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Abstract. Many side-channel distinguishers (such as DPA/DoM, CPA,
Euclidean Distance, KSA, MIA, etc.) have been devised and studied to
extract keys from cryptographic devices. Each has pros and cons and
find applications in various contexts. These distinguishers have been
described theoretically in order to determine which distinguisher is best
for a given context, enabling an unambiguous characterization in terms
of success rate or number of traces required to extract the secret key.

In this paper, we show that in the case of monobit leakages, the the-
oretical expression of all distinguishers depend only on two parameters:
the confusion coefficient and the signal-to-noise ratio. We provide closed-
form expressions and leverage them to compare the distinguishers in
terms of convergence speed for distinguishing between key candidates.
This study contrasts with previous works where only the asymptotic
behavior was determined—when the number of traces tends to infinity,
or when the signal-to-noise ratio tends to zero.
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1 Introduction

Today’s ciphering algorithms such as AES are considered resistant to cryptanal-
ysis. This means that the best possible way to extract a 128-bit key is about
as complex as an exhaustive search over the 2128 possibilities. With our current
computational power, this is not achievable within a reasonable amount of time.

However, it is possible to use plaintexts, ciphertexts, along with additional
side information in order to recover the secret key of a device. Indeed, the secret
key may leak via side-channels, such as the time to compute the algorithm, the
power consumption of the device during the computation of the algorithm, or
the electro-magnetic radiations of the chip.
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In order to secure chips from side-channel attacks, designers have to under-
stand how these work and what could be the future security breaches in the
cryptographic algorithm as well as in the hardware implementation. A prelim-
inary step is to identify how the secret keys leak and deduce leakage models.
Then, mathematical functions—called distinguishers—take the leakage as argu-
ment and return an estimation of the secret key. Such distinguishers come in
many flavours1 and have different figures of merit in different contexts. A given
context not only involves the cryptographic algorithm and the device through
the leakage model, but also the side-channel acquisition setup through the mea-
surement characterized by its signal-to-noise ratio (SNR). This is illustrated in
Fig. 1 borrowed from Heuser et al. [12] (with our annotations in red).

Leakage model SNR

device acquisition
platform

crypto
algo

Fig. 1. Illustration of the two parts of the side-channel analysis context (in red). (Color
figure online)

In practice one may encounter monobit leakages. This means that the output
of the leakage model can only take two values. In this case, as we shall see, the
mathematical computations turn to be simpler and information theoretic tools
can be used to precisely describe the link between the leakage model and the real-
world leaking traces. From another perspective, considering monobit leakages can
also be seen as an “abstraction” trick meant to intentionally ignore the complex
effect of the way the device leaks, thereby keeping only the contribution from
the cryptographic algorithm in the leakage model.

A related question is how the choice of the substitution box in the cryp-
tographic algorithm may “help” the attacker. The standard AES substitution
box was designed to be very secure against linear and differential cryptanaly-
sis [6]. On the contrary, under side-channel analysis, the substitution box may
be helpful for the attacker, especially for monobit leakages as shown below.
1 We cover in this paper the following distinguishers: Difference of Means (DoM) [13],

Correlation Power Analysis (CPA) [3], Euclidean distance [12, §3], Kolmogorov-
Smirnov Analysis (KSA) [22], and Mutual Information Analysis (MIA) [9].
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Related Work. Distinguishers were often studied empirically, yet such an app-
roach does not allow for generalizations to other contexts and measurement
campaigns. A theoretical approach consists in analyzing the formal expressions
of the distinguishers as mathematical functions. Fei et al. [8] have shown that
distinguishers such as DoM and CPA can be expressed in terms of a confusion
coefficient. They gave the impetus to extend this formal analysis to other types of
distinguishers. In 2014, Heuser et al. [11] relate KSA to the confusion coefficient,
and also noticed that the confusion coefficient can be related to the resistance
of a substitution box against differential cryptanalysis.

Whitnall and Oswald [21] have proposed the relative distinguishing margin
metric to compare distinguishers. However, it has been shown [18] that this met-
ric may not be relevant in all contexts. Another way to compare distinguishers is
to contrast how their success rate (SR) in key recovery depends on the number
q of side-channel traces. Works such as [8,14] provide mathematically models
for the SR. But the comparison between different distinguishers has never been
actually carried out based on such frameworks. Instead, we shall leverage on the
so-called success exponent (SE) [10] which allows to compare the SR of various
distinguishers based on only one exponent parameter.

Our Contributions. In this paper, we consolidate the knowledge about side-
channel attacks exploiting monobit leakages. We provide a rigorous proof that
any distinguisher acting on monobit leakages depends only on two parameters:
the confusion coefficient and the noise variance. Some distinguishers, namely
DoM, CPA and KSA, have already been expressed as a function of those two
parameters [8,11]. In this article, we derive this expression for MIA and we obtain
a simple analytic function when the non zero values of the confusion coefficient
are near 1/2, which is the case of leakages occurring at cryptographically strong
substitution boxes [4].

