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Preface

This book endeavors to stimulate and encourage discussion on mental workload, its
measures, dimensions, models, applications and consequences. It is a topic that
demands a multidisciplinary approach, spanning across human factors, computer
science, psychology, neuroscience, statistics, and cognitive sciences. This book pre-
sents recent developments in the context of theoretical models of mental workload and
practical applications.

The book and its central theme arose in the context of the Second International
Symposium on Mental Workload, Models and Applications (H-WORKLOAD 2018),
sponsored by the Netherlands Aerospace Centre (NLR) and supported by the Irish
Ergonomics Society. It contains a revision of the best papers presented at the
symposium and selected through a strict peer-review process. From the content of these
research contributions, it is clear that mental workload is a very complex construct,
thought to be multidimensional and multifaceted, with no clear and accepted definition.
This is confirmed by the different modeling approaches that consider different factors
and employ distinct strategies for their aggregation. Despite this uncertainty in mod-
eling mental workload, it is clear that this construct is key for predicting human
performance.

The nature and efforts required by the modern workplace is shifting toward more
complex cognitive demands, as Professor Catherine Burns pointed out, and predicting
the influence of new interactive technologies on human work is a critical capability for
the practitioners of the future. The capacity to assess human mental workload is a key
element in designing and implementing processes capable of monitoring interactions
between automated systems and the humans destined to use them. Similarly, mental
workload assessment is key for designing instructions and learning tools aligned to the
limitations of the human mind. Unfortunately, mental workload measurement is not
trivial. Some of the articles published in this book applied psychological subjective
self-reporting measures, others made use of physiological or primary task measures,
and some a combination of these. We believe the adoption of a multidimensional
approach is fundamental to further understand the complex construct of mental
workload and to fully grasp its nature. A number of research articles in this book have
started focusing on the development of novel models of mental workload employing
data-driven techniques, borrowed from machine learning as subfield of artificial
intelligence, whose explanatory capacity over the topic is still to be explored. This last
area is a field where traditional human factor approaches and novel data-driven
modeling approaches can cross paths and perhaps trace a new fundamental research
direction that should be further explored and promoted.

We wish to thank all the people who helped in the Organizing Committee for the
Second International Symposium on Mental Workload, Models and Applications
(H-WORKLOAD 2018). In particular the local chairs, Rolf Zon, Wendy Duivestein,
Tanja Bos, and many more of the members of the Scientific Committee. We want to



also thank the main sponsors of the event, the Netherlands Aerospace Centre and the
Irish Ergonomics Society, without which neither the conference nor the book would
have been realized. A special thanks goes to the Dublin Institute of Technology as well
as all the reviewers of the Program Committee who provided constructive feedback.
A special thanks goes to the researchers and practitioners who submitted their work and
committed to attending the event and turning it into an opportunity to meet and share
our experiences in this fascinating topic.

January 2019 Luca Longo
M. Chiara Leva
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Understanding, Supporting, and Redesigning
Cognitive Work

Catherine M. Burns(&)

Systems Design Engineering, University of Waterloo, Waterloo, Canada
catherine.burns@uwaterloo.ca

Abstract. Cognitive work analysis (CWA) is a framework that has been used
in many settings to describe various aspects of work. This paper outlines how
CWA can be used to understand work and mental workload. The work domain,
control task, and strategies analysis can be useful to understand the nature of
work, work allocation and mental workload. Finally, the prediction of work
patterns is discussed. Predicting the influence of new technologies on human
work is a critical capability for the human factors practitioners of the future.

Keywords: Cognitive Work Analysis � Mental workload � Task analysis �
Function allocation

1 Introduction

As Wickens [23] introduced at H-WORKLOAD last year, studies of mental workload
began in the 1960’s and have accelerated through the decades. Mental workload is
certainly not a mature science, and I expect that it will always be an exciting area of
study. Exciting new methods of being able to compute and predict mental workload are
emerging [12–15, 18]. While it is true that studies of mental workload measurement
techniques such as the NASA-TLX have reached maturity, there is a significant new
challenge on the horizon. That challenge is the prediction of the impact on humans of
new technologies. New forms of automation and artificial intelligence have the
potential to impact human work at a cognitive level we have not seen before (e.g. [5, 6,
11, 20]). Being able to predict the impact of these new technologies, so that benefits
and risks can be anticipated, will be an important contribution to society for those who
practice human factors and ergonomics.

Our last significant technological revolution was the arrival of the internet, and it
dramatically changed the nature of human work and communication around the world. In
1982, a New York Times article made reasonable predictions that the emergence of the
internet would improve communications, allow individuals to create their own content,
and blur lines between home and work by allowing more work at home. Other implica-
tions such as advanced globalization, economic shifts and the development of social and
political hacking through things like fake news were not predicted. Had we been able to
predict some of these effects, safeguards and more effective responses could have been
developed. There are some differences though in these two technological revolutions. The
internet largelywas about connectivity, and improved connectivity was perhaps not in the
domain of human factors professionals. However, the reallocation of human decision

© Springer Nature Switzerland AG 2019
L. Longo and M. C. Leva (Eds.): H-WORKLOAD 2018, CCIS 1012, pp. 3–12, 2019.
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making to automation and artificial intelligence, and the resultant supervisory control
problems land squarely within the expertise of our community. I am not arguing that
human factors practitioners become futurists, but we do have an important role to play in
the careful prediction of how new technologies will influence how people work and live.

Suppose a client asks you whether bringing in a new artificial intelligence system
will allow her physicians to make better decisions. The core question of whether
decision making will better with the new tool can be answered (relatively) easily. The
tool can be analyzed and its accuracy compared to expected human performance. If
funding allows, we can run a study to compare the performance of physicians using the
tool, against the performance of those physicians who are not using the tool. These are
all good questions, and solid approaches exist for answering these questions. More
challenging questions though are:

• Will I still need as many physicians?
• Should I still pay the physicians the same amount?
• How will this tool influence their mental workload?
• Will I be expecting my physicians to analyze more cases per day?
• Does the tool take away their decision-making latitude, making them mechanical

tool users where before they had rich and empowered positions?
• Is the tool telling them enough of how it made its decisions that they can justify their

case to a concerned family member, or defend themselves in a negligence case?

These are the challenging questions of how people work with technology today.
I firmly believe that we have an important role in being a part of that conversation. Our
field has the tools and methods that can begin to identify these kinds of issues. Our
approaches are systematic and scientific and can move us away from the realm of
speculation. In this paper, I will discuss how one of our tools, Cognitive Work Analysis
(CWA), can be used for mental workload analysis. From this abstraction, I believe that
most of our work analysis approaches can be used to answer mental workload pre-
diction questions. Although I am using CWA as my base for discussion, there are many
methods within our human factors toolbox that can be used to model and understand
mental workload (e.g. [13, 23]). I want to encourage us to think of the decision latitude
we give our users through design, how we can make decision making more effective,
and how we can predict the adaptation of work.

Cognitive Work Analysis (CWA) is well known as a framework for analyzing work
[16, 17, 22]. CWA takes a multi-faceted view of human work, looking at work through
five different lenses: domain constraints (work domain analysis), tasks and information
processing (control task analysis), strategies, social, organizational constraints, and
worker competencies. Many times, CWA is used in environments that are, by their very
nature, complex and CWA is a useful method for unpacking that complexity and
identifying the areas where users need more support for their work. In particular, the first
three phases of CWA, work domain analysis, control task analysis, and strategy analysis
reveal important aspects of human work and how to design healthy and effective work.

CWA is inherently focused on the analysis of work, and yet, CWA is not used
explicitly for mental workload analysis by most CWA practitioners. In many ways, this
is something of a lost opportunity. CWA can help to investigate work and to under-
stand when work is complex, when the mental workload is high, or when work could

4 C. M. Burns



be supported with technology. In this paper, I will step through the first three phases of
CWA, identifying the mental workload implications implied by the models.

2 Work Domain Analysis: Building Decision Latitude

Work domain analysis (WDA) is known for its functional description of the work
environment. In many ways, WDA is the differentiating analysis of CWA, providing a
different view of the work environment than most other analyses provide. The WDA
uses the abstraction hierarchy [17, 22] as its most common model, which looks at the
world the person must operate in, the purposes of that system and how that system
operates. The abstraction hierarchy is grounded on the assumption that an operator will
be working towards a successfully functioning work system, and responding within the
constraints of that system to achieve the required purposes. For a human factors
practitioner, conducting a WDA brings the practitioner into the world of the operator,
helps to show areas of complexity for that operator, makes the goals of the operator and
their action possibilities apparent to the analyst. A WDA does not specify actions, or
user interface technologies, or even ideal approaches. A WDA is not a human-centered
analysis; it is an objective analytical re-engineering of the work environment to bring a
greater understanding of the needs of workers in that environment. The human-
centered, work-centered or human factors oriented advantages of WDA come from
how the analysis is used, not from the analysis itself.

The abstraction hierarchy has implications for understanding mental workload.
First, expert workers understand the components and constraints of their environment
with more clarity than novice workers [2]. At first, this additional knowledge, of being
aware of all the various purposes, components, processes and action possibilities, might
seem like higher mental workload. However, with expertise being aware of purposes
and action possibilities makes that worker a better decision maker. The awareness that
various solutions are possible creates decision latitude for that worker through com-
petency (Fig. 1). Work with higher levels of decision latitude is known to create more
empowering and healthier work [8]. The work may still be stressful, and the mental
workload may still be high, but the nature of that mental workload is more rewarding.

Fig. 1. Understanding functional relationships and purposes leads to more decision latitude for
decision makers.
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The corollary of this implication is that when we design better displays for workers,
showing them more of the intention of the work system, and their capabilities to react
to situations, we change the nature of their work. We know from research that we create
workers capable of better diagnoses and better able to mitigate situations. We can
develop workers with a greater sense of competency and empowerment to take suc-
cessful action in their work environments. Figure 2 illustrates different intention and
action distributions, described along the structure of the abstraction hierarchy.

Often the complexity of work requires the distribution of work through functional
stratification. In several projects, we have developed role allocation maps along the
abstraction hierarchy, and patterns like those in Fig. 2 have been noticed. Examples
include Ashoori [1] which looked at roles across a team in a labor and delivery unit of a
hospital and Hajdukiewicz [7] who looked at role division during surgery.

Not every role can have integration between the intentions and actions of the work
system, particularly in larger work contexts where the distribution of work is required.
However, in cases where workers must either focus on running processes and executing
actions (the left case in Fig. 2), they will benefit from efforts to keep them informed of
the intentions and goals of the system. Similarly, workers who must work as decision
makers and managers will benefit from information on how other teams are making
progress in executing plans and actions. Some of these ideas were presented in [4].

3 Control Task Analysis: Looking for Cognitive Efficiencies

The Control Task Analysis (ConTA), and its Decision Ladder (DL) is the phase of
CWA that is used most often in discussions of work modification. The DL is a template
of human information processing, and the intention of the analysis is to understand how
tasks are triggering various processing steps. The ConTA presents alternative

Fig. 2. Different role allocations with different mixes of intention understanding and capability
for action.
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behaviors, with knowledge-based behavior and cognitively costly analytical decision-
making at its top, and more efficient and less effortful heuristic and rule-based pro-
cessing at the bottom of the DL (Fig. 3). The analysis intends to understand when
cognitively effortful work is occurring and whether there is an opportunity to replace
that work with approaches that are less effortful. The ConTA also models expertise and
acknowledges that less experienced workers may spend more time in the more effortful
processing. Experienced workers facing new situations will also revert to these pro-
cesses at times when their experience cannot provide the heuristics for more efficient
decision making.

A second application of the DL can be to identify technologies that are adding
unnecessary mental workload. The DL can show where information is missing, and
work processes become less efficient. We developed The DL below (Fig. 4) by
observing pharmacists as they processed prescriptions and checked for medication
issues [9]. The DL helped to identify that information such as allergy information or
interactions was often not shared with the pharmacist. Because this information was
missing, the pharmacist would need to go through an extra problem-solving process to
identify these issues, possibly communicating with the patient or their physician.
Including this information with the prescription or the medication record would have
allowed these pharmacists to work more efficiently. A small change in information
could have generated a significant improvement in mental workload.

Fig. 3. The decision ladder can identify cognitively effortful processes.
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Fig. 4. Identifying technology that increases mental workload in the decision ladder.

4 Strategies Analysis: Understanding How Work Adapts

The Strategies Analysis (SA) looks at the different ways people can solve the same
problem. Unlike the ConTA, the focus is not on information processing or decision-
making. In this case, understanding the variety of pathways and what triggers put
people on those paths is important. Most often, the triggers for different strategic paths
are either particular contexts, the experience of the user, or different mental workload
levels (Fig. 5). We know well that under high mental workload users will take different
approaches, either shedding tasks or building workarounds. The SA can in this way be
used to investigate high mental workload situations and to ask users how they adapt to
these situations.

8 C. M. Burns



Some of the adaptation strategies we have seen in other work has been adjusting
mental workload patterns or reducing communication. In some cases, team structures
have shifted to handle higher mental workload conditions. In the figure below (Fig. 6) we
show strategic shifts in team composition to handle the additional mental workload of an
emergency delivery. The normal delivery team structure is at the top; the emergency team

Fig. 5. Context, mental workload, and experience determine the strategies that are chosen.

Strategy 2: Team configuration under high mental workload and critical conditions,
centralized control.

Strategy 1: Team configuration under normal conditions.

Fig. 6. Different strategies for different mental workload situations, normal (on top) or
emergency (lower figure) [1].
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structure is below. The team has increased in size to handle the mental workload, but the
nature of the work has also changed. In the emergency, the work is more challenging, and
the emergency team has taken tighter control of the team structure [1].

5 Mental Workload Prediction

While analyzing existing work patterns can help in redesign, we are often asked to
anticipate the effects of new technology in the workplace. The same methods can be
used prospectively to predict where new technologies may add or reduce work, require
new function allocations, or require additional information support. There are several
specific ways to predict work.

• Comparison of similar environments. Models of similar work environments can
be compared, and the differences in one work environment used to understand the
other environment. Examples of these comparisons are [3, 21]. To make these
comparisons, the two environments must share some functional similarity.

• Analysis of the “cut points” in models. Whenever work must be distributed over
people, over function, or over process, “cut points” in work occur. Figure 2, for
example, showed two ways that work could be distributed: separating decision
making from operations. Whenever these separations occur, you can predict that
workers will need support to understand the perspective and activities from the
other work zones around them. These divisions can show points where situation
awareness can be lost and where workers can become isolated in their work
processes.

• Analysis of the functionality and behavior of the technology. Particularly when
technologies provide assistance by covering some of the human work, it becomes
critical to understand how that technology will interact. The decision ladder can be
used to develop detailed and sensitive function allocation models, that show what
roles the technology is expected to take [10]. The human work should be studied at
the transition points, where the human moves work to the technology or takes work
over from the technology. (Automated vehicle handovers are a classic example of
this problem).

6 Conclusion

The understanding of human work continues to be an important and exciting field, even
years after the origins of human factors and ergonomics. As rich and complex tech-
nologies are added to the workplace, it becomes critical to understand how people will
interact with these technologies. New technologies have the potential to replace human
work, but this needs to be done in a collaborative way, where humans and technologies
are partners. This partnership means providing the communication to support smooth
work transitions and continuing to position humans in roles where they have decision
latitude as well as good situation awareness of actions that are occurring under their
supervision.

10 C. M. Burns



Mental workload will remain a critical issue for the future, in particular, as humans
move to more supervisory roles. The mental workload of working with technologies
such as automation, artificial intelligence, and more complex systems, is still only
loosely understood. More research is needed that explores the mental workload of
working with these new technologies. Further, there is a need for a more finely
understood concept of mental workload. There is great promise emerging in the
development of new mental workload measurement techniques, from physiological
measurements and neuroergonomic viewpoints to machine learning models. This
conference, and the papers included in this issue, contribute invaluably to these new
directions.
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Abstract. Data-driven approaches to human workload assessment generally
attempt to induce models from a collection of available data and a corresponding
ground truth comprising self-reported measures of actual workload. However, it
is often not feasible to elicit self-assessed workload ratings with great frequency.
As part of an ongoing effort to improve the effectiveness of human-machine
teams through real-time human workload monitoring, we explore the utility of
transfer learning in situations where there is sparse subject-specific ground truth
from which to develop accurate predictive models of workload. Our approach
induces a workload model from the psychophysiological data collected from
subjects operating a remotely piloted aircraft simulation program. Psy-
chophysiological measures were collected from wearable sensors, and workload
was self-assessed using the NASA Task Load Index. Our results provide evi-
dence that models learned from psychophysiological data collected from other
subjects outperform models trained on a limited amount of data for a given
subject.

Keywords: Workload assessment � Transfer learning �
Human-machine teams � Psychophysiological sensors �
Human-automation interaction � Machine learning

1 Introduction

Effective human workload assessment techniques have long been sought after by
researchers in hopes of preventing fatigue, stress, and other negative influences on
performance [1–3]. One particular application of such techniques is to diagnose per-
formance successes and failures in human-machine teams to help identify effective
training and design interventions. A wide range of research suggests that problems in
such teams are greatly exacerbated by the harmful effects that high cognitive demands
can have on human operator performance [4–12]. Many approaches have been pro-
posed for assessing human workload, ranging from theory-driven models to data-
driven computational models [13]. In the case of computational models, machine
learning can be used to train a model directly from measurable factors—producing a
model by finding patterns and relationships between an individual’s measurable factors
and a corresponding performance measure.
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In this paper, we report on our initial efforts to induce such a data-driven workload
model in situations where there is only a sparse amount of data for a given human
operator. Our research focuses on improving the effectiveness of human-machine teams
through real-time human workload monitoring captured by wearable sensors. More
specifically, we describe our progress in the context of an ongoing effort to develop an
extensible modeling framework and software system for real-time human state
assessment in human-machine teaming environments.

The remainder of this paper is organized as follows. Section 2 describes related
work in human workload assessment and the challenges of machine learning with
sparse data. Section 3 describes the design of a comparative study to evaluate the utility
of the transfer learning technique with psychophysiological data for human workload
monitoring. Section 4 presents the experimental results. Finally, Sect. 5 presents the
conclusions and future work.

2 Related Work

Traditional approaches to producing an index of workload have typically been theory-
driven, following a top-down approach that begins with a hypothesis based on existing
knowledge and then moves towards the measurement and quantification of the factors
believed to influence workload [14–16]. Recently, however, there has been an increased
focus on data-driven approaches [13, 17–19]. Unlike theory-driven approaches, these
data-driven approaches can induce a workload model bottom-up from data acquired
through subjective self-report measures and other measurable factors. In particular, there
has been a rise in the use of psychophysiological data to generate these data-driven
models, in part because such measures can be captured unobtrusively with wearable
sensors and, thus, fully integrated into real-world work environments [20–23]. However,
these data-driven approaches still rely on self-assessed workload ratings to serve as the
labeled ground truth for training a machine learning classifier. Because these self-reports
often require the full cognitive attention of the user, it is often infeasible to elicit these
self-assessed ratings with great frequency (i.e., while performing attention-demanding
tasks like driving or flying). In such situations, where there is sparse subject-specific
ground truth data from which to develop accurate predictive models of workload, a more
effective alternative might be to utilize models produced from the labeled data collected
from other subjects. This technique, called transfer learning, has been used in other
applications where it is expensive or impossible to collect the needed training data and
rebuild the models [24]. Although the psychophysiological data from other subjects
may not be completely consistent with a new subject’s profile, it may still contain useful
information, as people may exhibit similar responses to the same task [25].

3 Design and Methodology

This section describes the design of a comparative study to evaluate different
approaches to inducing a workload model from psychophysiological data. In particular,
we are interested in the value of transfer learning in situations where there is sparse
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ground truth for a given human operator (i.e., labeled psychophysiological data) from
which to develop accurate predictive models of workload. This would be the case
when, for example, a new operator joins a human-machine team and no physiological
measures or self-assessed workload ratings have yet to be collected. Our research
centers on examining the following hypotheses:

Hypothesis 1: Given a sparse amount of psychophysiological data for a particular
human operator, a workload model induced from that sparse data and the data collected
from all other human operators will outperform a workload model trained using the
data for that operator alone.

Hypothesis 2: Given a sufficient volume of psychophysiological data for a particular
human operator, an operator-specific workload model will outperform a model trained
using data from the all other human operators.

3.1 Dataset

We utilized an existing dataset consisting of psychophysiological measures collected as
part of a formal study conducted by the Air Force Research Laboratory (AFRL) Human
Universal Measurement and Assessment Network (HUMAN) Laboratory. In this study,
a total of 13 participants were instrumented with wearable sensors to collect physio-
logical data consisting of respiration measures, electrocardiography (ECG) measures,
and electroencephalography (EEG) measures (see Table 1 and [26] for details). Each
participant was monitored while operating a remotely piloted aircraft simulation program
and workload was self-assessed using the NASA Task Load Index (NASA-TLX) [27].

Over the course of ten days, each participant experienced two training sessions and
eight data collection sessions. Each session included two seven-minute trials of a target
tracking task that played out along distinct scripted timelines during which the par-
ticipant manually tracked either one or two targets (among other independent variables

Table 1. Summary table of dataset features.

Independent Features

Respiration Features ECG Features EEG Features
Amplitude Heart Rate Electrodes: F7, F8, T3, T4, Fz, O2
Cycle Time Filtered Heart Rate Frequencies: Alpha, Beta, Delta, 
Inspiration Time Heart Rate Variability Gamma1, Gamma2, 
Duty Cycle Interbeat Interval Gamma3

Heart Rate Trend Measures: Power, Saccade

Dependent Feature

NASA-TLX Sessions Trials Min Max High Workload Low Workload
Composite Score 104 205 2.2 94.4 105 Trials 100 Trials
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to vary the task demand). This resulted in a total of 104 data collection sessions with
205 individual trials (data was either missing or erroneous for three of the trials). When
each trial of the tracking task ended, participants were asked to fill out a new NASA-
TLX questionnaire. The NASA-TLX scale, which is built upon six factors and their
individual weights, has been widely used by human factors researchers over the last
four decades. Each 7-min trial of an operator’s session is labeled with a single, static
NASA-TLX composite measure of perceived workload. The physiological measures
were collected constantly throughout each trial.

3.2 Workload Model Training

As part of an ongoing effort to improve the effectiveness of human-machine teams
through real-time human workload monitoring, Stottler Henke is developing an
extensible modeling framework and software system for real-time human state
assessment in human-machine teaming environments. The system, called Illuminate,
employs machine learning techniques to induce a workload model from psychophys-
iological data and can—in real-time—update its internal model as new labeled data is
made available. This enables us to evaluate adaptive models that incrementally
incorporate operator-specific data (e.g., after each session; see Fig. 1), thereby
addressing complications typically associated with the analysis of biometric data,
including: the non-stationarity of psychophysiological data [28] and the initial sparsity
(or lack) of operator-specific data. Workload models are trained to predict either high or
low workload for an operator, based on the self-reported composite NASA-TLX
measure that corresponds with the physiological measures for each trial.

Data Preparation. Prior to model training, we first normalize the measures on a per-
operator basis and designate each trial as either a high or low workload based on the

Fig. 1. Diagram of the general experimental workflow for training, evaluating, and updating the
workload model for each individual operator session (consisting of two trials).
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normalized composite NASA-TLX measure (low workload being less than the 50th

percentile). Psychophysiological measures are aligned by their individual timestamps
and down-sampled to a frequency of 2 Hz with a five-second rolling average, so as to
synchronize the measurements collected by the various sensors.

Model Training and Evaluation. Our system uses machine learning classification
techniques to induce a workload model for each individual operator and uses that
model to assess an operator’s workload at a given moment in time. For these experi-
ments, we utilize the Weka implementation of a multinomial logistic regression model
with a ridge estimator [29, 30]. For the purposes of our comparative evaluation, we
trained models for each operator using three configurations (see Fig. 2):

• Transfer learning model: We use a leave-one-out approach in which one operator at
a time is taken to be the “current” operator and the data for all of the other operators
provides the basis for training a transfer learning model.

• Session-specific model: For each “current” operator, a session-specific model is
trained using the data for all of that operator’s previous sessions. That is, when
evaluating data for the nth session, the corresponding model has been trained on all
data for the current operator’s first n − 1 sessions.

• Combination model: As with the session-specific model, the combination model for
each “current” operator is updated between each session so that it has been trained
on data for all previous sessions. It uses model stacking to combine the session-
specific model with that operator’s corresponding transfer learning model by
including the output of the transfer learning model as an additional input when
training the session-specific model.

Fig. 2. Diagram outlining the three model training configurations.
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These configurations are meant to simulate a human-machine team scenario in
which the system initially has a sparse amount of human operator-specific data from
which to develop predictive models of workload (i.e., for a new human operator). As
the operator completes additional sessions and provides workload feedback (e.g.,
NASA-TLX measure of perceived workload), the system updates its internal model for
subsequent workload assessment. Note that each model is evaluated only on data for
sessions 2 – 8—there is no session-specific model for the first session.

4 Results and Discussion

Here we describe the results of our comparative evaluation of the three configurations
for model training and evaluation that are described in Sect. 3.2. Because the under-
lying models are binomial logistic regression models with probabilistic output (as
opposed to binary output), when evaluating the models on a given trial we average the
workload assessment scores over all instances for that trial. To measure the perfor-
mance of each model, we calculate the sensitivity and specificity metrics. Sensitivity
provides an estimate of how good the model is at predicting a high level of workload,
whereas specificity estimates how good the model is at predicting a low level of
workload. We plot these measures on a Receiver Operating Characteristic
(ROC) curve, a graphical representation wherein the points of the curve are obtained by
moving the classification threshold from favoring a correct assessment of low workload
to favoring a correct assessment of high workload. Each chart also indicates the point
with the “optimal” threshold, maximizing Youden’s J statistic [31].

Fig. 3. ROC curve comparing each model configurations, averaged across all 13 operators.
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For each of the three evaluation configurations, the chart in Fig. 3 shows the ROC
curve averaged across all operators and sessions. Figure 3 shows that the transfer
learning model outperforms not only the session-specific model, but also the combi-
nation model. These difference between the transfer learning model and the session-
specific model is statistically significant (p-value of 0.006), as is the difference between
the combination and session-specific models (p-value of 0.005). This provides evidence
toward confirming our first hypothesis that psychophysiological data collected from
other operators can be used to train a predictive workload model. However, the fact that
the transfer learning model outperformed the combination model that utilizes psy-
chophysiological data for the current subject with the results of the transfer learning
model was unexpected but not significant (p-value of 0.129).

To better understand how the session-specific and combinations models performed
over time (e.g., with additional training data from later sessions), we partitioned the
evaluation data to compare the results of the first four sessions (sessions 2–5) with the
results of the final three sessions (sessions 6–8), which resulted in partitions with
roughly balanced class labels. As the ROC curves in Fig. 4 illustrate, the combination
model actually outperforms the transfer learning model for sessions 6–8 (i.e., when
there are four or more sessions of labeled training data available for each operator).
Comparing the optimal points on each curve, we can see that the transfer learning
model’s performance drops during the later sessions (from a J of 0.643 to 0.266),
whereas the performance of the combination model improves in the later sessions (from
a J of 0.418 to 0.456).

Fig. 4. ROC curves comparing each of the three model configurations, averaged across all 13
operators for (a) the first four sessions and (b) the final three sessions.
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5 Conclusion and Future Work

In this paper, we have described a comparative evaluation to test our hypothesis that
transfer learning is useful in situations where there is insufficient subject-specific data to
develop accurate predictive models of human workload. Our results provide evidence
that models learned from psychophysiological data collected from other subjects out-
perform models trained on a limited amount of data for a given subject (Hypothesis 1).
More specifically, with little or no data, a transfer learning model trained on all other-
subject data performed best. Once a sparse amount of subject-specific data was avail-
able, a combination model induced from the output of the transfer learning model and
the subject-specific psychophysiological measures generally outperformed the transfer
learning model alone.

There remain several items to be answered by future work as well as by our own
ongoing research. First, this evaluation does not answer the question as to at what point
a session-specific model (i.e., induced only from a subject’s own data) outperforms the
transfer learning model (Hypothesis 2). Future work is needed to inspect which features
contribute most to the performance of each model and how those features change
across the three configurations. We are also left questioning why the transfer learning
model performs worse for the later sessions. Does the transfer learning model have
trouble due to the non-stationarity of psychophysiological data (whereas the other
models adapt as new subject-specific data is collected)? Or, alternatively, is this an
artifact of this particular dataset? Additional studies that collect data over more trials
would be necessary to answer these questions.

Another topic for future research would be to vary the dividing line between what
constitutes a high and low workload. Our evaluation uses the median of the normalized
composite NASA-TLX measure as a simple and straightforward dividing line between
high and low workload. Depending on the task and application domain, it may be more
appropriate to raise (or lower) that threshold. Alternatively, to account for potential
learning effects across sessions, a per-subject adaptive threshold may yield better
results. The results of our comparative evaluation highlight the threshold for each
model that produces the best balance of sensitivity and specificity. However, depending
on the target application, it may be more appropriate to favor specificity or sensitivity
so as to more accurately predict a high or low workload, respectively.

Lastly, a more accurate model might be produced by first identifying a relevant
subset of other subjects within the transfer learning data. In particular, if individual
differences are high (as is often the case with psychophysiological data), a more
accurate model might be induced based only on data collected from people who appear
to have similar physiological responses. This is something we plan to explore in our
ongoing work to improve the effectiveness of human-machine teams through real-time
human workload monitoring.
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Abstract. Cognitive Load Theory has been conceived for supporting instruc-
tional design through the use of the construct of cognitive load. This is believed
to be built upon three types of load: intrinsic, extraneous and germane. Although
Cognitive Load Theory and its assumptions are clear and well-known, its three
types of load have been going through a continuous investigation and re-
definition. Additionally, it is still not clear whether these are independent and
can be added to each other towards an overall measure of load. The purpose of
this research is to inform the reader about the theoretical evolution of Cognitive
Load Theory as well as the measurement techniques and measures emerged for
its cognitive load types. It also synthesises the main critiques of scholars and the
scientific value of the theory from a rationalist and structuralist perspective.
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1 Introduction

The construct of Cognitive Load (CL) is strictly related to the construct of Mental
Workload (MWL). The former has evolved within Educational Psychology [1], while
the latter within Ergonomics and Human Factors [2]. Despite their independent evo-
lution within different disciplines, both are based upon the same core assumption: the
limitations of the human mental architecture and the cognitive capacities of the human
brain and its working memory [3, 4]. In a nutshell, as professor Wickens suggested [5],
mental workload is equivalent to the amount of mental resources simultaneously eli-
cited by a human during the execution of a task. In order to achieve an optimal
performance, the working memory limits should not be reached [3, 4]. If this occurs,
the mental resources are no longer adequate to optimally execute the underlying task.
Within Ergonomics, the construct of Mental Workload has evolved both theoretically
and practically. A plethora of ad-hoc definitions exist as well as several domain-
dependent measurement techniques, measures and applications [1]. While abundance
of research exists, the science of Mental Workload is still in its infancy because any of
the proposed measures can generalise the construct itself. Similarly, within Educational
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Psychology, despite Cognitive Load Theory (CLT) is one of the most invoked learning
theory for supporting instructional design [6], research on how to develop highly
generalisable measures of Cognitive Load is limited. Also, it is unclear how its three
types of load – intrinsic, extraneous and germane – can be measured and how they
interact with each other. The aim of this paper is to provide readers with the theoretical
elements underpinning the construct of Cognitive Load. This is done from an evolu-
tionary perspective of the measurement techniques and measures emerged from the
three types of load, accompanied with a critical discussion of their scientific value.

The remainder of the paper is structured as follows. Section 2 presents the key
theoretical elements and assumptions of Cognitive Load Theory, as appeared in the
literature. Section 3 focuses on a review of the measurement techniques and measures
emerged for its intrinsic, extraneous and germane loads. Section 4 builds on this review
by emphasising the open debate on the scientific value of CLT. Section 5 highlights
new perspectives and research on CLT and the reconceptualization of its cognitive load
types, as recently emerged in the literature. Section 6 summarises this study with final
remarks suggesting novel research directions.

2 Cognitive Load Theory

Cognitive Load Theory (CLT) is a cognitivist learning theory aimed at supporting
instructors in the development of novel instructional designs aligned with the limita-
tions of the human cognitive architecture. In a nutshell, this architecture is the human
cognitive system aimed at storing information, retrieving and processing it for rea-
soning and decision making [7]. CLT is based upon the assumption of active pro-
cessing that views the learner as actively engaged in the construction of knowledge [8].
In other words, learners are actively engaged in a process of attention to relevant
material and its organisation into coherent structures that are integrated with prior
knowledge [9]. Another premise of CLT is the dual-channel assumption by which
processing of information occurs in two distinct channels: an auditory and a verbal
channel. The former processes auditory sensory input and verbal information while the
latter processes visual sensory inputs and pictorial representations [10]. An essential
component of this architecture is its memory that can store information for short and
long term. According to another premise, the limited capacity assumption of CLT, the
former memory, also referred to working memory, is conscious and limited, while the
latter is unconscious and unlimited [2]. Baddeley [3] and Paivio [4], following Miller
proposal [7], support the view that when working memory has to deal with new
information, it can hold just seven chunks at a time. However, if these chunks are
related and if they have to be processed, human beings are capable to handle just two or
three at the same time [11]. Expanding the capacity of working memory coincides with
learning [2]. Learning take places by transferring pieces of information from working
memory to long term memory [3, 4]. According to Schema Theory, this transfer of
information allows the construction of knowledge, in long term memory, in the form of
schema [12]. To construct a schema means to relate different chunks of information
from a lower level to a higher level of complexity and to hold them as a single unit that
can be understood as a single chunk of information [12]. In turn, schema can be
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retrieved to solve a problem, a task, or more generally to answer a question in edu-
cational contexts. Schema construction is believed to reduce the load in working
memory [2]. The expansion of long term memory can be achieved by a reduction of the
load of working memory. Leaving sufficient cognitive resources in working memory to
process new information is one of the core objectives of educational instructional
design. In fact, if the amount of information that has to be held in working memory lies
within its limits, the learning phase is facilitated. Contrarily, if the amount of infor-
mation overcomes these limits, an overload situation occurs and the learning phase is
hampered (Fig. 1).

A core construct within CLT is Cognitive Load (CL), believed to be multidi-
mensional. Intuitively it can be defined as the mental cost imposed by an underlying
cognitive task on the human cognitive system [13]. It is possible to distinguish two
types of factors that can interact with cognitive load: causal and assessment factors
(Fig. 2). The formers affect cognitive load while the latter are affected by cognitive
load. The causal factors include:

• features of the task (T) such as structure, novelty and pressure;
• the features of the environment (E) such as noise and temperature where a task

(T) is executed and their interaction (ExT);
• the characteristic of a learner (L) such as capabilities, cognitive style and prior

knowledge;
• the interaction between environment and learner characteristics (ExL);
• the interaction between task, environment, learner’s characteristics Ex(TxL).

The assessment factors can be conceptualised with three dimensions: mental load,
mental effort and mental performance. Mental load is imposed by the task (T) and/or by
demands from the environment. It is a task-centred dimension, independent of the
subject, and it is considered constant. Mental effort is a human-centred dimension that
reflects the amount of controlled processing (capacity or resources allocated for task
demands) in which the individual is engaged with [13]. It is affected by the task-
environment interaction (ExT), the subject characteristics interaction with the

Fig. 1. A representation of the mental architecture and the role of Cognitive Load Theory
(CLT) in connection to working memory and schema construction
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environment (ExL) and the interaction of the learner with the task in the environment
(Ex(TxL)). Similarly, the level of mental performance is affected by the factors that
affect mental effort [4]. Other factors might affect cognitive load [14, 15] and research
in the field has not produced a comprehensive list yet [16].

Starting from the research of Halford et al. [17] on the difficulty in processing
information with multiple elements at the same time during problem solving, Sweller
defined the degree of complexity of these elements as ‘element interactivity’ [18].
Starting from this definition, two types of cognitive load has emerged: the intrinsic and
the extraneous loads. Intrinsic load refers to the numbers of elements that must be
processed simultaneously in working memory (element interactivity) for schema
construction. ‘This type of load cannot be modified by instructional interventions
because it is intrinsic to the material being dealt with. Instead, extraneous cognitive
load is the unnecessary cognitive load and can be altered by instructional interventions’
[2]. Sweller stated that the basic goal of Cognitive Load Theory is the reduction of
extraneous load: this is a type of ineffective load that depends on the instructional
techniques provided by the instructional format to complete a task [2]. This view is
supported by Paas and colleagues that refers to extraneous load as the cognitive effect
of instructional designs that hamper the construction of schema in working memory
[19]. Beside, intrinsic and extraneous, Sweller defined another type of load: the ger-
mane load [2]. This is the extra effort required for learning (schema construction). It is
possible to use this effort when intrinsic and extraneous loads leave sufficient working
memory resources. This extra effort increases cognitive load, but it is connected to
learning, thus, it facilitates schema construction. Germane load is the effective cogni-
tive load and it is the result of those beneficial cognitive processes such as abstractions
and elaboration that are promoted by ‘good’ instructional designs [20]. Reducing
extraneous load and improving germane load by developing schema construction and
automation should be the main goal of the discipline of instructional design. The three
types of load emerged within Cognitive Load Theory, and their role, can be sum-
marised in Fig. 3.

Fig. 2. Causal factors and assessment factors according to [41].
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Sweller and colleagues, with their attempt to define cognitive load within the
discipline of Educational Psychology and for instructional design, believed that the
three types of load are additive. This meant that the total cognitive load experienced by
a learner in working memory while executing a task, is the sum of the three types of
load, these being independent sources of load [2] (Fig. 4).

Figure 5 depicts the relationship between the three types of cognitive load, as
proposed in [21]. In condition A (overload), cognitive load exceeds the limits of the
working memory of the learner due to an increment in the extraneous load. In turn
errors are more frequent, longer task execution times occur, sometimes even leading to
the inability to perform an underlying task. In condition B there is spare working
memory capacity and the learners can perform optimally on an underlying task. With
spare capacity, CLT proposes to increase the germane load in order to activate learning
tasks, as in condition C.

Fig. 3. Definitions and role of the cognitive load types of Cognitive Load Theory.

Fig. 4. Additive definition of overall cognitive load.

Fig. 5. Relationship between the three types of cognitive load
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3 Cognitive Load Types, Measurement Techniques
and Measures

The definition of the types of load within Cognitive Load Theory (CLT) are supported
by empirical studies that have used three different classes of measures:

• task performance measures such as error rates, learning times and secondary task
measures;

• subjective measures such as self-reporting questionnaires and rating scales;
• physiological measures such as eye movements and physical body responses.

Within Educational Psychology, the focus has always been on the first two classes:
task performance and subjective measures. The reason is intuitive since physiological
measurement techniques require special equipment to gather data, trainer operators to
use this equipment and they are intrusive, most of the time not suitable for empirical
experiments in typical classrooms. Additionally, evidence suggests they did not prove
sufficient sensitivity to differentiate the three cognitive load types [13] envisioned in
CLT. As a consequence, the next sections mainly focus on research studies that
employed task performance and subjective measures.

Miwa et al. [21] developed a task-performance based method for cognitive load
measurement built upon the mental chronometry paradigm [22], in line with the tri-
archic view of load [2]. The mental chronometry assumes that reaction time can reveal
the quantity of intrinsic, extraneous and germane loads coming from the corresponding
cognitive processes. The hypothesis behind their experiment is that if, in the 8 � 8
Reversi game (Fig. 4), the three types of cognitive load are manipulated by changing
the presentation of the information to the players, it is possible to measure them by
observing their reaction time of players between movements of discs on the board. To
manipulate the intrinsic load, on one hand, an advisor computer agent provides some
hints to participants on the possible subsequent move (low intrinsic load condition,
Fig. 6 left). On the other hand, in another condition, no hints are provided (high
intrinsic load condition, Fig. 6 right). In addition to this, in order to manipulate
extraneous load, the white and black discs are changed with two different letters from
the Japanese alphabet. Since these 2 letters are perceptually similar, they are expected
to lead to higher perception and understanding exerted by participants. Eventually, the
germane load is manipulated by altering the instructions presented to participants. In
order to exert more germane load, each participant is requested to report, after the
game, the heuristics learnt to play it. According to this paradigm, if the reaction time, in
high intrinsic load conditions, is longer than the reaction time, in low intrinsic load
conditions, then it can be considered as a valid indicator of intrinsic load. Here,
learning corresponds to the development of effective strategies for moving discs that
can lead a participant to win the game. These strategies imply that players control and
regulate their cognitive processing by meta cognitive perspectives, thus increasing their
germane load [21].
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The research attempt by Miwa and colleagues [21] is indeed useful to investigate
the discrimination between the three types of load and to provide guidelines on how to
design experiments that contribute to the definition of cognitive load. Their preliminary
findings suggest the three types of load are separable. However, it was executed in a
highly controlled environment and not in more natural settings such as in a typical
classroom, thus limiting the generalisability of their findings.

3.1 Subjective Measures of Cognitive Load

Gerjets et al. [23] proposed two experiments on the use of hypermedia environments
for learning on the topic of probability theory. In the first experiment, the validity of
multimedia principles [10] in hypermedia environments has been tested. In the second
experiment, an analysis of the ability of learners to impact their performance according
to their prior experience was performed. A subjective 9-point Likert scale is employed
to measure the three types of load during learning (Table 1).

Depending on the prior knowledge of learners, high intrinsic and extraneous loads
should lead to poor learning outcomes while high germane load should lead to good
learning outcomes. Unfortunately, in this study no evidence of this connection has been
found. Consequently, authors claim that subjective rating scales are valid if learners are

Fig. 6. Low and high extraneous load conditions in the 8 � 8 Reversi game [35].

Table 1. Subjective rating scale to measure cognitive load types from [23]. Each item has to be
rated on a 9 point Likert scale (1 = extremely easy, 9 = extremely difficult)

Type of load Scale

Intrinsic
load

How easy or difficult do you consider probability theory at this moment?

Extraneous
load

• How easy or difficult is it for you to work with the learning environments?
• How easy or difficult is it for you to distinguish important and unimportant
information in the learning environments?

• How easy or difficult is it for you to collect all the information that you need
in the learning environment?

Germane
load

Indicate the amount of effort you exerted to follow the last example

The Evolution of Cognitive Load Theory and the Measurement 29



able to distinguish the types of cognitive load. In other words, in order to be sensitive to
the differences in loads, learners should be aware of the cognitive process connected to
the experienced load. To achieve this, training learners on Cognitive Load Theory can
facilitate their understanding of the three types of load. However, this is not an easy
condition to achieve. In fact, for instance, the level of difficulty (intrinsic load) could be
due to the poor instructional design that increase the extraneous load, or due to the
natural complexity of an underlying learning task. A novice learner could find this
distinction really hard to understand and could not be able to comprehend if the own
difficulty in learning can be attributed to the instructional design (extraneous load) or
the complexity of the task (intrinsic load).

Corbalan et al. [24] hypothesises that, in order to prevent cognitive overload, it is
possible to adapt task difficulty and the support of each newly selected learning task to
the previous knowledge and experience of a learner and his/her perceived task load
[24]. This can be done by employing some external agent, the learner him/herself, or
both. The hypothesis was tested by employing two subjective rating scales, one for task
load and one for germane load (as per Table 2). This hypothesis was tested by per-
forming an empirical 2 � 2 factorial design experiment with health sciences students.
The design variables where the factors adaptation (absence or presence of the agent)
and the control over task selection (program control or shared control program/learner).

Findings suggest that, on one hand, the presence of adaptation delivered more
efficient learning and task involvement. On the other hand, shared control produced a
higher task involvement when compared to program task selection. Learning here
refers to good learning outcomes and lower effort exerted in the underlying learning
tasks. Task involvement refers to good learning outcomes and higher effort exerted in
the learning task. Both the cases prevented cognitive overload [24].

Ayres hypothesised that, by maintaining the extraneous and the germane loads
constant, students can identify changes in the ‘element interactivity’ within problems
by means of subjective measures, and thus successfully quantify the intrinsic cognitive
load [25]. In his study, extraneous and germane loads are maintained constant by not
providing any instructional hint. Learners had to solve a set of four brackets-expansion
problems without any explicit instructions (source of extraneous load) and without any
didactic feedback (source of germane load). The bracket-expansion problems required
a series of four operations in which the level of difficulty increased. Under this
instructional condition, any change in the overall cognitive load is due to change in the

Table 2. Measurements of task and germane load on a 7-point scale from [24] (1 = extremely
low, 7 = extremely high)

Type of load Scale

Task load Rate your effort to perform the task
Germane load Evaluate the effort invested in gaining understanding of the relationship

dealt with in the simulator task
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element interactivity (source of intrinsic load). Intrinsic load is measured by a sub-
jective measure, as depicted in Table 3. After each operation, learners had to rate its
difficulty. The hypothesis is that higher intrinsic load should correspond to more errors.

The authors tested their hypothesis with two experiments. In the first, students had
low prior mathematical knowledge while in the second, participants had a wider range
of mathematical skills. In the first experiment, students could recognise task difficulty
since subjective intrinsic load was highly correlated with the errors committed by
themselves. In the second experiment, although students did not commit many mis-
takes, they still could detect differences in task difficulty. These findings support the
high sensitivity and reliability of the employed self-reporting measure. Additionally,
the takeaway of this study is that, by keeping constant two sources of load out of three,
it is possible to get a measure of the remaining dependent load. Transitively, it turns out
that, by keeping constant the extraneous and the intrinsic loads, any change in cognitive
load, irrespective of the measurement technique employed, corresponds to variations in
the dependent variable, the germane load.

Gerjets et al. [26] investigated how to enhance learning through a comparison of
two instructional designs on the same topic: how to calculate the probability of a
complex event. The first design condition included worked out examples, while the
latter included modular worked examples. To measure the experienced cognitive load
of learners in each condition, a modified version of the NASA-Task Load Index was
(Table 4) [27]. Readers are referred to [27] for the original version.

Table 3. Subjective rating scale of intrinsic load on a 7-point scale from [1] (1 = extremely
easy, 7 = extremely difficult)

Type of load Scale

Intrinsic load How easy or difficult you found each calculation?

Table 4. Modified version of the NASA-TLX from [26] where each scale ranged from 0 to 100
(low level to high level)

Type of load Scale

Task demands
(intrinsic load)

How much mental and physical activity did you require to
accomplish the learning task? (Thinking, deciding, calculating,
remembering, looking, searching)

Effort (extraneous
load)

How hard did you have to work to understand the contents of the
learning environment?

Navigational demand How much effort did you invest to navigate the learning
environment?

Understanding How successful did you feel in understanding the contents?
Stress How much stress did you experience during learning?
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Within Cognitive Load Theory, Sweller [2] stated that task demand is caused by the
degree of element interactivity of the task (intrinsic load), while the effort is exerted to
achieve an effective understanding of the instructional material. The navigational
demands are related to those activities not strictly directed to learning. In this line,
Gerjets and colleagues stated that the scale for task demands is aimed at quantifying the
intrinsic load of the instructional material, the effort scale at quantifying the germane
load and the scale for navigational demands is aimed at quantifying the extraneous load
[26]. The hypothesis of the experiment is that the modular presentation of worked
examples can increase the germane load more than their molar – as a whole – pre-
sentation. Unfortunately, findings did not provide evidence about any increment of the
germane load. As a possible interpretation, the authors suggested that the instructional
explanations provided during the task to increase the germane load, and the self-
explanation derived using worked out examples, created a redundant information and
the illusion of understanding hampered the learning instead of improving it. However,
in a prior experiment, Gerjets et al. [26] have successful demonstrated that, in an
example based learning, the modular presentation of worked examples can actually
reduce the intrinsic load and improves the germane load more than the molar pre-
sentation of the same problem. The modular presentation provides a part-whole
sequencing of the solution procedures whereas the molar presentation provides the
solutions of the procedures as a whole. The segmentation of the presentation of the
worked example led to a decrease in the degree of interactivity as well as in the number
of simultaneous items. In turn, this led to a decrease in the intrinsic load. According to
the authors, these findings are more relevant to novice learners, whereas the same
instructional design could be redundant for more expert learners because the degree of
their expertise increases. Consequently, in the case of expert learners, the molar pre-
sentation of solution procedures is a more appropriate instructional design. The mod-
ified version of the NASA-TLX, employed in this study, has been applied also in [28].
Here, authors focused on the effects of different kinds of computer-based graphic
representations in connection to the acquisition of problem-solving skills in the context
of probability theory. Despite different experiments, [26, 29] and [28] did not provide
evidence on the reliability and validity of the subjective rating scale employed.
Therefore, it can be only hypothesised that this scale is sensitive to the three types of
load conceived within CLT.

Galy et al. [30] tested the additivity between the intrinsic, the extraneous and the
germane loads by manipulating three factors believed to have an effect on each of them.
In detail, this study assumed that task difficulty is an indicator of intrinsic load, time
pressure of extraneous load and the level of alertness of germane load. The effect on the
experienced overall cognitive load is connected to the manipulation of the extraneous
and intrinsic loads which are respectively estimated by the self-reporting of notions of
tension (time pressure) and mental effort (task difficulty). The level of alertness is
measured by the French paper-and-pencil version of the Thayers’s Activation-
Deactivation Checklist [31]. Questions are listed in Table 5. For each word in the
deactivation list, each student had to tick one from the “not at all”, “don’t know”, “little”
and “much” labels. These labels are respectively mapped to weights (1, 2, 3 and 4). The
responses were counted up to have a measure of four factors: general activation (GA),
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deactivation sleep (DS), high activation (HA), and general deactivation (GD). The
GA/DS ratio yielded an alertness index.

The experimental task consisted of a memory recalling activity with 2 digit num-
bers (low difficulty) or 3 digit numbers (high difficulty) in four conditions: low diffi-
culty and low time pressure, low difficulty and high time pressure, high difficulty and
low time pressure, high difficulty and high time pressure. The difference in cognitive
load due to variations in task difficulty and time pressure with respect to the different
levels of alertness can be taken as an indicator of differences in the contribution of
germane load. In low difficulty and low time pressure conditions, germane load is
believed to be substantially inexistent, but in high difficulty and high time pressure
conditions, it is assumed that the learner has to employ specific strategies to execute the
memory task and thus generating germane load. Authors believed that germane load, as
a function of alertness, corresponds to the subject’s capability to select strategies to be
employed while performing the learning task. However, the implementation of these
strategies is determined by the amount of free cognitive resources determined by task
difficulty and time pressure [30]. Consequently, the authors claimed that alertness is a
germane load factor depending on the quantity of working memory resources left by
the intrinsic and extraneous load experienced.

Leppink et al. [32] developed a new instrument for the measurement of intrinsic,
extraneous and germane loads. The authors consider the critique of Kalyunga et al. [33]
about the expertise reversal effect and its consequences on the learning and on the
different types of load. According to this, the same instructional feature may be
associated with germane load for a learner and with extraneous load for another learner,
depending on the level of expertise and on the level of prior knowledge. To develop a
more sensitive instrument to detect changes in cognitive load types, they proposed a
multi-item questionnaire (Table 6). Authors conducted experiments in four lectures of
statistics, asking to rate difficult or complex formulas, concepts and definitions using
the scales in Table 6. In a number of studies, Leppink and colleagues verified 7
hypotheses regarding the reliability of the new instrument compared with other
instruments, used in the past, to measure intrinsic load [25], extraneous load [34],
germane load [35] and for overall cognitive load [36]. They also tested five hypotheses

Table 5. Self report scales of cognitive loads types from [30]. Intrinsic and extraneous load are
in the scale 0 to 10 (low time pressure/mental effort to high effort/considerable effort)

Type of load Scale

Intrinsic
load

Rate the mental effort (task difficulty) you experienced during the task

Extraneous
load

Rate the tension (time pressure) you experienced during the task

Germane
load

Select one of the following responses (“not at all”, “don’t know”, “little” and
“much”) for each of 20 listed adjectives: active, energetic, vigorous, full of,
lively, still, quiet, placid, calm, at rest, tense, intense, clutched up, fearful,
jittery, wide-awake, wakeful, sleepy, drowsy, tired
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connected to the expected relationship between prior knowledge and intrinsic load, and
between prior knowledge and learning outcomes. Through an exploratory analysis, it
has emerged that the reliability of the rating scale was positive, the extraneous load and
the germane load elements were negatively correlated and the elements that were
supposed to measure intrinsic load were not correlated to germane load.

Eventually, the elements that were expected to measure intrinsic load had moderate
correlation with extraneous load. The validity of the scales was verified by comparing
the subjective ratings with the learning outcomes assessed by a performance test. As
hypothesised, a high prior knowledge corresponded to a low intrinsic load. Extraneous
cognitive load was higher when a problem was solved by an unfamiliar format and
germane load was higher when a problem was solved by a familiar format. There is
partial evidence that higher germane load, as measured by multiple subjective scales,
lead to higher results on post-task test performance.

Leppink and colleagues [37] criticised their own previous study [32] mentioning
the uncertainty of their multiple subjective rating scales to represent the three different
types of cognitive load. The main reasons of their critique are three: (1) the correlation
between germane load and the learning outcomes, in the task performance, was lower
than expected and not statistically relevant (2) the previous experiments were all
focused on a single topic, namely statistic (3) the manipulations applied in [32] did not
lead to the expected differences in the measurement of the three different cognitive load
types [37]. In summary, their psychometric instrument might have measured only the
level of expectation instead of the actual invested effort devoted in the complexity of
the activity (intrinsic load), its ineffective explanations (extraneous) and its under-
standing (germane). To evaluate a more direct relation between the three types of load
and the learning outcomes, a randomized experiment was performed, with bachelor
students who received a description of the Bayes theorem. To measure the three
different types of load, the authors changed the order of the rating scales and added

Table 6. Multi-subjective rating scales of cognitive load types from [32] in the scale 0 to 10
(0 = not at all, 10 = completely).

Type of load Scale

Intrinsic load • The topic/topics covered in the activity was/were very complex
• The activity covered formulas that I perceive as very complex
• The activity covered concepts and definitions that I perceived as very
complex

Extraneous
load

• The instruction and/or explanation during the activity were very unclear
• The instruction and/or explanation were, in terms of learning, very
ineffective

• The instruction and/or explanations were full of unclear language
Germane load • The activity really enhanced my understanding of the topic(s) covered

• The activity really enhanced my knowledge and understanding of statistics
• The activity really enhanced my understanding of the formulas covered
• The activity really enhanced my understanding of concepts, definitions
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three items to it (as per Table 7). These items were supposed to contribute to the
evaluation of the internal consistency of the theoretical assumption that the three types
of load are separated, additive and independent. Findings suggest that two items
improved the internal consistency of the mental effort for intrinsic and extraneous loads
but not for germane load, suggesting its re-definition [6].

Zukic and colleagues [38] focused on the assessment of the validity of the
instrument developed in [37] as well as its internal consistency and its capability to
correlate with learning outcomes. In their study, the correlations between intrinsic and
extraneous load and between extraneous and germane load were statistically signifi-
cant. A low degree of experienced intrinsic load and a high degree of reported germane
load could explain the improvement of the learning outcomes. Additionally, a
regression analysis verified that the items associated to the germane load could actually
explain the perceived learning. Eventually, a confirmatory factor analysis supported the
development of a three-dimensional model that includes the three types of load. The
main take away of this study is that germane load can be measured as an independent
source of load.

Klepsch et al. proposed an alternative way to measure the three load types reliably
and validly [39]. The novelty of their approach is the use of two forms of ratings:
informed and naïve. According to this, they conducted an experiment with two different
group of learners. The first, the informed rating group, was trained on how to differ-
entiate the three types of load through a theoretical explanation of CLT and its
assumptions. The second, the naïve rating group, did not receive the training on CLT.

Learners were asked to rate 24 learning scenarios grouped in 5 different domains
(language learning, biology, mathematics, technology and didactics). To detect changes

Table 7. Informed subjective rating questionnaire proposed in [39] available to learners while
rating different learning scenarios on a 7-point Likert scale (1 = very low, 7 = very high)

Type of load Scale

Intrinsic
load

I invested a very high mental effort in the complexity of this activity

Extraneous
load

I invested a very high mental effort in unclear and ineffective explanations
and instructions in this activity

Germane
load

I invested a very high mental effort during this activity in enhancing my
knowledge and understanding

Table 8. Informed subjective rating questionnaire proposed in [39] available to learners while
rating different learning scenarios on a 7-point Likert scale (1 = very low, 7 = very high)

Type of load Scale

Intrinsic load During this task, Intrinsic Load was…
Extraneous load During this task, Extraneous Load was…
Germane load During this task, Germane Load was…
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in the cognitive load experienced by the two groups of learners, only one type of
cognitive load was manipulated at a time. The learners in group one received the
questionnaire in Table 8, while those in group two received the questionnaire in
Table 9 Both the groups received also an additional question on perceived overall
cognitive load adapted from [36]. The participants in the informed ratings group cor-
rectly discriminated intrinsic, extraneous and germane loads in line with the expecta-
tions. However, participants, in the Naïve ratings group, correctly discriminated only
the intrinsic and the extraneous loads but they were not able to differentiate germane
load.

