
Chapter 13
Space-Time Finite Element Methods
for Parabolic Evolution Problems
with Variable Coefficients

Ulrich Langer, Martin Neumüller, and Andreas Schafelner

Abstract We introduce a completely unstructured, conforming space-time finite
element method for the numerical solution of parabolic initial-boundary value prob-
lems with variable in space and time, possibly discontinuous diffusion coefficients.
Discontinuous diffusion coefficients allow the treatment of moving interfaces. We
show stability of the method and an a priori error estimate, including the case
of local stabilizations which are important for adaptivity. To study the method
in practice, we consider several typical model problems in one, two, and three
spatial dimensions. The implementation of our space-time finite element method
is fully parallelized with MPI. Extensive numerical tests were performed to study
the convergence behavior of the stabilized space-time finite element discretization
method and the scaling properties of the parallel AMG-preconditioned GMRES
solver that we use to solve the huge system of space-time finite element equations.

13.1 Introduction

When we deal with the simulation of physical problems like transient diffusion
problems, heat-conduction problems, or electromagnetic eddy current problems, the
governing partial differential equations (PDEs) are often of parabolic type. Thus,
the development of efficient numerical schemes for solving parabolic equations is
of great importance. The standard approach to the numerical solution of parabolic
PDEs uses some time-stepping method applied to the large-scale system of ordinary
differential equations arising from a semi-discretization in the spatial variables, e.g.,
by means of the Finite Element Method (FEM); see, e.g., [42]. Another approach
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first discretizes the parabolic problem with respect to time by some time-stepping
method, and then perform a discretization of the resulting elliptic problems in
the spatial variables. This approach is sometimes also called Rothe’s method, see,
e.g., [25]. There are many papers on the more recent continuous or discontinuous
Galerkin or Galerkin-Petrov (cG, cGP, dG, dGP) methods based on time-slices;
see, e.g., [1, 4, 6, 14, 27, 31–34, 37] and the references therein. These methods are
closely related to classical time-integration methods that can be solved in a time-
stepping procedure. This is a sequential procedure that is not suited for parallel
computing. In order overcome this drawback on massively parallel computers, time-
parallel solvers, see, e.g. [12, 15, 18, 45], or time-parallel time-integration methods
like PARAREAL [28] have been developed. An excellent historical overview
of 50 years of time-parallel integration methods is given in [16]. An alternative
approach consists in a full space-time discretization at once by treating time just
as another space variable, i.e., we solve a problem with one dimension more. In
fact, this approach to the numerical solution of transient problems in space and
time simultaneously is not new, but becomes now a really hot topic in connection
with the availability of massively parallel computers with many thousands of cores.
Besides the overview paper [16] that focuses on time-parallel integration methods,
we refer to [41] that provides an overview of the latest developments in this field
with focus on completely unstructured space-time methods and simultaneous space-
time adaptivity that treats time just as another variable.

In this paper, we will focus on space-time finite element methods that use really
unstructured simplicial space-time meshes. The motivation behind this is that, for
elliptic problems, there exist plenty of efficient and, most important, parallel solving
methods. If we would be able to derive a stable discrete bilinear form, for which we
can prove coercivity (ellipticity) with respect to some mesh-dependent norm in the
space-time FE-space, then we can expect that we can efficiently solve the space-
time problem fully in parallel as in the elliptic case. In this way, we can overcome
the curse of sequentiality of the time-stepping methods. Another reason for the
space-time approach is the fact that we are not restricted to a special structure of
the mesh. This means that we can apply adaptive mesh refinement in space and time
simultaneously. Last but not least, we can easily deal with moving interfaces and
computational domains, where the coefficients of the PDE and/or the spatial domain
Ω(t) depend on the time as well. Moreover, optimization problems constrained by a
parabolic initial-boundary value problem lead to optimality conditions that can very
efficiently be solved by space-time methods.

As already mentioned above, these advantages of space-time methods together
with the common availability of massively parallel computers have led to a revival
of space-time methods. This especially concerns space-time methods that are based
on completely unstructured space-time meshes produced, e.g., by simultaneous
space-time adaptivity; see [41] for a review of recent publications on this topic.
For instance, Steinbach introduced a inf-sup-stable Petrov-Galerkin method [39],
whereas Toulopoulos used bubble functions to stabilize a space-time finite element
method [43]. In the context of using Isogeometric Analysis (IgA) as space-time
discretization method, Langer et al. proposed an upwind-stabilized space-time
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method for parabolic evolution equations [26]; see also PhD thesis [29] by Moore.
Similar stabilized space-time finite element schemes have recently been developed
in [5, 10, 30]. In [5], beside the upwind-stabilization scheme, Bank, Vassilevski and
Zikatanov proposed and analyzed new EAFE (edge average finite element) schemes
for parabolic convection-diffusion-reaction problems, whereas Devaud and Schwab
[10] introduced upwind-stabilized schemes with mesh grading in time dealing with
time singularities and hp schemes leading to exponential convergence.

The main aim of this paper is to generalize the results for the stabilized space-
time scheme proposed in [26], where the authors use IgA for the discretization, and
the corresponding stabilized space-time FE scheme considered by Moore [30] to the
case of moving interfaces, i.e., t-dependent, discontinuous diffusion coefficients,
and the possibility to choose local (element-wise) upwind test functions of the
form vh + θKhK∂tvh depending on the mesh-size hK of an element K from the
finite element mesh. This localization of the upwind-stabilization is very important
for adaptivity that produces a family of shape regular meshes. We will use an
unstructured conforming FEM to discretize the parabolic initial-boundary value
problem, which we specify in the following. Let Q := Ω × (0, T ) be the space-
time cylinder, with Ω ⊂ Rd , d ∈ {1, 2, 3}, being a sufficiently smooth and bounded
spatial domain, and T > 0 being the final time. Furthermore, let Σ := ∂Ω × (0, T ),
Σ0 := Ω × {0} and ΣT := Ω × {T } such that ∂Q = Σ ∪ Σ0 ∪ ΣT . Then we
consider the following model problem that can formally be written as follows: Given
f , g, ν and u0, find u such that (s.t.)

∂u

∂t
(x, t) − divx(ν(x, t)∇xu(x, t)) = f (x, t), (x, t) ∈ Q, (13.1)

u(x, t) = g(x, t) = 0, (x, t) ∈ Σ, (13.2)

u(x, 0) = u0(x), x ∈ Ω, (13.3)

where the diffusion coefficient (reluctivity in electromagnetics) ν is a given
uniformly positive and bounded coefficient function. The dependence of ν not only
on space but also on time enables us to model moving interfaces. Note that we do not
require ν to be smooth. In fact, we will admit discontinuities for ν. For simplicity,
we assume homogeneous Dirichlet boundary conditions.

The paper is structured in the following way: In Sect. 13.2, we provide a space-
time variational formulation of the parabolic initial boundary value problem (13.1)–
(13.3), and we recall some existence, uniqueness and regularity results for weak
solutions in appropriate space-time Sobolev spaces. Section 13.3 is devoted to the
derivation and analysis of a new locally stabilized space-time finite element scheme.
Moreover, we derive a priori discretization error estimates. In Sect. 13.4, we present
four typical test cases for which we have performed extensive numerical studies,
and we discuss the numerical results. Section 13.5 draws some conclusions, and
provides an outlook on the future work.
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13.2 The Space-Time Variational Formulation

In order to derive well-posed space-time variational formulations in space-time
Sobolev spaces, we follow the classical approach developed in the monograph
[24] by Ladyžhenskaya, Solonnikov and Uraltseva, and in the lecture notes [23]
by Ladyžhenskaya. Let us first define the proper function spaces.

