chapter has been prepared based on Altay et al. (2018) study. In this
chapter, we present different perspectives to explain how agility and resilience are
desired crucial properties of disaster relief operations.Hence,we recommend readers
to read this chapter as well as Altay et al. (2018) to have a complete perspective.
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agement for predicting disruptions and reacting to them. Digital technology, Industry
4.0, Blockchain, and real-time data analytics have a potential to achieve a new quality
in decision-making support when managing severe disruptions, resilience, and the
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tutes a digital twin: a newdata-driven vision ofmanaging the disruption risks in SC.A
digital SC twin is a model that can represent the network state for any given moment
in time and allow for complete end-to-end SC visibility to improve resilience and
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1 Introduction

Digital technologies catalyze the development of new paradigms, principles, and
models in supply chain management (SCM). The Internet of Things (IoT), cyber-
physical systems, and smart, connected products, facilitate the development of digital
supply chains (SC) and smart operations (Fazili et al. 2017; Liao et al. 2017; Qu et al.
2017; Strozzi et al. 2017; Tran-Dang et al. 2017; Yang et al. 2017;Minner et al. 2018;
Panetto et al. 2019). Recent surveys by Addo-Tenkorang and Helo (2016), Oester-
reich and Teuteberg (2016), Gunasekaran et al. (2016, 2017, 2018), Nguyen et al.
(2018), Moghaddam and Nof (2018), Choi et al. (2018), Ben-Daya et al. (2018) pro-
posed classifications of different digital technologies and discussed their potential
impacts on SCM.Such digital technologies include big data analytics, advancedman-
ufacturing technologies with sensors, decentralized agent-driven control, advanced
robotics, augmented reality, advanced tracking and tracing technologies, and additive
manufacturing.

The increasing interest in the digital data applications to SCM is not surprising.
The quality ofmodel-based decision-making support strongly depends on the data, its
completeness, fullness, validity, consistency, and timely availability. These require-
ments on data are of a special importance in SC risk management for predicting
disruptions and reacting to them (Ivanov 2018b). Digital technology, Industry 4.0,
Blockchain, and real-time data analytics have a potential to achieve a new quality
in decision-making support when managing severe disruptions, resilience, and the
Ripple effect (Frazzon et al. 2018, Ivanov et al. 2017, 2019a).

A combination of simulation, optimization, and data analytics constitutes a digi-
tal twin: a new data-driven vision of managing the disruption risks in SC. A digital
SC twin is a model that can represent the network state for any given moment in
time and allow for complete end-to-end SC visibility to improve resilience and test
contingency plans (Ivanov 2018c). This chapter proposes an SC risk analytics frame-
work and explains the concept of digital SC twins. It analyses perspectives and future
transformations to be expected in transition toward cyber-physical SCs. It demon-
strates a vision of how digital technologies and smart operations can help integrate
resilience and lean thinking into a resileanness framework “Low-Certainty-Need”
(LCN) SC (Ivanov and Dolgui 2019).

The investigation of the interrelations between digital technology and SC risks
is still at a preliminary the beginning stage of its development and requires new
conceptual frameworks and taxonomies (Ivanov et al. 2019a). This chapter seeks
to move the discussion forward and develop a framework for a detailed analysis of
SC digital technology and disruption risk effects manifested at times in structural
dynamics (Ivanov et al. 2010) and the ripple effect (Ivanov et al. 2014a, b, 2016;
Sokolov et al. 2016; Elluru et al. 2017; Dolgui et al. 2018; Ivanov and Rozhkov
2017; Pavlov et al. 2018; He et al. 2018; Ivanov 2018a, b; Dolgui et al. 2019a;
Pavlov et al. 2019). Despite initial efforts to unearth new insights about the impact of
digital technologies on SC risks (Tupa et al. 2017; Ivanov et al. 2017; Papadopoulos
et al. 2017; Schlüter et al. 2017; Ivanov et al. 2019a; Baryannis et al. 2018; Dolgui
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et al. 2019b, c; Dubey et al. 2019), the understanding of individual and interactive
contributions on specific SC disruption risk management and ripple effects remains
limited. This study closes this research gap by a combinatorial examination of the
results gained from two isolated areas, i.e., the SC digitalization and managing the
disruption risks in the SC. In particular, the focus of this chapter is directed on the
data-driven decision-support systems to improve SC resilience andmanage the ripple
effect and disruption risks.

This chapter does not pretend to be encyclopedic and rather highlights the research
that examines the relationships between SC digitalization and SC disruptions risks.
The objective is to identify the perspectives of digital SC twins that can be leveraged
to direct future research in exploring how digital technologies affect ripple effect and
performance of the SCs, and how they can be used to manage the disruption risks
and to improve resilience. More specifically, this study seeks to answer the following
questions:

• What relationships exist between big data analytics, Industry 4.0, additive manu-
facturing, Blockchain, and advanced trace and tracking systems and SC disruption
risks?