A reliability analysis of the scales was executed, by task, using the Cronbach alpha
measure based on the formula presented in [40]. This allowed to compute the mean of
several given alpha values based on sampling distribution. The validity of the measure
was analysed by comparing the ratings of learners with the expectations for each type
of load for each task. A very low reliability was detected for all the tasks, in the
informed ratings group, this being an indicator of the capability of learners to differ-
entiate the types of load separately. However, in the naïve ratings groups, reliability
was high, suggesting how the three types of load were not clearly separable. In par-
ticular, germane load was the dimension that was not discriminable across the two
groups. Starting from this unsatisfying finding, the authors developed a new scale for
germane load (Table 10).

Table 9. First version of the Naïve rating scales questionnaire proposed in [39] 7-point Likert
scale (1 = completely wrong, 7 = absolutely right)

Type of load Scale

Intrinsic load • For this task, many things needed to be kept in mind simultaneously
• This task was very complex

Germane load • For this task, I had to highly engage myself
• For this task, I had to think intensively what things meant

Extraneous
load

• During this task, it was exhausting to find the important information
• The design of this task was very inconvenient for learning
• During this task, it was difficult to recognize and link the crucial
information

Table 10. Second version of the Naïve rating questionnaire proposed in [39] with a new scale
for the germane load on a 7-point Likert scale (1 = completely wrong, 7 = absolutely right)

Load type Scale

Germane
load

• I made an effort, not only to understand several details, but to understand the
overall context

• My point while dealing with the task was to understand everything correctly
• The learning task consisted of elements supporting my comprehension of the
task
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Subsequently, they evaluated the overall new questionnaire with a larger sample.
A new experiment was conducted with a group of students who received 8 tasks, one at
a time, designed to induce more or less germane load. Here, in contrast to the first
study, and in line with the idea of doing experiments in more realistic learning envi-
ronments, each learning task was designed to induce changes in the three types of load.
For intrinsic load, the degree of interactivity of the tasks was manipulated. For
extraneous load, different learning formats were considered, some employing text and
pictures together, some individually and some with additional non-relevant informa-
tion. Eventually, germane load was manipulated by creating tasks aimed at eliciting
different degrees of deeper learning processes. A reliability and validity analysis,
conducted as in the first experiment, confirmed that it is possible to measure the three
types of load separately, in line with the triarchic theory of load [2].

3.2 Task Performance and Self-reported Measures

Deleeuw and Mayer tested the separability of the three types of load in a multimedia
lesson on the topic of electric motors [41]. Two experiments were executed: one with a
pre-question on the content of the lesson aimed at motivating learners to focus on
deeper cognitive processing, and one without. Authors manipulated extraneous load
providing redundant instructional designs to learners. Similarly, they manipulated
intrinsic load through changes on the complexity of the sentences that explained the
lesson. Eventually, they examined the differences in the germane load by comparing
students with high scores on a test of problem solving transfer, against students with
lower scores. The authors evaluated the sensitivity of the response time to a secondary
task during learning for measuring the extraneous load, the effort ratings during
learning for measuring the intrinsic load, and the self-reported difficulty rating, after
learning, for measuring the germane load (as per Table 11). In details, the secondary
task consisted of a visual monitoring task where learners had to recognise a periodic
change of colour and to press the space bar each time this colour change took place.

Table 11. Subjective rating scales and secondary task reaction time proposed by [41] on a
9-point Likert Scale (1 = extremely low, 9 = extremely high for intrinsic load and 1 = extremely
easy, 9 = extremely difficult for germane load)

Types of load Scale/measure

Intrinsic load Your level of mental effort on this part of the lesson
Germane load How difficult this lesson was
+
Extraneous load Measured by the response time to a secondary task

At each of eight points in an animated narration, the background colour
slowly changes (pink to black)
Learner is required to press the spacebar of the computer as soon as the
color changes
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The findings of the experiment supported the triarchic theory of cognitive load [2].
Students who received redundant information needed longer reaction time than stu-
dents who did not receive redundant instructional design. The explanation about the
electric motor has been provided by learners using different sentences with different
levels of complexity. The scale for intrinsic load reflected higher effort for high
complexity sentences and lower effort for low complexity sentences. Students who
reported a lower and a higher transfer reflected their difficulty by the rating scale
provided: low transfer reflected high difficulty, high transfer reflected low difficulty.
Thus, the authors showed that these different measures of load (reaction time, effort and
difficulty) are sensitive to different types of load (extraneous, intrinsic, germane) [41].
The three different variables analysed (redundancy and complexity of statement, high
or slow capacity of transfer to solve a problem) are strongly correlated with the three
different types of load, thus providing evidence for their good sensitivity. Eventually,
authors recommended a replication of their research study in other contexts and with
different students because the measurement of the three cognitive load types might be
often intrusive, creating an artificial learning situation. In addition, the study did not
account for the prior knowledge of learners, (most of them had a low prior knowledge)
as an important variable that could influence the overall perception of load.

Cerniak et al. [34] hypothesised how the split attention effect, proposed by Sweller
[2], could be mediated not only by a reduction of extraneous cognitive load but also by
an increase of germane load (germane load explanation) [42]. An experiment, con-
ducted in a learning context on physiological processes of a nephron, was aimed at
testing the above the research hypothesis. Authors employed the reaction time on a
secondary as a task performance measure, in order to detect variations in the overall
cognitive load between learners who received an integrated format of instructional
designs and learners who received a split source format. The former learners were
expected to experience less overall load because the integrated format was believed to
decrease their extraneous load. The latter learners were expected to experience more
overall load due to the split attention effect believed to increase their extraneous load,
as suggested in [43]. In the experiment, learners had to press the space bar of the
keyboard of a computer every time a stimulus appeared on the screen (for example the
change of a colour). The longer time required to react to this secondary task, the higher
cognitive load exerted on the primary task. Eventually, subjective ratings were applied
to measure the three types of load, as per Table 12.

Table 12. Subjective rating scales for the cognitive load types proposed by [34] on a 6-point
Likert Scale (1 = not at all, 6 = extremely)

Type of load Scale

Intrinsic load How much difficult was the learning content for you?
Extraneous load How difficult was it for you to learn with the material?
Germane load How much did you concentrate during learning?
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Findings showed that there is no difference in the overall cognitive load between
learners who received the split source format and those who received the integrated
source format. As a consequence, the former learners increased their extraneous load
and decreased their germane load, whereas the latter learners decreased their extraneous
load and increased their germane load. This confirms that the extraneous and germane
loads partially mediate the split attention effect. However, authors brought forward a
critique whereby there could be a possible confusion between the two different ques-
tions designed for intrinsic and extraneous loads. Learners could have the impression to
answer the same question. In fact, in a new learning context, learners might not be able
to identify the source of difficulty that means the content or the instructional material
delivered. The authors spotted a high correlation between the extraneous and the
germane loads through an analysis of the learning outcomes. However, they did not
state that these measures of loads were aimed at tackling different working memory
resources. As a consequence, the relation between learning processes and working
memory capacity was not demonstrated.

4 Synthesis and Observations on the Scientific Value
of Cognitive Load Theory

According to the literature review conducted in the previous sections, it appears evident
that the three types of load envisioned in Cognitive Load Theory – intrinsic, extraneous
and germane – have been mainly measured by means of subjective rating scales. This
has more a practical explanation because self-reporting scales are easier to use and they
do not influence the primary task when compared to secondary task measures. They
can be administered post-learning tasks and they are aimed at representing a perceptual
subjective experience of a learner for an entire learning session. This is in contrast to
secondary task measures which, even if more sensitive to variations of cognitive load,
they are more intrusive since they alter the natural execution of a learning task.
A number of researchers brought forward critiques on Cognitive Load Theory in
relation to its theoretical clarity [44, 45] and its methodological approach [46].
According to these critiques, the assumptions of CLT appear circular because its three
types of load are believed not to be empirically measurable. Empirical research is based
on observed and recorded data and it derives knowledge from actual experience rather
than from a theory, a belief or a logic coming from first principles ‘a priori’. This is the
case of subjective rating scales aimed at measuring the cognitive load types. Regardless
of the way these scales relate to the evaluation of the different cognitive load types, all
of them underlie the phenomenon they are pretending to measure in their premises or
suppositions, namely the definitions of intrinsic, extraneous and germane loads (Fig. 7,
left). In other words, the premises of CLT – its cognitive load types – are believed to be
confirmed by the data coming from their measurements circularly, without empirical
evidence.

In addition, the fact that human cognitive processes, related to the same instruc-
tional design, can be regarded as germane load in one case and as extraneous load in
another case, it means that CLT can account for nearly every situation [45]. This
critique also refers to the ‘Expertise Reversal Effect’ [47]. In fact, on one hand, some
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instructional design, such as written explanations followed by a graphic element to
enhance its understanding, can be useful for a novice learner, by reducing the extra-
neous load and increasing the germane load. On the other hand, the same graphical aid
can be useless for an expert learner because it can reduce germane load and increase
extraneous load. In fact, for an expert, it can be redundant to read instructional designs
just registered and automatized in own memory, hampering understanding and learn-
ing. Depending on the degree of expertise, the same instructional design can lead to
germane or extraneous load, emphasising the circularity of CLT (Fig. 7, right). The
theoretical differences regarding the types of load are based on the subjective experi-
enced load of learners, implying that they are able to differentiate them by their own.
This issue, as discussed above, depends on the way the questions are formulated, and
on the familiarity of learners on the different cognitive load types, and their prior
knowledge. All these variables are not easy to monitor and control, they can create
confusion on the source of the supposed experienced load. Under a strict scientific
view, the evaluation of this supposed load does not come from the experience of the
learners, rather from the principles of the theory is based upon.

To analyse the scientific value of CLT, two different methodological approaches
have been followed: the rationalism of Karl Popper [48, 49] and the structuralist
approach of the theories of Joseph Sneed [50]. Under the former approach, it is not
possible to consider CLT scientific because its basic principles, namely the three dif-
ferent types of load, cannot be tested by means of any experimental method, conse-
quently they are not falsifiable [46] (Fig. 8, left). To be scientific, the measures should
be sensitive to the different types of load. From a strict rationalist point of view, a
measure is scientific if it does not presuppose the assumptions that it shall measure in
its rationale [46]. However, as previously discussed, most of the subjective rating
scales, conceived for the cognitive load types, contain the variables they pretend to
measure. This implies that the logic of the questions influences the logic of the answers.
In turn, the measures of the loads can be obtained ‘a priori’, by setting the questions to
validate the theory they are pretending to verify, and not through any authentic
experience of cognitive load. CLT should provide empirical evidence about the cog-
nitive load types. Unfortunately, this has not convincingly emerged in the literature of

Fig. 7. The circularity of the load types of Cognitive Load Theory (left) and the ‘expertise
reversal effect’ by which different cognitive processes can be regarded differently (right)
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Educational Psychology, Instructional Design and Cognitive Load Theory, justifying
the scepticism regarding the possibility to measure the three different types of load.

The second methodological approach to analyse CLT is based upon structuralism
[50–53]. Under its logic, the scientific value of the theoretical principles of CLT does
not depend on their empirical validity. Rather it depends upon their effectiveness to
form the ground of the structure of a theory that consents to derive specific predictions
on how detailed instructional manipulations can affect learning outcomes [46]. The
structuralist analysis considers the fundamental assumptions of CLT as theoretical
axioms. The empirical content of these axioms is valid in the context of the theory if
they contribute to expand the theory itself (Fig. 8, right). Regardless whether it is
possible to validate some research predictions or not, these predictions can still expand
the theory. In fact, CLT has been extensively adopted for the design of several new
instructional formats, expanding its boundaries [46]. As discussed in the previous
sections, several research experiments have been performed in different learning con-
texts. In each of this, the intrinsic, extraneous and germane loads have been manipu-
lated, individually or in pair by employing the traditional experimental/control group
design. In turn, the cognitive load of learners and their learning outcomes where
analysed [6]. If this analysis showed that learning has been actually facilitated, and
statistical power held, then it means that a new instructional design was conceived as it
actually promoted one or more types of load. Similarly, starting from the study of the
‘Goal free effects’ compared to the traditional ways to solve a problem (means anal-
ysis), Sweller and his colleagues have produced various novel findings and approaches
to inform instructional design. Yet, Plass et al. [54] provided a complete list of CLT
effects such as the ‘Worked completion effect’ [55], the ‘Split attention effect’ [56] the
‘Redundancy effect’ [57], the ‘Modality effect’ [58], the ‘Expertise reversal effect’ [47]
and the ‘Collective working memory effect’ [11]. As a consequence, according to a
structuralist point of view, Sweller stated that CLT has been developed and evolved as
a consequence of these contributions and experiments [6]. They defend the fact that the
three types of load were not elaborated a priori, rather they have been developed

Fig. 8. The rationalist view of Cognitive Load Theory (left) and the structuralist view (right)
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according to experimental findings that are falsifiable in their nature. In fact, it is still
possible to replicate the experiments and obtain opposite findings. However, what
cannot be considered falsifiable is only the definition of the three types of load
employed in different experiments because the measures adopted are not considered
scientific. In short, Sweller and colleagues strongly support the view that CLT is
actually built upon empiricism [59]. As educational psychologist, Sweller and Chandler
[60] share the same ultimate goal in the context of cognition and instruction: the
generation of new, helpful instructional techniques aimed at improving learning.

5 Reconceptualization of Cognitive Load Types

As a consequence of the critiques related to the theoretical development of CLT and
after several failed attempts to find a generally applicable measurement technique as
well as the development of measures for the three different types of load, the theory has
been re-conceptualised using the notion of element interactivity. This refers to the
numbers of elements that must be processed simultaneously in working memory for
schema construction and their interactions [18]. In this update of CLT, the element
interactivity now defines the mechanisms not only of intrinsic load, but also of
extraneous load [6]. In detail, the extraneous load is related to the degree of interac-
tivity of the elements of the instructional material used for teaching activities, and
instructional designs should be aligned to this. These designs should not focus on
enhancing the number of items to be processed by learners, otherwise the resulting load
could be considered extraneous. In other words, when instructional designs do not add
instructions that increase the number of elements that must be processed within
working memory, then the germane load of learners can be triggered. In this case,
existing instructions can facilitate the use of working memory allocated for the intrinsic
load. Additionally, germane load is no longer an independent source of load, it is a
function of those working memory resources related to the intrinsic load of the task. In
turn, intrinsic load depends on the characteristic of the task, extraneous load on the
characteristic of the instructional material, on the characteristic of the instructional
design and on the prior knowledge of learners. Eventually, germane load depends on
the characteristics of a learner which equates to the resources of working memory
allocated to deal with the intrinsic load [6] (Fig. 9).

The main theoretical contradiction before the reconceptualization of CLT was the
additivity and the compensability of germane and extraneous loads. Here, the critical
point is that, if extraneous load decreases, while keeping intrinsic load constant, then
germane load should increase too. However, the measures for the three cognitive loads
appeared in the last 30 years, confirm that this compensation does not have empirical
evidence: the total cognitive load does not remain constant but changes [6]. After the
reconceptualization (Fig. 9), germane load is related to that part of working memory
that deals with the degree of element interactivity of the task. It can be promoted by
creating instructional design aligned to it but it also depends on the intrinsic load, and
as a consequence, it is not clearly measurable [6]. In fact, germane load now forms a
balanced whole with extraneous load without creating logical and empirical contra-
dictions. If intrinsic load remains constant but extraneous load changes, the overall
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cognitive load changes too because more or less working memory resources are
devoted to deal with the degree of element interactivity. At a given level of knowledge
and expertise, intrinsic load cannot be altered without changing the content of the
material presented to learners altogether. Extraneous load, instead, can be altered by
changing the instructional procedures. Yet, germane load coincides to those working
memory resources allocated to deal with the degree of element interactivity inherent to
an underlining learning task. Although germane load has now a fundamental role to
deal with intrinsic load, the additivity of CLT still holds in the two remaining theo-
retical assumptions: the intrinsic and the extraneous load. According to this recon-
ceptualisation, most of the critiques related to the circularity of CLT do not longer
stand according to Sweller. Additionally, Sweller and colleagues, as in [59], consider
the unidimensional subjective rating scale of mental effort proposed by Paas et al. [13]
a valid measure of overall cognitive load. In fact, if intrinsic load is kept constant, it is
feasible to measure the extraneous load by only altering the instructional designs
between an experimental and a control group. It is also possible to measure one type of
load keeping the other constant, and the overall load measured would be an indicator of
the modified type of load: extraneous or intrinsic.

6 Final Remarks

The measurement of the cognitive load types envisioned in the Cognitive Load Theory
is a critical challenge for its theoretical development and its scientific value. After the
literature review conducted in the previous sections, and after the presentation of the
critiques that brought to the reconceptualization of the cognitive load types, the reader
is left with two possible interpretations. On one hand, germane load is not clearly
measurable by a common and standardised way, consequently its theoretical

Fig. 9. Redefinition of the cognitive load types and their roles.
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independence is denied, and after its reconceptualisation, it is a function of intrinsic
load. On the other hand, there is evidence, triggered by the proposal of novel multiple
subjective rating scales [38, 39], that the three types of load are measurable, even the
most challenging, namely the germane load. Sweller and colleagues believe that ger-
mane load exists but it is not measurable [59]. He suggested that one of the most
reliable way to measure the overall cognitive load is the unidimensional subjective
scale of Mental Effort [13]. However, the fact that unidimensional scale has been
widely employed within Educational Psychology, does not mean it is always the most
appropriate. For example, within the discipline of Human Factors (Ergonomics), there
exist a plethora of empirical studies that all point to the multi-dimensional nature of the
construct of Mental Workload (cognitive load for educational psychologists) [16, 61–
65]. There is also an emerging body of knowledge, within Computer Science, that is
employing more formal non-linear approaches for modelling mental workload as a
multi-dimensional construct [66–68]. Similarly, applications of mental workload as a
multi-dimensional concept can be found in Human Computer Interaction [69–72].

Learning is a complex process, it is hard to evaluate it mostly because it is per-
ceived as a subjective one. Similarly, cognitive load it is a complex construct and it is
assumed it can be modelled end evaluated through quantitative criteria to satisfy the
empirical exigencies of scientific research. This is an existing methodological gap and
it is the reason why, so far, there is little evidence of generally applicable subjective
measurement techniques and measures for the three types of load and for overall
cognitive load. According to Klepsch and colleagues, their informed rating scale is a
novelty in CLT research and it seems to be a valid method for measuring the three
types of load [39]. They believe it is the most logical approach because if learners are
informed, then the evaluation of the experienced load can be done with a higher degree
of awareness. However, in our view, this might bring back the issue of circularity,
suggesting that we are leading learners to understand Cognitive Load Theory as well as
its assumptions and influence them to rate their subjective experience to fit our
expectations. Cognitive load is a complex construct and indeed CLT has had a sig-
nificant impact for instructional design. Circularity is also an important issue that
should be avoided in favour of empiricism and falsifiability of measures. We believe
that, with advances in technologies and the availability of cheap sensors and non-
invasive instruments for gathering responses of the human brain and bodies, physio-
logical measures of mental workload might finally shed further light on the complex
but fascinating problem of cognitive load modelling.
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Abstract. Approximately 20% of the working population report symptoms of
feeling fatigued at work. The aim of the study was to investigate whether an
alternative mobile version of the ‘gold standard’ Psychomotor Vigilance Task
(PVT) could be used to provide an objective indicator of fatigue in staff working
in applied safety critical settings such as train driving, hospital staffs, emergency
services, law enforcements, etc., using different mobile devices. 26 participants
mean age 20 years completed a 25-min reaction time study using an alternative
mobile version of the Psychomotor Vigilance Task (m-PVT) that was imple-
mented on either an Apple iPhone 6s Plus or a Samsung Galaxy Tab 4. Par-
ticipants attended two sessions: a morning and an afternoon session held on two
consecutive days counterbalanced. It was found that the iPhone 6s Plus gen-
erated both mean speed responses (1/RTs) and mean reaction times (RTs) that
were comparable to those observed in the literature while the Galaxy Tab 4
generated significantly lower 1/RTs and slower RTs than those found with the
iPhone 6s Plus. Furthermore, it was also found that the iPhone 6s Plus was
sensitive enough to detect lower mean speed of responses (1/RTs) and signifi-
cantly slower mean reaction times (RTs) after 10-min on the m-PVT. In contrast,
it was also found that the Galaxy Tab 4 generated mean number of lapses that
were significant after 5-min on the m-PVT. These findings seem to indicate that
the m-PVT could be used to provide an objective indicator of fatigue in staff
working in applied safety critical settings such as train driving, hospital staffs,
emergency services, law enforcements, etc.

Keywords: Psychomotor Vigilance Task (PVT) � Mental workload �
Occupational fatigue � Objective indicator of fatigue � Attention

1 Introduction

In order to be able to meet task demands, there is usually a required amount of operator
resources needed, referred to as human mental workload [1]. According to Hart and
Staveland [2], human mental workload can be defined as a ‘cost incurred by a human
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operator to achieve a particular level of performance’ and evolves from interactions
between task demands, circumstances, skills, behaviour, and perceptions’. Therefore,
human mental workload – often referred to as cognitive load – can be intuitively
defined as the amount of mental work necessary for a person to complete a task over a
given period of time [3, 4]. However, nowadays human mental workload is more
generally defined as the measurement of the amount of mental resources involved in a
cognitive task [5].

Human mental workload can be measured in real time using a variety of psycho-
logical and physiological techniques, which include; subjective psychological self-
reported measures e.g., the NASA Task Load Index (NASA-TLX) [2, 6–8] and the
NASA-MATB (National Aeronautics and Space Administration Multi-Attribute Task
Battery [9] as well as objective physiological measures e.g., heart rate (HR), galvanic
skin response (GSR), body temperature, electrocardiogram (ECG), electroencephalo-
gram (EEG), and eye tracking [8, 10–19], and which have been extensively examined
in various safety critical environments including; aviation [7, 20], train driving [21], car
driving [22–24], and in an operating theater [6] but to name a few.

According toWickens [25], the greatest value of conducting scientific human mental
workload research is to be able to predict the consequences of high mental workload on
performance. In other words, to better understand an individual’s decision to consciously
engage in a safe behaviour or in a potentially dangerous behaviour that could have
devastating consequences. As a result, the concept of human mental workload has long
been recognised as an important factor in individual performance [26–29]. Xie and
Salvendy [29] state that both underload (i.e., low mental workload) and overload (i.e.,
high mental workload) degrade performance, whereby high and low levels of human
mental workload have been shown to lead to operator error [22]. Longo [3] outlines that
during low mental workload, individuals are more likely to experience levels of frus-
tration and annoyance when processing information, which could result in an increase in
their reaction time (RT). In contract, during high mental workload, individuals could
experience confusion, which may result in a decrease in their information processing
capacity, which could directly increase the likelihood of errors and mistakes. Therefore,
these low and highmental workload information processing stages could have potentially
dangerous consequences, especially in safety critical environments. Byrne [30] points out
that the main application of mental workload has been to investigate situations where
cognitive demand exceeds the acceptable safety tolerance threshold so that workload can
be effectively reduced. Therefore, in high risk safety critical environments, the mea-
surement of mental workload is of upmost importance due to its potential implications
[31]. However, Xie and Salvendy [29] identified that the effect of fatigue on mental
workload is not often considered in human mental workload research. Nevertheless,
research carried out by Smith and Smith [32] on conductors/guards and engineers from
the rail industry who work in high risk safety critical environments found that workload
increased fatigue. However, subjective measures were predominately used in Smith and
Smith’s study. As a result, there is a need for an alternative mobile objective indicator of
fatigue that can be used in high risk safety critical environments. In a controlled labo-
ratory setting, the human Psychomotor Vigilance Task (PVT) [see 33, 34, for review] has
become the widely accepted ‘gold standard’ tool for assessing the impact of fatigue on
human cognitive neurobehavioral performance for monitoring temporal dynamic
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changes in attention [35–38]. The aim of the study was to investigate whether an alter-
native mobile version of the ‘gold standard’ Psychomotor Vigilance Task (PVT) could be
used to provide an objective indicator of fatigue in staff working in applied safety critical
settings, such as train driving, hospital staffs, emergency services, law enforcements, etc.

The rest of the paper is organised as follows. Section 2 describes related work on
the Psychomotor Vigilance Task (PVT) while also extracting relevant studies to
identify the gaps and rationale for the need of an alternative objective indicator of
fatigue in staff working in applied safety critical settings. Section 3 outlines the design
and empirical methodology of the proposed alternative mobile Psychomotor Vigilance
Task (m-PVT). Section 4 presents the empirical results and discussion of the m-PVT.
Finally, Sect. 5 provides a critical conclusion of the proposed alternative m-PVT and
suggestions for future work.

2 Related Work

The Psychomotor Vigilance Task (PVT) can be traced back from the early work in
simple reaction time (SRT) studies that were carried out by Wilhelm Maximilian
Wundt (1832–1920) and continued by James McKeen Cattell (1860–1944) [39]. It is
important to note that the modern PVT has been refined several times over the years
[40–42] from its original development by Dinges and Powell [33] and has been shown
to be sensitive to sleep deprivation, fatigue, drug use, and age. The PVT has also been
widely implemented using a handheld device known as the PVT-192 (Ambulatory
Monitoring Inc., Ardsley, New York, USA), as well as being extensively validated by
various researchers [40, 43–47].

According to Basner, Mcguire, Goel, Rao and Dinges [48] and Basner et al. [49],
the PVT-192 records participants’ sustained attention based on repeated reaction time
(RT) trials to visual stimuli that occur at random inter-stimulus intervals (ISI) that are
between 2–10 s, for a standard 10-min period. In summary, the PVT-192 device
operated by presenting participants with a stimulus that consisted of a four-digit mil-
lisecond counter that appears in a light-emitting diode (LED) dot-matrix display. The
response consisted of a left or right button press, which depended on the configuration
of the PVT-192 setup. The time difference between the stimulus presentation and the
response constituted the participant’s reaction time (RT). Each RT value was stored in
the device and then uploaded to a personal computer, where the individual RTs are
post-processed with the REACT software (Ambulatory Monitoring Inc., Ardsley, New
York, USA), or other commercially available software, into summary statistics, such as
the mean RT or the mean number of lapses (RTs � 500 ms) per session [33, 40, 48,
50, 51]. For example, in Roach, Dawson, and Lamond’s study [45], each participant
performed either 5 min or 10 min RT sessions spaced at predetermined intervals (e.g.,
every 2 h) for a prolonged duration (e.g., 28 h), where each session consists of either
50 trials (equivalent to 5 min), or 100 trials (equivalent to 10 min). However, Khitrov
et al. [52] tested the average delay of the PVT-192 and found that the recorded delay
was greater than what was stated by the PVT-192 manufacturer. The delay recorded by
the researchers was on average 2.4 ms greater when compared to the manufacturer’s
reported delay of 1 ms. Nevertheless, it is important to highlight that Khitrov et al. [52]
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did acknowledge the possibility that the difference found could have been due to the
non-instantaneous nature of the light detection circuit, or the actual delay associated
with the PVT-192, since their experimental design did not permit them to be able to
distinguish between these possibilities.

Dinges and Powell [33] have shown that the 10-min PVT is highly reliable. Roach,
Dawson and Lamond [45] wanted to investigate whether 90 s could also be sufficiently
sensitive enough to detect the effects of fatigue in comparison to their earlier research
[see 43, for review], where they were able to find significant fatigue-related impairment
during the first 5-min of a 10-min PVT. In this study, the researchers compared par-
ticipants’ neurobehavioral performance using the PVT between three different time
durations (90 s, 5-min, and 10-min) to identify whether a shorter PVT could also be
sensitive enough to detect the effects of fatigue. They found that it was only possible to
implement a 5-min PVT as a substitute of the 10-min PVT, and not a 90 s PVT, thus
only further supporting their earlier research [43]. However, it is important to note that
analyses of their study were carried out using the mean RT and not the mean speed
response (1/RT). Basner and Dinges [43] have identified that the mean RTs should not
be the primary measure of alertness, and instead considering using the alternative
primary measure of 1/RTs. In a later study, Basner, Mollicone and Dinges [42] aimed
to further shorten the 5-min PVT [45] by developing a modified 3-min version of the
PVT (PVT-B). They found that this 3-min version could be a useful tool for assessing
behavioural alertness in settings where the ‘gold standard’ 10-min PVT could be more
difficult or impractical to implement due to the nature of the study or location. How-
ever, further validation is required to determine whether both the 5-min PVT and PVT-
B versions could indeed be sensitive enough to detect reduced levels of fatigue.
Therefore, this study aimed to investigate a mobile version of the Psychomotor Vigi-
lance Task (m-PVT) that could also be used to provide an objective indicator of fatigue
in staff working in applied safety critical settings such as train driving, hospital staffs,
emergency services, law enforcements, etc.

3 Design and Methodology

The aim of the study was to investigate whether an alternative mobile version of the ‘gold
standard’ Psychomotor Vigilance Task (PVT) could be used to provide an objective
indicator of fatigue in staff working in applied safety critical settings such as train driving,
hospital staffs, emergency services, law enforcements, etc. The study received ethics
approval from Cardiff University’s Ethics Committee (EC.16.02.09.4464R). The study
conformed to the seventh amendment of the Declaration of Helsinki 1964 [53] and all
participants gave their informed written as well as electronic consent following the
explanation of the nature of the study in written form.

3.1 Participants

26 (3 male and 23 female) participants with a mean age of 20 years (SD = 1.66) were
recruited as volunteers from Cardiff University via the Experimental Management
System (EMS) to take part in the study. The study involved participants attending two
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sessions, a morning session (i.e., before 11:00) and an afternoon session (i.e., after
17:00), which were held on two consecutive days and counterbalanced, in exchange for
£10. The study lasted 60 min in total for both sessions.

3.2 Materials/Apparatus

The mobile Psychomotor Vigilance Task (m-PVT) was presented to participants on one
of two mobile devices: Apple’s iPhone 6s Plus running Apple’s iOS version 9.3.1
(Apple Inc.) or Samsung’s Galaxy Tab 4 (Samsung Electronics Co. Ltd.) running on
Android’s operating system (OS) version 4.4.2 KitKat (Alphabet Inc.). The m-PVT ran
in the following hardware configurations for the iPhone 6s Plus: system chip (Apple A9
APL1022), processor (Dual-core, 1840 MHz, Twister, 64-bit), graphics processor
(PowerVR GT7600), and system memory (2048 MB RAM), and for the Samsung
Galaxy Tab 4: system chip (Marvell PXA1088), processor (Quad-core, 1200 MHz,
ARM Cortex-A7), graphics processor (Vivante), and system memory (1536 MB
RAM). The iPhone 6s Plus had the following hardware configurations: the m-PVT was
displayed on either a 5.5-in. (diagonal) 1920 � 1080-pixel native resolution at 401 ppi
Retina high definition display (iPhone 6s Plus), or a 7-in. (diagonal) 1280 � 800-pixel
(WXGA) native resolution at 216 pixels per inch (ppi) liquid crystal display
(LCD) display (Samsung Galaxy Tab 4).

The m-PVT was programmed using the client code HTML, and CSS for the page
visualisation and layout. JavaScript was also used to initiate the m-PVT, which was run
using the Dolphin Web Browser (MoboTap Inc.) on both an Apple’s iPhone 6s Plus
and Samsung Galaxy Tab 4 (Dolphin Web Browser versions; Apple app version 9.9.0,
and Android app version 11.5.6, respectively). The rationale for selecting the Dolphin
Web Browser for this study was that it allowed the full screen feature to be enabled
across the two different operating systems (OS), Apple iOS and Android OS platforms
for both mobile devices. Other more native mobile internet browsers of each OS
platform, such as Safari (Apple) and Chrome (Android) including Firefox, to name a
few, did not permit full screen. Qualtrics Surveys (Qualtrics Labs, Inc.) were also used
to collect demographic information from participants. These surveys were also
implemented on both Apple’s iPhone 6s Plus (iOS app version 13.28.06) and Samsung
Galaxy Tab 4 (Android app version 1.0.38).

3.3 Statistical Analyses

IBM’s Statistical Package for the Social Sciences (SPSS) version 23 for Mac was used
to analyse the data. A combination of various statistical procedures were carried out on
the data; descriptive analyses, mixed-design analysis of variance (ANOVA) and a two-
way analysis of variance (ANOVA) to further explore interactions. The level of a < .05
was used for all statistical tests of this experiment.

3.4 Design

The experiment employed a 2 � 2 � 6 mixed-design analysis of variance (ANOVA)
with mobile device (Apple’s iPhone 6s Plus or Samsung’s Galaxy Tab 4) as the
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between-subjects factor, � time of day (Morning or Afternoon) � time on task
(1-min; 5-min; 10-min; 15-min; 20 min; or 25-min) as the within-subjects factors. The
morning session (i.e., before 11:00) and the afternoon session (i.e., after 17:00) were
held on two consecutive days and counterbalanced.

3.5 Procedure

In order to ensure participants were fully aware of the inclusion and exclusion criteria,
all participants were contacted using Cardiff University’s Experimental Management
System (EMS) emailing system 48 h prior to participation and further reminded 24 h
before the start, in addition to being provided with brief instructions through EMS. The
study was administered using mobile devices. Participants were either assigned to using
an iPhone 6s Plus or a Samsung Galaxy Tab 4. To increase validity and standardisa-
tion, all instructions were administered to participants in written form for both the
morning and the afternoon session. This study consisted of two parts. The first part was
the mobile Psychomotor Vigilance Task (m-PVT) reaction time test, which was a
modified version of the Dinges and Powell’s [33] Psychomotor Vigilance Task. The m-
PVT was run on the Dolphin Web Browser mobile application. The second part was
the demographic questionnaire that was distributed within Qualtrics Surveys mobile
application. In this modified version, the mobile Psychomotor Vigilance Task (m-PVT)
(see Fig. 1), participants were presented with on-screen instructions and a button at the
end that read ‘Start’. In each trial, participants were shown a black screen background,
and at the centre of the screen they would be presented with a large red fixation circle.
The red fixation circle (i.e., inter-stimulus interval) would remain on the screen for a
randomised duration that lasted between 2–10 s, which was then followed by a yellow
stimulus counter. As soon as the inter-stimulus interval reached the randomised
duration, a yellow stimulus counter appeared counting up in milliseconds from 0–5 s
where it would lapse (i.e., error of omission for 0.5 s) and begin the next trial, or until
the participant tapped on the screen. Once the participant tapped on the screen, their
reaction time (i.e., stimulus) would be displayed for 0.5 s. At the end of each trial, a
black background would appear on-screen for 0.5 s. There were 205 trials in total that
lasted approximately 25 min. Kribbs and Dinges [54] found that after a maximum of
three trials, the practice effect for the PVT was removed. This study conservatively
implemented five practice trials to ensure participants were fully aware of the task,
which were removed from final analyses. If participants responded prematurely during
any trial (i.e., before the timer commenced counting up), the trial would reset. To also
ensure participants were made aware of their premature response, the following mes-
sage in red was displayed on the centre of the screen, ‘You clicked too early! This trial
will be reset.’ A visual illustration of the mobile Psychomotor Vigilance Task (m-PVT)
is presented in Fig. 2.
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1a. Participants were presented with a large red circle (i.e., inter-stimulus interval),
which appeared for a randomised duration between 2–10 s.

1b. If participants responded prematurely, a false start warning message appeared
informing them that they clicked too early and that the trial would be reset.

2a. As soon as the inter-stimulus interval reached the randomised duration, a yellow
stimulus counter appeared counting up in milliseconds from 0–5 s where it
would lapse (i.e., error of omission for 0.5 s) and begin the next trial, or until the
participant had tapped on the screen.

2b. Once the participants had tapped on the screen, their reaction time (i.e., stimulus)
would be displayed for 0.5 s.

3. At the end of each trial, a black background would appear on-screen for 0.5 s.

Fig. 1. Mobile Psychomotor Vigilance Task (m-PVT) timeline.
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4 Results and Discussion

The aim of the study was to investigate whether an alternative mobile version of the
‘gold standard’ Psychomotor Vigilance Task (PVT) could be used to provide an
objective indicator of fatigue in staff working in applied safety critical settings such as
train driving, hospital staffs, emergency services, law enforcerments, etc. IBM’s Sta-
tistical Package for the Social Sciences (SPSS) version 23 for Mac was used to analyse
the data. A total of 10,452 test trials were submitted for data analyses, with all 260
practice trials (i.e., 5 practice trials per session) excluded from final analyses. It is
important to note that all mobile devices running the online mobile version of the
Psychomotor Vigilance Task (m-PVT) were administered through the Dolphin internet
browser and were connected using Cardiff University’s Eduroam Wi-Fi roaming ser-
vice. Therefore, on rare occasions when the Wi-Fi connectivity dropped, the partici-
pant’s trial was lost and thus not recorded. As a result, a total of 1.95% (n = 208) test
trials of all 10,660 trials (i.e., 260 practice and 10,400 test) were lost and not recorded.
Based on Basner and Dinges [40] recommendations, all 10,452 test trials with reaction
time (RTs) < 100 ms (i.e., false start), which accounted for .05% (n = 5) and RTs
500 ms (i.e., number of lapses), which accounted for 31.84% (n = 3,328), were
considered for exclusion from the final mean speed response (1/RT) and mean reaction
time (RT) analyses. All 31.84% (n = 3,328) of RTs � 500 ms (i.e., number of lapses)
were analysed separately.

Fig. 2. Visual illustration of the mobile Psychomotor Vigilance Task (m-PVT)
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4.1 Mean Speed Response (1/RT) and Reaction Time (RT)

Figure 3 presents the illustrated mean speed responses (1/RTs) across the different
conditions while Fig. 4 presents the illustrated mean reaction times (RTs) across the
different conditions. Both the 1/RTs and RTs were submitted to a 2 � 2 � 6 mixed-
design analysis of variance (ANOVA) with 2 � mobile devices (iPhone 6s Plus or
Samsung Galaxy Tab 4) as the between-subjects factor, and � 2 time of day (Morning,
or Afternoon) � 6 time on task (1-min; 5-min, 10-min, 15-min, 20 min, or 25-min) as
the within-subjects factors. Both the 1/RTs and RTs were significant when comparing
the main effect of the two groups using different mobile devices, F(1, 24), 87.21,
p < .001, g2

p ¼ :78, indicating a large effect size [55, 56] and F(1, 24), 131.85,

p < .001, g2
p ¼ :85, also indicating a large effect size [55, 56], respectively. In addition,

there was a significant main effect of time on task for both the 1/RTs and RTs, Wilks’
Lambda = .22, F(5, 20), 14.08, p < .001, g2

p ¼ :78, indicating a large effect size [55,

56] and Wilks’ Lambda = .24, F(5, 20), 12.66, p < .001, g2
p ¼ :76, indicating a large

effect size [55, 56], respectively. Furthermore, there was also a significant interaction
between mobile devices � time on task for both the 1/RTs and RTs, Wilks’
Lambda = .34, F(5, 20), 7.95, p < .001, g2

p ¼ :67, indicating a large effect size [55, 56]

and Wilks’ Lambda = .43, F(5, 20), 5.23, p = .003, g2
p ¼ :57, indicating a moderate

effect size [55, 56], respectively. The other main effect (time of day) and interactions
(two-way interaction, time of day � time on task; and three-way interaction, mobile
devices � time of day � time on task) for both 1/RTs and RTs were not significant.

Fig. 3. Mean speed responses (1/RTs) across the different conditions (i.e., morning and
afternoon) for both the iPhone 6s Plus and the Samsung Galaxy Tab 4 of the mobile Psychomotor
Vigilance Task (m-PVT). Note: Mean 1/RTs for both the iPhone 6s Plus and the Samsung
Galaxy Tab 4 are presented in bins of 5 min as well as the first minute. Error bars represents
standard deviation.
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The main effect of the two groups using different mobile devices was followed by
post-hoc tests with Bonferroni correction for multiple comparisons. Post-hoc tests
showed that participants’ mean speed responses (1/RTs) were significantly greater with
the iPhone 6s Plus mobile device (M = 2.97, SE = .05) than the Samsung Galaxy Tab
4 mobile device (M = 2.26, SE = .05, p < .001). In addition, post-hoc tests also
showed that participants’ reaction times (RTs) were significantly faster with the iPhone
6s Plus mobile device (M = 341.92 ms, SE = 6.29 ms) than the Samsung Galaxy Tab
4 mobile device (M = 444.02 ms, SE = 6.29 ms, p < .001). These findings seem to
indicate that the iPhone 6s Plus generated significantly greater mean speed responses
(1/RTs) and significantly faster mean reaction times (RTs) than the Samsung Galaxy
Tab 4, with a mean RT difference of 102 ms between the iPhone 6s Plus and the
Samsung Galaxy Tab 4. Therefore, under these circumstances, the interaction between
mobile devices � time on task was explored separately with a two-way repeated
analysis of variance (ANOVA).

iPhone 6s Plus Mean Speed Response (1/RT) and Reaction Time (RT)
Figures 5 and 6 present the illustrated mean speed of responses (1/RTs) and mean
reaction times (RTs) for the iPhone 6s Plus mobile Psychomotor Vigilance Task (m-
PVT) across the different conditions. Both the 1/RTs and RTs were submitted to a
2 � 6 two-way repeated analysis of variance (ANOVA) comparing 2 � time of day
(Morning, or Afternoon) � 6 time on task (1-min; 5-min, 10-min, 15-min, 20 min, or
25-min). Only the main effect of time on task was significant for both the 1/RTs and
RTs, Wilks’ Lambda = .12, F(5, 8), 12.02, p = .001, g2

p ¼ :88, indicating a large effect

Fig. 4. Mean reaction times (RTs) across the different conditions (i.e., morning and afternoon)
for both the iPhone 6s Plus and the Samsung Galaxy Tab 4 of the mobile Psychomotor Vigilance
Task (m-PVT). Note: Mean RTs for both the iPhone 6s Plus and the Samsung Galaxy Tab 4 are
presented in bins of 5 min as well as the first minute. Error bars represents standard deviation.
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size [55, 56] and Wilks’ Lambda = .12, F(5, 8), 11.93, p = .002, g2
p ¼ :88, indicating a

large effect size [55, 56], respectively. The other main effect (time of day) and inter-
actions (two-way interaction, time of day � time on task) for both 1/RTs and RTs were
not significant.

Fig. 5. Mean speed responses (1/RTs) of both the morning session and afternoon session for the
iPhone 6s Plus mobile Psychomotor Vigilance Task (m-PVT). Note: Mean 1/RTs of both the
morning session and afternoon session for the iPhone 6s Plus are presented in bins of 5 min as
well as the first minute. Error bars represents standard deviation.

Fig. 6. Mean reaction times (RTs) of both the morning session and afternoon session for the
iPhone 6s Plus mobile Psychomotor Vigilance Task (m-PVT). Note: Mean RTs of both the
morning session and afternoon session are presented in bins of 5 min as well as the first minute.
Error bars represents standard deviation.
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The main effect of time on task was further explored using Fisher’s Least Signif-
icant Difference (LSD) post-hoc multiple pairwise comparison, which according to
Rovai, Baker and Ponton [57] is used when sample sizes are small. As can be seen
from Fig. 7, participants who were assigned to the iPhone mobile device group had
significantly greater mean speed responses (1/RTs) between the first minute on the m-
PVT (M = 3.17, SE = .07) and 15-min on the m-PVT (M = 2.96, SE = .09, p = .005).
In addition, participants had significantly greater 1/RTs between the first minute
(M = 3.17, SE = .07) and 20-min (M = 2.90, SE = .10, p = .005). Furthermore, par-
ticipants had significantly greater 1/RTs between the first minute (M = 3.17, SE = .07)
and 25-min (M = 2.69, SE =.07, p < .001). Fisher’s LSD post-hoc multiple pairwise
comparison also showed potential differences between the first minute on the m-PVT
(M = 3.17, SE = .07) and 10-min on the m-PVT (M = 3.01, SE = .10, p = .051).
However, this was not statistically significant with this study size. As can be seen from
Fig. 8, participants had significantly faster mean reaction times (RTs) between the first
minute on the m-PVT (M = 317.89 ms, SE = 7.09 ms) and 10-min on the m-PVT
(M = 337.75 ms, SE = 10.27 ms, p = .032). In addition, participants had significantly
faster RTs between the first minute (M = 317.89 ms, SE = 7.09 ms) and 15-min
(M = 342.70 ms, SE = 10.22 ms, p = .003). Furthermore, participants had signifi-
cantly faster RTs between the first minute (M = 317.89 ms, SE = 7.09 ms) and 20-min
(M = 349.52 ms, SE = 11.42 ms, p = .005). Moreover, participants had significantly
faster RTs between the first minute (M = 317.89 ms, SE = 7.09 ms) and 25-min
(M = 376.47 ms, SE = 9.20 ms, p < .001).

Fig. 7. *p < .05; **p < .005; ***p < .001. Note: Mean speed responses (1/RTs) for the iPhone
6s Plus are presented in bins of 5 min as well as the first minute. Error bars represents standard
errors.
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Samsung Galaxy Tab 4 Mean Speed Response (1/RT) and Reaction Time (RT)
Figures 9 and 10 present the illustrated mean speed responses (1/RTs) and mean
reaction times (RTs) for Samsung Galaxy Tab 4 mobile Psychomotor Vigilance Task
(m-PVT) across the different conditions. Both the 1/RTs and RTs were submitted to a

Fig. 8. *p < .05; **p < .005; ***p < .001. Note: Mean reaction times (RTs) for the iPhone 6s
Plus are presented in bins of 5 min as well as the first minute. Error bars represents standard
errors.

Fig. 9. Mean speed responses (1/RTs) of both the morning session and afternoon session of the
Samsung Galaxy Tab 4 mobile Psychomotor Vigilance Task (m-PVT). Note: Mean 1/RTs of
both the morning session and afternoon session for the Samsung Galaxy Tab 4 are presented in
bins of 5 min as well as the first minute. Error bars represents standard deviation.
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2 � 6 two-way repeated analysis of variance (ANOVA) comparing 2 � time of day
(Morning, or Afternoon) � 6 time on task (1-min; 5-min, 10-min, 15-min, 20 min, or
25-min). For both the 1/RTs and RTs, there was no significant main effect of time of
day; Wilks’ Lambda = .96, F(1, 12), .530, p = .481, g2

p ¼ :04 and Wilks’ Lambda =

.95, F(1, 12), .579, p = .461, g2
p ¼ :05, respectively. In addition, for both the 1/RTs

and RTs, there was also no significant main effect of time on task; Wilks’
Lambda = .31, F(5, 8), 3.56, p = .054, g2

p ¼ :69 and Wilks’ Lambda = .31, F(5, 8),

3.53, p = .056, g2
p ¼ :69, respectively. Moreover, for both the 1/RTs and RTs, there

was also no significant interaction between time of day � time of task; Wilks’
Lambda = .61, F(5, 8), 1.05, p = .454, g2

p ¼ :40 and Wilks’ Lambda = .63, F(5, 8),

.954, p = .497, g2
p ¼ :37, respectively.

4.2 Mean Number of Lapses

From all test trials, a total of 31.84% (n = 3,328) RTs � 500 ms were submitted for
data analyses. Figure 11 presents the illustrated mean number of lapses across the
different conditions. The mean number of lapses were submitted to a 2 � 2 � 6
mixed-design analysis of variance (ANOVA) with 2 � mobile devices (iPhone 6s Plus
or Samsung Galaxy Tab 4) as the between-subjects factor, and � 2 time of day
(Morning, or Afternoon) � 6 time on task (1-min; 5-min, 10-min, 15-min, 20 min, or
25-min) as the within-subjects factors. There was a significant main effect of the two
groups using different mobile devices, F(1, 24), 131.81, p < .001, g2

p ¼ :85, indicating

Fig. 10. Mean reaction times (RTs) of both the morning session and afternoon session of the
Samsung Galaxy Tab 4 mobile Psychomotor Vigilance Task (m-PVT). Note: Mean RTs of both
the morning session and afternoon session for the Samsung Galaxy Tab 4 are presented in bins of
5 min as well as the first minute. Error bars represents standard deviation.
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a large effect size [55, 56]. In addition, there was a significant main effect of time on
task, Wilks’ Lambda = .28, F(5, 20), 10.27, p < .001, g2

p ¼ :72, indicating a large
effect size [55, 56]. Furthermore, there was also a significant interaction between
mobile devices � time on task, Wilks’ Lambda = .31, F(5, 20), 9.10, p < .001,
g2
p ¼ :70, indicating a large effect size [55, 56]. The other main effect (time of day,

p = .620) and interactions (two-way interaction, time of day � time on task, p = .395;
and three-way interaction, mobile devices � time of day � time on task, p = .151) for
the mean number of lapses (i.e., RTs � 500 ms) were not significant.

The main effect of the two groups using different mobile devices was followed by
post-hoc tests with Bonferroni correction for multiple comparisons. Post-hoc tests
showed that participants’ mean number of lapses were significantly lower for the
iPhone 6s Plus mobile device (M = .54, SE = .23) than the Samsung Galaxy Tab 4
mobile device (M = 4.31, SE = .23, p < .001). These findings seem to indicate that
participants assigned to the iPhone 6s Plus recorded significantly less mean number of
lapses than the Samsung Galaxy Tab 4. These findings are not too surprising as it was
previously found that both the mean speed responses (1/RTs) and mean reaction times
(RTs) for the iPhone 6s Plus generated significantly greater 1/RTs and faster RTs than
the Samsung Galaxy Tab 4. There was a statistically difference of 102 ms, which
would indicate at least for the Samsung Galaxy Tab 4 that there would be significantly
more test trials with RTs � 500 ms (i.e., number of lapses). As a result, from all

Fig. 11. Mean number of lapses across the different conditions (i.e., morning and afternoon) for
both the iPhone 6s Plus and the Samsung Galaxy Tab 4 of the mobile Psychomotor Vigilance
Task (m-PVT). Note: Mean number of lapses for both the iPhone 6s Plus and the Samsung
Galaxy Tab 4 are presented in bins of 5 min as well as the first minute. Error bars represents
standard deviation.
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31.84% (n = 3,328) of test trials with RTs � 500 ms, the Samsung Galaxy Tab 4
group represented 90.32% (n = 3,006) and the iPhone 6s Plus group represented 9.68%
(n = 322). Therefore, also under these circumstances, the interaction between mobile
devices � time on task was explored separately with a two-way repeated analysis of
variance (ANOVA).

iPhone 6s Plus Mean Number of Lapses
Figure 12 presents the illustrated mean number of lapses for the iPhone 6s Plus mobile
Psychomotor Vigilance Task (m-PVT) across the different conditions. The mean
number of lapses were submitted to a 2 � 6 two-way repeated analysis of variance
(ANOVA) comparing 2 � time of day (Morning, or Afternoon) � 6 time on task
(1-min; 5-min, 10-min, 15-min, 20 min, or 25-min). There was no significant main
effect of time of day; Wilks’ Lambda = .997, F(1, 12), .04, p = .846, g2

p ¼ :00. In
addition, there was also no significant main effect of time on task; Wilks’ Lambda =
.75, F(5, 8), .54, p = .744, g2

p ¼ :25. Moreover, there was also no significant inter-
action between time of task � time of day; Wilks’ Lambda = .36, F(5, 8), 2.84,
p = .092, g2

p ¼ :64.

Samsung Galaxy Tab 4 Mean Number of Lapses
Figure 13 presents the illustrated mean number of lapses for the Samsung Galaxy Tab
4 mobile Psychomotor Vigilance Task (m-PVT) across the different conditions. The
mean number of lapses were submitted to a 2 � 6 two-way repeated analysis of
variance (ANOVA) comparing 2 � time of day (Morning, or Afternoon) � 6 time on
task (1-min; 5-min, 10-min, 15-min, 20 min, or 25-min). Only the main effect of time

Fig. 12. Mean number of lapses for both the morning session and afternoon session for the
iPhone 6s Plus of the mobile Psychomotor Vigilance Task (m-PVT). Note: Mean number of
lapses for the iPhone 6s Plus are presented in bins of 5 min as well as the first minute. Error bars
represents standard deviation.
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on task was significant for the mean number of lapses, Wilks’ Lambda = .14, F(5, 8),
9.80, p = .003, g2

p ¼ :86, indicating a large effect size [55, 56]. The other main effect
(time of day, p = .486) and two-way interaction (time of day � time on task, p = .227)
for the mean number of lapses (i.e., RTs � 500 ms) were not significant.

The main effect of time on task was further explored using Fisher’s Least Signif-
icant Difference (LSD) post-hoc multiple pairwise comparison, which according to
Rovai, Baker and Ponton [57] is used when sample sizes are small. As can be seen
from Fig. 14, participants who were assigned to the Samsung Galaxy Tab 4 mobile
device group had significantly less mean number of lapses between the first minute on
the m-PVT (M = 2.58, SE = .35) and 5-min on the m-PVT (M = 3.85, SE = .37,
p = .001). In addition, participants also had significantly less mean number of lapses
between the first minute on the m-PVT (M = 2.58, SE = .35) and 10-min on the m-
PVT (M = 4.69, SE = .40, p < .001). Furthermore, participants also had significantly
less mean number of lapses between the first minute on the m-PVT (M = 2.58,
SE = .35) and 15-min on the m-PVT (M = 4.81, SE = .40, p = .001). Moreover,
participants also had a significantly lower mean number of lapses between the first
minute on the m-PVT (M = 2.58, SE = .35) and 20-min on the m-PVT (M = 5.54,
SE = .38, p < .001). Finally, participants also had a significantly lower mean number
of lapses between the first minute on the m-PVT (M = 2.58, SE = .35) and 25-min on
the m-PVT (M = 4.42, SE = .46, p = .008). These findings seem to indicate that mean
number of lapses for mobile devices, that generate on average significantly slower
thresholds, due to perhaps hardware configurations than what is typically found in the
Psychomotor Vigilance Task (PVT) literature, may not be an accurate representation
and comparison from analyses of both the mean speed responses (1/RT) and mean
reaction times (RTs). Instead, the analyses of the mean number of lapses may yield far
better research insights.

Fig. 13. Mean number of lapses for both the morning session and afternoon session for the
Samsung Galaxy Tab 4 of the mobile Psychomotor Vigilance Task (m-PVT). Note: Mean
number of lapses for the Samsung Galaxy Tab 4 are presented in bins of 5 min as well as the first
minute. Error bars represents standard deviation.
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5 Conclusion

The study aimed to investigate whether an alternative online mobile version of the
‘gold standard’ Psychomotor Vigilance Task (PVT) could be used to provide an
objective indicator of fatigue in staff in applied safety critical settings such as train
driving, hospital staffs, emergency services, law enforcements, etc. It was found that
there was a large significant difference in reaction times (RTs) between the two mobile
devices (i.e., Samsung vs. Apple’s iPhone). Apple’s iPhone 6s Plus generated RTs that
were comparable to those found in the literature [33, 34, 40, 42–46, 52]. However, the
RTs of the Samsung mobile device were significantly slower than those found in the
literature. Findings from this study also support previous research that have identified
that an increase in fatigue results in impaired alertness [58, 59], whereby sustained
attention, as measured by reaction time, significantly reduces after 10-min of contin-
uous performance using the Psychomotor Vigilance Task (PVT). These findings from
this alternative online mobile version of the Psychomotor Vigilance Task (m-PVT) are
consistent with previous work, which suggested that sustained attention drops with
prolonged duration of the task [60, 61].

This study seems to suggest that an alternative online mobile version of the ‘gold
standard’ 10-min PVT (i.e., m-PVT) could be used to provide an objective indicator of
fatigue after 10 min on the m-PVT in staff working in applied safety critical settings
such as train driving, hospital staffs, emergency services, law enforcments, etc.
However, caution is required when considering implementing an alternative online
mobile version (m-PVT) that is running on an internet browser, as only the iPhone 6s
Plus was able to generate reaction times that were comparable with the literature. In
contrast, there were significantly fewer lapses for the iPhone 6s Plus (n = 322) than the
Samsung Galaxy Tab 4 (n = 3,006), which was not surprising when considering that

Fig. 14. *p < .05; **p < .005; ***p < .001. Note: Mean number of lapses for the Samsung
Galaxy Tab 4 are presented in bins of 5 min as well as the first minute. Error bars represents
standard errors.
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both mean speed responses (1/RTs) and reaction times (RTs) were significantly higher
and faster respectively, for the iPhone 6s Plus than for the Samsung Galaxy Tab 4. As a
result, perhaps analyses of both the mean speed responses (1/RTs) and mean reaction
times (RTs) may not always generate an accurate data representation for analyses based
on the hardware differences in mobile manufactures as well as configurations and
specifications. Therefore, perhaps using the number of lapses (i.e., RTs � 500 ms)
may yield richer data for analyses on these circumstances. As a result, this study
recommends that pilot studies should be carried out to firstly explore and determine
whether the selected mobile device generates RTs that are better suited for either mean
RTs and mean 1/RTs, or mean number of lapses analyses. However, there are several
factors that could also account for the difference in the mean 1/RTs and mean RTs
between the two mobile devices. Firstly, regarding software, both the Apple’s iPhone
6s Plus and Samsung Galaxy Tab 4 run on different operating systems (OS). Apple’s
iPhone 6s Plus run their own native iOS version 9.3.1, while the Samsung Galaxy Tab
4 run on Alphabet’s Android KitKat version 4.4.2. Furthermore, even though the same
internet browser (Dolphin Web Browser) was used across both mobile devices, the
version numbers were different. This may indicate that one may have had more
improvement and stability updates than the other (Dolphin Web Browser; Apple\s
native iOS app version 9.9.0 vs. Android app OS version 11.5.6). Alternatively, the
browser may have been developed for one platform and then expanded to also run on
the other platform.

