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Preface

The annual Chemnitz Finite Element Symposium is a successful series of meetings
on discretization methods for partial differential equations which is usually held
in or nearby Chemnitz, Germany. The 30th Chemnitz Finite Element Symposium
was on tour in Austria and held at the Federal Institute for Adult Education
(BIfEB, Bundesinstitut für Erwachsenenbildung) in St. Wolfgang/Strobl, Austria,
from September 25 to 27, 2017. It was jointly organized by the Technical University
of Chemnitz, the Johannes Kepler University Linz, and the Johann Radon Institute
for Computational and Applied Mathematics (RICAM) at the Austrian Academy
of Sciences. About 80 participants from more than 10 countries attended the
Symposium; see Fig. 1.

The scientific committee invited four experts to give keynote presentations on
the theory and the application of finite element and related methods. Our keynote
speakers and the titles of their talks were (in alphabetical order):

Mark Ainsworth (Brown University, Providence, USA), Fractional Cahn–Hilliard
Equation(s): Analysis, Properties and Approximation
Volker John (WIAS and FU Berlin, Germany), Finite Elements for Scalar
Convection-Dominated Equations and Incompressible Flow Problems—a Never
Ending Story
Ricardo H. Nochetto (University of Maryland, College Park, USA), Numerical
Methods for Fractional Diffusion
Gabriel Wittum (Goethe University Frankfurt, Germany, and KAUST, Saudi
Arabia), Extreme Scale Solvers for Coupled Systems

Three invited speakers (M. Ainsworth, V. John, and R. Nochetto) contributed to
a special issue of the Springer journal Computing and Visualization in Science
(CVS), volume 19, issue 5–6, 2018, which is dedicated to Ulrich Langer and Arnd
Meyer on the occasion of their 65th birthdays in 2017. Both were the driving
forces in the organization of the Finite Element Symposia in different periods.
After Reinhard Lehmann organized the first Finite Element Symposium in 1978,
the next six symposia were organized by U. Langer who moved to the Johannes
Kepler University of Linz in October 1993. Since then, Arnd Meyer has served as

v
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Fig. 1 Participants of the 30th Chemnitz Finite Element Symposium

the main organizer of Chemnitz Finite Element Symposia. The 30th Symposium
was organized by both. In a special session, former PhD students of U. Langer and
A. Meyer presented their results. Two of these contributions are also included in the
CVS special issue, namely, the paper by D. Ganellari, G. Haase, and G. Zumbusch
and the paper by C. Pechstein and S. Reitzinger.

The 60 contributed talks were given in parallel sessions. These sessions reflect
the main topics of the conference including:

• High-order finite element methods (FEM) and isogeometric analysis
• The numerical treatment of partial differential equations (PDEs) with fractional

derivatives
• Numerical methods for time-dependent problems
• Boundary element methods
• Computational structural mechanics
• A priori error estimates
• A posteriori error estimates and adaptivity
• Fast solution methods and parallel computing

The collection of contributions in this book contains original papers that are
arranged in 19 chapters in alphabetical order. Here we give short discussions of
these contributions in a systematic way reflecting the topics mentioned above.

There were several talks on high-order finite elements methods (HOFEM) and
isogeometric analysis (IGA) that are closely related to each other. Two papers on
HOFEM and two papers on IGA are included in this book. In Chap. 2, L. Banz,
J. Petsche, and A. Schröder consider dual mixed hp-finite element methods for
the Poisson equation with mixed boundary conditions and discuss different a
posteriori error estimates and adaptive schemes, which was another topic of the
symposium that is discussed below. M. Bernkopf and J. M. Melenk (Chap. 4) give
an analysis of the hp-version of a first-order system least squares (FOSLS) method
for the Helmholtz equation, especially for high wave numbers k. They provide a
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quantitative analysis in terms of k, the mesh size h, and the polynomial degree p.
In Chap. 11, C. Hofer and S. Takacs consider multi-patch IGA for elliptic boundary
value problems and focus on the efficient solution of IGA equations on parallel
computers; see also the corresponding topic that is discussed below in detail. The
contribution by F. Scholz, A. Mantzaflaris, and B. Jüttler (Chap. 15) considers
trimmed domains in IGA. They propose and analyze new trimmed quadrature rules
that are very important for the correct generation of the IGA equations. Several
numerical tests confirm the error estimates derived.

A second scientific topic was PDEs with fractional derivatives with two invited
and eight contributed talks. While the invited speakers submitted their talks to the
CVS special issue, see above, one contributed talk is reflected in the volume at
hand. S. Harizanov, R. Lazarov, S. Margenov, P. Marinov, and J. Pasciak (Chap. 9)
compare several methods for the solution of algebraic problems of the form
Aαx= f where A is a symmetric and positive definite matrix and α ∈ (0, 1). Hence,
the method is related to a discretization of the fractional Laplacian (−Δ)α.

Chapters 6, 13, 16, 17, and 18 deal with numerical methods for time-dependent
problems. H. Egger and Th. Kugler (Chap. 6) consider a time-stepping scheme in
combination with some mixed finite element approximation in space in order to
obtain fully discrete approximations to a linear damped wave system modeling the
propagation of pressure waves in a pipeline. In Chap. 13, U. Langer, M. Neumüller,
and A. Schafelner present a conforming, locally stabilized space–time finite element
method for the numerical solution of parabolic initial boundary value problems
with variable in space and time, possibly discontinuous coefficients on completely
unstructured simplicial space–time meshes. In Chap. 16, O. Steinbach and H. Yang
construct and analyze a Galerkin–Petrov space–time finite element method for
solving a simplified version of the nonlinear bidomain equations. The contribution
by O. Steinbach and M. Zank (Chap. 17) provides a stabilized space–time finite
element method for the wave equation. In Chap. 18, I. Voulis presents a space–time
discretization of parabolic initial boundary value problems with time-dependent
Dirichlet boundary conditions that uses a continuous Galerkin discretization in
space and a discontinuous Galerkin discretization in time on tensor product space–
time meshes.

There are two contributions to efficient realizations of boundary element meth-
ods. H. Harbrecht and M. Moor (Chap. 8) consider wavelet boundary element
methods for boundary integral equations that typically arise from boundary value
problems for elliptic PDEs. In particular, they propose a goal-oriented refinement
strategy that is based on an a posteriori error estimate for the linear goal functional.
Several numerical examples show the efficiency of this approach. This chapter also
contributes to the topic a posteriori error estimates and adaptivity. In Chap. 14,
S. Rjasanow and S. Weißer propose a modification of the clustering procedure
for the adaptive cross approximation (ACA) to boundary element matrices in the
practically important case where edges appear in the surface on which the boundary
integral operator is given. The numerical results show the efficiency of the proposed
modification of the surface segmentation.
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Three contributions are devoted to computational structural mechanics. L. Banz,
J. Petsche, and A. Schröder introduce in Chap. 3 two stabilized three-field formu-
lations for the biharmonic problem and derive a priori error estimates which are
explicit in the mesh size and the polynomial degree. M. Frolov and O. Chistiakova
(Chap. 7) justify an adaptive mesh refinement algorithm based on functional-type a
posteriori local error indicator for Reissner–Mindlin plates. In Chap. 19, M. Weise
introduces new hierarchic plate and shell elements and compares them with existing
ones with respect to convergence, locking phenomena, and the performance of
iterative solvers.

A classical subject of numerical analysis is the derivation of a priori error
estimates. In Chap. 1, Th. Apel, M. Mateos, J. Pfefferer, and A. Rösch review results
for graded and for superconvergent meshes and discuss novel meshes which are both
graded and superconvergent, with a focus on Dirichlet control problems. As already
mentioned, L. Banz, J. Petsche, and A. Schröder analyze two stabilized three-field
formulations for the biharmonic problem in Chap. 3. I. Voulis shows convergence
with optimal order for a discretization of a parabolic PDE with inhomogeneous
Dirichlet boundary condition in Chap. 18.

Modern methods are adaptive which includes a posteriori error estimation and
the definition of an improved finite element space by modifying the mesh and/or the
distribution of the polynomial degrees. L. Banz, J. Petsche, and A. Schröder describe
in Chap. 2 two a posteriori error estimates for the dual mixed finite element method
on quadrilateral grids applied to the Poisson model problem and use adaptive refine-
ment simultaneously in the mesh and in the polynomial degree. M. Bruchhäuser,
K. Schwegler, and M. Bause investigate in Chap. 5 the dual weighted residual
(DWR) method for the adaptive solution of the stationary diffusion–advection–
reaction problem with stabilized finite elements. M. Frolov and O. Chistiakova
(Chap. 7) recall a functional-type a posteriori local error indicator for Reissner–
Mindlin plates and apply it within a new adaptive strategy. H. Harbrecht and
M. Moor (Chap. 8) review the quasi-optimal convergence behavior of the adaptive
wavelet boundary element method for boundary integral equations and extend it
to goal-oriented adaptive refinement. V. Korneev studies in Chap. 12 guaranteed,
robust, and consistent a posteriori error estimators for reaction–diffusion equations
with a focus on flux recovery techniques.

Two chapters are devoted to fast solution methods and parallel computing.
In Chap. 10, A. Heinlein, A. Klawonn, O. Rheinbach, and F. Röver extend the
generalized Dryja–Smith–Widlund (GDSW) overlapping Schwarz domain decom-
position preconditioner to a three-level version by recursively applying the GDSW
preconditioner to the coarse problem. The authors present numerical results on
the supercomputer JUQUEEN using up to 90,000 cores. The new three-level
GDSW preconditioner shows excellent parallel scalability. In Chap. 11, C. Hofer
and S. Takacs propose a new parallel multigrid solver for large-scale systems arising
from the multi-patch isogeometric analysis of elliptic boundary value problems. The
multigrid solver is robust with respect to both the mesh size and the spline degree.
Moreover, the solver scales well in a parallel environment.
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We very much hope that this collection of papers will be of interest to many
applied mathematicians and engineers working at universities and research insti-
tutions as well as in industry. We would like to thank all the participants for
their valuable contributions to the Chemnitz Finite Element Symposium 2017. In
particular, we are grateful to the authors of the papers published in this collection of
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Chapter 1
Superconvergent Graded Meshes
for an Elliptic Dirichlet Control Problem

Thomas Apel, Mariano Mateos, Johannes Pfefferer, and Arnd Rösch

Abstract Superconvergent discretization error estimates can be obtained when the
solution is smooth enough and the finite element meshes enjoy some structural
properties. The simplest one is that any two adjacent triangles form a parallelo-
gram. Existing results on finite element estimates on superconvergent meshes are
reviewed, which can be used for numerical analysis of Dirichlet control problems.
Moreover, an error estimate is given for a variational normal derivative which is of
higher order on superconvergence meshes. Graded meshes can be used as a remedy
of the reduced convergence order in the case of quasi-uniform meshes when elliptic
boundary value problems with singularities in the vicinity of corners are treated.
Discretization error estimates on graded meshes are reviewed. Depending on the
construction, graded meshes may or may not have superconvergence properties. The
discretization error of an elliptic Dirichlet control problem is discussed in the case
of superconvergent graded meshes. Results of a paper in preparation are announced,
where error estimates for Dirichlet optimal control problems on superconvergent
graded meshes will be shown.
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1.1 Introduction

Our motivation for the investigation of superconvergence properties of graded
meshes comes from the investigation of an elliptic Dirichlet control problem. To
introduce it, let Ω ⊂ R2 be a bounded polygonal domain with boundary Γ . The
state variable y satisfies the Laplace equation with non-homogeneous Dirichlet
boundary condition which is the control u ∈ Uad := {u ∈ L2(Γ ) : a ≤ u(x) ≤
b for a.a. x ∈ Γ }, with −∞ ≤ a < b ≤ +∞. The aim is to minimize the target
functional

J (y, u) := 1

2
‖y − yd‖2

L2(Ω)
+ ν

2
‖u‖2

L2(Γ )

for some parameter ν > 0 and given desired state yd ∈ Hs(Ω), s ≥ 0 as needed.
Since the control is considered in L2(Γ ) the state equation is understood in very
weak sense, see [5]. This optimal control problem has a unique solution ū ∈ Uad ;
see [3, Lemma 3.1]. The optimal control ū ∈ Uad, the corresponding state ȳ ∈
Y , and the corresponding adjoint state ϕ̄ ∈ V , satisfy the first order optimality
conditions

−Δȳ = 0 in Ω, ȳ = ū on ∂Ω in very weak sense,

−Δϕ̄ = ȳ − yd in Ω, ϕ̄ = 0 on ∂Ω in weak sense,

ū = Π[a,b]
(

1
ν
∂nϕ̄
)

on ∂Ω,

where the projection operatorΠ[a,b] is defined pointwise by c �→ min{b,max{a, c}}.
For the numerical solution of the optimal control problem consider a family of

conforming finite element meshes Th. Define the finite element spaces

Yh = {vh ∈ H 1(Ω) : vh|T ∈P1 ∀T ∈ Th},
Y0h = Yh ∩H 1

0 (Ω),

Uh = Yh|Γ ,

Uh
ad = Uh ∩ Uad,

where P1 is the space of first order polynomials. The discrete Dirichlet control
problem is to minimize J (yh, uh) for (yh, uh) ∈ Yh × Uh

ad subject to

(∇yh,∇vh)L2(Ω) = 0 ∀vh ∈ Y0h, yh|Γ = uh.



1 Superconvergent Graded Meshes for an Elliptic Dirichlet Control Problem 3

The corresponding discrete optimality system reads [14]

(∇ȳh,∇vh)L2(Ω) = 0 ∀vh ∈ Y0h, ȳh|Γ = ūh,

(∇ϕ̄h,∇vh)L2(Ω) = (ȳh − yd, vh)L2(Ω) ∀vh ∈ Y0h,

(νūh − ∂hn ϕ̄h, uh − ūh)L2(Γ ) ≥ 0 ∀uh ∈ Uh
ad,

where the variational discrete normal derivative ∂hn ϕ̄h ∈ Yh|Γ is defined by [14]

(∂hn ϕ̄h, vh)L2(Γ ) = −(ȳh − yd, vh)L2(Ω) + (∇ϕ̄h,∇vh)L2(Ω) ∀vh ∈ Yh\Y0h.

(1.1)
Various approximation results are contained in [7, 14, 16, 22]. To state a general error
estimate, we introduce the discrete harmonic extension operator Sh : Uh → Yh and
the L2(Γ )-projection Qh : L2(Γ ) → Uh by

(∇Shuh,∇vh)L2(Ω) = 0 ∀vh ∈ Y0h, (Shuh)|Γ = uh,

(u−Qhu, vh)L2(Γ ) = 0 ∀vh ∈ Uh.

Then the estimate

‖ū− ūh‖L2(Γ ) + ‖ȳ − ȳh‖L2(Ω)

≤ c

(
‖ū− u∗h‖L2(Γ ) + ‖ȳ − ShQhū‖L2(Ω) + sup

vh∈Uh

∣∣(∇ϕ̄,∇Shvh)L2(Ω)

∣∣
‖vh‖L2(Γ )

)

(1.2)

holds where u∗h ∈ Uh
ad is to be chosen such that

(νū− ∂nϕ̄, u
∗
h − ū)L2(Γ ) = 0.

The first term is a special quasi-interpolation error, the second term contains the
approximation of a non-smooth boundary condition and is non-trivial since y �∈
H 1(Ω) in general. The third term corresponds to an error estimate of the normal
derivative, see (1.9) below, and determines the overall convergence order. By the
definition of Sh, the numerator is the absolute value of

(∇(ϕ̄ − Ihϕ̄),∇Shvh)L2(Ω) (1.3)

where we use the Lagrange interpolant Ih : C(Ω̄) → Yh. On a first look one can
expect at best first order convergence for the gradient of the interpolation error and,
together with ‖∇Shvh‖L2(Ω) ≤ ch−1/2‖vh‖L2(Γ ), see (1.5) below, convergence

with order 1
2 for the third term in (1.2). However, we obtained at least first

order for ‖ū − ūh‖L2(Γ ) in numerical tests, see [7], (which can be proved with
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sharper arguments than above, see [7]), and sometimes even order 1.5 depending
on the sequence of meshes used. This observation led us to the consideration of
superconvergent meshes.

Many authors have contributed to the investigation of superconvergence effects,
see for example [12, 13, 20, 21, 28, 29] and the references therein. All these authors
consider families of quasi-uniform meshes with special structure. We found the
paper by Bank and Xu [12] particularly useful for our investigations. Therefore we
review it in Sect. 1.2 and add some further applications.

There is a second important point in the choice of the sequence of finite element
meshes. The proof of a convergence order is always based on regularity assumptions
on the functions to be approximated. It is well known that large interior angles in the
corners of the domain Ω lead to reduced regularity of the solution of boundary value
problems. In order to avoid a corresponding reduction of the convergence order one
can use mesh grading, meshes with smaller and smaller element sizes towards the
corners. For contributions in this direction we mention the papers [10, 11, 17, 23,
25, 26] and the overview article [2] and note that superconvergence effects are not
considered there. We give a short overview in Sect. 1.3 with the focus on techniques
to construct such families of graded meshes.

Coming back to our observation of superconvergence effects with certain
families of graded meshes, we review few results from the literature and our own
ones in Sect. 1.4. They are applied in Sect. 1.5 to the third term of estimate (1.2).

Unique features of the paper are the discussion of graded meshes with and
without superconvergence properties and the connection to the discretization of
Dirichlet control problems. Some estimates in the paper are new or at least less well
known, see the estimate of the normal derivative in (1.10) and the estimate (1.15)
for the trace of discrete harmonic functions. The paper gives a preview on some of
the results in our upcoming paper [8].

1.2 Superconvergent Meshes

Bank and Xu [12] investigate quasi-uniform meshes with an O(h2) approximate
parallelogram property. This means that the two elements which share an interior
edge of the mesh, form an approximate parallelogram: the lengths of any two
opposite edges differ by O(h2), see Fig. 1.1 for an illustration. For situations in
which this property holds everywhere except in a region of size O(h2σ ), the quantity
σ is traced. For some applications like Neumann boundary conditions there is
another condition for boundary edges. The result in [12] which is important here, is
the estimate (we denote the variable by ϕ in view of (1.3))

(∇(ϕ − Ihϕ),∇vh)L2(Ω) ≤ ch1+min{1,σ }| logh|1/2‖ϕ‖W 3,∞(Ω)|vh|H 1(Ω) (1.4)
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Fig. 1.1 Mesh with O(h2)

approximate parallelogram
property

for ϕ ∈ W 3,∞(Ω) and any vh ∈ Yh (piecewise linears). In the case that
Ω = ⋃n

j=1 Ωj and the meshes possess the O(h2) approximate parallelogram

property in each polygon Ωj , we speak about a piecewise O(h2) approximate
parallelogram property. Note that this one is sufficient for (1.4) since we can apply
the estimate (1.4) in subdomains and sum up.

Formula (1.4) is not immediately applicable to bound the third term in (1.2) since
we would need ‖vh‖L2(Γ ) instead of |vh|H 1(Ω) on the right hand side of (1.4). The
estimate |Shψh|H 1(Ω) ≤ ch−1/2‖ψh‖L2(Γ ) for ψh ∈ Uh helps. This estimate can be
derived from Shψh = argmin

vh∈{wh∈Yh:wh|Γ=ψh}
|vh|H 1(Ω) since then

|Shψh|H 1(Ω) ≤ |S̃hψh|H 1(Ω) ≤ h−1/2‖ψh‖L2(Γ ) (1.5)

with S̃h : Uh → Yh being the extension by zero operator.
As further applications of formula (1.4) we find supercloseness results for the

interpolant and estimates for the recovered gradient in [12]. For the review here,
denote by ϕ ∈ W 3,∞(Ω) and ϕh ∈ Yh the solution of the homogenous Dirichlet
problem for the Poisson equation and its finite element approximation, respectively.
For the Lagrange interpolant Ih : C(Ω̄) → Yh we have the supercloseness
result

|ϕh − Ihϕ|H 1(Ω) = sup
vh∈Y0h

(∇(ϕh − Ihϕ),∇vh)

|vh|H 1(Ω)

= sup
vh∈Y0h

(∇(ϕ − Ihϕ),∇vh)

|vh|H 1(Ω)

≤ ch1+min{1,σ }| logh|1/2‖ϕ‖W 3,∞(Ω), (1.6)

compare with

|ϕ − ϕh|H 1(Ω) ≤ |ϕ − Ihϕ|H 1(Ω) ≤ ch|ϕ|H 2(Ω)
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for the discretization error. As a corollary, Bank and Xu show in [12, Thm. 4.2] the
superconvergence property of a recovered gradient,

‖∇ϕ −Qh∇ϕh‖L2(Ω) ≤ ch1+min{1,σ }| logh|1/2‖ϕ‖W 3,∞(Ω), (1.7)

where Qh : L2(Ω)× L2(Ω)→ Yh × Yh is here the L2(Ω)-projection operator for
each component.

Deckelnick et al. [16] considered the approximation of smooth domains, modi-
fied the estimate (1.4) to

(∇(ϕ − Ihϕ),∇vh)L2(Ωh)

≤ c‖ϕ‖W 3,r (Ωh)

(
h1+min{1,σ }‖vh‖H 1(Ωh)

+ h3/2‖vh‖L2(Γh)

)
(1.8)

with r > 2, and used it for the analysis of a Dirichlet control problem with
L2-regularization, as it was stated in the Introduction. They focused on smooth
domains in order to avoid corner singularities such that quasi-uniform meshes are
appropriate. With formula (1.5), they obtain approximation order 3

2 for control
and state which is optimal due to regularity issues. We would like to underline
that these authors used meshes with a global O(h2) approximate parallelogram
property (up to a region of size O(h2σ )). It is not obvious whether this estimate
holds for meshes with only a piecewise O(h2) approximate parallelogram property;
we discuss this in the Appendix. The result in [16] stimulated our treatment of
superconvergence meshes within the investigation of Dirichlet control problems in
non-smooth domains.

An application of formula (1.8) concerns the approximation of normal deriva-
tives.

Lemma 1.1 Let ∂hnϕh be the variational normal derivative of the Ritz projection
ϕh ∈ Yh of ϕ ∈ W 3,r (Ω) with some r > 2, which can be defined by

(∂nϕ − ∂hnϕh, zh)Γ = (∇(ϕ − ϕh),∇zh)Ω ∀zh ∈ Yh. (1.9)

Then the estimate

‖∂nϕ − ∂hnϕh‖2
L2(Γ )

≤ ch1/2+min{1,σ }| logh|1/2‖ϕ‖W 3,r (Ω), r > 2, (1.10)

holds on superconvergent meshes.

Proof We can write

‖∂nϕ − ∂hnϕh‖2
L2(Γ )

= (∂nϕ − ∂hnϕh, ∂nϕ − ∂hnϕh)Γ

= (∂nϕ − ∂hnϕh, ∂nϕ −Qh∂nϕ)Γ + (∂nϕ − ∂hnϕh,Qh∂nϕ − ∂hnϕh)Γ =: I + II,
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where Qh : L2(Γ ) → Uh is here the L2(Γ )-projection. By using the Cauchy–
Schwarz inequality, the approximation error estimate for Qh, and

‖∂nϕ‖W 3/2,2
pw (Γ )

:=
∑
i

‖∂nϕ‖W 3/2,2(Γi)
≤ c‖ϕ‖W 3,r (Ω)

for r ≥ 2, where we denote by Γi the smooth parts of Γ , we obtain

I ≤ ‖∂nϕ − ∂hnϕh‖L2(Γ )‖∂nϕ −Qh∂nϕ‖L2(Γ )

≤ ch3/2‖ϕ‖W 3,r (Ω)‖∂nϕ − ∂hnϕh‖L2(Γ ).

With eh := Qh∂nϕ− ∂hnϕh = Qh(∂nϕ− ∂hnϕh) and the discrete harmonic extension
operator Sh we get with the help of the formula (1.8)

II = (∂nϕ − ∂hnϕh, eh)Γ = (∇(ϕ − ϕh),∇Sheh)Ω = (∇(ϕ − Ihϕ),∇Sheh)Ω

≤ c‖ϕ‖W 3,r (Ω)

(
h1+min{1,σ }| logh|1/2|Sheh|H 1(Ω) + h3/2‖eh‖L2(Γ )

)

≤ ch1/2+min{1,σ }| logh|1/2‖ϕ‖W 3,r (Ω)‖eh‖L2(Γ )

≤ ch1/2+min{1,σ }| logh|1/2‖ϕ‖W 3,r (Ω)‖∂nϕ − ∂hnϕh‖L2(Γ )

where we have used the estimate |Sheh|H 1(Ω) ≤ ch−1/2‖eh‖L2(Γ ), the definition of
eh, and the stability of Qh. Collecting all terms and dividing by ‖∂nϕ− ∂hnϕh‖L2(Γ )

we find that (1.10) holds on superconvergent meshes. ��

1.3 Graded Meshes

Graded meshes are widely used in the literature to cope with corner singularities
in the solution of boundary value problems. To get an idea, consider a polygonal
domain Ω with boundary Γ and the partial differential equation

−Δu+ u = f in Ω

with Dirichlet or Neumann boundary conditions. The solution of this boundary
value problem behaves in the vicinity of corners with interior angle ω like

u = ur + us, us = kξ(r) rλ Φ(θ)

with a regular part ur , a coefficient k, a cut-off function ξ , polar coordinates (r, θ)

centered in the corner, a smooth function Φ, and the singularity exponent λ = π/ω.
Simple calculations reveal how the regularity of u (resp. us) depends on the interior
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angles of the domain: us ∈ H 2(Ω) for ω < π and us ∈ W 2,∞(Ω) for ω < π/2.
To keep the explanation less technical, we assume here that there is only one critical
corner and the solution is as smooth as needed near the other corners of the domain.
Since corner singularities and their treatment are local phenomena, this is not a loss
of generality.

Let us consider graded meshes of the following type. With the global mesh
parameter h and the grading parameter μ ∈ (0, 1], let the element size hT :=
diamT be related with the distance rT to the critical corner by

hT ∼
⎧
⎨
⎩

h1/μ for rT = 0,
hr

1−μ
T for R ≥ rT > 0,

h for rT > R,

(1.11)

where a ∼ b means the existence of constants c1 and c2 such that c1b ≤ a ≤ c2b.
The purpose of the mesh grading becomes clear when we consider approximation

error estimates. For the piecewise linear finite element approximation uh we have
[10, 23–25]

‖u− uh‖H 1(Ω) ≤ chmin{1,λ/μ−ε}‖f ‖L2(Ω),

‖u− uh‖L2(Ω) ≤ ch 2 min{1,λ/μ−ε}‖f ‖L2(Ω),

this means a grading condition μ < λ for optimal convergence, see also [2] for
further references. L∞(Ω) error estimates for graded meshes,

‖u− uh‖L∞(Ω) ≤ chmin{2,λ/μ}−ε‖f ‖X,

were originally proved by Schatz and Wahlbin [26] for smooth right hand sides f

and c = c(f ) and later improved by Sirch [27] (Dirichlet problem, X = C0,σ (Ω),
h−ε being specified to | logh|3/2) and Rogovs et al. [9] (Neumann and Dirichlet
problems, X = C0,σ (Ω), h−ε specified to | logh|). Estimates on the boundary like

‖u− uh‖L2(Γ ) ≤ chmin{2,( 1
2+λ)/μ}−ε‖f ‖C0,σ (Ω)

‖∂nu−Qh∂nu‖L2(Γ ) ≤ chmin{1/2,(λ− 1
2 )/μ}−ε‖f ‖L2(Ω)

for the Neumann and the Dirichlet problem, respectively, were proven by Pfefferer
et al. [4, 6], with h−ε specified to | logh|1+δ , δ = δ(λ,μ), in the first estimate, and
Qh being the L2(Γ )-projection in the second estimate.

Let us now introduce three methods to generate graded meshes. The first method
can be called bisection method and is described in [17]. The algorithm is initialized
with a coarse start mesh. Afterwards, every element T ∈ Th is bisected which
satisfies

hT > h or hT > h
( rT
R

)1−μ
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Fig. 1.2 Graded meshes with μ = 0.5; top left: bisection, R = 0.8; top right: relocation with
Euclidean metric, R = 0.8; bottom left: relocation with Manhattan metric, R = 1; bottom right:
hierarchic with relocation

where R denotes the radius of the refinement zone. The splitting step is repeated
until all elements have the desired mesh size. An illustration is provided in Fig. 1.2,
top left. Advantages of this approach are the simple construction of a sequence of
hierarchic meshes and the smooth transition of the element size from one element to
the next. However, the approximate parallelogram property introduced in Sect. 1.2
is in general violated.

The second method can be called relocation and goes back to ideas by Oganesyan
and Rukhovets [23, 24]. The idea is first to refine a coarse start mesh uniformly until
hT ∼ h for all T ∈ Th with desired mesh size h, and then to transform the nodes
X(i) ∈ Ω with r(X(i)) < R according to

X(i)
new = X(i)

(
r(X(i))

R

)1/μ−1

,
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see the illustration in Fig. 1.2, top right. Raugel [25] used the same idea with
the Manhattan metric instead of the Euclidean metric, see Fig. 1.2, bottom left.
The relocation method does not lead to hierarchic meshes but the approximate
parallelogram property can be achieved. We discuss this further in Sect. 1.4 but
mention already that the approximate parallelogram property is not satisfied in
general near the boundaries of the elements of the coarse mesh and near the
boundary of the refinement zone.

The third method will be called hierarchic with relocation and was invented
independently by Apel and Schöberl, [1], and Băcuţă, Nistor, and Zikatanov, [11].
The algorithm starts with a coarse mesh and splits the triangles recursively into four
subtriangles by introducing new nodes at each edge. The new nodes are usually the
midpoints of the edges except if an edge is adjacent to a singular corner. In this case
the edge is split in the ratio 2−1/μ : 1, see Fig. 1.2, bottom right, for an illustration.
One can see clearly that there are subdomains with uniform meshes, meaning that
all elements are congruent and hence a parallelogram property is satisfied within the
subdomain. However, the number of such patches depends on logh for μ < 1.

1.4 Superconvergent Graded Meshes

Numerical tests revealed that superconvergence effects occur also with certain
graded meshes. The study of the literature led us only to the publications [15, 19].
Huang [19] investigated Raugel-type meshes and proved a supercloseness result as
in (1.6) for μ < 1

2λ. Chen and Li [15] used hierarchic meshes with relocation (third
method above) and proved estimates like (1.6) and (1.7) with an exponent 5

4 − ε for
μ < λ. The proofs of all these estimates are based on results like (1.4) which can be
used in subdomains and summed up. For the estimate of the third term on the right
hand side of (1.2), which is of main interest for us, this did not help. In particular,
we are using a different grading parameter μ.

In order to summarize our results of [8] we have to adapt the approximate
parallelogram property to graded meshes with grading parameter μ: For an interior
edge e, let Te and T ′

e denote the two elements of Th which share this edge e, and
denote by re the distance of e to the set of vertices of Ω . Then the lengths of any two
opposite edges of the quadrilateral Te∪T ′

e differ only by O(h2
er
−1
e ). Such a property

can be achieved in special situations, see for example Fig. 1.3 where a smoothened
relocation was applied to a uniform initial mesh. In [8] we prove for any vh ∈ Yh
the estimate
∣∣∣∣
∫

Ω

∇(ϕ − Ihϕ) · ∇vh

∣∣∣∣ ≤ c
(
‖r3(1−μ)/2∇3ϕ‖L2(Ω) + ‖r(1−3μ)/2∇2ϕ‖L2(Ω)

)

·
(
h2‖r(1−μ)/2∇vh‖L2(Ω) + h3/2‖vh‖L2(Γ )

)

provided that the norms are finite. It is related to (1.4) but using weighted norms.
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Fig. 1.3 Graded mesh with
μ = 0.5, smoothened
relocation with Euclidean
metric, R = 1

Let us discuss this result. First, if the function ϕ is the solution of a homogenous
Dirichlet problem with sufficiently smooth right hand side, then the assumptions
r3(1−μ)/2∇3ϕ ∈ L2(Ω) and r(1−3μ)/2∇2ϕ ∈ L2(Ω) are satisfied for μ < 2

3 (λ− 1
2 )

since ∇mϕ has leading singularity rλ−m and rβrλ−m ∈ L2(Ω) for β+λ−m > −1.
Second, in improvement of the proofs in [12] and [16] we avoided (weighted) Lr -
norms with r > 2 of second and third derivatives of ϕ. Third, if the function vh is
discrete harmonic then

‖r(1−μ)/2∇vh‖L2(Ω) ≤ ch−1/2‖vh‖L2(Γ )

and the second factor on the right hand side is just h3/2‖vh‖L2(Γ ). Therefore we use
‖r(1−μ)/2∇vh‖L2(Ω) and not just ‖∇vh‖L2(Ω).

In the investigation of a Dirichlet control problem we use the estimate for the
optimal adjoint state ϕ̄, compare (1.2). Consequently, we get

∣∣∣∣
∫

Ω

∇(ϕ̄ − Ihϕ̄) · ∇vh

∣∣∣∣ ≤ ch3/2‖vh‖L2(Γ ) (1.12)

for μ < 2
3 (λ− 1

2 ) and discrete harmonic vh.
Finally, we were able to relax the assumption of globally superconvergent graded

meshes to piecewise superconvergent graded meshes. Note that if Ω = ⋃n
j=1 Ωj

and the meshes are superconvergent in each polygon Ωj , we get from (1.12)

∣∣∣∣
∫

Ω

∇(ϕ̄ − Ihϕ̄) · ∇vh

∣∣∣∣ ≤ ch3/2
∑
j

‖vh‖L2(∂Ωj )
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But we were able to show for discrete harmonic vh and μ < 2λ− 1

n∑
j=1

‖vh‖L2(∂Ωj )
≤ cn‖vh‖L2(Γ ) (1.13)

such that (1.12) holds also for piecewise superconvergent graded meshes.

1.5 Application to Dirichlet Control Problems

We finally are able to obtain the following results for the error in the solution of the
Dirichlet optimal control problem, whose proofs can be found in [8].

Our first result is for unconstrained problems, a = −∞, b = +∞. To prove the
estimate

‖ū− ūh‖L2(Γ ) + ‖ȳ − ȳh‖L2(Ω) ≤ ch3/2−ε (1.14)

for arbitrary ε > 0, we assume yΩ ∈ W 1,p(Ω), p > 2, and use a family
of superconvergent graded meshes with grading parameter μ < 2(λ − 1/2)/3.
Numerical experiments show that this quite strong grading is really necessary. Note
for example that ω = 7π/4 leads to λ = 4/7 and 2(λ − 1/2)/3 = 1/21. Note
also that grading is necessary near convex corners with obtuse angle, for example
ω = 3π/4 leads to λ = 4/3 and 2(λ− 1/2)/3 = 5/9.

For constrained problems, −∞ < a < b < ∞, a technical assumption must
be made. As we elaborate in [3], the normal derivative of the adjoint state will
normally exhibit a singularity of type rλ−1 at a critical corner, which tends to
infinity for λ = π/ω < 1, i.e., at a non-convex corner. We can deduce from this
fact and the projection formula that the optimal control ū is a constant function in a
neighborhood of such corners. We will assume that the discrete optimal controls also
satisfies this property in a neighborhood independent of the discretization parameter
h, see (H), which has been observed in all our numerical experiments. Note that even
a weaker assumption could be made, see the discussion in [7, Sect. 5].

(H) If ∂nϕ̄(x) ∼ rλ−1 with λ < 1 at a critical corner, then there exists a
neighborhood N with fixed radius such that ūh = ū in N for all h < h0.

At nonconvex corners, it is also possible, though rare, that ∂nϕ̄ behaves like r2λ−1

which does not tend to infinity. This situation is analyzed in [8] as well, but here we
assume for simplicity that this case does not happen.

To get the error estimate (1.14) in the constrained case, we may still need mesh
grading: To cope with the polluting effects of the state singularity near concave
corners we need μ ≤ 4λ/3. Furthermore, grading with μ < 2(π/ω − 1/2)/3 near
convex corners with interior angle ω ∈ [π/2, π) is necessary.
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The computation of the optimal μ can be easily done for specific cases. For
instance, suppose a polygonal domain with nonconvex angle ω = 7π/4, so that
the rest of interior angles are less than π/2. We have λ = 4/7, hence the optimal
grading parameter is μ∗ = 16/21 ≈ 0.762. If μ ≤ μ∗, we obtain the order of
convergence 1.5. Otherwise, the polluting effects of the state singularity influence
the control approximation, despite the fact of being constant at the nonconvex
corner, exhibiting a lower order of convergence 8/(7μ). This behaviour is indeed
observed in numerical experiments done with the different strategies of mesh
grading described above; see [8] for the details.
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Appendix

We show here a result which was announced at the end of Sect. 1.2. Let Ω be
split into subdomains Ωi in which the quasi-uniform finite element mesh possesses
locally the O(h2) approximate parallelogram property with σ ≥ 1. Then the
result (1.8) (for simplicity without approximating curved boundaries) can be written
as

(∇(ϕ − Ihϕ),∇vh)L2(Ω) =
∑
i

(∇(ϕ − Ihϕ),∇vh)L2(Ωi)

≤ c
∑
i

‖ϕ‖W 3,r (Ωi)

(
h2‖vh‖H 1(Ωi)

+ h3/2‖vh‖L2(∂Ωi)

)

≤ c‖ϕ‖W 3,r (Ω)

(
h2‖vh‖H 1(Ω) + h3/2

∑
i

‖vh‖L2(∂Ωi)

)

where the constant depends on the number of subdomains which is assumed to
be O(1). In view of (1.2) and (1.3) we would like to bound both terms in the
parentheses by h3/2‖vh‖L2(Γ ), and we can assume that vh is discrete harmonic.
We discussed the first term already in (1.5) such that ‖vh‖H 1(Ω) ≤ h−1/2‖vh‖L2(Γ ).
The challenge in the estimate of the second term is not to lose a power of h. We
give here a proof for the case that Ω is convex and the mesh is quasi-uniform, and
discuss extensions at the end of the section.

Lemma 1.2 Let Ω be a convex domain which is split into subdomainsΩi . Assume
that in each Ωi the quasi-uniform finite element meshes possess locally the O(h2)
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approximate parallelogram property with σ ≥ 1. Then the estimate

∑
i

‖vh‖L2(∂Ωi)
≤ ‖vh‖L2(Γ ). (1.15)

holds for discrete harmonic functions vh ∈ Yh.

Proof Let S : Uh → H 1(Ω) and Sh : Uh → Yh be defined via

(∇Svh,∇v) = 0 ∀v ∈ H 1
0 (Ω), (Svh)|Γ = vh,

(∇Shvh,∇v) = 0 ∀v ∈ Y0h, (Shvh)|Γ = vh.

By using the triangle inequality we have

‖Shvh‖L2(∂Ωi)
≤ ‖Svh‖L2(∂Ωi)

+ ‖(S − Sh)vh‖L2(∂Ωi)
.

The first term can be estimated by using the trace theorem for harmonic functions
from [18, Lemma 2.3] and the regularity result from [5, Lemma 2.4]. We get

‖Svh‖L2(∂Ωi)
≤ c‖Svh‖H 1/2(Ω) ≤ c‖vh‖L2(Γ ).

For the second term we use a more standard trace theorem and get

‖(S − Sh)vh‖L2(∂Ωi)
≤ c ‖(S − Sh)vh‖1/2

L2(Ω)
‖∇(S − Sh)vh‖1/2

L2(Ω)
. (1.16)

The first term was bounded in [5, Corollary 3.3] by

‖(S − Sh)vh‖L2(Ω) ≤ ch1/2‖vh‖L2(Γ )

for convex domains. The second term is estimated by using the triangle inequality,

‖∇(S − Sh)vh‖L2(Ω) ≤ ‖∇Svh‖L2(Ω) + ‖∇Shvh‖L2(Ω).

Both terms can be bounded by ch−1/2‖vh‖L2(Γ ); the second one is proved in (1.5),
the first one can be proved with the same arguments. All theses estimates together
show the desired result (1.15). Note that we used in several places that vh is discrete
harmonic and Ω is convex. ��

The proof does not work for graded meshes although we would need a similar
result, see (1.13). To cope with the nonuniform mesh size we suggest to replace the
trace estimate (1.16) by a weighted one,

‖v‖L2(∂Ωi)
≤ c ‖σ−(1−μ)/2v‖1/2

L2(Ω)
‖σ (1−μ)/2∇v‖1/2

L2(Ω)
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with σ(x) = r(x) + cIh
1/μ and cI being a large enough constant. It turns

out that these weighted norms can also be bounded by ch1/2‖vh‖L2(Γ ) and
ch−1/2‖vh‖L2(Γ ), respectively, see our upcoming article [8].
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Chapter 2
Explicit and Implicit Reconstructions
of the Potential in Dual Mixed hp-Finite
Element Methods

Lothar Banz, Jan Petsche, and Andreas Schröder

Abstract In this paper, two different reconstruction techniques for the discrete
potential in dual mixed hp-finite element methods are discussed and compared:
a post-processed reconstruction based on an explicit computation of local solu-
tions and a reconstruction technique in which the reconstruction is not explicitly
computed. Both approaches enable the derivation of a posteriori error estimates
which can be used to drive h- as well as hp-adaptive schemes. In several numerical
experiments the convergence of the adaptive schemes and resulting efficiency
indices are studied. Moreover, efficiency indices for h-uniform and hp-geometric
refinements as well as the computational amount required for the error estimations
are compared for both approaches.

2.1 Introduction

Dual mixed methods are well-established finite element approaches, which are
based on the introduction of a flux field as an additional unknown in H(div) [5, 12].
Raviart-Thomas finite elements are often used for the discretization of the H(div)-
space providing its continuity requirements in the normal direction of the edges of
the underlying mesh. An alternative is to apply dual mixed-hybrid methods to ensure
these continuity requirements by defining an additional Lagrange multiplier on the
edges. The provision of the flux, in particular, without the need of additional post-
processing is an advantage of dual mixed methods as opposed to primal methods.
A certain drawback is that the potential is just in L2 and, thus, not conforming
with respect to the primal trial H 1-spaces. Typically, post-processing schemes are
used for the reconstruction of the potential in H 1. A commonly used technique
for reconstruction is proposed in [36], which is the basis of the reconstructions
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introduced in [1] for lowest order finite elements, in [28] for finite elements with
uniform polynomial degrees and in [2] for hp-finite elements with non-uniform
polynomial degrees, where regular triangular meshes without hanging nodes are
assumed. These reconstructions are computed via the solution of local problems
and enable the derivation of a posteriori error estimates for mixed methods. The
latter can be applied to drive h- and hp-adaptivity, which is also discussed in
these publications. Post-processing reconstruction, error control and adaptivity for
mixed methods have been well studied and are documented in literature. We refer
to [3, 9, 16–18, 20, 21, 29, 30, 37, 38] for further approaches on reconstruction
techniques and/or a posteriori error estimation for mixed methods.

In this paper, we discuss and compare two different reconstruction techniques
for dual mixed hp-finite element methods: First, the post-processed reconstruction
as described in [2] with a small generalization to hp-finite elements on quadrilateral
meshes with multilevel hanging nodes and, second, a reconstruction technique in
which the reconstruction is not explicitly computed, but enables, nevertheless, the
derivation of a posteriori error estimates [7]. Throughout this paper we call the first
approach explicit and the second one implicit. We compare both approaches by
discussing the a posteriori error estimates based on them because the derivation of
error estimates may be their main field of application. For this purpose, we study
the convergence of h- and hp-adaptive schemes driven by the error estimates and
resulting efficiency indices in several numerical experiments, but we also discuss
the efficiency indices (quotient of the exact and the estimated error) resulting from
h-uniform as well as hp-geometric refinements. Since an explicit computation of
the reconstruction is not needed in the implicit approach, the CPU-times required
for the estimation are also compared. We observe that the efficiency indices are
constant for both approaches. They are nearly 1 if error estimates based on the
implicit reconstruction are applied. However, this advantage has to be considered
with some care, since the estimates based on the implicit reconstruction contain
an unknown efficiency constant, so that it is actually not fully computable; in
contrast to the estimates with the explicit reconstruction, which give guaranteed
upper bounds, even though their efficiency indices are significantly smaller than
1. It has still to be determined by what (computable) real number the efficiency
constant of the implicit approach can be bounded. The explicit reconstruction
can be computed efficiently as it only requires the solution of local problems on
each mesh element. This is, in particular, true, if meshes without hanging nodes
are used. If hp-finite elements on meshes with (multilevel) hanging nodes are
applied, the proposed explicit reconstruction is more involved since it needs explicit
knowledge of some connectivity information of the degrees of freedom for the
reconstruction in H 1. In the numerical experiments, we observe that it requires
noticeable computational time, whereas the implicit reconstruction does not cause
an essentially more computational amount for its evaluation in comparison to the
case without hanging nodes.

In this paper, we particularly consider the derivation of the implicit reconstruction
in more detail, which is defined in three steps: first, the lowest order (vertex)
contributions are separated, second, an element-wise lifting of the average of the
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smoother remainder from the element boundary to the interior of the element is
applied, and, third, a well-known low-order averaging is added. We show that
the reconstruction error given as the difference of the discrete potential and its
reconstruction can be estimated by the jumps of the discrete potential on the edges.
Hence, we can interpret the reconstruction error as a measure for the non-conformity
of the discrete potential with respect to the H 1-space. We note that the role of the
jumps of the discrete potential is also underlined in [1] in a similar context.

The error estimates derived from the implicit reconstruction rely on measuring
the error of the potential in a weighted, mesh-dependent H 1-norm (instead of the
L2-norm), which seems to be more natural in terms of broken Sobolev spaces. In
particular, we obtain the same error estimates as in [9], but without any saturation
assumption, due to the reconstruction in H 1. Thus, it does not face the problem of
(possibly) unavailable regularity assumptions regarding to H(div). We refer to [7]
for more details with respect to the error estimation.

The paper is organized as follows: In Sect. 2.2 we introduce the dual mixed and
dual mixed-hybrid finite element method for the Poisson problem. The explicit
reconstruction and the error estimates based on this reconstruction as well as
some numerical experiments are introduced in Sects. 2.3 and 2.4, respectively. The
implicit reconstruction and the estimates of the reconstruction error are presented
in Sect. 2.5. We discuss the a posteriori error estimates based on the implicit
reconstruction and relating numerical experiments in Sect. 2.6. We compare both
reconstruction approaches in more detail in Sect. 2.7, where we consider efficiency
indices and CPU-times for h-uniform and hp-geometric refinements.

In this paper A � B abbreviates A ≤ CB with a positive constant C which
is independent from A, B and all other quantities of interest like mesh size and
polynomial degree. The expression A �ε B means that the constant C may
dependent on an ε.

2.2 Mixed and Mixed-Hybrid Formulations of the Poisson
Problem and Their Discretizations

In this section we consider the dual mixed formulation of the Poisson problem

−Δu = f in Ω, u = uD on ΓD, ∂nu = uN on ΓN (2.1)

for a given f ∈ L2(Ω), uD ∈ H 1/2(ΓD), uN ∈ L2(ΓN), where ∂n is the derivative
in the direction of the outer normal n. Here, Ω ⊂ R

2 is a bounded, polygonal
domain with boundary Γ := ∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅. With

H 1
g;ΓD

(Ω) :=
{
v ∈ H 1(Ω) | v = g on ΓD

}
,

Hg;ΓN
(div,Ω) := {τ ∈ H(div,Ω) | τ · n = g on ΓN }
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a dual mixed formulation of (2.1) consists in finding (u, σ ) ∈ L2(Ω) ×
HuN ;ΓN

(div,Ω) such that

(σ, τ )+ (u, div τ ) = 〈uD, τ · n〉ΓD (2.2a)

(div σ, v) = (−f, v) (2.2b)

for all v ∈ L2(Ω) and for all τ ∈ H0;ΓN
(div,Ω). Here, (·, ·) = (·, ·)Ω is the

L2(Ω)-inner product and 〈·, ·〉ΓD is the duality pairing between H 1/2(∂Ω) and

H
−1/2
0;ΓN

(∂Ω):= {μ ∈ H−1/2(∂Ω) | ∃τ ∈ H0;ΓN
(div,Ω) : τ · n = μ on ∂Ω}.

Recall that uD ∈ H 1/2(ΓD) implies that there exists an extension ũD ∈ H 1/2(∂Ω)

such that ũD = uD on ΓD.
Conforming discretizations of the mixed formulation (2.2) with Raviart-Thomas

elements are introduced, for instance, in [5, 12]. We refer to [4], which discusses
their relationship to non-conforming methods. Let K̂ = (−1, 1)k, k ∈ {1, 2} and
FK : K̂ → K be the (bi-)linear transformation of K̂ to an edge or a convex
quadrilateral K with diameter hK . We denote the Jacobian of FK by DFK and its
determinant by JFK . Here and in the following, a hatted variable denotes a variable
in the reference setting. The finite element mesh of Ω is denoted by Th, consists of
convex quadrilaterals and may have hanging nodes. In particular, multilevel hanging
nodes are allowed, i.e. more than one hanging node per edge or hanging nodes on
edges with hanging nodes as endpoints, see Fig. 2.1a. The mesh is assumed to be
locally quasi-uniform and its boundary edges match with ΓN and ΓD . Furthermore,
a polynomial degree distribution (pT )T ∈Th

is defined on Th. We denote the set of
inner constraining edges by E i

h (i.e. the shortest edges, of which the start and end

(a) (b)
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(c)

E
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p2
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T4

T5T2

T3

Fig. 2.1 (a) Initial mesh with multilevel hanging nodes of order 5. (b) Interpolation points
p0, . . . , p6 on the constraining edge E of degree pE = 6. (c) Mesh resulting from hp-geometric
refinements with zoom towards the reentrant corner and polynomial degrees marked by some
colors
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points are common nodes of the quadrilaterals left and right to these edges), the
set of Dirichlet boundary edges by E D

h and the set of Neumann boundary edges by
E N
h . The polynomial degree on Eh := E i

h ∪ E D
h ∪ E N

h is given by the maximum
rule and is denoted by (pe)e∈Eh , i.e. pe is the maximum of all pT where T is
adjacent to e. To specify local tensor product shape functions, we introduce the
standard pullback transformation FFK : H 1(K̂) → H 1(K) as FFK (v̂) = v̂ ◦ F−1

K

for an edge or a convex quadrilateral K . The contravariant Piola transformation
PFT : H(div, T̂ ) → H(div, T ), T ∈ Th, is given by PFT (τ̂ ) = J−1

FT
DFT τ̂ ◦ F−1

T

and preserves the normal component continuity in H(div,Ω). Herewith, we define
the conforming finite element spaces

RThp :=
{
τhp ∈ H(div,Ω) | ∀ T ∈ Th : τhp|T ∈PFT

(PpT+1,pT
× PpT ,pT+1)

}
,

RTg;ΓN ;hp :=
{
τhp ∈ RThp | τhp · n = g on ΓN

}
,

Vhp :=
{
v ∈ L2(Ω) | ∀ T ∈ Th : v|T ∈ FFT

(PpT ,pT
)
}

with Pk,l := span{xi yj | 0 ≤ i ≤ k, 0 ≤ j ≤ l}. With uN,hp ∈ Whp;N as the
piecewise orthogonal L2 projection of uN onto

Whp;N :=
{
vhp ∈ L2(ΓN) | ∀e ∈ E N

h : vhp|e ∈ FFe(Ppe )
}

the discrete mixed formulation is to find (uhp, σhp) ∈ Vhp×RTuN,hp;ΓN ;hp such that

(σhp, τhp)+ (uhp, div τhp) = (uD, τhp · n)ΓD (2.3a)

(div σhp, vhp) = (−f, vhp) (2.3b)

for all vhp ∈ Vhp and for all τhp ∈ RT0;ΓN ;hp.
In this H(div,Ω)-conforming Raviart-Thomas discretization the continuity in

the normal component is strongly enforced. Using a Lagrange multiplier as an
additional variable we can relax this continuity requirement in a weak sense,
see, e.g., [5, 12]. The resulting discrete dual mixed-hybrid formulation is to find
(uhp, σhp, λhp) ∈ Vhp × R̃T hp ×Whp such that

(σhp, τhp)+
∑
T ∈Th

∫

T

uhp div τhp dx +
∑

e∈E i
h∪E N

h

∫

e

�τhp · n�λhp ds = (uD, τhp · n)ΓD

(2.4a)

∑
T ∈Th

∫

T

div σhp vhp dx = −(f, vhp)

(2.4b)

∑

e∈E i
h∪E N

h

∫

e

�σhp · n�μhp ds = (uN,μhp)ΓN

(2.4c)
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for all vhp ∈ Vhp, τhp ∈ R̃T hp and μhp ∈ Whp . Here,

R̃T hp :=
{
τhp ∈

[
L2(Ω)

]2 | ∀T ∈ Th : τhp|T ∈ PFT (PpT+1,pT × PpT ,pT+1)

}
,

Whp :=
{
μhp ∈ L2(E i

h ∪ E N
h ) | ∀e ∈ E i

h ∪ E N
h : μhp|e ∈ FFe (Ppe)

}
,

and �v� denote the jump of v on the interior edges and v on the edges on ΓN . It
is well known, c.f. [5, 12], that the discrete problems (2.3) and (2.4) have unique
solutions and are equivalent. Furthermore, λhp approximates −u on E i

h ∪ E N
h .

Note that the relaxation of the continuity requirements in the dual-mixed-hybrid
formulation essentially facilitates its implementation, in particular, if hanging nodes
occur, see [8].

2.3 Explicit Reconstruction of the Potential

In order to find an appropriate reconstruction ũhp in H 1(Ω), it seems to be straight
forward to seek it in a higher-order polynomial space Vh,p+1 ∩ H 1

uD,hp,ΓD
(Ω) such

that

(∇ũhp,∇vhp) = −(div σhp, vhp)+ 〈uN,hp, vhp〉ΓN (2.5)

for all vhp ∈ Vh,p+1 ∩H 1
0,ΓD

(Ω). Here, uD,hp is a suitable approximation of uD in

Wh,p+1,D :=
{
vhp ∈ H 1/2(ΓD) | ∀e ∈ E D

h : vhp |e ∈ FFe(Ppe+1)
}
.

Integration by parts in (2.5) yields

(∇ũhp − σhp,∇vhp) = 0

for all vhp ∈ Vh,p+1 ∩H 1
uD,hp,ΓD

(Ω) and, therefore,

‖∇ũhp − σhp‖2
L2(Ω)

= (∇ũhp − σhp,∇vhp − σhp)

≤ ‖∇ũhp − σhp‖L2(Ω)‖∇vhp − σhp‖L2(Ω)

yielding the best-approximation property

‖∇ũhp − σhp‖L2(Ω) = min
vhp∈Vh,p+1∩H 1

uD,hp,ΓD
(Ω)

‖∇vhp − σhp‖L2(Ω).
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Clearly, the global reconstruction is quite expensive, since it has the same mag-
nitude of degrees of freedom as the discretizations of the mixed or mixed-hybrid
formulations. For this reason, we utilize the local reconstruction as proposed in [2].
This reconstruction is done in a three-step procedure consisting of a local Neumann
problem, an averaging step and a local Dirichlet problem. In this section, we briefly
describe a generalization of this reconstruction approach defined for non-uniform
polynomial degrees to quadrilateral meshes with multilevel hanging nodes [32].

The first step of the reconstruction is to find u◦hp,T ∈ FFT (PpT+1,pT+1) such that

(∇u◦hp,T ,∇vhp)T = (σhp,∇vhp)T

(u◦hp,T , 1)T = (uhp, 1)T
(2.6)

for all vhp ∈ FFT (PpT+1,pT+1) and T ∈ Th. Note that the mean value constraints
enforce uniqueness of the solution. This first step of the reconstruction is a variant
of the post-processing introduced in [36]. Since the solutions in (2.6) are locally
discontinuous from element to element, the second averaging step smoothens them,
where we allow for (multilevel) hanging nodes (in contrast to [2]). For this purpose,
we evaluate the Neumann solutions u◦hp,T on each regular (non-hanging) node and
on a certain number of interpolation points along each constraining edge. The
number of interpolation points are determined by the minimum rule. Figure 2.1b
shows an example of a constraining edge E of degree pE = 6 with hanging
nodes and a set of interpolation points p0, . . . , p6 along E. Then, we apply a
weighted averaging to these evaluations, where the weighting is based on the
area of each element as in common ZZ-averaging techniques. The regular nodal
degrees of freedom of the averaged approximation ũ◦hp are given by the averaged
values associated to these degrees of freedom. The degrees of freedom along the
constraining edges are given through the solution of the local interpolation problem
for each edge as described above. One may replace the averaged data by the
approximated Dirichlet data uD,hp if available. In order to specify the degrees
of freedom for the local Dirichlet data of the following third reconstruction step
from the averaged ũ◦hp we use connectivity matrices as, for instance, introduced
in [13, 33]. These matrices manage the local and global numbering of degrees of
freedom as well as varying polynomial degrees, edge orientation and contain the
constrained coefficients for (multilevel) hanging nodes (as shown in Fig. 2.1a).

The third and final step of the explicit reconstruction is to solve local Dirichlet
problems ũhp,T ∈ FFT (PpT+1,pT+1) where the Dirichlet data of each problem
results from the previous averaging step: Find ũhp ∈ Vh,p+1 ∩H 1(Ω) such that

(∇ũhp,T ,∇vhp)T = (σhp,∇vhp)T (2.7)

ũhp,T = ũ◦hp on ∂T (2.8)

for all vhp ∈ {vhp ∈ FFT (PpT+1,pT+1) | vhp = 0 on ∂T
}

and T ∈ Th. Note that
ũhp is continuous due to the continuity of the averaging approximation ũ◦hp.
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2.4 A Posteriori Error Estimates Based on the Explicit
Reconstruction

A posteriori error estimates based on explicit reconstructions are well-known in
literature (see the references in the introduction). For hp-finite elements a fully
computable upper bound for ‖σ − σhp‖L2(Ω) is introduced in [2], where triangular
meshes without hanging nodes are assumed. This can easily be extended to
quadrilateral meshes (cf. [32]) so that it holds

‖σ − σhp‖2
L2(Ω)

≤ ‖σhp −∇vhp‖2
L2(Ω)

+ γ 2 (2.9)

for an arbitrary vhp ∈ H 1
uD;ΓD

(Ω), where γ 2 :=∑T ∈Th
γ 2
T and

γT := hT

π
‖f −Π(f )‖0,T +

∑

e∈ET ∩E N
h

Ce,T ‖uN − uN,hp‖0,e,

Ce,T := 2hT
πle

(
hT

π
+ Le

)
.

Here, xe is one of the vertices of T opposite to e ∈ ET , Le := maxx∈e |x − xe|,
le := minx∈e |x − xe| and ET denotes the edges of T . Furthermore, Π(f ) is the
L2-projection of f onto Vhp. Note that vhp ∈ H 1

uD;ΓD
(Ω) cannot be fulfilled for

non-polynomial Dirichlet data uD , which may lead to some additional error term.
In order to evaluate the explicit reconstruction approach of Sect. 2.3 and the

resulting a posteriori error estimate, we consider some numerical experiments based
on the Poisson equation on the L-shape domain Ω := (−1, 1)2\[0, 1) × (−1, 0],
ΓD := (0, 1) × {0} ∪ (0,−1) × {0}, with the solution u := r2/3 sin(2θ/3) given
in the polar coordinates (r, θ), see [32]. Due to the singularity at the origin, we
have u ∈ H 5/3−ε(Ω), ε > 0 arbitrarily small. Thus, the order of convergence of
h-uniform refinements is bounded by the suboptimal algebraic order O(N−1/3),
where N := dimVhp + dimRTuN,hp;ΓN ;hp, see Fig. 2.2a. Here, we set eσ :=
‖σ − σhp‖L2(Ω). Indeed, the optimal order of convergence is O(N−p/2) if u

is sufficiently regular (which is not the case here). Using (isotropic) h-adaptive
refinements with Dörfler-marking we are able to recover the optimal algebraic order
O(N−1/2) for p = 1, O(N−1) for p = 2 and O(N−3/2) for p = 3, whereas the
use of hp-refinements driven by the a posteriori error estimates based on the explicit
reconstruction yields optimal exponential order of convergence O(exp(−beN

1/3))

with some slope be > 0, see Fig. 2.3a. The p-refinement strategy is based on a
Legendre polynomial expansion, see, e.g. [24]. We observe the typical refinement
patterns with h-refinements and low polynomial degrees near to the reentrant corner
(pT = 1 at the reentrant corner) and increasing polynomial degrees away from
the reentrant corner, see Fig. 2.3b. Note that the polynomial degree at the reentrant
corner can not be seen in the zoom of Fig. 2.3b. Furthermore, in Fig. 2.3a the
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Fig. 2.2 (a) eσ on y-axis in logarithmic scaling, (b) efficiency indices eσ /ηe
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Fig. 2.3 (a) eσ on y-axis in logarithmic scaling, (b) hp-adaptive mesh with zoom towards the
reentrant corner and polynomial degrees marked by some colors

convergence resulting from a common variant of hp mesh refinements is depicted,
which is called hp-geometric refinements below. In this variant the polynomial
degree is increased in layers away from the reentrant corner and h-refinements are
performed in those mesh elements which contain the reentrant corner, see, e.g., [34]
and Fig. 2.1c. As shown in Fig. 2.3a, we also get an optimal exponential order of
convergence O(exp(−bgN

1/3)), but with some slope bg < be, which shows that
the hp-refinements driven by the a posteriori error estimates are more effective
than these hp-geometric refinements. In Table 2.1 the constants of the exponential
convergence order O(exp(−bN1/3)) are tabulated in more detail, where the hidden
constants in the O-notation are denoted by Ce, Ci , Cg and C̃g . The subindices e, i
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Table 2.1 Approximatively computed constants of the order of convergence O(exp(−bN1/3))

with hidden constant C

Ce be Ci bi Cg bg C̃g b̃g

3.85419 0.52700 6.77538 0.51400 0.80760 0.22133 1.00717 0.22138

3.00665 0.51859 5.83012 0.50763 0.81094 0.22146 1.01036 0.22148

3.66507 0.52332 5.66514 0.50748 0.81421 0.22158 1.01410 0.22159

3.90773 0.52694 6.15360 0.50962 0.81612 0.22164 1.01606 0.22164

3.94131 0.52661 5.85910 0.50767 0.81799 0.22170 1.01828 0.22170

2.69936 0.51325 5.18236 0.50448 0.82018 0.22177 1.02093 0.22177

3.18891 0.51880 5.01065 0.50423 0.82135 0.22180 1.02236 0.22180

2.53258 0.51378 5.22435 0.50532 0.82298 0.22185 1.02431 0.22184

3.94542 0.52747 4.07533 0.49848 0.82378 0.22188 1.02534 0.22187

1.08734 0.50382 3.90671 0.49833 0.82587 0.22193 1.02792 0.22193

4.07108 0.52417 5.21802 0.50476 0.82575 0.22192 1.02773 0.22192

The subindices e, i and g denote the use of the explicit or implicit reconstruction in the a posteriori
error estimates or the use of hp-geometric refinements, respectively

and g indicate the use of the explicit or implicit reconstruction in the a posteriori
error estimates or the use of the hp-geometric refinements, respectively. Note that
the constants Ci , bi , C̃g and b̃g included in Table 2.1 are described in Sect. 2.6. The
constants are approximately computed by

bk := − log(ek/ek+l )/(N
1/3
k −N

1/3
k+l ), Ck := ek exp(bkN

1/3
k )

for the errors ek (which is eσ for the explicit approach), number of degrees of
freedom Nk and some appropriately chosen k and l indicating the data sets in
Figs. 2.3a and 2.5a. Here, we take k = 20, . . . , 30 and l := 15 for the explicit
and the implicit approach, and k = 5, . . . , 15 and l := 10 for the hp-geometric
refinements. In Fig. 2.2b, some efficiency indices (defined as the quotient eσ /ηe
of the exact error eσ and the estimated error ηe) are presented resulting from the
adaptive refinements. As expected, all indices are smaller than 1, which confirms
that (2.9) gives a guaranteed upper bound of the error. We observe that the
efficiency indices in the case of uniform polynomial degrees converge to a constant
value indicating efficiency and reliability as well as a certain independency of
the polynomial degree. This seems not to be the case if hp-adaptivity is applied.
However, using more than 104 degrees of freedom we have efficiency indices which
oscillate in the small range between 0.37 and 0.47. These oscillations may go back
to the hp-adaptive scheme resulting in (multilevel) hanging nodes and non-uniform
polynomial degrees. If hp-geometric refinements (with at most one hanging node
per edge and a very structured polynomial degree distribution) are applied, we get
constant efficiency indices again, which indicate a certain p-robustness (at least in
this case), see Fig. 2.9a. We note that p-robustness of a posteriori error estimation
is an important aspect which has been well analyzed in several recent contributions
[10, 14, 15, 20, 21].
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2.5 Implicit Reconstruction of the Potential

In this section we present a reconstruction ũhp in H 1(Ω), which is not explicitly
given, but allows for a computable estimation of uhp − ũhp in terms of the jumps of
uhp on the edges of Th (see Theorems 2.1 and 2.2). In fact, we can interpret uhp −
ũhp as the non-conformity of uhp �∈ H 1(Ω). The definition of ũhp is based on an
element-wise lifting of the average of uhp restricted to the element edges. Here, the
lifting is the solution of a Poisson equation with some adapted Dirichlet boundary
conditions which ensure the continuity of the reconstruction. Although, this lifting
is unknown, we can use it to derive a posteriori error estimates. In Sect. 2.6 we
present some a posteriori error estimates based on this reconstruction, where an
explicit evaluation of the reconstruction is not needed (in contrast to the estimates
of Sect. 2.4).

We construct ũhp in three steps: First, we separate the lowest order (vertex)
contributions and, second, apply an element-wise lifting of the average of the
smoother remainder from the element boundary to the interior of the element.
Third, we add a well-known low-order averaging. For simplicity, we assume that
uD,hp ∈ Vhp|ΓD ∩C0(ΓD) and assume that Th does not contain hanging nodes. We
refer to Remark 2.3 for extensions with respect to meshes with hanging nodes.

Step One Let unh ∈ Vh,1 := {
v ∈ L2(Ω) | ∀T ∈ Th : v|T ∈ FFT (P1,1)

}
be

defined element by element such that unh|T is the (bi)-linear nodal interpolant of
uhp|T . Furthermore, define whp := uhp−unh and let {{v}} := (v|T +→e+ v|T −→e)/2
be the average of v on the edge e ∈ E i

h where T + and T − are the adjacent elements
of e. Here, it is not important which element T ∈ Th is T + or T −, as it only
effects the sign of the jump term in the non-conformity estimation (see below). For
e ∈ E D

h ∪ E N
h , we simply define {{v}} := v|e and set

ghp |e :=
{{{

whp

}}
, e ∈ E i

h ∪ E N
h

uD,hp − Ih,1(uD,hp), e ∈ E D
h ,

(2.10)

where Ih,1 is the globally continuous, piecewise linear interpolation operator defined
in the Dirichlet boundary vertices. Since whp is zero in each vertex, this is also true
for ghp , and, hence, (ghp −whp)|∂T ∈ H 1/2(∂T ).

Step Two On each element T ∈ Th, let w∗|T ∈ H 1(T ) be the unique solution of

−Δw∗ = −Δwhp in T , w∗ = ghp on ∂T . (2.11)

By construction of the Dirichlet data it holds w∗ ∈ H 1
uD,hp−Ih,1(uD,hp);ΓD

(Ω). It is
well known, that the dependence of the solution on the Dirichlet data is Lipschitz-
continuous. Hence, since ∂T is a closed curve, we obtain from the von Petersdorff
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inequality, c.f., e.g., [23, Lem. 1]:

|w∗ −whp|2H 1(T )
� ‖ghp −whp‖2

H 1/2(∂T )

�
∑
e∈ET

‖ghp − whp‖2
H̃ 1/2(e)

. (2.12)

Here, ET := {e ∈ Eh | e ⊂ ∂T } and

H̃ 1/2(e) := {v = v′|e | ∃ v′ ∈ H 1/2(∂T ), supp v′ ⊂ e}

with the norm ‖u‖H̃ 1/2(e) := ‖u0‖H 1/2(∂T ) where u0 is the extension of u onto ∂T

by zero.

Step Three In [27, Thm. 2.2 and Thm. 2.3] it is proven that there exists a ũnh ∈
Vh,1 ∩H 1(Ω) with ũnh|ΓD = Ih,1(uD,hp) such that

∑
T ∈Th

|ũnh − unh|2H 1(T )
�
∑

e∈E i
h

1

he

∥∥�unh�
∥∥2
L2(e)

+
∑

e∈ED
h

1

he
‖Ih,1(uD,hp)− unh‖2

L2(e)

(2.13)

provided that uD,hp = 0 and ΓN = ∅. For a non-vanishing uD,hp and ΓN �= ∅ this
assertion remains valid since the proof of [27, Thm. 2.2] can be verbatim transferred
with the small modification that in [27, Eq. (2.16)] the expansion coefficients of
Ih,1(uD,hp) need to be subtracted from the expansion coefficients of unh which are
associated to the Dirichlet nodes. To this end, we have to assume that h is sufficiently
small in order to prevent an interior edge having both endpoints on ΓN . The function
ũnh is uniquely given by its nodal values,

ũnh(q) :=
{
|Th(q)|−1∑

T ∈Th(q)
unh|T (q), if q ∈ N i

h ∪N N
h

uD,hp(q), if q ∈ N D
h

where Th(q) denotes the set of elements in Th which contain the vertex q . The
number |Th(q)| is the cardinality of Th(q). Furthermore, N D

h , N N
h , N i

h are the
vertices of Th on ΓD , ΓN and the interior of Ω . Finally, we set

ũhp := ũnh +w∗, (2.14)

which is in H 1(Ω) by construction.



2 Explicit and Implicit Reconstructions of the Potential 29

Lemma 2.1 There holds

∥∥�unh�
∥∥
L2(e)

� pe

∥∥�uhp�
∥∥
L2(e)

,

‖Ih,1(uD,hp)− unh‖L2(e) � pe

∥∥uD,hp − uhp
∥∥
L2(e)

.

Proof Let q1, q2 be the two endpoints of the edge e and v(s) := (�unh�((1− s)q1 +
sq2))

2 with s ∈ R. Note that v′′ ≥ 0. Applying the trapezoidal rule with some
ξ ∈ [0, 1] and an inverse polynomial estimate we have

∥∥�unh�
∥∥2
L2(e)

= he

2

(
�unh�(q1)

2 + �unh�(q2)
2
)
− h3

e

12
v′′(ξ)

≤ he

2

(
�uhp�(q1)

2 + �uhp�(q2)
2
)

≤ he‖�uhp�‖2
L∞(e)

� p2
e

∥∥�uhp�
∥∥2
L2(e)

.

The second assertion follows analogously. ��
Theorem 2.1 There holds

∑
T ∈Th

|uhp − ũhp|2H 1(T )
�
∑

e∈E i
h

p2
e

he

∥∥�uhp�
∥∥2
L2(e)

+
∑

e∈ED
h

p2
e

he

∥∥uD,hp − uhp
∥∥2
L2(e)

.

(2.15)

Proof Using (2.12), the triangle inequality, Young’s inequality and an inverse
polynomial estimate (with H̃ 1/2(e) as an interpolation space between L2(e) and
H 1

0 (e)) and applying Lemma 2.1 we obtain

|w∗ − whp|2H 1(T )

�
∑
e∈ET

‖ghp − whp‖2
H̃ 1/2(e)

=
∑

e∈ET ∩E i
h

1

4

∥∥�uhp − unh�
∥∥2
H̃ 1/2(e)

+
∑

e∈ET ∩ED
h

‖uD,hp − uhp − Ih,1(uD,hp)+ unh‖2
H̃ 1/2(e)

≤
∑

e∈ET ∩E i
h

1

2

∥∥�uhp�
∥∥2
H̃ 1/2(e)

+ 1

2

∥∥�unh�
∥∥2
H̃ 1/2(e)

+
∑

e∈ET ∩ED
h

2‖uD,hp − uhp‖2
H̃ 1/2(e)

+ 2‖Ih,1(uD,hp)− unh‖2
H̃ 1/2(e)
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�
∑

e∈∂T∩E i
h

p2
e

he

∥∥�uhp�
∥∥2
L2(e)

+ 1

he

∥∥�unh�
∥∥2
L2(e)

+
∑

e∈∂T∩ED
h

p2
e

he

‖uD,hp − uhp‖2
L2(e)

+ 1

he

‖Ih,1(uD,hp)− unh‖2
L2(e)

�
∑

e∈∂T∩E i
h

p2
e

he

∥∥�uhp�
∥∥2
L2(e)

+
∑

e∈∂T∩ED
h

p2
e

he

‖uD,hp − uhp‖2
L2(e)

. (2.16)

Summing over all elements yields

∑
T ∈Th

|w∗ −whp|2H 1(T )
�
∑

e∈E i
h

p2
e

he

∥∥�uhp�
∥∥2
L2(e)

+
∑

e∈E D
h

p2
e

he
‖uD,hp − uhp‖2

L2(e)
.

(2.17)

From (2.13) and Lemma 2.1 we conclude

∑
T ∈Th

|ũnh − unh|2H 1(T )
�
∑

e∈E i
h

p2
e

he

∥∥�uhp�
∥∥2
L2(e)

+
∑

e∈E D
h

p2
e

he
‖uD,hp − uhp‖2

L2(e)
.

Exploiting ũhp|ΓD = Ih,1(uD,hp)+ uD,hp − Ih,1(uD,hp) we eventually have

∑
T ∈Th

|ũhp − uhp|2H 1(T )
=
∑
T ∈Th

|ũnh + w∗ − uhp − unh + unh|2H 1(T )

≤ 2
∑
T∈Th

|w∗ −whp |2H 1(T )
+ |ũnh − unh|2H 1(T )

�
∑

e∈E i
h

p2
e

he

∥∥�uhp�
∥∥2
L2(e)

+
∑

e∈E D
h

p2
e

he
‖uD,hp − uhp‖2

L2(e)
.

��
Theorem 2.2 There holds

∑
T ∈Th

‖uhp − ũhp‖2
H 1(T )

�
∑

e∈E i
h

p2
e

he

∥∥�uhp�
∥∥2
L2(e)

+
∑

e∈E D
h

p2
e

he

∥∥uD,hp − uhp
∥∥2
L2(e)

.
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Proof By the Poincaré-Friedrichs inequality, e.g. [11, p. 135], it holds

‖uhp − ũhp‖2
H 1(T )

�
∣∣∣∣
∫

∂T
uhp − ũhp ds

∣∣∣∣
2
+ |uhp − ũhp|2H 1(T )

=
∣∣∣∣
∫

∂T
w∗ − uhp + unh + ũnh − unh ds

∣∣∣∣
2
+ |uhp − ũhp|2H 1(T )

�
∣∣∣∣
∫

∂T
w∗ − uhp + unh ds

∣∣∣∣
2
+
∣∣∣∣
∫

∂T
ũnh − unh ds

∣∣∣∣
2
+ |uhp − ũhp|2H 1(T )

.

(2.18)

Applying Cauchy-Schwarz inequality and Lemma 2.1, we obtain

∣∣∣∣
∫

∂T

w∗ − uhp + unh ds

∣∣∣∣

=

∣∣∣∣∣∣∣
∑

e∈ET ∩E i
h

∫

e

�uhp�− �unh� ds +
∑

e∈∂T∩ED
h

∫

e

uD,hp − uhp − Ih,1(uD,hp)+ unh ds

∣∣∣∣∣∣∣

≤
∑

e∈ET ∩E i
h

h
1/2
e

(‖�uhp�‖L2(e) + ‖�unh�‖L2(e)

)

+
∑

e∈ET ∩ED
h

h
1/2
e

(‖uD,hp − uhp‖L2(e) + ‖Ih,1(uD,hp)− unh‖L2(e)

)

�
∑

e∈ET ∩E i
h

pe‖�uhp�‖L2(e) +
∑

e∈ET ∩ED
h

pe‖uD,hp − uhp‖L2(e),

where we exploit that he is trivially bounded from above by the diameter of Ω . Let
Ne be the set of the two end points of the edge e. Applying the trapezoidal rule and
an inverse polynomial estimate we get

∣∣∣∣
∫

∂T
ũnh − unh|T ds

∣∣∣∣

≤
∑

e∈ET

he

2

∑

q∈Ne

|(ũnh − unh|T )(q)|

=
∑

e∈ET

he

2

∑

q∈Ne

1

|Th(q)|

⎛
⎜⎝

∑

ẽ∈Eq∩E i
h

|�uhp�|ẽ(q)| +
∑

ẽ∈Eq∩E D
h

|(uD,hp − uhp)|ẽ(q)|
⎞
⎟⎠
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≤
∑

e∈ET

he

2

∑

q∈Ne

1

|Th(q)|

⎛
⎜⎝

∑

ẽ∈Eq∩E i
h

‖�uhp�‖L∞(ẽ) +
∑

ẽ∈Eq∩ED
h

‖uD,hp − uhp‖L∞(ẽ)

⎞
⎟⎠

�
∑

e∈ET

∑

q∈Ne

⎛
⎜⎝

∑

ẽ∈Eq∩E i
h

pẽ

h
1/2
ẽ

‖�uhp�‖L2(ẽ) +
∑

ẽ∈Eq∩E D
h

pẽ

h
1/2
ẽ

‖uD,hp − uhp‖L2(ẽ)

⎞
⎟⎠ .

Using Young’s inequality we have

∑
T ∈Th

∣∣∣∣
∫

∂T

uhp − ũhp ds

∣∣∣∣
2

�
∑

e∈E i
h

p2
e

he

∥∥�uhp�
∥∥2
L2(e)

+
∑

e∈ED
h

p2
e

he

∥∥uD,hp − uhp
∥∥2
L2(e)

.

Inserting this estimate into (2.18) and applying Theorem 2.1 yield the assertion. ��
The existence of a reconstruction with the same estimate as stated in Theorem 2.1

can be found in [25, Prop. 5.2] for uD,hp = 0 and ΓN = ∅. The advantage of this
approach consists in the use of (2.11) to approximate the higher order contributions
of uhp . This seems to be a general technique: As long as a low order approximation
operator (such as given in (2.13)) is known, it is possible to carry over this approach
for the reconstruction in higher Sobolev spaces (for instance, H 2(Ω) as also done
in [6]).

Remark 2.1 One may ask for an extension of the reconstruction to three dimen-
sions. However, this may be difficult since an appropriate definition of ghp in (2.10)
on edges and faces to define some proper Dirichlet conditions in (2.11) is not straight
forward.

Remark 2.2 We emphasize that the reconstruction of the potential as introduced
above enables the use of variable polynomial degrees. The application of a classical
averaging is not obvious for such polynomial degree distributions. For instance, the
averaging proposed in [27] is defined for a fixed uniform polynomial degree. More-
over, the dependency of the polynomial degree on the constant of its error estimation
is not explicitly given. We refer to [19] for a further potential reconstruction based
on an averaging, which also includes variable polynomial degrees.

Remark 2.3 The reconstruction is also valid for meshes with hanging nodes. In
this case one may simply use a virtual mesh T̃h resulting from additional local
refinements of all mesh elements responsible for hanging nodes such that all hanging
nodes of Th are resolved by these refinements. Note that new hanging nodes on
former regular edges or in the interior of former elements can occur, but in these
points the discrete uhp is continuous in the tangential direction of the new edges
by construction. Thus the old hanging nodes are resolved and the new ones do not
effect uhp. The virtual mesh defines new sets Ẽ i

h , Ẽ D
h and Ẽ N

h of interior edges
and of edges on ΓD and ΓN . The reconstruction is modified in the following way:
The functions unh, whp and ghp are determined with respect to T̃h, Ẽ i

h , Ẽ D
h and
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Ẽ N
h , respectively, whereas w∗ in (2.11) is still defined on the original mesh Th.

Applying the average operator introduced in [27, Thm. 2.3] (for hanging nodes) to
unh, we again define the reconstruction as in (2.14). The estimations of |w∗−whp|21,T
in (2.12) and (2.16) and of the jump ‖�unh�‖L2(e) in Lemma 2.1 can be done in the

same way as before, but with the edges of the virtual mesh T̃h. Summing over the
original mesh Th in (2.17) gives an estimation with respect to the edges in Ẽ i

h and

Ẽ D
h . Under the additional assumption that the number of hanging nodes per edge

is limited the length of theses edges can uniformly be estimated by the length of
the edges of E i

h and E D
h , which gives the same estimation as in (2.17). This and the

estimation for the average operator finally yields exactly the same error estimation
as in Theorem 2.1.

The assumption that the number of hanging nodes has to be limited seems to be
unavoidable in the argumentation above. We refer to [20, 22] for the derivation of p-
robust a posteriori error estimates based on a flux reconstruction, where a completely
arbitrary number of levels of hanging nodes is allowed.

2.6 A Posteriori Error Estimates Based on the Implicit
Reconstruction

In the following we present an a posteriori error estimate based on the implicit
reconstruction as introduced in Sect. 2.5. Instead of estimating the error of the flux
in the L2-norm (as in Sect. 2.4), we consider the error in the mesh dependent norm

|v|21,hp :=
∑
T ∈Th

|v|2
H 1(T )

+
∑

e∈E i
h∪ED

h

p2
e

he

∥∥�v�∥∥2
L2(e)

(2.19)

which is well-known in the context of hp-discontinuous Galerkin methods, see, e.g.,
[25, 26, 31]. Obviously, there holds |v|1,hp = |v|H 1(Ω) for all v ∈ H 1

0;ΓD
(Ω). The

norm (2.19) is well-defined even for v ∈ ∏T ∈Th
H 1(T ) ⊇ H 1(Ω). We refer to [9,

p. 2434] for some a priori error estimates with respect to this norm in the case of the
h-version with uD = 0 and ΓN = ∅.

The residual based a posteriori error estimate for the discrete mixed variational
equation (2.3) is stated in (2.21) and (2.23). It consists of the following local error
contributions

η2
T ,1 :=

h2
T

p2
T

‖fhp + div σhp‖2
L2(T )

, T ∈ Th, (2.20a)

η2
T ,2 := ‖σhp −∇uhp‖2

L2(T )
, T ∈ Th, (2.20b)
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η2
e,1 :=

p2
e

he

∥∥�uhp�
∥∥2
L2(e)

, e ∈ E i
h, (2.20c)

η2
e,2 :=

p2
e

he

∥∥uD,hp − uhp
∥∥2
L2(e)

, e ∈ E D
h , (2.20d)

where fhp ∈ Vhp is a (suitable) piecewise polynomial approximation of f . The
error contributions may be interpreted as internal residuals ηT ,1, the error with
respect to the flux ηT ,2, the lack of H 1(Ω)-conformity ηe,1 and the violation of the
(weak) Dirichlet data ηe,2. Volume, Dirichlet and Neumann data oscillation terms
are defined as

osc2
Th

:=
∑
T ∈Th

h2
T

p2
T

‖f − fhp‖2
L2(T )

, osc2
D := ‖uD − uD,hp‖2

H 1/2(ΓD)
,

osc2
E D
h

:=
∑

e∈ED
h

p2
e

he
‖uD − uD,hp‖2

L2(e)
, osc2

N := ‖uN − uN,hp‖2
H−1/2(ΓN)

.

The H−1/2(ΓN) and H 1/2(ΓD)-norms may be realized via the single layer potential
and hypersingular operator (in conjunction with the identity operator) for the Pois-
son equation known from boundary element methods, see, e.g., [35]. Alternatively,
assuming uD ∈ H 1(ΓD), uN ∈ L2(ΓN) and uN,hp as the L2(ΓN)-projection of uN
onto Vhp|ΓN , we have

osc2
D � ‖uD − uD,hp‖H 1(ΓD)‖uD − uD,hp‖L2(ΓD),

osc2
N �

∑

e∈E N
h

he

pe
‖uN − uN,hp‖2

L2(e)
.

With

η2 :=
∑
T ∈Th

(
η2
T ,1 + η2

T ,2

)
+
∑

e∈E i
h

η2
e,1 +

∑

e∈ED
h

η2
e,2,

osc2 := osc2
Th
+ osc2

D + osc2
Eh
+ osc2

N

there holds the reliable a posteriori error estimate

|u− uhp|21,hp + ‖σ − σhp‖2
L2(Ω)

� η2 + osc2 . (2.21)

Furthermore, one obtains guaranteed efficiency of the error contributions (2.20) by
applying standard arguments with the typical loss in the p-scaling in (2.22a):

ηT ,1 �ε pT ‖σ − σhp‖L2(T ) + p
1/2+ε
T

hT

pT

‖f − fhp‖L2(T ), (2.22a)

ηT ,2 ≤ ‖σhp − σ‖L2(T ) + |u− uhp|H 1(T ), (2.22b)
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ηe,1 = pe√
he

∥∥�u− uhp�
∥∥
L2(e)

, (2.22c)

ηe,2 ≤ pe√
he

∥∥u− uhp
∥∥
L2(e)

+ pe√
he

∥∥uD − uD,hp

∥∥
L2(e)

(2.22d)

with an arbitrary ε > 0. Note that (2.22b)–(2.22d) are h- and p-robust by the
definition of the norm in (2.19). Eventually, we have

∑
T ∈Th

(
η2
T ,1 + η2

T ,2

)
+
∑

e∈E i
h

η2
e,1 +

∑

e∈ED
h

η2
e,2

�
∑
T ∈Th

p2
T ‖σ − σhp‖2

L2(T )
+ |u− uhp|21,hp + p1+2ε

T osc2
Th
+ osc2

ED
h

. (2.23)

The proof of (2.21) and (2.22) as well as the specific application of the implicit
reconstruction can be found in [7].

As in Sect. 2.4, we consider the Poisson model problem on the L-shape domain
Ω := (−1, 1)2\([0, 1) × (−1, 0]) with the solution u := r2/3 sin(2θ/3). As we
can see in Fig. 2.4a, the use of h-adaptive refinements (based on Dörfler-marking)
recovers the optimal algebraic convergence order O(N−1/2) for p = 1, O(N−1)

for p = 2 and O(N−3/2) for p = 3. Here, the error (e2
u,hp + e2

σ )
1/2 with

eu,hp := |u − uhp|1,hp is plotted. Moreover, hp-adaptive refinements (based on
Legendre polynomial expansion) lead to an optimal exponential convergence order
O(exp(−biN

1/3)) with some slope bi > 0, see Fig. 2.5a and Table 2.1, and are again
characterized by the typical hp-refinement patterns with low polynomial degrees
near to the reentrant corner (pT = 1 at the reentrant corner), see Fig. 2.5b. As in
Sect. 2.4, the use of hp-adaptivity based a posteriori error estimates is superior to
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1/2 on y-axis in logarithmic scaling. (b) Efficiency indices (e2
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e2
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Fig. 2.5 (a) (e2
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1/2 on y-axis in logarithmic scaling, (b) hp-adaptive mesh with zoom

towards the reentrant corner and polynomial degrees marked by some colors

the use of the hp-geometric refinements, see Fig. 2.5a and Table 2.1, where Ci ,
bi , C̃gand b̃g are computed with respect to ek := (e2

u,hp + e2
σ )

1/2. The efficiency

indices defined as (e2
u,hp + e2

σ )
1/2/ηi with estimated error ηi are nearly constant

1 and, thus, very robust even for the hp-adaptive scheme, see Fig. 2.4b. We note
that this observation and, in particular, the gap between the observed and proven
efficiency indices could be an interesting follow up research question.

2.7 Comparison of the Explicit and Implicit Reconstruction
Approaches

The numerical results of Sects. 2.4 and 2.6 are very similar. We obtain optimal
algebraic and exponential convergence, if adaptivity is applied, as well as nearly
constant efficiency indices. In the case of the implicit reconstruction the efficiency
indices are even nearly 1.The numerical results are particularly confirmed if uniform
and hp-geometric refinements are applied (i.e. meshes, which are not generated
by refinements based on a posteriori error estimates). In Figs. 2.6a and 2.9a the
efficiency indices eσ /ηe and (e2

u,hp + e2
σ )

1/2/ηi for uniform and hp-geometric
refinements are plotted. In particular, Fig. 2.6b shows the efficiency indices for h-
uniform mesh refinements with multilevel hanging nodes of order 5, where an initial
mesh as shown in Fig. 2.1a is used. These results show that both reconstruction
approaches can be applied in the presence of hanging nodes. Figure 2.7a and b
shows the errors eu := ‖u− uhp‖L2(Ω), eσ and eu,hp for uniform and hp-geometric
refinements. We see that eu is of higher order, which can be expected. Moreover, it
seems to be important to determine the efficiency indices with both errors eσ and
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Fig. 2.6 Efficiency indices eσ /ηe (explicit) and (e2
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refinements and polynomial degree p = 1, 2, 3: (a) without hanging nodes, (b) with multilevel
hanging nodes of order 5
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Fig. 2.7 Errors eu, eσ and eu,hp : (a) uniform refinements, (b) hp-geometric refinements

eu,hp in the case of the implicit reconstruction as they are of the same magnitude
and order. A certain advantage of the use of the implicit reconstruction in error
control may be seen in Figs. 2.8a, b and 2.9b, where the CPU times (in seconds)
needed for the computations are depicted. We used a matlab implementation on a
compute-server with 4x Intel Xeon Gold 6144 8C, 3.50 GHz and 1.5TB memory.
As we can see in the figures, the additional computations of local solutions needed
for the explicit reconstruction and the evaluation of the estimation based on this
approach lead to a certain computational amount. If uniform polynomial degrees
and a mesh without hanging nodes are assumed, this amount is comparable to
the computational amount which is required for the estimation resulting from the
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Fig. 2.8 CPU time for uniform mesh refinements: (a) without hanging nodes, (b) with multilevel
hanging nodes of order 5
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implicit reconstruction, see Fig. 2.8a. In contrast, if multilevel hanging nodes occur
(as depicted in Fig. 2.1a), the explicit reconstruction seems to take essentially
more computational time due to the complicated connectivity of the degrees of
freedom, see Fig. 2.8b. Comparing Fig. 2.8a and b, we observe that the presence of
hanging nodes has no effect on the computational time needed for the estimation
based on the implicit reconstruction. In Fig. 2.9b several computational times
resulting from the assembling and solution process, grid management as well
as error evaluation are depicted, where hp-geometric refinements are used. We
observe that the computational time for the solution of the local problems of the
explicit reconstruction seems to dominate even the finite element computations for
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assembling and solution, which may also be traced back to the resolving of the
involved hanging nodes in this example. The computational time resulting from the
implicit reconstruction does not dominate the assembling and solution process.
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Chapter 3
Two Stabilized Three-Field Formulations
for the Biharmonic Problem

Lothar Banz, Jan Petsche, and Andreas Schröder

Abstract We consider two three-field formulations for the biharmonic equation.
Both consist of the potential u, the flux σ and a Lagrange multiplier to weakly
enforce σ = ∇u. They differ in their bilinear form and in the regularity requirement
of σ , and thus exhibit different numerical behaviors. We propose a stabilization of
the discrete mixed formulations to allow for independent discretizations of the three
variables and, thus, even the use of the same mesh and same polynomial degree
for all variables. We derive a priori error estimates which are explicitly given in
h and p. Several numerical experiments demonstrate the behavior of the methods
and underline our theoretical results. In particular, for uniform mesh refinements we
obtain optimal algebraic convergence and for uniform p-refinements exponential
convergence, provided that the solutions are sufficiently smooth.

3.1 Introduction

Thin beams and plates, strain gradient elasticity [10, 15], the Stokes problem [16]
and the phase separation of a binary mixture [23] are all modeled by fourth order
problems of which the biharmonic problem is the most prominent model problem.
A standard variational formulation of such a fourth order problem requires H 2-
test and -trial spaces, and its conforming finite element discretization requires the
implementation of globally C1-continuous basis functions. With Argyris elements
and Bogner-Fox-Schmit elements such basis functions are known, but they are far
from being easy to implement, in particular in the presence of hanging nodes and
varying polynomial degrees. As hanging nodes and varying polynomial degrees
appear naturally in adaptive methods, two general strategies to deal with that
challenge have attracted a lot of interest. The first strategy is a discontinuous
Galerkin method as proposed in [2, 8, 13, 15, 21, 23] in which the non-conformity is
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handled, for example, by an interior penalty approach. The second strategy is the use
of a mixed method, where typically the flux σ = ∇u of the potential u is introduced
as a new variable, which relaxes the regularity requirements of the potential u, see
e.g. [1, 4, 9–12, 17–19]. There are many ways to enforce the constraint σ = ∇u.
One way is to enforce it weakly by a Lagrange multiplier which leads to a three-field
formulation of the biharmonic equation [4], a strategy we adopt here as well.

A certain drawback of a mixed method is that an inf-sup condition must be
satisfied on the discrete level, i.e. the dual space for the Lagrange multiplier needs to
be sufficiently small (while keeping appropriate approximation properties). For h-
methods this can be guaranteed by coarsening the mesh size for the dual space,
with the obvious disadvantage that one has to work with at least two meshes
simultaneously. In the mixed method of [4] the potential u does not appear in
the (leading) bilinear form and is only controlled via the constraint σ = ∇u.
Consequently, the dual space needs to be sufficiently large to enable a good enough
approximation of u, and to be sufficiently small for guaranteeing the discrete inf-
sup condition at the same time. It might be difficult to find a good balance between
these competing requirements, in particular, for hp-methods. In [4] such a balance
was found for the lowest order h-version. Alternatively, the mixed problem can be
stabilized as in e.g. [3, 5, 6], dating back to [7], to circumvent the discrete inf-sup
condition, which allows for the discrete dual space to be arbitrarily large.

In this paper, we propose and compare two stabilized methods, which both
enable the use of the same mesh and the same polynomial degree for all three
variables. The two corresponding weak three-field mixed formulations rely on two
different integration by parts formulas. The first formulation (3.4) has minimal
regularity requirements on the flux σ whereas the second formulation (3.7) has
better numerical properties. As the two weak formulations use the same Lagrange
multiplier space and the same bilinear form to couple the three variables, we use
the same stabilization technique for both of them. A priori and a posteriori error
analysis for the stabilized second formulation were carried out by us in [6]. These
results are cited here for the comparison of the stabilized second formulation with
the stabilized first formulation. The latter is analyzed in this paper in more detail.

The rest of the paper is structured as follows: In Sect. 3.2 we formally introduce
the two three-field mixed formulations, as well as their discretization and stabiliza-
tion. Section 3.3 is devoted to the a priori error estimates, which concludes with
guaranteed convergence rates under some regularity assumptions, see Theorem 3.2.
Numerical experiments underline our theoretical findings and enable the compari-
son of the two formulations. They are discussed in Sect. 3.4.

Notations Beside the standard notations we use the Sobolev spaces H 1
0 (Ω) :=

{v ∈ H 1(Ω) | v|∂Ω = 0}, its dual H−1(Ω) := (
H 1

0 (Ω)
)∗

, H 2
0 (Ω) :={

v ∈ H 2(Ω) | v|∂Ω = 0, ∇v|∂Ω = 0} and H0(div,Ω) := {τ ∈ L2(Ω) | div τ ∈
L2(Ω), τ · n = 0on ∂Ω

}
. Here and in the following a quantity in bold font

stands for a vector-valued quantity. Often the generic constant C(d) > 0, which
is independent of the discretization but potentially dependent on d , is expressed by
using the inequality sign �d , i.e. a �d b :⇔ a ≤ C(d)b.
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3.2 Two Three-Field Formulations and Their Stabilized
Discretizations

Let Ω ⊂ R
2 be a bounded polygonal domain with boundary ∂Ω and outer

unit normal n. We denote the normal derivative by ∂nv := ∂v/∂n and consider
the biharmonic equation (3.1) with homogeneous Dirichlet boundary conditions,
i.e. u = ∂nu = 0 on ∂Ω and, thus, ∇u = 0 on ∂Ω : Find u ∈ H 2

0 (Ω) such that

�2u = f in Ω (3.1)

for a given f ∈ H−1(Ω). The higher smoothness of f is needed for the mixed
methods below. There exist two different integration by parts formulas. The first
one

∫

Ω

�2uv dx =
∫

Ω

�u�v dx ∀u, v ∈ H 2
0 (Ω) (3.2)

is obtained by applying the divergence theorem twice. The second one

∫

Ω

�2uv dx =
∫

Ω

∇∇u : ∇∇v dx ∀u, v ∈ H 2
0 (Ω) , (3.3)

with ∇∇u : ∇∇v =∑2
i,j=1 ∂

2u/(∂xi∂xj )·∂2v/(∂xi∂xj ) is obtained by integration
by parts, rearranging the order of derivatives and integration by parts again, see
e.g. [6] for the intermediate steps. These two integration by parts formulas lead
to two different weak formulations with different bilinear forms. However, both
formulations still suffer from the use of H 2

0 (Ω)-test and -trial functions. We
follow here the strategy recently introduced in [4] to reduce the differentiability
requirements by introducing the flux σ = ∇u as a new variable and by weakly
enforcing the constraint σ = ∇u with a Lagrange multiplier φ. Using (3.2), this
leads to the first mixed formulation: Find (u, σ ,φ) ∈ H 1

0 (Ω) × H0(div,Ω) ×M
such that

∫

Ω

div σ div τ dx + b(φ; v, τ ) =
∫

Ω

f v dx (3.4a)

b(ψ; u, σ ) = 0 (3.4b)

for all (v, τ ,ψ) ∈ H 1
0 (Ω)×H0(div,Ω)×M. Here,

b(ψ; v, τ ) :=
∫

Ω

ψ · (τ −∇v) dx (3.5)

results from the duality pairing of ψ with τ and ∇v, respectively. The Lagrange
multiplier space M := {

ψ ∈ H−1(Ω) | ‖ψ‖M < ∞} is equipped with its natural
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(semi-) norms

‖ψ‖2
M := ‖ψ‖2

H−1(Ω)
+|ψ|2H−1(Ω)

, |ψ|H−1(Ω) := sup
v∈H 1

0 (Ω), ‖v‖
H1(Ω)

=1

∫

Ω

ψ ·∇v dx . (3.6)

Note that |ψ |H−1(Ω) = ‖ div ψ‖H−1(Ω). The use of the second integration by parts
formula (3.3) instead of (3.2) yields the second mixed formulation: Find (u, σ ,φ) ∈
H 1

0 (Ω)×H1
0(Ω)×M such that

∫

Ω

∇σ : ∇τ dx + b(φ; v, τ ) =
∫

Ω

f v dx (3.7a)

b(ψ; u, σ ) = 0 (3.7b)

for all (v, τ ,ψ) ∈ H 1
0 (Ω) × H1

0(Ω) ×M. We refer to [4, 6] for a derivation and
analysis of these two mixed formulations and summarize the following properties:

Lemma 3.1

1. There holds L2(Ω) ⊆M.
2. The inf-sup condition is satisfied, i.e. for all ψ ∈M there holds

sup
0 �=(v,τ)∈H 1

0 (Ω)×H0(div,Ω)

b(ψ; v, τ )(
‖v‖2

H 1(Ω)
+ ‖τ‖2

H(div,Ω)

)1/2 ≥ 2−1‖ψ‖M , (3.8)

sup
0 �=(v,τ)∈H 1

0 (Ω)×H1
0(Ω)

b(ψ; v, τ )(
‖v‖2

H 1(Ω)
+ ‖τ‖2

H1(Ω)

)1/2 ≥ 2−1‖ψ‖M . (3.9)

3. The bilinear forms
∫
Ω

div σ div τ dx and
∫
Ω
∇σ : ∇τ dx are coercive on their

associated kernel spaces.
4. The mixed problems (3.4) and (3.7) have a unique solution with σ = ∇u and

φ = ∇(div σ ) = ∇(�u).