Definition 13.1 Let L2(Q) be the space of square integrable functions in the space-
time cylinder Q. Then we define the following Sobolev (Hilbert) spaces

H 1
0 (Q) = W 1

2,0(Q) := {u ∈ L2(Q) : ∇u ∈ [L2(Q)]d+1 and u = 0 on Σ},
H 1,0(Q) = W

1,0
2 (Q) := {u ∈ L2(Q) : ∇xu ∈ [L2(Q)]d},

H
1,0
0 (Q) = W

1,0
2,0 (Q) := {u ∈ H 1,0(Q) : u = 0 on Σ},

equipped with the usual scalar products and norms, as well as the Banach space

V2(Q) := {u ∈ H 1,0(Q) : |u|Q < ∞},

with the subspaces

V2,0(Q) := {u ∈ H
1,0
0 (Q) : |u|Q < ∞},

V
1,0
2 (Q) := {u ∈ V2(Q) : lim

Δt→0
‖u(·, t + Δt) − u(·, t)‖L2(Ω) = 0, uniformly on [0, T ]},

V
1,0
2,0 (Q) := V

1,0
2 (Q) ∩ H

1,0
0 (Q),

where the norm | · |Q is defined by

|u|Qt := max
0≤τ≤t

‖u(·, τ )‖L2(Ω) + ‖∇xu‖Qt ,

and Qt = Ω × (0, t) denotes a truncated space-time cylinder. Here, the appearing
differential operators are defined as follows:

∇ = (∇x,∇t )
T , ∇x = (∂x1, . . . , ∂xd )

T and ∇t = (∂t ).

Multiplying the PDE (13.1) by a test function v ∈ Ĥ 1
0 (Q) := {v ∈ H 1

0 (Q) : v =
0 on ΣT }, integrating over the complete space-time domain (cylinder) Q = Ω ×
(0, T ), integrating by parts with respect to time and space once, and incorporating
the initial and boundary conditions, we immediately arrive at the following space-
time variational formulation of the initial-boundary value problem (13.1)–(13.3):
find a function u ∈ H

1,0
0 (Q) such that

a(u, v) = l(v), ∀v ∈ Ĥ 1
0 (Q), (13.4)
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where the bilinear form a(·, ·) and the linear form l(·) are defined by the identities

a(u, v) =
∫

Q

(−u∂tv + ν(x, t)∇xu∇xv) dxdt

and

l(v) =
∫

Ω

u0(x) v(x, 0) dx +
∫

Q

f v dxdt,

respectively. A solution u of the space-time variational (13.4) is called generalized
(weak) solution of the parabolic initial-boundary value problem (13.1)–(13.3) in the
space u ∈ H

1,0
0 (Q).

Under the assumptions that

u0 ∈ L2(Ω) and f ∈ L2,1(Q) := {v : Q → R :
∫ T

0
‖v(·, t)‖L2(Ω) dt < ∞},

(13.5)

and that

0 < ν ≤ ν(x, t) ≤ ν, for almost all (x, t) ∈ Q, (13.6)

with positive constants ν and ν, the following theorem was proven by means of
Galerkin’s method and appropriate a priori estimates in [23]:

Theorem 13.1 ([23, Chapter III, Thm. 3.1]) Under the conditions (13.5)
and (13.6), the space-time variational problem (13.4) has at least one generalized
(weak) solution in H

1,0
0 (Q).

Definition 13.2 ([23, Chapter III]) A generalized solution u ∈ H
1,0
0 (Q) of the

space-time variational problem (13.4) is a called a generalized solution in V
1,0
2,0 (Q),

if u ∈ V
1,0
2,0 (Q) and if it fulfills the energy-balance equation

1

2
‖u(·, t)‖2

L2(Ω) +
∫

Qt

ν(x, τ )|∇xu|2 dxdτ = 1

2
‖u(·, 0)‖2

L2(Ω) +
∫

Qt

f u dxdτ.

and the identity

∫
Ω

u(x, t) v(x, t) dx −
∫

Ω

u0v(x, 0) dx

+
∫

Qt

−u∂tv + ν∇xu∇xv dxdτ =
∫

Qt

f v dxdτ,

for all v ∈ H 1
0 (Q) and any t ∈ (0, T ).
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Theorem 13.2 ([23, Chapter III, Thm. 3.2]) If the assumptions (13.5) and (13.6)
are fulfilled, then any generalized solution of the space-time variational prob-
lem (13.4) in H

1,0
0 (Q) is the generalized solution in V

1,0
2,0 (Q) and it is unique in

H
1,0
0 (Q).

Corollary 13.1 If the assumptions (13.5) and (13.6) hold, then there exists a unique
generalized solution u ∈ V

1,0
2,0 (Q) to the the space-time variational problem (13.4).

Remark 13.1 For the case ν = 1, f ∈ L2(Q) and u0 ∈ H 1
0 (Ω), Ladyžhenskaya

proved in [23, Chapter III, Thm. 2.1] that the generalized solution u of (13.4)
belongs to space H

Δ,1
0 (Q) = W

Δ,1
2,0 (Q) = {v ∈ H 1

0 (Q) : Δxv ∈ L2(Q)}, and

u continuously depends on t in the norm of the space H 1
0 (Ω). If ∂Ω ∈ C2, then

u ∈ W
2,1
2,0 (Q).

More regularity results can already be found in the classical monograph [24] and
in the more recent references [46] and [22]. The last reference provides an overview
on maximal parabolic regularity results; see also [27]. The space-time finite element
scheme that we are going to derive is consistent for solutions u of (13.4) that have
at least piecewise partial time derivative ∂tu in L2 and fluxes ν∇xu in H(divx) =
{v = (v1, . . . , vd) ∈ [L2(Q)]d : divxv ∈ L2(Q)}. This is ensured in the case of
maximal parabolic regularity where ∂tu ∈ L2(Q) and divx(ν∇xu) ∈ L2(Q), i.e.
∂tu − divx(ν∇xu) = f in L2(Q). We emphasize that we need this property only
element-wise for deriving a consistent scheme.

13.3 The Space-Time Finite Element Scheme

From the previous section, we know that there exists a unique generalized solution
of the initial-boundary value problem (13.1) in H

1,0
0 (Q) ∩ V

1,0
2,0 (Q) that may

have more regularity due to more regularity of the data, see Remark 13.1 and
the references mentioned above. The goal of this section is to derive a consistent
and stable space-time finite element scheme with a discrete (mesh-dependent)
bilinear form ah(·, ·) that is coercive (elliptic) on the space-time finite element
spaces and bounded on extended spaces with respect to appropriately chosen,
mesh-dependent norms. These properties ensure existence and uniqueness of a
finite element solution, and, together with appropriate interpolation respectively
approximation error estimates, a priori discretization error estimates for sufficiently
smooth solutions.

Similar to Langer et al. in [26], we use special time-upwind test functions, but in
contrast to [26] the time-upwind test functions are now locally scaled by the element
mesh-size in order to handle adaptivity. First, we need a regular or, at least, a shape
regular triangulation Th of the space-time cylinder Q; see, e.g., [7, 9] for details.
We now formally define this triangulation as Th := {K : K ⊂ Q,K open} such
that Q =⋃K∈Th

K , with K ∩ K ′ = ∅ for K �= K ′ ∈ Th, and the usual conditions
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imposed on a regular or a shape regular triangulation are fulfilled [7, 9]. On each of
these elements K , we now define individual time-upwind test functions

vh,K(x, t) := vh(x, t) + θKhK∂tvh(x, t), for all (x, t) ∈ K,

where θK is a local positive parameter that will be defined later, and hK :=
diam(K). Here, vh is some test function from a standard conforming space-time
finite element space V0h = {v ∈ C(Q) : v(xK(·)) ∈ Pp(K̂), ∀K ∈ Th, v =
0 on Σ ∪ Σ0}, where xK(·) is the map from the reference element K̂ to the finite
element K ∈ Th, and Pp(K̂) is the space of polynomials of the degree p on the
reference element K̂. For simplicity, throughout this paper and, in particular, in
our numerical experiments in Sect. 13.4, we use affine-linear mappings xK(·) and
simplicial elements. From now on, unless specified otherwise, all functions depend
on both space and time variables. So, we can omit the arguments.