Further research is now needed to determine whether the m-PVT can be used to
provide an objective indicator of fatigue in staff working in applied safety critical
settings such as train driving, hospital staffs, emergency services, law enforcement, etc.
Use of an iPhone 6s Plus is recommended, and further studies with larger samples are
required to confirm the length of the task.
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Abstract. This paper presents preliminary findings of an ongoing effort
to evaluate the application of face and neck surface electromyography
(sEMG) to real-time cognitive workload assessment. A retrospective
analysis of anterior neck sEMG signals, recorded from 10 subjects during
a time-pressured mental arithmetic task with verbal responses during a
previous study by Stepp et al. [52], suggests that a measure known as
neck intermuscular beta coherence (NIBcoh) may be sensitive to cogni-
tive workload and/or error commission in tasks involving speech pro-
duction, with sub-second temporal resolution. Specifically, the recent
reanalysis indicates that subjects exhibited significantly lower NIBcoh
when they produced incorrect verbal responses as compared to NIBcoh
associated with correct responses. We discuss this promising application
of NIBcoh within the context of our continuing research program and
introduce future experiments that will shed light on the relationships
among face and neck sEMG signals, task demands, performance, cogni-
tive effort/strain, subjective workload measures, and other psychophys-
iological measures.

1 Introduction

Mental workload researchers have identified a variety of psychophysiological mea-
sures that have proven sensitive to cognitive task demands, including indices
based on electrocardiography (ECG) [17,44], transcranial Doppler sonogra-
phy (TCD) [39,53,61], electroencephalography (EEG) [4,14,21], functional near
infrared [12,61], and eye tracking [2,5,27,37]. Electromyographic (EMG) mea-
sures, based on electrical potentials produced by motor units during muscle
contraction, have also demonstrated sensitivity to task demands (e.g., [18,65]),
yet face and neck surface EMG (sEMG) has received little attention in workload
research despite the critical role of face and neck musculature in reflecting and
expressing human mental/emotional state (whether through non-verbal cues or
spoken expression). The lack of attention is perhaps not surprising given the
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obtrusiveness of many existing sEMG sensor designs. However, recent advances
in sEMG sensor design/miniaturization and in EMG signal processing technolo-
gies are paving the way for a new generation of unobtrusive sEMG sensors that
will conform to the skin surface and minimize any negative impact on the wearer.
For example, there are new, commercially available miniature differential sensors
specifically designed for high-fidelity, wireless recording of facial sEMG signals
[41,42]. These advances have sparked new interest in the application of face/neck
sEMG to cognitive workload assessment.

Face and neck sEMG may offer a unique window into human emotional
state, complementing or even replacing previously studied psychophysiological
measures as sensing modalities in the real-time assessment of cognitive workload.
Many facial muscles are situated immediately below the skin surface and are
thereby readily accessible for sEMG recording. They have high endurance and
show little change in EMG power spectra across repeated facial contractions [57],
and a link between emotional responses and high levels of cognitive strain has also
been established (e.g., [20]). A study of error-related activity in the corrugator
supercilii, a muscle of the upper face (medial eyebrow region) involved in facial
expressions, has linked amplified EMG activity to error commission with less
than 100 milliseconds of latency [35].

This paper reports findings of an exploratory reanalysis of an existing dataset,
originally collected in a previous investigation by Stepp et al. into the modula-
tion of a specific neck sEMG signal, known as neck intermuscular beta coherence
(NIBcoh), by speech and non-speech behaviors [52]. In the present work, the
authors reanalyzed this dataset to investigate the potential utility of NIBcoh
in real-time cognitive workload assessment. Specifically, the sensitivity of NIB-
coh to cognitive task demands and the relationships between NIBcoh and task
performance were examined. This reanalysis was an initial step in an ongoing
program of research intended to shed light on the potential application of face
and neck surface EMG to the real-time assessment of cognitive workload.

The paper makes three primary contributions to the sciences of cognitive
workload and of EMG-EMG coherence analysis. First, the reanalysis provides
limited evidence that NIBcoh is sensitive to variations in task demand (or atten-
tion) across similar speech-related tasks. Second, it indicates that NIBcoh may be
correlated with error commission within the context of a specific time-pressured
mental arithmetic task requiring verbal responses. Finally, the findings offer
validation for concerns raised in [45] regarding the common use of full-wave
rectification in EMG-EMG coherence analysis.

The rest of the paper is organized as follows. Section 2 provides relevant back-
ground concerning EMG and EMG-EMG coherence measures, establishes exist-
ing support for a potential connection between cognitive workload and face/neck
sEMG, generally, and NIBcoh more specifically, and offers possible advantages of
face and neck sEMG as a real-time cognitive workload sensing modality. Section 3
describes the conditions in which the NIBcoh dataset was collected and the meth-
ods employed in the recent reanalysis. Section 4 presents and evaluates the results
of the analysis. Finally, Sect. 5 concludes by summarizing the key findings and
positioning them within the context of ongoing and future research.
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2 Related Work

2.1 Human Mental Workload

The general concept of cognitive workload has been recognized and studied for at
least 50 years, although no formal, standard definition of the construct has yet to
emerge within the research community [9]. This paper defines cognitive workload
similarly to the operational definition proposed by O’Donnell and Eggemeier [46],
as “the fractional utilization of an individual’s limited cognitive resources at a
particular moment.” As noted above, a number of psychophysiological measures
have proven sensitive to variations in cognitive task demands, supporting their
potential utility in the measurement of cognitive workload. However, several
studies offer evidence of divergence among known psychophysiological workload
indices [26,32,38,64]. The hypothesized causes for disassociation among these
measures are varied and include both lack of specificity (i.e., some measures can
be influenced by non-workload factors) and lack of diagnosticity (i.e., measures
may reflect differing aspects of workload, consistent with multi-resource theories
(e.g., [40,63]) in which workload is a multi-faceted construct arising from the
capacity of and demand for multiple cognitive resources).

In addition to psychophysiological measures, a number of subjective instru-
ments for cognitive workload assessment have been developed and validated
[36]. These include both offline, retrospective instruments, such as the NASA
Task Load Index (NASA-TLX) [25], the Workload Profile (WP) [56], and the
Subjective Workload Assessment Technique (SWAT) [48], and online (real-time)
techniques, such as the Instantaneous Self-Assessment of Workload (ISA) [30].
While subjective instruments may help to validate other measures or models
of cognitive workload, a valid objective measure offers obvious relative bene-
fits, including correspondence to reality uncontaminated by subjectivity and the
avoidance of self-assessment procedures that may distract from primary tasks.
The assessment of cognitive workload has found applications in a wide variety of
human endeavors, including: manual assembly/manufacturing [43], medical edu-
cation [7], air traffic control [15], and vehicle operation including that of trains
[1,47,50], aircraft [8], and motor vehicles [4,55]. Therefore, the development of
a robust, objective, real-time measure of cognitive workload can be expected to
have widespread benefits.

2.2 Face and Neck Surface Electromyography

Previous research has demonstrated the utility of facial sEMG for recogniz-
ing and classifying emotional responses [11,54,58]. In contrast to image-based
expression assessment, sEMG has the potential to identify rapid or slight facial
expressions, including subtle muscle contractions below the threshold necessary
to generate visible changes in the surface contours of the face [57]. Further,
sEMG may provide greater sensitivity regarding the locations and magnitude of
facial contraction when compared to image-based assessment. Automatic video
quantification of facial movements is relatively difficult for features aside from
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high-contrast tissue edges, whereas sEMG can discern a broad combination of
facial muscle actions across both high- and low-contrast regions.

Beyond the identification of facial expressions, face/neck sEMG can quan-
tify neuromuscular activity related to the vocalization and articulation of speech,
even for utterances that are not vocalized (i.e., sub-vocal speech). Several research
groups have demonstrated the utility of non-acoustic speech recognition tech-
nologies based on surface EMG signals [13,31,41,42], confirming that surface
EMG provides ample speech-related information whether speech is spoken aloud
or only “mouthed”. Because computer-based speech recognition is possible from
EMG alone, it is reasonable to suggest that these signals may also change under
varying cognitive load conditions in a manner resembling acoustic markers, such
as those employed in voice stress analysis. The characteristics of face and neck
sEMG make it particularly well suited to specific operational contexts. In noisy
environments (such as an aircraft cockpit) in which an acoustic signal might
be compromised, for instance, subtle acoustic features relating to cognitive load
might be more readily gleaned from activity in the musculature involved in
speech articulation than from degraded acoustic signals. The ability to detect
subtle contractions associated with sub-vocal speech or slight (perhaps even
involuntary) facial expressions could prove beneficial even in tasks that do not
involve significant amounts of speech. Most facial expression assessment and eye
blink tracking is done through image-based data collection, but this approach is
problematic when individuals are freely moving and thereby changing head ori-
entation relative to video capture sources. In addition, flight equipment such as
helmets, glasses, and face-masks can preclude visualization of facial movements.
In contrast, sEMG sensors can reside under headgear [3] or be incorporated into
face masks, chin straps, etc. [10].

Finally, the dimensionality of sEMG, particularly when considering signals
from multiple locations on the face and neck, offers a distinct advantage over
many of the low-dimensional measures that are unobtrusive enough for oper-
ational use in real-time workload assessment. If face/neck sEMG can support
speech recognition and the classification of emotional responses, perhaps it is
also capable, alone or in concert with other measures, of distinguishing cognitive
states that are conflated by other physiological signals. That is, it may help to
overcome the lack of specificity and diagnosticity noted in Sect. 2.1.

Although sEMG appears to offer distinct advantages over other sensing
modalities in some recording contexts, it also has potential drawbacks. Phys-
iological measures typically require some degree of instrumentation, and even
though sEMG is less prone to noise from movements and environmental sources
compared to electrically weaker EEG, it is perhaps more cumbersome and prone
to noise than other measures such as heart and respiration rate. Moreover,
while modern sEMG recording systems do not require the use of conductive
gels [41,42], the recorded skin surface should nevertheless be clean and free from
hair that can impede adequate electrode contact. This precludes some potential
speech-related neck/face recording locations in individuals with beards or when
proper skin preparation is impractical (e.g., military field deployment, extremely
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dirty or wet environments, etc.). In addition, the degree to which NIBcoh mea-
surement is potentially degraded by motion artifact or environmental sources of
electrical noise in the non-laboratory setting is still unknown.

2.3 Intermuscular Beta Coherence

The present study focuses on a particular measure, known as neck intermuscu-
lar beta coherence (NIBcoh), derived from the surface EMG signal at two ante-
rior neck recording locations superior to (above) neck strap muscles involved
in speech. Coherence, generally, is a frequency domain measure of the linear
dependency or strength of coupling between two processes [24,62]. The coher-
ence function, |Rxy(λ)|2, can be defined as in Eq. 1 below, where fxx represents
the auto-spectra of a time series x(t), fyy the auto-spectra of y(t), and fxy the
cross-spectra of the two. Intermuscular coherence, the coherence between EMG
signals, is a measure of the common presynaptic drive to motor neurons [6].

|Rxy(λ)|2 =
|fxy(λ)|2

fxx(λ)fyy(λ)
(1)

Muscle is thought to be driven by a number of different physiological oscil-
lations at varying frequencies (see [23] for a review). The frequencies at which
physiological oscillations occur appear to be characteristic of the function of
distinct neural circuits and have been categorized into distinct bands such as
alpha (8–13 Hz), beta (15–35 Hz), gamma (30–70 Hz), and others. It is generally
thought that the beta and low gamma bands originate primarily from the pri-
mary motor cortex [23]. The beta band is typically associated with production
of static motor tasks and is reduced with movement onset (e.g., [33]). Inter-
muscular coherence measurements reflect all oscillatory presynaptic drives to
lower motoneurons. However, the intermuscular coherence in the beta band has
been shown to be qualitatively similar to corticomuscular coherence, both in
healthy individuals as well as in individuals with cortical myoclonus [6,33], sup-
porting the hypothesis that beta-band intermuscular coherence is due to oscilla-
tory drives originating in the motor cortex and is thereby likely influenced by
cognitive state. The coherence of neuromuscular oscillations, whether measured
through MEG-EMG, EEG-EMG or EMG-EMG, are affected by concurrent cog-
nitive demands differently across the distinct frequency bands, making measures
of coherence potentially useful for detecting changes in cognitive workload. For
example, although alpha-band coherence is not dominant during motor tasks, it
is known to increase when attention is drawn specifically to motor task execution
[19,34]. Beta-band coherence is the dominant signal during synchronized oscil-
latory discharges of corticospinal or corticobulbar pathways onto lower motor
neurons, and is likewise reduced when attention is divided or otherwise drawn
away from the motor task at hand [29,34,52]. In addition, beta-band coherence
is negatively correlated with motor output errors during concurrent cognitive
tasks in young adults [28], suggesting that it may be predictive of both cognitive
workload and motor performance in younger individuals. In contrast, beta-band
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coherence is not necessarily correlated with motor performance in the elderly
during divided-attention tasks (61–75 yr; [28]), perhaps due to reduced atten-
tional resources [59] and motor coordination [60] with advancing age.

Measures of neck and face intermuscular beta coherence might be particu-
larly well suited to real-time workload assessment given the bilateral symmetry of
contraction typical for neck midline and facial muscles. For example, superficial
facial muscles involved in speech articulation and neck midline strap muscles
typically contract symmetrically across the right and left sides during speech
and swallowing [41], providing an opportunity for coherence measurement dur-
ing these synchronous contractions. Stepp and colleagues found that NIBcoh
measured from ventral neck strap muscles (sternohyoid, sternothyroid, and thy-
rohyoid) can distinguish not only individuals with disordered (strained, hyper-
functional) versus healthy voice production [51], but also healthy individuals
when they mimic a strained voice versus natural speech [52]. Vocal hyperfunc-
tion is associated with heightened speaking effort and anxiety [22], which may
represent increased cognitive demand during speech and thereby reduce NIBcoh,
regardless of whether the hyperfunction is pathological or mimicked. Stepp and
colleagues [52] also found that NIBcoh decreases when speech is produced under
divided attention (cognitive load imposed by rapid, backwards skip-counting),
consistent with prior reports of divided attention effects on beta coherence in dif-
ferent motor systems [29,34]. The goal of the present study was to re-examine the
Stepp et al. [52] dataset of NIBcoh during their normal versus divided-attention
speaking conditions, with the hypothesis that (1) their finding of reduced NIBcoh
under the divided attention condition would be replicated, and (2) the commis-
sion of cognitive errors (miss counting) could be detected in the NIBcoh measure
as errors occurred during their recordings of running speech (e.g., at a sub-second
time resolution). If NIBcoh indeed correlates with cognitive errors, this measure
would have important implications for real-time monitoring of cognitive load
and performance.

3 Design and Methodology

3.1 Data Collection Procedures

The dataset analyzed in this study consists of simultaneous neck surface EMG
(sEMG) and acoustic signals recorded during an earlier investigation by Stepp
et al. into the modulation of neck intermuscular beta coherence (NIBcoh) by
speech and non-speech behaviors [52]. The signals were recorded under a variety
of speech and non-speech task conditions, including a normal speech condition
involving both spontaneous and scripted speech and a “divided-attention” con-
dition in which participants were instructed to rapidly skip-count backwards
from 100 by 7s. In the present study, these data were reanalyzed (as detailed in
Sects. 3.2 and 3.3) to explore the relationships among the neck sEMG signals,
the acoustic signal, task demands, and task performance in order to shed more
light on the possible relationship between neck sEMG and mental workload.
Because this research is ultimately focused on real-time workload assessment,
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the previous analysis was also extended by considering time-varying measures
and not only summary statistics over the entire time series.

Participants. The participants were ten (10) vocally healthy female volunteers
(mean age: 25 years, standard deviation: 2.6 years). They reported no complaints
related to their voice, and no abnormal pathology of the larynx was observed
during standard digital video endoscopy with stroboscopy performed by a cer-
tified speech-language pathologist (SLP). Informed consent was obtained from
all participants in compliance with the Institutional Review Board of the Mas-
sachusetts General Hospital.

Recording Procedures. As reported by Stepp et al. [52], simultaneous neck
sEMG and acoustic signals from a lavalier microphone (Sennheiser MKE2-P-K,
Wedemark, Germany) were filtered and digitally recorded at 20 kHz with Delsys
hardware (Bagnoli Desktop System, Boston, MA) and software (EMGworks 3.3).
The neck of each participant was prepared for electrode placement by cleaning
the neck surface with an alcohol pad and “peeling” (exfoliating) with tape to
reduce electrode-skin impedance, DC voltages, and motion artifacts. Neck sEMG
was recorded with two Delsys 3.1 double differential surface electrodes placed on
the neck surface, parallel to underlying muscle fibers. Each electrode consisted
of three 10-mm silver bars with interbar distances of 10 mm. Double differen-
tial electrodes were chosen instead of single differential electrodes in order to
increase spatial selectivity and to minimize electrical cross-talk between the two
electrodes.

The two electrodes were placed on the right and left anterior neck surface,
as depicted by the schematic in Fig. 1. Electrode 1 was centered approximately
1 cm lateral to the neck midline, as far superior as was possible without impeding
the jaw opening, superficial to fibers of the thyrohyoid and sternohyoid muscles,
and to some degree the omohyoid. Electrode 2 was centered vertically on the
gap between the cricoid and thyroid cartilages of the larynx, and centered 1 cm
lateral to the midline contralateral to Electrode 1, superficial to the cricothyroid,

Fig. 1. sEMG electrode placement [52]. Copyright 2011 by the American Speech-
Language-Hearing Association. Reprinted with permission.
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sternothyroid, and sternohyoid muscles. However, based on previous examina-
tions of sEMG recordings during pitch glides [51], it is doubtful that cricothyroid
contraction contributed much energy to the sEMG due to its relatively deep
position. The platysma muscle likely contributed to some degree to the activ-
ity recorded at both electrode locations. A ground electrode was placed on the
superior aspect of the participant’s left shoulder. The sEMG recordings were
pre-amplified and filtered using the Delsys Bagnoli system set to a gain of 1,000,
with a bandpass filter with roll-off frequencies of 20 Hz and 450 Hz. All record-
ings were monitored by the experimenters in real time to ensure signal integrity,
and no recordings included movement artifacts.

Tasks. Participants completed eleven separate speech and non-speech tasks,
broadly organized into six task conditions. Only two conditions are relevant to
the present study, however: a “normal speech” condition and a “divided atten-
tion” condition. The normal speech condition consisted of two tasks—a scripted
task in which participants read “The Rainbow Passage” [16], and a spontaneous
speech task in which participants produced speech spontaneously in response
to a variety of available prompts, selected by participants (e.g., “What did you
do last weekend?”). The Rainbow Passage was typically produced for 30–45 s.
Spontaneous speech samples were approximately 1 min in length. No participant
had any problems completing these speech tasks correctly. In order to collect
speech under divided attention, participants were given 60 s to count backwards
from 100, aloud, as quickly as possible in decrements of 7. These recordings
were typically approximately 45 s in length. Participants uniformly reported this
task as difficult, but all were able to produce continuous speech during the
recording. The primary cognitive demand in this task is a (non-verbal) one
imposed by time pressured arithmetic computation. The production of verbal
responses, which imposes modest demands for linguistic processing and motor
control resources, can be considered a secondary task. Since EMG-EMG coher-
ence measures have been observed to decrease when attention is diverted from
the motor task involving the instrumented muscle, the authors hypothesized that
NIBcoh would decrease in response to increased demands of the primary, mental
arithmetic task. From this perspective, NIBcoh was expected to function as a
measure of secondary task attention.

3.2 Data Analysis

The original data consisted of discrete multivariate time series for ten subjects
under five speech-related conditions and one non-speech condition, sampled at a
rate of 20 kHz. Each time series included EMG variables from the two anterior
neck surface recording locations depicted in Fig. 1 and an acoustic variable. From
these “raw” time series, the authors derived several dependent EMG and acoustic
measures and down-sampled to a rate of approximately 1.83 Hz (i.e., three sam-
ples for every 32,768 samples of the “raw” time series). The derived EMG-based
variables were: NIBcoh, average magnitude, and gradient. The acoustic variables
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were: average amplitude, peak amplitude, spectral roll-off, cepstral peak promi-
nence, and sound intensity.

Two versions of the intermuscular beta coherence measure were computed,
with and without full-wave rectification (NIBcoh-rect and NIBcoh, respectively)
of the EMG signals. It is common practice in EMG-EMG coherence analysis to
apply full-wave rectification as an EMG pre-processing step, and this step was
performed in the research in which the NIBcoh dataset originated [52]. Other
work, however, has called this practice into question, demonstrating that full-
wave rectification may impair the identification of common oscillatory inputs to
muscle pairs [45]. Therefore, the present study experimented with both rectified
and unrectified EMG signals.

The NIBcoh and NIBcoh-rect time series were computed as follows. First,
any DC offset was removed from the raw sEMG signals. In the case of the
NIBcoh-rect measure, the resulting signals were then full-wave rectified. The
signals were segmented by sliding a 16,384-point (≈820 ms) rectangular window
over each of the resulting EMG-EMG bivariate time series, with 50% overlap.
Coherence between the two EMG signals, as defined in Eq. 1, was then estimated
within each rectangular window using Welch’s overlapped averaged periodogram
method [62], with sliding 8,192-point (≈410 ms) Hamming windows, a 8,192-
point fast Fourier transform, and 50% overlap (i.e., three Hamming windows per
rectangular segment). Finally, the beta-band coherence values were computed by
averaging the coherence values over the 15–35 Hz frequency range. Based on the
findings of Neto and Christou [45] suggesting that oscillatory activity in the
100–150 Hz frequency band of the unrectified signal may drive variations in the
beta band of rectified EMG signals, coherence in the 100–150 Hz band was also
computed.

In order to associate the acoustic and sEMG signals with time-varying per-
formance metrics, the acoustic signals for the divided-attention condition were
manually annotated with labels indicating the participants’ verbal responses—
each interval i, terminated by the completion of a response, was labeled with the
number uttered li. Performance in the backwards-skip-counting task is charac-
terized by both speed and accuracy. Accuracy is quantified as a function of error
commission, with “errors” defined relative to the most recent element that a sub-
ject produced (e.g., 80 was regarded as the correct successor to 87, despite 87 not
being an element of the correct sequence) to avoid an error-compounding effect.
Speed is quantified by the duration of time required for a subject to produce
each element of the sequence (i.e., response time). From the manual response
annotations, discrete time series were generated capturing the error commission
ε and response time r performance metrics. Specifically, the value of the error
commission indicator variable εi for a given labeled interval i reflects whether
the response label li for the interval is 7 less than the response label li−1 for
the previous labeled interval. The value of the response time variable for a given
labeled interval is simply the duration of the interval. That is:
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εi =

{
1 if li �= li−1 − 7
0 otherwise

ri = len(i)

(2)

The label boundaries did not, in general, align with the ≈820 ms segment
boundaries used to derive down-sampled time series from the raw EMG and
acoustic signals. Therefore, a time-weighted average of the down-sampled time
series over each labeled interval was computed to assign a single value of each
dependent variable (e.g., NIBcoh) to the interval.

3.3 Statistical Analysis

As an initial step in the present analysis, the authors sought to determine how
well a key finding in [52] held up in light of Neto and Christou’s [45] criticism
of full-wave rectification in EMG-EMG coherence analysis—specifically, Stepp
et al. [52] had found a significant effect of task condition on neck intermuscular
beta coherence. This result was re-examined by using ANOVA to quantify the
effect of condition on four EMG-EMG coherence measures: NIBcoh, NIBcoh-
rect, and the corresponding intermuscular coherence measures for the 100–150 Hz
frequency band. For consistency with the methods employed in [52], coherence
was estimated over each signal as a whole with Welch’s overlapped averaged
periodogram method [62], with a sliding 16,384-point Hamming window, 16,384-
point FFT, and 50% overlap. The recent analysis differs from that of [52] in
that their two-factor ANOVA was replaced with a more conservative one-factor
repeated measures ANOVA, which makes weaker independence assumptions.
The results of this analysis are reported in Table 1, below.

Since the authors’ primary interest was in evaluating the coherence mea-
sure’s utility in workload assessment, a post hoc two-tailed t-test was performed
to contrast the cognitively demanding divided-attention condition and the nor-
mal speech condition under the assumptions of the ANOVA model, as a means
to evaluate the sensitivity of NIBcoh to varying task demands. The relation-
ships between the performance measures for the backwards skip-counting task
(defined by Eq. 2) and the measures derived from the EMG and acoustic sig-
nals were then investigated. Specifically, associations between response time and
each of the EMG/acoustic variables were evaluated by using Student’s t-tests to
test the null hypotheses that each Pearson’s product-moment correlation coef-
ficient was 0 (i.e., H0 : ρr,v = 0, where ρr,v denotes the correlation between
response time (r) and an EMG/acoustic variable v). Similarly, Student’s two
sample t-tests were used to evaluate the hypotheses that the distribution of each
EMG/acoustic variable had unequal means for correct versus incorrect responses
(i.e., H0 : v̄ε=1 = v̄ε=0). The results of these statistical tests are shown in Tables 2
and 3, in Sect. 4 below, along with the estimated correlation coefficients and dif-
ferences in means. The t-tests had 123 degrees of freedom, corresponding to 125
observations (i.e., “responses”) across the 10 participants. The reported p-values
are not adjusted for multiple comparisons, since any such adjustment could



82 A. Novstrup et al.

itself be misleading due to correlations among several of the variables. In order
to statistically control for substantial variability across subjects, both in terms of
performance on the skip-counting task and in terms of the EMG/acoustic mea-
sures, the EMG/acoustic variables were normalized before computing t-values
and correlation coefficients. Specifically, given a value x of a variable for subject
s and the within-subject sample mean μs and standard deviation σs of that
variable over the normal speech condition, the standardized value z(x) was com-
puted using Eq. 3. The statistical tests thus reflect the “effects” of performance
on the other measures relative to each subject’s“baseline” from the normal speech
condition.

z(x) =
x − μs

σs
(3)

The analysis of the relationships between performance and the EMG/acoustic
variables is motivated by the hypothesis that within-subject variations in per-
formance on the skip-counting task result, at least in part, from variations in
the difficulty of the task. Given the nature of the task, within-subject variations
in cognitive demand might reasonably be expected to be quite small. However,
some such variation may arise from differences in the arithmetic problems that
each participant encountered while completing the task, especially in subjects
with less developed mental arithmetic skills. Some subjects may find it easier
to compute 100 − 7 = 93 than to compute 93 − 7 = 86, for instance. Whether
this was actually the case was examined by comparing mean response times for
decrementing numbers with a ones digit of 7, 8, or 9 (which can be computed
without regard to the tens digit) versus other numbers (which require “bor-
rowing” from the tens digit). Further, participants were encouraged to count
as quickly as possible and to maintain continuous speech during the divided-
attention task, which might be expected to lead them to sacrifice accuracy for
speed and thereby to experience amplified within-subject variations in cogni-
tive demands. This hypothesis was examined by analyzing the distributions of
errors and response times and by comparing mean response times for correct
versus incorrect responses within and across subjects. If within-subject varia-
tions in performance during the task can be plausibly connected to time-varying
cognitive demands, then it is plausible that any observed relationship between
performance and a physiological indicator can be interpreted as evidence of a
possible relationship between that indicator and cognitive workload (i.e., that
task performance acts as a proxy for cognitive workload within the context of
this task).

4 Results and Evaluation

Replication analysis (Table 1) confirmed the finding in [52] that the experimental
conditions had a significant effect on neck intermuscular beta coherence, despite
the use of a more conservative statistical test than that employed by Stepp et al.
The results also lend credence to the concerns of [45] regarding the common use
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of full-wave rectification in EMG-EMG coherence analysis. Rectifying the EMG
signals prior to estimating coherence appears to dilute the estimated difference
in coherence across conditions, suggesting that full-wave rectification may result
in a harmful loss of information—note the difference between the effect sizes
and p-values between the unrectified and full-wave rectified beta-band EMG-
EMG coherence signals. No significant effect of the task conditions on neck
intermuscular coherence in the 100–150 Hz frequency band was found.

Table 1. Summary of replication analysis. Effect of task condition on EMG-EMG
coherence measures.

Coherence measure Size of effect (generalized η2) p-value

Full-wave rectified

Beta band 0.120 0.0715

100–150 Hz 0.0892 0.0905

Unrectified

Beta band 0.176 0.0194†

100–150 Hz 0.0651 0.146
†Denotes a Huynh-Feldt sphericity-corrected p-value, applied
because Mauchly’s test for sphericity failed to reach a 5% sig-
nificance level.

A post hoc comparison of the normal speech and divided-attention conditions
revealed a significant difference between the two (p < 0.001). The linear model
corresponding to the repeated measures ANOVA implied that NIBcoh was lower
by an average of 0.0956 in the divided-attention condition, with a standard
error of 0.0290. This difference may indicate sensitivity of NIBcoh to the change
in cognitive demands between the two conditions. Statistical analysis of the
performance metrics for the backwards skip-counting task did seem to support
the use of these metrics as proxies for cognitive workload within the context of
this task. First, it was found that participants tended to compute the successors
for numbers with a ones digit of 7, 8, or 9 faster on average, with a mean
time of 1.9 s, than for other numbers (3.5 s). This result is consistent with the
hypothesis that cognitive demands vary between these two conditions and that
the varying cognitive demands are reflected in task performance. Additionally,
the data are consistent with the expectation that subjects sacrificed accuracy for
speed—time pressure that would tend to amplify the effects of within-subject
variations in cognitive demands on accuracy. A full 36% (45 out of 125) of
the subjects’ responses were erroneous, despite the presumed simplicity of the
task. The mean response time was 3.1 s with a standard deviation of 2.8, and
the response time distribution was heavily left-skewed with a median response
time of only 2.1 s. Furthermore, longer response times were strongly associated
with incorrect responses both between and within most subjects, indicating that
participants took longer to respond when they were struggling but that delayed
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responses did not generally result in greater accuracy. Analysis of cross-subject
variation suggests that standardization of the EMG and acoustic variables, using
Eq. 3 as described in the previous section, was justified. Subjects were found to
vary substantially, both in terms of their performance on the skip-counting task
(the total number of errors committed by each subject ranged from 0 to 10, with
a mean of 5 and a median of 4) and on the EMG/acoustic measures (e.g., the
mean within-subject standard deviation of NIBcoh was 0.104, while the overall
mean was 0.446, overall standard deviation was 0.116, and standard deviation
of within-subject means was 0.0497).

Table 2 shows the results of the t-tests comparing the distributions of the
standardized EMG and acoustic variables across correct and incorrect responses.
NIBcoh, EMG magnitude, sound intensity, average sound amplitude, peak ampli-
tude, and cepstral peak prominence all exhibited significant (α = 0.05) differ-
ences in estimated means across correct and incorrect responses. The NIBcoh-
rect, EMG gradient, and acoustic spectral roll-off measures showed no significant
difference across correct and incorrect responses. NIBcoh associated with incor-
rect responses was lower than NIBcoh associated with correct responses, as may
be expected if workload or simply reduced attention to speech reduces intermus-
cular coherence of oscillatory drives in speech-related muscles during speech. The
results for several acoustic measures frequently used in voice stress analysis also
accord with expectations.

Table 2. Difference in mean standardized features values for correct vs. incorrect
responses.

Measure Estimated difference t-statistic p-value

NIBcoh 0.505 2.81 <0.006

NIBcoh-rect 0.078 0.548 0.585

EMG magnitude (site 1) 0.432 −2.22 0.028

EMG magnitude (site 2) 0.532 −2.50 0.014

EMG gradient (site 1) 0.120 −0.772 0.44

EMG gradient (site2 ) 0.064 −0.414 0.68

Mean acoustic amplitude 0.852 −2.35 0.020

Peak acoustic amplitude 2.52 −2.96 <0.004

Sound intensity 0.345 −1.97 0.051

Spectral roll-off 0.276 1.21 0.230

Cepstral peak prominence 0.258 −1.67 0.097

Correlations between response time and the EMG/acoustic variables are
shown in Table 3. NIBcoh, peak acoustic amplitude, sound intensity, and cep-
stral peak prominence exhibited significant (α = 0.05) associations with response
time.
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Table 3. Correlations between response time and the standardized EMG and acoustic
features.

Measure Pearson’s r t-statistic p-value

NIBcoh −0.196 −2.22 0.028

NIBcoh-rect −0.078 −0.868 0.387

EMG magnitude (site 1) −0.176 −1.98 0.050

EMG magnitude (site 2) 0.008 0.084 0.933

EMG gradient (site 1) 0.076 0.849 0.397

EMG gradient (site 2) 0.111 1.24 0.218

Mean acoustic amplitude −0.139 −1.56 0.122

Peak acoustic amplitude 0.185 2.08 0.040

Sound intensity −0.223 −2.54 0.012

Spectral roll-off −0.005 −0.053 0.958

Cepstral peak prominence −0.219 −2.49 0.014

4.1 Caveats and Limitations

While the results are promising, several caveats must be acknowledged and the
exploratory nature of the analysis must be stressed. Because the original exper-
iment in which the data were collected was designed to shed light on the mod-
ulation of NIBcoh by speech and non-speech behaviors and not to explore the
sensitivity of NIBcoh to cognitive demands, the recent reanalysis was necessarily
ad hoc. The findings should therefore be considered only suggestive rather than
conclusive—robust conclusions will require well controlled experiments in which
cognitive demands are manipulated directly (Sect. 5 briefly describes such an
experiment, which the authors plan to conduct in the near future).

The small sample size of only 10 participants and the primary focus on the
(single) backwards skip-counting task further limit the generalizability of the
results. In particular, although the task did require mental arithmetic, the verbal
response format makes it impossible to determine from this study whether the
NIBcoh measure may offer any insight into cognitive workload in non-speech-
involving tasks. Additionally, it was found that the statistical hypothesis tests
were quite sensitive to outliers—for instance, the omission of one subject in
particular, who rapidly produced the entire sequence without errors, changes
the p-value for the t-test comparing mean NIBcoh in correct versus incorrect
responses from less than 0.006 to 0.074. This lack of robustness underscores
the limits of this reanalysis and justifies cautious optimism in interpreting the
results.

Finally, it must be noted that several of the EMG and acoustic measures
were themselves somewhat correlated (e.g., NIBcoh and peak acoustic ampli-
tude), and the design of the original experiment makes it impossible to infer the
causal factors that underlie these correlations. Were NIBcoh and peak acous-
tic amplitude correlated because of a mutual causal relationship to cognitive
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demands / workload? It seems intuitively likely that the effect on peak acoustic
amplitude is an artifact of the experimental conditions, rather than an indica-
tion of any general utility in predicting workload or error commission. Bursts of
nervous laughter accompanying high workload might, for instance, contribute to
high peak amplitudes in the specific conditions of this experiment, but one would
not expect to find the same effect in other settings. Could such an artifact also
explain lower intermuscular beta coherence associated with erroneous responses?
Questions such as these cannot be addressed adequately with the existing data.

5 Conclusions and Future Work

The data reanalysis reported herein offers some evidence bearing on the utility
of neck surface EMG for detecting cognitive strain in real time. Specifically, the
analysis demonstrates that time-varying EMG-derived measures, with a sub-
second temporal resolution, are correlated with error commission and response
time in a backwards skip-counting task. Although the task exhibits only mild
variations in task difficulty over the sub-problems that comprise the task, the
analysis indicates that a time-varying NIBcoh measure was lower by about half
a standard deviation on average during intervals in which subjects produced
incorrect responses. Further research is necessary to confirm the effect in a well
controlled context, determine whether it is due to a causal relationship with
error commission, cognitive demands, and/or workload, investigate whether the
effect is limited to tasks involving speech, and generalize the work to other EMG
sensing locations on the face/neck surface where other physiological responses to
variations in cognitive workload may be detected. A planned study, commencing
in 2018, will establish more conclusively whether intermuscular beta coherence
or other measures derived from face and neck sEMG signals are sensitive to cog-
nitive task demands by recording these, and other, psychophysiological signals
while participants complete tasks with varying levels of difficulty in the NASA
Multi-Attribute Task Battery (MATB) [49]. The research will investigate mul-
tiple EMG sensing locations on the face and neck surface, relating to muscles
involved in facial expression, mastication/jaw clenching, speech articulation, and
voice production, and a psychometric analysis will establish relationships to more
conventional workload indicators (including subjective workload as measured by
the NASA Task Load Index administered within the MATB).

The experiments will employ a novel protocol designed to establish whether a
perceived risk of aversive consequences affects the measured psychophysiological
responses to cognitive task demands. Specifically, after half of the task blocks,
identified to participants before and during each such block, a series of mildly
noxious electrical stimuli will be delivered to participants, with the number of
stimuli ostensibly associated with task performance—but actually determined
by the (manipulated) level of task demand in the block. The protocol will thus
test how the presence of perceived risks mediates the relationship between task
demands and psychophysiological responses. It is our hope that the technique
of employing aversive consequences in order to elevate physiological responses
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to workload will resolve two key challenges for workload researchers—namely,
the risk that muted responses may lead to Type I errors in laboratory studies
and the problem that laboratory models may not transfer well into operational
environments.
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Abstract. Mental workload measurement is a complex multidisci-
plinary research area that includes both the theoretical and practical
development of models. These models are aimed at aggregating those
factors, believed to shape mental workload, and their interaction, for the
purpose of human performance prediction. In the literature, models are
mainly theory-driven: their distinct development has been influenced by
the beliefs and intuitions of individual scholars in the disciplines of Psy-
chology and Human Factors. This work presents a novel research that
aims at reversing this tendency. Specifically, it employs a selection of
learning techniques, borrowed from machine learning, to induce models
of mental workload from data, with no theoretical assumption or hypoth-
esis. These models are subsequently compared against two well-known
subjective measures of mental workload, namely the NASA Task Load
Index and the Workload Profile. Findings show how these data-driven
models are convergently valid and can explain overall perception of men-
tal workload with a lower error.

1 Introduction

Assessing human mental workload is fundamental in the disciplines of Human-
Computer Interaction and Ergonomics [13,53]. Through mental workload,
human performance can be predicted and used for designing interacting technolo-
gies and systems aligned to the limitations of the human mental limited capabil-
ities [26]. However, despite its theoretical utility, and after decades of research,
it is still an umbrella construct [12,21,30]. In the last 50 years, researchers
and scholars have devoted their effort to the design and development of mod-
els of mental workload that can act as a proxy for assessing human perfor-
mance [9,15,35,47]. Mental Workload (MWL) is a complex psychological con-
struct, believed to be multi-dimensional and composed of several factors. Various
approaches have been developed to measure and to aggregate these factors into
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an overall index of mental workload [22,28,50]. The vast majority of these are
theory-driven, which means that they utilise theoretical hypothesises and beliefs
for assessing MWL deductively. Also, even if theoretically sound, these models
are rather ad-hoc and they mainly adopt basic operators for aggregating factors
together, with the implicit assumption of their linearity and often additivity.
However, it is argued that MWL is far from being a linear phenomenon and the
application of non-linear computational approaches can advance its modelling.
Additionally, instead of using theoretical knowledge, it is argued that data-driven
approaches are likely to offer a significant improvement in the development of
models of mental workload [56]. In particular, Machine Learning (ML) is one
of these approaches that has been recently considered in MWL modelling. For
example, researchers have started applying ML techniques using physiological
or task performance measures [51,55]. Other studies employing ML have shown
promising results as in [38,40,49].

This research study aims at investigating the impact of supervise modelling
techniques, hardly borrowed from machine learning, in the creation of mod-
els of MWL by employing subjective self-reporting features from humans. In
detail, this study compares traditional subjective models of MWL, namely the
NASA Task Load Index (NASA-TLX) [14] and the Workload Profile (WP) [50],
against data-driven models produced by a number of ML techniques. Concisely,
this paper attempts to answer the research question: Can machine learning tech-
niques help build data-driven models of mental workload that have a better face
validity than the Nasa Task Load Index and the Workload Profile?

The rest of this paper is organised as follows. Section 2 describes related work
in the field of MWL measurement, with an emphasis on subjective approaches.
It then discusses the gaps in the literature that motivate the need of non-linear
modelling methods for mental workload. Section 3 introduces the design of a
comparative study and it describes the research methodology adopted for build-
ing data-driven models of mental workload. Section 4 presents the findings and
critically evaluates them with a rigorous comparison against the selected MWL
baseline instruments, namely the NASA-TLX and the Workload Profile. This
comparison is performed by computing the convergent and face validity of the
induced MWL models from data. Finally, Sect. 5 concludes the paper by high-
lighting its contribution and suggesting future work.

2 Related Work

The importance of measuring MWL has arisen from the crucial need of predict-
ing human performance [23,25,26]. In turn, human performance plays a central
role in the design of interactive technologies, interfaces as well as educational
and instructional material [23,24,27,29,31,36,37]. Measuring mental workload
is not a trivial task [48]. Various measures exist, with different advantages and
disadvantages, and they can be clustered in three main classes:

– subjective measures - this class refers to the subjective perception of the
operator who is executing a specific task or interacting with an underlying
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system. Subjective measures, also referred to as self-reporting measures, rely
on a direct estimation of individual differences such as emotional state, level
of stress, the effort devoted to the task and its demand. The perception of
users usually can be gathered by means of surveys or questionnaires in the
post-task phase [13]. This category includes measures such as the NASA Task
Load Index (NASA-TLX) [14], the Workload Profile (WP) [50] based on
the Multiple Resource Theory [52], and the Subjective Workload Assessment
Technique (SWAT) [42];

– task performance measures - this category includes primary and secondary
task measures. These measures focus on quantifying the objective perfor-
mance of humans in relation to a specific task under execution. Example
include the number of errors, the time needed and the resources used to
accomplish a task or the reaction time to a secondary task [34];

– physiological measures - this class relies on the analysis of the physiological
responses of a human executing a task. Examples include the heart rate, EEG
brain signals, eye movements and skin conductivity [4,35].

Self-reporting subjective measures are based upon the assumption that only
the human involved with a task can provide accurate and precise judgements
about the experienced mental workload. They are often employed post-task and
are easy to be administered. For these reasons, they are appealing to many
practitioners and are the focus of this paper. However, they contribute to an
overall description of the mental workload experienced on a task with no infor-
mation about its temporal variation. The category of task performance measures
is based upon the belief that the mental workload experienced by an individual
becomes relevant only if it impacts system performance. Primary task measures
are strongly connected to the concept of performance since they provide objective
and quantifiable measures of error or human success. Secondary task measures
can be gathered during task execution and are more sensitive to mental workload
variation. However, they might influence the execution of the primary task and
in turn influence mental workload. The class of physiological measures considers
responses of the body gathered from the individual interacting with an under-
lying task/system. The assumption is that they are highly correlated to mental
workload. Their utility lies in the interpretation and analysis of psychological
processes and their effect on the state of the body over time, without demand-
ing an explicit response by the human. However, they require specific equipment
and trained operators minimising their employability in real-world tasks.

2.1 Subjective Measurements Methods

Two out of the several subjective measures of mental workload developed in the
last decades are the NASA Task Load Index (NASA-TLX) [14] and the Workload
Profile (WP) [50]. Since these have been selected as baselines in this research
study, their detailed description follows. NASA-TLX is a mental workload assess-
ment tool developed by the the National Aeronautics and Space Administration
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agency. It was originally conceived to assess the mental workload of pilots dur-
ing aviation tasks. Subsequently, it was adopted in other fields and used as a
benchmark in many research studies as for instance in [27,43–46]. The origi-
nal questionnaire behind this instrument can be found in [14]. The NASA-TLX
scale is built upon six dimensions and an additional pair-wise comparison among
these dimensions. This comparison is used to give weights to the six dimensions
as shown in Eq. 1.

NASA − TLXMWL =

(
6∑

i=1

di × wi

)
1
15

(1)

The Workload Profile (WP) is based on the Multiple Resource Theory (MRT)
that was introduced by prof. Wickens [52]. The WP index is derived from eight
dimensions: perceptual/central processing, response processing, spatial process-
ing, verbal processing, visual processing, auditory processing, manual responses,
and speech responses. In WP, the operator is asked to report the proportion of
attentional resources elicited during task execution. The final mental workload
score is a sum of the eight factors, as shown in Eq. 2.

WPMWL =
8∑

i=1

di (2)

For a detailed information about the scales used by the two mental workload
instruments described above, the reader is referred to [22].

2.2 Machine Learning and Data-Driven Methods for Mental
Workload Modeling

Machine learning (ML) is a subfield of Artificial Intelligence that focuses on
creating models from data. It can be seen as a method of data analysis for
automated analytical model building. It focuses on automatic procedures than
can learn from data and identify patterns with minimal human intervention.
ML can be supervised, unsupervised or semi-supervised. On one hand, super-
vised ML aims to build mathematical models from a set of data that contains
both the inputs and the desired output (supervisory data). On the other hand,
unsupervised ML takes only input data and it is aimed at finding structures, pat-
terns, and groups or clusters in it. Semi-supervised ML employs both the above
learning mechanisms and it occurs when not all the inputs have an associated
output. A number of research studies have employed ML for mental workload
modeling. For example, [16,41] analysed physiological brain signals, gathered
by functional Near-Infrared Spectroscopy (fNIRS), with unsupervised ML. [49]
and [40] employed supervised ML respectively using speech data and linguis-
tic/keyboard dynamics of the operators to predict her/his mental workload. [8]
and [32] adopted supervised ML for mental workload assessment using features
extracted from eye movements. Similarly, supervised ML was used to predict lev-
els of cognitive load in driving tasks employing physiological eye movements and
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primary task measures such as braking, acceleration, and steering angles [55].
Recently, the multi-model approach of combining multiple physiological mea-
sures for mental workload assessment has emerged demonstrating an enhance-
ment over using individual techniques separately [1,20]. Supervised ML has also
been employed with subjective self-reporting data [38] and compared against
well-known self-reporting measures.

3 Design and Methodology

In order to tackle the research question formalised in Sect. 1, a comparative
research study was designed to evaluate the accuracy of data-driven models,
built with supervised machine learning versus two subjective baselines models
of mental workload, namely the NASA-TLX and the WP, as shown in Fig. 1. Two
criteria for evaluating MWL models have been selected, in line to other studies
in the literature [22,43]: convergent [5] and face validity [39]. The definitions of
these two forms of validity adopted here are shown in Table 1. Existing data has
been used and the CRISP-DM methodology (Cross-Industry Standard Process
for Data Mining) has been followed for constructing MWL models [7].

Fig. 1. The design of a comparative study aimed at comparing data-driven models
of mental workload, built with supervised machine learning, against two subjective
baseline models.

Table 1. Criteria for comparing mental workload models

Name Description Statistical tools

Convergent
validity

It aims to determine whether
different MWL assessment
measures are theoretically related

Correlation coefficient of the
MWL scores produced my
baseline models vs ML models

Face
validity

It aims to determine the extent to
which a measure can actually grasp
the construct of MWL

Error of a MWL model in
predicting a self-reported
perception of MWL
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3.1 Dataset, Context and Participants

The dataset selected for this research study has been formed in an educational
context. More specifically, recruited participants were students who attended
classes of the Research Design and Proposal Writing module, in a master course
in the School of Computing, at Dublin Institute of Technology. Four differ-
ent topics have repeatedly been delivered in four consecutive semesters, from
2015 to 2017. (‘Science’, ‘The Scientific Method’, ‘Planning Research’, ‘Litera-
ture Review’). These topics were delivered adopting three different instructional
formats:

1. The first format focused on the transmission of information with a traditional
direct-instruction method – from lecturer to students – by projecting slides
on a whiteboard and describing them verbally.

2. The second format included the delivery of the same content, as developed
using the first format, as multimedia videos, pre-recorded by the same lec-
turer. Videos were built by employing the principles of the Cognitive Theory
of Multimedia Learning [33]. Further details can be found in [27];

3. The third format included a collaborative activity conducted after the delivery
of the video, as developed in the second format. The goal of this activity was
to improve the social construction of the information through dialogue among
students divided in groups.

The number of classes, their length and the number of students are sum-
marised in Table 2. Students were of 16 nationalities (19–54 years; mean = 31.7,
std = 7.5). For each class, students were randomly split into two groups. They
respectively received the questionnaire associated to the NASA-TLX and the
WP. In addition to this, students were asked to answer an additional question
on overall perception of MWL, hereinafter referred to as the Overall Perception
of Mental Workload (OP-MWL), on a discrete scale from 0 to 20 (Fig. 2). Those
students who agreed to participate in the experiment received a consent form,
approved by the ethics committee of the Dublin Institute of Technology, and a
study information sheet. These forms describe the theoretical framework of the
study, the confidentiality of the data, and the anonymisation of their personal
information. Thus, two sub-datasets were formed, one containing the answers
of the NASA-TLX questionnaire, and one related to the answers related to the
WP questionnaire, respectively containing 145 and 139 samples.

Table 2. Number of classes for each format, number of students in each class and their
length in minutes

Lecture Format 1 Format 2 Format 3

Classes Students Mins Classes Students Mins Classes Students Mins

Science 2 14,17 62,60 1 26 18 1 16 60

Scientific method 1 23 46 2 18,18 28,28 1 18 50

Research planning 1 20 54 2 22,22 10,10 1 9 79

Literature review 1 21 55 1 24 19 1 16 77
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Fig. 2. Scale of the question for measuring the overall perception of mental workload
(OP-MWL).

3.2 Machine Learning for Training Mental Workload Models

Supervised machine learning was employed to train models of mental workload
from collected data. The dependent feature is the overall perception of mental
workload provided by students (OP-MWL) while the independent features are
the questions of the NASA-TLX and the WP instruments.

Data Understanding. Three sets of independent features were formed, as
described in the summary Table 3. This helped understand the nature of the
data and it allowed the investigation of its characteristics, such as the type of
features, their values and ranges. The table also shows the normality of the dis-
tributions of each feature and its skewness. Figure 3 depicts the distribution of
the target variable (the overall perception of mental workload OP-MWL).

Fig. 3. Distribution of the target variable: the overall perception of mental workload
provided by students (OP-MWL).

Data Preparation. The final datasets to be used for training purposes were
subsequently constructed. Two datasets were formed:

– dataset NASA-TLX : this includes all the NASA-TLX features, in addition
to the binary preferences which emerged from the pairwise comparison of the
original instrument (Feature sets 1 + 2 of Table 3).

– dataset WP : this includes all the eight features of WP (Feature set 3 of
Table 3).

The dataset NASA-TLX had 41 missing values spotted in 11 records (all in the
pair-wise comparison part) so, due to the limited amount of available data, impu-
tation was performed. The K-Nearest Neighbours (KNN) algorithm was applied
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Table 3. Summary Table (ST) of the dataset features and targets (R = Range,
C = Categorical)

Type n Mean SD Median Min Max Range Skew Kurtosis SE

Feature set 1: questions of the NASA-TLX

Mental R 145 10.04 3.42 10 1 20 19 −0.04 −0.34 0.28

Physical R 145 6.31 4.19 6 1 20 19 0.63 −0.22 0.35

Temporal R 145 9.22 3.41 10 1 20 19 −0.01 0.16 0.28

Performance R 145 8.72 3.73 9 2 17 15 0.17 −0.92 0.31

Frustration R 145 7.55 3.93 7 1 19 18 0.43 −0.57 0.33

Effort R 145 9.89 4.02 10 1 20 19 0.13 −0.18 0.33

Feature set 2: pairwise comparisons of the NASA-TLX

Temporal vs frustration C 145 1.19 0.4 1 1 2 1 1.54 0.37 0.03

Performance vs mental C 145 1.48 0.5 1 1 2 1 0.07 −2.01 0.04

Mental vs physical C 145 1.09 0.29 1 1 2 1 2.84 6.13 0.02

Frustration vs performance C 145 1.81 0.4 2 1 2 1 −1.54 0.37 0.03

Temporal vs effort C 145 1.62 0.49 2 1 2 1 −0.49 −1.77 0.04

Physical vs frustration C 145 1.45 0.5 1 1 2 1 0.21 −1.97 0.04

Performance vs temporal C 145 1.41 0.49 1 1 2 1 0.38 −1.87 0.04

Mental vs effort C 145 1.38 0.49 1 1 2 1 0.49 −1.77 0.04

Physical vs temporal C 145 1.8 0.4 2 1 2 1 −1.48 0.21 0.03

Frustration vs effort C 145 1.79 0.41 2 1 2 1 −1.43 0.05 0.03

Physical vs performance C 145 1.91 0.29 2 1 2 1 −2.84 6.13 0.02

Temporal vs mental C 145 1.7 0.46 2 1 2 1 −0.85 −1.29 0.04

Effort vs physical C 145 1.08 0.28 1 1 2 1 3 7.03 0.02

Frustration vs mental C 145 1.81 0.39 2 1 2 1 −1.6 0.55 0.03

Performance vs effort C 145 1.43 0.5 1 1 2 1 0.26 −1.94 0.04

Feature set 3: questions of the Workload Profile

Solving deciding R 139 11.17 3.93 11 2 20 18 −0.18 −0.51 0.33

Response selection R 139 9.92 4.34 10 1 20 19 −0.16 −0.72 0.37

Task space R 139 8.74 4.71 9 1 20 19 0.07 −0.96 0.4

Verbal material R 139 12.48 3.8 13 2 20 18 −0.57 −0.32 0.32

Visual resources R 139 12.24 3.79 13 3 20 17 −0.45 −0.42 0.32

Auditory resources R 139 12.78 3.69 13 4 20 16 −0.3 −0.57 0.31

Manual response R 139 9.46 5.05 10 1 20 19 −0.03 −0.92 0.43

Speech response R 139 8.82 5.03 9 1 20 19 0.14 −0.98 0.43

Dependent features

OP − MWL (NASA group) R 145 10.68 3.19 11 2 17 15 −0.41 −0.39 0.27

OP − MWL (WP group) R 139 10.47 3.37 10 1 18 17 −0.38 −0.19 0.29

to estimate missing values based on the concept of similarity. This algorithm
has demonstrated good performance without affecting the quality of data [2,17].
K represents the number of nearest instances to be considered while calculating
the missing instance.

Data Modelling. This stage is aimed at inducing models of mental workload by
learning from available data rather than making ad-hoc theory-driven models.
An assumption made is that the aggregation of those factors believed to model
mental workload is non-linear. Tackling the complex problem of MWL modelling,
and in the spirit of the No-Free-Lunch theorem [54] – stating that there is
not one best approach that always outperforms the other – different supervised
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machine learning algorithms for non-linear regression were chosen. Each learning
strategy encodes a distinct set of assumptions, that means different inductive
biases. Additionally, a linear method based on probability was also selected for
comparison purposes:

– Information-based: Random Forest by Randomization regression (Extra
Trees: Extremely Randomized Trees) [11];

– Similarity-based: K-Nearest Neighbours regression [18];
– Error-Based: Support Vector Regression (Radial basis function kernel) [3];
– Probability-based: Bayesian Generalised Linear Model regression [10].

The datasets were randomly split into 5 partitions of equal size, non overlapping.
Four of these were used for training purposed (80% of the data) and the held-out
set for testing purposes (20%) of the data. The process was repeated 5 times, and
at each time, the held-out set was different. The parameters employed in each
regression technique have been automatically tuned through a random search
approach (number of randomly selected predictors and number of random cuts
for extra trees, the number of neighbours for KNN and sigma and regularisation
term for SVM) Additionally, 5-fold cross validation has been used in each training
phase and the Root Mean Square Error as metric (RMSE) for fitting the overall
perception of mental workload (OPMWL). Therefore, one is expected to have 5
surrogate models, for each training phase. The best one, that means the one with
less RSME, was kept as the final induced model. Since, the process was repeated
5 times, as per Fig. 1, one is expected to be left with 5 induced models for each
regression technique.

Model Evaluation. In order to evaluate the final induced models from data,
the following error metrics are evaluated [6,19]:

– Mean Squared Error (MSE) (Eq. 3). It is the most common metric for the
evaluation of regression-based models. The higher the value the worse the
model. It is useful if observations contain unexpected value that are impor-
tant. In case of a single very bad prediction, the squaring will make the error
even worse, thus skewing the metric and overestimating the badness of the
regression model (range [0,∞)];

– Root Mean Squared Error (RSME) (Eq. 4). It is the square root of the MSE
and it has the ability to present the variance on the same scale of the target
variable. (range [0,∞); here [0, 20]);

– Mean Absolute Error MAE (Eq. 5). It is a linear score and all the individual
differences between expected and predicted outcome are weighted equally in
the average. Contrarily to MSE, it is not that sensitive to outliers. (range
[0,∞)];

MSE =
1
n

n∑
i=1

(yi − ŷi)
2 (3)

RMSE =

√√√√ 1
n

n∑
i=1

(yi − ŷi)
2 (4)
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MAE =
1
n

n∑
i=1

| (yi − ŷi) | (5)

with yi is the actual expected value, ŷi is the model’s prediction.

4 Results and Evaluation

4.1 Accuracy of the Final Induced Models

Figure 4 depicts the box-plots containing the RMSE values for training. Accord-
ing to the previous design, each box plot contains 5 points, one for each final
induced model trained with 80% of the data. It can be observed that, in most
of the cases, the final induced models, trained with the NASA-TLX features
(feature sets 1 + 2 of Table 3), have always lower RSME than those models built
upon the WP features (feature set 3 of Table 3), even if this is not significant.
This denotes that the selected regression techniques can train a model similarly
and consistently. Also, since it is in the scale [0, 20], it denotes the small error in
fitting the target feature (OP-MWL). In fact, errors on average, lies between 1
and 5, across the selected regression techniques, with mean around 3. It can be
also noted that the mean of the error of the Bayesian generalised linear models
is higher than the others, non-linear model, preliminary confirming the previ-
ous hypothesis of non-linearity of the independent features. This means that the
non-linear models can better learn the non-linear aggregation of the independent
features.