We derive the success exponent of these distinguishers in terms of the confu-
sion coefficient and the standard deviation of the noise. Success exponents allow
to characterize the efficiency (in terms of number of traces) of distinguishers to
recover the key. Our closed-form expressions of the success exponent enable the
comparison of distinguishers based only on these two parameters. The flow chart
of Fig. 2 situates our contributions in relation to the current state of the art.

Organization. The remainder of this paper is organized as follows. In Sect. 2,
we recall the main definitions. In Sect. 3, we consider all distinguishers in one
mathematical framework and we show that they are only functions of two param-
eters. In Sect. 4, we compare the distinguishers in terms of the success exponent.
Section 5 concludes. Appendices provide proofs for technical lemmas.

Notations. Throughout this paper, we use calligraphic letters to denote sets and
lower-case letters for elements in this set (e.g. x ∈ X ). Capital letters denote
random variables. For example, X is a random variable taking values in X and
x ∈ X is a realization of X. The probability that X is x is noted P(X = x) or
simply P(x) when there is no ambiguity. The expectation of a random variable is
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Distinguishers:

DoM [13],
CPA [3],
Euclidean
distance
[12, §3],

KSA [22], and
MIA [9]

How to
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[21]
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ization
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Which
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Compare
SR using
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Fig. 2. The state of the art in relation to our contributions (in yellow boxes—see also
Tables 1 and 2 below). (Color figure online)

noted E[X] and its variance Var(X). The differential entropy h(X) of a random
variable X following distribution p(x) is defined as

h(X) = −
∫
R

p(x) log2 p(x) dx. (1)

The mutual information between two random variables X and Y is defined as

I(X;Y ) = h(X) − h(X|Y ) = E

[
log2

P(X,Y )
P(X)P(Y )

]
. (2)

2 Modelization and Definitions

2.1 The Leakage Model

In order to compare the different distinguishers for monobit leakages, we need a
leakage model upon which our computations will be based. A plaintext t meets
the secret key k∗ through a leakage function f(t, k∗). The resulting variable y(k∗)
is called the sensitive variable. The dependence in the plaintext t will be omitted
to make equations easier to read when there is no ambiguity.

The attacker measures a noisy version of y(k∗) called trace and denoted by x.
When the key is unknown, the attacker computes a sensitive variable with a key
hypothesis k, that is, y(k) = f(t, k). Thus our model takes the form{

y(k) = f(t, k)
x = y(k∗) + n

(3)

where n is an independent measurement noise.
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As we consider monobit leakages, we suppose that y(k) can take only two val-
ues. In practice, t (resp. k) are subsets of the full plaintext (resp. key). Typically,
in the case of AES where attacks can be conducted using a divide-and-conquer
approach on a per substitution box basis, t and k are 8-bit works (i.e., bytes).

The above leakage model can also be written using random variables. Let T
the random variable for the plaintext, Y (k) for the sensitive variable, X for the
measurement, and N for the Gaussian noise. We have:

{
Y (k) = f(T, k)

X = Y (k∗) + N.
(4)

In a view to simplify further mathematical computations, we suppose that the
leakage random variable is reduced, that is, centered (E[Y (k)] = 0 for all k) and
of unit variance (E[Y (k)2] = 1 for all k). The noise is also assumed Gaussian of
zero mean and its standard deviation is noted σ > 0. Moreover, we assume that
for any key hypothesis the sensitive variable is balanced, that is, P(y(k)) = 1

2 .
Since Y (k) is a binary random variable, we necessarily have that Y (k) ∈ {±1}
in our model, and consequently the signal-to-noise ratio equals SNR = 1/σ2.

Last, we suppose that the attacker has at his disposal a number of q traces
x1, . . . , xq obtained from leaking sensitive variables y1(k∗), . . . , yq(k∗) under
additive noise n1, . . . , nq.

2.2 The Confusion Coefficient

In the side-channel context, the confusion coefficient was defined by Fei et al.
as the probability that two sensitive variables arising from two different key
hypotheses are different [8, Section 3.1]. Mathematically, the confusion coefficient
is written as

κ(k, k∗) = P(Y (k) �= Y (k∗)). (5)

As the secret key k∗ is constant and understood from the context, we can write
κ(k, k∗) = κ(k). Notice that in practical situations, the EIS (Equal Images under
different Subkeys [20, Def. 2]) assumption holds, therefore κ is actually a function
of the key bitwise XOR difference k ⊕ k∗.

Figure 3 illustrates the confusion coefficient for a monobit leakage Y (k) =
SubBytes(T ⊕k) mod 2, where SubBytes is the AES substitution box (application
F
8
2 → F

8
2) and ⊕ is the bitwise exclusive or. We notice that except for k = k∗ (here

taken = 178 = 0xb2), the confusion coefficient for the AES SubBytes is close to
1/2. This results from the fact the AES SubBytes has been designed to be resistant
against differential cryptanalysis. Specifically, Heuser et al. [11, Proposition 6]
noticed that a “good” substitution box leads to confusion coefficients near 1/2.