We note that there is an interesting challenge in discretizing (3.4) and (3.7).
On the one hand, the discrete Lagrange multiplier space needs to be sufficiently
small (while keeping good approximation properties) to satisfy the discrete inf-
sup condition. On the other hand it needs to be sufficiently large as u is only
controlled via the constraining equations (3.4b) and (3.7b), respectively. We resolve
this conflict by stabilizing the discrete problems, which allows the discrete Lagrange
multiplier space to be arbitrarily large. First, we stabilize the bilinear forms to ensure
positive definiteness independent of the discrete kernel space, i.e.

a1(u, σ ; v, τ ) :=
∫

Ω

div σ div τ dx +
∫

Ω

(σ −∇u) · (τ −∇v) dx , (3.10)

a2(u, σ ; v, τ ) :=
∫

Ω

∇σ : ∇τ dx +
∫

Ω

(σ −∇u) · (τ −∇v) dx . (3.11)
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Second, we introduce stabilizing terms to circumvent the discrete inf-sup condi-
tion, i.e.

cγ (σ ,φ; τ ) :=
∫

Ω

γ (φ −∇h div σ ) · ∇h div τ dx , (3.12)

dγ (σ ,φ;ψ) :=
∫

Ω

γ ψ · (φ −∇h div σ ) dx , (3.13)

where γ is a piecewise constant function with γ |T := γ h2
T p

−4
T for T ∈ Th

and a sufficiently small γ ∈ R>0 (see Lemma 3.2). Here ∇h is the elementwise
gradient operator on Th. In the following, Th and Tk are two independent, locally
quasi-uniform triangulations of Ω into quadrilaterals with diameters {hT }T∈Th

,
{kT }T ∈Tk

, and {pT }T ∈Th
, {qT }T ∈Tk

are polynomial degree distributions on Th and
Tk , respectively. The mapping FT : T̂ → T is the bijective, bilinear coordinate
transformation from the reference element T̂ = (−1, 1)2 to the element T ∈ Th

and FT : H 1(T̂ ) → H 1(T ), PT : H(div, T̂ ) → H(div, T ) are the standard
pullback, contravariant Piolatransformation of FT , respectively, i.e.

FT (v̂) := v̂ ◦ F−1
T , PT (τ̂ ) := J−1

FT
DFT τ̂ ◦ F−1

T (3.14)

with the Jacobian DFT of FT and its determinant JFT . We use the conforming finite
element spaces

Vhp :=
{
v ∈ H 1

0 (Ω) | ∀ T ∈ Th : v|T ∈ FT (PpT+d )
}

(3.15)

W1
hp :=

{
τ ∈ H0(div,Ω) | ∀ T ∈ Th : τ |T ∈ PT (RTpT )

}
(3.16)

W2
hp :=

{
τ ∈ H1

0(Ω) | ∀ T ∈ Th : τ |T ∈ [FT (PpT )]2
}

(3.17)

Mkq :=
{
ψ ∈ L2(Ω) | ∀ T ∈ Tk : ψ |T ∈ [FT (PqT )]2

}
(3.18)

with an offset d ∈ N0, polynomial space Pk,l := span
{
xiyj | 0 ≤ i≤k, 0≤j≤l

}
and RTk,l := Pk+1,l × Pk,l+1. Thus, the two stabilized discrete mixed formulations
are: Find (uhp, σ hp,φkq) ∈ Vhp ×Wi

hp ×Mkq , i = 1, 2, such that

ai(uhp, σ hp; vhp, τhp)+b(φkq; vhp, τhp)+cγ (σ hp,φkq; τhp) =
∫

Ω

f vhp dx

(3.19a)

b(ψkq; uhp, σ hp)− dγ (σ hp,φkq;ψkq) = 0 (3.19b)

for all (vhp, τhp,ψkq) ∈ Vhp ×Wi
hp ×Mkq .
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Lemma 3.2 If γ is sufficiently small, then a1(·, ·; ·, ·)+cγ (·, 0; ·) is positive definite
and a2(·, ·; ·, ·)+ cγ (·, 0; ·) is coercive.
Proof The coercivity of a2(·, ·; ·, ·) + cγ (·, 0; ·) is proven in [6]. An elementwise
polynomial inverse estimate yields

‖γ 1/2∇h div τhp‖2
L2(Ω)

≤ γ C‖ div τhp‖2
L2(Ω)

. (3.20)

Thus,

a1(vhp, τhp; vhp, τhp)−
∫

Ω

γ∇h div τhp · ∇h div τhp dx

≥ (1− γ C)‖ div τhp‖2
L2(Ω)

+ ‖τhp − ∇vhp‖2
L2(Ω)

≥ 0.

For γ sufficiently small the lower bound is non-negative. It is zero if and only if
div τhp = 0 and τhp −∇vhp = 0 almost everywhere. Hence,

∫

Ω

∇vhp∇vhp dx =
∫

Ω

τhp∇vhp dx = −
∫

Ω

div τhpvhp dx = 0 . (3.21)

From Poincaré-Friedrich’s inequality for vhp ∈ H 1
0 (Ω) we have vhp = 0 in this

case. We conclude a1(·, ·; ·, ·)+ cγ (·, 0; ·) = 0 if and only if (vhp, τhp) = 0. ��
Straightforward computations show that (3.19) is equivalent to the saddle point
problem

L (uhp, σ hp;ψkq) ≤ L (uhp, σ hp;φkq) ≤ L (vhp; τhp,φkq)

for all (vhp, τhp,ψkq) ∈ Vhp ×Wi
hp ×Mkq with

L (v, τ ;ψ) := 1

2
ai(v, τ ; v, τ )−

∫

Ω

f v dx + b(ψ; v, τ )

−1

2

∫

Ω

γ (ψ −∇h div τ ) · (ψ −∇h div τ ) dx .

As L (v, τ ;ψ) is strictly convex in (vhp, τhp) (see Lemma 3.2) and strictly concave
in ψkq as γ > 0 classical saddle point theory [14] yields:

Theorem 3.1 The stabilized discrete mixed problem (3.19) has a unique solution
(uhp, σ hp,φkq) ∈ Vhp ×Wi

hp ×Mkq for i = 1, 2 .
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3.3 A Priori Error Estimates

The a priori error analysis of this section avoids the use of a discrete inf-sup
condition. It relies on an alternative representation of the Lagrange multiplier error
in a scaled L2-norm. Based on that a statement similar to Céa-lemma can be derived,
Lemma 3.4, which can be exploited to get guaranteed convergence rates under
certain regularity assumptions, see Theorem 3.2.

Lemma 3.3 If φ ∈ L2(Ω), then there holds

‖γ 1/2(φ − φkq)‖2
L2(Ω)

=
∫

Ω

(φ−ψkq) · (σ hp −∇uhp − γ (φkq − ∇h div σ hp)) dx

+
∫

Ω

γ (φ − φkq) · (φ − ∇h div σ hp) dx

+b(φkq − φ; uhp − u, σ hp − σ )

for all ψkq ∈ Mkq .

Proof The proof is identical for i = 1 and i = 2 and is given in [6] for i = 2 . ��
Lemma 3.4 Let i = 1 and γ be sufficiently small. If φ ∈ L2(Ω), then there holds

‖ div(σ − σhp)‖2
L2(Ω)

+ ‖σhp − ∇uhp‖2
L2(Ω)

+ ‖hp−2(φ − φkq)‖2
L2(Ω)

�γ ‖ div(σ − τhp)‖2
L2(Ω)

+ ‖h−1p2(σ − τhp)‖2
L2(Ω)

+ ‖h−1p2∇(u− vhp)‖2
L2(Ω)

+‖φ − ψkq‖2
L2(Ω)

for all (vhp, τhp,ψkq) ∈ Vhp ×W1
hp ×Mkq .

Proof For the conforming discretization of i = 1 it holds that

∫

Ω

div(σ − σ hp) div τhp − (σ hp −∇uhp) · (τhp −∇vhp) dx

+b(φ − φkq; vhp, τhp)− cγ (σ hp,φkq; τhp) = 0

for all (vhp, τhp) ∈ Vhp×W1
hp . Choosing the test function as (uhp−vhp, σ hp−τhp)

in the previous equation and using Lemma 3.3 we obtain

‖ div(σ − σ hp)‖2
L2(Ω)

+ ‖σ hp − ∇uhp‖2
L2(Ω)

+ ‖γ 1/2(φ − φkq)‖2
L2(Ω)

=
∫

Ω

div(σ − σ hp) div(σ − τhp)+ (σ hp −∇uhp)(τhp −∇vhp) dx

+b(φ − φkq; uhp − vhp, σ hp − τhp)− cγ (σ hp,φkq; σhp − τhp)
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+‖γ 1/2(φ − φkq)‖2
L2(Ω)

=
∫

Ω

div(σ − σ hp) div(σ − τhp) dx

︸ ︷︷ ︸
I

+
∫

Ω

(σ hp −∇uhp)(τhp −∇vhp) dx

︸ ︷︷ ︸
II

+ b(φ − φkq; u− vhp, σ − τhp)︸ ︷︷ ︸
III

−cγ (σ hp,φkq; σ hp − τhp)+
∫

Ω

γ (φ − φkq)(φ −∇h div σ hp) dx

︸ ︷︷ ︸
IV

+
∫

Ω

(φ − ψkq)(σ hp −∇uhp − γ (φkq −∇h div σ hp)) dx

︸ ︷︷ ︸
V

.

For an arbitrarily ε > 0, Cauchy-Schwarz inequality and Young’s inequality yield

I ≤ ε‖ div(σ − σ hp)‖2
L2(Ω)

+ 1

4ε
‖ div(σ − τhp)‖2

L2(Ω)

and analogously with σ = ∇u there holds

II ≤ ε‖σ hp −∇uhp‖2
L2(Ω)

+ 1

4ε
‖τhp −∇vhp‖2

L2(Ω)

≤ ε‖σ hp −∇uhp‖2
L2(Ω)

+ 1

2ε

(
‖σ − τhp‖2

L2(Ω)
+ ‖∇(u− vhp)‖2

L2(Ω)

)
.

The estimates of III, IV and V are (almost literally) identical to [6, Proof of
Lem. 14], i.e.

III ≤ ε‖γ 1/2(φ − φkq)‖2
L2(Ω)

+ 1

2ε
‖γ−1/2(σ − τhp)‖2

L2(Ω)

+ 1

2ε
‖γ−1/2∇(u− vhp)‖2

L2(Ω)
,

IV ≤ ε‖γ 1/2(φ −∇h div σ hp)‖2
L2(Ω)

+ C γ

4ε
‖ div(σ hp − τhp)‖2

L2(Ω)

+ε‖γ 1/2(φ − φkq)‖2
L2(Ω)

+ 1

4ε
‖γ 1/2(φ − ∇h div τhp)‖2

L2(Ω)
,
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where C is the constant from the polynomial inverse estimate, and

V ≤ ε‖σ hp −∇uhp‖2
L2(Ω)

+ 1

4ε
‖φ − ψkq‖2

L2(Ω)
+ 1

4ε
‖γ 1/2(φ − ψkq)‖2

L2(Ω)

+2ε‖γ 1/2(φkq − φ)‖2
L2(Ω)

+ 2ε‖γ 1/2(φ −∇h div σ hp)‖2
L2(Ω)

.

It remains to estimate the terms

A := ‖γ 1/2(φ −∇h div τhp)‖2
L2(Ω)

, B := ‖γ 1/2(φ −∇h div σ hp)‖2
L2(Ω)

,

C := ‖ div(σ hp − τhp)‖2
L2(Ω)

.

From [6, Proof of Lem. 14] we obtain

A ≤ 2‖γ 1/2(φ − ψkq)‖2
L2(Ω)

+ 4C γ
∑
T ∈Th

‖ψkq − φ‖2
H−1(T )

+8C γ ‖ div(σ − τhp)‖2
L2(Ω)

,

B ≤ 2‖γ 1/2(φ − ψkq)‖2
L2(Ω)

+ 4C γ
∑
T ∈Th

‖ψkq − φ‖2
H−1(T )

+8C γ ‖ div(σ − σ hp)‖2
L2(Ω)

and

C ≤ 2‖ div(σ hp − σ )‖2
L2(Ω)

+ 2‖ div(σ − τhp)‖2
L2(Ω)

.

Combining all these estimates yields

(
1 − ε − C γ (24ε + 0.5ε−1)

)
‖ div(σ − σ hp)‖2

L2(Ω)
+ (1 − 2ε)‖σ hp − ∇uhp‖2

L2(Ω)

+(1 − 4ε)‖γ 1/2(φ − φkq )‖2
L2(Ω)

≤ 1 + 10C γ

4ε
‖ div(σ − τhp)‖2

L2(Ω)
+ 1

2ε
‖σ − τhp‖2

L2(Ω)

+ 1

2ε

(
‖γ−1/2(σ − τhp)‖2

L2(Ω)
+ ‖∇(u− vhp)‖2

L2(Ω)
+ ‖γ−1/2∇(u− vhp)‖2

L2(Ω)

)

+ 1

4ε
‖φ − ψkq‖2

L2(Ω)
+ (

3

4ε
+ 6ε)‖γ 1/2(φ − ψkq)‖2

L2(Ω)

+C γ (12ε + 1

ε
)
∑
T ∈Th

‖φ − ψkq‖2
H−1(T )

.
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Finally, choosing first ε and then γ sufficiently small so that Cε−1γ is also
sufficiently small and omitting the obviously dominated terms yield the assertion.

��
We refer to [6] for a corresponding statement in the case i = 2. With well known

interpolation operators [20, 22] we obtain the following guaranteed convergence
rates under some regularity assumption on u.

Theorem 3.2 Let γ be sufficiently small as in Lemma 3.4 and u ∈ Hs(Ω) for
s ≥ 3 . There holds for i = 1

‖ div(σ − σ hp)‖L2(Ω) + ‖σ hp −∇uhp‖L2(Ω) + ‖hp−2(φ − φkq)‖L2(Ω)

�γ

(
hmin{p,p+d−1,s−2}p−s+7/2 + kmin{q+1,s−3}q−s+3

)
‖u‖Hs(Ω)

and for i = 2

‖u− uhp‖H 1(Ω) + ‖σ − σ hp‖H1(Ω) + ‖hp−2(φ − φkq)‖L2(Ω)

�γ

(
hmin{p,p+d−1,s−2}p−s+3 + kmin{q+1,s−3}q−s+3

)
‖u‖Hs(Ω) .

Proof For i = 1 we estimate the terms on the right hand side of Lemma 3.4
individually. By standard interpolation results for H 1

0 (Ω), H0(div,Ω) and L2(Ω)

functions, see e.g. [20, 22], we obtain with σ = ∇u ∈ Hs−1(Ω) and φ = ∇�u ∈
Hs−3(Ω) that

‖ div(σ − τhp)‖L2(Ω) � hmin{p+1,s−2}p−s+2‖u‖Hs(Ω)

‖γ−1/2(σ − τhp)‖L2(Ω) � hmin{p,s−2}p−s+7/2‖u‖Hs(Ω)

‖γ−1/2∇(u− vhp)‖L2(Ω) � hmin{p+d−1,s−2}p−s+3‖u‖Hs(Ω)

‖φ − ψkq‖L2(Ω) � kmin{q+1,s−3}q−s+3‖u‖Hs(Ω) .

Omitting the dominated convergence rates yields the assertion for i = 1. The case
of i = 2 is proven in [6]. ��

Obviously, it is desirable to use the same mesh for the definition of Vhp, Wi
hp and

Mkq , i.e. h = k, and to choose d = 1 and p = q + 1. For this discretization, which,
in fact, does not satisfy the discrete inf-sup condition, we obtain the following
guaranteed convergence rates.

Corollary 3.1 Let γ be sufficiently small and u ∈ Hs(Ω) for s ≥ 3. If d = 1,
h = k and p = q + 1, then there holds for i = 1

‖ div(σ − σ hp)‖L2(Ω) + ‖σ hp −∇uhp‖L2(Ω) + ‖hp−2(φ − φkq)‖L2(Ω)

�γ hmin{p,s−3}p−s+7/2‖u‖Hs(Ω)
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and for i = 2

‖u− uhp‖H 1(Ω) + ‖σ − σ hp‖H1(Ω) + ‖hp−2(φ − φkq)‖L2(Ω)

�γ hmin{p,s−3}p−s+3‖u‖Hs(Ω) .

The convergence rates for the h-versions are optimal if the solution u is
sufficiently smooth. For a less smooth solution u ∈ Hs(Ω) with 2 ≤ s ≤ 3
Theorem 3.2 and Corollary 3.1 can not be applied in order to guarantee convergence
rates as φ might not be in L2(Ω). However, our computations in [6] for a typical
L-shaped problem show observable convergence anyway.

3.4 Numerical Results

Let Ω := [0, 1]2 and the data f be chosen such that

u(x, y) := [exp(x)+ (x + 1) exp(y)]x2y2(1 − x)2(1 − y)2

is the exact solution of (3.1). For all experiments we use the same mesh for uhp, σ hp

and φkq , i.e. h = k. The polynomial degrees for (uhp, σ hp,φkq) are (p + 1, p, p)
or (p + 1, p, p − 1), i.e. d = 1 and q = p or q = p− 1. The stabilization constant
is γ = 0.06 for i = 1 and γ = 0.2 for i = 2 which is slightly less than the maximal
allowed value for this constant. That upper bound can be computed by solving the
finite dimensional eigenvalue problem: Find (u∗hp, σ ∗hp) ∈ Vhp ×Wi

hp and λ∗hp ∈ R

such that

ai(u
∗
hp, σ

∗
hp; vhp, τhp) = λ∗hp

∑
T ∈Th

∫

T

h2
T p

−4
T ∇h div σ ∗hp · ∇h div τhp dx (3.22)

for all (vhp, τhp) ∈ Vhp × Wi
hp. From Lemma 3.2 it follows γ < minλ∗hp . Our

computations suggest that minλ∗hp is independent of h and p, i.e. the maximal
allowed amount of stabilization may be computed on the coarsest possible mesh.

Figures 3.1 and 3.2 display the reduction of the error

(
‖u− uhp‖2

H 1(Ω)
+ ‖σ − σ hp‖2

H1(Ω)
+ ‖hp−2(φ − φhq)‖2

L2(Ω)

)1/2
(3.23)

for i = 2, i.e. the discretization of H 1
0 (Ω)×H1

0(Ω)×M. Figures 3.3 and 3.4 display
the reduction of the error

(
‖u− uhp‖2

H 1(Ω)
+ ‖σ − σ hp‖2

H(div,Ω) + ‖hp−2(φ − φhq)‖2
L2(Ω)

)1/2
(3.24)
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Fig. 3.1 i = 2, (p + 1, p, p): Error (3.23) vs. degrees of freedom
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Fig. 3.2 i = 2, (p + 1, p, p − 1): Error (3.23) vs. degrees of freedom
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Fig. 3.3 i = 1 and (p + 1, p, p): Error (3.24) vs. degrees of freedom
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Fig. 3.4 i = 1, (p + 1, p, p − 1): Error (3.24) vs. degrees of freedom
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Table 3.1 Experimental order of convergence for uniform h-versions with p = 1, 2, 3, 4 for
i = 2

Type ‖u− uhp‖H 1(Ω) ‖σ − σ hp‖H1(Ω) ‖hp−2(φ − φhq)‖L2(Ω)

(p + 1, p, p) 1; 1.5; 2; 2.5 0.5; 1; 1.5; 2 0.75; 1; 1.5; 2

(p + 1, p, p − 1) 0.5; 1; 1.5; 2 0.5; 1; 1.5; 2 0.75; 1; 1.5; 2

Table 3.2 Experimental order of convergence for uniform h-versions with p = 1, 2, 3, 4 for
i = 1

Type ‖u− uhp‖H 1(Ω) ‖σ − σ hp‖H(div,Ω) ‖hp−2(φ − φhq)‖L2(Ω)

(p + 1, p, p) 1; 1.5; 2; 2.5 1; 1.5; 2; 2.5 1.5; 1.75; 2.4; 2.8

(p + 1, p, p − 1) 0.5; 1; 1.5; 2 0.5; 1; 1.5; 2 1; 1.5; 2; 2.5

for i = 1, i.e. the discretization of H 1
0 (Ω)×H0(div,Ω)×M.

In particular, Figs. 3.1 and 3.2 show that for i = 2 the uniform h-versions
with polynomial degrees (p + 1, p, p) and (p + 1, p, p − 1), p = 1, 2, 3, 4,
converge with an optimal algebraic rate of 1/2, 1, 3/2, 2, respectively. Moreover, the
uniform p-versions converge exponentially fast as the exact solution is analytic. The
convergence rates for the individual variables are stated in Table 3.1. Interestingly,
the error in uhp converges at an increased rate for the (p + 1, p, p) scheme.

Figures 3.3 and 3.4 show the same quantities as before but for i = 1. The
uniform h-versions with polynomial degrees (p + 1, p, p) converge with the rates
1, 3/2, 2, 5/2 which is half an order faster than for the (p + 1, p, p − 1) scheme.
Again the uniform p-versions converge exponentially fast. The convergence rates
for the individual variables are stated in Table 3.2. Interestingly, the error in φhp

converges at an increased rate.
Despite the fact that the convergence rates for ‖hp−2(φ− φhq)‖L2(Ω) are higher

than for uhp and σ hp in the case of i = 1, we observed that this Lagrange multiplier
φ is sensitive to changes in γ . In particular, we noticed that changes in γ , even to
10−13, does not effect the unique solvability, but with smaller γ it seems that φ starts
to exhibit increasingly checkerboard type oscillations. As the latter is a drawback
for the evaluation of an a posteriori error estimate and thus for adaptivity, we do
not favor the first method i = 1. The second method i = 2 is much more robust to
changes in γ and also to the introduction of hanging nodes, and we refer to [6] for
an a posteriori error estimate and corresponding adaptive computations.
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Chapter 4
Analysis of the hp-Version of a First
Order System Least Squares Method
for the Helmholtz Equation

Maximilian Bernkopf and Jens Markus Melenk

Abstract Extending the wavenumber-explicit analysis of Chen and Qiu (J Comput
Appl Math, 309:145–162, 2017), we analyze the L2-convergence of a least squares
method for the Helmholtz equation with wavenumber k. For domains with an
analytic boundary, we obtain improved rates in the mesh size h and the polynomial
degree p under the scale resolution condition that hk/p is sufficiently small and
p/ log k is sufficiently large.

4.1 Introduction

We consider the following Helmholtz problem:

−Δu− k2u = f in Ω,

∂nu− iku = g on ∂Ω,
(4.1)

where k ≥ k0 > 0 is real. For large k, the numerical solution of (4.1) is
challenging due to the requirement to resolve the oscillatory nature of the solution.
A second challenge arises in classical, H 1-conforming discretizations of (4.1) from
the fact that the Galerkin method is not an energy projection, and a meaningful
approximation is only obtained under more stringent conditions on the mesh size h

and the polynomial degree p than purely approximation theoretical considerations
suggest. This shortcoming has been analyzed in the literature. In particular, as
discussed in more detail in [6, 20], the analyses [1, 6, 11–13, 19, 20] show that
high order methods are much better suited for the high-frequency case of large k

than low order methods. Alternatives to the classical Galerkin methods that are still
based on high order methods include stabilized methods for Helmholtz [8–10, 28],
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hybridizable methods [4], least-squares type methods [3, 15] and Discontinuous
Petrov Galerkin methods, [5, 24]. An attractive feature of least squares type methods
is that the resulting linear system is always solvable and that they feature quasi-
optimality, albeit in some nonstandard residual norms. In the present paper, we show
for the least squares method (4.4) an a priori estimate in the more tractable L2(Ω)-
norm under the scale resolution condition (4.35). For that, we closely follow [3].
Our key refinement over [3] is an improved regularity estimate for the solution of a
suitable dual problem (cf. Lemma 4.1 vs. [3, Lemma 5.1]) that allows us to establish
the improved p-dependence in the L2(Ω)-error estimate (cf. Theorem 4.4 vs. [3,
Thm. 2.5]). As a tool, which is of independent interest, we develop approximation
operators in Raviart-Thomas and Brezzi-Douglas-Marini spaces with optimal (in h

and p) approximation rates simultaneously in L2(Ω) and HHH(div,Ω).
Throughout this paper, if not otherwise stated, we assume the following:

Assumption 4.1 In spatial dimension d = 2, 3 the bounded Lipschitz domainΩ ⊂
R

d has an analytic boundary. The wavenumber k satisfies k ≥ k0 > 0. Furthermore
f ∈ L2(Ω) and g ∈ L2(∂Ω).

Remark 4.1 Under Assumption 4.1 we may apply [2, Thm. 1.8] to conclude that
the solution u ∈ H 1(Ω) satisfies the a priori bound

‖u‖H 1(Ω) + k ‖u‖L2(Ω) ≤ C(‖f ‖L2(Ω) + ‖g‖L2(∂Ω)), (4.2)

where C > 0 is independent of k. ��
Notation and Preliminaries Boldface letters like VVV , ϕϕϕ and ΠΠΠ will be reserved
for quantities having more than one spatial dimensions, while normal letters like
W , u and Π will be used for quantities with one spatial dimension. The reference
element will be denoted by K̂, whereas the physical one will just be denoted by K .
In a similar way, we will distinguish between objects associated with the reference
element and the physical one. A function defined on the reference element K̂ will
therefore be denoted by û, while a function defined on the physical element K will
be denoted by u. We will follow the same convention when it comes to operators
acting on a function space. Therefore operators acting on functions defined on K̂ or
K will be denoted by Π̂ or Π respectively. Generic constants will either be denoted
by C or hidden inside a � and will be independent of the wavenumber k, the mesh
size h and the polynomial degree p, if not otherwise stated.

Outline The outline of this paper is as follows. In Sect. 4.2 we introduce the first
order system least squares (FOSLS) method itself, followed by Sect. 4.3, where
we prove a refined duality argument (Lemma 4.1), which is later used to derive
an a priori estimate (Theorem 4.4) of the method. Key ingredients are the results
of [22], where a frequency explicit splitting of the solution to (4.1) is performed
when the data has higher order Sobolev regularity. Section 4.4 is concerned with the
approximation properties of Raviart-Thomas and Brezzi-Douglas-Marini spaces.
We therefore follow the methodology of [19] in order to construct approximation
operators, which are not only p-optimal and approximate simultaneous in L2(Ω)
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and H 1(Ω), but also admit an elementwise construction. Section 4.5 is then devoted
to the a priori estimate. Concluding, we give numerical examples which complement
the theoretical findings and compare the method to the classical FEM in Sect. 4.6.

4.2 First Order System Least Squares Method
and Useful Results

In the present section we introduce the method of [3] and list some useful results
which are used later in the paper.

4.2.1 First Order System Least Squares

We employ the complex Hilbert spaces

VVV = {ϕϕϕ ∈HHH(div,Ω) : ϕϕϕ · nnn ∈ L2(∂Ω)} and W = H 1(Ω),

where VVV is endowed with the usual graph norm and W with the classical H 1(Ω)-
norm. On VVV ×W we introduce the bilinear form b and the linear functional F by

b((ϕϕϕ, u), (ψψψ, v)) := (ikϕϕϕ +∇u, ikψψψ +∇v)Ω + (iku+∇ · ϕϕϕ, ikv +∇ ·ψψψ)Ω+
k(ϕϕϕ · nnn+ u,ψψψ · nnn+ v)∂Ω,

F ((ψψψ, v)) := (−ik−1f, ikv + ∇ ·ψψψ)Ω + (ig,ψψψ · nnn+ v)∂Ω,

where (u, v)Ω = ∫Ω uv dx. If u ∈ H 1(Ω) is the weak solution to (4.1) then the pair
(ϕϕϕ, u) with ϕϕϕ = ik−1∇u is in fact in VVV ×W due to the assumed regularity of the
data and the domain and therefore satisfies

b((ϕϕϕ, u), (ψψψ, v)) = F((ψψψ, v)) ∀(ψψψ, v) ∈ VVV ×W. (4.3)

For a given regular mesh Th we consider the finite element spaces VVV h =
RTRTRTp(Th) ⊂ VVV or VVV h = BDMBDMBDMp(Th) ⊂ VVV and Wh = Sp(Th) ⊂ W , where
RTRTRTp(Th) denotes the Raviart-Thomas space and BDMBDMBDMp(Th) the Brezzi-Douglas-
Marini space; see Sect. 4.4 for further detail and definitions. The FOSLS method is
to find (ϕϕϕh, uh) ∈ VVV h ×Wh such that

b((ϕϕϕh, uh), (ψψψh, vh)) = F((ψψψh, vh)) ∀(ψψψh, vh) ∈ VVV h ×Wh. (4.4)
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Remark 4.2 Based on the a priori estimate (4.2) reference [3, Thm. 2.4] asserts the
existence of C > 0 independent of k such that

‖ϕϕϕ‖2
L2(Ω)

+ ‖u‖2
L2(Ω)

+ k ‖ϕϕϕ · nnn+ u‖2
L2(∂Ω)

≤ Cb((ϕϕϕ, u), (ϕϕϕ, u)), ∀(ϕϕϕ, u) ∈ VVV ×W,

which immediately gives uniqueness. Together with the fact that the pair (ϕϕϕ, u) with
ϕϕϕ = ik−1∇u is a solution, we have unique solvability of (4.3). ��

4.2.2 Auxiliary Results

We will need the following decomposition result for the refined duality argument in
Lemma 4.1.

Proposition 4.1 ([22, Thm. 4.5] Combined with [2, Thm. 1.8]) LetΩ ⊂ R
d, d ∈

{2, 3}, be a bounded Lipschitz domain with an analytic boundary. Fix s ∈ N0. Then
there exist constants C, γ > 0 independent of k such that for every f ∈ Hs(Ω)

and g ∈ Hs+1/2(∂Ω) the solution u = Sk(f, g) of (4.1) can be written as u =
uA + uHs+2 , where, for all n ∈ N0, there holds

‖uA‖H 1(Ω) + k ‖uA‖L2(Ω) ≤ C(‖f ‖L2(Ω) + ‖g‖H 1/2(∂Ω)), (4.5)
∥∥∥∇n+2uA

∥∥∥
L2(Ω)

≤ Cγ nk−1 max {n, k}n+2(‖f ‖L2(Ω) + ‖g‖H 1/2(∂Ω)), (4.6)

∥∥uHs+2

∥∥
Hs+2(Ω)

+ ks+2
∥∥uHs+2

∥∥
L2(Ω)

≤ C(‖f ‖Hs(Ω) + ‖g‖Hs+1/2(∂Ω)). (4.7)

Remark 4.3 Interpolation between L2(Ω) and Hs+2(Ω) in Proposition 4.1 gives
estimates for lower order Sobolev norms: Since we have for any v ∈ Hm(Ω)

‖v‖Hj (Ω) ≤ C ‖v‖
j
m

Hm(Ω)
‖v‖

m−j
m

L2(Ω)
, j ∈ {0, . . . ,m},

Proposition 4.1 implies for j ∈ {0, . . . , s + 2}

ks+2−j
∥∥uHs+2

∥∥
Hj (Ω)

≤ C(‖f ‖Hs(Ω) + ‖g‖Hs+1/2(∂Ω)).

��
Furthermore we often use the multiplicative trace inequality. We remind the reader
of the general form, even though we only need it in the special case s = 1.
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Proposition 4.2 ([17, Thm. A.2]) Let Ω ⊂ R
d be a Lipschitz domain and s ∈

(1/2, 1]. Then there exists a constant C > 0 such that for all u ∈ Hs(Ω) there
holds

‖u‖L2(∂Ω) ≤ C ‖u‖1−1/(2s)
L2(Ω)

‖u‖1/(2s)
Hs(Ω) ,

where the left-hand side is understood in the trace sense.

4.3 Duality Argument

We extend the results of [3, Lemma 5.1] by showing that the function ψψψH 2 ∈
HHH 1(div,Ω), constructed therein, can actually be modified to satisfy ψψψH 2 ∈ HHH 2(Ω)

and still allow for wavenumber-explicit higher order Sobolev norm estimates.

Lemma 4.1 For any (ϕϕϕ,w) ∈ VVV × W there exists (ψψψ, v) ∈ VVV × W such that
‖w‖2

L2(Ω)
= b((ϕϕϕ,w), (ψψψ, v)). The pair (ψψψ, v) admits a decompositionψψψ = ψψψA+

ψψψH 2 , v = vA + vH 2 , where ψψψA and vA are analytic in Ω , ψψψH 2 ∈ HHH 2(Ω), and
vH 2 ∈ H 2(Ω). Furthermore there exist constants C, γ > 0 independent of k such
that for all n ∈ N0

‖ψψψA‖H 1(Ω) + k ‖ψψψA‖L2(Ω) ≤ Ck ‖w‖L2(Ω) , (4.8)

‖vA‖H 1(Ω) + k ‖vA‖L2(Ω) ≤ Ck ‖w‖L2(Ω) , (4.9)
∥∥∥∇n+2ψψψA

∥∥∥
L2(Ω)

+
∥∥∥∇n+2vA

∥∥∥
L2(Ω)

≤ Cγ n max {n, k}n+2 ‖w‖L2(Ω) ,

(4.10)
∥∥ψψψH 2

∥∥
H 2(Ω)

+ k
∥∥ψψψH 2

∥∥
H 1(Ω)

+ k2 ∥∥ψψψH 2
∥∥
L2(Ω)

≤ C ‖w‖L2(Ω) , (4.11)
∥∥vH 2

∥∥
H 2(Ω)

+ k
∥∥vH 2

∥∥
H 1(Ω)

+ k2 ∥∥vH 2
∥∥
L2(Ω)

≤ C ‖w‖L2(Ω) . (4.12)

Proof The proof follows the ideas of [3, Lemma 5.1]; for the readers’ convenience
we recapitulate the important steps of the proof. The novelty over [3] is the ability
to choose ψψψH 2 ∈HHH 2(Ω) together with

∥∥ψψψH 2

∥∥
H 2(Ω)

≤ C ‖w‖L2(Ω).
Consider the problem

−Δz− k2z = w in Ω,

∂nz+ ikz = 0 on ∂Ω.
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For any ϕϕϕ ∈ VVV we have, using the weak formulation and integrating by parts,

‖w‖2
L2(Ω)

= (∇w,∇z)Ω − k2(w, z)Ω − ik(w, z)∂Ω

= (ikϕϕϕ +∇w,∇z)Ω − (ikϕϕϕ,∇z)Ω − k2(w, z)Ω − ik(w, z)∂Ω

= (ikϕϕϕ +∇w,∇z)Ω + (∇ · ϕϕϕ + ikw,−ikz)Ω + (ϕϕϕ · nnn+w, ikz)∂Ω.

Applying Proposition 4.1 together with Remark 4.3 we decompose z into z = zA +
zH 2 with zA analytic and zH 2 ∈ H 2(Ω). Furthermore we have, for all n ∈ N0,

‖zA‖H 1(Ω) + k ‖zA‖L2(Ω) ≤ C ‖w‖L2(Ω) , (4.13)
∥∥∥∇n+2zA

∥∥∥
L2(Ω)

≤ Cγ nk−1 max {n, k}n+2 ‖w‖L2(Ω) , (4.14)

∥∥zH 2

∥∥
H 2(Ω)

+ k
∥∥zH 2

∥∥
H 1(Ω)

+ k2
∥∥zH 2

∥∥
L2(Ω)

≤ C ‖w‖L2(Ω) . (4.15)

Let (ψψψ, v) ∈ VVV ×W solve

ikψψψ +∇v = ∇z in Ω,

ikv +∇ ·ψψψ = −ikz in Ω,

k1/2(ψψψ · nnn+ v) = ik1/2z on ∂Ω.

Indeed, this system is uniquely solvable by Remark 4.2. This gives the desired
representation such that ‖w‖2

L2(Ω)
= b((ϕϕϕ,w), (ψψψ, v)). Using the decomposition

z = zA + zH 2 we obtain (ψψψ, v) = (ψ̃ψψA, ṽA)+ (ψ̃ψψH 2, ṽH 2 ), where

ikψ̃ψψA + ∇ṽA = ∇zA in Ω,

ikṽA + ∇ · ψ̃ψψA = −ikzA in Ω,

k1/2(ψ̃ψψA · nnn+ ṽA) = ik1/2zA on ∂Ω,

ikψ̃ψψH 2 + ∇ṽH 2 = ∇zH 2 in Ω,

ikṽH 2 + ∇ · ψ̃ψψH 2 = −ikzH 2 in Ω,

k1/2(ψ̃ψψH 2 · nnn+ ṽH 2 ) = ik1/2zH 2 on ∂Ω.

One can immediately verify that

−Δ(ṽA − zA)− k2(ṽA − zA) = 2k2zA in Ω,

∂n(ṽA − zA)− ik(ṽA − zA) = (1 + i)kzA on ∂Ω,
(4.16)

as well as

−Δ(ṽH 2 − zH 2)− k2(ṽH 2 − zH 2) = 2k2zH 2 in Ω,

∂n(ṽH 2 − zH 2)− ik(ṽH 2 − zH 2) = (1 + i)kzH 2 on ∂Ω.
(4.17)
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Note that the right-hand sides in Eq. (4.16) are analytic. This fact is used in [3,
Lemma 5.1, Lemma 4.4] to prove the following bounds for all n ∈ N0:

∥∥∥∇n+2ṽA

∥∥∥
L2(Ω)

≤ Cγ n max {n, k}n+2 ‖w‖L2(Ω) , (4.18)

‖ṽA‖H 1(Ω) + k ‖ṽA‖L2(Ω) ≤ Ck ‖w‖L2(Ω) , (4.19)
∥∥∥∇n+2ψ̃ψψA

∥∥∥
L2(Ω)

≤ Cγ n max {n, k}n+2 ‖w‖L2(Ω) , (4.20)

∥∥∥ψ̃ψψA

∥∥∥
H 1(Ω)

+ k

∥∥∥ψ̃ψψA

∥∥∥
L2(Ω)

≤ Ck ‖w‖L2(Ω) . (4.21)

Since ṽH 2−zH 2 = Sk(2k2zH 2 , (1+i)kzH 2), where Sk denotes the solution operator
for (4.1), we can exploit the regularity of the right-hand sides in Eq. (4.17). Applying
Proposition 4.1 with s = 1 as well as Remark 4.3 we decompose ṽH 2 − zH 2 =
v̂A + v̂H 3 , where v̂A is analytic and v̂H 3 ∈ H 3(Ω). For every j ∈ {0, 1, 2, 3} we
have

k3−j
∥∥v̂H 3

∥∥
Hj (Ω)

�
∥∥∥2k2zH 2

∥∥∥
H 1(Ω)

+ ∥∥(1 + i)kzH 2

∥∥
H 3/2(∂Ω)

� k2
∥∥zH 2

∥∥
H 1(Ω)︸ ︷︷ ︸

(4.15)
� k‖w‖

L2(Ω)

+ k
∥∥zH 2

∥∥
H 3/2(∂Ω)︸ ︷︷ ︸

�k
∥∥z

H2
∥∥
H2(Ω)

(4.15)
� k‖w‖

L2(Ω)

� k ‖w‖L2(Ω) .

Summarizing the above we have

k−1 ∥∥v̂H 3

∥∥
H 3(Ω)

+ ∥∥v̂H 3

∥∥
H 2(Ω)

+ k
∥∥v̂H 3

∥∥
H 1(Ω)

+ k2 ∥∥v̂H 3

∥∥
L2(Ω)

≤ C ‖w‖L2(Ω) .

(4.22)

In order to analyze the behavior of v̂A we first estimate

∥∥∥2k2zH 2

∥∥∥
L2(Ω)

+ ∥∥(1 + i)kzH 2

∥∥
H 1/2(∂Ω)

(4.15)
� ‖w‖L2(Ω) .

We therefore conclude, again with Proposition 4.1, that

∥∥v̂A
∥∥
H 1(Ω)

+ k
∥∥v̂A

∥∥
L2(Ω)

≤ C ‖w‖L2(Ω) , (4.23)
∥∥∥∇n+2v̂A

∥∥∥
L2(Ω)

≤ Cγ nk−1 max {n, k}n+2 ‖w‖L2(Ω) . (4.24)

We turn to the final decompositions with associated norm bounds.
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Final Decomposition of v

v = ṽA + ṽH 2 = ṽA + ṽH 2 − zH 2︸ ︷︷ ︸
=v̂A+v̂

H3

+zH 2 = ṽA + v̂A︸ ︷︷ ︸
=:vA

+ v̂H 3 + zH 2︸ ︷︷ ︸
=:v

H2

.

Verification of (4.9)

‖vA‖H 1(Ω) + k ‖vA‖L2(Ω) ≤ ‖ṽA‖H 1(Ω) + k ‖ṽA‖L2(Ω)︸ ︷︷ ︸
(4.19)≤ Ck‖w‖

L2(Ω)

+ ∥∥v̂A
∥∥
H 1(Ω)

+ k
∥∥v̂A

∥∥
L2(Ω)︸ ︷︷ ︸

(4.23)≤ C‖w‖
L2(Ω)

≤ Ck ‖w‖L2(Ω) .

Verification of (4.12)

∥∥vH 2

∥∥
H 2(Ω)

+ k
∥∥vH 2

∥∥
H 1(Ω)

+ k2
∥∥vH 2

∥∥
L2(Ω)

≤ ∥∥v̂H 3

∥∥
H 2(Ω)

+ k
∥∥v̂H 3

∥∥
H 1(Ω)

+ k2
∥∥v̂H 3

∥∥
L2(Ω)︸ ︷︷ ︸

(4.22)≤ C‖w‖
L2(Ω)

+ ∥∥zH 2

∥∥
H 2(Ω)

+ k
∥∥zH 2

∥∥
H 1(Ω)

+ k2
∥∥zH 2

∥∥
L2(Ω)︸ ︷︷ ︸

(4.15)≤ C‖w‖
L2(Ω)

≤ C ‖w‖L2(Ω) .

Final Decomposition of ψψψ Since −ikψ̃ψψH 2 = ∇(ṽH 2 − zH 2) = ∇v̂A + ∇v̂H 3 ,
we decompose ψ̃ψψH 2 = ψ̂ψψA + ψ̂ψψH 2 accordingly such that −ikψ̂ψψA = ∇v̂A and
consequently −ikψ̂ψψH 2 = ∇v̂H 3 . The final decomposition takes the form

ψψψ = ψ̃ψψA + ψ̃ψψH 2 = ψ̃ψψA + ψ̂ψψA︸ ︷︷ ︸
=:ψψψA

+ ψ̂ψψH 2︸︷︷︸
=:ψψψ

H2

.

Verification of (4.8)

‖ψψψA‖H1(Ω)
+ k ‖ψψψA‖L2(Ω)

≤
∥∥∥ψ̃ψψA

∥∥∥
H1(Ω)

+ k

∥∥∥ψ̃ψψA

∥∥∥
L2(Ω)︸ ︷︷ ︸

(4.21)≤ Ck‖w‖
L2(Ω)

+
∥∥∥ψ̂ψψA

∥∥∥
H1(Ω)

+ k

∥∥∥ψ̂ψψA

∥∥∥
L2(Ω)

≤ Ck ‖w‖L2(Ω) + k−1 ∥∥∇ v̂A
∥∥
H1(Ω)

+ ∥∥∇ v̂A
∥∥
L2(Ω)
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≤ Ck ‖w‖
L2(Ω)

+ k−1 ∥∥v̂A
∥∥
H1(Ω)︸ ︷︷ ︸

(4.23)≤ C‖w‖
L2(Ω)

+k−1
∥∥∥∇2v̂A

∥∥∥
L2(Ω)︸ ︷︷ ︸

(4.24)≤ Ck‖w‖
L2(Ω)

+ ∥∥v̂A
∥∥
H1(Ω)︸ ︷︷ ︸

(4.23)≤ C‖w‖
L2(Ω)

≤ Ck ‖w‖L2(Ω) .

Verification of (4.10) This is an immediate consequence of (4.18), (4.20), (4.24),
and the fact that −ikψ̂ψψA = ∇v̂A.

Verification of (4.11) Since −ikψ̂ψψH 2 = ∇v̂H 3 we estimate

∥∥ψψψH 2

∥∥
H 2(Ω)

+ k
∥∥ψψψH 2

∥∥
H 1(Ω)

+ k2
∥∥ψψψH 2

∥∥
L2(Ω)

= k−1
∥∥∇v̂H 3

∥∥
H 2(Ω)

+ ∥∥∇v̂H 3

∥∥
H 1(Ω)

+ k
∥∥∇v̂H 3

∥∥
L2(Ω)

≤ k−1
∥∥v̂H 3

∥∥
H 3(Ω)

+ ∥∥v̂H 3

∥∥
H 2(Ω)

+ k
∥∥v̂H 3

∥∥
H 1(Ω)︸ ︷︷ ︸

(4.22)≤ C‖w‖
L2(Ω)

≤ C ‖w‖L2(Ω) ,

which concludes the proof. ��

4.4 Approximation Properties of Raviart-Thomas
and Brezzi-Douglas-Marini Spaces

In the present section we analyze the approximation properties of Raviart-Thomas
and Brezzi-Douglas-Marini spaces. To that end, we first state some standard
assumptions on the mesh and recall the relevant function spaces. Next, we will prove
the existence of a polynomial approximation operator acting on functions defined on
the reference element having certain desirable properties, as outlined below. This
operator will then be used to construct a global polynomial approximation operator
by means of the Piola transformation.

4.4.1 Preliminaries

We start with assumptions on the triangulation.

Assumption 4.2 (Quasi-Uniform Regular Meshes) Let K̂ be the reference sim-
plex. Each element map FK : K̂ → K can be written as FK = RK ◦AK , where AK
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is an affine map and the maps RK and AK satisfy, for constants Caffine, Cmetric, γ >

0 independent of K:

∥∥A′
K

∥∥
L∞(K̂)

≤ CaffinehK,

∥∥∥(A′
K)−1

∥∥∥
L∞(K̂)

≤ Caffineh
−1
K ,

∥∥∥(R′
K)−1

∥∥∥
L∞(K̃)

≤ Cmetric,
∥∥∇nRK

∥∥
L∞(K̃)

≤ Cmetricγ
nn! ∀n ∈ N0.

Here, K̃ = AK(K̂) and hK > 0 denotes the element diameter.

We recall the definition of the Sobolev spaceH 1/2
00 (ω). If ω is an edge of a triangle

or face of a tetrahedron, then the norm ‖·‖
H

1/2
00 (ω)

is given by

‖u‖2
H

1/2
00 (ω)

:= ‖u‖2
H 1/2(ω)

+
∥∥∥∥

u√
dist(·, ∂ω)

∥∥∥∥
2

L2(ω)

,

and the space H 1/2
00 (ω) is the completion of C∞

0 (ω) under this norm. Since this norm

is induced by a scalar product the space H
1/2
00 (ω) is a Hilbert space.

On the reference element K̂ we introduce the Raviart-Thomas and Brezzi-
Douglas-Marini elements of degree p ≥ 0 in dimension d:

Pp(K̂) := span
{
xxxααα : |ααα| ≤ p

}
,

BDMBDMBDMp(K̂) :=Pp(K̂)d,

RTRTRTp(K̂) :=
{
ppp + xxxq : ppp ∈Pp(K̂)d , q ∈ Pp(K̂)

}
.

Note that trivially BDMBDMBDMp(K̂) ⊂ RTRTRTp(K̂). We also recall the classical Piola
transformation, which is the appropriate change of variables for HHH(div,Ω). For
a function ϕϕϕ : K → R

d and the element map FK : K̂ → K its Piola transform
ϕ̂ϕϕ : K̂ → R

d is given by

ϕ̂ϕϕ = (detF ′
K)(F ′

K)−1ϕϕϕ ◦ FK.

Furthermore we introduce the spaces Sp(Th), BDMBDMBDMp(Th), and RTRTRTp(Th) by
standard transformation and (contravariant) Piola transformation respectively:

Sp(Th) :=
{
u ∈ H 1(Ω) : u

∣∣
K
◦ FK ∈ Pp(K̂) for all K ∈ Th

}
,

BDMBDMBDMp(Th) :=
{
ϕϕϕ ∈ HHH(div,Ω) : (detF ′

K)(F ′
K)−1 ϕϕϕ

∣∣
K
◦ FK ∈ BDMBDMBDMp(K̂) for all K ∈ Th

}
,

RTRTRTp(Th) :=
{
ϕϕϕ ∈ HHH(div,Ω) : (detF ′

K)(F ′
K)−1 ϕϕϕ

∣∣
K
◦ FK ∈ RTRTRTp(K̂) for all K ∈ Th

}
.
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4.4.2 Polynomial Approximation on the Reference Element

We construct a polynomial approximation operator on the reference element K̂:

Definition 4.1 Let K̂ be the reference simplex in R
d , s > d/2 and p ∈ N.

We define the operator Π̂p : Hs(K̂) → Pp(K̂) by the following consecutive
minimization steps:

1. Fix Π̂pu in the vertices: (Π̂pu)(V̂ ) = u(V̂ ) for all d + 1 vertices V̂ of K̂.
2. Fix Π̂pu on the edges: for every edge ê of K̂ the restriction (Π̂up)

∣∣
ê

is the unique
minimizer of

Pp(ê)  π �→ p ‖u− π‖2
L2(ê)

+ ‖u− π‖2
H

1/2
00 (ê)

, s.t. π satisfies 1.

(4.25)

3. Fix Π̂pu on the faces (only for d = 3): for every face f̂ of K̂ the restriction
(Π̂up)

∣∣
f̂

is the unique minimizer of

Pp(f̂ )  π �→ p2 ‖u− π‖2
L2(f̂ )

+ ‖u− π‖2
H 1(f̂ )

, s.t. π satisfies 1, 2.

(4.26)

4. Fix Π̂pu in the volume: Π̂pu is the unique minimizer of

Pp(K̂)  π �→ p2 ‖u− π‖2
L2(K̂)

+ ‖u− π‖2
H 1(K̂)

, s.t. π satisfies 1, 2, 3.

(4.27)

It is convenient to construct an approximant Iu of a function u in an elementwise
fashion. The drawback is that one has to check if the approximant is in fact in
the finite element space. A useful property to achieve this is the following: The
restriction of the approximant Iu

∣∣
E

to lower dimensional entities E of the mesh, i.e.,
edges, faces or vertices, is completely determined by the corresponding restriction
of u. To put this rigorously, we employ the following concept:

Definition 4.2 (Restriction Property) Let K̂ be the reference simplex in R
d , s >

d/2, and p ∈ N. A polynomialπ ∈ Pp(K̂) is said to satisfy the restriction property
of polynomial degree p for u ∈ Hs(K̂), if it satisfies 1, 2, 3 of Definition 4.1.

Remark 4.4 Note that minimizations in the definition of the operator Π̂p are
uniquely solvable. This is due to the fact these minimizations are constrained
minimizations of norms induced by Hilbert spaces. These constraints are given by an
affine subspaceV u

p ≤Pp(K̂), the space of all polynomials satisfying the restriction
property for u. Step 4 is therefore the orthogonal projection onto the space V u

p with
respect to the scalar product inducing the norm

|||u|||2 := p2 ‖u‖2
L2(K̂)

+ ‖u‖2
H 1(K̂)

.
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Furthermore the affine space V u
p can be written as V u

p = πu +P0
p for some πu ∈

V u
p , where P0

p(K̂) ≤ Pp(K̂) is the space of polynomials vanishing on ∂K̂. The
operator Π̂p can, apart from being the solution to a minimization problem, also be
written as:

Π̂pu = argmin{|||u− π ||| : π ∈ V u
p } = πu + Π̂P0

p
(u− πu), (4.28)

where Π̂P0
p

denotes the orthogonal projection onto the space P0
p(K̂), again with

respect to the scalar product inducing ||| · |||. The operator Π̂p : Hs(K̂) →
Pp(K̂) is furthermore linear. This is easily seen when one explicitly constructs
the Steps 1, 2, 3 in Definition 4.1: First, one picks polynomials πV̂ , which
are 1 at the vertex V̂ and zero on all the others. Consider the mapping Π̂V̂ :
u �→ ∑

V̂ u(V̂ )πV̂ . This realizes Step 1. Next one considers the mapping Π̃ê :
z �→ argmin{p ‖u− π‖2

L2(ê)
+ ‖u− π‖2

H
1/2
00 (ê)

: z(V̂ ) = 0 for all vertices V̂ }
and extending it to the reference element. Step 2 is then realized by the map
Π̂ê : u �→ Π̂V̂ u+ Π̃ê(u− Π̂V̂ u). One can easily continue this procedure for Step 3
and 4. As a composition of linear operators Π̂p is therefore also linear. ��
Remark 4.5 Definition 4.2 of the restriction property was introduced in [19,
Definition 5.3] under the name element-by-element construction. This is due to the
fact that, when working in Sp(Th) ≤ H 1(Ω), a polynomial, which is constructed
in an elementwise fashion on the reference simplex K̂, satisfying the restriction
property is already an element of the conforming element space Sp(Th). However,
when working in HHH(div,Ω) or HHH(curl,Ω) one only needs continuity of the inter
element normal or tangential trace. Furthermore it is necessary to use the Piola
transformation to go back and forth between the reference element and the physical
element to ensure that normal and tangential vectors are mapped appropriately. For
the purpose of this paper we therefore use the name restriction property, rather than
element-by-element construction. ��

In Propositions 4.3, 4.4, and 4.5 we recall certain useful results concerning
approximation properties of polynomials satisfying the restriction property. These
results can be found in [19].

Proposition 4.3 ([19, Thm. B.4]) Let K̂ be the reference triangle or reference
tetrahedron. Let s > d/2. Then there exists C > 0 (depending only on s and d) and
for every p a linear operator Π̂MS

p : Hs(K̂) → Pp(K̂), such that Π̂MS
p u satisfies

the restriction property of Definition 4.2 as well as

p

∥∥∥u− Π̂MS
p u

∥∥∥
L2(K̂)

+
∥∥∥u− Π̂MS

p u

∥∥∥
H 1(K̂)

≤ Cp−(s−1)|u|Hs(K̂) ∀p ≥ s − 1.

(4.29)

Remark 4.6 The operator Π̂MS
p does in general not preserve polynomials q ∈

Pp(K̂). See also [18] for operators with the projection property. ��
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Proposition 4.4 ([19, Lemma C.2]) Let d ∈ {1, 2, 3}, and let K̂ ⊂ R
d be the

reference simplex. Let γ, C̃ > 0 be given. Then there exist constants C, σ > 0 that
depend solely on γ and C̃ such that the following is true: For any function u that
satisfies for some Cu, h, R > 0 and κ > 1 the conditions

∥∥∇nu
∥∥
L2(K̂)

≤ Cu(γ h)
n max{n/R, κ}n ∀n ∈ N≥2,

and for any polynomial degree p ∈ N that satisfies

h

R
+ κh

p
≤ C̃

there holds

inf
π∈Pp(K̂)

‖u− π‖W 2,∞(K̂) ≤ CCu

[(
h/R

σ + h/R

)p+1

+
(
hκ

σp

)p+1
]
.

Proposition 4.5 ([19, Lemma C.3]) Assume the hypotheses of Proposition 4.4.
Then one can find a polynomial π ∈Pp(K̂) that satisfies

‖u− π‖W 1,∞(K̂) ≤ CCu

[(
h/R

σ + h/R

)p+1

+
(
hκ

σp

)p+1
]
.

and additionally satisfies the restriction property of Definition 4.2.

It is not clear whether the polynomial Π̂MS
p u has the same approximation

properties as the polynomial given by Proposition 4.5. However, it is desirable to
have both the simultaneous approximation properties in L2(K̂) and H 1(K̂) as stated
in Proposition 4.3 as well as the exponential approximation properties of an analytic
function as stated in Proposition 4.5. In the following we will show that the operator
Π̂p constructed in Definition 4.1 has these properties.

Theorem 4.3 (Properties of Π̂p) Let K̂ be the reference triangle or reference
tetrahedron. Let s > d/2. Let Π̂p : Hs(K̂) → Pp(K̂) be given by Definition 4.1.
Then the following holds:

(i) The operator Π̂p is linear and satisfies the restriction property of Defini-
tion 4.2.

(ii) The operator Π̂p preservesPp(K̂), i.e., Π̂pq = q for all q ∈Pp(K̂).
(iii) There exists Cs > 0 (depending only on s and d) such that

p
∥∥u− Π̂pu

∥∥
L2(K̂)

+∥∥u− Π̂pu
∥∥
H 1(K̂)

≤ Csp
−(s−1)|u|Hs(K̂) ∀p ≥ s−1.

(iv) For given γ , C̃ > 0, there exist constants CA, σ > 0 that depend solely on
γ and C̃ such that the following is true: For any function u and polynomial
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degree p that satisfy the assumptions of Proposition 4.4 there holds

∥∥u− Π̂pu
∥∥
W 1,∞(K̂)

≤ CACu

[(
h/R

σ + h/R

)p+1

+
(
hκ

σp

)p+1
]
.

Idea The crucial points of Theorem 4.3 are items (iii) and (iv). To verify (iii)
we will exploit the approximation properties of Π̂MS

p given by Proposition 4.3
together with the fact that Π̂pu is the solution to a minimization problem. To
prove (iv) we use the affine projection representation (4.28) of Π̂p together with the
approximation properties of polynomials satisfying the restriction property given in
Proposition 4.5.

Proof Assertion (i) is trivially satisfied due to the construction in Definition 4.1 and
Remark 4.4.
Assertion (ii) is also trivially satisfied, since for a given polynomial q ∈Pp(K̂) the
norms in Definition 4.1 are minimized at q .
To prove Assertion (iii) recall that Step 4 in Definition 4.1 is exactly the minimiza-
tion of the norm in question, constrained to all polynomials satisfying the restriction
property for u. Since Π̂MS

p u given by Proposition 4.3 also satisfies the restriction
property we can immediately conclude for p ≥ s − 1 that

p
∥∥u− Π̂pu

∥∥
L2(K̂)

+ ∥∥u− Π̂pu
∥∥
H 1(K̂)

≤ p

∥∥∥u− Π̂MS
p u

∥∥∥
L2(K̂)

+
∥∥∥u− Π̂MS

p u

∥∥∥
H 1(K̂)

≤ Csp
−(s−1)|u|Hs(K̂).

We turn to Assertion (iv). Since polynomials up to degree p are preserved under
Π̂p, we immediately have

∥∥u− Π̂pu
∥∥
W 1,∞(K̂)

≤ ‖u− q‖W 1,∞(K̂) +
∥∥Π̂pq − Π̂pu

∥∥
W 1,∞(K̂)

, (4.30)

for any q ∈Pp(K̂). We estimate the second term in (4.30). We have seen in (4.28)
that the operator Π̂p can be written as Π̂pu = πu+ Π̂P0

p
(u−πu) for any πu ∈ V u

p

(the affine space of polynomials with restriction property for u), where Π̂P0
p

is the

orthogonal projection onto P0
p(K̂) ≤ Pp(K̂), the space of polynomials vanishing

on ∂K̂, with respect to the norm ||| · |||. Therefore we have

Π̂pq − Π̂pu = πq − πu + Π̂P0
p
(q − u+ πu − πq)
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for any πu ∈ V u
p and πq ∈ V

q
p . Selecting q ∈ V u

p allows us to choose πu = πq =
q , which immediately gives

Π̂pq − Π̂pu = Π̂P0
p
(q − u)

for all q ∈ V u
p . Using the polynomial inverse estimates ‖π‖L∞(Ω) ≤ Cpd ‖π‖L2(Ω)

for all π ∈ Pp(K̂), (see, e.g., [27, Thm. 4.76] for the case d = 2), we find

∥∥Π̂pq − Π̂pu
∥∥
W 1,∞(K̂)

=
∥∥∥Π̂P0

p
(q − u)

∥∥∥
W 1,∞(K̂)

� pd
∥∥∥Π̂P0

p
(q − u)

∥∥∥
H 1(K̂)

.

Since Π̂P0
p

is the orthogonal projection with respect to the norm ||| · ||| we obtain

pd
∥∥∥Π̂P0

p
(q − u)

∥∥∥
H 1(K̂)

≤ pd |||q − u||| � pd+1 ‖q − u‖W 1,∞(K̂) .

We therefore conclude that

∥∥u− Π̂pu
∥∥
W 1,∞(K̂)

� pd+1 ‖u− q‖W 1,∞(K̂)

for all q ∈ V u
p . Proposition 4.5 provides a polynomial q ∈ V u

p with the desired

approximation properties. Absorbing the algebraic factor pd+1 into the exponential
factor then yields the result. ��

4.4.3 HHH(div,Ω)-Conforming Approximation Operators

In the following we will construct an approximation operator ΠΠΠdiv,s
p : HHHs(Ω) →

BDMBDMBDMp(Th) ⊂ RTRTRTp(Th) that features the optimal convergence rates in p simultane-
ously in L2(Ω) andHHH(div,Ω) for s > d/2. The operator will act elementwise. First

we consider any operator Π̂ΠΠ
div,s
p : HHHs(K̂) → BDMBDMBDMp(K̂) ⊂ RTRTRTp(K̂) and define

ΠΠΠ
div,s
p on HHHs(Ω) elementwise using the Piola transformation by

(
ΠΠΠdiv,s

p ϕϕϕ
)∣∣∣

K
:=
[
(detF ′

K)−1F ′
KΠ̂ΠΠ

div,s
p

[
(detF ′

K)(F ′
K)−1ϕϕϕ ◦ FK

]]
◦ F−1

K .

(4.31)
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In order for ΠΠΠ
div,s
p to map into the conforming finite element space one has to

select the operator Π̂ΠΠ
div,s
p correctly. We choose Π̂ΠΠ

div,s
p : HHHs(K̂) → Pp(K̂)d =

BDMBDMBDMp(K̂) ⊂ RTRTRTp(K̂) to be the componentwise application of Π̂p from Defini-
tion 4.1 and analyzed in Theorem 4.3:

(
Π̂ΠΠ

div,s
p ϕϕϕ

)
i

:= Π̂pϕϕϕi, for i = 1, . . . , d. (4.32)

This choice will ensure the desired approximation properties, and will also map
into the conforming finite element space due to the restriction property. We will

summarize and prove certain properties of the above constructed operators Π̂ΠΠ
div,s
p

and ΠΠΠ
div,s
p . See [21] for a similar construction concerning the space HHH(curl,Ω).

Lemma 4.2 Let s > d/2 and let the operators Π̂ΠΠ
div,s
p and ΠΠΠ

div,s
p be defined as

above. Then there holds:

(i) The operator Π̂ΠΠ
div,s
p : HHHs(K̂) → BDMBDMBDMp(K̂) ⊂ RTRTRTp(K̂) satisfies for p ≥ s−1

p

∥∥∥ϕϕϕ − Π̂ΠΠ
div,s
p ϕϕϕ

∥∥∥
L2(K̂)

+
∥∥∥ϕϕϕ − Π̂ΠΠ

div,s
p ϕϕϕ

∥∥∥
H 1(K̂)

� p−(s−1)|ϕϕϕ|Hs(K̂). (4.33)

(ii) Under the assumptions Theorem 4.3, (iv) (with Cϕϕϕ replacing Cu) there holds
for some constants CA, σ > 0 independent of p, h, R

∥∥∥ϕϕϕ − Π̂ΠΠ
div,s
p ϕϕϕ

∥∥∥
W 1,∞(K̂)

≤ CACϕϕϕ

[(
h/R

σ + h/R

)p+1

+
(
hκ

σp

)p+1
]
.

(iii) The operator ΠΠΠ
div,s
p defined on HHHs(Ω) maps to the conforming space

BDMBDMBDMp(Th) ⊂ RTRTRTp(Th).

Proof The first two assertions hold by construction and Theorem 4.3, proper-

ties (iii), (iv). To prove the third assertion, note that Π̂ΠΠ
div,s
p maps to BDMBDMBDMp(K̂) so

that

(detF ′
K)(F ′

K)−1
(
ΠΠΠdiv,s

p ϕϕϕ
)∣∣∣

K
◦ FK ∈ BDMBDMBDMp(K̂) for all K ∈ Th, (4.34)

by construction. We are therefore left with verifying that ΠΠΠdiv,s
p ϕϕϕ ∈ HHH(div,Ω).

Since ΠΠΠ
div,s
p ϕϕϕ is piecewise smooth it suffices to show inter element continuity of

the normal trace. We will first show that the normal trace of Π̂ΠΠ
div,s
p ϕϕϕ in fact only

depends on the normal trace of ϕϕϕ. Consider a face f̂ of K̂ . Let γn̂nn
f̂

denote the
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normal trace for the face f̂ . We calculate

γn̂nn
f̂

(
Π̂ΠΠ

div,s
p ϕϕϕ

)
=
(
Π̂ΠΠ

div,s
p ϕϕϕ

)∣∣∣
f̂
· n̂nn

f̂
=
⎛
⎜⎝
Π̂pϕϕϕ1

...

Π̂pϕϕϕd

⎞
⎟⎠

∣∣∣∣∣∣∣
f̂

· n̂nn
f̂

=

⎛
⎜⎜⎝
Π̂p(ϕϕϕ1

∣∣
f̂
)

...

Π̂p(ϕϕϕd

∣∣
f̂
)

⎞
⎟⎟⎠ · n̂nn

f̂
= Π̂p(ϕϕϕ · n̂nnf̂ ) = Π̂p(γn̂nn

f̂
ϕϕϕ).

Here we used that the operator Π̂p satisfies the restriction property and the fact that
n̂nn
f̂

is constant on f̂ . Furthermore note that we abused notation in that the symbol

Π̂p is used both for the d dimensional as well as the d − 1 dimensional version. We
conclude the proof using the fact that if n̂nn is the unit outward normal to K̂ the vector
nnn on K given by

nnn ◦ FK = 1

‖(F ′
K)−T n̂nn‖ (F

′
K)−T n̂nn

is a unit normal to K , see, e.g., [23, Section 3.9 and 5.4]. ��
We have p-optimal approximation properties on the reference element K̂ by the

operator Π̂ΠΠ
div,s
p .

Corollary 4.1 (Approximation of Hs(Ω) Functions) For d = 2, 3 and s > d/2
the operatorΠΠΠdiv,s

p : HHHs(Ω) → BDMBDMBDMp(Th) ⊂ RTRTRTp(Th) satisfies

p

h

∥∥∥ϕϕϕ −ΠΠΠ
div,s
p ϕϕϕ

∥∥∥
L2(Ω)

+
∥∥∥ϕϕϕ −ΠΠΠ

div,s
p ϕϕϕ

∥∥∥
H 1(Th)

�
(
h

p

)s−1
‖ϕϕϕ‖Hs(Ω) ∀p ≥ s − 1,

where ‖·‖H 1(Th)
denotes the broken H 1-norm.

Proof The proof follows from Lemma 4.2 together with a scaling argument. ��
Corollary 4.2 (Approximation of Analytic Functions) Letϕϕϕ satisfy, for someCϕϕϕ ,
γ > 0,

∥∥∇nϕϕϕ
∥∥
L2(Ω)

≤ Cϕϕϕγ
n max(n, k)n ∀n ∈ N0.

There exist C, σ > 0 independent of h, p, and k such that

∥∥∥ϕϕϕ −ΠΠΠ
div,s
p ϕϕϕ

∥∥∥
H 1(Th)

+ k

∥∥∥ϕϕϕ −ΠΠΠ
div,s
p ϕϕϕ

∥∥∥
L2(Ω)

≤ CCϕϕϕ

[(
h

h+ p

)p (
1 + hk

h+ σ

)
+ k

(
kh

σp

)p ( 1

p
+ kh

σp

)]
.
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Proof We mimic the procedure of [19, Thm. 5.5] and [3, Lemma 4.7]. First consider
for each element K ∈ Th the constant CK given by

C2
K :=

∑
n≥0

‖∇nϕϕϕ‖2
L2(K)

(2γ max(n, k))2n ,

which is finite by assumption. Note that we immediately have

∥∥∇nϕϕϕ
∥∥
L2(K)

≤ 2nγ n max(n, k)nCK,

∑
K∈Th

C2
K ≤ 4

3
C2
ϕϕϕ.

We write ϕ̂ϕϕ as

ϕ̂ϕϕ = det(F ′
K)(F ′

K)−1ϕϕϕ ◦ FK = det(R′
K ◦ AKA′

K)(R′
K ◦ AKA′

K)−1ϕϕϕ ◦ FK

= det(A′
K)(A′

K)−1ϕ̃ϕϕ ◦ AK,

with

ϕ̃ϕϕ = det(R′
K)(R′

K)−1ϕϕϕ ◦ RK.

As in [19, Lemma C.1] for simple changes of variables, we apply [16, Lemma 4.3.1]
to the function ϕ̃ϕϕ and obtain the existence of constants γ , C > 0 depending
additionally on the constants describing the analyticity of the map RK such that

∥∥∇nϕ̃ϕϕ
∥∥
L2(K̃)

≤ Cγ n max(n, k)nCK ∀n ∈ N0.

Since AK is affine we immediately deduce that

∥∥∇nϕ̂ϕϕ
∥∥
L2(K̂)

� hd/2−1hn
∥∥∇nϕ̃ϕϕ

∥∥
L2(K̃)

≤ hd/2−1(γ h)n max(n, k)nCK ∀n ∈ Nn≥1.

Hence by Lemma 4.2 with R = 1 we have

∥∥∥ϕ̂ϕϕ − Π̂ΠΠ
div,s
p ϕ̂ϕϕ

∥∥∥
W 1,∞(K̂)

� CKhd/2−1

[(
h

σ + h

)p+1

+
(
hk

σp

)p+1
]

for some σ > 0. By a change of variables there holds for q = 0, 1

∥∥∥ϕϕϕ −ΠΠΠdiv,s
p ϕϕϕ

∥∥∥
Hq(K)

� h−d/2+1−q
∥∥∥ϕ̂ϕϕ − Π̂ΠΠ

div,s
p ϕ̂ϕϕ

∥∥∥
Hq(K̂)

� h−qCK

[(
h

σ + h

)p+1

+
(
hk

σp

)p+1
]
.
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Summation over all elements gives

∥∥∥ϕϕϕ −ΠΠΠdiv,s
p ϕϕϕ

∥∥∥
H 1(Th)

+ k

∥∥∥ϕϕϕ −ΠΠΠdiv,s
p ϕϕϕ

∥∥∥
L2(Ω)

�
[(

h

σ + h

)p

+ k

(
h

σ + h

)p+1

+ k

p

(
hk

σp

)p

+ k

(
hk

σp

)p+1
]√ ∑

K∈Th

C2
K

�
[(

h

h+ p

)p (
1 + hk

h+ σ

)
+ k

(
kh

σp

)p ( 1

p
+ kh

σp

)]
Cϕϕϕ,

which completes the proof. ��

4.5 A Priori Estimate

We now turn to an a priori estimate of the FOSLS method. Again the proof follows
the ideas of [3, Lemma 5.1], resting, however, on the refined duality argument given
in Lemma 4.1 and the approximation properties derived in Sect. 4.4 to obtain the
factor h/p. For the readers’ convenience we recapitulate the important steps. As
in [19] we show that this can be achieved under the conditions kh/p sufficiently
small and p of order log k.

Theorem 4.4 (A Priori Estimate) Let Assumptions 4.1, 4.2 be valid. Then there
exist constants c1, c2 > 0 that are independent of h, p, and k such that the conditions

kh

p
≤ c1 and p ≥ c2(log k + 1) (4.35)

imply that the approximation (ϕϕϕh, uh) of the FOSLS method satisfies the following:
For any (ψψψh, vh) ∈ VVV h ×Wh there holds

‖u− uh‖L2(Ω) �
h

p

(
‖∇(u − vh)‖L2(Ω) + k ‖u− vh‖L2(Ω)+

‖∇ · (ϕϕϕ −ψψψh)‖L2(Ω) + k ‖ϕϕϕ −ψψψh‖L2(Ω) + k1/2 ‖(ϕϕϕ −ψψψh) · nnn‖L2(∂Ω)

)
.

Proof Let eu = u− uh and eϕeϕeϕ = ϕϕϕ − ϕϕϕh denote the errors of the two components.
We apply the duality argument from Lemma 4.1 with w = eu and also apply the
corresponding splitting:

∥∥eu∥∥2
L2(Ω)

= b((eϕeϕeϕ, eu), (ψψψ, v)) = b((eϕeϕeϕ, eu), (ψψψA, vA))+ b((eϕeϕeϕ, eu), (ψψψH 2 , vH 2)).
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Exploiting the Galerkin orthogonality we have

∥∥eu∥∥2
L2(Ω)

= b((eϕeϕeϕ, eu), (ψψψA − ψ̃ψψA, vA − ṽA))+ b((eϕeϕeϕ, eu), (ψψψH 2 − ψ̃ψψH 2 , vH 2 − ṽH 2 )).

for any (ψ̃ψψA, ṽA), (ψ̃ψψH 2, ṽH 2 ) ∈ VVV h ×Wh. Using Cauchy-Schwarz we arrive at

∥∥eu∥∥2
L2(Ω)

�
[∥∥ikeϕeϕeϕ + ∇eu

∥∥
L2(Ω)

+ ∥∥ikeu +∇ · eϕeϕeϕ∥∥
L2(Ω)

+ k1/2 ∥∥eϕeϕeϕ · nnn+ eu
∥∥
L2(∂Ω)

]
·

( ∥∥∥∇ · (ψψψA − ψ̃ψψA)

∥∥∥
L2(Ω)

+ k

∥∥∥ψψψA − ψ̃ψψA

∥∥∥
L2(Ω)

+ k1/2
∥∥∥(ψψψA − ψ̃ψψA) · nnn

∥∥∥
L2(∂Ω)

+
∥∥∥∇ · (ψψψ

H2 − ψ̃ψψ
H2 )

∥∥∥
L2(Ω)

+ k

∥∥∥ψψψH2 − ψ̃ψψ
H2

∥∥∥
L2(Ω)

+ k1/2
∥∥∥(ψψψH2 − ψ̃ψψ

H2 ) · nnn
∥∥∥
L2(∂Ω)

+

‖∇(vA − ṽA)‖L2(Ω) + k ‖vA − ṽA‖L2(Ω) + k1/2 ‖vA − ṽA‖L2(∂Ω)+
∥∥∇(v

H2 − ṽ
H2 )

∥∥
L2(Ω)

+ k
∥∥v

H2 − ṽ
H2
∥∥
L2(Ω)

+ k1/2 ∥∥v
H2 − ṽ

H2
∥∥
L2(∂Ω)

)
.

(4.36)

We are going to exploit the approximation properties in the corresponding norms
and spaces.

Approximation of vA and vH 2 For the approximation we may apply [3,
Lemma 4.10], which is essentially the procedure of [19, Thm. 5.5] together with
a multiplicative trace inequality. Using the estimates (4.9), (4.10), and (4.12) in
Lemma 4.1 as well as [19, Thm. B.4] to find appropriate approximations ṽH 2 and
ṽA we have

‖∇(vA − ṽA)‖L2(Ω) + k ‖vA − ṽA‖L2(Ω) + k1/2 ‖vA − ṽA‖L2(∂Ω)

�
[(

h

h+ p

)p (
1 + hk

h+ σ

)
+ k

(
kh

σp

)p ( 1

p
+ kh

σp

)]∥∥eu∥∥
L2(Ω)

� h

p

∥∥eu∥∥
L2(Ω)

as well as

∥∥∇(vH 2 − ṽH 2)
∥∥
L2(Ω)

+ k
∥∥vH 2 − ṽH 2

∥∥
L2(Ω)

+ k1/2
∥∥vH 2 − ṽH 2

∥∥
L2(∂Ω)

� 1

k

(
kh

p
+
(
kh

p

)2
)∥∥eu∥∥

L2(Ω)
� h

p

∥∥eu∥∥
L2(Ω)

,

where the latter estimates are due to the boundedness of Ω , σ > 0, and choosing c1
small and c2 sufficiently large as well as elementary but tedious calculations.

Approximation of ψψψA To approximate ψψψA we choose ψ̃ψψA = ΠΠΠ
div,2
p ψψψA with

ΠΠΠ
div,2
p as in Corollary 4.2 and apply the results therein. Furthermore we apply
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the estimates (4.8) and (4.10) of Lemma 4.1. Proceeding as above together with
a multiplicative trace inequality, again after tedious calculations, gives

∥∥∥∇ · (ψψψA − ψ̃ψψA)

∥∥∥
L2(Ω)

+ k

∥∥∥ψψψA − ψ̃ψψA

∥∥∥
L2(Ω)

+ k1/2
∥∥∥(ψψψA − ψ̃ψψA) · nnn

∥∥∥
L2(∂Ω)

� h

p

∥∥eu∥∥
L2(Ω)

.

Approximation ofψψψH 2 To approximate ψψψH 2 we choose ψ̃ψψH 2 = ΠΠΠ
div,2
p ψψψH 2 with

ΠΠΠ
div,2
p as in Corollary 4.1 and apply the results therein. We apply the estimate (4.11)

of Lemma 4.1. Due to the multiplicative trace inequality we also have

∥∥∥(ψψψH 2 − ψ̃ψψH 2) · nnn
∥∥∥
L2(∂Ω)

≤
(
h

p

)3/2 ∥∥ψψψH 2

∥∥
H 2(Ω)

. (4.37)

Therefore we arrive at
∥∥∥∇ · (ψψψH 2 − ψ̃ψψH 2 )

∥∥∥
L2(Ω)

+ k

∥∥∥ψψψH 2 − ψ̃ψψH 2

∥∥∥
L2(Ω)

+ k1/2
∥∥∥(ψψψH 2 − ψ̃ψψH 2) · nnn

∥∥∥
L2(∂Ω)

� h

p

∥∥ψψψH 2

∥∥
H 2(Ω)

� h

p

∥∥eu∥∥
L2(Ω)

,

where we used the estimate (4.11) of Lemma 4.1. Putting it all together we have

∥∥eu∥∥
L2(Ω)

� h

p
(
∥∥ikeϕeϕeϕ + ∇eu

∥∥
L2(Ω)

+ ∥∥ikeu + ∇ · eϕeϕeϕ∥∥
L2(Ω)

+ k1/2
∥∥eϕeϕeϕ · nnn+ eu

∥∥
L2(∂Ω)

)

� h

p

√
b((eϕeϕeϕ , eu), (eϕeϕeϕ , eu)).

Applying again the Galerkin orthogonality and using the multiplicative trace
inequality to absorb the term k1/2 ‖u− vh‖L2(∂Ω) into the L2 norms of the volume
yields the result.

��
We conclude this section with a simple consequence of standard regularity theory

and approximation properties of the employed finite element spaces in higher order
Sobolev norms.

Corollary 4.3 For s ≥ 0, f ∈ Hs(Ω) and g ∈ Hs+1/2(∂Ω) we have u ∈
Hs+2(Ω), u ∈ Hs+3/2(∂Ω), ∂nu ∈ Hs+1/2(∂Ω), ϕϕϕ ∈ HHHs+1(Ω), ∇ · ϕϕϕ ∈ HHHs(Ω)

and ϕϕϕ · nnn ∈ HHHs+1/2(∂Ω). Furthermore there exist constants c1, c2 > 0 that are
independent of h, p, and k such that the conditions

kh

p
≤ c1 and p ≥ c2(log k + 1) (4.38)
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imply that the solution (ϕϕϕh, uh) satisfies

‖u− uh‖L2(Ω) �
(
h

p

)s+1

(‖f ‖Hs(Ω) + ‖g‖Hs+1/2(Ω)),

for p ≥ s with a wavenumber independent constant.

Proof The first assertion follows immediately from standard regularity theory.
Consider the case s > 0. Theorem 4.4 together with a multiplicative trace inequality,
which is applicable due to the already derived regularity of ϕϕϕ, gives

‖u− uh‖L2(Ω) �
h

p

(
‖u− vh‖H 1(Ω) + k ‖u− vh‖L2(Ω)+

‖ϕϕϕ −ψψψh‖H 1(Th)
+ k ‖ϕϕϕ −ψψψh‖L2(Ω)

)
.

Applying the higher order splitting of Theorem 4.1 and using the fact that ϕϕϕ =
ik−1∇u, one can easily estimate, as in the proof of Theorem 4.4 together with the
Corollaries 4.1 and 4.2,

‖ϕϕϕ −ψψψh‖H 1(Ω) + k ‖ϕϕϕ −ψψψh‖L2(Ω) �
(
h

p

)s

(‖f ‖Hs(Ω) + ‖g‖Hs+1/2(Ω)).

Note the exponent s, since ϕϕϕ is only in HHHs+1(Ω). Furthermore, again as in the proof
of Theorem 4.4, see also [22, Thm. 4.8], we have

‖u− vh‖H 1(Ω) + k ‖u− vh‖L2(Ω) �
(
h

p

)s+1

(‖f ‖Hs(Ω) + ‖g‖Hs+1/2(Ω)),

now with the exponent s + 1 since u ∈ Hs+2(Ω), which yields the result for s >

0. In the case s = 0 one simply sets vh = 0 as well as ψψψh = 0 and uses the
wavenumber-explicit estimates of Theorem 4.1. ��
Remark 4.7 Note that although we assume f ∈ Hs(Ω) and g ∈ Hs+1/2(∂Ω) in
Corollary 4.3, we only obtained a convergence rate s + 1. This seems suboptimal
when compared with classical FEM where, given sufficient regularity of the data
and the geometry, one can expect a rate of s + 2 for the convergence in the L2(Ω)-
norm. Especially for f ∈ L2(Ω) and g ∈ H 1/2(∂Ω) one can only expect h/p for
the FOSLS method compared to h2/p2 for the FEM. The proof of Corollary 4.3 is
in that sense sharp since the leading error term in the a priori estimate is

‖∇ · (ϕϕϕ −ψψψh)‖L2(Ω) =
∥∥∥ik−1f + iku−∇ ·ψψψh

∥∥∥
L2(Ω)

,

where we used the fact ϕϕϕ = ik−1∇u. The essential part is therefore to approximate
an f that is just in L2(Ω) and therefore no further powers of h can be gained.
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Assuming more regularity on f would resolve this problem, however, the boundary
data would restrict a further lifting of ϕϕϕ in classical Sobolev spaces, but not
in H(div,Ω) spaces. This in turn would make it necessary to directly estimate
‖∇ · (ϕϕϕ −ψψψh)‖L2(Ω) instead of generously bounding it by ‖ϕϕϕ −ψψψh‖H 1(Th)

. Last
but not least there is the boundary term

‖(ϕϕϕ −ψψψh) · nnn‖L2(∂Ω) =
∥∥∥ik−1g − u−ψψψh · nnn

∥∥∥
L2(∂Ω)

.

Again if g is only H 1/2(∂Ω) one can only expect
√
h/p, but favorable in terms of

k. ��

4.6 Numerical Examples

All our calculations are performed with the hp-FEM code NETGEN/NGSOLVE by
Schöberl, [25, 26]. We plot the error against Nλ, the number of degrees of freedom
per wavelength,

Nλ = 2π d
√

DOF

k d
√|Ω | ,

where the wavelength λ and the wavenumber k are related via k = 2π/λ and DOF
denotes the size of the linear system to be solved. We compare the results of the
classical FEM with the FOSLS method, measured in the relative L2(Ω) error. For
the classical FEM we use the standard space Sp(Th). For the FOSLS method we
employ the pairing VVV h ×Wh = BDMBDMBDMp(Th)× Sp(Th).

Example 4.1 Let Ω be the unit circle in R
2 and consider the problem

−Δu− k2u = 0 in Ω,

∂nu− iku = g on ∂Ω.

where the data g is such that the exact solution is given by u(x, y) = ei(k1x+k2y)

with k1 = −k2 = 1√
2
k. For the numerical studies, this problem will be solved

using h-FEM and h-FOSLS with polynomial degrees p = 1, 2, 3, 4. The results
are visualized in Fig. 4.1. For both methods we observe the expected convergence
O(hp+1) in the relative L2(Ω) error. Note that for both methods higher order
versions are less prone to the pollution effect. At the same number of degrees
of freedom per wavelength we also observe that the classical FEM is superior to
FOSLS, when measured in achieved accuracy in L2(Ω). This is not surprising since,
for the same mesh and polynomial degree p, the number of degrees of freedom of
the FOSLS is roughly three times as large as for the classical FEM. Note, however,
that we do not consider any solver aspects of the employed methods, where FOSLS
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Fig. 4.1 Comparison between the h-FEM (left) and h-FOSLS (right) for p = 1, 2, 3, 4 as
described in Example 4.1. The reference line in black corresponds to hp+1

might have advantages over the classical FEM since its system matrix is positive
definite.

Example 4.2 For π < ω < 2π let Ω = {(r cosϕ, r sin ϕ) : r ∈ (0, 1), ϕ ∈
(0, ω)} ⊂ R

2 and consider

−Δu− k2u = 0 in Ω,

∂nu− iku = g on ∂Ω.

The data g is such that the exact solution is given by u(x, y) = Jα(kr) cos(αϕ),
with α = 3π/2. Standard regularity theory gives u ∈ H 1+α−ε(Ω) for every ε > 0.
In the numerical experiments we keep kh = 5 and perform a p-FEM and a p-
FOSLS method up to p = 46 and p = 29, respectively. The results are visualized in
Fig. 4.2. We observe that the FEM has significantly smaller errors than the FOSLS.
For a discussion of the expected L2(Ω)-convergence rates of the p-FEM, we refer
the reader to [14, Remark after Thm. 3 and Section 3].

The next example focuses on the Helmholtz equation with right-hand side f with
finite Sobolev regularity.
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Fig. 4.2 Comparison between the p-FEM (left) and p-FOSLS (right) for kh = 5 as described in
Example 4.2. We include the reference lines p−4·2/3 = p−8/3 and p−(2·2/3+1) = p−7/3

Example 4.3 Let Ω = (−1, 1) ⊂ R and f = −χ(−1,0] + χ(0,1), where χA denotes
the indicator function on A ⊂ R. The function f is in H 1/2−ε(Ω) for every ε > 0.
We consider uniform meshes Th on Ω such that the break point zero is not a node,
as otherwise the piecewise smooth solution could be approximated very well. We
study

−u′′ − k2u = f in Ω,

∂nu− iku = g on ∂Ω.

where the data g is such that the exact solution is given by

u(x) =
{

cos(kx)+ 1
k2 x ≤ 0

(1 + 2
k2 ) cos(kx)− 1

k2 x > 0

Standard regularity theory gives u ∈ H 2.5−ε(Ω) for every ε > 0. For the h-FEM
we expect O(hmin(2+0.5,p+1)). In fact for p > 1 one can show (cf. [7, Cor. 4.6]) that
k
∥∥u− uFEM

h

∥∥
L2(Ω)

� h2.5 and, by inspection, ‖u‖L2(Ω) = O(1) (uniformly in k).

It is therefore expedient to plot k3.5
∥∥u− uFEM

h

∥∥
L2(Ω)

/‖u‖L2(Ω) versus Nλ ∼ (kh).

For the h-FOSLS Corollary 4.3 predicts only O(hmin(1+0.5,p+1)). The numerical
results show, however, for both methods convergence O(hmin(2.5,p+1)). The results
are visualized in Fig. 4.3.

Remark 4.8 The numerical results of Example 4.3 visualized in Fig. 4.3 indicate
that Corollary 4.3 is in fact suboptimal as it predicts only a convergence O(h1.5)

while we observe O(hmin(2.5,p+1)). A starting point for understanding this better
convergence behavior could be two observations: first, the duality argument in The-
orem 4.4 is based on the regularity (ψψψ, v) ∈ HHH 2(Ω)×H 2(Ω) of the dual solution
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Fig. 4.3 Comparison between the h-FEM (left) and h-FOSLS (right) for p = 1, . . . , 5 as
described in Example 4.3. The reference line in black corresponds to hmin(2.5,p+1)

(ψψψ, v) whereas in fact (see the proof of Lemma 4.1) (ψψψ, v) ∈ HHH 2(div,Ω)×H 2(Ω).
Second, a more careful application of the Cauchy-Schwarz inequality (4.36) at the
beginning of the proof of Theorem 4.4 is advisable. In this connection, we point to
the fact that the terms in the square brackets in (4.36) are not of the same order. To
illustrate this, we plot the components

e1 := ikeϕeϕeϕ +∇eu and e2 := ikeu +∇ · eϕeϕeϕ (4.39)

in Fig. 4.4 for the problem studied in Example 4.3. ��
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Fig. 4.4 Comparison between the error terms e1 := ‖ikeϕeϕeϕ + ∇eu‖L2(Ω) (left) and e2 :=
‖ikeu +∇ · eϕeϕeϕ‖L2(Ω) (right) for p = 1, . . . , 5 as described in Remark 4.8 and Example 4.3. The
reference line on the left corresponds to h1 for p = 1 and h1.5 for p > 1. The reference line on the
right corresponds to h1/2
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Chapter 5
Numerical Study of Goal-Oriented Error
Control for Stabilized Finite Element
Methods

Marius Paul Bruchhäuser, Kristina Schwegler, and Markus Bause

Abstract The efficient and reliable approximation of convection-dominated prob-
lems continues to remain a challenging task. To overcome the difficulties associated
with the discretization of convection-dominated equations, stabilization techniques
and a posteriori error control mechanisms with mesh adaptivity were developed and
studied in the past. Here we combine the Dual Weighted Residual (DWR) method
for goal-oriented error control with stabilized finite element methods. By a duality
argument an error representation is derived on that an adaptive strategy is built.
The key ingredient of this work is the application of a higher-order discretization of
the dual problem in order to make a robust error control for user-chosen quantities
of interest feasible. By numerical experiments in 2D and 3D we illustrate that this
interpretation of the DWR methodology is capable to resolve layers and sharp fronts
with high accuracy and to further reduce spurious oscillations.

5.1 Introduction

From the second half of the last century to nowadays, especially in the pioneering
works of the 1980’s (cf., e.g., [16, 24]), strong efforts and great progress were made
in the development of accurate and efficient approximation schemes for convection-
dominated problems; cf., e.g., [38].

The solutions of convection-dominated transport problems are typically charac-
terized by the occurrence of sharp moving fronts and interior or boundary layers.
The key challenge for the accurate numerical approximation of these solutions is
thus the development of discretization schemes with the ability to capture strong
gradients of solutions without producing spurious oscillations or smearing effects.
As shown in a comparative study for time-dependent convection-diffusion-reaction
equations in [28], conventional stabilization techniques based on standard meshes
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fail to avoid these oscillations even after a careful fine-tuning of the respective
stabilization parameters. As further shown in [28], an alternative in reducing
oscillations is obtained by using flux-corrected transport (FCT) schemes [33, 34],
that work on the algebraic level. Recently, numerical analysis of these methods
were introduced and applied to steady convection-diffusion-reaction equations;
cf. [6, 7]. In [14] an hp-adaptive FCT algorithm for unsteady convection equations
is presented. Although these FCT schemes show a significant reduction of the
unphysical oscillations, smearing effects still arise and can be observed; cf. [14, 28].
Similar results have been perceived in three dimensions; cf. [29].

A further and widespread technique to capture singular phenomena and sharp
profiles of solutions is the application of adaptive mesh refinement based on an a
posteriori error control mechanism. For a review of a posteriori error estimation
techniques for finite element methods and automatic mesh generation we refer, for
instance, to the monograph [41]. The design of an adaptive method requires the
availability of an appropriate a posteriori error estimator. One possible technique
is the commonly used Dual Weighted Residual (DWR) method [4, 11, 12], where
the error is estimated in an arbitrary user-chosen target quantity of physical interest.
Early studies for stationary convection-reaction equations combined with adaptive
mesh refinement have been considered in [22, 36] and [12, Section 3.3]. The DWR
approach together with local projection stabilization (LPS) was applied to the steady
Navier-Stokes equations in [10] as well as together with LPS and the stream-
line upwind Petrov-Galerkin (SUPG) method to the nonstationary Navier-Stokes
equations in [13, 39]. The one-dimensional case for steady convection-diffusion
equations was investigated in [32].

In this work we combine the DWR approach with SUPG stabilized approx-
imations of convection-diffusion-reaction problems. For simplicity, we restrict
ourselves to stationary convection-dominated problems here. This is done in order
to focus on the interaction of stabilization and error control. Even though several
investigations have been done for similar problems, we still expect potential for
improvements with respect to accuracy and efficiency, especially considering Péclet
numbers that are largely higher than 103. Therefore, in contrast to most of the
works above, we solve the dual problem by using higher-order finite element
techniques. Our motivation also comes through the work of Lube et al. [35], in that
the positive impacts of using higher-order finite elements together with stabilized
Galerkin methods were investigated. Due to the specific character of convection-
dominated problems our computational experience is that the error control needs a
particular care in regions with layers and sharp fronts in order to get an accurate
quantification of the numerical errors. In numerical experiments we will illustrate
the impact of the proper choice of the weights and give a comparison to the
common used approximation by higher-order interpolation. The key motivation
in this work is to reduce sources of inaccuracies and non-sharp estimates within
the error representation as far as possible in order to avoid numerical artefacts. In
[19, 37], in particular higher-order finite elements are used to approximate the dual
solution for elliptic problems. But in contrast to this work, in [19, 37] only a weak
form of the error estimator is used, which is based on a partition-of-unity technique
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to avoid the evaluation of strong residuals and jump terms over element edges.
Other weak forms of the DWR approach applied to nonlinear partial differential
equations or steady convection-diffusion equations have been investigated in [15]
or [32], respectively. Here, we follow the classical way of the DWR philosophy,
receiving the error representation on every mesh element by a cell-wise integration
by parts.

This work is organized as follows. In Sect. 5.2 we introduce our model problem
together with some global assumptions and general concepts. In Sect. 5.3 we derive
a localized error representation in terms of a target quantity. An adaptive solution
algorithm together with some implementational issues is addressed in Sect. 5.4.
Finally, in Sect. 5.5 the results of numerical experiments in two and three space
dimensions are presented in order to illustrate the feasibility and potential of the
proposed approach.

5.2 Problem Formulation and Stabilized Discretization

In this section we first present our model problem. For completion, we briefly sketch
the primal and dual stabilized approximation schemes within the DWR framework.

5.2.1 Model Problem and Variational Formulation

In this work we consider the steady linear convection-diffusion-reaction problem

−∇ · (ε∇u)+ b · ∇u+ αu = f in Ω , u = 0 on ∂Ω . (5.1)

We assume thatΩ ⊂ Rd , with d = 2 or d = 3, is a polygonal or polyhedral bounded
domain with Lipschitz boundary ∂Ω . For brevity, problem (5.1) is equipped
with homogeneous Dirichlet boundary conditions. In our numerical examples in
Sect. 5.5, we also consider other types of boundary conditions. In Remark 5.3, the
incorporation of nonhomogeneous Dirichlet and Neumann boundary conditions is
briefly addressed.

Here, 0 < ε " 1 is a small positive diffusion coefficient, b ∈ (H 1(Ω))d ∩
(L∞(Ω))d is the flow field or convection tensor, α ∈ L∞(Ω) is the reaction
coefficient, and f ∈ L2(Ω) is a given outer source of the unknown scalar quantity
u . Furthermore, we assume that the following condition is fulfilled:

∇ · b(x) = 0 and α(x) ≥ 0 ∀x ∈ Ω . (5.2)
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It is well known that problem (5.1) along with condition (5.2) admits a unique weak
solution u ∈ V = H 1

0 := {
v ∈ H 1(Ω)

∣∣ v|∂Ω = 0
}

that satisfies the following
variational formulation; cf., e.g. [2, 27, 38].

Find u ∈ V such that

A(u)(ϕ) = F(ϕ) ∀ϕ ∈ V , (5.3)

where the bilinear form A : V × V �→ R and the linear form F : V �→ R are

A(u)(ϕ) := (ε∇u,∇ϕ)+ (b · ∇u, ϕ)+ (αu, ϕ) , F (ϕ) := (f, ϕ) .

Here, (·, ·) is the inner product of L2(Ω) and ‖ · ‖ the associated L2-norm with

‖v‖ = (v, v)
1
2 = (

∫
Ω |v|2dx) 1

2 .

5.2.2 The Dual Weighted Residual Approach

The DWR method aims at the control of an error in an arbitrary user-chosen target
functional J of physical relevance. To get an error representation with respect to
this target functional, an additional dual problem has to be solved. Before we focus
on this error representation, we introduce the derivation of the dual problem of (5.3)
needed below in the DWR approach. For this, we consider the Euler-Lagrangian
method of constrained optimization. For some given functional J : V �→ R we
consider solving

J (u) = min{J (v) , v ∈ V , where A(v)(ϕ) = F(ϕ) ∀ϕ ∈ V } .

For this we define the corresponding Lagrangian functional L : V × V �→ R by

L (u, z) := J (u)+ F(z)− A(u)(z) , (5.4)

where we refer to z ∈ V as the dual variable (or Lagrangian multiplier), cf. [4]. We
determine a stationary point {u, z} ∈ V × V of L (·, ·) by the condition that

L ′(u, z)(ψ, ϕ) = 0 ∀{ψ, ϕ} ∈ V × V , (5.5)

or, equivalently, by the system of equations that

A′(u)(ψ, z) = J ′(u)(ψ) ∀ψ ∈ V ,

A(u)(ϕ) = F(ϕ) ∀ϕ ∈ V ,

where A′ is given by A′(u)(ψ, z) = (ε∇ψ,∇z)+(b·∇ψ, z)+(αψ, z) = A(ψ)(z) .