In this section, we will also use the following spaces:

H
1,1
0,0 (Q) := {u ∈ L2(Q) : ∇xu ∈ [L2(Q)]d , ∂tu ∈ L2(Q) and u|Σ∪Σ0 = 0},

H
2,1
0,0 (Th) := {v ∈ H

1,1
0,0 (Q) : v|K ∈ H 2,1(K), ∀K ∈ Th},

W 1∞(Th) := {v ∈ L∞(Q) : v|K ∈ W 1∞(K), ∀K ∈ Th},
where H 2,1(K) := {v ∈ L2(K) : ∂tv, ∂xi v, ∂xi ∂xj v ∈ L2(K) and ∂tv ∈ L2(K)}.
For the sake of convenience, we now consider homogeneous initial conditions, i.e.,
u0 = 0 on Ω . Furthermore, we assume that ν ∈ W 1∞(Th), and that the PDE has
a sufficiently smooth solution u, e.g., u ∈ H

2,1
0,0 (Th); cf. also our discussion in

Sect. 13.2. Now we first multiply the PDE (13.1) by the space-time test function
vh,K , and then integrate over a single element K . Summing up over all elements
and applying integration by parts in the principle term, we obtain

∑
K∈Th

∫
K

(∂tuvh+θKhK∂tu∂tvh + ν∇xu · ∇xvh + θKhKν∇xu · ∇x(∂tvh)) d(x, t)

−
∑

K∈Th

∫
∂K

(ν∇xu · nxvh + θKhKν∇xu · nx∂tvh) ds(x,t) = lh(vh) (13.7)

with the linear form

lh(vh) :=
∑

K∈Th

∫
K

f (vh + θKhK∂tvh) d(x, t). (13.8)

For the exact solution u of (13.1), we know that the fluxes have to be continuous
across the boundaries of the elements K ∈ Th. This observation means that

∑
K∈Th

∫
∂K

ν∇xu · nxvh ds(x,t) = 0
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for all test functions vh ∈ V0h. We mention that vh is zero on Σ , and that nx vanishes
on Σ ∪ Σ0. Therefore, the first boundary term completely disappears from (13.7),
but, in general, not the second term, since θKhK varies from element to element.
We now arrived at the consistency identity

ah(u, vh) = lh(vh), ∀vh ∈ V0h, (13.9)

that holds for a sufficiently smooth solution u, e.g., u ∈ H
2,1
0,0 (Th), where the

discrete (mesh-dependent) bilinear form ah(·, ·) is defined by the identity

ah(u, vh) :=
∑

K∈Th

∫
K

(∂tu vh + θKhK ∂tu ∂tvh) d(x, t)

+
∑

K∈Th

∫
K

(ν∇xu · ∇xvh + θKhK ν∇xu · ∇x(∂tvh)) d(x, t)

−
∑

K∈Th

∫
∂K

θKhK ν∇xu · nx ∂tvh ds(x,t), (13.10)

and the linear form lh(·) is defined by (13.8), with given ν ∈ W 1∞(Th) and f ∈
L2(Q).

Remark 13.2 We can derive a scheme that is equivalent to (13.10). In particular,
instead of applying integration by parts on both principal terms, we only apply it to
the first principal term and keep the second. Hence, we obtain another consistency
identity

ãh(u, vh) = lh(vh), ∀vh ∈ V0h,

that holds for a solution u of (13.4) that only belongs to H
L,1
0,0 (Th) := {u ∈ L2(Q) :

(∂tu)|K ∈ L2(K), (ν∇xu)|K ∈ H(divx,K), u = 0 on K ∩ (Σ ∪ Σ0) ∀K ∈ Th},
where

ãh(u, vh) :=
∑

K∈Th

∫
K

(∂tu vh + θKhK ∂tu ∂tvh) d(x, t)

+
∑

K∈Th

∫
K

(ν∇xu · ∇xvh − θKhK divx(ν∇xu)∂tvh) d(x, t)

(13.11)

with given ν ∈ W 1∞(Th) and f ∈ L2(Q), and lh as in (13.8). We mention that u ∈
H

L,1
0,0 (Th) is ensured in the case of maximal parabolic regularity where u belongs

HL,1(Q) := {v ∈ H 1(Q) : Lu := divx(ν∇xu) ∈ L2(Q)}.
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Remark 13.3 If the test functions vh ∈ V0h are continuous and piecewise linear
(p = 1), then the term in (13.10) containing ∇x(∂t vh) vanishes in all elements
K ∈ Th, since it only contains mixed second order derivatives of the test functions.

Now we look for a Galerkin approximation uh ∈ V0h to the generalized solution
u of the initial boundary value problem (13.1)–(13.3) using the variational iden-
tity (13.9), i.e., find uh ∈ V0h such that

ah(uh, vh) = lh(vh), ∀vh ∈ V0h, (13.12)

with ah(·, ·) and lh(·) as defined above by (13.10) and (13.8), respectively. In
Sect. 13.2, we already showed existence and uniqueness of a weak solution to
the initial-boundary value problem (13.1)–(13.3). However, our finite element
scheme (13.12) is based on a mesh-dependent bilinear form ah(·, ·). Thus, we have
to investigate the stability of the space-time finite element scheme. More precisely,
we will show ellipticity of the bilinear form ah(·, ·) : V0h × V0h → R w.r.t. the
mesh-dependent norm

‖vh‖2
h :=

∑
K∈Th

[‖ν1/2∇xvh‖2
L2(K) + θKhK‖∂t vh‖2

L2(K)

]+ 1

2
‖vh‖2

L2(ΣT ).

(13.13)

This implies existence and uniqueness of the finite element solution uh ∈ V0h

of (13.12). For the following derivations, we assume that our triangulation Th of Q

is shape regular such that local approximation error estimates are available [7, 9]. A
shape regular triangulationTh of Q is called quasi-uniform, if there exists a constant
cu such that

hK ≤ h ≤ cuhK, for all K ∈ Th,

where h = maxK∈Th
hK . Moreover, we introduce localized bounds for our

coefficient function ν, i.e.,

νK ≤ ν(x, t) ≤ νK, for almost all (x, t) ∈ K and for all K ∈ Th, (13.14)

where νK ≥ ν and νK ≤ ν are positive constants on every K ∈ Th. In the following,
we need some inverse inequalities for functions from finite element spaces.

Lemma 13.1 There exist generic positive constants cI,1 and cI,2 such that

‖vh‖L2(∂K) ≤ cI,1h
−1/2
K ‖vh‖L2(K), (13.15)

‖∇vh‖L2(K) ≤ cI,2h
−1
K ‖vh‖L2(K) (13.16)

for all vh ∈ V0h and for all K ∈ Th.

Proof For (13.15); see e.g. [11, 35], and for (13.16) see e.g. [7, 9, 11]. ��
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From ∇ = (∇x, ∂t )
T and (13.16), we can immediately deduce

‖∂t vh‖L2(K) ≤ cI,2h
−1
K ‖vh‖L2(K). (13.17)

The above inequalities hold for the standard L2-norms. However, we will also need
such a result in some scaled norm.