• How digitalization can contribute to enhancing ripple effect mitigation and anal-
ysis?;

• What digital technology-based extensions are needed in applications of quantita-
tive analysis to ripple effect in the SC to emerge with digital supply chain twins?

2 Digital Supply Chain Technologies

Digitalizationmeans using digitized data and digital technologies not only to improve
processes, functions, and activities, but also to change processes to achieve a cer-
tain benefit. The objective is to enhance revenue streams and create new business
opportunities (Hagberg et al. 2016). Digitalization of operations aims to improve
production and SC capability and flexibility through real-time communication and
intelligent, high-resolution data systems (Reddy et al. 2016). Digitalization is a con-
tinuing transformation toward a digital supply chain, and progressively changes most
enterprise processes.

This section reviews recent literature in four elements identified in recent surveys
on digitalization applications to SCM, i.e.,

• Big data analytics
• Industry 4.0
• Additive manufacturing
• Advanced tracking and tracing technologies, Blockchain.

In each of these groups, we describe the respective technology and its recent
applications to SCM.
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2.1 Big Data Analytics and Artificial Intelligence

Big data analytics (BDA) and artificial intelligence (AI) bring a completely new
potential benefit to data-driven SC risk management. Big data has been characterized
in the literature by 5Vs: volume, variety, velocity, veracity, and value (Wamba et al.
2015, 2017). Veracity and value are particularly important since data analysis shows
the real value of big data.

Big data analytics (BDA) is based on knowledge extraction from vast amounts
of data, facilitating data-driven decision-making. The more the data from the actual
production process is recorded, the more important it becomes to evaluate this data
volume with the help of BDA applications. ERP systems are generally not suited
to this task. One challenge is that internal and external data from smart, networking
products are frequently unstructured. The resulting solution is a repository that stores
different data streams in their original formats. From there, the data canbe reformatted
and examined with descriptive, diagnostic, predictive, and prescriptive data analytics
tools.

Descriptive analysis records the condition, the environment, and the function-
ing of the products. Diagnostic analysis analyses the reasons for reduced product
performance or failure. Predictive analysis recognizes patterns that signal upcom-
ing events. Prescriptive analytics identifies measures to solve issues and improve
outcomes (Porter and Heppelmann 2015).

Analytics employs mathematical and statistical tools to collect, store, accumulate,
and analyze big data volumes. The applications themselves are not new, but it is the
combination with big data that brings new added value and competitive advantage.
What is new is the rapid pace at which data can be captured in real time. This, in
turn, extends the type and richness of data sets, and offers an unprecedented oppor-
tunity for investigation. Additionally, the nature of the investigation has changed.
Technological tools are continuously supplied with data, and become more intel-
ligent by using self-learning algorithms. For example, predictive analytics involves
self-learning algorithms that identify and analyze relationships among variables, and
develop outcomes such as buyer behavior forecasts. Active human involvement is not
required in this process As a result, BDA becomes an active participant in the inves-
tigation process, and can create new knowledge about unknown or buried patterns
and effects. Large-scale investigations detect such patterns, turning volume data into
precise insights (Sanders 2016).

BDA has undoubtedly been the most elaborated area of digital technology appli-
cation to SCM over the last decade. Johnson et al. (2016) and Simchi-Levi and Wu
(2018) analyzed the application of BDA to retail. Nguyen et al. (2018) noted that opti-
mization is themost popular approach in prescriptive analytics application to logistics
and transportation area. Retailers strive to grow revenue, margins, and market share.
Price optimization models calculate the variance of demand with price changes, and
combine this information with relevant cost and inventory data to recommend prices
that could maximize revenue and profits. BDA applications to SCM can also be
seen in procurement processes, manufacturing shop floors, promotion actions in the



Digital Supply Chain Twins: Managing the Ripple Effect … 313

omnichannelmodel, routing optimization, real-time traffic operationmonitoring, and
proactive safety management (Addo-Tenkorang and Helo 2016; Gunasekaran et al.
2016, 2017; Nguyen et al. 2018; Zhong et al. 2017). Nguyen et al. (2018) identified
some additional areas where BDA can be applied to SCM in the near future. These
areas include quality control in manufacturing, dynamic vehicle routing, in-transit
inventory management in logistics/transportation, and order picking and inventory
control systems in warehousing. Niesen et al. (2016) and Papadopoulos et al. (2017)
observed that BDA can help improve SC risk management and disaster resistance.
Baryannis et al. (2018) summarized recent AI applications to SC risk management
and identified some future research directions in risk identification, assessment, and
response. Priori et al. (2018) applied machine learning to the dynamic selection of
replenishment policies according to SC environmental dynamics. Cavalcantea et al.
(2019) developed a supervised machine learning approach to data-driven simulation
of resilient supplier selection in digital manufacturing.