Applying integration by parts to the convective term along with the condition (5.2)
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yields for A′(u)(ψ, z) the representation that

A∗(z)(ψ) := A′(u)(ψ, z) = (ε∇z,∇ψ)− (b · ∇z,ψ) + (αz,ψ) . (5.6)

Thus we have the following Euler-Lagrange system.
Find {u, z} ∈ V × V such that

A(u)(ϕ) = F(ϕ) ∀ϕ ∈ V , (5.7)

A∗(z)(ψ) = J (ψ) ∀ψ ∈ V . (5.8)

5.2.3 Discretization in Space

Here we present the spatial discretization of (5.1). We use Lagrange type finite
element spaces of continuous functions that are piecewise polynomials. For the
discretization in space, we consider a decomposition Th of the domain Ω into
disjoint elements K , such that Ω̄ = ∪K∈Th

K̄ . Here, we choose the elements
K ∈ Th to be quadrilaterals for d = 2 and hexahedrals for d = 3. We denote
by hK the diameter of the element K . The global space discretization parameter h is
given by h := maxK∈Th

hK . Our mesh adaptation process yields locally refined and
coarsened cells, which is enabled by using hanging nodes [17]. We point out that the
global conformity of the finite element approach is preserved since the unknowns
at such hanging nodes are eliminated by interpolation between the neighboring
‘regular’ nodes, cf. [4]. The discrete finite element space is defined as usual,

V
p

h := {v ∈ V ∩ C(Ω̄)
∣∣ v|K ∈ Q

p

h (K) ,∀K ∈ Th

}
, (5.9)

where Q
p

h (K) is the space of polynomials that are of degree less than or equal to p

with respect to each variable x1, . . . , xd .

5.2.4 Streamline Upwind Petrov-Galerkin Stabilization

In order to reduce spurious and non-physical oscillations of the discrete solutions,
we apply the SUPG method [16, 23], a well-known residual based stabilization
technique for finite element approximations; cf. [1, 8, 28, 38]. Existing a priori
error analysis ensure its convergence in the natural norm of the scheme including
the control of the approximation error in streamline direction; cf. [38, Thm. 3.27].
Applying the SUPG approach to the discrete counterpart of (5.7) and (5.8) yields the
following stabilized discrete system of equations, which can be found in a similar
way in [39, Chapter 3.3.1]. We note that here a so called first dualize and then
stabilize (FDTS) approach is underlying, where the stabilization is applied to the
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discrete dual problem only after its derivation via the Euler-Lagrangian method of
constrained optimization; cf. Remark 5.2.

Find {uh, zh} ∈ V
p
h × V

p+s
h , s ≥ 1 , such that

AS(uh)(ϕh) = F(ϕh) ∀ϕh ∈ V
p

h , (5.10)

A∗
S(zh)(ψh) = J (ψh) ∀ψh ∈ V

p+s

h , s ≥ 1 , (5.11)

where the stabilized bilinear forms are given by

AS(uh)(ϕh) := A(uh)(ϕh)+ S(uh)(ϕh) ,

A∗
S(zh)(ψh) := A∗(zh)(ψh)+ S∗(zh)(ψh) ,

and the stabilized terms are defined by

S(uh)(ϕh) :=
∑
K∈Th

δK(−∇ · (ε∇uh)+ b · ∇uh + αuh − f,b · ∇ϕh)K ,

S∗(zh)(ψh) :=
∑
K∈Th

δ∗K(−∇ · (ε∇zh)− b · ∇zh + αzh − j (uh),−b · ∇ψh)K .

Remark 5.1 The proper choice of the stabilization parameters δK and δ∗K is an
important issue in the application of the SUPG approach; cf. [25, 26] and the
discussion therein. As proposed by the analysis of stabilized finite element methods
in [8, 35], we choose the parameter δK and δ∗K as

δK, δ∗K ∼ min

{
hK

p‖b‖L∞(K)

; h2
K

p4ε
; 1

α

}
.

Here, the symbol ∼ denotes the equivalence up to a multiplicative constant
independent of K . This constant has to be understood as a numerical tuning
parameter.

Remark 5.2 We note that the stabilization within the dual problem acts in the
negative direction of the flow field b; cf. Eq. (5.6). The discrete dual problem (5.11)
is based on a first dualize and then stabilize (FDTS) principle in that the dual
problem of the weak Eq. (5.8) is derived first. The SUPG stabilization is then applied
to the discrete counterpart of the dual problem. The alternative strategy, first stabilize
and then dualize (FSTD), of transposing the stabilized fully discrete Eq. (5.10)
requires differentiation of the stabilization terms. In general, the strategiesFDTS and
FSTD do not commute with each other, due to the presence of the stabilization terms
in the discrete Lagrangian functional. In our performed numerical experiments the
FSTD strategy did not show any lack of stability but led to slightly weaker results;
cf. [40]. For these reasons we focus on the FDTS strategy only in this work.
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5.3 Error Estimation

In this section we present a localized (i.e. elementwise) a posteriori error represen-
tation for the stabilized finite element approximation in terms of the goal quantity
J (·) by using the concepts of the DWR approach introduced in Sect. 5.2.2. In order
to keep this work self-contained we briefly summarize the key arguments of the
DWR approach applied to the stabilized model problem. We follow the lines of [4,
Chapter 6] and [10], where all of the proofs can be found. To start with, we put

x := {u, z} , y := {ψ, ϕ} ∈ V ×V , xh := {uh, zh} , yh := {ψh, ϕh} ∈ V
p
h ×V

p
h ,

and

S̃(xh)(yh) := S(uh)(ϕh)+ S∗(zh)(ψh) .

The discrete solution xh ∈ V
p
h × V

p
h then satisfies the variational equation

L ′(xh)(yh) = S̃(xh)(yh) ∀yh ∈ V
p
h × V

p
h . (5.12)

Now we develop the error in terms of the Lagrangian functional.

Theorem 5.1 Let X be a function space and L : X → R be a three times
differentiable functional on X. Suppose that xc ∈ Xc with some (“continuous”)
function spaceXc ⊂ X is a stationary point ofL . Suppose that xd ∈ Xd with some
(“discrete”) function space Xd ⊂ X , with not necessarily Xd ⊂ Xc , is a Galerkin
approximation to xc being defined by the equation

L ′(xd)(yd) = S̃(xd)(yd) ∀yd ∈ Xd .

In addition, suppose that the auxiliary conditionL ′(xc)(xd) = 0 is satisfied. Then
there holds the error representation

L (xc)−L (xd) = 1

2
L ′(xd)(xc − yd)+ 1

2
S̃(xd)(yd − xd)+R ∀yd ∈ Xd ,

where the remainderR is defined byR = 1
2

∫ 1
0 L ′′′(xd+se)(e, e, e) ·s ·(s−1) ds ,

with the notation e := xc − xd .

For the subsequent theorem we introduce the primal and dual residuals by

ρ(uh)(ϕ) := F(ϕ)− A(uh)(ϕ) ∀ϕ ∈ V , (5.13)

ρ∗(zh)(ψ) := J ′(uh)(ψ)− A∗(zh)(ψ) ∀ψ ∈ V . (5.14)

Theorem 5.2 Suppose that {u, z} ∈ V × V is a stationary point of the Lagrangian
functional L defined in (5.4) such that (5.5) is satisfied. Let {uh, zh} ∈ V

p
h ×
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V
p
h denote its Galerkin approximation being defined by (5.10) and (5.11) such

that (5.12) is satisfied. Then there holds the error representation that

J (u)− J (uh) = 1

2
ρ(uh)(z − ϕh)+ 1

2
ρ∗(zh)(u− ψh)+RS̃ +RJ , (5.15)

for arbitrary functions {ϕh,ψh} ∈ V
p
h ×V

p
h , where the remainder terms are RS̃ :=

1
2S(uh)(ϕh + zh)+ 1

2S
∗(zh)(ψh − uh) and

RJ := 1
2

∫ 1
0 J ′′′(uh + s · e)(e, e, e) · s · (s − 1) ds , with e = u− uh.

In the error representation (5.15) the continuous solution u is required for the
evaluation of the dual residual. The following theorem shows the equivalence of
the primal and dual residual up to a quadratic remainder. This observation will
be used below to find our final error representation in terms of the goal quantity
J and a suitable linearization for its computational evaluation or approximation,
respectively.

Theorem 5.3 Under the assumptions of Theorem 5.2, and with the defini-
tions (5.13) and (5.14) of the primal and dual residual, respectively, there holds
that

ρ∗(zh)(u− ψh) = ρ(uh)(z− ϕh)+ S(uh)(ϕh − zh)+ S∗(zh)(uh − ψh)+ΔρJ ,

for all {ψh, ϕh} ∈ V
p
h × V

p
h , where the remainder term is given by

ΔρJ := − ∫ 1
0 J ′′(uh + s · e)(e, e) ds with e := u− uh.

We summarize the results of the previous two theorems in the following corollary.

Corollary 5.1 Under the assumptions of Theorem 5.2 with the definitions (5.13)
and (5.14) of the primal and dual residual, respectively, there holds the error
representation that

J (u)− J (uh) = ρ(uh)(z− ϕh)+ S(uh)(ϕh)+RJ + 1

2
ΔρJ , (5.16)

for arbitrary functions ϕh ∈ V
p
h , where the remainder term RJ is given by

Theorem 5.2 and the linearization error ΔρJ is defined in Theorem 5.3.

In a final step we present a localized approximation of the error that is then used
for the design of the adaptive algorithm. We note that the final result (5.17) is a
slight modification of Theorem 4.2 for the case ε = 0 in [36] or Prop. 3.3 for the
case ε = α = 0 in [12, Section 3.3]. The difference to these references comes
through using a FDTS approach here, cf. Remark 5.2. Similar results can also be
found in [22].

Theorem 5.4 (Localized Error Representation) Let the assumptions of Theo-
rem 5.2 be satisfied. Neglecting the higher-order error terms in (5.16), then there



5 Goal-Oriented Error Control for Stabilized FEM 93

holds as a linear approximation the cell-wise error representation

J (u)− J (uh)
.=
∑
K∈Th

{(
R(uh), z− ϕh

)
K
− δK

(
R(uh),b · ∇ϕh

)
K

− (E(uh), z− ϕh

)
∂K

}
.

(5.17)

The cell- and edge-wise residuals are defined by

R(uh)|K := f +∇ · (ε∇uh)− b · ∇uh − αuh , (5.18)

E(uh)|Γ :=
{

1
2n · [ε∇uh] if Γ ⊂ ∂K\∂Ω ,

0 if Γ ⊂ ∂Ω ,
(5.19)

where [∇uh] := ∇uh|Γ ∩K−∇uh|Γ ∩K ′ defines the jump of∇uh over the inner edges
Γ with normal unit vector n pointing from K to K ′.

Proof The assertion directly follows from (5.16) by neglecting the higher-order
remainder terms RJ and ΔρJ as well as applying integration by parts on each cell
K ∈ Th to the diffusion term in the primal residual (5.13). ��
Remark 5.3 (Nonhomogeneous Dirichlet and Neumann Boundary Conditions) We
briefly address the incorporation of further types of boundary conditions. First, we
consider problem (5.1) equipped with the nonhomogeneous Dirichlet condition u =
gD on ∂Ω , for a given function g ∈ H

1
2 (∂Ω) . For this, let g̃D ∈ H 1(Ω) be an

extension of gD in the sense that the trace of g̃D equals gD on ∂Ω . Further, let
the discrete function g̃D,h be an appropriate finite element approximation of the
extension g̃D . Then, the trace on ∂Ω of g̃D,h represents a discretization of gD . For
instance, a nodal interpolation of gD and an extension in the finite element space
can be used. This allows us to recast the weak form of problem (5.1) and its discrete
counterpart in terms of w = u−g̃D ∈ H 1

0 (Ω) and wh = uh−g̃D,h ∈ V
p
h ⊂ H 1

0 (Ω).
The previous calculations and the derivation of the a posteriori error estimator are
then done for the weak problem and its discrete counterpart rewritten in terms of w
and wh. This yields the result that

J (u)− J (uh)
.=

∑
K∈Th

{(
R(uh), z− ϕh

)
K
− δK

(
R(uh),b · ∇ϕh

)
K

− (E(uh), z− ϕh

)
∂K

}
− ((gD − g̃D,h), ε∇z · n)

∂Ω
,

where R(uh) and E(uh) are given by (5.18) and (5.19), respectively. If a homo-
geneous Neumann condition is prescribed on a part ∂ΩN of the boundary ∂Ω =
∂ΩD∪∂ΩN , with Dirichlet part ∂ΩD, then the derivation has to be done analogously
for the solution space V = {v ∈ H 1(Ω) | v = 0 on ΓD} and its discrete counterpart
and the resulting variational problems.
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5.4 Practical Aspects

In this section we present some practical aspects regarding the application of the
result given in Theorem 5.4 in computational studies of convection-dominated prob-
lems. We note that the concepts described here can be generalized to nonstationary
problems; cf. [31]. For the nonstationary Navier-Stokes equations along with local
projection stabilization (LPS), numerical investigations can be found in [13, 39] for
Péclet numbers up to a magnitude of 103. The error representation (5.17), rewritten
as

J (u)− J (uh)
.=
∑
K∈Th

{(
R(uh), z − ϕh

)
K
− δK

(
R(uh),b · ∇ϕh

)
K

−(E(uh), z− ϕh

)
∂K

}
= η :=

∑
K∈Th

ηK , (5.20)

depends on the discrete primal solution uh as well as on the exact dual solution z.
For the application of (5.20) in computations, the unknown dual solution z has
to be approximated, which results in an approximate error indicator η̃. This
approximation cannot be done in the same finite element space as used for the
primal problem, since this would result in an useless vanishing error representation
η̃ = 0, due to Galerkin orthogonality. As a key ingredient of this work, we use an
approximation in a finite element space that is of higher-order compared to that one
of solving the primal problem, which however leads to higher computational costs;
cf. [30] for algorithmic formulations and analyses. In the literature, the application
of higher-order interpolation instead of usage of higher-order finite element spaces
is often suggested for the DWR approach; cf. [4, 10, 13]. For convection-dominated
problems such an interpolation might be defective and lead to a loss of accuracy
of the underlying error estimator. Higher-order techniques show more stability and
gain with regard to the accuracy of the error estimator, due to the more accurate
approximation of the weights. In Example 1 of Sect. 5.5 a comparative study
between higher-order interpolation and higher-order finite elements is given.

In order to define the localized error contributions η̃K we consider a hierarchy
of sequentially refined meshes Mi , with i ≥ 1 indexing the hierarchy. The
corresponding finite element spaces are denoted by V

p+s,i

h , s ≥ 1 , cf. (5.9). We
calculate the cell-wise contributions to the linearized error representation (5.20) by
means of

η̃K = (R(uih), zih − Ihz
i
h

)
K
− δK

(
R(uih),b · ∇Ihz

i
h

)
K
− (E(uih), zih − Ihz

i
h

)
∂K

,

(5.21)

where the cell and edge residuals are given in (5.18) and (5.19), respectively. By
Ihz

i
h ∈ V

p,i
h we denote the nodal based Lagrange interpolation of the higher-order
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approximation zih ∈ V
p+s,i
h , s ≥ 1 into the lower order finite element space V

p
h . Our

adaptive mesh refinement algorithm based on (5.21) is summarized in the following.

Adaptive Solution Algorithm (Refining and Coarsening)

Initialization Set i = 0 and generate the initial finite element spaces for the primal
and dual problem.

1. Solve the primal problem: Find uih ∈ V
p,i

h such that

AS(u
i
h)(ϕh) = F(ϕh) ∀ϕh ∈ V

p,i
h .

2. Solve the dual problem: Find zih ∈ V
p+s,i

h ⊃ V
p,i

h , s ≥ 1 , such that

A∗
S(z

i
h)(ψh) = J (ψh) ∀ψh ∈ V

p+s,i
h , s ≥ 1 .

Here, V
p+s,i

h denotes the finite element space of piecewise polynomials of
higher-order on the mesh Mi .

3. Evaluate the a posteriori error indicator

η̃ :=
∑
K∈Th

η̃K , with η̃K = (R(uiH ), zih − Ihz
i
h

)
K
− δK

(
R(uiH ),b · ∇Ihz

i
h

)
K

−(E(uiH ), zih − Ihz
i
h

)
∂K

,

where the cell and edge residuals are given in (5.18) and (5.19). By uiH we

denote the nodal based Lagrange interpolation of uih in V
p+s,i
h . Further, zih is the

computed dual solution and Ihz
i
h is the interpolation of zih in the finite element

space V
p,i
h of the primal problem.

4. Histogram based refinement strategy:
Choose θ ∈ (0.25, 5). Put η̃max = max

K∈Th

|η̃K | and μ = θ
∑

K∈Th
|η̃K |

/
#K .

While μ > η̃max: Set μ := μ
2 . Mark the elements K̃ with |η̃K̃ | > μ to be refined

and those 2% of the elements K̂ that provide the smallest contribution to η̃ to be
coarsened. Generate a new mesh Mi+1 by regular coarsening and refinement.

5. Check the stopping condition:
If η̃max < tol or η̃ < tol is satisfied, then the adaptive solution algorithm is
terminated; Else, i is increased to i + 1 and it is jumped back to Step 1.

Remark 5.4 Regarding the choice of the numerical tuning parameter θ in Step 4
of the previous algorithm we made the computational experience that a value of
θ between 0.25 and 5 typically leads to good results. Further, we note that the
performance properties of adaptive algorithms are strongly affected by the marking
strategy. The so called Dörfler marking (cf. [18]) or the marking of the largest local
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error indicators represent further popular marking strategies. For a further discussion
of this issue we refer to, e.g., [4].

Remark 5.5 According to the adaptive solution algorithm presented above, we use
the same mesh for solving the primal and dual problem, more precisely we use
the same triangulation for both problems, but different polynomial degrees for the
underlying shape functions of the respective finite element space.

5.5 Numerical Studies

In this section we illustrate and investigate the performance properties of the pro-
posed approach of combining the Dual Weighted Residual method with stabilized
finite element approximations of convection-dominated problems. We demonstrate
the potential of the DWR method with regard to resolving solution profiles admitting
sharp layers as they arise in convection-dominated problems. Further, we investigate
the mesh adaptation processes by prescribing various target functionals or goal
quantities, respectively. For this, standard benchmark problems of the literature
for studying the approximation of convection-dominated transport are applied. For
the implementation and our numerical computations we use our DTM++ frontend
software [30, Chapter 4] that is based on the open source finite element library
deal.II; cf. [3, 5]. For measuring the accuracy of the error estimator, we will
study in our numerical experiments the effectivity index

Ieff =
∣∣∣∣

η̃

J (u)− J (uh)

∣∣∣∣ (5.22)

as the ratio of the estimated error η̃ of (5.20) over the exact error. Desirably, the
index Ieff should be close to one.

Example 1 (Hump with Circularly Layer, 2d) In the first numerical experiment
we focus on studying the accuracy of our error estimator and the impact of
approximating the weights of the dual solution within the error indicators (5.21).
For this, we consider two different approaches for approximating the dual solution
within the error representation and investigate several combinations of polynomial
orders for the finite element spaces of the primal and dual solution. We study
problem (5.1) with the prescribed solution (cf. [1, 8, 28])

u(x) =16x1(1 − x1)x2(1 − x2) ·
{

1
2 +

arctan
(

2ε−1/2
[
r2

0−(x1−x0
1 )

2−(x2−x0
2 )

2
])

π

}
.

(5.23)

where Ω := (0, 1)2 and r0 = 0.25, x0
1 = x0

2 = 0.5. We choose the flow field
b = (2, 3)$ and the reaction coefficient α = 1.0. For the solution (5.23) the right-
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hand side function f is calculated from the partial differential equation. Boundary
conditions are given by the exact solution. Our target quantity is chosen as

JL2(u) = 1

‖e‖L2(Ω)

(e, u) . (5.24)

In a first computational study we investigate the approximation of the exact dual
solution z within the error representation (5.17) on the one hand by higher-order
interpolation, and by higher-order finite elements; cf. [4] for more details. In Fig. 5.1
we visualize the respective effectivity indices for varying diffusion coefficients.
While the values are quite similar for a comparatively large diffusion coefficient,
the difference increases if ε becomes smaller. This confirms our assumption at the
beginning, obtaining better results with regard to the accuracy for the underlying
error estimator using higher-order finite elements for the approximation of the dual
solution. In the sequel, all following examples are performed using this higher-order
finite element method and the value ε = 10−6, unless otherwise specified.

In Fig. 5.2a we compare the convergence behavior of the proposed DWR
approach with a global mesh refinement strategy. The corresponding solution

103 104 105
0

0.5

1

= 10−3

h-oIn
h-oFE

103 104 105
0

0.5

1

= 10−6

h-oIn
h-oFE

103 104 105 106
0

0.5

1

= 10−8

h-oIn
h-oFE

Fig. 5.1 Comparison of effectivity indices (over degrees of freedom) with regard to higher-order
interpolation (h-oIn) versus higher-order finite elements (h-oFE) for varying diffusion coefficients
ε with target quantity (5.24) for Example 1

102 103 104 105 106

10−4

10−2

gl Q1

ad Q1/Q2

(a) (b)

Fig. 5.2 Error comparison and visualization of an adaptive mesh for Example 1 (a) L2-error over
degrees of freedom for global and DWR adaptive mesh refinement (b) Adaptive mesh for target
quantity (24) with 56222 degrees of freedom
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(a) (b)

Fig. 5.3 Stabilized solution profile on a globally refined mesh with 66,049 degrees of freedom
(a) and on an adaptively refined mesh with error control by the target quantity (5.24) with 56,222
degrees of freedom (b) for Example 1

102 103 104 105 106
0

0.5

1
Q1/Q2

Q1/Q3

Q1/Q4

Q2/Q3

Q2/Q4

Q3/Q4

0

0.5

1

Fig. 5.4 Effectivity indices over degrees of freedom for the target quantity (5.24) and different
polynomial degrees for Example 1

profiles are visualized in Fig. 5.3. The adaptively generated mesh is presented in
Fig. 5.2b. The DWR based adaptive mesh adaptation is clearly superior to the global
refinement in terms of accuracy over degrees of freedom. While the globally refined
solution is still perturbed by undesired oscillations within the circular layer and
behind the hump in the direction of the flow field b, the adaptively computed
solution exhibits an almost perfect solution profile for even less degrees of freedom.

In Fig. 5.4 we present the calculated effectivity indices (5.22) for solving the
primal and dual problem in different pairs of finite element spaces based on the
family of Qk elements. Considering the Q1 based approximation of the primal
problem, we note that by increasing the polynomial degree of the dual solution
from Q2 to Q4 the mesh adaptation process reaches the stopping criterion faster
and requires less degrees of freedom. This observation is reasonable, since a higher-
order approximation of the dual problem is closer to its exact solution of the dual
problem, which is part of the error representation (5.17). Thus we conclude that
a better approximation of the weights provides a higher accuracy of the error
estimator. This observation is also confirmed by the comparison of the pairs of
Q2/Q3 with Q2/Q4 based finite element spaces. Nevertheless, the difference for
using higher-order finite elements for solving the dual problem is not that significant,
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even less if we take into account the higher computational costs for solving
the algebraic form of the dual problem for an increasing order of the piecewise
polynomials. Using pairs of Qk/Qk+1 based elements for the approximation of the
primal and dual problem, the error estimator gets worse for increasing values of the
parameter k. This observation is in good agreement with the results in [19, Example
3]. A reason for this behavior is given by the observation that for increasing values of
k the mesh is less refined for the same number of degrees of freedom. Therefore less
cells are available to capture the strong gradients of the exact solution. This argues
for choosing smaller values of k in the application of our DWR based approach.

Example 2 (Point-Value Error Control, 2d) In this experiment we study the
application of our approach for different target functionals within a sequence of
decreasing diffusion coefficients. Thereby we aim to analyze the robustness of the
approach with respect to the small perturbation parameter ε in (5.1). If convection-
dominated problems are considered, or also often for applications of practical
interest, local quantities are of greater interest than global ones. The DWR approach
offers the appreciable advantage over standard a posteriori error estimators that
an error control in an arbitrary user-chosen quantity and not only in the global
L2 norm, as in Example 1, or a norm of energy type can be obtained. Since the
error representation is exact up to higher-order terms (cf. Theorem 5.4), robustness
with respect to the perturbation parameter ε can be expected to become feasible.
Of course, the approximation of the dual solution z in (5.17) adds a source of
uncertainty in the error representation. In the sequel, we evaluate the potential
of our approach with respect to these topics for different target functionals. As a
benchmark problem we consider problem (5.1) for a solution given by (cf. [35,
Example 4.2])

u(x) = 1

2

(
1 − tanh

2x1 − x2 − 0.25√
5ε

)

with corresponding right-hand side function f . Further, Ω = (0, 1)2, α = 1.0,
b = 1√

5
(1, 2)$. The Dirichlet boundary condition is given by the exact solution. The

solution is characterized by an interior layer of thickness O(
√
ε| ln ε|). We study the

target functionals

JL2(u) = 1

‖e‖L2(Ω)

(e, u) , JM(u) =
∫

Ω

u dx and JP (u) = u(xe) ,

where e := u − uh and with a user-prescribed control point xe =
(

5
16 ,

3
8

)
that is

located in the interior of the layer. In our computations we regularize JP (·) by

JrP (u) = 1

|Br |
∫

Br

u(x) dx ,
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where the ball Br is defined by Br = {x ∈ Ω | ‖x− xe‖ < r} with small radius
r > 0. Here, all test cases are solved by using the Q1/Q2 pair of finite elements for
the primal and dual problem which is due to the observations depicted in Example 1.
In Table 5.1 and Fig. 5.5 we present the effectivity indices of the proposed DWR
approach applied to the stabilized approximation scheme (5.10) for a sequence of
vanishing diffusion coefficients. For the target functionals JL2(·) and JM(·) the
effectivity indices nicely converge to one for an increasing number of degrees of
freedom. Moreover, the expected convergence behavior is robust with respect to the
small diffusion parameter ε. For the more challenging error control of a point-value,
which however can be expected to be of higher interest in practice, the effectivity
indices also convergences nicely to one. This is in good agreement with effectivity
indices for point-value error control that are given in other works of the literature
for the Poisson problem only; cf. [4, p. 45]. We note that in the case of a point-value
error control the target functional lacks the regularity of the right-hand side term in
the dual problem that is typically needed to ensure the existence and regularity of
weak solutions; cf. [21, Chapter 6.2]. However, no impact of this lack of regularity
is observed in the computational studies. Thus, for all target functionals a robust
convergence behavior is ensured for this test case.

For completeness, in Fig. 5.6 we visualize the computed solution profiles and
adaptive meshes for an error control based on the local target functional JrP (·)
and the global target functional JL2(·), respectively. This test case nicely illustrates
the potential of the DWR approach. For the point-value error control the refined
mesh cells are located close to the specified point of interest and along those cells
that affect the point-value error by means of transport in the direction of the flow
field b. Furthermore, mesh cells without strong impact on the solution close to
the control point are coarsened further. Even though a rough approximation of
the sharp interface is obtained in downstream direction of the control point, in
its neighborhood an excellent approximation of the sharp layer is ensured by the
approach. A highly economical mesh along with a high quality in the computation
of the user-specified goal quantity is thus obtained. In contrast to this, the global
error control of JL2(·) provides a good approximation of the solution in the whole
domain by adjusting the mesh along the complete layer.

Example 3 (Variable Convection Field, 3D) In our last example we apply the
approach to a three-dimensional problem case which represents a more challenging
task. Moreover, we consider a velocity field b depending on the space variable x.
Precisely, we consider problem (5.1) with the unit cube Ω = (0, 1)3, ε = 10−6,
α = 1, b = (−x2, x1, 0)$ and f ≡ 0. The boundary conditions are given by ∂u

∂n = 0
on ΓN = {x ∈ Ω | x1 = 0}, u = 1 on ΓD1 = {x ∈ Ω | 0.4 ≤ x1 ≤ 0.6, x2 =
0, 0.4 ≤ x3 ≤ 0.6}, and u = 0 on ΓD2 = ∂Ω\{ΓN ∪ ΓD1}. Thus, by the boundary
part ΓD1 we model an inflow region (area) where the transport quantity modelled by
the unknown u is injected; cf. Fig. 5.7. ΓN models an outflow boundary. Prescribing
a homogeneous Dirichlet condition on ΓD2 is only done for the sake of simplicity.
The target functional aims at the control of the solution’s mean value in a smaller,
inner domain ΩIn = [0, 0.1]× [0.4, 0.6]× [0.4, 0.6] close to the outflow boundary,
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Fig. 5.5 Effectivity indices over degrees of freedom for different target functionals and decreasing
diffusion coefficients for Example 2

(a) (b)

Fig. 5.6 Point-value error control by JrP (a) and global error control by JL2 (b) by the DWR
approach for Example 2
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(a) (b)

(c) (d)

Fig. 5.7 Adaptive grids after first (a), third (b), fifth (c) and seventh (d) iteration step of the DWR
approach with target functional JiM for Example 3

and is given by

JiM(u) =
∫

ΩIn

u dx .

In the context of applications, the transport quantity u is thus measured and
controlled in the small region of interest ΩIn.

Figure 5.7 illustrates the computed adaptively generated meshes for some of the
DWR iteration steps. For visualization purposes, two surfaces with corresponding
mesh distribution are shown for each of the grids, the bottom surface and the
surface in the domain’s center with respect to the x3 direction. We note that the
postprocessed solutions are visualized on a grid for the respective surfaces. The cells
on the surfaces are triangular-shaped since the underlying visualization software
ParaView is based on triangular-shaped elements. Similar to the previous test case
of a point-value error control, the refinement is located on those cells that contribute
to the mean value error control. Here, the cells close to the two inner layers aligned
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in the flow direction b are strongly refined. This refinement process is obvious since
the inner and control domain ΩIn is chosen to have exactly the same dimensions
as the channel-like extension of the boundary segment ΓD1 along the flow direction
into the domain Ω . Outside the inner domain ΩIn and the channel-like domain of
transport the mesh cells are coarsened for an increasing number of DWR iteration
steps.

5.6 Summary and Future Work

In this work we presented an adaptive approach for stabilized finite element
approximations of stationary convection-dominated problems. It is based on the
Dual Weighted Residual method for goal-oriented a posteriori error control. A
first dualize and then stabilize philosophy was applied for combining the mesh
adaptation process in the course of the DWR approach with the stabilization of
the finite element techniques. We used a higher-order approximation of the dual
problem instead of a higher-order interpolation of a lower order approximation
of the dual solution. A numerical comparison of both approaches was done
for different values of the diffusion coefficient. In numerical experiments we
could prove that spurious oscillations that typically arise in numerical approxi-
mations of convection-dominated problems could be reduced significantly. Robust
effectivity indices that are almost one were obtained for the specified test tar-
get quantities. We demonstrated the efficiency of the approach also for three
space dimensions. The extension to nonstationary problems is our ongoing work.
In the nonstationary case higher-order time discretizations can computed effi-
ciently and computationally cheap by new postprocessing techniques, cf. [9,
20].

Acknowledgement The authors wish to thank the anonymous reviewers for their help to improve
the presentation of this paper.
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Chapter 6
Uniform Exponential Stability
of Galerkin Approximations
for a Damped Wave System

Herbert Egger and Thomas Kugler

Abstract We consider the numerical approximation of a linear damped wave
system modeling the propagation of pressure waves in a pipeline by Galerkin
approximations in space and appropriate time-stepping schemes. By careful energy
estimates, we prove exponential decay of the physical energy on the continuous level
and uniform exponential stability of semi-discrete and fully discrete approximations
obtained by mixed finite element discretization in space and certain one-step meth-
ods in time. The validity and limitations of the theoretical results are demonstrated
by numerical tests.

6.1 Introduction

The propagation of pressure waves in water or gas pipelines, also known as the
water hammer, can be described by hyperbolic systems of the form [5, 20]

∂tu+ ∂xp + au = 0 (6.1)

∂tp + ∂xu = 0. (6.2)

Here p and u denote the pressure and velocity of the fluid, respectively. The damping
parameter a = a(x) accounts for friction at the pipe walls and we assume that a
is uniformly positive throughout the chapter. We only consider a one-dimensional
model problem in detail, but our results can be generalized to multi-dimensional
problems of similar structure in acoustics, elasticity, or electromagnetics, and also
to problems on one-dimensional networks.
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Due to many fields of application, the analysis of damped wave phenomena have
attracted significant interest in the literature. When modeling the vibration of a
string, the physical energy of the system is given by

E1(t) = 1

2

(‖∂tu(t)‖2 + ‖∂tp(t)‖2).

Replacing ∂tp by ∂xu yields the more common form 1
2

(‖∂tu(t)‖2 + ‖∂xu(t)‖2
)

of
the energy for the one-dimensional wave equation. If the boundary conditions are
chosen such that no energy can enter or leave the domain via the boundary, then

d

dt
E1(t) = −

∫
a |∂tu(t)|2dx ≤ 0.

This shows that kinetic energy is dissipated efficiently by the damping mechanism.
If the damping is effective at least on a sub-domain of positive measure [7, 26, 29],
then the total energy E1(t) can be shown to decrease exponentially, i.e.,

E1(t) ≤ Ce−αtE1(0)

for some constants C and α > 0, A similar result holds if the damping only takes
place at the boundary [6, 23]. These decay estimates imply the exponential stability
of the system under consideration which is of relevance, e.g. for the control and
observation of damped wave systems [6, 15, 30].

A first contribution of this paper is to show that the same decay estimates hold
for the problem under investigation and for all energies of the form

Ek(t) = 1

2

(‖∂kt u(t)‖2 + ‖∂kt p(t)‖2), k ≥ 0

under the assumption that the damping parameter a(x) is bounded and uniformly
positive. In particular, our results cover the decay of E0(t) = 1

2 (‖u(t)‖2+‖p(t)‖2),
which is the physical energy for the acoustic wave propagation problem considered
here. This result is derived by carefully adopting classical arguments of [1, 2, 29]
to the problem under consideration, in particular addressing the case k = 0
and the different choice of boundary conditions. The latter is important for the
generalization from a single interval to networks [10]. The uniform positivity
assumption on the damping parameter allows us to prove energy decay under
minimal regularity conditions and to obtain explicit estimates for the damping rate
α depending only on the bounds for the damping parameter. This is useful for the
asymptotic analysis of damped wave systems [24] and for the investigation of the
parabolic limit behavior.

Also the numerical approximation of damped wave phenomena has attracted sig-
nificant interest in the literature. Mixed finite element methods have been proven to
be particularly well-suited [3, 12, 18, 21] and error estimates for some fully discrete
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schemes for the damped wave equation have been obtained in [16, 19, 22, 27]. Our
results contribute to this active field of research by proposing and analyzing fully
discrete approximation schemes that preserve the exponential stability uniformly
with respect to the discretization parameters.

For the discretization in space, we consider a variational formulation of the first
order system (6.1)–(6.2) in the spirit of [21] and its Galerkin approximation by
a mixed finite element method. A compatibility condition for the approximation
spaces for velocity and pressure allows us to establish the uniform exponential decay
of the energies Ek(t), k ≥ 0 also on the semi-discrete level. Extending the results of
[12], our analysis also covers higher order approximations and different boundary
conditions. For the time discretization we consider certain one-step methods and
establish the unconditional and uniform exponential stability for the fully discrete
schemes. As a by-product of our stability analysis, one can also obtain error
estimates that hold uniformly in time and with respect to the spatial and temporal
mesh size.

The rest of the paper is organized as follows: In Sect. 6.2, we formally introduce
the problems under investigation and recall some basic results about their well-
posedness. In Sect. 6.3, we derive the energy estimates and prove the exponential
decay to equilibrium under minimal regularity assumptions. In Sect. 6.4, we provide
a characterization of classical solutions via variational principles, which are the
starting point for the numerical approximation. Section 6.5 is concerned with a
general class of Galerkin discretizations in space, for which we provide uniform
stability and error estimates. The discretization by mixed finite elements is discussed
as a particular example in Sect. 6.6. In Sect. 6.7, we then investigate the time
discretization by a family of one-step methods and we prove unconditional and
uniform exponential stability and error estimates for the fully discrete schemes. For
illustration of the theoretical results, some numerical tests are presented in Sect. 6.8.

6.2 Preliminaries

We consider the unit interval and denote by Lp(0, 1) and H 1(0, 1) the usual
Lebesgue and Sobolev spaces. The functions in H 1

0 (0, 1) vanish at the boundary.
We denote by ‖f ‖ = ‖f ‖L2(0,1) and ‖f ‖1 = ‖f ‖H 1(0,1) the natural norms of these

spaces and by (f, g) = ∫ 1
0 fgdx the scalar product of L2(0, 1). By Ck([0, T ];X)

and Hk(0, T ;X) we denote the spaces of functions f : [0, T ] → X with values in
a Banach space X having the appropriate smoothness and integrability properties;
see [14] for details.
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6.2.1 Problem Statement

As a model problem for our consideration, we consider the linear hyperbolic system

∂tu+ ∂xp + au = 0 in (0, 1)× (0, T ) (6.3)

∂tp + ∂xu = 0 in (0, 1)× (0, T ) (6.4)

with homogeneous Dirichlet conditions for the pressure

p = 0 on {0, 1} × (0, T ). (6.5)

More general boundary conditions or inhomogeneous right-hand side could be taken
into account without difficulty. The initial values shall be given by

u(0) = u0 and p(0) = p0 on (0, 1). (6.6)

The well-posedness of this initial boundary value problem can be deduced with
standard arguments. For later reference, let us summarize the most basic results.

Lemma 6.1 Let a ∈ L∞(0, 1) and T > 0. Then for u0, p0 ∈ L2(0, 1),
problem (6.3)–(6.6) has a unique mild solution (u, p) ∈ C0([0, T ];L2(0, 1) ×
L2(0, 1)) and

max
0≤t≤T

‖u(t)‖2 + ‖p(t)‖2 ≤ C
(‖u0‖2 + ‖p0‖2).

If u0 ∈ H 1(0, 1) and p0 ∈ H 1
0 (0, 1), then the solution (u, p) is classical, this means

that (u, p) ∈ C1([0, T ];L2(0, 1) × L2(0, 1)) ∩ C0([0, T ];H 1(0, 1) × H 1
0 (0, 1)),

and

max
0≤t≤T

‖∂tu(t)‖2 + ‖∂tp(t)‖2 ≤ C
(‖∂tu(0)‖2 + ‖∂tp(0)‖2).

The constant C only depends on the bounds for a and the time horizon T .

Proof The results follow from standard results of semigroup theory [14, 25]. ��

6.2.2 Stationary Problem

Problems with time inhomogeneous right-hand side and boundary values can be
reduced to the homogeneous case by subtracting a solution of the stationary problem

∂xp̄ + aū = f̄ in (0, 1), (6.7)

∂xū = ḡ in (0, 1). (6.8)
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with boundary conditions

p̄ = h̄ on {0, 1}. (6.9)

We use a bar symbol to denote functions that are independent of time. A similar
problem will arise later in the stability analysis for the time-dependent problem.

Lemma 6.2 Let 0 < a0 ≤ a(x) ≤ a1. Then for any f̄ , ḡ ∈ L2(0, 1), and h̄ ∈ R
2,

problem (6.7)–(6.9) has a unique strong solution (ū, p̄) ∈ H 1(0, 1)×H 1
0 (0, 1) and

‖ū‖1 + ‖p̄‖1 ≤ C
(‖f̄ ‖ + ‖ḡ‖ + |h̄|)

with a constant C only depending on the bounds for the parameter a.

Proof The solution and the bounds can be computed explicitly here. ��

6.3 Energy Estimates

For a detailed stability analysis of the damped wave system, which is one focus of
our investigations, we will make use of the following family of generalized energies

Ek(t) = 1

2

(‖∂kt u(t)‖2 + ‖∂kt p(t)‖2), k ≥ 0. (6.10)

As outlined in the introduction, some of these energies may have a physical
interpretation, depending on the application context.

Lemma 6.3 Let a ∈ L∞(0, 1) and (u, p) be a smooth solution of (6.3)–(6.5). Then

Ek(t) = Ek(s)−
∫ t

s

∫ 1

0
a(x) |∂kt u(x, r)|2dx dr, 0 ≤ s ≤ t ≤ T .

If in addition a ≥ 0, then the respective energies decay monotonically.

Proof Let us first prove the estimate for k = 0 under the assumption that (u, p) is a
classical solution. Then E0(t) is continuously differentiable, and we have

d

dt
E0(t) = (∂tu(t), u(t))+ (∂tp(t), p(t))

= −(∂xu(t), p(t)) − (∂xp(t), u(t)) − (au(t), u(t)) = −(au(t), u(t)).

The identity for k = 0 follows by integration over time. By density, the estimate also
holds for mild solutions and the result for k ≥ 1 is obtained by differentiation. ��
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As a next step in the stability analysis, we now show that the energies decay
exponentially, provided that the damping is effective everywhere in the domain.

Theorem 6.1 Let (u, p) be a solution of (6.3)–(6.5) with finite energy Ek(0) for
some k ≥ 0. Moreover, assume that a0 ≤ a(x) ≤ a1 for some constants a0, a1 > 0.
Then

Ek(t) ≤ 3e−α(t−s)Ek(s), 0 ≤ s ≤ t ≤ T ,

with decay rate α = 4
3a

3
0/(8a

2
0 + 4a2

0a1 + 2a0a1 + a4
1) independent of T .

Proof A detailed proof is given in the appendix but we sketch the main arguments
already here. Similar as in [29], we define for ε > 0 the modified energies

E1
ε (t) = E1(t)+ ε(∂tu(t), u(t)).

As proven in Lemma 6.14, the two energies E1(t) and E1
ε (t) are equivalent for

sufficiently small ε, more precisely, 1
2E

1(t) ≤ E1
ε (t) ≤ 3

2E
1(t). Under a further

restriction on ε, one can then show that d
dt
E1

ε (t) ≤ − 2
3εE

1
ε (t), from which the

result for k = 1 follows; see Lemma 6.15, where the precise definition of ε and α

is given. The case k = 0 can be deduced from the one for k = 1 by an explicit
construction, see Sect. 6.9, and the estimate for k ≥ 2 finally follows by formal
differentiation. ��

6.4 Variational Characterization

For the design and the analysis of appropriate discretization schemes, it will be
useful to characterize the solutions of the damped wave system via variational
principles which are better suited for a systematic approximation [21].

6.4.1 Weak Formulation of the Stationary Problem

Testing (6.7) and (6.8) with appropriate test functions, using integration-by-parts for
the first equation and the boundary conditions (6.9), we arrive at the following weak
form of the stationary problem. For ease of presentation, we set h̄ = 0 here.

Problem 6.1 Find ū ∈ H 1(0, 1) and p̄ ∈ L2(0, 1) such that

−(p̄, ∂x v̄)+ (aū, v̄) = (f̄ , v̄) for all v̄ ∈ H 1(0, 1)

(∂xū, q̄) = (ḡ, q̄) for all q̄ ∈ L2(0, 1).
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As before, we use the bar symbol to denote functions that are independent of time.
The existence of a unique weak solution follows almost directly from Lemma 6.2.

Lemma 6.4 Let 0 < a0 ≤ a(x) ≤ a1. Then for any f̄ , ḡ ∈ L2(0, 1), Problem 6.1
has a unique solution which coincides with the strong solution of (6.7)–(6.9) with
h̄ = 0. Moreover, one has ‖ū‖1 + ‖p̄‖1 ≤ C(‖f̄ ‖ + ‖ḡ‖) with C depending on a0
and a1.

Proof Any strong solution of the stationary problem also is a weak solution.
Existence therefore follows from Lemma 6.2. Uniqueness follows by testing the
variational principle with v̄ = ū and arbitrary test function q̄. ��

6.4.2 Weak Form of the Instationary Problem

With a similar derivation as for the stationary problem above, one arrives at the
following weak formulation for the time-dependent damped wave system.

Problem 6.2 Find (u, p) ∈ L2(0, T ;H 1(0, 1)×L2(0, 1))∩H 1(0, T ;H 1(0, 1)′ ×
L2(0, 1)) with initial values u(0) = u0 and p(0) = p0, such that for a.e. t ∈ (0, T )

there holds

(∂tu(t), v̄)− (p(t), ∂x v̄)+ (au(t), v̄) = 0 for all v̄ ∈ H 1(0, 1) (6.11)

(∂tp(t), q̄)+ (∂xu(t), q̄) = 0 for all q̄ ∈ L2(0, 1). (6.12)

Similar as before, the well-posedness of the weak formulation can be deduced
from the previous results about existence of classical solutions.

Lemma 6.5 For any u0 ∈ H 1(0, 1) and p0 ∈ H 1
0 (0, 1) the above weak

formulation has a unique solution (u, p) which coincides with the classical solution
of problem (6.3)–(6.6). In particular, the a-priori estimates of Lemma 6.1 are valid.

Proof Since any classical solution is a weak solution, the existence follows from
Lemma 6.1. Uniqueness is a consequence of the energy estimates of Lemma 6.3.

��

6.5 Galerkin Semi-Discretization

For the discretization in space, we consider Galerkin approximations for the weak
formulations stated in the previous section based on approximation spaces

Vh ⊂ H 1(0, 1) and Qh ⊂ L2(0, 1),

which are assumed to be finite dimensional without further mentioning. We start
with considering the stationary case and then turn to the time dependent problem.
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6.5.1 Discretization of the Stationary Problem

The Galerkin approximation of the stationary problem reads as follows.

Problem 6.3 Find ūh ∈ Vh ⊂ H 1(0, 1) and p̄h ∈ Qh ⊂ L2(0, 1) such that

− (p̄h, ∂x v̄h)+ (aūh, v̄h) = (f̄ , v̄h) for all v̄h ∈ Vh

(∂xūh, q̄h) = (ḡ, q̄h) for all q̄h ∈ Qh. (6.13)

In order to establish the well-posedness of this discretized problem, some compati-
bility conditions for the approximation spaces are required. We have

Lemma 6.6 Let 0 < a0 ≤ a(x) ≤ a1 and assume that Qh = ∂xVh and 1 ∈ Vh.
Then for any f̄ , ḡ ∈ L2(0, 1), Problem 6.3 has a unique solution which can be
bounded by (ūh, p̄h) and ‖ūh‖1 + ‖p̄h‖ ≤ C

(‖f̄ ‖ + ‖ḡ‖) with C depending only
on a0 and a1.

Proof Define b(v̄h, q̄h) = (∂x v̄h, q̄h). Then, by choosing v̄h(x) =
∫ x

0 qh(s)ds, we
get

sup
v̄h∈Vh

b(v̄h, q̄h)

‖v̄h‖1
≥ (∂x

∫ x

0 q̄h, q̄h)

‖ ∫ ·0 q̄h‖1
≥ 1√

2
‖q̄h‖ for all q̄h ∈ Qh.

Next, observe that Nh = {v̄h ∈ Vh : b(v̄h, q̄h) = 0} = {v̄h ∈ Vh : ∂xv̄h = 0}. Hence

a(v̄h, v̄h) = (av̄h, v̄h) ≥ a0‖v̄h‖2 = a0‖v̄h‖2
1 for all v̄h ∈ Nh.

The assertions then follow from Brezzi’s splitting lemma [4]. ��

6.5.2 Galerkin Approximation of the Instationary Problem

Let Vh ⊂ H 1(0, 1) and Qh ⊂ L2(0, 1) be finite dimensional subspaces and denote
by πh : L2(0, 1) → Vh and ρh : L2(0, 1) → Qh the respective L2-orthogonal
projections. The semi-discretization for the time dependent problem then reads as
follows.

Problem 6.4 Find (uh, ph) ∈ H 1(0, T ;Vh×Qh) with uh(0) = πhu0 and ph(0) =
ρhp0, such that for a.e. t ∈ (0, T ) there holds

(∂tuh(t), v̄h)− (ph(t), ∂x v̄h)+ (auh(t), v̄h) = 0 for all v̄h ∈ Vh

(∂tph(t), q̄h)+ (∂xuh(t), q̄h) = 0 for all q̄h ∈ Qh.

By choosing some bases for the spaces Vh and Qh, this system can be transformed
into a linear ordinary differential equation, which yields the following result.
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Lemma 6.7 Let a ∈ L∞(0, 1). Then for any u0, p0 ∈ L2(0, 1), Problem 6.4 has
a unique solution (uh, ph) and ‖uh(t)‖2 + ‖ph(t)‖2 ≤ C

(‖u0‖2 + ‖p0‖2
)
for all

0 ≤ t ≤ T with constant C only depending on the bounds for a and the time
horizon T .

Proof Existence and uniqueness follow from the Picard-Lindelöf theorem, and the
a-priori estimate follows from the energy identities given in the next section. ��

6.5.3 Discrete Energy Estimates

We now present the stability analysis of the Galerkin approximations. Let (uh, ph)

denote a solution of Problem 6.4. Proceeding in a similar manner as on the
continuous level, we define the semi-discrete generalized energies

Ek
h(t) =

1

2

(‖∂kt uh(t)‖2 + ‖∂kt ph(t)‖2), k ≥ 0.

The following energy identities then follow almost directly from the special form of
the variational principle underlying and the Galerkin approximation.

Lemma 6.8 Let a ∈ L∞(0, 1) and (uh, ph) be a solution of Problem 6.4. Then

Ek
h(t) = Ek

h(s)−
∫ t

s

∫ 1

0
a(x)|∂kt uh(x, r)|2dx dr

If a ≥ 0, then the semi-discrete energies are monotonically decreasing.

Proof Since the right-hand side is zero, the discrete solution (uh, ph) is always
infinitely differentiable with respect to time. For k = 0 we then obtain

d

dt
E0

h(t) = (∂tuh(t), uh(t))+ (∂tph(t), ph(t)) = −(auh(t), uh(t)),

which follows by testing the variational principle with v̄h = uh(t) and q̄h = ph(t).
The result for k = 0 then follows by integration over time. The case k ≥ 1 can be
deduced by applying the result for k = 0 to the derivatives (∂kt uh, ∂

k
t ph). ��

Under a mild compatibility condition for the approximation spaces Vh and Qh,
we can also prove exponential decay estimates for the discrete energies.

Theorem 6.2 Let 0 < a0 ≤ a(x) ≤ a1 and assume thatQh = ∂xVh and 1 ∈ Vh.
Then any solution (uh, ph) of Problem 6.4 satisfies

Ek
h(t) ≤ 3e−α(t−s)Ek

h(s)

with decay rate α > 0 that can be chosen as on the continuous level.
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Proof The proof follows along the same lines as that of Theorem 6.1 and is given
in the appendix. The conditions 1 ∈ Vh and Qh = ∂xVh are required for the discrete
analogue of Lemma 6.13, which is then used in Lemmas 6.14 and 6.15. The discrete
exponential stability thus strongly relies on these compatibility conditions. ��

6.6 A Mixed Finite Element Method

Let Th be a partition of (0, 1) into subintervals of length h. We denote by Pk(Th)

the space of piecewise polynomials of order k. One can now easily define pairs
of compatible spaces of arbitrary order with good approximation and stability
properties.

Lemma 6.9 Let Vh = Pk+1(Th)∩H 1(0, 1) andQh = Pk(Th) with k ≥ 0. Then

(i) Qh = ∂xVh and 1 ∈ Vh,
(ii) ‖∂xπhu‖ ≤ c1‖∂xu‖ for all u ∈ H 1(0, 1).

The constants c1 in the above estimate only depends on the polynomial degree k.

Proof The first assertion follows directly from the construction, and the stability
estimate (ii) is well known; see e.g. [28]. ��
The mixed finite element method thus yields a uniformly exponentially stable
approximation. Standard arguments [8, 17] allow to deduce the usual convergence
rate estimates. For the lowest order approximation using P1 and P0 elements, one
can show by a refined analysis that

‖u(t)− uh(t)‖ + ‖ρhp(t)− ph(t)‖ = O(h2),

i.e., the method actually converges with second order; see [11] for details. Due to
the exponential stability, the error estimates are uniform in time.

6.7 Time Discretization

Let τ > 0 be a given time-step and set tn = nτ for n ≥ 0. For ease of notation, we
define for any θ ∈ R and any given sequence {unh}n≥0 the symbols

u
n,θ
h := θunh + (1 − θ)un−1

h , as well as

d0
τ u

n
h := unh and dk+1

τ unh :=
dk
τ u

n
h − dk

τ u
n−1
h

τ
for k ≥ 0.

Note that dk
τ u

n
h corresponds to the kth backward difference quotient. To mimic the

notation on the continuous level, we will also write dττu
n
h instead of d2

τ u
n
h.
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6.7.1 Fully Discrete Scheme

As before, we assume that Vh ⊂ H 1(0, 1) and Qh ⊂ L2(0, 1) are some finite
dimensional subspaces. For the time discretization of Problem 6.4, we now consider
the following family of fully discrete approximations.

Problem 6.5 Set u0
h = πhu0, p0

h = ρhp0, and for n ≥ 1, find (unh, p
n
h) ∈ Vh ×Qh

with

(dτ u
n
h, v̄h)− (p

n,θ
h , ∂x v̄h)+ (au

n,θ
h , v̄h) = 0 for all v̄h ∈ Vh (6.14)

(dτp
n
h, q̄h)+ (∂xu

n,θ
h , q̄h) = 0 for all q̄h ∈ Qh. (6.15)

Observe that the system (6.14)–(6.15) can be written equivalently as

1
τ
(unh, v̄h)−θ[(pn

h, ∂xv̄h)+(aunh, v̄h)]= 1
τ
(un−1

h , v̄h)+ (1−θ)[(pn−1
h , ∂xv̄h)−(aun−1

h , v̄h)]
1
τ
(pn

h, q̄h)+ θ(∂xu
n
h, q̄h)= 1

τ
(pn−1

h , q̄h)−(1 − θ)(∂xu
n−1
h , q̄h).

The well-posedness of the problem of determining (unh, p
n
h) from (un−1

h , pn−1
h ) can

then be shown with the same arguments as used in Lemma 6.6, and we obtain

Lemma 6.10 Let 0 ≤ a(x) ≤ a1 and assume that Qh = ∂xVh and 1 ∈ Vh. Then
for any u0, p0 ∈ L2(0, 1) and 0 ≤ θ ≤ 1, Problem 6.5 admits a unique solution
{(unh, pn

h)}n≥0. Moreover, ‖unh‖ + ‖pn
h‖ ≤ C(‖u0‖ + ‖p0‖) with C independent of

n.

Proof Existence of a unique solution (unh, p
n
h) for (6.14)–(6.15) for any n ≥ 0

follows from testing with v̄h = ūh and q̄h = p̄h. The uniform bounds for the
solution can again be obtained via energy arguments; see below. ��

6.7.2 Discrete Energy Estimates

For the stability analysis of the fully discrete problem, we utilize energy estimates
similar as on the continuous and the semi-discrete level. Given a solution {(unh, pn

h)}
of Problem 6.5, we define the discrete energies at time tn by

E
k,n
h = 1

2

(‖dk
τ u

n
h‖2 + ‖dk

τ p
n
h‖2), k ≥ 0.

By appropriate testing of the fully discrete scheme (6.14)–(6.15) and with similar
arguments as on the continuous level, we now obtain the following energy identities.
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Lemma 6.11 Let {(unh, pn
h)} be a solution of Problem 6.5. Then

dτE
k,n
h = −(θ − 1

2 )τ
(‖dk+1

τ unh‖2 + ‖dk+1
τ pn

h‖2)− (adk
τ u

n,θ
h , dk

τ u
n,θ
h ). (6.16)

Proof The result for k = 0 follows by setting v̄h = u
n,θ
h and q̄h = p

n,θ
h in (6.14)–

(6.15). The estimate for k ≥ 1 reduces to the one for k = 0 by observing that, due
to linearity of the problem, the differences (dk

τ u
n
h, d

k
τ p

n
h) solve the system (6.14)–

(6.15) as well. ��
Observe that, without further arguments, a decay of the discrete energy can only

be guaranteed, if we require θ ≥ 1/2. With similar arguments as already used for
the analysis of the time-continuous problem, we can also establish the exponential
decay of the energies for the fully discrete setting.

Theorem 6.3 Let 0 < a0 ≤ a(x) ≤ a1 and assume that Qh = ∂xVh and 1 ∈ Vh.
Moreover, let 1

2 < θ ≤ 1. Then for any 0 < τ ≤ τ0 sufficiently small, there holds

E
k,n
h ≤ 3e−α(n−m)τE

k,m
h for all k ≤ m ≤ n

with decay rate α = 2
3a

3
0/(8a

2
0 + 4a2

0a1 + 3a0a1 + 4a4
1) independent of h and τ .

Proof The proof follows with similar arguments as used for the time-continuous
case; details are given again in the appendix. An upper bound for the maximal
stepsize τ0 depending only on a0, a1, and θ , is given in Lemma 6.18. ��
Remark 6.1 A careful inspection of the proof of Theorem 6.3 reveals that the
assertion of Theorem 6.3 remains valid if one chooses θ = 1

2+λτ with λ sufficiently
large. As we will illustrate by numerical tests, the uniform and unconditional
exponential stability however gets lost for θ = 1/2, i.e., for the Crank-Nicolson
scheme. For the lowest order approximation and the choice θ = 1

2 + λτ , one can
then show that

‖u(tn)− unh‖ + ‖ρhp(tn)− pn
h‖ = O(h2 + τ 2),

i.e., the proposed method yields an unconditionally and uniformly exponentially
stable second order approximation for the problem under consideration [9].

6.8 Numerical Validation

We now illustrate our theoretical results with some numerical test. To allow
for analytic solutions and to guarantee sufficient smoothness, we choose a ≡
const > 0.
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Table 6.1 Decay of the exact energy E0(tn) and the corresponding energies of the semi-discrete
and fully discrete approximations obtained with the mixed finite element approximation combined
with the implicit Euler method (θ = 1) and the second order scheme (θ = 1

2 + τ ), respectively

tn 0 2 4 6 8 10 α

Exact 2.25 2.65e-02 3.13e-04 3.69e-06 4.35e-08 5.12e-10 2.139

θ = 1 2.25 2.66e-02 3.14e-04 3.71e-06 4.39e-08 5.18e-10 2.138

θ = 1
2 + τ 2.25 2.65e-02 3.13e-04 3.69e-06 4.34e-08 5.12e-10 2.139

6.8.1 Exponential Convergence

Let us start by comparing the decay behavior of the continuous and the discrete
solutions. Using separation of variables, one can see that

u(x, t) = e−at/2+
√

a2/4−π2t cos(πx) (6.17)

and

p(x, t) = 1/π(−a/2−
√
a2/4 − π2)e−at/2+

√
a2/4−π2t sin(πx) (6.18)

solve the damped wave system (6.3)–(6.6) with a ≡ const . For our numerical tests,
we choose a = 10 and compute the discrete solutions with the mixed finite element
approximation with P1–P0 elements for the velocity and pressure, and using the θ -
scheme with θ = 1 (implicit Euler) and θ = 1

2 + τ (second order). In Table 6.1, we
report about the energy decay for the exact, the semi-discrete, and the fully discrete
solutions obtained with discretization parameters h = τ = 10−3. As predicted by
our theoretical results, the energies decrease exponentially and approximately at the
same rates independent of the precise choice of the parameter θ .

6.8.2 Non-Uniform Stability of the Crank-Nicolson Method

As mentioned in Remark 6.1, the unconditional and uniform exponential stability
for the fully discrete scheme can be guaranteed for the choice θ = 1

2 + λτ with λ

sufficiently large, which yields a second order approximation in time. For λ = 0,
i.e., for θ = 1/2, one obtains the Crank-Nicolson method which is also second order
accurate in time but not uniformly exponentially stable, as we demonstrate now.

For our tests, we again set a = 10 and as initial values, we choose u0 = 0
and p0 as the hat function on [0, 1], which ensures that components of all spatial
frequencies are present in the solution. We then compute the numerical solutions
with the mixed finite element approximation and the θ -scheme with θ = 1

2 as well
as θ = 1

2 + τ . We use a fixed time step τ = 10−2 and different mesh sizes h = 2−k

for some values of k ≥ 1. The evolution of the discrete energies En
h is depicted
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0

10–10

10–5

100

2 4 6 8 10

k=7

k=8
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θ=1/2+τ

θ=1/2

Fig. 6.1 Discrete energies En
h for the fully discrete solutions with θ = 1

2 (Crank-Nicolson, blue)
and θ = 1

2 + τ (second order, red) for fixed time step τ = 10−2 and mesh size h = 2−k with
k = 7, 8, 9

in Fig. 6.1. As can be seen from the plots, the exponential stability of the Crank-
Nicolson scheme with θ = 1

2 is lost when h becomes much smaller than τ while
the decay of the second order scheme with θ = 1

2 + τ remains uniform. Let us
note that the uniform exponential stability could be maintained also for the Crank-
Nicolson scheme under a condition τ ≤ ch on the time step, see [13] for results
in this direction, and even for explicit Runge-Kutta methods with sufficiently small
time steps.

6.8.3 Asymptotic Behavior of the Decay Rate

Our theoretical results allow us to make some predictions about the dependence of
the decay rate α on the upper and lower bounds a0, a1 for the parameter a. For
a ≡ const , an analytic expression

α = g(a) = a/2− Re
√
a2/4− π2

for the decay rate of the continuous system can be derived; see for instance [7].
We now illustrate that the correct behavior of the decay rate is reproduced by the
semi-discretization and the fully discrete schemes proposed in the previous sections.
To do so, we compute the norms of Sh(t

n) : (uh(0), ph(0)) �→ (uh(t
n), ph(t

n))

and Sτ
h(t

n) : (uh(0), ph(0)) �→ (unh, p
n
h) governing the semi-discrete and discrete

evolutions, respectively. In our tests, we set tn = 10 and compute ‖Sh(tn)‖ for
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Fig. 6.2 Decay rates for semi-discrete and fully discrete evolution operators ‖Sh(10)‖ with h =
1/10, h = 1/100 and Sτ

h(10) with h = τ = 1/20 for damping parameters a = 2−k with k =
−5, . . . , 10

h = 10−1, 10−2 and ‖Sτ
h(t

n)‖ with h = τ = 1/20 using the second order scheme
with θ = 1

2 + τ . The damping parameter is chosen from the set a = 2−5, . . . , 210.
The results of our numerical tests are depicted in Fig. 6.2. Already for the coarsest
discretization, the numerically observed decay rates are in perfect agreement with
the analytical formula over a very large range of parameters a. This illustrates the
robustness of our results with respect to the discretization.

6.9 Discussion

In this paper, we considered the systematic numerical approximation of a damped
wave system by Galerkin semi-discretization in space and time discretization by
certain one-step methods. We derived energy decay estimates on the continuous
level and showed that these remain valid uniformly for the semi-discretizations
and fully discrete approximations under general assumptions on the approxima-
tion spaces and the parameter θ used for the time discretization. Moreover, the
estimates are unconditional, i.e., the time step τ can be chosen independently of
the discretization spaces. While we only considered here a one-dimensional model
problem, our results and methods of proof can in principle also be generalized to
multi-dimensional problems and other applications having similar structure. Also
non-linearities can be tackled to some point; we refer to [13, 21] for some general
analysis in this direction.

Acknowledgements The authors would like to gratefully acknowledge the support by the German
Research Foundation (DFG) via grants IRTG 1529, GSC 233, and TRR 154.
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Appendix

Auxiliary Results

We start with proving a generalized Poincaré inequality.

Lemma 6.12 Let a ∈ L2(0, 1) and ā = ∫ adx �= 0. Then for any u ∈ H 1(0, 1) we
have

‖u‖L2(0,1) ≤ 1
π

(
1 + 1

ā
‖a − ā‖L2(0,1)

) ‖∂xu‖L2(0,1) + 1
ā

∣∣
∫ 1

0
au dx

∣∣,

Proof Let ū = ∫ 1
0 u be the average of u and ‖ · ‖ the norm of L2(0, 1). Then

‖u‖ ≤ ‖u− ū‖ + ‖ū‖ ≤ 1
π
‖∂xu‖ + ‖ū‖,

where we used the standard Poincaré inequality. To bound the last term, observe that

ū = 1
ā

∫ 1

0
āu dx = 1

ā

∫ 1

0
(ā − a) u+ au dx = 1

ā

∫ 1

0
(ā − a) (u− ū)+ au dx.

Application of the triangle, Cauchy Schwarz, and Poincaré inequalities yields

‖ū‖ ≤ 1
ā
‖ā − a‖‖u− ū‖ + 1

ā
|
∫ 1

0
au dx| ≤ ‖ā−a‖

āπ
‖∂xu‖ + 1

ā
|
∫ 1

0
au dx|.

The assertion of the lemma now follows by combination of the two estimates. ��
An application of this lemma to solutions of the damped wave system yields the

following estimate which will be used several times below.

Lemma 6.13 Let (u, p) be smooth solution of (6.3)–(6.5) and 0 < a0 ≤ a(x) ≤
a1. Then

‖u(t)‖L2(0,1) ≤ a1
a0
‖∂tp(t)‖L2(0,1) + 1

a0

∣∣‖∂tu(t)‖.

Proof Using the bounds for the parameter, we obtain from the previous lemma that

‖u‖L2(0,1) ≤ a1
a0
‖∂xu‖L2(0,1) + 1

a0

∣∣
∫ 1

0
au dx

∣∣.

Note that this estimate holds for any function u ∈ H 1(0, 1). Using the mixed
variational characterization of the solution, we further obtain

|
∫ 1

0
au dx| = |(au, 1)| = | − (∂tu, 1)+ (p, ∂x1)| = |(∂tu, 1)| ≤ ‖∂tu‖.

Note that the boundary condition on the pressure was used implicitly here. ��
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Proof of the Theorem 6.1 for k = 1

To establish the decay estimate for the energy E1(t) = 1
2

(‖∂tu(t)‖2 + ‖∂tp(t)‖2
)
,

let us define the modified energy

E1
ε (t) = E1(t)+ ε(∂tu(t), u(t)).

We assume that (u, p) is a classical solution of (6.3)–(6.5), such that the energies
are finite. As a first step, we will show now that for appropriate choice of ε, the two
energies E1 and E1

ε are equivalent.

Lemma 6.14 Let |ε| ≤ a0
4+2a1

. Then

1
2E

1(t) ≤ E1
ε (t) ≤ 3

2E
1(t).

Proof We only have to estimate the additional term in the modified energy. By the
Cauchy-Schwarz inequality and the estimate of Lemma 6.13, we get

(∂tu(t), u) ≤ ‖∂tu(t)‖‖u(t)‖ ≤ 1
a0
‖∂tu(t)‖2 + a1

a0
‖∂tu(t)‖‖∂tp(t)‖.

Using Young’s inequality to bound the last term yields

|(∂tu(t), u(t))| ≤ 2+a1
2a0

‖∂tu(t)‖2 + a1
2a0
‖∂tp(t)‖2 ≤ 2+a1

2a0

(‖∂tu(t)‖2 + ‖∂tp(t)‖2).

The bound on ε and the definition of E1(t) further yields |ε(∂tu(t), u(t))| ≤
1
2E

1(t), from which the assertion of the lemma follows via the triangle inequality.
��

We can now establish the exponential decay for the modified energy.

Lemma 6.15 Let 0 ≤ ε ≤ 2a3
0

8a2
0+4a2

0a1+2a0a1+a4
1
. Then

E1
ε (t) ≤ e−2ε(t−s)/3E1

ε (s).

Proof To avoid technicalities, let us assume that the solution is sufficiently smooth
first, such that all manipulations are well-defined. By the definition of the modified
energy and the energy identity given in Lemma 6.3, we have

d
dt
E1

ε (t) = d
dt
E1(t)+ ε d

dt
(∂tu(t), u(t))

≤ −a0‖∂tu(t)‖2 + ε d
dt
(∂tu(t), u(t)).

The last term can be expanded as

ε d
dt
(∂tu(t), u(t)) = ε‖∂tu(t)‖2 + ε(∂ttu(t), u(t)). (6.19)
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Using the fact that (u, p) as well as (∂tu, ∂tp) solve the variational principle, we
can estimate the last term by

(∂ttu(t), u(t)) = (∂tp(t), ∂xu(t))− (a∂tu(t), u(t))

= −(∂tp(t), ∂tp(t)) − (a∂tu(t), u(t))

≤ −‖∂tp(t)‖2 + a1‖∂tu(t)‖‖u(t)‖.

Using Lemma 6.13 to bound ‖u(t)‖ and Young’s inequality, we further get

(∂ttu(t), u(t)) ≤ −‖∂tp(t)‖2 + a1
a0
‖∂tu(t)‖2 + a2

1
a0
‖∂tu(t)‖‖∂tp(t)‖

≤ − 1
2‖∂tp(t)‖2 + ( a1

a0
+ a4

1
2a2

0

)‖∂tu(t)‖2.

Inserting this estimate in (6.19) then yields

d

dt
E1

ε (t) ≤ −(a0 − ε(1 + a1
a0
+ a4

1
2a2

0
)
)‖∂tu(t)‖2 − ε

2‖∂tp(t)‖2.

The two factors are balanced by the choice ε = 2a3
0

3a2
0+2a0a1+a4

1
. In order to satisfy

also the condition of the Lemma 6.14, we enlarge the denominator by 5a2
0 + 4a2

0a1,
which yields the expression for ε stated in the lemma. In summary, we thus obtain

d
dt
E1

ε (t) ≤ −εE1(t) ≤ − 2ε
3 E1

ε (t).

The result for smooth solutions now follows by integration. The general case is
obtained by smooth approximation and continuity; cf. the proof of Lemma 6.3. ��
Combination of the previous estimates yields the assertion of Theorem 6.1 for
k = 1.

Proof of Theorem 6.1 for k = 0 and k ≥ 2

We will first show how the estimate for k = 0 can be deduced from that for k = 1.
Let u0, p0 ∈ L2(0, 1) be given and consider the following stationary problem

∂xp̄ + aū = u0, in (0, 1),

∂x ū = p0, in (0, 1),

with boundary condition p̄ = 0 on {0, 1}. Using Lemma 6.2, we readily obtain



6 Exponential Stability of Galerkin Methods for a Damped Wave System 125

Lemma 6.16 Let 0 < a0 ≤ a(x) ≤ a1. Then there exists a unique strong solution
(ū, p̄) ∈ H 1(0, 1)×H 1

0 (0, 1) and ‖ū‖H 1(0,1) + ‖p̄‖H 1(0,1) ≤ C
(‖u0‖ + ‖p0‖

)
.

Let us now define

U(t) =
∫ t

0
u(s)ds − ū and P(t) =

∫ t

0
p(s)ds − p̄.

Then (U, P ) is classical solution of the damped wave system (6.3)–(6.5) with initial
values U(0) = −ū and P(0) = −p̄. Applying Theorem 6.1 for k = 1 to (U, P )

yields

‖u(t)‖2 + ‖p(t)‖2 = ‖∂tU(t)‖2 + ‖∂tP (t)‖2

≤ Ce−α(t−s)
(‖∂tU(s)‖2 + ‖∂tP (s)‖2) = Ce−α(t−s)

(‖u(s)‖2 + ‖p(s)‖2).

This yields the assertion of Theorem 6.1 for k = 0. The estimates for k ≥ 2 follow
by simply applying the estimate for k = 0 to the derivatives (∂kt u, ∂

k
t p).

Proof of the Theorem 6.3

Let us start with considering the case k = 1. To establish the decay estimate for the
energy E

1,n
h = 1

2 (‖dτunh‖2 + ‖dτpn
h‖2), let us define the modified energy

E
1,n
h,ε = E

1,n
h + ε(dτu

n
h, u

n,θ
h ).

As before, the two energiesE1,n
h and E

1,n
h,ε are equivalent for appropriate choice of ε.

Lemma 6.17 Let |ε| < a0
4+2a1

. Then

1

2
E

1,n
h ≤ E

1,n
h,ε ≤

3

2
E

1,n
h .

The proof of this assertion follows almost verbatim as that of Lemma 6.14. With
similar arguments as on the continuous level, we can then also establish the
exponential decay estimate for the modified energy E

1,n
h,ε .

Lemma 6.18 Let 1
2 < θ ≤ 1, 0 < ε ≤ ε0 = 2a3

0
8a2

0+4a2
0a1+3a0a1+4a4

1
, and 0 < τ ≤ τ0

with

τ0 = 1
ε0

θ− 1
2

5
4 θ2+ a1

2a0
θ2+ (1−θ)2

4 + θ(1−θ)
2

.

Then there holds E1,n
h,ε ≤ e−ε(n−m)τ/3E

1,m
h,ε for all m ≤ n.
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Note that the maximal step size τ0 only depends on a0, a1, and the choice of θ .
Moreover, observe that the condition θ > 1/2 is required here to make τ0 positive.

Proof Following the arguments of the proof of Lemma 6.15, we start with

dτE
1,n
h,ε = dτE

1,n
h + εdτ (dτu

n
h, u

n,θ
h )

≤ −a0‖dτun,θh ‖2 − (θ − 1
2 )τ
(‖dττunh‖2 + ‖dττpn

h‖2)+ εdτ (dτu
n
h, u

n,θ
h ).

The last term can be expanded as

dτ (dτu
n
h, u

n,θ
h ) = (dτu

n
h, dτu

n,θ
h )+ (dττ u

n
h, u

n−1,θ
h ).

Using dτu
n
h = dτu

n,θ
h + (1− θ)τdττu

n
h, the first term of the above expression yields

(dτu
n
h, dτu

n,θ
h ) ≤ 2‖dτun,θh ‖2 + (1−θ)2τ 2

4 ‖dττ unh‖2.

To estimate the second term, we use the fact that besides (unh, p
n
h) also (dτu

n
h, dτp

n
h)

satisfies Eqs. (6.14) and (6.15). This implies

(dττ u
n
h, u

n−1,θ
h ) = (dτp

n,θ
h , ∂xu

n−1,θ
h )− (adτu

n,θ
h , u

n−1,θ
h )

= −(dτp
n,θ
h , dτp

n−1
h )− (adτu

n,θ
h , u

n−1,θ
h ).

Using that dτp
n−1
h = dτp

n,θ
h − θτdττp

n
h, we see that

−(dτp
n,θ
h , dτp

n−1
h ) = −‖dτpn,θ

h ‖2 + θτ(dτp
n,θ
h , dττp

n
h)

≤ −3

4
‖dτpn,θ

h ‖2 + θ2τ 2‖dττpn
h‖2.

A discrete version of Lemma 6.13 allows us to bound

‖un−1,θ
h ‖ ≤ 1

a0
‖dτun−1

h ‖ + a1
a0
‖dτpn−1

h ‖.

The remaining term in the above estimate can then be treated by

−(adτu
n,θ
h , u

n−1,θ
h ) ≤ ‖dτun,θh ‖( a1

a0
‖dτun−1

h ‖ + a2
1

a0
‖dτpn−1

h ‖)

≤ ‖dτun,θh ‖( a1
a0
‖dτun,θh ‖ + θτ a1

a0
‖dττunh‖ + a2

1
a0
‖dτpn,θ

h ‖ + θτ
a2

1
a0
‖dττpn

h‖
)
,
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where for the last step, we used the same expansion of pn−1
h as above and a similar

formula for un−1
h . Via Youngs inequalities and basic manipulations, we then obtain

−(adτu
n,θ
h , u

n−1,θ
h ) ≤ (

3a0a1+4a4
1

2a2
0

)‖dτun,θh ‖2 + 1
4‖dτpn,θ

h ‖2

+ 1
4θ

2τ 2‖dττpn
h‖2 + a1

2a0
θ2τ 2‖dττunh‖2.

In summary, we thus arrive at

(dττu
n
h, u

n−1,θ
h ) ≤ 3a0a1+4a4

1
2a2

0
‖dτun,θh ‖2 − 1

2‖dτpn,θ
h ‖2

+ 5
4θ

2τ 2‖dττpn
h‖2 + a1

2a0
θ2τ 2‖dττ unh‖2.

Putting all estimates together, we finally obtain

dτE
1,n
h,ε ≤ −(a0 − ε

4a2
0+3a0a1+4a4

1
2a2

0

)‖dτ un,θh ‖2 − ε
2‖dτpn,θ

h ‖2

−(θ − 1
2 − ετ 2a1θ

2+a0(1−θ)2

4a0

)
τ‖dττ unh‖2 − (θ − 1

2 − ετ 5θ2

4

)
τ‖dττ pn

h‖2.

By the particular choice of τ0, we may estimate the terms in the second line from
above by − ε

2θ(1− θ)τ 2
(‖dττ unh‖2+‖dττpn

h‖2
)
. The two factors in the first line are

balanced by the choice ε = 2a3
0

5a2
0+3a0a1+4a4

1
. In order to satisfy also the condition of

Lemma 6.17, we enlarge the denominator by 3a2
0 + 4a2

0a1, and obtain

dτE
1,n
h,ε ≤ −ε0

{ 1
2

(‖dτun,θh ‖2 + ‖dτpn,θ
h ‖2

)+ θ(1 − θ) τ
2

2

(‖dττ unh‖2 + ‖dττpn
h‖2
)}

= −ε0
(
θE

1,n
h + (1 − θ)E

1,n−1
h

) ≤ −ε
(
θE

1,n
h + (1 − θ)E

1,n−1
h

)

for ε ≤ ε0. By equivalence of the energies stated in Lemma 6.17, this leads to

E
1,n
h,ε ≤

1− 2
3 ε(1−θ)τ

1+ 2
3 εθτ

E
1,n−1
h,ε ≤ (1 − ετ

3 )E
1,n−1
h,ε ≤ e−ετ/3E

1,n−1
h,ε ,

where we used that 2
3εθτ ≤ 2

3ε0θτ0 ≤ 1 in the second step, which follows from the
definition of τ0. The assertion of the Lemma now follows by induction. ��
Remark 6.2 Let us emphasize that the assertion of Lemma 6.18 holds true also for
the choice θ = 1

2 + λτ with λ sufficiently large, but independent of τ .

Using the equivalence of the discrete energies stated in Lemma 6.17, we readily
obtain the proof of Theorem 6.3 for the case k = 1. The result for k = 0 and k ≥ 2
follows from the one for k = 1 with the same arguments as on the continuous level.
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Chapter 7
Adaptive Algorithm Based
on Functional-Type A Posteriori Error
Estimate for Reissner-Mindlin Plates

Maxim Frolov and Olga Chistiakova

Abstract This research is devoted to numerical justification of an adaptive mesh
refinement algorithm based on functional-type a posteriori local error indicator for
Reissner-Mindlin plates. Four stages of this algorithm (solver, estimator, marker and
refiner) and its implementation are discussed. A number of numerical experiments
for L-shape and skew Reissner-Mindlin plates is provided for verification and
efficiency demonstration. It is also shown that efficiency index for functional-type
a posteriori error estimate is stable and has acceptable value. As such a technique
can be used with in-house implementation of finite element solver as well as with
commercial software packages with closed sources, proposed algorithm may be
applicable for engineering practice.

7.1 Introduction

In computational mechanics, there is a range of models of different complexity and
application area for plate bending. One of the widely used is Reissner-Mindlin
plate model, a generalization of the classical Kirchhoff-Love model, which is
applicable to plates of small to moderate thickness. Since finite element modeling
is important for the industry, there is constant activity in developing numerical
methods for solving problems related to Reissner-Mindlin plates and in methods of
a posteriori error estimation (see, for example, Beirão da Veiga et al. [4], Pechstein
and Schöberl [14], Song and Niu [17], Frolov and Chistiakova [9] for reviews).

Mathematically, this problem is governed by elliptic PDE’s. In case of linear
statement the respective mathematical model describes the bending of linearly
elastic plates of small to moderate thickness in terms of pair of variables in
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� ⊂ R2: u ∈ W1
2(�)-scalar-valued function (displacement) and θ ∈ W1

2(�,R2)-
vector-valued function (rotations), where W1

2(. . .) are standard denotations of
respective Sobolev spaces.

Let t be the thickness of a plate; λ = Ek
2(1+ν) ; ε(θ) = 1

2 (∇θ + (∇θ)T ); gt3

represents the transverse loading; C-tensor of bending moduli; E and ν-material
constants; k-correction factor. The equilibrium equations in this case are as follows:

⎧
⎨
⎩
−Div (Cε(θ)) = γ in � ,

−divγ = g in � ,

γ = λt−2(∇u− θ) in � .

(7.1)

For simplicity, boundary conditions of two types are considered. Let �D and �S
be two non-intersecting parts of the boundary �. �D is a clamped part (u = 0, θ = 0
on �D), �S is a free part (∂u/∂n = θ · n, Cε(θ)n = 0 on �S, where n is the outward
unit normal to the boundary). If �S is a supported part, one has u = 0 on �S instead
of ∂u/∂n = θ · n on �S.

Let ũ, θ̃ be some conforming approximations of solution, γ̃ = λt−2(∇ũ − θ̃ ).
Then following errors (deviations) are introduced: eũ = u−ũ, eθ̃ = θ−θ̃ , eγ̃ = γ−γ̃.
Functional approach to a posteriori error estimation is based on the introduction of
additional variables with appropriate physical meaning (see Repin [15]). In case of
Reissner-Mindlin plates they could be a vector ˜̃y and a tensor ˜̃κ = [ ˜̃κ1, ˜̃κ2] with the
same functional space for implementations:

˜̃y, ˜̃κ1, ˜̃κ2 ∈ H(�,div) :=
{
y ∈ L2(�,R2) | divy ∈ L2(�)

}
. (7.2)

The very first functional-type estimate for Reissner-Mindlin plates was derived
in Repin and Frolov [16] and Frolov et al. [10]. A new variant has appeared in
Frolov [8] in the following form:

|||eθ̃ |||2 + λ−1t2||eγ̃||2� ≤ â2 + λ−1t2b̂2 , (7.3)

â = |||C−1sym( ˜̃κ)− ε(θ̃)||| + cI ||skew( ˜̃κ)||�+
+cIIcIII

√
|�| ||g + div ˜̃y||2� + |�S| || ˜̃y · n||2�S

+
+cIV

√
|�| || ˜̃y + [div ˜̃κ1,div ˜̃κ2]||2� + |�S| ||[ ˜̃κ1 · n, ˜̃κ2 · n]||2�S

,

(7.4)

b̂ = || ˜̃y − γ̃||� + cIII

√
|�| ||g + div ˜̃y||2� + |�S| || ˜̃y · n||2�S

, (7.5)

where

||eγ̃||� :=
√√√√
∫

�

|eγ̃|2 dx, |||eθ̃ ||| :=
√√√√
∫

�

Cε(eθ̃ ) : ε(eθ̃ ) dx (7.6)
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and the auxiliary constants cI–cIV are mesh-independent and come from the
following standard inequalities:

||∇ϕ||2� ≤ c2
I |||ϕ|||2 , ||ϕ||2� ≤ c2

II |||ϕ|||2 ,

1
|�| ||w||�2 + 1

|�S| ||w||�S
2 ≤ c2

III||∇w||�2 , 1
|�| ||ϕ||�2 + 1

|�S| ||ϕ||�S
2 ≤ c2

IV |||ϕ|||2

∀ϕ ∈ {ϕ ∈ W1
2(�,R2) | ϕ = 0 on �D

}
,∀w ∈ {w ∈W1

2(�) | w = 0 on �D
}
.

(7.7)

These constants are numerically estimated once for given boundary conditions,
material and shape parameters of the plate.

Using Cauchy inequality with positive parameter, terms â and b̂ can be repre-
sented without square roots. Note that this estimate is theoretically proven to be
guaranteed and reliable.

A measure of a posteriori error majorant efficiency is overestimation of true error.
It is provided by well-known quantity—efficiency index Ieff which is defined as
majorant value divided by relevant norm of difference of given approximate solution
and exact solution of the problem. When exact solution is unknown a common
practice is to use an approximate solution on a much finer (reference) mesh. That is
because as a guaranteed upper estimate is provided by the majorant, using reference
mesh could yield minor overestimation of the efficiency index for linear problems,
but no underestimation occurs: reference solution always gives a lower estimate of
the true error.

Majorant (7.3) can be presented as a sum of local contributions on the elements
of a mesh. These local errors can be treated as a posteriori local error indicator and
used as a basis of adaptive mesh refinement algorithm. We use the combination of
squares of the first terms of â and b̂ as a counterpart of the square of the error.

7.2 Adaptive Mesh Refinement Algorithm

Main idea of adaptive mesh refinement process is to save computational resources
and speed up computations by refining only parts with high relative errors instead
of refining all mesh. Thus, it is hoped that the number of finite elements needed
to achieve a desired accuracy would be significantly reduced. Adaptive algorithms
consist of four main stages (e.g. Dörfler [7], Mekchay and Nochetto [13]): Solve
(compute approximate solution on a current finite element mesh), Estimate (com-
pute global error estimate and local indicators for each element), Mark (choose
elements with large local errors) and Refine (split marked elements and locally
refine the mesh).
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Fig. 7.1 Razzaque plate example: 32×32 mesh

We step by step demonstrate all these stages below on an example of Razzaque
plate (Fig. 7.1). This is a skew plate with sides of equal length (L = 100 m) and base
angle 60◦. In accordance with Carstensen et al. [5] we consider such a plate with
thickness t = 0.1 m, material constants E = 1092 N/m2 and ν = 0.3. The loading
is assumed to be uniform and horizontal edges of the plate are hard clamped.

7.2.1 Solver

One choice to solve a plate bending problem is to use commercial software packages
like ANSYS as is done in Frolov and Chistiakova [9]. These packages are widely
used both by industry and academia for quite a long time. However, to have an
opportunity to control all steps of the adaptive algorithm without any “black-boxes”
here we use our own implementation of a finite element solver. Applying standard
Galerkin approximation was not an option due to well-known locking effect. That
is why for this research we have implemented a solver based on well-known
quadrilateral element with mixed interpolation of tensorial components (MITC4).
These elements were first presented in Bathe and Dvorkin [2] (which is, among
others, cited in ANSYS SHELL181-element documentation), are still used for
Reissner-Mindlin plates and referred to as classical ones (see Wu and Wang [19],
Cen and Shang [6]). Moreover, they are being further developed: for example,
MITC4+ element was proposed in Ko et al. [12].

To verify our implementation we compare displacement in the central point of
the plate with implementation in [5]. As can be seen in Table 7.1, the difference is
relatively small and disappears during mesh refinements. Visualization of obtained
displacements on a uniform mesh can be found on the right in Fig. 7.1.
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Table 7.1 MITC4 solver (central deflection), error and efficiency index of majorant (7.3), and
comparison with results presented in Carstensen et al. [5] for Razzaque skew plate on uniform
meshes

4×4 8×8 16×16 32×32

Mesh [5] Mjr (7.3) [5] Mjr (7.3) [5] Mjr (7.3) [5] Mjr (7.3)

Disp. 0.67 0.64 0.76 0.75 0.78 0.78 0.79 0.79

Err.(%) 16.1 18.3 4.7 4.9 1.7 1.4 0.9 0.9

Ieff 0.35∗ 1.82 0.87∗ 1.76 0.97∗ 1.76 0.99∗ 1.77
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Fig. 7.2 Functional local error indicator for Razzaque plate

7.2.2 Estimator

Recent results show that using standard finite elements can be ineffective in case of
functional a posteriori error estimates for problems like (7.1). It is more convenient
to use natural approximations for H(�,div) that are specially designed for mixed
finite element methods. So we use the simplest Arnold-Boffi-Falk approximation [1]
to implement the estimate. The auxiliary constants were computed via minimization
on coarse meshes with overestimation by the factor 1.5 for reliability and set as
follows: cI = 0.25, cII = 0.20, cIII = 0.35, cIV = 0.90. Distribution of the
local error indicator on uniform meshes for 5, 15 and 50 layers can be seen in
Fig. 7.2. We compare results with residual-based approach from [5] in the last row
of Table 7.1. Unfortunately, absolute values of efficiency index of a posteriori error
estimate are not presented in [5] (instead a logarithm of efficiency index ratio on
two consequent meshes to the base of two is shown so we mark it with ∗), but we
need to mention here that efficiency index of functional a posteriori error estimate
is stable and overestimation is in acceptable range, while the same ratio as in [5] is
close to 1.00 for all meshes (even for coarse).

7.2.3 Marker

There are a number of strategies to choose elements that should be refined at the next
iteration (see, for example, Verfürth [18] and Dörfler [7]). The perfect approach
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should have low computational cost (O(N), where N is number of elements in a
mesh), should not break mesh structure (e.g. symmetry) and should reliably mark a
satisfying number of elements (not all of them, not only a few—both choices will not
stop the numerical procedure, but may lead to inefficiency of adaptive algorithm).
However, satisfying all three points at once is a non-trivial task, so usually one of the
two following popular strategies is used: mark by value (choose all elements with
error larger than threshold) or mark by number (choose a certain number of elements
with largest error). Marking by value is computationally efficient and keeps the
structure of a mesh but has no control on number of elements that will be chosen
for refinement. Marking by number strictly defines the number of chosen elements
but at the cost of additional sorting operation and risk to break the symmetry of
a mesh in case of symmetrical problems. We use another strategy which is as
follows: at first, we set a number of thresholds, then on each step for each threshold
count the number of elements that would be chosen if we use marking by value
approach, then choose one of the thresholds and mark elements by value with it.
In this case we keep all the advantages of marking by value strategy combined
with an opportunity to control the degree of mesh refinement, which is important
in practical applications. An example is presented in Fig. 7.3. At the top row the
mesh is coloured by thresholds, while at the bottom row the final binary marking is
shown. For the purpose of technique demonstration the thresholds were set as 1/4,
1/2, 3/4, and fraction of elements to refine was chosen to be most close to one third
of the current mesh.
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Fig. 7.3 Marking example: upper block—marking with thresholds 1/4, 1/2, 3/4, lower block—
selection for refinements
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7.2.4 Refiner

In general case refinement of quadrilateral elements is not a trivial task as certain
properties of a mesh have to be kept. We use an algorithm proposed by Karavaev and
Kopysov [11], which is a modification of Schneiders algorithm and can be used for
mixed meshes and meshes with constraints. Elements that are marked for refinement
are split into nine parts, and those incident to them—into three, seven or eight parts
so that no hanging nodes occur during the refinement process. All in all there are five
specially designed refinement templates. After that a global mesh smoothing takes
place as mesh quality may have a critical impact on the accuracy of the obtained
approximate solution. Example of the initial uniform mesh and its transformations
during adaptation are presented in Fig. 7.4. Results of error estimation are provided
in Table 7.2, where degrees of freedom (DOFs), the relative error (Err.) and the
efficiency index are shown.
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Fig. 7.4 Several mesh adaptation steps for Razzaque plate

Table 7.2 Error and efficiency index of majorant (7.3) for Razzaque skew plate

Mesh 0 1 2 3 4 5

t = 0.1 m DOFs 100 356 708 1361 1792 2676

Err.(%) 3.6 1.3 0.9 0.8 0.6 0.5

Ieff 1.8 1.8 1.8 1.8 1.8 1.8
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7.3 More Numerical Experiments

Another popular example for numerical testing is L-shaped plate. We assume length
of the full side L = 2 m, material constants E = 10.92 N/m2 and ν = 0.3. The
loading is again assumed to be uniform. Two thicknesses of the plate (t = 0.01 m,
t = 0.0001 m) and two types of boundary conditions are considered. In all cases
analytical solution is unknown. We set the parameters according to Beirão da Veiga
et al. [3] in which a similar problem was considered for triangular meshes. We show
that in both cases mesh is mostly refined near the re-entrant corner which agrees
with results presented in [3] and local singularity of the problem solution.

7.3.1 L-shape: Clamped Corner Case

At first we assume that only two edges of the plate that form re-entrant corner
are hard clamped. All other edges are free. The auxiliary constants for this type
of boundary conditions are: cI = 1.15, cII = 2.15, cIII = 0.50, cIV = 1.30. Several
adaptive mesh refinement steps can be seen in Fig. 7.5. Efficiency index is stable—it
is presented in Table 7.3 for a number of adapted meshes.
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Fig. 7.5 Several mesh adaptation steps for L-shape plate (clamped corner case, t = 0.0001 m)
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Table 7.3 Error and efficiency index of majorant (7.3) for L-shape plate (clamped corner case)

Mesh 0 1 2 3 4 5 6

t = 0.01 m DOFs 192 264 782 902 1890 4472 5105

Err.(%) 10.2 9.3 4.9 4.2 2.4 1.6 1.3

Ieff 1.8 1.8 1.8 1.8 1.8 1.8 1.8

t = 0.0001 m DOFs 192 242 752 986 2116 4028 5522

Err.(%) 12.3 9.6 5.8 5.1 3.7 2.1 1.7

Ieff 1.9 1.9 1.9 1.9 2.0 2.0 2.0
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Fig. 7.6 Several mesh adaptation steps for L-shape plate (free corner case, t = 0.01 m)

7.3.2 L-shape: Free Corner Case

Vice versa, here we assume hard clamped all the edges except two forming the re-
entrant corner. These two edges are free.The auxiliary constants in this case are:
cI = 2.40, cII = 0.60, cIII = 0.25, cIV = 0.35. Again we present mesh adaptation
steps (Fig. 7.6) and the efficiency index (Table 7.4).
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Table 7.4 Error and efficiency index of majorant (7.3) for L-shape plate (free corner case)

Mesh 0 1 2 3 4 5 6

t = 0.01 m DOFs 192 302 506 1496 2954 3872 8498

Err.(%) 18.2 15.4 13.9 8.2 7.4 6.9 4.1

Ieff 2.1 2.1 2.1 2.1 2.2 2.2 2.2

t = 0.0001 m DOFs 192 302 576 1604 3014 6734 11,615

Err.(%) 24.8 21.2 18.8 13.3 10.3 7.5 4.9

Ieff 2.4 2.4 2.5 2.5 2.5 2.5 2.6

7.4 Conclusions

In this paper we give an overview of the adaptive mesh refinement approach
based on functional-type local error indicator for Reissner-Mindlin plates. Several
numerical examples are considered. It is demonstrated that analytically proven
reliability of the functional approach, its specific implementation with a certain
type of finite elements with combination to some known marking and refinement
techniques provide a basis for adaptive algorithms that may be useful in engineering
practice.
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Chapter 8
Wavelet Boundary Element Methods:
Adaptivity and Goal-Oriented Error
Estimation

Helmut Harbrecht and Manuela Moor

Abstract This article is dedicated to the adaptive wavelet boundary element
method. It computes an approximation to the unknown solution of the boundary
integral equation under consideration with a rate N−s

dof, whenever the solution can be
approximated with this rate in the setting determined by the underlying wavelet
basis. The computational cost scale linearly in the number Ndof of degrees of
freedom. Goal-oriented error estimation for evaluating linear output functionals
of the solution is also considered. An algorithm is proposed that approximately
evaluates a linear output functional with a rate N

−(s+t )
dof , whenever the primal

solution can be approximated with a rate N−s
dof and the dual solution can be

approximated with a rate N−t
dof, while the cost still scale linearly in Ndof. Numerical

results for an acoustic scattering problem and for the point evaluation of the potential
in case of the Laplace equation are reported to validate and quantify the approach.

8.1 Introduction

Many mathematical models concerning for example field calculations, flow sim-
ulation, elasticity or visualization are based on operator equations with nonlocal
operators, especially boundary integral operators. The discretization of such prob-
lems will then amount to a large system of linear equations with a dense system
matrix. Thus, the numerical solution of such problems requires large amounts of
time and computation capacities.
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To overcome this obstruction, several ideas for the efficient approximation of the
discrete system have been developed in the last decades. Most prominent examples
are the fast multipole method [27, 37], the panel clustering [29], the adaptive cross
approximation [3, 4], or hierarchical matrices [28, 38], all of which are known to
reduce the computational cost to be nearly linear or even linear. A further approach
is the wavelet boundary element method [7, 14, 31] which employs that the wavelets’
vanishing moments lead, in combination with the fact that the kernels of integral
operators become smoother when getting farther away from the diagonal, to a quasi-
sparse system matrix. Since the number of relevant entries in the system matrix for
maintaining the convergence rate of the underlying Galerkin method scales only
linearly, wavelet matrix compression leads to a numerical algorithm that has linear
cost.

Another issue to be addressed for the efficient discretization of boundary integral
equations is the one of adaptivity. For non-smooth geometries or right-hand sides,
it is necessary to be able to resolve specific parts of the geometry, while other
parts could stay coarse. The adaptive wavelet boundary element method has been
developed in [16, 25, 33], based on the ideas of related adaptive wavelet methods
for local operators from [9, 10, 26]. Assume that the solution of the boundary
integral equation to be solved is known and can be approximated with a rate
N−s

dof in the setting determined by the underlying wavelet basis. Then, the adaptive
wavelet boundary element method computes an approximation that converges with
a rate N−s

dof at a cost expense that scales linearly with Ndof. The method is hence
computationally optimal. Although reliable error estimators for boundary integral
operators exist, see e.g., [19], and optimal convergence of traditional boundary
element discretizations have been proven, see, e.g., [20, 24], we are not aware of
any other boundary element method which is optimal in this sense.

For many applications one is not interested in the unknown solution, but only
in a continuous, linear output functional of it. Approximating this new quantity
of interest instead is referred to as goal-oriented method. By considering only an
output functional, one is able to perform the computation with much less degrees of
freedom. This goal-oriented adaptivity has intensively been studied in the field of
adaptive finite element methods, see e.g. [2, 5, 6, 15, 18, 22, 36] and the references
therein. Optimal convergence rates have been analyzed in [22, 36]. For goal-oriented
adaptive boundary element methods, only few results can be found [1, 21, 22]. The
combination of goal-oriented adaptivity and fast boundary element methods has,
however, not been considered yet.

We will present a goal-oriented strategy for the adaptive wavelet boundary
element method. The strategy is in accordance with [36] and separately minimizes
the error of the primal problem and the error of the dual problem, respectively.
One computes two index sets which indicate the possible refinement, one for the
primal problem and one for the dual problem. By choosing the smaller index for
refinement, the functional evaluation converges at a rate N

−(s+t )
dof , whenever the

primal solution can be approximated at a rate N−s
dof and the dual solution can be

approximated at a rate N−t
dof. The advantage of using the adaptive wavelet boundary
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element method instead of a traditional boundary element method as in [20–22]
is that the computational cost of the algorithm scales linearly with respect to the
number Ndof of degrees of freedom.