Lemma 13.2 Let ν ∈ W 1∞(Th) be a given, uniformly positive function. Then

‖v‖2
Lν

2(K) =
∫

K

ν(x, t) |v(x, t)|2 d(x, t)

is a norm, and the inverse estimate

‖∂t vh‖Lν
2(K) ≤ ‖∇vh‖Lν

2(K) ≤ cI,νh
−1
K ‖vh‖Lν

2(K)

holds for all vh ∈ V0h and for all K ∈ Th, with cI,ν := (νK/νK)1/2cI,2.

Proof See [36]. ��
We note that, in practical applications, it is clear that 1 ≤ νK/νK is close to 1.
Below, we will also need the estimate

‖∂t∂xi vh‖Lν
2(K) ≤ cI,νh

−1
K ‖∂xi vh‖Lν

2(K), (13.18)

which obviously holds for all vh ∈ V0h and for all K ∈ Th. Moreover, we need the
following inverse inequality.

Lemma 13.3 Let ν ∈ W 1∞(Th) be a given uniformly positive function. Let
Wh|K := {wh : wh = ∇xvh, vh ∈ V0h|K }. Then the inverse estimate

‖divx(νwh)‖L2(K) ≤ cI,3h
−1
K ‖νwh‖L2(K),∀wh ∈ Wh|K (13.19)

holds, where cI,3 is a positive constant that is independent of hK .

Proof First, we know that V0h|K is a finite-dimensional space spanned by the local
shape functions {p(i)}i∈ωK , where ωK is the index set of local degrees of freedom.
Hence, the space Wh|K is also finite-dimensional and spanned by the generating
system {∇xp

(i)}i∈ωK . Moreover, for a fixed ν, each product zh := ν wh can be
represented by means of a non-necessary unique linear combination {ν ∇xp(i)}i∈ωK

on K . We denote this space by Zh(K) := spani∈ωK
{ν ∇xp(i)}. Using Cauchy’s

inequality, we obtain

‖divxzh‖2
L2(K) =

∫
K

|divxzh|2 d(x, t) =
∫

K

|
d∑

i=1

∂xi zh,i |2 d(x, t)

≤ d

∫
K

d∑
i=1

|∂xi zh,i |2 d(x, t) = d

d∑
i=1

‖∂xi zh,i‖2
L2(K),
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for all zh ∈ Zh(K). Now, by a simple scaling argument, we can estimate each
element in the sum, and obtain

d

d∑
i=1

‖∂xi zh,i‖2
L2(K) ≤ d

d∑
i=1

C2h−2
K ‖zh,i‖2

L2(K)

= dC2h−2
K ‖zh‖2

L2(K),

where C is a positive constant that is independent of hK . Taking the square root and
setting cI,3 := C

√
d closes the proof. ��

Lemma 13.3 gives information how the two norms in (13.19) scale w.r.t. the mesh-
size hK . However, the estimate (13.19) is not sharp w.r.t. the constant.

Lemma 13.4 Let the assumptions of Lemma 13.3 hold. Then

‖divx(νwh)‖L2(K) ≤ copt‖νwh‖L2(K),∀wh ∈ Wh|K,

with c2
opt = sup0 �=zh∈Zh(K)

‖divx(zh)‖2
L2(K)

‖zh‖2
L2(K)

≤ C2dh−1
K .

Proof See [36]. ��
Remark 13.4 We note that the constant copt in Lemma 13.4 is not only optimal, but
also computable. If zh ∈ Zh(K), then, by definition, we have the representation

zh(x, t) =
∑

j∈ω̃K

z̃j q̃
(j), (13.20)

where {q̃(j)}j∈ω̃K
forms some basis of Zh(K). Once some basis is chosen, we can

rewrite

‖zh‖2
L2(K) = (zh, zh)L2(K) and ‖divxzh‖2

L2(K) = (divxzh, divxzh)L2(K)︸ ︷︷ ︸
=:b(zh,zh)

in the form

(yh, zh)L2(K) = (Mhy, z) and b(yh, zh) = (Bhy, z),

with the element mass matrix Mh = (Mij = (q̃(j), q̃(i))L2(K))i,j∈ω̃K
and the

element divx -stiffness matrix Bh = (Bij = b(q̃(j), q̃(i))L2(K))i,j∈ω̃K
, respectively.

Here, the vectors y and z are the vector of coefficients in the representation (13.20)

w.r.t. the chosen basis {q̃(j)}j∈ω̃K
. Using this matrix representation, we immediately

get

c2
opt = sup

0 �=zh∈Zh(K)

‖divx(zh)‖2
L2(K)

‖zh‖2
L2QT (K)

= sup
z∈RNK=|ω̃K |

(Bhz, z)
2

(Mhz, z)
2

.
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Hence, c2
opt is the largest eigenvalue of the generalized eigenvalue problem

Bhz = λMhz,

that can easily be computed.

Now, we are in the position to proof the following coercivity lemma that is crucial
for our approach.

Lemma 13.5 There exits a positive constant μc such that

ah(vh, vh) ≥ μc‖vh‖2
h, ∀vh ∈ V0h,

with μc = minK∈Th

{
1−cI,3

√
νKθK

4hK

} ≥ 1
2 provided that θK ≤ hK

c2
I,3νK

. For instance,

θK = hK

c2
I,3νK

yields μc = 1
2 .

Proof Integration by parts in the last term of (13.10) yields

ah(vh, vh) =
∑

K∈Th

[∫
K

1

2
∂t (v

2
h) d(x, t) + θKhK‖∂tvh‖2

L2(K)+
∫

K

ν|∇xvh|2 d(x, t)

−
∫

K

θKhK divx(ν∇xvh)∂t vh d(x, t)

]
.

Now using Gauss’ theorem and the facts that vh is continuous across the element
boundary and that nt = 0 on Σ , we obtain

ah(vh, vh) = 1

2

(‖vh‖2
L2(ΣT ) − ‖vh‖2

L2(Σ0)

)+
∑

K∈Th

[
θKhK‖∂t vh‖2

L2(K)

+
∫

K

ν|∇xvh|2 d(x, t) −
∫

K

θKhK divx(ν∇xvh)∂tvh d(x, t)

]
.

The first, second and third term already appear in the definition of our mesh-
dependent norm (13.13). It remains to estimate the last term. Using the Cauchy-
Schwarz inequality, Lemma 13.3, and a scaled Young’s inequality, we arrive at the
estimate

|θKhK

∫
K

divx(ν∇xvh) ∂tvh d(x, t)|

≤ cI,3
(ενKθK

2hK

‖∇xvh‖2
Lν

2(K) + 1

2ε
θKhK‖∂t vh‖2

L2(K)

)
.
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This estimate and the fact that vh = 0 on Σ0 immediately yield the estimate

ah(vh, vh) ≥ 1

2
‖vh‖2

L2(ΣT ) +
∑

K∈Th

[(
1 − cI,3

2ε

)
θKhK‖∂t vh‖2

L2(K)

+(1 − ε
cI,3νKθK

2hK

)‖∇xvh‖2
Lν

2(K)

]
.

We now choose ε = √
hK/(θKνK) and obtain

ah(vh, vh) ≥ min
K∈Th

(
1 − cI,3

√
θK νK

4hK

)

×
( ∑

K∈Th

[‖∇xvh‖2
Lν

2(K) + θKhK‖∂tvh‖2
L2(K)

]+ 1

2
‖vh‖2

L2(ΣT )

)

≥ μc‖vh‖2
h,

which concludes the proof. ��
Remark 13.5 The above proof holds for any polynomial degree p ≥ 1 and any
fixed, uniformly positive ν ∈ L∞(Q). However, for the special case p = 1 and
ν|K = const , the proof is trivial since ∂t (∇xvh) ≡ 0 and ν|KΔxvh ≡ 0. Hence,
the identity

ah(vh, vh) =
∑

K∈Th

1

2

∫
∂K

v2
h nt ds(x,t)+θKhK‖∂t vh‖2

L2(K) +‖ν1/2∇xvh‖2
L2(K) = ‖vh‖2

h

holds, i.e., μc = 1. Thus, for this special case, the choice of θK has no influence on
the coercivity (ellipticity) of the space-time finite element method.