The original definition of the confusion coefficient [8] considers only monobit
leakages. An extension for any type of leakage was proposed in [10] where κ(k)
is defined by

κ(k) = E

[(Y (k∗) − Y (k)
2

)2
]
. (6)
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Fig. 3. Confusion coefficient for the AES SubBytes Least Significant Bit (LSB)

Equation (5) can be easily recovered from this more general expression by noting
that when Y (k) and Y (k∗) ∈ {±1},

(Y (k∗)−Y (k)
2

)2 is 0 or 1 according to whether
Y (k) = Y (k∗) or Y (k) �= Y (k∗).

2.3 Distinguishers

Distinguishers aim at recovering the secret key k∗ from the traces and the model.
For every key k, the attacker computes the associated distinguisher. The key
hypothesis that gives the highest value of the distinguisher is the estimated key.
The attack is successful if the estimated key is equal to the secret key.

For every key hypothesis k, a distinguisher is noted D̂(k) and the estimated
key is k̂ = arg maxk D̂(k). Five classical distinguishers are:

– Difference of Means (DoM) [8], also known as the Differential Power Analysis
(DPA) [13] where the attacker computes

D̂(k) =

∑
i|yi(k)=+1 xi∑

i|yi(k)=+1

−
∑

i|yi(k)=−1 xi∑
i|yi(k)=−1

. (7)

– Correlation Power Analysis (CPA) [3] where the attacker computes the abso-
lute value of the Pearson coefficient

D̂(k) =
∣∣∣∣
1
q

∑q
i=1 xiyi(k) − 1

q

∑q
i=1 xi · 1

q

∑q
i=1 yi(k)√

Var(X)Var(Yi(k))

∣∣∣∣. (8)



Confused yet Successful 539

Notice that Var(Yi(k)) do not depend on the index i, since repeated measure-
ments are i.i.d.

– Euclidean distance, which corresponds to the Maximum Likelihood (ML)
attack under the Gaussian noise hypothesis, where the attacker actually com-
putes the negative Euclidean distance between the model and the trace

D̂(k) = −1
q

q∑
i=1

(xi − yi(k))2. (9)

Maximizing the value of the distinguisher amounts to minimizing the
Euclidean distance. According to [12], as the noise is Gaussian and addi-
tive, the Euclidean distance is the optimal distinguishing rule (ML rule) that
maximizes the success probability.

– Kolmogorov-Smirnov Analysis (KSA) [22] where the traces are used to build an
estimation of the cumulative density function F̂ (x), and the distinguisher is

D̂(k) = −EY (k)

[‖F̂ (x|Y (k)) − F̂ (x)‖∞
]

(10)

where the infinite norm is defined as ‖F̂ (x)‖∞ = supx |F̂ (x)|. Maximizing the
value of the distinguisher amounts to minimizing the expected infinite norm.

– Mutual Information Analysis (MIA) [9] where the attacker computes the
mutual information between the traces and each model. The traces are used
to build an estimation of the joint distribution of X and Y (k), denoted by
p̂(X,Y (k)), and with this estimation, we calculate the mutual information

D̂(k) =
∑

x,y(k)

p̂(x, y(k)) log2
p̂(x, y(k))

p̂(x) · p̂(y(k))
. (11)

Given the available data, the attacker computes the distinguisher as a func-
tion of x1, . . . , xq and y1(k), . . . , yq(k). To emphasize the dependence on the data,
we may write D̂(k) = D̂(X1, . . . , Xq, Y1(k), . . . , Yq(k)). As these traces are real-
izations of random variables, we may also consider D̂(k) as a random variable
which is a function of X1, . . . , Xq and Y1(k), . . . , Yq(k), with expectation E[D̂(k)]
and a variance Var(D̂(k)).

When the number of queries q tends to infinity, we assume that the distin-
guisher converges in the mean-squared sense:

Definition 1 (Theoretical Distinguisher [10]). The theoretical value of the
distinguisher is defined as the limit in the mean square sense when q → ∞ of
the distinguisher. The notation for the theoretical distinguisher is D(k), which
is therefore implicitly defined as:

E[(D̂(k) − D(k))2] −→ 0 as q → ∞. (12)
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Put differently, D̂(k) can be seen as an estimator of D(k). It is easily seen that as
q → +∞ the distinguishers presented previously have the following theoretical
distinguishers:

– For DoM, the theoretical distinguisher is

D(k) = E[XY (k)]. (13)

– For CPA, the theoretical distinguisher is

D(k) =

∣∣E[XY (k)] − E[X]E[Y (k)]
∣∣

1 + σ2
. (14)

– For Euclidean distance (ML) distinguisher, we have:

D(k) = −E
[
(X − Y (k))2

]
. (15)

– For KSA, we have:

D(k) = EY (k)

[‖F (x|Y (k)) − F (x)‖∞
]
. (16)

– For MIA, it is the mutual information

D(k) = I(X;Y (k)). (17)

3 Theoretical Expressions for Distinguishers

In this section, we show that all distinguishers for monobit leakages are functions
of only two parameters: the confusion coefficient κ(k) and the SNR = 1/σ2.
This is confirmed by the closed-form expressions for classical distinguishers. In
particular we derive the one corresponding to MIA.