We would like to mention at this point that the goal-oriented approach is not
restricted to linear output functionals, but can also be extended to non-linear output
functionals, see e.g. [2] and the references therein. However, for the sake of a
thorough convergence analysis, we are considering only a linear output functional
here.

The outline is as follows. In Sect. 8.2, we recall the adaptive wavelet boundary
element method. Then, in Sect. 8.3, we propose the goal-oriented refinement strat-
egy. Numerical results for an acoustic scattering problem and for point evaluations
of the single layer potential in case of the Laplace equation are presented in Sect. 8.4.
Finally, concluding remarks are stated in Sect. 8.5.

Throughout this article, in order to avoid the repeated use of generic but
unspecified constants, we mean by C � D that C can be bounded by a multiple of
D, independently of parameters which C and D may depend on. Obviously, C � D

is defined as D � C, and C ∼ D as C � D and C � D.

8.2 Adaptive Wavelet Methods for Boundary Integral
Equations

8.2.1 Problem Formulation

Let Ω ⊂ R
n+1 be a bounded domain with Lipschitz-smooth boundary Γ = ∂Ω .

Adaptive wavelet methods rely on an iterative solution method for the continuous
boundary integral equation

(A u)(x) =
∫

Γ

k(x, y)u(y)dσy = f (x), x ∈ Γ, (8.1)

under consideration, expanded with respect to a wavelet basis. Here, A : Hq(Γ ) →
H−q(Γ ) denotes an elliptic, symmetric, and continuous boundary integral operator1

of order 2q with standard kernel k, satisfying

∣∣∣∂α
x̂ ∂

β
ŷ k(̂x, ŷ)

∣∣∣ ≤ cα,β ‖̂x − ŷ‖−(|α|+|β|+n+2q)

for all x̂, ŷ ∈ Γ with x̂ �= ŷ provided that |α| + |β| + n + 2q ≥ 0, where the
derivation has to be understood with respect to the surface coordinates. We should

1In accordance with [23], one might also consider a compact perturbation of an elliptic, symmetric,
and continuous boundary integral operator.
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remark that the kernel of a boundary integral operator A of order 2q is in general a
standard kernel of order 2q , see, e.g., [34]. This holds especially true for the kernel
function associated with the Laplace and the Helmholtz equation, the system of
Navier-Lamé equations and the Stokes system.

Having at hand a wavelet basis Ψ for the underlying energy space Hq(Γ ), the
Riesz property

‖Ψu‖Hq (Γ ) ∼ ‖u‖ for all u ∈  2

constitutes an isomorphism between u ∈ Hq(Γ ) and u ∈  2. Especially, (8.1) is
equivalent to the well-posed problem of finding u = Ψu such that the bi-infinite
dimensional system of linear equations

Au = f , where A := 〈A Ψ,Ψ 〉 and f := 〈f,Ψ 〉, (8.2)

holds. Suitable wavelet bases on surfaces have, for example, been constructed in
[12, 13, 30, 32].

8.2.2 Building Blocks

For the approximate solution of the infinite dimensional system (8.2) of linear
equations, one has to perform matrix-vector multiplications by means of adaptive
applications of the operator A under consideration. The building blocks COARSE,
APPLY, RHS, and SOLVE, which are needed to design an adaptive algorithm of
optimal complexity, have been identified in [9, 10].

In order to specify the properties of the building blocks, we shall introduce the
approximation spaces

 wτ =
{
u ∈  2 : |u| wτ := sup

N∈N
N−1/τ |γN(u)| < ∞

}
,

where γN(u) denotes the N-th largest coefficient in modulus of the vector u. It
holds u ∈  wτ whenever u = Ψu is contained in the Besov space B

q+ns
τ (Γ ) with

τ = (s + 1/2)−1, see, e.g., [17]. We require that the following statements hold true
for s := (d−q)/n, where d denotes the order of polynomials which can be represented
exactly by the wavelet discretization:

• Matrix-vector multiplication:wΛ′ = APPLY[ε, vΛ]. Let ε > 0 and let vΛ consist
of |Λ| < ∞ non-zero coefficients. Then, the output wΛ′ satisfies

‖AvΛ − wΛ′ ‖ ≤ ε
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where, for any s ≤ s, only

|Λ′| � ε−1/s |vΛ|1/s wτ

coefficients are non-zero. The number of arithmetic operations and storage
locations used by this call is bounded by some absolute multiple of

ε−1/s |vΛ|1/s wτ
+ |Λ| + 1.

• Approximation of the right-hand side: fΛ = RHS[ε]. Given ε > 0, the output
f Λ satisfies

‖f − fΛ‖ ≤ ε,

and, for any s ≤ s, if u ∈  wτ , then

|Λ| � ε−1/s |u|1/s wτ
.

The number of arithmetic operations and storage locations used by the call is
bounded by some absolute multiple of

ε−1/s |u|1/s wτ
+ 1.

• Galerkin solver: wΛ = SOLVE[ε,Λ]. This routine computes the solution wΛ of
the system of linear equations

AΛuΛ = fΛ, where AΛ := 〈A ΨΛ,ΨΛ〉 and fΛ := 〈fΛ,ΨΛ〉,
(8.3)

with accuracy

‖uΛ − wΛ‖ ≤ ε.

The number of arithmetic operations and storage locations used by the call is
bounded by some absolute multiple of

ε−1/s |uΛ|1/s wτ
+ |Λ| + 1

provided that uΛ ∈  wτ for some s ≤ s.
• Coarsening routine: wΛ′ = COARSE[θ,wΛ]. This routine produces for given

0 ≤ θ ≤ 1 an index set Λ′ ⊂ Λ such that the restriction wΛ′ of the input vector
wΛ satisfies

‖wΛ′ ‖ ≤ θ‖wΛ‖,
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Fig. 8.1 Original matrix (left) and compressed matrix (right)

where |Λ′|, up to some absolute constant factor, is minimal. The computational
complexity is bounded by some absolute multiple of |Λ|.
Our particular implementation of these building blocks, satisfying all desired

properties, is based on piecewise constant wavelets (i.e., d = 1). In partic-
ular, we restrict the set of active wavelet functions to tree constraints which
ensures the method’s efficient implementation. Note that the coarsening routine
for trees originates from [8], while the realization of RHS requires some a-priori
knowledge on the right-hand side f . The matrix-vector multiplication APPLY

has been constructed in [16, 33], see also [25] for related results. We mention
that the main ingredient is wavelet matrix compression to sparsify the system
matrix of the boundary integral operator under consideration, see Fig. 8.1 for an
illustration. Straightforward modifications of RHS and APPLY yield finally the
routine SOLVE, cf. [26]. We skip all the details here and refer the reader to the
cited references.

8.2.3 An Adaptive Boundary Element Method

The specific adaptive algorithm we use has been proposed in [26] and is similar to
classical methods which consist of the following steps:

SOLVE −→ ESTIMATE −→ MARK −→ REFINE

For a given (finite) index set Λ ⊂  2, we solve the Galerkin system (8.3) via uΛ =
SOLVE[ε,Λ] with appropriate accuracy ε > 0. To estimate the (infinite) residual
r := f − AuΛ, we compute an approximation rΛ′ relative to a finite index set
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Algorithm 1: Approximation rΛ′ = ESTIMATE[δ,uΛ] of the residual

Data: initial precision δ and approximate solution uΛ

do
� update δ ← δ/2;
� calculate rΛ′ = RHS[δ] − APPLY[δ,uΛ];

while 2δ > ω ‖rΛ′ ‖;

Λ ⊂ Λ′ ⊂  2 such that

(1 − ω) ‖rΛ′ ‖ ≤ ‖r‖ ≤ (1 + ω) ‖rΛ′ ‖ (8.4)

for some fixed constant 0 < ω < 1. This can be realized by calling

rΛ′ = ESTIMATE[δ,uΛ]

for an appropriately chosen initial precision δ > 0. The routine is defined in
Algorithm 1, where the until-clause 2δ ≤ ω ‖rΛ′ ‖ ensures that the iteration
terminates when (8.4) holds since

‖r‖ ≥ ‖rΛ′ ‖ − ‖r − rΛ′ ‖ ≥ ‖rΛ′ ‖ − 2δ ≥ (1 − ω) ‖rΛ′ ‖

on the one hand and

‖r‖ ≤ ‖rΛ′ ‖ + ‖r − rΛ′ ‖ ≤ ‖rΛ′ ‖ + 2δ ≤ (1 + ω) ‖rΛ′ ‖

on the other hand.
The supporting index set Λ′ of the approximate residual rΛ′ enlarges the

original index set Λ such that the Galerkin solution with respect to Λ′ would
reduce the current error by a constant factor. Nonetheless, we need to coarsen the
index set Λ′ for controlling the complexity. This is done by calling the COARSE-
routine

rΛ′′ = COARSE[θ, rΛ′ ].

for fixed 0 < θ < 1 sufficiently small. It combines the steps mark and refine
since the new index set Λ′′ ⊂ Λ′ still enlarges the original index set Λ, which
corresponds to mesh refinement. Especially, it holds ‖rΛ′′ ‖ ∼ ‖r‖. Hence, the
algorithm’s convergence is guaranteed when repeating the procedure again with
Λ := Λ′′. For all the details of the particular implementation, we refer the reader to
[39].
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Algorithm 2: The adaptive wavelet boundary element method

Data: initial index set Λ0, initial precision δ, and parameters 0 < γ, θ < 1
� set Λ := Λ0;
do

� compute the Galerkin solution uΛ = SOLVE[γ δ,Λ];
� compute the residual rΛ′ = ESTIMATE[δ,uΛ] and set δ = ‖rΛ′ ‖;
� coarse rΛ′′ = COARSE[θ, rΛ′ ] and update Λ← Λ′′;

In accordance with [16, 26], having at hand the building blocks COARSE, APPLY,
RHS, and SOLVE with the properties specified in Sect. 8.2.2, the following statement
provides the optimality of Algorithm 2. Note that the hidden constant depends on
the boundary integral operator under consideration, the wavelet basis and the choice
of the parameters.

Theorem 8.1 Let 0 < γ, θ < 1 be sufficiently small parameters and let u ∈  wτ
with τ = (s + 1/2)−1 for some s ≤ s. Then, Algorithm 2 computes iterates uΛ,
which satisfy the error estimate

‖u− uΛ‖ � |Λ|−s,

at a computational expense that stays proportional to the number |Λ| of degrees of
freedom.

Proof The assertion follows from the abstract theory presented in [26] for elliptic,
symmetric, and continuous operators (cf. [26, Theorem 2.7]). The extension to
compact perturbations of such operators is found in [24].

8.3 Goal-Oriented Adaptivity

We shall motivate the key idea of goal-oriented error estimation. To that end, let
a : V × V → R be an elliptic and continuous bilinear form and f ∈ V ′. Consider
the variational formulation

seek u ∈ V such that a(u, v) = 〈f, v〉 for all v ∈ V

and the associated Galerkin scheme

seek uΛ ∈ VΛ such that a(uΛ, vΛ) = 〈f, vΛ〉 for all vΛ ∈ VΛ,

where VΛ ⊂ V denotes the trial space. At first glance, we obtain the error estimate

|〈g, u〉 − 〈g, uΛ〉| = |〈g, u − uΛ〉| ≤ ‖g‖V ′ ‖u− uΛ‖V
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for the evaluation of an output functional g ∈ V ′. Nonetheless, by introducing the
dual or adjoint solution

seek z ∈ V such that a(v, z) = 〈g, v〉 for all v ∈ V

and observing Galerkin orthogonality, we conclude that

|〈g, u〉 − 〈g, uΛ〉| = min
zΛ∈VΛ

|a(u− uΛ, z − zΛ)| � min
zΛ∈VΛ

‖u− uΛ‖V ‖z − zΛ‖V .

This fact greatly improves the error estimate and is exploited in the sequel.
Based on the adaptive wavelet boundary element method, proposed in the

previous section, we can formulate a goal-oriented adaptive strategy to efficiently
evaluate linear output functionals of the solution to the boundary integral equa-
tion (8.1) under consideration. As motivated above, we have now to synchronously
approximate the solutions u, z ∈  2 of the two systems of linear equations,

Au = f and Aᵀz = g, (8.5)

where A and f are defined as in (8.2) and g = 〈g,Ψ 〉 denotes the discretized
output functional, where 〈g, u〉 = gᵀu. We therefore modify the adaptive wavelet
boundary element method from Algorithm 2 as follows.

For a given finite index set Λ, the primal and dual systems of linear equations are
solved with sufficient accuracy. This yields the approximations uΛ and zΛ to the
primal and dual solution of (8.5), respectively. We then call

rp,Λp = ESTIMATEprimal[δp,uΛ] and rd,Λd = ESTIMATEdual[δd, zΛ],

which refer to the primal and dual versions of the routine ESTIMATE as outlined
in Algorithm 1. The input parameters δp and δd are initialized at the beginning by
a δinit of our choice, and they are modified during the course of the algorithm as
outlined in Algorithm 2.

Next, we call

rp,Λ′
p
= COARSE[θ, rp,Λp ] and rd,Λ′

d
= COARSE[θ, rd,Λd ]

to compute appropriate refinements Λ′
p,Λ

′
d ⊃ Λ of the original index set Λ.

Finally, we choose the smaller of the two index sets Λp and Λd to update the index
set Λ and restart the loop.

The aforementioned goal-oriented adaptive refinement strategy is summarized
in Algorithm 3. In accordance with [21, 22, 36], we derive the following result
on the goal-oriented wavelet boundary element method, provided that the building
blocks COARSE, APPLY, RHS, and SOLVE satisfy the properties specified in
Sect. 8.2.2.
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Algorithm 3: Goal-oriented refinement strategy

Data: initial index set Λ0, initial precision δ, and parameters 0 < γ, θ < 1
� set Λ := Λ0 and δp = δd = δ;
do

� compute the Galerkin solutions

uΛ = SOLVEprimal[γ δp,Λ]
zΛ = SOLVEdual[γ δd ,Λ]

� compute the residuals

rp,Λp
= ESTIMATEprimal[δp,uΛ]

rd,Λd
= ESTIMATEdual[δd , zΛ]

� set δp = ‖rp,Λp
‖ and δd = ‖rd,Λd

‖;
� coarse rp,Λ′

p
= COARSE[θ, rp,Λp

] and rd,Λ′
d
= COARSE[θ, rd,Λd

];
� if |Λ′

d | ≤ |Λ′
p|, then set Λ = Λ′

d , otherwise set Λ = Λ′
p ;

Proposition 8.1 Let 0 < γ, θ, ω < 1 be sufficiently small parameters and let u ∈
 wτp with τp = (s + 1/2)−1 and z ∈  wτd with τd = (t + 1/2)−1 for some s, t ≤ s.

Then, the approximation uΛ of the primal solution u and the approximation zΛ of
the dual solution z, computed by Algorithm 3, satisfy the error estimate

‖u− uΛ‖‖z − zΛ‖ � |Λ|−(s+t ). (8.6)

The computational expense to compute these approximations scales proportional to
the number |Λ| of degrees of freedom.
Proof By construction, the norms of the approximate primal residual rp,Λp and
the approximate dual residual rd,Λd are always equivalent to the respective exact
residual:

(1 − ω) ‖rp,Λp‖ ≤ ‖rp‖ ≤ (1 + ω) ‖rp,Λp‖,
(1 − ω) ‖rd,Λd‖ ≤ ‖rd‖ ≤ (1 + ω) ‖rd,Λd‖.

Therefore, we have

‖u− uΛ‖‖z − zΛ‖ ∼ ‖rp,Λp‖‖rd,Λd‖ ∼ δpδd .

Thus, |Λ| � (δpδd)
−1/(s+t ) in accordance with [36, Theorem 5.5], which

implies (8.6). The complexity bound is finally an immediate consequence of the
optimality of the adaptive wavelet method.
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8.4 Numerical Results

8.4.1 Scattering Problems

We shall present numerical results for an acoustic scattering problem with different
wavenumbers κ ≥ 1. The choice of larger wavenumbers has a direct effect on
the sparsity of the system matrix, as the compression parameters have to be
proportionally increased with the wavenumber, see [35]. Therefore, the method
cannot be expected to be robust with respect to the wavenumber.

Given a sound-soft scatterer Ω ⊂ R
3, we consider the solution u of the exterior

Helmholtz equation

Δu+ κu = 0 in R
3 \Ω, u = 0 on Γ := ∂Ω. (8.7)

The function u consists of an incident and a scattered wave, i.e. u = us + ui , where
in addition to (8.7) the scattered wave satisfy the Sommerfeld radiation condition

lim
r→∞ r

(
∂us

∂r
− iκus

)
= 0 as r = ‖x‖ → ∞.

The incident wave ui is known and is of the form exp(iκdx), where d denotes the
direction (it holds ‖d‖ = 1), and the goal is to compute the scattered wave us . When
us is given, the solution u to the Helmholtz equation (8.7) can be computed as well.

In order to find u, we use the direct ansatz

u(x) = ui(x)− 1

4π

∫

Γ

k(x, y)
∂u

∂n
(y)dσy, x ∈ R

3 \Ω. (8.8)

Here, k(·, ·) denotes the fundamental solution to the Helmholtz equation, given by

k(x, y) = 1

4π

eiκ‖x−y‖

‖x − y‖ .

In accordance with [11], the unknown Neumann data ∂u
∂n

are obtained by solving the
Fredholm boundary integral equation of the second kind (i.e., q = 0)

(
1

2
+Dᵀ − iηS

)
∂u

∂n
= ∂ui

∂n
− iηui on Γ, (8.9)

where S and D are the acoustic single and double layer operators, respectively,

(S v)(x) =
∫

Γ

k(x, y)v(y)dσy, (Dv)(x) =
∫

Γ

∂

∂ny
k(x, y)v(y)dσy,
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and η > 0 is a parameter which is usually chosen proportional to κ , see [11] for
example.

For our numerical computations, we will solve the scattering problem by using
the boundary integral equation (8.9) for the wavenumbers κ = 1, 2, 4, and 8. For
the adaptive algorithm, ω = 0.5, θ = 0.9, and γ = 10−2 were chosen. The arising
system of linear equations is solved by means of the GMRES method with diagonal
scaling, where the approximate solution from the previous step is used as initial
guess and the system is solved up to a relative precision 10−5 (we refer the reader
to [39] for parameter studies and details of the current implementation).

Having the approximate solution at hand, we have given the Neumann data which
can be used to evaluate u(x) according to the ansatz (8.8). As scatterer Ω , we
consider a drilled cube as seen in Figs. 4, 5, 6, 7. The incident wave is chosen to
travel into the direction of (1, 1, 0).

Figure 2 shows the convergence history of the estimated norm of the residual
for each different value of κ . We observe a rate of convergence of approximately
N−0.5

dof , independently of the chosen κ , while the norm of the residual increases as the
wavenumber increases. A comparison of the rate of convergence in case of adaptive
and uniform refinement is found in Fig. 3 for the wavenumber κ = 8. We observe
approximately the rate of convergence N−0.25

dof in case of uniform refinement, which
is only half the rate as in case of adaptive refinement.

For the visualization of the solution, we compute the total field u(x) and the
scattered field us(x) in the area E = {(x1, x2, x3) : x3 = 0 and x1, x2 ∈
[−2.5, 2.5]}. This plane intersects the drilled cube, such that we can illustrate the
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Fig. 2 Energy norm of the residual for the adaptive wavelet method in dependance of the
wavenumbers
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Fig. 3 Norm of the residual for adaptive refinement and for uniform refinement

Fig. 4 Scattered field (left) and total field (right) for κ = 1

pattern which is produced by the scattered wave. In addition to the plane, where
us(x) and u(x) are evaluated, we also draw the scatterer in the pictures. In particular,
we draw the refinement of the scatterer’s surface, where a cluster of wavelets
appears in a darker colour first. By looking more closely at the corners and edges
of the geometry, we see a lighter colouring, which again indicates even a stronger
refinement.

In Fig. 4, we see the scene for κ = 1. The top corner of the square is the
point (−2.5,−2.5), which means that the harmonic wave is travelling upwards.
In the left plot of Fig. 4, the scattered field us(x) is seen and, in the right plot of
Fig. 4, the total field u(x) is seen. For κ = 1, we do not observe yet an interesting
scattering pattern, as the wavenumber is too small. On the other hand, we already
observe that the adaptive wavelet boundary element method refines towards the
edges and the vertices of the geometry. This behaviour is expected, since we solve



156 H. Harbrecht and M. Moor

the scattering problem for the direct formulation involving the Neumann data, which
admit a singularity at the non-smooth parts of the geometry. In particular, we observe
a refinement on the edges which are illuminated, i.e. the edges which face the
incoming wave. On the edges which are at the back of the geometry refinement,
the refinement is not that strong.

In Fig. 5, we visualize the scattered field and the total field for κ = 2. We observe
that the wavenumber κ = 2 is still too small to have a noticeable scattering pattern.
Also, we observe again the refinement along the illuminated edges in reference to
the incoming wave.

Figure 6 contains the scattered field (left) and total field (right) for the wavenum-
ber κ = 4. Here, we observe that the wavenumber is chosen just large enough, such
that for the first time the wave can enter the inner part of the drilled cube. We observe
again the refinement towards the edges and vertices facing the incoming wave, with
less refinement in those parts of the geometry which lie on the back of the cube.

In Fig. 7, we draw the scattered field (left) and the total field (right) for the
wavenumber κ = 8. This wavenumber is large enough in order to produce a
beautiful scattering pattern. Especially, we see that the wave can travel through
the inner part of the drilled cube. We observe again the refinement towards the
edges and vertices with more refinement of those parts of the drilled cube which
are illuminated by the incoming wave.

We conclude that the adaptive wavelet algorithm produces excellent results for all
chosen wavenumbers κ . Adaptivity pays off especially for the direct ansatz, where

Fig. 5 Scattered field (left) and total field (right) for κ = 2

Fig. 6 Scattered field (left) and total field (right) for κ = 4
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Fig. 7 Scattered field (left) and total field (right) for κ = 8

the refinement towards the edges and vertices can clearly be observed. To achieve a
similar accuracy with uniform mesh refinement, one would need much more degrees
of freedom. This would not only take more time to compute, but may not be feasible
any more as far as memory consumption is concerned.

8.4.2 Laplace Equation Solved by the Single Layer Operator

Let us present numerical results in order to verify and quantify the goal-oriented
adaptive wavelet boundary element method. To this end, consider the Laplace
equation

ΔU = 0 in Ω, U = f on Γ, (8.10)

solved inside a bounded domain Ω with boundary Γ = ∂Ω . We convert this
problem to a boundary integral equation by making the ansatz

U =
∫

Γ

u(y)

‖ · −y‖dσy in Ω (8.11)

for the unknown density u ∈ H−1/2(Γ ). Observing that this single layer potential is
continuous across the boundary Γ , we arrive at the Fredholm integral equation of
the first kind

A u =
∫

Γ

u(y)

‖ · −y‖dσy = f on Γ

for the single layer operator A : H−1/2(Γ ) → H
1/2(Γ ). Given an evaluation point

x ∈ Ω , the potential U(x) is computed in accordance with (8.11) by

g(u) =
∫

Γ

u(y)

‖x − y‖dσy . (8.12)
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This potential evaluation corresponds to the application of a continuous linear
functional to the density u. Notice that the integrand becomes weakly singular as
x ∈ Ω approaches the boundary Γ .

For the following computations, we consider the Fichera vertex (0, 1)3 \(0, 0.5]3
as domain of interest. The restriction f = p|Γ of the harmonic polynomial p(x) =
4x2

1 − 3x2
2 − x2

3 is chosen as Dirichlet data for the primal problem, which implies
that the solution U of the Laplace equation (8.10) coincides with the polynomial p.
For given, fixed x ∈ Ω , we shall apply the goal-oriented adaptive wavelet boundary
element method to evaluate the output functional g(u), given by Eq. (8.12). After
each iteration of the adaptive algorithm, we compute an approximation g(uΛ) via
the scalar product gᵀ

ΛuΛ. We then evaluate the potential error
∥∥p(x)−g

ᵀ
ΛuΛ

∥∥ with
p(x) being the analytic solution of the problem under consideration.

8.4.2.1 First Example

We choose the evaluation point for the functional (8.12) as x = (0.25, 0.25, 0.9).
This point is located inside Fichera’s vertex but close to the top boundary. Moreover,
we have chosen the coarsening constant θ = 0.5.

Figure 8 shows the convergence histories of the primal residual, the dual residual
and the potential error of the goal-oriented adaptive wavelet boundary element
method. We observe that the primal residual has a rate of convergence of N−0.63

dof .
Whereas, we notice that the dual residual seems to have a rate of convergence of
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Fig. 8 Norm of the primal residual, norm of the dual residual and potential error versus the number
of degrees of freedom in case of the evaluation point x = (0.25, 0.25, 0.9)
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approximately N−0.75
dof , which is significantly better than the rate of convergence for

the primal residual. The potential error has a rate of convergence of approximately
N−1.43

dof , which indeed coincides with the sum of the rates of convergence for the
primal and the dual residual.

In Fig. 9, we plot the ratios of the primal residual, the dual residual, and the
potential error versus the computation time. It turns out that the computational
complexity of the current implementation does not scale linearly but much better
than quadratically. Therefore, it does clearly pay off to employ a fast boundary
element method. Especially, to compute the solution to a boundary integral equation
with more than 200,000 degrees of freedom would have not been possible without
matrix compression.

We should also visualize the refinement which is produced by the adaptive
algorithm. In Fig. 10, we have visualized the refinement. Since we would not be able
to see the refinement by drawing the grid, this picture was produced in the following
way: After the code terminated, we assigned to each active wavelet a point in the
center of its support which is weighted with 2 to the power of the wavelet’s level,
achieving that a small wavelet gets assigned a large value. The picture below is
thus to be interpreted as: The lighter the colour, the finer are the elements in this
area. We observe in Fig. 10 that the mesh refinement takes place on the top of the
Fichera vertex, near from where the point x = (0.25, 0.25, 0.9) is located. Also, the
algorithm refines towards the edges and vertices of Fichera’s vertex.
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Fig. 9 Norm of the primal residual, norm of the dual residual, and potential error versus
computation time in case of the evaluation point x = (0.25, 0.25, 0.9)
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Fig. 10 Adaptive mesh refinement in case of the evaluation point (0.25, 0.25, 0.9)

8.4.2.2 Second Example

For the second example, we move the evaluation point more closely to the boundary,
namely we set x = (0.25, 0.25, 0.95), and perform our computations again.

In Fig. 11, we visualize the convergence histories for the primal residual, the
dual residual, and the potential error versus the number of degrees of freedom
in a log-log scale. We observe that the primal residual and the dual residual
show a rate of convergence of N−0.63

dof and N−0.76
dof . For the potential error, we

observe a rate of convergence of N−1.34
dof . This is slightly less than the rate of

convergence of the potential error for the evaluation point x = (0.25, 0.25, 0.9).
The computing time of the adaptive algorithm does not scale linearly in the
number N of degrees of freedom, compare Fig. 12, where the accuracy versus
computing times is plotted and the rates are slightly worse than those found
in Fig. 11. Nonetheless, we like to repeat that the scaling is much better than
a quadratic scaling, which is required by the traditional boundary element
method.

To conclude our tests, we finally visualize the mesh refinement produced
by the adaptive algorithm in Fig. 13. It is again refined towards the edges and
vertices of the geometry and towards the point x = (0.25, 0.25, 0.95). If we
compare the refinement on the top of the domain with the refinement from the
previous example, we notice that the refinement is slightly more localized here,
cf. Fig. 10.
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Fig. 11 Norm of the primal residual, norm of the dual residual, and potential error versus the
number of degrees of freedom in case of the evaluation point x = (0.25, 0.25, 0.95)
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Fig. 12 Norm of the primal residual, norm of the dual residual, and potential error versus
computation time in case of the evaluation point x = (0.25, 0.25, 0.95)
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Fig. 13 Adaptive mesh refinement in case of the evaluation point (0.25, 0.25, 0.95)

8.5 Conclusion

In the present article, we presented the adaptive wavelet boundary element method
for the rapid solution of boundary integral equations. A goal-oriented strategy for
the evaluation of linear output functionals has been proposed as well. The algorithms
have been validated and quantified by numerical examples for an acoustic scattering
problem and for the point evaluation of the potential in case of the single layer
operator for the Laplace equation on Fichera’s vertex.
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Chapter 9
Comparison Analysis of Two Numerical
Methods for Fractional Diffusion
Problems Based on the Best Rational
Approximations of tγ on [0, 1]
Stanislav Harizanov, Raytcho Lazarov, Svetozar Margenov, Pencho Marinov,
and Joseph Pasciak

Abstract The paper is devoted to the numerical solution of algebraic systems of
the type A

αu = f, 0 < α < 1, where A is a symmetric and positive definite
matrix. We assume that A is obtained from finite difference or finite element
approximations of second order elliptic problems in R

d , d = 1, 2 and we have
an optimal method for solving linear systems with matrices A + cI. We study and
compare experimentally two methods based on best uniform rational approximation
(BURA) of tγ on [0, 1] with the method of Bonito and Pasciak, (Math Comput
84(295):2083–2110, 2015), that uses exponentially convergent quadratures for the
Dunford-Taylor integral representation of the fractional powers of elliptic operators.
The first method, introduced in Harizanov et al. (Numer Linear Algebra Appl
25(4):115–128, 2018) and based on the BURA rα(t) of t1−α on [0, 1], is used to get
the BURA of t−α on [1,∞) through t−1rα(t). The second method, developed in this
paper and denoted by R-BURA, is based on the BURA r1−α(t) of tα on [0, 1] that
approximates t−α on [1,∞) via r−1

1−α(t). Comprehensive numerical experiments on
some model problems are used to compare the efficiency of these three algorithms
depending on α. The numerical results show that R-BURA method performs well
for α close to 1 in contrast to BURA, which performs well for α close to 0. Thus,
the two BURA methods have mutually complementary advantages.
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9.1 Introduction

9.1.1 Algebraic Problems Under Consideration

Let RN , N positive integer, be a real N-dimensional vector space with the standard
 2-inner product, uT v, for any u, v ∈ R

N , and let A be an N × N symmetric and
positive definite matrix with eigenvalues and eigenvectors {(λi,Ψ i )}Ni=1. We assume
that the eigenvectors are orthonormal, that is Ψ T

i Ψ j = δij , and 0 < λ1 ≤ λ2 ≤
. . . λN .

For 0 < α < 1 and given f ∈ R
N we consider the following algebraic problem:

find u ∈ R
N such that A

αu = f (9.1)

where the fractional power Aα is defined through the eigenvalues and eigenvectors
of A

A
α =WD

α
W

T , where A =WDW
T .

Here W,D ∈ R
N×N are defined as W = [Ψ T

1 ,Ψ
T
2 , . . . ,Ψ

T
N ] and D =

diag(λ1, . . . , λN). Then A
−α = WD

−α
W

T and the solution of Aαu = f can be
expressed as

u = A
−αf =WD

−α
W

T f. (9.2)

For any β ∈ R we have ‖u‖Aβ+α = ‖f‖Aβ−α , where ‖u‖2
Aγ = uTAγ u, γ ∈ R.

9.1.2 Motivation and Connection to the Spectral Laplacian

The algebraic problem is motivated by the following boundary value problem: for a
given f ∈ L2(Ω) find u(x) such that

(−Δ)αu = f, x ∈ Ω = (0, 1)× (0, 1), u = 0, x ∈ ∂Ω. (9.3)

The fractional power of Laplacian, (−Δ)α, is defined through its eigenvalues λk
and eigenfunctions ψk of −Δ with homogeneous Dirichlet boundary conditions,
namely, ψk ∈ H 1

0 (Ω), (∇ψk,∇v) = λk(ψk, v) for all v ∈ H 1
0 (Ω). Then

(−Δ)αv :=
∞∑
k=1

λαk (v,ψk)ψk, ∀v ∈ D((−Δ)α) :=
∞∑
k=1

λ2α
j |(v, ψk)|2 < ∞ .

Remark 9.1 Clearly, for small α the Dirichlet boundary conditions could not make
sense. In general, for f (x) ∈ Hs(Ω), 0 < s < 1/2 we have u ∈ Hs+2α(Ω) (for
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more details we refer to [2, Subsection 4.1]). Thus, the trace on the boundary exists
for s + 2α > 1/2. For example, f (x) ≡ 1 has regularity H 1/2−ε(Ω) for any 0 < ε.
Thus, the homogeneous Dirichlet boundary condition makes sense for any positive
α. However, if f is just in L2(Ω), then the solution u has trace for α > 1/4 and the
Dirichlet boundary condition is well defined under this condition.

9.1.3 Examples of SPD Matrices Under Consideration

9.1.3.1 Example 1

The first example of such a matrix is A ∈ R
N×N , N = n2, that has the following

block structure (here Ai,i ∈ R
n×n, i = 1, · · · , n and In is the identity matrix in R

n)

A = (n+ 1)2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A1,1 −In

−In A2,2 −In

· · · · · · · · · · · · · · ·
−In Ai,i −In

· · · · · · · · · · · · · · ·
−In An,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, Ai,i =

⎡
⎢⎢⎢⎢⎢⎣

4 −1
−1 4 −1
· · · · · · · · · · · ·

−1 4 −1
−1 4

⎤
⎥⎥⎥⎥⎥⎦
.

(9.4)

This matrix is generated by the finite difference approximation of the following
boundary value problem

−Δu = f, x ∈ Ω = (0, 1)× (0, 1), u = 0, x ∈ ∂Ω (9.5)

on a uniform mesh with mesh-size h = 1/(n + 1). We are not aware of a rigorous
analysis whether the system A

αu = f approximates the problem (9.3). However, we
expect this would be the case since, as discussed below in details, the matrix A can
be obtained by the Galerkin approximation of the boundary value problem (9.3).

9.1.3.2 Example 2

We partition Ω = (0, 1) × (0, 1) into squares of size h = 1/(n + 1). Let Th be
obtained by subdividing each square into two triangles by connecting the upper left
corner with the lower right corner. On this triangulation we introduce the space Vh ⊂
H 1

0 (Ω) of continuous piece-wise linear functions. The finite element approximation
of (9.5) is: find uh ∈ Vh such that

a(uh, v) :=
∫

Ω

∇uh(x) · ∇v(x)dx = (f, v) := (πhf, v) ∀v ∈ Vh. (9.6)



168 S. Harizanov et al.

Here (·, ·) is the standard L2-inner product on Vh. We define the operator A :
Vh → Vh by (Au, v) = (z, v) for all v ∈ Vh. Then Ay = z ∈ Vh should have
a representation through the nodal basis ψk : z =∑ ckψk and then the operator A is
expressed through the global “stiffness” matrix {A}i,k = a(ψi, ψk) and the global
“mass” matrix M = {(ψi, ψk)}i,k via the relation A = M

−1
A. The matrix M is not

diagonal and has similar sparsity pattern as the “stiffness” matrix A. The algebraic
problem

Aαuh = πhf (9.7)

is stable and the solution should have a representation uh(x) =∑N
i=1 uiψi(x). Then

u = {u1, · · · , uN }T approximates u(x) of (9.3) in the nodes of the mesh, see, [2].
In order to get the matrix A defined by (9.4) (instead of A) we can apply the

following approach. First, we introduce the “lumped” mass inner product in Vh,
[15, pp. 239–242]. Namely, for z, v ∈ Vh we define

(z, v)h = 1

3

∑
τ∈Th

3∑
i=1

|τ | z(Pi)v(Pi),

where P1, P2, P3 are the vertices of the triangle τ and |τ | is its area. Then the lumped
“mass” matrix, defined as

Mh = {(ψi, ψk)h}i,k,

is diagonal. Moreover, since the mesh is square, all diagonal elements of M−1
h are

equal to h−2 = (n+ 1)2 and A : Vh → Vh is defined by

(Auh, v)h = a(uh, v) gives A =M
−1
h A.

Since on a uniform mesh (·, ·)h approximates (·, ·) with second order, one may
expect that (9.7) approximates the problem (9.3).

Remark 9.2 One can generate matrices with similar structure when solving elliptic
problems with Neumann or Robin boundary conditions.

9.1.4 The Concept of the Best Uniform Rational
Approximation (BURA)

We shall use the following notation for a class of rational functions:

R(k,m) = {r(t) : r(t) = Pk(t)/Qm(t), where Pk ∈ Pk, and Qm ∈Pm, monic}
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with Pj being the set of algebraic polynomials of degree j . The best uniform
approximation rα(t) ∈ R(k,m) of t1−α on [0, 1] (called further (k,m)-BURA),
and its approximation error Eα,k,m is defined as follows:

rα(t) := argmin
r∈R(k,m)

∥∥∥t1−α − r(t)

∥∥∥
L∞(0,1)

, ε(t) = r1−α(t)− tα, Eα,k,m := ‖ε(t)‖L∞(0,1).

For m = k the existence and uniqueness of rα(t) is well known, e.g., [11,
Chapters 9.1 and 9.2]. Moreover, it is known that both the numerator and the
denominator of the minimizer are of exact degree k and the error function ε(t)

possesses 2k + 2 extreme points in [0, 1], including the endpoints of the interval.

9.1.5 A Review of Methods and Equations Involving Functions
of Matrices

The formula (9.2) could be used in practical computations if the eigenvectors
and eigenvalues are explicitly known and Fast Fourier Transform is applicable to
perform the matrix vector multiplication with W, thus leading to almost optimal
computational complexity, O(N logN). However, this approach is limited to
separable problems with constant coefficients in simple domains and boundary
conditions.

This work is related also to the more difficult problem of stable computations of
the matrix square root and other functions of matrices, see, e.g. the earlier papers
[3, 7, 10], as well as, [4] for some more recent related results. However, in this paper
we do not deal with an evaluation of Aα , instead we discuss efficient methods for
solving the algebraic system A

αu = f, where A is an SPD matrix generated by an
approximation of a second order elliptic operators.

Our research is also connected with the work done in [8, 9], where numer-
ical approximations of a fractional-in-space diffusion equation are considered.
In [9], the proposed solver relies on Lanczos method. First, the adaptively pre-
conditioned thick restart Lanczos procedure is applied to a system with A. The
gathered spectral information is then used to solve the system with A

α . In [3]
an extended Krylov subspace method is proposed. The subspace Kk,m(A, φ) =
span{A−k+1φ, . . . , A−1φ, φ, . . . , Am−1φ}, m ≥ 1, k ≥ 1, is originating by actions
of the SPD matrix and its inverse. It is shown that for the same approximation
quality, the variant of using the extended subspaces requires about the square root
of the dimension of the standard Krylov subspaces using only positive or negative
matrix powers. A drawback of this method is the memory required to store the full
dense matrix W, and the substantial deterioration of the convergence rate for ill-
conditioned matrices. The advantage of the approach discussed in this paper is the
robustness and almost optimal computational complexity.
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9.1.6 The Main Contributions and Paper Content

We investigate two approaches for an approximate solving of A−αf that are based
on the best uniform rational approximation (BURA) r(t) of tγ , γ > 0, on [0, 1].
One subclass of such approximations is expressed through the diagonal Walsh table
Pk(t)/Qk(t), i.e. r ∈ R(k, k), see, e.g. [14, 16]. Another subclass is the upper
diagonal Pk+1(t)/Qk(t), i.e., r ∈ R(k + 1, k). The first method is introduced in
[6], where the BURA rα(t) of t1−α on [0, 1] introduces a rational approximation
of t−α in the form t−1rα(t) on [1,∞). Here we develop a new method, denoted by
R-BURA, where the best uniform rational approximation r1−α(t) of tα on [0, 1] is
used to approximate t−α by 1/r1−α(t) on [1,∞). Both methods reduce solving (9.1)
to a number of equations (A+ cI)u = F.

Our comparative analysis includes also the method proposed in [2] that is based
on approximation of the integral representation of the solution of (9.3). Then
exponentially convergent quadrature formulae are applied to evaluate numerically
the related integrals. In fact, this Q-method leads to a rational approximation as well.
An approximation of the boundary value problem with checkerboard right hand
side, introduced in [2], is used in the numerical tests of our comparative analysis.

The rest of the paper is organized as follows. In Sect. 9.2 we introduce the basic
properties of the solution methods and algorithms used in the paper. The analysis
includes error estimates of the BURA, [6], the new R-BURA, and the Q-method
of Bonito and Pasciak, [2]. Section 9.3 contains numerical tests for fractional
Laplace problems. In the case of the BURA and R-BURA solvers, the impact of
scaling is analyzed and experimentally confirmed. Among others, the numerical
results complete the proof of concept of the new R-BURA approach, illustrating its
advantages in the case of α ∈ (1/2, 1).

9.2 Description of the Numerical Methods Based
on the BURA

9.2.1 The BURA and R-BURA Methods

The BURA Method
In this paper we consider two BURA subclasses (k, k) and (k + 1, k), introduced
in Sect. 9.1.6. Let Λ := ‖A‖∞ = max1≤i≤N

∑N
j=1 |aij |. Following [6], we obtain

the rescaled SPD matrix A := Λ−1
A with spectrum in (0, 1]. Then the original

problem A
αu = f can be rewritten as A αu = Λ−αf. Note that the eigenvalues of

A are μi := Λ−1λi , 0 < μi ≤ 1, i = 1, · · · , N .
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Let rα(t) be the BURA of t1−α on [0, 1] in R(k, k) or R(k + 1, k). Then

ur := Λ−αA −1rα(A )f, (9.8)

are called (k, k)-BURA and (k + 1, k)-BURA approximation of u, respectively.
Using the spectral decomposition of A, we can derive the following estimation

of the BURA error:

‖ur − u‖2

‖f‖2
= Λ−α max

μi

∣∣∣rα(μi)− μ1−α
i

∣∣∣
μi

≤ Λ1−αEα,k,m

λ1
. (9.9)

Then using [13, Theorem 1] (about the behavior of Eα,k.k as k → ∞) we get the
following property of the (k, k)-BURA:

lim
k→∞ e2π

√
(1−α)k‖ur − u‖2 = 42−αΛ1−α

λ1
sin(πα)‖f‖2. (9.10)

Since Eα,k,k ≥ Eα,k+1,k ≥ Eα,k+1,k+1 by definition, (9.10) is valid for (k + 1, k)-
BURA, as well.

Below we restricted our experiments to the (k, k)-BURA method. The imple-
mentation uses the decomposition of the rational function t−1rα(t) into a sum of
partial fractions

ur =
k∑

j=0

cj (A − djI )−1f = Λ

k∑
j=0

cj (A−ΛdjI )−1f.

Here 0 = d0 > d1 · · · > dk are the poles of rα(t) plus the additional pole at zero,
and cj > 0 for every j (see [12] for more details). Obviously, the approximation ur
is obtained by solving k + 1 linear systems with nonnegative diagonal shifts of A.

The R-BURA Method
In this approach, we approximate t−α on [1,∞) by r−1

1−α(t), where r1−α(t) is the
best rational approximation of tα on [0, 1] in R(k, k) or R(k + 1, k). where the
approximation was by t−1rα(t). Then

ur := Λ−αr−1
1−α(A )f (9.11)

are called the (k, k)-R-BURA and (k + 1, k)-R-BURA approximation of u, respec-
tively.
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9.2.2 Analysis of BURA and R-BURA Methods

For the analysis of the BURA-method we shall need the following properties of
rα(t):

Lemma 9.1 Let α ∈ (0, 1) and k be a positive integer. Then the best rational
approximation (BURA) rα(t) ∈ R(k, k) of t1−α in [0, 1] has the following
properties:

(a) rα(t) is strictly monotonically increasing concave function when t ∈ [0, 1];
(b) rα(0) = Eα,k,k.

Proof The second part follows directly from [12, Lemma 2.1], where it is shown
that η1 = 0 is an extreme point for t1−α − rα(t) with negative value. The same
lemma states that all the k zeros and k poles (denoted by dj ) of rα are real, pairwise
different, non-positive, and interlacing. Thus, for the decomposition of rα(t) into
partial fractions

rα(t) = b∗0 +
k∑

j=1

c∗j
t − dj

we have c∗j , dj < 0, j = 1, · · · ,m, for more details, see, e.g. [5, Theorem 1].
Hence,

r ′α(t) =
k∑

j=1

−c∗j
(t − dj )2 > 0, r ′′α(t) =

k∑
j=1

2c∗j
(t − dj )3 < 0, ∀t ∈ [0, 1].

The proof is completed.

Applying Lemma 9.1, the (k, k)-R-BURA approximation error is estimated
analogously to the BURA error:

‖ur − u‖2

‖f‖2
≤ Λ−α max

μi

∣∣r1−α(μi)− μα
i

∣∣
μα
i r1−α(μi)

≤ Λ−αE1−α,k,k

μα
1 r1−α(μ1)

≤ E1−α,k,k

λα1 r1−α(μ1)
.

Note that, r1−α(t) has no zeros inside the interval [0, 1], therefore the denominator
is strictly positive and the error bound is well-defined. On the other hand, r1−α(0) =
E1−α,k,k when h → 0, then μ1 → 0 and the error deteriorates. The error function
ε(t) = r1−α(t) − tα has 2k + 1 roots {ξi}2k+1

1 in (0, 1), due to the 2k + 2 extreme
points, including {0, 1}, see, e.g., [12]. Since ε(0) = E1−α,k,k > 0, we have

r1−α(t) ≥ tα, ∀t ∈ [0, ξ1] ∪
k⋃

i=1

[ξ2i , ξ2i+1]. (9.12)
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Therefore, whenever μ1 is a priori estimated (enough to have a good lower bound
for λ1), we can choose a proper k, such that

‖ur − u‖2

‖f‖2
≤ E1−α,k,k

λα1μ
α
1

= ΛαE1−α,k,k

λ2α
1

, μ1 ∈
k⋃

i=1

[ξ2i , ξ2i+1]. (9.13)

The case μ1 ∈ [0, ξ1] is more subtle and needs special care. Using r1−α(t) =
tα + ε(t), with 0 < ε(t) ≤ E1−α,k,k, together with the fact that the function g(ε) :=
ε/(μα

1 + ε) is monotonically increasing for ε ≥ 0 we obtain

∣∣r1−α(μ1)− μα
1

∣∣
μα

1 r1−α(μ1)
≤ E1−α,k,k

μα
1 (μ

α
1 + E1−α,k,k)

≤ E1−α,k,k

μα
1E1−α,k,k

.

For every μi > ξ1 we have

∣∣r1−α(μi)− μα
i

∣∣
μα
i r1−α(μi)

≤ E1−α,k,k

μα
i r1−α(ξ1)

≤ E1−α,k,k

μα
1 ξ

α
1

.

Therefore, since ξα1 = r1−α(ξ1) > r1−α(0) = E1−α,k,k,

‖ur − u‖2

‖f‖2
≤ E1−α,k,k

λα1 max(ξα1 , E1−α,k,k)
= λ−α

1 , ∀μ1 ∈ [0, ξ1]. (9.14)

Typically λ1 = O(1) for all h and μ1 → 0 as h → 0, thus unlike the BURA
case (9.9) the (k, k)-R-BURA relative error is uniformly bounded when k is fixed
and h → 0.

The asymptotic behavior of the relative error (9.13) is derived analogously
to (9.10):

lim
k→∞ e2π

√
αk‖ur − u‖2 = 42−αΛα

λ2α
1

sin(πα)‖f‖2. (9.15)

In our experiments, we work with r1−α in R(k + 1, k) and R(k + 1, k + 1).
Similar to BURA-method, the numerical computation of ur involves solving of k+1
independent linear systems with nonnegative diagonal shifts of A.

9.2.3 The Q-Method

The solver, proposed by Bonito and Pasciak in [2], incorporates an exponentially
convergent quadrature scheme for the approximate computation of an integral



174 S. Harizanov et al.

solution representation, i.e., uses the rational function

Qα(t) := 2k′ sin(πα)

π

M∑
 =−m

e2(α−1) k′

t + e−2 k′ , t ∈ (0,∞),

where m = '(1 − α)k(, M = 'αk(, k′ = π/(2
√
α(1 − α)k). Since

'(1 − α)k( + 'αk( =
{
k + 1, αk /∈ Z

k, αk ∈ Z

Qα is either a (k + 1, k + 1) or a (k + 2, k + 2) rational function. The approximant
of uh has the form

uQ := 2k′ sin(πα)

π

M∑
 =−m

e2(α−1) k′
(
A+ e−2 k′

I

)−1
f. (9.16)

The parameter k′ > 0 controls the accuracy of uQ and the number of linear systems
to be solved. For example, k′ = 1/3 gives rise to 120 systems for α = {0.25, 0.75}
and 91 systems for α = 0.5 guaranteeing ‖uQ − u‖2 ≈ 10−7‖f‖2. We have

‖uQ − u‖2

‖f‖2
≤ max

λi

∣∣Qα(λi)− λ−α
i

∣∣ ≈ ∣∣Qα(λ1)− λ−α
1

∣∣ . (9.17)

Finally, the error analysis, developed in [2] states

lim
k→∞ eπ

√
α(1−α)k‖uQ − u‖2 = 2 sin(πα)

π

(
1

α
+ 1

(1 − α)λ1

)
‖f‖2. (9.18)

Remark 9.3 Varying the quadrature formulae, a family of related methods can be
obtained. For example, Gauss-Jacobi quadrature rule is used to approximate the
integral representation of the solution in [1].

9.2.4 Comparison of the Three Solvers

Comparing (9.10) with (9.18) we observe exponential decay of both errors with
respect to the number of linear systems to be solved. The exponential order of the
BURA estimate is at least twice higher than the one for the quadrature rule, but
there is a multiplicative factor Λ1−α in (9.10), which depends on the mesh size h

and Λ → ∞ as h → 0. This implies trade-off between numerical accuracy and
computational efficiency for the BURA method. The choice of k for rα ∈ R(k, k)

should be synchronized with h, while the size of h does not affect the choice of
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k for Qα . Another difference between the two approaches is that the error bound
in (9.10) is unbalanced and can be reached only for f = Ψ 1 and only if Λ−1λ1
is an extreme point for rα (see (9.9)), while the error bound in (9.18) is balanced.
Hence, the BURA error heavily depends on the decomposition of the right-hand-
side f along {Ψ i} and possesses a wide range of values, while the quadrature error
is independent on f.

The errors in (9.9) and (9.13) are bounded by the expressions Λ1−αEα,k,k

λ1
and

ΛαE1−α,k,k

λ2α
1

. Since Eα,k,k is monotonically increasing function with respect to α and

Λ,λ1 > 1, for α > 0.5 the R-BURA method provides better theoretical error
bounds, while for α < 0.5 so does the BURA one. In the case α = 0.5 the
two approaches behave similarly. The drawback for the R-BURA method is the

additional condition on k and h, namely μ1 ∈
k⋃

i=1
[ξ2i , ξ2i+1]. On the other hand, if

we can guarantee this, then the R-BURA method has some advantage, as we solve
one linear system less k + 1 for BURA vs k for R-BURA, when using the same
(k, k) function r0.5(t)). Below we provide an experimental comparison of these
approaches for various h and k = {7, 8, 9}.

9.3 Numerical Tests: Comparative Analysis and Proof
of Concept

We consider the fractional Laplace problem with homogeneous boundary condi-
tions (9.3) in both 1-D and 2-D. In 1-D we use the well-known eigenvectors and
eigenvalues of the corresponding SPD matrix for experimental validation of the
theoretical error analysis. In 2-D we investigate the relation between numerical
accuracy and computational efficiency of the considered three solvers.

9.3.1 Algorithm for Computing BURA

Following [6] we consider α = {0.25, 0.5, 0.75} and investigate methods with
similar computational efficiency. The rational functions rα(t) are computed using
the modified Remez algorithm, described in [6, Section 3.2]. In the case α =
0.25 we compare (k, k)-BURA with the k-Q-method, k = 9. The corresponding
numerical solvers incorporate 10, respectively 11 linear systems with positive
diagonal shifts of A. In the cases α = {0.5, 0.75} we compare (k, k)-BURA,
(k + 1, k)-R-BURA, (k + 1, k + 1)-R-BURA, and k-Q-method for k = 7. This
gives rise to k+ 1 linear systems with positive diagonal shifts of A for the first two
methods and k + 2 linear systems with positive diagonal shifts for the last method.
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The maximal approximation errors of the involved BURA functions are summa-
rized in Table 9.1. We use ∗ to indicate errors that cannot be computed when the
Quadruple-precision floating-point format is applied for the arithmetics. The first
four zeros of the associated functions ε(t) = r1−α(t)− tα are presented in Table 9.2.
Note that they are needed only in the analysis of R-BURA setting, thus we exclude
α = 0.25 where R-BURA behaves worse than BURA.

9.3.2 Numerical Results for 1-D Fractional Laplace Problem

For this problem we have λ1 = (4/h2) sin2(πh/2), Λ = 4/h2, and μ1 =
sin2(πh/2). The numerical results are given in Figs. 9.1 and 9.2.

First, we solve the system A
αu = Ψ 1. The theoretical errors of the three methods,

given by Λ−α|μ−1
1 rα(μ1) − μ−α

1 | of BURA, Λ−α|r1−α(μ1) − μα
1 |/(μα

1 r1−α(μ1))

of R-BURA, and |Qα(λ1) − λ−α
1 | of the Q-method, are presented as function of

h ∈ [10−7, 10−2] in Fig. 9.1. The numerical results in each graph are obtained by
comparable computational complexity (expressed through the number of systems
solved).

The oscillating behavior of the BURA-related error is due to the placement of
μ1 with respect to the extreme points of ε(t). When α = 0.75, k = 8 (right
plot) and h < 10−4 we observe the constant asymptotic behavior of the R-BURA
errors towards π−2α as h → 0. Similar observation is made for α = 0.5 and
h < 2 · 10−5. Since μ1 ≈ π2h2/4, we have that μ1 ≈ 2.5 · 10−8 for α = 0.75
and h = 10−4, which, as seen from Table 9.2, is close to the first zero ξ1 of ε(t)

for the corresponding (8, 7)− and (8, 8)− approximations r0.25(t). This asymptotic
behavior perfectly agrees with the error estimate (9.14). The same analysis can
be made for α = 0.5 and h = 2 · 10−5, where μ1 ≈ 5 · 10−10. The Q-method
errors are independent of h. We observe that for α = 0.5 the BURA and R-BURA
solvers have comparable accuracy over the whole interval (0, 1]. For α = 0.75
and h ∈ [10−4, 10−3], we observe that both (8, 7)− and (8, 8)-R-BURA functions
give worse relative errors than the (7, 7)-BURA function, since μ1 ∈ [ξ1, ξ2] (see
Table 9.2).

The second set of experiments deals with the error over the whole spectrum
of A and is presented in Fig. 9.2. For h = 10−3 and h = 10−6 we compute
Λ−α|μ−1

i rα(μi)−μ−α
i |, Λ−α|r1−α(μi)−μα

i |/(μα
i r1−α(μi)), and |Qα(λi)− λ−α

i |
for all i, which is equivalent to letting the right-hand-side in A

αu = f run over the
eigenvectors of A (f = Ψ i). The plots in the first row illustrate the complete spectral
decomposition of the error for h = 10−3. For h = 10−6 we show the spectral error
over the first 1% of the eigen-modes in the second row. The unbalanced behavior
of the BURA-related errors in contrast to the balanced behavior of the errors of
the Q-method is clearly observed. High-frequency modes are practically perfectly
reconstructed by the R-BURA methods, while the low-frequency ones lead to larger
errors. When h = 10−3 and k is chosen accordingly, all BURA-method errors are
smaller than the corresponding Q-method errors. When h = 10−6 and k is chosen
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Fig. 9.1 Comparison of the theoretical error bounds ‖ur − u‖2/‖f‖2, f = Ψ 1, of the three solvers
with respect to h for the 1-D fractional Laplacian
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Fig. 9.2 Spectral decomposition of the error for the 1-D fractional Laplace problem with h =
10−3 (top) and h = 10−6 (bottom). Colors are with respect to the legend of Fig. 9.1. Top: for each
i we plot the corresponding errors ‖ur − uQ‖2/‖f‖2 for f = Ψ i . The bottom plots present the
corresponding errors for the first 100 eigenvectors, i.e., for {Ψ i}100

1

poorly, then the BURA and R-BURA errors on the first several eigenvectors can
be significantly larger than the corresponding Q-method errors. However, among a
million of eigenvectors, the Q-method outperforms the BURA methods on not more
than 50 of them. Comparing BURA to R-BURA approaches, we experimentally
confirm that the two methods behave similarly when α = 0.5, while R-BURA is
better for α = 0.75.
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9.3.3 2-D Numerical Experiments

We consider the finite difference approximation of (9.3) with two different r.h.s.,
namely, f1 and f2:

f1(x, y) =
{

1, if (x − 0.5)(y − 0.5) > 0,
−1, otherwise.

f2(x, y) = cos(πhx) cos(πhy)

(9.19)

The function f1 has a jump discontinuity along x = 0.5 and y = 0.5 and has already
been used as a test function in this framework [2, 6]. In this case λ1 ≈ 2π2, Λ =
‖A‖∞ = 8h−2, and μ1 = sin2(πh/2). The reference solution uQ is generated by
the Q-method with k′ = 1/3 on a fine mesh with mesh-size h = 2−12. Note that uQ
is an approximation to the exact solution u with six correct digits, ‖uQ−u‖2/‖f‖2 ≈
10−7 (see [2, Table 3]) . The numerical results are summarized in Tables 9.3, 9.4,
9.5. The presented relative  2-errors illustrate the theoretical analysis, while  ∞-
errors are given as additional information.

The balanced error distribution along the full spectrum for the Q-method gives
rise to stable relative errors, independent of h for all α on both examples. The
error distribution for BURA and R-BURA methods depends on h and k. From
Table 9.3 we see that for α = 0.25 and h ≥ 2−12 the choice k = 9 for the (k, k)-
BURA method has lower  2-error than the error of the Q-solver for comparable
computational work.

Next set of numerical experiments is presented in Tables 9.4 and 9.5. For α = 0.5
and k = 7, we have μ1 > ξ2 for h ≥ 2−12 and both (8, 7)- and (8, 8)-R-BURA
methods are reliable. Their  2 relative errors are smaller than the corresponding
errors for the k-Q-solver on all considered mesh sizes. The (8, 8)-R-BURA solver
is more accurate than the (8, 7)-R-BURA one. The choice k = 7 for the BURA
solver is reliable for h ≥ 2−11, but for h = 2−12 a larger k is needed. Like the 1-D
case, BURA and R-BURA solvers behave similarly when k is properly chosen.

For α = 0.75 and h < 2−10, we have μ1 ∈ [ξ1, ξ2] for both (8, 7)- and (8, 8)-
R-BURA methods. As a result the (8, 8)-R-BURA solution is less accurate than
the one obtained by (7, 7)-BURA for h = {2−11, 2−12}, while the (8, 7)-R-BURA
solver is outperformed by all the other three for h = 2−12. Once we guarantee
that μ1 > ξ2, the R-BURA approach gives rise to the highest accuracy. Again, the
(8, 8)-R-BURA solution is more accurate than the one obtained by (8, 7)-R-BURA.

Finally, we present a comparison on numerical accuracy versus computational
efficiency for properly chosen k and h. We fix h = 2−10 and for each BURA-
related method we compute the smallest k, such that the corresponding k-Q-method
gives smaller relative  2-error for f1 and f2. When α = 0.25 the (9, 9)-BURA
solver has lower accuracy than the 37-Q-method for f1 and the 36-Q-method for
f2, respectively. This means that, instead of the 10 linear systems incorporated in
the BURA-method, we need to solve 39, respectively 37, linear systems for the Q-
method. For α = 0.5 and both {f1, f2} we need to use k = 16 for the Q-method
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to get better accuracy than (7, 7)-BURA, k = 16 for the Q-method to get better
accuracy than (8, 7)-R-BURA, and k = 20 for the Q-method to get better accuracy
than (8, 8)-R-BURA. For f1 and α = 0.75 we need to use k = 13 for the Q-method
to get better accuracy than (7, 7)-BURA, k = 17 for the Q-method to get better
accuracy than (8, 7)-R-BURA, and k = 25 for the Q-method to get better accuracy
than (8, 8)-R-BURA. Finally, for f2 and α = 0.75 we need to use k = 13 for
the Q-method to get better accuracy than (7, 7)-BURA, k = 21 for the Q-method
to get better accuracy than (8, 7)-R-BURA, and k = 29 for the Q-method to get
better accuracy than (8, 8)-R-BURA. Therefore, with respect to numerical accuracy
versus computational efficiency the R-BURA solver for α = 0.75 behaves similarly
to the BURA solver for α = 0.25 and can be up to four times more efficient than
the corresponding Q-solver.

9.4 Concluding Remarks

We present a comparative analysis of three methods for solving equations involving
fractional powers of elliptic operators, namely, the method of Bonito and Pasciak,
[2], BURA method based on the best rational approximation of t1−α , [6], and the
new method, R-BURA, based on the best rational approximation of tα on [0, 1].

The method of Bonito and Pasciak, [2], uses Sinc quadratures and has expo-
nential convergence with respect to the number of quadrature nodes. The BURA
method, [6], has exponential convergence as well, is accurate for α close to 0, and
performs well for fixed step-size h. The new method, R-BURA, has also exponential
convergence with respect to the degree of the rational approximation for fixed step-
size h. In contrast to BURA, R-BURA method performs better for α close to 1.
However, the accuracy of both methods deteriorates when h→ 0.

We expect that one could be able to construct a method that combines the advan-
tages of these approaches, computational efficiency and exponential convergence
rate. Moreover, the proposed algorithms can be used in 3-dimensional computations
without any changes. For such computations with the first BURA method, see [6].

The development of solution methods for fractional-in-space diffusion problems
in the case of local mesh refinement is a topic of current interest. For instance, for
the considered test problems, the goal will be to resolve some clearly expressed
boundary and internal layers. For such problems, the BURA methods should be
robust with respect to the increased condition number of the matrix A.
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Chapter 10
A Three-Level Extension of the GDSW
Overlapping Schwarz Preconditioner
in Two Dimensions

Alexander Heinlein, Axel Klawonn, Oliver Rheinbach, and Friederike Röver

Abstract A three-level extension of the GDSW overlapping Schwarz precondi-
tioner in two dimensions is presented, constructed by recursively applying the
GDSW preconditioner to the coarse problem. Numerical results, obtained for a
parallel implementation using the Trilinos software library, are presented for up
to 90,000 cores of the JUQUEEN supercomputer. The superior weak parallel
scalability of the three-level method is verified. For large problems and a large
number of cores, the three-level method is faster by more than a factor of two,
compared to the standard two-level method. The three-level method can also be
expected to scale when the classical method will already be out-of-memory.

10.1 The Standard GDSW Preconditioner

Consider the symmetric positive definite and sparse linear system of equations

Kx = b (10.1)

arising from the weak formulation of a second order scalar elliptic boundary value
problem in two dimensions and discretized by low order finite elements. If K is
large, it is state of the art to solve (10.1) iteratively by a Krylov method, such
as the preconditioned conjugate gradient (PCG) method, in combination with a
preconditioner.
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The GDSW (Generalized Dryja–Smith–Widlund) preconditioner is a two-level
overlapping Schwarz domain decomposition preconditioner [20] with an energy-
minimizing coarse space introduced in [4, 5]. It can be written in the form

M−1
GDSW = ΦK−1

0 ΦT

︸ ︷︷ ︸
Coarse Level

+
N∑
i=1

RT
i K̃i

−1
Ri

︸ ︷︷ ︸
First Level

, (10.2)

where

K0 = ΦTKΦ (10.3)

is the coarse matrix, and where the matrices

K̃i = RiKRT
i (10.4)

represent the local overlapping subdomain problems. The columns of Φ contain
the coarse basis functions, which are chosen as discrete harmonic extensions of
functions ΦΓ defined on the interface Γ of the non-overlapping domain decom-
position. To define ΦΓ , the interface is decomposed into vertices and edges in 2D
and vertices, edges, and faces in 3D [4]. Then, the columns of ΦΓ correspond to
the restrictions of the null space of the global Neumann matrix to these interface
components. The coarse matrix K0 = ΦTKΦ can be interpreted as the stiffness
matrix assembled using the coarse basis functions. The coarse correction operator
ΦK−1

0 ΦT is usually not formed explicitly but evaluated from right to left when used
in matrix-vector multiplications.

For linear elliptic problems, the condition number of the Schwarz operator is
bounded by

κ(M−1
GDSWK) ≤ C

(
1 + H

δ

)(
1 + log

(
H

h

))2

, (10.5)

where h is the size of a finite element, H the size of a nonoverlapping subdomain,
and δ the width of the overlap; see [4].

The crucial advantage of GDSW preconditioners compared to other domain
decomposition preconditioners is that they can be constructed in an algebraic
fashion from the fully assembled matrix K and without the need of an additional
coarse triangulation.

This will also facilitate the construction of the three-level GDSW preconditioner
presented in the following section.
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10.2 The Three-Level GDSW Preconditioner

For a large number of subdomains, the exact solution of the GDSW coarse
problem, i.e., the factorization of K0 (see (10.3)) by a sparse direct solver, may
not be possible, or reasonable, anymore [8, 9]. This is particularly due to the
superlinear memory complexity of sparse direct solvers. As a remedy, the GDSW
preconditioner can recursively be applied to the coarse problem resulting in the
three-level preconditioner discussed in this paper. Three-level BDDC methods
in two dimensions [22] are nonoverlapping preconditioners which are closely
related to the method presented here. Note that this recursive application of
the GDSW preconditioner could also be extended to more than three levels; cf.
related multi-level BDDC [2, 15] and Schwarz [14, 18] domain decomposition
methods and multigrid [7] methods. An alternative approach for improving the
scalability limit is the reduction of the dimension of the GDSW coarse space;
cf. [6, 11].

To define the three-level GDSW preconditioner, let us decompose the domain Ω

into nonoverlapping subregions Ωi0 of diameter Hc; see [22] and Fig. 10.1. Each
subregion is decomposed into nonoverlapping subdomains of diameter H .

Extending each subregion Ωi0 to Ω ′
i0 by recursively adding layers of subdo-

mains, an overlapping decomposition into subregions is obtained. Similarly, each
subdomain Ωi is extended to Ω ′

i , which then overlaps other extended subdomains.
The overlap on subregion level is denoted by Δ; the overlap on the subdomain
level is denoted by δ, consistent with the notation of the two-level method;
see Fig. 10.1.

Fig. 10.1 Structured decomposition of the computational domain Ω into nonoverlapping subre-
gions Ωi0 (left), a zoom into one overlapping subregion Ω ′

i0 consisting of subdomains Ωi (middle),
and a zoom into one overlapping subdomain Ω ′

i (right). Each level of zoom corresponds to one
level of the preconditioner
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The three-level GDSW preconditioner then is defined as

M−1
3GDSW = Φ

( Third Level︷ ︸︸ ︷
Φ0K

−1
00 ΦT

0 +

Second Level︷ ︸︸ ︷
N0∑
i=1

RT
i0K̃

−1
i0 Ri0

)
ΦT

︸ ︷︷ ︸
Coarse Levels

+
N∑

j=1

RT
j K̃

−1
j Rj

︸ ︷︷ ︸
First Level

, (10.6)

where

K00 = ΦT
0 K0Φ0, and K̃i0 = Ri0K0R

T
i0 .

By V1, . . . , VN , we denote the local subspaces corresponding to the overlapping
subdomains and V 0 denotes the corresponding coarse space. The restriction
operators on the subdomain level are defined as Ri : V h(Ω) → Vi := V h(Ω ′

i )

for i = 1, . . . , N . On the subregion level, we define the restriction operators to the
overlapping subregions Ω ′

i0 as Ri0 : V 0 → V 0
i := V 0(Ω ′

i0) for i = 1, . . . , N0.
The respective coarse space is denoted as V00 and spanned by the coarse basis
functions Φ0.

10.3 Implementation and Software Libraries

Our parallel three-level GDSW implementation is based on the implementation of
the GDSW preconditioner described in [8–10]; it is therefore also based on the
Trilinos linear algebra package Epetra. A newer version of the implementation
described in [9], now based on Xpetra, has recently been added to the Trilinos [13]
package ShyLU [16] as part of the FROSch (Fast and Robust Overlapping Schwarz)
framework [12]. It has been pushed to the public Trilinos git repository [21] in
October 2017.

We here apply our three-level GDSW implementation to a two dimensional
Laplace problem on the unit square with homogeneous Dirichlet boundary condi-
tions on ∂Ω . We use piecewise linear finite elements and a structured decomposition
of the computational domain; see Fig. 10.1. As a Krylov method, we apply a parallel
implementation of the PCG algorithm provided by the Trilinos package Belos [3].
Namely, we use the Belos implementation of a block preconditioned conjugate
gradient method (BelosPseudoBlockCG) developed for multiple right hand sides.
However, in our numerical experiments in Sect. 10.4, a block size of 1 is used, which
reduces the pseudo-block PCG to standard PCG. Opposed to the standard PCG
in Belos (BelosCG), this implementation offers the convenient standard condition
number estimate using the tridiagonal matrix constructed in the Lanczos process.

When using the Belos pseudo-block PCG, we observed that the number of
forward-backward substitutions is always larger by 2 than the number of PCG
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iterations. This is because in the Belos pseudo-block PCG implementation after con-
vergence an additional preconditioned residual is computed to prepare processing of
the subsequent right hand sides; see the method solve of the BelosPseudoBlockCG-
SolMgr class. This is step is unnecessary if there are no additional right hand sides
but is still performed for ease of implementation.

We use the relative stopping criterion ‖rk‖2/‖r0‖2 ≤ 10−6, where rk is the k-th
residual and r0 the initial residual. Trilinos version 12.11 (Dev) is used; cf. [13]. We
use the IBM XL C/C++ compiler for Blue Gene V.12.1, and Trilinos is linked to the
ESSL. Note that in [9] clang 4.7.2 was used on the JUQUEEN.

In this paper, we assume that we have a fast and scalable method to identify
vertex and edges degrees of freedom. This cost is therefore neglected in this paper.
In [9, Section 4.3], a completely algebraic method was discussed, which only uses
the Trilinos Epetra map of the nonoverlapping domain decomposition. However,
its superlinear complexity becomes significant beyond 104 cores, and it is then
preferable to use the infrastructure of a parallel mesh handler for this task, if
available.

To solve the sparse linear problems arising in the preconditioner, we always use
the sparse direct solver package MUMPS 4.10.0 [1] in symmetric, sequential mode,
and interfaced through the Trilinos package Amesos [17]. For the two- as well as the
tree-level method, the problem on the coarsest level is thus factorized by MUMPS
on the master process. The option to solve the coarsest level problem using the MPI-
parallel mode of MUMPS, on a subset of processes (as in [9, Section 4.6]), is not
used in this paper.

10.4 Numerical Results on the JUQUEEN Supercomputer

To evaluate the numerical and weak parallel scalability of the three-level precon-
ditioner, we perform numerical experiments on the JUQUEEN BG/Q supercom-
puter [19] at Jülich Supercomputing Centre, using our implementation based on
Trilinos 12.11 (Dev).

We can expect that the advantages of the three-level GDSW preconditioner
will become visible only for a large number of subdomains and cores. Although
JUQUEEN will be decommissioned and replaced later this year, it is still the
supercomputer in Europe with the largest number of cores and thus the most suitable
machine for our tests. A node of JUQUEEN has 16 cores (PowerPC A2, 1.6 GHz)
and 16 GB of memory. The largest computations presented here will use 5 625 nodes
corresponding to 90,000 cores.

In all of our numerical experiments, we maintain a one-to-one correspondence
of subdomains to processor cores. Therefore, for our model problem in two
dimensions, (1/H)2 always corresponds to the number of subdomains and the
number of processor cores. We use one MPI rank for each core. Thus, 16 Gb of
memory are available for the 16 MPI processes running on a node. No threading is
applied.
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In Sect. 10.4.1, we first will investigate the numerical properties of the three-
level GDSW method. We will study the dependence of the iteration count and the
condition number on the subdomain overlap δ, on the number of degrees of freedom
in a subdomain, on the subregion overlap Δ, and on the number of subdomains per
subregion.

For the weak numerical and parallel scalability, in Sect. 10.4.2, we will consider
problems of increasing size while proportionally increasing the number of subdo-
mains and thus also processor cores. For a numerical scalable method, the number
of iterations should approach an asymptotic limit, and for a parallel scalable method,
the solver time should stay close to constant. We will compare the performance of
our new implementation of the three-level GDSW method with the performance of
our older standard GDSW implementation.

10.4.1 Numerical Properties of the Three-Level GDSW
Preconditioner

First, we present numerical results concerning the condition number of the precon-
ditioned operator using the three-level preconditioner.

In view of the condition number bound (10.5) for the two-level preconditioner,
we consider the three-level GDSW preconditioner while varying the subdomain
overlap H/δ. The numerical results in Fig. 10.2 indicate a linear dependence on
H/δ, consistent with the bound for the two-level method.

Next, we vary H/h, i.e., the number of degrees of freedom in each subdomain.
Here, the results in Fig. 10.3 indicate a polylogarithmic dependence on H/h, again
consistent with the bound for the two-level method.

1/Hc 1/H H/ Iter (M−1
3GDSWK)

32 128 40 84 99.37
32 128 30 82 93.32
32 128 20 78 86.81
32 128 12 77 81.27
32 128 8 76 78.34
32 128 6 75 76.78
32 128 5 76 75.96
32 128 4 76 75.08
32 128 3 76 74.13
32 128 2 75 72.97

Fig. 10.2 Number of PCG iterations Iter and estimated condition number κ(M−1
3GDSWK) using the

three-level GDSW preconditioner for our Laplace model problem in two dimensions. Varying size
of the overlap H/δ and fixed 1/Hc = 32, 1/H = 128, H/h = 120, and Hc/Δ = 4; the dotted line
is a least square fit of a linear function to the data; the problem has (120×128+1)2 = 235 960 321
degrees of freedom; we use 1282 = 16 384 processor cores
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1/Hc 1/H H/h Iter (M−1
3GDSWK)

16 64 100 75 82.68
16 64 200 81 93.29
16 64 320 86 100.13
16 64 360 87 101.81
16 64 400 89 103.31

Fig. 10.3 Number of PCG iterations Iter and estimated condition number κ(M−1
3GDSWK) using

the three-level GDSW preconditioner for our Laplace model problem in two dimensions. Varying
H/h and fixed 1/Hc = 16, 1/H = 64, Hc/Δ = 4, and H/δ = 20; semi-log plot; the largest
problem has (400 × 64 + 1)2 = 655 411 201 degrees of freedom; the dotted line interpolates the
data points; we use 642 = 4096 processor cores

1/Hc 1/H Hc/ Iter (M−1
3GDSWK)

4 256 64 137 331.24
4 256 32 113 216.15
4 256 16 98 162.42
4 256 8 84 127.18
4 256 4 73 96.70

Fig. 10.4 Number of PCG iterations Iter and estimated condition number κ(M−1
3GDSWK) using

the three-level GDSW preconditioner for our Laplace model problem in two dimensions. Varying
subregion overlap Hc/Δ and fixed 1/Hc = 4, 1/H = 256, H/h = 120, and H/δ = 4; the dotted
line is a least square fit of a linear function; the problem has (256 × 120 + 1)2 = 943 779 841
degrees of freedom; we use 2562 = 65 536 processor cores

We also vary the subregion overlap Hc/Δ. The numerical results are visualized
in Fig. 10.4 and clearly indicate a linear dependence on Hc/Δ.

Last, we change the number of subdomains in a subregion, i.e., Hc/H . Here, the
results in Fig. 10.5 point towards a polylogarithmic dependence on Hc/H .

Our numerical findings thus indicate that the standard bound generalizes to
the subregion level. However, the theory corresponding to the numerical results
presented here will be presented elsewhere.
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1/Hc Hc/H 1/H Iter (M−1
3GDSWK)

8 12 96 77 94.69
8 16 128 80 101.31
8 20 160 83 106.31
8 24 192 84 110.30
8 28 224 86 113.62
8 32 256 87 116.45

Fig. 10.5 Number of PCG iterations Iter and estimated condition number κ(M−1
3GDSWK) using

the three-level GDSW preconditioner for our Laplace model problem in two dimensions. Varying
Hc/H and fixed 1/Hc = 8, H/h = 16, Hc/Δ = 4, and H/δ = 4; semi-log plot; the dotted line
interpolates the data points; the largest problem has (256 × 16 + 1)2 = 16 785 409 degrees of
freedom and uses 2562 = 65 536 processor cores

Fig. 10.6 Weak numerical scalability of the two- and three-level methods. Both methods are
numerically scalable. See Table 10.1 for the data. (1) Number of PCG iterations for an increasing
number of subdomains and processor cores (left). (2) Estimated condition number for an increasing
number of subdomains and processor cores (right)

10.4.2 Numerical and Parallel Scalability of the Three-Level
GDSW Preconditioner

It can be expected that replacing the direct coarse solver used in the two-level
GDSW method [4, 5, 8, 9, 11] by a preconditioner for K0 will increase the number
of Krylov iterations in the three-level method. The results in Fig. 10.6 will show
indeed that the condition number can be larger by a factor of more than four and the
number of iterations is twice as high for the three-level method.

However, the three-level method can be expected to show a superior range
of weak parallel scalability since the coarse matrix K00 in three-level GDSW is
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Fig. 10.7 Weak parallel scalability of the two- and three-level methods. See Table 10.1 for the
data. (1) Solver Time for the two-level and three-level GDSW method (left). (2) Time for the setup
of the preconditioner and for the Krylov iteration for two- and three-level GDSW (right)

significantly smaller than K0 in the two-level method; see the columns Size of K0
and Size of K00 in Table 10.2.

Weak Numerical and Parallel Scalability
In Figs. 10.6, 10.7, and Table 10.1, we now present the weak scalability of our
implementation of the two-level and three-level GDSW preconditioners.

First, we note that both methods are numerically scalable in the number of
iterations; see the column Iter in Table 10.1 and Fig. 10.6 (left). This is consistent
with the estimated condition number; see κ(M−1

GDSWK) and κ(M−1
3GDSWK) in

Table 10.1 and Fig. 10.6 (right).
Let us now consider the computing times. By Solver Time, we denote the time to

solution, which is the sum of the time for the setup of the preconditioner, denoted
Setup Time, and the time for the PCG iteration, which we denote Krylov Time. The
Setup Time includes the factorizations of the matrices on the different levels by the
MUMPS sparse direct solver.

It is clear from Fig. 10.6 and Table 10.1 that the numerical scalability in
terms of the PCG iterations and of the condition number is better for the stan-
dard two-level method since it seems to approach earlier its asymptotic bound.
Moreover, as already mentioned, the number of iterations is twice as high for
the three-level method. Therefore, for a small number of cores, with respect to
Solver Time the three-level method is about 30% slower than the traditional two-
level method.

However, as the Solver Time in Fig. 10.7 and Table 10.1 shows, the three-
level GDSW method exhibits a clearly superior weak parallel scalability com-
pared to the two-level method. As a result, from 32,400 BG/Q cores on, the
three-level method is faster than the two-level method. For the largest problem
considered in Table 10.1 with 3.6 billion degrees of freedom, the three-level
method is more than twice as fast (96.88s Solver Time) than the two-level method
(220.71s Solver Time). The performance advantage of the three-level method
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can be expected to increase for a larger number of cores; also see Fig. 10.7
(left).

The Role of the Coarse Problem
The performance difference between both methods comes from the coarse problem.
In Table 10.2, we therefore present the computational cost of the factorization and
the forward-backward substitutions on the coarsest level of the two methods, i.e.,
for K−1

0 in the two-level GDSW and for K−1
00 in the three-level GDSW.

To understand the impact of the coarse problem cost on the scalability, let us
consider the case of 90,000 cores and subdomains in Table 10.2. Here, the 102.59s
(i.e., 80.30s for forward-backward substitutions and 22.29s for the factorization of
K0) for the two-level method represent 46.5% of the total Solver Time of 220.71s;
see Table 10.1. These 102.59s compare to only 1.79s (i.e., 0.09s for forward-
backward substitutions and 1.70s for the factorization of K00) for the three-level
method. In comparison, this is faster by a factor of more than 50; also see Fig. 10.8.

Note, that we here only discuss the computational work performed by the sparse
direct solver on the coarsest level, i.e., the computational cost for the second level
of the three-level method is not included; cf. (10.6). Moreover, MPI communication
is not included. Both these aspects will however be considered below.

It is noteworthy that using MUMPS on the BG/Q architecture, in our numerical
experiments, the forward-backward substitutions are always significantly more
expensive than the factorizations, i.e., for 90,000 cores, in the two-level method,
22.29s are spent for the factorization of K0, but 80.30s are spent in the 50 forward-
backward substitutions with the factors of K0 while performing the 48 PCG

Fig. 10.8 Cost for solving the problem on the coarsest level, i.e., using K0 in the standard two-
level GDSW preconditioner and using K00 in the three-level GDSW preconditioner. See Table 10.2
for the data
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iterations in Belos; see Table 10.2 and the remark on the Belos pseudo-block PCG
implementation in Sect. 10.4.2.

A relatively slow forward-backward substitution, compared to the factorization
phase, seems to be characteristic for MUMPS, which uses functions from scalapack
and blacs as computational kernels. Other sparse direct solvers such as UMFPACK
seem to profit from vendor-provided blas libraries especially for the forward-
backward substitution. However, UMFPACK typically uses significantly more
memory and is usually not faster than MUMPS in total; see also [9]. The slow
forward-backward substitution of MUMPS explains the relatively large portion of
the computing time spent in the Krylov iteration observed in Table 10.1.

We also see in Table 10.2 in the column Memory Usage that the amount of
memory required by MUMPS for the factorization of K0 grows only slightly faster
than linear; also see Fig. 10.9. This is a result of the relatively high sparsity of
both coarse matrices, K0 as well as K00, especially for structured decompositions.
Both are sparser than standard low order finite element matrices; see also Fig. 10.10
here, the vertex basis functions do not couple to each other but only to the edge
basis functions. Furthermore, the edge basis functions only have support on two
subdomains.

Nevertheless, the memory usage will eventually limit the two-level method,
since for 90,000 subdomains, MUMPS already uses 186 Mb of memory for the
factorization of K0; see Table 10.2 and Fig. 10.9. Since in our implementation K0 is
factorized on the master, the factors of K0 as well as the factors of K̃1 have to fit into
the memory available to MPI rank zero. To avoid out-of-memory errors, assigning
a dedicated core or node to the coarse problem would be a possible improvement.

Fig. 10.9 Memory usage of the MUMPS direct solver for the factorization of the coarse matrix
K0 and K00 for the two-level and three-level GDSW method, respectively. See Table 10.2 for the
data
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Fig. 10.10 Sparsity of the second level coarse matrix K0 (left) and the third level coarse matrix
K00 (right) for our Laplace model problem in two dimension with 36 subdomains and H/h = 30.
For K00, we have 9 subregions. The vertex basis functions are always numbered first, followed by
the edge basis functions

Fig. 10.11 Weak parallel scalability of the setup and application of the preconditioner. See
Table 10.3 for the data. (1) Timers corresponding to the setup of the two- and three-level GDSW
preconditioner, split into first and coarse level (left). (2) Timers corresponding to the application of
the coarse operator and the included direct solves for two- and three-level GDSW (right)

Alternatively, MUMPS can also be used in parallel mode, on a subset of processors,
as in [8, Section 4.6].

Weak Parallel Scalability of the First and Coarse Level(s)
Finally, in Fig. 10.11 and Table 10.3, we compare the cost for the setup of the first
and coarse levels of the preconditioners as well as the cost for their application
during the Krylov iteration.

MPI communication cost is now included, i.e., Coarse Level Setup and Coarse
Levels Setup include the MPI communication to construct the coarse problem,
notably for forming the coarse level operator using a triple matrix product; see [8,
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Section 4.5]. Additionally, MPI communication is necessary to send the coarse
matrices K0 or K00 to a subset of processes. In this current paper, this subset
is always the master. Then, hierarchical Epetra import and export data structures
are built to allow the application of K−1

0 and K−1
00 to a distributed Epetra vector;

here, intermediate data migration steps are used, in a hierarchical fashion, in order
to avoid all-to-one communication; see [8, Section 4.7] for details. Moreover,
gather and scatter steps (using Epetra import and export operations) are included
in 1st Level Apply and Coarse Level Apply for the two-level method, and in
1st Level Apply, and Coarse Levels Apply for the three-level method.

Note that for the three-level method the Coarse Levels Setup and Coarse Lev-
els Apply correspond to the sum of the cost on the second and third level. This
implies that the computational work for K̃−1

i0 is now included. This is opposed to
Table 10.2, where only K−1

00 was considered, which is part of the computational
work performed on the third level.

Also note that the Factorization Time presented in Table 10.2 is included in the
Setup Time of Table 10.3 for the two-level and three-level method. Likewise, the
Forward-Backward Time in Table 10.2 is included in the Apply Coarse Level(s)
Time of Table 10.3.

In Fig. 10.11 (left), we see that the setup cost of the first level is almost identical
for the two- and three-level methods. This is no surprise as the implementations of
the first level are essentially identical.

However, in Fig. 10.11 (right), we see that for the three-level method the
application of the first level can be more than twice as expensive as for the two-level
method. This is a result of the higher number of PCG iterations in the three-level
method and impacts the total solver time because of the relatively slow forward-
backward substitutions in MUMPS.

Consistent with our earlier findings, we see in Fig. 10.11 that the scalability of the
two-level method suffers mainly from the setup and application of the coarse level,
i.e., Coarse Level Setup and Coarse Level Apply are not scalable for the two-level
GDSW preconditioner.

However, for the three-level method the setup of the second and third levels, i.e.,
Coarse Levels Setup, as well as the application of the second and third levels during
the Krylov iteration, i.e., Coarse Levels Apply, are both parallel scalable in the range
of processor cores considered here.

10.4.3 Conclusion

We have shown that the three-level GDSW preconditioner shows good weak
scalability with a parallel efficiency of 61.0% considering the Solver Time when
scaling from 900 to 90,000 processor cores. In comparison, the traditional two-level
GDSW method shows a parallel efficiency of only 20.2%.
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As a result, for 90,000 cores, the three-level GDSW method outperforms the
standard two-level GDSW method by a factor of 2.3. Moreover, the three-level
method can be expected to still scale well when the standard method will already be
out of memory during the factorization of the coarse matrix K0.

For even larger coarse problems than considered here, additional levels can be
added, and a hybrid version, multiplicative between levels, can be used to reduce
the number of iterations as in [9, Section 6.2.3]. Results for a three-level GDSW
preconditioner in three dimensions are work in progress.
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Chapter 11
A Parallel Multigrid Solver
for Multi-Patch Isogeometric Analysis

Christoph Hofer and Stefan Takacs

Abstract Isogeometric Analysis (IgA) is a framework for setting up spline-based
discretizations of partial differential equations, which has been introduced around
a decade ago and has gained much attention since then. If large spline degrees are
considered, one obtains the approximation power of a high-order method, but the
number of degrees of freedom behaves like for a low-order method. One important
ingredient to use a discretization with large spline degree, is a robust and preferably
parallelizable solver. While numerical evidence shows that multigrid solvers with
standard smoothers (like Gauss Seidel) does not perform well if the spline degree
is increased, the multigrid solvers proposed by the authors and their co-workers
proved to behave optimal both in the grid size and the spline degree. In the present
paper, the authors want to show that those solvers are parallelizable and that they
scale well in a parallel environment.

11.1 Introduction

Isogeometric Analysis (IgA) was originally introduced in the seminal paper [9],
aiming to unite the worlds of computer aided design (CAD) and finite element
(FEM) simulation. From a technical point of view, it is a framework for setting
up spline-based discretizations of partial differential equations. The key idea is that
the spline space is typically first defined on the unit square or the unit cube and then
mapped to the computational domain using one global geometry function. More
complicated domains cannot be represented by just one such geometry function.
Instead, the computational domain is decomposed into patches, where each of them
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is represented by its own geometry function. This is called the multi-patch case, in
contrast to the single-patch case.

As a next step, the linear system resulting from the discretization of the PDE
has to be solved. This might be challenging as the condition number of the linear
system grows exponentially with the spline degree, where high spline degrees might
be desired because of their superior approximation power.

While in early IgA literature, the dependence of methods on the spline degree
has not been considered, in the last few years robustness in the spline degree has
gained increasing interest. Several (almost) robust approaches or approaches with a
mild dependence on the spline degree have been proposed, on the one side for the
single-patch case, cf. [1, 4, 7, 8, 11] and references therein, and on the other side as
approaches aiming to combine patch-local solvers to a global solver, cf. [2, 3, 10, 12]
and references therein.

In [13], we have considered a slightly different approach: We do not aim to
combine patch-local solvers to a global solver, but to combine patch-local smoothers
to a global smoother which is used within a global multigrid solver. In the present
paper, we give some additional remarks on an efficient implementation of the
multigrid method, comment on its parallelization and give numerical results.

This paper is organized as follows. First, the model problem and the discretiza-
tion are discussed in Sect. 11.2. Then, in Sect. 11.3, we recall the formulation of
the multigrid solver. Its parallelization is discussed in the following Sect. 11.4. In
Sect. 11.5, we give the results of numerical experiments and draw conclusions.

11.2 Model Problem and Isogeometric Discretization

Let Ω ⊂ R
d with d ∈ {2, 3} be a bounded computational domain with Lipschitz

boundary. We consider a standard Poisson model problem

−Δu = f in Ω , u = 0 on ΓD and
∂u

∂n
= 0 on ΓN ,

where ΓD is a subset of ∂Ω with positive measure and ΓN := ∂Ω\ΓD. The model
problem reads in variational form as follows. Given f ∈ L2(Ω), find u ∈ H 1

0,D(Ω)

such that

(∇u,∇v)L2(Ω) = (f, v)L2(Ω) for all v ∈ H 1
0,D(Ω) . (11.1)

Here and in what follows, L2(Ω) and H 1(Ω) are the standard Lebesgue and
Sobolev spaces with standard norms and H 1

0,D(Ω) := {u ∈ H 1(Ω) : u|ΓD = 0}.
We preform a standard isogeometric multi-patch discretization as it has been

specified in [13]. In the present paper, we try to keep the explanation short and
give only an overview. We assume that the computational domain Ω is composed
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of K patches Ωk such that

Ω =
K⋃
k=1

Ωk and Ωk ∩Ωl = ∅ for any k �= l , (11.2)

where each patch Ωk is a bounded and open domain. We assume that the patches are
fully matching, i.e., the intersections Ωk ∩ Ωl are either empty, common vertices,
common edges or common faces. Any of the patches is parameterized by a bijective
geometry function

Gk : Ω̂ := (0, 1)d → Ωk := Gk(Ω̂) ⊂ R
d .

Before we define set of trial functions V ⊂ H 1
0,D(Ω), we introduce discretiza-

tions living on the parameter domain Ω̂ . Let

Sp,h(0, 1) :=
{
u ∈ Cp−1(0, 1) : u|[hi,h(i+1)] is a polynomial of degree p , ∀i=1,...,n

}

be the space of univariate splines of maximum smoothness and the space
Sp,h(Ω̂) := Sp,h(0, 1) ⊗ · · · ⊗ Sp,h(0, 1) be the corresponding tensor-product
spline space. The grid size h and the spline degree p might be different for any
patch and for any spacial direction; for simplicity, we do not express that in the
notation. Based on the discretization living on the parameter domain Ω̂ , we define
the function space V of isogeometric functions living on the physical domain Ω as
follows:

V := {u ∈ C0(Ω) : u ◦Gk ∈ Sp,h (Ω̂)} . (11.3)

We assume to have a fully matching discretization, which means that the dis-
cretizations agree on the interfaces. A more formal definition of the basis and its
discretization is given in [13, Sec. 2]. In Fig. 11.1, a fully matching discretization is
depicted, where each node represents one basis function and therefore one degree of
freedom (dof). Note that any of the basis function whose associated node lies on one

Fig. 11.1 Fully matching
discretization
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patch, vanishes outside of that patch. Any of the basis functions whose associated
node lies within one edge, vanishes outside the union of the edge and the adjacent
patches. Finally, any of the basis functions whose associated node coincides with
one vertex, vanishes outside the union of that vertex and the adjacent edges and
patches. The behavior in three dimensions is completely analogous.

The Galerkin principle yields the following discretized variational problem. Find
u ∈ V such that

a(u, v) = (f, v)L2(Ω) for all v ∈ V , (11.4)

where

a(u, v) := (∇u,∇v)L2(Ω) =
K∑
k=1

(| det JGk
|J−$Gk

J−1
Gk
∇ûk,∇v̂k)L2(Ω̂)︸ ︷︷ ︸

ak(u, v) :=
(11.5)

for ûk := u ◦ Gk ∈ Sp,h (Ω̂) and v̂k := v ◦ Gk ∈ Sp,h (Ω̂) and where JGk
is the

Jacobian of the geometry map. Using the chosen basis, we obtain a matrix-vector
formulation of the discretized problem, which reads as follows. Find u ∈ R

N such
that

A u = f . (11.6)

Allowing constants that depend on the geometry function, we obtain that the matrix
A is spectrally equivalent to the matrix Â , which discretizes the bilinear form

â (u, v) :=
K∑
k=1

(∇ûk,∇v̂k)L2(Ω̂) ,

where, again, ûk := u ◦Gk and v̂k := v ◦Gk .

11.3 The Multigrid Solver and Its Extension
to Three Dimensions

We employ the multigrid solver based on a hierarchy of grids for grid levels
 = 0, . . . , L, obtained by uniform refinement. Throughout the grid hierarchy,
the spline degree p and the corresponding smoothness is kept unchanged. This
yields nested spaces: V0 ⊂ V1 ⊂ · · · ⊂ VL ⊂ H 1

0,D(Ω), which allows to use the
canonical embeddingV −1 → V for the multigrid method; its matrix representation
is denoted by P . Following the usual pattern, we use its transpose P$

 as restriction.
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One multigrid cycle on some grid level  consists of the following steps.

• First, ν pre-smoothing steps are applied, where each reads as follows:

u ← u+ τL−1
 (f − A u) . (11.7)

The choice of the smoothing operator L−1
 and the damping parameter τ are

discussed below.
• Then, the coarse grid correction is performed:

u ← u+ τP A
−1
 −1P

$
 (f − A u) ,

where for  > 1, the application A−1
 −1 is replaced by μ = 1 (V-cycle) or μ =

2 (W-cycle) recursive applications of the multigrid method on the coarser grid
level.

• Finally, again ν post-smoothing steps (11.7) are applied.

As smoother, an additive Schwarz type combination

L−1
 :=

∑
T

P ,T L
−1
 ,T P

$
 ,T (11.8)

of local smoothing operatorsL−1
 ,T is proposed, where the dofs are collected based on

separating the domain into pieces: patches, vertices, edges and, in three dimensions,
faces. Here, each dof (basis function) is assigned to exactly one of these pieces
as proposed in [13]: Each basis function which is non-vanishing on a vertex, is
assigned to that vertex. All other basis functions, which are non-vanishing on an
edge, are assigned to that edge. All other basis functions, which are non-vanishing
on a face, are assigned to that face. All other basis functions are assigned to the
patch in which their support is contained. For an illustration, cf. Fig. 11.2.

Certainly, based on such a one-by-one splitting, the matrix P ,T is nothing but a
full rank N×NT indicator matrix representing the canonical embedding, where NT

is the number of dofs assigned to the piece T and N is the total number of dofs.

Fig. 11.2 Decomposition
into pieces serving as
subspaces for the additive
Schwarz method
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The local smoothing operators are chosen as follows.

• For the patch-interiors, the subspace corrected mass smoother as proposed in [7]
is chosen as smoothing operator L−1

 ,T .
• For the edges and vertices, in [13] direct solvers have been proposed as

smoothers, i.e., L ,T := P$
 ,T A P ,T is the restriction of the matrix A to the edge

or vertex. To avoid unnecessary communication, we choose an approximation
which can be computed directly. Using [13, Lemma 4.1] and [13, eq. (4.16)], we
obtain that the restriction of A to an edge is spectrally equivalent to

L ,T :=
(
h 

p

)d−1

K +
(
h 

p

)d−3

M ,

where K and M are the corresponding univariate stiffness and mass matrices.
Analogously, its restriction to a vertex is a constant in the order of

L ,T :=
(
h 

p

)d−2

.

• Three dimensional problems have not been considered in [13], so we have to
discuss how to choose the local smoothers for faces. If, as for the edges and
vertices, again a direct solver was applied, the overall computational costs would
not be optimal anymore. So, again, observe that the the restriction of A to a face
is spectrally equivalent to

L∗ ,T :=
(
h 

p

)d−2

K +
(
h 

p

)d−4

M ,

where and K = K ⊗M +M ⊗K and M = M ⊗M are the corresponding
stiffness and mass matrices on the face. For d = 3, we obtain

L∗ ,T = h 

p

(
K + p2

h2
 

M 

)
.

Here, analogously to the case of the patch-interiors, the subspace corrected mass
smoother is used. Note that the subspace corrected mass smoother is set up such
that it bounds the stiffness matrix K from above, cf. [7, eq. (11)]. In the present
paper, besides a trivial scaling, the stiffness matrix K is augmented by p2h−2

 

times the mass matrix M . So, we have also to augment the local contributions
for the subspace corrected mass smoother, cf. the matrices Lα in [7, Sec. 4.2], in
the same way.
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Fig. 11.3 The distribution of
the dofs to the processors

11.4 The Parallelization of the Multigrid Solver

The parallelization of the multigrid solver follows the approach presented in [5].
We use MPI,1 so each processor executes independently the whole algorithm with
its local data until communication is explicitly requested.

We assign each of the patches to one of the processors. So, that processor holds
the values of all dofs that belong to that patch including its interfaces, cf. Fig. 11.3.
This means that the dofs on the interfaces might be assigned to more than one
processor.

A vector that occurs in the algorithm, say w, is stored either in accumulated
form (Type I) or distributed form (Type II). We say that a vector is stored in
accumulated form if each of the processors holds those parts of the global vector
which correspond to the dofs assigned to the processor. We denote such vectors by
wacc. We say that a vector is stored in distributed form if the global vector is the sum
of the contributions of all the processors. Such vectors are denoted by wdist . Again,
the processor-local contributions of the distributed vectors are supported only the
patches assigned to the processor including their interfaces.