2.2 Industry 4.0

The intelligent networking of machines and processes with the help of digital tech-
nologies is creating autonomous, Internet-linked, self-regulating production systems,
popularly termed as Industry 4.0. Industry 4.0 seeks to visualize and predict the per-
formance of processes, plants, SCs, and product properties on the basis of informa-
tion available in real time (Ivanov et al. 2019b). For this purpose, smart sensors are
applied to capture and communicate information and requirements comprehensively
to any recipient in real time. Production models are implemented in the form of so-
called cyber-physical production systems. Such cyber-physical production systems
collect data via production-integrated sensors and measurement systems in real time,
store and evaluate data, and interact actively with the physical, human, and digital
world. Intra and external connectivity are provided by IoT via digital communication
devices.

Industry 4.0 is a global phenomenon. There is no unique or circumscribed set of
technologies or practices that define Industry 4.0. Most research considers factory
concepts that share attributes of smart networking (Strozzi et al. 2017). The vision of
Industry 4.0 is that the product to be manufactured carries all the relevant informa-
tion about its production requirements. In addition, integrated production installa-
tions become self-organized through the collaboration of productionmachines, trans-
port equipment, tools, and logistical components that can communicate with each
other and exchange data via embedded systems. Digital technologies enable flexible
decision-making by providing real-time data in all areas of the SC (Bonfour 2016,
p.20). Digitalization and Industry 4.0 offers information and coordination based
competitive advantage, generates new employment opportunities, and increases vis-
ibility and control in supply chains. However, it requires long-term commitment, and
guarantees about data security (Porter and Heppelmann 2015).

Industrial robots are a part of Industry 4.0, found mainly in series production and
warehousing applications. Robots perform high precision tasks independently as also
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support employees in their work, by handing over tools, for example. Their use accel-
erates, facilitates, and simplifies production activities. Unlike conventional industrial
robots, which require time-consuming training, flexible robots learn quickly from
people. They communicate with one another via the cloud, and support optimal pro-
duction planning. In practice, however, questions still remain on several issues such
as the ownership of cloud data among SC partners, or machine intercommunication
protocols (Andelfinger and Hänisch 2017).

2.3 Additive Manufacturing

Additive manufacturing technology is a design-driven manufacturing process in
which components are produced from material layers on the basis of 3D data sets
and a virtual blueprint. “3D printing” is often used as a synonym. The use of different
materials and the elimination of previously required special tools are an advantage.
Furthermore, the rapid design and manufacturing process allows considerable time
savings compared to conventional product development cycles (Zhang and Jung
2018, pp. 3–5). Great freedom of design, low material waste, and the feasibility of
economically manufactured, individualized products make additive manufacturing
attractive for many industries. The method is currently used primarily in rapid pro-
totyping, but increasingly so in series production too (Li et al. 2017). Khajavi et al.
(2014), Holmström and Gutowski (2017), Feldmann and Pumpe (2017), Li et al.
(2017) described the applications of additive manufacturing to operations and SCM.
Those applications reach from spare part logistics to redesigning global SC produc-
tion and sourcing strategy. The core of additive manufacturing applications to SCM
is the usage of 3D printers at different stages in the SC to increase manufacturing
flexibility, achieve shorter lead times, increase product individualization, and reduce
inventory. However, mass production volumes are not commercially possible yet.

2.4 Blockchain and Advanced Tracking and Tracing
Technologies

Capturing and sharing information in real time is critical to detecting faults and
their extent, as well as in planning SC recovery (Sheffi 2015). Tracking and tracing
(T&T) systems aim at timely identification of deviations or danger of deviations in
SCs, analysis of such deviations, alerts about disruptions that have occurred or may
occur, and elaborating control actions to recover SC operability.

T&T systems combine with radio-frequency identification (RFID) and mobile
devices to provide current information about process execution (Bearzotti et al. 2012).
T&T systems and feedback control can be supported by RFID technology (Dolgui
and Proth, 2010) and SC event management systems (Ivanov et al. 2013), effectively
communicating disruptions to the SC tiers and helping revise initial schedules (Dol-
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gui and Proth 2010; Zelbst et al. 2012). A critical issue is detecting disruptions and
their scope in real time. Embedding SC visualization and identification technology
is crucial for this, in practice.

