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Abstract. This paper presents preliminary findings of an ongoing effort
to evaluate the application of face and neck surface electromyography
(sEMG) to real-time cognitive workload assessment. A retrospective
analysis of anterior neck sEMG signals, recorded from 10 subjects during
a time-pressured mental arithmetic task with verbal responses during a
previous study by Stepp et al. [52], suggests that a measure known as
neck intermuscular beta coherence (NIBcoh) may be sensitive to cogni-
tive workload and/or error commission in tasks involving speech pro-
duction, with sub-second temporal resolution. Specifically, the recent
reanalysis indicates that subjects exhibited significantly lower NIBcoh
when they produced incorrect verbal responses as compared to NIBcoh
associated with correct responses. We discuss this promising application
of NIBcoh within the context of our continuing research program and
introduce future experiments that will shed light on the relationships
among face and neck sEMG signals, task demands, performance, cogni-
tive effort/strain, subjective workload measures, and other psychophys-
iological measures.

1 Introduction

Mental workload researchers have identified a variety of psychophysiological mea-
sures that have proven sensitive to cognitive task demands, including indices
based on electrocardiography (ECG) [17,44], transcranial Doppler sonogra-
phy (TCD) [39,53,61], electroencephalography (EEG) [4,14,21], functional near
infrared [12,61], and eye tracking [2,5,27,37]. Electromyographic (EMG) mea-
sures, based on electrical potentials produced by motor units during muscle
contraction, have also demonstrated sensitivity to task demands (e.g., [18,65]),
yet face and neck surface EMG (sEMG) has received little attention in workload
research despite the critical role of face and neck musculature in reflecting and
expressing human mental/emotional state (whether through non-verbal cues or
spoken expression). The lack of attention is perhaps not surprising given the
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obtrusiveness of many existing sEMG sensor designs. However, recent advances
in sEMG sensor design/miniaturization and in EMG signal processing technolo-
gies are paving the way for a new generation of unobtrusive sEMG sensors that
will conform to the skin surface and minimize any negative impact on the wearer.
For example, there are new, commercially available miniature differential sensors
specifically designed for high-fidelity, wireless recording of facial sEMG signals
[41,42]. These advances have sparked new interest in the application of face/neck
sEMG to cognitive workload assessment.

Face and neck sEMG may offer a unique window into human emotional
state, complementing or even replacing previously studied psychophysiological
measures as sensing modalities in the real-time assessment of cognitive workload.
Many facial muscles are situated immediately below the skin surface and are
thereby readily accessible for sEMG recording. They have high endurance and
show little change in EMG power spectra across repeated facial contractions [57],
and a link between emotional responses and high levels of cognitive strain has also
been established (e.g., [20]). A study of error-related activity in the corrugator
supercilii, a muscle of the upper face (medial eyebrow region) involved in facial
expressions, has linked amplified EMG activity to error commission with less
than 100 milliseconds of latency [35].

This paper reports findings of an exploratory reanalysis of an existing dataset,
originally collected in a previous investigation by Stepp et al. into the modula-
tion of a specific neck sEMG signal, known as neck intermuscular beta coherence
(NIBcoh), by speech and non-speech behaviors [52]. In the present work, the
authors reanalyzed this dataset to investigate the potential utility of NIBcoh
in real-time cognitive workload assessment. Specifically, the sensitivity of NIB-
coh to cognitive task demands and the relationships between NIBcoh and task
performance were examined. This reanalysis was an initial step in an ongoing
program of research intended to shed light on the potential application of face
and neck surface EMG to the real-time assessment of cognitive workload.

The paper makes three primary contributions to the sciences of cognitive
workload and of EMG-EMG coherence analysis. First, the reanalysis provides
limited evidence that NIBcoh is sensitive to variations in task demand (or atten-
tion) across similar speech-related tasks. Second, it indicates that NIBcoh may be
correlated with error commission within the context of a specific time-pressured
mental arithmetic task requiring verbal responses. Finally, the findings offer
validation for concerns raised in [45] regarding the common use of full-wave
rectification in EMG-EMG coherence analysis.

