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Abstract. Recently, a class of nonlinear sequences, modular reductions
of primitive sequences over integer residue rings, was proposed and has
attracted much attention. In particular, modulo 2 reductions of primitive
sequences over Z/(231−1) were used in the ZUC algorithm. In this paper,
we study the distribution properties of modulo 2 reductions of primitive
sequences over Z/(M), where M is a square-free odd integer. Let a be
a primitive sequence of order n over Z/(M) with period T and [a]mod 2

the modulo 2 reduction of a. With the estimate of exponential sums
over Z/(M), the proportion fs of occurrences of s within a segment of
[a]mod 2 of length μT is estimated, where s ∈ {0, 1} and 0 < μ ≤ 1.
Based on this estimate, it is further shown that for given M and μ, fs

tends to M+1−2s
2M

as n → ∞. This result implies that there exists a small
imbalance between 0 and 1 in [a]mod 2, which should be taken into full
consideration in the design of stream ciphers based on [a]mod 2.

Keywords: Integer residue ring · Primitive sequence ·
Modular reduction · 0, 1 distribution · ZUC algorithm

1 Introduction

For an integer m ≥ 2, let Z/(m) denote the integer residue ring modulo m. The
set {0, 1, . . . ,m − 1} is always chosen as the complete set of representatives for
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the elements of the ring Z/(m). Thus a sequence a over Z/(m) is usually seen
as an integer sequence over {0, 1, . . . ,m − 1}. Moreover, for an integer a and a
positive integer b ≥ 2, let us denote the least nonnegative residue of a modulo
b by [a]mod b, and similarly, for a sequence a = (a(t))t≥0 over Z/(m), denote
[a]mod b = ([a(t)]mod b)t≥0.

Let p be a prime number and e a positive integer. During the past two
decades, the maximal period linear recurring sequences over Z/(pe), called primi-
tive sequences over Z/(pe), have been paid much attention. An enormous amount
of effort is directed toward the study of finding useful mappings to derive good
pseudorandom sequences from primitive sequences over Z/(pe), which are called
compression mappings in literature, and proving that they are injective. Gener-
ally there are two kinds of compression mappings: one is based on e-variable func-
tions over Z/(p) [10,15–17,20,21]; the other is based on the modular arithmetic
[13,22]. Besides, the pseudorandom properties of these compression sequences
are also extensively studied, such as periodicity [7,13], linear complexity [3,6,15]
and distribution properties [2,8,12,23].

Recently research interests on primitive sequences over Z/(pe) are further
extended to primitive sequences over Z/(M) [4,9,24–27], where M is a square-
free odd integer. One of important reasons for this is that the period of a prim-
itive sequence a of order n over Z/(pe) is undesirable if e ≥ 2. Recall that
the period per(a) of a primitive sequence a of order n over Z/(pe) is equal to
pe−1 · (pn − 1) ≈ pe+n−1 [18]. It can be seen that for a fixed prime power pe with
e ≥ 2, the period per(a) increases slowly and far less than pe·n as n increases.
Therefore, to meet the requirement of long period in practical applications, n
should be chosen large enough, which will be high resource consumption in hard-
ware and software implementation. For example, to generate a sequence with
period not less than 264 over Z/(28), Z/(216) and Z/(232), the number of bit-
registers required must be larger than 456, 784 and 1056, respectively. However
for many choices of M , primitive sequences over Z/(M) have no such periodic
weakness. For cryptographic applications, the moduli of the form 2e − 1 have
attracted much attention since the operation “mod 2e − 1” can be efficiently
implemented both in hardware and software, and this offers new possibilities for
advancement in the solution of applying linear recurring sequences over integer
residue rings. For instance, primitive sequences over Z/(231 − 1) are used to
design the ZUC algorithm, a stream cipher that is the core of the standardised
3GPP confidentiality algorithm 128-EEA3 and the 3GPP integrity algorithm
128-EIA3, see [28].

By applying the operation mod 2 to primitive sequences over Z/(M), one can
easily obtain a class of binary sequences, called modulo 2 reductions of primi-
tive sequences over Z/(M). It is thought that the operation mod 2 destroys the
original linear recurrence relation of primitive sequences over Z/(M) and the
obtained binary sequences should have many desirable cryptographic properties
if the modulus M and the order n are carefully chosen. One of the most interest-
ing properties is the so-called “modulo 2 distinctness”. Some progress has been
made on the modulo 2 distinctness, see, for example, [9,26]. From the viewpoint
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of cryptographic applications, it is naturally interested in the pseudorandom
properties of modulo 2 reductions of primitive sequences over Z/(M). However,
so far few result was obtained. In [25], to study the modulo 2 distinctness of prim-
itive sequences over Z/(M), two distribution properties of primitive sequences
over Z/(M) are investigated. One is to determine whether there is an integer
t ≥ 0 such that a(t) = s for a given element s ∈ Z/(M) and a given primitive
sequence a of order n over Z/(M). The other is to determine whether there is an
integer t ≥ 0 such that a(t) is an even number for a given primitive sequence a
of order 1 over Z/(M). In [9], Hu and Wang studied whether there is an integer
t ≥ 0 such that a(t) = a and b(t) = b, for two given elements a, b ∈ Z/(M) and
two given primitive sequences a, b generated by a same primitive polynomial over
Z/(M).