Lemma 13.5 already ensures uniqueness of the finite element solution uh ∈
V0h. Furthermore, the space V0h is finite-dimensional. Hence, uniqueness implies
existence of finite element solution uh ∈ V0h of (13.9). For the special case of
uniform meshes and uniform θ , i.e., hK = h and θK = θ for all K ∈ Th, and
ν ≡ 1, a proof for ellipticity with a mesh-independent constant was done by Langer,
Moore and Neumüller in [26] and by Moore in [29]. For a second special case,
where θK vanishes, i.e., θK = θ = 0 for all K ∈ Th, Steinbach has shown existence
and uniqueness of solutions to both the continuous and discrete version of (13.9) on
the basis of Banach-Nec̆as-Babuška’s theorem in [39]. In addition, both papers also
include a priori discretization error estimates, where Steinbach’s estimate is based
on a discrete inf-sup condition. To derive an a priori error estimate w.r.t. the mesh
dependent norm (13.13), we need to show that our bilinear form ah(·, ·) is uniformly
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bounded on V0h,∗ ×V0h, where V0h,∗ = H
1,0
0 (Q)∩H 2(Th)+V0h is equipped with

the norm

‖v‖2
h,∗ = 1

2
‖v‖2

L2(ΣT ) +
∑

K∈Th

[
θKhK‖∂t v‖2

L2(K) + ‖∇xv‖2
Lν

2(K)

+(θKhK)−1‖v‖2
L2(K) + θKhK |v|2

H 2(K)

]
(13.21)

Moreover, we will make use of the following scaled trace inequality.

Lemma 13.6 There exists a positive constants cT r > 0 such that

‖v‖2
L2(∂K) ≤ 2c2

T rh
−1
K

(‖v‖2
L2(K) + h2

K‖∇v‖2
L2(K)

)
(13.22)

for all v ∈ H 1(K) and for all K ∈ Th.

Proof See, e.g., [35]. ��
Lemma 13.7 The bilinear form ah(·, ·) is uniformly bounded on V0h,∗ × V0h, i.e.,

|ah(u, vh)| ≤ μb‖u‖h,∗ ‖vh‖h, ∀ u ∈ V0h,∗, vh ∈ V0h,

whereμb = maxK∈Th

{
2(1+θKh−1

K c2
T rν

2
Kν−1

K ), 2c2
T rν

2
K, 2+c2

I,1, 1+(cI,νθK)2
}1/2

that is uniformly bounded provided that θK = O(hK).

Proof We will estimate the bilinear form (13.10) term by term. Since V0h ⊂
H

1,1
0,0 (Q), we can apply integration by parts and the Cauchy-Schwarz inequality to

the first term, and obtain

∣∣∣∣∣∣
∑

K∈Th

∫
K

∂tuvh d(x, t)

∣∣∣∣∣∣ ≤
∑

K∈Th

[(
(θKhK)−1‖u‖2

L2(K)

)1/2(
θKhK‖∂t vh‖2

L2(K)

)1/2]

+(‖u‖2
L2(ΣT )

)1/2(‖vh‖2
L2(ΣT )

)1/2
.

For the second and third term, applying the Cauchy-Schwarz inequality to each term
of the sum, we immediately get the estimates

∣∣∣∣θKhK

∫
K

∂tu∂tvh d(x, t)

∣∣∣∣ ≤ (θKhK‖∂tu‖2
L2(K)

)1/2(
θKhK‖∂t vh‖2

L2(K)

)1/2
,

∣∣∣∣
∫

K

ν∇xu∇xvh d(x, t)

∣∣∣∣ ≤ (‖∇xu‖2
Lν

2(K)

)1/2(‖∇xvh‖2
Lν

2(K)

)1/2
,
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respectively. For the fourth term, we use again Cauchy-Schwarz’ inequality, the
inverse estimate (13.18), and obtain

∣∣∣∣θKhK

∫
K

ν∇xu∇x(∂tvh) d(x, t)

∣∣∣∣

≤
(
‖∇xu‖2

Lν
2(K)

)1/2
(

(θKhK)2
d∑

i=1

c2
I,νh

−2
K ‖∂xi vh‖2

Lν
2(K)

)1/2

= (‖∇xu‖2
Lν

2(K)

)1/2(
(cI,νθK)2‖∇xvh‖2

Lν
2(K)

)1/2
.

For the last term, we apply Cauchy-Schwarz’ inequality, the trace inequalities
(13.15) and (13.22), and get

∣∣∣∣θKhK

∫
∂K

ν∇xu · nx∂t vh ds(x,t)

∣∣∣∣

≤ (
2θKν2

Kc2
T rh

−1
K

[‖∇xu‖2
L2(K) + h2

K

d∑
i=1

‖∇∂xi
u‖2

L2(K)

])1/2(
θKhKc2

I,1‖∂tvh‖2
L2(K)

)1/2

≤
(

2θKc2
T r

ν2
K

νK

h−1
K ‖∇xu‖2

Lν
2(K) + 2c2

T rν
2
KθKhK |u|2

H 2(K)

)1/2 (
c2
I,1θKhK‖∂tvh‖2

L2(K)

)1/2
.

Now combining the above estimates, applying Cauchy’s inequality and gathering
all similar items, we finally arrive at the estimate

|ah(u, vh)|

≤
(

‖u‖2
L2(ΣT )+

∑
K∈Th

[
θKhK‖∂tu‖2

L2(K) + 2(1 + θKc2
T r

ν2
K

νK

h−1
K )‖∇xu‖2

Lν
2(K)

+(θKhK)−1‖u‖2
L2(K) + 2c2

T rν
2
KθKhK |u|2

H 2(K)

])1/2

×
(

‖vh‖2
L2(ΣT ) +

∑
K∈Th

[
(2 + c2

I,1)θKhK‖∂t vh‖2
L2(K)

+(1 + (cI,1θK)2)‖∇xvh‖2
Lν

2(K)

])1/2

≤ μb‖u‖h,∗‖vh‖h,

with μb := maxK∈Th

{
2(1 + θKh−1

K c2
T r

ν2
K

νK
), 2c2

T rν
2
K, 2 + c2

I,1, 1 + (cI,νθK)2
}1/2.

Choosing now θK = O(hK) ensures the uniform boundedness of the constant μb.
��
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Remark 13.6 Choosing θK as in Lemma 13.5, i.e., θK = hK/(c2
I,3νK), we obtain

μc = 1/2 and μb = maxK∈Th

{
2(1 + νKc2

T r

νKc2
I,3

), 2c2
T rν

2
K, 2 + c2

I,1, 1 + (
cI,νhK

c2
I,3νK

)2
}1/2

.

Remark 13.7 If we consider the bilinear form from Remark 13.2, we can derive an
equivalent statement, but in a different norm ‖ · ‖h,∗ defined as

‖v‖2
h,∗ = 1

2
‖v‖2

L2(ΣT ) +
∑

K∈Th

[
θKhK‖∂t v‖2

L2(K) + ‖∇xv‖2
Lν

2 (K)

+(θKhK)−1‖v‖2
L2(K) + θKhK‖divx(ν∇xv)‖2

L2(K)

]
.