The rest of the paper is organized as follows. Section 2 provides relevant back-
ground concerning EMG and EMG-EMG coherence measures, establishes exist-
ing support for a potential connection between cognitive workload and face/neck
sEMG, generally, and NIBcoh more specifically, and offers possible advantages of
face and neck sEMG as a real-time cognitive workload sensing modality. Section 3
describes the conditions in which the NIBcoh dataset was collected and the meth-
ods employed in the recent reanalysis. Section 4 presents and evaluates the results
of the analysis. Finally, Sect. 5 concludes by summarizing the key findings and
positioning them within the context of ongoing and future research.
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2 Related Work

2.1 Human Mental Workload

The general concept of cognitive workload has been recognized and studied for at
least 50 years, although no formal, standard definition of the construct has yet to
emerge within the research community [9]. This paper defines cognitive workload
similarly to the operational definition proposed by O’Donnell and Eggemeier [46],
as “the fractional utilization of an individual’s limited cognitive resources at a
particular moment.” As noted above, a number of psychophysiological measures
have proven sensitive to variations in cognitive task demands, supporting their
potential utility in the measurement of cognitive workload. However, several
studies offer evidence of divergence among known psychophysiological workload
indices [26,32,38,64]. The hypothesized causes for disassociation among these
measures are varied and include both lack of specificity (i.e., some measures can
be influenced by non-workload factors) and lack of diagnosticity (i.e., measures
may reflect differing aspects of workload, consistent with multi-resource theories
(e.g., [40,63]) in which workload is a multi-faceted construct arising from the
capacity of and demand for multiple cognitive resources).

In addition to psychophysiological measures, a number of subjective instru-
ments for cognitive workload assessment have been developed and validated
[36]. These include both offline, retrospective instruments, such as the NASA
Task Load Index (NASA-TLX) [25], the Workload Profile (WP) [56], and the
Subjective Workload Assessment Technique (SWAT) [48], and online (real-time)
techniques, such as the Instantaneous Self-Assessment of Workload (ISA) [30].
While subjective instruments may help to validate other measures or models
of cognitive workload, a valid objective measure offers obvious relative bene-
fits, including correspondence to reality uncontaminated by subjectivity and the
avoidance of self-assessment procedures that may distract from primary tasks.
The assessment of cognitive workload has found applications in a wide variety of
human endeavors, including: manual assembly/manufacturing [43], medical edu-
cation [7], air traffic control [15], and vehicle operation including that of trains
[1,47,50], aircraft [8], and motor vehicles [4,55]. Therefore, the development of
a robust, objective, real-time measure of cognitive workload can be expected to
have widespread benefits.

2.2 Face and Neck Surface Electromyography

Previous research has demonstrated the utility of facial sEMG for recogniz-
ing and classifying emotional responses [11,54,58]. In contrast to image-based
expression assessment, sEMG has the potential to identify rapid or slight facial
expressions, including subtle muscle contractions below the threshold necessary
to generate visible changes in the surface contours of the face [57]. Further,
sEMG may provide greater sensitivity regarding the locations and magnitude of
facial contraction when compared to image-based assessment. Automatic video
quantification of facial movements is relatively difficult for features aside from
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high-contrast tissue edges, whereas sEMG can discern a broad combination of
facial muscle actions across both high- and low-contrast regions.

Beyond the identification of facial expressions, face/neck sEMG can quan-
tify neuromuscular activity related to the vocalization and articulation of speech,
even for utterances that are not vocalized (i.e., sub-vocal speech). Several research
groups have demonstrated the utility of non-acoustic speech recognition tech-
nologies based on surface EMG signals [13,31,41,42], confirming that surface
EMG provides ample speech-related information whether speech is spoken aloud
or only “mouthed”. Because computer-based speech recognition is possible from
EMG alone, it is reasonable to suggest that these signals may also change under
varying cognitive load conditions in a manner resembling acoustic markers, such
as those employed in voice stress analysis. The characteristics of face and neck
sEMG make it particularly well suited to specific operational contexts. In noisy
environments (such as an aircraft cockpit) in which an acoustic signal might
be compromised, for instance, subtle acoustic features relating to cognitive load
might be more readily gleaned from activity in the musculature involved in
speech articulation than from degraded acoustic signals. The ability to detect
subtle contractions associated with sub-vocal speech or slight (perhaps even
involuntary) facial expressions could prove beneficial even in tasks that do not
involve significant amounts of speech. Most facial expression assessment and eye
blink tracking is done through image-based data collection, but this approach is
problematic when individuals are freely moving and thereby changing head ori-
entation relative to video capture sources. In addition, flight equipment such as
helmets, glasses, and face-masks can preclude visualization of facial movements.
In contrast, sEMG sensors can reside under headgear [3] or be incorporated into
face masks, chin straps, etc. [10].

Finally, the dimensionality of sEMG, particularly when considering signals
from multiple locations on the face and neck, offers a distinct advantage over
many of the low-dimensional measures that are unobtrusive enough for oper-
ational use in real-time workload assessment. If face/neck sEMG can support
speech recognition and the classification of emotional responses, perhaps it is
also capable, alone or in concert with other measures, of distinguishing cognitive
states that are conflated by other physiological signals. That is, it may help to
overcome the lack of specificity and diagnosticity noted in Sect. 2.1.