In addition, emerging Blockchain applications in SCs promise enhanced scale and
scope of T&T systems together with creation of information pipeline systems and SC
finance applications (Hofmann et al. 2018). The central idea is to increase visibility
and efficiency based on dispersed, tamper-proof, and verifiable record-keeping in the
SC.

For example, IBM and Walmart are researching how to increase food SC safety
control using Blockchain technology (IBM 2017). Recently, the applications of
Blockchain technology have begun to revolutionize different aspects of SC and oper-
ationsmanagement for development of real time SC capabilities (Ivanov et al. 2019a;
Kshetri 2018; Saberi et al. 2018). The central idea is to increase visibility and effi-
ciency based on record-keeping in the SC. Blockchain applications to SCs become
more and more important to enhance the scale and scope of digital processes along
with creation of information pipeline systems and SC finance applications (Hofmann
et al. 2018). A Blockchain is a decentralized database that exists as copies in a net-
work of computers (Crosby et al. 2016). It is a chain of blocks, because the data and
information stored is captured in blocks.

Regulatory processes (e.g., customs) can be expedited using Blockchain by
improving confidence in documentations. This, in turn, can result in reductions in
wastage, risk, and insurance premiums. The list of all transactions is stored as copies
throughout all further evolvements on numerous computers (a network of even hun-
dreds of computers).

These and further recent examples of Blockchain technology applications to SCs
(Ivanov et al. 2019a; Saberi et al. 2018) support the new proposition that competition
is not between the SCs, but rather between the information services and analytics
algorithms behind the SCs. As such, SCs will no more be understood as a rigid
physical system with a fixed and static allocation of some processes to some firms.
Instead, different physical firms will offer services in supply, manufacturing, logis-
tics, and sales which will result in the dynamic allocation of processes and dynamic
SC structures forming a cyber-physical SC.

In practice, new cloud-based analytics platforms such as SupplyOn Industry 4.0
Sensor Clouds make it possible to control the SC in real time, and plan and adjust
processes using up-to-date information. By simply clicking on a container type, the
graphs indicate whether there has been a violation of the defined temperature or
humidity limits along the time axis. The data analysis in this chart allows a quick
identification of all orders where the lead time was exceeded, allowing for a quick
identification of questionable transports.

Summarizing, the following SC digitalization framework can be presented
(Fig. 1).

BDA, additive manufacturing, Industry 4.0, and advanced tracking and tracing
technologies can be considered as digital enablers of the four major SC processes in
theSCORmodel, i.e., plan, source,make anddeliver, respectively.Adigital versionof
the SCOR model would therefore consist of digital planning, digital manufacturing,
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Fig. 1 Digitalization framework of supply chain risk management (Ivanov et al. 2019a)

digital sourcing, and digital logistics. IoT, cloud technology, robots, and sensors
form the technical guts of a digital SC. This classification will be further used in the
paper for analysis of digitalization impacts on severe SC risks and the ripple effect.
For each of the areas, Fig. 1 suggests possible applications of digital technology
with regards to SC disruption risks. For example, additive manufacturing can reduce
supply risk by creating the opportunity to replace missing materials with the 3D
printed components. BDA can be used at the planning stage to identify supplier
risk exposure. T&T systems can help at the reactive stage to monitor and identify
disruptions. At the same time, it needs to be noted that digital technologies may have
multiple applications, which are not restricted to a particular SCOR process.

3 Impact of Digital Technologies on the Ripple Effect

3.1 Linking the Digital Supply Chain and Disruption Risks

Following the study by Ivanov et al. (2019a), Table 1 summarizes the major drivers
of digital technology applications to SCM, the respective enablers, opportunities and
challenges for SCM, as well as the impact on disruption risk management and the
ripple effect
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Specifically, digitalization’s impact on the ripple effect, that is, the magnitude and
reach (upstream and downstream) of a disruption in a part of the SC is elaborated in
Table 2.

It can be observed in Tables 1 and 2 that digitalization technologies generally
have a positive impact on the ripple effect, but may create a few challenges for ripple
effect mitigation and control. BDA, Industry 4.0, and additive manufacturing, have
mixed influences on the ripple effect, while advanced T&T systems have a positive
impact.

Structuring analysis in terms of the supply chain operations reference (SCOR)
model, sourcing and production activities involving additive manufacturing and
Industry 4.0 imply higher exposure to external risks and ripple effect. This could
be due to an increase in complexity and probable reduction in time and demand
risks due to higher flexibility and shorter lead times. Higher supply risks can be
encountered if a disruption happens in the upstream SC since there is no intermedi-
ate inventory in between the stages. Delivery process risks in the SC are alleviated
by big data analytics due to better SC visibility and forecast accuracy, reduction in
information disruption risks, and better quality of contingency plan activation. For
integrated SC planning, reductions in supply and time risks can be achieved by using
advanced T&T systems that enable real-time coordination and timely activation of
contingency policies.