3.1 A Communication Channel Between Y (k) and Y (k∗)

To understand the link between any sensitive variable Y (k) and the leaking sensi-
tive variable Y (k∗), consider the following information-theoretic communication
channel between these two variables described in Fig. 4. This communication
channel is simply a theoretical construction that helps explain the link between
Y (k) and Y (k∗), which are both binary and equiprobable random variables tak-
ing their values in {±1}. The parameters p and p′ are the transition probabilities
defined as p = P(Y (k∗) = +1|Y (k) = −1) and p′ = P(Y (k∗) = −1|Y (k) = +1).

Lemma 1. The communication channel defined in Fig. 4 is a binary symmetric
channel (BSC) with transition probability equal to the confusion coefficient κ(k).
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−1
1 − p

−1

+1
1 − p′

+1

p

p′
Y (k) Y (k∗)

Fig. 4. Abstract communication channel between Y (k) and Y (k∗)

Proof. To prove that the channel is symmetric, we show that both transition
probabilities coincide: p = p′. In fact, from Fig. 4, 1

2 = P(Y (k∗) = 1) =
pP(Y (k) = −1) + (1 − p′)P(Y (k) = 1) = 1

2 (p + 1 − p′) hence p = p′. Now
the confusion coefficient κ(k) = P(Y (k) �= Y (k∗)) can be expanded as

κ(k) = 1
2

(
P(Y (k) �= Y (k∗)|Y (k) = 1) + P(Y (k) �= Y (k∗)|Y (k) = −1)

)
(18)

= 1
2

(
P(Y (k∗) = −1|Y (k) = 1) + P(Y (k∗) = 1|Y (k) = −1)

)
(19)

= 1
2

(
p + p′) = p = p′. (20)

This proves that the BSC has transition probability equal to κ(k). �	
According to a well-known information theoretic result [5, p. 187], the

Shannon’s capacity in bits per bit of this channel is

C = 1 − H2(κ(k)), (21)

where H2(x) is the binary entropy function defined by

H2(x) = x log2
( 1

x

)
+ (1 − x) log2

( 1
1 − x

)
. (22)

This is represented in Fig. 5 as a function of κ(k). Interestingly, the value κ(k) =
1/2 corresponds to null capacity while the capacity is evidently 1 bit per bit for
κ(k∗) = 0, since in this case the above communication channel reduces to the
identity.

3.2 A General Result

We can now explain why all distinguishers for monobit leakages depend only on
the two parameters κ(k) and SNR = σ−2.

Theorem 1. Any theoretical distinguisher D(k) for a binary leakage y can be
expressed as a function of κ(k) and σ.
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Fig. 5. Representation of the channel capacity according to κ(k)

Proof. Any theoretical distinguisher is defined in terms of the joint probability
distribution of X and Y (k), noted p(x, y(k)). Now for any x ∈ R and y(k) = ±1,

p(x, y(k)) = P(y(k)) p(x | y(k)) (23)

=
1
2
p(y(k∗) + n | y(k)) (24)

=
1
2

∑
y(k∗)

p(y(k∗) + n | y(k), y(k∗)) P(y(k∗) | y(k)) (25)

where P(y(k∗) | y(k)) is the transition probability of the channel defined in Fig. 4.
There are two possibilities. Either y(k) = y(k∗), and in this case P(y(k∗)|y(k)) =
1 − κ(k), or y(k) �= y(k∗) and in this case P(y(k∗)|y(k)) = κ(k). The sum over
y(k∗) has two terms and both cases are represented. Moreover, the Gaussian
noise is independent from every other random variable. Therefore, we have two
possibilities for the joint probability:

p(x, y(k)) =

⎧⎨
⎩

1
2

(
φ( 1+n

σ )κ(k) + φ(−1+n
σ )(1 − κ(k))

)
1
2

(
φ(−1+n

σ )κ(k) + φ(1+n
σ )(1 − κ(k))

) (26)

where φ(x) is the probability density function of a standard normal random
variable. As the noise is centered and Gaussian, the only parameter that charac-
terizes φ is its standard deviation σ. Therefore, a joint distribution of a monobit
leakage is fully characterized by σ and κ(k). �	

This proves that the knowledge of the confusion coefficient and the noise
power are essential to predict the performances of the side-channel attacks for
monobit leakages.
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3.3 Classical Distinguishers as Functions of κ(k) and σ2

To highlight the result of Sect. 3.2, we compute the classical distinguishers
according to the confusion coefficient and the noise power. As we mentioned
in the introduction, some of them have already been expressed according to
these variables: we recall these results in Table 1 with references to the articles
where the expression of the distinguisher in terms of κ(k) is proven.