Although sEMG appears to offer distinct advantages over other sensing
modalities in some recording contexts, it also has potential drawbacks. Phys-
iological measures typically require some degree of instrumentation, and even
though sEMG is less prone to noise from movements and environmental sources
compared to electrically weaker EEG, it is perhaps more cumbersome and prone
to noise than other measures such as heart and respiration rate. Moreover,
while modern sEMG recording systems do not require the use of conductive
gels [41,42], the recorded skin surface should nevertheless be clean and free from
hair that can impede adequate electrode contact. This precludes some potential
speech-related neck/face recording locations in individuals with beards or when
proper skin preparation is impractical (e.g., military field deployment, extremely
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dirty or wet environments, etc.). In addition, the degree to which NIBcoh mea-
surement is potentially degraded by motion artifact or environmental sources of
electrical noise in the non-laboratory setting is still unknown.

2.3 Intermuscular Beta Coherence

The present study focuses on a particular measure, known as neck intermuscu-
lar beta coherence (NIBcoh), derived from the surface EMG signal at two ante-
rior neck recording locations superior to (above) neck strap muscles involved
in speech. Coherence, generally, is a frequency domain measure of the linear
dependency or strength of coupling between two processes [24,62]. The coher-
ence function, |Rxy(λ)|2, can be defined as in Eq. 1 below, where fxx represents
the auto-spectra of a time series x(t), fyy the auto-spectra of y(t), and fxy the
cross-spectra of the two. Intermuscular coherence, the coherence between EMG
signals, is a measure of the common presynaptic drive to motor neurons [6].

|Rxy(λ)|2 =
|fxy(λ)|2

fxx(λ)fyy(λ)
(1)

Muscle is thought to be driven by a number of different physiological oscil-
lations at varying frequencies (see [23] for a review). The frequencies at which
physiological oscillations occur appear to be characteristic of the function of
distinct neural circuits and have been categorized into distinct bands such as
alpha (8–13 Hz), beta (15–35 Hz), gamma (30–70 Hz), and others. It is generally
thought that the beta and low gamma bands originate primarily from the pri-
mary motor cortex [23]. The beta band is typically associated with production
of static motor tasks and is reduced with movement onset (e.g., [33]). Inter-
muscular coherence measurements reflect all oscillatory presynaptic drives to
lower motoneurons. However, the intermuscular coherence in the beta band has
been shown to be qualitatively similar to corticomuscular coherence, both in
healthy individuals as well as in individuals with cortical myoclonus [6,33], sup-
porting the hypothesis that beta-band intermuscular coherence is due to oscilla-
tory drives originating in the motor cortex and is thereby likely influenced by
cognitive state. The coherence of neuromuscular oscillations, whether measured
through MEG-EMG, EEG-EMG or EMG-EMG, are affected by concurrent cog-
nitive demands differently across the distinct frequency bands, making measures
of coherence potentially useful for detecting changes in cognitive workload. For
example, although alpha-band coherence is not dominant during motor tasks, it
is known to increase when attention is drawn specifically to motor task execution
[19,34]. Beta-band coherence is the dominant signal during synchronized oscil-
latory discharges of corticospinal or corticobulbar pathways onto lower motor
neurons, and is likewise reduced when attention is divided or otherwise drawn
away from the motor task at hand [29,34,52]. In addition, beta-band coherence
is negatively correlated with motor output errors during concurrent cognitive
tasks in young adults [28], suggesting that it may be predictive of both cognitive
workload and motor performance in younger individuals. In contrast, beta-band
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coherence is not necessarily correlated with motor performance in the elderly
during divided-attention tasks (61–75 yr; [28]), perhaps due to reduced atten-
tional resources [59] and motor coordination [60] with advancing age.

Measures of neck and face intermuscular beta coherence might be particu-
larly well suited to real-time workload assessment given the bilateral symmetry of
contraction typical for neck midline and facial muscles. For example, superficial
facial muscles involved in speech articulation and neck midline strap muscles
typically contract symmetrically across the right and left sides during speech
and swallowing [41], providing an opportunity for coherence measurement dur-
ing these synchronous contractions. Stepp and colleagues found that NIBcoh
measured from ventral neck strap muscles (sternohyoid, sternothyroid, and thy-
rohyoid) can distinguish not only individuals with disordered (strained, hyper-
functional) versus healthy voice production [51], but also healthy individuals
when they mimic a strained voice versus natural speech [52]. Vocal hyperfunc-
tion is associated with heightened speaking effort and anxiety [22], which may
represent increased cognitive demand during speech and thereby reduce NIBcoh,
regardless of whether the hyperfunction is pathological or mimicked. Stepp and
colleagues [52] also found that NIBcoh decreases when speech is produced under
divided attention (cognitive load imposed by rapid, backwards skip-counting),
consistent with prior reports of divided attention effects on beta coherence in dif-
ferent motor systems [29,34]. The goal of the present study was to re-examine the
Stepp et al. [52] dataset of NIBcoh during their normal versus divided-attention
speaking conditions, with the hypothesis that (1) their finding of reduced NIBcoh
under the divided attention condition would be replicated, and (2) the commis-
sion of cognitive errors (miss counting) could be detected in the NIBcoh measure
as errors occurred during their recordings of running speech (e.g., at a sub-second
time resolution). If NIBcoh indeed correlates with cognitive errors, this measure
would have important implications for real-time monitoring of cognitive load
and performance.