At the proactive stage, SCs are typically protected from disruptions by employ-
ing risk mitigation inventory, capacity reservations, and backup sources. This is
expensive, especially if no disruption happens. Blockchain could help reduce these
inefficiencies if we are able to create a record of activities and data needed for recov-
ery in terms of synchronized contingency plans. Additive manufacturing can reduce
the need for risk mitigation inventory and capacity reservations as well as for the
backup contingent suppliers. The decentralized control principles in Industry 4.0
systems make it possible to diversify the risks and reduce the need for structural SC
redundancy, using manufacturing flexibility.

At the reactive stage, if a disruption happens, the contingency plans from proac-
tive stage can be deployed faster and implemented effectively if SC visibility were
increased. BDA and advanced T&T systems in general, and Blockchain technol-
ogy in particular, can help us to trace the roots of disruptions, to observe disruption
propagation (i.e., the ripple effect), to select short-term stabilization actions based
on a clear understanding of what capacities and inventories are available (emergency
planning), to develop amid-term recovery policy and to analyze the long-term perfor-
mance impact of the ripple effect. Additive manufacturing has the potential to reduce
disruption propagation in the SC, since the number of SC layers and the resulting
complexity would be reduced.
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Fig. 3 Low-certainty-need
supply chain framework
(Ivanov and Dolgui 2018)

4 Supply Chain Resileanness: Low-Certainty-Need (LCN)
Framework

4.1 Conceptual Framework

The LCN SC framework (Ivanov and Dolgui 2018) suggests approaching SC disrup-
tion risk and the ripple effect field from another perspective. Rather than opposing
the efficiency and resilience, we suggest considering their mutual intersections to
enhance each other based on synergetic effects in terms of SC resileanness.

Major costs of disruptionmanagement are seen in disruption prediction, protective
redundancy, and reactive capabilities as a result of a higher need for certainty and the
resulting higher redundancy and recovery efforts. As such, we suggest studying these
areas from the perspective of efficiency and resilience complementarity (Fig. 3).

According to Fig. 3, structural complexity, process inflexibility and non-flexible
usage of resources, and insufficient parametric redundancy increase uncertainty and
disruption risk propagation in the SC. The ultimate objective of the LCN SC design
is to develop the ability to operate according to planned performance regardless of
environmental changes. As such, the LCNSCdesign possess two critical capabilities,
i.e.,

• low need for uncertainty consideration in planning decisions and
• low need for recovery coordination efforts.

Structural variety, process flexibility, and parametrical redundancy ensure dis-
ruption resistance and recovery resource allocation and allow for SC operation in a
broad range of environmental states. This means that planning activities in the LCN
SCs do not heavily rely on uncertainty prediction and proactive protection invest-
ments. Similarly, recovery coordination efforts are reduced to a minimum. Note that
the LCN SC design does not necessarily imply higher costs, but rather seeks for an
efficient combination of lean and resilient elements.

Let us discuss the principles of implementing the LCN SC framework in practice
using digital technology.
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4.2 Process and Resource Utilization Flexibility

Process and resource utilization flexibilitymeans in a wider sense an establishment of
universal, very flexible workstations such as those postulated in Industry 4.0 systems.
Similar, the usage of universal materials can be considered with regards to recovery
flexibility in the SC.Additivemanufacturing technology can also positively influence
product and process flexibility resulting in a combination of efficiency and resilience.
Additive manufacturing can reduce the need for backup contingency suppliers. The
decentralized control principles in Industry 4.0 systems make it possible to diversify
the risks with the help ofmanufacturing flexibility increases. New research directions
can be seenwith regards to the impact of the digitalization on the SC design resilience
(Ivanov et al. 2019a). For example, BigData analytics and advancedTrace&Tracking
systems in general, and Blockchain technology in particular, can help to trace the
roots of disruptions, to observe disruption propagation (i.e., the ripple effect), to select
short-term stabilization actions based on a clear understanding of what capacities
and inventories are available (emergency planning), to develop a mid-term recovery
policy, and to analyze the long-term performance impact of the ripple effect. Additive
manufacturing has the potential to reduce disruption propagation in the SC since the
number of SC layers and the resulting complexity would be reduced.