In this paper, we study the distribution properties of the binary sequence
[a]mod 2, where a is a primitive sequence of order n over Z/(M) with period
T . With the estimate of exponential sums over Z/(M), the proportion fs of
occurrences of s within a segment of [a]mod 2 of length μT is estimated, where
s ∈ {0, 1} and 0 < μ ≤ 1. Based on this estimate, it is further shown that for
given M and μ, fs tends to (M + 1 − 2s) /2M as n → ∞. Generally speaking,
if n is not too small (for example, n ≥ 3 for M = 232 − 1), then the value of fs

is very close to that of (M + 1 − 2s) /2M . This implies that there always exists
a small imbalance (about 1/M) between 0 and 1 in [a]mod 2. In order to provide
a good resistance against the distinguishing attacks, such imbalance should be
taken into full consideration in the design of stream ciphers based on [a]mod 2.
Fortunately, by introducing a moderate amount of exclusive or operations, the
imbalance of 0, 1 will be reduced to a small enough extent.

The rest of this paper is organized as follows. Section 2 presents some nec-
essary preliminaries. Section 3 gives the main results of this paper. Finally, con-
clusions are drawn in Sect. 4.

2 Preliminaries

2.1 Primitive Polynomials and Primitive Sequences over Integer
Residue Rings

Let m be an integer greater than 1. If a sequence a = (a(t))t≥0 over Z/(m)
satisfies

a(t) = [cn−1a(t − 1) + · · · + c1a(t − n + 1) + c0a(t − n)]modm (1)

for all integers t ≥ n, where n is a positive integer and c0, c1, . . . , cn−1 ∈ Z/(m)
are constant coefficients, then a is called a linear recurring sequence of order n
over Z/(m) generated by f(x) = xn − cn−1x

n−1 − · · · − c0 (or a is a sequence of
order n over Z/(m) in short). For convenience, the set of sequences generated
by f(x) over Z/(m) is generally denoted by G (f (x) ,m). Particular interests
for cryptography are the maximal period linear recurring sequences also called
primitive sequences over Z/(m), which are generated by primitive polynomials
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over Z/(m). Next we introduce the definitions of primitive polynomials and
primitive sequences over Z/(m).

Let f (x) be a monic polynomial of degree n over Z/(m). If gcd(f (0) ,m) = 1,
then there exists a positive integer T such that xT − 1 is divisible by f(x) in
Z/(m)[x]. The minimum of such T is called the period of f (x) over Z/(m) and
denoted by per (f (x) ,m). For the case that m is a prime power, say m = pe,
it is known that per (f (x) , pe) ≤ pe−1(pn − 1), see [18]. If per (f (x) , pe) =
pe−1(pn −1), then f (x) is called a primitive polynomial of degree n over Z/(pe).
A sequence a over Z/(pe) is called a primitive sequence of order n if a is generated
by a primitive polynomial of degree n over Z/(pe) and [a]mod p is not an all-zero
sequence. A primitive sequence a of order n over Z/(pe) is (strictly) periodic
and the period per(a) is equal to pe−1(pn − 1), see [18]. For the case of a general
integer m, assume m = pe1

1 pe2
2 · · · per

r is the canonical factorization of m. A monic
polynomial f (x) of degree n over Z/(m) is called a primitive polynomial if for
every k ∈ {1, 2, . . . , r}, f (x) is a primitive polynomial of degree n over Z/(pek

k ).
A sequence a over Z/(m) is called a primitive sequence of order n if a is generated
by a primitive polynomial of degree n over Z/(m) and [a]mod pk

is not an all-zero
sequence for every k ∈ {1, 2, . . . , r}, that is, [a]mod p

ek
k

is a primitive sequence of
order n over Z/(pek

k ). It can be seen that the period of a primitive polynomial
of degree n over Z/(m) and that of a primitive sequence of order n over Z/(m)
are both equal to

lcm
(
pe1−1
1 (pn

1 − 1) , pe2−1
2 (pn

2 − 1) , . . . , per−1
r (pn

r − 1)
)
.

For convenience, the set of primitive sequences generated by a primitive polyno-
mial f(x) over Z/(m) is generally denoted by G′(f(x),m).

2.2 Exponential Sums over Integer Residue Rings

Let m be a positive integer greater than 1, and let em (·) be the canonical additive
character over Z/(m) given by em(a) = e2πia/m, where a is an integer. For an
integer c, it is well-known that

m−1∑

a=0

em (ca) =
{

m, if m | c;
0, otherwise.

The following Lemma 1 is cited from [5, Theorem 1].

Lemma 1. ([5, Theorem 1]) Let D ≥ 1, m ≥ 2 and g = gcd(m,D). Then we
have

m−1∑

a=1

∣
∣
∣
∣
sin πaD/m

sinπa/m

∣
∣
∣
∣ <

4
π2

m ln m + 0.38m + 0.608 + 0.116
g2

m
,

where ln(m) is the natural logarithm of m.