3 Design and Methodology

3.1 Data Collection Procedures

The dataset analyzed in this study consists of simultaneous neck surface EMG
(sEMG) and acoustic signals recorded during an earlier investigation by Stepp
et al. into the modulation of neck intermuscular beta coherence (NIBcoh) by
speech and non-speech behaviors [52]. The signals were recorded under a variety
of speech and non-speech task conditions, including a normal speech condition
involving both spontaneous and scripted speech and a “divided-attention” con-
dition in which participants were instructed to rapidly skip-count backwards
from 100 by 7s. In the present study, these data were reanalyzed (as detailed in
Sects. 3.2 and 3.3) to explore the relationships among the neck sEMG signals,
the acoustic signal, task demands, and task performance in order to shed more
light on the possible relationship between neck sEMG and mental workload.
Because this research is ultimately focused on real-time workload assessment,



78 A. Novstrup et al.

the previous analysis was also extended by considering time-varying measures
and not only summary statistics over the entire time series.

Participants. The participants were ten (10) vocally healthy female volunteers
(mean age: 25 years, standard deviation: 2.6 years). They reported no complaints
related to their voice, and no abnormal pathology of the larynx was observed
during standard digital video endoscopy with stroboscopy performed by a cer-
tified speech-language pathologist (SLP). Informed consent was obtained from
all participants in compliance with the Institutional Review Board of the Mas-
sachusetts General Hospital.

Recording Procedures. As reported by Stepp et al. [52], simultaneous neck
sEMG and acoustic signals from a lavalier microphone (Sennheiser MKE2-P-K,
Wedemark, Germany) were filtered and digitally recorded at 20 kHz with Delsys
hardware (Bagnoli Desktop System, Boston, MA) and software (EMGworks 3.3).
The neck of each participant was prepared for electrode placement by cleaning
the neck surface with an alcohol pad and “peeling” (exfoliating) with tape to
reduce electrode-skin impedance, DC voltages, and motion artifacts. Neck sEMG
was recorded with two Delsys 3.1 double differential surface electrodes placed on
the neck surface, parallel to underlying muscle fibers. Each electrode consisted
of three 10-mm silver bars with interbar distances of 10 mm. Double differen-
tial electrodes were chosen instead of single differential electrodes in order to
increase spatial selectivity and to minimize electrical cross-talk between the two
electrodes.

The two electrodes were placed on the right and left anterior neck surface,
as depicted by the schematic in Fig. 1. Electrode 1 was centered approximately
1 cm lateral to the neck midline, as far superior as was possible without impeding
the jaw opening, superficial to fibers of the thyrohyoid and sternohyoid muscles,
and to some degree the omohyoid. Electrode 2 was centered vertically on the
gap between the cricoid and thyroid cartilages of the larynx, and centered 1 cm
lateral to the midline contralateral to Electrode 1, superficial to the cricothyroid,

Fig. 1. sEMG electrode placement [52]. Copyright 2011 by the American Speech-
Language-Hearing Association. Reprinted with permission.
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sternothyroid, and sternohyoid muscles. However, based on previous examina-
tions of sEMG recordings during pitch glides [51], it is doubtful that cricothyroid
contraction contributed much energy to the sEMG due to its relatively deep
position. The platysma muscle likely contributed to some degree to the activ-
ity recorded at both electrode locations. A ground electrode was placed on the
superior aspect of the participant’s left shoulder. The sEMG recordings were
pre-amplified and filtered using the Delsys Bagnoli system set to a gain of 1,000,
with a bandpass filter with roll-off frequencies of 20 Hz and 450 Hz. All record-
ings were monitored by the experimenters in real time to ensure signal integrity,
and no recordings included movement artifacts.