Table 1. Summary of classical distinguishers. Among all the classical theoretical dis-
tinguishers, we notice that the expression of the theoretical value of DoM with κ(k)
does not depend on σ.

Distinguisher Original paper Theoretical expression with κ(k) Reference

DoM [13] D(k) = 2(1/2 − κ(k)) [15]

CPA [3] D(k) = 2 |1/2−κ(k)|√
1+σ2

[15]

Euclidean distance [12, §3] Lemma 2 This paper

KSA [22] D(k) = erf
(

1
2σ2

)
|1/2 − κ(k)| [11]

MIA [9] Lemma 3 This paper

The new results are given by the following lemmas.

Lemma 2. For monobit leakages, the Euclidean distance distinguisher can be
expressed as:

D(k) = 4(1/2 − κ(k)) − (σ2 + 2). (27)

Proof. We have D(k) = −E
[
(X − Y (k))2

]
= −E

[
(Y (k∗) − Y (k) + N)2

]
=

−E
[
(Y (k∗) − Y (k))2

] − σ2 since the noise is independent from Y (k∗) − Y (k).
Then by (6), D(k) = −4κ(k)−σ2 = 4(1/2−κ(k))−2−σ2 where we have stressed
the dependence in 1/2 − κ(k) as in Table 1. �	
Lemma 3. For monobit leakages, when κ(k) ≈ 1/2 for k �= k∗, the MIA distin-
guisher can be expressed at first order as:

D(k) = 2 log2(e)(κ(k) − 1/2)2g(σ) (28)

where
g(σ) =

1
2
E

[
tanh2

(Z

σ
+

1
σ2

)
+ tanh2

(Z

σ
− 1

σ2

)]
(29)

and Z ∼ N (0, 1). The function g satisfies

lim
σ→0

g(σ) = 1 and lim
σ→∞ σ2 × g(σ) = 1. (30)

Proof. See Appendix A. �	
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Figure 6 plots the shape of g(σ) which tends to 1 when σ → 0 and is equivalent
to 1

σ2 when σ → ∞.
When k = k∗ the MIA distinguisher also has a simple expression since it

reduces to the known expression of the channel capacity for channels with binary
input and additive Gaussian noise [2, p. 274]:

D(k∗) =
1
σ2

−
∫
R

e− 1
2y2

2π
log2 cosh(

1
σ2

− y

σ2
)dy. (31)

Fig. 6. Representation of g(σ)

Remark 1. With respect to their theoretical distinguishers, DoM is in bijection
with the Euclidean distance, and CPA is in bijection with KSA. Indeed, the
Euclidean distance is D(k) = 4(1/2 − κ(k)) − 2 − σ2 and σ is independent from
the choice of the key. Therefore, there is a bijection between 4(1/2−κ(k))−2−σ2

and 2(1/2−κ(k)) which is the theoretical value of DoM. Regarding CPA and KSA,
both distinguishers are functions of |1/2 − κ(k)|.

We also notice that MIA is in bijection with CPA (and therefore KSA).
Indeed, according to the value of MIA with κ(k), the distinguisher is a function of
(1/2−κ(k))2 which is in bijection with |1/2−κ(k)| =

√
(1/2 − κ(k))2. This means

that for monobit leakages, any attack that works with one of these distinguishers
will also work with another, and vice versa.

4 Comparing Distinguishers with the Success Exponent

In the previous section, we have computed the theoretical values of the classical
distinguishers in terms of κ(k) and σ. Now, we wish to compare their success rate.
As we mentioned Sect. 2.3, the attacker computes the estimated distinguisher
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D̂(k) to recover the secret key. This is the main reason why all distinguishers do
not perform equally in key recovery; indeed, they do not converge at the same
speed towards their theoretical value.

In order to compare them, we have computed their success exponent, a metric
proposed by Guilley et al. in [10] that evaluates how fast the success rate of a
distinguisher converges to 100%. With a Gaussian assumption, they prove that
the success rate can be modeled as

SR = 1 − exp(−q × SE), (32)

where q is the number of traces and SE ∈ R
+ is the so-called success exponent.

Therefore, the greater the success exponent is, the faster the convergence of the
success rate.

Table 2. Success exponents for the classical distinguishers. The numerical values of SE
are obtained for AES SubBytes least significant bit leakage model and noise of standard
deviation σ = 4. Notice that in the monobit case, Euclidean distance and DoM have
strictly the same success rate because −(X − Y (k))2 = −X2 + 2XY (k) − 1, and X2 is
independent of the choice of the key.