Fig. 4. The distributions of the RSME of the final induced models, grouped by features
sets (NASA Task Load Index, Workload Profile). Each bar contains 5 values, one for
each model grouped by the regression technique.

4.2 Convergent Validity of the Induced Models

The convergent validity of the induced models is assessed by calculating the
Spearman’s correlation between their inferred MWL scores, and the scores pro-
duced by the baseline models (NASA-TLX, WP) using the testing sets. Figure 5
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shows these correlation coefficients in box-plots, each containing 5 values corre-
sponding to the 5 trained models tested with the 5 testing sets of 20% each. The
Spearman’s correlation statistic was used because the assumptions behind the
Pearson’s correlation statistics were not met. Generally, a moderate/high posi-
tive coefficients have been found (with p < 0.05) indicating that the inferences
of the induced models, built with machine learning, are valid since they correlate
with the baseline models. Also, these results are in line to the recommendation
of [5] whereby convergent validities above ρ = 0.70 are recommended, whereas
those below ρ = 0.50 should be avoided.

Fig. 5. Convergent validity of the final induced models.

4.3 Face Validity of Induced Models

Face Validity was computed to measure the extent to which the final induced
models can actually grasp the construct of Mental Workload. This was deter-
mined by computing the error of the final induced models, and the selected
baselines, in predicting the overall perception of mental workload (OP-MWL)
with the testing data, that means they are evaluated with unseen data. Fig-
ures 7, 8 and 9 show the scatterplots of this comparison while Fig. 6 depicts the
MSE, RMSE and MAE values. As in the previous case, each box-plot contains 5
values corresponding to the 5 error obtained with the testing sets of 20% each)
Firstly, the situation is consistent with the training error: slightly higher for the
induced models trained with the WP features. However, the error boundaries
for the testing sets are narrower than those achieved during training. In fact,
the RSME values, regardless of the regression techniques employed, have mean
around 3, with shorter box-plots, suggesting a good degree of generalisability of
the induced models. Also it can be seen that the mean of the errors produced by
the baseline models is always higher than those produced by the induced models.
In other words, the baseline models generate indexes of mental workload that
are always more distant to the overall perception of mental workload, reported
by subjects, when compared to the distance of the inferences produced by the
machine learning models.
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(a) Mean Square Errors

(b) Room Mean Square Errors

(c) Mean Absolute Errors

Fig. 6. The distributions of the errors of the final induced models and baseline models,
grouped by features set used (NASA-TLX or Workload Profile). Each bar contains 5
points, one for each model grouped by the regression technique.

4.4 Discussion

Findings are promising and show how subjective mental workload can be mod-
elled with a higher degree of accuracy using data-driven techniques, when
compared to traditional subjective techniques, namely the NASA Task Load
Index and the Workload Profile, used as baselines. In detail, an analysis of the
convergent validity of the data-driven models, learnt from data by employing
supervised machine learning regression techniques, against the selected baseline
models, show how these are theoretically related. In other words, if we believe
that the baseline models actually measure mental workload, so we can do the
same with the data-drive models. With this confidence, a subsequent analysis of
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their face validity showed how data-driven models can approximate the percep-
tion of overall mental workload, as reported by subjects, with a higher degree of
precision (less error) when compared to the selected baselines. This means that
data-driven models covering the concept it purports to measure, that means
Mental Workload, with a higher precision. Findings are indeed restricted to the
dataset under consideration, but they motivate further research in this space.

5 Conclusion

This work presents an assessment of the ability of machine learning techniques
to model mental workload. The motivation behind this work was to shift from
state-of-the-art MWL modelling techniques – mainly theory-driven – to auto-
mated learning techniques able to induce MWL models from data. Specifically,
a number of learning regression techniques have been selected to induce models
of mental workload employing features gathered from users subjectively. These
features included the answers to the questionnaires of the NASA Task Load
Index and the Workload Profile, two baseline mental workload self-reporting
measures chosen for comparative purposes. The induced models were compared
against the two selected baselines through an assessment of their convergent and
face validity. Convergent validity was aimed at determining whether the induced
models were theoretically related to the selected baselines, known to model the
construct of mental workload. Face validity was aimed at determining whether
the induced models could actually cover the concept it purports to measure, that
means Mental Workload. The former validity was assessed through a correlation
analysis of the mental workload scores produced by the induced models and the
selected baselines. The latter validity was assessed by investigating the error of
the machine learning models and the baselines to predict an overall perception
of mental workload subjectively reported by subjects, after the completion of
experimental tasks in third level education.

The findings of this experiment confirm that supervised machine learning
algorithms are potential alternatives to traditional theory-driven techniques for
modeling mental workload. Machine learning poses itself as a seed for an effi-
cient mechanism that facilitates the understanding of the construct of mental
workload, the relationship of its factors and their impact to task performance. A
viable direction for future work would be to extend the current experiment with
an in depth evaluation of the importance of each feature for predicting the overall
perception of mental workload. Subsequently, simpler mental workload models
could be created containing the most important features. This can increase the
understanding of the complex but fascinating construct of mental workload and
contribute towards the ultimate goal of building a highly generalisable model
that can be employed across fields, disciplines and experimental contexts.
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Appendix

Fig. 7. Scatterplots of the overall perception of mental workload reported by subjects
(OP-MWL) (x-axis) and the prediction of the induced models (y-axis) for the NASA-
TLX (left) and the Workload Profile (right) grouped by fold
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Fig. 8. Scatterplots of the overall perception of mental workload (x-axis), as reported
by subjects and the prediction of the induced models (y-axis) for the 5 models produced
by the regression algorithms (Extra trees: col 1; KNN: col 2; SVR: col 3; NB: col 4)
employing the features of the NASA Task Load Index
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Fig. 9. Scatterplots of the overall perception of mental workload (x-axis), as reported
by subjects and the prediction of the induced models (y-axis) for the 5 models produced
by the regression algorithms (Extra trees: col 1; KNN: col 2; SVR: col 3; NB: col 4)
employing the features of the Workload Profile



108 K. Moustafa and L. Longo

References

1. Aghajani, H., Garbey, M., Omurtag, A.: Measuring mental workload with EEG+
fNIRS. Front. Hum. Neurosci. 11, 359 (2017)

2. Batista, G.E., Monard, M.C.: A study of K-nearest neighbour as an imputation
method. HIS 87(251–260), 48 (2002)

3. Bennett, K.P., Campbell, C.: Support vector machines. ACM SIGKDD Explor.
Newsl. 2(2), 1–13 (2000). http://portal.acm.org/citation.cfm?doid=380995.380999

4. Cain, B.: A review of the mental workload literature. Technical report, Defence
Research and Development Canada Toronto Human System Integration Section;
2007. Report Contract No. RTO-TRHFM-121-Part-II (2004)

5. Carlson, K.D., Herdman, A.O.: Understanding the impact of convergent validity
on research results. Organ. Res. Methods 15(1), 17–32 (2012)

6. Chai, T., Draxler, R.R.: Root mean square error (RMSE) or mean absolute error
(MAE)?-arguments against avoiding RMSE in the literature. Geosci. Model Dev.
7(3), 1247–1250 (2014)

7. Chapman, P., Clinton, J., Khabaza, T., Reinartz, T., Wirth, R.: The crisp-
dmprocess model. The CRIP–DM Consortium 310 (1999)

8. Cortes Torres, C.C., Sampei, K., Sato, M., Raskar, R., Miki, N.: Workload assess-
ment with eye movement monitoring aided by non-invasive and unobtrusive micro-
fabricated optical sensors. In: Adjunct Proceedings of the 28th Annual ACM Sym-
posium on User Interface Software & Technology, pp. 53–54. ACM (2015)

9. Fan, J., Smith, A.P.: The impact of workload and fatigue on performance. In:
Longo, L., Leva, M.C. (eds.) H-WORKLOAD 2017. CCIS, vol. 726, pp. 90–105.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61061-0 6

10. Gelman, A., Jakulin, A., Pittau, M.G., Su, Y.S.: A weakly informative default
prior distribution for logistic and other regression models. Ann. Appl. Stat. 2(4),
1360–1383 (2008)

11. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn.
63(1), 3–42 (2006)

12. Hancock, P.A.: Whither workload? Mapping a path for its future development.
In: Longo, L., Leva, M.C. (eds.) H-WORKLOAD 2017. CCIS, vol. 726, pp. 3–17.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61061-0 1

13. Hancock, P.A., Meshkati, N.: Human Mental Workload. Elsevier, Amsterdam
(1988)

14. Hart, S.G., Staveland, L.E.: Development of NASA-TLX (task load index): results
of empirical and theoretical research. Adv. Psychol. 52(C), 139–183 (1988)

15. Hart, S.G.: NASA-task load index (NASA-TLX); 20 years later. In: Human Factors
and Ergonomics Society Annual Meting, pp. 904–908 (2006)

16. Hincks, S.W., Afergan, D., Jacob, R.J.K.: Using fNIRS for real-time cognitive
workload assessment. In: Schmorrow, D.D.D., Fidopiastis, C.M.M. (eds.) AC 2016.
LNCS (LNAI), vol. 9743, pp. 198–208. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-39955-3 19

17. Jonsson, P., Wohlin, C.: An evaluation of k-nearest neighbour imputation using
Likert data. In: 2004 Proceedings of 10th International Symposium on Software
Metrics, pp. 108–118, September 2004

18. Kotsiantis, S.B.: Supervised machine learning: a review of classification techniques.
Informatica 31(2), 249–268 (2007). https://books.google.co.in/books?hl=en&lr=
&id=vLiTXDHr sYC&oi=fnd&pg=PA3&dq=survey+machine+learning&ots=CV
syuwYHjo&redir esc=y#v=onepage&q=survey%20machine%20learning&f=false

http://portal.acm.org/citation.cfm?doid=380995.380999
https://doi.org/10.1007/978-3-319-61061-0_6
https://doi.org/10.1007/978-3-319-61061-0_1
https://doi.org/10.1007/978-3-319-39955-3_19
https://doi.org/10.1007/978-3-319-39955-3_19
https://books.google.co.in/books?hl=en&lr=&id=vLiTXDHr_sYC&oi=fnd&pg=PA3&dq=survey+machine+learning&ots=CVsyuwYHjo&redir_esc=y#v=onepage&q=survey%20machine%20learning&f=false
https://books.google.co.in/books?hl=en&lr=&id=vLiTXDHr_sYC&oi=fnd&pg=PA3&dq=survey+machine+learning&ots=CVsyuwYHjo&redir_esc=y#v=onepage&q=survey%20machine%20learning&f=false
https://books.google.co.in/books?hl=en&lr=&id=vLiTXDHr_sYC&oi=fnd&pg=PA3&dq=survey+machine+learning&ots=CVsyuwYHjo&redir_esc=y#v=onepage&q=survey%20machine%20learning&f=false


Analysing the Impact of Machine Learning 109

19. Kv̊alseth, T.O.: Cautionary note about R2. Am. Stat. 39(4), 279–285 (1985)
20. Liu, Y., Ayaz, H., Shewokis, P.A.: Multisubject “learning” for mental workload

classification using concurrent EEG, fNIRS, and physiological measures. Front.
Hum. Neurosci. 11, 389 (2017)

21. Longo, L.: Formalising human mental workload as a defeasible computational con-
cept. Ph.D. thesis, Trinity College, Dublin (2014)

22. Longo, L.: A defeasible reasoning framework for human mental workload represen-
tation and assessment. Behav. Inf. Technol. 34(8), 758–786 (2015)

23. Longo, L.: Designing medical interactive systems via assessment of human mental
workload. In: International Symposium on Computer-Based Medical Systems, pp.
364–365 (2015)

24. Longo, L.: Mental workload in medicine: foundations, applications, open problems,
challenges and future perspectives. In: 2016 IEEE 29th International Symposium
on Computer-Based Medical Systems (CBMS), pp. 106–111. IEEE (2016)

25. Longo, L.: Subjective usability, mental workload assessments and their impact on
objective human performance. In: Bernhaupt, R., Dalvi, G., Joshi, A., Balkrishan,
D.K., O’Neill, J., Winckler, M. (eds.) INTERACT 2017. LNCS, vol. 10514, pp.
202–223. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67684-5 13

26. Longo, L.: Experienced mental workload, perception of usability, their interaction
and impact on task performance. PloS ONE 13(8), 1–36 (2018). https://doi.org/
10.1371/journal.pone.0199661

27. Longo, L.: On the reliability, validity and sensitivity of three mental workload
assessment techniques for the evaluation of instructional designs: a case study
in a third-level course. In: Proceedings of the 10th International Conference on
Computer Supported Education, CSEDU 2018, Funchal, Madeira, Portugal, 15–17
March 2018, vol. 2, pp. 166–178 (2018). https://doi.org/10.5220/0006801801660178

28. Longo, L., Barrett, S.: Cognitive effort for multi-agent systems. In: Yao, Y., Sun,
R., Poggio, T., Liu, J., Zhong, N., Huang, J. (eds.) BI 2010. LNCS (LNAI), vol.
6334, pp. 55–66. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
15314-3 6

29. Longo, L., Dondio, P.: On the relationship between perception of usability and
subjective mental workload of web interfaces. In: 2015 IEEE/WIC/ACM Interna-
tional Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT),
vol. 1, pp. 345–352. IEEE (2015)

30. Longo, L., Leva, M.C. (eds.): H-WORKLOAD 2017. CCIS, vol. 726. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-61061-0

31. Longo, L., Rusconi, F., Noce, L., Barrett, S.: The importance of human mental
workload in web-design. In: 8th International Conference on Web Information Sys-
tems and Technologies, pp. 403–409, April 2012

32. Mannaru, P., Balasingam, B., Pattipati, K., Sibley, C., Coyne, J.: Cognitive context
detection in UAS operators using eye-gaze patterns on computer screens. In: Next-
Generation Analyst IV, vol. 9851, p. 98510F. International Society for Optics and
Photonics (2016)

33. Mayer, R.E.: Cognitive theory of multimedia learning, 2nd edn. In: Cambridge
Handbooks in Psychology, pp. 43–71. Cambridge University Press, Cambridge
(2014)

34. Meshkati, N., Loewenthal, A.: An eclectic and critical review of four primary mental
workload assessment methods: a guide for developing a comprehensive model. Adv.
Psychol. 52(1978), 251–267 (1988). http://www.sciencedirect.com/science/article/
pii/S0166411508623912

https://doi.org/10.1007/978-3-319-67684-5_13
https://doi.org/10.1371/journal.pone.0199661
https://doi.org/10.1371/journal.pone.0199661
https://doi.org/10.5220/0006801801660178
https://doi.org/10.1007/978-3-642-15314-3_6
https://doi.org/10.1007/978-3-642-15314-3_6
https://doi.org/10.1007/978-3-319-61061-0
http://www.sciencedirect.com/science/article/pii/S0166411508623912
http://www.sciencedirect.com/science/article/pii/S0166411508623912


110 K. Moustafa and L. Longo
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Neuroergonomics method for measuring the influence of mental workload modu-
lation on cognitive state of manual assembly worker. In: Longo, L., Leva, M.C.
(eds.) H-WORKLOAD 2017. CCIS, vol. 726, pp. 213–224. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-61061-0 14

36. Mohammadi, M., Mazloumi, A., Kazemi, Z., Zeraati, H.: Evaluation of mental
workload among ICU ward’s nurses. Health Promot. Perspect. 5(4), 280–7 (2015).
http://www.ncbi.nlm.nih.gov/pubmed/26933647, http://www.pubmedcentral.nih
.gov/articlerender.fcgi?artid=PMC4772798

37. Monfort, S.S., Sibley, C.M., Coyne, J.T.: Using machine learning and real-time
workload assessment in a high-fidelity UAV simulation environment. In: Next-
Generation Analyst IV, vol. 9851, p. 98510B. International Society for Optics and
Photonics (2016)

38. Moustafa, K., Luz, S., Longo, L.: Assessment of mental workload: a comparison
of machine learning methods and subjective assessment techniques. In: Longo, L.,
Leva, M.C. (eds.) H-WORKLOAD 2017. CCIS, vol. 726, pp. 30–50. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-61061-0 3

39. Nevo, B.: Face validity revisited. J. Educ. Meas. 22(4), 287–293 (1985)
40. Ott, T., Wu, P., Paullada, A., Mayer, D., Gottlieb, J., Wall, P.: ATHENA – a

zero-intrusion no contact method for workload detection using linguistics, key-
board dynamics, and computer vision. In: Stephanidis, C. (ed.) HCI 2016. CCIS,
vol. 617, pp. 226–231. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40548-3 38

41. Pham, T.T., Nguyen, T.D., Van Vo, T.: Sparse fNIRS feature estimation via unsu-
pervised learning for mental workload classification. In: Bassis, S., Esposito, A.,
Morabito, F.C., Pasero, E. (eds.) Advances in Neural Networks. SIST, vol. 54, pp.
283–292. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33747-0 28

42. Reid, G.B., Nygren, T.E.: The subjective workload assessment technique: a scaling
procedure for measuring mental workload. In: Advances in Psychology, vol. 52, pp.
185–218. Elsevier (1988)

43. Rizzo, L., Dondio, P., Delany, S.J., Longo, L.: Modeling mental workload via
rule-based expert system: a comparison with NASA-TLX and workload profile.
In: Iliadis, L., Maglogiannis, I. (eds.) AIAI 2016. IAICT, vol. 475, pp. 215–229.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44944-9 19

44. Rizzo, L., Longo, L.: Representing and inferring mental workload via defeasible
reasoning: a comparison with the NASA task load index and the workload profile.
In: Proceedings of the 1st Workshop on Advances In Argumentation In Artificial
Intelligence Co-located with XVI International Conference of the Italian Associa-
tion for Artificial Intelligence (AI * IA 2017), Bari, Italy, 16–17 November 2017,
pp. 126–140 (2017)

45. Rizzo, L., Longo, L.: Inferential models of mental workload with defeasible argu-
mentation and non-monotonic fuzzy reasoning: a comparative study. In: Proceed-
ings of the 2nd Workshop on Advances In Argumentation In Artificial Intelligence
Co-located with XVII International Conference of the Italian Association for Arti-
ficial Intelligence (AI*IA 2018), Trento, Italy, 20–23 November 2018, pp. 11–26
(2018)

46. Rubio, S., Dı́az, E., Mart́ın, J., Puente, J.M.: Evaluation of subjective mental
workload: a comparison of swat, NASA-TLX, and workload profile methods. Appl.
Psychol. 53(1), 61–86 (2004). https://doi.org/10.1111/j.1464-0597.2004.00161.x

https://doi.org/10.1007/978-3-319-61061-0_14
http://www.ncbi.nlm.nih.gov/pubmed/26933647
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4772798
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4772798
https://doi.org/10.1007/978-3-319-61061-0_3
https://doi.org/10.1007/978-3-319-40548-3_38
https://doi.org/10.1007/978-3-319-40548-3_38
https://doi.org/10.1007/978-3-319-33747-0_28
https://doi.org/10.1007/978-3-319-44944-9_19
https://doi.org/10.1111/j.1464-0597.2004.00161.x


Analysing the Impact of Machine Learning 111

47. Smith, A.P., Smith, H.N.: Workload, fatigue and performance in the rail industry.
In: Longo, L., Leva, M.C. (eds.) H-WORKLOAD 2017. CCIS, vol. 726, pp. 251–
263. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61061-0 17

48. Smith, K.T.: Observations and issues in the application of cognitive workload mod-
elling for decision making in complex time-critical environments. In: Longo, L.,
Leva, M.C. (eds.) H-WORKLOAD 2017. CCIS, vol. 726, pp. 77–89. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-61061-0 5

49. Su, J., Luz, S.: Predicting cognitive load levels from speech data. In: Esposito, A.,
et al. (eds.) Recent Advances in Nonlinear Speech Processing. SIST, vol. 48, pp.
255–263. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28109-4 26

50. Tsang, P.S., Velazquez, V.L.: Diagnosticity and multidimensional subjective work-
load ratings. Ergonomics 39(3), 358–381 (1996)

51. Walter, C., Cierniak, G., Gerjets, P., Rosenstiel, W., Bogdan, M.: Classifying
mental states with machine learning algorithms using alpha activity decline. In:
2011 Proceedings of 19th European Symposium on Artificial Neural Networks,
ESANN 2011, Bruges, Belgium, April 27–29 (2011). https://www.elen.ucl.ac.be/
Proceedings/esann/esannpdf/es2011-35.pdf

52. Wickens, C.D.: Multiple resources and mental workload. Hum. Factors 50(3), 449–
455 (2008)

53. Wickens, C.D.: Mental workload: assessment, prediction and consequences. In:
Longo, L., Leva, M.C. (eds.) H-WORKLOAD 2017. CCIS, vol. 726, pp. 18–29.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61061-0 2

54. Wolpert, D.H.: The supervised learning no-free-lunch theorems. In: Roy, R.,
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Abstract. As vehicle automation continues to develop, and as the nature of the
driver’s role begins to shift from vehicle operator to vehicle supervisor, it will be
important to understand the task requirements in order to ensure a safe and
effective transition between the system and the human operator. As the first to
encounter highly automated vehicles, test drivers (the operators being deployed
to monitor driverless vehicles being trialed around the world) will present an
important case study to better understand the task demand placed on operators
when monitoring an automated vehicle, particularly in relation to the workload
demands. This study, albeit small scale, presents some of the first evidence
relating to the interaction between a driverless system and a human operator in a
real-world environment. The study found that test drivers experienced variable
levels of subjective workload and that, to some extent, this may relate to their
experience of the automated system and exposure to the operator task. Future,
more robust, research is recommended to better understand the workload
demand and implications on vehicle design and training.

Keywords: Driverless vehicles � Automation � NASA-RTLX �
Mental workload � Driving task

1 Introduction

Automated vehicles (AV) are quickly becoming a reality. As businesses in countries
around the world work hard to develop driverless vehicle systems, services and service
models, many questions continue to arise regarding the impact of the deployment of
these vehicles on people and society. While much of the current efforts have focused on
the technological innovation, rather than the implications of increased vehicle
automation, it is clear that the role of the driver (and the driving task) will undergo a
significant transformation. This is one of the most discussed potential benefits of
increased automation to road safety as research has suggested that over 90% of all
vehicle collisions have human error as a contributory factor [1, 2]. The expectation is,
therefore (in theory), that by removing the human from the driving task significant
safety benefits can be achieved. This said, vehicle technology to be widely adopted at
the start of the AV rollout is likely to involve vehicles with conditional (e.g. SAE Level
3) and high (e.g. SAE Level 4) automation that are restricted to perform under specific
conditions (and routes) by their operational design domain (ODD). Conditionally
automated vehicles will still require an ‘operator’ to resume control of the vehicle
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in situations that are outside of the ODD and in emergencies. Moreover, the current
regulatory framework in the United Kingdom has no provision for vehicles to be
operated without a human driver. Until then, the Department for Transport has
developed a code of practice for real-world testing of driverless vehicles which outlines
general safety, insurance, infrastructure and engagement requirements. One such
requirements is the use of a ‘test driver’; the test driver being the person “responsible
for ensuring the safe operation of the vehicle at all times whether it is in a manual or
automated mode.” [3, p. 9].

Although the requirement for a test driver in the UK is expected to change in due
course, this requirement has already been relaxed in some countries such as the United
States (where states such as California and Arizona have signed executive orders that
allow testing of driverless vehicles without a test driver). There is, however, little
evidence to shed light on what exactly the role of the test driver (and later, the vehicle
‘operator’) entails and what mental processes might be involved in the monitoring task
as we ease into higher levels of vehicle automation. As such, there are still important
questions about the relative safety of making a human operator responsible for an AV,
as well as whether the test driver is an important safety mitigation that should be in
place until the technology matures.

As the first to experience the technology from an operator’s point of view, test
drivers will provide an invaluable source of information and evidence in relation to the
demands placed on operators of AVs. As such, understanding the experiences and
challenges of test drivers, the task requirements, and how it may evolve as technology
matures will have important implications on the wider roll-out of vehicles with con-
ditional and high automation.

1.1 Study Aims

Given the limited availability of evidence relating to the changing role of the driver and
the relative task complexity for operators of AVs in a real-world environment, the
present study sought to undertake an initial assessment of the mental demand placed on
test drivers using a sample of operators taking part in one of Europe’s first AV public
trials.

The research questions of interest were, therefore, as follows:

1. What is the mental workload demand placed on test drivers operating the trial
vehicles?

2. How does experience and exposure impact on the perceived task demand?

In order to contextualize the work further, the present paper will start by providing
an overview of related work in the field of automation and mental workload, including
why mental workload is relevant to this field of study (Sect. 2). Section 3 will describe
the sample and method used to undertake the study and the research findings. Lastly,
Sect. 4 and Sect. 5 will discuss the research findings in the context of current evidence,
before highlighting the limitations to the work and areas for future research in Sect. 6.
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2 Related Work

2.1 The Interaction Between Human Drivers and Automated Systems

Currently, prototype AVs being developed will be capable of SAE L3 or L4
automation. Conditional automation (L3) specifically, has received widespread atten-
tion as the technology would still require a human to remain in the loop of the driving
task. As such, the issues highlighted in the research literature range from the ability to
respond to immediate events, to the changing demands of the driving task. Both are
briefly discussed in this section.

At a basic level, one important issue that has been discussed in the literature is the
notion that the driver would be required to regain control of the vehicle in situations where
the vehicle design is limited by its ODD (planned transfer) or where the system is unable
to deal with a particular scenario or event (abrupt transfer). The transfer of control can be
defined as an activation or deactivation of a function, or a change from a level of
automation to another [4]. Simply put, this entails the process bywhich the vehicle system
requires the driver to retake control over the driving task or vice versa. Much research in
this area has focused on understanding the skills involved in effectively regaining control
of the vehicle after a transition (especially when the driver has been out of the loop) [5].

The reduction in the amount of input required by the driver throughout the driving
taskmay also lead to de-skilling. Conditional automationwill still require drivers to retain
an acceptable level of skill to enable a safe and effective response to gaps or failures in the
automated driving system (ADS) [6]. Reason (1990) [in 6] describes the issue with what
he calls the ‘catch 22’ of increased automation, this is that humans are only present in
automated systems to deal with emergencies. This is problematic as research indicates
that increased vehicle automation will necessarily result in limited opportunities to
practice procedural responses required to undertake the driving task effectively [6, 7].

One of the most significant challenges, however, is the changing demands of the
driving task as a result of increased automation; particularly, the change in the role of the
driver from vehicle operator to automation supervisor. This change presents a number of
challenges to safety, and early research into the relationship between humans and auto-
mated systems suggests that humans may be ill-suited to undertake monitoring tasks [6].
Similarly, some research has suggested that human-machine task sharing can be ineffi-
cient and lead to poor outcomes. A study by Ensley and Kaber showed decrements in the
speed and accuracy of task performance as a result of the human operator being out of the
loop during crucial decision-making tasks [8]. Some argue that automation can lead to
improved task performance outcomes; for example, Parasuraman [9] (in a paper con-
sidering the factors that affect the monitoring of an automated task) presents evidence
from the aviation industry to argue that human monitoring can be very effective and lead
to a reduction in errors; this is particularly the case when automation is used as an aid to
task performance in an increased workload scenario. Nevertheless, the ultimate goal of
AVs is not to aid in the driving task (this is more the case of advanced driver assistance
systems) rather to eventually take it over completely.

Altogether, overcoming these and other challenges will require extensive research
and continuous revision of the changes to the driving task as AV technology continues
to advance. A good starting point will be the assessment of the demand placed on
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operators as they supervise AVs. The study of mental workload, in particular, can
provide insights into other fields where automation is widespread (e.g. aviation) and
how to design systems and training that will enable humans to interact with AVs safety
and effectively [10].

2.2 Mental Workload

Providing a universally accepted definition of the construct of mental workload has
been a difficult task [10, 12]. Workload has been defined as “a hypothetical construct
that represents the cost incurred by a human operator to achieve a particular level of
performance” [10]. However, operational definitions used across studies (and fields of
study) vary considerably, with some definitions of mental workload referring to a
mental process in itself, for example, Eggeimer, Wilson and colleagues [in 11] define it
as “…the portion of operator information processing capacity or resources that is
actually required to meet system demands.”; while others seem to characterize
workload as an outcome of one or multiple processes, e.g. “… the cost of performing a
task in terms of a reduction in the capacity to perform that use the same processing
resource.” [in 11]. Wickens [13] on the other hand, uses the term ‘mental workload’
and ‘effort’ interchangeably, in the context of decision-making. Despite these differ-
ences, the general consensus seems to indicate that mental workload relates to the
relationship between task demand and the relative capacity of a human being to per-
form the task effectively and within a given period of time; in addition, the current
definitions suggest that the relative success in performance will often incur in a mental
‘cost’.

The lack of a commonly held definition results in challenges when it comes to
empirically measuring mental workload, though a number of strategies are widely
applied in research. The three broad categories or workload measurement techniques
are self-assessments, performance measures and physiological measures [11, 14, 15].
All of these measurement techniques are regularly applied in transport research, though
self-assessment tools such as the NASA-Task Load index (TLX) and NASA -
Raw TLX (RTLX) [15, 16] are common in applied research. This is likely to be due to
the multidimensionality, sensitivity, ease of administration, and high user acceptability
of this previously validated scale [11, 17] and as such, these have been widely applied
in research with different road user populations [e.g. 18].

2.3 The Role of Mental Workload for Driving Performance

Driving is a dynamic and continuously changing task [19]. It has generally been
assumed that increased vehicle automation will mean a lower task demand (e.g.
workload) for drivers (and, later, operators) as they will no longer be required to
actively participate in the driving task. For example, in a recent meta-analysis, de
Winter and colleagues found that mental workload was significantly reduced in con-
ditions involving high automation [20]; it was found that the unweighted mean of self-
reported workload (on the NASA-TRLX) was lowest for highly automated driving
(23%), compared to adaptive cruise control (39%) and manual driving (44%). The
analysis was based on data from 32 studies.
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Another set of studies by Saxby et al. [21], though focused on task-induced fatigue,
sought to understand different styles of workload regulation while performing a sim-
ulated driving task. The studies, involving over 250 undergraduate students, showed
that ‘passive’ fatigue (defined as that which develops when there is a requirement for
system monitoring with either rare or no overt perceptual-motor requirements), as
induced by full vehicle automation, corresponded with a decline in task engagement
and with cognitive underload. The authors also found that it was passive fatigue that
showed an increased crash probability; this was measured as the ability to avoid
collision with a parked van that unexpectedly pulled out in front of the participants
during the simulation. That said, arguably, the tasks may not be directly comparable
from a vehicle automation point of view as the ‘active’ fatigue (defined as the state
change resulting from continuous and prolonged task-related psychomotor adjustment)
condition was unrelated to the driving task having been induced by wind gusts.

There is also evidence that supports the notion that increased vehicle automation
may lead to cognitive overload. This is particularly the case when drivers are required
to regain control of the vehicle in an abrupt or unexpected situation. Young and Stanton
state that workload may be increased as a result of an additional tasks placed on the
operator to collect (and potentially act upon) information about the automated system
state [7].

3 Design and Method

As a new area of research where there are very limited opportunities for the task of
interest to be performed and evaluated, a small-scale repeated measures design study
was employed to assess self-reported workload of test drivers across three weeks of
trial activities. This study involved a small sample (n = 9) of trained test drivers.

3.1 Source of Participants

Study participants were sourced from the GATEway project. GATEway (Greenwich
automated transport environment) was an £8 m project partly funded by Government
and Industry. The project sought to better understand how automated vehicles can fit
into our future urban mobility needs and the barriers we must overcome before these
vehicles become a reality on UK roads. The project began in late 2015 and concluded
in April 2018.

As part of the GATEway project, four prototype SAE Level 4 shuttles1 were
deployed on a 3.6 km route along the Greenwich Peninsula in London. The route
included four designated pod stops where, as the first open trial of AVs, members of the
public were able to board or alight the vehicle. A full run of the route consisted on a

1 The Society of Automotive Engineers (SAE) has published a set of definitions for six levels of
vehicle automation, from level ‘0’ (No automation) to level ‘5’ (full automation). Level 4 is where
the vehicle’s driving automation system is designed to function within an operational design domain
(ODD); this is, the vehicle is capable of performing autonomously under certain conditions such as
geographic, traffic and/or speed limitations.
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return trip to/from the starting point (the Intercontinental hotel) and took around
30 min. The vehicle had a four person occupancy (including the test driver) and was
wheelchair accessible. The trials ran for four weeks (on week days), with multiple daily
operations (from 10:30 am to 5:30 pm).

Research Sample. The sample of interest was the team of trained test drivers who
were tasked with operating the vehicles during the public trials. As part of the trial
activities, a dedicated team of test drivers was trained in the vehicle operations and
maintenance. Test drivers received a day of ‘classroom’ training as well as various
hours (depending on individual need) of supervised hands-on experience with the
driverless pods, before receiving formal approval from the vehicle integrators. The
classroom training included information about the vehicles, the automated driving
system (ADS) and safe operating boundaries, and rules and regulations applicable to
them as test drivers.

Once approved, test drivers undertook several 1 or 2 h shifts (with breaks in
between) on trial days. During these shifts, test drivers were responsible for one of the
trial pods over the 3.6 km route and carrying passengers to/from one of the four
designated pod stops.

3.2 Materials

The main data collection tool was the NASA Raw Task Load Index (RTLX) [15].
The RTLX is used to obtain workload estimates from ‘operators’ while they are per-
forming a task or immediately afterwards [16]. According to a review by Hart in 2006,
the range of applications for the NASA-TLX, and the subsequent unweighted version
RTLX, has far surpassed its original application. The NASA-TLX has been often used
in transport to assess subjective workload in drivers and riders [18, 22].

The RTLX evaluates six factors: mental demands, physical demands, temporal
demands, performance, and effort and frustration levels. Each of these factors is scored
with a minimum value of 1 and a maximum value of 21. Higher numbers represent
higher levels of workload. A brief explanation of each subscale is provided in Table 1.

Table 1. RTLX rating scales and definitions [16]

Rating scale Scale definition

Mental
demand

How much mental and perceptual activity was required (e.g. thinking,
deciding, etc.)? Was the task easy or demanding, simple or complex, exacting
or forgiving?

Physical
demand

How much physical activity was required (e.g. controlling, activating, etc.)?
Was the task easy or demanding, slow or brisk, slack or strenuous, restful or
laborious?

Temporal
demand

How much time pressure did you feel due to the rate or pace at which the task
or task elements occurred? Was the pace slow and leisurely or rapid and
frantic?

(continued)
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3.3 Procedure

It is important to note that this research was not the primary objective of the trial
activities. As such, some flexibility was required when collecting data from participants
who were also trial staff. The research study began during the second week of the trial
activities. At the start, participants were provided with an information sheet detailing
the purpose of the research and the likely requirements on their time; participants were
also informed of their ability to withdraw from the study at any point (the latter was
particularly important as the sample was part of the trial staff, and may have felt unduly
pressured to take part in the research). They were also provided with a consent form (in
both paper and electronic formats) to enable easy access. Participants were asked to
complete a weekly assessment of subjective workload using the RTLX. They were also
asked to provide the following:

• Information about the number of shifts completed each week
• Any notable features of their experience as a test driver during that week (open

text response)

As the task was not being performed for the purpose of this study, the time at which
participants completed the assessment was variable. Participants self-completed the
assessment during breaks between shifts or at the end of their last shift. Participants
completed the assessment either on an electronic or paper copy. Assessments were
completed for three of the four trial weeks.

Analysis. Average self-reported workload ratings were assessed. Given the small size
of the sample and the gaps in data received from participants from week to week,
further statistical analysis was not possible.

4 Results

4.1 Sample

A total of nine participants took part in the study. Five participants provided responses
for at least 2 weeks; a further two provided responses for all 3 weeks. Two participants
only provided data for one week.

Table 1. (continued)

Rating scale Scale definition

Effort How hard did you have to work (mentally and physically) to accomplish your
level of performance?

Performance How successful do you think you were in accomplishing the goals of the task?
How satisfied were you with your performance in accomplishing these goals?

Frustration How insecure, discouraged, irritated, stressed, and annoyed versus secure,
gratified, content, relaxed and complacent did you feel during the task?
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4.2 Workload Ratings

The average workload ratings provided by participants can be seen in Fig. 1.

Average workload ratings ranged between 4.3 (physical demand) and 10.6 (mental
demand) on week 2; for week 3, between 5.2 for physical demand and 13.5 for effort.
On week 4, average workload ratings were between 5 (performance) and 10.5 (effort).

Test Driver Categories. As the subjective workload ratings varied significantly
between participants, further investigation was undertaken to understand possible
differences. As a result, participants were grouped into three categories, depending on
their exposure and knowledge of the trial vehicles. As such:

• Exposure was operationalized as participants’ self-reported number of unsupervised
runs completed throughout the duration of the trials. A run consisted of a full loop
of the 3.6 km test route. Runs undertaken during the training process (i.e. super-
vised runs) were not included in the totals as test drivers would have been
accompanied and closely monitored by an instructor;

• Knowledge of the trial vehicles was assessed based on the author’s subjective
assessment of the test driver’s amount of supervised practice and technical
expertise.

Fig. 1. Workload ratings for all participants (n = 9), by week
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The categories are described in Table 2.

Novice. Four of the nine participants were categorised as ‘novice’. This group of
participants was characterised by low exposure to the operator task and a basic
knowledge of the vehicle system. Participants in this category had a basic knowledge of
the vehicle systems; this is, sufficient knowledge to ensure compliance with the Code of
Practice [3] but were not involved in the development of the systems or vehicle
integration.

Table 3 provides a breakdown of the number of weeks of data available for par-
ticipants in this category. As can be seen, three participants provided at least two weeks
of data; one provided only 1 week of data.

The average workload ratings for each scale provided by participants in this cat-
egory can be seen in Fig. 2.

Scores on the physical demand scale had the lowest weekly averages, while mental
demand, effort and frustration exhibited the highest scores among this group. As only
one participant provided data for week 4, this will not be considered further.

Advanced. Three of the 9 participants were categorised as ‘advanced’. This group of
participants was characterised by medium to high exposure to the operator task. These
participants, similarly to the ‘novice’ group, had a basic knowledge of the vehicle
systems. They were also not involved in the development of the systems or vehicle
integration.

Table 2. Test driver categories

Category Description Average exposure

Novice Low exposure/basic knowledge of
vehicle systems

Between 3 and 10 unsupervised full
runs throughout the trials

Advanced Medium to high exposure/basic
knowledge of vehicle systems

Between 50–69a unsupervised full
runs throughout the trials

Expert High exposure/in-depth knowledge of
vehicle systems

Between 50–200+ unsupervised full
runs throughout the trials

aThere were no participants with runs totaling between 11 and 49 runs.

Table 3. Number of weeks of data provided by ‘novice’ category participants

Data provided, per week
Participant no. Week 2 Week 3 Week 4

1 X X
2 X X
3 X X
7 X
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Table 4 provides a breakdown of the number of weeks of data available for par-
ticipants in this category. As can be seen, two participants provided 3 weeks of data;
one provided only 1 week of data.

The average workload ratings provided by participants in this category can be seen
in Fig. 3.

For this group, scores on the performance scale had the lowest weekly averages,
while temporal demand and effort exhibited the highest scores. Overall average
workload scores were lower for this group, compared to the novice group. Looking at
the data across the three weeks, the self-reported scores seem to indicate a general
downward trend in the self-reported workload scores. On the second week, however,
the average scores for effort seem to have increased slightly.

Expert. Two of the nine participants were categorised as ‘expert’. This group of par-
ticipants was characterised by very high exposure to the operator task. These partici-
pants also had an in-depth and detailed knowledge of the vehicle systems. The average
workload ratings provided by participants in this category can be seen in Fig. 4. Due to

Fig. 2. Workload ratings for test drivers in the ‘novice’ category, by week

Table 4. Number of weeks of data provided by ‘advanced’ category participants

Data provided, per week
Participant no. Week 2 Week 3 Week 4

6 X X X
9 X X X
8 X
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the pre-existing commitments of delivering the trials, ‘expert’ participants were only
able to provide one week of data (e.g. week 2).

5 Discussion

The assessment of workload on the task of operating a driverless vehicle is a new
concept. While much research has been conducted in aviation (where there are high
levels of system automation) throughout the years, little is known about the real-world
task demand of operating a highly automated vehicle on humans. This research, albeit
limited in design and scope, has provided some initial data about the self-reported

Fig. 3. Workload ratings for test drivers in the ‘advanced’ category, by week

Fig. 4. Workload ratings for test drivers in the ‘expert’ category, week 2
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workload experienced by a group of trained test drivers. The data provides some
support for existing evidence which suggests that operating a driverless vehicle may
induce states of both low and high workload. The implications of these findings are
briefly discussed in the sections below.

5.1 Overall Workload Ratings

The most interesting evidence emerged from the classification of test drivers based on
their exposure and knowledge of the systems. The data showed that participants
classified as ‘novice’ – this is, those with low exposure (fewer unsupervised runs) and
with a more basic knowledge of the system - had higher workload scores for most
scales of the RTLX. In addition, the findings showed no evidence of a temporal effect
on the workload experienced from week 2 to week 3, as scores on most subscales did
not decrease from one week to another. Probably unsurprisingly, participants in the
‘novice’ group experienced higher levels of frustration and mental demand, compared
to other groups. Ratings of frustration were likely a result of the reduced experience
with the task and thus increased levels of insecurity and stress when performing the
task. For the advanced group, the data indicated that there was a tendency towards a
reduction of the self-reported workload from week 2 to week 4. Temporal demand and
effort, however, remained (and even saw a slight increase) from week 2 to week 3. The
expert group, despite only providing 1 week of data, showed the lowest workload
scores in all groups.

A visual inspection of these two groups indicates that there is some evidence that
exposure may have an impact on self-reported workload, with ‘advanced’ test drivers
exhibiting a trend toward reduction in workload scores from week to week. Despite
this, a qualitative assessment of the scores indicates workload scores for advanced and
novice test drivers were similar. This may indicate that some demands of the task could
not be accounted for by experience of performing the task, at least in the time period
that this study could account for. These results have implications in the short and
medium term, when considering the testing and deployment of driverless vehicles –

particularly SAE L3 (when a driver is still likely to be required to remain in the loop).

5.2 The Test Driver

Test drivers are being deployed in trials all over the world as a key safety mitigation. It
is assumed that having a human in the ‘driver’ seat will help ensure the safety of the
vehicles being deployed in trial settings. While the findings of this work do not con-
tradict this notion, it provides useful evidence to support future training requirements.
Firstly, it is clear that the perceived task demand is not consistent across test drivers and
increased exposure (practice) may only have a limited impact on reducing the per-
ceived workload. Some evidence for this can be derived from the moderate to high
perceived workload reported by both novices and advanced test drivers on some
subscales (particularly for mental demand and effort).

Mental workload involves tasks such as looking, searching and acting upon
emerging information. The vehicles that are being deployed as part of trials around the
world are undertaking journeys in public spaces (whether public or private roads or
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paths) and as such, the operators need to monitor the presence and distance of
pedestrians, cyclist and other road users. They also need to maintain the safety of the
vehicles as they may still be liable, as vehicle operators, if an incident were to occur
while they were ‘in control’ of the vehicle. Increased workload may also have an
impact on fatigue, which must be considered when setting the appropriate duration of
test driver shifts. In order to mitigate for this, during the GATEway trials shifts were
not to exceed two hours in duration. It is possible that this may need to be monitored
more closely, particularly for test drivers that are less experienced with the systems in
question.

The data also showed that increased exposure to the task reduced workload. While
overload can lead to fatigue, underload can also be problematic when it comes to task
performance. Underload, particularly when this occurs as a result of complacency (or
overreliance on automation) can also lead to failures in performance. Some research
highlights how excessive trust can lead operators to fail to appropriately monitor an
automated task; this failure has been implicated in a number of aviation incidents [9].
The author also makes some recommendations for strategies that can help avoid
overreliance on automation, for example requiring some level of active operator
involvement in the automated processes. Overall, test drivers should not be deployed
without consideration for the task demand and the strategies that should be imple-
mented to counteract for issues such as overload, fatigue and possible complacency.

5.3 Transfer of Control

While this research did not directly assess the workload experienced by test drivers
during transitions of control, some of the findings may have implications for improving
understanding of the mental processes involved in this operation. One of the main
findings from the present study is that test drivers, particularly those in the novice and
advanced groups, experienced moderate to high levels of self-reported workload.
Previous work assessing workload in automation has generally found underload as the
most likely effect of increased automation. However, the majority of these studies have
taken place in test environments (such as simulation) where vehicle automation was
used as a variable that could be modified. In a meta-analysis [20] the authors analyzed
the results of 37 studies involving over 1,000 participants. The analysis undertaken
showed that highly automated driving, compared to adaptive cruise control and manual
driving resulted in the lowest unweighted mean self-reported workload (22%). How-
ever, of these 37 studies, 35 were undertaken in a simulator environment. In addition,
for many of these studies, additional tasks were required of participants and as such the
focus was not solely on the effective operation of the vehicle. The combination of
factors probably means that participants would not have felt pressured to maintain an
acceptable level of driving task performance.

In the present study, test drivers had received training regarding insurance and
liability should an incident occur. As the laws and regulations governing driving in the
UK have not yet incorporated changes to account for AVs, test drivers would have
been liable for any incident resulting from a failure in monitoring and responding on
the part of the test driver. As the vehicles were operating in a public (often busy)
environment, full of pedestrians and cyclists and in changing weather conditions, it is
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likely that the stress of the task would have increased the demand on study participants.
When highly automated vehicles are widely introduced, drivers are likely to have some
liability for collisions, particularly if the vehicle had transferred control. As such, there
will be a requirement to effectively monitor the driving task and ensure safe transitions
from one level of automation to another.

Keeping drivers in the loop will be generally challenging for industry and policy
makers alike. Much research into public perceptions of driverless vehicles shows that
being able to perform other tasks during journeys (such as reading and sleeping) is one
of the key benefits expected from this technology. Some research, such as that by de
Winter and colleagues has also shown that participants are more likely to undertake
non-driving related tasks in highly automated vehicles. As such, and in order to
appropriately educate and engage future drivers with the driving task, it will be
important to have a detailed understanding of the monitoring tasks requirements; it will
also be important to build on this knowledge and develop strategies to support drivers
in resuming vehicle control when this is required.

5.4 Limitations

One of the challenges of undertaking this type of assessments in a real-world envi-
ronment is the lack of control over certain variables of importance. As mentioned
earlier, the test drivers were performing the operator task as part of a wider set of trials.
This resulted in a number of caveats to the analysis and interpretation of findings.

Firstly, the sample size is very small and the amount of data collected was limited.
This limitation is a result of the study subjects (and sampling) being opportunistic in
nature. As the study participants were also trial staff, their principal aim was to
undertake the tasks required as part of the larger trial activities. This meant that the
research had to be designed to allow completion in minimum time so as to not result in
a burden to trial staff.

Similarly, and in order to provided added flexibility, the assessments were com-
pleted at different points in time after the operator task had been undertaken. While
some participants completed the RTLX during breaks, others completed it at the end of
the day (and, possibly, on the following day). Therefore, the responses are not anchored
on a specific day or experience. This said, there were a total of four pods in operation
throughout the trials. In addition, the nature of the automated technology means that
vehicles (and ADS) were designed to dynamically interact and react to a changing
environment. In this sense, no two journeys were exactly the same from a vehicle
operation standpoint. Similarly, journeys (or runs) would have involved transporting
between zero and up to four passengers, which would have added (or removed)
additional challenges to the operation and supervision of the vehicle (particularly if
passengers engaged with the test driver, asked questions, etc.).

As the wider project was of important significance to the transport and other
industries, there was also much interest from media and visitors such as Ministers and
other professionals. The trial staff was therefore also under increased pressure during
some periods of time as the team hosted visits and provided rides for journalists and
stakeholders. This may have accounted for some of the variability from one week’s
assessment to the next. As a last point, it is important to note that the vehicles on trial
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were prototype technologies. As such, these required occasional manual intervention
from test drivers. The vehicles also had some requirement for manual operation, for
example, for opening and closing the vehicle doors.

6 Conclusion and Future Work

The evidence provided in the sections above highlights some of the challenges that
automation can bring to the operators of automated systems. The literature particularly
discusses the functional limitations humans experience when required to undertake a
supervisory role. As vehicle automation continues to develop, the technologies we are
likely to experience first will involve conditional or highly automated vehicles; with
conditional automation in particular, the operator faces challenges in maintaining
vigilance, staying in the task loop and acting appropriately when the automated system
cannot complete the task. Test drivers, the first formal operators of AVs being trialed in
the UK (and further afield) are the first to experience this technology from an operator’s
perspective and as such can provide valuable insight to enable a better understanding of
the task requirements and subjective workload that supervising an AV system entails.

In this light, and despite the clear limitations of this research, the data provides
valuable and novel insight into the real-world experiences of operators of highly
automated vehicle systems. As vehicle automation continues to develop, and particu-
larly in consideration of the transitional periods where a driver will be required to
maintain some level of responsibility over the driving task, it will be important to
understand the task requirements in order to ensure a safe and effective transition
between the system and the human operator. It will also be important in designing
future training and testing protocols for AV operators

Previous research has focused mostly on the impact of low workload as a result of
increased automation, while other research has specifically discussed the workload
during periods of transition. This research suggests that workload may be an important
consideration throughout the monitoring task. This has important implications for the
deployment and training of test drivers in the short term, but should also be considered
when designing highly automated vehicles. Future research should expand on the
sample size and apply a more robust method that allows more consistent data collection
and statistical analysis.
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Abstract. Mental workload has traditionally been measured by three different
methods corresponding to its primary reflections: performance, subjective and
physiological measures. Although we would expect a certain degree of con-
vergence, research has shown that the emergence of disassociations and
insensitivities between measures is very frequent. One possible explanation
could be related to the differing latencies between each workload assessment
method. We tested this explanation by manipulating task complexity through
time spent performing a simulated air-traffic control task. In the experimental
session, we collected physiological (pupil size), performance and subjective
data. Our results showed two periods of bad performance caused by high traffic
density and aircraft configurations. Those periods corresponded to higher mental
workload as detected by subjective and physiological measures. However,
subjective mental workload reacted sooner than physiological mental workload
to task demands. These results suggest that the differences in latency could
partially explain mental workload dissociations and insensitivities between
measures.

Keywords: Mental workload � Latency �Workload measures � Dissociations �
Insensitivities

1 Introduction

There is at present no doubt about the importance of measuring mental workload.
Modern society needs some sort of cognitive work measure, and it would be very
useful to have a valid and reliable standardised method for assessing it; so far, however,
this does not appear possible at present. The study of mental workload poses a series of
difficulties, since the mechanisms underlying it are not very well known, which makes
evaluation of mental workload difficult. Mental workload is considered a multifaceted
construct that cannot be seen directly, but must be inferred from what can be seen or
measured [1]. In other words, we do not currently have any objective method to
directly measure mental workload as a psychological construct, and we thus have to
trust some indirect indicators corresponding to its three primary reflections: (1) per-
formance measures (quantity and quality of performed task); (2) subjective perceptions
(questionnaires and scales); and (3) physiological responses (pupil diameter, electro-
dermal activity, EEG, heart-rate variability, etc.) [2, 3].
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We can assume that if the three types of measures reflect the same construct, we
would expect a certain degree of convergence between them such that, when a task
becomes more complex, the three primary measures would change as follows:
(1) lower task performance, (2) subjective perception of higher workload and (3) higher
physiological activation responses (taking into account only those physiological vari-
ables reflecting physiological activation; other variables such as, e.g. blink rate [4] and
heart rate variability [5], have also been shown to decrease during periods of high
workload). In other words, we would expect to find associations between task load
changes and primary reflections of mental workload, in such a way that we could find
positive correlations between measures. However, literature research has shown that
this is not always the case, so that the emergence of disassociations, insensitivities and
subsequent lack of correlation between measures is more common than we realise [6–
8]. An insensitivity occurs when a workload measure does not reflect any change in
task load levels, whereas a dissociation takes place when that measure actually chan-
ges, but in the opposite direction [6].

Consider, for example, a situation in which a worker is performing a task that
becomes more difficult over time. We would expect to find a task performance impair-
ment, higher physiological activation and higher subjective workload perception (asso-
ciations). We could nevertheless find that the worker is actually showing a stable
performance (insensitivity), but a higher physiological activation (association) and a
lower subjective workload perception (dissociation). In other words, in this situation it
would not be possible to establish positive correlation between workload measures that
are supposed to bemeasuring the same construct. Such situations are very problematic for
our science and practice, and understanding these situations represents one of the greatest
challenges to be faced in the mental workload research sphere at present [6]. One might
well wonder why this occurs with respect to the occurrence of associations, insensibilities
and dissociations between mental workload measures. One possible explanation of some
disassociations and insensitivities that happen between workload measures is related to
the timescale considered between measures. We should consider that each different
method for measuring mental workload has its own inherent timescale. While some
measures could reflect mental workload within seconds, others could show a longer
latency between task load changes and mental workload index reflection. We should
therefore take into account such timescale latency differences to avoid considering some
disassociations and insensibilities as such when, in fact, they are the result of a
methodological misconception [6]. This experiment aims to shed some light on the
occurrence of disassociations and insensitivities between mental workload measures due
to the differences in timescale between primary workload indexes. We hypothesised that
these temporal differences between methods timescale are real, and could explain certain
disassociations and/or insensibilities that occur between workload measures.

The rest of the paper proceeds as follows. Section 2 outlines related work about
general mental workload, focusing on mental workload measurement techniques and
measures. Section 3 describes the design and the methodology followed in conducting
the experiment. Section 4 presents the obtained results. Section 5 presents a discussion
about our findings, as well as limitations and possible new future work. Section 6
concludes the study, summarising the key findings and its impact on the body of
knowledge.
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2 Related Work

Mental workload is a complex construct, which has received multiple definitions over
the years, but there is no agreed consensus about its definition [9]. However, what does
seem clear is its importance to a modern society, which needs some form of cognitive
work assessment. High mental workload can result in physical, psychological and
social problems [10–12], whereas very low mental workload can lead to the risky
situation of being “out of the loop” [13]. Stress and fatigue can be the result of
performing highly demanding tasks sustained over time, which would ultimately affect
both worker health and performance [14–16]. Poor performance can also lead to
dangerous and risky situations in fields such as Air Traffic Control [17, 18] and driving
[19–21], increasing the likelihood that accidents will occur. Mental workload man-
agement thus appears to be a key issue in supporting increased future cognitive
demands. Mental workload is a multi-factorial construct, which depends not only on
demanded task resources but also on available resources [22, 23]. For this reason,
cognitive models have been developed in order to make it possible to predict mental
workload based on a combination of aggregated factors [24–26]. To this effect, com-
putational models have proven appropriate and highly effective in computing the
prediction of scientific models in numerous fields [27]. But first, in order to make
research possible, validate proposed models and deepen the understanding of mental
workload issues, we need reliable methods for assessing it. With this in mind, over the
last several decades there has been an exponential increase in the number of studies
regarding mental workload measurement techniques and measures [3, 10, 28–30].
There are three main different methodologies for measuring mental workload, which
correspond to its three primary reflections:

1. Performance measures: this type of methodology is composed of primary task
measures (e.g. nº of errors, reaction time, etc.) and secondary task measures (e.g.
choice reaction-time tasks, time estimation, memory-search tasks etc.). The aim is to
measure objective performance indexes in order to quantify the quantity and the
quality of performed tasks.

2. Subjective measures: this sort of methodology includes all self-reported measures
(e.g. NASA Task Load Index, Instantaneous Self-Assessment, Activation Scale,
etc.). The aim is to obtain easy and low-cost subjective data about perceived mental
workload.

3. Physiological measures: this type of methodology comprises every physiological
response to mental workload (e.g. pupil diameter, electrodermal activity, elec-
troencephalogram, etc.). The aim is to collect objective physiological data, which
reacts to changes in mental workload [31].

As stated in the section above, presumably, since the three types of measures reflect
the same concept, we would expect them to be interrelated. However, as Hancock [6]
reports, literature research has found frequent inconsistencies (dissociations and
insensitivities) between measures. Although the occurrence of dissociations and
insensitivities may be affected by several factors, this study addresses a gap in the
literature about temporal differences between methods’ timescale, which may partly
explain certain inconsistencies between mental workload measures.

Latency Differences Between Mental Workload Measures 133



3 Design and Methodology

We manipulated two independent variables in this experiment: time on task (TOT) and
task complexity, whose effects were tested in an air traffic control (ATC) simulation
experiment in which participants were trained and instructed to avoid conflicts between
aircraft. This complex and dynamic task would allow us to observe the possible effects
of our manipulated independent variables, as well as our measured dependent variables.
Participants performed the task for 120 min while their performance, pupil diameter
and subjective activation were collected. The hypotheses for the present study are the
following:

H1. There exist temporal latency differences between methods.
H2. These temporal latency differences would partly explain certain dissociations

and/or insensitivities that occur between mental workload measures.