Tasks. Participants completed eleven separate speech and non-speech tasks,
broadly organized into six task conditions. Only two conditions are relevant to
the present study, however: a “normal speech” condition and a “divided atten-
tion” condition. The normal speech condition consisted of two tasks—a scripted
task in which participants read “The Rainbow Passage” [16], and a spontaneous
speech task in which participants produced speech spontaneously in response
to a variety of available prompts, selected by participants (e.g., “What did you
do last weekend?”). The Rainbow Passage was typically produced for 30–45 s.
Spontaneous speech samples were approximately 1 min in length. No participant
had any problems completing these speech tasks correctly. In order to collect
speech under divided attention, participants were given 60 s to count backwards
from 100, aloud, as quickly as possible in decrements of 7. These recordings
were typically approximately 45 s in length. Participants uniformly reported this
task as difficult, but all were able to produce continuous speech during the
recording. The primary cognitive demand in this task is a (non-verbal) one
imposed by time pressured arithmetic computation. The production of verbal
responses, which imposes modest demands for linguistic processing and motor
control resources, can be considered a secondary task. Since EMG-EMG coher-
ence measures have been observed to decrease when attention is diverted from
the motor task involving the instrumented muscle, the authors hypothesized that
NIBcoh would decrease in response to increased demands of the primary, mental
arithmetic task. From this perspective, NIBcoh was expected to function as a
measure of secondary task attention.

3.2 Data Analysis

The original data consisted of discrete multivariate time series for ten subjects
under five speech-related conditions and one non-speech condition, sampled at a
rate of 20 kHz. Each time series included EMG variables from the two anterior
neck surface recording locations depicted in Fig. 1 and an acoustic variable. From
these “raw” time series, the authors derived several dependent EMG and acoustic
measures and down-sampled to a rate of approximately 1.83 Hz (i.e., three sam-
ples for every 32,768 samples of the “raw” time series). The derived EMG-based
variables were: NIBcoh, average magnitude, and gradient. The acoustic variables
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were: average amplitude, peak amplitude, spectral roll-off, cepstral peak promi-
nence, and sound intensity.

Two versions of the intermuscular beta coherence measure were computed,
with and without full-wave rectification (NIBcoh-rect and NIBcoh, respectively)
of the EMG signals. It is common practice in EMG-EMG coherence analysis to
apply full-wave rectification as an EMG pre-processing step, and this step was
performed in the research in which the NIBcoh dataset originated [52]. Other
work, however, has called this practice into question, demonstrating that full-
wave rectification may impair the identification of common oscillatory inputs to
muscle pairs [45]. Therefore, the present study experimented with both rectified
and unrectified EMG signals.

The NIBcoh and NIBcoh-rect time series were computed as follows. First,
any DC offset was removed from the raw sEMG signals. In the case of the
NIBcoh-rect measure, the resulting signals were then full-wave rectified. The
signals were segmented by sliding a 16,384-point (≈820 ms) rectangular window
over each of the resulting EMG-EMG bivariate time series, with 50% overlap.
Coherence between the two EMG signals, as defined in Eq. 1, was then estimated
within each rectangular window using Welch’s overlapped averaged periodogram
method [62], with sliding 8,192-point (≈410 ms) Hamming windows, a 8,192-
point fast Fourier transform, and 50% overlap (i.e., three Hamming windows per
rectangular segment). Finally, the beta-band coherence values were computed by
averaging the coherence values over the 15–35 Hz frequency range. Based on the
findings of Neto and Christou [45] suggesting that oscillatory activity in the
100–150 Hz frequency band of the unrectified signal may drive variations in the
beta band of rectified EMG signals, coherence in the 100–150 Hz band was also
computed.

In order to associate the acoustic and sEMG signals with time-varying per-
formance metrics, the acoustic signals for the divided-attention condition were
manually annotated with labels indicating the participants’ verbal responses—
each interval i, terminated by the completion of a response, was labeled with the
number uttered li. Performance in the backwards-skip-counting task is charac-
terized by both speed and accuracy. Accuracy is quantified as a function of error
commission, with “errors” defined relative to the most recent element that a sub-
ject produced (e.g., 80 was regarded as the correct successor to 87, despite 87 not
being an element of the correct sequence) to avoid an error-compounding effect.
Speed is quantified by the duration of time required for a subject to produce
each element of the sequence (i.e., response time). From the manual response
annotations, discrete time series were generated capturing the error commission
ε and response time r performance metrics. Specifically, the value of the error
commission indicator variable εi for a given labeled interval i reflects whether
the response label li for the interval is 7 less than the response label li−1 for
the previous labeled interval. The value of the response time variable for a given
labeled interval is simply the duration of the interval. That is:
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εi =

{
1 if li �= li−1 − 7
0 otherwise

ri = len(i)

(2)

The label boundaries did not, in general, align with the ≈820 ms segment
boundaries used to derive down-sampled time series from the raw EMG and
acoustic signals. Therefore, a time-weighted average of the down-sampled time
series over each labeled interval was computed to assign a single value of each
dependent variable (e.g., NIBcoh) to the interval.