By the same arguments as in the proof above, we estimate the first three terms
in (13.11) by
∣∣∣∣∣∣
∑

K∈Th

∫
K

∂tuvh d(x, t)

∣∣∣∣∣∣ ≤
∑

K∈Th

[(
(θKhK)−1‖u‖2

L2(K)

)1/2(
θKhK‖∂tvh‖2

L2(K)

)1/2]

+(‖u‖2
L2(ΣT )

)1/2(‖vh‖2
L2(ΣT )

)1/2
,

∣∣∣∣θKhK

∫
K

∂tu∂tvh d(x, t)

∣∣∣∣ ≤ (
θKhK‖∂tu‖2

L2(K)

)1/2(
θKhK‖∂t vh‖2

L2(K)

)1/2
,

∣∣∣∣
∫

K

ν∇xu∇xvh d(x, t)

∣∣∣∣ ≤ (‖∇xu‖2
Lν

2(K)

)1/2(‖∇xvh‖2
Lν

2(K)

)1/2
.

For the fourth term, we just apply the Cauchy-Schwarz inequality to each term of
the sum to obtain
∣∣∣∣θKhK

∫
K

divx (ν∇xu) ∂t vh d(x, t)

∣∣∣∣ ≤
(
θKhK‖divx (ν∇xu) ‖2

L2(K)

)1/2 (
θKhK‖∂t vh‖2

L2(K)

)1/2
.

Now, combining the above estimates, applying Cauchy’s inequality and reordering
the terms, we finally obtain the estimate

|ah(u, vh)|

≤
(

‖u‖2
L2(ΣT ) +

∑
K∈Th

[
θKhK‖∂tu‖2

L2(K) + ‖∇xu‖2
Lν

2(K)

+(θKhK)−1‖u‖2
L2(K) + θKhK‖divx (ν∇xu) ‖2

L2(K)

])1/2

×
(

‖vh‖2
L2(ΣT ) +

∑
K∈Th

[
3θKhK‖∂t vh‖2

L2(K) + ‖∇xvh‖2
Lν

2(K)

])1/2

≤ 3‖u‖h,∗‖vh‖h.

Thus, the bilinear form (13.11) is bounded for all choices of θK .
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Remark 13.8 As in Remark 13.5, we can provide a simplified estimate for the
special case p = 1 and ν|K = νK = const . The first three terms can be estimated
as in the above proof. The fourth term completely vanishes, since ∇x(∂tvh) = 0.
For the fifth term, we use the fact that ∂tvh = const on K ∈ Th, Gauss’ theorem
and the Cauchy-Schwarz inequality, obtaining

|θKhK

∫
∂K

νK∇xu·nx∂t vh ds(x,t)| ≤ (θKhKν2
K‖Δxu‖2

L2(K)

)1/2(
θKhK‖∂t vh‖2

L2(K)

)1/2
.

Gathering the terms from the proof and the above estimate, we get

|ah(u, vh)| ≤
(

‖u‖2
L2(ΣT ) +

∑
K∈Th

[
θKhK‖∂tu‖2

L2(K) + ‖∇xu‖2
Lν

2(K)

+(θKhK)−1‖u‖2
L2(K) + ν2

KθKhK‖Δxu‖2
L2(K)

])1/2

×
(

‖vh‖2
L2(ΣT )

+
∑

K∈Th

[
3θKhK‖∂t vh‖2

L2(K) + ‖∇xvh‖2
Lν

2(K)

])1/2

≤ max
K∈Th

{3, ν2
K }1/2‖u‖h,∗‖vh‖h.

We immediately deduce that this new constant μ̃b = maxK∈Th
{3, ν2

K }1/2 is also
independent of hK for all choices of positive θK , K ∈ Th.

Coercivity, boundedness, and consistency of the bilinear form ah(·, ·) immediately
yield a Céa-like estimate of the discretization error in the norm ‖ · ‖h by the best
approximation error in the norm ‖ · ‖h,∗.

Lemma 13.8 Let the assumptions of the coercivity Lemma 13.5 and the bound-
edness Lemma 13.7 hold, and let the solution u of the space-time variational
problem (13.4) belong to H

2,1
0,0 (Th). Then the discretization error estimate

‖u − uh‖h ≤
(

1 + μb

μc

)
inf

vh∈V0h

‖u − vh‖h,∗ (13.23)

hold, where uh ∈ V0h denotes the solution of the space-time finite element
scheme (13.12), and the norms ‖ · ‖h and ‖ · ‖h,∗ are defined by (13.13) and (13.21),
respectively.

Proof First, from the consistency identity (13.9) and the space-time finite element
scheme (13.12), we immediately deduce Galerkin orthogonality, i.e.,

ah(u − uh, vh) = 0, ∀vh ∈ V0h. (13.24)
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We start with the triangle inequality for the discretization error, i.e.,

‖u − uh‖h ≤ ‖u − vh‖h + ‖vh − uh‖h.

Applying ellipticity proved in Lemma 13.5, the Galerkin orthogonality (13.24) and
the generalized boundedness from Lemma 13.7 to the second term, we get

μc‖vh − uh‖2
h ≤ ah(vh − uh, vh − uh) = ah(vh − u, vhu − uh)

≤ μb‖vh − u‖h,∗‖vh − uh‖h.

Inserting this estimate in the triangle inequality above, we obtain

‖u − uh‖h ≤ ‖u − vh‖h + μb

μc

‖vh − u‖h,∗. (13.25)

Since ‖u − vh‖h ≤ ‖vh − u‖h,∗, we immediately get the Céa-like estimate (13.23).
��

Remark 13.9 Remark 13.7 immediately implies that the Céa-like estimate (13.23)
is also valid for solutions u from H

L,1
0,0 (Th) provided that the norm ‖ · ‖h,∗ is now

defined as in Remark 13.7.

To obtain a priori error estimates w.r.t. to the mesh dependent norm (13.13), we
need approximation respectively interpolation error estimates for the finite element
spaces V0h w.r.t. the norm (13.21), which we summarize in the next Lemmas.
Moreover, we need the broken Sobolev space

Hl(Th) := {v ∈ L2(Q) : v|K ∈ Hl(K) ∀K ∈ Th},

equipped with the broken Sobolev (semi-)norm

|v|2
Hl(Th)

:=
∑

K∈Th

|v|2
Hl(K)

and ‖v‖2
Hl(Th)

:=
∑

K∈Th

‖v‖2
Hl(K)

,

where l is some positive integer. For further details on such spaces, we refer to
[11, 35].

Lemma 13.9 Let l and k be positive integers with l ≥ k > (d + 1)/2, and let
v ∈ V0 ∩Hk(Q)∩Hl(Th), where {Th}h>0 is a shape regular family of subdivisions
of Q. Then there exists an interpolation operator Πh, mapping from V0 ∩ Hk(Q) to
V0h, such that

‖v − Πhv‖L2(K) ≤ C hs
K |v|Hs(K), (13.26)

‖∇(v − Πhv)‖L2(K) ≤ C hs−1
K |v|Hs(K), (13.27)

|v − Πhv|H 2(K) ≤ C hs−2
K |v|Hs(K), (13.28)



13 Space-Time Finite Element Methods for Parabolic Evolution Problems. . . 265

where C is some generic constant independent of hK and v, s = min{l, p + 1},
and p denotes the polynomial degree of the finite element shape functions on the
reference element, and V0 = H

1,1
0,0 (Q).