The following Lemma 2 is an improvement of a well-known result of Korobov
[14, Theorem 13].
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Lemma 2. Let a be a primitive sequence of order n over Z/(m) with period T .
Then for any integer h we have

∣
∣
∣
∣
∣

T−1∑

t=0

em (a (t)) eT (ht)

∣
∣
∣
∣
∣
≤ m

n
2 . (2)

In particular, ∣
∣
∣
∣
∣

T−1∑

t=0

em (a (t))

∣
∣
∣
∣
∣
≤ m

n
2 .

Moreover, we have
∣
∣
∣
∣
∣

k+L−1∑

t=k

em (a (t))

∣
∣
∣
∣
∣
≤ m

n
2

(
4 ln T

π2
+ 0.409 +

L + 1
T

)
(3)

for any integer k ≥ 0 and 0 < L < T .

Proof. Since the inequality (2) has been proved in [14, Theorem 13], we only
prove the inequality (3). We start from the identity

k+L−1∑

t=k

em (a (t)) =

k+T−1∑

t=k

em (a (t))

L−1∑

j=0

1

T

T−1∑

h=0

eT (h (t − k − j)) for k ≥ 0 and 0 < L < T ,

which is valid since the sum over j is 1 for k ≤ t ≤ k + L − 1 and 0 for
k + L ≤ t ≤ k + T − 1. Rearranging terms, we get

k+L−1∑

t=k

em (a (t)) =
1
T

T−1∑

h=0

(
k+T−1∑

t=k

em (a (t)) eT (ht)

)⎛

⎝
L−1∑

j=0

eT (−h (k + j))

⎞

⎠ ,

and so we obtain
∣
∣
∣
∣
∣

k+L−1∑

t=k

em (a (t))

∣
∣
∣
∣
∣
≤ 1

T

T−1∑

h=0

∣
∣
∣
∣
∣

k+T−1∑

t=k

em (a (t)) eT (ht)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

L−1∑

j=0

eT (−h (k + j))

∣
∣
∣
∣
∣
∣

=
1
T

T−1∑

h=0

∣
∣
∣
∣
∣

T−1∑

t=0

em (a (t)) eT (ht)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

L−1∑

j=0

eT (−hj)

∣
∣
∣
∣
∣
∣
.

Then by the inequality (2) we get
∣
∣
∣
∣
∣

k+L−1∑

t=k

em (a (t))

∣
∣
∣
∣
∣
≤ m

n
2

T

T−1∑

h=0

∣
∣
∣
∣
∣
∣

L−1∑

j=0

eT (−hj)

∣
∣
∣
∣
∣
∣

=
m

n
2

T

T−1∑

h=0

∣
∣
∣
∣
∣
∣

L−1∑

j=0

eT (hj)

∣
∣
∣
∣
∣
∣

≤ m
n
2

T

T−1∑

h=1

∣
∣
∣
∣
∣
∣

L−1∑

j=0

eT (hj)

∣
∣
∣
∣
∣
∣
+

L · m
n
2

T
. (4)
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We note that
T−1∑

h=1

∣
∣
∣
∣
∣
∣

L−1∑

j=0

eT (hj)

∣
∣
∣
∣
∣
∣
=

T−1∑

h=1

∣
∣
∣
∣
eT (hL) − 1
eT (h) − 1

∣
∣
∣
∣

=
T−1∑

h=1

∣
∣
∣
∣
cos(2πhL/T ) + i sin(2πhL/T ) − 1

cos(2πh/T ) + i sin(2πh/T ) − 1

∣
∣
∣
∣

=
T−1∑

h=1

∣
∣
∣
∣
−2 sin2(πhL/T ) + 2i sin(πhL/T ) cos(πhL/T )

−2 sin2(πh/T ) + 2i sin(πh/T ) cos(πh/T )

∣
∣
∣
∣

=
T−1∑

h=1

∣
∣
∣
∣
sin(πhL/T )
sin(πh/T )

∣
∣
∣
∣ ,

and so an application of Lemma 3 yields

T−1∑

h=1

∣
∣
∣
∣
∣
∣

L−1∑

j=0

eT (hj)

∣
∣
∣
∣
∣
∣
<

4
π2

T ln T + 0.38T + 0.608 + 0.116
g2

T

<
4
π2

T ln T + 0.409T + 1, (5)

where the last inequality follows from the fact that g = gcd(L, T ) < T/2. Com-
bining the inequalities (4) and (5), we get the desired result.

3 Main Results

Throughout the rest of this paper, we always assume that M > 1 is a given square-
free odd integer and M = p1p2 · · · pr is the canonical factorization of M . Let d > 1
be a divisor of M . Suppose d = pi1 · · · pik

with 1 ≤ i1 < · · · < ik ≤ r. Let us
denote by λn(d) the period of primitive sequences of order n over Z/(d), that is,

λn(d) = lcm(pn
i1 − 1, . . . , pn

ik
− 1).

The main results of this paper are stated in the following Theorems 1 and 2.