3.3 Statistical Analysis

As an initial step in the present analysis, the authors sought to determine how
well a key finding in [52] held up in light of Neto and Christou’s [45] criticism
of full-wave rectification in EMG-EMG coherence analysis—specifically, Stepp
et al. [52] had found a significant effect of task condition on neck intermuscular
beta coherence. This result was re-examined by using ANOVA to quantify the
effect of condition on four EMG-EMG coherence measures: NIBcoh, NIBcoh-
rect, and the corresponding intermuscular coherence measures for the 100–150 Hz
frequency band. For consistency with the methods employed in [52], coherence
was estimated over each signal as a whole with Welch’s overlapped averaged
periodogram method [62], with a sliding 16,384-point Hamming window, 16,384-
point FFT, and 50% overlap. The recent analysis differs from that of [52] in
that their two-factor ANOVA was replaced with a more conservative one-factor
repeated measures ANOVA, which makes weaker independence assumptions.
The results of this analysis are reported in Table 1, below.

Since the authors’ primary interest was in evaluating the coherence mea-
sure’s utility in workload assessment, a post hoc two-tailed t-test was performed
to contrast the cognitively demanding divided-attention condition and the nor-
mal speech condition under the assumptions of the ANOVA model, as a means
to evaluate the sensitivity of NIBcoh to varying task demands. The relation-
ships between the performance measures for the backwards skip-counting task
(defined by Eq. 2) and the measures derived from the EMG and acoustic sig-
nals were then investigated. Specifically, associations between response time and
each of the EMG/acoustic variables were evaluated by using Student’s t-tests to
test the null hypotheses that each Pearson’s product-moment correlation coef-
ficient was 0 (i.e., H0 : ρr,v = 0, where ρr,v denotes the correlation between
response time (r) and an EMG/acoustic variable v). Similarly, Student’s two
sample t-tests were used to evaluate the hypotheses that the distribution of each
EMG/acoustic variable had unequal means for correct versus incorrect responses
(i.e., H0 : v̄ε=1 = v̄ε=0). The results of these statistical tests are shown in Tables 2
and 3, in Sect. 4 below, along with the estimated correlation coefficients and dif-
ferences in means. The t-tests had 123 degrees of freedom, corresponding to 125
observations (i.e., “responses”) across the 10 participants. The reported p-values
are not adjusted for multiple comparisons, since any such adjustment could
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itself be misleading due to correlations among several of the variables. In order
to statistically control for substantial variability across subjects, both in terms of
performance on the skip-counting task and in terms of the EMG/acoustic mea-
sures, the EMG/acoustic variables were normalized before computing t-values
and correlation coefficients. Specifically, given a value x of a variable for subject
s and the within-subject sample mean μs and standard deviation σs of that
variable over the normal speech condition, the standardized value z(x) was com-
puted using Eq. 3. The statistical tests thus reflect the “effects” of performance
on the other measures relative to each subject’s“baseline” from the normal speech
condition.

z(x) =
x − μs

σs
(3)

The analysis of the relationships between performance and the EMG/acoustic
variables is motivated by the hypothesis that within-subject variations in per-
formance on the skip-counting task result, at least in part, from variations in
the difficulty of the task. Given the nature of the task, within-subject variations
in cognitive demand might reasonably be expected to be quite small. However,
some such variation may arise from differences in the arithmetic problems that
each participant encountered while completing the task, especially in subjects
with less developed mental arithmetic skills. Some subjects may find it easier
to compute 100 − 7 = 93 than to compute 93 − 7 = 86, for instance. Whether
this was actually the case was examined by comparing mean response times for
decrementing numbers with a ones digit of 7, 8, or 9 (which can be computed
without regard to the tens digit) versus other numbers (which require “bor-
rowing” from the tens digit). Further, participants were encouraged to count
as quickly as possible and to maintain continuous speech during the divided-
attention task, which might be expected to lead them to sacrifice accuracy for
speed and thereby to experience amplified within-subject variations in cogni-
tive demands. This hypothesis was examined by analyzing the distributions of
errors and response times and by comparing mean response times for correct
versus incorrect responses within and across subjects. If within-subject varia-
tions in performance during the task can be plausibly connected to time-varying
cognitive demands, then it is plausible that any observed relationship between
performance and a physiological indicator can be interpreted as evidence of a
possible relationship between that indicator and cognitive workload (i.e., that
task performance acts as a proxy for cognitive workload within the context of
this task).

4 Results and Evaluation

Replication analysis (Table 1) confirmed the finding in [52] that the experimental
conditions had a significant effect on neck intermuscular beta coherence, despite
the use of a more conservative statistical test than that employed by Stepp et al.
The results also lend credence to the concerns of [45] regarding the common use
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of full-wave rectification in EMG-EMG coherence analysis. Rectifying the EMG
signals prior to estimating coherence appears to dilute the estimated difference
in coherence across conditions, suggesting that full-wave rectification may result
in a harmful loss of information—note the difference between the effect sizes
and p-values between the unrectified and full-wave rectified beta-band EMG-
EMG coherence signals. No significant effect of the task conditions on neck
intermuscular coherence in the 100–150 Hz frequency band was found.