3.1 Materials and Instruments

ATCLab-Advanced Software. The software used for simulating air traffic control
(ATCo) tasks was an air traffic simulator called ATCLab-Advanced, which is available
for free public download (see Fig. 1) [32]. The ATCLab-Advanced software provided a
high level of realism (that is, a high level of similarity to real ATC operational sce-
narios) as well as simplified and easy handling, which allowed it to be used by all
participants in several learning sessions. Additionally, the software allowed strong
experimental control of air traffic scenarios parameters because its XML code could be
modified to develop scenarios consistent with research needs and objectives.

For scenario development, the static characteristics of the simulation environment
(control sector size and possible pathways through which aircraft could travel) were
defined first. Next, aircraft quantity (density) and initial aircraft parameters (altitude,
assigned altitude, speed, time of appearance on stage and planned route) were defined
for each aircraft presented in the scenario. Once the structural and dynamic scenario
parameters were established, a file that could be launched by the simulator was
obtained. This file recorded a .log file with performance data for each participant during
simulation.

Finally, we note that the ATCLab-Advanced simulator provided participants with all
tools needed to carry out the ATCo task, such as the route (the aircraft’s fixed route was
displayed), distance scale (which allows horizontal aircraft distance measurement) and
altitude and speed change tools.

Scenarios. Scenarios used in the study varied according to whether the participant was
in the training or the experimental stage. During the training sessions, the standard
scenarios provided by the software creator software were used, but a specific scenario
was programmed by the experimenters to achieve experimental session goals. This
specific scenario was programmed with the following features:

• The purpose of the scenario was to subject participants to a variable complexity task
situation, that is, a variable mental workload situation to capture changes in different
mental workload indexes.
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• The initial number of aircrafts presented was 9, and 6 of these were under partic-
ipant control.

• Overall, a total of 70 aircraft were presented, with 50 coming from external loca-
tions A, D, E, F, W, P, N, L, M and Z and 20 from internal locations C and J. More
specifically, 5 aircraft came from each of A, D, E, F, W, P, N, L, M and Z; 12 from J
(8 going to P and 4 to A); and 8 from C (2 going to A, D, E and F respectively).

To better understand the set-up, refer to Fig. 1, which represents the initial simu-
lator screen presented to participants; the capital black letters (starting route spots) do
not appear on the radar screen.

Tobii T120 Eyetracker. Pupil diameter measurements were obtained using an
infrared-based eye tracker system, the Tobii T120 model marketed by Tobii Video
System. This system is characterised by its high sampling frequency (120 Hz). This
equipment is completely non-intrusive, has no visible eye movement monitoring sys-
tem and provides high precision and an excellent head compensatory movement
mechanism, which ensures high-quality data collection. In addition, a calibration
procedure is completed within seconds, and the freedom of movement it offers par-
ticipants allows them to act naturally in front of the screen, as though it were an
ordinary computer display.

Instantaneous Self-assessmentScale. We used an easy and intuitive instant subjective
workload scale called instantaneous self-assessment (ISA), which provides momentary
subjective ratings of perceived mental workload during the performance of tasks (see
Fig. 2). ISA has been used extensively in numerous domains, including ATC tasks.
Participants write down how much mental workload they currently experience on a

Fig. 1. ATCLab-advanced software initial screenshot presented to participants
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scale ranging from 1 (no mental workload) to 5 (maximum mental workload), pre-
sented from left to right in ascending amount of mental workload experienced. Par-
ticipants were taught to use the scale just before beginning the experimental stage.
While the method is relatively obtrusive to the primary task, it was considered the least
intrusive of the available online workload assessment techniques [33, 34].

3.2 Participants

Thirty-two psychology students at the University of Granada participated in the study
under the motivation of earning extra credit. Participant ages ranged from 19 to 29,
with an average of 22.1 and a median of 22. A total of 23 women and 9 men partic-
ipated. A further requirement was that none of the participants had any previous
experience in ATCo tasks.

3.3 Procedure

Participants had to perform the ATCo tasks with the previously described ATCLab-
Advanced software, so they had to learn how to use it before proceeding through the
experimental stage in which the performance data were collected. Thus, we established
2 distinct stages (see Fig. 3):

1. Training stage: training took place for a total of 60 min. The main objective of this
first stage was for participants to familiarise themselves with the software so that
they could handle it comfortably during the experimental stage. The training stage
procedure was as follows: during the first day, once informed consent was given by
the participants and their main task goal explained (maintaining air traffic security
and preventing potential conflicts between aircraft), they started reading a short

Fig. 2. Instantaneous self-assessment scale
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manual about the operation of the simulator for about 20 min and were asked to call
the researcher once they had finished. Then the participants sat in front of the
running simulator while the researcher reviewed the manual in detail with the
participants to ensure both correct understanding of the task and assimilation of
knowledge through content review. Participants then started using the simulator on
their own while the researcher executed a total of six different ATC scenarios in
order of difficulty. The participants had free access to both the manual and
researcher at all times in case of doubts or questions. The researcher also periodi-
cally checked the participants’ performance to monitor their learning. Once the
training period concluded, participants were ready for the experimental session,
which took place the following day.

2. Data collection stage: the aim of the data collection stage, which lasted a total of
120 min, was to collect experimental data from participants while they performed
ATCo tasks. Both objective (physiological and execution data) and subjective
(mental workload subjective index) data were collected. The participants were told
the differences between the training and experimental stages, which were as fol-
lows: first, they would perform ATCo tasks in front of an eye-tracker system that
had been previously calibrated. Secondly, participants were instructed to minimise
head and body movements during the session and to fill in the ISA scale every
5 min, when a scheduled alarm sounded. The whole session lasted 2 h. At the end
of the session, the participants were thanked and given extra credit.

3.4 Experimental Room Conditions

Sessions were held in several different rooms, depending on whether the participant
was in the training or data collection stage: during the training stage, participants could
work in one of three different rooms equipped for training with the simulator, and no
special attention to room conditions was needed. However, during the data collection
stage, standardising room conditions was essential. Thus, the testing rooms were

Fig. 3. Experiment design procedure diagram
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temperature controlled to 21 °C, and lighting conditions (the main extraneous variable
in pupil diameter measurement) were kept constant with artificial lighting and no
natural light in the rooms. Moreover, participants always sat in the same place, a
comfortable chair spaced 60 cm from the eye-tracker system.

3.5 Variables

Independent Variables

Task Complexity. Complexity of the task is directly related to mental workload: the
more complex the task becomes, the higher the mental workload. We manipulated task
complexity by modifying aircraft traffic density (occupancy) through the 2 h of the
experimental session (see Fig. 4).

Time on Task. TOT was manipulated by setting 5-minute intervals through the 120-
minute duration of the experimental session. We thus set a total of 24 intervals from
when the first measurement was taken as baseline for pupil diameter, resulting in 23
suitable time intervals.

Dependent Variables

Performance. Although performance related to ATCo task can include a wide range of
indicators, we found it appropriate to consider conflict rate as our performance indi-
cator, taking into account its well-established correlation with our independent variable,
traffic density [35]. However, for the analysis we operationalised this dependent
variable by dividing the number of conflicts by the total number of aircraft present in

Fig. 4. Aircraft density through intervals
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the radar at a given time. We thought that using only the number of conflicts as a
performance measurement would not be an appropriate performance indicator, since it
largely reflects air traffic density.

Pupil Size. We used pupil diameter as our physiological mental workload indicator, as
it effectively reflects mental workload [36–44]. While our eye-tracking system allows
continuous sampling rate recording at 120 Hz, we set a total of 24 intervals lasting
5 min each to facilitate subsequent analyses.

Since expressing pupil size in absolute values has the disadvantage of being
affected by slow random fluctuations of pupil size (source of noise), we followed the
recommendations provided by Sebastiaan Mathôt [45] about baseline correction of
pupil-size data. To do this, we took the first interval (5 min) as a reference of standard
individual average pupil size, which was then subtracted from the obtained value in
each of the remaining 23 intervals, thereby giving a differential standardised value
allowing us to reduce noise in our data. Analyses were carried out both for the left and
right pupils. A negative value meant that the pupil was contracting while a positive
value meant that it was dilating. Finally, we should bear in mind that some participants
have larger pupils than others, but such between-subject differences are taken into
account statistically, through a repeated measures ANOVA analysis.

Subjective Mental Workload. In order to make it possible to establish comparisons
between the three primary workload measures, it was necessary to obtain the subjective
momentary ratings continuously throughout the experimental session. With this goal,
we used ISA, which is an online subjective workload scale created for this purpose.
Ratings were obtained at 5-minute intervals throughout the 2 h of the experimental
stage, obtaining a total of 24 intervals, from which we discarded the first interval (used
in the physiological scale as a baseline); this left 23 analysable intervals remaining (see
Fig. 2). This study was carried out in accordance with the recommendations of the local
ethical guidelines of the committee of the University of Granada institution called
Comité de Ética de Investigación Humana. The protocol was approved by the Comité
de Ética de Investigación Humana. All subjects gave written informed consent in
accordance with the Declaration of Helsinki.

4 Results

We used a one-way, within-subject ANOVA to analyse the obtained results. The
analyses of participant performance during the experimental scenario confirmed that
our task complexity manipulation was successful as, although participants were able to
avoid most conflicts, the results showed a significant effect in intervals F(22,
682) = 42.44, MSe = .001, p < .001 on participant performance, due mainly to worse
performance in intervals 8 and 18, which correspond to an increase in task demand (see
Fig. 5). Left and right pupil diameter also showed the effect of workload at intervals F
(22,682) = 7.98, MSe = .005, p < .001, and F(22,682) = 8.34, MSe = .005, p < .001,
respectively. Based on our results, we can see that pupil size changes over time,
reaching maximum values with increases in task demands; in particular, we can find
high pupil size peaks at intervals 9–12 and 19–21 (see Fig. 5).
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With regard to the subjective primary measure, we also found a significant main
interval effect at F(22,682) = 25.17, MSe = .758, p < .001. Similar to pupil size, we
can see how subjective mental workload changes over the intervals, reaching maximum
peaks at higher task difficulty and more specifically at intervals 8–12 and 18–21 (see
Fig. 5).

Finally, Table 1 reveals that, as expected, there were high positive correlations
between left and right pupils .97, p < .01. Therefore, taking left pupil as a reference, we
found a positive correlation between pupil diameter and subjective workload measure
.81, p < .01, whereas we could not find a correlation between pupil diameter and
performance .27, p > .05. Furthermore, we found only a slight correlation between
performance and subjective workload measure .26, p < .05 (see Table 1).

Fig. 5. Participant performance, left pupil and subjective mental workload during task
development
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5 Discussion

To synthesise our data, our performance results revealed two lower performance peaks
at intervals 8 and 18 (higher task demand), which correspond with physiological and
subjective measures reaching maximum values (with different latencies). We should
consider that, despite aircraft density reaching 4 high-density peaks at intervals 4, 8, 12
and 18, we only found 2 real high-complexity peaks reflected as bad performance peaks
at intervals 8 and 18. In that respect, even though it seems from the literature that traffic
density strongly influences complexity and so mental workload [46], complexity of
ATCo scenarios are not only dependent on this factor but on others such as traffic
configuration and aircraft evolution [25, 46, 47]. In that sense, by analysing the recorded
scenario, we can actually verify that task demand does in fact become much higher at
intervals 8 and 18, not only because of traffic density but also because of traffic evolution
and configuration. That is the reason why there is not a comparable increase in mental
workload reflections at interval 4 and 12 as were observed at 8 and 18.

The first important finding from our data is that pupil size and subjective workload
measures follow a similar pattern: they increase at high-imposed task load, and they
decrease when task demands become lower. Taking into account that both workload
responses track to external task load, showing a positive correlation between each other
(.87), our data revealed what has been called a double association [6]. A key finding
should be emphasised. We found that at highest demand peaks (8 and 18), subjective
mental workload measures reacted sooner than physiological response, even taking into
account that subjective measures take some time for administration. In other words,
subjective mental workload reflection responded with a lower latency than physio-
logical measures, only at high–task load peaks. As we can see in the results, higher
pupil size peaks are reached one interval after the highest demand peaks (intervals 9–12
and 19–21), whereas higher subjective workload responses were achieved immediately:
at the first high demand peak at interval 8, and at the second high demand peak at

Table 1. Correlation chart between measures

Performance R. pupil L. pupil Subjective

Performance Pearson 1 .279 .266 .473*
Sig. (bilateral) .198 .219 .023
N 23 23 23 23

R. pupil Pearson .279 1 .965** .870**
Sig. (bilateral) .198 .000 .000
N 23 23 23 23

L. pupil Pearson .266 .965** 1 .808**
Sig. (bilateral) .219 .000 .000
N 23 23 23 23

Subjective Pearson .473* .870** .808** 1
Sig. (bilateral) .023 .000 .000
N 23 23 23 23

*p < .05, **p < .01
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intervals 18–19. Therefore, although these correlations showed associations among our
physiological and subjective measures, this collected data also suggested some indi-
cations of dissociations in line with the explanations provided by Hancock [6] about
disassociations and insensitivities between mental workload measures: “there is strong
reason to believe that each of these methods (and each of their component elements)
possess their own inherent timescale and that certain, if not many, of the associations,
dissociations and insensitivities are contingent upon such temporal differences” (p. 8).
In other words, in our results there were some indications of the existence of different
timescales for physiological and subjective measures. Further research is therefore
necessary to explore this relation between insensitivities, dissociations and timescales.

The performance measure correlated only slightly with the subjective measure
(.47), whereas it did not correlate with the physiological measure (.27). We think that
these poor correlation results between performance and the rest of the primary indi-
cators may be due to the low variability obtained on the performance variable (ceiling
effect): participants were able to solve the vast majority of conflicts, and their per-
formance was nearly perfect, so that variance was not particularly measurable. In any
case, we believe that, in the absence of this ceiling effect, this lack of correlation would
not have occurred.

It is worth noting an unexpected finding in our data that is not related to our main
objective in this study: the effects of task learning on mental workload. At the first
high-demand period, we found participants were experiencing more cognitive load, as
they were not used to solving conflicts in that particular scenario. However, the more
the participants practiced with the experimental scenario, the lower the cognitive
demands as new cognitive strategies were being developed. We could therefore say that
changing from a more consciously controlled to a more automated task would ulti-
mately decrease mental workload. Our results showed up a mental workload decline at
high demand peaks with TOT, which was reflected by the performance, subjective and
physiological primary measures. This evidence is consistent with findings by Foroughi
et al., who found that trial completion times and maximum pupil size significantly
reduced across trials performing a cognitive task that required individuals to orient
themselves in space relative to a target [48]. Furthermore, these results are also in line
with cognitive load theory, which postulates that individuals would shift from learned
procedures to automatic processes over time practising a new task [49].

In summary, by looking at our results, we could assume that differences in latency
may partially explain mental workload dissociations and insensitivities between mea-
sures at high mental workload peak experiences. Moreover, mental workload decline
over time could be explained by the effects of learning on cognitive efficiency, as
literature research has shown. Several limitations must be addressed. First, we think it
would be necessary to deepen the study of this phenomenon with other physiological
measures, such as electrodermal activity, heart-rate variability and EEG. Dissociations
and insensibilities have been found not only between the three primary measures of
workload, but also within different indicators of each kind of primary measure. In that
sense, we are convinced that each different physiological indicator would have its own
particular timescale, and further research is thus needed to untangle the issue. Another
point to note is the granularity of the timescale considered on collected data. Intervals
were defined in our experiment as every 5 min. We think it would be interesting to
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consider shorter intervals in order to obtain better granularity on data analysis. It is
important to bear in mind, however, the related level of intrusiveness created by shorter
data collection intervals: for example, an online subjective workload measure collected
every 30 s would strongly interfere with both primary task development and experi-
enced mental workload. Finally, it also needs to be noted that we conducted this
research with students under simulated conditions, and we think it would be necessary
to replicate this experiment under real conditions to improve the validity of our
findings.

6 Conclusions

Cognitive mental workload assessment is fundamental to the development of modern
society and has been one of the greatest challenges for the last several decades.
Hundreds of studies have been conducted for measuring mental workload in its three
main axes: performance, subjective and physiological measures [3]. Although we
would expect a certain degree of convergence between different mental workload
measures, the literature has shown that associations do not always occur. In this study,
we explored the occurrence of disassociations and insensitivities across the different
methods of measuring mental workload. A possible explanation for this might be
related to the inherent timescale of each of these different methods. That is, each of the
different methods for assessing a mental workload primary reflection possesses its own
timescale, so that some show longer response latency to task demand changes than
others [6].

Our findings suggest that dissociations and insensitivities may appear at high
mental workload peak experiences due to latency differences between measures: sub-
jective measure showed lower latency response than physiological response (pupil
size). One important implication of this finding is that latency response in mental
workload measures might vary depending on task demand levels. Thus, mental
workload measures may correlate at low- and medium medium-task-demand levels, but
when the situation becomes very complex (high cognitive-demand- peaks), dissocia-
tions and insensitivities between measures may appear. In other words, a worker
experiencing moderate task demands may be reflecting moderate mental workload
levels through physiological and subjective responses equally, but if the situations
suddenly become much more difficult, we might better rely on subjective measures to
reflect mental workload changes, rather than relying on physiological responses (at
least those physiological variables reflecting physiological activation). Another inter-
esting finding, in line with literature research, are the effects of task learning on cog-
nitive efficiency, which was reflected as a mental workload decline with TOT.
However, due to methodological limitations, explained in the previous section, these
promising findings must be taken cautiously before generalising them. Further research
should be undertaken to map the intrinsic timescale of the measurement problem,
which will bring us closer to achieving a better understanding of associations, insen-
sitivities and dissociations among mental workload responses.

Latency Differences Between Mental Workload Measures 143



References

1. Crevits, I., Debernard, S., Denecker, P.: Model building for air-traffic controllers’ workload
regulation. Eur. J. Oper. Res. 136(2), 324–332 (2002). https://doi.org/10.1016/S0377-2217
(01)00119-9

2. Moray, N.: Mental Workload: Its Theory and Measurement. Plenum Press, New York
(1979). https://doi.org/10.1007/978-1-4757-0884-4_2

3. Wickens, C.D.: Mental workload: assessment, prediction and consequences. In: Longo, L.,
Leva, M. (eds.) H-WORKLOAD 2017. CCIS, vol. 726, pp. 18–29. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-61061-0_2

4. De Alwis Edirisinghe, V.: Estimating mental workload of university students using eye
parameters, Master’s thesis, NTNU (2017)

5. Murai, K., Hayashi, Y., Okazaki, T., Stone, L.C.: Evaluation of ship navigator’s mental
workload using nasal temperature and heart rate variability. In: 2008 IEEE International
Conference on Systems, Man and Cybernetics, pp. 1528–1533. IEEE, New York (2008).
https://doi.org/10.1109/icsmc.2008.4811503

6. Hancock, P.A.: Whither workload? Mapping a path for its future development. In: Longo,
L., Leva, M. (eds.) H-WORKLOAD 2017. CCIS, vol. 726, pp. 3–17. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-61061-0_1

7. Yeh, Y.H., Wickens, C.D.: The dissociation of subjective measures of mental workload and
performance (final report). (No. NASA-CR-176609; NAS 1.26:176609; EPL-84-2/NASA-
84-2) (1984)

8. Casper, P.A.: Dissociations among measures of mental workload: effects of experimenter-
induced inadequacy (1988)

9. Moray, N.: Mental Workload: Its Theory and Measurement, vol. 8. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-1-4757-0884-4

10. Longo, L., Leva, M.C. (eds.): H-WORKLOAD 2017. CCIS, vol. 726. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-61061-0

11. Dawson, D., Ian Noy, Y., Härmä, M., Åkerstedt, T., Belenky, G.: Modelling fatigue and the
use of fatigue models in work settings. Accid. Anal. Prev. 43(2), 549–564 (2011). https://doi.
org/10.1016/j.aap.2009.12.030

12. Jorna, P.G.: Spectral analysis of heart rate and psychological state: a review of its validity as
a workload index. Biol. Psychol. 34(2), 237–257 (1992). https://doi.org/10.1016/0301-0511
(92)90017-O

13. Endsley, M.: From here to autonomy: lessons learned from human–automation research.
Hum. Factors 59(1), 5–27 (2017). https://doi.org/10.1177/0018720816681350

14. Josten, E.J., Ng-A-Tham, J.E., Thierry, H.: The effects of extended workdays on fatigue,
health, performance and satisfaction in nursing. J. Adv. Nurs. 44(6), 643–652 (2003). https://
doi.org/10.1046/j.0309-2402.2003.02854.x

15. Taylor, A.H., Dorn, L.: Stress, fatigue, health, and risk of road traffic accidents among
professional drivers: the contribution of physical inactivity. Ann. Rev. Publ. Health 27, 371–
391 (2006). https://doi.org/10.1146/annurev.publhealth.27.021405.102117

16. Fan, J., Smith, A.: The impact of workload and fatigue on performance. In: Longo, L., Leva,
M. (eds.) H-WORKLOAD 2017. CCIS, vol. 726, pp. 90–105. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-61061-0_6

17. Sawaragi, T., Horiguchi, Y., Hina, A.: Safety analysis of systemic accidents triggered by
performance deviation. 제어로봇시스템학회 국제학술대회 논문집, pp. 1778–1781
(2006). https://doi.org/10.1109/sice.2006.315635

144 E. Muñoz-de-Escalona and J. J. Cañas

http://dx.doi.org/10.1016/S0377-2217(01)00119-9
http://dx.doi.org/10.1016/S0377-2217(01)00119-9
http://dx.doi.org/10.1007/978-1-4757-0884-4_2
http://dx.doi.org/10.1007/978-3-319-61061-0_2
http://dx.doi.org/10.1109/icsmc.2008.4811503
http://dx.doi.org/10.1007/978-3-319-61061-0_1
http://dx.doi.org/10.1007/978-1-4757-0884-4
http://dx.doi.org/10.1007/978-3-319-61061-0
http://dx.doi.org/10.1016/j.aap.2009.12.030
http://dx.doi.org/10.1016/j.aap.2009.12.030
http://dx.doi.org/10.1016/0301-0511(92)90017-O
http://dx.doi.org/10.1016/0301-0511(92)90017-O
http://dx.doi.org/10.1177/0018720816681350
http://dx.doi.org/10.1046/j.0309-2402.2003.02854.x
http://dx.doi.org/10.1046/j.0309-2402.2003.02854.x
http://dx.doi.org/10.1146/annurev.publhealth.27.021405.102117
http://dx.doi.org/10.1007/978-3-319-61061-0_6
http://dx.doi.org/10.1109/sice.2006.315635


18. Edwards, T.E., Martin, L., Bienert, N., Mercer, J.: Workload and performance in air traffic
control: exploring the influence of levels of automation and variation in task demand (2017).
https://doi.org/10.1007/978-3-319-61061-0_8

19. Brookhuis, K.A., de Waard, D.: Monitoring drivers’ mental workload in driving simulators
using physiological measures. Accid. Anal. Prev. 42(3), 898–903 (2010). https://doi.org/10.
1016/j.aap.2009.06.001

20. da Silva, F.P.: Mental workload, task demand and driving performance: what relation? Proc.-
Soc. Behav. Sci. 162, 310–319 (2014). https://doi.org/10.1016/j.sbspro.2014.12.212

21. Paxion, J., Galy, E., Berthelon, C.: Mental workload and driving. Front. Psychol. 5, 1344
(2014). https://doi.org/10.3389/fpsyg.2014.01344

22. Wickens, C.D.: Multiple resources and performance prediction. Theor. Issues Ergon. Sci. 3
(2), 159–177 (2002). https://doi.org/10.1518/001872008X288394.200850:449

23. Munoz-de-Escalon, E., Canas, J.: Online measuring of available resources. In: H-Workload
2017 The First International Symposiumon Human Mental Workload, Dublin Institute of
Technology, Dublin, Ireland, 28–30 June (2017). https://doi.org/10.21427/d7dk96

24. Cañas, J.J., Ferreira, P.N.P., Puntero, E., López, P., López, E., Gomez-Comendador V.F.:
An air traffic controller psychological model with automation. In: 7th EASN International
Conference “Innovation in European Aeronautics Research”, Warsaw, Poland (2017).
https://doi.org/10.3390/s180515864

25. Majumdar, A., Ochieng, W.: Factors affecting air traffic controller workload: multivariate
analysis based on simulation modeling of controller workload. Transp. Res. Rec. 1788, 58–
69 (2002). https://doi.org/10.3141/1788-08

26. Wu, C., Liu, Y.: Queuing network modeling of driver workload and performance. IEEE
Trans. Intell. Transp. Syst. 8(3), 528–537 (2007). https://doi.org/10.1109/TITS.2007.903443

27. Sozou, P.D., Lane, P.C., Addis, M., Gobet, F.: Computational scientific discovery. In:
Magnani, L., Bertolotti, T. (eds.) Springer Handbook of Model-Based Science. SH, pp. 719–
734. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-30526-4_33

28. Moustafa, K., Luz, S., Longo, L.: Assessment of mental workload: a comparison of machine
learning methods and subjective assessment techniques. In: Longo, L., Leva, M. (eds.) H-
WORKLOAD 2017. CCIS, vol. 726, pp. 30–50. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-61061-0_3

29. Rizzo, L., Longo, L.: Representing and inferring mental workload via defeasible reasoning: a
comparison with the NASA task load index and the workload profile. In: 2017 1st Workshop
on Advances in Argumentation in Artificial Intelligence, Bari, Italy (2017)

30. Rizzo, L., Dondio, P., Delany, S., Longo, L.: Modeling mental workload via rule-based
expert system: a comparison with NASA-TLX and workload profile. In: Iliadis, L.,
Maglogiannis, I. (eds.) AIAI 2016. IAICT, vol. 475, pp. 215–229. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-44944-9_19

31. Marinescu, A.C., Sharples, S., Ritchie, A.C., Sánchez López, T., McDowell, M., Morvan, H.
P.: Physiological parameter response to variation of mental workload. Hum. Factors 60(1),
31–56 (2018). https://doi.org/10.1177/0018720817733101

32. Fothergill, S., Loft, S., Neal, A.: ATC-labAdvanced: an air traffic control simulator with
realism and control. Behav. Res. Methods 41(1), 118–127 (2009). https://doi.org/10.3758/
BRM.41.1.118

33. Brennan, S.D.: An experimental report on rating scale descriptor sets for the instantaneous
self-assessment (ISA) recorder. DRA Technical Memorandum (CAD5) 92017, DRA
Maritime Command and Control Division, Portsmouth (1992)

34. Jordan, C.S.: Experimental study of the effect of an instantaneous self-assessment workload
recorder on task performance. DRA Technical Memorandum (CAD5) 92011, DRA
Maritime Command Control Division, Portsmouth (1992)

Latency Differences Between Mental Workload Measures 145

http://dx.doi.org/10.1007/978-3-319-61061-0_8
http://dx.doi.org/10.1016/j.aap.2009.06.001
http://dx.doi.org/10.1016/j.aap.2009.06.001
http://dx.doi.org/10.1016/j.sbspro.2014.12.212
http://dx.doi.org/10.3389/fpsyg.2014.01344
http://dx.doi.org/10.1518/001872008X288394.200850:449
http://dx.doi.org/10.21427/d7dk96
http://dx.doi.org/10.3390/s180515864
http://dx.doi.org/10.3141/1788-08
http://dx.doi.org/10.1109/TITS.2007.903443
http://dx.doi.org/10.1007/978-3-319-30526-4_33
http://dx.doi.org/10.1007/978-3-319-61061-0_3
http://dx.doi.org/10.1007/978-3-319-61061-0_3
http://dx.doi.org/10.1007/978-3-319-44944-9_19
http://dx.doi.org/10.1177/0018720817733101
http://dx.doi.org/10.3758/BRM.41.1.118
http://dx.doi.org/10.3758/BRM.41.1.118


35. Prandini, M., Piroddi, L., Puechmorel, S., Brázdilová, S.L.: Toward air traffic complexity
assessment in new generation air traffic management systems. IEEE Trans. Intell.
Transp. Syst. 12(3), 809–818 (2011). https://doi.org/10.1109/TITS.2011.2113175

36. Matthews, G., Middleton, W., Gilmartin, B.Y., Bullimore, M.A.: Pupillary diameter and
cognitive and cognitive load. J. Psychophysiol. 5, 265–271 (1991)

37. Backs, R.W., Walrath, L.C.: Eye movement and pupillary response indices of mental
workload during visual search of symbolic displays. Appl. Ergon. 23, 243–254 (1992).
https://doi.org/10.1016/0003-6870(92)90152-l

38. Hyönä, J., Tommola, J., Alaja, A.: Pupil dilation as a measure of processing load in
simultaneous interpreting and other language tasks. Q. J. Exp. Psychol. 48, 598–612 (1995).
https://doi.org/10.1080/14640749508401407

39. Granholm, E., Asarnow, R.F., Sarkin, A.J., Dykes, K.L.: Pupillary responses index cognitive
resource limitations. Psychophysiology 33, 457–461 (1996). https://doi.org/10.1111/j.1469-
8986.1996.tb01071.x

40. Iqbal, S.T., Zheng, X.S., Bailey, B.P.: Task evoked pupillary response to mental workload in
human-computer interaction. In: Proceedings of the ACM Conference on Human Factors in
Computing Systems, pp. 1477–1480. ACM, New York (2004). https://doi.org/10.1145/
985921.986094

41. Verney, S.P., Granholm, E., Marshall, S.P.: Pupillary responses on the visual backward
masking task reflect general cognitive ability. Int. J. Psychophysiol. 52, 23–36 (2004).
https://doi.org/10.1016/j.ijpsycho.2003.12.003

42. Porter, G., Troscianko, T., Gilchrist, I.D.: Effort during visual search and counting: insights
from pupillometry. Q. J. Exp. Psychol. 60, 211–229 (2007). https://doi.org/10.1080/
17470210600673818

43. Privitera, C.M., Renninger, L.W., Carney, T., Klein, S., Aguilar, M.: Pupil dilation during
visual target detection. J. Vis. 10, 1–14 (2010). https://doi.org/10.1167/10.10.3

44. Reiner, M., Gelfeld, T.M.: Estimating mental workload through event-related fluctuations of
pupil area during a task in a virtual world. Int. J. Psychophysiol. 93(1), 38–44 (2014). https://
doi.org/10.1016/j.ijpsycho.2013.11.002

45. Mathôt, S., Fabius, J., Van Heusden, E., Van der Stigchel, S.: Safe and sensible
preprocessing and baseline correction of pupil-size data. Behav. Res. Methods 50(1), 94–106
(2018). https://doi.org/10.3758/s13428-017-1007-2

46. Mogford, R.H., Guttman, J.A., Morrow, S.L., Kopardekar, P.: The complexity construct in
air traffic control: a review and synthesis of the literature. CTA INC., McKee City, NJ (1995)

47. Athènes, S., Averty, P., Puechmorel, S., Delahaye, D., Collet, C.: ATC complexity and
controller workload: trying to bridge the gap. In: Proceedings of the International Conference
on HCI in Aeronautics, pp. 56–60. AAAI Press, Cambridge (2002)

48. Foroughi, C.K., Sibley, C., Coyne, J.T.: Pupil size as a measure of within-task learning.
Psychophysiology 54(10), 1436–1443 (2017). https://doi.org/10.1111/psyp.12896

49. Sweller, J.: Cognitive load theory, learning difficulty, and instructional design. Learn. Instr. 4
(4), 295–312 (1994). https://doi.org/10.1016/0959-4752(94)90003-5

146 E. Muñoz-de-Escalona and J. J. Cañas

http://dx.doi.org/10.1109/TITS.2011.2113175
http://dx.doi.org/10.1016/0003-6870(92)90152-l
http://dx.doi.org/10.1080/14640749508401407
http://dx.doi.org/10.1111/j.1469-8986.1996.tb01071.x
http://dx.doi.org/10.1111/j.1469-8986.1996.tb01071.x
http://dx.doi.org/10.1145/985921.986094
http://dx.doi.org/10.1145/985921.986094
http://dx.doi.org/10.1016/j.ijpsycho.2003.12.003
http://dx.doi.org/10.1080/17470210600673818
http://dx.doi.org/10.1080/17470210600673818
http://dx.doi.org/10.1167/10.10.3
http://dx.doi.org/10.1016/j.ijpsycho.2013.11.002
http://dx.doi.org/10.1016/j.ijpsycho.2013.11.002
http://dx.doi.org/10.3758/s13428-017-1007-2
http://dx.doi.org/10.1111/psyp.12896
http://dx.doi.org/10.1016/0959-4752(94)90003-5


Mental Workload and Other Causes
of Different Types of Fatigue in Rail Staff

Jialin Fan(&) and Andrew P. Smith

Centre for Occupational and Health Psychology, School of Psychology,
Cardiff University, 63 Park Place, Cardiff CF10 3AS, UK

{FanJ12,SmithAP}@cardiff.ac.uk

Abstract. Workload and shift work have been addressed as causes of occu-
pational fatigue in previous research. Fatigue in the workplace has usually been
investigated as a single outcome. However, taking into account separate kinds of
energy resources, there are different types of fatigue. The present study inves-
tigated mental workload and other causes of physical fatigue, mental fatigue,
and emotional fatigue in a rail company. Overall, the results confirm the
importance of mental workload for different types of work fatigue and reveal
other specific causes for each type of fatigue. Prolonged work and insufficient
rest resulted in physical fatigue, while poor shift patterns caused mental and
emotional fatigue.

Keywords: Workload � Occupational fatigue � Rail industry �
Physical fatigue � Mental fatigue � Emotional fatigue

1 Introduction

Occupational fatigue refers to extreme tiredness and reduced functional capacity
experienced during and after work. Resulting in the deterioration of attention and
impaired performance in the workplace, fatigue brings an increased risk of danger to
rail staff, as many of their jobs are safety-critical. It also affects well-being of rail staff
both at work and outside work [1]. Fatigue has generally been discussed as a single
entity. However, taking into account the separate energy resources, it is clear that there
are different types of fatigue, including physical fatigue, mental fatigue, and emotional
fatigue. The physical fatigue resulting from the depletion of muscular energy represents
physical tiredness and the incapacity to engage in physical activity, while mental
fatigue resulting from the depletion of cognitive energy represents tiredness and the
incapacity to engage in mental activity. Recently, in addition to these two types of
fatigue, emotional fatigue has received growing amount of attention [2, 3]. This kind of
fatigue results from the depletion of emotional energy and represents tiredness and the
incapacity to engage in emotional activity. Frone and Tidwell [4] proposed the Three-
Dimensional Work Fatigue Inventory (3D-WFI), suggesting that the measure of work
fatigue should be multidimensional, with separate assessments of physical, mental, and
emotional fatigue. The psychometric quality and construct of 3D-WFI was then vali-
dated in a large-scale national survey in the US [4]. In the railway industry, however,
research that measures the three different types of work fatigue separately is still

© Springer Nature Switzerland AG 2019
L. Longo and M. C. Leva (Eds.): H-WORKLOAD 2018, CCIS 1012, pp. 147–159, 2019.
https://doi.org/10.1007/978-3-030-14273-5_9

http://orcid.org/0000-0003-1530-4739
http://orcid.org/0000-0001-8805-8028
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14273-5_9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14273-5_9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14273-5_9&amp;domain=pdf
https://doi.org/10.1007/978-3-030-14273-5_9


lacking, and the causes of different types of fatigue are still unclear. The Demands,
Resources, and Individual Effects (DRIVE) model has been used as a framework for
assessing fatigue in previous fatigue studies (e.g. [1, 5, 6]). In basic terms, this model
proposes that high job demands, low job resources (support and control), and indi-
vidual differences (e.g., negative personality or coping type) predict high levels of
fatigue [7]. The DRIVE model was used in the present study to assess different types of
fatigue.

The main goal of this study was to investigate the causes of different types of
fatigue among rail staff. Toward this end, we began by reviewing the related work on
risk factors of occupational fatigue. We then presented the aims, methods, and findings
of present study aimed at identifying the stressors of physical, mental and emotional
fatigue. It was followed by the discussion and the conclusions in the final two sections
of this paper.

2 Related Work

Workload has been identified as one of the essential stressors of occupational fatigue,
with high workload leading to a greater subjective feeling of fatigue [8, 9]. Workload is
a multi-dimensional concept which involves time, the input load of mental and physical
tasks [10], operator effort, and outcomes (i.e., performance or other results) [11]. In the
domain of occupational fatigue, workload is often equated with job demands. Edwards
and her colleagues [12] suggested that workload was affected by task demands vari-
ation, as well as the level of automation in the workplace. Smith and Smith [5]
mentioned that in interviews, rail staff members generally believed that the level of
effort required to complete work tasks was the major component of workload. These
confirmed that the perception of the task load (i.e., subjective job demands) and effort
are the core to understanding workload [13].

In the modern railway industry, jobs have placed more emphasis on mental
workload, while the traditional physical workload has diminished due to the increasing
level of automation in operating systems [14]. Mental workload is also complex and
multi-dimensional which frequently is described by terms of mental effort or emotional
strain [15–17]. It reflects the capacity or resources that are actually required to meet
task demands [18], involving the time pressure and the effort exerted for the execution
of the task [19, 20]. There has been considerable interest in mental workload [13, 20,
21] which has led to the development of models of mental workload and application to
real-world problems (see [22–25]). Cain [26] reviewed the mental workload literature
and claimed that it can be summarised as the total cognitive load required to accom-
plish a task under specific environmental and operational conditions (e.g., in a finite
period of time). The majority jobs in rail transport, such as being a train driver, signaller
(i.e., controller), and conductor (i.e., guard), require sustained vigilance. In addition,
the engineer may be exposed to heavy time pressure which may result in heavy mental
workload and increased feelings of fatigue.

Other than workload, risk factors such as shift work, sleep and rest, and individual
differences have also been found to be associated with fatigue. Based on the timing to
work, shift work includes day, night, and early morning (i.e., begins before 4 a.m.)
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shifts. The night and early morning shifts have been found to result in fatigue [27].
Such shifts also disrupt the sleep–wake cycle and make recovery from fatigue more
difficult [28]. Individual differences, such as a healthy lifestyle and positive personality,
have been found to play a buffing role in increased fatigue [1]. Fan and Smith [6]
systematically reviewed previous research on fatigue among rail staff, and found that
workload, length of work, timing of the work (i.e., shift work), insufficient rest and
sleep, poor sleep quality, job roles, and individual differences were associated with
fatigue. An Australian study [29] suggested that the sleep/wake cycle, work hours and
workload influenced rail staff’s fatigue. Later, a large-scale fatigue survey covering all
the job roles among rail staff [30] showed that train crew fatigue was predicted by
heavy mental workload, low job control and support, shift work, noisy working
environment, unhealthy lifestyle, and negative personality.

3 Aims

The main aim of the present study described in this paper was to investigate the causes
of physical fatigue, mental fatigue, and emotional fatigue in a rail company in the UK.
It separately measured the different types of fatigue, as well as types of job demands
(i.e., physical demands, mental demands, and emotional demands). The study also
aimed to build a more detailed picture of the relationships regarding mental workload,
other risk factors, and different types of fatigue using the DRIVE model. The survey
covered most of the potential risk factors of fatigue which were mentioned in previous
literature, such as workload, timing to work, working hours, rest during work, sleep
time and quality, and other activities that may influence fatigue. In addition, the current
study aimed to determine whether an online version of such subjective measurements
was as reliable as the offline one [30], and whether the online version can be used in
future research (e.g., an online diary study).

4 Methods

4.1 Participants

A total of 246 participants completed an online questionnaire. Most of the participants
were male (N = 173, 70.3%), with a mean age of 43.21 years (SD = 10.458, minimum
19.5yr, maximum 65.42yr). There were 66.9% of them who worked in South Wales,
UK, while the rest worked in North Wales. The School of Psychology Research Ethics
Committee at Cardiff University reviewed and approved this online study.

4.2 Materials

This online survey ran in the spring of 2017. The questionnaire consisted of 39
questions, the majority of which were on a 10-point scale and the rest were Yes/No
answers. Data collection was performed on the Qualitrics online survey platform. The
survey used single-item subjective measures which were valid and reliable [31] and
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have been used in previous fatigue studies (e.g., [5, 30]). It investigated the details of
working hours, shift work, workload, and the potential risk factors outside work (e.g.,
sleep quality, other activity), and assessed the six predictors of train crew fatigue
confirmed in a previous study [30]. The survey asked participants not only about the
causes of their own fatigue, but also of that of their colleagues, which provided rela-
tively objective observation data for assessing the risk factors of fatigue. Frone and
Tidwell [4] claimed that the measure of work fatigue should be multidimensional with
separately assessing physical, mental and emotional fatigue. Given their suggestion, in
this questionnaire, work fatigue and job demands were measured alongside physical,
mental, and emotional dimensions.

4.3 Analysis

Data analysis was carried out using SPSS 23. The data were analysed using descriptive
analysis, exploratory factor analysis, correlation analysis, and regressions. The
approach of exploratory factor analysis used here was principal components analysis
(PCA) with Direct Oblimin rotation, with an oblique rotation to extract eigenvalues
equalling or exceeding the threshold of 1.

5 Results

5.1 Descriptive

The primary job types participants reported were managers (21.7%), conductors
(20.9%), administrators (20.9%), and train drivers (19.1%), followed by engineers
(11.9%) and station workers (5.3%). There were two participants with missing job type
data. There were 67.9% of participants doing shift-work. The sample generally reported
personality (73.3%), efficiency (91.4%), and effort (95.5%) toward the positive end (all
with threshold = 6).

5.2 Factor Analysis

Principal components analysis (PCA) with the Direct Oblimin rotation was conducted,
and the factor scores (i.e., component scores) were created using the regression method.
The components and factor loadings are described in Table 1.

In total, there were 11 components, including 10 independent factors and one
outcome. Independent factors included negative work characteristics, positive work
and individual characteristics, job demands, length of shift, overtime work, timing of
shift, mental workload, effort, positive sleep factor, and other activities. The outcome
component was three-dimensional fatigue (3D-fatigue). It should be noted that, based
on factor loading, the contribution of physical demands on three-dimensional work
demands (3D-demands, originally component 7) was found to be much smaller than
that of either mental or emotional demands; thus, component 7 was renamed as mental
workload.
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Table 1. Summary of the factor loading of PCA with Oblimin rotation.

Factor
loading

Initial
eigenvalue

Cumulative
variance (%)

Predictors 1.657 68.1
Component 1: negative work characteristics
Shift work .882
Exposure to noise and vibration .859
Component 2: positive work and individual
characteristics
Positive personality .811
Healthy behaviours .667
Job control and support
Component 3: job demands

.580

Job demands .934
Causes of fatigue 3.058 68.4
Component 4: length of shift
Length of shift (colleagues) .808
Length of shift (self) .805
Component 5: overtime work
Overtime .829
Number of shifts before rest day (colleagues) .695
Overtime (colleagues) .613
Number of shifts before rest day (self) .544
Component 6: timing of shift
Timing of shift (self) .828
Timing of shift (colleagues) .822
Workload 2.109 63.5
Component 7: mental workload
Hurried or rushed .845
Frustrating .782
Mental demands .750
Physical demands .462
Component 8: effort
Effort .960
Activity outside work 1.585 72.4
Component 9: positive sleep factor
Sleep length (hours) .874
Quality of sleep .870
Component 10: other activities
Activities outside work (colleagues) .826
Activities outside work (self) .816
Outcome 2.021 67.4
Component 11: 3D-fatigue
Emotional fatigue .876
Mental fatigue .859
Physical fatigue .717
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5.3 Bivariate Analysis

Associations Between Fatigue, Efficiency, and Working Hours. The associations
between the three different types of fatigue, efficiency, and six working hours-related
variables were investigated using a Pearson correlation (shown in Table 2). The three
dimensions of fatigue were significantly correlated with each other (p < .01). Physical
fatigue showed a significant positive correlation with shift length and the frequency of
rest and breaks during work (r from .26 to .27, p < .01). Mental fatigue showed a
significant correlation with the start time of shift work (r (222) = −.20, p < .01), with
higher levels of mental fatigue associated with earlier shift work start times (i.e., early
morning shift work). Mental fatigue, emotional fatigue, and efficiency were signifi-
cantly correlated with the numbers of shifts taken before a rest day, with correlation
coefficients between .13 and .15, both p < .05. In addition, higher efficiency was found
to be significantly associated with longer break length, (r (219) = .17, p < .05).

Associations Between 3D-Fatigue and Independent Factors. The associations
between 3D-fatigue and 10 independent components were analysed using their factor
scores. The results are summarised in Table 3. As the components of fatigue predictors,
job demands and negative work characteristics showed a significant positive correlation
with 3D-fatigue, while positive work and individual characteristics showed significant
negative correlations with fatigue (all p < 0.01). 3D-fatigue positively correlated with
length of shift, overtime work, and timing of shift (r from .20 to .32, p < .01). Con-
sidering the components of the factor mental workload, 3D-fatigue showed a signifi-
cant positive correlation with emotional and mental demands, r (217) = .66, p < .01,

Table 2. Correlations between three different types of fatigue, efficiency, and working hour-
related independent variables (IV).

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Physical fatigue (1) 1
Mental fatigue (2) .40** 1
Emotional fatigue
(3)

.44** .67** 1

Efficiency (4) −.02 −.09 −.12 1
Shift length (5) .26** .11 .09 −.12 1
Number of shifts
before rest day (6)

.02 .13* .15* .15* −.31** 1

Start time of shift (7) −.10 −.20** −.08 −.11 .18** −.27** 1
Overtime work (8) .11 .03 .07 .13 −.09 .15* −.13 1
Frequency of break
during work (9)

.27** .02 .03 .06 .18* −.09 −.10 −.05 1

Break length (10) −.06 −.08 −.10 .17* .09 .01 .03 .04 −.02 1
*p < 0.05, **p < 0.001
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with a higher level of fatigue associated with a higher level of emotional and mental
demands. Meanwhile, fatigue showed a negative correlation with effort, indicating that
poorer effort was associated with a higher level of fatigue. In terms of the activities
outside of work, fatigue showed a significant correlation with the sleep factor,
r (195) = −.260, p < 0.01, with a higher level of fatigue associated with a poorer sleep
experience. There was no significant association between fatigue and other activities.

5.4 Regression

Regression analyses were carried out to investigate the associations of multiple inde-
pendent variables with fatigue. First, a linear regression was run using the factor scores
of the independent components and 3D-fatigue. As shown in Table 4, mental work,
positive work and individual characteristics, and job demands were the strongest
predictors of 3D-fatigue by beta weight, followed by overtime work. The regressions
account for 51.3% of the variance in 3D-fatigue.

Table 3. Correlation between 3D-fatigue and factor IVs.

Factor 3D-fatigue

Negative work characteristics .35**

Positive work and individual characteristics −.24**

Job demands .47**

Length of shift .32**

Overtime work .31**

Timing of shift .20**

Mental workload .66**

Effort −.17*

Sleep factor −.26**

Other activity .02
*p < 0.05, **p < 0.001

Table 4. Regression predicting 3D-fatigue.

Variables B S. E b t Sig.

Negative work characteristics .099 .071 .100 1.384 0.168
Positive work and individual characteristics −.172 .064 −.173 −2.680 <0.01
Job demands .178 .080 .171 2.231 <0.05
Length of shift .048 .066 .050 .727 0.468
Overtime work .123 .058 .123 2.109 <0.05
Timing of shift .079 .065 .080 1.216 0.226
Mental workload .425 .084 .418 5.042 <0.001
Effort −.047 .067 −.045 −.700 0.485
Sleep factor −.081 .058 −.083 −1.408 0.161
Other activities .040 .057 .041 .702 0.484
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However, given that the risk factors for different dimensions of fatigue can be
different, separate analyses of the physical, mental, and emotional fatigue variables
were needed. Therefore, binary logistics regression analyses (using enter method) were
run, using the original fatigue variables as the outcomes, and dichotomised factors as
the predictors. The dependent variables used here were physical fatigue, mental fatigue,
and emotional fatigue, which were dichotomised into high/low groups using median
splits (M Physical Fatigue = 6, M Mental Fatigue = 7, M Emotional Fatigue = 6). The inde-
pendent variables were the 10 independent factors, which were dichotomised though
median splitting the factor scores. The results are presented in Tables 5, 6 and 7.

Analysing Predictors of Physical Fatigue. In the regression analysis, negative work
characteristics, long length of shifts, and overtime work were found to be associated
with physical fatigue at a significant level (p < .05). The strongest predictor of
reporting a physical fatigue problem in this model was the length of shift work,
recording an odds ratio (OR) of 4.5, indicating that participants working long shifts
were 4.5 times more likely to report physical fatigue problems (p < 0.001) than those
with shorter shifts. This was followed by overtime work, recording an OR of 3.1, and
negative work characteristics, recording an OR of 2.6. High mental workload and high
job demands showed a trend toward significance in predicting physical fatigue (p Mental

workload = 0.069, p Job Demands = 0.084, both OR = 2.1). There was no significant
association between other factors and physical fatigue in this model. The account of
explanatory power of this model was 39.5% of the variance, and the classification
accuracy was 75.0%. The full model containing all predictors, was statistically sig-
nificant, X2 (1, N = 172) = 59.972, p < 0.001, indicating that the model was able to
distinguish between participants who reported and those who did not report a physical
fatigue problem.

Analysing Predictors of Mental Fatigue. Job demands, mental workload, and
overtime work were found to influence mental fatigue significantly (p < .01). The
strongest predictor of mental fatigue was job demands, recording an OR of 5.4,

Table 5. Odds ratio of each IV on physical fatigue.

Variables Odds ratio 95% CI for odds ratio

Negative work characteristics (high) 2.630* [1.189, 5.820]
Positive work and individual characteristics (low) 2.080 [0.907, 4.771]
Job demands (high) 1.888 [0.856, 4.165]
Length of shift (long) 4.468** [1.929, 10.347]
Overtime work 3.122* [1.433, 6.804]
Timing of shift (poor) 0.909 [0.420, 1.969]
Mental workload (high) 2.105 [0.943, 4.702]
Effort (high) 1.239 [0.563, 2.729]
Sleep factor (negative) 1.489 [0.682, 3.250]
Other activities 1.769 [0.808, 3.874]
*p < 0.05, **p < 0.001
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indicating that participants working with high job demands were 5.4 times more likely
to report a mental fatigue problem (p < 0.001) than those with low job demands. This
was followed by mental workload (OR = 3.0) and overtime work (OR = 2.9). No
significant association between other factors and mental fatigue was found in this
model. The model of mental fatigue accounted for 40.0% of the variance and correctly
classified 75.7% of cases. The full model containing all predictors, was statistically
significant (X2 (1, N = 173) = 61.131, p < 0.001), indicating that the model was able
to distinguish between participants who reported and those who did not report a mental
fatigue problem.

Analysing Predictors of Emotional Fatigue. Emotional fatigue was significantly
predicted by positive work and individual characteristics, job demands, length of shift,
overtime work, timing of shift, and mental workload. Overtime work was the strongest
predictor of reporting emotional fatigue, recording an OR of 4.2, p < 0.001. This was
followed by length of shift (OR = 3.9, p < .01), low scores for positive work and
individual characteristics (OR = 3.8, p < .01), and high job demands (OR = 3.6,
p < .01). Mental workload and the timing of shift were also the important predictors of
emotional fatigue, both recording ORs of 2.7, p < .05. The model of emotional fatigue
accounted for 42.1% of the variance and correctly classified 76.3% of cases. The full
model containing all predictors, was statistically significant (X2 (1, N = 173) = 65.407,
p < 0.001), indicating that the model was able to distinguish between participants who
reported and those who did not report an emotional fatigue problem.

Table 6. Odds ratio of each IV on mental fatigue.

Variable Odds ratio 95% CI for odds ratio

Negative work characteristics (high) 1.658 [0.728, 3.777]
Positive work and individual characteristics (low) 1.253 [0.549, 2.857]
Job demands (high) 5.403** [2.465, 11.840]
Length of shift (long) 0.807 [0.337, 1.932]
Overtime work 2.899* [1.324, 6.345]
Timing of shift (poor) 1.066 [0.478, 2.378]
Mental workload (high) 2.959* [1.311, 6.679]
Effort (high) 1.788 [0.808, 3.954]
Sleep factor (negative) 1.819 [0.817, 4.051]
Other activities 0.951 [0.440, 2.058]
* p < 0.05, **p < 0.001
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6 Discussion

The present study confirmed that mental workload is an essential cause of fatigue
among rail staff. Although other risk factors were also found to be associated with
fatigue, only positive work and individual characteristics, job demands, overtime work,
and mental workload predicted fatigue as a single outcome, which is consistent with
previous studies [6, 30]. The findings provided more specific information on mental
workload and other causes of different types of fatigue. When different types of fatigue
were analysed separately, mental workload, job demands, and overtime work were still
found to predict fatigue in all its three dimensions. Physical fatigue was also associated
with longer length of shift work, negative work characteristics, and less frequent breaks
during work. Moreover, the findings provide evidence that poor shift patterns result in
mental and emotional fatigue. Both mental and emotional fatigue were associated with
poor timing of shifts and a greater number of shifts taken before a day of rest. Emo-
tional fatigue was also predicted by positive work and individual characteristics, which
means that high job supports and control, healthy lifestyle, and positive personality
helped to reduce emotional fatigue. Although the effects of positive work and indi-
vidual characteristics were in line with a previous large-scale study [1] that showed
they play a buffering role in fatigue, they only influenced emotional fatigue, not mental
fatigue. These findings support the idea that the jobs of rail staff place greater emphasis
on the mental workload. In the factor analysis, the contribution of physical job
demands to 3D-demands was much smaller than that of mental and emotional
demands. This supported the view from previous research [14] that currently, work in
the railway industry imposes more cognitive demands than physical demands. More-
over, the predictive ability of job demands was consistent with those of mental
workload. It predicted all three different types of fatigue, as well as fatigue as a whole,
while the effect of effort was not found to be significant. It was the mental workload
and overtime work that resulted in all different types of fatigue among train crew.
“More work over longer times from fewer people” is a dangerous strategy which can

Table 7. Odds ratio of each IV on emotional fatigue.

Variable Odds ratio 95% CI for odds ratio

Negative work characteristics (high) 1.478 [0.636, 3.434]
Positive work and individual characteristics (low) 3.809* [1.635, 8.875]
Job demands (high) 3.603* [1.604, 8.093]
Length of shift (long) 3.883* [1.591, 9.473]
Overtime work 4.180** [1.851, 9.436]
Timing of shift (poor) 2.804* [1.197, 6.568]
Mental workload (high) 2.809* [1.248, 6.323]
Effort (high) 1.541 [0.703, 3.381]
Sleep factor (negative) 1.378 [0.630, 3.014]
Other activities 1.776 [0.799, 3.948]
*p < 0.05, **p < 0.001
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make the train staff more fatigued. Currently, fatigue is conceptualised in terms of
working hours in rail transport. This suggests that future fatigue study of the railway
staff should develop an appropriate mental workload measurement. Subjective measure
of the mental workload will be sufficient [16, 26], despite the fundamental research
required to compare subjective and objective workload in the industry. Based on data
gathered through an online survey, the results of the current study are in line with those
of previous studies (e.g., [5, 6, 30]). Furthermore, the results showed a bias towards
having a positive personality, efficiency, and effort, which also appeared in the offline
survey [30]. These suggests that the online survey was as reliable as the offline version,
and in the future, online studies can be carried out.

In future research, measuring different types of fatigue separately will be useful to
better understand job role differences. Although the high mental workload and overtime
work cannot be avoided in many industries, a better understanding of the causes of
different types of fatigue among workers will help with fatigue management in the
workplace. It is suggested that sufficient opportunities to take breaks during work
should be provided to control physical fatigue, and that shift patterns should be well
arranged to reduce the risk of mental and emotional fatigue.

7 Conclusion

Fatigue has usually been investigated as a single outcome, but there are different types
of fatigue taking into account separate kinds of energy resources. This study explored
the causes of physical, mental, and emotional fatigue among rail staff. The finding
indicated that mental workload and overtime work were the essential causes of all these
types of fatigue among rail staff. Alongside these two causes, these three dimensions of
fatigue were influenced by different factors. Physical fatigue resulted from prolonged
shift work, insufficient rest during work, and negative work characteristics, while
mental and emotional fatigue resulted from poorly arranged shift patterns, including
poor timing of shifts and working more shifts before taking a regular rest day. Positive
work and individual characteristics played a buffering role only for emotional fatigue,
but not for mental fatigue. This suggested that to recovery from physical and mental
fatigue, appropriate rests and breaks and better arranged shift patterns were needed. In
future research, measuring different types of fatigue separately will be useful to better
understand job role differences and benefit fatigue management.
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Abstract. Self-reporting procedures have been largely employed in literature to
measure the mental workload experienced by users when executing a specific
task. This research proposes the adoption of these mental workload assessment
techniques to the task of creating uplift mappings in Linked Data. A user study
has been performed to compare the mental workload of “manually” creating
such mappings, using a formal mapping language and a text editor, to the use of
a visual representation, based on the block metaphor, that generate these map-
pings. Two subjective mental workload instruments, namely the NASA Task
Load Index and the Workload Profile, were applied in this study. Preliminary
results show the reliability of these instruments in measuring the perceived
mental workload for the task of creating uplift mappings. Results also indicate
that participants using the visual representation achieved smaller and more
consistent scores of mental workload.