Theorem 1. Let a be a primitive sequence of order n over Z/(M) with period
T = λn (M), and let b = [a]mod 2. For s ∈ {0, 1}, denote by N

(
bT , s

)
the number

of t, 0 ≤ t ≤ T − 1, with b (t) = s. Then we have

N
(
bT , s

)

T
=

1
2

+ (−1)s · Mn−1 − 1
2Mn − 2

(6)

if M is an odd prime number; and
∣
∣
∣
∣
∣
∣

N
(
bT , s

)

T
− M + 1 − 2s

2M

∣
∣
∣
∣
∣
∣
<

1
M

∑

d|M
d>1

dn/2

λn (d)
·
(

d ln d

π
+ 0.538d

)
(7)

if M has at least two different prime divisors.
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Theorem 2. Let a be a primitive sequence of order n over Z/(M) with period
T = λn (M). Let b = [a]mod 2 and bL = (b (k) , b (k + 1) , . . . , b (k + L − 1)) a
segment of b with length L = μT , where 0 ≤ k ≤ T − 1 and 0 < μ < 1. For
s ∈ {0, 1}, denote by N

(
bL, s

)
the number of t, 0 ≤ t ≤ L−1, with b (k + t) = s.

Then we have
∣
∣
∣
∣
∣
∣

N
(
bL, s

)

L
− M + 1 − 2s

2M

∣
∣
∣
∣
∣
∣
<

1
M

∑

d|M
d>1

d
n
2

λn (d)
C (d, L) ,

where

C (d, L) =
(

λn (d)
L

(
4
π2

ln λn (d) + 0.409
)

+
L + 1

L

)(
d ln d

π
+ 0.538d

)
.

The rest of this section is divided into three subsections. Subsects. 3.1 and
3.2 are mainly devoted to the proof of Theorem1 and the proof of Theorem2,
respectively. Finally, as an example, an application of Theorems 1 and 2 to the
modulo 2 reductions of primitive sequences over Z/(232 − 1) is given in Sub-
sect. 3.3.

3.1 The Proof of Theorem 1

We first collect two well-known results on trigonometric functions in Lemma 3.
The first result can be found in [19] and the second result can be found in [11,
p. 447].

Lemma 3. Let tan x = sinx/ cos x, sec x = 1/ cos x and csc x = 1/ sin x be
the tangent function, the secant function and the cosecant function, respectively.
Then we have:

(1)
∫

sec xdx = ln |sec x + tan x| + C, where C is the constant of integration;
(2) csc(π/m) ≤ m/3 if m ≥ 6.

Lemma 4. For an odd integer m > 1, we have

m−1∑

h=1

∣
∣
∣
∣sec

hπ

m

∣
∣
∣
∣ <

2
π

m ln m + 1.076m.

Proof. It can be directly verified that the lemma holds for m = 3 or 5. Therefore,
we assume that m ≥ 7. Since it is clear that

sec
hπ

m
= − sec

(m − h) · π

m
> 0 for 1 ≤ h ≤ m − 1

2
,

we obtain
m−1∑

h=1

∣
∣
∣
∣sec

hπ

m

∣
∣
∣
∣ = 2

m−1
2∑

h=1

sec
hπ

m
. (8)
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Note that the convexity of the function secx implies that

∫ u+ θ
2

u− θ
2

sec xdx > θ · sec u for
θ

2
< u <

π

2
− θ

2
.

Thus by taking θ = π
m we get

m−3
2∑

h=1

sec
hπ

m
<

m

π

m−3
2∑

h=1

∫ hπ
m + π

2m

hπ
m − π

2m

sec xdx

=
m

π

∫ (m−2)·π
2m

π
2m

sec xdx

<
m

π

∫ (m−2)·π
2m

0

sec xdx

=
m

π
· ln

(
sec

(m − 2) · π

2m
+ tan

(m − 2) · π

2m

)

=
m

π
·
(

ln
(

sec
(m − 2) · π

2m

)
+ ln

(
1 + sin

(m − 2) · π

2m

))

<
m

π
·
(
ln

(
csc

π

m

)
+ ln 2

)
. (9)

By combining (8) and (9), we obtain

m−1∑

h=1

∣
∣
∣
∣sec

hπ

m

∣
∣
∣
∣ <

2m

π
·
(
ln

(
csc

π

m

)
+ ln 2

)
+ 2 sec

(m − 1) π

2m

=
2m

π
·
(
ln

(
csc

π

m

)
+ ln 2

)
+ 2 csc

π

2m
. (10)

By applying csc(π/m) ≤ m/3 to the right-hand side of (10) we get

m−1∑

h=1

∣
∣
∣
∣sec

hπ

m

∣
∣
∣
∣ <

2
π

m ln m +
2m

π
(ln 2 − ln 3) +

4
3
m <

2
π

m ln m + 1.076m.

This completes the proof.

Now we start to prove Theorem 1.