4.3 Non-expensive Parametric Redundancy

Non-expensive parametric redundancy targets the efficient reservations of capacity,
inventory, and lead time. More specifically, those reservations need to be considered
not as a non-used redundancy, but rather for use in normal operation modes as well.
Network redundancy optimization can be viewed as a new research topic in this area.
Another aspect of parametric redundancy is its efficient allocation. A new research
direction extending the existing value-stream mapping techniques toward the SC
resilience can be considered. Efficient redundancy can be implemented by using
additive manufacturing that helps to reduce the need for risk mitigation inventory
and capacity reservations. Finally, new material classification schemes need to be
developed subject to material criticality and risk exposure in terms of the efficient
and resilience SC design.
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Fig. 4 Service and material flow coordination in the cyber-physical supply chain

5 Digital Supply Chain Twin: Data-Driven Optimization
and Simulation to Manage the Disruption Risks

5.1 Supply Chains as Cyber-Physical Systems

Today and looking at the near future, the SC will be as good as the digital technology
behind it. The recent examples of digital technology applications to SCs allow for
the new proposition that the competition is not between SCs, but rather between SC
services and the analytics algorithms behind the SCs. The services may be ordered
in packages or as individual modules (Fig. 4).

Examples of SC and operations analytics applications include logistics and SC
control with real-time data, inventory control, and management using sensing data,
dynamic resource allocation in Industry 4.0 customized assembly systems, improv-
ing forecasting models using Big data, machine learning techniques for process
control, SC visibility, and risk control, optimizing systems based on predictive infor-
mation (e.g., predictive maintenance), combining optimization andmachine learning
algorithms, and simulation-based modeling and optimization for stochastic systems.

Success in SC competition will become more and more dependent on analyt-
ics algorithms in combination with optimization and simulation modeling. Initially
intended for process automation, business analytics techniques now disrupt mar-
kets and business models and have a significant impact on SCM development. As
such, new disruptive SC business models will arise where SCs will be understood
not as rigid physical systems with a fixed and static allocation of some processes to
some firms. Instead, different physical firms will offer services of supply, manufac-
turing, logistics, and sales which will result in a dynamic allocation of processes and
dynamic SC structures. Recent literature documented the possibility of modeling
such integrated service-material flow SCs (Ivanov et al. 2014c).
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Fig. 5 Digital supply chain risk analytics framework

5.2 Supply Chain Digital Twins

Dunke et al. (2018) underline that digitalization and Industry 4.0 may significantly
influence the optimization techniques in the SC domain as well as disruption prop-
agation impacts on SC performance. With the help of optimization and simulation
approaches, current research generates new knowledge about the influence of disrup-
tion propagation on SC output performance considering disruption location, duration
and propagation, and recovery policies. New digital technologies create new chal-
lenges for the application of quantitative analysis techniques to SC ripple effect
analysis and open new ways and problem statements for these applications.

In the past decades, simulation and optimization have played significant roles in
solving complex problems. Successful examples include production planning and
scheduling, SC design, and routing optimization, to name a few. However, many
problems remain challenging because of their complexity and large scale, and/or
uncertainty and stochastic nature. In addition, the major application of optimization
and simulation methods in the last decades was seen in decision support, mean-
ing that decision makers were to manually provide the model input and interpret
the model output. On the other hand, the rapid rise of business analytics provides
exciting opportunities for Operations Research and the reexamination of these hard
optimization problems, as well as newly emerging problems (Fig. 5).

Sourcing, manufacturing, logistics, and sales data are distributed among very
different systems, such as ERP, RFID, sensors, and Blockchain. Big data analyt-
ics integrates this data to information used by AI algorithms in the cyber SC and
managers in the physical SC. As such, a new generation of simulation and optimiza-
tion models is arising. The pervasive adoption of analytics and its integration with
Operations Research shows that simulation and optimization are key, not only in the
modeling of physical SC systems, but also in the modeling of cyber SC systems and
learning from them.

An example of a decision-support system that combines a simulation, optimiza-
tion, and data analytics is shown in Fig. 6.
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Fig. 6 Concept of a decision-support system for supply chain risk analytics (Ivanov et al. 2019a)

The decision-support system for SC risk analytics aims at proactive, resilient SC
design in anticipation of disruptions and structural–parametrical adaptation in the
case of disruptions. The decision-support system is based on a concept that combines
simulation, optimization, and data analytics.The simulation–optimization part of the
system is intended to provide proactive, resilient SC optimization and simulation of
SC dynamic behavior in the event of possible disruptions or disruption scenarios. In
addition, this supports reactive, predictive simulation of disruption impacts on SC
performance and of recovery policies which are subsequently optimized in a pre-
scriptive manner using an analytical model. The data analytics part of the system
is applied to disruption identification in real time using process feedback data, e.g.,
from sensors and RFID. In addition, this aims at automated data input of disruption
data into the reactive simulation model for recovery policy simulation and optimiza-
tion. Finally, data analytics is used as data-driven learning system at the proactive
stage, helping to generate adequate disruption scenarios for resilient SC design and
planning.