Keywords: Mental workload � Uplift mapping representations � Linked Data

1 Introduction

Human mental workload (MWL) is a fundamental design concept used to investigate
the interaction of human with computers and other technological devices [22]. MWL
instruments measure the cognitive load experienced by users when executing a specific
task [5]. Literature suggests that both mental overload and underload can affect per-
formance [22]. This study employs human mental workload instruments to the task of
creating uplift mappings in Linked Data. Linked Data refers to a set of best practices for
publishing and interlinking data on the Web [4]. The standard data model used in
Linked Data is the Resource Description Framework1 (RDF). Uplift mappings are
responsible for expressing how non-RDF data should be transformed to RDF [8].
A significant part of the Linked Data web is achieved by such conversion process.

The uplift process is often express through mapping languages. The W3C Rec-
ommendation mapping language R2RML [9] (RDB to RDF mapping language) is an
example of a formal language used to express mappings that transform relational

1 http://www.w3.org/TR/rdf11-concepts/.
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databases into RDF. These mappings can be created “manually”, trough text editors or
by applications that support user involvement in the mapping process. Such applica-
tions may make use of visual representations to alleviate the knowledge required by
mapping languages [31]. An example of a visual representation is the Jigsaw Puzzles
for Representing Mappings (Juma) [18]. Juma is based on the block metaphor, which
has become popular with visual programming languages (see Sect. 2.3). It is assumed
that the creation of mappings using different uplift mapping representations require
different cognitive processing resources. And that the assessment of the cognitive
workload of uplift mapping representations can be used to evaluate and improve the
interaction between users and these representations. Thus, this paper extends the
application of MWL instruments by evaluating the perceived mental workload of users
when performing an uplift mapping task. The user experiment presented in this paper
assesses the cognitive load of creating uplift mappings using the two aforementioned
mapping representations, R2RML and Juma. Two subjective mental workload
instruments were applied in this study, namely the Workload Profile and the Nasa Task
Load Index. To the authors knowledge, this paper presents the first evaluations con-
sidering the cognitive load of creating uplift mappings in Linked Data.

The remainder of this paper is structured as follows: Sect. 2 discusses the back-
ground knowledge, which contains a brief description of mappings applied in the
Linked Data domain. Section 3 presents the two mental workload assessment instru-
ments used in this study. Section 4 introduces the design of a novel primary research at
the intersection of mental workload and uplifting mapping tasks. Results and their
analysis are presented in Sect. 5. Related work is presented in Sect. 6. Section 7
concludes the paper and suggests future work.

2 Background

2.1 Mappings in Linked Data

The term Linked Data refers to a set of best practices for publishing and interlinking
data on the Web [4]. A Linked Data dataset is structured information encoded using the
Resource Description Framework (RDF), that are linked to other datasets, and acces-
sible via HTTP. RDF is a graph data model that provides one means to describe,
annotate and exchange information such that machines can process them [4]. The
Linking Open Data project has the goal of publishing open datasets as Linked Data.
These open datasets are freely accessible and collectively known as the Linked Open
Data cloud2. A significant part of the Linked Data cloud is achieved by converting
resources to RDF, often through mappings. In a general context, a mapping defines a
relation between source and target elements [12]. The properties of a mapping are
represented in a structured format using mapping languages [8]. Mappings that express
how non-RDF data is transformed to RDF are called uplift mappings. An example of a
transformation from a relational database to RDF is presented in Fig. 1. In this
example, the table person is transformed into the graph-based RDF data model.

2 http://lod-cloud.net/
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The R2RML mapping language, which can be used to express these transforma-
tions, is presented in Sect. 2.2. Juma, a visual representation that can be used to
generate such mappings, is presented in Sect. 2.3.

2.2 R2RML

The RDB to RDF mapping language (R2RML) [9] is the W3C Recommendation
mapping language used to express mappings between relational databases and RDF.
R2RML’s vocabulary defines that each mapping consists of one or more triples maps.
A triples map has (1) one logical table, (2) one subject map and (3) zero or more
predicate object maps, where:

1. Logical Table: a table or an SQL query from which RDF will be generated.
2. Subject Map: subject maps define the subjects of the RDF triples. These subjects

can be IRIs or blank nodes. One also may specify zero or more URI class types.
3. Predicate Object Map: each predicate object map defines the predicates, using

predicate maps, and objects, using object maps, of the RDF triples. Each predicate
object map must have at least one predicate map and one object map. Predicates must
be valid IRIs. Objects can be IRI’s, blank nodes or literal values. For literal values, it
is possible to define a data type or a language. One may link triples maps using
parent triples map. A parent triples map can have zero or more join conditions.

Listing 1 shows an example the transformation presented in Fig. 1 expressed using
the R2RML mapping language.

<#TripleMap1>
rr:logicalTable [ 
rr:tableName "person"; 

];

rr:subjectMap [
rr:template "http://example.org/person/{id}"; 
rr:class foaf:Person;

];

rr:predicateObjectMap [
rr:predicateMap [ rr:constant foaf:name; ]; 
rr:objectMap [ rr:column "name"; ];

];.
Listing 1. R2RML mapping definition

Fig. 1. Example of a transformation from a relational database to RDF
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In this mapping, the logical table is defined as person. Using one triples map, we
define the subjects to have the following URI http://example.org/person/
{id}. Id is an attribute coming from the table person. In this sense, for row with id
equals to 1, this mapping would generate triples with the subject as http://exam-
ple.org/person/1, and so on. A class definition construct is used to define that
these subjects are instances of the class foaf:Person, which is declared in the
FOAF3 vocabulary. A predicate object map defines the predicate of the triples to be
foaf:name, and the object of the triples to be come from the attribute “name” of the
declared logical table person. The output of this mapping, considering that the fictional
table person has only one record with the attribute id as an integer with value 1 and
attribute name as a string with value “Ana”, is shown in RDF Turtle syntax in Listing 2.

2.3 Juma

Juma is a method for visually representing mappings in Linked Data. Juma is based on
the block (or jigsaw) metaphor that has become popular with visual programming
languages – where it is called the block paradigm – such as Scratch4. This metaphor
allows users to focus on the logic instead of the language’s syntax. In addition, the
block metaphor has been successfully used in other domains [3, 6]. The implementa-
tion of Juma applied to uplift languages used in this study is called Juma Uplift [19]. In
Juma Uplift, each mapping defines an input source that is associated to 0 or more
vocabularies. These vocabularies are then used in the mapping definitions. A mapping
is also associated with 0 or more subject definitions. These subject definitions express
how subjects are generated from the input data. Each subject definition has associated
predicate object definitions. Subject definitions can also declare these to be instances of
0 or more classes, to be a blank node, and associate triples to a named graph. For more
information about Juma Uplift the reader is referred to [19]. Figure 2 shows the
mapping from Listing 1 represented using the Juma Uplift representation. The RDF
output of this mapping was presented in Listing 2.

<http://example.org/person/1>
a       <http://xmlns.com/foaf/0.1/Person> ;
<http://xmlns.com/foaf/0.1/name>

"Ana" .
Listing 2. RDF output from executing the mapping presented in Listing 1

3 http://xmlns.com/foaf/0.1/
4 https://scratch.mit.edu/, last accessed May 2018
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3 Mental Workload Self-reporting Assessment Instruments

Human mental workload (MWL) is a fundamental design concept used to investigate
the interaction of human with computers and other technological devices [22]. It can be
intuitively described as the amount of work necessary for users to complete a task [5].
MWL measurements can be classified into three broad categories:

• subjective measures: subjects auto-assess their mental workload by rating a set of
dimensions, within pre-defined scales, in relation with the execution of a task
performed immediately before;

• performance measures: subjects have some physiological characteristics measured
while performing a task. As, for instance, eye activity and heart rate;

• physiological measures: subjects’ mental workload is assessed according with the
performance reached in a primary or for a secondary task (e.g. error rates; task
completion time).

This paper focuses on two subjective mental workload assessment techniques: the
Workload Profile and the NASA Task Load Index.

3.1 Workload Profile

The Workload Profile (WP) assessment procedure [42] is built upon the Multiple
Resource Theory proposed in [45, 46]. In this theory, individuals are seen as having
different capacities or ‘resources’ related to:

• stage of information processing: perceptual/central processing and response
selection/execution;

• code of information processing: spatial/verbal;
• input: visual and auditory processing;
• output: manual and speech output.

Each dimension is quantified through subjective rates and subjects, after task
completion, are required to rate the proportion of attentional resources used for per-
forming a given task with a value in the range 0..1 2 <. A rating of 0 means that the
task placed no demand while 1 indicates that it required maximum attention. The

Fig. 2. Juma Uplift mapping representation
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questionnaire is presented in Table 7. The aggregation strategy is a simple sum of the 8
rates d (averaged here, and scaled in [1..100 2 <] for comparison purposes):

WP: 0::100½ � 2 <

WP ¼ 1
8

X8

i¼1

di � 100

3.2 NASA Task Load Index

The NASA Task Load Index (NASA-TLX) instrument [16] belongs to the category
of self-assessment measures. It has been validated in the aviation industry and other
contexts in Ergonomics [16, 36] with several applications in many socio-technical
domains. It is a combination of six factors believed to influence MWL (full ques-
tionnaire in Table 8). Each factor is quantified with a subjective judgement coupled
with a weight computed via a paired comparison procedure. Subjects are required to
decide, for each possible pair (binomial coefficient, 6

2

� � ¼ 15) of the 6 factors, ‘which of
the two contributed the most to mental workload during the task’, such as ‘Mental or
Temporal Demand?’, and so forth. The weights w are the number of times each
dimension was selected. In this case, the range is from 0 (not relevant) to 5 (more
important than any other attribute). The final MWL score is computed as a weighted
average, considering the subjective rating of each attribute di and the correspondent
weights wi:

NASATLX: 0::100½ � 2 <

NASATLX ¼
X6

i¼1

di � wi

 !
1
15

Alternatively, it is possible to calculate the MWL scores eliminating the weighted
procedure, which is called Raw TLX.

4 Design and Methodology

A primary research study has been designed to assess the mental workload of creating
uplift mappings in Linked Data using two different mapping representations. This
experiment compares the “manual” creation of uplift mappings with R2RML using the
RDF TURTLE notation5 (which is in essence a text file) to the visual mapping rep-
resentation Juma. For the remainder of this paper, R2RML mappings refers to

5 TURTLE is only one of the many standardized RDF representations. TURTLE was chosen as it is
terse, and one of the more usable and easier to read representations. Even the R2RML W3C
Recommendation uses TURTLE for their examples.
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mappings in R2RML using RDF TURTLE syntax, and Juma refers to mappings
represented using the Juma Uplift representation.

The research hypotheses related to this experiment are:

• Hypothesis H1: the perceived mental workload of users interacting with Juma for
the creation of uplift mappings is expected to be lower than the perceived mental
workload experienced by users that crafted the same mappings manually, according
to the NASA-TLX and WP mental workload measures.

• Hypothesis H2: the NASA-TLX and WP mental workload measures have high
reliability.

4.1 Participants and Procedure

A number of students enrolled in a third-level class from a MSc module in Information
and Knowledge Architecture in Trinity College Dublin, Ireland, in 2017, have been
approached for this experiment. The experiment was executed in week 10 of a 12-week
module. At that time, the course on Knowledge Engineering and Semantic Web
technologies had covered OWL modeling, RDF, and SPARQL (amongst others).
Participants also had one class, a week before the experiment, on R2RML, which
included exercises. This highlights the pre-training on R2RML that the participants
have received prior to this research experiment. Note that participants had no knowl-
edge of Juma prior to the experiment. In order to evaluate the Juma and R2RML
mapping representations for the task of creating uplift mappings, participants were split
into two groups. Students in one group were exposed to the Juma visual representation
– which, for the remainder of the paper, we refer to as the Juma group. Participants in
the second group were able to use their preferred text editor to create uplift mappings
manually, using R2RML – referred as the R2RML group for the remainder of the
paper. The study was executed with 26 participants, 12 in the Juma group and 14 in
R2RML group. The experiment was executed with participants in a classroom; and
lasted for 50 min. The first 10 min were used to explain the experiment to participants,
and for participants to examine the material provided. Note that participants still did not
have access to the uplift mapping task at this point. Participants were also asked to fill
in, read, and consent to the study information sheet, to be able to participate in the
experiment. All participants had exactly 30 min for the execution of the task. Finally,
in the last 10 min, participants were asked to fill in the questionnaires associated to the
WP and NASA-TLX mental workload assessment instruments. Note that the question
of the NASA-TLX related to ‘physical demand’ (NT2 in Table 8) was set to 0, as there
is no physical load related to the task assessed in this experiment. In detail, the eval-
uation was structured in four parts, as also depicted in Fig. 3:

1. Technical debriefing: all participants had the opportunity to watch videos about
R2RML6 prior to executing the uplift mapping task. The group using the Juma

6 Available at https://www.scss.tcd.ie/*crottija/juma/r2rml.pdf and https://www.youtube.com/watch?
v=fn5mKGGj2us.
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method also had a presentation and a video about the visual representation7. The
material was also available during the execution of the task.

2. Mapping task: in the main part of this study, participants were asked to create a
specific uplift mapping (described in Sect. 4.2). Participants could ask questions for
clarifying any doubts about the experiment.

3. Post-task questionnaire: after completion of the task, participants were asked to
fill in the WP and NASA-TLX mental workload questionnaires.

4.2 Mapping Task

This user study was built on top of the Microsoft Access 2010 Northwind sample
database that has been ported to MySQL8. Participants were asked to create one
R2RML mapping divided in three subtasks. For each subtask, a sample RDF output
was shown to participants. In addition, they could run the mapping, by using an
R2RML processor, and compare the output of their mapping execution to the sample
provided. In this sense, an R2RML processor [10] was integrated to Juma. Participants
creating the mappings using a text editor had access to a compacted folder with the
same engine and the command line instruction that runs it. By executing the mappings,
participants were able to validate the correctness of the output. A summary of the
mapping task, separated into its subtasks, is shown below:

• Subtask 1: participants had to define a mapping with one subject per row of the
table employees. The subject URI for the triples should be http://data.ex-
ample.org/employee/{id}. These subject should also have the URI type
class foaf:Person from the FOAF9 vocabulary. The mapping definition should
also create, for these subjects, the predicate foaf:givenName with object from
the column first_name. The predicate foaf:familyName with object from the
column last_name. Finally, the predicate foaf:name should have the concate-
nation of the columns last_name and first_name separated by comma as object.

Fig. 3. Experiment design diagram

7 Available at https://www.scss.tcd.ie/*crottija/juma/juma.pdf and https://www.youtube.com/watch?
v=Q97YeZtu_tA.

8 Available at https://github.com/dalers/mywind.
9 http://xmlns.com/foaf/0.1/.
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• Subtask 2: in the same mapping, participants were asked to define another subject
from the table employees. The subject URI should be http://data.example.
org/city/{city}. These subjects should have the URI type class foaf:
Spatial_Thing. The mapping should generate the predicate rdfs:label,
from the RDFS10 vocabulary, with object from the column city for each subject.

• Subtask 3: finally, participants were asked to link the subject from subtask 1 with
the subject from subtask 2 using the predicate foaf:based_near.

Some elements of the task could be achieved in different ways. For example, since
not all attributes are mapped, participants could map an SQL query instead of the whole
table. Concatenating could be implemented using a template construct, an SQL query,
or through the use of the data transformation function called ‘concatenating’ - for
participants using Juma Uplift. The template construct would be the expected solution
to concatenating. Subtask 3 asked participants to relate the subjects created in subtask 1
and subtask 2. This could be achieved by mapping using an SQL query with a join, a
template construct - since this value comes from the same table – or with a parent
triples map (for users creating mappings manually) or the linking block (for participants
using Juma Uplift). For subtask 3, parent triples map or the linking block would be the
expected solution. The task performance, as it is defined in this paper, is the number of
correct triples found in the RDF output generated from the participants’ mappings.
Note that the performance takes the output of the mapping into account and not the
mapping itself, as there are multiple possible correct solutions, but only one correct
output. The Jena API11 was used to compare the RDF models and count the triples.
Table 1 shows the challenges associated to the task.

Table 1. Challenges associated to the task

Subtask Short description Challenge/Non-trivial aspects

#1 Map and type entities to a
class with three attributes

One attribute mapping is the concatenation of
other two attributes. This requires mapping using
a SQL query, the use of a template construct or the
data transformation function ‘concatenating’ - for
participants using Juma Uplift

#2 Map and type another entity
with one attribute

Map cities as a second entity from the same table
using another triples map

#3 Linking the subjects created
in the previous subtasks

Linking subjects created in subtasks 1 and 2. This
requires the use of a template construct, a SQL
query with a SQL join, the R2RML parent triples
map construct for mappings created manually, or
the linking block for participants using Juma
Uplift

10 http://www.w3.org/2000/01/rdf-schema.
11 https://jena.apache.org/, accessed May 2018.
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5 Results and Analysis

In this section, we present the results and analysis of the experiment described in
Sect. 4. As stated in the previous section, in order to test the research hypothesis H1,
the WP and NASA-TLX instruments were applied. Table 2 shows the perceived
mental workload of both instruments for the R2RML group. Table 3 shows the same
scores for the Juma group.

Table 2. Perceived mental workload scores for the R2RML group

Participant WP NASA-TLX

#1 45.86 65.6
#2 37.86 64.8
#3 41.28 37.8
#4 73.13 51.4
#5 27.86 35.6
#6 32.43 51.6
#7 75.29 56.8
#8 46.29 42
#9 71.13 62.8
#10 16.13 34
#11 58.43 54.4
#12 63.56 56
#13 63.13 73.2
#14 49.56 61.6
AVG 50.14 53.40
STD 18.08 12.14

Table 3. Perceived mental workload scores for the Juma group

Participant WP NASA-TLX

#1 46.86 52.6
#2 41.29 47
#3 36.57 31.2
#4 54.57 51.2
#5 54.72 48
#6 45.56 61.8
#7 57.87 57.4
#8 46 34.4
#9 54.86 52.4
#10 64.13 48.2
#11 28.43 26.4
#12 43.29 37
AVG 47.85 45.63
STD 9.92 10.95
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The Anderson-Darling normality test was applied to the R2RML and Juma groups.
Table 4 shows the A values and p-values resulting from this test. Figure 4 shows
histograms for the same data.

In order to compare the scores between the groups, we have applied the Welch T-
Test and the Wilcoxon test. These tests are used to compare whether two samples are
statistically different. The main difference between these tests is that the Welch T-Test
assumes normality of the data. The Wilcoxon Test, however, is considered an alter-
native test when the data does not follow a normal distribution. Considering that the
Anderson-Darling test indicates that the data in both groups is normal, the Welch T-
Test should be sufficient. For clarity, we have also applied the Wilcoxon test. The
results of the independent two sample Welch T-Test and Wilcoxon test are presented in
Table 5.

Table 4. Anderson-Darling normality test per group

MWL R2RML Juma
A p-value A p-value

WP 0.20 0.84 0.23 0.47
NASA-TLX 0.33 0.74 0.39 0.33

Fig. 4. Mental workload score histograms per group
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As mentioned in Sect. 4.2, the performance of participants was calculated by
counting the correct triples in the output of the execution of the mappings created by
each participant. In this sense, the R2RML group achieved task performance of
35.98%; while the Juma group achieved 93.08%. Figure 5 shows a scatterplot between
performance and the MWL scores. In this plot, the correlation between performance
and mental workload scores in the R2RML group seems to be multi modal, while the
distribution in the Juma group seems to be unimodal. These plots and the smaller
standard deviation indicate that the mental workload scored perceived by participants
in the Juma group are more consistent than the ones found in the R2RML group.

5.1 Reliability

In order to test the research hypothesis H2, the Cronbach’s alpha coefficient was
applied. Cronbach’s alpha is a commonly used measure of reliability within

Table 5. Mental workload test between groups

MWL Welch Test Wilcoxon
Test

T p-value W p-value

WP −0.41 0.69 75.5 0.68
NASA-TLX −1.72 0.10 50 0.08

Fig. 5. Scatterplot between MWL scores and performance per group
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questionnaires. Cronbach’s alpha should coefficients should be higher than 0.70, as it is
suggested in the literature [30]. Table 6 shows the Cronbach’s alphas for the WP and
NASA-TLX mental workload instruments. These results highlight a strong internal
consistency of the items (questions) in these instruments. They also suggest that these
instruments are reliable measures of mental workload.

Figure 6 shows a scatterplot between WP and NASA-TLX scores per group. This
plot suggests a positive linear relation between the MWL instruments WP and NASA-
TLX. It also indicates that when WP increases, so does the NASA-TLX score.

5.2 Findings

The performance of participants using the Juma representation was higher than for
participants manually creating the mappings using R2RML (as per Fig. 5). The per-
ceived mental workload scores were slightly smaller for Juma, for the WP and NASA-
TLX instruments (Fig. 4). It is important to note that the performance achieved by the
Juma group is almost three times the performance achieved by the R2RML group, and
that the mental workload scores in the Juma group are slightly smaller. The standard
deviation in the Juma group is also smaller than the standard deviation found in the
R2RML group. This suggests that these mental workload scores are more consistent in

Table 6. Cronbach’s alpha index for WP and NASA-TLX

MWL Alpha index

WP 0.78
NASA-TLX 0.85

Fig. 6. Scatterplot between the WP and NASA-TLX scores
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the Juma group, which can also be seen in Fig. 5. However, the difference between the
mental workload scores’ groups was found not to be statistically significant, through
the independent two sample Welch T-Test and Wilcoxon test, with NASA-TLX pre-
senting the p-value nearest to the threshold of 0.05. Nonetheless, we argue that these
results indicate that the hypothesis H1 is true. However, since the Welch T-Test and
Wilcoxon test did not find the differences between the groups to be statistically sig-
nificant, maybe due to the small sample size, our conclusion is that more experimen-
tation is needed to confirm the hypothesis H1. Cronbach’s alpha showed that the MWL
through WP and NASA-TLX are reliable instruments for measuring mental workload,
thus the research hypothesis H2 can be accepted and findings reliably considered.
Figure 6 also suggests evidence for the validity of MWL instruments, showing a high
correlation between WP and NASA-TLX scores for both groups, which is expected.

6 Related Work

6.1 Uplift Mapping Representations

Several mappings languages have been proposed in literature. R2RML [9] is the W3C
Recommendation mapping language to map relational databases to RDF. Examples of
R2RML implementations are db2triples12, and morph [32]. Sparqlification Mapping
Language [40] is another mapping language based on SQL CREATE VIEWS and
SPARQL CONSTRUCT queries with support for relational databases and CSV files.
SPARQL-Generate [21] is another SPARQL-based mapping language with support for
multiple input data formats. A number of tools provide different visual representations
for uplift mappings in order to support user engagement. Karma [20] is an example a
web-based visual application for uplift mappings where data is loaded before it can be
mapped to RDF. Karma presents the ontologies used during the mapping process in a
tree structure and the data being mapped as a table. The mapping is represented using a
graph. Map-On [38] is another visual web-based editor where the input data and
ontologies being mapped are shown as graphs. Assertions between these graphs are
used to generate the uplift mapping. Juma [18], as explained in Sect. 2.3, is a method
that uses the block metaphor in the representation of mappings.

6.2 Mental Workload Applications

Self-assessment measures of MWL include multidimensional approaches such as the
NASA’s Task Load Index [16], the Subjective Workload Assessment Technique [33],
the Workload Profile (WP) [42] as well as unidimensional measures such as the
Copper-Harper scale [7], the Rating Scale Mental Effort [47], the Subjective Workload
Dominance Technique [44] and the Bedford scale [34]. These procedures have low
implementation requirements, low intrusiveness and high subject acceptability. Mental
workload assessment is typically conducted to evaluate the cognitive capabilities
related to a certain task. This task may be related to operating vehicles [2, 15, 39, 41],

12 https://github.com/antidot/db2triples, accessed in May 2018.
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user interfaces [23, 24, 26, 27, 37], teaching [35], emergency response [13], amongst
others. The NASA-TLX has been used for evaluating user interfaces in health-care [23,
24, 26, 27] or in e-commerce, along with a dual-task objective methodology for
investigating the effects on user satisfaction [37]. The NASA-TLX instrument has also
been used in an educational context to evaluate teaching methods [35]. Tracy and
Albers adopted three different techniques for measuring MWL in web-site design:
NASA-TLX, the Sternberg Memory Test and a tapping test [1, 43]. They proposed a
technique to identify sub-areas of a web-site in which end-users manifested a higher
mental workload during interaction, allowing designers to modify those critical
regions. Similarly, [11] investigated how the design of query interfaces influence stress,
workload and performance during information search. Here stress was measured by
physiological signals and a subjective assessment technique - Short Stress State
Questionnaire. Mental workload was assessed using the NASA-TLX and log data was
used as objective indicator of performance to characterize search behavior. In [28], the
author investigates the relation between usability, mental workload and human per-
formance. A comparison between machine learning techniques used to predict MWL to
the NASA-TLX and the Workload Profile instruments is presented in [29]. In the
Linked Data domain, MWL instruments have been used to assess ontology visual-
izations for semantic mappings [14], and exploratory search over Linked Data [17]. As
it can be seen in this section, several studies have assessed the mental workload,
including in Web systems, such as the work presented in [25], which is the case of the
Juma Uplift tool evaluated in this paper. The evaluation of performance and usability of
uplift mapping representations can be found in various studies, including for Juma [18].
However, to the author’s knowledge, this paper presents the first attempt at evaluating
the mental workload of creation and editing uplift mapping representations.

7 Conclusions and Future Work

This study extends the application of MWL instruments by showing how these can be
employed for the task of creating uplift mappings in Linked Data. These instruments can
guide developers and researchers in creating tools that find the optimal cognitive load on
users. A primary research has been designed and performed to compare the cognitive
load of two different approaches that can be used to create uplift mappings. From the
many uplift representations available, the W3C-Recommended mapping language to
express mappings from relational databases to RDF, R2RML, and Juma, a visual rep-
resentation for mappings based on the block metaphor, were selected for this study.

The experiment presented in this paper separated participants into two groups, one
creating mappings “manually” in R2RML, and another using Juma Uplift to create the
same mapping. After the time allocated to execute this task, two mental workload
instruments were applied to participants, namely the Workload Profile and NASA Task
Load Index. Results have shown that participants using Juma Uplift achieved higher
performance with slightly smaller, and more consistent, perceived mental workload
scores, when compared to participants creating mapping manually. This may suggest
that users interact better with the Juma representation, and that it has a smaller learning
curve for the task of creating uplift mappings. Cronbach’s alpha showed a strong
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internal consistency of the items of the questionnaires associated to the two selected
mental workload instruments, suggesting that these are reliable. As it was shown in
Sect. 6, uplift mapping representations are commonly evaluated based on the perfor-
mance and usability of participants, while the mental workload of performing tasks
involving these mapping representations is neglected. The findings of this paper show
that the cognitive load is a reliable instrument that can be used to compare, and
improve, uplift mapping representations.

Future work might include a comprehensive user study to evaluate performance and
usability, together with the cognitive load measurements presented in this study, for the
task of creating uplift mappings in Linked Data. Future work might also include the
evaluation of the interpretability of uplift mapping representations in Linked Data as an
additional task performance measure jointly with other self-reporting MWL instruments.
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as part of the ADAPT Centre for Digital Content Technology (http://www.adaptcentre.ie/) at
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Appendix A: MWL Questionnaires

Table 7. The Workload Profile questionnaire

Label Question

WP1 How much attention was required for activities like remembering, problem-solving,
decision-making, perceiving (detecting, recognizing, identifying objects)?

WP2 How much attention was required for selecting the proper response channel (manual
- keyboard/mouse, or speech - voice) and its execution?

WP3 How much attention was required for spatial processing (spatially pay attention
around)?

WP4 How much attention was required for verbal material (e.g. reading, processing
linguistic material, listening to verbal conversations)?

WP5 How much attention was required for executing the task based on the information
visually received (eyes)?

WP6 How much attention was required for executing the task based on the information
auditorily received?

WP7 How much attention was required for manually respond to the task (e.g.
keyboard/mouse)?

WP8 How much attention was required for producing the speech response (e.g. engaging
in a conversation, talking, answering questions)?
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Abstract. The Human Factors contribution in the scope of the industrial pro-
cess optimization presented in this case study had to deal with considerations
regarding the physical and mental workload requirements of different work-
stations and the capabilities of the operators assigned to them. The scope was to
provide the industrial management with a better way to allocate human
resources to tasks requiring different operational skills. The model developed
and customised showed promises results for the case study in which it was
applied but offers also a generalizable feature that can extend to other contexts
and situations. The assessment performed can contribute to consider necessary
areas of improvement in terms of technical measures, procedure optimizations
and improved work organization, to reduce defects and waste generation. The
paper presents a brief description of the theoretical and empirical approach used
to assess the workload of complex tasks in assembly lines and the matching
operators’ skillsets; furthermore, it also discusses some of the preliminary results
of its application.

Keywords: Human Factor � Workload � Human Performance �
World class manufacturing

1 Introduction

The main purpose of process optimization in manufacturing is to improve production
efficiency and economic benefits. To reach these goals process optimization works
through several areas: technical measures upgrading, work organization procedures
designing, and, energy saving. There is growing interest in addressing Human Factors
as part of these areas [1]. The discipline of Human Factors in fact, has a very relevant
role to play, despite the ever-increasing level of automation and the standardization of
working-procedures [2]. Quality managers focused their attention to human behaviour
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and try to analyse the causes of deviations from procedures where errors are detected
[3]. Safety experts included HF into accidents precursor analysis [4, 5] and into ex-post
events analysis [6] with the aim of reducing their repetition. HF considerations are used
in the area of work organization to reduce operational risks and improve task-time
optimization [7]. HF influence has been modelled and measured differently depending
on the characteristics of each application. Human Performance modelling is a complex
system, where behaviour, cognition, physiology and working condition deeply interact
[7, 8]. However the topic of Human reliability analysis and modelling, was initially
developed for safety critical industries such as nuclear and aviation and was not widely
applied to manufacturing even where humans are still at the forefront of production
process that are not completely automated. Automotive for instance is a sector where
production systems are based on assembly lines that are required a cross interaction
between highly automated workstations and highly trained human resources too.
Different operators are needed to contribute towards the final products, which calls for
different capabilities for analysing information, recalling items from memory, making
decision etc. while performing time constrained tasks. An empirical way to assess
human performance, such as the reliability of individuals to perform specific tasks can
be a very useful element in the process of allocating human resources to various
workstations in an assembly line, as different workstations will present different ele-
ments of complexity, ultimately affecting the frequency of defects, human errors [9]
and potential unsafe acts [9, 10]. The design of such a system requires an interaction
between task complexity in terms of both mental and physical workload, and the
assessment of the required human capabilities to cope with it. The main part of the
plant considered as a case study is organised into heavy vehicles assembly lines, which
include a sequence of workstations. The level of robotic application is relatively low,
most of the tasks are still manually performed As a consequence the impact of human
performance on production efficiency is significant; human errors, expressed in term of
defects and error of assembly, represent both an increase in cost and waste. The aim of
this study was to deliver a Human Performance (HP) modelling capability able to
identify areas of improvement in the industrial process so as to produce measurable
impact on the rate of human errors. Within the scope of the work was the cooperation
with the Management of the manufacturing plant, so as to deliver a practical opera-
tional model that could be applied by the plant managers themselves.

Section 2 summarises related work to this paper, while Sect. 3 presents the
designing process of the Model. Section 4 shows the model application and Sect. 5
provides an overview of the results and of the future developments for model
validation.

2 Related Work

This type of assessment demands a multidisciplinary approach [11] supported by
research in the field of Engineering, Psychology and Ergonomics [12]. This work was
intended to provide a both a theoretical and an empirical validated approach, and
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ultimately offer a contribution to the study of human performance optimization in
manufacturing. The proposed model is based on previous work presented by the
authors where fundamental hypothesis was that Human Performance HP could be
represented as directly dependent from two macro-factors [13]:

– Workload (WL): it represents all the factors contributing to the physical and mental
demands to execute a given operative task, including work environmental factors
[14, 15].

– Human capability (HC): it represents the resources of workers under the real
working conditions and includes the physical, mental and cognitive abilities of each
worker. As a contribution the authors considered some key hypothesis for the
concept of mental workload and how it can be operationalized for practical
assessments [16, 17].

3 Design and Methodology

The methodology used to estimate Human Performance in the assembly line can be
broken down into five steps (as it is showed in Fig. 1). First step was focused on the
“Conceptual Model” designing. This step began with understanding the variables
having an influence on Workload and Human Capabilities. Those variables have been
initially selected through a literature review balanced by an appraisal of the working
conditions of the different workstation and a task analysis [1, 3, 4] of the key activities
of the workstations considered for the study in the assembly line. The second step
consisted in characterizing the conceptual model to suit the actual empirical situation
found in the case study. This process identified, with the support of task analysis
method [18], the actual empirical data sources and or proxies to assess the variables of
the conceptual model identified from the literature review, so as to be connected with
one or more observable and measurable quantities. This process lead to a simplification
of the initial conceptual model into a version applicable to the data availability and the
needs expressed for the case study. Data-Field collection was dedicated to empirical
measurements of all quantities defined in the operative model structure: results were
used for Human Performance Assessment involving the assessment of the workload
element together with operator’s capabilities. The results obtained from the Data-Field
collection campaign lead to the Human Performance (HP) assessment, and that is used
to plan interventions on the human resources management of the assembly line.
A validation period during which results, expressed in term of production efficiency,
will be monitored would allow a validation of the proposed model.
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3.1 Conceptual Model

The conceptual model is based on the Model developed by Rash [19] In the Rasch
model, the probability of a specified outcome (e.g. right/wrong results) is a logistic
function of the difference between the person and item difficulty parameter. Let Xni be a
dichotomous random variable with binary values where, for example, Xni = 1 denotes a
correct response and an Xni = 0 an incorrect response to a given assessment item. In the
Rasch model for dichotomous data, the probability of the outcome is given by the
formula provided in Eq. (1):

Pr Xni ¼ 1ð Þ ¼ ebn�di=1þ ebn�di ð1Þ

where bn the ability of person n and di the difficulty of item i.
The model needs to be radically enhanced to take into account an assessment of

performance that is not dichotomous and feed into the interaction between two macro
factors:

• Human Capability (HC): summarising the skills, training and experience of the
people facing the tasks, representing a synthesis of their physical and cognitive
abilities to verify whether or not they match the task requirements.

• Workload (WL) summarising the contribution of two main factors [15, 16]: “Mental
Workload” (MW) and “Physical Workload” (PW), both associated to each activity
identified and analysed in the assembly line.

The reason why we consider mental workload and physical workload together for
these type of manufacturing tasks is because recent sensorised EEG experimental

Fig. 1. Project development
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studies have shown that the simultaneous executions of tasks, whether physical or
cognitive, tends to increase cognitive demands for the human brain [20]. Similarly
then, operator capability should be estimated on the basis of the operators’ set of
cognitive capabilities and physical conditions. The Physical Workload (PW) factor is
easily relatable to the physical, motion and postural efforts required to perform a
specific task. Poor ergonomic features of the workstation (such as the need to sustain
uncomfortable postures and or loads) were related to a remarkable decreasing of per-
formance for discomfort of the worker over time [21], repetitive motions and static task
were observed as additional cause for occupational accidents and lower performance
[22]. Other factors having an influence on PW are related to the Saturation time: the
percentage of the takt-time that is theoretically required to complete the task. The
higher the saturation the lower the time available to complete a task. In addition, some
general factors able to affect the PW can be summarized into environmental variables
[22, 23] which included improper temperature, lighting, noise, vibration and exposure
to chemical agents and physical agents as dust. Physiological effects of these envi-
ronmental factors, under industrial conditions, can contribute to an increase of the
stress level and consequently impact the reliability of human performance [24]. Mental
Workload is generally related to the amount of mental resources imposed by a specific
task [25] but there is no widely accepted definition of it, it can be seen as an interaction
between the demands of the task and the performance of the operator [26] or according
to Kahneman [27] as: “a factor directly related to the proportion of the mental capacity
of an operator spends on task performance”. In the literature several methodologies
were developed to assess it such as objective physiological measures [28], subjective
cognitive analysis [29] and combined multivariate approaches [30]. Generally research
in MW assessment have been performed in normative condition, with a simple stan-
dardized task and under controlled environmental condition that are not the one faced
on the shop floor of the assembly line chosen for this application. However the liter-
ature offers more and more empirical studies performed in manufacturing plants [31]
related the MW assessment considering ergonomic factors and task complexity on the
shop floor and it has also offered recent papers on the effect of task variability over
mental workload demands [31, 32]. For the purpose of the empirical study performed
MW was assessed on the basis of a combination of subjective measurement and
indirect task-related variable quantification, as physiological measurement and cogni-
tive normative test were not approved as a feasible mean of assessment by the industrial
partner. As a result of literature review and task analysis performed with plant man-
agers a set of variables relatable to WL were identified. Figure 2 summarizes all
variables selected to model WL for the case study.

MW has been assessed on the basis of the following variables (see Fig. 2):

– Task variability: this variable takes into account the effects of parts and product
variability and consequently the need to identify and evaluate the appropriate
procedural variations for each workstation in the assembly line.

– Task complexity: it represents the effects of remembering how to perform the task.
– Each task is composed by a sequence of simple operations. The higher the number

of operations composing the task the bigger is the mental effort required to
remember them.
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– Selection: some tasks may require a certain degree of decision-making in choosing
the right approach during performance that contributes to affect mental workload
demand.

PW has been assessed on the basis of the following variables:

– Physical effort: tasks may differ depending to the physical and postural effort
required to perform them.

– Coping with pace: in the assembly line all tasks have to be performed in a fixed
short period called “takt time”. Tasks may differ depending on the percentage of
takt-time allocated to complete the task: The higher the saturation the lower the time
available to complete a task.

– Dexterity: this variable is intended to measure the manual precision requested by the
task characteristics.

Environmental factors take into account all the variables such as: lighting,
humidity, noise and temperature that have an impact both on MW and PW. Human
Capability (HC), as mentioned in the previous section, represents the total amount of
resources that a worker can offer to execute tasks under given environmental working
condition. Several human skills have been considered as solicited by the WL associated
to each specific task. Human skills that have been considered to model the HC are:

– Manual skill: skills like precision, manual handling, and coordination are solicited
continuously during an assembly task.

– Memory: remembering the sequence of operations and parts to be assembled can
differ considerably from task to task.

– Physical: the ability of maintaining a constant performance during the shift and
coping with pace.

Fig. 2. WL conceptual model
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The conceptual model resulting from the combination of WL and HC model is a
Human Performance model and it is represented in Fig. 3.

The part of the conceptual model shown in Fig. 3 is to highlight that the variables
used to assess WL and HC to assess human performance in relation to each activity
analysed for the assembly line. WL is assessed for each activity while the factors
chosen to assess Human Capability are specific to each worker. This model provides an
estimate of HP index and can be used to identify worker-task matching. This effort is
aimed at improving global performance of the assembly line in terms of probability of
human error and unsafe acts occurrence.

3.2 Operational Model

The Conceptual model defined in the previous section represented the starting point to
define the operative model. To shift from a purely conceptual model to an operational
one it was necessary to identify a set of actual observable and measurable quantities to
estimate/assess the model variables. In addition to this, a common scale of evaluation
for all quantities was adopted so as to allow a quantitative comparison between Human
Capabilities (HC) against Workload (WL) requirements. The WL operational model
was defined using a task analysis of each workstation activity plus an observation
protocol to score the whole assembly line. A participatory approach involved both
academic and industry professionals operating in the various management areas:
Safety, Work Analysis, Quality, Work-Organization.

Fig. 3. Human Performance conceptual model
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Workload Operational Model
Figure 4 shows results of this process with reference to WL operational definition.
With reference to Fig. 4 the shift from a conceptual to an operational model implied the
exclusion of the “Environmental factors” variable as it was the same for all the
workstation and did not appear to have changes and or influence on the overall per-
formance. The environmental conditions were in fact of good quality and therefore did
not have an observable impact on performance, furthermore the environmental factors
were approximately constant along the production line therefore their effect was not
observable in this specific case study. With the exception of the environmental ones all
the other variables identified in the conceptual model were matched by one or more
observable quantities. Each quantity had a different measurement-unit therefore to
adopt a common scale, the indicators were scored according to calibrated Likert scales
from 1to 10. Each Likert scale was calibrated according to the original unit mea-
surements of the observable variables.

The choices made to operationalize the conceptual model can be summarised as
follow:

– Task Variability was measured considering the following aspect: the assembly line is
a sequence of working-places where a shell is moved automatically from a work-
station to the next following a certain rate called takt-time. In all working-place a task
is performed on the shell according to a specific well defined procedure. Each task is

Fig. 4. WL operative model
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composed by several operations that can change or remaining constant depending on
the kind of product being assembled. To assess this variability two quantities were
identified: number of models (NM) represents the number of task variation required
by different shell-types in each workstation; NM was assessed between 1 (when the
task does not vary following a shell-type variation) and 6 (when there are more than 5
possible task differences following different shell-types). The other factor considered
is MV (task stability), which represents the percentage of variations observed in each
workstation. MV varied between 0 (when there are no variations depending on the
shells being assembled, 100% of tasks in the same type) and 4, when the percentage
of the most frequent activities for shell type is only about 60% of the total amount of
assembly activities performed during the working day. The combination of this two
quantities leads to definition of a numerical index called “Variability index”.
The relation defined to relate these two quantities is expressed by the following
equation:

IV ¼ NMþMV ð2Þ

– Task Complexity refers to the number of basic operations in which the task can be
decomposed. This quantity was evaluated with the support of a Work Analyst
specialist. Complexity index, “CI”, has a range of variation from 1 (when the basic
operations are less than 5) to 10 (when the basic operations are more than 45).

– Selection. This variable was related to the difficulty of making the right choice
between similar parts required for assembly on different types of models (as an
example 2 kind of screws may differ by 2 mm in length). The Parts Similarity index
(PS) was set between a value of “0” (there are no parts similar to each other), and 3,
(the percentage of similar parts is more than 30% of the total parts managed during
the task). The PS index was combined with Part number index as expressed in Eq. 3.

– Dexterity. This variable was related to the quantity of small parts managed during the
task performance. As a consequence a Part number index (PN) was set between 1,
(when the small parts managed are less than 5), and 7 (when the parts managed during
the task are more than 50). This index has been combined with PS index in Eq. 3:

IP ¼ PNþ PS ð3Þ

IP measures the amount of workload relatable to the quantity and the similarity of
small parts to be managed during a specific task, considering the range of PN and
PS observable values the index varies between 1 and 10.

– Physical effort and Coping with pace. These variables were related to 2 quantities:
the Ergonomic index (EI) and the Saturation index (SI). Both of them are values
varying between 1 and 5 depending on the ergonomics assessment of the various
workstations (evaluated with a standardized methodology called OCRA [33]) and to
the level of saturation of takt-time defined by Work analysis. As a consequence of
this the Physical Effort index (PEI) was defined as expressed by Eq. 4:

PEI ¼ EIþ SI ð4Þ
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In summary as a consequence of the operational model each workstation would be
analysed in term of Physical Workload (PW) and Mental workload (MW) using 4
indicators: IV, CI, IP and PEI.

Human Capability Operational Model
HC represents the total amount of resources that a worker potentially can provide to
perform a given task. According to the kind of tasks involved into the assembly line,
the HC conceptual model identified 3 set of measurable capabilities: Manual skills,
Memory and Physical skill. In order to assess these skills a set of empirical tests were
designed. The key conditions considered for the test design process were the
followings:

1. The tests have to represents or simulate frequents operations close to the ones
performed in the assembly line.

2. The tests have to be performed by workers during the working activity, as a con-
sequence the time requested to perform them needs to be below 10 min.

Considering the above conditions four test were defined:

1. Memory test: sequences of geometric schemes were shown to the worker for few
second. The worker was then asked to replicate them on a piece of paper. During
this test the time to complete the task and its accuracy were recorded.

2. Precision test: it consists in moving an iron circle along a not linear contour without
touching the line. This test is related to the manual precision required in many tasks.
During this test the time to complete the path and the number of errors were
recorded.

3. Coordination test: In this test the worker is required to use both hands to perform
simple actions. Time and precision of coordinate movements were recorded.

4. Methodology test: During this test the worker have to decide and to complete a set
of simple assembly steps with small parts. Time and errors were recorded.

Results of these tests have been used to assess the part of the model related to
human capability (HC) as reported in Fig. 5.

Fig. 5. Human capability operative model

An Empirical Approach to WL and HC Assessment in a Manufacturing Plant 189



The variables identified in the HC Conceptual model and reported in Fig. 5 are
follows:

1. Physical skills: assessed considering the variance in performance on all the tests
performed by a single worker. The variance was considered as a proxy of Physical
Steadiness. This indicator is express in a scale from 1 to 10, where 10 indicates the
capability to attain best consistency in good work performance.

2. Memory skill was associated to the result of the memory test. A memory index was
introduced within the 1 to 10 Likert scale.

3. Manual skill was associated to the results of the Precision, Coordination and
Methodology tests. All of them represent a measure of dexterity and consequently it
was defined as a Dexterity index.

As a consequence of the operational model developed, each worker of the assembly
line would be characterized in term of HC with a set of the 3 indicators (PSI, MI, DI)
mentioned above.

3.3 Data Field Collection

On the basis of the Operational model and the variable identified it was possible to
perform the field data collection campaign. An assembly line of 23 work-stations was
selected as test-line. Therefore 23 different WL were calculated according to the
indicators reported in Fig. 4. The results of this activity are summarized in Fig. 6.
Figure 6 highlights how the WL differs along the assembly line. Workstation 1 for
instance has a WL index not far from Workstation 16, while the workstation reporting
the highest WL value (with an overall score of 28) is the one marked as number 17.
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The HC assessment campaign with the tests involved directly 50 workers employed
in the selected assembly line. The tests were planned so as to minimize the impact on
the working activity of the assembly line itself and the average time of execution was
between 7–9 min. To perform the tests each worker was given a short break, for the
time strictly necessary, and replaced by a substitute. This configuration allowed the
tests to be repeated 3 times during the whole shift for all the workers. All test results
showed a good discrimination of workers skills highlighting a wide range of variation
in performances. The HC indicators were all reported in a numerical scale 1–10 in
relation to test results. The test measures 2 quantities: the amount of time spent to
complete the test and the number of errors committed during its execution. The two
quantities were combined in a single index as reported in Eq. (5). Considering the
results of each individual skill test, time and errors observed in the text were linearly
combined in a common quantity named “Modified Time” (MT) according to the fol-
lowing equation:

MT ¼ Time s½ � þErrors� 3 s½ � ð5Þ

Where each error was transformed in an additional amount of time of 3 s. On the
basis of the MT distribution the correspondent HC indicator was assessed. Figure 7
shows the results measured in term of Time and number of errors for 25 workers and
Fig. 8 highlights the corresponding MT distribution.

Figure 7 highlights the capacity of the Precision test of discriminating between
different skill-levels among workers. The MD assessment (Fig. 8) revealed a wide
range of performance variation, from a minimum of 21 s to a maximum of 70 s. On the
basis of this range of variation, each MD value was scaled into a numerical index.

Fig. 7. Precision-test results: time to complete test expressed in second and number of errors
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This process was repeated for all tests’ results, leading to the definition of the
required HC indicators for all the workers involved. Figure 9 summarizes the HC
distribution.

Figure 9 highlights how HC change even significantly from operator to operator.
For each worker it is possible to consider the overall score for HC or the score of each
specific skill. For example worker number 6 has the following indicators: PSI = 5,
DI = 5 and MI equal to 10 for a total of recorded HC of 20 which is in the highest
percentile of the HC values recorded for the overall population. This information
suggests that this worker may be better allocated to a workstation where Memory is a
key requirement. The effects of HC and WL assessment, with the set of Indicators
defined in the Operational model, will be discussed in the next section.

Fig. 8. Modified Time (MT) distribution
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4 Human Performance Assessment

The HP assessment was defined according to the scheme proposed in the Conceptual
model (Fig. 3) and in compliance with the operational evaluation process defined for
HC and WL. The HP calculation therefore is outlined as follow (see Fig. 10): for each
possible matching worker/workstation the combination of the 3 HC index (MI, DI, PSI)
with 4 WL index (PEI, IP, CI and IV) lead to an overall matching index reported in
Eq. (6):

HCworker �WLworkingplace ¼ HP ð6Þ

The Matching-index assesses the level of adequacy of human capability to the
workload determined for each workstation.

Figure 10 outlines an example where the Matching is characterized by:

– Two negatives value due to MI-IV and to DI-PI. These represent a negative
matching worker-workstation as the variability (IV) and dexterity required by the
task are not well matched by the memory and dexterity scores of the worker.

– Two positive indices representing a favourable matching.

On the basis of the Matching index, two Human Performance assessment indices
were defined:

– HPminus: represents the sum of all negatives matching index.
– HPplus: represents the sum of all positive values of matching index.

With these two indexes it is possible to quantify the potential goodness of fit, in
term of all the possible matching of workers and workstations.

Fig. 10. Human Performance scheme of calculation
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This matching index is a predictor of human performance, as the lower the value of
HPminus the higher is the probability of human error for that combination. On the basis
of this systematic assessment of HPminus and HPplus, for all the possible combination
workers/workstation a matrix of matching combination is defined.

Figure 11 summarises the results of this approach showing, as an example the
matrix of combinations obtained for 5 workstations and 25 workers (with all their
relative HP assessment index). The score of the 25 workers are reported for each
workstation in a decreasing order (the workers are in the upper row, and the HP index
in the lower row).

A grey-scale was set: black for bad matching (HP assessment index < −4), grey for
acceptable matching (HP assessment index between from −4 to −1) and white for good
matching. This method in reality is to be used as an optimization problem where the
value to be optimized is the HP index. The index needs to be above 0 but as close to 0
as possible to ensure good matching of requirements and capabilities while at the same
time avoiding waste. The matrix can be used as guidance tool to support manning
activities.

5 Results

The project outlined a proof of concept for a model to evaluate workload requirement
and matching operators skills as a predictor of human error in manufacturing tasks. The
model was tested in a concrete case study involving an assembly line made of 21
individual workstations and 50 workers divided in two daily shifts named A and B.
According to the data field collection scheme reported in Sect. 4, the application of the
operational model entailed the WL assessment for the 21 work stations and HC
assessment for all workers involved. Figure 12 summarizes the results obtained for the
WL assessment.

Workers AC AV AJ AT AG AA AN AO AP AH AW AQ AE AF AI AU AA AD AK AL AM
HP 23 18 18 13 12 10 8 -1 -1 -2 -2 -3 -3 -3 -3 -3 -5 -5 -6 -7 -7

Workers AC AV AJ AX AG AA AT AN AH AP AR AS AW AE AU AQ AD AA AL AM AK
HP 16 12 11 -1 -2 -3 -3 -3 -4 -5 -5 -6 -7 -8 -9 -9 -11 -11 -11 -11 -13

Workers AC AV AJ AX AG AA AT AN AH AP AR AS AW AE AU AQ AD AA AL AM AK
HP 10 9 9 -1 -2 -3 -3 -3 -4 -5 -5 -6 -7 -8 -9 -9 -11 -11 -11 -11 -13

Workers AV AJ AX AT AG AP AR AC AE AF AI AO AS AW AQ AU AL AA AD AM AK
HP 15 15 8 8 6 5 3 -1 -1 -1 -1 -2 -2 -2 -4 -4 -5 -6 -10 -10 -10

Workers AV AJ AX AT AG AR AC AH AO AS AW AF AI AE AU AQ AA AL AD AK AM
HP 15 14 10 10 9 3 -1 -1 -1 -1 -1 -2 -2 -2 -3 -3 -5 -6 -9 -9 -10

1
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5

Fig. 11. Matching matrix
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Figures 13 and 14 showed the HC values for the workers of the two shifts A and B.

A Human Performance index was then defined to take into account the evaluation
of all the possible matching combinations of workers and workstations. The final result
of this activity was presented in two global matching matrixes, one for each shift, with
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dimensions defined by workstations (number of rows) and workers (number of col-
umns). For our case study the matrix had 21 rows (one for each workstation) and 25
columns (one for each worker). Figure 16 in Appendix summarises the results of this
approach showing, as an example, the matrix of combinations obtained for the shift B.
On the basis of the matching matrix it would be possible to minimize the negative
Human Performance index (HPminus) and consequently to have a better distribution of
workers to the workstations. The distribution is determined on the basis of each
individual Human Capability and Workload index. The matching-matrixes were used
to identify the best configuration of the line in terms of human resources allocation for
each shift. According to the plant managers, a period of 1 month has been chosen to
monitor the results of the new configuration. The monitoring has been done with 2
observable quality indicators. The first quality indicator was named QI (Quality index)
and it measured the percentage of product with no defects produced at the end of the
line. This parameter was measured in a quality gate by quality experts according to
standardized internal procedures. Figure 15 summarises the QI values collected for a
period of 6 months during which the month of May was the one with the configuration
workers-workstations defined on the basis of the matching matrix.

After this month, due to internal organisational changes a relevant turnover of
workers significantly impacted the manning of several lines and it wasn’t possible to
maintain the observable optimized configuration any more.
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The second quality indicator was based on the number of recovery activities per-
formed to solve assembly errors before the quality gate. Supervisors observed a
reduction of the recovery activities for both shifts.

6 Discussion

Currently the management of human resources on the production line is decided by the
line supervisor, on the basis of his own judgement. The definition of a matching-matrix
would means shifting from a total subjective assessment to one empirically and the-
oretically grounded on evaluation of required workload and available capabilities. The
operational model application allowed an empirical quantification of WL and HC, but
the model itself is generalizable to other context and configurations. Figure 12 high-
lights how the WL differs along the assembly line even if all workstations are part of
system with a common tack time. In fact, WL varied from a value that goes from 11
(for workstation 1) to 28 (for workstation 15). Not only the total value of WL changes
along the line but also the individual factors contributing towards it shows a significant
degree of diversification. Some workstations were characterised by a small value of
individual variability (IV) index and a relevant value of individual Parts (IP) index (e.g.
workstation 16 and 17); while other workstations presented a small value of complexity
Index (CI) and IV but a high value of Physical Effort Index (PEI) (e.g. workstation 11).
This information shows how the skillset and capability required in term of human
resources can significantly change across similar workstations. The assessment of
Human Capability (HC) (summarized in Figs. 13 and 14), highlights how HC can
significantly vary among workers too. As an example Fig. 13 reports the best HC score
for an individual named “AC”, who scored a total value of 28, while worker “AK”
obtained the lowest HC score of 12; a significant gap is recorded between the two.
Worker AK had very low score in the memory (MI) and dexterity (DI) indexes but an
high score in Physical steadiness (PSI) and he can be allocated to those working-
stations with lower requirement in Dexterity, Memory and higher requirement in
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Physical Effort (e.g. working station 1 or 11). The matching matrix (Fig. 16) can be
used as an operational tool to identify the best matching worker-workstation and on the
basis of this information line supervisor modified the ordinary allocation for the line.
This operation involved more than 60% of the workforce. Managers authorised 1
month of trial during which quality indicators have been collected. The comparison of
quality data before and after the reconfiguration has been used to provide a preliminary
test of the proposed methodology. Results reported in Fig. 15 highlight that the month
of trial scored the best QI index reaching a value of 99%. Even the second quality
indicator gave positive results; supervisors monitored the number of recovery activities
and found a decrease of their frequency. Unfortunately they did not share a numerical
reporting of these activities and this observation remains qualitative. Positive remarks
in term of Quality indicators are correlated to human errors reduction during the
assembly process and this imply that the HP optimization based on the proposed model
can be improved. In addition the introduction of this reconfiguration on the daily
working routine was positive perceived and workers generally contributed the rear-
rangements. On the basis of these preliminary results, plant managers approved an
expansion of the project to demonstrate generalisation to more lines over a longer
period of time.

7 Conclusion and Future Work

This project was developed to give an effective contribution towards addressing Human
performance assessment for manufacturing tasks. The main scope of this work was to
develop a model to estimate Human Performance for an assembly process and propose
a model to leverage this information to optimize human resources allocation and
workstation assessment. This work was carried out using a theoretical approach that
was then operationalized to allow empirical data collection. This allowed the theoretical
Workload and Human capability assessment to be customised for the real working
condition under analysis. A preliminary test line, of 21 working station, was selected as
case study and 50 workers have been involved into the testing phase. On the basis of
the HP evaluation process a matrix workstations workers allocation was used. The
quality indicators collected and the comparison of quality data pre and post reconfig-
uration has been used to assess the validity of the proposed methodology. On the basis
of the preliminary results, plant Managers authorised an expansion of this action
research to more production lines in collaboration with the Quality and Production
Managers [34]. A set of 5 lines for 100 working stations has now been proposed
considering different issues reported by the quality management for recorded human
errors. The number of workers to be involved will rise to 340. On the basis of the
model results a process of workstations assessment and manning allocation will be
defined and a longer period of testing and monitoring will be allowed to discriminate
improvements simply due to the so called Hawthorn effect [35]. The results are going
to be monitored for a period longer than three months and they will be used to validate
and or modify the model, assess its generalization and to verify the possibility to
introduce individual motivation among the parameters being considered.
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Abstract. Automation has been introduced more and more into the role of air
traffic control (ATC). As with many other areas of human activity, automation
has the objective of reducing the complexity of the task so that performance is
optimised and safer. However, automation can also have negative effects on
cognitive processing and the performance of the controllers. In this paper, we
present the progress made at AUTOPACE, a European project in which research
is carried out to discover what these negative effects are and to propose measures
to mitigate them. The fundamental proposal of the project is to analyse, predict,
and mitigate these negative effects by assessing the complexity of ATC in
relation to the mental workload experienced by the controller. Hence, a highly
complex situation will be one with a high mental workload and a low complex
situation will be one in which the mental workload is low.