Proof (Proof of Theorem 1). If M is an odd prime number, then (6) immediately
follows from the theory of m-sequences over finite fields (see, for example, [11]).
Next we will prove the equality (7). Note that

∣
∣
∣
∣
∣
∣

N
(
bT , 0

)

T
− M + 1

2M

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣
1 −

N
(
bT , 1

)

T
− M + 1

2M

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

N
(
bT , 1

)

T
− M − 1

2M

∣
∣
∣
∣
∣
∣
,
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and so it suffices to show (7) holds for the case that s = 0, that is,
∣
∣
∣
∣
∣
∣

N
(
bT , 0

)

T
− M + 1

2M

∣
∣
∣
∣
∣
∣
<

1
M

∑

d|M
d>1

dn/2

λn (d)
·
(

d ln d

π
+ 0.538d

)
. (11)

Since

N
(
bT , 0

)
=

T−1∑

t=0

M−1
2∑

x=0

(
1
M

M−1∑

h=0

eM (h (a (t) − 2x))

)

=
1
M

M−1∑

h=0

⎛

⎝
T−1∑

t=0

eM (ha (t)) ·
M−1

2∑

x=0

eM (−2hx)

⎞

⎠

=
T · (M + 1)

2M
+

1
M

M−1∑

h=1

⎛

⎝
T−1∑

t=0

eM (ha (t)) ·
M−1

2∑

x=0

eM (−2hx)

⎞

⎠ ,

we get
∣
∣
∣
∣
∣
∣

N
(
bT , 0

)

T
− M + 1

2M

∣
∣
∣
∣
∣
∣
≤ 1

MT

M−1∑

h=1

∣
∣
∣
∣
∣

T−1∑

t=0

eM (ha (t))

∣
∣
∣
∣
∣
·
∣
∣
∣
∣
∣
∣

M−1
2∑

x=0

eM (−2hx)

∣
∣
∣
∣
∣
∣
. (12)

We note that

M−1
2∑

x=0

eM (−2hx) =

(
e− 4hπi

M

)M+1
2 − 1

e− 4hπi
M − 1

=
e− 2hπi

M − 1

e− 4hπi
M − 1

=
1

e− 2hπi
M + 1

=
1

cos 2hπ
M − i sin 2hπ

M + 1

=
1

2 cos2 hπ
M − 2i sin hπ

M cos hπ
M

=
1
2

· sec hπ
M

e− hπi
M

. (13)
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Applying (13) to (12) we obtain
∣
∣
∣
∣
∣
∣

N
(
bT , 0

)

T
− M + 1

2M

∣
∣
∣
∣
∣
∣
≤ 1

2MT

M−1∑

h=1

∣
∣
∣
∣
∣

T−1∑

t=0

eM (ha (t))

∣
∣
∣
∣
∣
·
∣
∣
∣
∣sec

hπ

M

∣
∣
∣
∣

=
1

2MT

∑

d|M
d>1

∑

1≤h≤M−1
gcd(h,M)=M/d

∣
∣
∣
∣
∣

T−1∑

t=0

eM (ha (t))

∣
∣
∣
∣
∣
·
∣
∣
∣
∣sec

hπ

M

∣
∣
∣
∣

=
1

2MT

∑

d|M
d>1

∑

1≤h≤d−1
gcd(h,d)=1

∣
∣
∣
∣
∣

T−1∑

t=0

ed (ha (t))

∣
∣
∣
∣
∣
·
∣
∣
∣
∣sec

hπ

d

∣
∣
∣
∣ . (14)

Note that given a divisor d > 1 of M , [ha]mod d is a primitive sequence over
Z/(d) with period λn (d) for every integer h coprime with d, and so it follows
from Lemma 2 that

∣
∣
∣
∣
∣

T−1∑

t=0

ed (ha (t))

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

T

λn (d)
·

λn(d)−1∑

t=0

ed (ha (t))

∣
∣
∣
∣
∣
∣
≤ T · dn/2

λn (d)
. (15)

Combining (14) and (15) yields
∣
∣
∣
∣
∣
∣

N
(
bT , 0

)

T
− M + 1

2M

∣
∣
∣
∣
∣
∣
≤ 1

2MT

∑

d|M
d>1

∑

1≤h≤d−1
gcd(h,d)=1

T · dn/2

λn (d)
·
∣
∣
∣
∣sec

hπ

d

∣
∣
∣
∣

=
1

2M

∑

d|M
d>1

dn/2

λn (d)
·

∑

1≤h≤d−1
gcd(h,d)=1

∣
∣
∣
∣sec

hπ

d

∣
∣
∣
∣

≤ 1
2M

∑

d|M
d>1

dn/2

λn (d)
·

d−1∑

h=1

∣
∣
∣
∣sec

hπ

d

∣
∣
∣
∣ , (16)

and so (11) follows from (16) and Lemma 4.

Generally speaking, if n is sufficiently large, then the right-hand side of (6)
is sufficiently small, and so the value of N

(
bT , s

)
/T is very close to that of

(M + 1 − 2s) /2M (for more details, see Table 1). In fact, we can give a more
theoretical result on the asymptotic property of N

(
bT , s

)
/T as n → ∞.

Corollary 1. Let a be a primitive sequence of order n over Z/(M) with period
T = λn (M), and let b = [a]mod 2. Then for s ∈ {0, 1} we have

lim
n→∞

N
(
bT , s

)

T
=

M + 1 − 2s

2M
.
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To prove Corollary 1, we first introduce a result of Bugeaud, Corvaja and
Zannier [1].