Table 1. Summary of replication analysis. Effect of task condition on EMG-EMG
coherence measures.

Coherence measure Size of effect (generalized η2) p-value

Full-wave rectified

Beta band 0.120 0.0715

100–150 Hz 0.0892 0.0905

Unrectified

Beta band 0.176 0.0194†

100–150 Hz 0.0651 0.146
†Denotes a Huynh-Feldt sphericity-corrected p-value, applied
because Mauchly’s test for sphericity failed to reach a 5% sig-
nificance level.

A post hoc comparison of the normal speech and divided-attention conditions
revealed a significant difference between the two (p < 0.001). The linear model
corresponding to the repeated measures ANOVA implied that NIBcoh was lower
by an average of 0.0956 in the divided-attention condition, with a standard
error of 0.0290. This difference may indicate sensitivity of NIBcoh to the change
in cognitive demands between the two conditions. Statistical analysis of the
performance metrics for the backwards skip-counting task did seem to support
the use of these metrics as proxies for cognitive workload within the context of
this task. First, it was found that participants tended to compute the successors
for numbers with a ones digit of 7, 8, or 9 faster on average, with a mean
time of 1.9 s, than for other numbers (3.5 s). This result is consistent with the
hypothesis that cognitive demands vary between these two conditions and that
the varying cognitive demands are reflected in task performance. Additionally,
the data are consistent with the expectation that subjects sacrificed accuracy for
speed—time pressure that would tend to amplify the effects of within-subject
variations in cognitive demands on accuracy. A full 36% (45 out of 125) of
the subjects’ responses were erroneous, despite the presumed simplicity of the
task. The mean response time was 3.1 s with a standard deviation of 2.8, and
the response time distribution was heavily left-skewed with a median response
time of only 2.1 s. Furthermore, longer response times were strongly associated
with incorrect responses both between and within most subjects, indicating that
participants took longer to respond when they were struggling but that delayed
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responses did not generally result in greater accuracy. Analysis of cross-subject
variation suggests that standardization of the EMG and acoustic variables, using
Eq. 3 as described in the previous section, was justified. Subjects were found to
vary substantially, both in terms of their performance on the skip-counting task
(the total number of errors committed by each subject ranged from 0 to 10, with
a mean of 5 and a median of 4) and on the EMG/acoustic measures (e.g., the
mean within-subject standard deviation of NIBcoh was 0.104, while the overall
mean was 0.446, overall standard deviation was 0.116, and standard deviation
of within-subject means was 0.0497).

Table 2 shows the results of the t-tests comparing the distributions of the
standardized EMG and acoustic variables across correct and incorrect responses.
NIBcoh, EMG magnitude, sound intensity, average sound amplitude, peak ampli-
tude, and cepstral peak prominence all exhibited significant (α = 0.05) differ-
ences in estimated means across correct and incorrect responses. The NIBcoh-
rect, EMG gradient, and acoustic spectral roll-off measures showed no significant
difference across correct and incorrect responses. NIBcoh associated with incor-
rect responses was lower than NIBcoh associated with correct responses, as may
be expected if workload or simply reduced attention to speech reduces intermus-
cular coherence of oscillatory drives in speech-related muscles during speech. The
results for several acoustic measures frequently used in voice stress analysis also
accord with expectations.

Table 2. Difference in mean standardized features values for correct vs. incorrect
responses.

Measure Estimated difference t-statistic p-value

NIBcoh 0.505 2.81 <0.006

NIBcoh-rect 0.078 0.548 0.585

EMG magnitude (site 1) 0.432 −2.22 0.028

EMG magnitude (site 2) 0.532 −2.50 0.014

EMG gradient (site 1) 0.120 −0.772 0.44

EMG gradient (site2 ) 0.064 −0.414 0.68

Mean acoustic amplitude 0.852 −2.35 0.020

Peak acoustic amplitude 2.52 −2.96 <0.004

Sound intensity 0.345 −1.97 0.051

Spectral roll-off 0.276 1.21 0.230

Cepstral peak prominence 0.258 −1.67 0.097

Correlations between response time and the EMG/acoustic variables are
shown in Table 3. NIBcoh, peak acoustic amplitude, sound intensity, and cep-
stral peak prominence exhibited significant (α = 0.05) associations with response
time.
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Table 3. Correlations between response time and the standardized EMG and acoustic
features.