Note that only certain kinds of operations make sense; so we can add accumu-
lated and distributed vectors only to vectors of the same type:

uacc + v acc → wacc and udist + v dist → wdist ,

cf. [5, Sec. 5.3]. As the multi-patch setting is equivalent to a standard approach of
non-overlapping domain decomposition, the overall stiffness matrix is assembled
on a per-patch basis, i.e., the bilinear forms ak from (11.5) are evaluated separately
yielding matrices A ,k. Consequently, the global stiffness matrix A is the sum of
the local contributions A ,k. This means that the matrix A is stored in distributed
form, which yields the following mapping type:

A uacc → w dist ,

1Message Passing Interface, see http://mpi-forum.org/.

http://mpi-forum.org/


212 C. Hofer and S. Takacs

i.e., A can be applied to accumulated vectors and the result of the operation is
distributed, cf. [5, Sec. 5.4.1].

Similar to [5, Sec. 7.2.2], the inter-grid transfer operators satisfy

P uacc → wacc and P$
 udist → wdist

because the prolongation operator has a block-triangular structure as in [5, eq. (5.9)]
and the restriction operator has a block-triangular structure as in [5, eq. (5.10)]. The
block-triangular structure is obtained because the following statements hold true:

• On each vertex, the prolonged value wacc coincides with the coarse-grid value
uacc of the same vertex.

• On each edge, the prolonged values wacc only depend on the coarse-grid values
uacc on the same edge and on the adjacent vertices.

• On each patch-interior, the prolonged valueswacc only depend on the coarse-grid
values uacc on the same patch-interior and on the adjacent edges and vertices.

For three dimensions, completely analogous statements hold true.
The global operator L−1

 is block-diagonal, where each block corresponds to one
piece. Note that by construction each piece belongs as a whole to one processor or
is shared as a whole by the same processors, so it satisfies both the conditions of [5,
eq. (5.9)] and [5, eq. (5.10)]. This shows

L−1
 uacc → wacc and L−1

 u dist → w dist ,

i.e., this operator can be applied both to distributed and accumulated vectors and it
preserves the type of the vector.

As in any iterative solver, we need to accumulate the vectors of interest in each
iterate. This we denote using the symbol Σ , which maps as follows:

Σ udist → wacc. (11.9)

We note that only a communication between the processors holding neighboring
patches is required in order to perform (11.9).

Only the coarsest grid level  = 0 needs some special treatment. Since the focus
of the present paper is set on parallelizing the multigrid solver without changing its
mathematical meaning, we perform an exact global solve on the coarsest grid level.
This seems to be acceptable as it is done only for the coarsest grid level. So, we
are required to communicate the stiffness matrix between all processors such that
every processor holds a global stiffness matrix. We set up a direct solver A−1

0 for
this global stiffness matrix, so its application is perform in the following way

χglob A−1
0 Σglob uacc → wacc ,
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where Σglob denotes the accumulation of vectors where each processor obtains the
global vector and χglob is the restriction of the global vector to the patches assigned
to the processor. The latter involves only discarding unnecessary data. We obtain

Σglob udist → wglob and χglob uglob → wacc .

Overall, the parallel multigrid solver looks as follows:

Algorithm 1: Parallel multigrid solver

procedure MULTIGRID( , uacc, f dist
)

for i = 1, . . . , ν do , Pre-smoothing

uacc ← uacc + τΣL−1
 (f

dist
− A uacc)

r dist ← P$
 (f

dist
− A uacc)

if  = 1 then , Coarse-grid correction

p
acc

← χglob A−1
0 Σglob r dist , Exact solver for coarsest grid level

else
p

acc
← 0

for i = 1, . . . , μ do , μ = 1 is V-cycle; μ = 2 is W-cycle

p
acc

← MULTIGRID( − 1, p
acc

, r dist )

u acc ← uacc + P p acc

for i = 1, . . . , ν do , Post-smoothing

uacc ← uacc + τΣL−1
 (f

dist
− A uacc)

return uacc

We use our multigrid algorithm as a preconditioner for a standard parallel pre-
conditioned conjugate gradient (PCG) solver. Note that the multigrid preconditioner
already takes a distributed residual and returns an accumulated update. So, the
preconditioned conjugate gradient solver only needs to accumulate data in order
to compute the required scalar products accordingly, cf. [5, Sec. 6.3.1].

11.5 Numerical Experiments

In this section, we present numerical experiments concerning the paralleliza-
tion of the multigrid solver. The solver was implemented in C++ based on the
G+Smo library [6] and, as already mentioned, the parallelization is performed
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(a) (b)

Fig. 11.4 The computational domains. (a) The Yeti footprint. (b) The Fichera corner

using MPI. All numerical experiments have been done using the HPC Cluster
RADON1.2

We present timings for setup, assembling and solving. The setup costs include

1. the costs of the setup of the dof-mappers, which describe the relation between
the local dof-indices and the global dof-indices,

2. the costs of the grid refinement and the setup of the inter-grid transfer matrices,
3. the costs of the setup of the piece-local smoothers and
4. the costs of the setup of the coarse-grid solver.

Here, our implementation of item 1 requires that each processor knows about the
indexing of the global dofs. Also for item 4, the information on all dofs is required,
however only on the coarsest grid level. The costs which are typically dominant,
i.e., those for assembling and for solving, are presented separately. It is important to
note that assembling does not require the any kind of communication between the
processors. So its parallelization is trivial. The communication, which is required
for the solving phase, is discussed in detail in Sect. 11.4.

We have performed the numerical experiments for two and three dimensions.
As two dimensional domain, we use the Yeti footprint (Fig. 11.4a), which has
already been considered in [13] and which is also a popular domain for the IETI-
DP method, cf. [10]. As three dimensional domain, we consider the Fichera corner
(Fig. 11.4b). This domain is often considered as extension of the L-shaped domain to
three dimensions; the corresponding numerical experiments show that the proposed
method can also be applied to domains without full elliptic regularity.

2We use up to 32 out of 68 available nodes, each equipped with 2x Xeon E5-2630v3 “Haswell”
CPU (8 cores, 2.4 GHz, 20 MB cache) and 128 GB RAM. More information is available at https://
www.ricam.oeaw.ac.at/hpc/.

https://www.ricam.oeaw.ac.at/hpc/
https://www.ricam.oeaw.ac.at/hpc/
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11.5.1 The Yeti Footprint (2D)

On the Yeti footprint, we solve the model problem

−Δu = 50π2 sin(5π x) sin(5π y) in Ω ,

u = 0 on ΓD ,

∂

∂n
u = 0 on ΓN ,

where ΓD is the outer boundary and ΓN are the four inner boundaries.
The Yeti footprint consists of 21 patches, which can be seen in Fig. 11.4a. Since

we need sufficiently many patches for parallelization, we first split each patch
uniformly into 16 patches, so we obtain in total K = 336 patches. We solve the
problem with a conjugate gradient solver, preconditioned with one V-cycle of the
multigrid method. We perform 1 + 1 smoothing steps of the proposed smoother.
The damping parameter and the scaling parameter (in the subspace corrected mass
smoother) are chosen as in [13], i.e., τ = 0.25 and σ = 1

0.2h
−2
 .

In Table 11.1, we report on the number of iterations required to reach the
desired relative accuracy goal of 10−8. Here,  represents the number of refinement
levels and p the spline degree. On the coarsest grid level ( = 0), the patch-local
discretization only consists of global polynomials, i.e., each patch is one element
of the discretization. Refinement is done by uniformly refining the patch-local
grids, keeping the number of patches unchanged. We observe, as in [13], that the
number of iterates is quite robust in the grid size and in the spline degree. The
presented numbers have been computed with the serial code. The number of iterates
is supposed to be the same if parallelization is applied; however due to some small
numerical instabilities, in some cases the parallel code needs one additional iteration
(but never more than that). Similar iteration counts are obtained for the W-cycle.

In Table 11.2, we present the strong scaling results. We fix the grid level  and
the spline degree p to two typical values. For  = 7 and p = 4, we have 5 768 189
dofs and the corresponding stiffness matrix has 4.6 108 non-zero entries. For the
case  = 7 and p = 8, the number of dofs increases slightly to 6 125 757, but
the stiffness matrix has already 1.8 109 non-zero entries. In the first two rows, we
compare the costs of the serial code and the parallel code. Here, we obtain that the
parallel code is slightly slower during the solving phase which is mainly due to the

Table 11.1 Iteration counts
for Yeti footprint, K = 336

p

 2 3 4 5 6 7 8

4 45 42 37 33 31 28 25

5 48 44 40 36 33 30 27

6 50 44 41 36 35 33 27

7 51 45 42 37 36 34 28
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Table 11.2 Strong scaling behavior for Yeti footprint

 = 7 , p = 4 , K = 336  = 7 , p = 8 , K = 336

Setup Assembling Solving Setup Assembling Solving

# Proc. t s t s t s t s t s t s

(serial) 217.1 – 522.1 – 4929.5 – – – – – – –

1 220.0 1 520.0 1 5125.9 1 549.0 1 8230.9 1 4729.8 1

2 80.1 2.7 263.8 1.9 1367.6 3.7 225.4 2.4 4158.5 1.9 1250.8 3.7

4 35.3 6.2 131.8 3.9 399.1 12.8 117.0 4.6 2098.5 3.9 409.9 11.5

8 17.1 12.8 66.0 7.8 109.6 46.7 53.9 10.1 1055.9 7.8 140.2 33.7

16 10.7 20.5 33.9 15.3 40.7 125.9 30.0 18.3 543.4 15.1 59.2 79.9

32 8.0 27.5 17.4 29.8 17.1 299.7 17.7 31.0 275.1 29.9 26.8 176.4

64 7.2 30.5 9.4 55.3 10.6 483.5 12.9 42.5 149.7 54.9 13.7 345.2

128 6.0 36.3 5.1 101.3 4.1 1250.2 9.9 55.4 76.2 108.0 7.2 656.9

256 6.3 34.4 3.2 160.0 3.3 1553.3 9.5 57.7 51.4 160.1 6.5 727.6

Table 11.3 Weak scaling behavior for Yeti footprint

 = 7 , p = 4  = 7 , p = 8

# Proc. # dofs It. Setup Ass. Solving/It. # dofs It. Setup Ass. Solving/It.

4 360,902 46 1.4 9.2 0.17 383,262 46 6.6 147.3 0.47

16 1,442,569 44 2.4 9.3 0.19 1,531,977 44 8.7 151.2 0.47

64 5,768,189 41 7.2 9.5 0.26 6,125,757 28 13.2 148.7 0.48

256 23,068,573 36 42.4 9.7 0.26 24,498,717 26 54.5 153.8 0.77

fact that the parallel code does not assemble the whole stiffness matrix but works
with patch-local stiffness matrices. This allows also to consider the larger problem
with  = 7 and p = 8, where the serial code caused memory problems.

In the following rows, we consider the strong scaling behavior. We present in
each case the time t in seconds required for setup, assembling and solving and
the corresponding speedup s. We observe that the overall method has good strong
scaling properties. As the setup phase consists also of parts that are not parallelized,
we observe this time does not fall below a few seconds. The assembling phase,
which is known to be dominant phase in high-order isogeometric methods, scales
almost optimal. Also the solving phase needs rather little communication and is
expected to scale well therefore. Indeed, the speedup is much larger than what would
be expected. The authors think that this might be explained by some extraordinary
caching effects, but here further investigation is required. The extraordinary well
behavior of the solver cannot be explained with changed convergence behavior
because in all cases, the convergence behavior is identical.

In Table 11.3, we present weak scaling results. We again fix the grid level  and
the spline degree p to two typical values. Here, for the case of 4 processors, we
consider the initial configuration of K = 21 patches; in the following rows we
consider 84, 336 and 1344 patches. (So, the third row with 64 processors coincides
with the line with 64 processors in Table 11.2.) As the setup phase is not fully
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parallelized, the setup times increase if the number of patches is increased. Both,
the assembling times and the solving times (per iteration) are rather constant and do
not indicate a clear tendency. The solving times also change due to the fact that the
required number of iterations decays if the patches are split up. The computational
costs for the global-coarse grid solver is negligible in this example; for K = 1344
patches the costs are 0.36 s for p = 4 and 1.4 s for p = 7 and for fewer patches
even less.

11.5.2 The Fichera Corner (3D)

On the Fichera corner, we solve the model problem

−Δu = 75π2 sin(5π x) sin(5π y) sin(5π z) in Ω := (0, 2)3\[1, 2)3 ,

u = 0 on ΓD := {(x, y, z) ∈ ∂Ω : xyz = 0} ,
∂

∂n
u = 0 on ΓN := ∂Ω\ΓD .

The Fichera corner consists of seven patches, which can be seen in Fig. 11.4b,
which are uniformly split into K = 448 patches in total. Again, we solve the
problem with a conjugate gradient solver preconditioned with one V-cycle of the
multigrid method with 1 + 1 smoothing steps. Again τ = 0.25 and σ = 1

0.2h
−2
 are

chosen.
In Table 11.4, we report on the number of iterations required to reach the desired

relative accuracy goal of 10−8. We observe, as for the Yeti footprint, that the number
of iterates is quite robust in the grid size and in the spline degree. The presented
numbers have been computed with the serial code. Again, the parallel code yields
(almost) the same numbers.

In Table 11.5, we present the strong scaling results. For  = 4 and p = 2, we
have N = 2 201 024 dofs and a stiffness matrix with 2.5 108 non-zero entries. The
second example with  = 3 and p = 4 yields N = 596 288 dofs and 2.8 108 non-
zero entries. The timings behave similar as in the two-dimensional case, however
the costs of the setup phase are much larger which can be explained by the fact
that the interfaces are much larger. (For two dimensional problems, the interfaces
consist of O(N1/2) dofs and for three dimensional problems, the interfaces consist

Table 11.4 Iteration counts
for Fichera corner, K = 448

p

 2 3 4 5 6

1 30 31 31 26 22

2 33 32 33 31 28

3 39 38 37 33 30

4 44 44 42 37 35
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Table 11.5 Strong scaling behavior for Fichera corner

 = 4 , p = 2 , K = 448  = 3 , p = 4 , K = 448

Setup Assembling Solving Setup Assembling Solving

# Proc. t s t s t s t s t s t s

(serial) 179.4 – 260.2 – 4980.7 – 93.5 – 1313.5 – 1252.2 –

1 198.2 1 253.4 1 5091.3 1 109.7 1 1985.9 1 1073.1 1

2 77.7 2.5 127.4 1.9 1355.0 3.7 51.2 2.1 1103.3 1.8 340.0 3.1

4 49.2 4.0 63.5 3.9 395.7 12.8 30.6 3.5 492.2 4.0 110.2 9.7

8 32.9 6.0 32.0 7.9 99.2 51.3 22.8 4.8 214.1 9.2 40.1 26.7

16 28.3 7.0 16.5 15.3 34.4 148.0 27.3 4.0 113.4 17.5 22.7 47.2

32 26.8 7.4 8.4 30.1 12.4 410.5 17.0 6.4 55.5 35.7 8.3 129.2

64 32.2 6.1 5.5 46.0 5.0 1018.2 24.4 4.5 31.2 63.6 6.9 155.5

128 42.3 4.6 2.7 93.8 2.6 1958.1 15.8 6.9 15.4 128.9 3.6 298.0

256 54.1 3.6 1.1 230.3 1.8 2828.5 24.0 4.5 7.9 251.3 3.9 275.1

Table 11.6 Weak scaling behavior for Fichera corner

 = 4 , p = 2  = 3 , p = 4

# Proc. # dofs It. Setup Ass. Solving/It. # dofs It. Setup Ass. Solving/It.

1 34,391 28 0.4 4.0 0.07 9317 31 0.6 38.0 0.04

8 275,128 39 1.3 4.5 0.10 74,536 35 1.1 22.8 0.06

64 2,201,024 45 54.4 4.5 0.15 596,288 38 24.1 28.7 0.16

512 17,608,192 46 2071.3 5.1 0.24 4,770,304 35 2343.8 32.4 1.70

of O(N2/3) dofs.) The assembling times seem to be optimal, whereas the solving
times again behave extraordinary well.

In Table 11.6, we present weak scaling results. We again fix the grid level  and
the spline degree p to two typical values. Here, for the case of 4 processors, we
consider the initial configuration of K = 7 patches. For the following rows, we
consider 56, 448 and 3584 patches. (So, the line with 64 processors coincides with
the corresponding line in Table 11.5.) Again, the assembling times do not show any
clear tendency, while the solving times (per iteration) are slightly increasing. Only
for the last line with 3584 patches, the coarse-grid solver causes problems. For the
case  = 3 and p = 4, 1.46 of the 1.70 s required for one iteration of the solver are
due to the global solver on the coarsest grid. Again, the setup costs get dominant if
the number of patches is increased.

Concluding, we have shown that the robust multi-patch multigrid solver
from [13] can be extended to three dimensional domains and that it converges
well also in this case. We have observed that the multigrid solver can be parallelized
in a natural way yielding very good speedup rates. Certainly, this is not the end of
the story and further improvement should be considered in two directions. First,
the setup phase becomes a bottleneck if many processors are considered. Here,
improvements would be mainly a challenge in terms of implementation and data
management. Second, the coarse-grid problem becomes too large if the number
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of patches is increased, particularly in the three dimensional case. To resolve
that issue, it would be necessary to further coarsen the coarse-grid problem or
to consider approximate solvers on the coarsest grid level which certainly would
change the mathematical meaning of the algorithm and could, therefore, influence
its convergence behavior. Finally, further investigation is required to completely
understand the super optimal speedup rates observed in the strong scaling tests.
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Chapter 12
On a Renewed Approach to A Posteriori
Error Bounds for Approximate Solutions
of Reaction-Diffusion Equations

Vadim G. Korneev

Abstract We discuss a new approach to obtaining the guaranteed, robust and
consistent a posteriori error bounds for approximate solutions of the reaction-
diffusion problems, modelled by the equation −�u + σu = f in Ω, u|∂Ω = 0,
with an arbitrary constant or piece wise constant σ ≥ 0. The consistency of a
posteriori error bounds for solutions by the finite element methods assumes in
this paper that their orders of accuracy in respect to the mesh size h coincide
with those in the corresponding sharp a priori bounds. Additionally, it assumes
that for such a coincidence it is sufficient that the testing fluxes possess only the
standard approximation properties without resorting to the equilibration. Under
mild assumptions, with the use of a new technique, it is proved that the coefficient
before the L2-norm of the residual type term in the a posteriori error bound is O(h)

uniformly for all testing fluxes from admissible set, which is the space H(Ω, div).
As a consequence of these facts, there is a wide range of computationally cheap and
efficient procedures for evaluating the test fluxes, making the obtained a posteriori
error bounds sharp. The technique of obtaining the consistent a posteriori bounds
was exposed in [arXiv:1711.02054v1 [math.NA] 6 Nov 2017] and very briefly in
[Doklady Mathematics, 96 (1), 2017, 380–383].

12.1 Introduction

The paper is dedicated to the derivation of the guaranteed robust and computable
a posteriori error bounds possessing three properties. Firstly, the bound of the
error energy norm must provide the guaranteed accuracy equal in the order to the
accuracy of the unimprovable a priori error bound. Secondly, the first property must
be achieved with the use of the testing fluxes evaluated by pure approximation
instruments, in particular, without resorting to the equilibration of the testing fluxes.
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Thirdly, the evaluation of the a posteriori bound must be cheap. For brevity, we term
the bounds with the first two properties consistent.

A posteriori bounds, suggested in the paper, belong to the family of the error
energy norm bounds with two main terms in the right part called diffusion and
residual terms. These terms depend on the approximate solution of the boundary
value problem, the right part of the problem, and on the testing flux from some
admissible set. Effectiveness of such bounds is strongly influenced as by their
specific form, so the possibility to pick up a testing flux in the admissible set,
providing cheap computations and sufficient accuracy. In spite of the pointed out
common features, there were quite a number of suggestions in the literature with
differently defined specific forms, i. e., coefficients in front of the norms in the
diffusion and residual terms, and differently defined test fluxes.

The main model problem of the paper is

Lu ≡ −�u+ σu = f (x), in Ω ⊂ R
m , m = 2, 3 , u

∣∣
∂Ω

= 0 ,

with the constant or piece wise (element wise) constant reaction coefficient σ ≥ 0.
If for simplicity we turn to the case of the constant reaction coefficient, the typical
residual term of the majorant1 looks as θ1/2‖f̂ − σuh − div z‖L2(Ω), where uh is
the approximate solution, and z is the testing flux vector-function. Different authors
come to different expressions for θ and, in particular, to (a) θ = 1/σ for all σ > 0,
(b) θ =const for σ ≡ 0, (c) θ = (ch)2 for σ ≤ (ch)−2, and (d) on some subdomains
(finite elements) the residual equals to zero and, therefore, eliminated. Examples of
such majorants are given in the next section.

Majorants related to the cases (a)–(c) behave differently in dependence on the
chosen test flux z. Most often, elliptic equations of second order are approximately
solved by the FEM’s (finite element methods) of the class C, whose solutions belong
to the finite dimensional subspaces of C(Ω) ∩ H 1(Ω). The second derivatives of
these solutions, which are needed to calculate the residuals, are not defined. As
a consequence, the a posteriori majorants of the error are calculated with the use
of smoother testing fluxes, which are found from the FEM fluxes by means of
special flux recovery procedures. The need to improve the smoothness of numerical
fluxes without losses and even, under some conditions, with gaining in the accuracy
motivated the development of these procedures, which currently are numerous. Two
main classes of them can be distinguished, one aimed completely at achieving
highest accuracy without resorting to the equilibration and another which assumes
equilibration. For making the equilibration simpler and less dependent on the right
part f of the elliptic equation, it is commonly done not for f itself, but for some
its approximation f̂ . The latter is defined element wise, e.g., as the orthogonal L2-
projection of f on the space of each finite element. Among great number of works
on the touched topics, we are able to refer to a few, in particular, to Zienkiewicz
and Zhu [39], Ainsworth and Oden [1], Babuska et al. [6, 7], Xu and Zhang [36],

1In this text, the right part of an a posteriori bound is termed majorant.
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Karakashian and Pascal [20], Ern et al. [19], Cheddadi et al. [14], Cai and Zhang
[11], and Ainsworth and Vejchodsky [3], where additional extensive bibliography
can be found.

For the sequel it is worth to fix the following properties, additional to the
smoothing and paid attention at the creation of flux recovery procedures:

(α) preserving the orders of accuracy, e.g., in the energy and other norms, at least
the same as for the numerical fluxes determined by the approximate solution
of the problem;

(α∗) providing (α) and additionally superconvergence of the test fluxes z;
(β) obtaining the balanced or weakly balanced recovered fluxes;
(γ ) linear or almost linear computational cost.

If only α) or α∗) with or without (γ ) are satisfied, then it is easy to see that the
majorants in (a) and (b) can be larger in h−1 times, and even more in the case (a),
than the energy norm of the true error. Therefore, these bounds are inconsistent.
The orders of smallness of a posteriori majorants, related to (c) and (d), can be
equal to the orders in the corresponding a priori error bounds, but until recently
their examples assumed the equilibrated test fluxes.

Obviously, procuring the property (β) complicates flux recovery procedures,
makes them directly dependable upon the specific boundary value problem to be
solved and, therefore, much less universal.

In this paper, we develop the a posteriori error bounds, which for approximate
solutions by the finite element method are consistent with the sharp a priori error
bounds on the wide range of testing fluxes satisfying only the property (α). They
have additional features, making them quite different from other bounds of the
family under consideration. In particular, in their right parts, supposed for the
use as the error indicators, they have ch‖f − σuh − div z‖L2(Ω) in the residual
term, independently of z ∈ H(Ω, div) := {y = (y1, y2, . . . , ym)

$ : yk ∈
L2(Ω), div y ∈ L2(Ω)} and σ ∈ [0, (ch)−2]. As a consequence, the evaluation of
the test fluxes, providing sharp bounds, becomes a purely approximation problem
and the need to equilibrate fluxes disappears. These two features are meaningful
conceptually as establishing a proper correlation between a posteriori and a priori
error bounds, but as well they are important for the practice, because the range of
the numerical applicability of the sharp and cheap a posteriori error bounds greatly
widens. Indeed, a number of simple and cheap flux recovery techniques like local
weighted averaging, which have been developed and extensively studied in relation
with the residual based a posteriori error indicators, are applicable to the bounds of
this paper. They provide not only the standard approximation properties, needed for
a consistent a posteriori bound to became sharp, but, under some conditions, also
the property α∗) which implies superconvergence of the recovered fluxes, see, e.g.,
[8, 36]. As is noted by some authors, these flux recovery procedures performed in
the practice “astonishingly well”, see, e.g., [1, 36].

The approval of the new weights before the norms in the consistent a posteriori
error majorants required revision of the proofs. A key change is due to the fact that,
at the derivation of the majorants, we take into account the difference in the error
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orders of the finite element solutions in L2 and H 1 norms. This allowed us to come
to θ of the optimal order under general conditions in two steps made in Sects. 12.4
and 12.5, respectively. Since the constants in the majorants is an important issue
for applications, we study two approaches to their derivation, which influence the
values of the constants and simplicity of their evaluation. One of them imposes
some restriction on the smoothness of the boundary, because it employs the Aubin-
Nitsche trick for a subsidiary problem, governed by the Poisson equation. The
constants resulting from another depend only upon properties of the local quasi-
interpolation operator H 1(δ(r)) → Vh(τr ), where Vh(τr ) is the space induced by the
finite element τr , δ(r) is the smallest patch of the finite elements neighboring τr . A
representative of such operators is the one of Scott and Zhang [34]. However, we do
not elaborate on the comparison of the effectiveness of different quasi-interpolation
and projection operators, see, e.g., in [9, 10, 30].

The paper is organized as follows. Section 12.2 contains the formulation of the
boundary value problem of reaction-diffusion, examples of known error majorants,
similar in structure to ones suggested in the paper, and a brief discussion of
their consistency. In Sect. 12.3, we derive new general a posteriori majorants for
the errors of approximations of the exact solution to the problem by arbitrary
sufficiently smooth functions v that satisfy the essential boundary conditions. The
cases of an arbitrary piece wise constant and a constant reaction coefficients are
considered separately. The majorants are well defined in both cases, if σ ≥ 0, and
coincide with the Aubin’s [5] type majorant on those subdomains (finite elements),
where σ exceeds a certain critical value σ∗. Several versions of the majorant are
discussed, related to different ways of defining σ∗ and, respectively, coefficients
of the majorant. The easiest one corresponds to σ ≡ const and Galerkin method
with coordinate functions having additional smoothness, e.g., belonging to the space
H 2(Ω). Such coordinate functions find implementation in the isogeometric , see
Cottrel etc. [17]. Majorants of Sect. 12.3 are more accurate at least for σ ≤ σ∗ than
other known general majorants valid for all z ∈ H(Ω, div) and allow sharpening
based upon estimating σ∗ for a specific numerical method. In this sense, they are the
base for the subsequent sections.

Consistent a posteriori error estimates for solutions by the finite element method,
which are the main results of the paper, are presented in Sects. 12.4 and 12.5.
Theorems 12.4 and 12.5, proved there on the basis of the results of Sect. 12.3,
suggest different approaches to the evaluation of constants in these estimates. For
instance, in Theorem 12.5 they are expressed through the constants in the estimates
of approximation produced by the quasi-interpolation projection operator of Scott
and Zhang [34]. In Sect. 12.5, some other important properties of the derived a
posteriori estimates are discussed, in particular, the approximation conditions for
test fluxes, sufficient for the a posteriori error estimators to be sharp, cheap flux
recovery procedures for computing such test fluxes. The conclusion about efficiency
of the majorants is supported also by the example of the inverse like bound.
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Below, ‖φ‖Hk(D) is the norm in the Sobolev space Hk(D) on a domain D ,

‖φ‖2
Hk(D)

= ‖φ‖2
L2(D) +

k∑
l=1

|φ|2
Hl(D)

, |φ|2
Hl(D)

=
∑
|q|=l

∫

D
(

∂lφ

∂x
q1
1 ∂x

q2
2 . . . ∂x

qm
m

)2dx ,

where ‖φ‖2
L2(D)

= ∫D φ2dx and q = (q1, q2, . . . , qm), qk ≥ 0, |q| = q1 + q2 +
· · · + qm. If D = Ω , for ‖ · ‖L2(Ω), ‖ · ‖Hk(Ω) and | · |Hk(Ω) will be also used
simpler symbols ‖ · ‖0, ‖ · ‖k and | · |k , respectively. If on the entire boundary ∂Ω

or on its part ΓD the homogeneous Dirichlet boundary condition is specified, then
for the corresponding subspaces of H 1(Ω) we use the notations H̊ 1(Ω) := {v ∈
H 1(Ω) : v|∂Ω = 0} and H̊ 1

ΓD
(Ω) := {v ∈ H 1(Ω) : v|ΓD = 0}. Besides, we will

need the spaces H̊ 1(Ω,�) = {v ∈ H̊ 1(Ω) : �v ∈ L2(Ω)} and H̊ 1
ΓD

(Ω,�) =
{v ∈ H̊ 1

ΓD
(Ω) : �v ∈ L2(Ω)}.

The finite element space will be denoted Vh(Ω) and by definition V̊ h(Ω) = {v ∈
Vh(Ω) : v|∂Ω = 0}.

Everywhere below it is assumed that the assemblage of compatible and, generally
speaking, curvilinear finite elements is given on Ω ⊂ R

m, m = 2, 3, with each
finite element occupying domain τr, r = 1, 2, . . . ,R. Sometimes symbol R is
also used for the set of numbers of finite elements. The finite elements are defined
by sufficiently smooth mappings x =X (r)(ξ) : τ◦ → τr of the reference element,
defined on the standard triangle or tetrahedron τ◦. The span of the coordinate
functions of the reference element is the space Pp of polynomials of degree p.
If p > 1, we use additionally the notation Vh(Ω) = Vh,p(Ω). If other is not
mentioned, it is always assumed that the finite element assemblage satisfies the
generalized conditions of quasiuniformity with the mesh parameter h > 0, which
can be understood as the maximum of diameters of finite elements. These conditions
can be found, for instance, in Korneev and Langer [26, Section 3.2]. Occasionally
for more simplicity the following condition is assumed:

A ) The domain Ω is a polygon in R
m, m = 2, 3, τr are compatible m-

dimensional simplices (with flat faces and, respectively, straight edges) forming the
triangulation Th of Ω , satisfying the conditions of shape regularity.

In the applications, as a rule Vh(Ω) ⊂ C(Ω) ∩H 1(Ω). At the same time, in the
isogeometric numerical analysis, the smoother spaces Vh(Ω) = V 1

h (Ω)⊂C1(Ω)∩
H 2(Ω), see Cottrell et al. [17] and Langer et al. [28], are used for solving elliptic
equations of second order. Superscript l in the notations V l

h (Ω), V l
h,p(Ω) assumes

inclusions of these spaces in Cl(Ω)∩Hl+1(Ω).
Matrices and vectors are designated by bold capital and bold lowercase letters,

respectively.
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12.2 Model Problem, Examples of A Posteriori Error
Majorants

We start from a very brief survey of a few well known a posteriori bounds which
illustrate some tendencies in the development of such error control instruments and
were successfully implemented in the numerical applications. We will concentrate
on the consideration of the model problem

Lu ≡ −�u+ σu = f (x), x = (x1, x2, . . . , xm) ∈ Ω ⊂ R
m ,

u
∣∣
ΓD

= ψD , −∇ u · n∣∣
ΓN

= ψN ,

(12.1)

where ΓD, ΓN are disjoint simply connected parts of the boundary ∂Ω = Γ D ∪
Γ N, mesΓD > 0, n is the internal normal to ∂Ω . The reaction coefficient σ ≥ 0 is
assumed to be element wise constant, i.e.,

σ = σr = const, x ∈ τr , r = 1, 2, . . .R . (12.2)

The boundary of Ω and the right part f are always considered as sufficiently
smooth, in particular, f ∈ L2(Ω), if the requirements on the smoothness are not
formulated differently.

Our primal interest will be the error estimates in the energy norm

|||v|||2 =
(
|v|21 + ‖√σv‖2

L2(Ω)

)1/2
, |v|21 =

∫

Ω

∇v · ∇v , (12.3)

with |||·|||τr denoting the restriction to τr . For vector-functionsy = (y1, y2, . . . , ym)
$,

we introduce also the spaces L2(Ω) = (L2(Ω))m, H(Ω, div) = {y ∈ L2(Ω) :
div y ∈ L2(Ω)}, Wh,p(Ω, div) = {y ∈ H(Ω, div) : yk

∣∣
τr
∈ Pp, ∀r ∈ R, k =

1, . . . ,m} and the respective norms. For the norm in L2(Ω) we use additionally the
notation ]|y|[= ‖y‖L2(Ω) = (

∫
Ω
y · y)1/2.

The a posteriori error majorant of Aubin [5] is one of the earliest:

Theorem 12.1 Let f ∈ L2(Ω), 0 < σ = const, ψD ∈ H 1(Ω), ψN ∈ L2(ΓN),
v be any function of H 1(Ω) that satisfies the boundary condition on ΓD . Then, for
any z ∈ H(Ω, div), satisfying on ΓN the boundary condition z · n = ψN , we have

|||v − u|||2 ≤]|∇ v + z|[2+ 1

σ
‖f − σv − div z‖2

L2(Ω) . (12.4)

Proof Estimate (12.4) is a special case of the results of Aubin [5], see Theorem 22
in Introduction and Theorems 1.2, 1.4, 1.6 in Chapter 10. ��

Obviously, if σ → 0 the majorant of Aubin loses precision and for σ = 0 makes
no sense.
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If σ ≡ 0, one can use the majorant of Repin and Frolov [32]. Let for simplicity,
ΓD = ∂Ω , ψD ≡ 0, and σ ≡ 0. Then for any ε > 0

‖∇(v−u)‖2
L2(Ω)

≤ (1+ε)‖∇v+z‖2
L2(Ω)

+cΩ(1+ 1

ε
)‖div z−f ‖2

L2(Ω) , (12.5)

where v and z are a function and an arbitrary vector-function from H̊ 1(Ω) and
H(Ω, div), respectively, and cΩ is the constant from the Friedrichs inequality.

Correction of arbitrary vector-function z ∈ H(Ω, div) into the vector-function
τττ , satisfying the balance/equilibrium equations, can be done by quite a few rather
simple and general techniques. Some of them can be found in Anufriev et al. [4]
and Korneev [22]. In particular, it is true for the correction of the finite element flux
vector-function ∇ufem into τττ (ufem). This leads to a specific family of a posteriori
error bounds. For simplicity, we turn to the same homogeneous Dirichlet problem
for the Poisson equation in a two-dimensional convex domain. Let Tk be the
projection of the domain Ω on the axis x3−k and the equations of the left and lower
parts of the boundary be xk = ak(x3−k), x3−k ∈ Tk . If βk are arbitrary bounded
functions and β1 + β2 ≡ 1, then according to [4, 22]

‖∇(v − u)‖L2(Ω) ≤ ‖∇v + z‖L2(Ω)+
∑

k=1,2 ‖
∫ xk
ak(x3−k)

βk(f − div z)(ηk, x3−k) dηk‖L2(Ω) .

(12.6)

On the right of (12.6), we have integrals from the residual and this hopefully will
make the majorant more accurate. Besides, there is an additional free function β1
or β2 and the right choice of it (for instance, with the use of the found approximate
solution v = ufem) can accelerate the process of the minimization of the right part,
if such a process is implemented. If to estimate one-dimensional integrals under the
sign of the L2-norm, then we come to the bound similar to (12.5).

There were attempts to modify the majorant of (12.4) with the aim of achieving
acceptable accuracy for all σ ≥ 0, see e.g., Repin and Sauter [33] and Churilova
[15]. The majorant of the latter, defined for ∀ σ = const ≥ 0, has the form

|||v − u|||2 ≤ (1 + ε)]|∇ v + z|[2+ 1

σ + ε
cΩ (1+ε)

‖f − σv − div z‖2
L2(Ω) . (12.7)

One of the efficient majorants for the finite element solutions was developed by
Ainsworth and Vejchodsky [2, 3]. For its record, we need additional notations: hr is
the diameter τr , Π

p
r : L2(τr ) →Pp(τr ) is the operator of orthogonal projection in

L2(τr).
In Theorems 12.2 and 12.3 below, for simplicity we assume ΓD = ∂Ω , ψD ≡ 0

and that the condition A ) is fulfilled.
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Theorem 12.2 Let u ∈ H̊ 1(Ω) be the weak solution of the problem and ufem ∈
V̊ h(Ω) = V̊

0
h,1(Ω) be the solution by the finite element method. Then there exists

z ∈Wh,2(Ω, div) with the following properties:

(i) z is evaluated by the patch wise numerical procedure of linear numerical
complexity,

(ii) for all x ∈ τr and r ∈ R∗ = {r : √σ rhr < 1} satisfies the equalities

Π1
r f − σrufem + div z = 0 , (12.8)

(iii) for the error efem = u− ufem and the error indicator ητr (z), defined as

η2
τr
(z) = ‖z−∇ufem‖2

L2(τr )
, ∀r ∈ R∗ ,

η2
τr
(z) = ‖z−∇ufem‖2

L2(τr )
+ 1

σr
‖Π1

r f − σrufem + div z‖2
L2(τr )

, ∀r ∈ R �R∗ ,
(12.9)

there hold the bounds

|||efem|||2 ≤
∑
τr∈Th

[
ητr (z)+ oscτr (f )

]2
, (12.10)

η2
Ω(z) =

∑
r∈R

η2
τr
(z) ≤ C

[
|||efem|||2 +

∑
r∈R

osc2
τr
(f )
]
, (12.11)

where oscτr (f ) = min
{
hr
π
, 1√

σr

}
‖f −Π1

r f ‖L2(τr ).

Proof See Ainsworth and Vejchodsky [3] for the proof. In this work the
bounds (12.10), (12.11) in a more general form are derived under more general
conditions. In particular, ΓN �= ∅, the bound (12.11) is proved in the local version,
i.e., with η2

τr
(z) on the left and with the restriction of the right part to the patch

δ(r). ��
We present also the error majorant of Cheddadi et al. [14] for approximate

solutions of the reaction-diffusion problem by the method of vertex-centered finite
volumes. In this work the point wise equilibration is avoided and replaced by the
much more flexible equilibration in a weak sense. Let us introduce the notations:
Dh is the dual in respect to Th partition of Ω ; Sh is the finer mesh, induced by the
partition Dh; D is the polygon with the center in the vertex of triangulation Th and
containing all simplices of the finer mesh with this vertex, hD is its diameter; D int

h

is the set of all polygons D, for which ∂D ∩ ∂Ω = ∅. For additional information
about these entities, we refer to [14].
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Theorem 12.3 Let uh be the solution by the method of vertex-centered finite
volumes, eh = u− uh, vector-function z ∈ H(Ω, div) satisfy the equalities

(f − div z− σuh, 1)D = 0 , ∀D ∈ D int
h , (12.12)

and γD = min(CDh2
D, σ−1

D ), where CD is the constant from the Poincaré inequality
for the polygonD . Then

|||eh|||2 ≤ η2
Ω(z) =

∑
D∈Dh

[
‖∇uh + z‖L2(D) +√

γD‖f − σuh − div z‖L2(D)

]2
.

(12.13)

Proof Theorem is one of the results of [14], see Theorem 4.5. ��
Majorants in (12.5)–(12.7) have obvious merits, but are not consistent at the

application, e.g., to solutions by the finite element and other mesh methods. If v =
ufem is the finite element solution to the problem (12.1) at ΓD = ∂Ω , ψD ≡ 0,
and σ = 0, then we can use 12.5). For our purpose, it is sufficient to consider the
approximate solutions from the space Vh(Ω) = V 1

h,p(Ω)⊂C1(Ω)∩H 2(Ω). Under

the assumption u ∈ Hl(Ω), we have a priori error bounds [16, 21]

‖u− v‖Hk(Ω) ≤ chl−k‖u‖Hl(Ω) , k = 1, 2, k ≤ l ≤ p + 1 . (12.14)

In particular, if f ∈ L2(Ω) and consequently l = 2, see [25], then according
to (12.14) the left part of (12.5) is estimated as O(h2). At the same time at the
choice z = −∇v the first term in the right part of (12.5) vanishes, but cΩ(1 +
1
ε
)‖div z−f ‖2

L2(Ω) at any ε > 0 can be bounded from above only by a constant. The

bounds (12.14) are not improvable in the order. For u ∈ H 2(Ω), Ω ∈ R
2, Oganesian

and Ruhovets [31] gave the proof by estimating the corresponding Kolmogorov’s
width. From their results and results on the regularity of solutions of (12.1), it
follows existence of such f ∈ L2(Ω) that u ∈ H 2(Ω) and the second summand on
the right of (12.5) is estimated by the constant from below. Therefore, the orders of
smallness of the left and the right parts of the a posteriori bound are different, and
the value O(h2) on the left is estimated by the right part only with the order of unity.
If l > 2, the left and the right parts are estimated with not equal orders O(h2(l−k))

and O(h2(l−k−1)).
Inconsistency of the majorant (12.7) at σ ≤ ch−α, 0 ≤ α < 2, c = const, is

established in a similar way. Majorant (12.6) is consistent in 1-dimensional case, in
general it is also inconsistent. The inconsistency of the above mentioned majorants,
obviously, is retained, if finite elements of the class C are used and the test flux is
found by some recovery procedure, satisfying only the requirements α), γ ).

The equalities of the orders of smallness of the left and right parts of the
majorants (12.10) and (12.13) are well provided, as follows, e.g., from (12.11)
and similar bound, proved in [14]. However, it is achieved only for the test
fluxes, satisfying the additional conditions reflecting the requirement (β), see (12.8)
and (12.12).
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12.3 A Posteriori Error Majorant Robust for Piece Wise
Constant and Constant Reaction Coefficients

In this section, we present a general a posteriori error bound for the approximations
of the exact solution to the reaction-diffusion equation with the piecewise constant
reaction coefficient. These bounds are not influenced by the origins of the approx-
imations and are robust in the respect to the reaction coefficient. In particular, they
are well defined in the vicinity of zero.

12.3.1 Reaction-Diffusion Problem with Piece Wise Constant
Reaction Coefficient

Let for some σ∗ ≡ const > 0, the piece wise constant function σ† be

σ† =
⎧⎨
⎩

σ∗ , ∀ σ ∈ Ω∗ ,

σ , ∀ σ ∈ Ωσ ,

where Ω∗ := {x : σ(x) < σ∗} and Ωσ = Ω \ Ω∗. The basic assumption for what
follows is that for some σe ≥ 0 the error e = u− v satisfies the inequality

‖(σ† − σ)1/2e‖2
L2(Ω) ≤

1

σe
‖(σ† − σ)1/2 ∇e‖2

L2(Ω) , (12.15)

and, obviously, Ω in it can be replaced by Ω∗. We use the notation HψN (Ω, div) =
{y ∈ H(Ω, div), ∇y · n

∣∣∣
∂Ω

= ψN }.
Lemma 12.1 Let σ be an arbitrary nonnegative element wise constant function as
in 12.2), f ∈ L2(Ω), ψD ∈ H 1(Ω), ψN ∈ L2(ΓN). Let also σe satisfy (12.15) and
σ∗ > 0 be arbitrary. Then for any function v ∈ H̊ 1

ψD
(Ω) and any vector-function

z ∈ HψN (Ω, div) we have

|||v − u|||2 ≤ ‖γ̃ (∇v + z)‖2
L2(Ω)

+ ‖ γ̃√
σ†

(
f − σv − div z

)‖2
L2(Ω) (12.16)

with

γ̃ 2 =
⎧
⎨
⎩

(σe + σ∗)/(σe + σ) , σ ∈ [0, σ∗] ,

1 , σ ≥ σ∗ .
(12.17)

Proof Two additional features to the proof of the Aubin’s bound are a more tricky
use of the Cauchy inequality |ab| ≤ ε−1a2 + εb2, ∀ε > 0, and the use of the
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inequality (12.15). For an arbitrary v and z from Lemma 12.1, after integration by
parts of the first summand in the square of the energy norm of the error e = v − u,
we have

||| e |||2 = ∫
Ω

[∇e · ∇e + σe2
] = ∫

Ω

[
(∇v + z) · ∇e − (z+∇u) · ∇e + σe2

] =

= ∫Ω
{
(∇v + z) · ∇e + [div (z+∇u)+ σe] e} =

=∑r

∫
τr

{
(∇v + z) · ∇e − [f − σv − div z] e} .

(12.18)

For convenience, we will use also the notations κ = √
σ, κ∗ = √

σ∗, and κ† =√
σ†. By means of the Cauchy inequality, for γ (x) > 0 belonging to L2(Ω) we find

that

||| e |||2 = ‖∇e ‖2
L2(Ω)

+ ‖κ e ‖2
L2(Ω) ≤

[
‖γ (∇v + z)‖2

L2(Ω)
+

+‖ γ
κ†
(f − σv − div z)‖2

L2(Ω)

]1/2 ×
[
‖ 1
γ
∇e ‖2

L2(Ω)
+ ‖ κ†

γ
e ‖2

L2(Ω)

]1/2
.

(12.19)

In the case under consideration, it is natural to take γ element wise constant, i.e.,

γ

∣∣∣
τr
= γr = const, ∀r ∈ R. The summand in the second multiplier of the right part

of (12.19), corresponding to one finite element τr for r ∈ R∗ := {r : τr ∈ Ω∗}, we
multiply by γr and with the use of some βr ∈ (0, 1] rearrange as follows:

‖∇e ‖2
L2(τr )

+ σ∗‖ e ‖2
L2(τr )

= ||| e |||2τr + (σ∗ − σ)‖ e ‖2
L2(τr )

=

= ||| e |||2τr + βr(σ∗ − σ)‖ e ‖2
L2(τr )

+ (1 − βr)(σ∗ − σ)‖ e ‖2
L2(τr )

.

(12.20)

Summation of (12.20) over r ∈ R yields

‖ 1
γ
∇e ‖2

L2(Ω)
+ ‖σ

1/2
†
γ

e ‖2
L2(Ω) =

∑R
r=1

1
γ 2
r

[
||| e |||2τr+

+βr‖(σ† − σ)1/2e ‖2
L2(τr )

+ (1 − βr)‖(σ† − σ)1/2e ‖2
L2(τr )

]
.

(12.21)

Let β be the element wise constant function with the restrictions β
∣∣
τr
= βr . On Ω∗

it can be uniquely defined from the equality

σ
[
1 + (σ† − σ)

β

σe

]
= (1 − β)(σ† − σ)+ σ , x ∈ Ω∗ , (12.22)
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as β = σe/(σe + σ) and continued by the unity on Ωσ . Estimating the sum of the
second terms in the brackets by means of (12.15) and combining (12.20) – (12.22)
at γ 2 = β, we conclude that

‖ 1
γ
∇e ‖2

L2(Ω)
+ ‖ κ†

γ
e ‖2

L2(Ω) ≤

≤ ‖ 1
γ

[
1 + (σ† − σ)

β
σe

]1/2∇e ‖2
L2(Ω)

+ ‖ 1
γ

[
(1 − β)(σ† − σ)+ σ

]1/2
e ‖2

L2(Ω) ≤

≤ σ∗+σe
σe

[
‖∇e ‖2

L2(Ω)
+ ‖κe ‖2

L2(Ω)

]
.

(12.23)

Combining (12.19) with (12.23), we come to the bound (12.16). ��
Let us make a few remarks in relation to the bound (12.16). Since σ∗ and σe are

constants, one can set σ∗ = c∗σe, c∗ = const, and, therefore, (σ∗+σe)/σe = 1+c∗.
Obviously, γ̃ ∈ [1/2, 1] and, if σ∗ ≤ σe, then (1 + c∗) ≤ 2 . Therefore, for σ∗ ≤ σe
the bound (12.16) can be written in a ruder, but simpler form

||| e |||2 ≤ 2
[
‖(∇v + z)‖2

L2(Ω)
+ ‖ 1√

σ†

(
f − σv − div z

)‖2
L2(Ω)

]
. (12.24)

At σ ≡ 0 the bound, (12.16) differs from (12.5) with ε = 1 only by the coefficient
before the second term on the right. In Sect. 12.4, we show that for the finite element
solutions of the problem in the domains with the sufficiently smooth boundaries this
coefficient will have, indeed, the order of σ−1

e = O(h2) instead of the constant cΩ
in (12.5). In general, e.g., at piece wise constant or constant σ , it is possible to use
also rough values σe = σ∗ = 1/cF in (12.16) and (12.24), where cF = cF (Ω,ΓD)

is the constant from the Friedrichs type inequality

‖(σ† − σ)1/2φ‖2
L2(Ω) ≤ cF ‖(σ† − σ)1/2 ∇φ‖2

L2(Ω) , ∀φ ∈ H̊ 1
ΓD

(Ω) . (12.25)

However, in this case minimization of the right parts of the a posteriori bounds with
respect to z becomes often unavoidable.

12.3.2 Reaction-Diffusion Problem with any Constant σ ≥ 0

The case σ = const, considered in this subsection, has an independent significance
and, besides, will allow us simpler transfer to more specific a posteriori error bounds
for the approximate solutions by the finite element method. Below we reformulate
the basic assumption (12.15) in a two simpler forms and give the respective version
of the preceding Lemma.
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In general, when v ∈ H̊ 1
ΓD

(Ω) is any approximation for u, σ∗ can be defined
from the inequality

|u− v|21/‖u− v‖2
0 ≥ σ∗ > 0 . (12.26)

If v = uG is the approximate solution by the Galerkin method in the subspace
V (Ω) ⊂ H̊ 1

ΓD
(Ω,�), then this condition can be relaxed and it is sufficient that σ∗

satisfies

|u− v|21/‖u−Qu‖2
0 ≥ σ∗ > 0 . (12.27)

where Q is the operator of orthogonal projection L2(Ω) → V (Ω), i.e., such that
for ∀φ ∈ L2(Ω) we have (Qφ,ψ)Ω = (φ,ψ)Ω , ∀ψ ∈ V (Ω) .

Let function f̂ (x), x ∈ Ω , be such that f̂ (x) = Πl
rf for x ∈ τr, r =

1, 2, . . . ,R and l is some nonnegative integer, e.g., related to the accuracy of the
approximation v. In Theorem below domains τr can be understood as arbitrary
convex subdomains of some partition of the domain

Ω = interior{
R⋃
1

τ r } , τr ∪ τr ′ = ∅, r �= r ′, diam[τr ] = hr ,

for which the Poincaré inequalities hold, see, e.g., Nazarov and Poborchi [29],

inf
c∈R ‖φ − c‖L2(τr ) ≤

hr

π
|φ|H 1(τr )

, φ ∈ H 1(τr ) .

Lemma 12.2 Let f ∈ L2(Ω), 0 < σ = const, σ∗ satisfy the inequality (12.26),
ΓD = ∂Ω , ψD ∈ H 1/2(∂Ω). Then, for any function v ∈ H 1(Ω) that satisfies the
boundary condition on ΓD and any z ∈ H(Ω, div) we have

||| e |||2 ≤ ΘM , M =M (σ, σ∗, f, v, z) , (12.28)

where

M = ‖∇ v + z‖2
L(Ω) + θ‖f − σv − div z‖2

L2(Ω) , (12.29)

and

Θ =
⎧⎨
⎩

2/(1 + k) , ∀ σ ∈ [0, σ∗]

1 , ∀ σ > σ∗

⎫⎬
⎭ , θ =

⎧⎨
⎩

1/σ∗ , ∀ σ ∈ [0, σ∗]

1/σ , ∀ σ > σ∗

⎫⎬
⎭ . (12.30)
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with k = σ/σ∗. Besides, for σ ∈ [0, σ∗] and σ ≥ σ∗, respectively, we have the
bounds

||| e |||2 ≤ Θ1M (σ, σ∗, f̂ , v, z) +∑r
h2
r

επ2

∫
τr
(f −Πl

rf )
2dx , ∀ ε > 0 ,

||| e |||2 ≤ Θ2M (σ, σ∗, f̂ , v, z) +∑r
1
σ

∫
τr
(f −Πl

rf )
2dx ,

(12.31)

where

Θ1 =
⎧
⎨
⎩

(2 + ε)/(1 + k) , 0 ≤ σ ≤ σ∗/(1 + ε) ,

1 + ε , σ∗/(1 + ε) ≤ σ ≤ σ∗ ,

Θ2 = 1 + 1/(1 + k
−1) .

If v = uG is the approximate solution by the method of Galerkin in the space
V (Ω) ⊂ H̊ 1

ΓD
(Ω,�), then the bound (12.28)–(12.30) takes place with σ∗,

satisfying to the inequality (12.27) and z = zG := −∇ uG, i.e.,

|||uG − u|||2 ≤ ΘMG ,

MG =MG(σ, σ∗, f, uG, zG) = θ‖f − σuG − div zG‖2
L2(Ω) .

(12.32)

Proof The direct proof of Lemma 12.2 is given in [25]. The proof of the
bound (12.28)–(12.30) follows also from (12.16) at σ∗ = σe. ��
Remark 12.1 Other ways of obtaining majorants similar to (12.28)–(12.30)
and 12.31) are possible. One can consider the subsidiary problem

−�u+ λu = fλ,σ , x ∈ Ω , u
∣∣
∂Ω

= 0 , (12.33)

with an arbitrary λ ≥ σ∗ and fλ,σ = f + (λ − σ)u, whose solution is the same as
for the problem (12.1) at the ΓN = ∅ and ψD ≡ 0. In the respective to (12.33)
Aubin’s majorant for the approximation v of the solution to the problem (12.33),
the approximation of the problem (12.1) can be used. The substitution of fλ,σ =
f +(λ−σ)u in this Aubin’s majorant, the application of the Cauchy inequality with
ε, the use of the inequality 12.26), and some manipulations produce the subsidiary
majorant, depending on λ, ε and β. At that, β plays similar role to the one at the
obtaining (12.16). In this way, we come to the set of majorants similar to those in
Lemma 12.2, and, obviously, by changing the choice of λ, β, and ε, we can change
the weights before the first and second norms in the majorants. If the ratio of the
weights is fixed, a suitable majorant can be obtained by the minimization of the
subsidiary majorant with respect to λ, β and ε.
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The bound (12.28)–(12.30) generalizes the Repin-Frolov’s bound (12.5) for
σ ≡ 0 upon interval σ ∈ [0, σ∗] with σ∗ ≤ 1/cΩ and the coefficients not greater
than in (12.5), i.e., Θ ≤ 2 and θ ≤ cΩ . At the same time (12.28)–(12.30) can be
considered as an updated Aubin’s bound (12.4), coinciding with it at σ ≥ σ∗ and
well defined for all σ ≥ 0. An additional unique feature of the bound (12.28)–
(12.30), if to compare with other attempts [15, 33, 35] to update the Aubin’s bound,
is that its accuracy can be significantly improved by the use of improved estimates
of σ∗ for concrete numerical methods.

12.4 Consistent A Posteriori Majorants for Finite Element
Method Errors

For specific classes of approximate solutions and, in particular, for solutions by the
finite element method, the critical values σ∗ of the reaction coefficient in the derived
error majorants can be successfully estimated. In this section, we assume that σ ≥ 0
is a piece wise constant function (12.2) satisfying μ1 ≤ σ ≤ μ2, ∀x ∈ Ω .

Lemma 12.3 Let ΓD = ∂Ω , σ ≥ 0 be the piece wise constant function satisfying
(12.2), ψD ≡ 0, f ∈ H−1(Ω), the finite element assemblage generates the space
Vh,p(Ω), p ≥ 1, and efem = ufem − u. Then

‖efem‖0 ≤ c†h|efem|1 , c† =
√

μ2

μ1
c�cap , (12.34)

with the constants c�, cap, defined below, see (12.38), (12.39).

Proof Let us set κ = +√σ and introduce notations u◦, ufe and us for the functions
minimizing ‖κ(u− φ)‖2

0, |u− φ|21, and h−2‖κ(u− φ)‖2
0 + |u− φ|21 , respectively,

among all φ ∈ V̊ h(Ω) and notations for the respective errors e◦ = u◦ − u, efe =
ufe−u and es = us−u. Since ufem minimizes |||u−φ|||2, φ ∈ V̊ h(Ω), we conclude
that

|efem|21 + ‖κ efem‖2
0 ≤ |u− ũ|21 + ‖κ (u− ũ)‖2

0 , (12.35)

where ũ can be any from functions ũ = u◦, ufe, us . If to take into attention the
inequalities ‖efem‖0 ≥ ‖e◦‖0 and |efem|1 ≥ |efe|1, following from the definitions of
functions u◦ and ufe, then (12.35) implies

‖κ efem‖0 ≤ ‖κ efe‖0 ,

|efem|1 ≤ |e◦|1 .
(12.36)
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Let ϕ ∈ H̊ 1(Ω) be the solution of the problem

aΩ(v, ϕ) = (v, efe)Ω , ∀ v ∈ H̊ 1(Ω). (12.37)

Obviously, efe ∈ L2(Ω), and, as a consequence, at sufficiently smooth domain ϕ ∈
H 2(Ω) and, see Ladyzhenskaya [27],

‖ϕ‖2 ≤ c�‖efe‖0 , c� = c�(Ω) . (12.38)

The function ϕ can be approximated by the function ϕ̃ ∈ V̊ h,p(Ω), for which

|ϕ − ϕ̃|21 ≤ c2
aph

2‖ϕ‖2
2 ≤ c2

�c
2
aph

2‖efe‖2
0 . (12.39)

Since in Lemma 12.3 only the constant cap but not the function ϕ̃ itself is used, one
can imply by ϕ̃ any approximation providing a good constant. Hence, in 2D ϕ̃ can
be the interpolation and, in general, quasi-interpolation of Scott and Zhang [34], or
Bartels et al. [9], or one of the functions ϕ̃◦, ϕ̃fe, ϕ̃s etc.

Estimating ‖efe‖0 by means of the Aubin-Nitsche trick [5] for the prob-
lem (12.37) and using the bound (12.39), we get:

‖efe‖2
0 = aΩ(efe, ϕ) ≤ inf

w∈V̊ h(Ω)
|aΩ(efe, ϕ −w)| ≤

|efe|1 inf
w∈V̊ h(Ω)

|ϕ −w|1 ≤ |efe|1|ϕ − ϕ̃|1 ≤ c�caph|efe|1‖efe‖0 .

(12.40)

This bound together with the inequality (12.36) and the definitions of functions
efe, efem results in the bound (12.34). ��
Theorem 12.4 Let ΓD = ∂Ω , ψD ≡ 0, and u ∈ H̊ 1(Ω,�). Let also the finite
element assemblage generate the space V̊ 0

h,p(Ω) ⊂ H̊ 1(Ω), p ≥ 1, and ufem be
the solution by the finite element method. Then for σ satisfying 0 ≤ σ ≤ σ∗ =
1/(c†h)

2 with c†, as in (12.34), and any z ∈ H(Ω, div) we have

|||efem|||2 ≤ 2
1+c2

†h
2σ
M (1)

fem(σ, f, z) ,

M (1)
fem(σ, f, z) =

[
|∇ ufem + z|2L2(Ω)

+ c2
†h

2‖f − σufem − div z‖2
L2(Ω)

]
.

(12.41)

Under the conditionA ), for σ ≤ σ∗/(1 + ε) it holds also the bound

|||efem|||2 ≤ 2 + ε

1 + c2
†h

2σ
M (1)

fem(σ, f̂ , z)+
∑
r

h2
r

επ2

∫

τr

(f −Π
p
r f )2dx , ∀ ε > 0 .

(12.42)
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Proof Since M (1)
fem(σ, f, z) = M (σ, σ∗, f, v, z) with σ∗ defined according

to (12.34), Theorem is a direct consequence of Lemmas 12.2 and 12.3. ��
Similar a posteriori error bounds can be derived in a quite similar way for the

finite element method solutions to the 2nth-order elliptic equations, n ≥ 1, see
Korneev [24]. The most complicated for their practical applications is the evaluation
of the constant c�. However, in many cases such estimates are well known. For
instance, if the domain is convex, then c� = 1, see Ladyzhenskaya [27, (6.5) in ch.
II].

Existence of the constant c� puts some restrictions on the smoothness of the
boundary and coefficients of the equation (if they are not constant). At the same
time, there is a possibility to avoid the mentioned additional restrictions, except for
those related to the suitable approximation operator. If there exists some interpola-
tion type or other approximation operator with locally defined approximations for
functions from H 1(Ω), then constants in the a posteriori bounds may depend only
on the local approximation properties of the finite element space. A good example of
such an operator is the quasi-interpolation operator of Scott and Zhang [34], which
will be used below to illustrate the statement. We start from the description of its
properties.

Let Ω ⊂ R
m, m ≥ 2, be a bounded Lipschitz domain, which is the domain of

the quasiuniform triangulation Th with vertices x(i), i = 1, 2, . . . , I, and simplices
τr of diameters not greater h. For simplicity it is assumed that faces of simplices are
plain and that the following quasiuniformity conditions are fulfilled:

0 < c ≤ ρ
r
/hr , α̂(1)h ≤ hr ≤ h , (12.43)

where ρ
r

and hr are the radius of the largest inscribed sphere and the diameter of

simplex τr , respectively. To each vertex x(i), we relate (m−1)-dimensional simplex
τ
(m−1)
i , which is the face of one of the simplices τr and has x(i) for the vertex. For

m vertices of the simplex τ
(m−1)
i we will use also notations z

(i)
l , l = 1, 2, . . . ,m,

assuming for definiteness that z(i)1 = x(i). Clearly the choice of the face τ
(m−1)
i is

not unique, but for x(i) ∈ ∂Ω we always take one of the faces τ
(m−1)
i ⊂ ∂Ω . We

will formulate the result of Scott and Zhang using the simpler notations V�(Ω),
Vtr(∂Ω), and V̊ �(Ω) for the space of continuous piece wise linear functions
V 0
h,1(Ω), its trace on the boundary, and its subspace of functions, vanishing on the

boundary, respectively.
We define functions θi ∈P1(τ

(m−1)
i ), satisfying equations

∫

τ
(m−1)
i

θiλ
(i)
l dx = δ1,l , l = 1, 2, ..,m ,

where λ
(i)
l are the barycentric coordinates in τ

(m−1)
i , corresponding to the vertices

z
(i)
l , and δi,l is the Kronecker’s symbol. If φi ∈ V�(Ω) are the basis functions in
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V�(Ω), defined by the equalities φi(xj ) = δi,j , i, j = 1, 2, .., I, then for any
v ∈ H 1(Ω) the quasi-interpolation Ihv is the function

Ihv =
I∑

i=1

(∫

τ
(m−1)
i

θiv dx

)
φi(x) .

Lemma 12.4 The quasi-interpolation operator Ih : H 1(Ω) → V�(Ω) is a
projection and has the following properties:

(a) Ihv : H 1(Ω) �→ V�(Ω) and, if v ∈ V�(Ω), then Ihv = v,
(b) (v −Ihv) ∈ H̊1(Ω), if v|∂Ω ∈ Vtr(∂Ω),
(c) ‖v−Ihv‖t,Ω ≤ csz(t, s)h

s−t‖v‖s,Ω for t = 0, 1, s = 1, 2, and ∀v ∈ Hs(Ω) ,
(d) |Ihv|1,Ω ≤ c̆sz| v |1,Ω and ‖Ihv‖1,Ω ≤ ĉsz‖ v ‖1,Ω , ∀v ∈ H 1(Ω),

where csz(s, t), c̆sz, and ĉ are positive constants, depending on c.

Proof Scott and Zhang [34] proved a much more general result. In the given form
the Lemma was formulated and proved by Xu and Zou [37]. ��
Theorem 12.5 Let ΓD = ∂Ω , ψD ≡ 0, u ∈ H̊ 1(Ω,�). Let also the finite element
assemblage satisfy the conditionA ) and generate the space V̊ �(Ω) ⊂ H̊ 1(Ω) and
z ∈ H(Ω, div). Then at any σ ≡ const ∈ [0, 1/(csz(0, 1)h)2] there holds the bound

|||efem|||2 ≤ ΘszM
(2)
fem(σ, f, z) , M (2)

fem(σ, f, z) =M (σ, θ−1
sz , f, ufem, z) ,

(12.44)

where

Θsz = 1 + c̃2
sz(1, 1)

1 + c2
sz(0, 1)h2σ

, θsz = csz(0, 1)2h2 , (12.45)

and c̃sz(1, 1) is the constant, depending only upon c and α̂(1) found in (12.43).

Proof For any w ∈ V̊ 0
h,1(Ω) we have the equality

|||efem|||2 =
∫
Ω

[∇(efem) · ∇(efem)+ σefemefem
] =

= ∫
Ω

[
(∇ufem + z) · ∇(efem +w)− (z+∇u) · ∇(efem +w)+

+σ(ufem − u)(efem +w)
]
.

(12.46)
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Integration by parts of the second summand in square brackets of the right part and
application of the Cauchy inequality with ε > 0 result in the inequality

|||efem|||2 =
∫
Ω

[
(∇ufem + z) · ∇(efem +w)+

(
div z+�u+ σ(ufem − u)

)
(efem +w)

] ≤
{
‖∇ufem + z‖2

0 + 1
ε
‖f − σufem − div z‖2

0

}1/2×
{
‖∇(efem +w)‖2

0 + ε‖efem +w‖2
0

}1/2

(12.47)

According to Lemma 12.4 and the definition of the operator Q of L2-projection
upon V̊ 0

h,1(Ω), for φ −Qφ with any φ ∈ H 1(Ω), there are valid the bounds

‖φ −Qφ‖0 ≤ ‖φ‖0 ,

‖φ −Qφ‖0 ≤ csz(0, 1)h‖∇φ‖0 ,

‖∇(φ −Qφ)‖0 ≤ c̃sz(1, 1)‖∇φ‖0 ,

(12.48)

in which the constant c̃sz(1, 1) depends only on c and α̂(1). The proof is needed only
for the last bound, and it follows by the relations

‖∇(φ −Qφ)‖0 ≤ ‖∇(φ −Ihφ)‖0 + ‖∇(Ihφ −Qφ)‖0 ≤ c̆sz‖∇φ‖0+

c1,0h
−1‖Ihφ −Qφ‖0 ≤ c̆sz‖∇φ‖0 + c1,0h

−1
[
‖Ihφ − φ‖0 + ‖φ −Qφ‖0

]
≤

(
c̆sz + 2c1,0csz(0, 1)

)
‖∇φ‖0 = c̃sz(1, 1)‖∇φ‖0 ,

where c1,0 is the constant in the inverse inequality ‖∇(Ihφ − Qφ)‖0 ≤
c1,0h

−1‖Ihφ −Qφ‖0 . Therefore, c̃sz(1, 1) = c̆sz + 2c1,0csz(0, 1).
It is worth noting, that the third inequality (12.48), indicating stability in

H 1(Ω) of L2-projection, was proved by Bramble and Xu [10] differently with the
differently defined constant c̃sz(1, 1).
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For the reason that w = Qefem ∈ V̊ 0
h,1(Ω), it can be adopted w = Qefem.

Combining with (12.48) and setting ε = σsz := (csz(0, 1)h)−2 lead to the bound

‖∇(efem +w)‖2
0 + σsz‖efem + w‖2

0 =

‖∇(efem +w)‖2
0 + βσ‖efem +w‖2

0 ++(σsz − βσ)‖efem +w‖2
0 ≤

c̃2
sz(1, 1)‖∇efem‖2

0 + βσ‖efem‖2
0 + σsz−βσ

σsz
‖∇efem‖2

0 .

(12.49)

On the basis of (12.49) we conclude that

‖∇(efem) +w‖2
0 + σsz‖efem +w‖2

0 ≤
1 + c̃2

sz(1, 1)

1 + k

[ ‖∇efem‖2
0 + σ‖efem‖2

0

]

(12.50)

with k = σ/σsz. Now from (12.47) and (12.50) the Theorem follows . ��
Remark 12.2 Quasi-interpolation operator Ih is defined in [37] on triangulations,
satisfying the conditions of the shape regularity 0 < c ≤ ρ

r
/hr , hr ≤ h, with

preserving the properties (a), (b) and the properties (c), (d) taking the local form

c) ‖v −Ihv‖t,τr ≤ csz(t, s)h
s−t
r ‖v‖s,δr , t = 0, 1, s = 1, 2, ∀v ∈ H 1(δr ) ,

d) |Ihv|1,τr ≤ c̆sz| v |1,δr , and ‖Ihv‖1,τr ≤ ĉsz‖ v ‖1,δr , ∀v ∈ H 1(δr ) ,

(12.51)

where csz(t, s) = const, δr = interior{∪%τ% : τ% ∩ τ r �= ∅} and r = 1, 2, . . . ,R.
More over, these authors designed also the quasi-interpolation operators Ih,p :
H 1(Ω) → Vh,p(Ω), for which again the properties (a), (b) are preserved, but
in (12.51) s = 1, 2, . . . , p + 1. This quasi-interpolation operator allows to expand
the a posteriori error bounds (12.44)–(12.45) on the solutions by the finite element
methods from the spaces Vh,p(Ω), p > 1.

The bounds (12.41), (12.42) of Theorem 4 essentially use some global properties
of the finite element solutions, see Lemma 12.3. In the bound (12.44)–(12.45) of
Theorem 12.5, we see only the constants defined by local properties of the quasi-
interpolation operator.
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12.5 Consistency and Local Effectiveness

For the right parts of the a posteriori error bounds (12.41), (12.44)–(12.45),
and (12.42) we introduce the notations ηk, k = 1, 2,

η2
1 =

2

1 + c2
†h

2σ
M (1)

fem(σ, f, z) , η2
2 = ΘszM

(2)
fem(σ, f, z) ,

and η1,ε, respectively. The error estimators ηk, η1,ε are consistent, they are
computable with the use of the testing fluxes which make the estimators sharp and
which can be calculated by a number of simple flux recovery procedures of linear
complexity. These facts lie practically on the surface and are established similarly
for all ηk, η1,ε. Hence, they are discussed below briefly for η1. In support of the
effectiveness of the error indicators, we present also the inverse like inequality at
some choice of the testing fluxes.

If ufem ∈ Vh,p(Ω) ⊂ H 1(Ω), Vh,p(Ω) � H 2(Ω) and u ∈ Hl(Ω), 2 ≤ l ≤
p+ 1, p ≥ 1, then it is natural to require that for the recovered flux z the estimates
of convergence

h−1‖∇u+ z)‖L2(Ω), ‖div(∇u+ z)‖0 ≤ c̃lh
l−2‖u‖l,Ω , c̃l = const , (12.52)

hold with the orders corresponding to the convergence estimates of ‖efem‖k ≤
ck,lh

l−k‖u‖l , k = 0, 1. From these bounds, it easily follows that for σ ≤ c2
†h

−2

|||efem||| ≤ clh
l−1‖u‖l , η1(efem) ≤ clh

l−1‖u‖l , cl, ĉ1 = const , (12.53)

see [23–25] for additional details and discussion.
Thus, according to (12.53) the a posteriori bound (12.41) is consistent for σ ≤

c2
†h

−2, and as the a priori bound is unimprovable in the order, so the same is true for
the bound (12.41). In other words, in the class of solutions, for which the a priori
bound is unimprovable in the order, there exist such that

η1(efem) ≤ C&||| efem ||| . (12.54)

Indeed, let f ∈ L2(Ω), d = 2, and the domain is such that the inequality ‖v‖2 ≤
c◦‖F‖0 holds for solutions of the problems −�v = F, u

∣∣∣
∂Ω

= 0 uniformly in

F ∈ L2(Ω), see Ladyzhenskaya [27]. Then the inequalities (12.53) with l = 2 are
fulfilled as well. At the same time, such f ∈ L2(Ω) exists that

h‖u‖2 ≤ c2 infφ∈Vh(Ω) ‖∇(u− φ)‖0 = c2 ‖∇efe‖0 ≤

c2 ‖∇efem‖0 ≤ c2 ||| ∇efem ||| , c2 = const .
(12.55)
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The first of these inequalities follows from the estimates of the N-width of the
compact of functions v ∈ H̊ 1(Ω), ‖v‖1 = 1, for N = h−2, see in [31]
Ch. 4, Section 4.1. In turn, (12.54) follows from (12.53), (12.55), which together
with (12.41) yield the two sided bound

||| efem|||2 ≤ η1(efem) ≤ C&||| efem|||2 . (12.56)

The error indicators ηk, η1,ε are computable for a wide range of problems and
FEM’s, and there are numerous works on the flux recovery procedures, which
can be used for obtaining the testing fluxes z satisfying (12.52) and, therefore,
making this indicators sharp. Majority of them, following the renown SPR of
[39], were created in the relation with the development of the residual type error
estimators η = ||∇ufem + Gufem||L2(Ω), where G is the flux recovery operator.
For this reason, these procedures were aimed at achieving as high as possible
accuracy, in particular, superconvergence or even ultraconvergence [36, 38]. Under
some assumptions on the finite element meshes, smoothness of the exact solutions,
finite element discretization and the operator G, these properties were approved
by the analysis and by the numerical practice. As is noted by some authors, flux
recovery procedures perform “astonishingly well”, see, e.g., [1, 36]. Clearly, the
superconvergence means that even better than (12.52) in the order bounds hold.
For instance, the superconvergence of fluxes produced by the simple and low cost
procedures of linear complexity such as

(i) weighted averaging,
(ii) local L2-projection, and

(iii) the local discrete least squares fitting

for the first order finite element methods was studied in [36]. Under the assumptions
u ∈ H̊ 1(Ω)∩H 2(Ω)∩W 3∞(Ω) and mild regularity of the mesh, Theorem 4.2 of this
work establishes that ||∇ufem + Gufem||L2(Ω) = O(h1+ρ) with ρ > 0 depending
on the mesh. Superconverging averaging techniques for p Lagrange elements were
studied in [8]. There are many other papers devoted to the expansion of efficient
recovery techniques on the more irregular meshes, problems with the discontinuous
coefficients etc. It is worth to stress again that the inequalities (12.52) do not assume
any superconvergence, but only retention by the testing flux z of the orders of
accuracy of the finite element flux zfem = −∇ufem. In general, the proof of (12.52)
does not differ much from the proofs of similar bounds for approximations by
functions from the finite element space. In particular, according to Lemma 4.3 of
[1], see also Corollary 4.2 there, under conditions of Theorems 12.4 and 12.5, for
the flux recovery procedures (i)–(iii) the inequalities (12.52) are fulfilled.

Obviously also, that for the global L2(Ω) orthogonal projection of zfem upon
Vh,%(Ω) or Wh,%(Ω, div) with % = p or % = p − 1, the proof of (12.52) is very
easy while the complexity of such projection is linear.

The bounds of local effectiveness of the a posteriori error majorants, leading as
a rule to two-sided error bounds, are paid much attention, see [2, 3, 11–13, 18, 19].
In part, it is for the reason that they are used in the proofs of the convergence of
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adaptive algorithms. Here we give an example of the local effectiveness bound for
the a posteriori majorant (12.41) applied to the first order finite element method.

Theorem 12.6 Under conditions of Theorem 12.4, for ufem ∈ Vh,1(Ω) and the
vector-function z ∈ Wh,2(Ω, div), defined as L2-projection of the vector-function
zfem = −∇ ufem on the spaceWh,2(Ω, div), we have

M (k)
fem(σ, f, z) ≤ C

[ |||efem|||2 +
R∑
r=1

h2
r

π2

∫

τr

(f −Π1
r f )

2dx
]

(12.57)

with the constant C = C(Ω, c�) and k = 1, 2.

Proof We refer for the proof to Korneev [25]. ��
Note that in comparison with (12.54), the inequality (12.57) is weaker in a

sense that they assume z ∈ Wh,k(Ω, div) for k = 1, 2, respectively. But this is
a consequence of the way of the proof, based on indirect use of the equilibrated
fluxes.
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Chapter 13
Space-Time Finite Element Methods
for Parabolic Evolution Problems
with Variable Coefficients

Ulrich Langer, Martin Neumüller, and Andreas Schafelner

Abstract We introduce a completely unstructured, conforming space-time finite
element method for the numerical solution of parabolic initial-boundary value prob-
lems with variable in space and time, possibly discontinuous diffusion coefficients.
Discontinuous diffusion coefficients allow the treatment of moving interfaces. We
show stability of the method and an a priori error estimate, including the case
of local stabilizations which are important for adaptivity. To study the method
in practice, we consider several typical model problems in one, two, and three
spatial dimensions. The implementation of our space-time finite element method
is fully parallelized with MPI. Extensive numerical tests were performed to study
the convergence behavior of the stabilized space-time finite element discretization
method and the scaling properties of the parallel AMG-preconditioned GMRES
solver that we use to solve the huge system of space-time finite element equations.

13.1 Introduction

When we deal with the simulation of physical problems like transient diffusion
problems, heat-conduction problems, or electromagnetic eddy current problems, the
governing partial differential equations (PDEs) are often of parabolic type. Thus,
the development of efficient numerical schemes for solving parabolic equations is
of great importance. The standard approach to the numerical solution of parabolic
PDEs uses some time-stepping method applied to the large-scale system of ordinary
differential equations arising from a semi-discretization in the spatial variables, e.g.,
by means of the Finite Element Method (FEM); see, e.g., [42]. Another approach
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first discretizes the parabolic problem with respect to time by some time-stepping
method, and then perform a discretization of the resulting elliptic problems in
the spatial variables. This approach is sometimes also called Rothe’s method, see,
e.g., [25]. There are many papers on the more recent continuous or discontinuous
Galerkin or Galerkin-Petrov (cG, cGP, dG, dGP) methods based on time-slices;
see, e.g., [1, 4, 6, 14, 27, 31–34, 37] and the references therein. These methods are
closely related to classical time-integration methods that can be solved in a time-
stepping procedure. This is a sequential procedure that is not suited for parallel
computing. In order overcome this drawback on massively parallel computers, time-
parallel solvers, see, e.g. [12, 15, 18, 45], or time-parallel time-integration methods
like PARAREAL [28] have been developed. An excellent historical overview
of 50 years of time-parallel integration methods is given in [16]. An alternative
approach consists in a full space-time discretization at once by treating time just
as another space variable, i.e., we solve a problem with one dimension more. In
fact, this approach to the numerical solution of transient problems in space and
time simultaneously is not new, but becomes now a really hot topic in connection
with the availability of massively parallel computers with many thousands of cores.
Besides the overview paper [16] that focuses on time-parallel integration methods,
we refer to [41] that provides an overview of the latest developments in this field
with focus on completely unstructured space-time methods and simultaneous space-
time adaptivity that treats time just as another variable.

In this paper, we will focus on space-time finite element methods that use really
unstructured simplicial space-time meshes. The motivation behind this is that, for
elliptic problems, there exist plenty of efficient and, most important, parallel solving
methods. If we would be able to derive a stable discrete bilinear form, for which we
can prove coercivity (ellipticity) with respect to some mesh-dependent norm in the
space-time FE-space, then we can expect that we can efficiently solve the space-
time problem fully in parallel as in the elliptic case. In this way, we can overcome
the curse of sequentiality of the time-stepping methods. Another reason for the
space-time approach is the fact that we are not restricted to a special structure of
the mesh. This means that we can apply adaptive mesh refinement in space and time
simultaneously. Last but not least, we can easily deal with moving interfaces and
computational domains, where the coefficients of the PDE and/or the spatial domain
Ω(t) depend on the time as well. Moreover, optimization problems constrained by a
parabolic initial-boundary value problem lead to optimality conditions that can very
efficiently be solved by space-time methods.

As already mentioned above, these advantages of space-time methods together
with the common availability of massively parallel computers have led to a revival
of space-time methods. This especially concerns space-time methods that are based
on completely unstructured space-time meshes produced, e.g., by simultaneous
space-time adaptivity; see [41] for a review of recent publications on this topic.
For instance, Steinbach introduced a inf-sup-stable Petrov-Galerkin method [39],
whereas Toulopoulos used bubble functions to stabilize a space-time finite element
method [43]. In the context of using Isogeometric Analysis (IgA) as space-time
discretization method, Langer et al. proposed an upwind-stabilized space-time
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method for parabolic evolution equations [26]; see also PhD thesis [29] by Moore.
Similar stabilized space-time finite element schemes have recently been developed
in [5, 10, 30]. In [5], beside the upwind-stabilization scheme, Bank, Vassilevski and
Zikatanov proposed and analyzed new EAFE (edge average finite element) schemes
for parabolic convection-diffusion-reaction problems, whereas Devaud and Schwab
[10] introduced upwind-stabilized schemes with mesh grading in time dealing with
time singularities and hp schemes leading to exponential convergence.

The main aim of this paper is to generalize the results for the stabilized space-
time scheme proposed in [26], where the authors use IgA for the discretization, and
the corresponding stabilized space-time FE scheme considered by Moore [30] to the
case of moving interfaces, i.e., t-dependent, discontinuous diffusion coefficients,
and the possibility to choose local (element-wise) upwind test functions of the
form vh + θKhK∂tvh depending on the mesh-size hK of an element K from the
finite element mesh. This localization of the upwind-stabilization is very important
for adaptivity that produces a family of shape regular meshes. We will use an
unstructured conforming FEM to discretize the parabolic initial-boundary value
problem, which we specify in the following. Let Q := Ω × (0, T ) be the space-
time cylinder, with Ω ⊂ Rd , d ∈ {1, 2, 3}, being a sufficiently smooth and bounded
spatial domain, and T > 0 being the final time. Furthermore, let Σ := ∂Ω× (0, T ),
Σ0 := Ω × {0} and ΣT := Ω × {T } such that ∂Q = Σ ∪ Σ0 ∪ ΣT . Then we
consider the following model problem that can formally be written as follows: Given
f , g, ν and u0, find u such that (s.t.)

∂u

∂t
(x, t)− divx(ν(x, t)∇xu(x, t)) = f (x, t), (x, t) ∈ Q, (13.1)

u(x, t) = g(x, t) = 0, (x, t) ∈ Σ, (13.2)

u(x, 0) = u0(x), x ∈ Ω, (13.3)

where the diffusion coefficient (reluctivity in electromagnetics) ν is a given
uniformly positive and bounded coefficient function. The dependence of ν not only
on space but also on time enables us to model moving interfaces. Note that we do not
require ν to be smooth. In fact, we will admit discontinuities for ν. For simplicity,
we assume homogeneous Dirichlet boundary conditions.

The paper is structured in the following way: In Sect. 13.2, we provide a space-
time variational formulation of the parabolic initial boundary value problem (13.1)–
(13.3), and we recall some existence, uniqueness and regularity results for weak
solutions in appropriate space-time Sobolev spaces. Section 13.3 is devoted to the
derivation and analysis of a new locally stabilized space-time finite element scheme.
Moreover, we derive a priori discretization error estimates. In Sect. 13.4, we present
four typical test cases for which we have performed extensive numerical studies,
and we discuss the numerical results. Section 13.5 draws some conclusions, and
provides an outlook on the future work.



250 U. Langer et al.

13.2 The Space-Time Variational Formulation

In order to derive well-posed space-time variational formulations in space-time
Sobolev spaces, we follow the classical approach developed in the monograph
[24] by Ladyžhenskaya, Solonnikov and Uraltseva, and in the lecture notes [23]
by Ladyžhenskaya. Let us first define the proper function spaces.

Definition 13.1 Let L2(Q) be the space of square integrable functions in the space-
time cylinder Q. Then we define the following Sobolev (Hilbert) spaces

H 1
0 (Q) = W 1

2,0(Q) := {u ∈ L2(Q) : ∇u ∈ [L2(Q)]d+1 and u = 0 on Σ},
H 1,0(Q) = W

1,0
2 (Q) := {u ∈ L2(Q) : ∇xu ∈ [L2(Q)]d},

H
1,0
0 (Q) = W

1,0
2,0 (Q) := {u ∈ H 1,0(Q) : u = 0 on Σ},

equipped with the usual scalar products and norms, as well as the Banach space

V2(Q) := {u ∈ H 1,0(Q) : |u|Q < ∞},

with the subspaces

V2,0(Q) := {u ∈ H
1,0
0 (Q) : |u|Q < ∞},

V
1,0
2 (Q) := {u ∈ V2(Q) : lim

Δt→0
‖u(·, t +Δt)− u(·, t)‖L2(Ω) = 0, uniformly on [0, T ]},

V
1,0
2,0 (Q) := V

1,0
2 (Q) ∩H

1,0
0 (Q),

where the norm | · |Q is defined by

|u|Qt := max
0≤τ≤t

‖u(·, τ )‖L2(Ω) + ‖∇xu‖Qt ,

and Qt = Ω × (0, t) denotes a truncated space-time cylinder. Here, the appearing
differential operators are defined as follows:

∇ = (∇x,∇t )
T , ∇x = (∂x1, . . . , ∂xd )

T and ∇t = (∂t ).

Multiplying the PDE (13.1) by a test function v ∈ Ĥ 1
0 (Q) := {v ∈ H 1

0 (Q) : v =
0 on ΣT }, integrating over the complete space-time domain (cylinder) Q = Ω ×
(0, T ), integrating by parts with respect to time and space once, and incorporating
the initial and boundary conditions, we immediately arrive at the following space-
time variational formulation of the initial-boundary value problem (13.1)–(13.3):
find a function u ∈ H

1,0
0 (Q) such that

a(u, v) = l(v), ∀v ∈ Ĥ 1
0 (Q), (13.4)
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where the bilinear form a(·, ·) and the linear form l(·) are defined by the identities

a(u, v) =
∫

Q

(−u∂tv + ν(x, t)∇xu∇xv) dxdt

and

l(v) =
∫

Ω

u0(x) v(x, 0) dx +
∫

Q

f v dxdt,

respectively. A solution u of the space-time variational (13.4) is called generalized
(weak) solution of the parabolic initial-boundary value problem (13.1)–(13.3) in the
space u ∈ H

1,0
0 (Q).

Under the assumptions that

u0 ∈ L2(Ω) and f ∈ L2,1(Q) := {v : Q→ R :
∫ T

0
‖v(·, t)‖L2(Ω) dt < ∞},

(13.5)

and that

0 < ν ≤ ν(x, t) ≤ ν, for almost all (x, t) ∈ Q, (13.6)

with positive constants ν and ν, the following theorem was proven by means of
Galerkin’s method and appropriate a priori estimates in [23]:

Theorem 13.1 ([23, Chapter III, Thm. 3.1]) Under the conditions (13.5)
and (13.6), the space-time variational problem (13.4) has at least one generalized
(weak) solution in H

1,0
0 (Q).

Definition 13.2 ([23, Chapter III]) A generalized solution u ∈ H
1,0
0 (Q) of the

space-time variational problem (13.4) is a called a generalized solution in V
1,0
2,0 (Q),

if u ∈ V
1,0
2,0 (Q) and if it fulfills the energy-balance equation

1

2
‖u(·, t)‖2

L2(Ω) +
∫

Qt

ν(x, τ )|∇xu|2 dxdτ = 1

2
‖u(·, 0)‖2

L2(Ω) +
∫

Qt

f u dxdτ.

and the identity

∫

Ω

u(x, t) v(x, t) dx −
∫

Ω

u0v(x, 0) dx

+
∫

Qt

−u∂tv + ν∇xu∇xv dxdτ =
∫

Qt

f v dxdτ,

for all v ∈ H 1
0 (Q) and any t ∈ (0, T ).
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Theorem 13.2 ([23, Chapter III, Thm. 3.2]) If the assumptions (13.5) and (13.6)
are fulfilled, then any generalized solution of the space-time variational prob-
lem (13.4) in H

1,0
0 (Q) is the generalized solution in V

1,0
2,0 (Q) and it is unique in

H
1,0
0 (Q).

Corollary 13.1 If the assumptions (13.5) and (13.6) hold, then there exists a unique
generalized solution u ∈ V

1,0
2,0 (Q) to the the space-time variational problem (13.4).

Remark 13.1 For the case ν = 1, f ∈ L2(Q) and u0 ∈ H 1
0 (Ω), Ladyžhenskaya

proved in [23, Chapter III, Thm. 2.1] that the generalized solution u of (13.4)
belongs to space H

Δ,1
0 (Q) = W

Δ,1
2,0 (Q) = {v ∈ H 1

0 (Q) : Δxv ∈ L2(Q)}, and

u continuously depends on t in the norm of the space H 1
0 (Ω). If ∂Ω ∈ C2, then

u ∈ W
2,1
2,0 (Q).

More regularity results can already be found in the classical monograph [24] and
in the more recent references [46] and [22]. The last reference provides an overview
on maximal parabolic regularity results; see also [27]. The space-time finite element
scheme that we are going to derive is consistent for solutions u of (13.4) that have
at least piecewise partial time derivative ∂tu in L2 and fluxes ν∇xu in H(divx) =
{v = (v1, . . . , vd) ∈ [L2(Q)]d : divxv ∈ L2(Q)}. This is ensured in the case of
maximal parabolic regularity where ∂tu ∈ L2(Q) and divx(ν∇xu) ∈ L2(Q), i.e.
∂tu − divx(ν∇xu) = f in L2(Q). We emphasize that we need this property only
element-wise for deriving a consistent scheme.

13.3 The Space-Time Finite Element Scheme

From the previous section, we know that there exists a unique generalized solution
of the initial-boundary value problem (13.1) in H

1,0
0 (Q) ∩ V

1,0
2,0 (Q) that may

have more regularity due to more regularity of the data, see Remark 13.1 and
the references mentioned above. The goal of this section is to derive a consistent
and stable space-time finite element scheme with a discrete (mesh-dependent)
bilinear form ah(·, ·) that is coercive (elliptic) on the space-time finite element
spaces and bounded on extended spaces with respect to appropriately chosen,
mesh-dependent norms. These properties ensure existence and uniqueness of a
finite element solution, and, together with appropriate interpolation respectively
approximation error estimates, a priori discretization error estimates for sufficiently
smooth solutions.

Similar to Langer et al. in [26], we use special time-upwind test functions, but in
contrast to [26] the time-upwind test functions are now locally scaled by the element
mesh-size in order to handle adaptivity. First, we need a regular or, at least, a shape
regular triangulation Th of the space-time cylinder Q; see, e.g., [7, 9] for details.
We now formally define this triangulation as Th := {K : K ⊂ Q,K open} such
that Q =⋃K∈Th

K , with K ∩K ′ = ∅ for K �= K ′ ∈ Th, and the usual conditions
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imposed on a regular or a shape regular triangulation are fulfilled [7, 9]. On each of
these elements K , we now define individual time-upwind test functions

vh,K(x, t) := vh(x, t)+ θKhK∂tvh(x, t), for all (x, t) ∈ K,

where θK is a local positive parameter that will be defined later, and hK :=
diam(K). Here, vh is some test function from a standard conforming space-time
finite element space V0h = {v ∈ C(Q) : v(xK(·)) ∈ Pp(K̂), ∀K ∈ Th, v =
0 on Σ ∪ Σ0}, where xK(·) is the map from the reference element K̂ to the finite
element K ∈ Th, and Pp(K̂) is the space of polynomials of the degree p on the
reference element K̂. For simplicity, throughout this paper and, in particular, in
our numerical experiments in Sect. 13.4, we use affine-linear mappings xK(·) and
simplicial elements. From now on, unless specified otherwise, all functions depend
on both space and time variables. So, we can omit the arguments.

In this section, we will also use the following spaces:

H
1,1
0,0 (Q) := {u ∈ L2(Q) : ∇xu ∈ [L2(Q)]d , ∂tu ∈ L2(Q) and u|Σ∪Σ0 = 0},

H
2,1
0,0 (Th) := {v ∈ H

1,1
0,0 (Q) : v|K ∈ H 2,1(K), ∀K ∈ Th},

W 1∞(Th) := {v ∈ L∞(Q) : v|K ∈ W 1∞(K), ∀K ∈ Th},
where H 2,1(K) := {v ∈ L2(K) : ∂tv, ∂xi v, ∂xi ∂xj v ∈ L2(K) and ∂tv ∈ L2(K)}.
For the sake of convenience, we now consider homogeneous initial conditions, i.e.,
u0 = 0 on Ω . Furthermore, we assume that ν ∈ W 1∞(Th), and that the PDE has
a sufficiently smooth solution u, e.g., u ∈ H

2,1
0,0 (Th); cf. also our discussion in

Sect. 13.2. Now we first multiply the PDE (13.1) by the space-time test function
vh,K , and then integrate over a single element K . Summing up over all elements
and applying integration by parts in the principle term, we obtain

∑
K∈Th

∫

K

(∂tuvh+θKhK∂tu∂tvh + ν∇xu · ∇xvh + θKhKν∇xu · ∇x(∂tvh)) d(x, t)

−
∑
K∈Th

∫

∂K

(ν∇xu · nxvh + θKhKν∇xu · nx∂tvh) ds(x,t) = lh(vh) (13.7)

with the linear form

lh(vh) :=
∑
K∈Th

∫

K

f (vh + θKhK∂tvh) d(x, t). (13.8)

For the exact solution u of (13.1), we know that the fluxes have to be continuous
across the boundaries of the elements K ∈ Th. This observation means that

∑
K∈Th

∫

∂K

ν∇xu · nxvh ds(x,t) = 0
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for all test functions vh ∈ V0h. We mention that vh is zero on Σ , and that nx vanishes
on Σ ∪ Σ0. Therefore, the first boundary term completely disappears from (13.7),
but, in general, not the second term, since θKhK varies from element to element.
We now arrived at the consistency identity

ah(u, vh) = lh(vh), ∀vh ∈ V0h, (13.9)

that holds for a sufficiently smooth solution u, e.g., u ∈ H
2,1
0,0 (Th), where the

discrete (mesh-dependent) bilinear form ah(·, ·) is defined by the identity

ah(u, vh) :=
∑

K∈Th

∫

K

(∂tu vh + θKhK ∂tu ∂tvh) d(x, t)

+
∑
K∈Th

∫

K

(ν∇xu · ∇xvh + θKhK ν∇xu · ∇x(∂tvh)) d(x, t)

−
∑
K∈Th

∫

∂K

θKhK ν∇xu · nx ∂tvh ds(x,t), (13.10)

and the linear form lh(·) is defined by (13.8), with given ν ∈ W 1∞(Th) and f ∈
L2(Q).

Remark 13.2 We can derive a scheme that is equivalent to (13.10). In particular,
instead of applying integration by parts on both principal terms, we only apply it to
the first principal term and keep the second. Hence, we obtain another consistency
identity

ãh(u, vh) = lh(vh), ∀vh ∈ V0h,

that holds for a solution u of (13.4) that only belongs to H
L,1
0,0 (Th) := {u ∈ L2(Q) :

(∂tu)|K ∈ L2(K), (ν∇xu)|K ∈ H(divx,K), u = 0 on K ∩ (Σ ∪Σ0) ∀K ∈ Th},
where

ãh(u, vh) :=
∑
K∈Th

∫

K

(∂tu vh + θKhK ∂tu ∂tvh) d(x, t)

+
∑
K∈Th

∫

K

(ν∇xu · ∇xvh − θKhK divx(ν∇xu)∂tvh) d(x, t)

(13.11)

with given ν ∈ W 1∞(Th) and f ∈ L2(Q), and lh as in (13.8). We mention that u ∈
H

L,1
0,0 (Th) is ensured in the case of maximal parabolic regularity where u belongs

HL,1(Q) := {v ∈ H 1(Q) : Lu := divx(ν∇xu) ∈ L2(Q)}.
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Remark 13.3 If the test functions vh ∈ V0h are continuous and piecewise linear
(p = 1), then the term in (13.10) containing ∇x(∂t vh) vanishes in all elements
K ∈ Th, since it only contains mixed second order derivatives of the test functions.

Now we look for a Galerkin approximation uh ∈ V0h to the generalized solution
u of the initial boundary value problem (13.1)–(13.3) using the variational iden-
tity (13.9), i.e., find uh ∈ V0h such that

ah(uh, vh) = lh(vh), ∀vh ∈ V0h, (13.12)

with ah(·, ·) and lh(·) as defined above by (13.10) and (13.8), respectively. In
Sect. 13.2, we already showed existence and uniqueness of a weak solution to
the initial-boundary value problem (13.1)–(13.3). However, our finite element
scheme (13.12) is based on a mesh-dependent bilinear form ah(·, ·). Thus, we have
to investigate the stability of the space-time finite element scheme. More precisely,
we will show ellipticity of the bilinear form ah(·, ·) : V0h × V0h → R w.r.t. the
mesh-dependent norm

‖vh‖2
h :=

∑
K∈Th

[‖ν1/2∇xvh‖2
L2(K) + θKhK‖∂t vh‖2

L2(K)

]+ 1

2
‖vh‖2

L2(ΣT )
.

(13.13)

This implies existence and uniqueness of the finite element solution uh ∈ V0h
of (13.12). For the following derivations, we assume that our triangulation Th of Q
is shape regular such that local approximation error estimates are available [7, 9]. A
shape regular triangulationTh of Q is called quasi-uniform, if there exists a constant
cu such that

hK ≤ h ≤ cuhK, for all K ∈ Th,

where h = maxK∈Th
hK . Moreover, we introduce localized bounds for our

coefficient function ν, i.e.,

νK ≤ ν(x, t) ≤ νK, for almost all (x, t) ∈ K and for all K ∈ Th, (13.14)

where νK ≥ ν and νK ≤ ν are positive constants on everyK ∈ Th. In the following,
we need some inverse inequalities for functions from finite element spaces.

Lemma 13.1 There exist generic positive constants cI,1 and cI,2 such that

‖vh‖L2(∂K) ≤ cI,1h
−1/2
K ‖vh‖L2(K), (13.15)

‖∇vh‖L2(K) ≤ cI,2h
−1
K ‖vh‖L2(K) (13.16)

for all vh ∈ V0h and for all K ∈ Th.

Proof For (13.15); see e.g. [11, 35], and for (13.16) see e.g. [7, 9, 11]. ��
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From ∇ = (∇x, ∂t )
T and (13.16), we can immediately deduce

‖∂t vh‖L2(K) ≤ cI,2h
−1
K ‖vh‖L2(K). (13.17)

The above inequalities hold for the standard L2-norms. However, we will also need
such a result in some scaled norm.

Lemma 13.2 Let ν ∈ W 1∞(Th) be a given, uniformly positive function. Then

‖v‖2
Lν

2(K) =
∫

K

ν(x, t) |v(x, t)|2 d(x, t)

is a norm, and the inverse estimate

‖∂t vh‖Lν
2(K) ≤ ‖∇vh‖Lν

2(K) ≤ cI,νh
−1
K ‖vh‖Lν

2(K)

holds for all vh ∈ V0h and for all K ∈ Th, with cI,ν := (νK/νK)1/2cI,2.