Lemma 5. ([1, Theorem 1]) If a < b are two integers greater than 1 which
are multiplicatively independent (that is, the only integer solution (x, y) of the
equation axby = 1 is (x, y) = (0, 0)), then for any given real number ε > 0, there
exists an integer Nε such that

gcd (an − 1, bn − 1) < anε for all integers n > Nε.

Remark 1. Note that a and b are multiplicatively independent if gcd (a, b) = 1.

Proof (Proof of Corollary 1). Since Corollary 1 is obvious true for the case that
M is an odd prime number, we assume that M = p1p2 · · · pr is the canonical
factorization of M with r ≥ 2 and 3 ≤ p1 < p2 < · · · < pr. Note that the
inequality

d ln d

π
+ 0.538d ≤ M ln M

π
+ 0.538M

holds for any divisor d of M , and so by Theorem 1 we get
∣
∣
∣
∣
∣
N

(
vT , s

)

T
− M + 1 − 2s

2M

∣
∣
∣
∣
∣
<

(
M ln M

π
+ 0.538M

)
·
∑

d|M
d>1

dn/2

λn (d)
.

Therefore to prove Corollary 1, it suffices to show that

lim
n→∞

∑

d|M
d>1

dn/2

λn (d)
= 0,

that is

lim
n→∞

r∑

k=1

∑

1≤i1<···<ik≤r

∏k
j=1 p

n/2
ij

lcm
(
pn

i1
− 1, pn

i2
− 1, . . . , pn

ik
− 1

) = 0. (17)

Given a real number ε > 0. For any 1 ≤ u < v ≤ r, it follows from Lemma 5
and Remark 1 that there exists an integer N

(u,v)
ε such that

gcd (pn
u − 1, pn

v − 1) < pnε
u for all integers n > N (u,v)

ε .

Set

Nε = max{
⌈

ln pu

ln p1
· N (u,v)

ε

⌉
| 1 ≤ u < v ≤ r},

where �a	 denotes the smallest integer greater than or equal to a. Then it is
clear that

gcd (pn
u − 1, pn

v − 1) < pnε
1 , 1 ≤ u < v ≤ r and n > Nε. (18)



Distribution Properties of Binary Sequences 579

Let 2 ≤ k ≤ r and 1 ≤ i1 < · · · < ik ≤ r. It follows from (18) that if n > Nε,
then

lcm
(
pn

i1 − 1, pn
i2 − 1, . . . , pn

ik
− 1

) ≥
∏k

j=1(p
n
ij

− 1)
∏

1≤j<l≤k gcd(pn
ij

− 1, pn
il

− 1)

> p
−k2nε/2
1 ·

∏k

j=1
(pn

ij
− 1)

≥ p
−r2nε/2
1 ·

∏k

j=1
(pn

ij
− 1).

Consequently, we have
∏k

j=1 p
n/2
ij

lcm
(
pn

i1
− 1, pn

i2
− 1, . . . , pn

ik
− 1

) ≤ p
r2nε/2
1 ·

∏k

j=1

p
n/2
ij

pn
ij

− 1

< p
r2nε/2
1 ·

∏k

j=1
p
1−n/2
ij

≤ p
r2nε/2
1 · M ·

∏k

j=1
p

−n/2
ij

. (19)

Note that k ≥ 2 and pij
≥ p1 for 1 ≤ j ≤ k, and so (19) yields

∏k
j=1 p

n/2
ij

lcm
(
pn

i1
− 1, pn

i2
− 1, . . . , pn

ik
− 1

) < p
r2nε/2
1 · M · p

−nk/2
1

≤ p
r2nε/2
1 · M · p−n

1

= M · p
− n

2 ·(2−r2ε)
1 .

Hence it can be seen that
r∑

k=1

∑

1≤i1<···<ik≤r

∏k
j=1 p

n/2
ij

lcm
(
pn

i1
− 1, pn

i2
− 1, . . . , pn

ik
− 1

)

=
r∑

i=1

p
n/2
i

pn
i − 1

+
r∑

k=2

∑

1≤i1<···<ik≤r

∏k
j=1 p

n/2
ij

lcm
(
pn

i1
− 1, pn

i2
− 1, . . . , pn

ik
− 1

)

<
r

p
n/2
1 − 1

+ 2r · M · p
− n

2 ·(2−r2ε)
1 .

Then choosing ε < r−2, we get

0 ≤
r∑

k=1

∑

1≤i1<···<ik≤r

∏k
j=1 p

n/2
ij

lcm
(
pn

i1
− 1, pn

i2
− 1, . . . , pn

ik
− 1

) <
r

p
n/2
1 − 1

+2r·M ·p−n/2
1 .