Measure Pearson’s r t-statistic p-value

NIBcoh −0.196 −2.22 0.028

NIBcoh-rect −0.078 −0.868 0.387

EMG magnitude (site 1) −0.176 −1.98 0.050

EMG magnitude (site 2) 0.008 0.084 0.933

EMG gradient (site 1) 0.076 0.849 0.397

EMG gradient (site 2) 0.111 1.24 0.218

Mean acoustic amplitude −0.139 −1.56 0.122

Peak acoustic amplitude 0.185 2.08 0.040

Sound intensity −0.223 −2.54 0.012

Spectral roll-off −0.005 −0.053 0.958

Cepstral peak prominence −0.219 −2.49 0.014

4.1 Caveats and Limitations

While the results are promising, several caveats must be acknowledged and the
exploratory nature of the analysis must be stressed. Because the original exper-
iment in which the data were collected was designed to shed light on the mod-
ulation of NIBcoh by speech and non-speech behaviors and not to explore the
sensitivity of NIBcoh to cognitive demands, the recent reanalysis was necessarily
ad hoc. The findings should therefore be considered only suggestive rather than
conclusive—robust conclusions will require well controlled experiments in which
cognitive demands are manipulated directly (Sect. 5 briefly describes such an
experiment, which the authors plan to conduct in the near future).

The small sample size of only 10 participants and the primary focus on the
(single) backwards skip-counting task further limit the generalizability of the
results. In particular, although the task did require mental arithmetic, the verbal
response format makes it impossible to determine from this study whether the
NIBcoh measure may offer any insight into cognitive workload in non-speech-
involving tasks. Additionally, it was found that the statistical hypothesis tests
were quite sensitive to outliers—for instance, the omission of one subject in
particular, who rapidly produced the entire sequence without errors, changes
the p-value for the t-test comparing mean NIBcoh in correct versus incorrect
responses from less than 0.006 to 0.074. This lack of robustness underscores
the limits of this reanalysis and justifies cautious optimism in interpreting the
results.

Finally, it must be noted that several of the EMG and acoustic measures
were themselves somewhat correlated (e.g., NIBcoh and peak acoustic ampli-
tude), and the design of the original experiment makes it impossible to infer the
causal factors that underlie these correlations. Were NIBcoh and peak acous-
tic amplitude correlated because of a mutual causal relationship to cognitive
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demands / workload? It seems intuitively likely that the effect on peak acoustic
amplitude is an artifact of the experimental conditions, rather than an indica-
tion of any general utility in predicting workload or error commission. Bursts of
nervous laughter accompanying high workload might, for instance, contribute to
high peak amplitudes in the specific conditions of this experiment, but one would
not expect to find the same effect in other settings. Could such an artifact also
explain lower intermuscular beta coherence associated with erroneous responses?
Questions such as these cannot be addressed adequately with the existing data.

5 Conclusions and Future Work

The data reanalysis reported herein offers some evidence bearing on the utility
of neck surface EMG for detecting cognitive strain in real time. Specifically, the
analysis demonstrates that time-varying EMG-derived measures, with a sub-
second temporal resolution, are correlated with error commission and response
time in a backwards skip-counting task. Although the task exhibits only mild
variations in task difficulty over the sub-problems that comprise the task, the
analysis indicates that a time-varying NIBcoh measure was lower by about half
a standard deviation on average during intervals in which subjects produced
incorrect responses. Further research is necessary to confirm the effect in a well
controlled context, determine whether it is due to a causal relationship with
error commission, cognitive demands, and/or workload, investigate whether the
effect is limited to tasks involving speech, and generalize the work to other EMG
sensing locations on the face/neck surface where other physiological responses to
variations in cognitive workload may be detected. A planned study, commencing
in 2018, will establish more conclusively whether intermuscular beta coherence
or other measures derived from face and neck sEMG signals are sensitive to cog-
nitive task demands by recording these, and other, psychophysiological signals
while participants complete tasks with varying levels of difficulty in the NASA
Multi-Attribute Task Battery (MATB) [49]. The research will investigate mul-
tiple EMG sensing locations on the face and neck surface, relating to muscles
involved in facial expression, mastication/jaw clenching, speech articulation, and
voice production, and a psychometric analysis will establish relationships to more
conventional workload indicators (including subjective workload as measured by
the NASA Task Load Index administered within the MATB).

The experiments will employ a novel protocol designed to establish whether a
perceived risk of aversive consequences affects the measured psychophysiological
responses to cognitive task demands. Specifically, after half of the task blocks,
identified to participants before and during each such block, a series of mildly
noxious electrical stimuli will be delivered to participants, with the number of
stimuli ostensibly associated with task performance—but actually determined
by the (manipulated) level of task demand in the block. The protocol will thus
test how the presence of perceived risks mediates the relationship between task
demands and psychophysiological responses. It is our hope that the technique
of employing aversive consequences in order to elevate physiological responses
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to workload will resolve two key challenges for workload researchers—namely,
the risk that muted responses may lead to Type I errors in laboratory studies
and the problem that laboratory models may not transfer well into operational
environments.
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