Distinguisher Closed form SE with
κ(k) and σ

Reference Numerical value
for AES SubBytes

DoM
1

2
min
k �=k∗

κ(k)

1 + σ2 − κ(k)
[10, Proposition 4] 3.39 × 10−3

CPA Lemma 4 This paper 3.39 × 10−3

Euclidean distance
1

2
min
k �=k∗

κ(k)

1 + σ2 − κ(k)
[10, Proposition 5] 3.39 × 10−3

KSA Lemma 5 This paper 1.08 × 10−3

MIA Lemma 6 [10, Proposition 6] 8.52 × 10−5

We present the theoretical values of the success exponent for the different
distinguishers in Table 2. As a direct consequence of Theorem 1, all of these
success exponents are function of κ(k) and σ. Therefore, if the attacker only
knows the type of substitution box that is used and the SNR of the leakage, he
can predict how fast he recovers the secret key.

Lemma 4 (Success exponent of CPA). The success exponent of CPA2 is:

SE =
1
2

min
k �=k∗

1 − 2|1/2 − κ(k)|
1 + 2σ2 + 2|1/2 − κ(k)| . (33)

Proof. See Appendix B. �	
2 In [10], CPA is treated as a distinguisher, but without the absolute values. Those

remove false positives which occur in monobit leakages when there are anti-
correlations. Our value of the success exponent is, therefore, different from theirs.
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Lemma 5 (Success exponent of KSA). Assuming that the distributions are
estimated with the kernel method using Heaviside step function, the success expo-
nent of KSA is

SE =
1
2

min
k �=k∗

erf
(

1√
2σ

)2(1/2 − |1/2 − κ(k)|)
2 − erf

(
1√
2σ

)2(1/2 − |1/2 − κ(k)|)
. (34)

Proof. See Appendix C. �	
Lemma 6 (Success exponent of MIA). When σ � 1, the success exponent
for an MIA computed with histograms is

SE =
4 log2(e)2

σ4
min
k �=k∗

κ(k)2(1 − κ(k))2. (35)

Proof. See Appendix D. �	
In order to validate our theoretical results, we have simulated attacks within

the monobit model presented in Sect. 2. The success rates of these attacks are
presented in Fig. 7. In this figure, we notice that, as expected, the Euclidean
distance (ML) is the best distinguisher, closely followed by CPA. Both have
similar same success rate. The small difference is due to the use the the absolute
values in the distinguishing function of CPA (see discussion in Remark 9 of [12]).
The KSA is requiring a bit less than the double of traces, compared to Euclidean
distance, DoM and CPA. The MIA performs really bad compared to the other
distinguishers. Error bars represent the inaccuracy while estimating the SR (here,
we ran 100 simulations).

Fig. 7. Success rate for classical distinguishers (σ = 4)
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These simulations are therefore in complete coherence with the theoretical
results of Table 2. Indeed, the order of the distinguishers is the same w.r.t. the
success rate and w.r.t. the success exponent. In addition, according to the def-
inition of the success exponent SE in (32), the number of traces q to reach a
given success rate (e.g., SR = 80%) is proportional to the inverse of SE. This
quantitative law is satisfied in the simulation of Fig. 7.

5 Conclusion

In this paper, we have mathematically proven that only two parameters, the
confusion coefficient and the SNR, determine the side-channel distinguishing
efficiency for monobit leakages. Both of them are easy to compute because the
confusion coefficient can be calculated with the knowledge of the operating sub-
stitution box and the SNR can be measured offline.

Our work is useful to predict how fast a distinguisher will succeed to recover
the secret key. Long and painful simulations can be advantageously replaced by
the computation of the success exponent using closed-form expressions.

This paper also consolidates the state of the art about the classical distin-
guishers, especially for MIA and KSA. We have derived the success exponent
for these two distinguishers as a function of the confusion coefficient and the
standard deviation of the noise.

A Proof of Lemma 3

The MIA distinguisher is expressed as

D(k) = I(Y (k∗) + N ;Y (k)) = h(Y (k∗) + N) − h(Y (k∗) + N | Y (k)). (36)

From Sect. 3.1, Y (k∗) knowing Y (k) is a binary random variable with probability
κ(k). As N is Gaussian independent from Y (k), the pdf of Y (k∗) + N knowing
Y (k) is a Gaussian mixture that can take two forms:

pκ(k)(x) =

⎧⎨
⎩

1√
2πσ

[κ(k)e− (x−1)2

2σ2 + (1 − κ(k))e− (x+1)2

2σ2 ]
1√
2πσ

[κ(k)e− (x+1)2

2σ2 + (1 − κ(k))e− (x−1)2

2σ2 ]
, (37)

By symmetry, their entropy h(Y (k∗) + N | Y (k)) will be the same and we can
take any of these pdfs. Letting φ be the standard normal density, we can write

pκ(k)(x) = p1/2(x) − 2(1/2 − κ(k))φ(x)e− 1
σ2 sinh(

x

σ2
) (38)