(20)
Since r, M and p1 are all fixed integers with p1 ≥ 3, we get

lim
n→∞

r

p
n/2
1 − 1

+ 2r · M · p
−n/2
1 = 0,

and so (17) follows from (20).
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3.2 The Proof of Theorem 2

Proof (Proof of Theorem 2). Since
∣
∣
∣
∣
∣
∣

N
(
bL, 0

)

L
− M + 1

2M

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

N
(
bL, 1

)

L
− M − 1

2M

∣
∣
∣
∣
∣
∣
,

it suffices to show that
∣
∣
∣
∣
∣
∣

N
(
bL, 0

)

L
− M + 1

2M

∣
∣
∣
∣
∣
∣
<

1
M

∑

d|M
d>1

d
n
2

λn (d)
C (d, L) . (21)

First, it is clear that

N
(
bL, 0

)
=

k+L−1∑

t=k

M−1
2∑

x=0

(
1
M

M−1∑

h=0

eM (h (a (t) − 2x))

)

=
1
M

M−1∑

h=0

⎛

⎝
k+L−1∑

t=k

eM (ha (t)) ·
M−1

2∑

x=0

eM (−2hx)

⎞

⎠

=
L · (M + 1)

2M
+

1
M

M−1∑

h=1

⎛

⎝
k+L−1∑

t=k

eM (ha (t)) ·
M−1

2∑

x=0

eM (−2hx)

⎞

⎠ .

Then proceed as in the proof of Theorem 1, we can get
∣
∣
∣
∣
∣
∣

N
(
bT , 0

)

L
− M + 1

2M

∣
∣
∣
∣
∣
∣
≤ 1

2ML

∑

d|M
d>1

∑

1≤h≤d−1
gcd(h,d)=1

∣
∣
∣
∣
∣

k+L−1∑

t=k

ed (ha (t))

∣
∣
∣
∣
∣
·
∣
∣
∣
∣sec

hπ

d

∣
∣
∣
∣ . (22)

Note that given a divisor d > 1 of M , [ha]mod d is a primitive sequence over
Z/(d) with period λn (d) for every integer h coprime with d, and so by Lemma 2
we have

∣
∣
∣
∣
∣

k+L−1∑

t=k

ed (ha (t))

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

k+[L]mod λn(d)−1
∑

t=k

ed (ha (t)) +

⌊
L

λn (d)

⌋

·
λn(d)−1

∑

t=0

ed (ha (t))

∣
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣

k+[L]mod λn(d)−1
∑

t=k

ed (ha (t))

∣
∣
∣
∣
∣
∣

+

⌊
L

λn (d)

⌋

·
∣
∣
∣
∣
∣
∣

λn(d)−1
∑

t=0

ed (ha (t))

∣
∣
∣
∣
∣
∣

≤ d
n
2

(

4 lnλn (d)

π2
+ 0.409 +

[L]mod λn(d) + 1

λn (d)

)

+

⌊
L

λn (d)

⌋

· d
n
2

= d
n
2

(
4 lnλn (d)

π2
+ 0.409 +

L + 1

λn (d)

)

, (23)
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where 
a� denotes the largest integer smaller than or equal to a. Combining (22)
and (23) we get

∣
∣
∣
∣
∣
∣

N
(
bT , 0

)

L
− M + 1

2M

∣
∣
∣
∣
∣
∣

≤ 1
2M

∑

d|M
d>1

∑

1≤h≤d−1
gcd(h,d)=1

d
n
2

λn (d)

(
λn (d)

L

(
4
π2

ln λn (d) + 0.409
)

+
L + 1

L

)
·
∣
∣
∣
∣sec

hπ

d

∣
∣
∣
∣

≤ 1
2M

∑

d|M
d>1

d
n
2

λn (d)

(
λn (d)

L

(
4
π2

ln λn (d) + 0.409
)

+
L + 1

L

)
·

d−1∑

h=1

∣
∣
∣
∣sec

hπ

d

∣
∣
∣
∣ . (24)

and so (21) follows from (24) and Lemma 4.

Similar to Corollary 1, we can give the asymptotic property of
N(bL,s)

L as
n → ∞.

Corollary 2. Let a be a primitive sequence of order n over Z/(M) with period
T = λn (M). Let b = [a]mod 2 and bL = (b (k) , b (k + 1) , . . . , b (k + L − 1)) a
segment of b with length L = μT , where 0 ≤ k ≤ T − 1 and 0 < μ < 1. Then for
s ∈ {0, 1} we have

lim
n→∞

N
(
bL, s

)

L
=

M + 1 − 2s

2M
.

Proof. Since

λn (d)
L

(
4
π2

ln λn (d) + 0.409
)

+
L + 1

L
<

λn (M)
L

(
4
π2

ln Mn + 0.409
)

+ 2

=
1
μ

(
4
π2

n ln M + 0.409
)

+ 2

<

(
4 ln M

μπ2
+

3
μ

)
· n

and
d ln d

π
+ 0.538d ≤ M ln M

π
+ 0.538M

hold for any divisor d of M with d > 1, it follows from Theorem2 that
∣
∣
∣
∣
∣
∣

N
(
bL, s

)

L
− M + 1 − 2s

2M

∣
∣
∣
∣
∣
∣
< Dμ (M)

∑

d|M
d>1

nd
n
2

λn (d)
,

where

Dμ (M) =
(

4 ln M

μπ2
+

3
μ

)
·
(

M ln M

π
+ 0.538M

)
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is a constant only depended on M and μ. Therefore to prove Corollary 2, it
suffices to show that

lim
n→∞

∑

d|M
d>1

nd
n
2

λn (d)
= 0,

that is

lim
n→∞

r∑

k=1

∑

1≤i1<···<ik≤r

n
∏k

j=1 p
n/2
ij

lcm
(
pn

i1
− 1, pn

i2
− 1, . . . , pn

ik
− 1

) = 0. (25)

Proceed as in the proof of Corollary 1 (but substitute
∏k

j=1 p
n/2
ij

by n
∏k

j=1 p
n/2
ij

),
finally we can get

0 ≤
r∑

k=1

∑

1≤i1<···<ik≤r

n
∏k

j=1 p
n/2
ij

lcm
(

pn
i1

− 1, pn
i2

− 1, . . . , pn
ik

− 1
) <

rn

p
n/2
1 − 1

+ 2rM · np
−n/2
1 .