Proof See e.g. [8, Theorem 4.4.4] or [9, Theorem 3.1.6]. ��
Lemma 13.10 Let the assumptions of Lemma 13.9 hold. Then the following
interpolation error estimates are valid:

‖v − Πhv‖L2(ΣT ) ≤ c1
( ∑

K ∈ Th

∂K ∩ ΣT �= ∅

h2s−1
K |v|2Hs(K)

)1/2
, (13.29)

‖v − Πhv‖h ≤ c2
( ∑

K∈Th

h
2(s−1)
K |v|Hs(K)

)1/2
, (13.30)

‖v − Πhv‖h,∗ ≤ c3
( ∑

K∈Th

h
2(s−1)
K |v|Hs(K)

)1/2
, (13.31)

with positive constants c1, c2 and c3 that do not depend on v or hK provided that
θK = O(hK) for all K ∈ Th.

Proof We start with the first estimate (13.29). We use the scaled trace inequal-
ity (13.22), and the interpolation error estimates (13.26) and (13.27), obtaining

‖v − Πhv‖2
L2(ΣT ) =

∑
K ∈ Th

∂K ∩ ΣT �= ∅

‖v − Πhv‖2
L2(∂K∩ΣT ) ≤

∑
K ∈ Th

∂K ∩ ΣT �= ∅

‖v − Πhv‖2
L2(∂K)

≤
∑

K ∈ Th

∂K ∩ ΣT �= ∅

[
2c2

T rh
−1
K

(‖v − Πhv‖2
L2(K) + h2

K‖∇(v − Πhv)‖2
L2(K))

]

≤ c2
T r C2

∑
K ∈ Th

∂K ∩ ΣT �= ∅

[h2s−1
K |v|Hs(K)].

To prove (13.30), we use definition (13.13), assumption (13.14), the interpolation
error estimate (13.27), and the above estimate (13.29), and obtain

‖v − Πhv‖2
h =

∑
K∈Th

[
θKhK‖∂t (v − Πhv)‖2

L2(K) + ‖∇x(v − Πhv)‖2
Lν

2(K)

]

+1

2
‖v − Πhv‖2

L2(ΣT )

≤
∑

K∈Th

[
(C2θKhK + νKC2 + c2

1hK)h
2(s−1)
K |v|2Hs(K)

]
.
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For the last estimate (13.31), we use definition (13.21), the above estimate (13.30),
and the interpolation error estimate (13.28), obtaining

‖v − Πhv‖2
h,∗ = ‖v − Πhv‖2

h

+
∑

K∈Th

[
(θKhK)−1‖v − Πhv‖2

L2(K) + θKhK |v − Πhv|2
H 2(K)

]

≤
∑

K∈Th

(
c2

2 + hKθ−1
K C2 + θKh−1

K C2)h2(s−1)
K |v|2Hs(K).

The special choice θK = O(hK) ensures that the constant c3 is independent of hK .
��

Remark 13.10 The strong assumption v ∈ Hk(Q) with k > (d + 1)/2 is needed
for the Lagrangian interpolation operator. However, in practical applications, where
usually different materials occur, this requirement is too restrictive. In this case,
the space-time cylinder Q = ⋃M

i=1 Qi can be split into subdomains Qi , which
correspond to different materials. On each such subdomain Qi , we can assume
some regularity for the solution u, e.g., u ∈ H l(T (Q)) := {v ∈ L2(Q) : v|Qi ∈
Hli (Qi), for all i = 1, . . . ,M} with some l = (l1, . . . , lM) > 1. For a similar case,
Duan, Li, Tan and Zheng have shown a localized interpolation error estimate of the
form

‖∇(v − Ihv)‖L2(Q) ≤ C

M∑
i=1

h
si−1
i ‖v‖Hsi (Qi),

in [13], where Ih is a special quasi-interpolation operator, and si = min{li , p + 1}.
Now we can formulate the following a priori estimate for the discretization error.

Theorem 13.3 Let l and k be positive integers with l ≥ k > (d + 1)/2,
u ∈ V0 ∩ Hk(Q) ∩ Hl(Th) be the exact solution, and uh ∈ V0h be the
solution of the finite element scheme (13.12). Furthermore, let the assumptions of
the Lemmas 13.5 (coercivity), 13.7 (boundedness) and 13.10 (interpolation error
estimates) be fulfilled. Then the a priori error estimate

‖u − uh‖h ≤ c

( ∑
K∈Th

h
2(s−1)
K |u|2Hs(K)

)1/2

(13.32)

holds with s = min{l, p + 1} and some generic positive constant c.
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Proof Setting vh = Πhu in (13.25), and using the interpolation error esti-
mates (13.30) and (13.31), we obtain

‖u − uh‖h ≤ ‖u − Πhu‖h + μb

μc
‖Πhu − u‖h,∗

≤ (c2 + c3
μb

μc

)( ∑
K∈Th

h
2(s−1)
K |u|2Hs(K)

)1/2
,

which proves estimate (13.32) with c = c2 + c3(μb/μc). ��
Now we proceed with solving the discrete variational problem (13.12) that
is nothing but one huge system of linear algebraic equations. Indeed, let
{p(i) : i = 1, . . . , Nh} be the finite element nodal basis of V0h, i.e., V0h =
span{p(1), . . . , p(Nh)}, where Nh is the number of all space-time unknowns (dofs).
Then we can express the approximate solution uh in terms of this basis, i.e.,
uh(x, t) = ∑Nh

i=1 ui p(i)(x, t). Furthermore, each basis function is a valid test
function. Thus, we obtain Nh equations from (13.12). We can rewrite this system in
terms of a system of linear algebraic equations

Khuh = fh, (13.33)

with Kh = (ah(p
(j), p(i)))i,j=1,...,Nh , uh = (uj )j=1,...,Nh , fh = (lh(p(i)))i=1,...,Nh .

The system matrix is non-symmetric, but positive definite due to Lemma 13.5.
Indeed,

(Khvh, vh) = ah(vh, vh) ≥ μc‖vh‖2
h > 0

for all V0h � vh ↔ vh ∈ RNh : vh �= 0. In dependence on the dimension
Nh, the linear system (13.33) of algebraic equations can efficiently be solved by
means of a sparse direct solver (e.g., sparse LU-factorization) or an iterative solver
(e.g., preconditioned GMRES). In particular, it turns out that parallel versions of
the GMRES preconditioned by algebraic multigrid can solve large-scale systems
with several millions of unknowns on distributed memory computers with several
hundreds of cores in a few seconds, also see Example 13.1 in Sect. 13.4.

13.4 Implementation and Numerical Results

We implemented our conforming space-time finite element scheme with the help of
MFEM [21], a C++ library for finite elements. The resulting linear systems were
then solved by means of the GMRES method, preconditioned by one V-algebraic
multigrid (AMG) cycle of BoomerAMG. As a stopping criterion we used the
reduction of the initial residual by a factor of 10−8. These methods were provided



268 U. Langer et al.

by the solver library hypre.1 We note that both libraries are already fully parallelized
with MPI. All numerical tests were performed on the RADON12 high performance
computing cluster at Linz. The initial (spatial) meshes were created by NETGEN
[38], and the space-time meshes were obtained by means of an algorithm provided
by Karabelas and Neumüller [19]. For visualization we either use GLVis [20] or
ParaView [2].