= p1/2(x)(1 − 2(1/2 − κ(k)) tanh(
x

2σ2
). (39)

where

p1/2(x) =
1

2
√

2πσ
[e− (x−1)2

2σ2 + e− (x+1)2

2σ2 ] =
1
σ

e− 1
2σ2 φ(

x

σ
) cosh(

x

σ2
). (40)
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For notational convenience define ε = 2(1/2 − κ(k)), p = p1/2(x), and t =
tanh(x). Then

I(X;Y (k)) = h(Y (k∗) + N) − h(Y (k∗) + N | Y (k)) (41)

= −
∫

p log2 p +
∫

(p(1 − εt)) log2(p(1 − εt)) (42)

= −
∫

εpt log2 p +
∫

p log2(1 − εt) −
∫

pεt log2(1 − εt). (43)

The first term vanishes since p is even and t odd. We apply a Taylor expansion:

I(X;Y (k)) =
∫

p[−εt− ε2t2

2
− ε3t3

3
+O(ε4)]−

∫
εpt[−εt− ε2t2

2
− ε3t3

3
+O(ε4)].

(44)
The odd terms of the expansion are null as t is odd and p even. We therefore
obtain:

I(X;Y (k)) =
∫

p[−ε2t2

2
+O(ε4)]−

∫
[−ε2pt2+O(ε4)] =

∫
ε2pt2

2
+O(ε4). (45)

Thus, finally,
D(k) = 2 log2(e)(1/2 − κ(k))2g(σ), (46)

where
g(σ) =

1
σ

e− 1
2σ2

∫
R

φ(
x

σ
) cosh(

x

σ2
) tanh2(

x

σ2
)dx. (47)

There are several ways to express g(σ). For example, we have:

g(σ) = e− 1
2σ2

∫
R

φ(x) cosh(
x

σ
) tanh2(

x

σ
)dx. (48)

This expression can be reduced to:

g(σ) =
1
2
EX

[
tanh2(

X

σ
+

1
σ2

) + tanh2(
X

σ
− 1

σ2
)
]

, (49)

where X ∼ N (0, 1). By the dominated convergence theorem (tanh2(X
σ + 1

σ2 ) is
always smaller than 1) when σ → 0, we obtain g(0) = 1 and when σ → ∞ we
obtain the equivalent 1

σ2 .

B Proof of Lemma 4

The success exponent is defined by

SE =
E[D̂(k∗) − D̂(k)]2

2Var(D̂(k∗) − D̂(k))
. (50)



Confused yet Successful 549

where in our case

D̂(k) =
1

q
√

1 + σ2

∣∣∣
q∑

i=1

XiYi(k)
∣∣∣. (51)

First for large q we can consider that E[|∑i XiYi(k)|] = |E[
∑

i XiYi(k)]|.

E[D̂(k)] = |E[XY (k)]| =
2 × |1/2 − κ(k)|√

1 + σ2
(52)

hence

E[D̂(k∗) − D̂(k)] =
1 − 2 × |1/2 − κ(k)|√

1 + σ2
. (53)

Secondly we have

Var(D̂(k∗) − D̂(k)) =
1

q2(1 + σ2)
Var

(∣∣∣
q∑

i=1

XiYi(k∗)
∣∣∣ −

∣∣∣
q∑

i=1

XiYi(k)
∣∣∣
)
. (54)

To remove the absolute values, we distinguish two cases whether the sum is
positive or negative. We consider that q is large enough to have strictly positive
or negative values.

Var(D̂(k∗) − D̂(k)) =
1

q2(1 + σ2)
Var

( q∑
i=1

XiYi(k∗) ∓
q∑

i=1

XiYi(k)
)

(55)

=
1

q2(1 + σ2)
Var

( q∑
i=1

Xi

(
Yi(k∗) ∓ Yi(k)

))
(56)

=
1

q(1 + σ2)
Var

(
X

(
Y (k∗) ∓ Y (k)

))
(57)

=
1

q(1 + σ2)
Var

(
(Y (k∗) + N)

(
Y (k∗) ∓ Y (k)

))
(58)

=
1

q(1 + σ2)
Var

(∓Y (k∗)Y (k) + N(Y (k∗) ∓ Y (k))
)
. (59)

The variance term is the difference of the two following quantities

E

[
(∓Y (k∗)Y (k) + N(Y (k∗) ∓ Y (k)))2

]
= 1 + 2σ2(1 − 2|1/2 − κ(k)|) (60)

E

[
∓Y (k∗)Y (k) + N(Y (k∗) ∓ Y (k))

]2
=

(
2(1/2 − κ(k))

)2

. (61)

Combining all the above expressions we obtain (33).