Keywords: Automation � Air-traffic controllers � Mental workload

1 Introduction

The control of complex and dynamic environments is a risky and uncertain task [1].
A complex and dynamic environment is one in which a person has to find a solution by
performing a series of operations that can be characterised as follows: the number of
elements relevant to the solution process is large and these are highly interconnected;
the system changes dynamically over time; part of the structure and dynamics of the
system are opaque (not transparent) for the operator; and the objectives can be multiple
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and sometimes conflicting [2–4]. Complexity is one of the most important causes of
mental workload in many areas of human performance [5–10].

Air traffic control (ATC) has all the characteristics of a complex and dynamic task:
there are many elements (aircrafts and obstacles) that are interconnected; all these
elements are changing constantly due to both the actions of the air traffic controller
(ATCo) and their own dynamics; some of the variables are not transparent to the
ATCo; and the objective is to direct all aircraft traffic safely and orderly at the same
time. For this reason, it has been indicated that the mental workload of the ATCo is
related to the complexity of the ATC system [11, 12]. A great deal of theoretical and
applied research has been directed over the years to reducing the complexity of the
ATCo task and, thus, to make it safer and less uncertain. In this research study, the
focus has been mainly on the design of automation tools to which part of the control
task can be allocated. The results of introducing new automatic tools in the control task
have been mainly successful, but – similar to other areas of human work – automation
also has some negative effects on system performance and safety [13, 14]. Those
negative effects have motivated further research, with the aim of better understanding
the impact of automation on the ATCo. The goal of this research is to improve the
benefits and to reduce the negative effects of automation. With this goal, project
AUTOPACE (Grant 699238), funded by the SESAR joint undertaking as part of
SESAR 2020 Exploratory Research Programme within the framework of the EU’s
Horizon 2020, was intended to carry out scientific research to address the effects of
high automation on ATCos’ performances. At AUTOPACE, we assume that high
automation will have effects on the level of mental workload experienced by the ATCo.
Those effects could have positive as well as negative consequences on ATCo perfor-
mance. To determine those consequences, in the project we propose research, using a
psychological model based on established theories of attentional resources, to predict
the effects of automation on ATCo mental workload. This model, which is designed to
reduce complexity, could be used as the basis of investigation into the required new
competences and training strategies which ensure that the ATCo’s mental workload
levels are compatible with the requirements of safe operation. A safe operation implies
that the controller, in their new role which requires supervision and monitoring,
remains ‘in-the-loop’ to initiate an efficient decision-making process, especially when
dealing with possible unforeseen operational conditions and malfunctions of automa-
tion. A safe operation would also imply that the controller performance would not be
affected by stressful situations when the system fails. Unforeseen operational condi-
tions and malfunction of automation could lead to disorientation and panicked
behaviour.

In the following sections, we will discuss the approach taken in the AUTOPACE
project to the problems associated to reducing the mental workload by introducing
automation in the ATCo task. The main assumption of the AUTOPACE project is that
workload is related to the complexity of the system in which the ATCo performs their
work. Therefore, we start by explaining in Sect. 2 our vision of what complexity means
within the field of ATC and ATM in general. Next, in Sect. 3, we will expose the
fundamental problem that the AUTOPACE project wants to address: the possible
negative effects of automation on the performance of the ATCo. It is true that
automation reduces the mental workload by reducing the demand for mental resources.
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However, automation can also cause phenomena such as out-of-the-loop or erratic
behaviour when the automatic system fails. In consequence, in the AUTOPACE project
there is a proposal to reduce complexity and mental workload by considering the
negative effects of automation. This proposal is explained in Sect. 4. First, in Sect. 4
we expose the psychological model that we are developing based on the concept of
mental workload. Then, in Sect. 5 we address the negative effects that we hypothesize
that will be found in the future scenarios in ATC in which more automation will be
introduced. In Sect. 6 we describe the methodology we are using to test the hypotheses
contemplated in AUTOPACE. This methodology is based on the development of a
computational model in which the psychological model of ATCo is implemented. In
Sect. 6 some results obtained in the execution of this computational model are also
presented. Finally, in the conclusions of the paper we indicate some consequences that
the results of this project will have on the training of the ATCo designed to face the
new automation scenarios.

2 Approaches to Defining and Measuring Complexity in ATC

Complexity features as a topic of scientific research and theory in many academic and
applied fields [15]. However, a review of this research shows that all approaches to the
complexity issue start from an explicit or implicit definition of what is meant by
complexity. In particular, in the field of ATM (air traffic management) we can find
three approaches in which complexity is defined and measured differently.

2.1 The Algorithmic Approach

In the algorithmic approach (see Fig. 1a), it is assumed that the complexity of the task
can be calculated directly from the parameters of the environment (i.e., [16]). Thus,
over the years, some formulas have been proposed in which complexity is calculated
from parameters such as occupancy (number of aircraft in the sector) or the meteo-
rological conditions. In this approach, the controller is not taken into account in the
definition of complexity. Complexity is defined only by the traffic and the environ-
mental conditions in which the task is performed. Although, obviously, traffic and
environmental parameters are considered to have an effect on the cognitive system of
the controllers (for example, these parameters affect their mental load, stress, etc.), in
this approach, the behaviour of the cognitive system of the controller does not form part
of the calculation of complexity.

2.2 The Behavioural (Activity) Approach

One could call the behavioural approach an attempt to include the ATCo in the cal-
culation of complexity (see Fig. 1b). In this approach, complexity is defined and
measured from the observable behaviour of the controller without any reference to the
cognitive processing of traffic and environmental parameters. While it is assumed that
controller behaviour is the result of cognitive processing of traffic and environment
parameters, no attempt is made to model this cognitive processing. For example, the
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authors of [17] propose a method of measuring complexity from the actions of the
controllers, and the authors of [18] have proposed another method where complexity is
calculated from the commands issued by the controller.

Fig. 1. The three approaches to the study of complexity in ATM
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2.3 The Cognitive System Approach

Finally, in the approach known as the cognitive system approach [19], complexity is
calculated from the cognitive processing of traffic and environment parameters by the
controller (see Fig. 1c). In this approach, the traffic and operational parameters are not
important by themselves, but their importance is in the way the controller adjusts their
decision-making strategies according to the parameters of traffic and environment.

This approach is built around the concept of a cognitive system. A cognitive system
is one that performs the cognitive work of knowing, understanding, planning, deciding,
problem-solving, analysing, synthesising, assessing, and judging as they are fully
integrated with perceiving and acting. The characterisation of the airspace as a cog-
nitive system represents a claim that the ATCo is part of an entity that does cognitive
work, taking the parameters of traffic and operational environment into account. Other
elements of the cognitive system are the artefacts and the environmental conditions
within which the cognitive work of air-traffic control is carried out.

3 Will Automation Always Reduce Complexity?

The reduction of complexity has traditionally been addressed by introducing automatic
systems into the task. From the algorithmic approach, the introduction of an automatic
system is simply the assignment of a function that the person carried out before the
introduction of the automatic system; however, in this reallocation of functions, it is not
necessary to worry about cognitive processing nor the behaviour of the ATCo beyond
the fact that a function has been taken from them and they have to do less things in the
task [20]. In this way, it is assumed that the efficiency and safety of the system will
always improve and no negative consequences of the introduction of automatic systems
are predicted. In a similar way, from the behaviourist approach, the introduction of the
automatic system can modify the behavioural strategies of the ATCo, but it is con-
sidered that this modification will reduce the complexity of the task, making the
performance of the ATCo always more efficient and without expecting any negative
consequences from its introduction. On the contrary, from the cognitive system
approach, it is considered that introducing an automatic element into the cognitive
system will affect the system as a whole, improving its efficiency, but also producing
potentially negative effects. Some of these negative effects will be derived from the
modification of the ATCo mental processing of the traffic and operational parameters
and, as a consequence of that, from their behaviour.

The experience of controllers and the research done on this issue over many years
show that, in fact, these negative effects exist as predicted by the cognitive system
approach [13, 14]. These negative effects could mainly be the consequence of a failure
of the automatic system. The positive effects of automation in reducing the complexity
of the task are obtained when the automatic system works well. However, the reliability
of the automatic system is never one hundred percent and there will always be a small
probability that the system will fail, affecting ATCo cognitive processing and
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behaviour. Neither the algorithmic nor the behaviouristic approaches would predict
those negative consequences of automation failures.

For example, there is extensive literature on the well-known problem of being ‘out
of the loop’ (OOTL). This problem occurs when the person, in our case the ATCo, is
put out of the loop of the ‘perceiving-acting-perceiving circle’. In a normal situation, a
person is within a cycle of observation-action-feedback-action [21, 22]: the person
observes the situation, acts on it, observes the results of their performance, and, if this is
not correct or is insufficient, they act again to correct it. When the automatic system is
introduced, the person is removed from that cycle by taking from them the functions of
observing and receiving feedback on what the system is doing. If the system works
well, removing the person from the loop will have no consequences; however, if the
system fails, the person must note this failure and take control of the situation. The
phenomenon of OOTL occurs when, after a change in the situation – in particular, high
impact changes such as system failures – the person does not return to the loop either
because they have not realised the failure or because they do not react in time to take
control of the situation. This phenomenon is not taken into consideration by the
algorithmic or behavioural approaches, but can be explained easily from the cognitive
system approach.

It can also happen that a person experiences one or several failures of the automatic
system and they enter a state of overexcitement that leads to panic and erratic beha-
viour. The authors of [23] have shown the importance of non-cognitive skills (for
example, tolerance to stress) in the training of ATCos. If the automation fault expe-
rience affects the stress of the controllers, that stress will have a negative effect on their
performance. As it has been demonstrated numerous times, over-activation affects
cognitive processes, such as visual perception, that are essential in the task of air
control [24].

Therefore, in line with the view of function allocation in the cognitive engineering
perspective [19, 22], from the cognitive system approach it can be considered that
automation will reduce the complexity of the task only if the negative effects are
reduced. If, as hypothesised, automation produces negative effects in addition to
positive ones, those negative effects will increase complexity by counteracting the
reduction in complexity produced by the positive effects.

It is worth mentioning that the cognitive system approach can predict negative
effects of both high complexity and low complexity. Neither of the other two
approaches can predict these effects, since in both approaches it is assumed that
automation always reduces the complexity and, therefore, the mental workload of the
ATCo. However, much of the negative effects of automation are due to the reduction in
mental workload after reducing the complexity of the system. As we will explain
below, for the phenomenon known as OOTL, which occurs in situations of low mental
workload, when we introduce automation to reduce complexity it is only possible to
explain and predict it from the cognitive system approach.
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4 AUTOPACE Proposal to Reduce Complexity
by Considering the Negative Effects of Automation

At AUTOPACE, the effects of automation are explained within the cognitive system
approach by proposing hypotheses from a psychological model of the ATCo. In this
psychological model there are two components: the functional structure of the ATCo’s
cognitive system and dynamic management of attentional resources.

4.1 The Psychological Model of the ATCo

At AUTOPACE, we propose a psychological model that has a structure which is the
hypothesised cognitive system of the ATCo. In addition, the model includes a
description of how the cognitive system functions by requiring attentional resources. It
is very important to differentiate between these two aspects – the structure and the
functioning of the system – in order to understand our hypotheses about the effects of
automation on controller performance. Our hypotheses are developed in the context of
the predicted future scenarios of automation.

The Functional Structure of the Cognitive System. All the cognitive models that
have been proposed in the literature to explain the interaction between a person (i.e.,
the ATCo) and a system share the same scheme in which the human cognitive system is
composed of sensory, perceptual, memory, and decision-making processes. We can
take as a reference the model proposed in [25] (see Fig. 2). This model incorporates
several interesting aspects of the recent theoretical developments in the science of
human factors. In particular, we might highlight the incorporation in the model of the
levels of processing that constitute what is called situation awareness (SA) [26]: per-
ception, comprehension, projection, and decision.

Cognitive Functioning and Mental Resources. Human behaviour and mental
activity require energy. In a sense, we could say that, in the life sciences, research has
followed a mechanistic paradigm, according to which human machinery function
depends on supplied energy [27]. Thus, for instance, it is assumed that performance of
a task will improve or deteriorate depending, among other things, on the quantity and
quality of the energy (resources) supplied [28]. In the tradition of attentional theories
and human factors and ergonomics, this energy is called ‘resources’.

Using a simple model of human functioning, we can say that when a person is
confronted with the performance of a task, they do so with a certain amount of mental
resources that we call available resources. The amount of resources that a person has
depends on several factors, both individual and contextual. In addition to the available
resources, we must talk about what we call demanded or required resources.
Depending, essentially, on the complexity of the task, a person will need to apply more
or less available resources to be able to perform it with a certain level of optimisation.
Easy tasks will require fewer resources, while difficult tasks more resources.
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Using these two concepts – demanded and available resources – psychological
models have explained the functioning of the human cognitive system. The funda-
mental premise of all the models is that the functional structures, such as those
described above, will work with an efficacy that will depend on the relationship
between the demanded resources and the available resources. This relation is called the
mental workload (MWL) [29–31] and is expressed according to formula 1:

MWL ¼ Demanded resources
Available resources

ð1Þ

The quantification of the cognitive demand resources can be made according to
Wickens [32] and refined with reference to Wickens and McCarley [33]. When tasks
overlap in time, the demanded resources depend on two factors: the resources
demanded for processing for each cognitive channel (perception, comprehension,
projection, decision-making, and manual or verbal actions) and the amount of inter-
ference between the two tasks. When two tasks are performed in parallel and use the
same pool of resources, there would be interferences that increase the demanded
resources. This increase could be reduced by the prioritisation of tasks. These two
factors could be expressed as shown in Formula 2 [32]. In our model, this is the general
formula used for calculating an ATCo’s demanded resources.

Fig. 2. The cognitive system approach and [25] model
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Demanded resources ¼
Xu

c¼1
wc þ

Xn

c¼1

XN

d¼cþ 1
iðc;dÞ ð2Þ

wc = resources demanded by channel: perception (visual, auditory), comprehen-
sion, projection, decision-making, response (manual or verbal)
i(c,d) = interference between channels c and d.

This equation reflects the assumption that the demand for resources depends on the
sum of the weights associated with the demand of the different cognitive channels
involved in a task and the sum of the values of interference between channels. The
second component of this formula represents the cost that the interference between
channels has in the calculation of the resources demanded. Therefore, the traditional
way of understanding complexity coincides with the definition of demanded resources.
In this way, it is considered that the more complexity, the more mental resources will
be required. In other words, complexity has traditionally been defined as the amount of
mental resources that a task demands. However, the basic assumption of AUTOPACE
is that automation also affects the available resources. We assume that a control situ-
ation may demand few mental resources, but it can become very complex because the
ATCo does not have available resources necessary to face the demand of resources.

The available mental resources (the denominator of Formula 1) are considered to be
a pool of resources that a person has at their disposal to perform a task. This pool could
be made up of different dimensions containing more or less available resources. In the
traditional view of human factors research, it has always been considered that the person
performing a given task uses the whole pool of available resources. In the case where the
available pool is small, the denominator in the equation for calculating mental workload
is small, contributing to a major probability of overload. On the contrary, when the pool
is large, the person would use all the resources at his disposal, making the denominator
large and the probability of underload higher. The dimension of the pool of available
resources depends on a number of factors, such as stress, fatigue, emotions, etc., all of
which are factors that affect the level of activation or arousal.

However, this traditional view of the pool of available resources has been reviewed
in a sense that is very relevant for AUTOPACE. It is increasingly recognised that not
all the available resources that a person possesses need to be allocated to perform the
task. For many different reasons, the proportion of the available resources allocated to
the performance of a task may vary considerably, both during task performance and
from one iteration to another of that same task. This new understanding of the available
resources is behind the recent interests of researchers of concepts such as engagement
or effort. For example, a recent paper [34] has reviewed the literature on effort. For
more than one hundred years, psychologists have been working on the concept of effort
to understand why and how a person dedicates more or less available resources to a
task. In educational psychology, there is a well-known theoretical model called Cog-
nitive Load Theory [35] in which there are three components that are differentiated:

1. Intrinsic load which is directly related to the learning material and that is what we
call demanded resources in our context of human factors;
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2. Extraneous load which is the resources dedicated to other tasks, but not to the task
of learning itself; and

3. Germane load, which refers to the mental resources devoted to acquiring and storing
schemata in long-term memory (learning itself).

This third component refers to the mental resources that are in the pool of available
resources at one point in time and actually allocated to the main task. This component
of cognitive load is the issue of interest in [34]. The author realised that the available
resources that are in the pool can be allocated to different tasks simultaneously and
when we are calculating the total MWL of one task, we should enter in the denominator
the real available resources that are dedicated to the task of our interest. For the same
reason, researchers are talking more and more about engagement, another concept
related to available resources and effort (i.e., [36]). It seems obvious that when per-
forming a task, a person could be more or less engaged in it. Engagement affects the
amount of resources that the person will make available to performing a task: the more
engaged in the task, the more available resources are allocated to it. We can describe
engagement as a continuum. At one end of the engagement scale, there is a ‘passive
cognitive engagement’ that leads to allocating a small amount of resources. On the
other end, there is an ‘active cognitive engagement’ that increases the amount of
available resources allocated to the task. Therefore, engagement might affect the size of
the pool of available resources, but more importantly, it would determine how much of
those available resources are dedicated to the task. In that sense, engagement means
something similar to germane load in educational psychology theories.

Our interest in these new interpretations of available resources for this project is
clear: although we assume that automation reduces the demanded resources of the task,
in our proposal, automation affects also the available resources in two ways:

1. The level of activation or arousal (psychophysiological activation), and, subse-
quently, the size of the pool of available resources; and

2. The amount of those available resources that are really dedicated to the task.

As we will explain in the following sections, the available resources that are
allocated to the task will vary because ATCo responsibilities will change in the future
automation scenarios. That means that there might be also a change in ‘engagement’ or
‘effort’ and, consequently, in the amount of available resources dedicated to the task.

In our proposal, these changes in responsibilities mean changes in available
resources allocated to the task of control. Therefore, we will consider that automation
will affect the available resources. An ATCo who is simply monitoring would be less
engaged than another one who is approving or applying and, therefore the denominator
of the MWL equation will be smaller (i.e., more risk of OOTL). Then, when the
automatic system fails and the ATCo has to recover control, the probability of being
out of the loop is higher when they are less engaged and dedicating less effort to the
task. That explains why OOTL is more probable when monitoring than when
approving or applying. Therefore, our hypotheses can be considered in relation to the
attentional theories, as shown in Fig. 3. In the classical theories of attentional resources
(i.e., [28]), automation affects only the demanded resources. These traditional theories
are in line with the algorithmic and behavioural approaches to complexity; if
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automation affects only the demanded resources by reducing them, it is not necessary to
take into account the human cognitive system because it directly benefits from changes
made in the conditions of the traffic and the operational environment. The cognitive
system benefits from automation, but it is not necessary to act on it. Although, it can be
argued that knowing the functioning of the human cognitive system could be useful to
better identify the aspects of traffic and the operational environment which would
reduce the cognitive demands, the main assumption would be that any automatic
system would have some positive benefit for the ATCo and no negative effects.
However, when we consider the new attentional theories (i.e., [37]) which assume that
automation also affects available resources, we must necessarily adopt the approxi-
mation of cognitive systems, since only from this approach is it considered that
automation can modify the operation of the system as a whole (especially the inter-
action between the human cognitive system and the automatic system). For this reason,
complexity cannot be calculated without considering the human cognitive system in its
interaction with the automatic system.

4.2 AUTOPACE Psychological Model in the Context of Related Research
on Mental Workload

The psychological model proposed in AUTOPACE incorporates current theories and
empirical results on mental workload [29–31]. The field of mental workload research
has currently two major challenges. In the first place, the theoretical models proposed
up to date should allow to make predictions in applied context where the mental
workload of the operators is a fundamental factor to explain their performance. In this
aspect, the research carried out in the AUTOPACE project demonstrates how the
mental workload of the ATCo is fundamental to explain how she/he deals with the

Fig. 3. Effects of automation according to the traditional and new attentional theories.
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complexity of the control task. Secondly, although much progress has been made in
these years, we are still in need of methodological development to validate the
hypothesis derived from the theoretical models. In this second aspect, AUTOPACE
contributes with a methodology based on the development of a computational model
where the psychological model of the ATCo is implemented. We explain this
methodology in the following section. But, first, we must describe in more detail the
hypotheses that derive from the psychological model developed in AUTOPACE.

5 AUTOPACE Predictions for Future Automation Scenarios
in ATC

In order to test our hypotheses, at AUTOPACE, we have defined the scenarios in which
ATCos will work when automation is introduced in their work. We foresee two pos-
sible scenarios: one with medium automation and another with high automation. Those
two scenarios will require different responsibilities and different levels of engagement
with the task. We hope that by comparing these two scenarios, we can observe the
behaviour of the ATC system when the psychological processes and the behaviour of
the ATCos are affected by the different levels of automation. These two scenarios of
future automation considered by AUTOPACE are described below.

The scenarios considered at AUTOPACE represent future traffic and mode of
operations according to the SESAR Concept of Operations. The characteristics of this
Concept of Operations are:

• It considers annual growth of 2.7% from 2015 to 2050 (an increase of 94.5%);
• It implements free route and 4D trajectory concepts;
• Trajectories are de-conflicted thanks to the implementation of de-complexing

processes;
• Sectors are expected to be much bigger than current sectors; and
• Several ATCos will be operating in the same sector (flight centred ATS procedures).

AUTOPACE describes two different levels of automation that could be expected by
2050: high automation scenario (E1) and medium automation scenario (E2). These
scenarios are defined by means of four scenario elements:

• Actors: the scenarios consider two actors as relevant for AUTOPACE purposes: the
ATC System and the ATCo. Current executive and planner ATCo actors will not be
needed thanks to automation. Therefore, AUTOPACE scenarios consider a unique
human actor: the ATCo who will assume both executive and planner roles.

• Responsibilities allocated to actors: the responsibilities of each actor in each
scenario is the most relevant factor for the cognitive modelling study. For this
reason, we have defined three verbs to describe ATCo responsibilities with the
following criteria:
• Monitor: When the ATC System assumes the major ATC actions, the ATCo

must monitor system behaviour to prevent deviations. Monitoring or vigilance is
the activity that an operator performs to acquire situation awareness (SA). Due
to the high level of automation, the ATCo must monitor in both high and
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medium automation scenarios. It is important to note that the ATCo could not
apply or approve actions without previously monitoring.

• Approve: Once the ATC System has proposed an ATC action, the ATCo must
approve it before it is implemented. Approval requires previous monitoring, but
also an evaluation of the correctness of the system decision. Approval does not
imply the implementation of the action, but the ATCo must consider the con-
sequences of the action carried out by the system. Therefore, we might say that
approval requires a good SA (perception, comprehension, and projection, with
projection being more relevant for approving than for monitoring).

• Apply. The ATCo analyses the situation, decides, and implements the most
suitable solution from a set of provided ATC system solutions and with the
support of the ATC tools. Application requires monitoring too, but, in contrast
with approval, it is the ATCo who must elaborate the solution to the problem
and then identify and implement the necessary actions to carry it out. Therefore,
application should require not only SA (perception, comprehension, and pro-
jection), but also the use of decision-making and responding resources (verbal,
manual).

• Processes and services: AUTOPACE ConOps identifies eight processes and
describes the role that the ATCo plays in them for high automation and medium
automation scenarios.

• Human performance aspects: a preliminary identification of the challenges that
each scenario will have from the human factors perspective.

According to these criteria:

• In the high automation scenario, the ATCo is expected to have the responsibility of
monitoring or monitoring and approving in the provision of the majority of the ATC
services.

• In the medium automation scenario, the ATCo will be responsible not only for
monitoring and approving, but also for applying many of the ATC services (after
analysing the proposals made by the system).

Table 1 summarises the description of some of the ATC Controller responsibilities.

Table 1. Some responsibilities allocated to the ATC controller in the future automation
scenarios

Responsibilities Responsibilities
allocation
High
automation

Medium
automation

Identify conflict risks between aircraft Monitor Monitor
Provide flight information to all known flights Monitor Monitor
Relay to pilots SIGMETS that may affect the route of a flight Monitor Monitor
Provide Alerting Service (ALRS) to all known flights according to
the following three different phases (INCERFA, ALERFA,
DETRESFA)

Monitor Monitor

(continued)

214 J. J. Cañas et al.



6 Methodology

When complexity is approached from a theoretical psychological model of the ATCo,
it is possible to derive hypotheses from that model about how to reduce complexity
with automation. These hypotheses refer to how the complexity varies depending on
how the ATCo processes the traffic parameters and how the operational environment is
designed and managed. These hypotheses can also be made about the measures that can
be put in place to mitigate these effects. Then, these hypotheses must be tested using a
scientifically valid method.

Table 1. (continued)

Responsibilities Responsibilities
allocation
High
automation

Medium
automation

Check flightplans/RBT/RMTs for possible conflicts and
complexity issues within area of responsibility

Monitor Monitor

Plan conflict-free flight path through area of responsibility Monitor Monitor
Provide early conflict detection and resolution if the early
resolution brings operational benefit (either on the ground side or
the airborne side)

Monitor Approve

Assign specified headings, speeds and levels Monitor Approve
Re-route flights to avoid non-nominal or hazardous weather areas Monitor Approve
Provide sequencing between controlled flights Monitor Approve
Resolve boundary problems by re-coordination Monitor Approve
Implement solution strategies by communicating trajectory
changes to the aircraft through the concerned ATC
Controller/System via Data Link

Monitor Approve

Provide separation between controlled flights Monitor Apply
Apply appropriate separation to all controlled flights departing area
of jurisdiction

Monitor Apply

Monitor the air situation picture Monitor Apply
Monitor the weather conditions Monitor Apply
Monitor information on airspace status e.g. activation of segregated
airspace Communicate with pilots by data link

Monitor Apply

Monitor aircraft equipment status as provided by the system Monitor Apply
Co-ordinate with adjacent control areas/sectors for the delegation
of airspace or aircraft

Monitor Apply

In coordination with the ATC Supervisory or Local Traffic
Management roles determine the need for Complexity Solution
Measures in the case of overload situations forecast

Approve Apply

Issue holding instructions Approve Apply
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6.1 The ATCo Psychological Model Implemented in a Computational
Model

There are several scientifically valid methods for testing hypotheses in a dynamic task.
An alternative to the methods designed to obtain empirical data to test the hypotheses
that are derived from a theoretical model, is the method that has been called the
‘computational method’ [38, 39], which consists of developing a computer model in
which the psychological model is implemented. With this computer model, it is pos-
sible to run computer simulations where the hypothesis derived from the model can be
tested. In order to do that, it is necessary that the computer model integrates the
cognitive mechanisms responsible for the behaviour of the human actor, the task, and
the environmental situation in which that task is performed. The hypotheses derived
from the model are validated when the computer model responds in the way a human
ATCo would respond when performing that task and in those traffic and environmental
situations. For a recent review of this method and its applications for scientific dis-
covery see [38].

At AUTOPACE, we have adopted this computational method. Subsequently, for
the purpose of evaluating the effects of automation on the ATCo’s cognitive system, we
have employed a computational model prototype called COMETA (COgnitiveModEl
for aTco workload Assessment), developed by CRIDA [40], that currently estimates
the demanded resources required to perform the controller activity. The demanded
resources are calculated based on the Wickens and McCarley algorithm [33]. Typically,
COMETA inputs are the control events generated in real or simulation environments
along with the ATCo task model expected in the scenario under study.
For AUTOPACE, the control events have been generated by a fast-time simulation tool
called RAMS. RAMS stands for ‘reorganised ATC mathematical simulator’. This a
FTS developed by ISA Software (http://ramsplus.com – taken on 06-03-2017)) where
AUTOPACE Scenarios Environment (airspace and procedures) have been modelled.
The ATCo task model (tasks associated with events, actions, behavioural primitives,
and mental resources) has been adapted to the control activity expected in AUTOPACE

Fig. 4. COMETA functional architecture
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scenarios (high and medium automation) in nominal (when the system works well) and
non-nominal situations (after system failures). COMETA presents the results not only
as a global figure for the demanded resources, but also as an apportionment for every
dedicated cognitive process and dimension.

COMETA foundations share the functional structure and functioning of the ATCo
cognitive system models of AUTOPACE. Figure 4 shows the complete functional
structure.

6.2 Some Results to Validate the Predicted Effect of Automation
on Mental Workload

Figure 5 shows some results obtained with COMETA related to the functional structure
evolution and the expected cognitive process in future automation scenarios, all of
which were compared with the current ATC paradigm. As observed, the distribution of
the functional structure of the cognitive system changes drastically with automation.
While current ATCos use the cognitive dimensions (visual, comprehension, projection,
decision-making, and verbal resources) in a balanced way, future ATCos will focus
their cognitive efforts mainly on comprehension and projection. The ATCo needs to
project what is going to happen in order to understand the system performance without
missing situational awareness. In a medium automation scenario where main actions
are not only monitored and approved, but also applied, projection is more relevant than
comprehension as the ATCo needs to invest more resources into the projection of future
scenarios to correctly select among the options given by the system (approve) and their
own instructions (apply). In the high automation scenario, the contrary occurs and what
is important is to have a more robust mental picture of what is occurring, in order to
monitor system performance (monitor) and to approve system proposals (approving);
i.e., better comprehension than projection. These results are in line with the predictions
of different levels of automation made by [41].

Fig. 5. Cognitive processes evolution in the current medium automation and high automation
scenarios [42].
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7 Summary and Conclusions

One of the main conclusions of Project AUTOPACE is that from a cognitive system
approach to ATC complexity, it is possible to address the positive and negative effects
of automation and propose measures to reduce its negative effects and improve system
reliability and safety. Only from this approach is it possible to mitigate the negative
effects of automation. The two other approaches do not predict negative effects since
they consider that automation reduces the resources demanded (complexity is only
dependent on the demanded resources). For this reason, in these approaches, many of
the complex dimensions of human functioning are potentially ignored. An important
consequence is that if the effects of automation are only considered with regard to
traffic conditions and operational conditions, it is not possible to investigate the impacts
of such profound transformations on human psychological processing and to adapt the
way the human operator is prepared to manage such changes in their tasks. Therefore,
only from the cognitive system approach is it possible to design training programs
where cognitive and non-cognitive skills are taken into account in order to face the
potentially negative effects of automation. It is very important to emphasise that when
proposing a psychological model of the effects of automation, this model should be
grounded in the consideration of mental workload because it is the psychological
concept that defines the dynamic relation between the demanded and the available
resources.

The ultimate goal of AUTOPACE is to indicate requirements for training com-
petences resulting from the analysis carried out into the effect of automation on the
ATCo psychological model. In future automation scenarios, some new training
strategies and competences will be needed to cope with the effects of OOTL, stress,
disorientation, panic, etc., to ensure that the ATCo performance is optimum. Therefore,
the research carried out by AUTOPACE based on the ATCo psychological model will
support future research on system design to balance the use of the different cognitive
and non-cognitive processes and new training strategies to cope with the potentially
negative effects of automation.
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Abstract. Manifestations of increasing mental demands may be related to the
task’s context. Additionally, to fundamental physiological changes, the work-
load may be also characterized sometimes by contextual task-related elements.
We aimed to investigate the workload of helicopter pilots and develop predictive
models related to the tasks’ context. Eight pilots completed an unknown case-
scenario (*1 h) in a helicopter simulator. The scenario included changing
mission during flight and receiving/transferring an injured subject to the near
hospital. We selected interesting scenario’s periods/“tasks” (e.g., searching
hospital, urgent landing) where pilots gave oral evaluations (0–100). Performed
tasks had various contexts. We developed a multitasking learning approach to
“pool together” all tasks because some of them, although different, may carry
useful information about others, so they should neither be merged nor be pro-
cessed totally independently. Interestingly, it seems that physiological and
contextual parameters change order of descriptive power, depending on the task.

Keywords: Mental workload � Predictive model � Machine learning �
Multitasking learning � Helicopter simulator

1 Introduction

The notion of mental charge is often described as fuzzy, ambiguous [1] or nebulous [2].
The vagueness often attributed to this concept results largely from its multidimensional
character and the many definitions it is given. In the literature, we find many terms that
are close to or overlap only partially: mental effort, cognitive cost, cognitive load,
attentional load, mental strain or mental resources [1]. However, despite the absence of
a clear and universally accepted definition by the scientific community [1, 3, 4], the
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concept of mental load remains central for Human Factors, notably in aeronautics,
because it is operational to gain assess the intricacy of human-machine interactions.
The increasing complexity of information systems and automation has progressively
transformed the operator’s activity. The operator must now supervise these systems and
develop effective mental models of their functioning that have an impact on his mental
load and performance [5]. From the point of view of ergonomics [1, 2, 6], the mental
load is conceived as a dynamic construction that emerges from the interaction between
(i) the demands (or constraints) of the situation perceived and integrated by the
operator, be they physical, cognitive, socio-cognitive, psychophysiological, or emo-
tional, and (ii) the perception of the resources available to deal with these constraints.
In this model, the workload evolves along a continuum, depending on the state of
tension of this perceived resource-resource relationship. At the center of this continuum
is a workload, viewed as a strain, considered optimal. It results from a subtle balance
between constraints and perceived resources. At the ends of this continuum, two zones
can be modeled: an underload zone, when the requirements of the situation are per-
ceived as relatively low compared to the resources available to the operator, and an
overload zone, when the requirements exceed the resources available to the operator. In
each of these areas, the workload is said to be suboptimal and can lead to degraded
performance, human errors or incidents. De Waard modeled these areas in his inter-
pretation of the relationship between demand, workload, and performance [7].

The rest of the article is organized as follows: Related Work and practices are
presented in Sect. 2, Scenarios, Acquisition Protocol, Calculated biomarkers and data
mining strategy are presented in Sect. 3. Results and performance of the algorithm are
presented in Sect. 4. Discussion of results and justification of technical choices are
presented in Sect. 5. Finally, Conclusions and future perspectives are drawn in Sect. 6.

2 Related Work

The need to model the mental workload in complex situations comes from two
directions. The first is the formalization of knowledge, to try to pinpoint definitions and
rules. This entails developing knowledge-based models, such as the Adaptive Control
of Thought-Rational (ACT-R) [8] or rule-based approaches [9]. The other one is the
pragmatic one, and is more usually associated with measurement techniques, which are
organized into three categories, [3, 10–12] (i) self-assessment measures: these include
self-report measures and subjective rating scales; (ii) performance measures: these
consider both primary and secondary task measures; and (iii) physiological measures.

In the last decades, researchers can quantify and evaluate mental workload through
wearable sensors. Such sensors usually record basic physiological information (such as
electrocardiogram - ECG, electroencephalogram - EEG, heart rate, breath rate, etc.)
while the individual performs the given tasks and follows the clinician’s
instructions/protocol. Such measurements have been previously used in assessing
mental workload in drivers [13, 14], pilots [15], etc. Since the above sensors became
more portable and accessible, there has been an increasing interest in exploiting all
available information of the given continuous signals. Many other parameters derived
by this type of signals through signal processing methods, have been proposed
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previously (ex. heart rate variability - HRV, The 0.1 Hz HRV Components, etc. [7]),
showing that physiological alterations can reflect individuals’ mental workload.

The variety of methods indicates that researchers and industry increased their
interest in the evaluation of mental workload [16–18]. Despite these efforts, there is no
more consensus in the evaluation than in the definition of mental workload whether
these physiological parameters alone can fully assess the individual’s posture control.
Many works questioned the ability of physiological measurements to measure accu-
rately mental workload [19]. Others revealed that individuals generally overvalued
their mental workload when the complexity of a task increases, although their internal
state was not modified (HRV, heart rate-HR, etc. unchanged). Therefore they propose a
distinction between subjective and objective mental workload [20, 21]. Therefore,
recent works [22–24] proposed a combination of parameters derived from the physi-
ological signals to evaluate workload. Data mining techniques gain reputability, and it
seems that they can have an important additive effect on the workload research.
Recently efforts have been done to understand better the advantages of basic data-
driven approaches [24–26]. It has been shown that workload is better characterized by a
combination of parameters [24, 25] (a “profile”) rather than one dominant index. We
are convinced that the latter multi-dimensional approaches open new perspectives in
the analysis of complex phenomena such as workload. When there is only one task per
individual, traditional modeling can provide useful information about the parameters
that together are related to the workload. However, in the cases where consecutive tasks
occur, traditional modeling might be not appropriate since it would either separate the
tasks and create independent models or mix the tasks to create a global model. What
naturally arises is that although each task is different and might be manifested differ-
ently, they might share some characteristics that might make simultaneous learning
beneficial. Considering also the fact that investigated populations are often relatively
few, recent multitasking learning approaches seem to provide an obvious advantage
when is “pooling” together with data from different tasks [27]. The basic idea is that
some tasks, although different, may carry useful information about others. So, to know
which variables are more relevant to the corresponding workload of every task, tasks
should not be processed entirely independently.

3 Design and Methodology

Our main hypothesis is that all tasks are not the same and so the corresponding workload
would be manifested differently. Additionally to fundamental physiological changes, the
workload may also be manifested by contextual task-related elements. In other words,
depending on the task, contextual parameters might play an important (or even more
important) role than physiology, in the overall evaluation of mental workload. There-
fore, the primary objective of this research project is to investigate the workload of
helicopter pilots. Through a realistic scenario, we aimed to select the important features
depending on the task using multi-tasking learning techniques and develop predictive
models related to the tasks’ context monitoring and predicting subjective workload in
the control of complex systems. Such models would enable to predict manifestations of
increasing mental demands that may be related to the task’s context.
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The IKKY project (Integration of cockpit and its systems) is a major research and
development project designed to define the cockpit of the future, organized around the
consortium of the Council for Civil Aviation Research (CORAC). Within this large
project, we worked in the part (work-package 1.6) called Cockpit centered on the
method and tools for the evaluation of the cockpit of the future for helicopters. Airbus,
Thales, and Physip were our industrial partners. One of the objectives of this work-
package was to identify a set of measurements and methods for evaluating the psy-
chophysiological state of the helicopter pilot in real time. In the end, these means of
measurement will make it possible to evaluate the impact of new human-machine
interfaces on the psychophysiological state of the pilot. Our protocol aimed to meet
these limits as much as possible in the particular environment that a “full flight”
simulator represents.

3.1 Participants and Procedure

Two expert pilots conducted calibration sessions prior to the experiment. Eight oper-
ational pilots from the gendarmerie air forces conducted the entire experiment. Pilot 1
was excluded from the analysis due to extensively noisy signals. The pilots are between
32 and 49 years old, and have between 300 and 2450 h of flight to their credit (aircraft
combined).

3.2 Data Collection

3.2.1 Scenarios
Two scenarios were constructed to have two different records. We intended to use the
first scenario as a baseline and therefore it was simple and had similarities with the
second scenario. During the scenario, the pilot moves in the same region and the same
zone as in the second scenario, in order to enhance the contextual coherence of the
scenarios. This is a recognition mission for a ship that is suspected of oil spill off the
coast. The second scenario begins in a similar way, but the pilot receives an emergency
call to perform an aero-medical evacuation instead, a situation at the limits of the
machine and his capabilities. The pilot would have to take several delicate decisions at
the regulatory and operational level, in constrained conditions in terms of time and
weather, to finally land safely at the end of the mission. Some of the tasks are missing
to some pilots simply because they made different choices during the scenario (ex.
Searching zone for urgent landing). Each scenario is described and analyzed in detail
using a hierarchical task analysis method [28] (here expected tasks) carried out thanks
to the support of pilot helicopter experts.

Expected mental load values are then predicted by the same experts for different
phases of the scenario. The latter allowed the more precise identification of key
moments of the scenario in terms of the expected workload variation. It also allows
modifications and adaptations of the frame when the scenario presents risks in terms of
operational realism. The veracity of the scenario 2 was demonstrated during the year
2017 by a real mission carried out in the Réunion (FR) Island according to an almost
identical profile.
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3.2.2 Simulator
We used a “Full Flight” Level D simulator, with a mobile base to simulate the
movements of the cabin of the helicopter. The helicopter cockpit model selected is an
EC135. There are currently four levels of full flight simulator for civilian pilots when
converting from one type of aircraft to another (Levels A to D, with Level D being the
highest level and qualifying for ZFT training), and the mobile base is likely to provide
an additional degree of immersion (see Fig. 1). However, some equipment requires a
time of handling by the pilots, including the navigation system specific to the version of
the chosen helicopter.

3.2.3 Data Acquisition
We chose to take several reference measurements, which were used as ground truth for
the modeling stage. Each scenario was divided into phases, thanks to an important
work of hierarchical analysis of the tasks. During these phases, a subjective measure of
the Instantaneous Self-Assessment (ISA) type was performed, orally and/ or using a
tangible interface developed by the IRBA, according to the modality of preference
chosen by the pilot at the moment. t of the scenario. A posteriori, measurements of
NASA TLX [29], used in its simplified version [30], associated with explicit interviews
[31] made it possible to specify the significant events encountered by the pilot during
the scenarios. See Fig. 2 for an overview of an experimental session. The experiment
was validated by the ethics committee of the University Paris Descartes, with the N °
CERES 201735.

Fig. 1. Full flight simulator with EC 135 helicopter cockpit (Thales ©).
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3.2.4 Selected Sensors
The sensors selected were an Equivital® type sensor, measuring heart rate, respiratory
rate and cutaneous temperature, an eye tracker connected to a head movement capture
device in the cabin reference (Thales Equipment). A Brain Products ® 32-channel
electroencephalography helmet with amplified electrodes was also used, but the
recordings were not intended to participate in the mental load modeling. In addition to
the physiological measurements and contextual parameters, such as the simulated
helicopter airspeed, height, roll, pitch, etc. All these measurements were collected
synchronously by a device called CMS © for Cockpit Monitoring System.

3.3 Parameter Calculation

Most of the calculated parameters have been previously proposed as indicators of
increased mental workload [13, 25]. However, the main idea of this feature engineering
process is not only to use already proposed parameters but also to create new features
form the available datasets, trying to describe the mental workload alterations with an
exhaustive approach. Basic physiological characteristics (such as Heart Rate, Respiration
rate etc.), as well as contextual characteristics based on the visual acquisitions, were
included [7, 20]. The latter were used either in the absolute form or as a difference
(incremental) by the mean value of a calibration period as proposed in [32]. The second
part of the Scenario I served as the appropriate personalized calibration period.Moreover,
in order to further exploit the richness of the eye movement coordinates changes, char-
acteristics inspired by analytical studies with similar two-dimensional datasets (such as

Fig. 2. Above on the left, installation of the sensors. The electroencephalogram was not used for
the model. It serves as measure control. Top right, an internal view of the simulator with the
simulator operator. Below on the left, the Human Factor expert and the expert pilot. Bottom
center, the simulator. Bottom right the data quality control station
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the center of mass coordinates changes in postural control research) were applied in the
eye movement datasets [33, 34]. Table 1 provide the names and the description/values
(where needed) of the biomarkers that were initially included in the model.

3.4 Multitasking Learning

The parts of the continuous signals that correspond to the investigated tasks (Fig. 3)
were isolated and all the mentioned (31 overall) biomarkers (Table 1) were calculated
and stored. So, every pilot’s task (tij) has been represented by the above biomarkers.
This representation is stored as a 1 � 31 dimension vector in the matrix that corre-
sponds to the task’s (Ti) corresponding matrix.

Table 1. Names and descriptions of features that were included in the analysis. Features were
separated in Physiological, Psychological and Contextual parameters. However, all features were
equally included in the initial model.

Biomarkers Description

Physiological
HR (b/min) Heart rate
HRV (ms) The variation in the beat-to-beat interval
Energy01 The energy of HRV that lies at 0.1 Hz
BR (resp/min) Average breath rate
ST (Co) Skin temperature
IbiF95 (the F(Hz) were below that the 95% of ibi energy is)

(continued)

Fig. 3. Signals that corresponds to the period of a task are isolated and corresponding features
are calculated for every signal.
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Table 1. (continued)

Biomarkers Description

DHR (b/min) Differential or incremental HR (DHR) (the difference between
calibration/scenario I period and task period)

DHRV (ms) Differential or incremental HRV (DHRV) (the difference between
calibration/scenario I period and task period)

DEnergy01 Differential or incremental Energy01 (DEnergy01) (the difference
between calibration/scenario I period & task period)

DBR (resp/min) Differential or incremental BR (DBR) (the difference between
calibration/scenario I period and task period)

DST (Co) Differential or incremental ST (DST) (the difference between
calibration/scenario I period and task period)

UpHR HR > HR + 2 * SD of calibration/scenario I
UpHRV HRV > HRV + 2 * SD of calibration/scenario I
Psychological + experience
PSQI score Overall of Pittsburgh sleep quality index (PSQI)
STAI - state The state anxiety inventory
Hours Total hours of flight
Vision parameters
MaxFixation (ms) The maximum duration of fixation during task
AverageFixation (ms) The average duration of fixation during task
NFixation Number of fixations per task
RateFixation Rate between overall fixation period & task duration
MaxSaccade The maximum duration of saccade during task
AverageSaccade The average duration of saccades during task
NSaccade Number of saccades per task
RateSaccade Rate between overall saccadic period & task duration
Contextual parameters
AOI The areas of interest (AOI) where the pilot looks. Parts of

Helicopter’s cockpit (altitude, compass, radio etc.) & outside view
where continuously registered during scenarios

Unique AOIs How many unique areas of interest (AOI) the pilot fixed during the
task

f95AOI The frequency below that the 95% of AOI energy lays
GazeVelocityX
(degrees/sec)

The average velocity of gaze position change in X-axis

GazeVelocityY
(degrees/sec)

The average velocity of gaze position change in Y-axis

GazeAccelerationX
(degrees/sec)

The average change rate of gaze velocity in the X-axis

GazeAccelerationY
(degrees/sec)

The average change rate of gaze velocity in the Y-axis
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Pilots were evaluated every task that they made. Therefore, having totally 10
different groups of tasks, we end up with 10 matrices (T1:10) and 10 corresponding
response vectors (Y1:10) (see Fig. 4).

We were interested in highlighting global commonalities (if any) between tasks and
more importantly those elements that might play important role in the prediction of
each task’s workload evaluation. The Multi-Task Lasso with Least Squares Loss
(MTLLeast) algorithm [35, 36] assumes that different tasks share the same sparsity
parameter and so every task would be represented with different predictors but almost
the same number per column. Briefly, the model solves multi-task least squares
problem (1):

min
Xt

i¼1
WT

i Ti - Y
�� ��2

F þ q1 Wk k1 þ qL2 Wk k2F ð1Þ

where Ti denotes the input matrix of the i-th task, Yi denotes its corresponding
response, Wi is the model for task i, the regularization parameter q1 controls sparsity,
and the optional qL2 regularization parameter controls the ‘2-norm penalty. In our
study, we used only the Lasso ‘1-norm regularization (q1).

The non-zero W elements show the particular representations for every task.
Briefly, the proposed algorithm followed the following steps:

1. Already evaluated tasks were isolated by the datasets of every pilot.
2. Predictors from Table 1 were calculated for every task.

Fig. 4. Schematic representation of matrix Ti from the task i. Rows are the pilots that performed
this task and columns are the 31 biomarkers that calculated by each task. Yi is the workload
evaluation that pilots orally made after the scenario. For 10 groups of tasks, we have 10 matrices
(Ti) and 10 response vectors (Yi)
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3. Similar tasks from every pilot were grouped and their parameters were standardized.
4. The MTLLeast regularization was applied,
5. For every task i, those predictors in Wi with non-zero coefficients were the variables

that will contribute to the prediction of a relevant task by a future pilot. The most
important predictors per task have been chosen and evaluated using the standard-
ized coefficients of the Lasso regularization phase, as it has been already proposed
in [36].

6. The model was cross-validated using the well-established and secure leave-one
(pilot) - out method applying the well-known (and already used in such datasets)
Random Forest regression algorithm [26, 37] as the prediction model.

Figure 5 below represents schematically the above cross-validated procedure.

4 Results

After the cross-validation procedure, the average root mean square error (RMSE)
between true and predicted mental workload values was 15.3 ± 5.6. Interestingly, our
strategy seems to have promising results, considering the limited number of pilots that
are available. There are pilots whom their evaluation is predicted pretty accurately
(Pilot 7, Pilot 5 etc.), others whom their predictions are generally either overestimated
(pilot 8) or significantly underestimated (one case - pilot 4). All the predictions gen-
erally follow the “tendency” of the ground truth. Excessive RMSE values are always
due to an important bias (such as in Fig. 6C) rather than an important variance. See
Fig. 6 below.

Task isolation Predictors' 
calculation Task Grouping

MTLLeast 
Algorithm

Predictors 
importance

Fig. 5. Schematic representation of the design of the procedure.
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We present also the predictive performance per pilot (Table 2). Interestingly, the
model did predict accurately the evaluation of the less experienced pilots and the slight
over/under-estimation were observed in pilots with higher experience.

Fig. 6. Equality plots between reported mental workload (ground truth, y-axis) and the
predicted values from the model (x-axis). Plots A and B show results for two pilots with an
accurate prediction. C and D represent pilots where the RMSE was very high but due to an
important bias in the prediction (either underestimation - C or over-estimation-D). All predictions
follow the relative changes of corresponding mental workload.

Table 2. Prediction performance per pilot. The pilots that present very high RMSE have a large
bias either due to general under- or overpredicted values.

Pilot RMSE Hours

2 14.2 2100
3 14.1 2450
4 26.5 1840
5 11.5 300
6 10.8 1200
7 10.9 965
8 19.5 1000
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In terms of the descriptive power of predictors per task, there were 3 tasks where
physiological elements where dominant, 2 tasks where contextual parameters where
dominant and 5 where both categories were important. Table 3 summarizes the
important elements of every task.

5 Discussion

The objective of this study was to validate the hypothesis that the mental workload
presented by the pilots is related not only to physiological but also to task-related
contextual parameters. It was shown that although there are some important physio-
logical characteristics (such as the incremental HR - UpHR), as one could expect from
previous studies, there are tasks where mental workload is actually manifested mostly
by the context (such as areas of interest - AOIs of looking, gaze movement and
numbers of AOIs that the pilot needs to fix) rather than the physiology.

Table 3. Ten different tasks that pilots could perform during the Scenario 2. The median
(whiskers) of reported mental workload is provided as well as the first two variables that were
found to play a major role in the prediction process. The last column indicates the category of the
chosen variables. P: Physiological, C: Contextual, PE: Psychological/Experience.

No of
task

Scenario task Reported evaluation
median (whiskers)

Best predictors Category

1 Take-off (calm) 25 (20, 40) 1. BreathRate
2. Hours

P - PE

2 Change mission 40 (25, 50) 1. DHR
2. RateSaccade

P - C

3 Flight towards a target 30 (20, 40) 1. UniqueAOI
2. RateFixation

C

4 Preparation for landing 40 (40, 65) 1. GazeVelocityX
2. PSQI score

C - PE

5 Take-off (urgent) 45 (40, 60) 1. UpHR
2. Hours

P - PE

6 Urgent trajectory towards
the hospital

40 (30, 45) 1. f95AOI
2. HR

C - P

7 Searching zone for urgent
landing

45 (30, 60) 1. UpHR
2. Hours

P - PE

8 Preparation for urgent
landing

55 (45, 60) 3. GazeVelocityX
1. Average
1. Fixation

C

9 Urgent landing 40 (35, 45) 1. f95AOI
2. HR

C - P

10 Engine alert 55 (50, 70) 1. UpHR
2. f95AOI

P - C
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We introduced a multitasking method for highlighting the important features of
every task. The proposed method offered the advantage of “pooling” the tasks the
learning process and therefore taking into account the commonalities that may exist
between several tasks before creating the predictive models per task. Moreover, the
latter approach seems to handle more gently the problem of the low number of pilots.
The cross-validation procedure showed that tasks are generally well predicted and
pilots with high RMSE in prediction were mostly due to high bias rather than high
variance. The latter drawback has also positive aspects. In cases either under or
overestimated, the predictions are always relevant with the relative internal state of the
pilot. The latter interpretation allows us to validate our feature selection methodology
and conclude that physiological and contextual parameters (vision’s areas of interest
trajectories etc.) changed the order of descriptive power, depending on the task.

5.1 Data Acquisition and Scenarios

Emphasis is given on operational constraints and not on a difficulty related to an
accumulation of system failures. The scenarios were designed according to an iterative
process. A frame is designed to meet the specific needs of the workload variation
project. This framework is elaborated by focusing on operational constraints and
contextual elements, which constitute usual workload factors (weather conditions, time
pressure, and deterioration of the injured person’s state). It thus voluntarily moves
away from the scenarios modeling an accumulation of breakdown, considered unre-
alistic by the pilots. Recent studies that used simulators showed encouraging results,
but with a certain limit [24]. The models were found to be less effective than expected
and not explicit enough (Bayesian Neural Networks). The latter is always an important
issue, and the clarification is essential for the industrial processes. Interestingly, the
authors reported a low confidence level in the baseline data from the subjective
workload collection. Among the six participating pilots, two of them were test pilots.
They were “Super” expert of the machine and its technical limitations and trained for
critical situations, thus introduced a degree of imbalance in the participants ‘panel.
Another difficulty was that the simulator was not dedicated to research, leaving only a
two-hour window for equipment and mission. As a result, the environmental noise on
the sensors was only partially controlled. The choice of an evolutionary scenario of
failure accumulation was considered unrealistic by the pilots, who also emphasized a
feeling of insufficient presence. Finally, there was a limited collection of comple-
mentary data (e.g., psychometric). Subjects also completed the PANAS questionnaire
[38] after each session.

In our study, we tried to handle some of the above difficulties. On the one hand, to
improve the operability of the interpretability and the performance of the model as well
as provide a tool for continuous visualization of the mental workload. One of the major
challenges that we met was the different choices that each pilot might make during the
scenarios. As it was mentioned in the 3.4 and it is shown in Table 3, similar tasks were
grouped intentionally in order to “catch” the fundamental aspects of each task helping
the generalization of our conclusions (as possible as it can be with such small popu-
lation). Giving an example will enlighten the above challenge. At the end of the
scenario, the clinician demands an urgent landing before reaching the hospital due to
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the worsening of the patient’s condition. The pilot, taking into account the bad weather
conditions, took a decision either to proceed to urgent landing or to refuse and go
directly to the hospital. So, at the end of the scenario, there are pilots that made two
urgent landings (one somewhere before reaching the hospital and one at the hospital)
and pilots that have only one. Even if these tasks are somehow slightly different both
cases are close (in terms of the scenario’s timeline) and both include strongly the notion
of “emergency”. So, it has been decided to be treated as one task. However, previous
more easy landings were not included in this task since neither an emergency nor
time&weather constraints were present. We are aware that these choices are conceptual
choices around the “high-level” aspects of a task (landing, emergency, equal fatigue).
Grouping the tasks is a trade-off between the beneficial effect of increasing the pop-
ulation of this task and the deleterious effect of grouping dissimilar elements. This is an
open question and further research may be needed in order to clarify better the criteria
that may lead to such decisions.

5.2 Parameters and Performance

Generally, we observed that the variable with the most descriptive power was the
incremental HR (mostly as UpHR and sometimes as DHR). The latter results are in-line
with previous reviews and studies that mentioned mean HR and the incremental HR
seem to be the most correlated variables to mental workload [13, 39]. With a more
careful observation we can notice that from the moment that the scenario increases
complexity, multi-tasking and time pressure (�Task 5 in Table 3), HR is present to
4/5 tasks. The reason why we see HR mostly in the high-demanding periods is
probably due to the fact that the first tasks are not that complex and so pilots might
activate compensatory mechanisms in order to lower the level of mental workload and
to maintain a good performance [40]. For instance, pilots could reduce their speed to
maximize the time to process the given information. Further research needed and the
inclusion of helicopter’s movements during the tasks might help in this direction.
Surprisingly, HRV or incremental HRV has never shown significant importance. HRV
and especially the Energy01 component have been reported as sensitive to mental
workload [7]. Moreover, we expected that in tasks that the pressure of time would be
extreme (ex. task 7 and 8 - Urgent landing) would have significant changes as proposed
in [39]. Limited data, as well as the possible inter-correlation with other variables might
explain the above finding. On the other hand, physiology is not dominant to all the
tasks. In the same high demanding period (�Task 5 in Table 3), the frequency that
pilots change the fixation areas plays an important role. The index f95AOI was very
important in the 3/5 tasks. Interestingly, the task with the highest median value of
evaluation (task 8- Preparation for urgent landing) was the one where the contextual
elements were the most important. In the last part of the scenario, the complexity is
increased and so when pilots report their workload, they report also the subjective level
of each task. Many studies revealed that the increase in complexity only increase the
subjective level of mental workload, showing that drivers overvalued their objective
mental workload [40]. It seems that this phenomenon is present to our findings but the
general important role of HR indicates the objective workload increased (even over-
valued). We would like to highlight also that a posture-inspired variable such as
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GazeVelocity X and Fixations are important contextual factors. These findings are in-
line with previous works, which showed that saccadic velocity can be seen as an
indicator of a high level of mental workload in complex situations [41]. Even if eye
activity is probably more dependent on visual demands than on cognitive demands [7],
still the level of complexity, especially in extreme situations, could always indicate an
increase in cognitive workload, and our findings support this conclusion.