At the proactive level, mathematical programming models produce notable
insights for managers and can be applied where the probability of disruption can
be roughly estimated. On the one hand, big data analytics and advanced trace and
tracking systems may help in predicting disruptions and providing more accurate
data to build sophisticated disruption scenarios for resilient SC design analysis. Dig-
ital technologies open new problems for resilient SC design. For example, additive
manufacturing changes SC designs whereby new resilient sourcing problems may
arise. This area can further be enhanced using collaborative purchasing platforms.
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At the reactive level and with regards to mitigation strategies and identifying
disruption impact onfinance andoperational performance, digital technologies canbe
extensively used to obtain real-time information on the scope and scale of disruptions,
their propagation in the SC and to simulate possible recovery strategies. In addition,
at the reactive level, adaptation is necessary for achieving desired output performance
by ensuring the possibility of changing SC plans and inventory policies. Adaptation
processes in ripple effect control can be supported by feedback and adaptive control
methods using decentralized agent techniques with the help of digital technologies
(Levalle andNof 2017). Visualizing these processes through virtual reality-supported
simulation has not yet been done extensively to model the ripple effect in the supply
chain. For this, simulation models, along with new digital technologies, can improve
tools which are already used in developing SC agility and visibility in terms of
disruption velocity.

A combination of simulation and optimization can extend the scope of both.
Combining the methods enables:

• Network optimization to minimize total SC cost.
• Dynamic analysis of ordering, production, inventory, and sourcing control policies
using simulation.

Simulation is a newer tool and especially powerful when combined with opti-
mization.More SCmanagers are now adopting the practice of using these techniques
together.

What can a typical SC simulation-optimization model include, and what factors
can it account for when working on risk analysis?

Network design and geographical information
Network design, with regard to the geographical location of sites, is the core of
most SC simulation models. GIS maps are used in simulation models to locate the
sites, and calculate distances, routes, and travel times along real roads. In addition
to geospatial calculations, they provide visualization and transparency in a model.

Operational parameters
Inventory control policies, back-order rules, production batching, and scheduling
algorithms, as well as shipment rules and policies, need to be defined in the model
and balanced against each other for both normal and disrupted operation modes.
Modern SC simulation tools enable visual modeling of these policies and do not
require programming skills.

Disruptions and recovery
The duration of random or scheduled disruption events can be modeled with the
probability distribution. As to recovery, analysts can set individual recovery policies
for different sites and define the rules of policy activation depending on when the
event occurs, the expected duration, and the severity of the disruption.

Performance impact
The direct impact of the ripple effect is reflected in changes to KPIs. Revenue, sales,
service level, fill rate, and costs are typically calculated. Unlike analytical models
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Fig. 7 Supply chain digital twin (Ivanov 2018c)

that usually focus on a particular metric (e.g., costs/profit), simulation enables the
simultaneous measurement of all metrics in the same model. Their values can be
checked at any chosen moment of the time period modeled. This way, disruption
duration can be modeled, performance impact measured, and mitigation policies
evaluated for efficiency.

A simulation model that considers all of these factors can be the basis for building
a successful digital twin of a physical SC that can be used for complex analysis
of SC risks, the development of contingency plans, and more efficient operational
management.

A digital SC twin can support decision-making about the physical SC on the basis
of data. At each point of time, the digital twin mirrors the physical SC: the actual
transportation, inventory, demand, and capacity data and can be used for planning
and real-time control decisions. The combination of simulation, optimization, and
data analytics constitutes a full stack of technologies which can be used to create an
SC digital twin—a model that always represents the state of the network in real time
(Fig. 7).

As stated, a digital twin reflects the current state of an SC, with the actual trans-
portation, inventory, demand, and capacity data. For example, if there is a strike at an
international logistics hub, this disruption can be spotted by a risk data monitoring
tool and transmitted to the simulation model as a disruptive event. Then, simulation
in the digital twin can help forecast possible disruption propagation and quantify
its impact. In addition, simulation enables efficient testing of recovery policies and
the adaptation of contingency plans—for example, alternative network topologies
and backup routes can be reconsidered on the fly. These screenshots are taken from
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any Logistix™ software and show the map-based model animation and the model-
building editor.

The output data from a digital twin simulation can be transferred to an ERP
system or a business intelligence (BI) tool to analyze the performance impact of
the disruptions. Additionally, a simulation model can activate BI algorithms. For
example, if the service level in a simulation model decreases to a certain level, the
digital twin might activate a BI algorithm to search for the cause of the problem.
Interacting with other SCM tools, a digital twin provides a control tower for end-to-
end SC visibility.