Proof See [36]. ��
We note that, in practical applications, it is clear that 1 ≤ νK/νK is close to 1.
Below, we will also need the estimate

‖∂t∂xi vh‖Lν
2(K) ≤ cI,νh

−1
K ‖∂xi vh‖Lν

2(K), (13.18)

which obviously holds for all vh ∈ V0h and for all K ∈ Th. Moreover, we need the
following inverse inequality.

Lemma 13.3 Let ν ∈ W 1∞(Th) be a given uniformly positive function. Let
Wh|K := {wh : wh = ∇xvh, vh ∈ V0h|K }. Then the inverse estimate

‖divx(νwh)‖L2(K) ≤ cI,3h
−1
K ‖νwh‖L2(K),∀wh ∈ Wh|K (13.19)

holds, where cI,3 is a positive constant that is independent of hK .

Proof First, we know that V0h|K is a finite-dimensional space spanned by the local
shape functions {p(i)}i∈ωK , where ωK is the index set of local degrees of freedom.
Hence, the space Wh|K is also finite-dimensional and spanned by the generating
system {∇xp

(i)}i∈ωK . Moreover, for a fixed ν, each product zh := ν wh can be
represented by means of a non-necessary unique linear combination {ν ∇xp

(i)}i∈ωK

on K . We denote this space by Zh(K) := spani∈ωK
{ν ∇xp

(i)}. Using Cauchy’s
inequality, we obtain

‖divxzh‖2
L2(K) =

∫

K

|divxzh|2 d(x, t) =
∫

K

|
d∑

i=1

∂xi zh,i |2 d(x, t)

≤ d

∫

K

d∑
i=1

|∂xi zh,i |2 d(x, t) = d

d∑
i=1

‖∂xi zh,i‖2
L2(K),
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for all zh ∈ Zh(K). Now, by a simple scaling argument, we can estimate each
element in the sum, and obtain

d

d∑
i=1

‖∂xi zh,i‖2
L2(K) ≤ d

d∑
i=1

C2h−2
K ‖zh,i‖2

L2(K)

= dC2h−2
K ‖zh‖2

L2(K),

where C is a positive constant that is independent of hK . Taking the square root and
setting cI,3 := C

√
d closes the proof. ��

Lemma 13.3 gives information how the two norms in (13.19) scale w.r.t. the mesh-
size hK . However, the estimate (13.19) is not sharp w.r.t. the constant.

Lemma 13.4 Let the assumptions of Lemma 13.3 hold. Then

‖divx(νwh)‖L2(K) ≤ copt‖νwh‖L2(K),∀wh ∈ Wh|K,

with c2
opt = sup0 �=zh∈Zh(K)

‖divx(zh)‖2
L2(K)

‖zh‖2
L2(K)

≤ C2dh−1
K .

Proof See [36]. ��
Remark 13.4 We note that the constant copt in Lemma 13.4 is not only optimal, but
also computable. If zh ∈ Zh(K), then, by definition, we have the representation

zh(x, t) =
∑
j∈ω̃K

z̃j q̃
(j), (13.20)

where {q̃(j)}j∈ω̃K
forms some basis of Zh(K). Once some basis is chosen, we can

rewrite

‖zh‖2
L2(K) = (zh, zh)L2(K) and ‖divxzh‖2

L2(K) = (divxzh, divxzh)L2(K)︸ ︷︷ ︸
=:b(zh,zh)

in the form

(yh, zh)L2(K) = (Mhy, z) and b(yh, zh) = (Bhy, z),

with the element mass matrix Mh = (Mij = (q̃(j), q̃(i))L2(K))i,j∈ω̃K
and the

element divx -stiffness matrix Bh = (Bij = b(q̃(j), q̃(i))L2(K))i,j∈ω̃K
, respectively.

Here, the vectors y and z are the vector of coefficients in the representation (13.20)

w.r.t. the chosen basis {q̃(j)}j∈ω̃K
. Using this matrix representation, we immediately

get

c2
opt = sup

0 �=zh∈Zh(K)

‖divx(zh)‖2
L2(K)

‖zh‖2
L2QT (K)

= sup
z∈RNK=|ω̃K |

(Bhz, z) 2

(Mhz, z) 2

.
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Hence, c2
opt is the largest eigenvalue of the generalized eigenvalue problem

Bhz = λMhz,

that can easily be computed.

Now, we are in the position to proof the following coercivity lemma that is crucial
for our approach.

Lemma 13.5 There exits a positive constant μc such that

ah(vh, vh) ≥ μc‖vh‖2
h, ∀vh ∈ V0h,

with μc = minK∈Th

{
1−cI,3

√
νKθK
4hK

} ≥ 1
2 provided that θK ≤ hK

c2
I,3νK

. For instance,

θK = hK
c2
I,3νK

yields μc = 1
2 .

Proof Integration by parts in the last term of (13.10) yields

ah(vh, vh) =
∑
K∈Th

[∫

K

1

2
∂t (v

2
h) d(x, t)+ θKhK‖∂tvh‖2

L2(K)+
∫

K

ν|∇xvh|2 d(x, t)

−
∫

K

θKhK divx(ν∇xvh)∂t vh d(x, t)

]
.

Now using Gauss’ theorem and the facts that vh is continuous across the element
boundary and that nt = 0 on Σ , we obtain

ah(vh, vh) = 1

2

(‖vh‖2
L2(ΣT )

− ‖vh‖2
L2(Σ0)

)+
∑
K∈Th

[
θKhK‖∂t vh‖2

L2(K)

+
∫

K

ν|∇xvh|2 d(x, t)−
∫

K

θKhK divx(ν∇xvh)∂tvh d(x, t)

]
.

The first, second and third term already appear in the definition of our mesh-
dependent norm (13.13). It remains to estimate the last term. Using the Cauchy-
Schwarz inequality, Lemma 13.3, and a scaled Young’s inequality, we arrive at the
estimate

|θKhK

∫

K

divx(ν∇xvh) ∂tvh d(x, t)|

≤ cI,3
(ενKθK

2hK
‖∇xvh‖2

Lν
2(K) +

1

2ε
θKhK‖∂t vh‖2

L2(K)

)
.
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This estimate and the fact that vh = 0 on Σ0 immediately yield the estimate

ah(vh, vh) ≥ 1

2
‖vh‖2

L2(ΣT )
+
∑
K∈Th

[(
1 − cI,3

2ε

)
θKhK‖∂t vh‖2

L2(K)

+(1 − ε
cI,3νKθK

2hK

)‖∇xvh‖2
Lν

2(K)

]
.

We now choose ε = √
hK/(θKνK) and obtain

ah(vh, vh) ≥ min
K∈Th

(
1 − cI,3

√
θK νK

4hK

)

×
( ∑

K∈Th

[‖∇xvh‖2
Lν

2(K) + θKhK‖∂tvh‖2
L2(K)

]+ 1

2
‖vh‖2

L2(ΣT )

)

≥ μc‖vh‖2
h,

which concludes the proof. ��
Remark 13.5 The above proof holds for any polynomial degree p ≥ 1 and any
fixed, uniformly positive ν ∈ L∞(Q). However, for the special case p = 1 and
ν|K = const , the proof is trivial since ∂t (∇xvh) ≡ 0 and ν|KΔxvh ≡ 0. Hence,
the identity

ah(vh, vh) =
∑

K∈Th

1

2

∫

∂K
v2
h nt ds(x,t)+θKhK‖∂t vh‖2

L2(K)+‖ν1/2∇xvh‖2
L2(K) = ‖vh‖2

h

holds, i.e., μc = 1. Thus, for this special case, the choice of θK has no influence on
the coercivity (ellipticity) of the space-time finite element method.

Lemma 13.5 already ensures uniqueness of the finite element solution uh ∈
V0h. Furthermore, the space V0h is finite-dimensional. Hence, uniqueness implies
existence of finite element solution uh ∈ V0h of (13.9). For the special case of
uniform meshes and uniform θ , i.e., hK = h and θK = θ for all K ∈ Th, and
ν ≡ 1, a proof for ellipticity with a mesh-independent constant was done by Langer,
Moore and Neumüller in [26] and by Moore in [29]. For a second special case,
where θK vanishes, i.e., θK = θ = 0 for all K ∈ Th, Steinbach has shown existence
and uniqueness of solutions to both the continuous and discrete version of (13.9) on
the basis of Banach-Nec̆as-Babuška’s theorem in [39]. In addition, both papers also
include a priori discretization error estimates, where Steinbach’s estimate is based
on a discrete inf-sup condition. To derive an a priori error estimate w.r.t. the mesh
dependent norm (13.13), we need to show that our bilinear form ah(·, ·) is uniformly
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bounded on V0h,∗ ×V0h, where V0h,∗ = H
1,0
0 (Q)∩H 2(Th)+V0h is equipped with

the norm

‖v‖2
h,∗ =

1

2
‖v‖2

L2(ΣT )
+
∑
K∈Th

[
θKhK‖∂t v‖2

L2(K) + ‖∇xv‖2
Lν

2(K)

+(θKhK)−1‖v‖2
L2(K) + θKhK |v|2H 2(K)

]
(13.21)

Moreover, we will make use of the following scaled trace inequality.

Lemma 13.6 There exists a positive constants cT r > 0 such that

‖v‖2
L2(∂K) ≤ 2c2

T rh
−1
K

(‖v‖2
L2(K) + h2

K‖∇v‖2
L2(K)

)
(13.22)

for all v ∈ H 1(K) and for all K ∈ Th.

Proof See, e.g., [35]. ��
Lemma 13.7 The bilinear form ah(·, ·) is uniformly bounded on V0h,∗ × V0h, i.e.,

|ah(u, vh)| ≤ μb‖u‖h,∗ ‖vh‖h, ∀ u ∈ V0h,∗, vh ∈ V0h,

whereμb = maxK∈Th

{
2(1+θKh−1

K c2
T rν

2
Kν−1

K ), 2c2
T rν

2
K, 2+c2

I,1, 1+(cI,νθK)2
}1/2

that is uniformly bounded provided that θK = O(hK).

Proof We will estimate the bilinear form (13.10) term by term. Since V0h ⊂
H

1,1
0,0 (Q), we can apply integration by parts and the Cauchy-Schwarz inequality to

the first term, and obtain

∣∣∣∣∣∣
∑
K∈Th

∫

K

∂tuvh d(x, t)

∣∣∣∣∣∣
≤
∑
K∈Th

[(
(θKhK)−1‖u‖2

L2(K)

)1/2(
θKhK‖∂t vh‖2

L2(K)

)1/2]

+(‖u‖2
L2(ΣT )

)1/2(‖vh‖2
L2(ΣT )

)1/2
.

For the second and third term, applying the Cauchy-Schwarz inequality to each term
of the sum, we immediately get the estimates

∣∣∣∣θKhK

∫

K

∂tu∂tvh d(x, t)

∣∣∣∣ ≤
(
θKhK‖∂tu‖2

L2(K)

)1/2(
θKhK‖∂t vh‖2

L2(K)

)1/2
,

∣∣∣∣
∫

K

ν∇xu∇xvh d(x, t)

∣∣∣∣ ≤
(‖∇xu‖2

Lν
2(K)

)1/2(‖∇xvh‖2
Lν

2(K)

)1/2
,
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respectively. For the fourth term, we use again Cauchy-Schwarz’ inequality, the
inverse estimate (13.18), and obtain

∣∣∣∣θKhK

∫

K

ν∇xu∇x(∂tvh) d(x, t)

∣∣∣∣

≤
(
‖∇xu‖2

Lν
2(K)

)1/2
(
(θKhK)2

d∑
i=1

c2
I,νh

−2
K ‖∂xi vh‖2

Lν
2(K)

)1/2

= (‖∇xu‖2
Lν

2(K)

)1/2(
(cI,νθK)2‖∇xvh‖2

Lν
2(K)

)1/2
.

For the last term, we apply Cauchy-Schwarz’ inequality, the trace inequalities
(13.15) and (13.22), and get

∣∣∣∣θKhK

∫

∂K

ν∇xu · nx∂t vh ds(x,t)

∣∣∣∣

≤ (2θKν2
Kc2

T rh
−1
K

[‖∇xu‖2
L2(K) + h2

K

d∑
i=1

‖∇∂xi u‖2
L2(K)

])1/2(
θKhKc2

I,1‖∂tvh‖2
L2(K)

)1/2

≤
(

2θKc2
T r

ν2
K

νK
h−1
K ‖∇xu‖2

Lν
2(K) + 2c2

T rν
2
KθKhK |u|2H 2(K)

)1/2 (
c2
I,1θKhK‖∂tvh‖2

L2(K)

)1/2
.

Now combining the above estimates, applying Cauchy’s inequality and gathering
all similar items, we finally arrive at the estimate

|ah(u, vh)|

≤
(
‖u‖2

L2(ΣT )
+
∑
K∈Th

[
θKhK‖∂tu‖2

L2(K) + 2(1+ θKc2
T r

ν2
K

νK
h−1
K )‖∇xu‖2

Lν
2(K)

+(θKhK)−1‖u‖2
L2(K) + 2c2

T rν
2
KθKhK |u|2H 2(K)

])1/2

×
(
‖vh‖2

L2(ΣT )
+
∑
K∈Th

[
(2 + c2

I,1)θKhK‖∂t vh‖2
L2(K)

+(1 + (cI,1θK)2)‖∇xvh‖2
Lν

2(K)

])1/2

≤ μb‖u‖h,∗‖vh‖h,

with μb := maxK∈Th

{
2(1 + θKh−1

K c2
T r

ν2
K

νK
), 2c2

T rν
2
K, 2 + c2

I,1, 1 + (cI,νθK)2
}1/2.

Choosing now θK = O(hK) ensures the uniform boundedness of the constant μb.
��
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Remark 13.6 Choosing θK as in Lemma 13.5, i.e., θK = hK/(c2
I,3νK), we obtain

μc = 1/2 and μb = maxK∈Th

{
2(1 + νKc2

T r

νKc2
I,3

), 2c2
T rν

2
K, 2 + c2

I,1, 1 + (
cI,νhK

c2
I,3νK

)2
}1/2

.

Remark 13.7 If we consider the bilinear form from Remark 13.2, we can derive an
equivalent statement, but in a different norm ‖ · ‖h,∗ defined as

‖v‖2
h,∗ =

1

2
‖v‖2

L2(ΣT )
+
∑
K∈Th

[
θKhK‖∂t v‖2

L2(K) + ‖∇xv‖2
Lν

2 (K)

+(θKhK)−1‖v‖2
L2(K) + θKhK‖divx(ν∇xv)‖2

L2(K)

]
.

By the same arguments as in the proof above, we estimate the first three terms
in (13.11) by
∣∣∣∣∣∣
∑

K∈Th

∫

K

∂tuvh d(x, t)

∣∣∣∣∣∣
≤
∑

K∈Th

[(
(θKhK)−1‖u‖2

L2(K)

)1/2(
θKhK‖∂tvh‖2

L2(K)

)1/2]

+(‖u‖2
L2(ΣT )

)1/2(‖vh‖2
L2(ΣT )

)1/2
,

∣∣∣∣θKhK

∫

K

∂tu∂tvh d(x, t)

∣∣∣∣ ≤
(
θKhK‖∂tu‖2

L2(K)

)1/2(
θKhK‖∂t vh‖2

L2(K)

)1/2
,

∣∣∣∣
∫

K

ν∇xu∇xvh d(x, t)

∣∣∣∣ ≤
(‖∇xu‖2

Lν
2(K)

)1/2(‖∇xvh‖2
Lν

2(K)

)1/2
.

For the fourth term, we just apply the Cauchy-Schwarz inequality to each term of
the sum to obtain
∣∣∣∣θKhK

∫

K

divx (ν∇xu) ∂t vh d(x, t)

∣∣∣∣ ≤
(
θKhK‖divx (ν∇xu) ‖2

L2(K)

)1/2 (
θKhK‖∂t vh‖2

L2(K)

)1/2
.

Now, combining the above estimates, applying Cauchy’s inequality and reordering
the terms, we finally obtain the estimate

|ah(u, vh)|

≤
(
‖u‖2

L2(ΣT )
+
∑
K∈Th

[
θKhK‖∂tu‖2

L2(K) + ‖∇xu‖2
Lν

2(K)

+(θKhK)−1‖u‖2
L2(K) + θKhK‖divx (ν∇xu) ‖2

L2(K)

])1/2

×
(
‖vh‖2

L2(ΣT )
+
∑
K∈Th

[
3θKhK‖∂t vh‖2

L2(K) + ‖∇xvh‖2
Lν

2(K)

])1/2

≤ 3‖u‖h,∗‖vh‖h.

Thus, the bilinear form (13.11) is bounded for all choices of θK .
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Remark 13.8 As in Remark 13.5, we can provide a simplified estimate for the
special case p = 1 and ν|K = νK = const . The first three terms can be estimated
as in the above proof. The fourth term completely vanishes, since ∇x(∂tvh) = 0.
For the fifth term, we use the fact that ∂tvh = const on K ∈ Th, Gauss’ theorem
and the Cauchy-Schwarz inequality, obtaining

|θKhK

∫

∂K

νK∇xu·nx∂t vh ds(x,t)| ≤
(
θKhKν2

K‖Δxu‖2
L2(K)

)1/2(
θKhK‖∂t vh‖2

L2(K)

)1/2
.

Gathering the terms from the proof and the above estimate, we get

|ah(u, vh)| ≤
(
‖u‖2

L2(ΣT )
+
∑
K∈Th

[
θKhK‖∂tu‖2

L2(K) + ‖∇xu‖2
Lν

2(K)

+(θKhK)−1‖u‖2
L2(K) + ν2

KθKhK‖Δxu‖2
L2(K)

])1/2

×
(
‖vh‖2

L2(ΣT )

+
∑
K∈Th

[
3θKhK‖∂t vh‖2

L2(K) + ‖∇xvh‖2
Lν

2(K)

])1/2

≤ max
K∈Th

{3, ν2
K }1/2‖u‖h,∗‖vh‖h.

We immediately deduce that this new constant μ̃b = maxK∈Th
{3, ν2

K }1/2 is also
independent of hK for all choices of positive θK , K ∈ Th.

Coercivity, boundedness, and consistency of the bilinear form ah(·, ·) immediately
yield a Céa-like estimate of the discretization error in the norm ‖ · ‖h by the best
approximation error in the norm ‖ · ‖h,∗.

Lemma 13.8 Let the assumptions of the coercivity Lemma 13.5 and the bound-
edness Lemma 13.7 hold, and let the solution u of the space-time variational
problem (13.4) belong to H

2,1
0,0 (Th). Then the discretization error estimate

‖u− uh‖h ≤
(

1 + μb

μc

)
inf

vh∈V0h
‖u− vh‖h,∗ (13.23)

hold, where uh ∈ V0h denotes the solution of the space-time finite element
scheme (13.12), and the norms ‖ · ‖h and ‖ · ‖h,∗ are defined by (13.13) and (13.21),
respectively.

Proof First, from the consistency identity (13.9) and the space-time finite element
scheme (13.12), we immediately deduce Galerkin orthogonality, i.e.,

ah(u− uh, vh) = 0, ∀vh ∈ V0h. (13.24)
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We start with the triangle inequality for the discretization error, i.e.,

‖u− uh‖h ≤ ‖u− vh‖h + ‖vh − uh‖h.
Applying ellipticity proved in Lemma 13.5, the Galerkin orthogonality (13.24) and
the generalized boundedness from Lemma 13.7 to the second term, we get

μc‖vh − uh‖2
h ≤ ah(vh − uh, vh − uh) = ah(vh − u, vhu− uh)

≤ μb‖vh − u‖h,∗‖vh − uh‖h.
Inserting this estimate in the triangle inequality above, we obtain

‖u− uh‖h ≤ ‖u− vh‖h + μb

μc

‖vh − u‖h,∗. (13.25)

Since ‖u− vh‖h ≤ ‖vh − u‖h,∗, we immediately get the Céa-like estimate (13.23).
��

Remark 13.9 Remark 13.7 immediately implies that the Céa-like estimate (13.23)
is also valid for solutions u from H

L,1
0,0 (Th) provided that the norm ‖ · ‖h,∗ is now

defined as in Remark 13.7.

To obtain a priori error estimates w.r.t. to the mesh dependent norm (13.13), we
need approximation respectively interpolation error estimates for the finite element
spaces V0h w.r.t. the norm (13.21), which we summarize in the next Lemmas.
Moreover, we need the broken Sobolev space

Hl(Th) := {v ∈ L2(Q) : v|K ∈ Hl(K) ∀K ∈ Th},

equipped with the broken Sobolev (semi-)norm

|v|2
Hl(Th)

:=
∑

K∈Th

|v|2
Hl(K)

and ‖v‖2
Hl(Th)

:=
∑
K∈Th

‖v‖2
Hl(K)

,

where l is some positive integer. For further details on such spaces, we refer to
[11, 35].

Lemma 13.9 Let l and k be positive integers with l ≥ k > (d + 1)/2, and let
v ∈ V0∩Hk(Q)∩Hl(Th), where {Th}h>0 is a shape regular family of subdivisions
ofQ. Then there exists an interpolation operatorΠh, mapping from V0 ∩Hk(Q) to
V0h, such that

‖v −Πhv‖L2(K) ≤ C hsK |v|Hs(K), (13.26)

‖∇(v −Πhv)‖L2(K) ≤ C hs−1
K |v|Hs(K), (13.27)

|v −Πhv|H 2(K) ≤ C hs−2
K |v|Hs(K), (13.28)



13 Space-Time Finite Element Methods for Parabolic Evolution Problems. . . 265

where C is some generic constant independent of hK and v, s = min{l, p + 1},
and p denotes the polynomial degree of the finite element shape functions on the
reference element, and V0 = H

1,1
0,0 (Q).

Proof See e.g. [8, Theorem 4.4.4] or [9, Theorem 3.1.6]. ��
Lemma 13.10 Let the assumptions of Lemma 13.9 hold. Then the following
interpolation error estimates are valid:

‖v −Πhv‖L2(ΣT ) ≤ c1
( ∑

K ∈ Th

∂K ∩ΣT �= ∅

h2s−1
K |v|2Hs(K)

)1/2
, (13.29)

‖v −Πhv‖h ≤ c2
( ∑
K∈Th

h
2(s−1)
K |v|Hs(K)

)1/2
, (13.30)

‖v −Πhv‖h,∗ ≤ c3
( ∑
K∈Th

h
2(s−1)
K |v|Hs(K)

)1/2
, (13.31)

with positive constants c1, c2 and c3 that do not depend on v or hK provided that
θK = O(hK) for all K ∈ Th.

Proof We start with the first estimate (13.29). We use the scaled trace inequal-
ity (13.22), and the interpolation error estimates (13.26) and (13.27), obtaining

‖v −Πhv‖2
L2(ΣT )

=
∑

K ∈ Th

∂K ∩ΣT �= ∅

‖v −Πhv‖2
L2(∂K∩ΣT )

≤
∑

K ∈ Th

∂K ∩ΣT �= ∅

‖v −Πhv‖2
L2(∂K)

≤
∑

K ∈ Th

∂K ∩ΣT �= ∅

[
2c2

T rh
−1
K

(‖v −Πhv‖2
L2(K) + h2

K‖∇(v −Πhv)‖2
L2(K))

]

≤ c2
T r C

2
∑

K ∈ Th

∂K ∩ΣT �= ∅

[h2s−1
K |v|Hs(K)].

To prove (13.30), we use definition (13.13), assumption (13.14), the interpolation
error estimate (13.27), and the above estimate (13.29), and obtain

‖v −Πhv‖2
h =

∑
K∈Th

[
θKhK‖∂t (v −Πhv)‖2

L2(K) + ‖∇x(v −Πhv)‖2
Lν

2(K)

]

+1

2
‖v −Πhv‖2

L2(ΣT )

≤
∑
K∈Th

[
(C2θKhK + νKC2 + c2

1hK)h
2(s−1)
K |v|2Hs(K)

]
.
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For the last estimate (13.31), we use definition (13.21), the above estimate (13.30),
and the interpolation error estimate (13.28), obtaining

‖v −Πhv‖2
h,∗ = ‖v −Πhv‖2

h

+
∑
K∈Th

[
(θKhK)−1‖v −Πhv‖2

L2(K) + θKhK |v −Πhv|2H 2(K)

]

≤
∑
K∈Th

(
c2

2 + hKθ−1
K C2 + θKh−1

K C2)h2(s−1)
K |v|2Hs(K).

The special choice θK = O(hK) ensures that the constant c3 is independent of hK .
��

Remark 13.10 The strong assumption v ∈ Hk(Q) with k > (d + 1)/2 is needed
for the Lagrangian interpolation operator. However, in practical applications, where
usually different materials occur, this requirement is too restrictive. In this case,
the space-time cylinder Q = ⋃M

i=1 Qi can be split into subdomains Qi , which
correspond to different materials. On each such subdomain Qi , we can assume
some regularity for the solution u, e.g., u ∈ H l(T (Q)) := {v ∈ L2(Q) : v|Qi ∈
Hli (Qi), for all i = 1, . . . ,M} with some l = (l1, . . . , lM) > 1. For a similar case,
Duan, Li, Tan and Zheng have shown a localized interpolation error estimate of the
form

‖∇(v − Ihv)‖L2(Q) ≤ C

M∑
i=1

h
si−1
i ‖v‖Hsi (Qi),

in [13], where Ih is a special quasi-interpolation operator, and si = min{li , p + 1}.
Now we can formulate the following a priori estimate for the discretization error.

Theorem 13.3 Let l and k be positive integers with l ≥ k > (d + 1)/2,
u ∈ V0 ∩ Hk(Q) ∩ Hl(Th) be the exact solution, and uh ∈ V0h be the
solution of the finite element scheme (13.12). Furthermore, let the assumptions of
the Lemmas 13.5 (coercivity), 13.7 (boundedness) and 13.10 (interpolation error
estimates) be fulfilled. Then the a priori error estimate

‖u− uh‖h ≤ c

( ∑
K∈Th

h
2(s−1)
K |u|2Hs(K)

)1/2

(13.32)

holds with s = min{l, p + 1} and some generic positive constant c.
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Proof Setting vh = Πhu in (13.25), and using the interpolation error esti-
mates (13.30) and (13.31), we obtain

‖u− uh‖h ≤ ‖u−Πhu‖h + μb

μc
‖Πhu− u‖h,∗

≤ (c2 + c3
μb

μc

)( ∑
K∈Th

h
2(s−1)
K |u|2Hs(K)

)1/2
,

which proves estimate (13.32) with c = c2 + c3(μb/μc). ��
Now we proceed with solving the discrete variational problem (13.12) that
is nothing but one huge system of linear algebraic equations. Indeed, let
{p(i) : i = 1, . . . , Nh} be the finite element nodal basis of V0h, i.e., V0h =
span{p(1), . . . , p(Nh)}, where Nh is the number of all space-time unknowns (dofs).
Then we can express the approximate solution uh in terms of this basis, i.e.,
uh(x, t) = ∑Nh

i=1 ui p
(i)(x, t). Furthermore, each basis function is a valid test

function. Thus, we obtain Nh equations from (13.12). We can rewrite this system in
terms of a system of linear algebraic equations

Khuh = fh, (13.33)

with Kh = (ah(p
(j), p(i)))i,j=1,...,Nh , uh = (uj )j=1,...,Nh , fh = (lh(p

(i)))i=1,...,Nh .
The system matrix is non-symmetric, but positive definite due to Lemma 13.5.
Indeed,

(Khvh, vh) = ah(vh, vh) ≥ μc‖vh‖2
h > 0

for all V0h  vh ↔ vh ∈ RNh : vh �= 0. In dependence on the dimension
Nh, the linear system (13.33) of algebraic equations can efficiently be solved by
means of a sparse direct solver (e.g., sparse LU-factorization) or an iterative solver
(e.g., preconditioned GMRES). In particular, it turns out that parallel versions of
the GMRES preconditioned by algebraic multigrid can solve large-scale systems
with several millions of unknowns on distributed memory computers with several
hundreds of cores in a few seconds, also see Example 13.1 in Sect. 13.4.

13.4 Implementation and Numerical Results

We implemented our conforming space-time finite element scheme with the help of
MFEM [21], a C++ library for finite elements. The resulting linear systems were
then solved by means of the GMRES method, preconditioned by one V-algebraic
multigrid (AMG) cycle of BoomerAMG. As a stopping criterion we used the
reduction of the initial residual by a factor of 10−8. These methods were provided
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by the solver library hypre.1 We note that both libraries are already fully parallelized
with MPI. All numerical tests were performed on the RADON12 high performance
computing cluster at Linz. The initial (spatial) meshes were created by NETGEN
[38], and the space-time meshes were obtained by means of an algorithm provided
by Karabelas and Neumüller [19]. For visualization we either use GLVis [20] or
ParaView [2].

Example 13.1 For the first example, we consider the unit (hyper-)cube Q =
(0, 1)d+1, with d = 2, 3, as space-time cylinder, and choose the diffusion coefficient
ν ≡ 1. The manufactured function

u(x, t) =
d∏

i=1

sin(xiπ) sin(tπ)

is chosen as the exact solution, where the right-hand side is computed accordingly.
This solution is highly smooth, and thus fulfills all regularity assumptions made for
deriving the a prior error estimate (13.32) with optimal rates. Hence, we really can
expect optimal convergence rates provided that we choose θK as in Remark 13.4,
i.e., on each element K ∈ Th, we numerically solve a small generalized eigenvalue
problem with LAPACK [3]. Indeed, Fig. 13.1b shows optimal convergence rates for
all tested polynomial degrees and spatial dimensions. Moreover, we can observe
from Fig. 13.1c that the preconditioned GMRES method has an optimal strong
scaling behavior for systems with Nh = 4 601 025 (p = 1, 2) and Nh = 5 764 804
(p = 3) unknowns in the case d = 3, i.e., Q = (0, 1)4. The stagnation of the scaling
rate at 256 cores is due to an increased communication overhead since the problems
become too small on each processor (only ∼15 000 dofs).

Example 13.2 Let us now consider an example with a moving interface in the unit
hyper-cube Q := (0, 1)d+1, with d = 2, 3. The moving interface is defined by the
discontinuous diffusion coefficient

ν(x, t) =
{

1 × 102, for 2x1 − t < 1
2 ,

7 × 105, for 2x1 − t > 1
2 ;

see Fig. 13.2 (left). We choose the function

u(x, t) =

⎧
⎪⎪⎨
⎪⎪⎩

sin

(
9π
(

2x1 − t − 1
2

)2
(x1 − x2

1)

)
sin(4πt)g(x), for 2x1 − t ≤ 1

2 ,

sin

(
40π

(
2x1 − t − 1

2

)2
(x1 − x2

1)(t − t2)

)
g(x), else,

1https://www.llnl.gov/casc/hypre/.
2https://www.ricam.oeaw.ac.at/hpc/.

https://www.llnl.gov/casc/hypre/
https://www.ricam.oeaw.ac.at/hpc/
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Fig. 13.1 Decomposition of the space-time cylinder into 64 subdomains for parallel computing
(left); Error rates in the ‖ . ‖h-norm (right); Strong scaling of the solver for d = 3 and Nh =
4 601 025, 4 601 025, 5 764 801 for p = 1, 2, 3 (below)

with g(x) = ∏d
i=2 sin(πxi), as our exact solution, and compute the corresponding

right-hand side and initial data. This manufactured solution fulfills the interface
conditions since this function and its first derivatives are 0 at the interface. Since
this function is smooth on both sides of the moving interface, we expect optimal
convergence rates; cf. Theorem 13.3. Indeed, for linear, quadratic and cubic shape
functions, we observe optimal rates provided that we choose θK according to
Remark 13.4; see Fig. 13.2 (right).

Example 13.3 For the third example, we consider the exact solution

u(x, t) =
(
x2

1 − x1

) (
x2

2 − x2

) (
t2 − t

)
e−100

(
(x1−0.25)2+(x2−0.25)2+(t−0.25)2

)
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Fig. 13.2 Initial space-time mesh and diffusion coefficient ν(x, t) in color (left); Error rates in the
‖ . ‖h-norm (right)
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Fig. 13.3 Plot of the exact solution at t = 0.25 (left); Convergence rates in the ‖ . ‖h-norm (right)

in the unit cube Q = (0, 1)3, i.e. d = 2, and compute the initial and boundary
conditions as well as the right-hand side accordingly, where we set ν ≡ 1. This
function is almost zero everywhere in the space-time cylinder Q except a small
area around (0.25, 0.25, 0.25); see Fig. 13.3 (left). This motivates the use of an a
posteriori error estimator. In particular, we use the residual-based error indicator
proposed by Steinbach and Yang in [40]. For each element K ∈ Th, we compute
the error indicator

ηK :=
(
h2
K‖Rh(uh)‖2

L2(K) + hK‖Jh(uh)‖2
L2(∂K)

)1/2
,
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where uh is the solution of the finite element scheme (13.12), and

Rh(uh) := f + divx(ν∇xuh)− ∂tuh in K,

Jh(uh) := [ν∇xuh]e on e ⊂ ∂K.

Here, [ . ]e denotes the jump across one face e ⊂ ∂K . We use a maximum marking
strategy, i.e., given a parameter Θ ∈ [0, 1], we mark all elements whose error
indicator fulfills the condition

ηK ≥ Θ max
K∈Th

ηK.

Unless stated otherwise, we set Θ = 0.5. We note that uniform refinement is
achieved by setting Θ = 0. The exact solution in this example is smooth. Hence, we
expect optimal convergence rates for uniform refinement after some pre-asymptotic
range, which we indeed observe for all tested polynomial degrees; c.f., Fig. 13.3.
For adaptive refinement, we get a better error w.r.t. to the absolute value and optimal
convergence rates.

Example 13.4 For the fourth and last example, we consider the exact solution

u(x, t) = sin

⎛
⎝ 1

1
10π +

√
x2

1 + x2
2 + t2

⎞
⎠ ,

in the unit cube Q = (0, 1)3, i.e. d = 2, and compute the initial and boundary
conditions as well as the right-hand side accordingly, where we set ν ≡ 1. This
function has a highly oscillatory behavior near the origin (0, 0, 0) and is smooth
everywhere else in the space-time cylinder Q; see Fig. 13.3 (left). This again
motivates the use of an a posteriori error estimator. We use the same setup as in
Example 13.3, i.e., the residual-based error indicator by Steinbach and Yang with a
maximum marking strategy. For adaptive refinement, we recover the optimal rates
for all polynomial degrees tested, whereas only reduced rates are observed for
p = 2, 3; c.f., Fig. 13.4 (right). Moreover, we only need 47 330 dofs to obtain an
energy error of the same magnitude as for 135 005 697 dofs after uniform refinement
in the case p = 1.

13.5 Conclusions and Future Work

In this paper, following the classical books [23] and [24], we recalled that the
parabolic initial boundary value problem (13.1)–(13.3) has a unique generalized
(weak) solution in H

1,0
0 (Q) that even belongs to V

1,0
2,0 (Q). Already Ladyžhenskaya
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Fig. 13.4 Plot of the exact solution (left); Convergence rates in the ‖ . ‖h-norm (right)

proved that, in the case ν = 1, the solution u even belongs to HΔ,1(Q) provided
that the right-hand side f ∈ L2(Q) and initial conditions u0 ∈ H 1

0 (Ω); see [23].
This setting of the so-called maximal parabolic regularity was also considered in this
paper. We again mention that we only need this property element-wise to construct
a consistent and stable space-time finite element scheme. We proceeded with
deriving a stable space-time finite element scheme, for which we showed coercivity
(ellipticity) and boundedness on the finite element spaces respectively extended
finite element spaces. These properties together with consistency and standard
interpolation or quasi-interpolation error estimates led to a priori discretization
error estimates in the corresponding mesh-dependent norm with optimal rates.
We performed several numerical experiments with four test problems possessing
different features. The first example has a smooth solution that led to optimal
convergence rate as predicted by the theory. Moreover, due to the ellipticity of the
bilinear form ah(·, ·), the AMG precondition GMRES is a very efficient parallel
solver. The second example has a moving interface that is given by a discontinuous
diffusion coefficient ν(x, t) depending on both x and t . In the third and fourth
example, we studied adaptivity based on the a posteriori residual error indicator
proposed in [40]. It is clear that the interplay of adaptivity and fast parallel iterative
solvers will lead to the most efficient completely unstructured adaptive space-time
solvers for complicated initial-boundary value problems for linear and even non-
linear parabolic partial differential equations. Adaptive Space-Time Finite Element
Methods and Solvers can be useful for solving eddy current problems with moving
and non-moving parts like in electrical machines. In many practical applications,
one is interested in optimal control or in optimal design of electrical machines; see,
e.g., [17]. Adaptive Space-Time Finite Element Methods are especially suited for
solving the optimality system that is nothing but a coupled PDE system living in the
space-time cylinder Q; see, e.g., [44].
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Chapter 14
ACA Improvement by Surface
Segmentation

Sergej Rjasanow and Steffen Weißer

Abstract In this paper, we present a modification of the clustering procedure for
the fast Boundary Element Method (BEM), based on hierarchical techniques for
the matrix decomposition and Adaptive Cross Approximation (ACA). An initial
segmentation of the surface elements is shown to be a reasonable tool to prevent
problematic blocks which appear on surfaces with edges. It leads to significantly
easier control of the Partial ACA algorithm and our numerical results show perfect
convergence of all numerical quantities corresponding to the theory of BEM. In
particular, third order convergence is reached for the gradient of the solution inside
the domain.

14.1 Introduction

The Boundary Element Method (BEM) leads to fully populated matrices and,
therefore, to asymptotically non-optimal memory requirements as well as a non-
optimal number of numerical operations. The ACA algorithms can be efficiently
used for BEM matrices, where they are applied to the admissible blocks of the
matrices in the hierarchical H−matrix format. The H−matrices were introduced
by W. Hackbusch in [11], see also a recent monograph [12], and the first variant
of the ACA was published by M. Bebendorf in [1]. Meanwhile, there are many
generalisations and improvements of the original strategy and we only mention [3–
5, 13, 18, 19]. For a more detailed discussion on the fully pivoted ACA algorithm
we refer to [17]. Unfortunately, the convergence of the ACA approximation is non-
monotone in general. Especially the most natural but heuristic stopping criterion
of the partially pivoted ACA algorithm sometimes exhibits jumps of several
orders of magnitude. This behaviour is well known in the literature and there
are more sophisticated pivoting strategies, which try to improve the situation,
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see, e.g., [2, 10]. Other methods combine kernel and matrix-based approximation
techniques to overcome this issue, see [6, 7]. This behaviour is amplified if the
BEM discretisation contains sharp edges and corners and they are not resolved by
the clusters of the H−matrices. In contrast to the previously cited literature, we
suggest a surface segmentation before clustering in order to prevent surface clusters
to contain geometric edges. Thus, our main idea is not to modify the original ACA
by Bebendorf in [1], see also [17], and not to develop new pivoting strategies, but to
prevent ACA from approximating blocks with extremely non-smooth background,
especially due to clusters of surface triangles containing edges of the geometry.

For the surface segmentation, we propose a rather simple and efficient approach
which is suitable for our purpose. We detect geometric edges in the surface
triangulation and perform a region growing algorithm to form surface segments on
each side of the geometric edges. In a second step, we might reduce the number
of found segments. In the literature of computer sciences, there are alternative
algorithms for this segmentation process applying the watershed algorithm or
clustering the surface normals, see, e.g., [14, 22, 23].

The paper is organised as follows. A short description of the problem and
of the BEM is presented in Sect. 14.2. In Sect. 14.3, the ACA approximation is
presented in a form of the fully pivoted algorithm. Furthermore, possible control
problems by application of the partially pivoted ACA algorithm are discussed.
A corresponding numerical example is given for illustration. A segmentation
procedure for triangulated surfaces and the corresponding algorithms are presented
in Sect. 14.4. Finally, in Sect. 14.5, we show numerical results for an example
with segmentation of the surface and comment on the improvement. The ACA
accelerated BEM with surface segmentation exhibit optimal cubic convergence of
the numerical solution as well as of its gradient.

14.2 Boundary Element Method

The BEM can efficiently be applied to partial differential equations with constant
coefficients. As model problem, we consider the Laplace equation in a bounded
domain Ω ⊂ R

3 with Dirichlet boundary conditions on Γ = ∂Ω :

−Δu(x) = 0 for x ∈ Ω , γ0u(x) = g(x) for x ∈ Γ . (14.1)

14.2.1 Boundary Integral Formulation

The solution of this problem is given by the representation formula

u(x) =
∫

Γ

u∗(x, y)t (y)dsy −
∫

Γ

γ1,yu
∗(x, y)g(y)dsy , (14.2)
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for x ∈ Ω , where t = γ1u is the unknown Neumann datum. The fundamental
solution u∗ of the Laplace equation is

u∗(x, y) = 1

4π

1

|x − y| for x, y ∈ R
3 . (14.3)

For sufficiently regular u, the Neumann trace γ1u is defined as

t (x) = γ1u(x) = (γ0 gradu(x),nx) for x ∈ Γ .

By applying the interior trace operator γ0 to the representation formula (14.2) and
using the jump relations (see e.g. [15]) and the Dirichlet boundary condition, we
obtain the boundary integral equation

∫

Γ

u∗(x, y)t (y)dsy = 1

2
g(x)+

∫

Γ

γ1,yu
∗(x, y)g(y)dsy for x ∈ Γ . (14.4)

Thus, we have to solve a first kind boundary integral equation to find the Neumann
datum t ∈ H−1/2(Γ ) such that

(V t)(x) = 1

2
g(x)+ (Kg)(x) for x ∈ Γ , (14.5)

where V : H−1/2(Γ ) → H 1/2(Γ ) denotes the single layer potential, which is
self-adjoint and positive definite, and K : H 1/2(Γ ) → H 1/2(Γ ) the double layer
potential.

14.2.2 Boundary Element Discretisation

To obtain a boundary element discretisation of the problem, we first assume that the
domain Ω is a polyhedron and we mesh its boundary Γ by a conforming surface
triangulation Γh with NBEM plane triangles τ and MBEM nodes xi , see Fig. 14.1. We
use the piece-wise constant functions

Ψ =
(
ψ1, . . . , ψNBEM

)
,

where ψ is 1 on triangle τ and 0 outside τ , as basis and test functions for the
discretised single layer potential. For the double layer potential, in contrast, we
utilise piece-wise linear basis functions, i.e.

Φ =
(
ϕ1, . . . , ϕMBEM

)
,
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Fig. 14.1 BEM discretisation for NBEM = 3072 and MBEM = 1538

where ϕj (xi ) = δij and ϕj is linear on each τ , and piece-wise constant test
functions. Thus the BEM Galerkin procedure leads to a system of linear equations

Vht =
(1

2
Mh +Kh

)
g ,

where the Galerkin approximation of the unknown Neumann datum is sought in the
space spanΨ of piece-wise constant functions as

th = Ψ t , t ∈ R
NBEM ,

and

gh = Φg , g ∈ R
MBEM

denotes the L2-projection of the given Dirichlet datum onto the space spanΦ of
piece-wise linear functions. The matrix Vh of the above system is symmetric and
positive definite. Thus, the CG method can be applied for large systems. If the
dimension NBEM is moderate, the Cholesky decomposition provided by LAPACK
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is the best solution strategy. The practical realisation consists of the following steps.
First, the BEM matrices are computed, namely the double layer potential matrix

Kh ∈ R
NBEM×MBEM , Kh[k, j ] = 1

4π

∫

τk

∫

Γh

(x − y,ny)

|x − y|3 ϕj (y) dsy dsx ,

the single layer potential matrix

Vh ∈ R
NBEM×NBEM , Vh[k,  ] = 1

4π

∫

τk

∫

τ 

1

|x − y| dsy dsx ,

the mixed mass matrix

Mh ∈ R
NBEM×MBEM , Mh[k, j ] =

∫

τk

∫

Γh

ϕj (y) dsy dsx ,

and the linear mass matrix

M
(1)
h ∈ R

MBEM×MBEM , M
(1)
h [i, j ] =

∫

Γh

∫

Γh

ϕj (y)ϕi(x) dsy dsx .

Note that the matrices Mh and M
(1)
h are sparse while the matrices Kh and Vh

are dense and require probably an additional approximation technique. The final
preparation step is the L2-projection of the Dirichlet boundary condition g onto the
space of piece-wise linear functions ϕj . This is equivalent to the numerical solution
of the linear system

M
(1)
h g = b(1) , b(1) ∈ R

MBEM , b
(1)
i =

∫

Γh

g(x)ϕi(x) dsx .

The matrix M
(1)
h is symmetric, positive definite and well conditioned. Thus, this

system is solved with only a few CG iterations without preconditioning up to the
computer accuracy. In the following, we give approximation properties of the BEM
and refer to specialised literature for the details. The error of the numerical solution
th behaves in the L2(Γh)-norm linear, i.e.

‖t − th‖L2(Γh) = O(h) ,

where

h = max
1≤ ≤NBEM

diam τ .
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For the L2-projection of the Dirichlet boundary condition g we have

‖g − gh‖L2(Γh) = O(h2) .

The numerical solution obtained for x ∈ Ω by the approximate representation
formula

uh(x) =
∫

Γh

u∗(x, y)th(y)dsy −
∫

Γh

γ1,yu
∗(x, y)gh(y)dsy (14.6)

is very accurate and it can be differentiated in order to obtain an approximation
of the derivatives of u. More precisely, it holds cubic point-wise convergence for
x ∈ Ω such that

|u(x)− uh(x)| = O(h3) and |∇u(x)−∇uh(x)| = O(h3) .

For more details on the error analysis, and especially on the smoothness require-
ments on the Dirichlet boundary data g, we refer to [21] and [20]. If the domain Ω

is not a polyhedron, an additional error will appear due to the approximation of the
boundary Γ by a system of plane triangles Γh. Such an approximation of Γ by Γh

is, for instance, considered in [16] and the more recent paper [9]. In the numerical
experiments of this paper, we apply the BEM for a cube domain and observe the
optimal rates of convergence as shown above.

14.3 Adaptive Cross Approximation

The BEM matrices Vh and Kh are dense and, therefore, require an amount of
computer memory and a computational time which both are quadratic with respect
to NBEM. Thus for dimensions NBEM / 20,000 an ACA approximation of these
matrices is in many cases more efficient leading to almost linear algorithms.

Let A ∈ R
N×M be a given matrix.

Algorithm 14.1 (Fully Pivoted ACA)

1. Initialisation

R0 = A , S0 = 0 .

2. For i = 0, 1, 2, . . . compute

2.1. position of the pivot element

(ki+1,  i+1) = ArgMax |(Ri)k | ,
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2.2. normalising constant

γi+1 =
(
(Ri)ki+1 i+1

)−1
,

2.3. new vectors

ui+1 = γi+1Rie i+1 , vi+1 = R$
i eki+1 ,

2.4. new residual

Ri+1 = Ri − ui+1v
$
i+1 ,

2.5. new approximation

Si+1 = Si + ui+1v
$
i+1 .

In Algorithm 14.1, ej denotes the j th column of the identity matrix I . A natural
stopping criterion for Algorithm 14.1 is

‖A− Si‖F
‖A‖F = ‖Ri‖F

‖A‖F ≤ εACA (14.7)

for some given εACA. The Frobenius norm of the matrix R0 = A is computed in
Step 2.1 for i = 0 while the norm of Ri is calculated for i = 1, 2, . . . . However, if
the matrix A is not given and its computation is either too expensive or it is too big
to be stored in the computer memory, the Partial ACA algorithm can be applied,
see [17] for more details. For this algorithm, the matrix is approximated with
crosses formed by rows and columns, which are computed successively. Starting
by generating an arbitrary chosen row, the corresponding column is defined by
the index of the largest absolute value in the row. This cross is identified by the
index pair. All further pivot positions, i.e. index pairs, are defined on the crosses of
the residuum Ri+1. Here, the positions are selected where the values are maximal.
Thus, only a few rows and columns of the matrix are generated and the Partial ACA
algorithm is very fast. The main problem is to define an effective stopping strategy.
A natural generalisation of the criterion (14.7) is

‖Si+1 − Si‖F
‖Si+1‖F ≤ εACA , (14.8)

which works fine in most cases. But there are some exceptions. If the generated rows
or columns are linearly dependent, then the residuum will be exactly zero and the
algorithm should be restarted by an arbitrary not yet generated row. The algorithm
cannot be stopped directly when the criterion (14.8) is fulfilled for the first time.
We have to check all the already computed information of the matrix to guarantee a
reliable stopping criterion.
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Fig. 14.2 A critical admissible cluster pair with N = 114 and M = 189

A stable practical implementation of the Partial ACA algorithm is a highly non-
trivial task due to many possible exceptional situations. We try to illustrate this
by a simple and well known example leading to some of the possible difficulties,
cf., e.g., [2, 7]. We consider the unit cube Ω = (−1/2, 1/2)3, its uniform surface
discretisation into triangles with NBEM = 12,288 and MBEM = 6146 and generate
the double layer potential matrix Kh in the hierarchical form. This matrix contains
several zero blocks, since the kernel of the double layer potential vanishes if x − y

is orthogonal to ny . The surface elements and nodes are divided in two systems of
clusters with 4107 and 2063 clusters, correspondingly. A system of cluster pairs is
constructed leading to 93,149 pairs. Corresponding to the criterion

min(diamCl1, diamCl2) ≤ ηdist(Cl1, Cl2)

with η = 0.8, the pairs are marked as admissible. One of the admissible clusters is
shown in Fig. 14.2. The convergence behaviour of the Full ACA algorithm is shown
in Fig. 14.3, where a log10-plot of the error (14.7) is presented. It is almost monotone
and any accuracy can be reached. However, the convergence is not very fast. The
Partial ACA algorithm from [1] (see also [17] for a more detailed description)
behaves at first sight similarly but there is a big difference. In Fig. 14.4 the error
estimate (14.8) is shown together with the exact relative error in the Frobenius
norm. Two times in steps 5–9 and 20–24 the error estimate (14.8) decreases very
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Fig. 14.3 Relative error in the Frobenius norm for the full ACA

fast indicating accuracy better than 10−6 after 9 steps and better than 10−10 after
24 steps. The real error in contrast stagnates during these steps and it is only of the
order 10−2 or 10−8. In both cases the estimate (14.8) jumps afterwards to the correct
value. A more detailed explanation of this effect is as follows. The partially pivoted
ACA algorithm has chosen a row or column with a lot of zeros. Consequently,
‖Si+1 − Si‖ is very small although the true error is larger. Furthermore, the strategy
cannot choose an appropriate pivot element on the cross due to the dominating
number of zero entries and since there is no information for the selection. This
exceptional case has to be detected and the algorithm should be restarted. However,
also the Partial ACA algorithm reaches an arbitrary accuracy if it is not stopped due
to error estimate (14.8) too early.

The main reasons for such exceptional cases as, e.g., described above are of
course the plane geometry leading to a lot of exact zeros in the matrix, the geometric
edges of the domain and, in particular, the clusters containing these edges. We
cannot prevent edges and plane parts on realistic surfaces, but we can prevent
clusters of elements containing such edges. Consequently, we avoid the appearance
of critical matrix blocks for the criterion (14.8). Whereas the clustering of nodes
is done as usual, we explain a clustering for the triangular elements that respects
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Fig. 14.4 Relative error in Frobenius norm for the partial ACA

geometric edges in the next section. After the use of this surface segmentation, the
most simple, original, partially pivoted ACA performs very well, see Sect. 14.5.
Thus, this strategy is designed for approximation spaces in the BEM that are
spanned by element basis functions such as piecewise polynomials that are usually
used for the discretisation of H−1/2(Γ ), for instance.

14.4 Surface Segmentation

Instead of clustering the triangles directly, the idea is to perform beforehand a
preprocessing step in which the surface is decomposed into several segments that
do not contain any edges of the geometry. This surface segmentation guarantees
that adjacent triangles of the same segment do not have a large dihedral angle1

and thus one of the critical situations for the Partial ACA algorithm is prevented.

1Angle between the normal vectors to the triangles, see [8].
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Fig. 14.5 Part of surface triangulation with detected geometric edges in bold and assigned
segment numbers to the triangles; the Algorithm 14.2 started at the left bold edge and evolves
to the right; initial state of Algorithm 14.3 (top left) and three possible cases with no, one and
multiple edges to follow

After this preliminary segmentation, the clustering can be built on top of the initial
decomposition of the surface triangles.

In the following, this procedure is described in more details. Here, we have to
take care on various types of geometric edges which may occur. We may have edges
which are open or closed curves on the surface, but they may also branch as seen for
the cube or in Fig. 14.5, for instance. The surface mesh is usually represented as a set
of triangles described by vertices. But in the forthcoming algorithms we additionally
need the edges of the triangles and the neighbourhood relations of the geometric
objects. This information can be constructed in linear complexity from the initial
mesh data, and it is stored in dynamic data structures in our implementation. Many
mesh libraries, however, already support the needed functionality.

In order to perform the surface decomposition, each triangle is assigned to a
set of elements belonging to the same segment. The borders of these segments are
formed by edges of triangles. There are two kinds of such borders. They are either
located aligned with edges of the geometry or between two segments meeting on a
flat part of the surface. The aim of the forthcoming algorithm is to divide the surface
triangulation of the geometry into segments such that the edges in the geometry are
resolved and each segment consists of a smooth part of the surface only. For this
reason, we proceed as follows: We seek the geometric edges in the surface, follow
them and assign the adjacent triangles of each side a number which defines the
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segment. Afterwards, we complete the segments in a uniform way. Consequently,
we define the borders of the segments along the edges of the geometry explicitly
and give a fully automatic procedure to specify the borders within the smooth part
of the surface.

We present the three essential steps in an algorithmic fashion, which are
given, however, in a more verbal form. The full technical details would spoil the
presentation, therefore we refer the interested reader for more insights and in order
to test the algorithms to our implementation that is available on github.com.2 Let
Tdihed be a user specified threshold parameter. All edges for which the dihedral
angle α of the adjacent triangles exceeds this threshold, i.e. α > Tdihed, are
assumed to be geometric edges. The implementation of these algorithms makes
extensive use of data structures realising dynamic lists.

Algorithm 14.2 (Detect Geometric Edges)

1. For all edges E

1.1. if E not yet processed

1.1.1. mark E as processed
1.1.2. if E is geometric edge

1.1.2.1. assign adjacent triangles new segment
numbers

1.1.2.2. follow E to the left (→ Alg. 3)
1.1.2.3. follow E to the right (→ Alg. 3)

The main routine is Algorithm 14.2 followed by the forthcoming Algorithm 14.4.
Here, Algorithm 14.2 makes use of Algorithm 14.3 in 1.1.2.2 and 1.1.2.3,
which is a function call of a recursive procedure in the implementation. In step
1.1.2.1, we assign new segment numbers to the triangles. In most cases these
triangles have no number yet. In some exceptional cases they might be already
assigned, but then we just overwrite the number.

Algorithm 14.3 detects the whole geometric edge starting from a single edge
in the discretisation. Therefore, it has to distinguish between the different possible
cases while following an edge. This is illustrated in Fig. 14.5, where the detected
geometric edges are marked in bold. The Algorithm 14.3 has started at the left bold
edge in the figure and evolves to the right. Now (top left), the edges next to the bold
node have to be checked. Here, the geometric edge might end (top right), it might
continue in one direction (bottom left) or it might branch (bottom right).

2Rjasanow, S. and Weißer, S.: Surface Segmentation (Version 1.0). Saarland University, Saar-
brücken, Germany (2018). See https://github.com/s-weisser/surface-segmentation.

http://github.com
https://github.com/s-weisser/surface-segmentation
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Algorithm 14.3 (Follow Edge E to the Left/Right)

1. Let Ef = Eb = E and let L be the list of edges
adjacent to the left/right node of E in clockwise
order

2. Until Ef ( �= E) is geom. edge and Eb ( �= E) is geom.
edge or Ef = Eb ( �= E)

2.1. if Ef is not geom. edge

2.1.1. set Ef as next edge in L from the front
2.1.2. assign segment number to triangle enclosed by

Ef and the previous Ef if not already assigned

2.2. if Eb is not geom. edge

2.2.1. set Eb as next edge in L from the back
2.2.2. assign segment number to triangle enclosed by

Eb and the previous Eb if not already assigned

3. If Ef �= Eb (Fig.14.5 bottom right black)

3.1. iterate over remaining edges E′ in L starting
from Ef

3.1.1. check if E′ is geom. edge
3.1.2. assign segment numbers to triangles enclosed

by E′ and the previous E′ if not already
assigned (Fig.14.5 bottom right grey)

3.2. mark geom. edges Ef, Eb and those E′ of 3.1.1. as
processed and follow them recursively in the
order they were detected if they have not been
already processed (→ Alg. 3)

4. Else if Ef = Eb is geom. edge (Fig.14.5 bottom left)

4.1. mark Ef as processed and follow Ef if it has not
been already processed (→ Alg. 3)

5. Else (Ef = Eb is no geom. edge, Fig.14.5 top right)

5.1. return

The algorithm assigns the segment numbers such that connected triangles which
belong to the same smooth part of the surface, i.e., which lie on the same side of the
geometric edge, have the same number. Thus, the segment numbers of the previous
recursion step have to be advanced along the detected geometric edge. Also new
segment numbers may occur in case that the edge branches, cf. Fig. 14.5 (bottom
right). After the execution of Algorithm 14.2, all triangles adjacent to geometric
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Fig. 14.6 Part of surface triangulation with geometric edges in bold and assigned segment num-
bers to the triangles; initial state (left) and after one run of the loop (right) of the Algorithm 14.4,
only the neighbourhoods of the shaded triangles are checked

edges are assigned to segments, but there are also triangles which have not been
assigned yet, see Fig. 14.6 (left). This is the initialisation of Algorithm 14.4, which
completes the segments. In order to make the algorithm efficient, we only loop over
segments and triangles that might influence the procedure, see shaded triangles in
Fig. 14.6. More precisely, we only consider segments which still have the possibility
to be enlarged and which are not already surrounded by borders of other segments.
This can be seen in Fig. 14.6 for the segment numbers 5 and 6 in the right sketch.
Furthermore, we only consider triangles within the segments which have been added
in the previous step, cf. Fig. 14.6.

Algorithm 14.4 (Complete Segments)

1. For all segments S which might be enlarged

1.1. for all triangles τk in S added in the previous
step (or given in the initialisation,
respectively)

1.1.1. for all neighbouring triangles τ of τk

1.1.1.1. assign τ to S if τ is not already
assigned

1.1.2. if no triangle has been added to S, then S

cannot be enlarged further

The Algorithm 14.2 involving Algorithm 14.3 has linear complexity, since each
edge is processed only once due to the marking. The recursion depth is uniformly
bounded because of the regularity of the closed surface mesh in the sense of Ciarlet
and since marked edges are not processed twice. Arguing with the regularity of the
mesh once more, we see that Algorithm 14.4 has also linear complexity.
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Fig. 14.7 A complicated surface with open geometric edges

In Fig. 14.7, we give an example of the surface segmentation for a non-trivial
domain. The Algorithm 14.2 has been performed with Tdihed = π/3 and it
has produced an output of 20 segments. It is possible to run an additional post-
processing that reduces the number of segments by gluing those, which share
boundaries on flat parts of the geometry only. This option has been implemented
in the example code available on github.com. For this example, the number of
segments is reduce from 20 to 9.

14.5 Numerical Examples

In this section, we illustrate the ACA approximation, the accuracy as well as the
convergence of the BEM for a series of uniform discretisations of the cube [4]
Ω = (−1/2,+1/2)3. The surface mesh for NBEM = 3072 and MBEM = 1538 is
shown in Fig. 14.1. The analytic solution of the problem is

u(x) = 1

4π |x − x∗| , for x ∈ Ω

http://github.com
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Table 14.1 ACA approximation of the Galerkin matrices Kh and Vh

NBEM MBEM εACA MByte (Kh) % MByte (Vh) %

192 98 1.0 · 10−4 0.14 100.0 0.28 51.5

768 386 1.0 · 10−5 2.21 97.8 2.06 45.8

3 072 1 538 1.0 · 10−6 27.70 76.8 19.40 26.9

12 288 6 146 1.0 · 10−7 239.71 40.1 150.50 13.1

49 152 24 578 1.0 · 10−9 1 607.06 17.4 993.80 5.4

196 608 98 306 1.0 · 10−10 20 459.62 13.9 7 043.02 2.4

Table 14.2 Accuracy of the BEM

NBEM MBEM Iter ND− Error CF1 DD− Error CF2

192 98 46 7.52 · 10−2 – 1.58 · 10−3 –

768 386 71 3.02 · 10−2 2.49 3.55 · 10−4 4.46

3 072 1 538 95 1.27 · 10−2 2.38 8.34 · 10−5 4.26

12 288 6 146 129 5.60 · 10−3 2.27 2.01 · 10−5 4.15

49 152 24 578 175 2.49 · 10−3 2.25 4.94 · 10−6 4.07

196 608 98 306 237 1.22 · 10−3 2.04 1.22 · 10−6 4.05

with x∗ = (2, 0, 0)$. Thus, the function u is harmonic in Ω and its trace
g(x) = γ0u(x) will be used as the Dirichlet boundary condition in (14.1). In
Table 14.1, we show the results of the ACA approximation of both BEM matrices
Kh and Vh in MBytes and in percentage of the memory required by full matrices.
As usual, the approximation of the single layer potential matrix Vh is significantly
better. Note that the ACA accuracy εACA was increased by a factor 10 for each
mesh refinement except in the fourth step, where an increase by a factor 100 was
necessary to guarantee the cubic point-wise convergence of the gradient of the
numerical solution, see Fig. 14.9. In the next Table 14.2, the relative L2-error of
the computed Neumann datum as well as the accuracy of the L2-projection of
the Dirichlet datum are presented. The expected linear and quadratic convergence
can be seen. Furthermore, in the third column, the number of CG iterations for
the iterative solution of the linear system with the matrix Vh up to the accuracy
εCG = 10−15 is shown. As usual, the computing time required by solving the
linear system is negligible. Finally, in Figs. 14.8 and 14.9, we show the convergence
history for the Neumann (left) and Dirichlet data (right) as well as the point-wise
accuracy of the solution (left) and of its gradient (right) in the centre of the cube
obtained by the representation formula (14.6). The point-wise convergence, which
is as expected cubic, can be clearly seen. Note that the plots in Figs. 14.8 and 14.9
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Fig. 14.8 Accuracy of the BEM, Neumann (left) and Dirichlet (right) datum

are double logarithmic and the horizontal axis shows the values of log10 h, where
h changes from

√
2 /4 to

√
2 /128 in five refinement steps. The dashed triangles in

these plots represent the ideal linear, quadratic and cubic convergence, respectively,
while the thick dots indicate the real numerical values of the error. However,
without the segmentation of the surface and by the use of the simple stopping
criterion (14.8), the partially pivoted ACA algorithm stops too early several times
during the approximation of the double layer potential. This happens starting at the
dimension NBEM = 12 288 and MBEM = 6 146 as reported in Sect. 14.3. The result
is the loss of cubic convergence for the last three steps of the refinement since the
error is dominated here by the matrix approximation. For example, the point error
for NBEM = 49 152 and MBEM = 24 578 is only 8.45 · 10−10 instead of 2.20 · 10−10,
which is obtained with the segmentation of the surface and gives the correct order
of convergence, see Fig. 14.9.
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Fig. 14.9 Accuracy of the BEM solution (left) and of its gradient (right)
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Chapter 15
First Order Error Correction
for Trimmed Quadrature in Isogeometric
Analysis

Felix Scholz, Angelos Mantzaflaris, and Bert Jüttler

Abstract In this work, we develop a specialized quadrature rule for trimmed
domains, where the trimming curve is given implicitly by a real-valued function
on the whole domain. We follow an error correction approach: In a first step,
we obtain an adaptive subdivision of the domain in such a way that each cell
falls in a predefined base case. We then extend the classical approach of linear
approximation of the trimming curve by adding an error correction term based on
a Taylor expansion of the blending between the linearized implicit trimming curve
and the original one. This approach leads to an accurate method which improves
the convergence of the quadrature error by one order compared to piecewise
linear approximation of the trimming curve. It is at the same time efficient, since
essentially the computation of one extra one-dimensional integral on each trimmed
cell is required. Finally, the method is easy to implement, since it only involves
one additional line integral and refrains from any point inversion or optimization
operations. The convergence is analyzed theoretically and numerical experiments
confirm that the accuracy is improved without compromising the computational
complexity.

15.1 Introduction

A common representation of a Computer-Aided Design (CAD) model is a boundary
representation (B-rep), which typically consists of trimmed tensor-product NURBS
patches. A trimmed surface patch consists of a tensor-product surface and a set of
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trimming curves on the surface that represent the boundary of the actual surface.
Therefore, it represents only a part of the full tensor-product surface yet no explicit
parametric representation is available. In this paper we are interested in applying
numerical integration on a trimmed surface patch.

Computing integrals over trimmed domains both efficiently and accurately
remains a challenging problem, notably for use in the frame of isogeometric
analysis (IgA) [11]. The latter computational framework aims at a unification of
the representations used in CAD and in numerical simulation, therefore operating
directly on trimmed patches. The reader is referred to [18] for a recent review
on trimming in CAD and IgA. We remark that different CAD representations are
possible, e.g. subdivision surface-based models or T-spline models, see [1, 2, 12].

Multiple challenges arise for IgA on trimmed domains. One issue is the efficient
coupling between adjacent trimmed patches. To this end, a finite cell method with
weak coupling has been proposed in [24], a tearing and interconnecting approach
was recently studied in [32] as well as Discontinuous Galerkin (DG) methods [9,
10, 31]. Another issue is the numerical stability of the trimmed basis functions,
since basis functions with a tiny support can appear around the trimmed boundary.
Several modified bases have been considered, such as immersed B-splines [25] and
extended B-splines [19] to overcome the issue. Finally, the problem of applying
numerical quadrature on a trimmed patch is a challenge in its own right.

One first approach to integrating over trimmed surfaces is to place quadrature
points on the full surface and set the weights of the points lying outside the trimmed
domain to zero. However, this method has no guarantees and the integration error
cannot be controlled easily. In engineering practice local adaptive quadrature is
used on top of it, that is, subdivision is performed around the trimmed region and
quadrature nodes are placed in each sub-cell [8, 13, 28]. This approach can generate
an extensive number of quadrature points, thus posing efficiency barriers.

Another approach is to perform a reparameterization (either globally, or locally
at the element level), also known as “untrimming”; this puts more effort in the
geometric side and results in tensor-product patches, which can be handled in an
efficient way [27]. However, it is known that exact reparameterization is not feasible
and approximate solutions result in cracks or overlaps in the model which require
special treatment, e.g. by means of DG methods [9, 31]. In [14], the authors use base
cases for the trimmed elements and perform local untrimming, using the intersection
points of the trimmed curve and the boundary; see also [29] for some applications
of this machinery in optimization. In [26] a local untrimming on the element level
is performed by a projection method, which can be interpolation or least-squares
fitting.

When the trimming curves are complicated and have high degree, it is typical
to compute a piecewise linear approximation of the boundary to simplify further
processing [1, 3, 15, 23]. However, when it comes to numerical integration, the
geometry approximation error accumulates in the final result, and deteriorates the
overall approximation order. Alternatively, in [20] the linearization is avoided, and
a quadrature rule is constructed for each trimmed element by solving a moment-
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fitting, non-linear system to obtain quadrature nodes and weights, which are all
contained inside the domain.

The problem of integrating over trimmed domains also arises in the context of
geometrically unfitted finite element methods [4]. In these methods, the solution
of a PDE is approximated on a background finite element mesh that is cut by
the boundary of the computational domain. A method for quadrature in this
context is presented in [16]. The author uses piecewise linear approximation of
the boundary and applies a transformation of the finite element mesh in order to
improve the approximation order. For the case of Cut Finite Element Methods
(CutFEM, [5]), a method for numerical integration using boundary integrals and
Taylor approximation in a Nitsche formulation was developed in [6].

In the present work we develop an efficient and accurate quadrature rule for
the approximation of integrals over trimmed domains. The trimming curve is given
implicitly by a real-valued level function on the whole domain. This does not impose
any restrictions, since any trimming curve can be converted into this format by
employing implicitization techniques, which can be either exact or approximate
ones, see, e.g., [7, 30]. Our method is based on an error correction approach. In
a first step, we obtain an adaptive subdivision of the domain in such a way that each
cell falls in a predefined base case. We then extend the classical approach of linear
approximation of the trimming curve by adding an error correction term based on
a Taylor expansion of the blending between the linearized implicit trimming curve
and the original one.

In terms of accuracy, the method improves the local quadrature error in each
cell by two orders of magnitude compared to the piecewise linear approximation
of the trimming curve, thus providing an extra order of convergence globally.
In particular, cubic order of convergence is achieved with a negligible additional
computational cost. The efficiency of the method is achieved by the fact that it
requires solely the evaluation of the trimming function at the vertices of the cells
and the quadrature nodes, and refrains from any kind of point inversion or non-
linear solving. Furthermore, our method is easy to implement, since the resulting
nodes for the correction term are simply one-dimensional Gauss nodes and their
corresponding weights are given by a direct computation. Moreover, we do not
need to test for quadrature points outside the integration domain or treat them in a
different way. Overall, it is straight-forward to upgrade existing codes to incorporate
our method.

In the next section, we state the problem of trimmed quadrature with a implicitly
defined trimming curve. In Sect. 15.3 we explain the first step of the method,
the subdivision of the domain into quadrature cells belonging to certain base
cases. Section 15.4 deals with the piecewise linear approximation of the trimming
function which is then extended by the first order error correction in Sect. 15.5. We
analyze the convergence behavior of our method theoretically and experimentally in
Sects. 15.6 and 15.7, respectively.
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15.2 Problem Formulation

Throughout this paper, we consider integrals of bivariate functions on trimmed
domains. More precisely, we assume that a sufficiently smooth function

f : [0, 1]2 → R (15.1)

is given, which is defined on the entire unit square. In addition, we restrict the unit
square by trimming with an implicitly defined curve τ (x, y) = 0, which is defined
by another smooth bivariate function

τ : [0, 1]2 → R. (15.2)

This results in the trimmed domain

Ωτ = {(x, y) ∈ [0, 1]2 : τ (x, y) ≥ 0}. (15.3)

We seek for quadrature rules that provide approximate values of the integral

Iτ f =
∫

Ωτ

f (x, y)dydx. (15.4)

These quadrature rules shall take the form

Qτf =
∑
i

wif (xi, yi) (15.5)

with a finitely many quadrature nodes (xi, yi) and associated weights wi . Two
comments about this problem are in order:

1. As described in the introduction, this problem originates in isogeometric analy-
sis, where one needs to solve it in order to perform isogeometric discretizations
of partial differential equations on trimmed patches. Typically, the function f

then takes the form

f (x, y) = DBj (x, y)D̄Bk(x, y)K(x, y) (15.6)

where the functions Bi are bivariate tensor-product B-splines or polynomial
segments thereof and the kernel K reflects the influence of the geometry mapping
(i.e., the parameterization of the computational domain by a NURBS surface)
and the coefficient functions of the PDE. In many situations, this results in a
piecewise rational function f .
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2. Usually, the trimming functions in CAD and not given implicitly but by low
degree parametric curves. It is then possible to convert these curves into implicit
form by invoking suitable implicitization techniques, which can be either exact
or approximate ones, see e.g. [7, 30]

Our approach to finding a quadrature rule consists of two steps. First we subdivide
the domain to reach a certain discretization size, while simultaneously ensuring that
we arrive at a sufficiently simple configuration on each cell. Second we evaluate
the contribution of each cell to the total value of the integral. These steps will be
discussed in the next three sections.

15.3 Adaptive Subdivision of the Domain

Given a step size h, we subdivide the domain uniformly until the cell size does not
exceed h. Subsequently, we perform adaptive subdivision until each resulting cell
K is an instance of one of the five base cases depicted in Fig. 15.1. The resulting set
of quadrature cells will be denoted by K .

More precisely, we use only evaluations of the trimming function at the cell
vertices to identify the base cases, similar to the marching cubes algorithm [21].
Consequently, the method does not detect branches of the trimming curve that leave
and re-enter the cell within the same edge. In order to illustrate this fact, Fig. 15.2
shows two instances of each trimmed base case.

Zero values at the vertices are treated as positive numbers. Consequently, there
are only two sign distributions that do not represent a base case, see Fig. 15.3.
These situations are dealt with by uniformly subdividing the corresponding cell.
This process is guaranteed to terminate if no singularities of the trimming curve are
present (which is always the case in practice).

We summarize our adaptive subdivision approach to the generation of quadrature
cells K in the following algorithm.
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Fig. 15.1 Sign distributions of the trimming function τ for all five base cases (up to rotations)
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Fig. 15.2 Two instances of
each trimmed base case
(curved quadrilateral, triangle
and pentagon) > 0
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Fig. 15.4 Quadrature cells
for h = 1

2 . The trimming
curve is shown in blue

00 < 0 10 > 0

01 > 0 11 < 0

• QuadratureCells, input: τ , h > 0
• Let the initial cell be K = [0, 1]2.
• Repeat for each untreated cell K:

if Size(K) < h and BaseCase(τ,K)

Report K
else

K1, . . . ,K4 = Quadsect(K)

Mark K1, . . . ,K4 as untreated.

Figure 15.4 shows an instance of quadrature cells generated by the algorithm. The
zero set of the trimming function consists of two parallel lines, which are parallel
to one of the square’s diagonals. The parameter h was chosen as 1

2 . For this specific
instance of τ , the algorithm needs one or two additional subdivision steps at the
northwest and southeast corners of the domain.

15.4 Linearized Trimmed Quadrature

We perform the quadrature individually on each cell K ∈ K . Thus, we need to
approximate the integral

∫

Kτ

f (x, y)dydx, (15.7)

where

Kτ = {(x, y) ∈ K : τ (x, y) > 0}. (15.8)
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This approximation is trivial for the first two base cases: The value of the integral
equals zero in the first case, and it is approximated by a tensor-product Gauss rule
in the second one.

In order to perform this approximation in the remaining three base cases, we
replace τ by another function σ . That function is chosen such that the integral

∫

Kσ

f (x, y)dydx (15.9)

over the region

Kσ = {(x, y) ∈ K : σ(x, y) > 0} (15.10)

enclosed by the zero-level set of σ admits a simple evaluation. This is achieved by
using a suitable linear approximation of τ , that is, the level set σ(x, y) = 0 is simply
a straight line segment.

The evaluation of (15.9) using numerical quadrature is based on the intersections
of σ(x, y) = 0 with the boundary of the cell. We determine these intersections by
linear interpolation of the function values of τ at the vertices of the cell. Figure 15.5
shows examples for this approximation. For this choice of σ , the linearized
integral (15.9) belongs to the same base case as the original integral (15.7).

For the quadrilateral case we proceed as follows: First, we construct a bilinear
parameterization of Kσ . Second, we transform the integral to the associated
parameter domain and evaluate its value using Gauss quadrature with n evaluations
per parametric direction, where n is chosen by the user. The triangular case is dealt
with analogously, by using a parameterization with a singularity at the involved cell
vertex. In the pentagonal case, the identity

Kσ = K \K−σ (15.11)

allows to evaluate (15.9) by combining results for the untrimmed and the triangular
case.

> 0

< 0

00 < 0 10 < 0

11 > 001 > 0

> 0

< 0

00 < 0 10 < 0

11 < 001 > 0

< 0

> 0

00 > 0 10 > 0

11 > 001 < 0

Fig. 15.5 A simple approximation of the three trimmed base cases
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The resulting linearized trimmed quadrature rule will be referred to as

LT(h, n), (15.12)

where h is the maximum cell size and n denotes the number of Gauss nodes. Clearly,
the values generated by the LT rule converge to the true integral as h is decreased.
As we shall see later, however, the rather rough approximation of the quadrature
domain limits the order of convergence.

15.5 First Order Correction

We improve the order of convergence of the LT rule by adding an error correction
term for the last three base cases. This term is found by performing a Taylor
expansion.

Throughout this section, we consider a fixed trimmed cell

K = [x0, x0 + h] × [y0, y0 + h] ∈ K (15.13)

which is either a quadrangular or triangular base case, see Fig. 15.5. Recall that the
pentagonal case is solved by considering the complementary triangular domain.

Linear blending of the trimming function τ and its linear approximation σ leads
to the subsets

Kσ+u(τ−σ) = {(x, y) ∈ K : σ(x, y)+ u(τ(x, y)− σ(x, y)) > 0}, u ∈ [0, 1],
(15.14)

that define the function

F(u) =
∫

Kσ+u(τ−σ)

f (x, y)dydx. (15.15)

It attains the exact value of (15.4) for u = 1, while the LT rule is based on the
approximate evaluation of F(0). We improve the accuracy by adding a correction
term that is based on the first two terms of the Taylor series

F(1) = F(0)+ F ′(0)+ R1(1) (15.16)

of F around u = 0, where R1 denotes the remainder.
In order to compute F ′(0), we observe that the level set of the function obtained

by linear blending defines a function y = cu(x) or x = cu(y) for sufficiently small
values of u, where the projection of the trimming curve onto the x or y axis specifies
the domain

[au, bu], (15.17)

respectively. If both choices are possible, we choose the one with the larger domain
for u = 0.
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Fig. 15.6 Linear blending of
τ and σ in the triangular base
case

c0(x)

c1(x)

cu(x)

b0 b1bu(a0 = au = a1)

Without loss of generality, we consider the first case

[au, bu] ⊂ [x0, x0 + h] (15.18)

where the function satisfies

σ(x, cu(x))+ u(τ(x, cu(x))− σ(x, cu(x))) = 0, (15.19)

see Fig. 15.6. By differentiating (15.19) we observe that

∂

∂u
cu(x) = −τ (x, cu(x))+ σ(x, cu(x))

∂σ
∂y

(x, cu(x))+ u(∂τ
∂y

(x, cu(x))− ∂σ
∂y

(x, cu(x)))
. (15.20)

The function F in (15.15) can be rewritten as

F(u) =
∫ bu

au

∫ y0+h

cu(x)

f (x, y)dydx. (15.21)

Its first derivative thus evaluates to

F ′(u) = −
∫ bu

au

f (x, cu(x))
∂

∂u
cu(x)dx

− d

du
au

∫ y0+h

cu(au)

f (au, y)dy + d

du
bu

∫ y0+h

cu(bu)

f (bu, y)dy (15.22)

The integration limit satisfies bu = x0 + h or

cu(b(u)) = y0 + h. (15.23)

Consequently, the third term in (15.22) vanishes since either the integral or the factor
in front of it take value zero. Similarly, the second term vanishes as well.
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Finally we use (15.20), (15.22) and the fact that σ vanishes on the graph of c0,

σ(x, c0(x)) = 0, (15.24)

to rewrite the first order correction term

F ′(0) = 1
∂
∂y
σ

∫ b0

a0

f (x, c0(x))τ (x, c0(x))dx (15.25)

as a univariate integral over the linearized trimming curve. An approximate value is
computed using a Gauss rule with k quadrature nodes.

Note that we only used the zero level set of σ in Sect. 15.5. The value of the
correction term depends on the gradient of the linearized trimming function, which
we did not discuss so far. In fact, we would like to choose∇σ , and more specifically
∂σ
∂y

, so that it approximates sufficiently well ∇τ . A good choice is to set ∂σ
∂y

using
finite differences over the values of τ at the cell’s vertices. In the quadrilateral case
we use the average

∂σ

∂y
= 1

2

(
τ01 − τ00

h
+ τ11 − τ10

h

)
= τ01 − τ00 + τ11 − τ10

2h
(15.26)

of the finite differences over the two edges that intersect the trimming curve. In the
triangular case we use the finite difference

∂σ

∂y
= τ01 − τ00

h
(15.27)

over the edge which intersects the trimming curve.
The resulting corrected linearized trimmed quadrature rule (with first order

correction term) will be referred to as

CLT(h, n, k), (15.28)

where h is the maximum cell size, and n resp. k are the numbers of bivariate resp.
univariate quadrature nodes. In addition, we use

CLTK(h, n, k), (15.29)

to denote the value contributed by an individual cell K ∈ K .
If the trimming function τ is linear and thus σ = τ , then

τ (x, c0(x)) = 0. (15.30)

Consequently, the correction term (15.25) vanishes. In this case, CLT and LT give
equivalent results.



308 F. Scholz et al.

15.6 Convergence Result

In this section we will show that the first order error correction in the CLT rule
improves the convergence by one order with respect to the non-corrected LT rule.
More precisely, we will prove this result for a slightly modified version of CLT,
obtained by adapting the quadrature cells, which we denote as CLT&. Intuitively, we
construct the modified version of CLT as follows: We look at all cells where the
gradient of the trimming function is “almost” horizontal or vertical, for some point.
In this case we fuse two adjacent cells in such a way that the trimmed cell becomes
of the quadrilateral base case which is easier to treat theoretically than the triangular
case.

First we prove two technical results about the local errors in the trimmed
cells of the quadrilateral base case (Lemma 15.1) and of the triangular base case
(Lemma 15.2). Second we combine them with the known approximation properties
of the employed Gauss rules to estimate the global quadrature error in Theorem 15.1.

Both lemmas consider a rectangular cell (not necessarily a square) K of size h

and a trimming function τ defined on it. We derive error bounds that applies to all
cells of these base cases.

We say that the cell satisfies the assumptions (about the base cases) in the strong
sense if the trimming curve crosses the boundary in exactly two points.

Lemma 15.1 Assume that a rectangular cell K fulfills the assumptions of the
quadrilateral base case in the strong sense, and the trimming function τ and its
linear approximation σ satisfy the inequalities

∣∣∣∣
∂τ

∂y
(x, y)

∣∣∣∣ ≥ C1 , ∀(x, y) ∈ K (15.31)

and

‖σ − τ‖L∞(K) ≤ C2h
2, (15.32)

‖∇σ − ∇τ‖L∞(K) ≤ C3h (15.33)

for certain positive constants C1, C2, C3. Then there exists a constant

Cquad(C1, C2, C3, f ) (15.34)

which depends solely on these three constants and f , such that the corrected
trimmed quadrature on this cell fulfills for n = k = 2

|Iτ,Kf − CLTK(h, 2, 2)f | ≤ Cquadh
4. (15.35)

Proof We denote the rectangular cell by K = [x0, x0 + αh] × [y0, y0 + βh] where
(x0, y0) is the lower left vertex and α, β > 0. Since by the monotonicity assump-
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tion (15.31) the trimming curve τ (x, y) = 0 can be written as a graph, the same is
true for all intermediate curves if h is sufficiently small. By differentiating (15.22)
and using that both au = x0 and bu = x0 + αh are constant, we obtain, for all
u ∈ [0, 1],

F ′′(u) = −
∫ bu

au

∂

∂y
f (x, cu(x))

(
∂

∂u
cu(x)

)2

+ f (x, cu(x))
∂2

∂u2
cu(x)dx

(15.36)

We observe that under the assumptions (15.31)–(15.33)

∣∣∣∣
∂

∂u
cu(x)

∣∣∣∣ =
|τ (x, cu(x))− σ(x, cu(x))|

|(1 − u) ∂
∂y
σ + u ∂

∂y
τ (x, cu(x))|

≤ C′h2. (15.37)

where C′ depends on C1, C2, C3. By differentiating (15.19) twice we obtain

∂2

∂u2 cu(x) =
−2 ∂

∂u
cu

(
∂
∂y
τ − ∂

∂y
σ
)
− u

(
∂
∂u

cu
)2 ∂2

∂y2 τ

(1 − u) ∂
∂y
σ + u ∂

∂y
τ (x, cu(x))

(15.38)

and thus using again the assumptions on τ and σ we get

∣∣∣∣
∂2

∂u2 cu(x)

∣∣∣∣ ≤ C′′h3 (15.39)

where C′′ depends again on C1, C2, C3. By estimating the integral by the supremum
we conclude that for all u ∈ [0, 1]

F ′′(u) ≤ C′′′h4. (15.40)

The result is obtained by combining Taylor’s theorem with the approximation
properties of the employed Gauss rules for the bi- and univariate quadrature. ��
Lemma 15.2 Assume that a rectangular cell K satisfies the assumptions of the
triangular base case (in the strong sense) and that in addition to the assump-
tions (15.31)–(15.33) in Lemma 15.1 there is a constant C4 independent of h, such
that

∣∣∣∣
∂τ

∂x
(x, y)

∣∣∣∣ ≥ C4 > 0 , ∀(x, y) ∈ K (15.41)

Then, there exists a constant Ctriangle(C1, C2, C3, C4, f ), such that the corrected
trimmed quadrature on this cell fulfills

|Iτ,Kf − CLTK(h, 2, 2)f | ≤ Ctriangleh
4. (15.42)
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Proof Again, we write K = [x0, x0 + αh] × [y0, y0 + βh].. In the triangular case,
bu in (15.22) is not constant but defined implicitly by

cu(bu) = y0 + βh. (15.43)

For the second derivative of F this means that an additional term appears which
depends on the derivative of bu:

F ′′(u) = −
∫ bu

au

∂

∂y
f (x, cu(x))

(
∂

∂u
cu(x)

)2

+ f (x, cu(x))
∂2

∂u2 cu(x)dx

−f (bu, cu(bu))
∂

∂u
cu(bu)

d

du
bu. (15.44)

In order to estimate the last term in (15.44), we compute

d

du
bu = −

∂
∂u

cu(bu)

∂
∂x

cu(bu)
. (15.45)

Differentiating (15.19) with respect to x leads to

∂

∂x
cu(x) = −

∂
∂x

σ + u
(

∂
∂x

τ (x, cu(x))− ∂
∂x

σ
)

∂
∂y
σ + u

(
∂
∂y
τ (x, cu(x))− ∂

∂y
σ
) . (15.46)

Using assumption (15.41) we conclude

∣∣∣∣
∂

∂x
cu(x)

∣∣∣∣ ≥ C′′′′ > 0 (15.47)

and thus
∣∣∣∣

d

du
bu

∣∣∣∣ ≤ C′′′′′h2. (15.48)

Therefore, in view of (15.37) and (15.39) the last term in (15.36) satisfies

f (bu, cu(bu))
∂

∂u
cu(bu)

d

du
bu ≤ C′′′′′′h4 (15.49)

and the result follows. ��
Unfortunately, even with these two results at hand, we cannot analyze the quadrature
rule CLT directly. This is due to two reasons: First, we cannot guarantee that all
the triangular cells in the subdivision K satisfy the assumption of Lemma 15.2.
Second, there may be trimmed cells which are not base cases in the strong sense.
Both problems are resolved by suitably modifying the quadrature rule.
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More precisely, we construct a modified quadrature rule CLT∗ by replacing the
subdivision K of Ω with a new subdivision K &. We begin by using creating a
uniform grid of cells of size h

2 . We assume that h is small enough, such that all
cells belong to one of the base cases. The subdivision K 0 consists of all cells that
possess a non-empty intersection with the integration domain. Note that this also
includes cells where the trimming curve crosses the same edge twice.

We will obtain K & by merging some of the trimmed cells in K 0.
First, we define the constants C1 and C4 that are to be used in Lemmas 15.1

and 15.2 as

C1 = C4 = 1

4
min

τ (x,y)=0
‖∇τ (x, y)‖2. (15.50)

If h is sufficiently small this means that each trimmed cell K ∈ K 0 belongs to
one of three classes:

1. Class H (horizontal gradient): For all (x, y) ∈ K we have

∣∣∣∣
∂

∂x
τ(x, y)

∣∣∣∣ ≥ C4, and

∣∣∣∣
∂

∂y
τ(x0, y0)

∣∣∣∣ < C1 for at least one (x0, y0) ∈ K.

(15.51)

2. Class V (vertical gradient): For all (x, y) ∈ K we have

∣∣∣∣
∂

∂y
τ(x, y)

∣∣∣∣ ≥ C1, and

∣∣∣∣
∂

∂x
τ(x0, y0)

∣∣∣∣ < C4 for at least one (x0, y0) ∈ K.

(15.52)

3. Class D (diagonal gradient): For all (x, y) ∈ K we have

∣∣∣∣
∂

∂x
τ(x, y)

∣∣∣∣ ≥ C4 and

∣∣∣∣
∂

∂y
τ(x, y)

∣∣∣∣ ≥ C1. (15.53)

This is illustrated in Fig. 15.7. If a cell K belongs to class H (resp. class V), then
also all of its neighbors are either in class H (resp. V) or in class D. To obtain the
modified subdivision K& we merge all pairs of vertically adjacent cells where one
of them is in class H. Similarly, we merge all pairs of horizontally adjacent cells
where one of them is in class V. The remaining cells are kept. Note that this results
in rectangular cells of maximum size h, since at most two cells will be merged,
due to the restricted range of the gradients. The modified rule CLT& is obtained by
applying CLT to the modified subdivision K &.

Next, we prove the convergence result for the modified rule CLT&. The modified
quadrature cells in CLT& ensure that all triangular cells belong to class D, where we
have a bound on both partial derivatives, cf. (15.53). Moreover, all cells satisfy the
assumptions about the base cases in the strong sense.
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Class V

Class V

Class H Class H

Class D

Class D

Class D

Class D

Class HClass H

Class V

Class V

Class D Class

Class D Class D

0

Fig. 15.7 Illustration of the regions of cell classes V, H and D. Left: The regions defined by
∇τ(x, y) for (x, y) over the union of the trimmed cells. The black circle has radius 4C1 =
minτ(x,y)=0 ‖∇τ(x, y)‖2. It is visible that ∇τ(x, y) lies outside the square in the middle. Right:
An example trimming curve (an ellipse, shown in blue). The dotted offsets enclose the region that
contains trimmed cells

Theorem 15.1 Assume τ ∈ C2([0, 1]2) such that the constant C1 = C4 as defined
in (15.50) is positive, and f ∈ C4([0, 1]2). Then, there exists a constant Cτ,f , such
that the CLT& rule with n = 2 and k = 2 satisfies

|Iτ f − CLT&(h, 2, 2)f | ≤ Cτ,f h
3. (15.54)

Proof By the construction of CLT&, the subdivision K & consists of untrimmed
quadrature cells, trimmed quadrilateral cells of classes H, V and D, and trimmed
triangular and pentagonal cells of class D. In the trimmed quadrilateral cells we can
always apply Lemma 15.1, while in the trimmed triangular cells of class D we can
apply Lemma 15.2. Moreover, we can treat the trimmed pentagonal cells of class D
by applying Lemma 15.2 to the complement of the quadrature domain. In both cases
the constants C2 and C3 are obtained by linear approximation of τ . They depend on
the second derivative of τ whose norm is bounded.

The number of trimmed cells does not exceed C5
1
h

for some constant C5.
Moreover, we can use the same constants Cquad and Ctriangle for all trimmed cells.
Indeed, these constants depend on the values C1, . . . , C4, which are determined by
derivatives of the trimming function. Consequently, a global upper bound for these
constants exists and depends solely on the trimming function τ . Moreover, we may
use an upper bound on the derivatives of f . We conclude

∑
K∈K &

trimmed

|Iτ,Kf − CLTK(h, 2, 2)f | ≤ C5 max{Cquad, Ctriangle}h3. (15.55)
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Since we use n = 2 Gauss nodes in each direction for the untrimmed cells, the
local error is bounded by CGaussh

5 in each of these cells for some constant CGauss.
Since there are at most 1

h2 untrimmed cells, we have

∑
K∈K &

untrimmed

|Iτ,Kf − CLTK(h, 2, 2)f | ≤ CGaussh
3. (15.56)

The result (15.54) is implied by these two inequalities, since the various constants
depend on τ and f only. ��

We conjecture that in the triangular base case the influence of the last term
in (15.44) is canceled by the corresponding term in the adjacent cell. Consequently,
in practice it suffices to use CLT instead of CLT&. This is supported by our numerical
experiments, where CLT is tested.

15.7 Numerical Experiments

We implemented the method in C++ using the G+Smo library [17]. In this section,
we will test the approximation properties of the linearized trimmed quadrature rule
CLT as well as the linearized trimmed quadrature rule LT on a number of trimmed
geometries. Implementing the modified rule CLT& that was constructed in Sect. 15.6
for the theoretical analysis can be computationally inefficient in practice since it is
necessary to estimate the gradient of τ in all cells for deciding which cells are to
be joined. Additionally, one needs to find an upper bound of the gradient’s norm
along the trimming curve. However, we also implemented CLT& in a particular case
in order to make a direct comparison with CLT. In the numerical experiments we
observe that the theoretical error estimate for CLT& (Theorem 15.1) still holds for
the original CLT quadrature rule.

15.7.1 Ellipse

As a first example, we use our method to compute the volume of an ellipse implicitly
defined by

τ (x, y) = − (x − 0.5)2

a2 − (y − 0.5)2

b2 + 1 > 0, (15.57)

where we set a = 0.45 and b = 0.2 in our experiment. Figure 15.8 shows the
result of the subdivision of this ellipse after some steps of refinement. In each
cell, the trimming function was approximated by a linear function as described in
Sect. 15.4. Note that in the pentagonal case we integrate over the remaining triangle
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Fig. 15.8 Subdivision of the ellipse after some steps of refinement with approximate linear
trimming curve in each cell
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Fig. 15.9 Absolute error in LT and CLT for the area enclosed by the ellipse

and subtract from the full integral. In the left plot in Fig. 15.9 we show the quadrature
error for different values of h when computing the area enclosed by the ellipse
with the simple trimmed quadrature LT (h, 1) described in Sect. 15.4 and with the
trimmed quadrature by first order correction CLT (h, 1, 2) described in Sect. 15.5.
We observe that the first order error correction results in an additional order of
convergence with respect to h, confirming the theoretical result from Theorem 15.1.

Next, we show the computation times for both quadrature rules in Fig. 15.10. We
observe that applying the error correction does not result in a significant increase
in complexity compared to the linearized trimmed quadrature. The complexity for
both LT and CLT increases linearly with the number of cells.

Finally, we compare the CLT quadrature rule with the modified quadrature rule
CLT& which was defined in Sect. 15.6 for the theoretical analysis of the convergence.
For the ellipse given by the trimming function (15.57) the exact value of the
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Fig. 15.10 Computation times for the approximation of the area enclosed by the ellipse

Fig. 15.11 Modified subdivision of the ellipse for CLT& after five steps of refinement. Joined cells
are highlighted

constants C1 = C4 in the conditions (15.51), (15.52) and (15.53) is

C1 = 1

4
min

τ (x,y)=0
‖∇τ (x, y)‖2 = 10

9
.

We sample the gradient of τ on a fine grid in each cell in order to check these
conditions. In Fig. 15.11 we show the modified subdivision of the ellipse after some
steps of refinement. Eight cells were joined in this case, they are highlighted in the
picture. Figure 15.12 shows the error of both CLT and CLT& when computing the
area of the ellipse. We observe that the quadrature errors for both methods have the
same asymptotic behavior.
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Fig. 15.12 Absolute error in CLT and CLT& for the area enclosed by the ellipse

15.7.2 Perforated Quarter Annulus

In our next example, we will approximate the area of a quarter annulus which is
trimmed with three circles. The domain is represented by Non-Uniform Rational B-
Splines (NURBS), which is a powerful technique for the representation of complex
geometric shapes, see [22] for more details. The quarter annulus is represented
exactly as a NURBS domain of polynomial degrees (p1, p2) = (1, 2) with no
interior knots.1 Figure 15.13 shows the piecewise linear approximation of the
trimming curve in the computational and in the parametric domain after some steps
of refinement.

Since we perform the computation on the parametric domain, we approximate
the integral

∫

Ωγ ◦G
| detJG(x, y)|dydx, (15.58)

where G : [0.1]2 → R2 is the NURBS parameterization of the quarter annulus
and JG(x, y) is the Jacobian matrix of G at the point (x, y). The trimming function
γ : R2 → R on the physical domain is defined as the product of the implicit
representations of the three circles.

In the first plot in Fig. 15.14 we show the convergence rate of the quadrature rules
with and without error correction. We chose n = 2 Gauss nodes for the linearized
quadrature and k = 2 Gauss nodes for the correction term. As in the case of the

1The weights were chosen as (ω0,0, ω1,0, ω0,1, ω1,1, ω0,2, ω1,2) =
(

1, 1, 1√
2
, 1√

2
, 1, 1

)
and the

corresponding control points as (1, 0), (2, 0), (1, 1), (2, 2), (0, 1), (0, 2).
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Fig. 15.13 Subdivision of the perforated quarter annulus and its corresponding parametric domain
after some steps of refinement with approximate linear trimming curve in each cell
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Fig. 15.14 Absolute error in LT and CLT for the area of the perforated quarter annulus for n =
2, k = 2

ellipse, we observe that the first order error correction term in CLT results in an
additional order of convergence compared to the linearized quadrature in LT.

Since we only use one error correction term, the convergence error cannot be
improved by additional Gauss nodes in the bivariate and univariate quadrature. This
is confirmed by the second plot in Fig. 15.15 which shows the same experiment as
in the first plot but for n = 3 and k = 3.
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Fig. 15.15 Absolute error in LT and CLT for the area of the perforated quarter annulus for n =
3, k = 3

Fig. 15.16 Subdivision of the bicuspid with approximate linear trimming curve in each cell

15.7.3 Singular Case: Bicuspid Curve

Figure 15.16 shows a linear approximation of the bicuspid curve which is an
algebraic curve given by

(x2 − a2)(x − a)2 + (y2 − a2)2 = 0 (15.59)

for some a > 0. It has two cusps that hinder the improvement of the approximation
order by the error correction term. In Fig. 15.17 we show the error convergence of
the approximation of the area enclosed by the bicuspid, where the reference value
was computed with a lower value of h. We observe that the error correction in
CLT does not improve the convergence rate in this case, however, the absolute error
is lower.
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Fig. 15.17 Absolute error for the computation of the area enclosed by the bicuspid curve using
LT and CLT

15.8 Conclusion

We presented a novel method for quadrature on trimmed two-dimensional domains
which was shown to be accurate, efficient and easy to implement. In particular,
cubic convergence was both proved and observed in our experiments, while the
computation times were not compromised.

Two generalizations are possible. On the one hand, more terms of the Taylor
expansion (15.16) can be added to the result in order to further improve the order
of convergence of the quadrature error. This is necessary for applying the method to
isogeometric discretizations of higher approximation power. Our conjecture is that
each term of the Taylor expansion raises the order of convergence by one.