6 Conclusions

We introduced a multitasking method for highlighting the fundamental features of
every task when tasks are different and are not performed in the same way by the pilots.
The proposed multi-task regression method searched for the high-level fundamental
aspects that characterize a procedure. It seems that it performs very well even with a
small available population, and showed that analyzing several tasks sharing mutual
information before creating the predictive models is indeed beneficial. The conclusion
of this study is dual. 1. In tasks with high complexity, context plays an important role in
the workload evaluation. 2. The physiological and contextual parameters changed the
order of descriptive power, depending on the task. Further research, larger population
and the inclusion of helicopter’s movement is needed to further establish the above
findings.
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Abstract. There is a growing consensus concerning the negative conse-
quences of inappropriate workload on employee’s health and the safety
of persons. In a simulator study, we focused on air traffic controllers
during arrival management tasks. Our aim was to find out if the num-
ber of aircraft or the occurrence of an exceptional event added load to
the subjectively experienced workload. The workload was assessed using
the NASA-TLX, instantaneous self-assessment (ISA) questionnaire, and
expert ratings. Our sample consisted of 21 subjects. According to stan-
dard ANOVA procedures, controllers’ subjective ratings showed a high-
significant discrimination between the different air traffic demands but
only a weak-significant discrimination between sessions with and without
event. In particular, we were not able to obtain a significant interaction
effect between traffic volume and event. However, the examination of
between-subject factors could reveal additional information about con-
troller’s rating behavior. We currently conclude that while the effect of
the number of aircraft was evident, the impact of an exceptional event
remained doubtful.

Keywords: Mental workload · Air traffic controllers ·
Subjective ratings · NASA-TLX · ISA

1 Introduction

There is a growing consensus concerning the negative consequences of inappropri-
ate workload that can affect the individual itself but also other people that count
on it. High mental workload is associated with increased anxiety, stress, and a
lack of detachment from work during off-job time [8,9,24]. The missing recovery
from work-related stress can then lead to weakness, tiredness, and exhaustion.
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Thus, mental workload can influence the well being and health of a person. Fur-
thermore, it can influence the individual performance because of forgetfulness,
negligence, and a lack of concentration. The consequences are increased errors
or inadequate decisions and might affect not only the own safety but also the
safety of other persons. This is particularly true in safety-critical occupations
such as air traffic control.

In order to understand workload changes in the air traffic sector, it is impor-
tant to study the influence of different factors altering air traffic controllers’
mental workload. In this article, we concentrated on two exposure parameters:
air traffic volume and occurrence of an exceptional event. We were interested to
find out if both of them have an effect on the experienced workload and if there
was an interaction between both. In particular, we wanted to investigate if the
occurrence of on exceptional event affected workload differently related to the
current air traffic demands but also to individual characteristics. This under-
standing is relevant in order to improve working conditions by maintaining an
appropriate level of workload that allows also the handling of unforeseen events.

In Sect. 2 we give a brief overview about the concept and current methods
for registering mental workload. We introduce our hypotheses, the study design,
and the way we proceeded for analyzing our data in Sect. 3. Finally, we outline
and discuss our results in Sect. 4 as well as give prospects for future work related
to our conclusions in Sect. 5.

2 Related Work

In general, mental workload was related to information processing theory [14].
High mental workload may arise from the inability to cope with increasing
demands imposed on an individual’s cognitive capacity [7,14,30] but also from
a simultaneous interaction with emotional aspects [1], training and experience
level [32]. Hence, increasing demands could originate among others from time
pressure, task complexity, and individual’s psycho-physiological state [11]. Meth-
ods for registering mental workload are categorized into subjective and objective
methods. The subjective measurements use traditional questionnaires in order
to assess subject’s experienced workload. The objective methods are subdivided
into performance measurement and biosignal registration. Recording and analy-
sis of e.g. the brain activity [22,26], cardiovascular parameter [18,27] as well as
ocular data [2] offered insight into subject’s psycho-physiological state. The main
idea underlying the assessment of workload using biosignals considered arousal
and activation mechanisms of the organism reacting to the task load [21]. Mea-
surement of individual’s performance on a task was another way to determine
workload. Hereby, identification of workload relied on the relationship concept
between the two and implied that individual performance decreases under high
mental workload [17,19,33]. However, studies also indicated that motivation,
training, and experience could contribute to maintain performance at the same
level by investing more effort and in this way mitigated the impact of work-
load [16,23]. Thus, the increased mental workload could not always be measured



Exceptional Event and Subjective Workload of ATC 241

directly by means of performance break-down [12,20,29]. For a detailed overview
of the mental workload literature including definitions and measuring methods of
workload we advise the reader on the articles of Cain [5], Vidulich and Tsang [28]
as well as Stanton et al. [25].

We conclude that identification of workload by means of performance mea-
surements was problematic whereas physiological indicators and subjective rat-
ings using questionnaires may better reflect workload changes. However, subjec-
tive measurements were problematic because of their susceptibility to subjective
distortion, social desirability restrictions regarding the appropriateness of the
answer, and subject’s inability to introspect. Their main advantages were the
simplicity of assessment and high user acceptance.

3 Design and Methodology

3.1 Research Questions

In our simulator study, we focused on air traffic controllers as an occupation
with high cognitive demands and responsibility [6]. Air traffic controllers are
dealing with safety-critical tasks and have to keep engaged and try to maintain
their performance even under difficult situations. When task demands increase,
they have to invest more effort. As a consequence, air traffic controllers work in
a high pressure environment with high mental workload. This is mainly induced
by the traffic load situation itself but might also arise by unexpected events [1].
Hence, the aim of our study was to find out if it is the number of aircraft
or the occurrence of an exceptional event that stresses controllers the most.
Furthermore, we were interested if there is an interaction effect between both
and if between-subject factors, i.e. age or job demands, could reveal additional
information about controller’s experienced workload in both conditions. To this
end, we formulated the following five research hypotheses:

1. The number of aircraft has a significant main effect on controllers’ workload.
2. The occurrence of an exceptional event has a significant main effect on con-

trollers’ workload.
3. There is a significant interaction effect between number of aircraft and occur-

rence of an exceptional event regarding controllers’ workload.
4. The experienced workload is related to controller’s age.
5. The experienced workload is related to controller’s current job demands.

3.2 Traffic Scenarios

Our research was performed in the Air Traffic Management and Operations sim-
ulator (ATMOS) of the German Aerospace Center (DLR) in Braunschweig. For
our research design, we concentrated on arrival management tasks and manipu-
lated the factors: exceptional event and traffic load. The traffic load was manip-
ulated by the number of aircraft per hour (ac/h). We considered four levels of
traffic flow that determined the more or less constant number of aircraft in the
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arrival sector (i.e., possible fluctuations according to controller’s guiding behav-
ior): 25 ac/h, 35 ac/h, 45 ac/h, and 55 ac/h. The second factor was by nature
dichotomous: occurrence vs. absence of an exceptional event. The exceptional
event was a flight that should be prioritized because of a sick passenger on
board (in the following referred to as priority-flight event). The pseudo pilot was
instructed to request priority for his flight but not to declare emergency by using
the commands mayday or pan-pan. The rationale behind this was that in case
of a mayday or pan-pan call there might be specific prescribed regulations that
have to be implemented by the controller such as closing the sector, maintain a
distance around the aircraft, or distribute the remaining aircraft on further con-
trollers. These regulations would corrupt our experiment, in particular mitigate
the air traffic demand factor. We decided to use the medical event communicated
as priority request in order to get a workload increase in the sequence without
activating additional measures which would be applicable in case of aircraft’s
engine failure or loss of controllability.

The combination of both factors, number of aircraft and priority-flight event,
resulted in eight scenarios (Table 1). Scenario duration was 20 min for a scenario
with no priority-flight event and 25 min for a scenarios with a priority-flight
event. The priority-flight event occurred after the 10th min. The time param-
eters were chosen because of previous experiences related to simulator exper-
iments with air traffic controllers. We gave controllers 10 min to get started
and accustomed to their sector in order to control for any additional intrin-
sic, workload-relevant factors that could interfere with our exposure parameters.
We assumed that in case of a priority-flight event the controllers would need
maximally 10 min to solve it. We also knew that controllers’ experience in the
simulator used to be real and pervasive. By giving them 5 additional minutes in
scenarios with priority-flight event, we aimed to allow them to leave the experi-
ment with a positive impression and not with a bad feeling.

Table 1. Experimental design with two factors: number of aircraft and priority-flight
event.

Simulation
scenario

Traffic load
(ac/h)

Priority-flight
event

1 25 No

2 25 Yes

3 35 No

4 35 Yes

5 45 No

6 45 Yes

7 55 No

8 55 Yes
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3.3 Procedure and Subjects

Our sample consisted of 21 subjects between the ages of 22 and 64 years (2
female, 19 male, mean age 38± 11). We had 13 approach controllers, 3 tower
controllers, and 5 employees of the DLR, in the following referred to as novices.
In real work life, subjects were working at different airports and different work
positions. Thus, they had experienced different job demands. All of them had
adequate expertise to handle the arrival management simulation and interact
with the pseudo pilots who simulated the cockpit crews during the trials. Within
two consecutive days, the subjects completed the above-mentioned eight traffic
scenarios in randomized order. The first day started at noon with an introduc-
tory session where participants completed demographic questionnaires. They
were briefed regarding the research goals, experimental procedure of the follow-
ing two days, and workload scales used. Next, subjects completed a training
session in order to get familiarized with the simulator and the questionnaires.
Once they had a clear understanding of how everything worked and what was
being measured, the experiment started. Four of the simulation scenarios were
presented on the first day, the remaining four were conducted on the second day
until noon. The Federal Institute of Occupational Safety and Health (BAuA)
in Berlin was in charge of the project. All of the investigations acquired were
approved by the local review board of the BAuA and the experiments were
conducted in accordance with the Declaration of Helsinki. All procedures were
carried out with the adequate understanding and written consent of the subjects.

3.4 Assessment of Workload

As dependent variable we assessed the experienced workload by means of the
NASA-TLX, instantaneous self-assessment (ISA) questionnaire, and expert rat-
ings. For the sake of completeness, we include the German versions used in the
Appendix A.

NASA-TLX. Subjective workload was captured with a computerized version
of the NASA-TLX [10]. After the training scenario, subjects were asked to rate
the workload sources in 15 pairwise comparisons of NASA-TLX’s six workload
dimensions: mental demand, physical demand, temporal demand, performance,
effort, frustration. Thereby, subjects chose the more relevant dimension of their
workload. Thus, we got an individual weighting of the NASA-TLX subscales.
After each simulation scenario subjects were asked to rate the scenario itself
within a 100-point range regarding each of the six subscales. They indicated
their rating by clicking on a 5-point step box of the scale. Finally, individual
weightings Sd of the NASA-TLX dimensions d were combined with dimensions’
ratings Rd according to Eq. 1 and yielded the overall workload index Widx of the
NASA-TLX [10].

Widx =
1
15

·
6∑

d=1

Sd · Rd (1)
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ISA. During all eight scenarios controllers performed the ISA questionnaire that
was developed for the assessment of air traffic controller’s mental workload [4,13,
15]. The ISA questionnaire consisted of a one-dimensional scale and was quick
and easy to asses. It was presented in an interval of 5 min and subjects indicated
their workload using a touch screen. Thereby, they had to select one of the
following five values according to their feeling during the previous minutes: (1)
under-utilized, (2) relaxed, (3) comfortable, (4) high, and (5) excessive. For our
analysis, we only considered controller’s rating after the possible occurrence of
the priority-flight event, i.e., the rating of the 15th min.

Expert Ratings. At the end of each scenario, we asked the involved pseudo
pilots from the simulated cockpit crews to rate the workload level of the air
traffic controller during the scenario. The rating was conducted using the ISA
scale. In order to have the same understanding of scale’s levels as the air traffic
controllers, pseudo pilots were previously briefed regarding the meaning of each
level. Finally, ratings of the pseudo pilots were averaged for each scenario and
participant.

3.5 Statistical Analysis

In order to answer our first three research questions regarding the effect of traffic
flow, occurrence of an exceptional event, and interaction effect between both, we
carried out three analysis of variance (ANOVA). The dependent variable of each
was the workload index measured either with NASA-TLX, ISA, or expert rat-
ings. For each ANOVA we utilized a repeated-measures design with two within-
subject factors (two levels for the priority-flight event factor and four levels
for the traffic-load factor). General differences between the levels were examined
and tested with a post-hoc test (Bonferroni corrected). For testing the differences
between priority-flight and no priority-flight event on each traffic-load level, we
used four t-tests for each workload index and adjusted the values accordingly.

The research questions concerning group differences were examined using
six mixed-factorial ANOVAs. Three of them were carried out with air traffic
controller’s age as between-subject factor and three with air traffic controller’s
current job demands. The dependent variable, within-subject factors, and levels
were identical with those mentioned above. Similarly, we utilized a repeated-
measures design and examined the differences with post-hoc tests (Bonferroni).
In order to cluster the subjects in two groups by age, we took the median age of
our sample. This yielded 11 subjects under 40 years (referred to as young) and
10 subjects over or equal 40 years (referred to as old). Work demand clustering
in two groups was done by consideration of the airport traffic volume where the
controller was working. Thereby, we took into account the annual report on the
air transport by the DLR [3] and set a threshold in order to get two equally sized
subject groups (Fig. 1). This resulted in 11 subjects working in busy airports
(approach controllers or tower controllers) and 10 subjects working in smaller,
less-busy airports (approach controllers, tower controllers, or novices). Finally,
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we have to note that 5 subjects had to be discarded from expert rating analysis
because of missing values. Hence, expert rating ANOVAs were carried out with 9
subjects in the busy-airport group and 7 subjects in the less-busy airport group
and respectively, 7 young and 9 older subjects.

Fig. 1. Number of flight movements and share of non-commercial traffic per airport in
Germany indicating our two-group split as green vertical line (figure from [3], p. 55).
(Color figure online)

4 Results and Discussion

4.1 Effect of Traffic Load and Priority-Flight Event

Results of the ANOVAs for NASA-TLX, ISA, and expert ratings, each with the
two within-subject factors traffic-load and priority-flight event, are summarized
in Table 2.

Regarding traffic load, Bonferroni corrected post-hoc tests showed significant
differences between all levels for all three measuring methods. Figure 2 shows
the results. Our first hypothesis related to the effect of number of aircraft on
controllers’ workload proved to be true.

The impact of a priority-flight event varied across the questionnaire methods.
Controllers’ ISA and NASA-TLX ratings showed only week significant differences
between sessions with and without priority flight. Expert ratings yielded a highly
significant difference for the priority-flight event factor. In order to evaluate the
effect of the priority flight for each traffic-load level, we computed t-tests and
adjusted the values by means of Bonferroni correction. For expert and ISA rat-
ings, we identified a significant difference between scenarios with and without
priority-flight event for the 45 ac/h condition (experts: t(15) =−4.28, p = 0.003;
ISA: t(20) =−3.21, p = 0.018). None of the other t-tests could reach significance.
Our second hypothesis about the effect of an exceptional event on controllers’
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Table 2. Analysis of workload scores across simulation conditions.

F p η2 Powera Powerb

Traffic load NASA-TLX 68.224 .001 .773 .997 .414

ISA 70.630 .001 .779 .920 .237

Expert ratings 67.145 .001 .817 .672 .145

Priority-flight event NASA-TLX 4.381 .049 .180 1 .998

ISA 4.773 .041 .193 .994 .431

Expert ratings 17.143 .001 .533 1 .684

Traffic load and
priority-flight event

NASA-TLX 1.477 .230 .069 .986 .329

ISA 1.031 .385 .049 .841 .195

Expert ratings 1.800c .183 .107 .612 .135

Note. Values of .001 are actually p ≤ 0.001.
aPower indicates the a posteriori power of our study to detect medium-size
effects.
bPower indicates the a posteriori power of our study to detect small-size effects.
cIndicates Mauchly’s test of sphericity was significant (p < 0.05) and a
Greenhouse-Geisser correction was made to degrees of freedom.

Fig. 2. Average workload over 21 participants measured using NASA-TLX (left), ISA
(center), and expert ratings (right) across simulation conditions (Bonferroni corrected
post-hoc tests: ∗∗∗: p ≤ 0.001; ∗∗: 0.001 < p ≤ 0.01; ∗: 0.01 < p ≤ 0.05; error bars indicate
95% confidence interval).

workload remained unclear, in particular regarding the 25, 35, and 55 ac/h sce-
narios and the ratings from the NASA-TLX questionnaire. Finally, no interaction
effect could be obtained between both factors with any of the questionnaires used
and our third hypothesis must be refused.

4.2 Effect of Age and Job Demands

No significant effect of age could be obtained with any of the questionnaire
methods (NASA-TLX: p = 0.627, η2 = 0.013; ISA: p = 0.134, η2 = 0.114; expert
ratings: p = 0.398, η2 = 0.051;). The experienced workload was not related to
controller’s age and thus, our fourth hypothesis has to be rejected. However, by
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comparing the results descriptively (Fig. 3) we could assume that older subjects
rated their workload slightly higher than younger ones during simulation scenar-
ios with priority-flight event and higher traffic load. This held true for all three
subjective measurement methods.

Regarding the between-subject factor of job demands, no significant main
effect could be found using expert-rating values (F(1, 19) = 3.188, p = 0.096,
η2 = 0.185). Figure 4 (right column of top and bottom rows) shows the results
scenarios with and without priority-flight event separately on two rows and indi-
cates that it is hard to recognize a general tendency between the groups using
experts’ ratings.

Scenarios without priority-flight event (age groups)

Scenarios with priority-flight event (age groups)

Fig. 3. Comparison of age groups. Average workload (left: NASA-TLX, center: ISA,
right: expert ratings) during scenarios without (top row) and with (bottom row)
priority-flight event at different traffic loads for young (in light blue) and older (in
blue) subjects. Error bars indicate 95% confidence interval. (Color figure online)

Workload ratings of the subjects themselves seemed more indicative. The
ISA ratings showed a significant main effect of the job demand factor (F(1,
19) = 12.221, p = 0.002, η2 = 0.391). Although there was a significant difference in
the workload means of the two groups averaged across all simulation conditions,
we did not obtain a significant interaction effect of job demands with any within-
subject factor. Descriptive evaluation of the results in Fig. 4 (middle column of
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Scenarios without priority-flight event (job-demand groups)

Scenarios with priority-flight event (job-demand groups)

Fig. 4. Comparison of job-demand groups. Average workload (left: NASA-TLX, center:
ISA, right: expert ratings) during scenarios without (top row) and with (bottom row)
priority-flight event at different traffic loads for subjects working in busy (in light blue)
vs. less-busy (in blue) airports. Error bars indicate 95% confidence interval. (Color
figure online)

top and bottom rows) showed that the effects might be additive, meaning that
the effect of job demands was similar on each traffic-load condition and the effect
of traffic load was similar for each subject group. Results of conditions with and
without priority-flight event were comparable.

Correspondingly, the NASA-TLX scores revealed also a significant main effect
of current job demands (F(1, 19) = 5.314, p = 0.033, η2 = 0.219). Furthermore,
we were able to obtain a significant interaction between priority-flight event,
traffic flow, and whether the controller was used to high job demands or not
(F(1, 57) = 3.319, p = 0.026, η2 = 0.246). The nature of this interaction is shown
in Fig. 4 (left column of top and bottom rows).

In general, the subjective workload of the group working in busy airports
increased gradually but to a lesser extent than the workload of the subjects
working in less-busy airports. Furthermore, while workload of the subjects that
work in busy airports increased almost exponentially over the traffic load of
conditions without priority-flight event (i.e., between 45 ac/h to 55 ac/ah), sub-
jective workload of subjects from less-busy airports seemed to increase somehow
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logarithmically (i.e., more pronounced slope between 25 ac/h and 35 ac/h and to
a lesser extent between the following traffic-load scenarios). This tendency was
not prominent during the priority-flight event conditions. Hereby, subjects from
less-busy airports reported the same amount of workload between 25 ac/h and
35 ac/h whereas subjects from busy airports reported a gradual increase. The
experienced workload as reported by the controllers was related to controllers’
current job demands and our fifth hypothesis proved to be true.

5 Conclusion and Future Work

The aim of our study was to find out if it was the number of aircraft or the
occurrence of an exceptional event that stressed controllers the most and if there
was an interaction effect between both. Furthermore, we were interested if the
factors age and experienced job demands during real-work life could reveal addi-
tional information about controllers workload. The subjective workload was mea-
sured using NASA-TLX, ISA, and expert ratings. The simulator experiment was
expected to be representative for real operations because of its similarity to con-
trollers’ working environment and controllers’ communication with pseudo pilots.
While the effect of the number of aircraft was evident by all three questionnaire
methods, the impact of the priority-flight event remained doubtful. Controllers’
ISA and NASA-TLX ratings showed only a weekly significant discrimination
between sessions with and without priority flight using standard ANOVA tests.
Expert ratings yielded a highly significant difference for the priority-flight event
factor, in particular during the 45 ac/h scenario. An additional model based in-
depth analysis of controllers’ ratings using a priori assumptions on non-linear
dependencies considering resource limitations might modify this conclusion.

The examination of between-subject factors could reveal additional informa-
tion about controller’s rating behavior. Thereby, we observed the tendency that
older subjects seemed to experience more workload than younger ones, in par-
ticular during the high-traffic conditions with priority-flight event. However, the
differences did not reach significance. One reason for this could be the small num-
ber of participants. In order to have two equally-sized subject groups, we took
the median age of our sample as threshold. For revealing differences between age
groups the threshold age should be over 40 years. Regarding the factor of job
demands, assumed by the number of flight movements of the airport where sub-
jects were working for, we obtained significant differences by means of subjects’
workload ratings but not using experts’ ratings. Subjects working in busy air-
ports seemed to experience lower workload compared to the group from less-busy
airports. The effect of job demands was similar on each traffic-load level and the
effect of traffic load was similar for each subject group. In the main, this held true
for conditions with and without priority-flight event conducted using the ISA
questionnaire. Thus, we assumed that the effect of job demands may be addi-
tive. Interestingly, only the NASA-TLX scores revealed an interaction between
all three factors. During scenarios without priority-flight event, we observed that
workload of subjects from busy airports increased slower among low traffic-load
conditions and jumped to a higher value at the highest traffic-load condition. We
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suggested that experienced subjects realized their high-workload state suddenly
when the traffic-load got the maximum value. In contrary, subjective workload of
subjects working in less-busy airports increased most abruptly between the low-
est and next-higher traffic-load condition and slower among higher traffic-load
scenarios. It seemed that as subjective-workload ceiling approached the subjects
of the less-busy airport group rated more cautiously. However, we have to note
that this subject group included 5 (out of 10) subjects with no work experience in
real airport environment. Thus, this difference between the groups could reflect
the difference between novice and experienced subjects. Interestingly, subjects
rated their workload more consciously during scenarios with priority-flight event.

To sum up, the number of aircraft contributed most to subjects’ experienced
workload while the priority-flight event became workload relevant only under
high-traffic load. This observation fits well to controllers’ reports. Most of them
mentioned that during the scenarios with low and medium traffic volumes they
had no difficulties to deal with the priority request. During the scenarios with
higher traffic demands the situation changed and the priority-flight event became
more demanding. Only few controllers were able to easily handle the situation.
Regarding the effect of age, we conclude that more research with older controllers
is necessary in order to gain more insight. Finally, the current job demands and
thus, controllers habituation on higher workload states deserves more attention.
The abrupt increase of perceived workload in controllers working in busy airports
appears critical, in particular observed using the NASA-TLX during the high-
load scenarios without priority-flight event. Objective registration of workload
using bio signals may reveal if it is the workload itself that increases suddenly or
if it is a lack of self-awareness that leads to these self-ratings. In this context, we
want also to emphasize the importance of critical validation of metrics of mental
workload as stated by [31].
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Abstract. Mental workload is now accepted as a significant factor in the per-
formance of individuals conducting complex tasks in high risk environments
such as healthcare and research shows that experience reduces the levels of
mental workload. In order to determine the effect of training on mental work-
load, a systematic search of studies of the effect of education and/or training was
conducted using standard research databases. Only 6 studies were identified and
these showed either limited or no improvement after training/education, sug-
gesting that educational interventions have limited utility in reducing mental
workload. The apparent failure of education may suggest that the current, digital
view of cognition is not adequate and an alternative concept of analogue cog-
nition is proposed as a possible explanation.

Keywords: Mental workload � Education � Training � Human performance

1 Introduction

Mental workload is an abstract concept which reflects the demands of a particular
task/environment on the cognitive resources of individuals [1, 2]. One of the main
beliefs underpinning the study of mental workload as a concept is that high levels of
mental workload lead to poor performance [3] and that interventions such as
training/education can reduce mental workload and therefore improve performance [4].
In addition, measurement of mental workload could be used to develop improved
educational techniques [5, 6]. Although education can be seen as peripheral to the more
scientific process of characterising and measuring mental workload, the concept of
mental workload would remain an abstract if it cannot be applied to real world
applications [7, 8]. Although this form or research can be used to modify any specific
task or the environment in which it is performed, it is a change in human behaviour that
provides the greatest challenge to promoting safety [9, 10].

Within medicine, the concept of mental workload is not yet widely used to aid the
design of either instructional materials or assessment tools, [6] although it is now being
used to aid the design of systems and equipment [11, 12]. In addition, the concept of
cognitive load theory has been introduced which, as the theories share so much, can
lead to confusion [13, 14]. While Cognitive Load theory has mainly analysed class-
room based teaching and is based on the premise that a reduction in the cognitive load
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while learning provides learners with an increased cognitive capacity to learn. In
contrast, mental workload theory has mainly analysed operators working in real or
realistic environments and is based on the premise that either reducing the workload
associated with the task or increased training will allow subjects to improve their
performance. In addition, while mental workload theory posits mental workload to be a
rather complex, multidimensional concept, cognitive load theory has the additional
complication of splitting cognitive load into three separate components, making
measurement difficult. This paper deals with mental workload theory rather than
cognitive load theory.

Studies which measured the difference between novices and experts, completing
tasks in simulated or real medical environments have shown that experience does
reduce cognitive load [15–18]. However, studies within medical education which have
measured the workload of subjects before and after a specific episode of training are
problematic in that it appears to suggest that training does not reliably reduce workload
[19–21].

If we accept the current definition of mental workload as the balance between the
cognitive demands of the task compared to the ability of the subject [1] and that the
purpose of training is to improve ability [6], then it follows that training should reduce
mental workload. However, if training medical staff does not reduce their mental
workload then either the training is ineffective or the tasks undertaken by medical
practitioners have not been adequately characterised. This question is important as
while mental workload is now accepted as a valid outcome in the assessment of both
individual performance and that of systems in healthcare, [3, 22, 23] workers are
currently in short supply and in many cases highly paid, so the allocation of staff to
training rather than patient care provides a significant increase in cost or a reduction in
patient care. In such circumstances, it is essential that any educational interventions are
demonstrably effective. An initial search of the medical educational literature did not
provide adequate evidence to address the question of whether training affects the
mental workload of operators, so a wider search of the literature was undertaken. The
aim was to identify all published papers which measured the effect of
education/training on mental workload to determine which forms of training are most
effective in reducing mental workload.

2 Methods

A systematic search of online research databases was performed by a single author,
using the terms “mental workload” and “training” or “education”. Inclusion criteria
were any study which included an objective measure of mental workload before and
after a period of training or education. Any form of educational intervention was
included. Studies were excluded if only subjective measures of mental workload were
used. The number of studies identified by each search engine are shown in Table 1.
The abstract for each study identified was read to determine whether it was suitable for
inclusion within this paper, with total numbers included also shown in Table 1. On full
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review of all the papers, none needed to be excluded. After the initial search, any
authors identified were then used as search items to determine if they has authored
similar papers, but this did not identify any additional studies. A search using Google
Scholar using the terms “mental workload” and “training” produced 23,800 results. An
informal search of the first 500 results did not reveal any further studies which met the
criteria. Papers were then analysed to determine the task studied, the type and duration
of educational intervention and the effect of mental workload.

3 Results

The search process identified six studies which met the inclusion criteria (Tables 1 and
2). A large number of papers were common to many of the database results, supporting
the conclusion that the search identified all studies with the specified items in the title or
abstract. However, it is likely that there are other studies which measure mental
workload before and after some educational intervention, but which have not been
identified by this process. The following six studies were identified:

1 - Lelis-Torres et al. [24] studied mental workload using a processed EEG signal
before and after subjects practiced a task which involved repetitive key pressing
and showed that the subject’s workload decreased. The task or training were not
well described but appear to be highly constrained with simple practice rather than
a designed educational intervention. They found that repetitive practice resulted
both in lower initial workload and a greater fall in workload with practice.
However, they conclude that the increased cognitive effort involved in random
practice showed more potential as an educational intervention.

2 - Boet et al. [21] performed a randomised trial of training in 20 junior surgical
residents being trained on a full scale simulator to deal with medical crises. Mental
workload was measured using a vibrotactile secondary task method. In the control
group (n = 10) practicing crisis management without debriefing appeared to
increase workload. In the intervention group (n = 10) targeted feedback over
15 min which included teaching on generic crisis management skills reduced
workload.

3 - Byrne et al. [19] studied the performance of doctors being trained to act as
examiners in a checklist based practical skills examination. Mental workload was
measured by a vibrotactile secondary task method. Subjects completed four
sequential video based training sessions with feedback. Overall, training appeared
to have no effect on mental workload or the accuracy of their marking.

4 - Byrne et al. [25] studied anaesthetic trainees being trained on a full scale training
simulator. Workload was measured with a vibrotactile secondary task method.
After a single simulation with debriefing and targeted advice, each subject then
completed a further simulation. There was no effect on mental workload or
performance.

5 - Saus et al. [26] studied police cadets being trained to use firearms in a simulated
environment. The training focussed on developing situational awareness on the
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use of firearms in a variety of simulated situations. Mental workload was mea-
sured by a reduction in heart rate variability with the signal generated by a surface
ECG. A single training session reduced mental workload and improved perfor-
mance measured by the number of shots fired and the number of hits.

6 - Kang et al. [27] studied college students to complete simple mathematical cal-
culations similar to “If A = 3, 7 + A = ?”. Mental workload was measured by
thermography of the nose. Although the measure appeared to correlate with
perceived workload, there was no improvement during the short practice phase.

4 Discussion

Despite the large volume of literature on mental workload, there are few studies which
have measured the effect of training or education on mental workload measured by an
objective methodology. Including subjective measures [28] would have considerably
increased the number of studies included in this paper, but as training/education would
be expected to affect subjective measures of workload they were not included. The
methodologies used to measure workload were diverse and although each methodology
was supported by appropriate references to validate its use, the evidence for each
appeared to be limited. In addition, it is recognised that to be effective, educational
interventions need to use appropriate instructional design techniques, [29] usually
incorporating repeated practice and feedback [30]. In contrast, the studies identified
here used single educational interventions which were both short and appeared to lack
any educational theory or design. They also appeared to focus on unaided practice or
the provision of simple instruction.

Overall, the effect of training/education on mental workload appears to be variable,
so that a logical conclusion from this review might be that there was insufficient
evidence to recommend training/education as a valid intervention. However, two of the
tasks studied were very limited, repetitive tasks, one of which showed improvement.
This suggests that for such simple tasks, repetition may be effective. The other four
studies looked at complex, rapidly evolving environments with the training either
targeted at dealing with the specific scenario, or with training targeting generic crisis
management or situational awareness. In these more complex situations, training staff
to deal with specific problems had no effect, but where generic skills were emphasised,
workload decreased.

Where the mental workload of medical staff, who work in complex environments,
at different stages of their careers have been measured, it appears to show a gradual
decrease in workload over many years of training [15, 17]. This gradual decrease in
mental workload over many years of practice is not compatible with many existing
models of learning, such as competency based training, where students acquire specific
knowledge and skills during defined learning periods, with mastery of each component
tested at the end of each section with a summative assessment. It also raises questions
as to how this learning should be represented in models of neural processing.
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Most educational theory posits cognition, at least implicitly, as a digital process
using discreet items of knowledge acquired from sensory input which is then processed
via a logical, Boolean or Bayesian logic process. The inferences from this conceptu-
alisation of learning is that if a subject has acquired adequate knowledge relating to a
specific situation, then they will be likely to select the correct solution to any given
problem. Correspondingly, if the subject makes an incorrect choice, then they must
have inadequate knowledge which needs to be addressed through an educational
process.

An alternative view is to consider human cognition to be based on massive numbers
of analogue circuits which integrate sensory inputs and develop responses in the same
way as the electronic analogue computers used in the 1950/60s [31]. Although the term
‘analogue’ when applied to a computer describes the relationship between input and
output of the computation, it does not specify the internal construction of the device,
which can use, for example, physical connections or electrical circuits. Clearly, the
human brain does not contain either physical linkages or continuous electrical currents.
However, while neurones cannot conduct continuous currents which are turned up or
down, they can form circuits which increase their firing rate or ‘resonate’ in response to
specific conditions. The description of perception in terms of circuits which ‘resonate’
or ‘vibrate’ in response to incoming sensory information has already been described in
Cognitive Resonance Theory [32]. This analogue view of learning would explain the
learning process as one of gradual ‘tuning’ of circuits to improve their ‘signal to noise
ratio’ and ‘quality of reception’ more in keeping with gradual improvements to an AM
radio or the gradual redesign of a violin so that each becomes more responsive to any
input and produces a progressively higher quality output [33].

Such a view of cognition would explain the lack of evidence to demonstrate that
education is effective in reducing workload, as it might be expected that performance of
simple, highly constrained tasks could be improved after short practice, extensive
experience/practice would be required to ‘retune’ or develop the required analogue
circuits where a more complex task required active selection and processing of
information from a wide range of incoming sensory input [34]. It would also explain
why short training interventions to deal with specific problems might fail, interventions
which assisted subjects in making sense of the complexity around them might provide
immediate reductions in mental workload, as rather than trying to analyse complexity,
subjects could more easily select from a limited number of options. Further, new
concepts of education may support the development of new and more effective teaching
methods [35, 36].

5 Conclusion

The published literature on the effect of education on the mental workload of operators
using objective methodology is extremely limited, with published studies limited to
single educational interventions of uncertain utility. In addition, while the performance
of highly constrained, simple tasks may be improved by short term practice or
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debriefing, they appear ineffective when applied to more complex tasks. In addition,
while training subjects how to deal with specific complex tasks appears to be inef-
fective, teaching subjects a generic approach to a range of problems appears more
effective.

These results may be better explained by an analogue theory of cognition rather
than a digital one. Further research looking at the effects of education on mental
workload will be required to determine whether this is true. In particular, studies which
involve the measurement of mental workload in realistic environments before, during
and after prolonged periods of training/education will be required to determine which
forms of education are most effective in reducing mental workload.

Appendix

Table 1. Summary of databases searched and suitable studies identified. Terms
used were “mental workload” and “training” or “education”

Database Match Matches Additional
papers included

Total included
in analysis

1 Pubmed Training 153 5 5
2 Pubmed Education 109 0 5
3 Science direct Training 64 0 5
4 Science direct Education 16 0 5
5 CINALH Training 3 0 5
6 CINALH Education 1 0 5
7 ERIC Training 1 0 5
8 ERIC Education 10 0 5
9 PsychInfo Training 13 0 5
10 PsychInfo Education 2 0 5
11 Scopus Training 192 1 6
12 Scopus Education 39 0 6
13 Web of science Training 16 0 6
14 Web of science Education 2 0 6
15 Wiley

interscience
Training 9 0 6

16 Wiley
interscience

Education 16 0 6

The Effect of Education and Training on Mental Workload in Medical Education 263



References

1. Wickens, C.D.: Multiple resources and mental workload. Hum. Factors 50, 449–455 (2008).
https://doi.org/10.1518/001872008X288394

2. Longo, L., Leva, M.C.: Human Mental Workload: Models and Applications: First
International Symposium, H-WORKLOAD 2017, Dublin, Ireland, June 28-30, 2017,
Revised Selected Papers. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-
61061-0

3. Yurko, Y.Y., Scerbo, M.W., Prabhu, A.S., Acker, C.E., Stefanidis, D.: Higher mental
workload is associated with poorer laparoscopic performance as measured by the NASA-
TLX Tool. Simul. Healthc. J. Soc. Simul. Healthc. 5, 267–271 (2010). https://doi.org/10.
1097/SIH.0b013e3181e3f329

4. Carswell, C.M., Clarke, D., Seales, W.B.: Assessing mental workload during laparoscopic
surgery. Surg. Innov. 12, 80–90 (2005). https://doi.org/10.1177/155335060501200112

5. Menekse Dalveren, G.G., Cagiltay, N.E., Ozcelik, E., Maras, H.: Insights from pupil size to
mental workload of surgical residents: feasibility of an educational computer-based surgical
simulation environment (ECE) considering the hand condition. Surg. Innov. (2018). https://
doi.org/10.1177/1553350618800078

6. Byrne, A.: Mental workload as an outcome in medical education. In: Longo, L., Leva, M.C.
(eds.) H-WORKLOAD 2017. CCIS, vol. 726, pp. 187–197. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-61061-0_12

7. Parasuraman, R., Sheridan, T.B., Wickens, C.D.: Situation awareness, mental workload, and
trust in automation: viable, empirically supported cognitive engineering constructs. J. Cogn.
Eng. Decis. Mak. 2, 140–160 (2008). https://doi.org/10.1518/155534308X284417

Table 2. Details of studies included in analysis.

Study Primary task Outcome Intervention Duration Retest Outcome

1 Lelis-
Torres
et al.
[24]

Sequential key
pressing

Processed
EEG

Repetitive
practice

Post
practice

Immediate Improved

2 Boet
et al.
[21]

Managing
simulated
medical crisis

Secondary
task

Debriefing
training on
crisis
management

One
training
session

Immediate Improved

3 Byrne
et al.
[19]

Marking skills
assessment
(OSCE)

Secondary
task

Video based
practice

One
training
session

Immediate No effect

4 Byrne
et al.
[25,
37]

Simulated
anaesthetic
crisis

Secondary
tasks

Video based
debriefing on
specific crisis

One
training
session

Immediate No effect

5 Kang
et al.
[27]

Shooting
simulator

Heart rate
variability

Situational
awareness
training

One
training
session

Immediate Improved

6 Kang
et al.

Alphanumeric
processing

Thermography Practice One
session

Immediate No effect

264 A. Byrne

http://dx.doi.org/10.1518/001872008X288394
http://dx.doi.org/10.1007/978-3-319-61061-0
http://dx.doi.org/10.1007/978-3-319-61061-0
http://dx.doi.org/10.1097/SIH.0b013e3181e3f329
http://dx.doi.org/10.1097/SIH.0b013e3181e3f329
http://dx.doi.org/10.1177/155335060501200112
http://dx.doi.org/10.1177/1553350618800078
http://dx.doi.org/10.1177/1553350618800078
http://dx.doi.org/10.1007/978-3-319-61061-0_12
http://dx.doi.org/10.1007/978-3-319-61061-0_12
http://dx.doi.org/10.1518/155534308X284417


8. Ayaz, H., Shewokis, P.A., Bunce, S., Izzetoglu, K., Willems, B., Onaral, B.: Optical brain
monitoring for operator training and mental workload assessment. Neuroimage 59, 36–47
(2012). https://doi.org/10.1016/J.NEUROIMAGE.2011.06.023

9. Young, M.S., Brookhuis, K.A., Wickens, C.D., Hancock, P.A.: State of science: mental
workload in ergonomics. Ergonomics 58(1), 1–17 (2015)

10. Wickens, C.D.: Mental workload: assessment, prediction and consequences. In: Longo, L.,
Leva, M.C. (eds.) H-WORKLOAD 2017. CCIS, vol. 726, pp. 18–29. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-61061-0_2

11. Longo, L.: Mental workload in medicine: foundations, applications, open problems,
challenges and future perspectives. In: 2016 IEEE 29th International Symposium on
Computer-Based Medical Systems (CBMS), pp. 106–111. IEEE (2016)

12. Longo, L.: Designing medical interactive systems via assessment of human mental
workload. In: 2015 IEEE 28th International Symposium on Computer-Based Medical
Systems, pp. 364–365. IEEE (2015)

13. Sweller, J.: Cognitive load theory. Psychol. Learn. Motiv. 55, 37–76 (2011). https://doi.org/
10.1016/B978-0-12-387691-1.00002-8

14. van Merriënboer, J.J.G., Sweller, J.: Cognitive load theory and complex learning: recent
developments and future directions. Educ. Psychol. Rev. 17, 147–177 (2005). https://doi.
org/10.1007/s10648-005-3951-0

15. Zheng, B., Cassera, M.A., Martinec, D.V., Spaun, G.O., Swanstrom, L.L.: Measuring mental
workload during the performance of advanced laparoscopic tasks. Surg. Endosc. 24, 45–50
(2010). https://doi.org/10.1007/s00464-009-0522-3

16. Guru, K.A., et al.: Cognitive skills assessment during robot-assisted surgery: separating the
wheat from the chaff. BJU Int. 115, 166–174 (2015). https://doi.org/10.1111/bju.12657

17. Byrne, A.J.J., Murphy, A., McIntyre, O., Tweed, N.: The relationship between experience
and mental workload in anaesthetic practice: an observational study. Anaesthesia 68, 1266–
1272 (2013). https://doi.org/10.1111/anae.12455

18. Byrne, A.J., et al.: Novel method of measuring the mental workload of anaesthetists during
clinical practice. Br. J. Anaesth. 105, 767–771 (2010). https://doi.org/10.1093/bja/aeq240

19. Byrne, A., Soskova, T., Dawkins, J., Coombes, L.: A pilot study of marking accuracy and
mental workload as measures of OSCE examiner performance. BMC Med. Educ. 16, 191
(2016). https://doi.org/10.1186/s12909-016-0708-z

20. Muresan 3rd, C., Lee, T.H., Seagull, J., Park, A.E.: Transfer of training in the development
of intracorporeal suturing skill in medical student novices: a prospective randomized trial.
Am. J. Surg. 200, 537–541 (2010). https://doi.org/10.1016/j.amjsurg.2009.12.018

21. Boet, S., Sharma, B., Pigford, A.-A., Hladkowicz, E., Rittenhouse, N., Grantcharov, T.:
Debriefing decreases mental workload in surgical crisis: a randomized controlled trial.
Surgery 161, 1215–1220 (2017). https://doi.org/10.1016/j.surg.2016.11.031

22. Sato, H., Miyashita, T., Kawakami, H., Nagamine, Y., Takaki, S., Goto, T.: Influence of
mental workload on the performance of anesthesiologists during induction of general
anesthesia: a patient simulator study. Biomed. Res. Int. 2016, 1058750 (2016). https://doi.
org/10.1155/2016/1058750

23. Carayon, P., Gürses, A.P.: A human factors engineering conceptual framework of nursing
workload and patient safety in intensive care units. Intensive Crit. Care Nurs. 21, 284–301
(2005). https://doi.org/10.1016/J.ICCN.2004.12.003

24. Lelis-Torres, N., Ugrinowitsch, H., Apolinário-Souza, T., Benda, R.N., Lage, G.M.: Task
engagement and mental workload involved in variation and repetition of a motor skill. Sci.
Rep. 7, 14764 (2017). https://doi.org/10.1038/s41598-017-15343-3

25. Byrne, A.J., et al.: Effect of videotape feedback on anaesthetists’ performance while
managing simulated anaesthetic crises: a multicentre study. Anaesthesia 57, 176–179 (2002)

The Effect of Education and Training on Mental Workload in Medical Education 265

http://dx.doi.org/10.1016/J.NEUROIMAGE.2011.06.023
http://dx.doi.org/10.1007/978-3-319-61061-0_2
http://dx.doi.org/10.1016/B978-0-12-387691-1.00002-8
http://dx.doi.org/10.1016/B978-0-12-387691-1.00002-8
http://dx.doi.org/10.1007/s10648-005-3951-0
http://dx.doi.org/10.1007/s10648-005-3951-0
http://dx.doi.org/10.1007/s00464-009-0522-3
http://dx.doi.org/10.1111/bju.12657
http://dx.doi.org/10.1111/anae.12455
http://dx.doi.org/10.1093/bja/aeq240
http://dx.doi.org/10.1186/s12909-016-0708-z
http://dx.doi.org/10.1016/j.amjsurg.2009.12.018
http://dx.doi.org/10.1016/j.surg.2016.11.031
http://dx.doi.org/10.1155/2016/1058750
http://dx.doi.org/10.1155/2016/1058750
http://dx.doi.org/10.1016/J.ICCN.2004.12.003
http://dx.doi.org/10.1038/s41598-017-15343-3


26. Saus, E.-R., Johnsen, B.H., Eid, J., Riisem, P.K., Andersen, R., Thayer, J.F.: The effect of
brief situational awareness training in a police shooting simulator: an experimental study
(2009). https://doi.org/10.1207/s15327876mp1803s_2

27. Kang, J., Babski-Reeves, K.: Detecting mental workload fluctuation during learning of a
novel task using thermography. In: Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, vol. 52, pp. 1527–1531 (2008). https://doi.org/10.1177/1541931
20805201947

28. Rubio, S., Diaz, E., Martin, J., Puente, J.M.: Evaluation of subjective mental workload: A
comparison of SWAT, NASA-TLX, and workload profile methods. Appl. Psychol. 53, 61–
86 (2004). https://doi.org/10.1111/j.1464-0597.2004.00161.x

29. Sweller, J., Sweller, J.: Instructional design. Aust. Educ. Rev. (1999)
30. Scerbo, M.W., Britt, R.C., Montano, M., Kennedy, R.A., Prytz, E., Stefanidis, D.: Effects of

a retention interval and refresher session on intracorporeal suturing and knot tying skill and
mental workload. Surgery 161, 1209–1214 (2017). https://doi.org/10.1016/j.surg.2016.11.
011

31. Small, J.S.: The Analogue Alternative: The Electronic Analogue Computer in Britain and the
USA, 1930–1975. Routledge, Abingdon (2001)

32. Grossberg, S.: Adaptive Resonance Theory: how a brain learns to consciously attend, learn,
and recognize a changing world. Neural Netw. 37, 1–47 (2013). https://doi.org/10.1016/J.
NEUNET.2012.09.017

33. Ogiela, Lidia: Cognitive systems for medical pattern understanding and diagnosis. In:
Lovrek, Ignac, Howlett, R.J., Jain, L.C. (eds.) KES 2008. LNCS (LNAI), vol. 5177,
pp. 394–400. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85563-7_51

34. Abela, J.: Adult learning theories and medical education: a review. Malta Med. J. 21(1), 11–
18 (2009)

35. Gobbo, F., Longo, L., Orru, G., O’sullivan, D.: An investigation of the impact of a social
constructivist teaching approach, based on trigger questions, through measures of mental
workload and efficiency. In: Proceedings of the 10th International Conference on Computer
Supported Education, CSEDU 2018, Funchal, Madeira, Portugal, 15–17 March 2018, vol.
2 (2018)

36. Hancock, P.A.: Whither workload? Mapping a path for its future development. In: Longo,
Luca, Leva, M.C. (eds.) H-WORKLOAD 2017. CCIS, vol. 726, pp. 3–17. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-61061-0_1

37. Smith, M.A., Byrne, A.J.: ‘Help! I need somebody’: getting timely assistance in clinical
practice. Anaesthesia 71, 755–759 (2016). https://doi.org/10.1111/anae.13497

266 A. Byrne

http://dx.doi.org/10.1207/s15327876mp1803s_2
http://dx.doi.org/10.1177/154193120805201947
http://dx.doi.org/10.1177/154193120805201947
http://dx.doi.org/10.1111/j.1464-0597.2004.00161.x
http://dx.doi.org/10.1016/j.surg.2016.11.011
http://dx.doi.org/10.1016/j.surg.2016.11.011
http://dx.doi.org/10.1016/J.NEUNET.2012.09.017
http://dx.doi.org/10.1016/J.NEUNET.2012.09.017
http://dx.doi.org/10.1007/978-3-540-85563-7_51
http://dx.doi.org/10.1007/978-3-319-61061-0_1
http://dx.doi.org/10.1111/anae.13497


Author Index

Baldissone, Gabriele 180
Bargiotas, Ioannis 222
Buffat, Stéphane 222
Burns, Catherine M. 3
Byrne, Aidan 258

Cañas, José Juan 131, 202
Comberti, Lorenzo 180

de Crescenzio, Francesca 202
de Frutos, Patricia López 202
Dearing, David 13
Debruyne, Christophe 160
Demichela, Micaela 180
Desideri, Stefano 180

Evans, Michael Scott 49

Fan, Jialin 147
Fernández Medina, Kristen 112
Ferreira, Pedro 202
Fürstenau, Norbert 239

Goan, Terrance 13, 72
Gómez-Comendador, Fernando 202

Harborne, Daniel 49
Heaton, James 72

Junior, Ademar Crotti 160

Labourdette, Christophe 222
Leva, Maria Chiara 180
Longo, Luca 23, 92, 160
López, Elena 202
Lucchi, Francesca 202

Meffert, Beate 239
Mirkovic, Bojana 202
Modaffari, Franco 180
Moustafa, Karim 92
Muñoz-de-Escalona, Enrique 131

Netjasov, Fedja 202
Nicolaï, Alice 222
Novstrup, Aaron 13, 72

O’Sullivan, Declan 160
Orru, Giuliano 23

Puntero, Eva 202

Rabe, Lea 239
Radüntz, Thea 239

Smith, Andrew P. 49, 147

Tews, André 239

Vayatis, Nicolas 222
Vidal, Pierre-Paul 222


	Preface
	Organization
	Contents
	About the Editors
	Models
	Understanding, Supporting, and Redesigning Cognitive Work
	Abstract
	1 Introduction
	2 Work Domain Analysis: Building Decision Latitude
	3 Control Task Analysis: Looking for Cognitive Efficiencies
	4 Strategies Analysis: Understanding How Work Adapts
	5 Mental Workload Prediction
	6 Conclusion
	References

	Assessing Workload in Human-Machine Teams from Psychophysiological Data with Sparse Ground Truth
	Abstract
	1 Introduction
	2 Related Work
	3 Design and Methodology
	3.1 Dataset
	3.2 Workload Model Training

	4 Results and Discussion
	5 Conclusion and Future Work
	Acknowledgments
	References

	The Evolution of Cognitive Load Theory and the Measurement of Its Intrinsic, Extraneous and Germane Loads: A Review
	Abstract
	1 Introduction
	2 Cognitive Load Theory
	3 Cognitive Load Types, Measurement Techniques and Measures
	3.1 Subjective Measures of Cognitive Load
	3.2 Task Performance and Self-reported Measures

	4 Synthesis and Observations on the Scientific Value of Cognitive Load Theory
	5 Reconceptualization of Cognitive Load Types
	6 Final Remarks
	References

	Developing an Objective Indicator of Fatigue: An Alternative Mobile Version of the Psychomotor Vigilance Task (m-PVT)
	Abstract
	1 Introduction
	2 Related Work
	3 Design and Methodology
	3.1 Participants
	3.2 Materials/Apparatus
	3.3 Statistical Analyses
	3.4 Design
	3.5 Procedure

	4 Results and Discussion
	4.1 Mean Speed Response (1/RT) and Reaction Time (RT)
	4.2 Mean Number of Lapses

	5 Conclusion
	Contributors
	References

	Workload Assessment Using Speech-Related Neck Surface Electromyography
	1 Introduction
	2 Related Work
	2.1 Human Mental Workload
	2.2 Face and Neck Surface Electromyography
	2.3 Intermuscular Beta Coherence

	3 Design and Methodology
	3.1 Data Collection Procedures
	3.2 Data Analysis
	3.3 Statistical Analysis

	4 Results and Evaluation
	4.1 Caveats and Limitations

	5 Conclusions and Future Work
	References

	Analysing the Impact of Machine Learning to Model Subjective Mental Workload: A Case Study in Third-Level Education
	1 Introduction
	2 Related Work
	2.1 Subjective Measurements Methods
	2.2 Machine Learning and Data-Driven Methods for Mental Workload Modeling

	3 Design and Methodology
	3.1 Dataset, Context and Participants
	3.2 Machine Learning for Training Mental Workload Models

	4 Results and Evaluation
	4.1 Accuracy of the Final Induced Models
	4.2 Convergent Validity of the Induced Models
	4.3 Face Validity of Induced Models
	4.4 Discussion

	5 Conclusion
	References

	Measuring the Mental Workload of Operators of Highly Automated Vehicles
	Abstract
	1 Introduction
	1.1 Study Aims

	2 Related Work
	2.1 The Interaction Between Human Drivers and Automated Systems
	2.2 Mental Workload
	2.3 The Role of Mental Workload for Driving Performance

	3 Design and Method
	3.1 Source of Participants
	3.2 Materials
	3.3 Procedure

	4 Results
	4.1 Sample
	4.2 Workload Ratings

	5 Discussion
	5.1 Overall Workload Ratings
	5.2 The Test Driver
	5.3 Transfer of Control
	5.4 Limitations

	6 Conclusion and Future Work
	References

	Applications
	Latency Differences Between Mental Workload Measures in Detecting Workload Changes
	Abstract
	1 Introduction
	2 Related Work
	3 Design and Methodology
	3.1 Materials and Instruments
	3.2 Participants
	3.3 Procedure
	3.4 Experimental Room Conditions
	3.5 Variables

	4 Results
	5 Discussion
	6 Conclusions
	References

	Mental Workload and Other Causes of Different Types of Fatigue in Rail Staff
	Abstract
	1 Introduction
	2 Related Work
	3 Aims
	4 Methods
	4.1 Participants
	4.2 Materials
	4.3 Analysis

	5 Results
	5.1 Descriptive
	5.2 Factor Analysis
	5.3 Bivariate Analysis
	5.4 Regression

	6 Discussion
	7 Conclusion
	References

	On the Mental Workload Assessment of Uplift Mapping Representations in Linked Data
	Abstract
	1 Introduction
	2 Background
	2.1 Mappings in Linked Data
	2.2 R2RML
	2.3 Juma

	3 Mental Workload Self-reporting Assessment Instruments
	3.1 Workload Profile
	3.2 NASA Task Load Index

	4 Design and Methodology
	4.1 Participants and Procedure
	4.2 Mapping Task

	5 Results and Analysis
	5.1 Reliability
	5.2 Findings

	6 Related Work
	6.1 Uplift Mapping Representations
	6.2 Mental Workload Applications

	7 Conclusions and Future Work
	Acknowledgements
	Appendix A: MWL Questionnaires
	References

	An Empirical Approach to Workload and Human Capability Assessment in a Manufacturing Plant
	Abstract
	1 Introduction
	2 Related Work
	3 Design and Methodology
	3.1 Conceptual Model
	3.2 Operational Model
	3.3 Data Field Collection

	4 Human Performance Assessment
	5 Results
	6 Discussion
	7 Conclusion and Future Work
	Appendix
	References

	Mental Workload in the Explanation of Automation Effects on ATC Performance
	Abstract
	1 Introduction
	2 Approaches to Defining and Measuring Complexity in ATC
	2.1 The Algorithmic Approach
	2.2 The Behavioural (Activity) Approach
	2.3 The Cognitive System Approach

	3 Will Automation Always Reduce Complexity?
	4 AUTOPACE Proposal to Reduce Complexity by Considering the Negative Effects of Automation
	4.1 The Psychological Model of the ATCo
	4.2 AUTOPACE Psychological Model in the Context of Related Research on Mental Workload

	5 AUTOPACE Predictions for Future Automation Scenarios in ATC
	6 Methodology
	6.1 The ATCo Psychological Model Implemented in a Computational Model
	6.2 Some Results to Validate the Predicted Effect of Automation on Mental Workload

	7 Summary and Conclusions
	References

	The Complementary Role of Activity Context in the Mental Workload Evaluation of Helicopter Pilots: A Multi-tasking Learning Approach
	Abstract
	1 Introduction
	2 Related Work
	3 Design and Methodology
	3.1 Participants and Procedure
	3.2 Data Collection
	3.2.1 Scenarios
	3.2.2 Simulator
	3.2.3 Data Acquisition
	3.2.4 Selected Sensors

	3.3 Parameter Calculation
	3.4 Multitasking Learning

	4 Results
	5 Discussion
	5.1 Data Acquisition and Scenarios
	5.2 Parameters and Performance

	6 Conclusions
	Acknowledgments
	References

	The Effect of an Exceptional Event on the Subjectively Experienced Workload of Air Traffic Controllers
	1 Introduction
	2 Related Work
	3 Design and Methodology
	3.1 Research Questions
	3.2 Traffic Scenarios
	3.3 Procedure and Subjects
	3.4 Assessment of Workload
	3.5 Statistical Analysis

	4 Results and Discussion
	4.1 Effect of Traffic Load and Priority-Flight Event
	4.2 Effect of Age and Job Demands

	5 Conclusion and Future Work
	References

	The Effect of Education and Training on Mental Workload in Medical Education
	Abstract
	1 Introduction
	2 Methods
	3 Results
	4 Discussion
	5 Conclusion
	Appendix
	References

	Author Index