6 Conclusions

The impact of digitalization and Industry 4.0 on the ripple effect in the SC has been
studied in this chapter. Despite some partial efforts to uncover new insights in the
impact of digital technologies on SC risks, the understanding of the individual con-
tribution and the interplay of different digital technologies on specific SC disruption
risk management and ripple effect is still vague. This study contributes to the body
of knowledge in the field by combining the results gained from two isolated areas,
i.e., the impact of digitalization on SCM, and managing the ripple effect in the SC.

Digitalization is expected to increasingly penetrate industry in the coming years,
greatly changing operating and business systems, and the economy. Such potential
offers new approaches to SC riskmanagement that bring both opportunities and chal-
lenges. The fusion of the digital worldwith industrial processes is the so-called digital
transformation. In addition to internal and cross-company processes in production
and logistics, this also applies to the products and services offered to customers that
need to be refined through the use of digital technologies. This chapter explained
digital technologies can be used inmanaging SCdisruption risks and the ripple effect.

The trend toward the application of digital technologies goes beyond the manu-
facturing company. The supplier network, the customer network, and the logistics
service providers must also install and develop digital technologies to make the
entire SC in nonstop delivery flexible. For this reason, the focus must be on risk
management for every SC actor in the event of more frequent incidents such as nat-
ural catastrophes or supplier disruptions. The sources and handling process of risks
need to be understood to facilitate the successful application of digital technologies.
Digital technologies can potentially offer SCs enormous benefits in terms of trans-
parency, visibility, cost reduction, efficiency, and resilience. However, there is still
great uncertainty about the application and acceptance of the technologies, as many
technologies are still in development, and industry standards are not yet established.

More specifically, this study found that at the proactive stage, digital technologies
increase demand responsiveness and capacity flexibility. This may have a positive
impact on reductions in risk mitigation inventory in ripple effect control. In addition,
shorter lead times due to additive manufacturing enhance the impact of digitalization
on inventory control. Industry 4.0 and additive manufacturing with the support of
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BDA and T&T technologies facilitate a new quality of proactive planning of risk
management infrastructure and increase the ability to reconfigure resources at the
recovery stage. At the reactive stage, Blockchain, T&T technologies, and BDA allow
a principally new quality of data coordination and SC visibility when simulating and
activating recovery policies.

In terms of the SCOR model, sourcing and production activities can be adversely
affected by additive manufacturing and Industry 4.0, which carry higher exposure to
external risks and ripple effect. A plausible explanation is the increase in complexity
and the reduction in time and demand risks that occur, driven in turn by greater flex-
ibility and shorter lead times. Higher supply risks can be encountered if a disruption
happens in the upstream SC, since there is no intermediate inventory in between
the stages. The risks in the delivery processes are influenced by big data analytics
with regards to a reduction in demand risks due to better SC visibility and forecast
accuracy, reduction in information disruption risks and better quality of contingency
plan activation. Reductions in supply and time risks in integrated SC planning can
be achieved by using Blockchain and advanced T&T systems that provide real-time
coordination while activating contingency policies. Designing a resilient SC can be
influenced by higher information risks, higher exposure to external risks and a reduc-
tion in time and demand risks on the basis of Industry 4.0 technology and additive
manufacturing.

A number of directions for simulation and optimization applications to SCM have
been identified for digital technology application. BDA and advanced T&T systems
may help in predicting disruptions and providing more accurate data to build sophis-
ticated disruption scenarios for resilient SC design analysis. Digital technologies
can be used extensively to obtain real-time information on the scope and scale of
disruptions, their propagation in the SC, and to simulate possible recovery strategies.
In addition, at the reactive level, adaptation is necessary for achieving the desired
output performance by ensuring the possibility of changing SC plans and inventory
policies. Adaptation processes in ripple effect control can be supported by feedback
and adaptive control methods using decentralized agent techniques with the help of
digital technologies. Visualizing these processes through virtual reality-supported
simulation has not yet been done extensively to model the ripple effect in the SC.

Future decision-support systems will extensively utilize digital technologies and
the digital SC twin, i.e., a computerized model of an SC updated with actual data in
real time.

Notwithstanding the rapid developments in SCs and their digital twins, a number
of questions arise:

• Is the SC as resilient as the digital technology behind it?
• If yes, what will provide the most competitive advantage in the future: physical
SCs or their digital twins?

• Will SC resilience be managed by human, artificial intelligence, or a hybrid of
both?

• What will be the role of future SC risk managers?



Digital Supply Chain Twins: Managing the Ripple Effect … 329

There is much research and practical potential with regards to the questions stated
above. These can hopefully motivate new insightful developments in research on the
ripple effect and disruption risk.
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