Example 13.1 For the first example, we consider the unit (hyper-)cube Q =
(0, 1)d+1, with d = 2, 3, as space-time cylinder, and choose the diffusion coefficient
ν ≡ 1. The manufactured function

u(x, t) =
d∏

i=1

sin(xiπ) sin(tπ)

is chosen as the exact solution, where the right-hand side is computed accordingly.
This solution is highly smooth, and thus fulfills all regularity assumptions made for
deriving the a prior error estimate (13.32) with optimal rates. Hence, we really can
expect optimal convergence rates provided that we choose θK as in Remark 13.4,
i.e., on each element K ∈ Th, we numerically solve a small generalized eigenvalue
problem with LAPACK [3]. Indeed, Fig. 13.1b shows optimal convergence rates for
all tested polynomial degrees and spatial dimensions. Moreover, we can observe
from Fig. 13.1c that the preconditioned GMRES method has an optimal strong
scaling behavior for systems with Nh = 4 601 025 (p = 1, 2) and Nh = 5 764 804
(p = 3) unknowns in the case d = 3, i.e., Q = (0, 1)4. The stagnation of the scaling
rate at 256 cores is due to an increased communication overhead since the problems
become too small on each processor (only ∼15 000 dofs).

Example 13.2 Let us now consider an example with a moving interface in the unit
hyper-cube Q := (0, 1)d+1, with d = 2, 3. The moving interface is defined by the
discontinuous diffusion coefficient

ν(x, t) =
{

1 × 102, for 2x1 − t < 1
2 ,

7 × 105, for 2x1 − t > 1
2 ;

see Fig. 13.2 (left). We choose the function

u(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

sin

(
9π
(

2x1 − t − 1
2

)2
(x1 − x2

1)

)
sin(4πt)g(x), for 2x1 − t ≤ 1

2 ,

sin

(
40π

(
2x1 − t − 1

2

)2
(x1 − x2

1)(t − t2)

)
g(x), else,

1https://www.llnl.gov/casc/hypre/.
2https://www.ricam.oeaw.ac.at/hpc/.

https://www.llnl.gov/casc/hypre/
https://www.ricam.oeaw.ac.at/hpc/
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Fig. 13.1 Decomposition of the space-time cylinder into 64 subdomains for parallel computing
(left); Error rates in the ‖ . ‖h-norm (right); Strong scaling of the solver for d = 3 and Nh =
4 601 025, 4 601 025, 5 764 801 for p = 1, 2, 3 (below)

with g(x) = ∏d
i=2 sin(πxi), as our exact solution, and compute the corresponding

right-hand side and initial data. This manufactured solution fulfills the interface
conditions since this function and its first derivatives are 0 at the interface. Since
this function is smooth on both sides of the moving interface, we expect optimal
convergence rates; cf. Theorem 13.3. Indeed, for linear, quadratic and cubic shape
functions, we observe optimal rates provided that we choose θK according to
Remark 13.4; see Fig. 13.2 (right).

Example 13.3 For the third example, we consider the exact solution

u(x, t) =
(
x2

1 − x1

) (
x2

2 − x2

) (
t2 − t

)
e−100

(
(x1−0.25)2+(x2−0.25)2+(t−0.25)2

)
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Fig. 13.2 Initial space-time mesh and diffusion coefficient ν(x, t) in color (left); Error rates in the
‖ . ‖h-norm (right)
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Fig. 13.3 Plot of the exact solution at t = 0.25 (left); Convergence rates in the ‖ . ‖h-norm (right)

in the unit cube Q = (0, 1)3, i.e. d = 2, and compute the initial and boundary
conditions as well as the right-hand side accordingly, where we set ν ≡ 1. This
function is almost zero everywhere in the space-time cylinder Q except a small
area around (0.25, 0.25, 0.25); see Fig. 13.3 (left). This motivates the use of an a
posteriori error estimator. In particular, we use the residual-based error indicator
proposed by Steinbach and Yang in [40]. For each element K ∈ Th, we compute
the error indicator

ηK :=
(
h2

K‖Rh(uh)‖2
L2(K) + hK‖Jh(uh)‖2

L2(∂K)

)1/2
,
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where uh is the solution of the finite element scheme (13.12), and

Rh(uh) := f + divx(ν∇xuh) − ∂tuh in K,

Jh(uh) := [ν∇xuh]e on e ⊂ ∂K.

Here, [ . ]e denotes the jump across one face e ⊂ ∂K . We use a maximum marking
strategy, i.e., given a parameter Θ ∈ [0, 1], we mark all elements whose error
indicator fulfills the condition

ηK ≥ Θ max
K∈Th

ηK.

Unless stated otherwise, we set Θ = 0.5. We note that uniform refinement is
achieved by setting Θ = 0. The exact solution in this example is smooth. Hence, we
expect optimal convergence rates for uniform refinement after some pre-asymptotic
range, which we indeed observe for all tested polynomial degrees; c.f., Fig. 13.3.
For adaptive refinement, we get a better error w.r.t. to the absolute value and optimal
convergence rates.

Example 13.4 For the fourth and last example, we consider the exact solution

u(x, t) = sin

⎛
⎝ 1

1
10π

+
√

x2
1 + x2

2 + t2

⎞
⎠ ,

in the unit cube Q = (0, 1)3, i.e. d = 2, and compute the initial and boundary
conditions as well as the right-hand side accordingly, where we set ν ≡ 1. This
function has a highly oscillatory behavior near the origin (0, 0, 0) and is smooth
everywhere else in the space-time cylinder Q; see Fig. 13.3 (left). This again
motivates the use of an a posteriori error estimator. We use the same setup as in
Example 13.3, i.e., the residual-based error indicator by Steinbach and Yang with a
maximum marking strategy. For adaptive refinement, we recover the optimal rates
for all polynomial degrees tested, whereas only reduced rates are observed for
p = 2, 3; c.f., Fig. 13.4 (right). Moreover, we only need 47 330 dofs to obtain an
energy error of the same magnitude as for 135 005 697 dofs after uniform refinement
in the case p = 1.

13.5 Conclusions and Future Work

In this paper, following the classical books [23] and [24], we recalled that the
parabolic initial boundary value problem (13.1)–(13.3) has a unique generalized
(weak) solution in H

1,0
0 (Q) that even belongs to V

1,0
2,0 (Q). Already Ladyžhenskaya
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Fig. 13.4 Plot of the exact solution (left); Convergence rates in the ‖ . ‖h-norm (right)

proved that, in the case ν = 1, the solution u even belongs to HΔ,1(Q) provided
that the right-hand side f ∈ L2(Q) and initial conditions u0 ∈ H 1

0 (Ω); see [23].
This setting of the so-called maximal parabolic regularity was also considered in this
paper. We again mention that we only need this property element-wise to construct
a consistent and stable space-time finite element scheme. We proceeded with
deriving a stable space-time finite element scheme, for which we showed coercivity
(ellipticity) and boundedness on the finite element spaces respectively extended
finite element spaces. These properties together with consistency and standard
interpolation or quasi-interpolation error estimates led to a priori discretization
error estimates in the corresponding mesh-dependent norm with optimal rates.
We performed several numerical experiments with four test problems possessing
different features. The first example has a smooth solution that led to optimal
convergence rate as predicted by the theory. Moreover, due to the ellipticity of the
bilinear form ah(·, ·), the AMG precondition GMRES is a very efficient parallel
solver. The second example has a moving interface that is given by a discontinuous
diffusion coefficient ν(x, t) depending on both x and t . In the third and fourth
example, we studied adaptivity based on the a posteriori residual error indicator
proposed in [40]. It is clear that the interplay of adaptivity and fast parallel iterative
solvers will lead to the most efficient completely unstructured adaptive space-time
solvers for complicated initial-boundary value problems for linear and even non-
linear parabolic partial differential equations. Adaptive Space-Time Finite Element
Methods and Solvers can be useful for solving eddy current problems with moving
and non-moving parts like in electrical machines. In many practical applications,
one is interested in optimal control or in optimal design of electrical machines; see,
e.g., [17]. Adaptive Space-Time Finite Element Methods are especially suited for
solving the optimality system that is nothing but a coupled PDE system living in the
space-time cylinder Q; see, e.g., [44].
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