C Proof of Lemma 5

To prove the success rate of KSA, we first need an estimator for the cumulative
density function. We take as kernel a function Φ as simple as possible i.e. the
Heaviside function Φ(x) = 0 if x < 0 and Φ(x) = 1 if x ≥ 0.
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With this function and for x ∈ R, we can estimate F (x|Y (k) = 1) − F (x) by
the following estimator:

F̃ (x|Y (k) = 1) − F̃ (x) =

∑
i|Yi(k)=1 Φ(x − Xi)∑

i|Yi(k)=1 1
−

∑
i Φ(x − Xi)

q
. (62)

We suppose that q is large enough to consider that
∑

i|Yi(k)=1 1 = q
2 (by the law

of large numbers). Therefore we have:

F̃ (x|Y (k) = 1) − F̃ (x) =

∑
i|Yi(k)=1 Φ(x − Xi)

q
− 2

∑
i Φ(x − Xi)

q
. (63)

We notice that
∑

i|Yi(k)=1 Φ(x − Xi) = 1
2

∑
i(Yi(k) + 1)Φ(x − Xi). Therefore

F̃ (x|Y (k) = 1) − F̃ (x) =
1
q

q∑
i=1

Yi(k)Φ(x − Xi). (64)

This estimator is a sum of i.i.d. random variables. We can therefore apply the
central limit theorem.

E[F̃ (x|Y (k) = 1) − F̃ (x)] = E[Y (k)Φ(x − Xi)] (65)
= E[Y (k)Φ(x − Y (k∗) − N)] (66)

=
1
2
(κ(k) − 0.5)

(
erf

(1 − x

σ
√

2
) + erf

(1 + x

σ
√

2

))
. (67)

The maximum of the absolute value is for x = 0 and we obtain:

‖E[F̃ (x|Y (k) = 1) − F̃ (x)]‖∞ = |0.5 − κ(k)|erf
( 1

σ
√

2

)
. (68)

We notice that ‖E[F̃ (x|Y (k) = 1) − F̃ (x)]‖∞ = ‖E[F̃ (x|Y (k) = −1) − F̃ (x)]‖∞.
To calculate the variance, we consider that x = 0 as it is the value that maximizes
the expectation of the distinguisher.

Var(D̂(k∗) − D̂(k)) = Var
(1

q

( q∑
i=1

Φ(x − Xi)(Yi(k∗) − Yi(k))
))

(69)

The computation of this variance gives:

Var(D̂(k∗)−D̂(k)) = 2(0.5−|0.5−κ(k)|)−erf
( 1

σ
√

2

)2

(0.5−|0.5−κ(k)|)2. (70)

Overall, the success exponent is:

SE =
1
2

min
k �=k∗

erf
(

1√
2σ

)2(1/2 − |1/2 − κ(k)|)
2 − erf

(
1√
2σ

)2(1/2 − |1/2 − κ(k)|)
. (71)
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D Proof of Lemma 6

For MIA, we refer to [10, Section 5.3] for the theoretical justifications. In order
to obtain a simple closed-form expression of the success exponent, we sup-
pose that σ � 1 and that the probability density functions are all Gaussian.
This means that X|Y (k) is a Gaussian random variable of standard deviation√

4κ(k)(1 − κ(k)) + σ2. Moreover, we will keep only the first order approxima-
tion in SNR = σ−2 of the SE.

h(X|Y (k)) − h(X|Y (k∗) =
1

2
log2(2πe · (4κ(k)(1 − κ(k)) + σ2) − 1

2
log2(2πe · σ2) (72)

=
1

2
log2

4κ(k)(1 − κ(k)) + σ2

σ2
(73)

≈ log2(e)4κ(k)(1 − κ(k))

2σ2
(74)

The Fisher information of a Gaussian random variable of standard deviation ζ
is equal to 1

ζ2 . Therefore the Fisher information of X knowing Y = y(k) is:

F (X|Y (k) = y(k)) =
1

4κ(k)(1 − κ(k)) + σ2
. (75)

As this value does not depend on the value of Y (k), we have:

F (X|Y (k)) =
1

4κ(k)(1 − κ(k)) + σ2
(76)

J(X|Y (k)) − J(X|Y (k∗)) =
1

4κ(k)(1 − κ(k)) + σ2
− 1

σ2
(77)

≈ −κ(k)(1 − κ(k))
σ4

. (78)

Last, we have to calculate Var(− log2 p(X|Y (k) = y(k))). Let ζ2 = σ2+4κ(k)(1−
κ(k)) and C the normalization constant. We have:

Var(− log2 p(X|Y (k) = y(k))) = Var
(
− log2

(
C exp

(
−1/2

(X − μ)2

ζ2

)))
(79)

= Var
(
− log2(C) + 1/2

(X − μ)2

ζ2

)
(80)

=
1
4
Var

( (X − μ)2

ζ2

)
=

1
4ζ4

Var(X2) (81)

=
1

4(σ2 + 4κ(k)(1 − κ(k)))2
2(1 + σ2)2 ≈ 1

2
. (82)

Overall, the success exponent defined in [10, Proposition 6] can be simplified in
the case of monobit leakage as:

SE ≈ min
k �=k∗

4
log2(e)2κ(k)2(1 − κ(k))2

σ4
. (83)
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