(26)
Since r, M and p1 are all fixed integers with p1 ≥ 3, we get

lim
n→∞

rn

p
n/2
1 − 1

+ 2rM · np
−n/2
1 = 0,

and so (25) follows from (26).

3.3 An Example: Element Distribution of Modulo 2 Reductions
of Primitive Sequences over Z/(232 − 1)

Let a be a primitive sequence of order n over Z/(232 − 1) with period T =
λn

(
232 − 1

)
. Let b = [a]mod 2 and bL = (b (k) , b (k + 1) , . . . , b (k + L − 1)) a

segment of b with length L = μT , where 0 ≤ k < T and 0 < μ ≤ 1. Then it
follows from Theorems 1 and 2 that

∣
∣
∣
∣
∣
∣

N
(
bL, s

)

L
− 231 − s

232 − 1

∣
∣
∣
∣
∣
∣
< Λn (μ) , (27)

where

Λn (μ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
232−1

∑

d|232−1
d>1

dn/2

λn(d)B (d) , if μ = 1;

1
232−1

∑

d|232−1
d>1

dn/2

λn(d)C (d, μT ) , if 0 < μ < 1,

with
B (d) =

d ln d

π
+ 0.538d

and

C (d, μT ) =
(

λn (d)
L

(
4
π2

ln λn (d) + 0.409
))

· B (d) .
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The values of Λn (μ) are calculated and listed in Table 1 for 1 ≤ n ≤ 10 and
μ ∈ {1, 1/2, 1/4, 1/8}. It can be seen from Table 1 that the estimate of (27) is
nontrivial if (1) μ = 1 and n ≥ 2; or (2) 0 < μ < 1 and n ≥ 3. Moreover for any
μ ∈ {1, 1/2, 1/4, 1/8}, the value of Λn (μ) is very close to 0 if n ≥ 3, which is
consistent with the results of Corollarys 1 and 2.

Table 1. The values of Λn (μ) for 1 ≤ n ≤ 10 and μ ∈ {1, 1/2, 1/4, 1/8}

n Λn (1) Λn (1/2) Λn (1/4) Λn (1/8)

1 9.867 5.580 × 102 1.106 × 103 2.202 × 103

2 2.035 × 10−1 2.640 × 10 5.260 × 10 1.050 × 102

3 5.877 × 10−9 2.825 × 10−7 5.591 × 10−7 1.112 × 10−6

4 1.534 × 10−7 2.317 × 10−5 4.618 × 10−5 9.220 × 10−5

5 2.125 × 10−10 2.125 × 10−10 2.125 × 10−10 2.125 × 10−10

6 5.850 × 10−9 1.326 × 10−7 2.600 × 10−7 5.140 × 10−7

7 1.875 × 10−11 1.875 × 10−11 1.875 × 10−11 1.875 × 10−11

8 1.384 × 10−11 1.384 × 10−11 1.384 × 10−11 1.384 × 10−11

9 5.368 × 10−12 5.368 × 10−12 5.368 × 10−12 5.368 × 10−12

10 3.891 × 10−12 3.891 × 10−12 3.891 × 10−12 3.891 × 10−12

4 Conclusions

In this paper, the distribution properties of modulo 2 reductions of primitive
sequences modulo square-free odd integers are studied. Let M be a square-free
odd integer, n a positive integer, and a a primitive sequence of order n over
Z/(M) with period T . For s ∈ {0, 1} and 0 < μ ≤ 1, denote by fs the proportion
of occurrences of s within a segment of the binary sequence [a]mod 2, the modulo
2 reduction of a, of length μT . Then it is shown that the difference of fs from the
average value M+1−2s

2M tends to 0 as n → ∞. Note that M+1
2M differs from M−1

2M by
1
M . This implies that there exists a small imbalance between 0 and 1 occurring
in the binary sequence [a]mod 2, and the bias of f0 and f1 is about 1

M . To provide
a good resistance against the distinguishing attacks, such imbalance should be
taken into full consideration in the design of stream ciphers based on [a]mod 2. A
simple method is to introduce the exclusive or operation. A bitwise exclusive or
of several phase-shifts of [a]mod 2 will has smaller bias than [a]mod 2. Therefore,
by introducing a moderate amount of exclusive or operations, the imbalance of
0, 1 will be reduced to a small enough extent. In the future we will be interested
in other pseudorandom properties of [a]mod 2, such as the linear complexity of
[a]mod 2.
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