On the other hand, the method has the potential to be generalized to three-
dimensional domains. We expect that the generalization will follow the same main
ideas as in the two-dimensional case. However, the number of base cases will be
higher.
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Chapter 16
A Space–Time Finite Element Method
for the Linear Bidomain Equations

Olaf Steinbach and Huidong Yang

Abstract In this work, we study a Galerkin–Petrov space–time finite element
method for a linear system of parabolic–elliptic equations with in general
anisotropic conductivity matrices, which may be considered as a simplified version
of the nonlinear bidomain equations. The discretization is based on a stable space–
time variational formulation employing continuous and piecewise linear finite
elements in both spatial and temporal directions simultaneously. We show stability
of the space–time formulation on both the continuous and discrete level for such a
coupled problem under a rather general condition on the conductivity matrices. We
further discuss the construction of a monolithic algebraic multigrid (AMG) method
for solving the coupled linear system of algebraic equations globally. Numerical
experiments are performed to demonstrate the convergence of the space–time finite
element approximations, and the performance of the AMG method with respect to
the mesh discretization parameter. Finally, we apply the space–time finite element
method to the nonlinear bidomain equations in order to show the applicability of
the proposed approach.

16.1 Introduction

The modelling of the electrical activity of the human heart relies on the Maxwell
equations when neglecting the time derivative in Faraday’s law. Hence we may
use a scalar potential to describe the electric field, where the potential inside a
cell is called intracellular potential, while the potential exterior to a cell is called
extracellular potential. When the cells are at rest, there is a potential difference
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across the cell membrane which is called the transmembrane potential. Hence, using
the continuity equation and Ohm’s law, and considering the ionic current exciting
the cell, this results in a coupled system of nonlinear parabolic and elliptic partial
differential equations, and a system of ordinary differential equations to describe
the ionic current via cellular state variables. For a more detailed discussion of the
mathematical model we refer to, e.g., [6, 10, 25].

As model problem we consider the simplified linear bidomain equations to find
the transmembrane potential uT and the extracellular potential ue satisfying the
linear parabolic–elliptic system

Cm∂tuT (x, t)− divx[Mi(x)∇xuT (x, t)] − divx[Mi(x)∇xue(x, t)] = si(x, t), (16.1)

−divx[Mi(x)∇xuT (x, t)] − divx[(Mi(x)+Me(x))∇xue(x, t)] = se(x, t) (16.2)

for (x, t) ∈ Q := Ω × (0, T ), where Ω ⊂ R
n is assumed to be Lipschitz, n = 2, 3,

with homogeneous Dirichlet boundary conditions uT = 0 and ue = 0 on the lateral
boundaryΣ := ∂Ω×(0, T ), and a given initial condition uT = 0 in Ω , t = 0. Note
that inhomogeneous data can be handled via a standard homogenisation approach
by using a suitable extension. Moreover, si and se are some given current sources,
Mi and Me are, in general anisotropic, conductivity matrices, that are assumed to be
symmetric and positive definite, and satisfying

μ (Mi(x)v, v) ≤ (Me(x)v, v) ≤ μ (Mi(x)v, v) for all v ∈ R
n (16.3)

uniformly for x ∈ Ω for some 0 < μ ≤ μ. Finally, Cm is the capacitance of the cell
membrane.

In this simplified model we have neglected the nonlinear coupling term among
the two potentials and the third variable, a vector of cellular state variables, via
dropping the nonlinear ionic current term and the related nonlinear system of
ordinary differential equations. In [6], a similar linear model problem is considered,
with Robin boundary conditions instead of Dirichlet conditions. Admittedly, the
bidomain reaction–diffusion system in its simplified form (16.1) and (16.2) will be
a reasonable starting point towards the construction of robust monolithic algebraic
multigrid (AMG) methods for the fully coupled nonlinear bidomain equations. For
general concepts of AMG methods, we refer to [1, 2, 20].

As it is well known, most conventional methods for discretizing the nonlinear
bidomain equations, i.e. the coupled parabolic–elliptic equations and the system of
ordinary differential equations to describe the ionic current, are proper combinations
of explicit/implicit time stepping methods and finite element methods with respect
to the temporal and spatial directions, respectively; see, e.g., [3, 4, 10, 13–19, 22, 27].

Recently, a space–time discontinuous Galerkin finite element discretization on
arbitrary simplex meshes has been employed to approximate the solution of the
bidomain equations and the coupled electro-mechanical system [6, 7]. Such a space–
time discontinuous Galerkin scheme has been investigated for the heat equation in
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[11, 12], by treating the time as another variable, and adding an upwind with respect
to the time derivative.

On the other hand, iterative and parallel solution methods for the bidomain
equations have been considerably studied in the past years, that are mainly based
on time stepping methods and operator splitting schemes. Related references on
the splitting solution methods for the bidomain equations can be found, e.g., in
[10, 13, 26].

In [3], the system of ordinary differential equations is solved by a combination
of an exact solution of related scalar linear ordinary differential equations, and the
explicit Euler method for the remaining equations. The coupled reaction–diffusion
part is tackled as an elliptic problem via a NURBS-based isogeometric discretization
[5] in space and a semi-implicit scheme in time, i.e., an implicit Euler method for the
diffusion term, and an explicit treatment for the nonlinear reaction term. The optimal
convergence rate of two-level additive Schwarz preconditioners for the resulting
linear system is shown. Earlier results for multilevel Schwarz preconditioners for
the bidomain parabolic–parabolic and parabolic–elliptic formulations (both become
elliptic problems after temporal discretization) can be found in [14, 15]. A similar
operator splitting scheme has been used in [27], where the resulting discrete
bidomain elliptic equations at each time step are solved by a balancing Neumann–
Neumann preconditioned conjugate gradient method.

In [19], an explicit Euler method has been used to solve the parabolic equation
and nonlinear system of ordinary differential equations at each time step, and the
remaining elliptic problem is solved by an algebraic multigrid method.

Block factorized preconditioners for the coupled bidomain reaction–diffusion 2×
2 system in a semi-implicit time stepping method have been investigated in [17, 18],
where an AMG method is used to approximate the blocks.

Very recently, a monolithic scheme has been studied in [6] for the fully coupled
nonlinear bidomain equations, that are discretized by using a space–time discontin-
uous Galerkin finite element scheme in the space–time domain. On each Newton
iteration, the linearized system is reduced to the Schur complement equation with
respect to the two potential variables. Further, discrete stability conditions for both
the linear and nonlinear problems are shown therein, with respect to specially chosen
DG-norms.

In this work, we follow a continuous Galerkin–Petrov space–time finite element
discretization scheme [23] for approximating the solution of the model prob-
lem (16.1) and (16.2) in the space–time domain. The resulting linear system of
algebraic equations is then solved by a monolithic AMG method.

The remainder of this paper is organized as follows. In Sect. 16.2, we present a
stable space–time variational formulation of the model problem (16.1) and (16.2),
and in Sect. 16.3 we discuss the related continuous Galerkin–Petrov space–time
finite element method. The monolithic algebraic multigrid method for the solution
of the coupled linear system of algebraic equations is discussed in Sect. 16.4. Some
numerical results are provided in Sects. 16.5 and 16.6 where we also consider the
nonlinear system including the ionic current. Finally, some conclusions are drawn
in Sect. 16.7.
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16.2 Space–Time Variational Formulations

Let us define the function spaces

X :=
{
v ∈ L2(0, T ;H 1

0 (Ω)) ∩H 1(0, T ;H−1(Ω)), v(x, 0) = 0 for x ∈ Ω
}
,

Y := L2(0, T ;H 1
0 (Ω))

to consider the Galerkin–Petrov variational formulation of the Dirichlet boundary
value problem (16.1) and (16.2) to find (uT , ue) ∈ X × Y such that

a(uT , ue; vT , ve) =
∫ T

0

∫

Ω

[
si vT + se ve

]
dx dt (16.4)

is satisfied for all (vT , ve) ∈ Y × Y where the bilinear form is given as

a(uT , ue; vT , ve) :=
∫ T

0

∫

Ω

[
Cm∂tuT vT + (Mi∇xuT ,∇xvT )+ (Mi∇xue,∇xvT )

]
dx dt

+
∫ T

0

∫

Ω

[
(Mi∇xuT ,∇xve)+ ((Mi +Me)∇xue,∇xve)

]
dx dt .

To establish unique solvability of the space–time variational formulation (16.4) we
need to have a related stability estimate for the involved bilinear form. For this we
first consider an ellipticity estimate for the spatial part.

Lemma 16.1 For uT , ue, vT , ve ∈ Y we consider the spatial bilinear form

aS(uT , ue; vT , ve) :=
∫ T

0

∫

Ω

[
(Mi∇xuT ,∇xvT )+ (Mi∇xue,∇xvT )

]
dx dt (16.5)

+
∫ T

0

∫

Ω

[
(Mi∇xuT ,∇xve)+ ((Mi +Me)∇xue,∇xve)

]
dx dt

and Assumption (16.3). Then, for (vT , ve) ∈ Y×Y there holds the ellipticity estimate

aS(vT , ve; vT , ve) ≥ cS ‖(vT , ve)‖2
Y×Y

with the positive constant

cS = 1 + μ

2
−
√

μ2

4
+ 1 > 0,
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and with respect to the norm

‖(vT , ve)‖2
Y×Y :=

∫ T

0

∫

Ω

[
(Mi∇xvT ,∇xvT )+ (Mi∇xve,∇xve)

]
dx dt .

Proof Using Assumption (16.3) we have, for some γ > 0,

aS(vT , ve; vT , ve) =

=
∫ T

0

∫

Ω

[
(Mi∇xvT ,∇xvT )+ 2 (Mi∇xve,∇xvT )+ ((Mi +Me)∇xve,∇xve)

]
dx dt

≥
∫ T

0

∫

Ω

[
(Mi∇xvT ,∇xvT )+ 2 (Mi∇xve,∇xvT )+ (1 + μ)(Mi∇xve,∇xve)

]
dx dt

=
∫ T

0

∫

Ω

[(
1 − 1

γ

)
(Mi∇xvT ,∇xvT )+

(
1 + μ− γ

)
(Mi∇xve,∇xve)

]
dx dt

+
∫ T

0

∫

Ω

(
Mi∇x

(
1√
γ
vT +√

γ ve

)
,∇x

(
1√
γ
vT +√

γ ve

))
dx dt

≥
(

1 + μ− γ ∗
) ∫ T

0

∫

Ω

[
(Mi∇xvT ,∇xvT )+ (Mi∇xve,∇xve)

]
dx dt

if

1 − 1

γ ∗
= 1 + μ− γ ∗

is satisfied, i.e.

γ ∗ = μ

2
+
√

μ2

4
+ 1, cS = 1 + μ− γ ∗ = 1 + μ

2
−
√

μ2

4
+ 1 > 0.

��
In fact, the bilinear form (16.5) induces a norm in Y × Y , i.e. for (vT , ve) ∈ Y × Y

we have

‖(vT , ve)‖2
M := aS(vT , ve; vT , ve)

satisfying

cS ‖(vT , ve)‖2
Y×Y ≤ ‖(vT , ve)‖2

M ≤
⎛
⎝1 + μ

2
+
√

μ2

4
+ 1

⎞
⎠ ‖(vT , ve)‖2

Y×Y .
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Hence we can define (wT ,we) ∈ Y × Y as the unique solution of the variational
formulation

aS(wT ,we; vT , ve) = a(uT , ue; vT , ve) for all (vT , ve) ∈ Y × Y, (16.6)

where (uT , ue) ∈ X × Y is given. For the latter we introduce the norm

‖(uT , ue)‖X×Y := sup
0 �=(vT ,ve)∈Y×Y

a(uT , ue; vT , ve)
‖(vT , ve)‖M , (16.7)

and where we can write the bilinear form, by using integration by parts, as

a(uT , ue; vT , ve) = 〈Cm∂tuT − divx [Mi∇xuT ] − divx [Mi∇xue], vT 〉Q
+〈−divx [Mi∇xuT ] − divx[(Mi +Me)∇xue], ve〉Q .

Recall that 〈·, ·〉Q denotes the duality pairing as extension of the L2 inner product
in the space time domain. The norm (16.7) is indeed the adjoint norm of the partial
differential operator in (16.1) and (16.2) applied to (uT , ue). Although the norm
definition (16.7) already implies a related stability condition, we will present a proof
in order to establish the forthcoming relation (16.9).

Lemma 16.2 For all (uT , ue) ∈ X × Y there holds the stability condition

‖(uT , ue)‖X×Y ≤ sup
0 �=(vT ,ve)∈Y×Y

a(uT , ue; vT , ve)
‖(vT , ve)‖M . (16.8)

Proof For the unique solution (wT ,we) ∈ Y × Y of the variational problem (16.6)
we first have

‖(wT ,we)‖2
M = aS(wT ,we;wT ,we)

= a(uT , ue;wT ,we) ≤ ‖(uT , ue)‖X×Y ‖(wT ,we)‖M,

i.e.

‖(wT ,we)‖M ≤ ‖(uT , ue)‖X×Y .

On the other hand,

‖(uT , ue)‖X×Y = sup
0 �=(vT ,ve)∈Y×Y

a(uT , ue, vT , ve)

‖(vT , ve)‖M

= sup
0 �=(vT ,ve)∈Y×Y

aS(wT ,we, vT , ve)

‖(vT , ve)‖M ≤ ‖(wT ,we)‖M,
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implying

‖(wT ,we)‖M = ‖(uT , ue)‖X×Y .

Hence we conclude

‖(uT , ue)‖2
X×Y = ‖(wT ,we)‖2

M = aS(wT ,we;wT ,we) = a(uT , ue;wT ,we),

(16.9)

and therefore

‖(uT , ue)‖X×Y = a(uT , ue;wT ,we)

‖(wT ,we)‖M ≤ sup
0 �=(vT ,ve)∈Y×Y

a(uT , ue; vT , ve)
‖(vT , ve)‖M

follows. ��
Since the norm (16.7) is defined as adjoint norm of the partial differential operator
applied on (uT , ue) we may ask for equivalent norms which are probably simpler to
handle. Hence we introduce the space

Y0 :=
{
(vT , ve) ∈ Y × Y :

〈Mi∇xvT ,∇xφe〉L2(Q) + 〈(Mi +Me)∇xve,∇xφe〉L2(Q) = 0 ∀φe ∈ Y
}

and the norm

‖Cm∂tuT ‖Y ′ := sup
0 �=(vT ,ve)∈Y0

〈Cm∂tuT , vT 〉Q
‖(vT , ve)‖M . (16.10)

Corollary 16.1 For (uT , ue) ∈ X × Y there holds the stability condition

1√
2

[
‖(uT , ue)‖2

M + ‖Cm∂tuT ‖2
Y ′
]1/2 ≤ sup

0 �=(vT ,ve)∈Y×Y

a(uT , ue; vT , ve)
‖(vT , ve)‖M .

(16.11)

Proof We start to consider, by using (16.9),

‖(uT , ue)‖2
X×Y = a(uT , ue;wT ,we)

= a(uT , ue; uT , ue)+ a(uT , ue;wT − uT ,we − ue)

= 〈Cm∂tuT , uT 〉L2(Q) + aS(uT , ue;uT , ue)+ aS(wT , we;wT − uT ,we − ue)

≥ aS(uT , ue;uT , ue)+ aS(wT ,we;wT − uT ,we − ue)

= aS(uT , ue;uT , ue)+ aS(wT − uT ,we − ue;wT − uT ,we − ue)

+aS(uT , ue;wT − uT ,we − ue)
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≥ ‖(uT , ue)‖2
M + ‖(wT − uT ,we − ue)‖2

M − ‖(uT , ue)‖M‖(wT − uT ,we − ue)‖M
≥ 1

2

[
‖(uT , ue)‖2

M + ‖(wT − uT , we − ue)‖2
M

]
.

It remains to compute

‖(wT − uT ,we − ue)‖2
M = aS(wT − uT ,we − ue;wT − uT ,we − ue)

= aS(wT ,we;wT − uT ,we − ue)− aS(uT , ue;wT − uT ,we − ue)

= a(uT , ue;wT − uT ,we − ue)− aS(uT , ue;wT − uT ,we − ue)

= 〈Cm∂tuT ,wT − uT 〉Q
= 〈Cm∂tuT , zT 〉Q,

where (zT , ze) := (wT − uT ,we − ue) ∈ Y × Y is the unique solution of the
variational problem

aS(zT , ze; vT , ve) = 〈Cm∂tuT , vT 〉Q for all (vT , ve) ∈ Y × Y, (16.12)

i.e.

∫ T

0

∫

Ω

[
(Mi∇xzT ,∇xvT )+ (Mi∇xze,∇xvT )

]
dx dt =

∫ T

0

∫

Ω

Cm∂tuT vT dx dt,

∫ T

0

∫

Ω

[
(Mi∇xzT ,∇xve)+ ((Mi +Me)∇xze,∇xve))

]
dx dt = 0 .

Hence we conclude

‖(zT , ze)‖2
M = aS(zT , ze; zT , ze) = 〈Cm∂tuT , zT 〉Q,

i.e.

‖(zT , ze)‖M = 〈Cm∂tuT , zT 〉Q
‖(zT , ze)‖M ≤ sup

0 �=(vT ,ve)∈Y0

〈Cm∂tuT , vT 〉Q
‖(vT , ve)‖M =: ‖Cm∂tuT ‖Y ′ .

On the other hand,

‖Cm∂tuT ‖Y ′ = sup
0 �=(vT ,ve)∈Y0

〈Cm∂tuT , vT 〉Q
‖(vT , ve)‖M

= sup
0 �=(vT ,ve)∈Y0

aS(zT , ze; vT , ve)
‖(vT , ve)‖M ≤ ‖(zT , ze)‖M
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implies

‖Cm∂tuT ‖Y ′ = ‖(zT , ze)‖M ,

where (zT , ze) ∈ Y ×Y solves the variational problem (16.12), i.e. the norm (16.10)
is induced by the Schur complement operator of the system (16.12) when eliminat-
ing ze from the second equation. ��
Remark 16.1 Instead of the parabolic–elliptic system (16.1) and (16.2) we may also
consider the related Schur complement system when eliminating the extracellular
potential ue. This results in a parabolic evolution equation with the bounded and
elliptic Schur complement operator, and applying arguments as for the standard
heat equation, see, e.g., [23], we would conclude a similar stability estimate as given
in (16.11).

16.3 A Galerkin–Petrov Space–Time Finite Element Method

We decompose the space–time cylinder Q = Ω × (0, T ) ⊂ R
n+1 into simplicial

finite elements q , i.e. Qh = ∪N
 =1q . For simplicity, we assume that Ω is polygonal

or polyhedral, i.e., Q = Qh. The finite element spaces are given by Xh = S1
h(Qh)∩

X and Yh = Xh with S1
h(Qh) = span{ϕi}Mi=1 being the span of piecewise linear and

continuous basis functions ϕi .
The conforming discrete Galerkin–Petrov variational formulation of (16.4) is to

find (uT ,h, ue,h) ∈ Xh × Yh ⊂ X × Y such that

a(uT ,h, uh,e; vT ,h, ve,h) =
∫ T

0

∫

Ω

[
si vT ,h + se ve,h

]
dx dt (16.13)

is satisfied for all (vT ,h, ve,h) ∈ Yh×Yh, where we assume Xh ⊂ Yh. Analogously as
in [23, Theorem 3.1] we can show a discrete inf–sup condition which ensures unique
solvability of (16.13). Related to the variational formulation (16.12) we define an
approximate solution (zT ,h, ze,h) ∈ Yh × Yh of the variational problem

aS(zT ,h, ze,h; vT ,h, ve,h) = 〈Cm∂tuT ,h, vT ,h〉Q for all (vT ,h, ve,h) ∈ Yh × Yh,

(16.14)

and as in (16.10) we define the discrete norm

‖Cm∂tuT ,h‖Y ′,h = ‖(zT ,h, ze,h)‖M ≤ ‖(zT , ze)‖M = ‖Cm∂tuT ,h‖Y ′ .

Now we are in a position to prove, as in [23, Theorem 3.1], a discrete stability
condition for the bilinear form a(·, ·; ·, ·).
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Theorem 16.1 Assume Xh ⊂ X, Yh ⊂ Y , and Xh ⊂ Yh. Then there holds the
discrete stability condition

1

2
√

2

[
‖(uT,h, ue,h)‖2

M + ‖Cm∂tuT,h‖2
Y ′,h

]1/2
(16.15)

≤ sup
0 �=(vT ,h,ve,h)∈Yh×Yh

a(uT,h, ue,h; vT,h, ve,h)
‖(vT,h, ve,h)‖M for all (uT,h, ue,h) ∈ Xh × Yh.

Proof For (uT ,h, ue,h) ∈ Xh × Yh let (zT ,h, ze,h) ∈ Yh × Yh be the unique solution
of the variational problem (16.14). We then consider

a(uT,h, ue,h;uT,h + zT,h, ue,h + ze,h) = 〈Cm∂tuT,h, uT,h〉Q + aS(uT,h, ue,h;uT,h, ue,h)
+〈Cm∂tuT,h, zT,h〉Q + aS(uT,h, ue,h; zT,h, ze,h)

≥ aS(uT,h, ue,h;uT,h, ue,h)+ aS(zT,h, ze,h; zT,h, ze,h)+ aS(uT,h, ue,h; zT,h, ze,h)
≥ ‖(uT,h, ue,h)‖2

M + ‖(zT,h, ze,h)‖2
M − ‖(uT,h, ue,h)‖M‖(zT,h, ze,h)‖M

≥ 1

2

[
‖(uT,h, ue,h)‖2

M + ‖(zT,h, ze,h)‖2
M

]

≥ 1

2

[
‖(uT,h, ue,h)‖2

M + ‖Cm∂tuT,h‖2
Y ′,h

]
.

On the other hand we have

‖(uT ,h + zT ,h, ue,h + ze,h)‖2
M ≤

(
‖(uT ,h, ue,h)‖M + ‖(zT ,h, ze,h)‖M

)2

≤ 2
(
‖(uT ,h, ue,h)‖2

M + ‖(zT ,h, ze,h)‖2
M

)

= 2
(
‖(uT ,h, ue,h)‖2

M + ‖Cm∂tuT ,h‖2
Y ′,h

)
,

and therefore

a(uT ,h, ue,h;uT ,h + zT ,h, ue,h + ze,h)

≥ 1

2
√

2

[
‖(uT ,h, ue,h)‖2

M + ‖Cm∂tuT ,h‖2
Y ′,h

]1/2‖(uT ,h + zT ,h, ue,h + ze,h)‖M .

follows which implies the assertion. ��
The discrete stability condition (16.15) implies unique solvability of the Galerkin–
Petrov finite element formulation (16.13). As in [23, Theorem 3.2] we then conclude
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Cea’s lemma,

[
‖(uT − uT ,h, ue − ue,h)‖2

M + ‖Cm∂t (uT − uT ,h)‖2
Y ′,h

]1/2

≤ inf
(vT ,h,ve,h)∈Xh×Yh

[
‖(uT − vT ,h, ue − ve,h)‖2

M + ‖Cm∂t (uT − vT ,h)‖2
Y ′
]1/2

,

and as in [23, Theorem 3.3] we can prove the following convergence result.

Theorem 16.2 Let (uT , ue) ∈ X × Y and (uT ,h, ue,h) ∈ Xh × Yh be the unique
solutions of the variational formulations (16.4) and (16.13), respectively. Let Yh =
Xh = S1

h(Qh) ∩ X. Assume (uT ,h, ue,h) ∈ H 2(Q) × H 2(Q). Then there holds the
energy error estimate

‖uT − uT ,h‖L2(0,T ;H 1
0 (Ω))

+ ‖ue − ue,h‖L2(0,T ;H 1
0 (Ω))

≤ c h
[
|uT |H 2(Q) + |ue|H 2(Q)

]
.

(16.16)

From the definition of the bilinear form

a(uT , ue; vT , ve) = 〈Cm∂tuT , vT 〉Q + aS(uT , ue; vT , ve)

we conclude, by using Lemma 16.1,

a(vT ,h, ve,h; vT ,h, ve,h) = 〈Cm∂tvT ,h, vT ,h〉Q + aS(vT ,h, ve,h; vT ,h, ve,h)

≥ 1

2
Cm‖uT,h(T )‖2

L2(Ω)
+ ‖(vT ,h, ve,h)‖2

M > 0,

i.e. the stiffness matrix of the space time finite element variational formula-
tion (16.4) is positive definite which is desirable for algebraic multigrid methods
[1, 2, 20].

16.4 A Monolithic Algebraic Multigrid Method

The coupled system of linear equations arises from the variational formula-
tion (16.13),

Ax = b. (16.17)

Here x denotes the vector of coefficients of the finite element approximations for
the transmembrane potential uT and the extracellular potential ue. In fact, we use a
pointwise ordering of unknowns, which means at each node, we have two potential
degrees of freedom. This approach has been utilized in the AMG methods for
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solving fluid and elasticity problems in some monolithic fluid–structure interaction
solvers [9].

For coarsening, we use a simple matrix graph based AMG coarsening strategy
[8] to generate the hierarchical matrices on coarse levels, see the algorithm in [24,
Section 3.2.1]. This coarsening strategy usually leads to a very low operator and grid
complexity, approximately 1.2 and 1.1, respectively, in our numerical experiments.
Here, grid complexity denotes the total number of degrees of freedom on all levels
divided by the number of degrees of freedom on the finest level; operator complexity
is the total number of nonzero entries in all matrices on all levels, divided by the
number of nonzero entries on the finest level matrix. We refer to [2] for more details.
More sophisticated AMG coarsening strategies for the space–time finite element
discretization of parabolic equations are reported in [24], that may be considered for
such a coupled system in the near future, and help to improve the AMG convergence
rate. In addition, we need to have a proper smoother for such a coupled system.
For the current being, we employ blockwise ILU [21] as a smoother for such a
nonsymmetric system.

16.5 Numerical Results

In the following numerical example we set Ω = (0, 1)2 and T = 1, i.e., the
computational domain is a unit cube, Q = (0, 1)3. For studying the estimated order
of convergence (eoc), we consider the exact solution

uT (x, t) = x1(1 − x1)x2(1 − x2)t (1 − t),

ue(x, t) = sin(πx1) sin(πx2) sin(πt).

We run simulations on 6 mesh refinement levels with tetrahedral elements. On the
coarsest level, there are 250 degrees of freedom (#Dofs). The mesh on the next level
is obtained by subdividing each tetrahedron on the previously coarser level into 8
smaller tetrahedra. On the finest level, there are 4, 293, 378 degrees of freedom.

The conductivity matrices are given by

Mi =
[

0.25 0.15
0.15 0.25

]
, Me =

[
4.95 0.05
0.05 4.95

]
,

which are diagonally dominant and therefore positive definite. To check assump-
tion (16.3) we compute μ = 12.5 and μ = 49.

The estimated order of convergence (eoc) in L2(0, T ;H 1
0 (Ω))- and L2(Q)-

norms are shown in Tables 16.1 and 16.2 for uT and ue, respectively. In the numer-
ical results we observe an almost linear convergence rate in the L2(0, T ;H 1

0 (Ω))-
norm as predicted by the theory. Further, we see a second order convergence rate in
the L2(Q)-norm for uT , and a bit less for ue.
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Table 16.1 Estimated order of convergence (eoc) of ‖uT − uT,h‖L2(0,T ;H 1
0 (Ω)) and

‖uT − uT,h‖L2(Q)

#Dofs ‖uT − uT,h‖L2(0,T ;H 1
0 (Ω)) eoc ‖uT − uT,h‖L2(Q) eoc

250 1.01e−1 – 1.96e−2 –

1,458 4.76e−2 1.09 8.15e−3 1.26

9,826 1.78e−2 1.42 2.29e−3 1.83

71,874 7.93e−3 1.16 5.65e−4 2.02

549,250 4.15e−3 0.93 1.40e−4 2.02

4,293,378 2.22e−3 0.90 3.60e−5 1.95

Table 16.2 Estimated order of convergence (eoc) of ‖ue−ue,h‖L2(0,T ;H 1
0 (Ω)) and ‖ue−ue,h‖L2(Q)

#Dofs ‖ue − ue,h‖L2(0,T ;H 1
0 (Ω)) eoc ‖ue − ue,h‖L2(Q) eoc

250 7.35e−1 – 1.02e−1 –

1,458 4.10e−1 0.84 3.69e−2 1.47

9,826 2.10e−1 0.96 1.14e−2 1.69

71,874 1.06e−1 1.00 3.60e−3 1.67

549,250 5.27e−2 1.00 1.83e−3 1.60

4,293,378 2.64e−2 1.00 4.02e−4 1.56

Table 16.3 AMG
performance

#Dofs #It Time (s) Opt Comp Grid Comp

250 4 0.003 s 1.33 1.22

1,458 5 0.025 s 1.24 1.21

9,826 6 0.8 s 1.19 1.18

71,874 7 18 s 1.17 1.16

549,250 12 497 s 1.16 1.15

4,293,378 18 14,343 s 1.15 1.15

For the AMG solver, we set the relative residual norm 10−11 as a stopping criterion.
In the smoothing steps, we apply Richardson iterations to the blockwise ILU
preconditioned system. For the current being, we set the relative residual error
0.08 as a stopping criterion for the Richardson iterations in order to achieve
multigrid convergence. This requires different smoothing steps on different mesh
levels. Future work will concentrate on finding more robust smoothers for such
coupled systems. In Table 16.3, we show the number of AMG iterations (#It), the
computational time in seconds (s), the operator complexity (Opt Comp), and the grid
complexity (Grid Opt). As observed, we obtain a reasonable AMG performance
in terms of AMG iterations. Although the operator/grid complexity is low, the
computational time is rather high due to the costly ILU smoother and various
smoothing steps. This requires further investigations.
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16.6 An Extension to the Nonlinear Model

In this section, we extend the space–time finite element method for the linear model
to the fully nonlinear bidomain equations: Find the transmembrane potential uT , the
extracellular potential ue, and the cellular state variable ν, satisfying the system of
the nonlinear bidomain equations

Cm∂tuT (x, t)+ I (uT (x, t), ν(x, t))

−divx[Mi(x)∇xuT (x, t)] − divx [Mi(x)∇xue(x, t)] = si (x, t),

(16.18)

−divx [Mi(x)∇x(x, t)] − divx [(Mi(x)+Me(x))∇xue(x, t)] = se(x, t),

(16.19)

∂t ν(x, t)+H(uT (x, t), ν(x, t)) = sν(x, t)

(16.20)

for (x, t) ∈ Q, with Dirichlet boundary conditions uT = gT , ue = ge on the lateral
boundary Σ := ∂Ω × (0, T ), and given initial conditions uT = u0, ν = ν0 in Ω ,
t = 0. Here, we use the FitzHugh–Nagumo (FHN) model

I (uT (x, t), ν(x, t)) = c1uT (x, t)(uT (x, t)− uth)(uT (x, t)− 1)+ c2ν(x, t),

(16.21)

H(uT (x, t), ν(x, t)) = b(dν(x, t), uT (x, t)) (16.22)

with given positive constants c1, c2, uth, b, and d .
In this example, the conductivity matrices are given by

Mi =
[

0.75 0.15
0.15 0.75

]
, Me =

[
1.25 0.30
0.30 1.25

]
,

and the constants are c1 = 0.175, c2 = 0.03, uth = 0.12, b = d = 10. We use the
exact solutions

uT (x, t) = x1(1 − x1)x2(1 − x2)t (1 − t),

ue(x, t) = sin(πx1) sin(πx2) sin(πt),

ν(x, t) = cos(πx1) cos(πx2) cos(πt).

The estimated order of convergence (eoc) in L2(0, T ;H 1
0 (Ω))- and L2(Q)-norms

are shown in Tables 16.4, 16.5, and 16.6 for uT , ue and ν, respectively. As in
the numerical example for the linear case, we see a linear convergence rate in the
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Table 16.4 Estimated order of convergence (eoc) of ‖uT − uT,h‖L2(0,T ;H 1
0 (Ω)) and

‖uT − uT,h‖L2(Q)

#Dofs ‖uT − uT,h‖L2(0,T ;H 1
0 (Ω)) eoc ‖uT − uT,h‖L2(Q) eoc

375 1.53e−2 – 9.60e−4 –

2,187 8.22e−3 0.90 2.90e−4 1.72

1,4739 3.99e−3 1.04 9.55e−5 1.60

107,811 1.96e−3 1.03 2.60e−5 1.87

823,875 9.74e−4 1.00 6.90e−6 1.91

Table 16.5 Estimated order of convergence (eoc) of ‖ue−ue,h‖L2(0,T ;H 1
0 (Ω)) and ‖ue−ue,h‖L2(Q)

#Dofs ‖ue − ue,h‖L2(0,T ;H 1
0 (Ω)) eoc ‖ue − ue,h‖L2(Q) eoc

375 7.37e−1 – 1.08e−1 –

2,187 4.11e−1 0.84 3.98e−2 1.44

1,4739 2.11e−1 0.96 1.23e−2 1.69

107,811 1.06e−1 1.00 3.83e−3 1.68

823,875 5.28e−2 1.00 1.25e−3 1.61

Table 16.6 Estimated order of convergence (eoc) of ‖ν − νe,h‖L2(0,T ;H 1
0 (Ω)) and ‖ν − νe,h‖L2(Q)

#Dofs ‖ν − νe,h‖L2(0,T ;H 1
0 (Ω)) eoc ‖ν − νe,h‖L2(Q) eoc

375 9.74e−1 – 3.90e−2 –

2,187 4.61e−1 1.08 8.79e−3 2.15

1,4739 2.22e−1 1.05 2.08e−3 2.08

107,811 1.10e−1 1.02 5.08e−4 2.03

823,875 5.48e−2 1.00 1.28e−4 1.99

L2(0, T ;H 1
0 (Ω))-norm. Further, we observe a quadratic convergence rate in the

L2(Q)-norm for Vtm, and a bit less for ue.

16.7 Conclusions

In this contribution we have applied a continuous Galerkin–Petrov space–time finite
element method [23] to a linear system of parabolic–elliptic equations, which may
be considered as a simplified model towards the fully coupled nonlinear bidomain
equations. It requires further development in order to apply such a space–time
finite method to the full model which includes the nonlinearity and the cellular
state variables. Then, for an accurate resolution of the wave type potentials the use
of adaptive refined finite element meshes in the space–time domain seems to be
mandatory, and motivates the proposed approach.

Under a rather general condition on the conductivities we have shown the
stability of the space–time finite element method for the model problem. The linear
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order of convergence for both potential variables with respect to the spatial energy
norm has been confirmed by numerical results.

A monolithic AMG method has been utilized to solve the coupled system of
algebraic equations up to about 4.3 million degrees of freedom, which on the one
hand, already shows quite nice performance with respect to the AMG iterations, and
on the other hand, demands further exploration on finding more robust and efficient
smoothers.
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the Grant SFB Mathematical Optimization and Applications in Biomedical Sciences.
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Chapter 17
A Stabilized Space–Time Finite Element
Method for the Wave Equation

Olaf Steinbach and Marco Zank

Abstract We consider a space–time variational formulation of the wave equation
by including integration by parts also in the time variable. A standard finite
element discretization by using lowest order piecewise linear continuous functions
then requires a CFL condition to ensure stability. To overcome this restriction,
and following the work of Zlotnik (Convergence rate estimates of finite-element
methods for second-order hyperbolic equations. In: Numerical methods and appli-
cations, pp. 155–220. CRC, Boca Raton, 1994), we consider, in the case of
tensor–product space–time discretizations, a stabilized variational problem which
is unconditionally stable. We provide a stability and error analysis, and some
numerical results which confirm the theoretical findings.

17.1 Introduction

While for the analysis of parabolic and hyperbolic partial differential equations
a variety of approaches such as Fourier and Laplace methods, semigroup the-
ory, or Galerkin methods, is available, see, for example, [9–11, 14, 21, 22],
standard approaches for the numerical solution are in most cases based on semi–
discretizations where the discretization in space and time is split accordingly, see,
e.g., [19] for parabolic problems, and [5, 6, 15] for hyperbolic equations. More
recently, there exist space–time approaches as for example in [1, 2, 12, 13, 16, 17, 20]
for parabolic problems, and [3, 4, 7, 8, 23] for hyperbolic equations, see also
[18] where the space–time discretization of the wave equation requires some CFL
condition.

In this work we introduce a stabilized finite element method for a second order
ordinary differential equation and we transfer this approach to the corresponding
hyperbolic partial differential equation. As model problem we consider the Dirichlet
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problem for the wave equation,

∂ttu(x, t)−Δxu(x, t) = f (x, t) for (x, t) ∈ Q := Ω × (0, T ),

u(x, t) = 0 for (x, t) ∈ Σ := Γ × (0, T ),

u(x, 0) = ∂tu(x, 0) = 0 for x ∈ Ω,

⎫⎪⎬
⎪⎭

(17.1)

where Ω ⊂ R
d, d = 1, 2, 3, is a bounded domain with Lipschitz boundary

Γ = ∂Ω, T > 0 is a finite time and f is a given right-hand side. The
variational formulation of (17.1) is to find u ∈ H

1,1
0;0, (Q) := L2(0, T ;H 1

0 (Ω)) ∩
H 1

0,(0, T ;L2(Ω)) ⊂ H 1(Q) such that

− 〈∂tu, ∂tw〉L2(Q) + 〈∇xu,∇xw〉L2(Q) = 〈f,w〉Q (17.2)

is satisfied for all w ∈ H
1,1
0; ,0(Q) := L2(0, T ;H 1

0 (Ω)) ∩ H 1
,0(0, T ;L2(Ω)) ⊂

H 1(Q), where f ∈ L2(Q) is given. Here, we use the standard Sobolev and Bochner
spaces with the subspaces

H 1
0,(0, T ;L2(Ω)) :=

{
v ∈ H 1(0, T ;L2(Ω)) : v(·, 0) = 0

}

and

H 1
,0(0, T ;L2(Ω)) :=

{
v ∈ H 1(0, T ;L2(Ω)) : v(·, T ) = 0

}
.

Furthermore, 〈·, ·〉Q denotes the duality pairing as extension of the inner product in
L2(Q). Note that the initial condition u(·, 0) = 0 is considered in the strong sense,
whereas the initial condition ∂tu(·, 0) = 0 is incorporated in a weak sense. It is
well–known that for f ∈ L2(Q) there exists a unique solution u ∈ H

1,1
0;0, (Q) of the

variational formulation (17.2), see [9, Theorem 3.2 in Chapter IV], and [18].
Nevertheless, a conforming tensor–product space–time discretization of (17.2)

by piecewise multilinear continuous functions requires the CFL condition [18]

ht ≤ 1√
d
hx, (17.3)

where ht and hx are the uniform mesh sizes in time and space, see also Remark 17.1
in Sect. 17.3. To gain a deeper understanding of the CFL condition (17.3) a
corresponding scalar ordinary differential equation

∂ttu(t)+ μu(t) = f (t) for t ∈ (0, T ), u(0) = ∂tu(0) = 0, (17.4)

where μ > 0 and f are given, is analyzed and an unconditionally stable finite
element method for (17.4) is introduced. Note that μ > 0 is related to the
eigenvalues of the Laplace operator for homogeneous Dirichlet conditions.
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Instead of the variational formulation (17.2) we consider a stabilized formulation
which generalizes the approach of [23]. This stabilization is first discussed for the
scalar differential equation (17.4), and then transferred to the wave equation (17.1).
The rest of this paper is organized as follows: In Sect. 17.2 we consider the second
order ordinary differential equation (17.4), where we show unique solvability. In
addition, we prove a discrete inf–sup condition to get an unconditionally stable
numerical scheme and error estimates. We present some numerical examples to
illustrate the theoretical results. In Sect. 17.3 we extend the ideas of Sect. 17.2 to the
scalar wave equation, where we get an unconditionally stable finite element method
for the wave equation. We present a numerical analysis of the discretization scheme,
an error estimate with respect to ‖ · ‖L2(Q) and we provide some numerical results
for illustration.

17.2 Second Order Ordinary Differential Equations

As a model problem we consider the second order linear equation for μ > 0,

∂ttu(t)+ μu(t) = f (t) for t ∈ (0, T ), u(0) = ∂tu(0) = 0, (17.5)

and the variational formulation to find u ∈ H 1
0,(0, T ) such that

a(u,w) = 〈f,w〉(0,T ) (17.6)

is satisfied for all w ∈ H 1
,0(0, T ), where T > 0 and f ∈ [H 1

,0(0, T )]′ are given, and
where the bilinear form is

a(u,w) := −〈∂tu, ∂tw〉L2(0,T ) + μ〈u,w〉L2(0,T ).

Note that 〈·, ·〉(0,T ) denotes the duality pairing as extension of the inner product in
L2(0, T ), and the Sobolev spaces

H 1
0,(0, T ) :=

{
v ∈ H 1(0, T ) : v(0) = 0

}
,

H 1
,0(0, T ) :=

{
v ∈ H 1(0, T ) : v(T ) = 0

}

are endowed with the inner products

〈u, v〉H 1
0,(0,T ) := 〈u, v〉H 1

,0(0,T ) :=
∫ T

0
∂tu(t)∂t v(t) dt,
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and with the induced norm

|u|2
H 1(0,T )

:= ‖∂tu‖2
L2(0,T )

=
∫ T

0
[∂tu(t)]2 dt.

The dual space [H 1
,0(0, T )]′ is characterized as completion of L2(0, T ) with respect

to the norm

‖f ‖[H 1
,0(0,T )]′ := sup

0 �=w∈H 1
,0(0,T )

〈f,w〉(0,T )

|w|H 1(0,T )

.

For v ∈ H 1
0,(0, T ) we define w(t) = (H T v)(t) := v(T )−v(t), i.e. w ∈ H 1

,0(0, T ).
Then the variational formulation (17.6) is equivalent to the variational formulation
to find u ∈ H 1

0,(0, T ) such that

− 〈∂tu, ∂tH T v〉L2(0,T ) + μ〈u,H T v〉L2(0,T ) = 〈f,H T v〉(0,T ) (17.7)

is satisfied for all v ∈ H 1
0,(0, T ). Since the bilinear form

−〈∂tu, ∂tH T v〉L2(0,T ) = 〈∂tu, ∂tv〉L2(0,T ) for u, v ∈ H 1
0,(0, T )

implies an elliptic operator A : H 1
0,(0, T ) → [H 1

0,(0, T )]′, unique solvability
of the variational formulation (17.7) follows by using some compact perturbation
argument, and injectivity, see [18, Theorem 4.7].

Next, we consider a conforming finite element discretization for the variational
formulation (17.7). For a time interval (0, T ) and a discretization parameter N ∈ N
we define nodes

0 = t0 < t1 < t2 < . . . < tN−1 < tN = T ,

finite elements τ = (t −1, t ) of local mesh size h = t − t −1,  = 1, . . . , N ,
the global mesh size h = maxh and a related finite element space S1

h(0, T ) =
span{ϕk}Nk=0 of piecewise linear continuous functions, where the basis functions ϕk

are the usual hat functions. The Galerkin–Bubnov finite element discretization of
the variational formulation (17.7) is to find uh ∈ Vh := S1

h(0, T ) ∩ H 1
0,(0, T ) =

span{ϕk}Nk=1 such that

− 〈∂tuh, ∂tH T vh〉L2(0,T ) + μ〈uh,H T vh〉L2(0,T ) = 〈f,H T vh〉(0,T ) (17.8)

is satisfied for all vh ∈ Vh. It turns out that for a sufficiently small mesh size

h ≤ 2
√

3

(2 +√
μT )μT

(17.9)
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there holds the discrete stability condition [18, Theorem 4.13]

c(μ, T ) |uh|H 1(0,T ) ≤ sup
0 �=vh∈Vh

a(uh,H T vh)

|vh|H 1(0,T )

for all uh ∈ Vh,

implying the error estimate [18, Theorem 4.14], when assuming u ∈ H 2(0, T ),

|u− uh|H 1(0,T ) ≤ c(μ, T ) h |u|H 2(0,T ) .

When considering the stability of the finite element scheme (17.8) in the case of a
uniform mesh, i.e. when analyzing the root condition, instead of (17.9) we conclude
the weaker mesh assumption [18]

h ≤
√

12

μ
.

To overcome the mesh condition (17.9) we will stabilize the numerical scheme
in (17.8) for which we need the following technical lemmata, where the trapezoidal
rule is used analogously as in [23, Chapter 2]. In addition to S1

h(0, T ) we also use
the finite element space S0

h(0, T ) of piecewise constant functions.

Lemma 17.1 For all f ∈ L2(0, T ) there holds

∂t Ih

∫ t

0
f (s)ds = Q0

hf = ∂t Ih

∫ t

T

f (s)ds, (17.10)

where Ih : C[0, T ] → S1
h(0, T ) is the piecewise linear nodal interpolation operator,

andQ0
h : L2(0, T ) → S0

h(0, T ) denotes the L2 projection on the piecewise constant
finite element space S0

h(0, T ).

Proof For t ∈ τ = (t −1, t ),  = 1, . . . , N , we have

∂t Ih

∫ t

0
f (s)ds = 1

h 

[∫ t 

0
f (s)ds −

∫ t −1

0
f (s)ds

]
= 1

h 

∫ t 

t −1

f (s)ds = Q0
hf,

and

∂t Ih

∫ t

T

f (s)ds = 1

h 

[∫ t 

T

f (s)ds −
∫ t −1

T

f (s)ds

]
= 1

h 

∫ t 

t −1

f (s)ds = Q0
hf.

��
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Lemma 17.2 For all uh ∈ S1
h(0, T ) ∩ H 1

0,(0, T ) and wh ∈ S1
h(0, T ) ∩ H 1

,0(0, T )

there holds the representation

〈uh,wh〉L2(0,T ) =
1

12

N∑
 =1

h2
 〈∂tuh, ∂twh〉L2(τ )

+ 〈uh,Q0
hwh〉L2(0,T ), (17.11)

where Q0
h : L2(0, T ) → S0

h(0, T ) denotes the L2 projection on the piecewise
constant finite element space S0

h(0, T ).

Proof We consider the L2 projection Q0
h on the finite element space S0

h(0, T ), and
with the error representation of the trapezoidal rule we obtain for each finite element
τ ,  = 1, . . . , N ,

Q0
h

∫ t

T

wh(s) ds = 1

h 

∫ t 

t −1

∫ t

T

wh(s) ds dt

= 1

2

[∫ t −1

T

wh(s) ds +
∫ t 

T

wh(s) ds

]
− h2

 

12
∂twh|τ 

= Q0
hIh

∫ t

T

wh(s) ds − h2
 

12
∂twh|τ .

Using integration by parts and (17.10) we further have

∫ T

0
∂tuh(t) Ih

∫ t

T

wh(s) ds dt = −
∫ T

0
uh(t) ∂t Ih

∫ t

T

wh(s) ds dt

= −
∫ T

0
uh(t)Q

0
hwh(t) dt .

With this we then conclude, by using integration by parts and the local definition of
the L2 projection Q0

h,

〈uh,wh〉L2(0,T ) =
∫ T

0
uh(t) ∂t

∫ t

T

wh(s) ds dt = −
∫ T

0
∂tuh(t)

∫ t

T

wh(s) ds dt

= −
N∑
 =1

∫ t 

t −1

∂tuh(t)Q
0
h

∫ t

T

wh(s)ds dt

=
N∑
 =1

h2
 

12

∫ t 

t −1

∂tuh(t) ∂twh(t) dt −
N∑
 =1

∫ t 

t −1

∂tuh(t)Q
0
hIh

∫ t

T

wh(s) ds dt

= 1

12

N∑
 =1

h2
 〈∂tuh, ∂twh〉L2(τ )

−
N∑
 =1

∫ t 

t −1

∂tuh(t) Ih

∫ t

T

wh(s) ds dt
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= 1

12

N∑
 =1

h2
 〈∂tuh, ∂twh〉L2(τ )

−
∫ T

0
∂tuh(t) Ih

∫ t

T

wh(s)ds dt

= 1

12

N∑
 =1

h2
 〈∂tuh, ∂twh〉L2(τ )

+
∫ T

0
uh(t) ∂t Ih

∫ t

T

wh(s)ds dt

= 1

12

N∑
 =1

h2
 〈∂tuh, ∂twh〉L2(τ )

+ 〈uh,Q0
hwh〉L2(0,T ),

i.e. the representation (17.11). ��
Now we are in a position to find an alternative representation of the bilinear form
a(·, ·).
Corollary 17.1 For uh ∈ S1

h(0, T )∩H 1
0,(0, T ) and wh ∈ S1

h(0, T )∩H 1
,0(0, T ) we

have

a(uh,wh) = −〈∂tuh, ∂twh〉L2(0,T ) + μ〈uh,wh〉L2(0,T )

= −〈∂tuh, ∂twh〉L2(0,T ) +
N∑
 =1

μh2
 

12
〈∂tuh, ∂twh〉L2(τ )

+ μ〈uh,Q0
hwh〉L2(0,T )

=
N∑
 =1

(
μh2

 

12
− 1

)
〈∂tuh, ∂twh〉L2(τ )

+ μ〈uh,Q0
hwh〉L2(0,T ). (17.12)

Motivated by the representation (17.12) we now define the perturbed bilinear form

ah(uh,wh) := −〈∂tuh, ∂twh〉L2(0,T ) + μ〈uh,Q0
hwh〉L2(0,T ) (17.13)

for uh ∈ S1
h(0, T )∩H 1

0,(0, T ) and wh ∈ S1
h(0, T )∩H 1

,0(0, T ), and we consider the

perturbed variational formulation to find ũh ∈ S1
h(0, T ) ∩H 1

0,(0, T ) such that

ah(̃uh,wh) = 〈f,wh〉(0,T ) (17.14)

is satisfied for all wh ∈ S1
h(0, T ) ∩H 1

,0(0, T ).

Lemma 17.3 The perturbed bilinear form (17.13) is bounded, i.e. we have

∣∣∣ah(uh,wh)

∣∣∣ ≤
(

1 + 1

2
μT 2

)
|uh|H 1(0,T )|wh|H 1(0,T )

for all uh ∈ S1
h(0, T ) ∩H 1

0,(0, T ), wh ∈ S1
h(0, T ) ∩H 1

,0(0, T ).
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Proof With the Cauchy–Schwarz inequality, the L2 stability of Q0
h, and with the

Poincaré inequality we have

∣∣∣ah(uh,wh)

∣∣∣ ≤ |uh|H 1(0,T )|wh|H 1(0,T ) + μ ‖uh‖L2(0,T )‖Q0
hwh‖L2(0,T )

≤
(

1 + 1

2
μT 2

)
|uh|H 1(0,T )|wh|H 1(0,T )

for uh ∈ S1
h(0, T )∩H 1

0,(0, T ), wh ∈ S1
h(0, T )∩H 1

,0(0, T ), and so the assertion. ��
To prove a discrete stability condition for the perturbed bilinear form (17.13) we
need the following lemma which is analogous to [23, Theorem 2.1].

Lemma 17.4 For a given zh ∈ S1
h(0, T ) ∩H 1

,0(0, T ) represented by

zh(t) =
N∑
i=0

ziϕi(t) with zN = 0

and a fixed index j ∈ {0, . . . , N − 1} there exists a function v
j
h ∈ S1

h(0, T ) ∩
H 1

0,(0, T ) with the following properties:

i. For t ∈ [0, tj ] we have vjh(t) = 0.
ii. For  = j + 1, . . . , N we have

〈∂t vjh, ∂t zh〉L2(τ )
= 1

2

(
z2
 − z2

 −1

)

as well as

〈vjh,Q0
hzh〉L2(τ )

= 1

2

(∫ t 

tj

zh(s)ds

)2

− 1

2

(∫ t −1

tj

zh(s)ds

)2

.

iii. There holds the estimate

|vjh|H 1(0,T ) ≤ ‖zh‖L2(0,T ).

Proof For zh ∈ S1
h(0, T )∩H 1

,0(0, T ) we consider the piecewise linear interpolation
of the antiderivative, i.e. for t ∈ [0, T ] we define

vh(t) :=
N∑
k=0

(∫ tk

0
zh(s)ds

)
ϕk(t) = Ih

∫ t

0
zh(s)ds , vh ∈ S1

h(0, T )∩H 1
0,(0, T ).
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From (17.10) the relation ∂t vh = Q0
hzh follows. For a fixed index j ∈ {0, . . . , N−1}

we now define

z
j

h(t) =
N∑
i=0

z
j

i ϕi(t), z
j

i =
{
(−1)j−izj for i = 0, . . . , j,

zi for i = j + 1, . . . , N.

Note that zjh ∈ S1
h(0, T )∩H 1

,0(0, T ), and according to z
j
h we introduce vjh satisfying

∂tv
j

h = Q0
hz

j

h. In particular for j > 0 and t ∈ τ for  = 1, . . . , j we then have

∂tv
j
h(t) = Q0

hz
j
h(t) =

1

h 

∫ t 

t −1

z
j
h(s) ds =

1

2

(
z
j

 −1 + z
j
 

)
= 0,

and due to v
j
h(0) = 0 we conclude v

j
h(t) = 0 for t ∈ [0, tj ], i.e. i.

To prove ii. we compute for  = j + 1, . . . , N

〈∂t vjh, ∂t zh〉L2(τ )
= 〈Q0

hz
j

h, ∂t zh〉L2(τ )

= 1

2

(
z
j

 −1 + z
j
 

)(
z − z −1

)

= 1

2

(
z −1 + z 

)(
z − z −1

)
= 1

2

(
z2
 − z2

 −1

)

as well as

〈vjh,Q0
hzh〉L2(τ )

=
∫ t 

t −1

Ih

∫ t

0
z
j
h(s)ds Q

0
hzh(t) dt

= Q0
hzh|τ 

∫ t 

t −1

[∫ t −1

0
z
j
h(s)ds ϕ −1(t)+

∫ t 

0
z
j
h(s)ds ϕ (t)

]
dt

= 1

h 

∫ t 

t −1

zh(s)ds
1

2
h 

[∫ t −1

0
z
j
h(s)ds +

∫ t 

0
z
j
h(s)ds

]

= 1

2

∫ t 

t −1

zh(s)ds

[∫ t −1

tj

zh(s)ds +
∫ t 

tj

zh(s)ds

]

= 1

2

(∫ t 

t −1

zh(s) ds

)2

+
∫ t 

t −1

zh(s) ds

∫ t −1

tj

zh(s) ds

= 1

2

(∫ t 

t −1

zh(s) ds +
∫ t −1

tj

zh(s) ds

)2

− 1

2

(∫ t −1

tj

zh(s) ds

)2

= 1

2

(∫ t 

tj

zh(s) ds

)2

− 1

2

(∫ t −1

tj

zh(s)ds

)2

.
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From the L2 stability of Q0
h we finally conclude the third assertion, i.e.

|vjh|H 1(0,T ) = |vjh|H 1(tj ,T ) = ‖Q0
hz

j
h‖L2(tj ,T )

= ‖Q0
hzh‖L2(tj ,T ) ≤ ‖Q0

hzh‖L2(0,T ) ≤ ‖zh‖L2(0,T ).

��
Lemma 17.5 The variational formulation to find zh ∈ S1

h(0, T ) ∩ H 1
,0(0, T ) such

that

ah(vh, zh) = 〈g, ∂t vh〉L2(0,T ) (17.15)

is satisfied for all vh ∈ S1
h(0, T ) ∩ H 1

0,(0, T ) is uniquely solvable, where g ∈
L2(0, T ) is given. Moreover, the stability estimate

‖zh‖L2(0,T ) ≤ 2T ‖g‖L2(0,T ) (17.16)

holds for any mesh with maximal mesh size h.

Proof The finite element stiffness matrix of the variational problem (17.15) is upper
triangular with positive diagonal elements and hence, there exists a unique solution
zh ∈ S1

h(0, T ) ∩H 1
,0(0, T ) of (17.15).

For the stability estimate we consider for an index j ∈ {0, . . . , N−1} the function
v
j
h ∈ S1

h(0, T ) ∩ H 1
0,(0, T ) as given in Lemma 17.4. Plugging v

j
h into (17.15) and

by using the properties of Lemma 17.4 this gives

〈g, ∂t vjh〉L2(0,T ) = ah(v
j

h, zh)

= −〈∂t vjh, ∂t zh〉L2(0,T ) + μ〈vjh,Q0
hzh〉L2(0,T )

= −
N∑

 =j+1

〈∂t vjh, ∂t zh〉L2(τ )
+ μ

N∑
 =j+1

〈vjh,Q0
hzh〉L2(τ )

= −1

2

N∑
 =j+1

(
z2
 − z2

 −1

)
+ μ

2

N∑
 =j+1

⎛
⎝
(∫ t 

tj

zh(s)ds

)2

−
(∫ t −1

tj

zh(s)ds

)2
⎞
⎠

= 1

2
z2
j +

μ

2

(∫ T

tj

zh(s)ds

)2

.
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This result yields, with the Cauchy–Schwarz inequality, and the use of the properties
of Lemma 17.4,

‖zh‖2
L2(0,T )

=
N∑
 =1

‖zh‖2
L2(τ )

=
N∑
 =1

h 

3

(
z2
 + z z −1 + z2

 −1

)
≤ 1

2

N∑
 =1

h 

(
z2
 + z2

 −1

)

≤ 1

2

N−1∑
j=1

hj z
2
j +

1

2

N−1∑
j=0

hj+1z
2
j

≤
N−1∑
j=1

hj 〈g, ∂t vjh〉L2(0,T ) +
N−1∑
j=0

hj+1 〈g, ∂t vjh〉L2(0,T )

≤
N−1∑
j=1

hj‖g‖L2(0,T )|vjh|H 1(0,T ) +
N−1∑
j=0

hj+1‖g‖L2(0,T )|vjh|H 1(0,T )

≤ 2T ‖g‖L2(0,T )‖zh‖L2(0,T ),

i.e. the assertion. ��
Lemma 17.6 For each uh ∈ S1

h(0, T ) ∩ H 1
0,(0, T ) there holds the discrete inf–sup

condition

1

1 +√
2μT 2

|uh|H 1(0,T ) ≤ sup
0 �=wh∈S1

h(0,T )∩H 1
,0(0,T )

|ah(uh,wh)|
|wh|H 1(0,T )

.

Proof For a fixed function uh ∈ S1
h(0, T )∩H 1

0,(0, T ) let wh ∈ S1
h(0, T )∩H 1

,0(0, T )

be the unique solution of (17.15) for g := ∂tuh ∈ L2(0, T ), i.e. we have

ah(vh,wh) = 〈∂tuh, ∂t vh〉L2(0,T ) (17.17)

for all vh ∈ S1
h(0, T ) ∩H 1

0,(0, T ). For the particular choice vh(t) = wh(0)−wh(t)

with vh ∈ S1
h(0, T ) ∩H 1

0,(0, T ) we obtain

〈∂twh, ∂twh〉L2(0,T ) − μ〈wh −wh(0),Q
0
hwh〉L2(0,T ) = −〈∂tuh, ∂twh〉L2(0,T ),

and hence we conclude, by using the Cauchy–Schwarz and Poincaré inequalities,
and the L2 stability of the L2 projection Q0

h,

|wh|2H 1(0,T )
= −〈∂tuh, ∂twh〉L2(0,T ) + μ 〈wh −wh(0),Q0

hwh〉L2(0,T )

≤ |uh|H 1(0,T )|wh|H 1(0,T ) + μ ‖wh −wh(0)‖L2(0,T )‖Q0
hwh‖L2(0,T )
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≤ |uh|H 1(0,T )|wh|H 1(0,T ) +
1√
2
μT |wh|H 1(0,T )‖wh‖L2(0,T )

≤
(

1 +√
2μT 2

)
|uh|H 1(0,T )|wh|H 1(0,T ),

where in the last step we used the stability estimate (17.16).
The choice vh = uh ∈ S1

h(0, T ) ∩ H 1
0,(0, T ) in (17.17) and the estimate above

yield

ah(uh,wh) = |uh|2H 1(0,T )
≥ 1

1 +√
2μT 2

|uh|H 1(0,T )|wh|H 1(0,T )

and hence the discrete inf–sup condition follows. ��
Theorem 17.1 Let the unique solution u of (17.6) satisfy u ∈ Hs(0, T ) for some
s ∈ [1, 2]. There exists a unique solution ũh ∈ S1

h(0, T )∩H 1
0,(0, T ) of the Galerkin–

Petrov finite element discretization (17.14) satisfying

|u− ũh|H 1(0,T ) ≤
[

1 +
(

1 + 1

2
μT 2

)(
1 +√

2μT 2
)]

C1(s) h
s−1 |u|Hs(0,T )

+ 1

12
μ
(

1 +√
2μT 2

)
h2 C2 |u|H 1(0,T ),

where the constants C1, C2 > 0 are coming from standard interpolation error and
stability estimates.

Proof For any vh ∈ S1
h(0, T ) ∩H 1

0,(0, T ) we first have

|u− ũh|H 1(0,T ) ≤ |u− vh|H 1(0,T ) + |̃uh − vh|H 1(0,T )

and it remains to bound the second term. With the discrete inf–sup condition in
Lemma 17.6 and using the Galerkin orthogonality for the variational formula-
tions (17.6) and (17.14), we first have

1

1 +√
2μT 2

|̃uh − vh|H 1(0,T ) ≤ sup
0 �=wh∈S1

h(0,T )∩H 1
,0(0,T )

|ah(̃uh − vh,wh)|
|wh|H 1(0,T )

= sup
0 �=wh∈S1

h(0,T )∩H 1
,0(0,T )

|ah(̃uh,wh)− ah(vh,wh)|
|wh|H 1(0,T )

= sup
0 �=wh∈S1

h(0,T )∩H 1
,0(0,T )

|a(u,wh)− ah(vh,wh)|
|wh|H 1(0,T )

= sup
0 �=wh∈S1

h(0,T )∩H 1
,0(0,T )

|a(u− vh,wh)+ a(vh,wh)− ah(vh,wh)|
|wh|H 1(0,T )

.
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Now, with the boundedness of the bilinear form a(·, ·) and the Poincaré inequality
we further conclude

a(u− vh,wh) = −〈∂t (u− vh), ∂twh〉L2(0,T ) + μ〈u− vh,wh〉L2(0,T )

≤ |u− vh|H 1(0,T )|wh|H 1(0,T ) + μ‖u− vh‖L2(0,T )‖wh‖L2(0,T )

≤
(

1 + 1

2
μT 2

)
|u− vh|H 1(0,T )|wh|H 1(0,T ) .

Moreover, using the representation (17.12) we can estimate the consistency error by

|a(vh,wh)− ah(vh,wh)| = 1

12
μ

∣∣∣∣∣
N∑
 =1

h2
 〈∂tvh, ∂twh〉L2(τ )

∣∣∣∣∣

≤ 1

12
μh2 |vh|H 1(0,T )|wh|H 1(0,T ).

Hence we have

1

1 +√
2μT 2

|̃uh−vh|H 1(0,T ) ≤
(

1+ 1

2
μT 2

)
|u−vh|H 1(0,T )+

1

12
μh2 |vh|H 1(0,T ) ,

and therefore

|u− ũh|H 1(0,T ) ≤
[

1 +
(

1 + 1

2
μT 2

)(
1 +√

2μT 2
)]
|u− vh|H 1(0,T )

+ 1

12
μ
(

1 +√
2μT 2

)
h2 |vh|H 1(0,T )

follows. In particular for the piecewise linear nodal interpolation vh = Ihu we have

‖u− Ihu‖H 1(0,T ) ≤ C1(s) h
s−1 |u|Hs(0,T ), ‖Ihu‖H 1(0,T ) ≤ C2 |u|H 1(0,T ) .

��
As numerical example for the Galerkin finite element methods (17.8) and (17.14)
we consider a uniform discretization of the time interval (0, T ) with T = 10 and a

mesh size h = T/N . For μ = 1000 we consider the solution u(t) = sin2
(

5
4πt
)

and we compute the appearing integrals for the related right–hand side in (17.8)
and (17.14) by the usage of high order integration rules.

In Table 17.1 we present the results for the stabilized variational formula-
tion (17.14) which is unconditionally stable, and where the error estimate in the
energy norm of Theorem 17.1 is confirmed. In addition we also present the error
in L2(0, T ) where we observe a second order convergence, as expected. But at this
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Table 17.1 Numerical results for the stabilized variational formulation (17.14), μ = 1000,
T = 10

N h ‖u− ũh‖L2(0,10) eoc |u− ũh|H 1(0,10) eoc

4 2.5000000 1.7722e+00 0.00 9.0867e+00 0.00

8 1.2500000 6.0704e+00 −1.78 2.0130e+01 −1.15

16 0.6250000 1.2687e+00 2.26 9.4204e+00 1.10

32 0.3125000 5.7861e+00 −2.19 6.0121e+01 −2.67

64 0.1562500 3.3966e−01 4.09 6.1941e+00 3.28

128 0.0781250 7.6647e−02 2.15 2.2955e+00 1.43

256 0.0390625 2.0315e−02 1.92 9.4091e−01 1.29

512 0.0195312 5.2649e−03 1.95 4.1539e−01 1.18

1024 0.0097656 1.3365e−03 1.98 1.9803e−01 1.07

2048 0.0048828 3.3682e−04 1.99 9.7671e−02 1.02

4096 0.0024414 8.4229e−05 2.00 4.8663e−02 1.01

8192 0.0012207 2.1057e−05 2.00 2.4310e−02 1.00

16,384 0.0006104 5.2644e−06 2.00 1.2152e−02 1.00

32,768 0.0003052 1.3161e−06 2.00 6.0758e−03 1.00

Table 17.2 Numerical results for the variational formulation (17.8), μ = 1000, T = 10

N h ‖u− uh‖L2(0,10) eoc |u− uh|H 1(0,10) eoc

4 2.5000000 7.0573e+01 0.00 9.8785e+01 0.00

8 1.2500000 1.6871e+03 −4.58 3.7166e+03 −5.23

16 0.6250000 9.1421e+07 −15.73 3.7247e+08 −16.61

32 0.3125000 2.3915e+15 −24.64 1.9496e+16 −25.64

64 0.1562500 1.6337e+22 −22.70 2.9536e+23 −23.85

128 0.0781250 3.1417e−02 78.78 1.7859e+00 77.13

256 0.0390625 9.2885e−03 1.76 8.2361e−01 1.12

512 0.0195312 2.4767e−03 1.91 3.9567e−01 1.06

1024 0.0097656 6.3105e−04 1.97 1.9532e−01 1.02

2048 0.0048828 1.5839e−04 1.99 9.7325e−02 1.00

4096 0.0024414 3.9633e−05 2.00 4.8620e−02 1.00

8192 0.0012207 9.9106e−06 2.00 2.4304e−02 1.00

16,384 0.0006104 2.4778e−06 2.00 1.2152e−02 1.00

32,768 0.0003052 6.1946e−07 2.00 6.0757e−03 1.00

point we do not include any further discussion of error estimates in L2(0, T ) since
this is behind the scope of this contribution.

In Table 17.2 we present the related results for the variational formulation (17.8)
without stabilization. We observe that we have convergence for a sufficiently small
mesh size only. Note that

√
12/μ ≈ 0.1095.
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17.3 Wave Equation

Instead of the ordinary differential equation (17.5) we now consider the wave
equation (17.1) and the related variational formulation (17.2), and we aim to extend
the results of Sect. 17.2. For u ∈ H

1,1
0;0, (Q) and w ∈ H

1,1
0; ,0(Q) we define the bilinear

form

a(u,w) := −〈∂tu, ∂tw〉L2(Q) + 〈∇xu,∇xw〉L2(Q) .

The Hilbert spaces H 1,1
0;0, (Q) and H

1,1
0; ,0(Q), defined in Sect. 17.1, are endowed with

the inner product

〈u, v〉
H

1,1
0;0, (Q)

= 〈u, v〉
H

1,1
0; ,0(Q)

:=
∫ T

0

∫

Ω

[
∂tu(x, t)∂t v(x, t)+∇xu(x, t)·∇xv(x, t)

]
dx dt,

where the induced norm

|u|2
H 1(Q)

:=
∫ T

0

∫

Ω

[
|∂tu(x, t)|2 + |∇xu(x, t)|2

]
dx dt

is well–defined due to Poincaré inequalities with respect to space and time. As in
[9] we have unique solvability of (17.2) when assuming f ∈ L2(Q), in particular
we have, see [18],

|u|H 1(Q) ≤
1√
2
T ‖f ‖L2(Q).

Next, we examine a conforming finite element discretization for the variational
formulation (17.2) in the case where Ω = (0, L) is an interval for d = 1, or Ω

is polygonal for d = 2, or Ω is polyhedral for d = 3. For a tensor–product ansatz
we consider a sequence (TN)N∈N of admissible decompositions

Q = TN = Ω × [0, T ] =
Nx⋃
i=1

ωi ×
Nt⋃
 =1

τ  

with N := Nx · Nt space–time elements, where the time intervals τ = (t −1, t )

with mesh size ht, are defined via the decomposition

0 = t0 < t1 < t2 < · · · < tNt−1 < tNt = T

of the time interval (0, T ). For the spatial domain Ω we consider an admissible
and globally quasi–uniform decomposition into finite elements ωi with mesh size
hx,i which can be represented by using standard maps with respect to related
reference elements. Here, the spatial elements ωi are intervals for d = 1, triangles or
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quadrilaterals for d = 2, and tetrahedra or hexahedra for d = 3. Next, we consider
the finite element space

Q1
h(Q) := Vhx (Ω)⊗ S1

ht
(0, T )

of piecewise multilinear continuous functions, i.e.

Vhx (Ω) = span{ψj }Mx

j=1 ⊂ H 1
0 (Ω), S1

ht
(0, T ) = span{ϕ }Nt

 =0 ⊂ H 1(0, T ).

In fact, Vhx (Ω) is either the space S1
hx
(Ω) of piecewise linear continuous functions

on intervals (d = 1), triangles (d = 2), and tetrahedra (d = 3), or Vhx (Ω)

is the space Q1
hx
(Ω) of piecewise linear/bilinear/trilinear continuous functions on

intervals (d = 1), quadrilaterals (d = 2), and hexahedra (d = 3). A finite element
function uh ∈ Q1

h(Q) admits the representation

uh(x, t) =
Nt∑
 =0

Mx∑
j=1

u jψj (x)ϕ (t) for (x, t) ∈ Q. (17.18)

The Galerkin–Petrov finite element discretization of the variational formula-
tion (17.2) is to find uh ∈ Q1

h(Q) ∩H
1,1
0;0, (Q) such that

a(uh,wh) = −〈∂tuh, ∂twh〉L2(Q) + 〈∇xuh,∇xwh〉L2(Q) = 〈f,wh〉Q (17.19)

is satisfied for all wh ∈ Q1
h(Q) ∩ H

1,1
0; ,0(Q). After an appropriate ordering of the

degrees of freedom, the discrete variational formulation (17.19) is equivalent to the
linear system Khu = f with the system matrix

Kh := −Mhx ⊗ Aht + Ahx ⊗Mht ∈ R
Mx ·Nt×Mx ·Nt , (17.20)

where Mhx , Ahx ∈ R
Mx×Mx are the mass and stiffness matrix with respect to space,

and Mht , Aht ∈ R
Nt×Nt are the mass and stiffness matrix with respect to time,

respectively.

Remark 17.1 With the help of a von Neumann type stability analysis [5] for the
matrix (17.20) of the Galerkin–Petrov finite element method (17.19) for a uniform
discretization in time with mesh size ht and a uniform discretization in space
with mesh size hx for piecewise linear/bilinear/trilinear continuous functions on
intervals (d = 1), squares (d = 2), or cubes (d = 3) we can show stability of the
corresponding numerical scheme, if the condition

ht ≤ 1√
d
hx

is satisfied, see [18].
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From Remark 17.1 we conclude that we have only conditional stability of (17.19).
To stabilize the numerical scheme in (17.19) we use as in (17.12) again Zlotnik’s
idea [23] and we prove the following representation.

Lemma 17.7 For all uh ∈ Q1
h(Q) ∩ H

1,1
0;0, (Q) and wh ∈ Q1

h(Q) ∩ H
1,1
0; ,0(Q) the

bilinear form in (17.19) has the representation

a(uh,wh) = −〈∂tuh, ∂twh〉L2(Q) +
d∑

m=1

〈∂xmuh,Q0
ht
∂xmwh〉L2(Q) (17.21)

+
d∑

m=1

Nt∑
 =1

h2
t, 

12
〈∂t ∂xmuh, ∂t ∂xmwh〉L2(Ω×τ )

,

where Q0
ht
: L2(0, T ) → S0

ht
(0, T ) denotes the L2 projection with respect to time

on the space S0
ht
(0, T ) of piecewise constant functions.

Proof Let uh ∈ Q1
h(Q) ∩ H

1,1
0;0, (Q) and wh ∈ Q1

h(Q) ∩ H
1,1
0; ,0(Q) be given. With

the representation (17.18) we have for (x, t) ∈ Q

uh(x, t) =
Nt∑
 =1

Mx∑
j=1

u jψj (x)ϕ (t) =
Mx∑
j=1

Uj,h(t)ψj (x), Uj,h(t) =
Nt∑
 =1

u jϕ (t),

as well as

wh(x, t) =
Nt−1∑
 =0

Mx∑
j=1

w 
jψj (x)ϕ (t) =

Mx∑
j=1

Wj,h(t)ψj (x), Wj,h(t) =
Nt−1∑
 =0

w 
jϕ (t).

Hence we have, for m = 1, . . . , d , and by using (17.11),

〈∂xmuh, ∂xmwh〉L2(Q) =
Mx∑
i=1

Mx∑
j=1

∫ T

0
Ui,h(t)Wj,h(t)dt

∫

Ω

∂xmψi(x)∂xmψj (x) dx

=
Mx∑
i=1

Mx∑
j=1

[
1

12

Nt∑
 =1

h2
t, 〈∂tUi,h, ∂tWj,h〉L2(τ )

+ 〈Ui,h,Q
0
ht
Wj,h〉L2(0,T )

]

·
∫

Ω

∂xmψi(x)∂xmψj (x) dx

= 〈∂xmuh,Q0
ht
∂xmwh〉L2(Q) +

Nt∑
 =1

h2
t, 

12
〈∂t ∂xmuh, ∂t ∂xmwh〉L2(Ω×τ )

.

��
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Due to the representation (17.21) we define for uh ∈ Q1
h(Q) ∩H

1,1
0;0, (Q) and wh ∈

Q1
h(Q) ∩H

1,1
0; ,0(Q) the perturbed bilinear form

ah(uh,wh) := −〈∂tuh, ∂twh〉L2(Q) +
d∑

m=1

〈∂xmuh,Q0
ht
∂xmwh〉L2(Q)

= −〈∂tuh, ∂twh〉L2(Q) +
d∑

m=1

〈Q0
ht
∂xmuh, ∂xmwh〉L2(Q),

and we consider the perturbed variational problem to find ũh ∈ Q1
h(Q) ∩H

1,1
0;0, (Q)

such that

ah(̃uh,wh) = 〈f,wh〉Q (17.22)

is satisfied for all wh ∈ Q1
h(Q) ∩H

1,1
0; ,0(Q).

To prove the existence and uniqueness of a solution ũh of (17.22) we show the
following lemma, which is analogous to Lemma 17.4.

Lemma 17.8 For a given vh ∈ Q1
h(Q) ∩H

1,1
0;0, (Q) represented by

vh(x, t) =
Nt∑
 =0

V ,h(x)ϕ (t), V ,h(x) =
Mx∑
j=1

v jψj (x) for (x, t) ∈ Q

with V0,h(x) = 0 for x ∈ Ω and V ,h ∈ Vhx (Ω), and for a fixed index

j ∈ {1, . . . , Nt } there exists a function z
j
h ∈ Q1

h(Q) ∩ H
1,1
0; ,0(Q) with the following

properties:

i. For (x, t) ∈ Ω × [tj , T ] we have zjh(x, t) = 0.
ii. For  = 1, . . . , j and for x ∈ Ω we have

〈∂t zjh(x, ·), ∂t vh(x, ·)〉L2(τ )
= 1

2

(
[V −1,h(x)]2 − [V ,h(x)]2

)
,

and for m = 1, . . . , d

〈∂xmzjh(x, ·),Q0
ht
∂xmvh(x, ·)〉L2(τ )

=

= 1

2

(∫ tj

t −1

∂xmvh(x, s)ds

)2

− 1

2

(∫ tj

t 

∂xmvh(x, s)ds

)2

.
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iii. For x ∈ Ω there holds the estimate

‖∂t zjh(x, ·)‖L2(0,T ) ≤ ‖vh(x, ·)‖L2(0,T ) .

Proof For vh ∈ Q1
h(Q) ∩H

1,1
0;0, (Q) we define

u
j

h(x, t) =
Nt∑
i=0

U
j

i,h(x)ϕi (t), U
j

i,h(x) :=
⎧
⎨
⎩

Vi,h(x) for i = 0, . . . , j,

(−1)j−iVj,h(x) for i = j + 1, . . . , Nt ,

and for (x, t) ∈ Q we set

z
j
h(x, t) := −

Nt∑
k=0

∫ tk

T

u
j
h(x, s) dsϕk(t) = −Iht

∫ t

T

u
j
h(x, s) ds,

where Iht : C[0, T ] → S1
ht
(0, T ) is the interpolation operator with respect to time.

Note that zjh ∈ Q1
h(Q) ∩H

1,1
0; ,0(Q). For x ∈ Ω it follows from relation (17.10) that

∂tz
j
h(x, ·) = −Q0

ht
u
j
h(x, ·).

In particular for j < Nt , x ∈ Ω , and for t ∈ τ for  = j + 1, . . . , Nt we then have

−∂t z
j
h(x, t) = Q0

ht
u
j
h(x, t) =

1

ht, 

∫ t 

t −1

u
j
h(x, s) ds =

1

2

(
U

j
 −1,h(x)+ U

j
 ,h(x)

)
= 0,

and due to z
j
h(x, T ) = 0 we conclude z

j
h(x, t) = 0 for t ∈ [tj , T ], i.e. i.

To prove ii. we first compute for x ∈ Ω and for  = 1, . . . , j

〈∂tzjh(x, ·), ∂tvh(x, ·)〉L2(τ )
=
∫ t 

t −1

∂tz
j
h(x, t) ∂t vh(x, t) dt

= −1

2

(
U

j
 −1,h(x)+ U

j
 ,h(x)

)∫ t 

t −1

∂tvh(x, t) dt

= −1

2

(
U

j

 −1,h(x)+ U
j

 ,h(x)
)(

V ,h(x)− V −1,h(x)
)

= 1

2

(
V −1,h(x)+ V ,h(x)

) (
V −1,h(x)− V ,h(x)

)

= 1

2

(
[V −1,h(x)]2 − [V ,h(x)]2

)
.
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Moreover, for m = 1, . . . , d we have for x ∈ Ω and for  = 1, . . . , j

〈∂xmzjh(x, ·),Q0
ht
∂xmvh(x, ·)〉L2(τ )

= Q0
ht
∂xmvh(x, ·)|τ 

∫ t 

t −1

∂xmz
j
h
(x, t) dt

= −Q0
ht
∂xmvh(x, ·)|τ 

∫ t 

t −1

∂xm

[∫ t −1

T
u
j
h(x, s)ds ϕ −1(t)+

∫ t 

T
u
j
h(x, s)ds ϕ (t)

]
dt

= − 1

ht, 

∫ t 

t −1

∂xmvh(x, t)dt
1

2
ht, 

[∫ t −1

T
∂xmu

j
h
(x, s)ds +

∫ t 

T
∂xmu

j
h
(x, s)ds

]

= −1

2

[∫ t 

tj

∂xmvh(x, t)dt −
∫ t −1

tj

∂xmvh(x, t)dt

]

·
[∫ t −1

tj

∂xmv
j
h
(x, s)ds +

∫ t 

tj

∂xmv
j
h
(x, s)ds

]

= 1

2

(∫ t −1

tj

∂xmv
j
h(x, s)ds

)2

− 1

2

(∫ t 

tj

∂xmv
j
h(x, s)ds

)2

.

From the L2 stability of Q0
ht

and by using

‖∂t zjh(x, ·)‖L2(0,T ) = ‖∂t zjh(x, ·)‖L2(0, tj ) = ‖Q0
ht
u
j
h(x, ·)‖L2(0, tj )

= ‖Q0
ht
vh(x, ·)‖L2(0, tj ) ≤ ‖Q0

ht
vh(x, ·)‖L2(0,T ) ≤ ‖vh(x, ·)‖L2(0,T )

for x ∈ Ω we finally conclude the third property. ��
With the last lemma we are now able to prove existence, uniqueness, and stability
of a solution ũh of (17.22).

Lemma 17.9 For f0 ∈ [H 1
,0(0, T ;L2(Ω))]′ and f1, f2 ∈ L2(Q) the variational

formulation to find wh ∈ Q1
h(Q) ∩H

1,1
0;0,(Q) such that

ah(wh, vh) = 〈f0, vh〉Q +〈f1, ∂t vh〉L2(Q)+
Nt∑
 =1

h2
t, 〈f2, ∂tvh〉L2(Ω×τ )

(17.23)

is satisfied for all vh ∈ Q1
h(Q) ∩H

1,1
0;,0(Q) is uniquely solvable, and there holds the

stability estimate

‖wh‖L2(Q) ≤ 2 T
{
‖f0‖[H 1

,0(0,T ;L2(Ω))]′ + ‖f1‖L2(Q) + h2
t ‖f2‖L2(Q)

}
.

(17.24)
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Proof Let w0
h ∈ Q1

h(Q)∩H
1,1
0;0,(Q) be any solution of the homogeneous variational

formulation (17.23) with fi ≡ 0, and with the representation (17.18), i.e.

w0
h(x, t) =

Nt∑
 =0

W 0
 ,h(x)ϕ (t) for (x, t) ∈ Q, W 0

 ,h ∈ Vhx (Ω), W 0
0,h(x) = 0.

For an index j ∈ {1, . . . , Nt } we now consider an element zjh ∈ Q1
h(Q) ∩H

1,1
0;,0(Q)

as given in Lemma 17.8. Plugging z
j
h into (17.23) and by using the properties of

Lemma 17.8 this gives

0 = ah(w
0
h, z

j
h)

= −〈∂tw0
h, ∂t z

j
h〉L2(Q) +

d∑
m=1

〈Q0
ht
∂xmw

0
h, ∂xmz

j
h〉L2(Q)

= −
j∑

 =1

〈∂tw0
h, ∂tz

j

h〉L2(Ω×τ )
+

d∑
m=1

j∑
 =1

〈Q0
ht
∂xmw

0
h, ∂xmz

j

h〉L2(Ω×τ )

= −
∫

Ω

j∑
 =1

(
1

2
[W 0

 −1,h(x)]2 −
1

2
[W 0

 ,h(x)]2
)

dx

+
d∑

m=1

∫

Ω

j∑
 =1

(
1

2

(∫ tj

t −1

∂xmw
0
h(x, s)ds

)2

− 1

2

(∫ tj

t 

∂xmw
0
h(x, s)ds

)2
)

dx

= 1

2

∫

Ω

[W 0
j,h(x)]2 dx +

1

2

d∑
m=1

∫

Ω

(∫ tj

0
∂xmw

0
h(x, s)ds

)2

dx.

This result yields, with the Cauchy–Schwarz inequality and the use of the properties
of Lemma 17.8,

‖w0
h‖2

L2(Q)
=

Nt∑
 =1

‖w0
h‖2

L2(Ω×τ )

=
∫

Ω

Nt∑
 =1

ht, 

3

(
[W 0

 ,h(x)]2 +W 0
 ,h(x)W

0
 −1,h(x)+ [W 0

 −1,h(x)]2
)
dx

≤
∫

Ω

Nt∑
j=1

ht,j

2
[W 0

j,h(x)]2 dx +
∫

Ω

Nt−1∑
j=1

ht,j+1

2
[W 0

j,h(x)]2 dx ≤ 0,
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which implies w0
h ≡ 0. By using

dimQ1
h(Q) ∩H

1,1
0;0, (Q) = dimQ1

h(Q) ∩H
1,1
0; ,0(Q)

we therefore conclude unique solvability of the variational formulation (17.23) for
any right–hand side f0 ∈ [H 1

,0(0, T ;L2(Ω))]′ and f1, f2 ∈ L2(Q). Following the
approach as above we then obtain

〈f0, z
j

h〉Q + 〈f1, ∂t z
j

h〉L2(Q) +
Nt∑
 =1

h2
t, 〈f2, ∂t z

j

h〉L2(Ω×τ )

= ah(wh, z
j
h) ≥

1

2

∫

Ω

[Wj,h(x)]2 dx

and

‖wh‖2
L2(Q)

≤
∫

Ω

Nt∑
j=1

ht,j

2
[Wj,h(x)]2 dx +

∫

Ω

Nt−1∑
j=1

ht,j+1

2
[Wj,h(x)]2 dx

≤
Nt∑
j=1

ht,j

{
〈f0, z

j
h〉Q + 〈f1, ∂t z

j
h〉L2(Q) +

Nt∑
 =1

h2
t, 〈f2, ∂t z

j
h〉L2(Ω×τ )

}

+
Nt−1∑
j=1

ht,j+1

{
〈f0, z

j
h〉Q + 〈f1, ∂t z

j
h〉L2(Q) +

Nt∑
 =1

h2
t, 〈f2, ∂t z

j
h〉L2(Ω×τ )

}

≤
Nt∑
j=1

ht,j

{
‖f0‖[H 1

,0(0,T ;L2(Ω))]′ + ‖f1‖L2(Q) + h2
t ‖f2‖L2(Q)

}
‖∂t zjh‖L2(Q)

+
Nt−1∑
j=1

ht,j+1

{
‖f0‖[H 1

,0(0,T ;L2(Ω))]′ + ‖f1‖L2(Q) + h2
t ‖f2‖L2(Q)

}
‖∂t zjh‖L2(Q)

≤ 2T
{
‖f0‖[H 1

,0(0,T ;L2(Ω))]′ + ‖f1‖L2(Q) + h2
t ‖f2‖L2(Q)

}
‖wh‖L2(Q),

and hence the stability estimate is proven. ��
As a consequence of Lemma 17.9 we obtain unique solvability of the variational
formulation (17.22), and the stability estimate

‖ũh‖L2(Q) ≤ 2 T ‖f ‖[H 1
,0(0,T ;L2(Ω))]′.

To derive an estimate for the L2 error ‖u − ũh‖L2(Q) we introduce, as in [2,

Section 2], a space–time projection Q1
ht
Q1

hx
v ∈ Q1

h(Q) ∩ H
1,1
0;0, (Q) when v ∈

H
1,1
0;0, (Q) is given. First, the H 1

0 projection Q1
hx
: L2(0, T ;H 1

0 (Ω)) → Vhx (Ω)⊗
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L2(0, T ) is defined by

∫ T

0

∫

Ω

∇xQ
1
hx
v(x, t) · ∇xvhx (x, t) dx dt =

∫ T

0

∫

Ω

∇xv(x, t) · ∇xvhx (x, t) dx dt

(17.25)

for all vhx ∈ Vhx (Ω)⊗ L2(0, T ). Note that we have the stability estimate

‖∇xQ
1
hx
v‖L2(Q) ≤ ‖∇xv‖L2(Q),

and, when assuming v ∈ L2(0, T ;H 1+s(Ω)) for some s ∈ [0, 1], the standard error
estimate

‖v −Q1
hx
v‖L2(Q) ≤ c h1+s

x ‖v‖L2(0,T ;H 1+s (Ω)), (17.26)

if Ω is sufficiently regular. Second, we define the H 1
0, projection Q1

ht
:

H 1
0,(0, T ;L2(Ω))→ L2(Ω)⊗ S1

ht
(0, T ) ∩H 1

0,(0, T ) by

∫ T

0

∫

Ω

∂tQ
1
ht
v(x, t) ∂t vht (x, t) dx dt =

∫ T

0

∫

Ω

∂tv(x, t) ∂t vht (x, t) dx dt

(17.27)

for all vht ∈ L2(Ω)⊗ S1
ht
(0, T ) ∩H 1

0,(0, T ). Again we have the stability estimate

‖∂tQ1
ht
v‖L2(Q) ≤ ‖∂t v‖L2(Q),

and, when assuming v ∈ H 1+s(0, T ;L2(Ω)) for some s ∈ [0, 1], the standard error
estimate

‖v −Q1
ht
v‖L2(Q) ≤ c h1+s

t ‖v‖H 1+s (0,T ;L2(Ω)) . (17.28)

The next lemma shows that Q1
ht
Q1

hx
v ∈ Q1

h(Q) ∩ H
1,1
0;0, (Q) is well–defined under

some regularity assumptions on v, and that the projection operators in space and
time commute, see also [2, Lemma 2.1].

Lemma 17.10 For a given function v∈H 1,1
0;0,(Q) satisfying ∂t v∈L2(0, T ;H 1

0 (Ω))

and ∂xmv∈H 1
0,(0, T ;L2(Ω)), m = 1, . . . , d , there hold the following relations:

i. ∂tQ
1
hx
v = Q1

hx
∂tv ∈ Vhx (Ω)⊗ L2(0, T ),

ii. ∂xmQ
1
ht
v = Q1

ht
∂xmv ∈ L2(Ω)⊗ S1

ht
(0, T ) ∩H 1

0,(0, T ), m = 1, . . . , d ,

iii. Q1
ht
Q1

hx
v = Q1

hx
Q1

ht
v ∈ Q1

h(Q) ∩ H
1,1
0;0,(Q). In particular, the space–time

projectionsQ1
ht
Q1

hx
v andQ1

hx
Q1

ht
v are well–defined.
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Moreover, there holds the error estimate

‖v−Q1
ht
Q1

hx
v‖L2(Q) ≤ ‖v−Q1

ht
v‖L2(Q)+‖v−Q1

hx
v‖L2(Q)+c hx ht ‖∂t∇xv‖L2(Q).

Proof For ∂t v ∈ L2(0, T ;H 1
0 (Ω)) we consider Q1

hx
∂tv ∈ Vhx (Ω) ⊗ L2(0, T ) as

the unique solution of the variational formulation

∫ T

0

∫

Ω
∇xQ

1
hx

∂t v(x, t) · ∇xvhx (x, t) dx dt =
∫ T

0

∫

Ω
∇x∂t v(x, t) · ∇xvhx (x, t) dx dt

for all vhx ∈ Vhx (Ω) ⊗ C∞
0 (0, T ). By using integration by parts in time twice this

gives

∫ T

0

∫

Ω

∇xQ
1
hx
∂t v(x, t) · ∇xvhx (x, t) dx dt = −

∫ T

0

∫

Ω

∇xv(x, t) · ∇x∂t vhx (x, t) dx dt

= −
∫ T

0

∫

Ω

∇xQ
1
hx
v(x, t) · ∇x∂t vhx (x, t) dx dt

=
∫ T

0

∫

Ω

∇x∂tQ
1
hx
v(x, t) · ∇xvhx (x, t) dx dt

for all vhx ∈ Vhx (Ω)⊗ C∞
0 (0, T ). Since C∞

0 (0, T ) is dense in L2(0, T ) this holds
true for all vhx ∈ Vhx (Ω) ⊗ L2(0, T ), i.e. i. The proof of ii. follows in the same
manner.

To prove iii. we first note that Q1
hx
v ∈ Vhx (Ω)⊗H 1

0,(0, T ) ⊂ H 1
0,(0, T ;L2(Ω)),

and so Q1
ht
Q1

hx
v ∈ Q1

h(Q) ∩ H
1,1
0;0, (Q) is well–defined. Analogously we have

that Q1
hx
Q1

ht
v ∈ Q1

h(Q) ∩ H
1,1
0;0, (Q) is well–defined. Now, with i., ii., and the

definitions (17.25), (17.27) we have that

〈∂t∇xQ
1
ht
Q1

hx
v, ∂t∇xvh〉L2(Q) = 〈∂tQ1

ht
∇xQ

1
hx
v, ∂t∇xvh〉L2(Q)

= 〈∂t∇xQ
1
hx
v, ∂t∇xvh〉L2(Q)

= 〈∂t∇xv, ∂t∇xvh〉L2(Q)

as well as

〈∂t∇xQ
1
hx
Q1

ht
v, ∂t∇xvh〉L2(Q) = 〈∂t∇xv, ∂t∇xvh〉L2(Q)

for all vh ∈ Q1
h(Q) ∩H

1,1
0;0, (Q), i.e. iii.

The error estimate follows from the triangle inequality

‖v −Q1
ht
Q1

hx
v‖L2(Q) ≤ ‖v −Q1

ht
v‖L2(Q) + ‖Q1

ht
(v −Q1

hx
v)‖L2(Q)

≤ ‖v −Q1
ht
v‖L2(Q) + ‖v −Qhx v‖L2(Q) + ‖(I −Q1

ht
)(I −Q1

hx
)v‖L2(Q)
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≤ ‖v −Q1
ht
v‖L2(Q) + ‖v −Qhx v‖L2(Q) + c ht ‖∂t (I −Q1

hx
)v‖L2(Q)

≤ ‖v −Q1
ht
v‖L2(Q) + ‖v −Qhx v‖L2(Q) + c ht hx ‖∂t∇xv‖L2(Q).

��
Now we are in a position to prove an error estimate for the approximate solution ũh.

Theorem 17.2 Let u ∈ H
1,1
0;0,(Q) be the unique solution of the variational formu-

lation (17.2) satisfying ∂tu ∈ L2(0, T ;H 1
0 (Ω)) and ∂xmu ∈ H 1

0,(0, T ;L2(Ω)),

m = 1, . . . , d , and Δxu ∈ H 1
0,(0, T ;L2(Ω)). Then, the unique solution ũh ∈

Q1
h(Q) ∩ H

1,1
0;0, (Q) of the Galerkin–Petrov finite element discretization (17.22)

satisfies the error estimate

‖u− ũh‖L2(Q) ≤
≤ ‖u−Q1

ht
u‖L2(Q) + ‖u−Q1

hx
u‖L2(Q) + c hx ht‖∂t∇xu‖L2(Q)

+2T
{
‖Δx(u−Q1

ht
u)‖[H 1

,0(0,T ;L2(Ω))]′ + ‖∂t (Q1
hx

u−u)‖L2(Q) +
h2
t

12
‖∂tΔxu‖L2(Q)

}
.

Proof Since the solution u fulfills the assumptions of Lemma 17.10, the space–
time projection Q1

ht
Q1

hx
u ∈ Q1

h(Q) ∩ H
1,1
0;0, (Q) is well–defined. When using the

representation (17.21), the properties of Q1
ht
Q1

hx
as given in Lemma 17.10, and

applying integration by parts, we conclude for all wh ∈ Q1
h(Q) ∩H

1,1
0; ,0(Q) that

ah(̃uh −Q1
ht
Q1

hx
u, wh) = ah(̃uh,wh)− ah(Q

1
ht
Q1

hx
u, wh)

= a(u, wh)− ah(Q
1
ht
Q1

hx
u, wh)

= a(u, wh)− a(Q1
ht
Q1

hx
u, wh)+

Nt∑
 =1

h2
t, 

12
〈∂t∇xQ

1
ht
Q1

hx
u, ∂t∇xwh〉L2(Ω×τ )

= −〈∂t u, ∂twh〉L2(Q) + 〈∇xu,∇xwh〉L2(Q) + 〈∂tQ1
ht
Q1

hx
u, ∂twh〉L2(Q)

−〈∇xQ
1
ht
Q1

hx
u,∇xwh〉L2(Q) +

Nt∑
 =1

h2
t, 

12
〈∂t∇xQ

1
ht
Q1

hx
u, ∂t∇xwh〉L2(Ω×τ )

= −〈∂t u, ∂twh〉L2(Q) + 〈∇xu,∇xwh〉L2(Q) + 〈∂tQ1
hx

u, ∂twh〉L2(Q)

−〈∇xQ
1
ht
u,∇xwh〉L2(Q) +

Nt∑
 =1

h2
t, 

12
〈∂t∇xQ

1
ht
u, ∂t∇xwh〉L2(Ω×τ )
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= 〈∂t (Q1
hx

u− u), ∂twh〉L2(Q) + 〈∇x(u−Q1
ht
u),∇xwh〉L2(Q)

+
Nt∑
 =1

h2
t, 

12
〈∂t∇xQ

1
ht
u, ∂t∇xwh〉L2(Ω×τ )

= 〈∂t (Q1
hx

u− u), ∂twh〉L2(Q) + 〈−Δx(u−Q1
ht
u), wh〉L2(Q)

−
Nt∑
 =1

h2
t, 

12
〈∂tΔxQ

1
ht
u, ∂twh〉L2(Ω×τ )

.

In particular we observe that ũh −Q1
ht
Q1

hx
u is the unique solution of (17.23) in the

case

f0 = −Δx(u−Q1
ht
u), f1 = ∂t (Q

1
hx
u− u), f2 = − 1

12
∂tΔxQ

1
ht
u.

Therefore, the stability estimate (17.24) and the stability of Q1
ht

in H 1
0,(0, T ) give

‖ũh −Q1
ht
Q1

hx
u‖L2(Q) ≤ 2 T

{
‖Δx(u−Q1

ht
)u‖[H 1

,0(0,T ;L2(Ω))]′

+‖∂t (Q1
hx
u− u)‖L2(Q) +

h2
t

12
‖∂tΔxQ

1
ht
u‖L2(Q)

}

≤ 2 T
{
‖Δx(u−Q1

ht
)u‖[H 1

,0(0,T ;L2(Ω))]′

+‖∂t (Q1
hx
u− u)‖L2(Q) +

h2
t

12
‖∂tΔxu‖L2(Q)

}
.

With the last estimate, the triangle inequality, and the error estimate of Lemma 17.10
we finally obtain

‖u− ũh‖L2(Q) ≤ ‖u−Q1
ht
Q1

hx
u‖L2(Q) + ‖ũh −Q1

ht
Q1

hx
u‖L2(Q)

≤ ‖u−Q1
ht
u‖L2(Q) + ‖u−Q1

hx
u‖L2(Q) + c hx ht‖∂t∇xu‖L2(Q)

+2T
{
‖Δx(u−Q1

ht
u)‖[H 1

,0(0,T ;L2(Ω))]′ + ‖∂t (Q1
hx
u− u)‖L2(Q) +

h2
t

12
‖∂tΔxu‖L2(Q)

}
.

��
By using the error estimates (17.28) for the H 1

0, projection Q1
ht

and (17.26) for

the H 1
0 projection Q1

hx
we now conclude from Theorem 17.2 the following error

estimate.

Corollary 17.2 Let the assumptions of Theorem 17.2 be satisfied. If in addition the
unique solution u of (17.2) is sufficiently smooth and Ω is sufficiently regular, we
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obtain the error estimate

‖u− ũh‖L2(Q) ≤ c h2
x

(‖u‖L2(0,T ;H 2(Ω)) + ‖∂tu‖L2(0,T ;H 2(Ω))

)
(17.29)

+c hx ht‖∂t∇xu‖L2(Q) + c h2
t

(‖∂tt u‖L2(Q) + ‖∂ttΔxu‖L2(Q) + ‖∂tΔxu‖L2(Q)

)
.

As a numerical example for the Galerkin–Petrov finite element method (17.22)
we consider the one–dimensional spatial domain Ω = (0, 1), i.e. we have the
rectangular space–time domain Q := Ω × (0, T ) := (0, 1) × (0, 10). The
discretization is done with respect to nonuniform meshes as shown in Fig. 17.1
where we apply a uniform refinement strategy. Note that these meshes do not fulfill
the CFL condition (17.3). As exact solutions we choose for (x, t) ∈ Q

u1(x, t) = sin(πx) sin2
(

5

4
πt

)
, u2(x, t) = sin(πx)t2(10− t)3/4.

The appearing integrals to compute the related right–hand side in (17.22) are
calculated by using high order quadrature rules. The numerical results for the
smooth solution u1 are given in Table 17.3 where we observe unconditional stability
and quadratic convergence in ‖ · ‖L2(Q), as predicted by the error estimate (17.29).
Moreover we have linear convergence when measuring the error in | · |H 1(Q). Note
that such an error estimate can be shown by using the H 1(Q) projection, an inverse
inequality, and the error estimate (17.29). For the singular solution u2 the related
results are given in Table 17.4 where we observe a reduced order of convergence in
‖ · ‖L2(Q) and in | · |H 1(Q), respectively. These convergence rates correspond to the
reduced Sobolev regularity u2 ∈ H 5/4−ε(Q), ε > 0.
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Fig. 17.1 Nonuniform meshes: starting mesh and the mesh after one uniform refinement step
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Table 17.3 Numerical results of (17.22) for Q = (0, 1) × (0, 10) and for u1

dof hx,max hx,min ht,max ht,min ‖u1−ũ1,h‖L2(Q) eoc
∣∣u1−ũ1,h

∣∣
H1(Q)

eoc

30 0.37500 0.06250 3.75000 0.62500 3.579e+00 0.00 1.289e+01 0.00

132 0.18750 0.03125 1.87500 0.31250 1.975e+00 0.86 9.849e+00 0.39

552 0.09375 0.01562 0.93750 0.15625 9.213e−01 1.10 6.534e+00 0.59

2256 0.04688 0.00781 0.46875 0.07812 6.829e−01 0.43 5.210e+00 0.33

9120 0.02344 0.00391 0.23438 0.03906 2.466e−01 1.47 2.848e+00 0.87

36,672 0.01172 0.00195 0.11719 0.01953 7.029e−02 1.81 1.435e+00 0.99

147,072 0.00586 0.00098 0.05859 0.00977 1.819e−02 1.95 7.159e−01 1.00

589,056 0.00293 0.00049 0.02930 0.00488 4.588e−03 1.99 3.576e−01 1.00

2,357,760 0.00146 0.00024 0.01465 0.00244 1.149e−03 2.00 1.788e−01 1.00

9,434,112 0.00073 0.00012 0.00732 0.00122 2.875e−04 2.00 8.938e−02 1.00

37,742,592 0.00037 0.00006 0.00366 0.00061 7.189e−05 2.00 4.469e−02 1.00

Table 17.4 Numerical results of (17.22) for Q = (0, 1) × (0, 10) and for u2

dof hx,max hx,min ht,max ht,min ‖u2−ũ2,h‖L2(Q) eoc
∣∣u2−ũ2,h

∣∣
H1(Q)

eoc

30 0.37500 0.06250 3.75000 0.62500 7.836e+01 0.00 3.173e+02 0.00

132 0.18750 0.03125 1.87500 0.31250 2.166e+01 1.86 1.191e+02 1.41

552 0.09375 0.01562 0.93750 0.15625 5.487e+00 1.98 5.225e+01 1.19

2256 0.04688 0.00781 0.46875 0.07812 1.777e+00 1.63 2.696e+01 0.95

9120 0.02344 0.00391 0.23438 0.03906 6.476e−01 1.46 1.593e+01 0.76

36,672 0.01172 0.00195 0.11719 0.01953 3.001e−01 1.11 1.076e+01 0.57

147,072 0.00586 0.00098 0.05859 0.00977 1.393e−01 1.11 8.077e+00 0.41

589,056 0.00293 0.00049 0.02930 0.00488 6.156e−02 1.18 6.452e+00 0.32

2,357,760 0.00146 0.00024 0.01465 0.00244 2.650e−02 1.22 5.308e+00 0.28

9,434,112 0.00073 0.00012 0.00732 0.00122 1.126e−02 1.23 4.423e+00 0.26

37,742,592 0.00037 0.00006 0.00366 0.00061 4.758e−03 1.24 3.704e+00 0.26

Remark 17.2 The Galerkin–Petrov finite element method (17.22) seems to fulfill a
kind of conservation of the total energy

E(t) := 1

2
‖∂tu(·, t)‖2

L2(Ω)
+ 1

2
‖∇xu(·, t)‖2

L2(Ω)
, t ∈ [0, T ].

As illustration we consider a solution of the homogeneous wave equation, i.e.

u3(x, t) = (cos(πt)+ sin(πt)) sin(πx) for (x, t) ∈ Q := (0, 1)× (0, 10)

with the total energy

E(t) = π2

2
for t ∈ [0, 10].
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Fig. 17.2 Difference of the total energy E(t) = π2

2 and Eh(t) for the solution u3 for a uniform
mesh

Here, the initial condition u3(x, 0) = sin(πx), x ∈ Ω , is treated via homogeniza-
tion, while the initial condition ∂tu3(x, 0) = π sin(πx), x ∈ Ω , is incorporated in a
weak sense. For the solution u3 we compute the discrete total energy

Eh(t) := 1

2
‖∂t ũh(·, t)‖2

L2(Ω)
+ 1

2
‖∇x ũh(·, t)‖2

L2(Ω)
, t ∈ [0, T ].

In Fig. 17.2 the difference

Eh(t)− E(t) = Eh(t)− π2

2
for t ∈ [0, 10]

is plotted pointwise for the refinement level with uniform mesh sizes ht = 10
6·210 and

hx = 1
6·210 . Note that ∂t ũh is piecewise constant in time. Probably due to the used

space–time approximation we observe some oscillations within the finite element
accuracy, but no energy loss occurs.

References

1. Andreev, R.: Stability of sparse space-time finite element discretizations of linear parabolic
evolution equations. IMA J. Numer. Anal. 33(1), 242–260 (2013)

2. Aziz, A.K., Monk, P.: Continuous finite elements in space and time for the heat equation. Math.
Comput. 52(186), 255–274 (1989)

3. Bales, L., Lasiecka, I.: Continuous finite elements in space and time for the nonhomogeneous
wave equation. Comput. Math. Appl. 27(3), 91–102 (1994)

4. Bangerth, W., Geiger, M., Rannacher, R.: Adaptive Galerkin finite element methods for the
wave equation. Comput. Methods Appl. Math. 10(1), 3–48 (2010)

5. Cohen, G.C.: Higher-Order Numerical Methods for Transient Wave Equations. Scientific
Computation. Springer, Berlin (2002)

6. Cohen, G.C., Pernet, S.: Finite Element and Discontinuous Galerkin Methods for Transient
Wave Equations. Scientific Computation. Springer, Dordrecht (2017)



370 O. Steinbach and M. Zank

7. Dörfler, W., Findeisen, S., Wieners, C.: Space-time discontinuous Galerkin discretizations for
linear first-order hyperbolic evolution systems. Comput. Methods Appl. Math. 16(3), 409–428
(2016)

8. French, D.A., Peterson, T.E.: A continuous space-time finite element method for the wave
equation. Math. Comput. 65(214), 491–506 (1996)

9. Ladyzhenskaya, O.A.: The Boundary Value Problems of Mathematical Physics. Applied
Mathematical Sciences, vol. 49. Springer, New York (1985)

10. Lions, J.-L., Magenes, E.: Problèmes aux limites non homogènes et applications. Travaux et
Recherches Mathématiques, vol. 1, no. 17 Dunod, Paris (1968)

11. Lions, J.-L., Magenes, E.: Problèmes aux limites non homogènes et applications. Travaux et
Recherches Mathématiques, vol. 2, no. 18 Dunod, Paris (1968)

12. Mollet, C.: Stability of Petrov-Galerkin discretizations: application to the space-time weak
formulation for parabolic evolution problems. Comput. Methods Appl. Math. 14(2), 231–255
(2014)

13. Neumüller, M.: Space-time methods: fast solvers and applications. Ph.D. Thesis, TU Graz
(2013)

14. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations.
Applied Mathematical Sciences, vol. 44. Springer, New York (1983)

15. Peterseim, D., Schedensack, M.: Relaxing the CFL condition for the wave equation on adaptive
meshes. J. Sci. Comput. 72, 1196–1213 (2017)

16. Schwab, C., Stevenson, R.: Space-time adaptive wavelet methods for parabolic evolution
problems. Math. Comput. 78(267), 1293–1318 (2009)

17. Steinbach, O.: Space-time finite element methods for parabolic problems. Comput. Methods
Appl. Math. 15(4), 551–566 (2015)

18. Steinbach, O., Zank, M.: Coercive space–time finite element methods for initial boundary value
problems (in review)

19. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer Series in
Computational Mathematics, vol. 25, 2nd edn. Springer, Berlin (2006)

20. Urban, K., Patera, A.T.: An improved error bound for reduced basis approximation of linear
parabolic problems. Math. Comput. 83(288), 1599–1615 (2014)

21. Wloka, J.: Partielle Differentialgleichungen. B. G. Teubner, Stuttgart (1982)
22. Zeidler, E.: Nonlinear Functional Analysis and Its Applications. II/A. Springer, New York

(1990)
23. Zlotnik, A.A.: Convergence rate estimates of finite-element methods for second-order hyper-

bolic equations. In: Numerical Methods and Applications, pp. 155–220. CRC, Boca Raton
(1994)



Chapter 18
An Optimal Order CG-DG Space-Time
Discretization Method for Parabolic
Problems

Igor Voulis

Abstract We consider a space-time discretization method for second-order
parabolic problems with inhomogeneous (time-dependent) Dirichlet boundary
conditions. A combination of a temporal discontinuous Galerkin scheme and a
spatial continuous Galerkin scheme is used. In previous work it has been established
that the standard semi-discrete temporal scheme has to be modified to obtain
an optimal error bound. Here we extend this modification to a fully discrete
scheme. For this modified discretization an optimal error bound for the energy
norm is derived. Results of experiments confirm the theoretically predicted optimal
convergence rates. We are able to pinpoint why the standard CG-DG space-time
method (without any modifications) has suboptimal convergence behavior. The
method presented here avoids this suboptimality in a way which is computationally
very cheap.

18.1 Introduction

Galerkin finite element methods are a popular discretization technique for many
classes of ordinary and partial differential equations. See [3, 4, 8, 11, 16] for an
overview. For parabolic partial differential equations the discontinuous Galerkin
(DG) finite element for time discretization is commonly combined with a spatial
continuous Galerkin (CG) method. Such a method was introduced in [12]. Further
methods of this type have been studied in [5–7, 14–16].

To the best of our knowledge, the error analyses available in the literature
only treat parabolic problems with homogeneous constraints. Inhomogeneous linear
constraints have a significant impact on the behavior of the convergence order of
the DG time discretization of abstract parabolic problems. This topic is treated in
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[17]. A modification needs to be introduced to obtain an optimal convergence order.
Similar effects (so-called order reduction) are known to occur in other numerical
schemes, such as Runge-Kutta methods [13, Sect. 2.12] and Rosenbrock methods
[1].

In this paper we discuss how to apply the modified method described in [17] to
a second-order parabolic equation [9, 18] with an inhomogeneous (time-dependent)
Dirichlet boundary condition. We combine the DG time discretization with a
standard CG spatial discretization, see [8]. This results in a fully discrete space-time
finite element method.

The main results of the paper are the following. We introduce the fully dis-
crete CG-DG space-time scheme for a parabolic problem with inhomogeneous
constraints. For the resulting space-time method we prove an optimal discretization
error bound for the global energy norm. We also discuss why a modification is
necessary to obtain errors of optimal order.

The paper is organized as follows. In Sect. 18.2 we consider a class of abstract
parabolic problems which is relevant for the further analysis. We recall the DG time
discretization scheme for such problems from [17] and we state the relevant results.

In Sect. 18.3 we introduce the spatial discretization for second-order parabolic
equations with inhomogeneous Dirichlet boundary conditions. This gives rise to a
modified space-time method, which uses the temporal DG scheme and a spatial CG
scheme. We give an error analysis of the CG-DG space-time scheme. We derive an
optimal order error bound in the energy norm.

In Sect. 18.4 this scheme is used to perform numerical experiments and the
results of a few experiments are presented. Our theoretical results are confirmed
and we see optimal superconvergence results at temporal nodes. We also show that
without a proper treatment of the Dirichlet boundary conditions the results are no
longer optimal. We discuss the source of this suboptimality. We conclude with an
outlook in Sect. 18.5.

18.2 Temporal Discretisation of a Parabolic Problem
with Linear Constraints

In this section we consider a class of parabolic problems with linear constraints
which has been treated in [17]. In the first subsection we recall the temporal
discretization and in the second subsection we recall some convergence results.
These results will play an important role in the following sections.

Let U ,H be real separable Hilbert spaces with a dense continuous embedding
U ↪→ H . The norms are denoted by ‖ · ‖U , ‖ · ‖H , respectively. Let U0 be a

closed subspace of U and let H0 = U
H
0 . We assume that these spaces induce a

Gelfand triple U0 ↪→ H0 ∼= H ′
0 ↪→ U ′

0 . Let a : U × U → R be a symmetric
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continuous bilinear form on U , which is coercive on U0:

|a(u, v)| ≤ Γ ‖u‖U ‖v‖U for all u, v ∈ U , (18.1)

a(v, v) ≥ γ ‖v‖2
U for all v ∈ U0, (18.2)

with γ > 0. The corresponding operator is denoted by A : U → U ′, Au(v) =
a(u, v). Let Q be a Hilbert space. Let B : U → Q be a surjective continuous
mapping with U0 = kerB. Let I = (0, T ) be a given time interval. For given f ∈
L2(I ;U ′

0 ), g ∈ H 1(I ;Q) we consider the following abstract parabolic problem:
find u ∈ L2(I ;U ) ∩H 1(I ;U ′

0 ) such that u(0) = u0 and

u′ + Au = f in L2(I ;U ′
0 ), (18.3)

Bu = g in L2(I ;Q). (18.4)

If we assume that u0 ∈ U and Bu0 = g(0), then (by a standard lifting argument)
this problem is well-posed [15, 18].

In the next two subsection we will consider the temporal discretization method
for (18.3) and (18.4) and the error bounds for this method. In Sect. 18.3 these
abstract results will be applied to second-order parabolic problems with inhomo-
geneous Dirichlet boundary conditions, which we introduce now. Let Ω ⊂ Rd be
a bounded domain. Let U = H 1(Ω), H = L2(Ω) and let B : u �→ u|∂Ω be the
trace operator. Then we have Q = H 1/2(∂Ω), U0 = H 1

0 (Ω) and H0 = L2(Ω).
For simplicity we will assume that Ω is a convex polyhedron. We will consider the
following problem: find u such that u(0) = u0 and

u′ + Au = f in L2(I ;H−1(Ω)), (18.5)

u|∂Ω = g in L2(I ;H 1/2(∂Ω)). (18.6)

If we take A = −Δ, we obtain the heat equation.
In the literature one can find analyses of DG time discretizations applied to this

parabolic problem, combined with a conforming finite element method in space,
e.g., [16, Chapter 12]. In this paper we consider the modification which is necessary
to deal with problems with inhomogeneous boundary conditions.

18.2.1 Temporal Discretization

In this subsection we briefly recall the DG time discretization for the parabolic
problem (18.3) and (18.4).

We take a fixed q ∈ N, q ≥ 1. In the temporal discretization we will use
polynomials of degree q−1, this space of polynomials will be denoted byPq−1. For
N ∈ N, introduce 0 = t0 < · · · < tN = T , In = (tn−1, tn], and k = |In| = T

N
≤ 1
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is the fixed step-size for n = 1, . . . , N . The assumption that the step-size is fixed is
merely made for simplicity. The same arguments apply for a variable step-size. We
define the broken spaces

Pb(I) :=
N⊕

n=1

Pq−1(In) ⊂ L2(I), H 1,b(I ) :=
N⊕

n=1

H 1(In),

Pb(I ;H ) := Pb(I)⊗H , H 1,b(I ;H ) := H 1,b(I )⊗H .

For U ∈ H 1,b(I ;H ) and n = 1, . . . , N we will write Un = U |In(tn), Un−1+ =
limt↓tn−1 U |In (t). We define U ′ by taking the derivative on each interval In:

U ′ =
N∑

n=1

U |′InχIn ,

with χIn the characteristic function for In. We define the following bilinear form on
H 1,b(I ;H ) which corresponds to a discrete time derivative:

(Y,X) �→ DH (Y,X) :=
∫

I

(Y ′,X)H +
N−1∑
n=1

(Y n+ − Yn,Xn+)H + (Y 0+,X0+)H .

The following projection plays a crucial role. See also [15] and [16, pp. 207–208].

Definition 18.1 We define a projection Πq : H 1,b(I ) → Pb(I). For any w ∈
H 1,b(I ) we define Πqw by the following relationship:

(Πqw)n = wn,
∫

In

(Πqw(t)−w(t))tj dt = 0 for all j = 0, . . . , q − 2,

for all n=1, . . . , N (for q=1 only the first condition is used). Finally let H be
a Hilbert space with an (orthogonal) basis {hj |j ∈ N}. Let {bi |i ∈ N} be an
(orthogonal) basis for H 1,b(I ). For u ∈ H 1,b(I ;H ) = H 1,b(I )⊗H we define

Πqu := Πq ⊗ 1H u =
∑
i,j∈N

ui,j (Πqbi)⊗ hj

where we have used that {bi ⊗ hj |i, j ∈ N} is a basis of H 1,b(I ) ⊗H and thus u

can be expressed as u =∑i,j∈N ui,j bi ⊗ hj for some uniquely defined coefficients
ui,j for i, j ∈ N.
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We now describe the DG time discretizations of (18.3) and (18.4). We introduce the
notation

K(u, v) := DH (u, v)+
∫

I

a(u, v), u, v ∈ H 1,b(I ;H ) ∩ L2(I ;U ).

The discrete (in time) version of (18.3) and (18.4) reads: find U ∈Pb(I ;U ), such
that

K(U,X) = f (X)+ (u0,X
0+)H for all X ∈ Pb(I ;U0), (18.7)

BU = Πqg. (18.8)

Remark 18.1 We have the following characterization of the projection Πq . Let w ∈
H 1,b(I ;H ), then W = Πqw is the unique solution of the following problem: find
W ∈Pb(I ;H ) such that

DH (W,X) = DH (w,X) for all X ∈Pb(I ;H ). (18.9)

A proof can be found in [16, pp. 207–208]. From this property (and by replacing
H by Q) we can conclude that (18.8) is equivalent to DQBU = DQg, which is
the discrete formulation of Bu′ = g′ with Bu(0) = g(0). This essential property is
used to obtain the optimal error bounds which we will state in the next subsection.
A similar approach was used in [2] to obtain accurate Runge-Kutta discretizations
of DAEs.

18.2.2 Optimal Error Bounds for the Time-Discrete
Formulation

In this subsection we recall the optimal discretization error bounds for the semi-
discrete formulation (18.7) and (18.8). These results are from [17].

Theorem 18.1 ([17, Theorem 4.1]) Let u be the solution of (18.3) and (18.4) with
u ∈ H 1(I ;U ) andU ∈Pb(I ;U ) the solution of (18.7) and (18.8). The following
holds:

‖u(T )− U(T )‖H + ‖u− U‖L2(I ;U ) ≤ (1 + cγ Γ )‖u−Πqu‖L2(I ;U )

with cγ := max{ 1
γ
, 2}.

Theorem 18.2 ([17, Theorem 4.6]) Assume that the solution u of (18.3) and (18.4)
has regularity u ∈ Hm(I ;U ) and let U ∈Pb(I ;U ) be the solution of (18.7) and
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(18.8). For any 1 ≤  ≤ 2q − 1, 1 ≤ m ≤ q , we have

‖u(T )− U(T )‖H ≤ ck
 −1

2 +m

(∫

I

|u(m)|2 
) 1

2

for some c > 0 which depends only on q , γ and Γ . The | · | —seminorm is defined
using the spectral decomposition of A|U0:

|u| := sup
x∈D(A| /2

U0
)

(u,A
 
2 x)H

‖x‖H , u ∈H ,  ∈ N,

where D(A| /2
U0

) denotes the space of all x such that A| /2
U0

x ∈ H . If {(λn, vn)|n ∈
N} is the set of eigenvalues and corresponding orthogonal eigenvectors of A|U0 ,
then

D(A| /2
U0

) =
{
x =

∑
n∈N

anvn

∣∣∣∣(an)n ∈ RN,
∑
n∈N

a2
nλ

 
n < ∞

}
.

18.3 Error Analysis for the Fully Discrete Formulation

In this section we consider the second-order parabolic problem (18.5) and (18.6). We
first introduce a standard spatial discretization. We then give an error analysis for the
spatial discretization for the problem with inhomogeneous constraints. Analyses for
the homogeneous problem can be found in classical literature, e.g. [8, Sect. 6.1.4].
In the second subsection we use this discretization and the DG-discretisation from
the previous section to formulate the fully discrete scheme. Using Theorem 18.1, we
obtain an optimal error bound for the energy norm for the fully discrete formulation.

18.3.1 Spatial Discretization

We assume that we have a discretization parameter h and a family of shape regular,
geometrically conformal meshes {Th}h>0. We take a H 1-conforming piecewise
polynomial space

U h = {u ∈ H 1(Ω) | u|Ts ∈P (Ts) for all Ts ∈ Th }.

Let U h
0 = H 1

0 (Ω) ∩ U h. We denote the standard nodal basis of U h by
{ψ1, . . . ψNs } = Ψ . From this we extract a nodal basis of U h

0: Ψ0 = {ψ | ψ ∈
Ψ ∩ H 1

0 (Ω)} and we take Ψ∂Ω = Ψ \ Ψ0. We treat the constraint u|∂Ω = g by
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taking Gh =∑ψ∈Ψ∂Ω
c(ψ)ψ such that Gh(x) = g(x) for all nodal points x ∈ ∂Ω .

This defines a mapping I∂h : C(∂Ω)→ Uh, where I∂hg = Gh, see [8, Sect. 3.2.2].
For a given u ∈ H 1(Ω) with g = u|∂Ω ∈ C(∂Ω), consider the solution uh ∈

U h of the discrete stationary problem (Ritz projection with constraints)

a(uh, vh) = a(u, vh) for all vh ∈ U h
0, (18.10)

uh|∂Ω = (I∂hg)|∂Ω . (18.11)

We assume that for this stationary problem, the discrete solution uh is an
approximation of u of optimal order.

Remark 18.2 (Assumption on the Ritz Projection with Constraints) For u ∈
H +1(Ω) with u|∂Ω ∈ C(∂Ω), let uh ∈ U h be the solution of (18.10) and
(18.11). We have the following error bound for all h > 0

‖u− uh‖L2(Ω) + h‖u− uh‖H 1(Ω) ≤ ch +1‖u‖H +1(Ω) (18.12)

for some constant c > 0 which is independent of h and u.

Remark 18.3 A sufficient condition on Ω, {Th}h>0,  and A under which this
assumption is true, is given in [8, Corollary 3.29]. In particular, this assumption
holds if we take d = 2 or d = 3 and  ≥ 1, A = −Δ. See [8, Example 3.30].

Lemma 18.1 Let f ∈ L2(I ;H−1(Ω)), g ∈ H 1(I ;C(∂Ω)) and u0 ∈ H 1(Ω).
Assume that uh0 ∈ U h is obtained from u0 by solving the corresponding stationary
problem (18.10) and (18.11). There exists a unique solution uh ∈ H 1(I ;U h) of the
following problem

(u′h, vh)L2(I×Ω) +
∫

I

a(uh, vh) = f (vh) for all vh ∈ L2(I ;U h
0), (18.13)

uh|I×∂Ω = (I∂hg)|I×∂Ω, (18.14)

uh(0) = uh0 . (18.15)

Moreover, let us assume that the assumption in Remark 18.2 is satisfied and that
the solution u of (18.5) and (18.6) has the regularity u ∈ H 1(I ;H +1(Ω)) which
also requires more regularity on the given data. Under these assumptions we have
the bound

‖uh(T )− u(T )‖L2(Ω) + ‖uh − u‖L2(I ;H 1(Ω)) ≤ Eh(u), (18.16)

where

Eh(u) := C(h ‖u‖L2(I ;H +1(Ω)) + h +1‖u′‖L2(I ;H +1(Ω))) (18.17)



378 I. Voulis

for some C > 0 which is independent of h and u. We also have the following bound

‖uh − u‖L∞(I ;H 1(Ω)) ≤ E∞
h (u), (18.18)

where

E∞
h (u) := Ĉ(h ‖u‖L∞(I ;H +1(Ω)) + h +1‖u′‖L2(I ;H +1(Ω))) (18.19)

for some Ĉ > 0 which is independent of h and u.

Proof The problem (18.13)–(18.15) is a special case of the abstract problem (18.3)
and (18.4) and thus has a unique solution. Using that U h is finite dimensional, we
find that uh ∈ H 1(I ;U h).

Let, for all t ∈ I , ũh(t) ∈ U h be the solution of the stationary problem

a(ũh(t), vh) = a(u(t), vh) for all vh ∈ U h
0 ,

ũh(t)|∂Ω = (I∂hg(t))|∂Ω .

Since uh satisfies (18.13) and u satisfies (18.5), we have

(u′h − u′, wh)L2(I×Ω) +
∫

I

a(uh − u,wh) = 0 for all wh ∈ L2(I ;U h
0).

(18.20)
Define vh = uh − ũh and e = u− ũh. If we take wh = vh in (18.20), then we find

(v′h, vh)L2(I×Ω) +
∫

I

a(vh, vh)− (e′, vh)L2(I×Ω) −
∫

I

a(e, vh) = 0.

Using vh(0) = 0, coercivity (18.2) and a(e(t), vh(t)) = 0 for all t ∈ I , we find

1

2
‖vh(T )‖2

L2(Ω)
+ γ ‖vh‖2

L2(I ;H 1(Ω))
≤ (v′h, vh)L2(I×Ω) +

∫

I

a(vh, vh) = (e′, vh)L2(I×Ω)

≤ ‖e′‖L2(I ;H−1(Ω))‖vh‖L2(I ;H 1(Ω)).

Combining this with Young’s inequality, we get

‖vh(T )‖L2(Ω) + ‖vh‖L2(I ;H 1(Ω)) ≤ c‖e′‖L2(I ;L2(Ω))

for some c which only depends on γ . Using that ‖e(T )‖L2(Ω) ≤ c̃‖e‖H 1(I ;L2(Ω))

for some constant c̃ > 0, we get

‖uh(T )− u(T )‖L2(Ω) + ‖uh − u‖L2(I ;H 1(Ω)) ≤ ‖vh(T )‖L2(Ω) + ‖vh‖L2(I ;H 1(Ω))

+‖e(T )‖L2(Ω) + ‖e‖L2(I ;H 1(Ω))

≤ c′(‖e′‖L2(I ;L2(Ω)) + ‖e‖L2(I ;H 1(Ω)))
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for some c′ > 0 which depends only on γ and c̃. Applying (18.12) concludes the
proof of (18.16).

If we take any t ∈ I , wh = χ(0,t )v
′
h and uh − u = uh − ũh − (u− ũh) = vh − e

in (18.20), then we find

(v′h, v′h)L2((0,t )×Ω) +
∫ t

0
a(vh, v

′
h)− (e′, v′h)L2((0,t )×Ω) −

∫ t

0
a(e, v ′

h) = 0.

Using vh(0) = 0,
∫ t

0 a(vh, v
′
h) = a(vh(t), vh(t)) and a(e(τ ), v′h(τ )) = 0 for all

τ ∈ I , we find

a(vh(t), vh(t))+ (v′h, v′h)L2((0,t )×Ω) = (e′, v′h)L2((0,t )×Ω).

Using coercivity (18.2) and the Cauchy inequality, we get

γ ‖vh(t)‖2
H 1(Ω)

≤ a(vh(t), vh(t)) ≤ ‖e′‖L2((0,t)×Ω)‖v′h‖L2((0,t)×Ω) − ‖v′h‖2
L2((0,t)×Ω)

.

By applying Young’s inequality, we get

γ ‖vh(t)‖2
H 1(Ω)

≤ 1

4
‖e′‖2

L2((0,t )×Ω)
.

We conclude that for any t ∈ I

‖vh(t)‖H 1(Ω) ≤
1

2
√
γ
‖e′‖L2((0,t )×Ω) ≤

1

2
√
γ
‖e′‖L2(I ;L2(Ω)).

Applying (18.12) and the triangle inequality concludes the proof of (18.18). ��

18.3.2 Fully Discrete Formulation

We now apply the theory from Sect. 18.2.1 to the parabolic problem (18.13)–
(18.15). We take U = (U h, ‖ · ‖H 1(Ω)) and H = (U h, ‖ · ‖L2(Ω)). The fully

discrete version of (18.5) and (18.6) now reads: find Uh ∈Pb(I ;U h) such that

K(Uh,Xh) =
∫

I

f (Xh)+ (uh0, (Xh)
0+)L2(Ω) for all Xh ∈ Pb(I ;U h

0),

(18.21)

Uh|I×∂Ω = (ΠqI∂hg)|I×∂Ω . (18.22)

This formulation is consistent with (18.13)–(18.15), which is in turn consistent
with (18.5) and (18.6). We have the following error bound.
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Theorem 18.3 Assume that the assumption in Remark 18.2 holds. Let 1 ≤ m ≤
q . Let u be the solution of (18.5) and (18.6) with u ∈ H 1(I ;H +1(Ω)) ∩
Hm(I ;H 1(Ω)) and let Uh ∈ Pb(I ;U h) be the solution of (18.21) and (18.22).
The following holds:

‖u(T )− Uh(T )‖L2(Ω) + ‖u− Uh‖L2(I ;H 1(Ω)) ≤ ckm‖u(m)‖L2(I ;H 1(Ω)) + cEh(u)

+c
√
TE∞

h (u), (18.23)

for some c > 0, independent of k, h and u. The optimal spacial error bounds Eh

and E∞
h are defined as in Lemma 18.1.

Proof Let uh be the solution of (18.13)–(18.15). If we apply Theorem 18.1, then we
find

‖uh(T )− Uh(T )‖L2(Ω) + ‖uh − Uh‖L2(I ;H 1(Ω)) ≤ (1 + cγ Γ )‖uh −Πquh‖L2(I ;H 1(Ω)).

(18.24)

Recall the following properties of Πq . From [15, Lemma 3.10] we get

‖Πq(u− uh)‖2
L2(I ;H 1(Ω))

≤ c1

N∑
n=1

(‖u− uh‖2
L2(In;H 1(Ω))

+ k‖un − unh‖2
H 1(Ω)

)

≤ c1‖u− uh‖2
L2(I ;H 1(Ω))

+ c1T ‖u− uh‖2
L∞(I ;H 1(Ω))

for some c1 > 0. From [15, Theorem 3.10] we get the optimal bound

‖Πqu− u‖L2(I ;H 1(Ω)) ≤ c2k
m‖u(m)‖L2(I ;H 1(Ω))

for some c2 > 0. Combining these two results, we get

‖uh −Πquh‖L2(I ;H 1(Ω)) ≤ ‖uh − u−Πquh +Πqu‖L2(I ;H 1(Ω)) + ‖u−Πqu‖L2(I ;H 1(Ω))

≤ ‖uh − u‖L2(I ;H 1(Ω)) + ‖Πqu−Πquh‖L2(I ;H 1(Ω))

+c2k
m‖u(m)‖L2(I ;H 1(Ω))

≤ (1+√
c1)‖u− uh‖L2(I ;H 1(Ω)) +

√
c1T ‖u− uh‖L∞(I ;H 1(Ω))

+c2k
m‖u(m)‖L2(I ;H 1(Ω)).

Combining this bound with Lemma 18.1 and (18.24), we now find

‖uh(T )− Uh(T )‖L2(Ω) + ‖uh − Uh‖L2(I ;H 1(Ω)) ≤ c3Eh(u)+ c3
√
TE∞

h (u)

+c3k
m‖u(m)‖L2(I ;H 1(Ω))
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for some c3 > 0, independent of k, h and u. Combining this with (18.16) and the
triangle inequality completes the proof. ��

The fully discrete problem (18.21) and (18.22) gives rise to a system of linear
equations. Considering the structure of DL2(Ω), we see that solving (18.21) and
(18.22) is equivalent to solving

∫

In

(W ′
h,n,Xh)L2(Ω) + ((Wh,n)

n−1+ , (Xh)
n−1+ )L2(Ω) +

∫

In

a(Wh,n,Xh) (18.25)

=
∫

In

f (Xh)+ (Wn−1
h,n−1, (Xh)

n−1+ )L2(Ω) −
∫

In

(I∂hg
′,Xh)L2(Ω) −

∫

In

a(ΠqI∂hg,Xh)

for all Xh ∈ Pq−1(In;U h
0 ) and for all n = 1, . . . , N , where Wh,n = (Uh −

ΠqI∂hg)|In and W 0
h,0 = uh0−I∂hg(0), where we have used that DL2(Ω)(ΠqI∂hg,Xh) =

DL2(Ω)(I
∂
hg,Xh) for all Xh ∈ Pq−1(In;U h

0 ), see Remark 18.1. Using (18.25),
Wh,n ∈ Pq−1(In;U h

0 ) can be determined sequentially in n = 1, . . . , N . Note that
g′ does not need to be computed explicitly to compute the term

∫
In
(I∂hg

′,Xh)L2(Ω),
instead we can use g and the equality

∫

In

(I∂hg
′,Xh)L2(Ω) = (I∂hg

n,Xn
h)L2(Ω)− (I∂hg

n−1+ , (Xh)
n−1+ )L2(Ω)−

∫

In

(I∂hg,X
′
h )L2(Ω).

18.4 Numerical Experiments

We consider a heat equation with a known analytic solution to validate the results
from the error analysis numerically. We use this example not only to validate our
theoretical results but also to explain why one does not obtain optimal results
without the projection Πq in (18.22). A second example is given in order to gain
further insight in the behavior of the method. This second example is selected in
such a way that the temporal error should dominate.

The method was implemented in the software package DROPS [10], using
formulation (18.25). Note that g′ in (18.25) is not known explicitly, therefore the
term

∫
In
(I∂hg

′,Xh)L2(Ω) is implemented using integration by parts.
We consider the heat equation, i.e. (18.5) and (18.6) with A = −Δ. We take

Ω = [0, 1]3 and a time interval I = [0, 1]. We take

u = exp(t (x3 + y2 + z)) sin(4tz)

and we discretize the problem

u′ −Δu = f , (18.26)

u|∂Ω = g, (18.27)
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for the appropriate right hand sides. Note that g �= 0 and is time-dependent. We
take a temporal step size k = 1

N
and q = 2. For the discretization in space we take

a triangulation of Ω . To obtain the triangulation Th the domain Ω is divided into
cubes with side length h := 1

NS
and each of the cubes is divided into six tetrahedra.

We use the finite element space U h which was introduced in the previous section,
with  = 2. Let Uh be the discrete solution obtained by the method from previous
section. The error ‖u − Uh‖L2(I ;H 1(Ω)) is given in Table 18.1. In this table we see
that the error is of orderO(k2+h2), which is optimal, as predicted by Theorem 18.3.
Note that the spatial error initially appears to have a higher convergence rate, this is
most likely due to the third order term h3‖u′‖L2(I ;H 3(Ω)) in (18.17). If we omit the
projection Πq in (18.22), then we obtain a suboptimal results of order O(k2h−1/2+
h2) in Table 18.2. Note that for a fixed temporal discretization refinement level k,
the discretization error in space diverges with a rate O(h−1/2). This can be seen in
the first column and it will be seen even more clearly in the next example. Here we
see that along the diagonal we only have a space-time convergence order of 1.5.

Remark 18.4 The h−1/2 behavior stems from the following phenomenon. Omitting
the projection Πq in (18.22), results in the following problem for the discrete

Table 18.1 Error in L2(I ;H 1(Ω))-norm between u and the solution of (18.21) and (18.22)

NS \N 8 16 32 64 128 256 EOCS

3 1.39E−01 1.10E−01 1.08E−01 1.07E−01 1.07E−01 1.07E−01

6 8.91E−02 3.00E−02 2.14E−02 2.07E−02 2.07E−02 2.07E−02 2.4

12 8.66E−02 2.19E−02 6.32E−03 3.53E−03 3.28E−03 3.26E−03 2.7

24 8.65E−02 2.17E−02 5.44E−03 1.43E−03 5.71E−04 4.66E−04 2.8

48 8.65E−02 2.17E−02 5.42E−03 1.36E−03 3.47E−04 1.05E−04 2.2

EOCT 2.0 2.0 2.0 2.0 1.7

The estimated temporal (spatial) order of convergence EOCT (EOCS) is computed using the last
row (column)

Table 18.2 Error in L2(I ;H 1(Ω))-norm between u and the solution of (18.21) and (18.22), if
we omit the projection Πq

NS \N 8 16 32 64 128 256 EOCS

3 2.73E−01 1.26E−01 1.09E−01 1.07E−01 1.07E−01 1.07E−01

6 4.65E−01 1.21E−01 3.75E−02 2.23E−02 2.08E−02 2.07E−02 2.4

12 7.38E−01 1.88E−01 4.82E−02 1.29E−02 4.64E−03 3.38E−03 2.6

24 1.10 2.79E−01 7.06E−02 1.80E−02 4.68E−03 1.30E−03 1.4

48 1.60 4.04E−01 1.02E−01 2.57E−02 6.54E−03 1.68E−03 −0.4

EOCT 2.0 2.0 2.0 2.0 2.0

The estimated temporal (spatial) order of convergence EOCT (EOCS) is computed using the last
row (column)
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solution Ũh

K(Ũh − I∂hg,Xh) = K(u− I∂hg,Xh) for all Xh ∈Pb(I ;U h
0), (18.28)

(Ũh − I∂hg)|I×∂Ω = 0. (18.29)

The analysis from Theorem 18.3 can still be applied, but now it involves the term
uh − I∂hg. Therefore the term k2‖(u − I∂hg)

(2)‖L2(I ;H 1(Ω)) appears in the error
bound. Take any m ∈ N. By construction (I∂hg)

(m) vanishes on I × [h, 1 − h]3
and (I∂hg)

(m)(t, x) = u(m)(t, x) for all nodal points x ∈ ∂Ω and all t ∈ I . It follows
that

‖∇(I∂hg)
(m)(t, x)‖R3 = O(h−1) for x ∈ Ω \ [h, 1 − h]3, t ∈ I.

Using that |Ω \ [h, 1 − h]3| = O(h), we can conclude that for all t ∈ I

‖(I∂hg)(m)(t)‖2
H 1(Ω)

= ‖(I∂hg)(m)(t)‖2
H 1(Ω\[h,1−h]3) = O(h−1).

This implies that ‖(I∂hg)(m)‖L2(I ;H 1(Ω)) = O(h−1/2). Noting that ‖u(2)‖L2(I ;H 1(Ω))

is bounded, we can conclude that k2‖(u− I∂hg)
(2)‖L2(I ;H 1(Ω)) = O(k2h−1/2).

We have not proven superconvergence for the fully discrete method. However based
on Theorem 18.2 and the bound (18.12) for the stationary case, we expect a O(k3 +
h3) convergence order for the maximal nodal error maxn=1,...,N ‖un − Un

h‖L2(Ω).
This is consistent with the numerical results in Table 18.3, and can be seen along
the diagonal. However, the spatial error dominates and therefore we do not see a
clear temporal convergence order. We will address this again in the next example.
If we omit the projection operator Πq , we again obtain results that are suboptimal
(Table 18.4). In particular we do not observe superconvergence.

We have established that if we omit the projection Πq , then both for the global
error and for the nodal error we do not have an optimal method. This results in errors
which are sometimes orders of magnitude larger then the (optimal) errors which we
can obtain by using the projection. It should also be noted that using the projection
Πq has a negligible contribution to the computational cost.

Table 18.3 Maximal nodal error maxn=1,...,N ‖un − Un
h ‖L2(Ω), where Uh is the solution

of (18.21) and (18.22)

NS \N 8 16 32 64 128 256 EOCS

3 8.11E−02 8.10E−02 8.10E−02 8.10E−02 8.10E−02 8.10E−02

6 1.15E−02 1.10E−02 1.10E−02 1.10E−02 1.10E−02 1.10E−02 2.9

12 3.84E−03 1.58E−03 1.41E−03 1.41E−03 1.41E−03 1.41E−03 3.0

24 3.60E−03 7.52E−04 2.18E−04 1.78E−04 1.77E−04 1.77E−04 3.0

48 3.59E−03 7.33E−04 1.30E−04 3.02E−05 2.23E−05 2.21E−05 3.0

EOCT 2.3 2.5 2.1 0.4 0.0

The estimated temporal (spatial) order of convergence EOCT (EOCS) is computed using the last
row (column)
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Table 18.4 Maximal nodal error maxn=1,...,N ‖un − Ũn
h ‖L2(Ω), where Ũh is the solution

of (18.21) and (18.22), if we omit the projection Πq

NS \N 8 16 32 64 128 256 EOCS

3 1.14E−01 8.44E−02 8.14E−02 8.11E−02 8.10E−02 8.10E−02

6 1.01E−01 2.51E−02 1.22E−02 1.11E−02 1.10E−02 1.10E−02 2.9

12 1.18E−01 2.65E−02 5.87E−03 1.87E−03 1.44E−03 1.41E−03 3.0

24 1.27E−01 2.90E−02 6.39E−03 1.36E−03 3.32E−04 1.87E−04 2.9

48 1.32E−01 3.03E−02 6.76E−03 1.46E−03 3.08E−04 6.66E−05 1.5

EOCT 2.1 2.2 2.2 2.2 2.2

The estimated temporal (spatial) order of convergence EOCT (EOCS) is computed using the last
row (column)

Table 18.5 Error in L2(I ;H 1(Ω))-norm between u and the solution of (18.21) and (18.22)

NS \N 4 8 16 32 64 128 EOCS

3 5.93E−02 1.49E−02 3.72E−03 9.29E−04 2.32E−04 5.80E−05

6 5.93E−02 1.49E−02 3.72E−03 9.29E−04 2.32E−04 5.80E−05 0.0

12 5.93E−02 1.49E−02 3.72E−03 9.29E−04 2.32E−04 5.80E−05 0.0

24 5.93E−02 1.49E−02 3.72E−03 9.29E−04 2.32E−04 5.80E−05 0.0

48 5.93E−02 1.49E−02 3.72E−03 9.29E−04 2.32E−04 5.80E−05 0.0

EOCT 2.0 2.0 2.0 2.0 2.0

The estimated temporal (spatial) order of convergence EOCT (EOCS) is computed using the last
row (column)

Table 18.6 Error in L2(I ;H 1(Ω))-norm between u and the solution of (18.21) and (18.22), if
we omit the projection Πq

NS \N 4 8 16 32 64 128 EOCS

3 9.08E−02 2.45E−02 6.66E−03 1.81E−03 4.86E−04 1.28E−04

6 1.45E−01 3.78E−02 1.00E−02 2.69E−03 7.27E−04 1.95E−04 −0.6

12 2.15E−01 5.52E−02 1.43E−02 3.73E−03 9.90E−04 2.65E−04 −0.4

24 3.12E−01 7.92E−02 2.02E−02 5.17E−03 1.34E−03 3.50E−04 −0.4

48 4.47E−01 1.13E−01 2.85E−02 7.22E−03 1.84E−03 4.72E−04 −0.4

EOCT 2.0 2.0 2.0 2.0 2.0

The estimated temporal (spatial) order of convergence EOCT (EOCS) is computed using the last
row (column)

In order to see some effects more clearly, we repeat the experiment with

u = (x + ty − z + cos(t))2 sin(2t)

and the appropriate right hand sides in (18.26) and (18.27). Here we have u ∈
H 1(I ;U h), therefore we expect no spatial error. The error ‖u− Uh‖L2(I ;H 1(Ω)) is
given in Table 18.5. We see that there is no spatial error and we have an optimal
temporal convergence order O(k2). If we omit the projection Πq , then we see
in Table 18.6 that refining the spatial discretization results in a “convergence"
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Table 18.7 Maximal nodal error maxn=1,...,N ‖un − Un
h ‖L2(Ω), where Uh is the solution

of (18.21) and (18.22)

NS \N 4 8 16 32 64 128 EOCS

3 1.59E−03 2.95E−04 4.75E−05 6.98E−06 9.67E−07 1.28E−07

6 1.61E−03 2.98E−04 4.81E−05 7.10E−06 9.92E−07 1.33E−07 −0.1

12 1.61E−03 2.99E−04 4.82E−05 7.11E−06 9.94E−07 1.33E−07 0.0

24 1.61E−03 2.99E−04 4.82E−05 7.11E−06 9.99E−07 1.33E−07 0.0

48 1.61E−03 2.99E−04 4.82E−05 7.11E−06 9.99E−07 1.34E−07 0.0

EOCT 2.4 2.6 2.8 2.8 2.9

The estimated temporal (spatial) order of convergence EOCT (EOCS) is computed using the last
row (column)

Table 18.8 Maximal nodal error maxn=1,...,N ‖un − Ũn
h ‖L2(Ω), where Ũh is the solution

of (18.21) and (18.22), if we omit the projection Πq

NS \N 4 8 16 32 64 128 EOCS

3 2.14E−02 4.19E−03 7.53E−04 1.26E−04 1.96E−05 2.86E−06

6 2.79E−02 5.82E−03 1.14E−03 2.10E−04 3.63E−05 5.91E−06 −1.0

12 3.15E−02 6.84E−03 1.41E−03 2.80E−04 5.33E−05 9.63E−06 −0.7

24 3.34E−02 7.38E−03 1.57E−03 3.24E−04 6.50E−05 1.27E−05 −0.4

48 3.43E−02 7.65E−03 1.64E−03 3.47E−04 7.26E−05 1.59E−05 −0.3

EOCT 2.2 2.2 2.2 2.3 2.2

The estimated temporal (spatial) order of convergence EOCT (EOCS) is computed using the last
row (column)

order O(h−1/2) for a fixed temporal discretization. This has been explained in
Remark 18.4.

We also consider the maximal nodal error for this example. We see in Table 18.7
that we have no spatial error and a temporal convergence which approaches the
optimal order O(k3). Omitting the projection Πq results in a negative spatial con-
vergence order. The temporal convergence order is also suboptimal, see Table 18.8.
In this case we see a convergence of second order along the diagonal.

18.5 Conclusion and Outlook

We have studied the CG-DG space-time discretization methods for second-order
parabolic equations with inhomogeneous Dirichlet boundary conditions. It has been
noted in [17] that a modification of the standard semi-discrete DG time discretiza-
tion method is necessary to obtain optimal error bounds. Here we have proven
that the fully discrete scheme with this modification has an optimal convergence
rate in the energy norm. Numerical experiments confirm the predicted optimal
convergence. Furthermore, we see in the numerical experiments that without this
modification the (standard) CG-DG method yields suboptimal results. We are able
to pinpoint the source of this suboptimality.
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We consider the following topics to be of interest for future research. The optimal
superconvergence results have been proven in the semi-discrete setting and observed
numerically. It is not clear, yet, how to derive a superconvergence result for the fully
discrete scheme. In this paper we presented the analysis for second-order parabolic
equations with Dirichlet boundary conditions. This analysis can be extended to other
problems, for example, problems with other boundary conditions. Furthermore, the
analysis can be extended to parabolic problems where the constraints are (partially)
treated by means of a Lagrange multiplier. This is the case for the Stokes problem.
In this case the error analysis for the pressure Lagrange multiplier is of interest.
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Chapter 19
A Framework for Efficient Hierarchic
Plate and Shell Elements

Michael Weise

Abstract The Mindlin–Reissner plate model is widely used for the elastic defor-
mation simulation of moderately thick plates. Shear locking occurs in the case of
thin plates, which means slow convergence with respect to the mesh size. The
Kirchhoff plate model does not show locking effects, but is valid only for thin plates.
One would like to have a method suitable for both thick and thin plates. Several
approaches are known to deal with the shear locking in the Mindlin–Reissner plate
model. In addition to the well known Mixed Interpolation of Tensorial Components
(MITC) elements and other approaches based on a mixed formulation, hierarchic
methods have been developed in the recent years. These are based on the Kirchhoff
model and add terms to account for shear deformations. We present some of these
methods and develop a new hierarchic plate formulation. This new model can be
discretised by a combination of C0 and C1 finite elements. Numerical tests show
that the new formulation is locking free and numerically efficient. We also give
an extension of the model to a hierarchic Naghdi shell based on a Koiter shell
formulation with unknowns in Cartesian coordinates.

19.1 Introduction

The Mindlin–Reissner plate model is widely used for the elastic deformation
simulation of moderately thick plates. The weak formulation of the model features
functions from H 1 and can thus be discretised with C0 finite elements. This simple
approach works if the considered plate is rather thick, but it leads to problems
when used with thin plates. One observes very slow convergence with respect to
the mesh size. Meshes sufficiently fine for a thick plate may yield results which are
several orders of magnitude too small in case of a thin plate. This effect is called
shear locking in the engineering literature due to the fact that the plate seems to be
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stiffer than it is with an insufficiently fine mesh. This is only one of several locking
phenomena which can be observed in different use cases and for different elements
such as volumetric locking, also called Poisson locking, for incompressible material
or membrane locking for shells. See for example [14] for an overview.

On the other hand, the Kirchhoff plate model does not show such locking
effects, but is valid only for thin isotropic plates. It excludes out-of-plane shear
deformations, which are negligible for thin plates but relevant for thick plates.
The weak formulation features functions from H 2 and therefore requires C1 finite
elements for a conforming discretisation.

One would like to have a method suitable for both thick and thin plates. Several
approaches are known to deal with the shear locking in the Mindlin–Reissner
model. In addition to the well known MITC elements, see for example [10], and
other approaches based on a mixed formulation, hierarchic methods have been
developed in the recent years. We focus on hierarchic methods in this article and
present two new formulations. In fact we will not really discuss specific elements,
but different formulations of the plate theory which may then be discretised with
suitable elements.

We will present and discuss numerical examples achieved with two combi-
nations of C0 and C1 elements: linear Lagrange ansatz functions and reduced
Hsieh–Clough–Tocher (rHCT) ansatz functions for triangular elements and bilinear
Lagrange ansatz functions and Bogner–Fox–Schmit (BFS) ansatz functions for
rectangular elements. See for example [3, 9, 26] for details on rHCT elements and
[5, 18] for details on BFS elements.

The article is structured as follows. Section 19.2 deals with plate formulations.
A simple benchmark problem is given in Sect. 19.2.1. Section 19.2.2 introduces
some basic concepts and formulas for the plate problem. Sections 19.2.3–19.2.10
present known and new plate formulations and give a short assessment of their
performance with conforming elements based on the benchmark problem from
Sect. 19.2.1. A more thorough numerical comparison is presented in Sect. 19.2.11.
Section 19.3 presents the basic concepts of the Naghdi and Koiter shell theories
in Sects. 19.3.1 and 19.3.2 and extends the new plate formulations to shells in
Sects. 19.3.3 and 19.3.4 with numerical examples in Sect. 19.3.5. The article is
concluded in Sect. 19.4.

Remark 19.1 What we call Mindlin–Reissner plate throughout this article should
more accurately be called Mindlin plate. Reissner’s plate formulation is actually
slightly different. We still use the term Mindlin–Reissner plate because of its wide
spread in the literature.



19 A Framework for Efficient Hierarchic Plate and Shell Elements 389

19.2 Plate Theory

19.2.1 A Simple Benchmark Problem

Before presenting the different plate formulations we define a benchmark problem
which will be used for a first assessment of each theory in the following sections.
A deeper analysis and comparison of the numerical performance is then given in
Sect. 19.2.11.

We consider a square plate of length 1 with isotropic material, i. e. same material
behaviour in all space directions. All edges are hard clamped which means no
deflection and no bending angle. This reads w = θ = 0 in the variables defined
in the following section. A thick plate with thickness d = 10−1 and a thin plate
with thickness d = 10−3 are subjected to a scaled load of d3. See Fig. 19.1 for
the qualitative resulting deflection in the thin plate case. Rough reference solutions
for the maximum deflection are 1.60 × 10−2 for the thick plate and 1.38 × 10−2

for the thin plate. They have been computed with an adaptive overkill solution, see
Sect. 19.2.11 for more details.

The first assessment is done with uniform refinements of one quadratic finite
element comprising the whole plate as initial coarse mesh. The full comparison in

q0 - (12545 nodes)

  1.38E-03 

  4.15E-03 

  6.91E-03 

  9.67E-03 

  1.24E-02 

   0.0

  1.38E-02

 w_00

TU Chemnitz

Fig. 19.1 Plate deflection under load
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Sect. 19.2.11 also features triangular elements. C0 linear Lagrange ansatz functions
and C1 reduced Hsieh–Clough–Tocher ansatz functions are used for triangular
elements and C0 bilinear Lagrange ansatz functions and C1 Bogner–Fox–Schmit
ansatz functions are used for quadratic elements.

The FE system is solved with the preconditioned conjugate gradient method.
Hierarchic preconditioning is used, see [16]. The relative decrease of the residual in
the preconditioned norm

(rTk wk)
1/2 < tol (rT0 w0)

1/2

with residuals and preconditioned residuals rk,wk of iteration k and tol = 10−4

serves as stopping criterion. The initial residual r0 is computed from a zero solution
on the initial coarse mesh and from an interpolated solution of the next coarser mesh
on all refined meshes.

19.2.2 Basic Assumptions and Formulas

Figure 19.2 depicts a deformed plate with extremely exaggerated thickness viewed
from the side. The Mindlin hypothesis states that a straight line vertical to the plate
midsurfaces remains a straight line after deformation, possibly with a different angle
than before. The angles θ1 and θ2 between the original line and the same line
after deformation projected onto the x1x3-plane and the x2x3-plane, respectively,
are collected in the bending angle vector θ = [θ1, θ2]T. We abbreviate the spatial
derivative ∂•/∂xi of any object • with an index •,i throughout this section. The 2D
gradient of the vertical deflection w, ∇w = [w,1, w,2]T = [∂w/∂x1, ∂w/∂x2]T,
can also be viewed as two angles in the x1x3-plane and the x2x3-plane. This allows
for the definition of the shear angle vector γ which contains the shear angles in the
same planes by γ = ∇w − θ or, equivalently,

∇w = θ + γ. (19.1)

Fig. 19.2 Deformed plate
from one side; thickness
exaggerated ii

w,i
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The 3D deformation of a point in the plate domain (η1, η2, τ ) ∈ ω×[−d/2, d/2],
ω ⊂ R2 under the Mindlin hypothesis may then be described by

u3D(x1, x2, x3) =
⎡
⎣
−x3θ1(x1, x2)

−x3θ2(x1, x2)

w(x1, x2)

⎤
⎦ . (19.2)

We collect the unknowns for any of the following plate formulations in a vector
called u. Plugging the deformation ansatz (19.2) into the 3D elasticity bilinear form
and integrating over the thickness direction variable x3 results in the problem

find u ∈ V with a(u, ũ) = l(̃u) ∀ ũ ∈ Vtest (19.3)

with the bilinear form

a(u, ũ) =
∫

ω

ε(θ) : C b : ε(θ̃) dω +
∫

ω

γ ·Cs ·γ̃ dω, (19.4)

the linear form

l(̃u) =
∫

ω

p w̃ dω, (19.5)

and appropriate FE ansatz and test spaces V and Vtest. The linearised 2D strain
tensor ε(•) = 1

2

(∇ • +(∇•)T) is given as the symmetrised 2D gradient. The
fourth order material bending tensor C b and the second order shear tensor Cs are
proportional to d3 and d , respectively, due to the thickness integration.

The given formulation of the problem and the bilinear and linear forms features
the three variables w, θ, γ . The relation ∇w = θ + γ from (19.1) allows the
elimination of either θ or γ from the problem. This leads to differing formulations
with different numerical behaviour which are explored in the following sections.

Remark 19.2 In this article we concentrate on the “classical” plate formulations by
Mindlin and Kirchhoff, which are based on non-proofable hypotheses. In contrast,
two structured strategies for the derivation of refined plate theories have been
developed: the so-called “direct approach” and the “consistent approach”. The direct
approach is based on the Cosserat theory which employs deformable directors
defined directly on a surface. An overview is given for example in [2]. In the
consistent approach, all quantities are developed into a series in the thickness
direction with respect to a suitable basis and then truncated at different orders.
See for example the works of Kienzler, Schneider, and co-workers [13, 23]. The
Kirchhoff plate theory of Sect. 19.2.4 is included as a special case in this theory, but
not the Mindlin plate theory.
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Table 19.1 Results for the standard Mindlin–Reissner plate formulation with C0 elements

Bilin., thick plate Bilin., thin plate Biquadr., thick plate Biquadr., thin plate

#El wmax #it wmax #it wmax #it wmax #it

4 2.44E−3 2 2.44E−7 2 8.82E−3 4 1.39E−6 4

16 6.67E−3 9 9.26E−7 9 1.49E−2 24 4.95E−6 42

64 1.17E−2 24 3.43E−6 38 1.59E−2 42 4.88E−3 441

256 1.46E−2 40 1.34E−5 114 1.60E−2 42 1.08E−2 1444

1024 1.56E−2 48 5.31E−5 286 1.60E−2 35 1.23E−2 227

4096 1.59E−2 49 2.10E−4 662 1.60E−2 33 1.29E−2 891

16,384 1.60E−2 47 8.01E−4 1489 1.60E−2 32 1.32E−2 1426

19.2.3 The Standard Mindlin–Reissner Plate Formulation
(MRs)

The standard formulation of the Mindlin–Reissner plate problem follows from
eliminating γ = ∇w − θ from the three variable formulation (19.2)–(19.5). This
leads to the bilinear form

a(u, ũ) =
∫

ω

ε(θ) : C b : ε(θ̃) dω +
∫

ω

(∇w − θ)·Cs ·(∇w̃ − θ̃ ) dω

with the unknowns u = [w, θ1, θ2]T. All unknowns are featured with derivatives
up to first order and are thus assumed to be in H 1(ω). This allows for a simple
discretisation with C0 finite elements.

Results for the example problem from Sect. 19.2.1 with bilinear and biquadratic
rectangular elements are shown in Table 19.1. One observes reasonable h-
convergence for the thick plate case but very slow convergence for the thin
plate case. This effect is called thickness locking or shear locking. Standard finite
elements are not capable of resolving the first (bending) term and the second (shear)
term of the bilinear form appropriately for small thickness d . As d tends to zero, the
shear term dominates due to the scaling of the bending term with d3 and the shear
term with d . The shear term is imbalanced in the sense that it consists of a function
value and derivative value.

19.2.4 The Kirchhoff Plate

The plate model of Kirchhoff can be viewed as a special case of the Mindlin–
Reissner plate without the allowance for a shear angle. The condition γ = 0 gives
θ = ∇w from (19.1). The geometric interpretation of this ansatz is that orthogonal
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Table 19.2 Results for the
Kirchhoff plate problem with
C1 BFS elements

Thick plate Thin plate

#El wmax #it wmax #it

4 1.45E−2 2 1.45E−2 2

16 1.38E−2 8 1.38E−2 8

64 1.38E−2 23 1.38E−2 22

256 1.38E−2 35 1.38E−2 35

1024 1.38E−2 29 1.38E−2 29

4096 1.38E−2 29 1.38E−2 28

16,384 1.38E−2 31 1.38E−2 83

line elements prior to deformation are still orthogonal to the new plate midsurface
after deformation. The problem formulation changes to

u3D =
⎡
⎣
−x3w,1

−x3w,2

w

⎤
⎦ , a(u, ũ) =

∫

ω

ε(∇w) : C b : ε(∇w̃) dω, l(̃u) =
∫

ω

p w̃ dω

with the single unknown u = w. The bilinear form features second derivatives
which calls for w ∈ H 2(ω). Thus, C1 finite elements are needed for a conforming
discretisation.

Results for the example problem from Sect. 19.2.1 with BFS elements are shown
in Table 19.2. Even very coarse meshes yield a quite accurate solution for the thin
plate. No shear locking is observed because no shear term is present. The thick plate
example converges equally fast, but to the same value of 1.38 × 10−2 while the
reference solution for the thick plate is about 1.60 × 10−2. This is due to the fact
that the Kirchhoff model neglects the shear term and is thus only suitable for thin
plates.

19.2.5 The Mindlin–Reissner Plate in Hierarchic Formulation
(MRh)

The desire for a suitable plate formulation for thick and thin plates has lead to
numerous reformulations of the Mindlin–Reissner plate problem with the goal of
the exclusion of locking. A hierarchic approach can be found in [11] based on earlier
works, see the references therein. The cited work uses isogeometric analysis (finite
elements with non-uniform rational B-splines used for geometry definition and as
basis functions) but the formulation given there can also be discretised with standard
finite elements.
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Table 19.3 Results for the
hierarchic Mindlin–Reissner
formulation with C1 BFS
elements for w and C0

bilinear elements for γ

Thick plate Thin plate

#El wmax #it wmax #it

4 1.45E−2 2 1.45E−2 2

16 1.53E−2 10 1.38E−2 9

64 1.56E−2 32 1.38E−2 24

256 1.58E−2 73 1.38E−2 45

1024 1.59E−2 130 1.38E−2 68

4096 1.60E−2 214 1.38E−2 92

16,384 1.60E−2 423 1.38E−2 108

The idea is to eliminate θ = ∇w− γ from the three variable formulation (19.2)–
(19.5) instead of γ . This leads to

u3D =
⎡
⎣
−x3(w,1 − γ1)

−x3(w,2 − γ2)

w

⎤
⎦ ,

a(u, ũ) =
∫

ω

ε(∇w − γ ) : C b : ε(∇w̃ − γ̃ ) dω+
∫

ω

γ · Cs · γ̃ dω,

l(̃u) =
∫

ω

p w̃ dω

with the variables u = [w, γ1, γ2]T. First derivatives of γ and second derivatives of
w call for γ ∈ H 1(ω) and w ∈ H 2(ω). Thus, a discretisation with C0 elements for
γ and C1 elements for w is needed. The name “hierarchic” comes from the fact that
the bilinear form includes the Kirchhoff bending term and can thus be viewed as a
hierarchic extension of the Kirchhoff model.

Results for the example problem from Sect. 19.2.1 are shown in Table 19.3. One
observes good h-convergence to the right solutions for the thick and the thin plate.
The hierarchic reformulation has rendered the problem locking free and the method
performs well for thick and thin plates. There is, however, one major drawback: the
iteration numbers needed to reduce the initial residual below the defined threshold
are significantly higher for the thick plate than for the thin plate and also much
higher than with the standard Mindlin–Reissner formulation. A fair and thorough
comparison between the pure C0 elements used there and the partially C1 combined
elements here also needs to involve some error and computation time measurement
and is carried out in Sect. 19.2.11. But the reduced comparison given here still serves
to show that it might be useful to search for further formulations even though the
hierarchic formulation is locking free.
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19.2.6 The Mindlin–Reissner Plate in a Rotation Free
Formulation by Oesterle, Ramm and Bischoff (ORB)

The locking phenomenon is caused by the imbalance of function values and
derivative values in the standard formulation. The authors of [22] try to overcome
this issue with a so-called rotation free formulation. All variables of this formulation
represent displacements and not rotation angles. Two additional plate deflections
wsb, wbs whose derivatives in x1 respectively x2 represent the shear angles need
to be introduced for an equivalent formulation to the Mindlin–Reissner plate. The
ansatz

w = wb +wsb +wbs, γ = (wsb,1, wbs,2)
T, θ = ∇w − γ = ∇wb + (wbs,1, wsb,2)

T

yields the formulation

u3D =
⎡
⎣
u1 − x3(wb,1 +wbs,1)

u2 − x3(wb,2 +wsb,2)

w

⎤
⎦ ,

a(u, ũ) =
∫

ω

ε

(
wb,1 +wbs,1

wb,2 +wsb,2

)
:C b :ε

(
w̃b,1 + w̃bs,1

w̃b,2 + w̃sb,2

)
dω

+
∫

ω

(
wsb,1

wbs,2

)
·Cs ·

(
w̃sb,1

w̃bs,2

)
dω,

l(̃u) =
∫

ω

p (w̃b + w̃sb + w̃bs) dω.

All three variables wb, wsb, wbs are present with second derivatives and need to
be discretised with C1 elements. Unlike the source [22] which uses isogeometric
analysis we again employ standard C1 finite elements.

Results for the example problem from Sect. 19.2.1 are shown in Table 19.4. The
conjugate gradient method was stopped if the stopping criterion was not met after
5000 iterations. One observes good h-convergence to the right solutions for the thick

Table 19.4 Results for the
rotation free
Mindlin–Reissner
formulation with C1 BFS
elements for w,wsb and wbs

Thick plate Thin plate

#El wmax #it wmax #it

4 1.63E−2 3 1.45E−2 3

16 1.56E−2 34 1.38E−2 14

64 1.58E−2 265 1.38E−2 63

256 1.59E−2 910 1.38E−2 204

1024 1.60E−2 2367 1.38E−2 559

4096 1.60E−2 5000 1.38E−2 1241

16,384 1.60E−2 5000 1.38E−2 2837
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and the thin plate. The rotation free reformulation has rendered the problem locking
free and the method performs well for thick and thin plates. The iteration numbers,
however, are extremely high in comparison with the other methods. With shear
locking gone but very low numerical efficiency this method does not look promising
for practical use. Maybe there exist better solvers for this problem formulation, but
at least our preconditioned solver is inefficient in this case.

19.2.7 The Plate Formulation of Endo and Kimura (EKs)

The authors of [12] argue that the bending and shear deformations of the Mindlin–
Reissner plate formulation can not be determined uniquely and therefore propose
a different formulation. Like in the standard formulation they eliminate γ =
∇w − θ from the three variable formulation (19.2)–(19.5) and make the additional
assumption θ = ∇wb for some wb. In consequence it holds γ = ∇ws for
ws = w−wb. Just like the formulation of the previous section the absence of rotation
angle variables leads to a rotation free and thus also locking free formulation. One
gets

u3D =
⎡
⎣
u1 − x3wb,1

u2 − x3wb,2

w

⎤
⎦ ,

a(u, ũ) =
∫

ω

ε(∇wb) : C b : ε(∇w̃b) dω +
∫

ω

(∇w − ∇wb) ·Cs · (∇w̃ −∇w̃b) dω,

l(̃u) =
∫

ω

p w̃ dω.

Both variables w and wb are present with second derivatives and need to be
discretised with C1 elements. One expects a slightly different solution than with
the standard Mindlin–Reissner plate due to the additional condition that θ needs to
be a gradient.

Numerical results are shown in Table 19.5. One observes good h-convergence for
both the thick and the thin plate. The solution of the thick plate is different from the

Table 19.5 Results for the
Endo–Kimura plate
formulation with C1 BFS
elements for w and wb

Thick plate Thin plate

#El wmax #it wmax #it

4 1.63E−2 3 1.45E−2 3

16 1.55E−2 24 1.38E−2 119

64 1.56E−2 49 1.38E−2 1320

256 1.57E−2 96 1.38E−2 3132

1024 1.57E−2 103 1.38E−2 2666

4096 1.57E−2 139 1.38E−2 834

16,384 1.57E−2 142 1.38E−2 483
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Mindlin–Reissner plate. The additional gradient condition leads to a slightly stiffer
behaviour. It is unclear which solution is the “better” one compared to the behaviour
of real plates. Iteration numbers are good for the thin plate but very high for the thick
plate.

19.2.8 The Endo–Kimura Plate in Hierarchic Formulation
(EKh)

The ansatz θ = ∇wb, γ = ws of Endo and Kimura can also be combined
with the hierarchic ansatz of eliminating θ instead of γ from the three variable
formulation (19.2)–(19.5). This yields

u3D =
⎡
⎣
u1 − x3(w,1 −ws,1)

u2 − x3(w,2 −ws,2)

w

⎤
⎦ ,

a(u, ũ) =
∫

ω

ε(∇w −∇ws) : C b : ε(∇w̃ − ∇w̃s) dω +
∫

ω

(∇ws) · Cs · (∇w̃s) dω,

l(̃u) =
∫

ω

p w̃ dω.

The numerical results in Table 19.6 show good h-convergence to the same
solution like the standard Endo–Kimura formulation. Iteration numbers are good
for the thick plate but very high for the thin plate. This is exactly the other way
around than with standard Endo–Kimura in the previous section. It appears that the
difficulty of the problem has shifted from the thick to the thin plate, or from the
shear to the bending term.

Table 19.6 Results for the
hierarchic Endo–Kimura
plate formulation with C1

BFS elements for w and ws

Thick plate Thin plate

#El wmax #it wmax #it

4 1.63E−2 3 1.45E−2 3

16 1.55E−2 17 1.38E−2 9

64 1.56E−2 103 1.38E−2 28

256 1.57E−2 374 1.38E−2 48

1024 1.57E−2 706 1.38E−2 59

4096 1.57E−2 1383 1.38E−2 100

16,384 1.57E−2 2829 1.38E−2 139
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19.2.9 First New Formulation: Endo–Kimura Plate Decoupled
(EKd)

Another kind of elimination which was not present in [12] is possible. With the
ansatz of Endo and Kimura one can also eliminate ∇w = ∇wb + ∇ws and w =
wb + ws from the equations. Only the variables wb and ws remain and one arrives
at

u3D =
⎡
⎣
u1 − x3wb,1

u2 − x3wb,2

w

⎤
⎦ ,

a(u, ũ) =
∫

ω

ε(∇wb) : C b : ε(∇w̃b) dω +
∫

ω

(∇ws) · Cs · (∇w̃s) dω,

l(̃u) =
∫

ω

p (w̃b + w̃s) dω.

This formulation has completely decoupled bending and shear terms. The bending
deflection wb is the same as in the Kirchhoff theory and an additional shear
deflection ws may be calculated separately and added for a total deflection w =
wb +ws afterwards. We solve, however, the complete system. An analogous decou-
pled formulation is not directly obtainable from the standard Mindlin–Reissner
formulation. A conforming discretisation can be achieved with C1 elements for wb
and C0 elements for ws.

The numerical results in Table 19.7 show good h-convergence to the same
solution like the standard Endo–Kimura formulation. Iteration numbers are very
good for both the thick and the thin plate.

The decoupling has eliminated the convergence problems of the other two Endo–
Kimura formulations. We have obtained a formulation which is suitable for both
thick and thin plates and is numerically efficient in both cases. The only drawback
is that we do not get the solution of the Mindlin–Reissner plate but of a slightly
stiffer problem.

Table 19.7 Results for the
decoupled Endo–Kimura
plate formulation with C1

BFS elements for wb and C0

bilinear elements for ws

Thick plate Thin plate

#El wmax #it wmax #it

4 1.69E−2 2 1.45E−2 2

16 1.58E−2 10 1.38E−2 9

64 1.58E−2 22 1.38E−2 22

256 1.57E−2 26 1.38E−2 35

1024 1.57E−2 24 1.38E−2 29

4096 1.57E−2 21 1.38E−2 29

16,384 1.57E−2 20 1.38E−2 33
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19.2.10 Second New Formulation: Hierarchic
Mindlin–Reissner Based on Endo–Kimura (MREK)

We propose to extend the formulation of the previous section with an additional term
to relax the gradient condition again. In this way we arrive at a Mindlin–Reissner
formulation which can be viewed as hierarchically based on the decoupled Endo–
Kimura formulation. The ansatz

w = wb +ws, ∇w = θ + γ, θ = ∇wb − *, γ = ∇ws + *

and elimination of w yields

u3D =
⎡
⎢⎣
u1 − x3(wb,1 − *1)

u2 − x3(wb,2 − *2)

w

⎤
⎥⎦ ,

a(u, ũ) =
∫

ω

ε(∇wb − *) : C b : ε(∇w̃b − *̃) dω +
∫

ω

(∇ws + *) ·Cs · (∇w̃s + *̃) dω,

l(̃u) =
∫

ω

p (w̃b + w̃s) dω.

A conforming discretisation can be achieved with C1 elements for wb and C0

elements for *1, *2 and ws.
The numerical results in Table 19.8 show good h-convergence to the same

solution like for the Mindlin–Reissner model. Iteration numbers are not as good as
for the decoupled Endo–Kimura formulation but still good. They are comparable
for the thick and thin plate and grow slowly with the number of elements. In
comparison with the hierarchic Mindlin–Reissner formulation from Sect. 19.2.5,
the iteration numbers for the thin plate are slightly bigger and those of the thick
plate are somewhat higher at lower element numbers but are growing slower and
thus they are lower than those of the hierarchic Mindlin–Reissner formulation at
higher element numbers.

Table 19.8 Results for the
Endo–Kimura based
Mindlin–Reissner plate
formulation with C1 BFS
elements for wb and C0

bilinear elements for ws and *

Thick plate Thin plate

#El wmax #it wmax #it

4 1.69E−2 2 1.45E−2 2

16 1.60E−2 9 1.38E−2 10

64 1.60E−2 26 1.38E−2 25

256 1.60E−2 46 1.38E−2 50

1024 1.60E−2 60 1.38E−2 68

4096 1.60E−2 100 1.38E−2 100

16,384 1.60E−2 130 1.38E−2 132
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19.2.11 Comparison of Numerical Results

The numerical example from Sect. 19.2.1 is explored in more detail in this section.
We consider the error estimator for the energy norm of [6] for MITC elements and
neglect the terms which are zero for our standard elements. The error contribution
of an element T then reads

η2
T = h2

T

(
‖div(C b :ε(θh))+ Cs ·γh‖L2(T ) + (d2 + h2

T )‖p + div(Cs ·γh)‖L2(T )

)

+1

2

∑
E∈E(T )

hE

(
‖[C b :ε(θh)]E ·nE‖L2(E) + (d2 + h2

E)‖[Cs ·γh]E ·nE‖L2(E)

)

for a finite element solution θh and γh (adapted to the actual used theory for each of
the Mindlin–Reissner and Endo–Kimura plate formulations). The formula involves
the element diameter hT , the set of edges E(T ) of the element T , the edge length
hE , the jump [•]E of a quantity over the edge E and a fixed unit normal nE of edge
E.

Computations were done with our TU Chemnitz adaptive FEM software SPC
written in Fortran, see [17]. The software features adaptive FEM but uniform
refinement was employed for this tests for good comparability. The plate module of
SPC features rectangular and triangular elements. The coarse mesh for our example
with rectangular elements is one unit square; the coarse mesh for triangular elements
is the unit square divided by one of its diagonals. Square element use Bogner–
Fox–Schmit (BFS) quadrangles for C1 parts and Lagrange elements for C0 parts
of the different formulations as detailed in the sections above. Triangular elements
use reduced Hsieh–Clough–Tocher (rHCT) elements for C1 parts and Lagrange
elements for C0 parts of the different formulations as detailed in the sections above.
BFS elements feature 4 degrees of freedom (dofs) per node and unknown in the
ansatz, rHCT elements 3 dofs per node and unknown. This leads to unknowns per
node as given in Table 19.9.

Figure 19.3 collects the development of the error estimator for the thick and thin
plates in case of square elements. The first row shows its reduction over the number

Table 19.9 Continuous and discretised unknowns of the plate formulations

Formulation C0 unkn. C1 unkn. dofs/node (rectangle) dofs/node (triangle)

MRs 3 0 3 3

MRh 2 1 6 5

ORB 0 3 12 9

EKs 0 2 8 6

EKh 0 2 8 6

EKd 1 1 5 4

MREK 3 1 7 6



19 A Framework for Efficient Hierarchic Plate and Shell Elements 401

100 101 102 103 104 105

10−6

10−4

10−2

100

# elements

2 T

thick plate

100 101 102 103 104 105
10−16

10−12

10−8

10−4

# elements

thin plate

102 103 104 105 106

10−6

10−4

10−2

100

# dofs

2 T

102 103 104 105 106
10−16

10−12

10−8

10−4

# dofs

10−1 100 101 102 103

10−6

10−4

10−2

100

total time [s]

2 T

10−1 100 101 102 103
10−16

10−12

10−8

10−4

total time [s]

MRs
MRh
ORB
EKs
EKh
EKd
MREK

Fig. 19.3 Squared relative error estimator for square elements; triangle shows rate 1/(# elements)
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of elements. All formulations show h-convergence with best results for MREK and
EKd for the thick plate and MREK for the thin plate.

The second row shows the error reduction over the total number of unknowns.
The unknowns are approximately linked to the element numbers by a fixed factor
because of the uniform refinement. Thus, the graphs do look quite similar for both
the thick and the thin plate compared to those of the first row.

The third row shows the error reduction over the total time summed over all
refinements. These two are the most important graphs because only they factor in
the iteration numbers via the computation time. EKd is best closely followed by
MREK and they are clearly more efficient than the other formulations for the thick
plate. For the thin plate this changes to MREK as the most efficient formulation
followed by EKd and than the other formulations.

The results for triangular elements are collected in Fig. 19.4. The performance
differences are less pronounced in this case than in the square elements case. EKd
is the most efficient formulation for both the thick and the thin plate. MREK, EKh
and MRh are also performing quite well in both cases. EKs is very good for thick
plates but rather inefficient for the thin plate.

In summary, MREK is the most efficient Mindlin–Reissner formulation and
EKd the most efficient Endo–Kimura formulation for thick and thin as well as
square and triangular elements. We conclude that both our new formulations are
the formulations of choice for flexibly usable thick and thin Mindlin–Reissner or
Endo–Kimura plate elements. The MRh formulation comes close in performance to
MREK in case of triangular elements but is clearly outperformed by MREK in case
of square elements.

19.3 Shell Theory

19.3.1 The Naghdi Shell

We consider a shell, a thin-walled, possibly curved structure in 3D. The shell domain
is defined by the midsurface y and the thickness d (significantly smaller than the
midsurface dimensions) via

{x(η1, η2, τ ) = y(η1, η2)+ τa3(η
1, η2) : (η1, η2) ∈ ω ⊂ R2, τ ∈ [− d

2 ,
d
2 ]}

with the tangential vectors a1, a2 and the unit normal vector a3 of the midsurface
given by

ai = y,i = ∂y
∂ηi

, i = 1, 2 , a3 = a1×a2‖a1×a2‖ .
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These vectors are called covariant basis and form a biorthogonal system with the
contravariant basis a1, a2 and a3 = a3. We abbreviate the parameter derivative
∂•/∂ηi of any object • with an index •,i throughout this section.

The solution of a shell deformation problem with 3D-FEM is not suitable due
to the small thickness (either elements with bad aspect ratios occur or an extreme
amount of elements is required). Therefore, special shell models are needed. One
popular example is the Naghdi shell model, see [21] or for example [7, Sect. 4.2.2]
and the references therein. It employs the Mindlin–Reissner hypotheses (normal
lines remain straight after deformation, no change of thickness, plane state of stress)
with the deformation ansatz

u3D := u(η1, η2)+ τθ(η1, η2) with u = u1a1 + u2a2 + u3a3, θ = θ1a1 + θ2a2

in covariant coordinates with the midsurface translation u and the rotation θ .

19.3.1.1 Naghdi Shell in Covariant Coordinates

We collect the five unknown covariant coordinates in a vector

u = [u1, u2, u3, θ1, θ2]T.

The weak formulation of the shell problem reads

a(u, ũ) = f (̃u) ∀ ũ

with test functions ũ from an appropriate space, the bilinear form a(·, ·) accounting
for the inner virtual work of the elastic deformation and the linear functional f (·)
accounting for the load of the test functions. The bilinear form can be written as a
sum of membrane, bending and shear terms with according strains in the form

a(u, ũ) = am(u, ũ)+ ab(u, ũ)+ as(u, ũ), (19.6)

am(u, ũ) = ∫
ω
εm(u) :C m :εm(̃u) dS, (19.7)

ab(u, ũ) = ∫ω εb(u) :C b :εb(̃u) dS, (19.8)

as(u, ũ) = ∫
ω
εs(u) :C m :εs(̃u) dS (19.9)

with the surface element dS = ‖a1×a2‖dη1dη2. The membrane, bending and shear
strain tensors

εm(u) = Σij ε
m
ij (u)a

iaj , εb(u) = Σij ε
b
ij (u)a

iaj , εs(u) = Σi ε
s
i (u)(a

ia3 + a3ai )
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have the covariant coordinates

εm
ij (u) = 1

2 (ui|j + uj |i )− bij u3 (not dependent on θi),

εb
ij (u) = 1

2 (θi|j + θj |i −Σk b
k
i uk|j −Σk b

k
juk|i )+ cij u3,

εs
i (u) = 1

2 (θi + u3,i +Σj b
j
i uj ).

(19.10)

The notation above uses the first fundamental form aij = ai · aj or aij = ai · aj ,

the second fundamental form bij = ai,j · a3 = −ai · a3,j or bji = Σk bika
kj , the

third fundamental form cij = Σl b
l
iblj = Σkl bika

klblj and the covariant derivative
ui|j = ui,j −Σk Γ

k
ij uk with the Christoffel symbols Γ k

ij = ai,j ·ak = Σl a
kl(ail,j +

ajl,i − aij,l )/2. Indices take the values 1 and 2 whenever a (multi-)sum Σ without
an index range appears. The membrane and bending material tensors C m and C b

are obtained by integrating the material tensor C and τ 2C , respectively, over the
thickness of the shell. If the material is constant over the thickness this leads to
C m = dC ,C b = d3

12C . For a complete derivation of the above formulas we again
refer to [7].

The action of the second order tensor εs(u) = Σi ε
s
i (u)(a

ia3 + a3ai ) with the
fourth order material tensor C m may be expressed by a replacement first order
tensor 2es(u) = Σi ε

s
i (u)a

i with an appropriately chosen reduced second order
shear tensor Cs which reads

as(u, ũ) = ∫ω es(u)·Cs ·es(̃u) dS. (19.11)

The shell midsurface can be given as a non-uniform rational B-spline (NURBS)
surface for practical applications like outlined in [8] and [27].

19.3.1.2 Coordinate Free Naghdi Shell Formulation

The traditional Naghdi shell formulation of the previous section uses the covariant
coordinates as unknowns. The shell formulation itself can also be written in a
coordinate free formulation which is independent of a coordinate system for the
unknowns. With the surface gradient ∇S defined by

∇S• = Σiai•,i
the equivalent of the angle decomposition (19.1) from plate theory reads ∇Su · a3 =
θ + γ . With the first and second fundamental tensors A = aijaiaj and B = bijaiaj

the shell strains may then be expressed by

2εm = ∇Su · A+ A · (∇Su)T,
2εs = γ a3 + a3γ , 2es = γ ,

2εb = −∇Sθ · A− A · (∇Sθ)T −∇Su · B− B · (∇Su)T.
(19.12)



406 M. Weise

The elimination of γ = ∇Su · a3 − θ changes the shear strain tensor to

2εs = (∇Su · a3 − θ)a3 + a3(∇Su · a3 − θ), 2es = ∇Su · a3 − θ . (19.13)

See also [20] for a full derivation (with θ oriented differently, θhere = −θ there). The
bilinear form stays as in (19.6) and (19.11).

19.3.2 The Koiter Shell

While the Naghdi shell is the shell equivalent to the Mindlin–Reissner plate, the
Koiter shell is the equivalent to the Kirchhoff plate. The additional hypothesis reads

θ = ∇Su · a3, γ = ∇Su · a3 − θ = 0

for shells. It is a valid assumption only for thin shells.
The Koiter shell model can be derived in different ways from 3D elasticity or

directly as a 2D model. We refer to [1] and [24] for further reading on this topic.

19.3.2.1 Coordinate Free Koiter Shell Formulation

Direct insertion of the hypothesis into the coordinate free Naghdi shell formulation
yields es = 0 and

2εm = ∇Su · A+ A · (∇Su)T,

2εb = −∇S(∇Su · a3) · A− A · (∇S(∇Su · a3))
T −∇Su · B− B · (∇Su)T

= −∇S∇Su · a3 · A− A · (∇S∇Su · a3)
T

with the chain rule∇S(∇Su ·a3) = ∇S∇Su ·a3+∇Su ·∇Sa3 = ∇S∇Su ·a3−∇Su ·B.
See also [19] and [20, Sect. 5.2] for a full derivation.

19.3.2.2 Koiter Shell in Cartesian Coordinates

Writing the Koiter shell in covariant coordinates like the Naghdi shell leads to
formulas which are not so easy to implement for general geometries, see [7, Sect.
4.2.3]. A conforming discretisation of this formulation requires C0 elements for
both tangential coordinates and C1 elements for the normal coordinate.
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Alternatively, one can use Cartesian coordinates for the unknowns, see [4]. The
coordinate free formulation from above can be reformulated to

2εm = ∇Su · A+ A · (∇Su)T

= u,j · ai + u,i · aj ,
2εb = −∇S∇Su · a3 · A− A · (∇S∇Su · a3)

T

= 2(u,ij · a3 − Γ k
iju,k · a3)aiaj .

There is no need for further derivative evaluation if the unknowns are given in
Cartesian coordinates u = uxex+uyey+uzez. The Cartesian basis vectors ex, ey, ez
are fixed in space and thus the derivatives carry over directly to the unknown
coordinates themselves;

u,i = ( ∂
∂ηi

ux)ex + ( ∂
∂ηi

uy)ey + ( ∂
∂ηi

uz)ez,

u,ij = ( ∂2

∂ηi∂ηj
ux)ex + ( ∂2

∂ηi∂ηj
uy)ey + ( ∂2

∂ηi∂ηj
uz)ez.

This formulation can then easily be implemented. A conforming discretisation
requires C1 finite elements for all three coordinates ux, uy, uz.

19.3.3 The Principle of Endo–Kimura Applied to Shells

The basic idea of Endo and Kimura can also be applied to the Naghdi shell
formulation. The total deformation u is split into a bending and a shear part with
u = ub + us. We start from the coordinate free Naghdi formulation of (19.12)
and (19.13)

2εm = ∇Su · A+ A · (∇Su)T,

2es = ∇Su · a3 − θ ,

2εb = −∇Sθ · A− A · (∇Sθ)T −∇Su · B− B · (∇Su)T

and insert the assumption θ = ∇Sub · a3 to obtain

2εm = ∇Su · A+ A · (∇Su)T,

2es = ∇Su · a3 −∇Sub · a3,

2εb = −∇S(∇Sub · a3) · A− A · (∇S(∇Sub · a3))
T −∇Su · B− B · (∇Su)T

as the shell equivalent to the standard Endo–Kimura plate formulation. Hierarchic
and decoupled versions can again be obtained by using the unknowns u and us with
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elimination of ub for the hierarchic version or by using ub and us with elimination
of u for the decoupled version. Just like in the special case of a plate the additional
gradient condition leads to a slightly stiffer solution than that of the Naghdi shell.

The decoupled version reads

2εm = ∇S(ub + us) · A+ A · (∇S(ub + us))
T,

2es = ∇Sus · a3,

2εb = −∇S(∇Sub · a3) · A− A · (∇S(∇Sub · a3))
T

−∇S(ub + us)) · B− B · (∇S(ub + us)))
T

and the product rule ∇S(∇Sub · a3) = ∇S∇Sub + ∇SubB together with B · A = B
yields the simplified bending strain

2εb = −(∇S∇Sub · a3) · A− A · (∇S∇Sub · a3)
T −∇Sus · B− B · (∇Sus)

T.

The bending strain features both ub and us. Therefore, this formulation is actually
not totally decoupled like in the special case of a plate. We still keep the name
“decoupled” to link it with the corresponding plate formulation.

We have not yet specified if us is fromR3 or a smaller subspace. From now on we
use us ∈ span{a3} because it is the equivalent of the plate deflection ws. In contrast,
ub is from the whole R3 because it emulates not only the deflection but also the
membrane deformations. It is sensible to use the normal coordinate us = wsa3 as
an unknown with this assumption. The coordinates of ub on the other hand are best
expressed in Cartesian coordinates via ub = ubxex + ubyey + ubzez. This yields the
covariant coordinates

2εm
ij = ub,i · aj + ub,j · ai − 2wsbij ,

2es
i = ws,i,

2εb
ij = −2ub,ij · a3 + 2Σk Γ

k
ijub,k · a3 + 2wscij

which can be used for implementing the decoupled Endo–Kimura shell with C1

elements for the three Cartesian coordinates of ub and C0 elements for the normal
coordinate ws of us.

19.3.4 Hierarchic Naghdi Shell Formulation Based on
Endo–Kimura

A relaxation of the decoupled Endo–Kimura shell formulation to obtain again the
Naghdi shell solution can be done analogously to the relaxation of the according
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plate model in Sect. 19.2.10. Adding the relaxation angle � = *1a1 + *2a2 with
θ = ∇Sub · a3 − � and γ = ∇Sus · a3 + � results in the shear and bending strains

2es = ∇Sus · a3 + �,

2εb = −(∇S∇Sub · a3) · A− A · (∇S∇Sub · a3)
T −∇Sus · B− B · (∇Sus)

T

+∇S� · A+ A · (∇S�)T

with the covariant coordinates

2es
i = ws,i + *i,

2εb
ij = −2ub,ij · a3 + 2Σk Γ

k
ijub,k · a3 + 2wscij + *i,j + *j,i − 2Σk Γ

k
ij *k.

The membrane strains are the same as above. A conforming discretisation may be
achieved with C1 elements for the three Cartesian coordinates of ub and C0 elements
for the normal coordinate ws of us and the two covariant coordinates of �.

19.3.5 Numerical Example: Scordelis–Lo Roof

The Scordelis–Lo roof was used to validate the exactness of the models and the
implementation. The problem with the vertical deflection u3D

z for is illustrated in
Fig. 19.5. A roof section cut out from a right circular cylinder with an opening angle
of 80◦ rests on a rigid diaphragm with its curved edges. The normal and tangential
deformation with respect to the spanning circle are zero at the curved edges (together
with their first derivatives in tangential direction); the straight edges are free. The
shell thickness is 0.25, the cylinder radius 25 and the length 50. Isotropic material

Fig. 19.5 Scordelis-Lo roof with vertical deflection u3D
z
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Table 19.10 Results and iteration numbers for Scordelis–Lo roof

Naghdi bilin. Naghdi biquadr. EK shell Hier. Naghdi/EK

#El Max|u3D
z | #it Max|u3D

z | #it Max|u3D
z | #it Max|u3D

z | #it

4 2.02E−3 9 3.74E−2 36 0.2138 77 0.2809 29

16 7.72E−3 34 0.1472 267 0.2959 643 0.2960 653

64 1.99E−2 108 0.2829 661 0.3025 1011 0.3025 1047

256 3.76E−2 255 0.3007 545 0.3030 1065 0.3031 744

1024 7.27E−2 587 0.3026 423 0.3030 605 0.3032 978

4096 0.1485 1184 0.3038 452 0.3030 709 0.3034 1629

16,384 0.2362 1764 0.3043 534 0.3030 670 0.3036 2788

with E = 4.32 · 108 and ν = 0 is used and a vertical load per unit surface of −90
is applied. The absolute value of the maximum vertical deflection of max|u3D

z | =
0.3024, which occurs at the middle of the free edges, is suggested to be used as
a benchmark in [15]. Our own overkill solution with 137 962 adaptively refined
biquadratic Lagrangian elements obtained max|u3D

z | = 0.3043. The same value for
the first four decimal places was obtained with the standard Naghdi shell model
using 16,384 uniform biquadratic Lagrangian elements, see Table 19.10. Further
uniform refinements were not possibly on the used machine due to running out of
memory.

We did not make use of symmetries and simulated the whole domain. Results
obtained with uniform refinement of bilinear as well as biquadratic Lagrangian
elements for the standard Naghdi formulation and a combination of bilinear
Lagrangian and Bogner–Fox–Schmit elements for the C0 and C1 parts of the Endo–
Kimura shell formulation as well as the hierarchic Naghdi shell formulation based
on Endo–Kimura are collected in Table 19.10. Iteration numbers of all methods are
much higher than for their counterparts in the plate example. The iteration numbers
of the Koiter shell in cartesian coordinates with BFS elements which are not shown
in the table are about the same as those of the Endo–Kimura shell. The bilinear
elements show slow h-convergence but the h-convergence of the other methods
appears satisfying.

In order to conduct a locking study we also considered a thinner Scordelis–Lo
roof with thickness 0.025 and load −0.9. Results are collected in Table 19.11. We
observe that both Endo–Kimura shell formulations have the best h-convergence but
at extreme iteration numbers. A better preconditioner tailored for these formulations
which might reduce these iteration numbers would be desirable. The Koiter shell in
cartesian unknowns with BFS elements shows iteration numbers in the same order
of magnitude.



19 A Framework for Efficient Hierarchic Plate and Shell Elements 411

Table 19.11 Results and iteration numbers for thinner Scordelis–Lo roof

Naghdi biquadr. EK shell Hier. Naghdi/EK

#El Max|u3D
z | #it Max|u3D

z | #it Max|u3D
z | #it

4 3.77E−3 36 0.1707 59 0.2983 30

16 2.16E−2 271 0.2181 1317 0.2184 1347

64 0.1107 1310 0.3067 5382 0.3067 6071

256 0.2404 2949 0.8183 9494 0.3183 9655

1024 0.3020 2712 0.3204 5615 0.3205 5636

4096 0.3022 501 0.3206 3019 0.3206 3050

16,384 0.3197 3426 0.3206 4545 0.3206 5272

19.4 Conclusion and Outlook

We have compared several known and two new plate formulations with respect to
their locking behaviour and their numerical efficiency combined with a conforming
discretisation. The two new formulations for the Endo–Kimura variant and the
original Mindlin–Reissner plate turned out to be locking free and among the most
efficient methods for both thick and thin plates. Further experiments with other
preconditioners should be conducted to round out this picture.

There are currently no existence results for the new formulations, which started
out just as numerical experiments. Providing existence results and a priori error
estimates is desirable after the shown promising experiments.

Extensions of both new formulations to shells have been presented. The example
problem has shown that the solution of shell problems is more challenging and a
better preconditioner might be needed. Nevertheless both methods are locking free
and thus suitable for thick and thin shells.

An application to anisotropic plates is directly possible by use of an anisotropic
material tensor. The presented theory does not rely on any restrictions or special
material formulations except for the usual symmetries of the material tensor, which
are fulfilled also by anisotropic ones. Plates and shells with varying material
properties over the thickness can also be covered with effective 2D material tensors
which stem from integration in the thickness direction of the 3D material tensor.
Especially piecewise constant material properties with respect to the plate or shell
thickness play an important rule and are analysed under the name of laminate theory.
Adaptive FEM for anisotropic laminated Kirchhoff plates has been addressed in [25]
and [28].
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Error correction approach, 299
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Finite element method, 323
First order system, 57
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Graded mesh, 1
Grading parameter, 8

Helmholtz equation, 57, 146
Hierarchic preconditioning, 390
Hierarchical matrices, 144
High order method, 57, 205
hp-adaptive, 17
hp-version, 57
Hsieh–Clough–Tocher, 388
Hyperbolic, 107

inf–sup condition, 42
Interior penalty approach, 42
Isogeometric analysis, 205, 224, 297

Kirchhoff plate model, 387
Koiter shell, 387

Least squares method, 57
Linear bidomain equation, 324
Linear damped wave, 107
Local error indicator, 131
Locking, 387

Maxwell equation, 323
Mesh grading, 12
Mindlin–Reissner plate, 387
MITC, 387
Mixed finite element discretization, 107
Mixed formulation, 387
Monolithic AMG method, 325
Moving interface, 248
Multigrid, 205

Naghdi shell, 387
Navier–Lamé equation, 146
Non-convex corner, 12
Nonlinear bidomain equation, 336
Nonlocal operator, 143
Numerical integration, 298

Optimal control problem, 2
Order reduction, 372
Overlapping Schwarz preconditioner, 187

Panel clustering, 144

Parabolic–elliptic system, 324
Parabolic initial-boundary value problem, 247,

371
Parallel computing, 187, 205, 248
Parallel scalability, 187
Piecewise approximate parallelogram property,

5
Pipeline, 107
Pivoting strategy, 278
Plate bending, 131
Plate formulation of Endo and Kimura, 396
Plate in a rotation free formulation, 395
Post-processed reconstruction, 17
Preconditioned conjugate gradient method,

187, 213, 390
Preconditioner, 187, 247
p-refinements, 41

Q-method of Bonito and Pasciak, 170
Quadrature, 165

error, 299
rule, 297

Quantity of interest, 144

Raviart–Thomas, 58
Reaction-diffusion problem, 221, 230
Reconstruction technique, 17
Recovered gradient, 6
Reissner–Mindlin plate, 131

Saturation assumption, 19
Shear locking, 387
Single layer potential, 145, 279
Space-time adaptivity, 248
Space–time discretization, 247, 323, 341, 371
Space–time variational formulation, 323, 341
Sparse matrix, 187, 281
Spectral Laplacian, 166
Stability, 323, 328, 329, 332
Stabilization, 41, 85, 247
Stabilized finite element method, 341
Stabilized variational problem, 341
Stokes system, 146
Superconvergence, 1, 223
Superconvergent graded mesh, 1, 10
Superconvergent mesh, 4
SUPG, 86
Surface cluster, 278
Surface segmentation, 278

Tensor-product NURBS, 297
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Three-field formulation, 41
Three-level method, 187
Time-stepping, 107
Trace of discrete harmonic function, 4
Trace theorem, 14
Trimmed quadrature, 299
Two-level method, 187

Unconditionally stable, 342, 343

Variational discrete normal derivative, 1, 3, 6

Wave equation, 341, 355
Wavelet boundary element method, 143, 144
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